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INTRODUCTION.

An extensive theory of aberration coefficients of '
symmetrical optical systems has been developed by Buchdahl in his
monograph "Optical Aberration Coefficients"1 (hereafter called M) and

2y 35099 The advantages resulting from

extended in subsequent papers.
the use of these coefficients rest in two important properties,
Firstly, the one set of coefficients characterise systems of rays,
that is, they apply simultaneously to all rays that traverse the
optical system. Secondl& thé aberration coefficients arevthe sums

of corresponding coefficients computed for each surface of the system

(the contributions to the coefficients). This enables the action of
the system on all rays to be analysed surface by surface and it is;'

this that places a powerful tool in the hands of the designer.

Now, although there is only one set of coefficients for
each system, it is an infinite set, ; Obviously-the calculation of
them all is impossible, So far, computing schemes have been designed
for the computation of all the third, fifth and seventh order
monochromatic coefficients, the coefficients of ninth? and eleventh?
order spherical aberration, and several of the more important
chromatic coefficients (M Chapter XIII)° Naturally, the aberrations

of a system are not completely described by only these coefficients.

The object of this thesis is to examine the effectiveness
of the first three orders of the monochromatic coefficients in the
description of the aberrations of optical systems., As well as
enabling a detailed analysis of a system, the coefficients and their
' surface contributions are of considerable use in the differential
correction of a system following the initial design. The effectiveness

of the coefficients in this field is also examined here,

The work has been restricted to monochromatic coefficients,

since, after the initial design, the majority of design is carried
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out in monochromatic light, Also, the systems studied here have been
restricted to those containing spherical surfaces only, The extension
of the work té aspherical surfaces is a matter of detail and not of
method; as méntioned in M Section 55, the only change is that the
"intrinsic" coefficients (Section 5, 6 of this thesis) contain
additional terms which depend on the "extra-axial" curvatures of the
aspheric surfaces, These additional terms in no way affect the
general theory or the application of the coefficients. The aberration
coefficients in no way indicate whether the system they represent is
aspheric or not. However, in the construction of computing schemes
for the coefficients, many simplifications can be introduced if only
spherical surfaces are being considered, resulting in comparatively
short schemes, e.g. compare M 81,3 with 84,23, 33, Lh,

Since the publication of M, several misconceptions have
occurred regarding the coefficients and the contributions to them by
the surfaces, Some of these have been discussed in a paper by
Cruickshank and Hills1o. It is probable that these erroneous
impressions have occurred as a result of 1) the multiplicity of
symbols used in M, and 2) the iterative method used to derive the

expressions for the coefficients.

About the symbolism little can be done. As mentioned in
the preface to M "higher-order optics is a battle of symbolism, not
of advanced mathematics." Consequently, Where type allows, the
symbolism in this thesis is that of M. The most notable exception
is the use here of single and double underlines, the symbols so
marked representing the bold-face type and the Gothic script of M

respectively,

Iteration is quite familiar; everyone is acquainted with
Newton's method for obtaining square roots, in which successively

better‘approximatiﬁﬁs to the square root are obtained with each
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iterative stép. Perhaps as a result of this application, some
workers have supposed that the aberration coefficients are
approximate, This is entirely incorrect, As in the square root
procedure, approximation is involved only by virtue of the fact that
an_infinite series has been terminated without regard to the rgmaining
tefms. The aberration coefficients are the coefficients of the terms
in the infinite power series expansion for the "displacement" of a
ray (See Section 1). When this series is terminated, we have only

an approximation of the displacement. It is the accuracy of this

approximation that is being examined here. However, the coefficients

of the series are exact, After each iterative step explicit

expressions for new higher-—order coefficients are obtained, not better
| . ——

approximations of earlier ones,

Failure to realise this may have arisen as a result of the
iteration in M being applied to a series containing more than one
variable, which necessarily involves a large number of symbols,
Therefore in Part I of this thesis two examples of iteration are
presented, the second being more complex than the first, The second
example introduces the idea of "intrinsic" coefficients, these being
the basic coefficients from which all others are obtained. It is
hoped that these examples will lead to a clearer understanding of

the methods used in M,

By choosing suiteble coordinates with which to specify a
ray, considerable advantages ensue both in the computation and
application of the aberration coefficients, These coordinate
systems and the advantages thereof are also presented in Part I along

with the basic theory of the coefficients,

The examination of the effectiveness of the coefficients in
describing the aberrations of a number of representative systems

entails considerable numerical work, Prior to this work, all
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calculations were performed on desk machines and it was obvious from
the outset that this was too slow, For instance, a set of fhird,
fifth and seventh order coefficients for a six surface system
occupied two girls for four days. Thus my first task here was to
learn to programme an electronic computer to perform this and other
calculations. Accordingly, an approach was made to the University
of New South Wales for the use of their machine, an English Electrié
"DEUCE". As a result of their very generous assistance, in about
nine months I had written a programme for the computation of the first
three orders of coefficients, which, incidentally, almost exceeded
the 8,000 word capacity of the machine, It has subsequently been
rewritten to achieve a reduction in computing time of about 20 percent.
Using this programme, the coefficients for a six surface system can

be obtained in about 5 minutes machine time.

Following this, two more programmes were written, one for
general ray tracing and the other for the computation of the
displacement of a ray using the aberration coefficients. Apart
from a few special trignometric ray traces, the entire numerical work

in this thesis is based on the results of these three programmes.

Since these programmes were designed for general use in
optical design, they have all been coded in basic machine language.
The increase in time and expense for the programming is more than
offset by thé considerable economies in machine time realised during

their subsequent extensive use.

The "DEUCE" is an interesting machine in that it uses
mercury acoustic delay-lines for the high speed stores with a
magnetic drum as the backing store. Notwithstanding this rather
slow type of high speed storage the machine is quite fast in its
operation. This is due mainly to the high digit frequency
(1 megacycle), the arrangement of the arithmetic units and the
considerable amount of information contained in one instruction word,
The first section of Part I1I describes the design and operation of

the computer., The remaining sections are devoted to the details of



the three programmes written for it.

In Part III the accuracy of the first three orders 6f
aberration coéfficients in describing the aberrations of optical
systems is examined. Six modern photographic objectives have been
used for this work. This is an extension of the work presented in
a paper6 by Buchdahl in which he uées two systems as illustration, one
of wide field and the other of large aperture, The quality of the
predicted displacements has been judged on the appearance of tangential
curves;_annular-curves and spot diagrams plotted for several pencils

in each of the six systems.

In the tangential and annular curves are plotted the
displacements of rays predicted from the first two and the first three
orders oft coefficients, as well as the true>displacements obtained
from ray traces, Predicted displacements calculated using the first
three orders only are used in the spot diagram comparisons. The

results of the comparisons have been tabulated in Part III (Table V).

It would be of advantage to the optical worker if some
simple criterion could be found which would indicate the reliability
of the coefficients in predicting displacements of rays. One such
criterion, which I have termed an "angle criterion" was suggested in
reference 6, ﬁIt is a matter of experience that reliance cannot be
placed on the values of the predicted displacements if some | sin I|
or Isin I'l (in a ray trace) exceed a value of about 0.8". This and
other angle.criteria have been examined in the light of the six ‘
additional systems uséd in Part III. Owing to the way the power '
series expansion of the displacemeht is developed, it appears that it
is unlikely that any simple angle criterion will evervbe completely
satisfactory. It is my conclusion that an examination of certain
annular curves afford the best means of assessing the reliability of

the coefficients, the construction of these curves involving very

1ittle more work than that required for any of the angle criteria,
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Part IV deals with the methods of applicatiqn of the
aberration coefficients in the analysis and differential correction
of 6ptica1 systems, These are the important applications; the
mere construction of curves and spot diagrams can be done by ray
tracing, which, however does not give any indication of why the
system performs as it does, or hbw to improve it, On the other hand,
the aberration coefficients and their'derivatives, which characterise
systems of rays, can indicate which surfaces require modification and
as well can indicate with considerable accuracy the effect of

simultaneous changes of parameters at several surfaces., When it is

known that the coefficients adequately describe the aberrations of a
system, their use is quite straight forward and is described in the

paper by Cruickshank and Hillsm° This is summarised in Part IV.

However, the main work in this part is concerned with a
method that can be used when the first three orders of coefficients
do not in themselves adequately describe the system. . The method is
based on a property of the coefficients which arises from the
processes ﬁsed in initial design. As a result of this property, it
is still possible to analyse a system and to predict the effect of
changes of parameters even when the coefficients are known not to
adequately represent the aberrations. The method is illustrated

using two of the systems already described in Part III.

In. order to use the coefficients to predict the effeét of
changes of parameters, it is necessary to know at least the firstl
derivatives of the coefficients with respeet to the'pai'ameterso As
yet, only the derivatives of the third order coefficients can be
obtained directly from the expressions in M. While the neceséary
theory has been presented from which the derivatives of higher order
coefficients may be found, the magnitude of the work involved has
made this uneconomic at present. Should this ever be done, then
the éxplicit expressions so obtained Wduid enable by far the most

satisfactory way of calculating the required derivatives. In fact,
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ir secohd derivatives are required then.the theory presented in M will
have to be developed. However, a knowledge of the first derivatives
of the third, fifth and sevenfh'order coefficients enaﬁies the effect
§£ 5 péréént changes to be predicted satisfacﬁoriiy. These
defivatives_can.be obtaine@ by numerical means using the>aberration
coefficients programme, Thé accuracy of this mefhod is discussed
and 1llustrated with use of a cemented doublet, With the aid of
certain identities between the derivatives and coefficients, devéloped
from the theory in M, it is shown that the first derivatives can be

computed quite accurately.
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PART I - Summary of Theory

1, Sign Conventions, Aberrations of a'Rgx.

' In M and this thesis, the following conventions for
symbols and subscripts are used, Upper case letters refer to
quantities associated with finite rays before refraction at a surface,
the surfaces themselves being specified by subsecripts 1, 2, .00 Js
eoo Ko The subscript k always refers to the last surface;

Primed (') upper case letters denote the corresponding quantities
after refraction. Lower case letters refer tonquantitiés
associated with rays lying everywhere in the infinitesimal
neighbourhood of the axis (paraxial rays), that is, to quantities
determined only by the laws of paréiial optics, All superscript
and subscript conventions apply similarly to paraxial ahd non-
paraxial symbols, Unless otherwise stated, symbols from ﬁhich the
surface subscript is omitted refer to quantities at a _gx surface, '
These are the principal conventions which apply throughout but
additional superscripts and subseripts will be introduced as required,
"Associated with each surface of the system is &
left-handed set of rectangular cartesian axes with the ofiéih at -
the pole of the surface, The x-axes of these coordipaté'systems
lie along the axis of symmetry of the optical system,'tﬁe positive
direction being that in which light proceeds through the system,
AllAfhe y-axes lie in the meridional plane, Let Omi be the
axial point of a'plane, R, in the object space, normal to £he axién
Then rays from Om.[bm.,0,0] whose paths through the system are
determined only by the laws of paraxial optics, will intérsect
the axis in the final image space at & point Odk [1dk , Oy 0]
Ok 1. defined as the axial point of the ideal image plane W,
conjugate to Fi, Select any point O: in the object,plane Fy
and denote its coordinates by [ier ,=Hy ,~Hz ], (Fig.1).hl By
definition, if the optical system were perfect, all rays féom‘ O
which pasé\through the system would intersect in the image plane
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Fk 1in some point J whose coordinates [tk ,—hﬂ;,-hik] would be
such that

hk = = mH, hk = miHz

~where ¥ is a constant of the system independent of Hyr , Hn},

called the paraxial magnification for the conjugate planes Fa;b

W ., J 1s called the ideal image point conjugate to O 3
and hyk , h/k the ideal image heights., In actual practice,
however, a ray from O will not, ih general, pasé through J,
but through some ﬁeighbouring point O [1dk ,-Hyk ,=H&:]o The
aberration €y , ek (Fig.2) of the ray is defined as

eka = Hyvk ,= hﬂ 9 elqk. = Hﬂ( = h\?‘( o

To simplify the writing, all symbols singly underlined shall be

taken as referring to both the yé and z- components of the quantity

in question, Hence the preceding equation will be written

Since each refracting surfacé has an object ahd image plane
conjugate to- Fi; the jth image plane being also the:(j+1)fh
object plane, the aberrations of a ray can be defined\at these
planes in a manner similar to (1.1), Thus, at the jth object
plane, '

ey = H ~-h,  (.2)

and at the jth image plane

]
/

B - b | - (13)

™
g
i



Objecy Plane

gretd

Fig. 1 Coordinaté system and canonical coordinates



Fig, 2 Aberrations (or displacements) e'yk s €%
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A ray incident at any surface will be SpecifiedAby the four
'canonical variables Y, Z, V, W. Y and Z are cartesian
coordinates of the point of intersection of the ray with the plane
tangent to the refracting surface at its pole while V and W are
related to the direction cosines (@,8,y) of the ray by the |

expressions
v = =B, w = -y (10.’4)
whence it follows that

ih!

| [4 +V" +Wé]-% . | (1.5)

K
i

In accordance with the convention Just introduced Y is to be
interpreted as standing for both Y and Z, and V as standing
for both V and W,

If X,y¥,z &are the coordinates of a current point on a

ray, then the equation of the ray may be written

= Y-VZXE. (1.6)

14

If we put X = 4f, the axial distancé between sﬁrfaces jﬁ and
j+1, then ¥ will be:the coordinates of the point of intersection
of the ray with the (J+i )th polar_tangént plane,

Thus = |

Yior = Y - afvf ; Viev = Vf .

It is convenient to omit the subscfipt | j and to replace the

subscript 3.1+ simply by the subscript +. Then we have

Y = Y - aw' ; vV = V'. (1.7)
+ . +- ’ 4
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Equations (1,7) are the transfer equations for canonical variables.

2. Paraxial Coefficients

Defining the symbol 4 to be the change in a quantity
on refraction at a surface e,g, AX = X' - X, it is shown in M

Section L that

I = ¥ -%1 | - (2.1)
A(N®I) = O (2.2)
and also AY = x4V (2.3)

where c¢ (=1/r) is the curvature of the surface, For paraiial

rays these relations reduce to

ANi = 0 - .
CAZ = A (1 + Y) = 0
since a,a? — 1, x40V — 0, )
Using (2.4) and (1,7) we get the paraxial recurrence

relations

]

[ - (1-k)cd'ly - kd'v
(1 -k)ey + kv }

+ld i

(2.5)

where k = N/N', |

Thus we can obtain Tiets Yj+|_b from yj, vi. Since
Yists Vie1 are linearly related to Yis vj, then yj, vj are
linearly related to yi, Vi and the éonstants involved depend

only on the constitution of the system., Hence

=
i

YoI Fr + FoI T o o
AEAR Jq ¥ }‘ (206)

Vpj Jr + Vg Y!,

E
]
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the ypi s Yqis Vpjs» Vgj being called the "paraxial coefficients"
of the jth surface, thice that the relations for y; and 2zj
contain the same coefficients, and that the same is true of the
expressions for vy and wj. Other paraxial coefficientscan

be formed from these by linear combination, e.g.

1pj = C Ypj -~ Vpj
. } (2.7)
1q] = C Yqj = Vgj
go that
iy = Ay o+ i W (2.8)

and these will be used as the need arises,

The paraxial "p" coefficients can be most easily obtained
by tracing a ray by means of (2,5) whose formal starting data are
¥+ =1, w =0 (p-ray)., Then the values of y, v at each
surface are Yp, Vpo Similar—iy the '"q" coefficients can be
obtained by tracing a second ray having the starting data yv = O,
v =1 (gray).

An important identity between the paréxial coefficients
is obtained as follows,

Consider two arbitrary paraxial rays, one of which is
a tangential ray, denoted by & bar over the symbols, Def'ining

a quantity A by

7_\' = N(w = VY)» (209)

then it is8 shown in M Section 5(b) that A is an optical
invariant, that is, its value is constant, throughout the system
for the pair of rays considered, If, in (2.9), the tangential
ray is one from the axial point of the object, and the second ray

passes through the object point, then A can be shown to be the
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Lagrange invariant, i.e, A = Nvgh. Expressing the paraxial
variables in (2,9) in terms of their values at the first surface

by means of (2.,6), one obtains

M

]

(1‘{1‘/’1"" ) (398 Vai = Yai Vpj M1

Since Ay = Aj

Yoy V) - Yeivey = N/Nj . (2.10)

Apart from‘enabling the computation of the paraxial
‘coefficients to be checked, this_ideﬁtity (2.10) is very useful
in the simplification of many expressions which occur in the
development of the aberration coefficient theory, Several other

identities can be'obtained from it, for example

vovd —-vgvg = ¢ Ni(k -1)/N (2.11)
YQVQ' - ¥q qul = Ny /NQ (2.12)
Ip iq - yq ip = =Ny /N B . | (2. 13)

To simplify the notation, we introduce the convention
that if a prime is attached to the left of a symbol, then the
symbol is divided by N, Such a prime will be termed an

ante-prime, Thus (2.10) becomes

" YpVg = ¥YqVp = 1/‘N . \(2-1’4)

The identity (2.14) is used in the following derivation for the
focal lengths of an optical system, :

‘ Let the axial points of the front and rear principal
planes be P, and P{ respectively, these planes, P,P', having
the property that the paraxial magnification associated with fhem
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is unity.
image space
the axis.,
def'ined as
the axis in
parallel to
length, T,

lengthes are

Te

Let F¢ ©be the axial point of intersection in the

of a paraxial ray incident on the system parallel with
Then the posterior foqal length, f', of the system is
f' = PdFd, (Fig.3). Likéwise, if P, is a point on
the object space such that paraxial rays from it are
the axis in the image space, then the anterior focal
ie defined as f = PoFo, (Fig.4). Note that the

measured from the principal planes,

As can be seen in Fig, 3

By (2.6)

Thus

' = g/
= wn/v .
W= vy o+ vwm

= vy , since =0,

£ /v . (2.15)

]

For the anterior focal length, (Fig.l)

and

Thus

f = y/w = WwW/wn ,

yl? = yp‘( o+ Yq‘< o, (2016)
w = vy o+vkwm = 0 . (2.17)
) = - vk v /vk



8.,
and (2.16) becomes

y'k = v, (yt;k V;k - yp'k Vq'k )/Vp'k

il

~ N,v,/N{v),  from (2,40).
Hence
f = - N,/Ngmﬁ = L (2.18)

The distance 1, of the fir st principal plane from tlie first

surface is given by
T o= (/N - vk /v . (2.19)

La, the distance of the rear principal plane from the last

surface is given by

g = (s = 1)/ vk . | (2.20)

3. MAberration Coefficients

(a) In section 1, the aberration of a ray in the jth

imagé plane, ¢', was defined as

v H' -~ h' ., o | (3.1)
Thus. H = h o se' | . » (3.2)

M
i

Multiplying throughout by N'v{, (the subscript "o" in this
context denoting quantities associated With'rays from the axial

point of the object) we get

i

N'fl’o'lj' N'vdh' + N'vge' ., | - (3.3)



If 14 is the axial distance of the jth image plane from the

surface, from({,6)we get
h' = v -y ~ (3.4)

remembering the sign convention for h',

Thus

N'vdh' = N'vd(udv' - y')
N'vd [ (yd/vd)v" - y']
- W(yiv' - vig')

which is the invariant A, by (2,9). Hence (3.3) becomes
Ni'vdH' = A 4+ N'vie'? , (3.5)
Writing A for NveH, and €  for. NveE ,
AA = A8 , | (3.6)
Incidentally, since N'wgh' is an invariant
N'védh' = TNive h (3.7)

\J
or h' = my , where m = N Vo /Nvs ,

9

jth

and is termed the paraxialimagnif‘ication associated with the planes

M s8nd. -‘»if‘g‘a The paraxial magnification associated with the
final ideal image plane T is

m = I ves /Nlvde . : (3.8)
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Now, the yth 1deal imege plane is also the (’.j;, )th

object plane, hence

.9.! = Ejfste , ' ' ' (309)-
Also | N = Ny, and vy = Ve, thus
A A . : 1 -
e] = Ejur, | (3.10)
Now
e& = ’_6\1 - gi + §2 b §3 + 060 - gk + gi
= ?_1 - §g+ IE_;: - §3 + 00 = _t:_:\& + §|¥ from (3.10)
= Er o+ (B - &) + ( ) eeo + (Ed - Ex)
= é_:t + Aé\j + Agz + oee A_é:k '. . (3011)

However, §. = 0, thus, using (3,6)

e

) |
ed = I AAq . (3.12)
fot o ,
BA = N'VIH' = NvgH
‘ e@nd , _
'I_I’ = Lg}_f e X. I’er (10’4)9 thus
A = A[N(VY - yeW)]e - (3.13)

Since Y,V, depend bn YW,V A.L& may be expanded as a power series
in Y,V Due to thé rotational 'syrm'netry of the optical s.;vetem,"
if Y, Vi are reversed in sign, ¢f reverses its sign, a,ndl
therefore also must AL, Thusl AA must be a sequence o

| ~ polynomials ‘of' odd degree in Y¥,V,. Furthermore, AA ‘tends to

zero as Y ,\1;' become infinitesimal, that is, in the paraxial



limit, so that the series for AA does not contain linear terms,

Thus the expansion for AA can be written in the form

oo n ]J, -
A = n§1 U'§o vz"o (%.(Ln\)l‘g' + (3) Vi JETTH n'-v?‘,"" (3.14)
where
Ev = YWl4 7?, ,
Ny = YaVi+ Z1Wy, ' (3.15)
Z = Vite Wt o,

1,

For convenience, the early terms of the series (3.14) are written

]

AA (aY¥r&y + 8V1E1r + DYim + DVaMy 4+ cYi&y + ¢y ) +
(8 YHEY 4+ BIViEY 4 B2 WaEiMr 4+ B2 Vil 4+

ss Y1 &1L + B ViEs&r + seYami o Bs Vimi + 8 Yam&y +
S8sVimiZy + 86YiZl 4+ BeViZl) +

(tt!‘gi Y sseeeo + ‘Eto Y‘Z;%) + 0(9)9

where 0(9) denotes terms of degree not less than9 in the

coordinates,
Writing
o
(ny. (n)
’ Guvj = 'j§‘ 8vi
' (3.16)
j
: (my’ _ (n)
and G}J.Vj. - 1§1 %J,Vi '
and similarly for the barred coefficients, (3.12) becomes
o 3 L;'. (G(“)’Y. . Gy, )E)-Pnk-VgY (3.17)
bt = ne p‘"ﬁ Ve o uvk"" + IJ.Vk—‘ !V 1 1 ° ™

Adopting the conventions in (3.16), (3.17) can be written
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(ALY By +?<.“+.(—3|3Y17]1) + (S ET + oo ot Sk nwzi) +
(T& ¥tE§ + oo+ Tk Wzi) + 0(9). (3.18)

1m>
=,
i

/ -— / .
The coefficients G&Sl, Gﬁﬁl are called the (augmented) cenonical

aberration coefficients of order n of the system, and the

%fsg, éﬁgg are termed the contributions to these by the jth

surface, Gﬁgg, Eﬁ%j are called the intermediate canonical
aberration coefficients. Note that qﬁ?‘ = —(?' = 0,

(b) bAj  depends linearly on ya , Va1 , by virtue of (3,13),
(2.6), Thus the coefficients in (3.1L) must depend linearly on

Yoo o Vo1 , 80 that

gu(s) = g“(:)p Yor + g‘;{;‘q Vor
%}3’ = épf?;)p Yor + 2 <3)q Vor o (3.19)

Then the "p" aberration coefficients are

k
)’ ()
Gpvpk = 1§1gﬁVpi

and the "q" aberration coefficients are

' k )
m’ 3 (&)
Cvek = 42, 8y
and similarly for the barred coefficients,
Thus €{ can be written as the sum of two series, one cohtaining

only "p" coefficients, and the other Qontainihg the "q" coefficients,

in the following manner,

:I — 4
= 222 T+ G, VORIV

4 - 4 . !
+322(6 00 T+ §W, W YER Y=V var (3.20)

1
X

In conformity with (3.18),
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"

/ ' SN - ‘
Gk - Apk o, Gook = Ak, Gl , = A,

)
G’md(

i

Kq'k ] G‘(?;pk = B‘;k s eeo \ (3,21)

The correspondence between the alphabetic symbols and the various
values of u,v in the different orders is given in the following

table,

Third order (u,v) 00° 10 14
net | A B ¢

Fifth order 00 10 11 20 21 22
Nne?2 Sl SZ 83 84 : Ss. S6

Seventh order 00 10 11 20 24 22 30 31 32 33
nes Ty T2 Ts Ts ' Ts Te Ty Ts Ty Tio

L, "a" and "b" Aberration Coefficients

If the object tends to infinity, i.e. le—>< , then

Vo=~ O and (3.,20) becomes

LR 52T CHANS IR R N (D14 s LA+ R (4e)
Now
e = Mvked

= Nie g (Vﬁk Jor Vq’k Vo )

= Mvkedyon .
Thus, omitting the subscripts and primes of the coefficients,

el = wlEEE(GP Y + 6P v ETHAN-YEV T, (L, 2)
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where U = 1/Nfvwk . That is, only the p coefficients are re-
quired for the description of &{.

Consider a pencil of rays from an infinitely distant
object point in the tangential plane, Let this pencil make an
angle V, with the axis (Wi = 0), Let p be the distance of the
paraxial entrance pupil from the pole of the first surface |
(See M Section 33(a))., Then taking polar coordinates p ,0
in the first polar tangent plane, with the intersection point of

the brincipal ray as origin, Fig.5h,

Y = DPVi + pcosd, Zy = psind
Vi = Vl " Wy = 0 °
Equation (L4.2) becomes
/ — /
ed = u[333 (Gu(s)pk(th + pcosd) 4 Gu({‘,)kag}

(Vi + 2ppVicosd 4+ p2 )" H(pVi 4+ peosd)-V¥R+Y 7 |
| (L.3)

Considering third order terms only, and omitting primes and

subscripts from the notation of (3,21)

el = pi[A(PVi + pcosB) + AVi J[p*VE + 2ppcosd 4+ p?]

+ [BlpWr + P(%OBQ) + BVi ]J[pVi + pcosd]

+ [C(pVi + pcosB) + CVy 1v? ; + 0(5), (bols)
Using the identity B = 2A, from M 20,42,
ed = plap’cosd + [pA(1 + 2cos0) + A(2 + cos20)p? W,

+ [30°4& + 6pA + B + CleVi cosd
+ [0°4 4+ 30°% + p(B + C) +« CIV 1+ O(5). (4o 5)



Principal ray

Fig. 5

{

Polar coordinates



If, now, p =0

ed = plapdcosd + A(2 + cos20)p?Vy, + (B4C)pVicosd . EV?}; o(5).
(hoG)

In this case, then, the p coefficients control the various well
known types of aberrafions in & simple mamnner, However, (4.6)
results from the fact that the object is at infinity and the
entrance pupil is at the first sufface. In view of the A
complexity of (4.5) or (3.20), it is obviously of advantage if
expansions similar to (4.6) could be used even when ve £ O.
and p £ O. By(choosing a different set of initial coordinates
to specify a ray fhis can be achieved, The new sets of
coordinates. are called "paracanonical coordinates", Para-
canonical coordinates. Sy, Sz, Ty, T¢, are defined in terms of

the canonical coordinates by the following

102
il

Q
s
+

a
=

T = O + %, (4.7)

ar

where o, O, T, are disposable constants subject only to the

condition
g = oT - oT ;/ o . (’408) |

Since S, T are linearly dependent on Y, Y:,,then

any paraxial variable uj is related to the paraxial coordinates

s, t by
Bj = Mg o+ Myt (4.9)
,where s = oyy + OW
t =

Ty, + 'qu . | - (’4«10)

15.
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The pKaj, Hbj are the paracanonical paraxial coefficients, The
constants yaj , ybj, Vaj, Vbj are obtained in a similar manner to
their canonical counterparts, except that here the paraxial

tangential rays have as their initial data

"a-ray" | s = 1, t = 0

Mb-ray" 8

]
(@]
N
ct
1]
—
L

(4. 11)
Thus, in terms of y, v, the starting data is, from (L4,10)

"a-ray" n =t/g, Vi =-71/g
"b-ray" W =-0/8, W =0/g, (L.12)

whence, by using the recurrence relations (2.5) the wvalues of
¥, v at each surface will be ya, va for the a—réy and yb, Vb
for the b-ray,

The identity (2.10) becomes

YaVb = ¥bVa = ~M/N g, (L.13)

Thus an anteprime associated with a symbol is now to be regarded
as indicating division b& Ni /g instead of N as previously,

Since §, T are linearly dependent on Yi, Vi, (3.14)
can be written

oA . (Lo14)

]
st}
tM
._ngg
<v
w
|
s
13
g
v
-3
1]
T
e |
==
|
<
¢X
-

where

(n)



i I
0, (8, H,, ) principal ray .
21 - /){

Fig. 6 Paracanonical OT coordinates
Ty = Hy|/1:og » Tz = Hz1/7: 01
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and similarly for gjy

Here

B =, S5 + 828
N = STy + STz,
&' = Tyz + Tzzo
(3.20) now becomes
80 - zzz(%‘;’k + Gu“‘u’k_)&" Hnf-Velso +
+ 22200 8 G‘f;‘}ka)E,“'“ VgVt . (4. 15)

It is worthwhile noticing here that S, T, s, te have no
surface subscripts gince they are defined only at the first

surface, see (L.7), that is, there are no_varisables S3,T5, 8oj,toj »

A particular set of paraoanonical.coordinates, oT
coordinates, are defined as follows, | Let the principal ray of a
pencil intersect the flrst polar tangent plane in a p01nt whose
coordinates are Y., Then Sy, S: are defined as the y, 2
coordinates of the intersection of any ray of the pencil in this
plane, taking Y, as origin, Ty = Hp /los T2 = Han /lo
where 1lo1 is the axial distance of the object plane from the

first surface, see Fig.b6. Thus, for these coordinates

o = Lo /@ot - D), 6 = -plo fLor = D)
= 1/1'0‘ ’ 1 v
g = 1. : (’4016>

]
e
H

From (4.,10)

to = Ty +TVor
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te = = Yo /lot + Vor

= 0. (L,17)

Thus the term involving to in (4.15) is zero and does not appear

in the description of‘the aberrations in this coordinate system,

that is, only the "a" coefficients are required, Changing the

polar coordinates,

Sy = pcosd, S: = psird
Ty = Hy'/lo = H say,
TZ = 09

so that p does not appear explicitly. Then teking only 3rd
order terms and omitting primes and subscript  k from the

coefficients, (L.15) becomes , taking G'N( for example

€ = p[Aap® cosd +'Ka(2 + cos20 )p?H

+ (];a + Ca,)OI—‘Iz cosb aaﬁs] + 0(5), ‘(LL.18)

where 1 = 1/Nvk.

el 1is now described only by ﬁhe a coeffiéients, and
the gggg of the expansion is independent of the value of 1o
or p, these being contained in the_description of the particular |
coordfnates. Note that this simplification comes about only
if 8, T are computed using the relevant values of 1o s Do
A particular set of coefficients Aa, Ea... for one position of
~the object and entrance pupil cannét directly be used in (u;18)
to describe the aberrations for a different object or entrarice
pupil plane, It is possible to calculate, from a particular’
set of paracanonical aberration éoefficients, other sets of
coefficients C6rresponding to different situations, see M

Section 32, but this may not be simple, -
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This simplification of the form of expressions which arises from the
use of paracanonical coordinates is further demonstrated in the

following example,

From (307)
g‘ = mﬂb‘
= Nive hi /W vik
= NVi(te -D)/M(vkie +« V&) ,  (4.19)

where Vi refers to the principal'ray.
The relation between the canonical and paracanonical

coefficients is gi&en by

1

Kpj
Kqf

Olaj + THbj
Olaj + THbBj o (4.20)

With these and using OT coordinates it is easy to show that
(4419) becomes

W = N ?/Niﬁék . | | (4.21)

It has already been mentioned that to = O for OT
coordinates (U4,17), which leads to cénsiderable simplification in
the computations fequired to obtain thé aberration coefficients,
This feature is common to all the sets of paracanonical
coordinates described in detail in M Section 13'(a), (b)), (e)
and (d). These coordinates also possess an additional feature,
namely that T(= =~ TH,, M 13,71) is a constant for all rays that
-issue from a particular object point, Thus in any pencil, the
only coordinates which vary are Sy, Sz, in contrast with
canonical coordinatee; in which; for a near point object, Yi, Z1,

Vi, Wi all vary from ray to ray. | Thie feature is of considerable
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advantage when spot diagrams are to be computed,

OT coordinates, in particular, have further advantages
over the other paracanonical coordinates, Firstly. they will
apply when the object is at infinity, in which case T = Vi,
Secondly, g =1, and thus the factor INi/g is usually unity since
most optical systems considered work in air, This means that the
antéprimes which occur in the iterapion formulae (see Section 5)
may be omitted during computation of the coefficients, It N
is not unity, say in an oil-immersion lens, then it can be made
unity by multiplying all refractive indices by 1/Ni, the image
forming properties of the optical system being unchanged by this
process,

In view of (2,6), (L.10); (3.1u), (ko1l)jand (2.14),
(4.13), it is obvious.that the derivation of the formulae for
calculating aberration coefficients using either canonical or
paracanonical coordinates will be formelly identical, Conéequently,
to avoid a muitiplicity of symbols, canonical symbols will be
used almost entirely in the following work, If paracanonical
coordinates are being considered, then, of course

Y stands ior

103}

s

Vi stands for T ,
Ey stands for (Sy? + S:%),
M stands for (Sy Ty + 5:T: '),

%y stands for (Ty*® + Ty°%), (u,z2)

the subscripts p, q are to be repiaced by a, b, and the anté-
primes will mean division by Ni/g. It is worthwhile here to

repeat that S, T are coordinates defined at the first surface

only +that is, there are no varisbles SjTj.

Paracanonical symbols will, in genefal, be used to
indicate that only these coordinates are being considered. e.g.
(Ao21).
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5, Calculation of Aberration Coefficients

(a) Iteration

The formulae for calculating the aberration coefficients
are obtained by iterative processes, 'To demonstrate this
process two examples will be used, The first of these indicates
the basic meﬁhod of the process, The second example 1s a
simplification of the process as carried out in M, so that by an
extension to a number of quantities, equations of the type M 11.3
can be obtained. This example also introduces the idea of

"pgeudo~expansion” and "intrinsic coefficients",

Example 1
Suppose that x is some function f(t) of t, and that

x and t are related by the equation

xz - X + t = 0 ° | (501)
We shall assume that f£(t) is a power series in ascending powers
of t, and is valid for all values of X, Suppose also that as
x—-0, t - 0, From this we can deduce that there are no
constant terms in f(t),

Rewriting (5.1), we get .

X = t + xzo o (502)

Then, as x becomes small, to a first approximation
Substituting (5.3) in (5.2), one obtains

Tz o= ot o+ t?, | (5.4)
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thus we have a better approximation of f(t).
Reinserting (5.4) in (5,2),

X = to+ (t4+ )
= t 4+t 4+ 2t +0(L4) . (5.5)

By continuing this process of substitution. the series for f(t)
can be determined, This process, by which more accurate
approximations to the series for x are obtained by succeésive
back substitution is called iteration., Iteration will only work
when, as a result of resubstitution, the new termé generafed are
of higher order than those that existed before substitution,

For example, suppose that x- 1 as t - 0, in con-

Junction with (5.1). Then to a first approximation

Substituting (5.6) in (5.2), we get

t + (1 + t)?
1 + 3t + 2 . (507)

™
]

]

Resubstitution of  (5.7) in (5.2) gives
X = 1 47t 4+ 9t 468 L0(L), (5,8)

It will be noticed that the coefficienté of %, t', t?... will
now vary at each iterative step so that the process does not
converge to a fixed series for x, This is a result of the
constant term in (5.6), (5.7), (5.8),

Consider once again the series (5.5), This is develop-

ing as



X = t + t +2t 4+ 5t 4 0(5).
Suppose we write the series for x as
X = 89 +a‘t+a"¢:"bz + a5t o+ actt 4+ ..

Now, since x- 0 as t- O,

so that (5.10) can now be written
X = art + @t +att o+ actt + 0(5).
Substituting (5.12) in (5.2), (5.2) becomes

x = .t+('a|t+az't2 + a3t + ...)

t +alt? + 2818t (22185 + a3 )t* + O(5).

23.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

Comparing coefficients between (5,12) and (5.,13), one finds that

84 - 1

a = a% = 1

as = 28y 8 = 2

84 = (25-1 a8 + 8.% ) = 5
thus (5.12) can be written

x = t+ 4 2t + 5t 4 0(5),

(5;1u)

(5.15)

which is identical with (5.9). Thus the "complete" series for x

can be obtained in one operation. This method will, of course,
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only give correct results in those cases where direct iteration
produces a unique series for x (in contrast with (5.7), (5;8)).-

It will be noticed in (5.,14) that the coefficient é” is
expressed as some combination of coefficients of terms of degree
lower than n, Thus having found the_first coefficient
explicitly, the rest can be easily computed,

Example 2
Consider the series for 44, (3.14), but for the sake of

simplicity suppose that there is only one variable Y, so that

now

M = 3 g®yEd (5.16)

N=1

where Ei =Yi.

As before, we shall write the first three terms of (5.16)

explicitly as

AA

it

aviEr + sViEF + thiEY + 0(9) , .(5.17)

- that is,

()

Now, at any surface
oAj = £(Yy), cf(3.13). | | (5.18)

Suppose that

it

- j=
Y k(Y + %AAl), (5.19)

where k is a constant of the surface. J , depending only on the
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constitution of the optical system,
-y
Let the series for j? AAy be written

2 MM = MY+ STiET + TYVHEY + 0(9), (5.20)
where
: j=1
Ay = ? a4,
j_,
Sj = ? Si,
Tj - ji‘t‘lg eevcee

Since A 1is an optical invariantwhen Y becomes small, to =a

first approximation

Yj = kY! ° (5021 )
Inserting (5.21) in (5.18), o8Aj = f£(k,) 1is a first |
‘approximation to AAj, Knowing the function f(iﬁ'), a series

for AAj in terms of Yy can be formed similar to (5.,17),

namely

OA

?\g,(m Y, E?

f

aYiEr + IHEY ¥ By Yglé?i"'a..0(9) - (5.22)

This series is not the one required since the term E?%‘AAg |

has been'omitted from the expression for Y (5.19). The series
(5.22) is called the "pseudo-expansion” of A4Aj, The coefficients
of this series 8§, 8§, tjo.. depend only on k, and hence they

also depend only on the construction of the system, For this
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reason they are called "intrinsic coefficients",

Now (5.22) gives us AAj correct to the first order,
ef (5.3), hence (5.,20) is also known correct to the first order,
Thus the substitution of (Y1 + j%"AAJ') for Y1 in (5,22)' will give
AAj corfect to the second order, since 2AA is of 0(3) and will
not affect the terms already present in (5.22), cf (5.4), Thus
we have 2AA correct to the second order, and the process of
resubstitution in (5.22) can be continued, and so the series for
AAy  can be obtained,

As before, the process can be condensed by writing the

correct series for AAj as
AAg = ajiEr + sjMET + tjMET + 0(9) (5.23)
and also

5 AAj = KNYE + SiWET + TyMEYT + 0(9),
(5.24)

then, by replacing Y« in (5.22) by (% +j%1AAi) and comparing
coefficients between the resultant series and (5,23), the formulae
for obtaining the higher order coefficients can be read off
directly. '(By way of comparison, in example 1, x =1t, (5.3),
cbrresponds to the pseudo-expansion of AAj, t corresponds to
£(kn ), x to 8Aj and ¥ in (5.2) cofresponds‘to

DR LR
£(K2 841 ),)

Thus
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AN = g-(Yi + AY, B\ + SY4E} + TY+ &3 +.-)(5; + 2Yy [AY4Ev 4 SYEY 4+ ..] +
+ (A& 4+ STET 4+ ,.])

+§W,+M&'{H@%+"H&#WJM@.+"hMm&+UPY
+ (V1 4 eee)(Er 4+ 200)® + 0(9)

=a(lt + AVi&y + sY.ai +'..)(E'+ 288 + 28} +.,. + A35€+ o)
«8(Y1 + ATiEr + ... ) (EF 4 LS vee)
S0 4 )@ L) s 0(9) . , (5.25)

Comparing coefficients between (5.23) and (5.25), we get from the

coefficient of Yi& a = 8, (5.26)
Y1 E3 8 = 8 + (28 + A)a
= 8 + 384, (5.27)
Y EY t = t +s(ba+ &) ‘
| +a(2s 4+ A*428%, s) |

=t + 58A + 3a(S+A%).
(5.28).

(5.26), (5.27), (5.28) are the iteration formulae which enable:'-v the
contributions. a. 8, t to the aberration coefficients,(5,23), at

any surface to be obtained from the intrinsic coefficients of the
| surface and the‘sum of the contfibutions over the previous
surfacesﬁ(S,éu). |

-For example, at the first surface
Ay = S = T = 0 .

since there are no previous surfaces over which to sum contributions,
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hence, from (5,26), (5.27), (5.28) one finds that

a = a4

81 = ga

t = t .
Now

A = &

S2 = B

T2 = t,

8o that at the second surface

az = &2
82 = B2 + 3@28,
t2 = 2 + 5s2ar + 382 (sv + &f).
Then
Az = a1 4+ @&
Ss = 81 + 82,

and the coefficients as, é;, ts can be found.

In this manner the contributions to the finaﬂl aberration
coefficients by each surface are found. Notice here that any

inaccuracy in the value of AAj and hence of €§ comes, not

from 'phe coefficients, which are exact, but fromv the fact that we

terminate the infinite seriesvfor AAj (ed) without regard tq the

remaining ter_ms.

In M, iteration is carried out with fdur variables at
each surface, namely Yj, Zj, Vi, Wi, and corresponding to these,

four coordinates at the first surface, Yy, Z1, Vi, Wy, The
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relations between these, equivalent to (5.19) are, from M 9.3,.4,

Yy o= v (B +8y3) + vy (i + 8vg)
- (5.29)

Vi o= vy (B +0y1) +vey (B +8y),

where
o j" \ ’
Oyi = = 38 &g+,
j‘i o
dvj = o+ 38 Ap (note antéprimes)., (5.30)

Each of the relations (5,30) represents two relations, e.g.
' J=1
Gyj = - % A qui e .
(5.31)

= '
6zj = - % A AZQi .

AAg 18, of coﬁrse. given by an expression of the form (3.14),
but containing only q coefficients,(3.19),i.e. yo =0, and
similarly for Alp,

If now "increments" Oy, Ov' are neglected in (5.29) i.e.

Ypi v + o3 W s

s
1

(5.32)

o)
!

i Y1+ Vo W

then using (5.32) in.(3,13) or an ,}}equi\»ralent expression, the
pseudo-expansion Qf AA 'w111 be obtained, see M 10.1; If then

‘ in the pseudo-expansion Yi, Vi are replaced by (¥ + 6y),

(Vs + 6v) the iteration formulae M 10,2, 11,3, 81;3 can be
obtained, The intermediate P end ¢q c;ﬁefficients in M 11,3, 81,3

arise of course from 06y and Oy,
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6, Intrinsic Coefficients

The straightforward method of calculating the intrinsic
coefficients is to éxpand the expression (3.13) for A4A asAa power
series in Yj, Vj, &§, My, &j, then convert this series to one in
Yo, Vi, &1, Ny, &1 by means of (5,32), whence the coefficients of
the resultant series are the intrinéic coefficients, However, it
proves more convenient to first factorize (3.13) and then expand
one of the factors as a power series, Multiplying the coefficients
of -this series by the appropriaté factor then gives the required
coefficients, |

Now

8 - EJ, (6.1)

from M 14,5, where E =NrI and J 1is given by M 15,1
namely J = (S8~ 1) -~ w§(T - 1), } (6.2)

Taking first order terms only,

w _ W
~ dint h -Eint Jint
= (ep¥r + eqW)I g, (6.3)
where € = Nrip, , e¢ = Nrig,. Here E has already been

expressed in terms of Yi, Vi, by means of (5.32) (i.e. (5.29)
neglecting increments),

Now, for example, &a 1is the coefficient of Y&,
that is the product, ep.(coeff, of & in J ), (6.4)
Without going through the algebra, M 17.& giQes the expression

for JY,

go = WYt + Vivz2 . (6.5)
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where the ¥'s are given by M 17.1, namely

Y1 = 2(-k +1)PE -Xen + k(k + 1)%

Y2 = =3k -1)?cE 4+ k(k ~ 1)en + 3(1 - K )5, (6.6)

where k = N/N', Since w =A4ve =vd - vo, (6.5) becomes
JO o (v - va)vr + viv: . (6.7?

Now, in (6,6)

E = Y% + Zi

= vi + W,

therefore, expressing &, N, &, in terms of Y1+Viy by means of

(5.32), we get

g = YE1r + 2Yp¥qNi + Yabs
n = Y& + (ypVve + YeVp )1 + YqVgls
A = V.%Et + 2VquTh + V%Cl . ' . (6_08)

Thus the coefficient of &y in ¥ is
HE -k + )= 28cyvy + k(st)vi] . (6.9)
Now, it can easily be shown that

vi2 = (K~ 2k + 1)S*y + 2k(1<k)eypvp + K VR (6.,10)
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and
Wi = KB 2w ). (641)
From (6,10), (6..11I) it will be seen :that (6.9) can be writﬁen
Hipy e W) .  (6.12)
Similarly, the coefficient éf &y in ¥: is
-k - 1) ety + 2k(k - 1)ewpvp + (1 = )]
=3V - -2k + )Y + 2k(1 - K)eypvp + BV ]
=z(vp - v?) . - (6.13)

Thus, from (6,4), (6.7), (6.12), (6,13)

o
]

ety [ (vd = ve) (1p4d + v§2) 4 Va(¥d = vy? )]

= INrip [ (vi= W )yor +(v{=vq )vor J{1pi} +v32.3 + prlYm +Vg Vo1 }
i - Wil

Now, a&p is the coefficient of yu Y1 & (gq is the coefficient of

Vor W&y ), thus'

i
o
f

Neip[(v = vp)(ipif + v§? ) + vp(vi - v§?)]

rdp (1p= 19)[ (418 « v§?) - v (v + v§)]

= 3N(1 - K)ypij (if - v§), see M 24,1 . (6.1L)
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Since the barred coefficients are associated with Vi, then
8, aq are,from (6,3), eq, (coeff, of yu &1, Vo &1 in Jm,

In this manner, the coefficients in M 24.2, 24.3, 218,7 sare
obtained,
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PART II - Computer and Programmes

7. Computer Description

The computer used for this work is the English Electric
DEUCE housed at the University of New South Wales, Sydney., The
machine operates entirely in the serial mode on 32 bit numbers.
.The high speed store'consists of acoustic mercury delay lines of
various lengths, the smallest containing one word (32 bits) and
the largest conpaining 32 words, In detail, the high speed
storage is as follows:

1) Pour single word stores,
2) Three double word stores.
3) Two four word stores,

L4) Twelve 32 word stores,

the total high speed storage being LO2 words, The slow speed
backing store is a magnetic drum containing 8192 wbrds arranged in
256 tracks of 32 words each. The drum has separate read and write
heads on opposite sides of the drum, each bank consisting of 16 heads
which can be located vertically in any one of 16 positions, thus
covering the entire 256 tracks, Information is read to or from the
drum via one of the 32 word delay lines in blocks of 32 words, Drum
transfers and head shifts proceed automatically once they are set up
and do not interfere with the normsal oﬁeration of the machine,
provided that access to the transfer deiay line is not required,

The transfer of a block of words from the drum takes about 13 m secs,
and a head shift about 50 m secs, The digit frequency of the
machiné is 1 megacycle; +thus a single word store containing 32 bits
needs 32 wsecs to deliver one complete word at its output. Hence
the basic timing of the machine is tied to this time which is called
a "minor cycle" asbreviated m.,c. The circulation time of a 32 word
store is 32 m.c,, that is, the same word is presented at the output
every 1024 usecs (approximately 1 msec). This interval of time

is termed a "major cycle", abreviated M.,c., The 32 word stores

are termed '"delay lines", Thus the machine contains 12 delay lines,
numbered for addressing purposes from 1 to 12, The remaining shorter
delay lines are simply designated as single., double, or quadruple
stores,

It is a feature of this machine that arithmetic processes
are associated with four stores, three of these being single stores,
and one a double store, The way in which these stores are '
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addressed determines the type of arithmetic operation performed,
The inputs and outputs of all high speed stores are connected via
numbered gates to a common line called the "main highway"., The
output gates are called "source gates" or more simply "sources",
and the input gates are called "destinations", Thus the basic
instruction of the machine contains two addresses, one for the
source and one for the destination, It will be realized that if
the input and output of any one stbré afe connected, the word
contained in the store will circulate indefinitely. A non-
destructive read out is obtained simply by tapping this circulation
path, The read in of & new word is obtained by breaking the
circulation péth and connecting the input to the main highway, the
circulation path being restored as soon as the last digit is read
in to retain the word in the store (the connection to the main
highway being opened at the same time of courée).

Owing to the fact that words in the delay lines appear
sequentially at the source gate, the instruction word contains an !
extra number, called the wait number, which determines at what m,c.
the instruction will be obeyed, Since the circulation time of the
longest store is 32 m,c,, numbers in the range 0-31 are sufficient
for this purpose, Zero time is usually taken to be the m.ec, in
which the first instruction/word enters a delay line from the card
reader at initial input, Thus words in a delay line are denoted
by 0, 1, 6o 31, "O" referring to the first word read into the
machine in any particular programme, Programme instructions/words
are read into the delay lines from cards in binary form, and the
input programme is so arranged that, having read the first word into
the first deleay line, the first word read into any other delay line
also has a wait number of O associated with it, Thus -the sub-
sequent location of words in any delay line is known,

The control section of the mechine which interprets
instructions and sets up the required gates has direct access to
any of the first eight delay lines, However, any particular
instruction in a delay line is not accessible to control except at -
the output. Thus an additional number is required in the
instruction word which indicates to the control when the required
next instruction is accessible, called a timihg number, As with
the wait number, the timing number is in the range 0-31, The
particular delay line is also specified, of course, and the numbers
here are in the range 0-7, O referring to delay line 8, Finally,
in the instruction word, provision is made for continuing a transfer
between stores for more than 1 m,c, It is possible, in fact, to
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transfer the 32 words of one delay line to another with one
instruction, With one instruction transfers can be performed for
from 1-32 m,c. The duration of a transfer is determined by the
difference between the wait and timing numbers, which, in the case of
long transfers (more than one word) restricts the location of the-
next instruction, The instruction word is as follows:

Digit position in word Funetion

1 (least significant digit) Not used

2 Next instruction source, i.e,
3 Delay line 0-7

L

5

6

7 Source gate number

8 Rahge 0=31

9

10

11 _

12 | Destination gate number

13 ‘ Range 0-31

14

15 ,

16 Long or short transfers

17

18 Wait nunber, referred to time
19 instruction enters control
20

21

22

23

N _ A .Special use

25

26

27

28 Timing number, referred to time
29 instruction enter control
30

31 Not used

32 Stop or go
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It will be noticed in the preceeding table that the wait
and timing numbers refer to the time that the instruction containing
them enters control as their time reference, As mentioned before,
the machine keeps track of m,c. only, hence it does not know which
m,c, of a delay line the programmer has referred to as O, Thus it
is the programmers job to keep track of the location of words at any
subsequent time, For instance, if a word with the m,c, number 6
enters control, and a transfer of word number 27 is required, then
the wait number in the instruction will be 19 since a minimum 2 m,c.
are required to obey an instruction - one m,e, to read in the
instruction and one m,c¢c, to set up the gates, Then, after waiting
19 m,¢, from the set up time, the gates are opened and word 27
enters the main highway, The minimum time to obey any instruction
is 2 msec, e.g, an instruction entering control in m,c, 11 can, at
best, be obeyed in m.,c, 13, the wait number for this being O.

Thus the sequence of events here are, instruction enters control

in mc, 11, gates set up in m,c, 12, no wait so obeyed in m,c. 13,
The location of words by the programmer is facilitated by arranging
the coding sheets in columns of 32 words representing the state of
a delay line at m,c, times O, 32, 6L, 96, ... Apart from the
direct access to delay lines 1-8, control can accept instructions
from any other high speed storage location, but this requires a
separate instruction, this being considered as simply a normal
transfer between stores, In this event, the next-instruction-
source number of the instruction is ignored by contrel, since, when
the transfer is complete, control has its next instruction,

The DEUCE machine has no indexing registers, but digits
22-25 in the instruction word may be used for this purpose, Digits
in these locations are always ignored by control, However, by
plaéing an instruction in one of the stores that has adding facili-
ties, digits may be added into these locations each time the
instruction is obeyed during a repetitive loop. Eventually, these
will overflow into pesition 26, that is, the timing number will be
increased by 1 and a different instruction from the normal one of
the loop will enter control and thus exit can be made from the
loop, A particular use of this facility is when numbers are being
transferred successively from a gelay line by increasing the wait
number each time around the 1oopi If the digits 22-25 are all
ones, when the wait number exceeds 31, the overflow will be carried
right through to the timing number, giving exit to the loop.

As mentioned before, the minimum time to obey an
instruction is 2 m.c. (6L pwsec), but, owing to the facility of being
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able to transfer words for more than 1 m.c., with one instruction, it is
possible to add/suptract the entire contents of a delay line (32 words)
in 33 m,c, For example,words sent to destination 25 are added to

the contents of the single word store 13 (see Fig.7). Thus, if 13 is
originally clear, then a long transfer of 32 words from delay line 1,
say, to destination 25 will produce in 13 the sum of the contents of
delay line 1 after 33 m.c., from the time the instruction entered
control, It will be seen in Fig,7, the schematic diagram for DEUCE
that double word store 21 also has adding/subtracting facilities,
However, this store is not generally used for sequential adding, these
facilities are to allow arithmetic operations on the results of
multiplication/division, which appear in this store, Multiplication/
division are carried out on numbers stored in 16, 21, and are
initiated by "trigger" instructions, Shift facilities are associated
with store 14, the digits appearing at source 23 are those of 14
shifted down one place, the digits from 24 are those of 14 shifted

up one place, Multiple shifts can be simply obtained by a single
instruction of the type 23=14 for any number of m,c, up to 32, whence
the digits of 14 will be shifted as many places as the nunmber of m,c,
of the transfer,

Logical operations are performed between the contents of
stores 14, 15 by sources 25, 26, Discrimination on sign or magni-
tude of a number are performed by destinations 27, 28 respectively
(negative numbers are two's compliment), If a positive number is
sent to destination 27, then the next instruction as indicated by '
the timing number is taken into control; if the number sent to 27 is
negative, then the timing number is increased by 1, causing control
to take a different instruction,

It is possible to alter the m.c, numbers of words in a long
delay line by using delay line 410 and store 16, By initiating a
special trigger (T.C.A.) the output of 10 is connected to the input
of 16, Then a long transfer for 32 m.c, between source 16 and
destination 10 will result in the words in 10 being shifted down
one m.c,, i.e, word number O becomes word number 1 ..o..
word number 31 becomes word number O,

Sources27-31 are constants, 28 generates wait numbers and
is used mainly for instruction modification. Source 30 is used to
clear stores, Source 31 is mainly used in logical operations,

In normal operations, instructions are punched in binary
on cards, 12 instructions per card, 3 cards per delay line, Thus
at a rate of 200 cards per minute instructions are read in at the
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‘rate of 2,400 per minute, In most cases, numerical data are
decimally punched and converted to binary by subroutine while being
read at the normal card-reading rate, The cards used are 80
column cards of which 32 columns are read by the machine, Punching
~out is at the rate of 100 cards per minute, decimal punching being
achieved by programme,

DEUCE has & built-in programme testing facility of con-
siderable power, When a programme is initially written,'"stops'are
inserted at intervals by simply blocking up hole 32 in the
appropriate instructions on the cards, When the machine encounters
an instruction without a '"go" digit it will halt, pending an
external stimulus, If it is known that an error is present between
any pair of "stoppers'", it is possible to trigger the machine to
punch out the instructions as they are obeyed, whence they can be
compared with the detailed flow and coding sheets, It will be
. realized that instructions in DEUCE are not stored in the order in
which they are obeyed, they are fitted into the nearest vacant
word location so as to minimise access time, Thus a "store dump"
does not indicate the order in which instructions will be obeyed,
The facility of punching out instructions as they are obeyed is

particularly useful when discrimination is involved, as this

can be forced by manual control for testing purposes, The causes
of closed loops can also be detected with ease by this facility,
especially in those cases where the loop is unintentiogal, i.e,

caused by instruction overwriting,
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8., Aberration Coefficients Programme

The first programme produced was for the compuﬁation of
the aberration coefficients and the contributions to them by the
individual surfaces of a system containing 16 surfaces or less,
The programme is based on & published tablel* for the computation
of the third, fifth and seventh order coefficients (also termed
primary, secondary and tertiary aberration coefficients)., The
table gives the computation of paracanonical coefficients and
hence only proceeds as far as the tertiary "p" coefficients, since
only the "p" coefficients are required for the description of the
aberrations of the system, provided that the initial paracanonicel
coordinates are thosevappropriate to the particular conjugate planes

.(see Section 4), However, primery and secondary "q" coefficients

are computed, as these are required in the iteration formulae‘for
the tertiary "p" coefficients (see Section 5).

In M Section 84 aré'liéted the iteration formulee for-
the tertiary coefficients, These formulae are applicable directly
to systems containing aspherical surfaces, the aéphericity of wa--
surface being reflected in the value of the intrinsic coefficients
(see M Section 65,67), Since it would have been an advantage for
future work to have a computer programme which was'applicable to
any type of system, the possibility of using the iterative formulse
was considered,  However, to use these formulae efficiently, high
speed storage for about 300‘words were required, Now, in the
DEUCE there are LO2 words of high speed storage, Owing to the
magnitude of the numbers which occur during the computation,
floating point arithmetic has to be used, This is done by
subroutine requiring two delay lines of instructions (6L words).
Also, delay line 11 is used for all drum transfers so this cannot
be used as a "permanent" store, Thus the, available high -speed
storage is 306 words, Floating point arithmetic requires: two
stores per word, so that the direct computation of the tertiary
coefficients cannot be easily accomplished, However, in the
iteration formulae, 55 products of the primary intermediate
coefficients'are used frequently, If only these are stored,
then the computation éf the coefficients réqnires approximately
1300 arithmetic operations, after ﬁhe required intrinsic
coefficients have been computed. |

Ndw, the table published in reference L is based on ‘the
method of condensed iteration for spherical surfaces only,
presented in M Section 8L, The simplification comes gbout us

" a result of the factorization of A4A, For spherical surfaces
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= EJ, from M 60,3 (8,1)
Let the true expansion of °D- be

o n M .
02 = nz;tp-% §o %(S)gl‘i-unlf-v;? ’ (8.2)

eV

and the pseudo-expansion of °D be

|

w . n [§3 ~ ; } " .
= 2 22 glEttal-Yel (8.3)

From M 9,51, I can be written

n v

I | = - -V, V
I = ipl (v + a )+ .2, l-tz;o v§°(Gﬁ)L¥1 + Gli"‘)f vy e -Hnf Z1}
- (8.4)
where q = ig/ip and
®t = q g® - B (8.5)

uve v ?

and similarly for -'QT (these symbols correspond to the

) S
6w+ GOy in M 8L.15),
Then, writing gt = ip§ _ (8,6)

it is easy to arrive at expressions'of the type

&8 = & 4+ Ala , | (8:7)

=) = qsf +'.ng o (8.8)

The complete list for the secondary contributions is given in
M 84,21-22, For the tertiary contributions, one has expressions
of the type

t ' + ATt + 8" &, fromM 8L, 23 (8.9)
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The formulae for obtaining the s*, tt are given by M 84,31,

84,33 in conjunction with (8,6), The primary intermediate q
coefficients are Obfained from the p coefficients by means of the.
identities given in M Seétion 20,

Having computed the G', by introducing a new quantity
G such that

g - é‘f - QG+ . (8010)

the barred secondary contributions cen be obtained from.the
unbarred contributions as illustrated by the followihgfexpreasion

81 - QB = ﬁ. : (8.14)

o

The complete set for the secondaries is given by M 84.42, From
(8,5) one would expect that in order to calculate the S', the

Sq are required, however these are not computed in the table of
reference , Having calculated the S; by means of the
identities M 21,6, the st may be obtained by means of recurrence
relations. using quantities of the previous surface, These are
indicated in the table by asterisks preceeding the quantities in
question (see entries 102, 104, 106, ... 114 of the tsable), A
typical recurrence relation is given on p,752 of reference U,

Using this condensed iteration scheme, storage is
required for about L5 terms, and approximately 525 operations are
needed for the computation of the tertiary coefficients, Thus
this method is much more suitable for use on a computer., However,
as mentioned before, the scheme is applicable to systems contain-
ing spherical surfaces only.

The programme follows the steps in pﬁé publiéhed table
except for two sets of results, As mentioned above, in the

table the S' are computed from results for the previous surface,
.Since this would involve a considerable increase in the number

of results to be stored on the drum, for which the access time is
rather long (up to 63 msec), it was decided to compute the §'
from the definitive equation

é‘l‘

it

oS - & (8412)

For this the éq are required and these are not computed in the
table, In the programme, Siq ..., S5q are found using the ’
identities of M Section 22 p.32.33, S¢ is not given by any
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identity and thus is computed using the last iterative formulae of
M 11,3, which can be written as

Beg = Soqla B+ g(id + 1§ + ¢ - 3v@ )] - Col,  (8.13)

from which S¢q is found by summation (3.16). A section of this
expression, é (i§ + iy + v§* -3v{ ), has the same form as the
entry ti:s of the table, the difference being that ts¢« used p
coefficients, and the above, q coefficients. Hence this part of
the expression is worked out by the same section of programme that
computes ts4 , but using q data, the result being stored until
required in (8.13). Since B¢q requires cq, the Aq... Og

computed in the table in entries %20 ... tsx, are,in the programme,
obtained from a; ... cq, these being obtained from M20.21, 33, 3L.
This method also avoids retaining te , tes , ta (a, Cq» Gq) af
the previous surface.

In the computer programme, as in the table, the parameters
of the system are to be so arranged that, for the particular para-
canonical coordinates used, N, /g is unity. Thus the antéprimes
associated with the intermediate coefficients in the iteration
formilae are omitted in the computations. ~The final aberration
coefficients produced by the teble are augmented, that is, they are
the coefficients of the series (3.18). To obtain the displacements
ex's they have to be multiplied by (= 1/Nk'vik ). This is done by
the programme before punching out, and, to assist in the comparison
of magnitudes, the contributions to these coefficients by the surfaces
are also nultiplied by ¥ before punching, Telescopic systems cannot
be.-handled by the programme since vj, is zero for these.

W

Using OT coordinates, with an object at infinity, the
initial data for the paraxial traces are, va =0, yu = 1,
Vis =1, 3 = p where p is the distance of the paraxial entrance
pupil from the first polar tangent plane. If 4 is the distance
of the diaphragm behind the (i)th surface then

Vqi — Vg d ,
Ypi = vpi d (8.1U4)

P =

the paraxial coefficients in this expression being canonical. To
specify the system, the data given to the machine are 1)
curvatures cj(J =1 .. k); 2) separations dj(d, = 0);
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3) ratio of refractive indices kj(=Nj/N{); and L4) the refractive
index of the image space N{. With these data and those for the
"a" and "b" paraxial traces, punched in floating decimal form, the
machine proceeds through the system, one surface at a time, At
each surface, all the augmented coefficients up to t10pj and the
sums of the coefficients of the kind Af§j to Tlopj are calculated
before proceeding to the ﬁext surface, Note that coefficients
A}j ... are the intermediate coefficients of the (j+1)th surface.
At the last surface, the Ak ... are the fingl augmented aberration
coefficients of the entire system, The contributions to these by
the surfaces, &pj ces TLiopj are, of course, stored at each surface
to be punched out with the aberration coefficients, The paraxial
coefficients are also stored for punching,.

Thus the following results are punched out for each
surface of the system: 1) paraxial coefficients vj,yp,vd,¥q
(first order), 2) primary p coefficients (third order), 3) secondary
p coefficients (fifth order), 4) tertiary p coefficients (seventh
order); and finally 5) the third, fifth and seventh order
coefficients of the entire systeme The coefficients 2), 3), 4)
and 5) are first multiplied by K before punching, 1), 2), 3)
and 4) constitute 41 coefficients per surfzee, being composed from
L, paraxial coefficients, 5 primary, 12 secondary, 20 tertiary.
From the expansion of &% (3.18) 6 primary coefficients would be
expected, but since B = 2A, (M 20,32,42) B is not punched.

Since it is impossible to assess the magﬁitude of the
numbers occurring during computation, checks on the accuracy of the
working cannot be easily performed, The only computation check used
in this programme is as follows, The coefficients of the second
surface of the system computed as an example in the tabie“@re stored
in binary in the machine. At the end of the calculation of the
, coefficients of an entire system, the machine is redirected back into
the programme, and is given the first surface results. of the known
system. It then computes the second surface results ahd compares
these with the.stored information in groups t, E, A, S, T, T. ‘
Should any one of these comparisons not agree, the punch-out routine
will not be entered, and the particular failure will be indicated
on the console, This method of checking in generai only detects
consistent failure of any one section of thé computer, It is
expected that should random errors occur, such as the insertion' or
loss of digits, then these will affect programme instructions, many
of which pass through the arithmetic units. In this case, errors
will be detected by virtue of the fact that the programme will fail,
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The programme length is about 7,600 words, including result
stores, and floating point subroutines are entered about 890 times
for each surface, The computing time per surface is about 1C gﬁﬁ%ﬁ
seconds, which gives an average time for obeying an instruction
of about 40O psec. Since a particular subroutine must be entefed
at the same m.,c., every time, this gives a minimum time Dbetween
entries of 1 M.c. (=~ 1 m.,sec) so, although the programme has been
optimised as far as possible the subroutines place an upper limit
on the minimum time possible to perform the computation in :this
programme, Including the punchiﬁg out of the‘results, the machine
time is approximately L5 seconds per surface,

A sample set of results is given in Appendix 1.

9. Ray Trace Programme

1 Theory

It is not feasible to obtain in closed form an expression
for AA as a function of the coordinates of a ray except in the
case of a single surface (see M Section 15). Thus, in Section 3,
AA  is expanded as a power series in Yi, Vi. The coefficients of
the series thus characterize sistems of rays rather than individual
rays. However, for any particular ray, Aét, LA, , AAs ..o 'may be
calculated by ordinary algebraic means, - Having found the..AA's,
then &¢ in the ideal image plane can-be easily obtained by direct
summation, if K. = 1, by (3.12). In addition, the individual A4A's
will give some information aboui the way the surfaces contribute
to the final aberration for the particular ray. An examination
of the 4A's for various principal rays for instance, can give
some indication of which surfaces 6ontribute mainly to distortion.

This information can more readily be obtained from the contributions
t0 the aberration coefficients, but if a ray trace is to be done,
then any additional information apart from the final €R is of
advantage, |

A ray trace scheme designed by Buchdahl on the basis of
certain equations in M first computes at each surface the
AA's in (5.30) directly and then uses these in equations (5.29)
as a means of tracing the ray through the system. This scheme not
only has the advantage of obtaining the A0A's easily, but proves
to be a very elegant way of tracing skew rays algebraically. The
ray trace has, so far, been developed for system containing
spherical surfaces only, Using paracanonical coordinates, the
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theory is as follows,
From M 60,3, for spherical surfaces only,
MM = DI, (9.1)

That is, writing in full

My, = DLy , bMp = Dl ,

Mp = DL, My o= DL,  (92)
where

D = ANye(g-1)-vixs]l, (9¢3)

I . oy -V , | (9.4)

and x is the x-coordinate of the roint of intersection of the
ray with the surface, measured from the pole of the surface,

8 1in(9.3)is given by M 62.4, namely

heS 4 2MaS +pe = O, (9.5)
where
po = (¥ =10 4B
Mo o= (1 -K)en =% & (1 +5)P/K ] (9.6)
uz = a(_f-k)z[cgE'-w 2¢m + & - (1 +§)§/I?].

In (9.6) & quantity P appears. This is defined by M 56.72 .

P 1 - ¢x ' (9.7)

whence
x = (1~P)e . (9.8)

Now, for a spherical surface, if x;y,z are the coordinates of a
point on the surface,



U7.

¥ ~2rx+ (¥ +2°) = 0. . (9.9)
Substituting x for X in (1,6) we get

Y o+2 = E-o2m s, (9410)
thus (9.,9) becomes | o

(1 +2) =2x(r +71) +&

0. | (9;;{5

Using (9.8) and (9.11) one obtains an equation for P, namely

(1 +2)F +2(em=-8)P +€°E -2cn+Z =-1) = O (9.12)

Let

P2 = 1 +%Z = 1 4+ V LW,

Boo= en=Z = o(WaZW) -p 4

Do = c’& -2en+% -1 = &2 (Y +2?) - 2p - ﬁz ?

(9.13)

then |

P o= vV (pt - Pon) ‘.p']/?2s , (9;Tu)

the positive root always being taken since P -1 in the paraxial
limit, Having found P, then we are in a position to determine
the Mo, 1, B2 in (9.6). |

First, however, it is convenient to consider, instead of
S a quantity '

i

§ = (1-18. (9.15)
Then (9.5) becomes
K2 éz + 2018 + o = O'v. v(9_°16)

where

B o= Kp/(1 =k, B o= Ku/(1 -k), fo = Kue. (9.17)

L
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Thus

Bo = (K- 1)(4 +8) = (kzl-l1)Pz

By = K(en=%) + (1 +%)P = K'p + D2P
B2 =

Then

ol
]

[+ V(BT - Tol2) - B 1/02,

I (P8 - 2em 4 8) = (142)F =k (po+ 1) = piF . (9.18)

(9.19)

the positive root being taken when k i1is positive, the negative

root when k 1s negative,

D =
Let
Q
then
Da =
Db =
since
D =

N'[yo(8 + k ~ 1) - vix8] .

i
licai
+
W
¢
-

-

N'[ya@ - Va'x_—_s__] ’

N'[Ybé - Vﬂx:ﬁ:] »

Dase + Dbto &

As a result of (9.15),

(9.3) becomes

(9,20)

(9,21)

The transfer from one surface to the next is accomplished using
(5.29) and (5.30) as follows, '

In this work, where

Sy’ SZ

occur as subscripts, the

letters will be written side by side, in order to simplify the

‘printing.

Using paracanonical coordinates, (5.29) and (5,30) become

Yy = yaj (8y +0gyj ) + yy (Ty + Oty )

2

vaj (Sz + 0=y ) + yoy (Tz + Ot )



L9,

V3

Vaj (Sy + Ogi ) + Wi (Ty + Otyj )

Wj = Vaj (Sz + 6523 ) + vbj (T2 + Oty ) ) (9.22)

where
=1
6syj = - i§1 AAsybi
jeu
0 zj = - i§1 BA gy
Jor
Otyj = + i§1 AN tyai
j=1
8 tay = + (2 Oy (9.23)

¢

the antéprimes being omitted in (9.23), since N;/g is arranged to
be unity here, .as in the computation fcr the aberration coefficients,
To simplify the writing further, &g shall be denoted by Oy , Os:z
by Oz .o.p, 8nd Algyp shall be denoted by OBAy 5 oosee

Now, from (9.23), we get

Byb(je ) = Opj = Oy
Oab(jo) = Ouff = Mgy
Oya(fe 1) = Opj + Dy
Oza(je = Oz + AlAyj (9.éh)

By adding Sy, S ..o to both sides of the appropriate equations
(9.24), one obtains

(8y +06yb)jer = [(Sy +06y ) — AAyp ]y
(Sz + Ozb )jet = [(Sz2 +06z ) - OAgp ]
(Ty + Oya )jes = [(Ty +0ya ) +0Ap ]y

(Tz + 021 Djor = [(Tz +6a ) +00z4 5 . (9.25)

\
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Thus, given the AA's and (Sy + Oyb )yeee 8t § 4 Yja1, sos cBN be
found using (9.25) and (9.22). Note here that (S +6) =S, and
that (8 + 6)y stands for (S + 0j), since S 1is defined at the first
surface only. (9.25) are written as they are to indicate that

(8 +8) is to be evaluated at each surface for use in (9.2 ).

To summarize, the ray trace proceeds thus: given (S +90)
at a particular surface, Y, Z, V, W are computed using (9.2‘). From
these, the Do, D1, D2 - are obtained next, by (9.13) from which. P
is calculated using (9.14). Then the fq, B1, B2 &are obtained by
(9.18) and thus § from (9.19). Next Da and Db are computed
by (9.21), and finally the AA's from (9.2) and (9.4). Then, using
19.25) the (8 + 0) of the next surface can be obtained, It will
be noticed that this scheme is a skew ray trace scheme in the sense
that tangential and sagittal rays are special cases determined only.
by the starting data, namely, S; = O for tangential rays, Sy = O
for sagittal rays. ' |

Having computed the AA's at each surface, then the dis-
placements of a ray from the ideal image point in the ideal image
plane can be directly obtained by virtue of (3.12), - For para-
canonical coordinates, bearing in mind (4.17)

k
nyk = U 1§‘ AAyai
o . .
e = W 2 Ao, ‘ (9026)
From (9.24) and (9.25)
k ‘ '
(2, My = (Ty +6y )k - Ty
k . '
3 DAy = (T2 +62)k =Tz . (9.27)

fet

In practice, the object point is_chbsen to lie in the meridional
plane, so that T; = O, hence o €

k : '
1§%\AA31 = (T +-Gza)i . : (9.28)
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If the syStem is working in air, and has unit focal length, then
B = ﬁ,Jso that for this case

' (Ty + by)i - Ty

eyk -
ek . = (T2 + 0z3)8 . ' (9029)

" the quantities in brackets being computed in the image space by the
scheme, '

‘The refractive indices of a system are chosen appropriate
to the particular wavelength (colour) of light. These values of-
N determine a particular value of v{x and hence the position of the
ideal image plane, since the axial distance 1 of the image plane
from the pole of the last surface is given by

T ok = ¥ /v& . - ' (9.30)

To trace rays of a different coloﬁr; a new set of values of
N are required, which in turn fix the position of the new ideal
image plane. Equations (9.29), which allow simple computation of
€y, always give €% in the ideal image plane corresponding to the
colour of the light. However, one usually requires that for various
colours, all the displacements be’obtained_in ggglplane. whose
position is determined by a particular "base" colour, - In these
circumstances, £€{ can be obtained from M 86,1, namely

- Ely = obokVk ‘” Yk - hk.,
ke = oUW - 2%, | (9.31)
where
obok = o¥ik / ek o
oh & = oTy/oN'kfg-o‘}ak o | | (9032)

The preceding subscript ‘o' refers to quantities associated
with the base colour. The factor Ny in oh{ (see 4.21) has been
omitted here since OT coordinates are considered to be the most
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useful set to use for the ray trace. As mentioned before, g =1
for this set, thus in order to be able to omit the antéprimes
associated with the AA's, N, has to be made unity if it is not so
already,

If expressions (9.31), (9.32) are used to compute ef ,
then it is possible to allow for any desired image plane shift.

For a new image plane F' which is at a distance x' from
the ideal plane,

T oldk + X', (9.33)

i

and for this plane,

i'lk' = ohd + .X'avtgk oTy (9'-3“')

Hence

TEW - -,

™2
s-n
1]

EXz = Tdw -z, (9+35)
. b
There are several checks which can be used during the
computation, One of these involves the calculation of an optical
invariant aEyx, defined as

a Ey a.Nr Iy

i

aN(zv - Yw)

N(ZV - YWN(1 + V + W)

N(ZV - YW)/ ~b, . (9.36)

As the factor (2v - YW) is identically zero for tangential rays the
following checks can be used in this case

(1 - E)(V2 +1) = c[(¥v +7) s N(r*+ 2YVr - Y )] as r 2‘0.

and,according as ¢ 20,

net

.= + C ‘/'p i{‘*\[{l"z - [Y + V’(d' - I')]z/pz} -
""2 - + +

(9.37)

9

- WF - (Y - V2 /Bl
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where the subscript + refers to quantities at the next surface,
If Sk 1is being checked, then 4' = 0, and the subscript + relates
"t0 quantities after refraction at the last surface, These checks
are rather unwieldly and are not used in the ray trace programme
since the machine is adequately checked when tracing skew rays,
these rays being in the majority in most pencils, The checks
(937 )were designed for use with desk machine computations,

Equations(9.22)require the paraxial coefficients y, ,
Va 5 Ybs Vb These are obtained from & pair of paraxial ray .
traces, the starting data for which is given by (4.12) For OT
coordinates which are used in the ray trace, the constants. in
(4,12)are given by(L4.16) The p required for these constants is
given by (8.14).

"It is convenient for the numerical calculation. of the
paraxial coefficients, both canonical and paracenonical, .to-
rewrite equations @.5)in the following form,

v = ty!
y = *y - dv
i = cy - Vv
v o= (1=K is+v, | (9.38)
‘where *y; = yj., and ®v' - vier .

By way of example, a ray of a pencil from an object at
infinity will be traced through a wide angle'system° The system
is the Pantoskop, Fig. 8 (Fligge, p. 283), the dimensions of
which have been adjusted to give it unit focal length, The
diaphragm is 0,061849 units behind the third surface.

Table I shows the paraxial "p" and "q" traces necessary
to determine p, the position of the entrance pupil, To compute
P it is only necessary to proceed as far as the third surface;
the trace in the table has been continued to the Gth surface in
order to check that the focal length is in fact unity (f' = 1/vfy).

From Table I and using(8.14),
P = 0.091520 ,.
in the diegram of the system, this is the distance AE;

The reay chosen for the ray trace is one of the u5°
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pencil whose 8y , S; are 0,015625, 0.015625, Sy being shown in the
diagram., .

With the object at infinity and in.the tangential plane, for
OT coordinates :

© =_1’ 6:"00091520'1;_0’ %:1,
thus the starting data for the "a" and "b" paraxial traces are

a-ray ¥y =1, v = 0 ,

b - ray ¥y, 0.091520, vy = 1,

At the first surface, the initial dats for the actual ray trace
is of course |

Sy = 0,015625
S; = Of015625
Ty = 1.0
Ty, = 0.0
Y = V,, for én object at infinity (V, = tan 45°),

Table II shows the ray trace computation,

From Table II one obtgins

Vo = ¥k /v = 0,908481, h'% = Ty/vdk =1.0
ely = (T +8)k-Ty = V&VE - Yk -h% = 0,003189
efs =(T +6)k = lHWk- 2% =0,002148.,

Suppose a new image plane is distant 0,015625 from the idesl
image plane, Then

X' = 0.015625, Tk = 0.,924106, hY% = 1.015625 -

™
Kee
<

i

0,003498, Bl = 0.002428.



Fig. & Pantoskop



TABLE I

3 1 2 3 4 5 6
c 13.45565 9.648182 13.,13822 -13,13822 -9.648182 -13.45565
a 0.017357 0.,001895 0.,123697 0.001895 0.017357
N 1.0 1.5331 1.6079 . 1.0 1.6079 - 15331
k 0.652273 0.9534L80 1.,6079 . 0.621929 1.,048790 105331
v, 0.0 4678890 L.873611 ~0.57196L4  =3.810739 = 3.598413
p ray| y-dvay, 1.0 0.918786 0.909549  0.838798  0.8L6021 0. 908481
' cy-v=i, 13.45565 L.185726 ' 7.07624‘!’ -11,59228- -4.351828 - 6.62579
(1-k)isv=v) 4.678890  4.873611 0.57196L =~ 3.810739 -3.598413 1.0
\A 1.0 0.652273 0.616848 1.091591 1,1:,1'1'6140‘ ' 1:,‘&0935 3
q ray ¥y 0.0 - 0.011322 - 0,012491 - 0,147518 - =0.150194 = 0.17466L
1 1.0 - 0,761508 - 0.780957 0.8L46533 0.037455 - 0.940410
v? 0.652273 0.616848 1,091591 1411640 1.409813 0. 908480

d=0,0618L9, D= ~(¥g = Vgs'A)/ (Fps —%;'d) = 0.091520




TABLE II

J 1 2 3 b 5 6 k!
c 13.45565 9.648182 13.13822 -13,13822 -9.648182  -13,45565
a 0.017357 0.001895 0.123697 0.001895 0.017357
N’ 1.5331 1.6079 1.0 1,6079 1.5331 1.0
k 0.652273  0.953L80 1,60790 0.621929  1,048790 1 :5331
Ys t, 1,0 0.918786 10.909549 0.838798  0.8U46021 0. 908481
¥, t, 0.0 4.678890 4,873611 0.57196L4  -3.810739 -3.598413 1.0
b 1, 0.091520  0,079766 0.070751.  -0.070751 =-0.072766 -0.091520
[ t, 1.0 - 1,080486 1,062881 1.143938 1,062881 1.080486 1.0
(b ) =( 8,+8) s 0. 015625 0.018790 0.018872 0.018930 0.0160Lk 0.016608 0.016578
*(te=tzp)=(S,+6) ts 0.015625 0.017131 0.017117 0.016438 0.015211 0.015284  0.015767
*(tr+ta)e(Tre)  t, 1.0 1,084969 1,075L0L 1.078590  0.993350 1.005195 1,003189
* (tg+ ) =(T,+8) ts 0.0 0. 0LoLll 0.042069 0.004702 -0,031529  -0.030013  0.002148
t, ts+t5t,=¥ 8 0.107145 0.096212 0.093251 -0, ¢60433 -0.058708 -0,076908 =-0,076751
Ty Bt Ht=Z o 0.015625 0.018683 0.018546 0.013456 0.015163 0.016632  0.014127
t, to+ BE,=V Ty 1.0 1.260209 1.235003 1.2LLU667  0.99U6TL 1,026336  1.019767
bt +t,t, W t, 0.0 0.123855 0.128138 0.014780  -0.091479  -0.087426  0.017915
£ +t,41 =D, s 2,0 2,603468 2,5L1651 2,549415  1.9977LL 2.061009  2.0L0245
c(tyt 4 t,)-t#1=p, 127 0.441708  -0.L411322 0,002641 -0.563787  -0.420950 0. 020651
S(t2 + £, Q=23 4, =D, tg 0.760691  -0.886638 -0.986559 -0,760184  -0.813600 -0.981332
| o= tastys 1y 1.716488  2,L77519 2,507495 2.255881 1.802564 2,022961
W te-t)/t, =P t 0.762573 0.621984 0.810282 0.882769 -0.680083

0.434220
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-0.239390
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10.0035L3
-0, 002006

0.032161

-0, 000030 -

-0.000483

-0,015862

0.011049

0.015781
0.011049



(2) Progiamme

The programme constructed on the basis of this scheme
will operate on systems containing 15 surfaces or less, The ray
trace scheme presented above is very'suitable for machine computat-—
ion, Owing to the fact that there ére no axial intersection
lengths of rays to be computed, the numbersappearing during the
course of the calculation are of modest size, There are no
trignometric functions to be evaluated, and only two square roots are
required per surface, or three, including the aEyx check, Working
to an accuracy of six decimal places with fixed point operation, the
upper limit of the DEUCE machine is 27 . This restricts the
initial value of Ty to be less than 64, which correspdnds to-an angle
of sbout 80° for a pencil from an infinite object. Note here that
the ray trace scheme will not work for angles >900 in any case.
Thus fixed point working restricts the machine to systemp.ofa160°
full field or less, which is adequate for most of the systems
generally considered,

It is desirable to work in fixed point arithmetic since,
in computing & spot diagram, many.rays are required and in these
cases rapid computation is of considerable economic importarnce. In
view of the need for fast calculation, considerable effort“wés‘
directed towards optimization of the programme, to the extent -that
special subroutines were designed to carry out the multiplieatlon_
and divisions for the particular number size used throughout  the
'computation. The machine time per surface is 0.5 seconds, 50 pcr
cent longer than the minimum time in which the instructions could
be obeyed if all the stores were immediately accessible,.

Also in the design of the programme, thought was given to
the question of making it as universal in its application aslﬁossibleo
Accordingly, the present programme can produce automatically3the_§€
for any one of four types of trace; 1) a full pencil, 2)*a=tang¢ntia1
fan, 3) a sagittal fan, 4) a single specified ray. These*rQSultsv
can be obtained for any pair of object and image planes,’ noi,
necessarily conjugate, providing of course that only finite images
are contemplated, The punch-out programme restricts the:displace-
ment e to be less than the focal length (unity) but this-.could be
altered should circumstences warrant it. The object point:is always
considered to be in the meridional plane, the only restriction on .
the object height is that Ty be less than 6l Note here that if V;
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corresponds to the angle of the principal ray of any pencil, then
Ty = Hy'/lor = Vi/vpy , ~(9.39) g

In the programme, any particular pencil is characterized by its

Vs , the object height as such does not enter into the calculation.
Knowing Vi , 1o+ and p, the designer can eompute ﬁ,, if desired
from . .

Hyv = V(i = D) . ‘ (9.40)

The ideal image point in an out-of-focus image plane is defined as
the intersection point with the plane of the principdl ray of-the .
pencil when its path through the system is determined from the laws
of paraxial optics. From this definition (9.3L)can be deduced.

In addition, if the refractive indices corresponding to
different coloured light for a given system is fed in subsequent
to tracing rays through the base colour system, then'any of the
four sets of results can be obtained for the new colour. - In this
case, as before, the image plane can be at any location., - However,
to establish the image height in the base ideal image plane For
use in tracing "coloured" rays, at least the principal ray of the
required "coloured” pencils must also be traced through the base
system,

To enable the machine to trace automatically the rays
for a full pencil, it was necessary to design a vignetting scheme,
This scheme causes the machine to cease computation on any ray‘
whose intersection pcint with any surface and with the plane of
the dimphrsgn l1ies outside the limits set by the designer, ‘The ’
individual limits for each surface and the diaphn@m1are indepeﬁdent
of each other, In the work done in this thesis, the actusl rims
of the components were used so that ‘all rays traced will in fact go
through the actual system as construéted Should tracing of rays
be- reqnired which are vignetted by 8 particular surface alone,
this is achieved by simply maklng aIl gger limits so’ large that
they cannot vignette before the selected one doee.n When the
actual»rinm,of the eomponents do the vignetting, then,,as‘will be
shown later, the shape of the -entrace pupil for the partigcular..
pencil-can be obtained from the output resultsi. - -

_ The programme requires as its initial data the curvetures(c)
separatione (4) and refractive indices (N) of the surfaces,
Yar s Vay o by » Wby :or t.he "g® gnd "pb* trace. ‘@nd for
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vignetting purposes, the radii (p ) of the rims of the éomponents
(supposed or actual) and the radius ( pd) and location (D) of the
diaphragm, As mcntioned‘before, the %, W for the "a"-and "b"
trace contain in them the position of the object and the paraxial
entrance pupil. Since "p" and "q" traces are carried out during
the initial design of a system, the entrance pupil position p is
supposed to be known by the time ray traces are required. - Thus
nothing is gained by programming the machine to compute the 'a" and
"p" starting data by performing a "p" and "q" trace of its own.

From the initial data, the machine computes the "a" and
"b" paraxial coefficients of the system, which are stored until-all
the ray traces for the particular system are completed, Then the
machine calls for a "pay data card" on which is punched,  in-binary,
1) V, of the principal ray, 2) S, , S, , the value of these’
depending on the type of trace required, 3) the "scan interval &,
From V, , and the paraxial data, oIy , oldk , ohk are computed,
which are stored initially for the duration of the particular trace.
Next, the coordinates Sy, $S; from the card are taken as the start-
ing data for the ray trace, For the first three types of- trace,
Sy and S; must be zero on the ray data card., The machine then
proceeds to trace the ray in accordance with the scheme in table. II,
also computing and comparing dEx, as it goes, At each surface also,
vignetting is examined. |

Now, for any spherical surface, cquation(9.9)holds;_

This can be written
2 2y S -
e (¥ +2%) + () -1 = O
24,2 2 2 : .
or (¥ +:2°) + PP=1 = 0, using (9.7).

If ¥ + 2° { @ for a particular surface, the vignetting will not
occur, In this case then,

- ~

ch? + P -130 ' (9.41)
For a plane surface, the corresponding condition is
p*f; ¥r o4 2%, | - (9»Lr.2)

Depending on thc value of c, either (9.41) or (9.42) is used to.
‘determine whether the ray is V1gnetted.
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To determine whether the diaphragm vignettes, the coordin-
ates of the ray in the plane of the diaphragm are found from (1.6),
where X here is the distance of the diaphragm from the following -
surface, Then of course the ray is not vignetted if p} > vV o+ Z.

Assuming that the ray is not vignetted anywhere, when the
image space is reached, e¥ is computed by means of (9.35), taking into
account the value of k’given on the ray data card., Then & pair of
digits essociated with V, are examined to determine which of the four
types of trace is required, If & full pencil-is indicated, then the
initial Sy , Sy will have been zero, and thus the principal ray
will have been traced first. . The machine will:then return to the
beginning of the ray trace programme and add & to the value of Sz
and start again, -Thus the next ray tracedwill have coordinates,

o, 6 « On completion of this ray, 0 is again added to S; and the
trace entered again, In this manner, a sagittal. far is traced,

the g -- from each ray being stored. Eventually,: vignetting will
occur somewhere in the system, At this point the trace is immediate-
1y terminated, S, is made zero and § added to Sy . In this manner - -,
the first quadrant of the entrance pupil is scanned by ?eries of rays"”
spaced-at intervals of & horizontally and vertically. | When & Tray

is encountered whose S; is zero, and is vignetted by the systenm,

the first quadrant scan is terminated, If, in.addition, V: is zero
this ‘completes the scanning for the axial pencil, since all four
quadrants are symmetrical in this’case, If Vi, . is not zero, then
the lower quadrant of the entrance pupil is scanned, the first rdy
traced ir this group having coordinates — &,c. As before, this
quadrant”™is fully scanned when a ray is encounteredIWhOSeAS; is

zero and which won't go through the system, Fig. 9. Each time a

ray is traced or vignetted the pair of digits characteristic of the
type of trace is examined and 'the behaviour of ‘the machine is

veried according to the type of trace required. The tangential and
sagittal-fans are simple variations of the full: 'péncil“procedure.

In order to indicate the shape of the entrance pupil and
to specify the location of each ray -traced in the "grid", along with
the ¢} for each ray, Sy/b N Sz/b are stored, giving the Cartesian
coordinates of the ray relative to the principal ray as origin with
& as the unit of length, If, in the example of table II,6 = 2 ° ,
then the (y, z) of this ray would be (+ 4, + 4). From these figures
for a full pencil, the shape of the entrance pupil can be plotted.

In addition, with each set of ¢f punched out, W} , Wi are also
given, in case the designer wishes to compute X , Xt « Prior to
punching any one set of results, in the absence of a particular
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binary digit on the ray data card, the Ty and ohyf of the pencil are
stored as a pair for use in "colour tracing."

- After a set of results is punched, the machine calls in
a new ray data card, which can contain entirely new:information
i.e., new V; , different type of trace, new § and x' . In this
way the ray trace remains entirely under the control of the designer,

To trace rays of a different colour through the system,
additional data are presented to the machine giving the new refract-
ive indices, Included in these data is a parameter whidh tells
the machine that the 14x is not to be computed from the paraxial
coefficients but to be taken from the store, 1.6, Idx o On
the ray data cards used for "colour tracing" an extra digit is
present which causes-the machine to search the "T . store"™ until 1t
finds a Ty which matches the Ty computed from-the V,-on the card.,
The ohf Which is associated with this Ty i1s then extracted from
the store and is subsequently used in the computation of ef .

The computation of aEyx at each surface adequately checks
the machine arithmetic for skew rays. To aid ‘in the checking of
tangential rays, the following relations are examined at each
surface,

1) P<t, 2) 181> 11 =kl, 3) teszo, U) %0
(see Table II).

If the first two relations do not hold, then the machine has made
a mistake, Relation 3) will not be true when the ray has missed
the surface, in the sense that ¥ + # > r* , where r is the
radius of the curved surface, If the ray is totally internally
reflected at any surface, then ts< 0.

10, Predicted Displacements from.&berration Coefficients

In the theory of aberration coefficients, e}l is
represented as an infinite series of homogeneous polynomials. If
this series 1is terminated after the seventh order terms, then only
an approximation to &' can be obtained. This approximation will
be denoted by £'[3]. §[3] is computed using (3.18) which, written
in full,'and omitting primes and subscripts, becomes
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ey[3] = (&& + 2Any  + Ciy + S1EY 4+ SQEM + S EZ+
Sl + SsmZy + SeZi )Yt‘

+(DEY + 'B_E?Th + TBEIZ + TEMT + TsEimZr + TeEi&] +
Ty + Tenigs + Temgi + ToZi Y

+(BE, + §nv1 + }(':z;, + §’1:E3' T+ 5:517]1 + -Ss€1§a + 541'!% +
Ssm &y + Segi IV

+(TE} + TEIny  + T3EIZ, + TEME + TEML + TEL +

Tin + TeniZe + TomZl + T2V . (10.1)
ed[3] = (AE{ + 2Am 4+ CZyv + SiEY 4+ S28im + S381%1 4+

Sem? + Ssm& + SeZi )2

+H(T €} + TLEin  + T3E1Z:  + TeEani  + Ts&milr + TeE 143 +
| Tond + Temi&e + Tomgi + Tw £1)Zs (10.2)

In these expressions, the identity M20,42 has been used, namely

B = 2A, u has been omitted from these expressions since the
"coefficients programme'produces the aberration coefficients already
multiplied by u » Also, since paracanonical OT coordinates are

used throughout, the term involving W (T:) is absent in (10.2)as a
résult .of the object points always being considered in the meridionai.
plane, The relations (.22)are to be kept in mind here,

As well as the final aberrationAcoefficients, this programme
requires the paraxial coefficients of the surfaces - of the system, all
of these being part of the output . from the coefficients programme,
In,' addition, the approximate radii p of the co_mpgﬁ'nents aﬁd the
radius pjand position D of the diaphragm are required. The
paréxial-coefficients and the p are used in a.vignetting scheme
in such.a manner that this programme will produce the four types
of results mentioned in the ray trace programme, However, hefe,
vignetting cannot be baéed on the:path of the actual ray for -
which §'f3] is computed since there is no way of determining its
path using only the final aberration coefficients, This is not
because the series for el has been terminated, but because in
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PART III -~ Numerical Results

11, Specifications of-systems examined,

In the specifications given for the'following systems the
dimensions have been so adjusted to give a focal length of unity.
The systems are described by the curvatures c, the separations d
and the refractive indices N, After these are given the--distance
D of the diaphragm from the first surface, the stop number v of the
full aperture as determined from an axial ray trace, and the
approximate field of the system, The diagrams are not to scale.

System 1 Vege

e

c d N

1 6.38090 0.0 1,0 D 0.370656
2 L.33692 0.061881 1.6116 v 6.1
. | )

3 7.89645  0,000287 1.0 field = 90
L 9.76526 | 0,006993 1.7L80

5 -9.76526 0.180758 1.0

6 -7.8964L5 0;006993- 1.7480

7 -L.33692 0.0002874 1.0

8 <6.,38090 0,061881 11,6116



6u-

System 2 Sonnar

\
Cc a N
1 1,51831 0.0 1.0 D o;u2§1éf
2 o.éoueso 0.093077 1,6515 v 1.6
3 2,83762 ~ 0.001263 1.0 | fielé = U45°
i 1,16L51 0.117215 1.6515

5 =0,193567 0,070289 1,5095
6  UL.24506 0. 018600 1,7467
7  0.096097 0.156704 1.0

8 1.64368 0.024988 1.5202
9 -4,60076 0.198942 1,6515

10 =0,960177 0.052451 1.5960
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~equations (5.29), from which the path could be determined, the
intermediate p and g coefficients are required, Only the p
intermediate coefficients are produced by the coefficients

programme, However. in order to prevent the machine from performing
a scan indefinitely, at each surface Y;, Zj are}computed using
(5+32), that is, the increments 6 (5.30) are neglected, Then the
relationYY§ + Z§ <;ﬁ is examined and the ray is-considered not
vignetted if this holds. - This method of vignetting is inaccurate as
a result of two effects, Firstly, Yj,-Zj; are measured in the polar
tangent plane, whereas p is supposed to represent the rim of the -
component, Thus, in the casé of a "steep" surface, an actual-ray
approachlng the rim of the surface and making a large angle with the
axis may have Y? + 2% >0 and still pass through unv1gnetted
Secondly, since the 6's have been -omitted from the computation of the
Y,-Z , the value of Yj, Z; so obtained may be markedly in error if
the system possesses large aberrations, or even large surface contribut-
" ions and:small final aberrations, '

This programme was de81gned B8O that ‘the alsplacements
predicted by the first three orders of coefficients could be - compared
with those computed by ray traces. Thus, in all systems a set of
accurately vignetted ray traces are available, By makingﬁiandigjin
the present programme sufficiently large, the pencil "traced" can always
be so arranged that more than the required number of "rays" are computed.
The correct set is then determlned by comparison with the (y, 2)
coordinates in the ray trace. reésults since here also, a set of (y, 2z)
coordinates is produced with each "ray" comﬁuted, Computing more ,
-pesults than required tends to be wasteful of machine time, However,
sinceé the machine time per "ray" is 0.5 seconds, this is not serious.
The méchine time is almost independent of the number of surfaces in
the system since the main body of the computation is taken up in the
calculation of ¢£'[3], which of ‘course is a fixed length operation,

The vignétting section of the programme, which involves the surfaces
individually is quite fast, and is Snly a small percentage of the
total time,

Owing to the sizes of the numbers encountered in the
coetricients of a reasonably well corrected system, it 1s possible
to perform the computation to the end of the secondary coefficients
in fixed point arithmetic with an accuracy of six decimal places.
The tertiary section is done in floating point arithmetic, The
results from the primary and secondary coefficients g[z]'are
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stored and punched with those from the entire set of coefficients

so that the improvement in the accuracy of the predicted displacements
due to the addition of the tertiary coefficients may be examined,
Naturally a "ray" is examined for vignetting right through the system
befofe'any computation on coefficients is initiated. The results-
produced. by this programme are %JZ], g2], éJB], gl3l, v, = the
(¥, 2) of a "ray" being computed as in the ray trace programme, - To -
simplify the tabulation the format of the results is the same as that
of the ray trace programme, ‘ '

The same ray data cards used in the ray trace are also used
" here, However, in this case,'image plane shifts and "colour" cannot
be handled, This is because the aberration coefficients give &f
only in the ideal image plane as determined -by the value of ygk/V;k o
The ideal image height does not directly enter into the power series
expansion of ¢} . In an out-of-focus plane, E& can be computed
from M36.4 namely

€k = ek + xX'vL8 + x' (8L vk - &L v (10.3)

which, however, requires a complete set of é and b coefficients, and
the computation of these is usually not worth the effort.

The object plane location must also be the same as that
used in the calculation of the coefficients, owing to the fact that
the "a" coefficients alone will describe the aberrations of a system
only when the paracanonical doordiﬁates are chosed appropriate to the.
object and entrance pupil positions, see Section 4.



System 3 Tessar

1 3,35531

2  -0,063011

3 =2.1 6390
L 39 77245
5 -0, 651 61 8
6 U, 52661‘
7" —3.08696 |

/
|
L
L Y
d N
0.0 1.0
0. 0350 1,6226
0.049839 1.0
0.0160 40576{
0.044260 1,0 |
0.01650  1,5282
0. 0500 1.6133

. _’/
—,
e e et e

D 0.1332
v 1.6
field = 50°

65.
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System 4 Petzval Objective

c d N
1 1,71310 0.0 1.0 D 0;239206
> ;1.uuo57 0,080301 1.5095 v 2,8
3 Q1.57062 0.010337 1.0 field = 20°
4 0.0 0.02867L 1,61704
5  1,48712 0.373180 1.0
6 é.so71o 0,024119 1,61704
7 1.6769% 0.039047 1.0

8 -OO 567’-‘-97 O. 0514-2 OLI- 1 L] 5095
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System 5 Telephoto

The specifications of this system are not available for publication.

v 7.0

field =~ 414°
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Biotar

System 6
A AL
c d N
1 1}19617- 0.0 1.0
2 0.311526  0.10800 1.6u2u
3 2.2321& '0.01700 1.0
& -0,086957 0.156Q0 1,6231
5 3;53357 0,05100  1.5757
6 -2,59740  0.18900 1.0
7 1.98020 A'o.051oo 1.6727 _
8 ~1.87970 0.21260 1.6L24
9 0.943396 R 0.01000 1.0 |
10 —0.833333 0.13900 '{.6u2u

D . 0.4210
v 1,6
field = 36°



Table III

Semi-field angles of pencils 6 (£'=1)
véga 0o 10 20 30 35 4o us5° 0.011719
Sonnar o 5 10 15 20 25° 60033_203
Tessar 0 5 10 15 20 25° 0,051719 '
Petzval o 2 4 6 8 10° 0.019531
Telephoto| 0 1 2 3 4 5 6 0.007813

o 3 6 9 12 15 18° o.o390é3

Biotar




Table IV

Vega " Sonnar Tessar
A - 0.7633 0.1778 0.8919 .
A - 0.1881 0.0242 0. 1451
B 0.1165 - 0.0727 - = 0.0430
c 0.03L42 0.1205 0,1017
c 0.0270 0.2838 0.0048
Sy - 661.2 - 1,389 o 7702l
S 10,69 - 0.4599 - L4.923
S, L43.10 - 1,756 - 19,31
8 24,46 - 1,062 1,063
Ss -  6.u464 - 1,302 - 3,602
Ss - 0.2767 0.0728 - 0,6016
S 25,26 - 1.328 0,2279
S -  0.2515 - 1,063 - 1.646
Ss - 0.1506 0.0898 - 1,480
Ss -  0.3547 - 0,0809 - 0,2835
Se - 0.1493 - 0.3708 - 0.5708
5 - 0.0145 = 0,2756 - 0.0194
T - 30473. - 8,233 . ~ 2044
T - 213.1 - 1,953 - 214,17
T, 1652 - 12.63 - - 1337
T, | 1023 . -~ 2,384 b2,47
T - 88L4.8 - 7.220 - 146.9
T 13,68 10,6395 - 19.97
T, 3426 - 0.6876 238,1 .
Ty - 15,42 1.434 - 36,07
Ts 9,624 " 4,263 - 63,44
Ts - 9.u84L 1.896 - 13,68
Te - 9,070 - 0,8988 - L4.067
Ts - 0.1936 0. 4851 -  1.607
T - 40.05 2.547 - 10,72
T - 38.09 2.u87 - 3,060
T - 29.35 - 5,994 - 11,23
Ta - 1,000 0.3611, -  L.565
T - 0.3155 0.6720 - 1.992
T o 0.LL9t 1,403 1.107
Tro 0.2097 - 0.6713 0.0271
Tro 0.0159

0.076L




Table IV (continued)

Petzval Telephoto Biotar
A 0.0734 0.0862 0.0873
i - 0.,0192 0.0559 - 0.0267
B - 0.1559 0.2026 - 0.1251
¢ 0.3388 0.0909 . 0,0761
¢ 0.0903 1,710 - 0,2624
Sy - 3,376 - 13,15 - 0.35u41
S, - 1,160 - 4,293 0..0606
S, - L.556 - 17.19 0.291L4
S, - 1,975 - 12,02 - 1,811
 Ss - 1.413 - 6,873 - 1.512
S; 0.5900 - 0,3296 - 0,1433
Ss - 2,033 - 12,39 - 1,864
S, 0,6692 - 7.386 0.5468
Ss 1,311 - 1,118 - 0,2593
Ss - 2,520 =  9.0L3 1,136
S6 - 0.8556 - 3.L05 - 0.3394
Se 0.3925 70397 - 0.3351
T, - 29,17 - 102.7 - 1,552
7, - 6.427 - 49,70 0.3322
T - 43,61 - 289,2 1,901
T, - 11,43 —— 263.7 - 9,438
Ty - 12,19 - 125,1 - 5,202
T, - 0.3509. - 72.98 0.1982
Te - 19,43 - 410.6 -18.28
T, - 3,790 - 332,9 - 0,2026
Ts 1,563 - 217.0 - 0.5094
Ts - 8.258 - 213,8 3.462
Ts - 3,406 - . 50,08 - 1,156
Ts L.390 -  0.4926 0.3703
T - 0.0910 - 171.2 - 0,6656
%, 2,106 - 10Lo1 5.156
Ts - 2,847 - 131.9 5.386
Ts 10.07 - 90,79 1,488
Ty 5,081 - 3,832 0,8090
Ty - 7.u456 - 93,91 1,686
Tyo - 1.4l - 19,37 0.3795
To 10495 43,18 - 0.6475




69.

12, Calculations Performed on the Optical %ystems.
1) Ray traces.,

For an object plane at infinity, sets of ray traces were
computed at several semi-field angles for each system, with the
aberrations ek being calculated in the ideal image planes. ~The
grid spacing & for the full pencil scans was chosen so that at
least 200 points were available in the axial- spot- diagrem of each
system. The various semi-field angles-and the 6 for each system are
listed in Table III. The values-of & in this table appear to be
_complicated decimal numbers,  This is because they are rounded-off
decimal equivalents of the simple combinations of powers of two -
which were used on the ray data- cards, It is easier to punch the:
binary digits for 2-%and 27 on the cards in the case of the Biotar,
for instance, than the binary representation of 0,0L. - (2= + 27 )
is a sufficiently close approximetion to ensure an adequate number of
rays per'pencilf

2): Aberration Coefficients,

For each of the six systems, the third, fifth and seventh
order coeffi'cients and the contributions thereto were-calculated for
an object plane at infinity. ‘The final aberration-coefficients~are
set out in Table IV, in which the primes and subscripts k have heen
omitted from the symbols. The coefficient B has not been included
since B = 24, The numerical values printed out by the computer from
the coefficients programme are given to nine decimal figures. These
are, of course, not all significant and the values given Table IV
have been rounded off to four or five figures which will be
significant in most cases,

3) Predicted displacements.

Corresponding to each of the rays of the pencils in Table
III, a set of predicted displacements e'[2], €'[3] were computed
from the first two and first three orders of aberration coefficients
respectively. As mentioned before, resulting from the choice of
coordinates used for the coefficients, these displacements in the
ideal image plane are for an object plane at infinity.
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Diagrams

The information obtained from the computations described
in the preceding paragraphs is presented in a serles of diagrams,
These are of three types, 1) tangential curves, 2) annular curves,
and 3) spot diagrams,

1) -~ Tangential curves

These curves show the aberrations of rays lying in the
meridional plane for-various values of p , where p is the radius of -
the zone of the aperture in which-the ray lies, measured in the first
polar tangent plane of the system, The vertical axis of these
curves is actually marked in units of & s but, for tangential rays
this is a direct measure of p , = The particular value of p
corresponding to the unit & for each system can be ascertained from
Table III.

In these diagrams- three curves are drawn, The continuous-
line shows the variation with p of the true aberration e;k determin-
ed by ray tracing. The dotted line shows the corresponding
variation of the predicted displacement s}[z], and the- dashed line
the predicted displacement e§ [3]. The difference between the
dashed and dotted line shows directly the effect of the inclusion
of the seventh order coefficients in the prediction of the ray
displacements.,

2) Annular curves.,

The annular curves are a plot of the y and z components
of the displacement of rays which lie oh one zone of thq,aperture
i.e. on the rim of a circle centred on the intersection point of
the principal ray with the first polar tangent plane, In each
diagraﬁ, the circle chosen is that one which best fills the
(equivalent) entrance pupil and which is not vignetted by more
than 25 percent of its circumference, The corresponding curves
for e'[2] and e'[3] are plotted using the same code as for-the
tangential curves., The radius of the circle is shown on the
diagrems in units of &,

It is convenient at times to refler to the polar coordinates
of a point in the equivalent entrance pupil (i.e. in the first polar
tangent plane). The point whose ¥, 2z cartesian coordinates are
+nd,0 1is designated as having polar coordinates: né ;00.' Positive
rotation is taken in the direction from the positive y axls to the
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‘positive z axis i.e, anticlockwise when looking along the direction

of the positive x axis, The arrows on the annular curves indicate

the direction of rotation around the curves corresponding to a

positive rotation in the equivalent entrance pupil, the arrows starting
at the point corresponding to O°.

3) - Spot diagrams.

For each pencil, the spot diagrams are plotted in. pairs.
Those in the column marked Ei are obtained from ray traces and
those in column &'[3] from the first three orders of coefficients.
Spot diagrams predicted by only the first two orders of coefficients
have not been plotted since the appearance of these can be inferred
from the behaviour of the e'[3] set in conjunction with the
tangential and annular curves.

In all the diagrams, resulting from thé definition of §k

the 6rig1n of the coordinate axes is the ideal image point- '
appropriate to the particular pencil. The positive direction for
e, in the annular curves and spot diagrams is to the right of the
ideal image point, and positive 82 is downwards. This‘correqunds
to viewing the image plane from the lens side. v e K

In the tangertial and annular curves, where the dotted
(e'[2]) or dashed (&'[3]) curve is not visible, they are to be
considered coincident with the curve for §& .

In each system, the scale of the annular curves and spot

dilagrams is identical with the scale of Q% shown on 1ts tangential
curves, T
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13, Quality of Agreement between e} and €[2], A[3]

In this section the diagrams of each system are examined
in order to determine over what range of pencil angles the predicted
displacements ¢[2], £[3] are in good agreement with £} . In this
context, the displacements e'[2], ¢€[3] computed from the '
coefficients will be termed secondary or- tertiary predictions
respectively, and the displacement §%.dbtained from ray traces will
be termed true displacements,

Before proceeding with the examination of the diagrams, it
is necessary to comment on how the comparisons are made, At first,
an attempt was made to make the comparison of the various curves
and spot diagrams on a quantitative bgsis, In particular, some of
the spot diagrams were treated in the foilowing manner, First,
centroids of a set of true and tertiary predicted spot diagrams were
computed.  The distance of the centroids from the ideal - image point
gives some measure of "apparent distortion" as distinct from
distortion measured from the intersection point of the principal ray
which may not be in the region of the brightest part of the image.
However, a single point does not ensable thé shape of the image patch
to be determined. Accordingly, the centroid was taken as the-
origin of a set of rectangular cartesian axes, the y axis of which
lay in the meridional plane, The 2z axis then splits-each diagram
into two parts, termed upper and lower, the upper section being part
nearest the axis of the system in the case of oblique pencils, or
in the direction of -eY in the case of an axial pencil. Now, all
the spot diagrams are symmetrical about the meridional plane, thus
the shape of the image patch can be ascertained by considering only
one of the symmetrical halves of the diagram, The coordinates of
the centroids of the upper and lower "quadrants" on one side of the

y axis then give some idea of the shape of the image patch,-and a
comparison of these coordinates between corresponding predicted and

true spot diagrams gives one means of measuring the agreement
between them,

This method has the advantage that all points are
equaliy weighted. While it may have an application in some form
of automatic lens design technique to detect improvements in spot
diagrams as a result of changes in the system; the method proved too
sensitive for the present work since it was found difficult to
assign "tolerances" corresponding to '"good" and "bad" agreement
between the corresponding diagrams. '

The decision as to whether a pair of curves or spot
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diagrams are in good agreement varies according to the person msking
the judgment, Thus, even though a suitable-formula may be- developed
by which to make the necessary comparisons, the tolerances to-be -
applied would still vary from person to person, In view of this,
the comparisons made here will be subjective in nature. In Judging
the spot %%agrams, the work of Herzberger1gnd Y. Ukita and Je
Tsujiuchi will be kept in mind, In these papers are- published
gedmetrigal spot diagrams and the corresponding photographic-images
produced by the systems, The shapesof the images are fairly well -
indicated‘by the diagfams, but in many cases the intensity distribut-
ions are not clearly-prédicted by the spot densities. This could
be due to the techniques by which the photomicrographs were obtained,
or, perhaps of more 1mpdrtance, due to the effect: of non-linearity in
the £ilm: characteristics., -~ Also, :when the dimensions of the spot
diagram approach the size of the Airy disc, it might be expected

that diffraction effects will seriously modify the predicted
geometﬁicél picture, Thus the spot diagrams presented here will

be compared mainly on the basis of shape,  the distribution of
densities being a secondary consideration,

The complete set of diagrams for any one system follow
the page containing the descrlptlon of their behaviouro
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1) Vega, fig. 10.

From an examination of the tangential and annular curves,
it is obvious that the agreement between the tertiary and true
curves is excellent up to the 30°pencil° At 35°the tertiary-
prediction is adequate, but has become poor at 40°, -The secondary
predictions are satisfactory up to the 30°~pencil, but are start-
ing to differ noticeably at.the 35° pencil, At 40° -and 45° the
secondary and tertiary bredictions are totally inadequate, ‘

- The true and predicted spot diagrams are in -good
agreement up to the 35° pencil, -Then, as is so in the tangential
and annular curves; the quality of the predicted spot diagrams falls
off rapidly by the time the 40° pencil is reached,

The h5° annular curves have not been -plotted since it
is obvious that nothing can be gained from them,

Summarising, it can be stated on the basis of this
system, that for systems of small aperture (£/6,3) the secondary
predictions give a sufficiently accurate description of the
aberrations up to a semi-field of 300, and the tertiary predictions
up to 35°,
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2) Sonnar, fig. 11

The tangential curves for this system exhibit a rather
unusual feature. - In the 5° end 10° pencils the. tertiary curve
over-shoots the true curve in the region of & < - 9. - In addition
in the 10° pencil overshoot occurs whend> + 6, - This behaviour
will be discussed later, -In the 15°-penc11 the secondary curve- -
is in closer agreement to the true curve than-the tertiary predict-
ion in the region of large negative &. The curves for the 20°
and 25°-pencils are "normal" in the sense that the tertiary
predictibns are better than the secondary even though the tertiary
curves themselves are not sufficiéntiy close to the true curves,

Apart from the overshoot which occurs in extreme zpne of
the aperture, the tangential tertiary predictions are good up to
the- 15 pencil° The secondary predictions improve in quality-up -
to the: 15 pencil, At 20° and 25 , neither: secondary or tertiary
predlctlons show the shape of the true curve,

In the annular curves, the tertiary preﬁictions are good
up'td.nhs'15° pencil, As before, the secondary predictions
improve in accuracy as the 15° pencil is approached.

The spot diagrams reflect the behaviour indicated in
the tertiary tangential and annular predictions that is, agreement
is good up to 15°, at 20° the agreement is fair and at 25°, Poor,.

Thus for systems of this type, average semi-field (250)
and wide aperture (f/1.6), the tertiary and secondary predictions
are quite adequate up to 15°, and the tertiary prediction may even
be satisfactory up to 20° as judged from the spot diagrams and
annular curves,
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3) Tessar, fig, 12

For this system, the tertiary tangential curves are in
excellent agreement with the true cﬁrves up to the 15° pencil.
The shape of the 20° and 25° true curve- is adequately predicted
by the tertiary curve, and is sufficiently close at 20° to be
adequate for design purposes, The tangential secondary curves
are adequate up to 150, becoming bad at 25°.

The annular curves show similar behaviour. The
tertiary curves maintain the shape of- the true curve for all
pencils, being in close agreement up to the 15° pencil, The
secondary predictions are adequate up to the 10° pencil, The
apparently large discrepancy between the true and secondary curve
in the axial pencil is not representqtive of the quality of the
secondary predictions for all p, as can be seen in the tangential
curves, The secondary curves differ noticeably in shape from the
20° pencil onwards. '

The spot diagrams agree very well as regards shape in
all pencils, The only differences are in the spread of the points,
‘but these are not large enough to cause concern,

Thus, for systems of this type, the tertiary predictions
are sufficiently accurate up to at least 250 semi-field, and the
secondary predictions up to about 15°.
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L) Petzval, fig. 13

In all the diagrams, the tertiary predictions are in
excellent agreement with the true results for all pencils, The- .
secondary tangential curves are close enough to the true curves to
be adequate for design purposes,

In the annular curves, the secondary agreement does not
appear to be good, but this is only the result of radii chosen for
these curves,

For this type of system then, primary and secondary
coefficients describe the aberrations with sufficient accuracy up -
to a semi-field of 10°., The inclusion of the tertiary coefficients
effects an improvement in the quality of the predicted displacements,
but are not absolutely necessary,
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5) Telephoto, fig. 1L

The tangential tertiary curves agree well over all
pencils and the secondary curves have a satisfactory agreement up
to the 5° pencil,

The annular tertiary predictions are quite good over all
the pencils, and the secondary predictions are satisfactory up to
the 6° pencil,

Consistent with the tangential and annular tertiary
curves;, the spot diagrams are in good agreement for all pencil
angles,

Owing to the high degree of correction of this system,
these diagrams are plotted on a scale larger than for the other
systems, In the tangential curves, the maximum difference
between the secondary and the true curve is 0.0000hB*f'in the 7-O
pencil, It may be argued that this difference is so small as to
be insignificant and hence that the secondary curve for this |
pencil angle is in good agreement with the true curve, - The view
-taken here is that since all the aberrations except distortion
lare small, a high degree of precision is also required by the
predictions if the coefficients are to be of any use in obtaining
a well corrected system, ‘

This system was designed originally to work at a focal
of 48 inches., Under test, it was noted that the performance
was slightly inferior at the u° - 50 zone compared with the
centre and edge, This is in accordance with the appearance of
the spot diagrams, and indicates that the system could be further
improved (i.e.diffraction 1limit has not been reached). To
have any reasonable chance of achieving this, the coefficients
must very accurately represent the state of correction of the
system, It will be noted that in the-?O tangential pencil the
e'[2] curve indicates a range of e; twice as great as that
indicated by the true curve, thus at this inclination the
secondary coefficients are not sufficient. In order to ''remove"
the aberrations by balancing between low and high orders, the
tertiary coefficients must be included to give reliasble results.
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6) Biotar, fig. 15

Over all pencils, the tangential tertiary curves are in
good agreement with the true curves, except for the-marginal rays
in the early pencils, Not until the 9° pencil do the marginal
tertiary predictions approach the true curve, The secondary
tangential predictions show similar behaviour, but for these,
close agreement is attainéd from the 15° pencil onwards.

The inaccuracy of the secondary and tertiary predictions
for marginal rays is very clearly indicated by the 3° annular
cuUrves, At 9° the tertiary predictions are considerably better,
and from this pencil onwards, the tertiary curves show satisfactory
agreement, Only in the 18° pencil does the secondary curve give
any indication of the true shape, '

On the other hand, the spot diagrams do not differ
significantly-from one another in any pencil. This, once again,
indicates that inaccurate predictions for marginal rays aré-not
serious, and that annular curves constructed with extreme values
of & (p) can lead to erroneous conclusions,

Thus, tertiary coefficients are needed to describe:
adequately the aberrations of this type of system up to 18° semi~-
field, Primary and secondary coefficients alone will only give
sufficient indication of the behaviour of the system between 12°
and 18° semi-field.
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Some further comments on the behaviour of the curves for the
Sonnar and Biotar are relevant at this point,

In both of these systems, the tertiary tangential curves
differ markedly from the true curves when & becomes large in pencils
for the first half of the field, It will be also noticed that
both of these systems have maximum stop numbers £/1.6, being the
largest apertures of all the systems considered here, From an
examination of the Biotar tangential curves, it is apparent that
part ‘'of the .discrepancies between the tertiary and true curves
can be accounted for by higher order spherical aberration (ninth
order and higher). Using the 0° pencil to obtain an estimate
of the effect of the higher orders for a § = 8, the 3° annular
curves were redrawn, the predicted curve now including the effect
of all orders of spher1ca1 aberration (fig. 16).. - It will be seen
that the agreement is now con81derab1y better than before, From
an«examination-of the 3 tangential curves, allowing: for all orders
of spherical aberration, it appears very likely that the remaining
predominant sberration necessary to account for the discrepancies
will be ninth and higher orders of oblique spherical aberration,
with small :amounts of higher order circular coma, The reason for
choosing these aberrations is based on the fact that the discrepanc-
iesﬁare°being caused by higher order aberrations which have a
comparatively large effect for large values of p: (0 ) and for
small values of pencil angle (). Apart from spherical aberration, -
which does not account for all of the discrepancies, n-~th order
circular coma and obligue spherical aberrations, the ooefficients
for which multiply p*' H and p®%~? H? respectively, will be the
néxt most predominant gberrations in the region of interest,
ngher order circular coma is not likely to be large since the

asymmetry of the true 3 annular curve is not gredt. While it is
possible to obtain an estimate of the effect of higher order

spherical aberration from the axial’ tangentlal curves, it is not
possible ‘to estimate easily the effect of other higher order
aberrations (except distortion). If one particular higher order
aoerration"is assumed predominant, then its effect can be estimated, -
Bﬁt-the-usefulnesa of this estimate is dependent. ori:the correctness
of the assumption,

The annular curves for & =7 corresponaing to an aperture
of gﬁ 8 show that the tertiary curve is in reasonable agreement
with the true curve (fig. 17) indicating that the unknown residual
aberrations have a marked effect only at the maximum p , supporting
the reasoning already presented.
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In the Sonnar 5° and 10° tangential curves, the tertiary
curve crosses the true curve at & = - 10, In .the 15° pencil; the
addition of the tertiary coefficients causes the predicted values
e '[3] to become worse than e'[2] in the region of § < - 6. As-in
the case of the Biotar, these effects are due to the omission of
the 9th and higher order aberrations. The axial-tangential curves
indicate that the predominant higher order spherical aberration
coefficients are negative. The 9th and 11th order spherical
aberration coefficients for this system have been computed and'they
are - 30,169 and - 53,71 respectively. However, the addition of-
thése, while improving the agreement in the regioﬁ‘bf positi#é 5,
would meke the agreement worse at the point & = =10 in the 5°~
and 10° pencils, This system, on further examination, exhibits a
peculiar behaviour. When the value of & is extended beyond 9 in
the axial pencil, the true curve very rapidly swings:around and
recrosses the%axig, eg‘becoming very large and positive in the
space of a small increase of §. This behaviour is just starting
to appear in the 5° and 10° pencil at & = - 10.

By using eq. (7.2)in 0,A.C. VIII, reference no. 9
to cbmpute'tHe effect of higher orders of sPhericalfabefration at
th§Se surfaces whose contributions to this aberra“l;,.v;i.bri are
dbminant; the true axiasl curve can be satisfactorily predicted for
values of & in excess of 9. It appears that quite high orders
may have to be reached (perhaps 21§3) before the coefficients
become sufficiently positive to make the predicted curve follow the
true curve in the region of large p . However, in the region of
interest here, £/1.6, the spot diagrams are in quite good agreement.
It will be notiéed that the annular curves are plotted for a
maximum p corresponding to £/1.,9, thus avoiding the region of large
deviations of the tertiary téngential curves from the true ones,

Thus, although the higher order cdefficients of A
spherical aberration have a marked effect at large values olel,:;>
the tertiary predictions are quite adequate for pencils up to 15°,
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14. Criteria Indicating Accuracy of Predicted Displacements.

The purpose of this section is to discover what simple
criteria, if any, will indicate the quality of the-agreement between
predicted and true displaéements° Since we are attempting to
estimate ¢f from only the first two or three orders of its infinite
series expansion (3.17), the accuracy of the estimate will depend on
the rate of convergence of the series. So far it has proved difficult
to determine theoretically the rate of convergence, so that conditions
for good agreement by the secondary and tertiary predictions are here
and elsewhere obtained by empirical methods, These methods-involve
an examination of the various angles which arise during the tracing of
the paths of selected tangential rays for several pencil inclinatioms,
keeping in mind the quality of the predictions for each pencil.

If the algebraic ray trace scheme described in Section 9 is
carried out with a desk machine,the information necessary to compute
the various angles associated with the ray at each surface is readily
available, In particular, for tangential rays, at any surface .

v

tan Uy v - (11401)

P

cos (I + Uy) (14.2)

where Uy.iS the angle of inclination of the ray with the axis, and I
is the angle of incidence at the surface, (I here is the Conrady
symbol, and should not be confused with the I (=cY = V) of the
algebraic theory (eq. 2.1) ). The programmed ray trace does not
meke available any information relating to the individual surfaces so
that it was necessary to obtain the required angles by hand ray
tracing; For this purpose, it was found that a trigonometric ray
trace was somewhat faster than the algebraic method and had the added
advantage that the angles required appeared directly in the course of
computation. The gain in speed occurs only when tangential rays are
traced, In fact, the particular trignometric method used will only

~

trace tangential rays whereas the algebraic method is faster for a
computer and works equally well for skew rays,

To assist in the examination of the results a table
indicating the quality of the agreement between the various predictions
and true results for all the pencils of all the systems has been
compiled (tsble V) based on the comments of Section 13, In this
table, for each system, the inclination of the pencils in degrees is
given in the row marked V,. = The agreement of the secondary curves is
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TABLE VI

Vega

Sonnar
vy & I ' | U v & I I'| U
00 7 38, 374 204 00 9 50, b2, 31
5 26 134 134 7 364 37 235
7 39s 3L, 324 7 35, 36, 31s
5 27s 23, | 264 521 o 9% 85 %
10° 0 8, 9 | 1l -10 57, 61, 26,
-5 2L 26, | 22 6 38, 32, 36,
~7 35, 38, | 266 10° 0 18, 155 18,
o 7 38s 336 37s =9 50, 524 13s
20 0 177 172 297 5 L1 35s 39s
-7 32, 38, | 28 15° 0 28, 22, 27,
7 38 356 5l -9 53, 55, 23,
30° 0 2, 25; L3, 3 Llyg 37s L2g
-7 35 | 37, | 506 20° o | 37, | 30, | 37,
6 39, 316 564 -7 U6y | U8, 3L,
L 35, 25 52,4 2 L9, L1, L8,
35° | 0 27, | 29, | 50, 25° 0 L8, | 38, | L7,
-4 28, 36, 52 -4 L7, L2, 46,
-6 34, 39, | 55
6 1, 30, | 615
U 38, 26, | 60;
L;OO 0 30, 33, 57,
-l <2l L0, 59,
-6 36; | L3, | 616
6 Lo, 29, | 67
3.5 38, 31, 66;
u5° | o 31, | 37, | 65
-3.5 26, L3, 66,
- -6 355 45, | 67,




TABLE

VI continued
Tessar Petzval
vO| 8 I I U vl 8 I I’ i
50 7 26, 23, 174 8 Lo, 39, 2L,
0 7; 72 73 60 0 127 136 87
o | 6 | 39 29, 28, -9 | 22, | 28, 9,
5 .0 20, 19, 19, 7 43, L2, 28,
-6 | 35 | 33 204 10° 0 21, | 22, 14,
4 | 4o, | 33, | 33 -7 | 28, | 34 | 13,
20° | -0 | 2% 27, 27,
-7 | u2, | uo, 28,
3 L5, 39, 39, _ Biotar
25° 0 363 3, 3L, -
-6 | U45¢ | L3, 354 ve | -8 I I’ 3
00 765 376 365 225
6 29, 28, 17,
Telephoto 8 1418, 33, 29,
wldls) vl v © | o | o | o | o
8 | 25, 21, 16, » 32, 35, 12,
] 6 | 21, 18, 1l _8 13, 47, 18,
5 o | 13, 17 13, 7| s, 33, 32,
-6 | 1l 214 13 b4 32, 24, 24,
-8 | 14y | 23 13, 12° | 0 20, 18, 17,
20 5 | 2l 21, 18, -4 33, 33, 16,
0| 19 23, 18, -7 | .y7 48, 20,
-5 | 19, | 27, 18, o 5 | b2y | 3u, 33,
- 18 0 33, | 30, 58,
~6 - 55, 56, 29,
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presented in row T, , and the tertiary'agraement in row T, .. Similarly,
the agreement between the annular curves is given in rows A , A, .
Finally, the comparison of the tertiary spot dlagrams is given in

T rOW S; . ‘

The quality of agreement is indicated by one of three letters
G, F, B. G(good) is used when the shape and position of the predicted
figure:agrees well with the true result, F(fair) denotes that the-
predictions indicate approximately the shape and position of the true-
figure. B(bad) denotes a bad prediction of either shape or position.

In Table VI are tabulated in degrees the maximum angles of
incidence, I, of refraction, I', and inclination with the axié U, of -
tangential rays whose p is-given by the value of & in conjunction with
table III, The signs of the angles have been disregarded. '

Not all the pencils corresponding to  the curves and spot-
.diagrams have been tabulated as in some systems sufficient information
is given by fewer pencils. The tangential rays traced have been
chosen to cover the main points of interest in the tangential curves.
The subscripts after the figures indicate the surfaces at which the
maximum angles occur,

The values of I for the Sonnar in Table V exceed L45° in
pencils O°, 50, 1005 150, for those values of p where, in the -

tangential curves, the tertiary agreement is poor. - - Similarly, in the
25° pencil for the Tessar, I reaches u5° for the eéxtreme rays of the

" pencil, also corresponding to the points of maximum- deviation in the
‘predicted tangential curves. At first sight, then, it would appear
that the quality of the tertiary predietions is closely corfelated

with the value of I,or I', (as seen in the 6%pencil at & = - 8 for .
the Biotar), However, in the 18° pencil for the Biotar, at a & of - 6,
I and I' are well in excess of h5° but the tertiary agreement is quite
good in this tangential pencil,

In the Vega, neither I and I'nexceeds u5°'for any pencil,
yet the spot diagrams are in poor'agreement from the L0° pencil |
onwards, However, U steadily increases as the pencil angle increases,
tending to suggest that the magnitude of this angle may also control
the quality of agreement., |

In the course of the expansion of AA as a power series in
Y,, V, quantities of the type (1 + Yz)% and (1 - sinzI)%, (1 - sin215%
are in effect expanded as power series and the convergence of these
serieé depends on the magnitude of V, sin I, sin I' . Thus it may be
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expected that quality of agreement between the predicted and actual
displacements would depend to some extent on the values of I, I', U
(ten U = V). However, it is the products of the above series which
occur in the expansion for AA and thus it is not likely that a simple
and straight forward relation between the magnitudes of the angles
and the qiiality of agreement can be obtained.

Nevertheless, in an attempt to find-a single -criterion,
the rdtio sin I/cos U was cxamined., This ratio is equal to IfcY-V),
for tangential pencils, a factor which occurs in the expaneion
ofAA (M 60.3). In each of the systems examined here it can be shown
that providing sin I/cos U is less than 1 at each surface for the
tangential-rays given in table VI then the tertiary predictions are in
sufficiently,good agreement with the true results. (The maximum
values of sin I/cos U cannot be obtained from taeble VI since the
angies I, I', U are not necessarily listed for the same surface).
In addition, the two systems discussed in 0.A,C.V. were also-exanined,
and here also the behaviour of the ratio was found to be in accordance
with the above statement, The converse is not necessarily true,
that is, sin I/cos U can exceed 1 at some-surface and yet the - --
agreement may still be satisfactory. System 2, in 0,A.C,V, is such a
case, '

While this ratio shows promise as a criterion for good
agreement, it has not been possible so far to find any reasonable
theoretical reason why it should be any more relisble than the value-
of I, I' or U. It is very likely that this ratio is just a
fortuitous arrangement of angles which happens to incorpcrate the
features already noted about the magnitudes of these angles.

To summarize, the following statements can be made. The
agreement between the tertiary predicted and true displacements will
be good providing that nowhere in the system does I, I' exceed u5°-

U’ exceed 50°, It appears (with no theoretical justification) that,
providing sin I/cos U does not exceed unity anywhere in the systen,
the tertiary predictions will be good. Many more systems will have
to be examined before the last statement can be relied upon. The

- converses of these statements are not necessarily true, It has been
found on several occasions that the above limits can be exceeded and
yet the agreement be still good.

It must be realised that these statements are baeed-on the
results of observation, in some cases coupled Withfslight theoretical
Justification. Thus they may be found to be wrong at any time,
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They are intended only as a guide in the use of the aberration
coefficients, giving the designer a quick means of" a583551ng whether-
the first three orders of coefficients alone are 11ke1y to represent,
with sufficient accuracy, the state of correction of the system,

There is, however, a more- reliable way of determining the
qnality of agrieement, which does not 1nvolve ‘much-more work. From
an examination of the diagrams of the various systems, it will be-
noticed that when the predicted tertiary annular curveg approximate
the‘true curves, - the spot diagrams are in good agreemept. ~ This is
so providing that the p -of the annular ring does not exceed 90 -percent
ofpaumaximnm, thereby avoiding»the discrepancies.which-may~exist>for
large values of p » ‘but which will not seriously effect-the appearance
of the. spot diagrams;-i It'is"suggested-thatfthese annular curves
are constructed for those pencils of interest -with p < O. 9p-ma‘-io
using points on the annular circle whose polar angles-are O, 45, 90,
135, 180°, This involves five ray traces, of which three are skew.

'When the gquality of agreement is being examined by using
‘tangential traces, at 1east five rays for each pencil have to be
traced in crder ‘to obtain the - shape of the curve; Furthermore, if
the angle criteria are being used, - information at each surface is -

required>for these rays.. In view of the rather unsatisfactory ‘nature
of the angle criteria, and the fact that skew rays are not examined
at all; the construction of the predicted and true annular curves
along'the lines suggested will give a better indicatlon of the
quality of agreement (for either secondary or. tertiary Predlctions)
than: the tangential curves. - The number of ray traces and
predictions is the same in either case, and the ray-trace programme
will handle skew rays with equallfacilityvas'tangential rays'so that
ho extra work is requiréd for this method, = It is, of course,
realised that a single annular curve in any pencil does not in'
general indicate the shape or light distribution of.thchorresponding
geometrical image patch, The method is intended only to check
agreement, spot diagrams being the final arbiter: in assessing the
geomeétrical image-forming properties of the system, -
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 PART IV - _Application of Aberration Coefficients

15. Use of Coefficients.

The use of the aberration coefficients in optical-design
has been described- in a general way in the paper by Cruickshank and-
Hills1o. In their paper it was assumed that the first three orders
of coefficients alone sufficjently well-represent the state of -
correction of the optical syétem, -+ It is the intention of this
section of the‘thesis to indicate the methods presented in their
paper and in addition present the means of extending the range of
usefulness of the coefficients to those cases where it is known that
the first three orders do not sufficiently well represént the state

of correction of the system,
a) Good agreement between gf[3] ande'x .

.The geometrical representation of the various types of
gberrations can be most easily realised when the series for e’k is
_written in the polar coordinates described in Section L, Writing

(4.18) in full and including the secondary and tertiary coefficients,
we get ‘

eVr = [oi1cosop® +0,(cos 26 + 2)p'H + (30, + 0,)cosepil® + o 8]
+ [m,cosep® + (i,+ K,co820)p'l + (u+u cos'e)cosep’H? +
+ (up pcos20p’E + peosep Hs u,H®] + [T,cosep’ 4

: ) 6. 2 2 4. 3

+ (T,+ 7 cds2e)p H + (T,+ T, cos o)coseph’ + (v,+T,co820 + Teosle PH +

2 3 4 2_. 8 . .0 = 1
+ (7+ TcosekosepH + (TqT,co826pH + ToosepH + T,fH 1 + 0(9)
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€,k = (o, sinepa... ozsin2epzﬁ + (os+04) sinepﬁzl + [u.‘esineps +
B . 2 3- 2 ' 2.3
+ 138in20p H + (Mg+ B cOS8 @) sinepH + W,8in2epH +
. _ ‘ 7 . _ .' 2 . s_z
+ usinepH '] + [tsinep + T, sin29p6H + (Tg+ T4co8’e) Binep H

+ (Fysin2e +'r°sinh.e)p4H3 + (Tg +'r“é'osze) sinep H' +

+ Tpsin2epH’ + Teeinep A°] + 0(9) (15.1)

The relationships between the o, u, T and the final aberration
coefficients are as follows, omitting the subscripts and primes,

o, = A By = S B, =% (285 + 84+ 84)
c, = A Ky, = S + 35, Hg = 7 (84+ Ss )
o, = 3B By, = 35 By = %SB
o, = C-3B By = Sz24+ Ss Beo = S5+ Se
o, - C He = S Bay = Se
He = Ss By = Se
T, = T Ty = T+ T
T, = T+ 3T Ty = T7 + Ts
T, = 3T T = Ts
T, = T+ Ty T = Te
Tg = T3 . Tis = Toe+ 2T+ T
Ty = T Tyg = % (’E + T9)
T, = Ty4 3T + 3T +3T, Ty = 3T
T = 2 (To+ Ty + Ty) Tw = To+ Ty
Ty = J2"-['5 + 5T, Ty = Ty
Tw = 37Ts T = Ty

Note that the factor 1/Niv; has been included in the
coefficients A, S8, T. ‘
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The geometricql'representat1¢n of the various types of
aberrations are given in fig., 18 (Fig. 3 in the Cruickshank and
Hills paper).

The presentation of g} in the form(15.1)is of considerable
assistance in deciding how to balance the-aberrations of the various
orders in order to achieve a satisfactory final image: A good
illustration of the procedure adopted is given in Section-7 of-ref. 10,
where the various stages of the correction of the telephoto system
used in this thesis are shown. The power of the aberration '
coefficients method lies not so much in the representation of g} as
a power series in the initial coordinates, but in the fact that each
final coefficient is the linear sum of the contributions by each
surface of the system, together with the fact that the coefficients
characterise systems of rays. As can be seen in Section 5, the
coefficients are independent of the values of Y,, V;, they depend
only on the constitution of the system. Resulting from these
properties of the coefficients, the designer has at his disposal a
powerful tool for use in correcting optical systems.

From the contributions to the final aberration coefficients by
the various surfaces of an optical system, one can gain insight into
the "raison d'etre" of the system, As an example, table VII gives
the contributions to the coefficients for the Vega., The final
coefficients are under the column marked 2 . Consider the spherical
aberration of this system, The third, fifth and seventh order
coefficients gontrolling this aberration are q,;ﬂ,'ﬂ o It can be
seen that the final coefficients in all three orders are negative,
This is the result of the large negative contributions by the fourth
and fifth surfaces, These contributions are to some extent

compensated by the first and eighth surfaces. In comparison, the
remaining surfaces contribute little to this aberration. on the

- other hand, the contributions to primary coma, ¢,, are fairly well
distributed amongst the surfaces. pand p,control secondary circular
coma, and the surface contributing most to this aberration is the
first. By scrutinising the surface contributions to the coefficients
in this manner, one gains an understanding of why the system behaves
as it does.,

So far, the aberration coefficients have been considered
only as a means of describing the behaviour of a system, Now, when
the coefficients are to be used as an aid in the correction of a
system, it is of considerable advantage to have at least the first
derivatives of the final coefficients with respect to the parameters



‘Pable VII

1 2 3 b 5 6 7 8 )7

o1 |30.59 |0.2563 | 5.814 | -3L.24 |-42.52 | 13,53 | -1.837 |27.65 | -0.7633
02 [1.173 |~-0,1094 | -0,4827 | 0,7130 |~0.8675| 1,037 | -0.5u9L |-1,102 | -0.1881
os [0.0450 |0.,0467 |0,0401 |-0.0148|-0,0177| 0,0795 | -0.16LL | 0.0U439 0,0583
Os [1.211 1=0,8229 | 1,689 -2,089 |-2,089 | 1.689 -0,8229 | 1,211 -0.,0240
os |0, 0&81 0.3313 | ~0.,1436 | 0.0438 |-0,0430| 0,1356 | =0,2953 | -0.0500)] 0.0270
wy |714.1  |-9.565 | 48,57 -983,1 |-1155 94,08 42.54 587.5 -661.2
pe {119.2 |-20.,26 |53.77 -31,07 |~-28.,20 | -27.88 | 32,73 -66.00 [ 32.24
ps (9179 |=22,99 | 55,38 =42,19 11,15 41,21 | 26.10 =56.47 { 21,55
He |30.82 126,33 20,27 -60,67 |~57.16 | 23,45 13,28 21,67 17,99
us [23.78 |5.368 27.45 ~57.29 |-50.78 | 24,19 1.913 18.90 | -6.L46L
Mo [-20.71 |=3.694 | ~3,74l4 | 42,07 [52.74 | -11.86 | =L.815 |-2L.73 | 25.26
M7 (1774 24225 2,078 ~3,259 3,897 -0.5308| -3,612 | -3.,048 | -0,4778
e |0.8624 [0.4950 | 3.972 ~Le9U6 [LoT7h2 ~3,176 | -0.7778 | -1.373 | -0.2010
Bo [1.259 |-0,2142 | 4,018 | =4.623 [4.330 | -3.077 | 0.1228 |-1.891 | -0.0753
Liol=0s1053|~0,0733 | 0.1965 | -0,L637}-0,3195| 0,2572 | -0.1681 | 0.1722 | -0,50L0
Wy [~0.2018| 0.2559 | 0.0880 | -0,2719(-0.229L| 0.1237 | 0.1599 | -0.0736 } -0.1493
Wiz [-0.0077| 0.0666 | -0.1073 | 0,0713 | 0.0435| 0,0083 | -0,0217 | ~0,0675 } =0.01L5
T 19660 |~901.5 |1939 -31830 |-35940 | -836.9 | 1420 16020 | -30470
T, |bu55 5.147 1992 -268.1 [539.8 -3266 1841 -4260 1039

Ty |3702  |-385.5 | 2090 | -653.5 [18u8 | =3310 | 1544 | -4008 | 826.1

T, [43.3  |806.,2 | 390.4 | -2182 \-18LL | -L2.73 | 1321 746.9 | 138.8
Ts (659.5 203,5 661,5 -2019 -1700 365.5 402, 3 541,7 - -88L,8
Te |~460.2 |=159,4 |715.6 |1553 12382  |300.4 ~250,4 | ~65L4,5 | 3426

T; |=3.508 |5L4.92. | 87.37 -162,3 1102,1 145,99 “119.4 | =9.34L | =bL.2LL
Ty |~U6.79 [L0.0O3 111.2 =209.1 {137.0 (12,13 ~-112,6 | 45,12 | =22,93
Ty |=1.966 |3.576 140.3 -191,9 [129.5 |-36.10 -38,94 | -9.613 | -5.201
Tyo [-18.00 |L.L6L -10.21 | 1.959 |-13.48 [23.35 ~16.45 | 23.37 | =5.007
Tyy |[~0.0L47 |25.76 -7.835 | -22,04 |-25,89 {17.98 -17.99 | 11.50 -18.55
Tg |be311 |-28,26 |22,28 | -28,16 [-29,77 133.00 ~5L4.32 | 13.48 | -67.uk
Tys|-2.656 |5.485 | LaLO5 | ~14.86 [-17.41 19,354 | 1.909 -{L.700 | =9.070
T14|90832 |-8.906 | 17,11 | -3L,96 |-35.2L |22,87 ~20,18 |20,11 | -29.35
Tis|=0e58292.53L | =3.217 | 2.571 |=1.727 [2,202 ~2.85L | 0.2224 | -0.8515
Tys|~0.1481110.2023 | —1,147 |1.229 |-1.L469 |0,1088 O.l3ul | 0,46LT | -0.6579
Ty |~0.6695|0.5606 | 2,177 | 2,389 [-0,98790,1832 0.3124 | 0.2310 | -0,1578
T1s|0.0340 |-0.0442 | 0.1304 | —0,0614 |~0.9613]0.5934 0.5816 | 0.386L | 0,6588
T19|0. 0853 |=0,0201 | ~0,1224 | 0,152L | -0.3337|0,2506 -0,0068 | 0,204k | 0,2097
T25|0.0033 |0,0166 | ~0.,00L48 | =0,0070 |~0,0157 [0.0287 -0,0283 ;0.0232 0.0159
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of -the system, With these-derivatives it is then possible-to
estimate the effect of moderate'changés of construction, not only:

of single changes, but simultaneous changes of a number of parameters,
which leads to considerable economy of design. Care must be taken
when assessing the_effect of changes since the focal length is usuélly
altered as well, Before a direct comparison can be made the focal,
lengths of the original and modified systems must be jdentical,  If
the original system has unit focal length, then the multiplication of
the new ek or ¢ [3] by the new v, will meke these displacements
also correspond to a system of unit focal length,

It has been found, using only the first derivatives of the
coefficients, that changes of parameters not exceeding about 5 percent
(moderate changes) can be made with reasonable accuracy. If changes
greater than this are required then it would be desirable to recompute
the coefficients and derivatives after, say, each 10 percent change,
The use of second derivatives would increase the accuracy of the
estimate of the new coefficients, but, in view of the labour required
to obtain these derivatives, their use is not considered worth while,
In any case, the derivatives are used only as a guide to the required
changes, the performance of the system being more accurately assessed
from the actual coeffiéients computed after a change is made,. These
techniques are discussed in some detail in the paper by Cruickshank
and Hills., Methods of obtaining the first derivatives are discussed
later,

If a parameter of a system which precedes the diaphragm is
altered,in general the value of p also is changed., Since OT parac¢anon=
ical coordinates depend on p, strictly spesking, each time the
parameters are so altered, a new set of OT coordinates should be
computed corresponding to the new value of p. However, if the
changes are moderate, the effect of the change in p is usually
negligible compared with the change in the aberration coefficients so
that p can be considered constant and the coordinates need not be
altered after such modifications of the system. When the same value
of p is used throughout, changes of parameters before the diaphragm
vnecessarily imply a change in the position of the diaphragm, which
will not be serious unless large changes are made, Note also that
a change in scale of the system (td readjust the focal length perhaps)
changes p and e if the latter is net infinite. If a large change is
made with p constant, it may be found that the diaphragm plane has
been moved into the glass of a component.
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By way of example, changes of curvature of three surfaces
were made in each of the systems, the Véga and the Sonnar. The
changes made were, for: the Vega 'cz + L.6%, ¢, - 0.1%, c; +2:0% and
for the Sonnar c, - 2.-0%,.c3 + 1.1%, ¢ = 5.2%. The predicted and
computed coefficients for the modified systems, as well as- those for
the original systems are shown in Table VIII. Note here that the
ordinary algebraic coefficients have been tabulated since these are‘
the ones used by the programmes. The geometrical interpretations  of
the various types of aberrations are not important in this example.

On the whole, the predicted coefficients are satisfactory.
Those cases where the agreement is not so good, mainly in the tertiary -
coefficients, generally correspond to large changes in the coefficients,
€.8. T, and T, for the Vega., . The T, predicted coefficient indicates
a 93 percent change, whereas the actual change is about 80 percent,
However, since the tertiary coefficients multiply seventh powers of
the coordinates of a ray, an occasional error of this magnitude will
not have a serious effect when the coefficient is comparatively small,

b) ' Bad agreement between &' 3] and gf

In those-cases where ¢°'[3] does not closely approximate Ex s
it is still possible to use the coefficients as an aid in the
understanding and correction of a system, Now, although the first
three orders of coefficients and their contributions alone do not
exactly represent the aberrations of the system, they are still
capable of indicating the surfaces whose contributions dominate the
final amount of any selected aberration, For instance, in the notes
on the Sonnar in Section 13., it was mentioned that the true
tangential curve could be closely approximated by calculating the
effects of higher order spherical aberration at those surfaces whose
primary, secondary and tertiary contributions were predominant.
Admittedly, an approximation to only higher order spherical aberration
can be computed so far, the point is that the surfaces at which the
higher order contributions are likely to be predominant can be assessed
with reasonable confidence on the basis of the first three orders.

In the Vega, Table VII, the contributions to circular coma G, 5K, M,
and T, 0 T, aré comparatively large and are all positive at the first
surface, It is thus likely that this state of affairs will continue
in the higher orders. However, the eighth surface contributes
negatively to this aberration, the contributions here being of
sufficient magnitude to Jjust about cancel the effect of the first
.surface. There is no reason to suppose that this cancellation will
not continue in the higher order contributions to circular coma,




Table VIII

Vega Sonhar
Original | Predicted | Computed Original | Predicted | Computed
A | -0.7633 | 2,292 2,519 0,1778 0.1716 0, 1742
K -0,1881 -0.4272 | -0.4148 0.0242 0, 0054 0.0065
B | 0.,1165 0.0360 | 0,0389 -0,0727 | -Q1155 | -0,1148
C | 0,0342 0.0012 | 0,0027 0.1205 0.0989 0.0993
¢ | 0.0270 0,0026 | 0,0034 002838 10,2619 | 002619
S, | =-661.2 -560,8 -546,9 -1,389. -1,482 -1,468
Sy | 10,69 3,185 30905 -0:4599 | =0.5539 | -0,5523
S, | UL3.11 12,50 16,04 =1,756 ~2,123 2,115
5, | 2u.ué 20, 51 20,40 ~1,062 1,273 =1,275
Ss | -6.L6L -6,538 ~6,513 =1,302 1434 -1.43L
Ss | =0,2767 | -0.5226 | -0,5115 0,0728 -0,0032 -0, 0034
Se| 25.26 18.06 17,87 ~-1.328 =1,532 -1.537
S.| -0.2515 0.,1489 00,1107 -1,063 -1.157 =1.159
Ss | -0,1506 -0,1672 | 0,875 0,0898 -0,0149 -0,018L
Ss| -0.3547 -0,2669 | -0,2646 -0, 0809 -0,1483 -0,1490
Se¢ | =-0.1493 -0,1150 | -0,1160 | -0,3708 -0,3801 -0.380L
S¢| -0,0145 -0,0110 | -0,0102 ~0,2756 ~-0,2937 -0,2936
Ty | =-30475 -27999 -27410 -8,233 =9.530 -8,935
Ty | 213.1 15.97 U6, 0k -1,953 -2,352 2,361
T, | 1652 ~86,98 164,7 12,63 -15,16 -15.19
T, | 1024 902, 5 898,2 2,38 -3,227 ~3,271
T; | -88L.8 -854.5 -848,1 -7.220 -7.980 -7.997
Ty | 13,68 1,98U 2,685 0.6395 0.370L 0.3605
T, | 3426 2909 2881 -0.6876 | -2.195 -2,319
Ty | -15.L3 5.113 | 1.588 104304 1,220 | 1,176
Ts | 9.625 1,574 | =Uo1U3 4,263 3,686 3,627
Ts -9,48Y4 -8,708 ~-8,622 1,896 1,805 1,787
Te | =9.071 ~7.775 -7.907 ~-0,8988 -0.8738 ~0,8828
Ts | -0.1937 -0.1032 | -0,0926 0, 4851 0.4863 0. 4848
T, -40,06 ~2,908 -8,253 2,547 2,692 2,654
T ~-38,09 -32.,24 ~32,18 2,481 2,750 2,744
Te -29,35 -19.97 =19.93 5,994 6.332 6,315
Ts | -1.000 ~-0,7817 | -0.7805 0,3611 0. 6641 0.6649
To | =-0.3155 -0,0581 | -0,0413 0,6720 0.8926 0.8924
To | 0.LLI1 O.LO14 0.3959 1,403 1,559, 1,562
Tio| 0.2098 0.1828 | 0,1851 -0,6713 | -0.6168 | -0.6162
Tw| 0.0159 0.0134 0,0132 -003938 ~003580 =0,3569
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It must be remembered that any inaccuracy in agreement between
predicted and true displacements is not a result of inaccurate
coefficients, but simply that the series for gg -has been terminated
too soon. The first three orders of coefficients work quite well
for moderate values of H and p .

In a reasonably well corrected system, that is, after the
initial design, the primary eberrations tend to be well distributed

amongst the various . surfaces, resulting in small final aberrations, -
The distribution of the secondary gberrations is generally such that
the contributions do not balance one another quite so well, In the
tertiary aberrations, it is usual to find that the final coefficients
are of the same order of magnitude as the contributions as a result of
a marked lack of balance amongst the contributions. This can be

seen in T%ble VII. Under these conditions, a small change in a
parameter will have a marked effect on the primary aberrations, a less
effect on the secondary aberrations and little effect on the tertiary
aberrations. This can be seen in Table IX which gives the first
curvature derivatives for a few surfaces of the Vega, Note here

that the coefficients are A, S, T and not C, uk, ¥To In this table

it will be noticed that the ratio of derivative/coefficient

generally decreases as the order of the coefficient increase For
example, the coefficients of distortion C, S¢, Ty and their

derivatives indicate this quite well. 1In the case of spherical
.aberration A, Sy, Ty the effect is most noticeable between the
primary and secondary coefficients, The tertiary ratio at the
surfaces shown is about the samé as the secondary ratio, the ratio

of %W/T' having & maximum of approximately | 3| . - Thus, at the

first surface, a change in curvature of 1 percent would cause a 36
percent change in A, a 2 percent change in S, and a 3 percent change
inT, . It is for this reason then that the higher order aberrations
can be eonsidered comparatively stable under moderate changés of the

parameters of a system.

This has the undesirable effect of making it practically
impossible to vary the higher order aberrations without seriously
upsetting the balance of the lower order aberrations once the initial
design has been made. On the other hand, this property of the
coefficients enables the designer to satisfactorily determine the
effects of moderate changes in those regions where it is known that
the first three orders of coefficients do not accurately represent
the aberrations of the system.

Denote the difference g - e'[3] by A. There is, df course,
a particular pair of values of A corresponding to each value of
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p, o and H used in (15.1). A represents the effect of the 9th and
higher order aberrations, thus for moderate changes of the system
4 can be considered to be constant. ‘

Thus 6 (g, )~ &(e'[3]). Now 6(e'[3]) can be satisfactorily determined
with the use of the first derivatives (Section 15(a)), hence allowing
for the appropriate values ofd , g for the modified system can be
reliably predicted. Initially, for those pencils for which the -
tertiary agreement is poor, one requires sets of ray traces, which give
.thé values of €¢ , and corresponding sets of 5'[3]. The_differencé
between the cofresponding pairs then of course gives Ay.Ai for the -
particular rays chosen., Having once obtained the A in this manner,
recourse to further ray traces should only be necessary to check the
final performance unless the changes made in the system are large.

To illustrate this method, the effect of the changes to the
Vega and Sonnar listed in Sectioni5(a) are shown in Figs. 19, 20, In
these diagrams, the tangential curves for the original systems are
given in the columns so marked, the true curves being in-solid line,
the broken line indicating e;[3]a The required values of A (in the
case of tangential pencils, Ayonly) are the separations of the curves.,
The changes made in these systems were chosen mainly to cause significant
changes in the tangential curves, although some attempt was made to
reduce distortion (which unfortunately introduced more coma, particularly
in the case of the Vega). In the diagrams for the modified (new)
systems, the broken line indicates e;[3] +4,, Where e; [3] was obtained
from the actual coefficients computed for the modified systems. As
mentioned in Section 15 (a), the coefficients predicted with
derivatives are used only as a guide to the required changes.

Considering the large magnitudes ofA,in some cases, it can
be seen that the true curves have been predicted remarkably well for
all pencils in both systems,



Table IX

Coefficient d/dc, d/de, d/dc, d/dc,
A | -0.7633 27.50 ~7.132 214,99 21,34
g -0,1881 2,131 -0,20L46 ~0,6558 -1,058
B 0.1165 003521 «0,2573 0.1562 -0, 1346
c 0.0342 0,03658 -0,3184 ~-0.1359 0.1466 .
C 0.,0270 0,0981 ~0,1058 -0, 0425 ~0,0179
S, -661.2 1591 ~U97.7 -1252 892:3
S 10,69 93,24 =32,92 -21,27 ~50 406
S2 L3,11 362, 4 -129,5 -76,32 -26,37
S, 2L, 46 6.935 =L, 702 15027 -12,62
Ss | - 6.4bL 15.53 ~-9,610 -9, 560 8.240
Ss -0,2767 0.,6326 -0,023 0.1706 =1 ,240
Sq 25,26 ~22,10 2,828 41,65 ~35,29
Ss -0,2515 ~3,413 0.6128 1,869 1.495
Ss -0,1506 ~3,053 0,2181 1,662 -0,2312
Ss -0.354L47 -0,1279 0,1114 -0.1377 0, 3000
Ss -0,1493 -0013L3 0,0957 0,0111 0,0672
Se -0,0145 -0,0208 0,0151 0.0087 0,0017
T -30475 80483 -27366 ~54902 34759
Ty 213,.1 3980 -1531.4 =970, 2 L98.5
T, 1652 21466 . -8681 -222L ~133,5
T. 1024 101,0 =30,22 751.8 =465.5
Ty =88L,9 836.8 ~526,1 69L.8 57k 9
Ts 13.68 24,61 -19,22 13.64 ~38.40
Ty 3426 ~2803 701,.8 4032 -2854
T -15.43 -296,0 . 116.5 106.6 -8, 0l41
Ts 9,625 -27501 63,54 125.9 -113.4
Ts | =9.u8L -0,7307 -2,772 ~7,582 5577
Te -9,071 -8,992 3,450 1,701 2,491
Te -0,1937 0,3591 -0,2500 -0o U4k431 0.6720
T,. | -L0.06 -432,8 158,1 109.3 32,88
Ty -38,09 ~-5,963 9,755 -22,05 15,85
e ~29.35 1,685 8,816 ~39.54 34,52
T -1.000 4,135 ~0.6390 -3,811 1,479
To -0.3155 3,490 -0,3780 -2.611 1,530
T 0. L4491 001317 -0,0089 0.0076 ~0.1973
Tw | 00,2098 0.1087 -0, 0642 ~0,0325 =0,0577
Tio | 0.0159 =0,0020 0,0034 | 0.0002 -0,0150
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16, Derivatives of the Coefficients,

The theoretical methods for’obtaining-the derivatives of the
coefficients with respect to the various parameters of -a system are
given in M Section 120 - 162, In particular, the first separation
derivatives 6f the primary aberration coefficients can-be computed
from M 128.51-54, the first curvature derivatives for the same
coefficients from M 142.4 - 7, and the first chromatic derivatives for -
the primary coefficients from M 152.5 - 8, However, to obtain explicit
expressions for the first derivatives of all  the secondary and tertiary
coefficients would involve considerable work., As a result, only the
first derivatives of the primary coefficients have been available so
far for use in the routineé cofrection of optical systems,

Now that a comparatively fast programme for the computation
of the first three orders of coefficients has been developed, the
first derivatives of these coefficients can also be obtained by
numerical means, Given the specification and coefficients of any
system, the derivatives of the coefficients with respect to any-
particular parameter can be found simply by meking a small change in
the desired parameter .and recomputing the coefficients, Division
of the difference between the two set of coefficients by the _
increment in the parameter thHen gives the desired first derivatives,
The process is of course repeated for each parameter since only one
of these must be different from normal during any one computation,

The magnitude of the change to be made in any one parameter
is governed by two conditioms. Firstly, it must not be too small or
there will be no significant figures in the difference between the
coefficients, and secondly, it must not be too large or the results
will be influenced by the second derivatives. In order to determine
the optimum increment, five sets of separation and curvature
derivatives were computed for a cemented doublet, one for each of five
different incremental changes of the parameters, The percentage
change in the parameters were 0,0001, 0,001, 0,01, 0.1 and 1.0,

Owing to the fact that at present only the derivatives of the primary
coefficients can be computed from theoretical expressions, the
derivatives of the secondary and tertiary coefficients were checked by
means of the "identities of homogeneity" M Section 123, The identities
are formed by considering-the effect of a change of scale on an

optical system,
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In M Section 123 it is shown that, for any aberration
coefficient G,

a6 3G
0 -Tmgy, - P 3p =% | (1641)

where 6 is the differential operator

. 0 o
1 Jacj j'2 adj (16.2)
and ¢ is factor which depends on the order n and the pu,v of the
particular coefficient.

If the object is at infinity, then the term containing:
lgy is absent from (16°1)o Accordingly, the object distance for the
doublet was made infinite to simplify the work,

The derivatives of the coefficients with respect- to p which
occur in(161) were obtained from M Section 34, In this section, the
changesin the primary and secondary "a" coefficients'are given for a
finite change X in p, (M34.41, 43) using OT coordinates. By letting
X tend to zero, the derivatives of the coefficients with.respect to
P can be found, An extension of the work of M Section 34 yields the
required derivatives of the tertiary coefficients,

Table X lists the identities for the first three orders of
augmented aberration coefficients (see 3.,18). In this table the
identity for the most important paraxisl coefficient v;k is given.
The primes and the subscripts sk have heen omitted from the aberration
coefficients.

Apblying these identities to the results from the cemented
doublet, it was found that the 0.071 percent change in parameters gave
the most accurate values for the derivatives, That this percentage
change is the best was corroborated by the work done on the Vega and
Sonnar, The curvature derivatives of the primary coefficients used
in the example to predict the effect of changes closely agreed with
those computed from the theoretical expressions of M 142.4 - 7.

Table XI shows the magnitude of the identities of Table X far the doublet,
the "c¢" and "d" derivatives in © (16.,2) having been found by the
numerical means mentioned éarlier. |



Table X

OT Coordinates, object

at infinity.

'P(Ss + Ss)

v | = Vak
oA = 3A
6% - pA - 24
6B - UpA = B
6C - 2pA = C
6C - p(B + C) = 0
s, = 58,
es, S - = L§,
8s, - LpS, = uS,

| 632 p(LS+ + S) = 38,
65, pS, . =" 38,
65, p(S; + Sy ) = 28,
s, - 2pS, . = 38,
65, - p(2§, + 8,) = 2§,
08, »2_p(s, + 8,) = 28,
65, - p(28, + 25, + §)= B,
63, PS; . = S,
65 = 0

0T,

p(6Tu + Tz)

pT,
6qu

T,

p(Tz + Ts)
4pT,

: PU-I-'I'z + Ts)

2p(2T, + T,)

-_ :b'(l;'f[‘, + 2Ty + Ts)

- PT

p(Ts + Ts)

P(2T4 + T?)
P(2Ts + 3T7_)

» P(ZTs + 3@7 + Ta)

2P(T5 + Ts)
p(2Ts + 2T + Ts)

pTy

P(Ty + Tﬂo)

]

7T,




Table XI

0,01% change in paremeters c¢, d.

G - " oG

G 6 -1 5 ®a G G - p 35 eG - -
A | 0,0768 0,0768 T, | -756.4 - =756,3
A 0,00706 | 0,00707 T, -120,9 -=120..9
B 0.9897 0,9896 T,. -549,1 -549.0
c 0.8350 0,8350 D, -105.6 -105.6
C ~0,0¢ 4 0.0 Ts | =56.89 -56.89
. Py | -12.69 -12,69

S, -4k, 87 -4l 87 T, | =128,5 -128,5
5, -6,687 -6,692 T, | -36.37" -36.37
S, -26,90 26,90 Ts 18,68 -18,68 -

5, -0, 5124 -0,5126 Ts 2,191 2,190
S, 1,978 1.978 Te | 0.00559 0. 00560
5, -0,9073 -0,9073 Ts -0.7721 -0, 7721
S, -0, 563 ~0.5635 T, | =7.619 =7.619..
5, 1,020 1,0203 T, =0, Lou7 -0, 4050

Ss 2,6131 2,6128 Ts 4,995 Lo 994
5, 0.818L 0.818L Te | Le2Lt 4o 240
8, -0,1182 ~0,1182 Ty | 1,474 1,475
3, 0.0,2 0.0 Ty | -0.1242 -0, 1243
Tw | 0.03109 0..03109

oo | =0.,0,2 0.0
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It is rather wasteful of machine time to compute a complete
set of curvature and separation derivatives using the aberration
coefficients programme. On the DEUCE, the derivatives for a ten
surface system would take 2% hours, However, as mentioned earlier,
in any change of parameters, the derivatives of the primary coeffiéients
have the greatest effect, and the hand computation  of these can be
easily done from the expressions in M Section 120 - 162, An
examination of the derivatives so obtained will then indicate the
surfaces and parameters that will be most effective when changed.- The
machine can then be used to obtain the derivatives of the higher order
coefficients for the selected surfaces and parameterse‘- In this way
machine time can be kept to a minimum without sacrificing any of the
power available to the designer that ensues from the use of
coefficients and their derivatives,
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APPENDIX L4

Formulae Used in Aberration Coefficients Programme

*¥, - av,

cy, - ¥,

kip

c¥p= 1

R /%

Vou T

(k - 1)1,3

Yo% = Yo

1 .2 5
3N(k - 1)yp:|.p (vp— i;) A = j?:ap
Qa, Ap = ?ﬁp
2q8, 5, = 'ih
3(8, - 8) .

ac, "

8, "

2§q4-& 1"

% dbq "

‘qcq "
- Aq

akp - Aq

2q3p- B,

aB, - 2C,

G - G, ,

aG - Cq |

T

BT~ qBf

Ct- qCf

i + 1) + vt = 3v, ]
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(k = 1)vp i,
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ap_A* + S,*p Sp

apcA + qs,p
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cpC + Q8
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Bp(vy = 8q) = 3(By= A" 4y (g = Wy¥q) + By
(28 = Bq = VpVq) + Eq‘v; = Ag(vyvq+ Bp) + A, (2Cq- vq’)
+ By - 3(B, - By ) (&) = Ay) + By -
Cphq + K,Cq = A, = A (G, + v:) - ‘%Y‘p"?q (Ep' By) + vzap
- 3(R,- 4@, - ©) + 8, .
2[E (20, - i) + v5C,] = BB~ (B~ B )[3(B, -By)-v, v ]+ 5
Cq(2C) = By + Wy¥q ) + Gyup¥q = Bq(Gy + vg) + Gq (2K, + )
+ 8 - 3(B, - Bq)(Gp - Cq) - Cp¥q .
- G (G, + qu ) —%((-lp - Cq )+ Sep
+ 6(ACo- AC) + A [A —Aq]) -V, (Apvq- Aqvp')
Sep + UK Cq = EqBp - BeC, - (B, = B)"
+ 2[Cq(2Ky - Ag) = B G, + AT - AT, ]
3[b Sep + 6 (ETq= Cq = Cp[Ty= 1) + v, (v = O;v,)
- v (Cvq = Cyp )] L |
Seq + 2(ByCq — 2C(Cp) + (2K,Gq~ B‘qéé) + v, (G v, = T V)
+ 3vq (Byvq =.2C v, )

2 [284 + §pCq = GqCp+ Vg (Cq ¥y qupl)] + 3(8,G, - 2¢,G,)

| L

1"

o

é. 3 cila@ + w) - Gy 1 X - at next surface
' | i. €. ( j+l)th
a8y = Sy

qglp - §1q

A5;p ~ qu

q--S-Zp - §zq

QSp - é&q
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&‘51 = §T - QSJ:
A2 = §; - as} |
"
"
"
S = 8§ - s
2y = g [10W, +1ia(2v) -5%)] =ty
% =3[ 10mw - Ja,vp (1p+ §)(ij - V)]
2, = -30[L Wyl +0, (38 - 28 - 8%) )
z, = Fw(®,- 10w, + 5v:, )
2 ~= -%mjtpz,(vpi+ v, )
Zg = 2wy (W + V: - % 2)
z, = -3y
z, = =2wg (5%, + Lw, - 2v;)
Zy = ‘%32W4
Zyo = - %‘szs
by = B Ay (287 = OAp)= Aqmi] + 8y (A7 4 381)+ £ ol 4 2
ty = Qb + d, +As]
toy = (6az, + 23) + bay[#(AT AT+ B) + BI+38]] + o8T)
3 [8ap(Ep= Aq) = B(ApKp+581p)] + 28y (8sp+ 84p) + A" 83
+ B'sdy - Usip (Eq+ Bq) |
t2p = a(2apdy + tzp ) + 8pda + A8 +8sh
tilp = i%q [tap + 22] + %+ 24} + 8 [2(aS] + A7 C") + K o4 38! ]
- m(-y\: +8,Cp +8,)) + Asly + C'sfp + 2[ 8y (B - A >'2°§§'p]
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tgp = {mgp + 82, = 2ab, )+ Zgh 2ap[q(2SI+ §1 )+ 8 +354]
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+ BT, + 8 [20a(28] + B]) + B'ct+ BT GT4 571 + BY]

s
"

+ 8[A 8 = 10y (28 + 384)+ Cg §zP;] +§s,p (38, + 2¢,- By)

tap = 'Q(Qapds + by ) + cpd‘ +$.sg”p + C 8} '
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' Final tertiary aberration coefficients
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T"pk = 7t P
k
T:pk = ‘? ttp ’ etc,
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Use of a Digital Computer for the Calculation of Aberration Coefficients
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A scheme has been published which enables the computation of the aberration coefficients of axially sym-
metrical optical systems, up to and including the seventh order, using a desk calculating machine. The
present paper describes the design and performance of a program for a particular digital computer based on

this scheme.

1. INTRODUCTION

HE successful design of axially symmetrical optical
systems in this laboratory! results from the use of
initial design methods developed by Cruickshank,? to-
gether with the final balancing of aberrations by the
consideration of higher order aberration coefficients; a
theory of these which enables them to be computed
having been developed by Buchdahl® and extended in
recent papers.*~7 In III, a scheme is presented which
enables one to compute all the coefficients up to and
including the tertiary (seventh order) coefficients (Table
I). In IV this table is extended to give the quaternary
spherical aberration coefficient. Although Table I of ITI
is expressly designed for a particular type of desk
computer, it nevertheless involves a considerable amount
of tedious work. In order to make the coefficients more

readily available for use in design work, a serial digital

computer, situated at the University of New South
Wales, Sydney, has been programed to compute all the
coefficients for which Table I of IIT was designed. This
‘computer, described in Sec. 2, has proved quite satis-
factory, possessing adequate storage and high speed
operation. The time taken to compute and punch out all
the coefficients (41 in number) for one surface of a
system is 45 sec, which compares favorably with other
less comprehensive work in this field.®

2. COMPUTER DEASCRIPTION

The computer is a standard English Electric Deuce
machine. It has a high speed store of 402 words and a
magnetic drum store of 8192 words. The high speed
store consists of mercury lines of various lengths ar-
ranged to minimize access time. Transfers between the
drum and the high speed store occur in blocks of 32
words, each of these transfers occupying one drum revo-
lution (about 13 msec). The read head for the drum

! Cruickshank and Hills (in preparation).

*F. D. Cruickshank, Australian J. Phys. 11, 41 (1958).

8H. A. Buchdahl, Optical Aberration Coefficients (Oxford Uni-
versity Press, New York, 1954), hereafter to be referred to as M.

¢H. A. Buchdahl, J. Opt. Soc. Am. 46, 941 (1956), hereafter to
be referred to as I.

8 H. A. Buchdahl, J. Opt. Soc. Am. 48, 563 (1958), hereafter to
be referred to as II. ]

¢ H. A. Buchdahl, J: Opt. Soc. Am. 48, 747 (1958), hereafter to
be referred to as ITI. -

"H. A. Buchdahl, J. Opt. Soc. Am. 48, 757 (1958), hereafter to
be referred to as IV.

8E. g., D. P. Feder, J. Opt. Soc. Am. 41, 630 (1951).

consists of a bank of 16 heads which can be moved to
any one of 16 positions along the drum, about 50 msec
being required for the shift. The writing head is an
identical unit on the opposite side of the drum. The
transfers and head shifts take place without affecting
the normal operation of the rest of the machine and are
generally arranged so as to cause no delay in access to
the drum.

The arithmetic facilities are distributed over four
immediate access (single word) registers and one double
length unit. This enables some partial results to be
retained in the arithmetic section. Multiplication and
division, associated with a single and a double length
store, proceed at the rate of almost 30 000 per minute
and continue automatically once they are setup. Thus
the machine can, at the same time, be carrying out
logical operations, shifting, adding, subtracting, or
discriminating. Additions and subtractions proceed at
the rate of almost 1 000 000 per min, with about twice
this speed for the special case of summing data stored
sequentially. -

The program and data are punched on standard 80-
column Hollerith cards, which are read in at the rate of
200 cards per min, and punched out at the rate of 100
cards per min. The digit frequency is 1 Mc/sec and one
word contains 32 digits. The machine uses a modified
2-address system; an instruction indicating the source
and destination of a transfer, the duration of the
transfer and the location of the next instruction in the
high speed store.

3. COMPUTING SCHEME USED FOR PROGRAMING

The scheme used for the program is the condensed
computing scheme for systems containing spherical
surfaces only, given in Table I of III. This scheme gives
the first, third, fifth, and seventh order ¢-coefficients for
such a system. The a-coefficients alone will define the
displacement, if, and only if the paracanonical coordi-
nates appropriate to the given positions of the object
and entrance pupil planes are used, M, Sec. 12(a). Thus,
if as is the case here, one wishes to calculate the seventh
order aberrations, the third and fifth order b-coefficients
are calculated only because they are required in ob-

taining the seventh order a-coefficients.*

* As is mentioned later, the condition that N;/g be unity is, in
practice, always imposed as a matter of convenience. In that case,
according to M, Sec. 12(b), there is no formal distinction between

875
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The basic equations given in M, Sec. 77-81 for the
tertiary coefficients, while directly suitable for systems
containing aspherical surfaces, require a storage ca-
pacity in excess of that available in Deuce. Certain
groups of terms occur more than once in these equations,
and, in order to use these groups to avoid unnecessary
calculation, quick access storage for approximately 300
words is required. Including the tertiary results, this
exceeds the storage capacity since two of the mercury
lines contain “permanent” instructions used throughout
the entire program and one line must be kept free for
drum.transfers. If none of the repeated groups are used
except the 535 products (M, page 145), the storage can be
arranged, but approximately 1295 arithmetical opera-
tions are required. Compared with this, storage for 45
terms and only 524 operations are needed using the
condensed scheme. In view of this, and considering that
systems containing aspherical surfaces are comparatively
rare, the condensed scheme is by far the most practical
method for calculating the aberration coefficients.

Nevertheless, it was found desirable, from the point
of view of storage, to deviate occasionally from the
scheme gs presented in Table I of IIL. In the program,
the entries 01 to f114 of Table I are calculated from the
definitive equations M (84.15)—namely,

Sut=¢S,p—Suo
Sut=¢S,,— 8
where the S,t are the S, in M, Sec. 84.

In order to use these equations, the S,, are required,
and these are not calculated in Table I of III. These
coefficients have been obtained from the identities given
in M, pages 32, 33, except for 3, which is obtained

from the last member of the Eqs. M (11.3). This equa-
tion can be rewritten as
6q=3Cq[9{0p+§(7'q2+'iq'2+7’ql2_31’q2)} —C,l.

The term § (124,24 ,/2— 3v2%) has the same form as v
in Table I of III and hence is calculated by the same
part of the program that calculates v, but using the ¢
quantities as initial data, the result being stored until
the &, is calculated. Since 3¢, requires ¢,, the 4,---C,
are obtained from the a,- - - &, the latter being obtained
from the Egs. M (20.21), (20.33), (20.34). This also
avoids retaining the s of the previous surface used in the
expression for C, in Table I of III.

In the condensed scheme, the condition that N,/g be
unity is imposed as a matter of convenience, since all
the intermediate coefficients are divided by N,/g, (M
page 17.) Using OT coordinates, (M, page 18) g is
necessarily unity, and hence it is only necessary to
ensure that &V, is also unity. Since most systems work in
air, this requires no further manipulation, but should ¥,
not be unity, then all the refractive indices which occur
all the expressions and equations relating to canonical coefficients
(distinguished by subscripts p and ¢) on the one hand, and to
paracanonical coefficients (distinguished by subscripts @ and ) on

the other. Following precedent, p and ¢ will therefore be used
throughout except where reference is made to initial input data.
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in the system must be multiplied by a common factor
so chosen to make N, unity. In order to get the actual
coefficients describing the displacement, it is necessary
to multiply the final coefficients by x(=1/N'v,,"). Also
for convenience, the contributions to these by the
surfaces of the system are multiplied by u (M, Sec. 7).

If a system is working in air with an object at infinity
and unit focal length, then u=1. For such a system, the
actual coefhcients describing the image defects and the
contributions to these by the surfaces of the system for
all rays are just those as computed by Table I of III.
Since this may not always be the case, i.e., u#1, the
coefficients are all multiplied, in the Deuce program, by
u before being punched out.

The input data for the program are (i) curvatures,
cj(j=1---k); (ii) separations, d;(d,=0); (iii} ratio of
refractive indices, k(=N;/N;); (iv) ¢ and b ray data,
i'e': Va1, Yal1y Vb1, Yb1; (V) Ny

Using OT coordinates, and having an object at
infinity, va1=0, y5i=1, vs1=1, ys1=p, where p is the
distance of the entrance pupil from the first tangent
plane [ M, Sec. 33(a)]. With the insertion of these data,
in floating decimal, in correct order (as presented
above), the machine proceeds through the system, one
surface at a time. At each surface, all the augmented
coefficients up to #,0,; and the sums of the coefficients
of the kind 4,/ to T'10,;" are calculated, before going to
the next surface. At the last surface, the 4,1 - - Trops’
are the augmented aberration coefficients of the entire
system, (M, Sec. 8). Inserted in binary as part of the
program are the coefficients of the second surface of the
system computed in Table I of III. When the machine
determines that an entire system has been computed, it
proceeds to a check program which computes the
coefficients of the surface already mentioned. It
then compares the two sets of coefficients in groups
(4,i,4,8,T,T) and, if they agree, proceeds to the punch
out routine. If they do not agree, the failure is indicated
on the panel of the machine by a combination of lights
which locates the group in which the error has occurred.
The input data are also checked to see that they have
all been correctly used. These checks are designed to
guard against any consistent machine failure which
could occur during the main program, such as an
arithmetic failure. Random errors, such as the insertion
or loss of digits in the results cannot be adequately
checked in this fashion, but since faults of this kind
usually also affect the program instructions, they be-
come self evident.

The following results are punched out in floating
decimal, for each surface of the system: (i) paraxial
coefficients, v,;', Vpj, Yai'> Yai, (frst order); (ii) primary
coefficients, (third order); (iii) secondary coefficients,
(fifth order); (iv) tertiary coefficients, (seventh order);
and finally (v) the third, fifth, seventh order coefficients
for the entire system. The coefficients (ii), (iii), (iv), (v)
are first multiplied by x before being punched out. To
assist in the layout of the typed results, “blank” cards
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are inserted by the machine between each of the groups
of coefficients.

The read-in time of the initial pack of program and
data cards is approximately two minutes, and for
subsequent systems, the ‘“restore control” pack and
data cards about fifteen seconds. The actual computing
time per surface is eleven seconds, all arithmetic opera-
tions being performed in floating binary which en-
ables the machine to handle numbers in the range
+10 exp(=£109).
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A detailed theoretical treatment is given of a new algebraic ray tracing scheme for tracing rays from an
object point through any axially symmetrical optical system, including catadioptric systems, which contain
spherical surfaces only. An explanation is given of the coordinate systems used which effect considerable
simplifications both in the theory and its application. Also presented is a fully worked example of a skew
ray trace through a wide angle system. An electronic computer has been programed for this ray trace and
details of this are given. A predetermined scan interval is given to the machine which then proceeds auto-
matically to trace from an object point rays spaced at this interval over the first polar tangent plane. For
pencils of all obliquities, vignetting is carried out by the machine, which produces as one of the results the

apparent shape of the entrance pupil.

1. INTRODUCTION

NEW algebraic ray tracing scheme has been

designed for tracing rays through any axially
symmetrical optical 'system which contains spherical
surfaces only. The scheme was designed by Buchdahl
on the basis of certain equations contained in his
monograph Optical Aberration Coefficients,' and hence the
results from the ray trace can be directly compared with
those predicted by these aberration coefficients. The
design of the scheme is such that it gives some insight
into the effect of each surface of a system on the final
image.

For systems of unit focal length, the magnitude of the
numbers appearing during the course of the ray trace
are such that an electronic computer whose word length
is ten decimal digits can work in fixed-point arithmetic
to an accuracy of six decimal places. There are no
trigonometric functions to be evaluated, and thus the
scheme is quite suitable for fast electronic computation.
It has been programed for a Deuce machine (described
elsewhere?), the time taken to trace a ray through one
surface being 0.5 sec.

Most of the symbols used in this paper have been
defined in M, thus only those which do not appear in it
will be defined here. The theory is presented in con-
siderable detail to aid in the interpretation of M.

Consider a ray from an object point incident at the
first polar tangent plane of an optical system. Then the
ray whose subsequent path is calculated not by means
of the true laws of refraction but instead by their linear
approximations, i.e., the laws of paraxial optics, will be
known as the “ideal ray.” Now, the path of the actual
ray, after refraction by the first surface, will not, in
general, be identical with that of the ideal ray. Thus the
difference between the coordinates of the intersection
points of the actual ray and the ideal ray in the jth
polar tangent plane will be a measure of the aberrations
produced by the preceding (j—1) surfaces. Thus, if for

VH. A. Buchdahl, Optical Aberration Coefficients (Oxford
University Press, New York, 1954). This work will be referred to
hereafter as M.

2P. W. Ford, J. Opt. Soc. Am. 49, 875 (1959).

a particular ray the aberrations of the preceding surfaces
are known, the coordinates of the intersection point
of the ray with the polar tangent plane can be found
from those of the ideal ray. This is stated in Egs.
M(9.3) where the &’s, M(9.4), are the sum of the
aberrations produced by the preceding surfaces. In
Eq. M(9.4) AA; is a measure of the aberrations pro-
duced by the jth surface alone, and Eq. M (7.5) shows
that these can be summed over all the surfaces of a
system to give, in the ideal (paraxial) image plane, the
differences between the coordinates of the intersection
point of the ray and those of the ideal image point.
An ideal image point is defined as the intersection point
of an ideal ray in the appropriate image plane.

Now it is not feasible to obtain an expression for
AA; in closed form, regarded as a function of the
coordinates of a ray. In M, AA; is therefore expressed
as a pair of power series in the coordinates Yy, Vi, the
coefficients of these series being called the (contri-
butions to the) aberration coefficients, and these
therefore characterize systems of rays rather than
individual rays. For an individual ray one may of
course calculate AAy, AA,, AAj, - - - in turn by ordinary
algebraic means, which amounts to tracing the ray
through the system on the basis of Eqs. M (9.3) [or
their equivalent M (12.9) in the case of paracanonical
coordinates]. The AA’s then being known, the value
of &/ may be found immediately from Eq. M(7.5)
which can be compared if desired with that computed
from the aberration coefficients of M. -

If paracanonical coordinates are used to specify a ray
incident at the first polar tangent plane, then only the
“a coefficients” occur in the actual description of the
aberrations associated with the conjugate image planes
(see M Sec. 12). This effects a considerable reduction,
in the number of calculations required to determine
the aberrations of a system. Also, with the use of these
coordinates, the form of the expressions derived in the
ray trace theory is not dependent on the position of the
object and entrance pupil planes. This makes it possible
to design a simple “‘scan” procedure for the programed
ray trace so that.the machine will automatically produce

528
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the results for a “spot diagram” if desired. In view of
the importance of the paracanonical coordinates in
simplifying the ray trace computation as well as those
for the aberration coefficients, the next section of this
paper has been devoted to a discussion of these co-
ordinate systems.

2. COORDINATE SYSTEMS

In M Sec. 5(a) it is shown that there exist relations
between the paraxial variables of the type

Yi=¥pi¥1t¥aiV1
Vi=195Y1+%4V1

where the coefficients are called ‘“canonical paraxial
coefficients,” canonical coordinates (Fig. 1) being
defined in M Sec. 3. For any optical system, the paraxial
coefficients can be found by tracing two tangential
paraxial rays whose initial data are; p ray, y,=1,
1,=0; ¢ ray, y1=0, v,=1. Then the values of y;, v;
appearing in the p trace are y,,, v,; and those in the ¢
trace ygj, ve;. One form of the paraxial relations used
for the trace is

¥i="y;—d;
4=y
v = (1—k;)ij+v;

where *y,=v, ,, v/ =v;;; and k;=N,;/Nj:. Note that
by definition d,=0.

Other paraxial variables can be expressed in terms of
the paraxial coefficients and the ray parameters at the
first surface. For example, consider an optical system
whose entrance pupil is distant p from A4, the pole of
the first surface [see M, Sec. 33(a)]. Suppose the axial
point of the object is /s from A, then from Egs.
M(5.101), (5.102)

F.‘.” Q/wuecm\zseo...vra
=N1v1(loi— )/ N i(vpilortv45)

where v, refers to the principal ray.
Now if p=0 and the object is infinitely distant then
_.-u.” N<~<~\~<ué§..

Similarly, many other expressions simplify when p=0
and loy — — 0.

It is possible, however, to effect the same simplifi-
cations no matter what the values of p and Il by
choosing new coordinates systems in which to define
the ray. The new coordinates of the ray are called
“‘paracanonical coordinates.”

If one chooses paracanonical coordinates Sy, S, T,
T, such that

S= Q.Nu+m<~
T=+Y,+7V,

where o, &, 7, 7 are constants yet to be chosen, and
g=07—é&r, (g is required to be nonzero) then there still

M(12.1)
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Fic. 1. Canonical coordinates. V =tanf, W =tang.

exists relations between any paraxial linear variable
M(12.3)

where the u,j, us; are called “paracanonical paraxial
coefficients.” The relations between these and the
canonical coefficients are given by M(12.61, 62).

Now, since

U= tajS+Upst

Yi=YaiS+yuit
and
V= eE.wlT .Ec,n

from M (12.3), it is possible to calculate these coefficients
in the same way as the canonical coefficients, only this
time for the ¢ ray, s=1, {=0; b ray, s=0, {=1. Hence,
from M(12.1) the initial data for the paraxial traces
are
aray ym=7/g, n=-—1/g
bray y1=—d/g, n=0/g

and the values of y;, v; at each surface in the ¢ ray trace
will be y4j, va; and those in the b ray trace ys;, vs;.

A particular set of paracanonical coordinates, called
OT coordinates, is defined in the following way. The
intersection height of the principal ray with the first
polar tangent plane is called Y.. Then S=Y;—Y, and
T=H,/ln, (Fig. 2) and hence

o=lon/(ln—p), &=—7pla/(u—p)
T=— H\No:
Note that since S, T are coordinates defined at the first

M(12.5)

g=1

7=1;

O

F1c. 2. Paracanonical (OT) coordinates. E=center of
entrance pupil, Ty=H,/lp, T:=H,/lo1.
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surface only, they have no counterparts at any other
surface, i.e., there are no variables S;, T;.
By using Eqs. M(12.61, 13.6) the expression for h;
becomes
hj= lVlT/IVj‘Z)aj

where T=YV/vs;=constant, V, referring to the principal
ray.

Thus the expression for h; is now the same for any
position of the object and entrance pupil, their positions
being contained in T.

The main advantage of paracanonical coordinates is
that £;==0 [see M, Sec. 13(e)] when the position of the
object and entrance pupil planes are those used in the
definition of the coordinates. Then expressions of the
Lype

Gﬁll’j(n):Guvpj(n)y01+Guvqj(n)'U01 1\/1(8.8)
become
G‘wj(n):G[.waj(n)sOl

" and similarly
AAJ'= AAaJ’Sol.

Thus only the @ coefficients are required to describe
the aberrations associated with the various surfaces
of an optical system.

As explained in M, Sec. 12(b), the change to para-
canonical coordinates results in N,/g appearing in
equations where N, appeared previously. Since g=1
for OT coordinates, by making N, unity, N,/g can be
omitted from these equations. In the following sections
of this paper N1/g is taken as unity since this can always
be arranged.

3. RAY TRACE THEORY

Consider Egs. M(12.9) written in full. For this
purpose, to simplify the printing, where s, - - - occur as
subscripts, s and y will be written side by side.

Then

V= 9ai(Syt8e5) +y5i (Ty+815)
Zi= yﬂi(SZ'I'aszj)+ybj(Tz+5tzj)
Vi=06;(Syt+0ey3) +v05(Tyt0045)
W j=24;(S:48525) +06;(Tat0025)

)

where

-1

6"”': - Z AAsybi

=1

j—1

6szj= - Z AAszbi
=1
. (2)
i1

6tuj= + Z AAtya'i

=1

-1
5lzj=+ Z AAtzm'-

=1

Writing 8,5 for 8,, and AA,; for AA.ys- -+ we obtain
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from (2) 8,5 ¢j+1y=0yb;— AAybj, and analogously for quan-
tities having the subscript “a.”

Hence
(Sv+6ub)j+1=E(Su+6ub)—AAub]i
and similarly
(Sz+6zb)j+1= I:(Sz'i'a‘zb)_AAzb:]j
(Ty+8ya)ivr= [(Ty+6,0) +AAya]i 3)
(Tz+5za)j+1= I:(Tz+aza)+AAza]j-
These equations enable the transfer to be made from
the jth to the (j+1)th surface, the Y, V at each surface
being obtained from Eq. (1). Note that (84-8);=S and
that (S+3); stands for (S+438;), the equations being
written as they are in order to indicate that (S43%,) is
evaluated at each surface for use in Eq. (1).

The AA’s are calculated as follows. For spherical
surfaces only, from M (60.3),

AA=DI.
That is _
Adye= EDGIm AN = @b[w 4
AA = SLDaIz, AAp= @blz, ( )
where '
D= AN[56(B—1)—tx&] . )
and

I=cY—-V.

@ is given by Eq. M(62.4), the coefficients of which
M (62.5) contain a quantity P. Now from M (56.72)

P=1—cx

x=(1-P)/c.

By substituting this expression for x in M(79.11) we
get an equation in P, namely

(A+OPB+2(en— OB+ (P4 — 2en+-§—1)=0.
By letting
pe=1+{=14+1V24+W?
pr=cn—=c(YV+ZW)—po+1

o= —2em+{— 1= (V42— 2p1— P2
then

whence

P=[V (ps*— pop2) — p11/ P

The positive root is always taken since f— 1 in the
paraxial limit (¥, Z, V, W infinitesimal).

When returning to & we consider, for convenience,
a quantity _

S=(1-k%6,
M(62.4) then becomes
7282+ 25,8+ 5o=0
where
Fa=Fus/ (1—F)%,  u=Ru/(1—F), Ho=Fuo.
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Thus
Bo= (B—1)(1+5)= (B —1)p2
=R (en—)+ A4+ P=F~pitp:P
fa= R (= 2en+{) — (1P =F(po+-1) — B

since €=0 for spherical surfaces [see M(56.71)].
Therefore
&= [/ (a2 — fichiz) — B1)/ iz
the positive root being taken when k is positive, the
negative root when £ is negative.
Equation (5) now becomes

=N'[50(E+k—1)—t/x&]
Let @+4+k—1=Q say, then
= N’[yaQ—va'x@]
@b=N'|:be—vb,x@]
D=Das+ Dyt

and thus the AA’s can be obtained from Eq. (4).

The displacements of the ray intersection in the ideal
image plane from the ideal image point can be found
from M(7.5). Thus, keeping in mind that £, =0,

since

& .
ekylz,u Z AAy,“', |:/.t= 1/(1\7klvak1):|

=1

k

sz, =M Z AAzai~

=1

From Egs. (2) and (3) it will be seen that

Z AAyai= (Ty+0y0) — Ty

=1

k
Z AAzai= (Tz+6za)k,_ T

=1

In practice, the object point is chosen to lie in the
tangential plane, so that

k
Z AAzai= (Tt+6za) k,-

=1

As a check on the computation, it is convenient to
calculate at each surface a quantity oE, which is
defined by M(4.3, 4.8) and is an optical invariant.
Namely,

aE,=aNrl,
=aN(ZV—-YW)
=NQ@ZV-YW)//(1+V24+W2) [from M(3.2)]
=N@ZV~YW)/\/po.
It will be noted that this invariant is only useful in
checking skew rays; for tangential rays it is necessarily
zero. L
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As explained in M, Sec. 86, the refractive indices of an
optical system are chosen appropriate to a particular
wavelength (color) of light. These values of N determine
a particular value of v.." and hence the position of the
ideal image plane.

To trace rays of a different color, a new set of values
of N are required which in turn fix the position of a new
ideal image plane. Thus the scheme as presented so far
gives the displacements of rays in the ideal image
planes corresponding to the color of the rays traced.
For chromatic aberrations, however, we are interested
in the intersection of rays of all colors in a fixed image
plane, the position of which is determined for some
“base” color. In this case the displacement should be
calculated from M (86.1), namely

er)/ = oo’ V=V — o/, e =o' W =2’
where
o’ =oTy/ (LN K ovar”).

The preceding subscript “0” refers to quantities
associated with the base color.

For a new image plane F’ Wthh is at-a distance %
from the ideal plane

I/ = oo’ +a', T'=

0l0k, = Oyakl/ O'Uakl,

14 ' 14
ol 2" svk 0T1/
and

Ekulzlck’ V,—' y,—hk,, Ekz'=lo_kIW,—Z/.

4. SAMPLE CALCULATION

The system chosen as an example is the Pantoskop,
Fig. 3, a six-surface, wide-angle lens system (Fliigge,’
p. 283). The dimensions of this system have been
adjusted to give it a focal length of unity (f'=1/v,4").
The diaphragm is 0.061849 unit behind the third surface.
Table I shows the paraxial traces required to calculate
# the position of the entrance pupil.

‘% 0015625

T16. 3. Pantoskop wide-angle lens.

%J. Fliigge, Das Phalographzsche Objektiv (Sprmger Verlag,
Berlin, Vienna, 1955
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TasLE I.
ji— 1 2 3 4 S 6
¢ 13.45565 9.648182 13.13822 —13.13822 —9.648182 —13.45565
d 0.017357 0.001895 : 0.123697 0.001895 0.017357
N 1.0 1.5331 1.6079 1.0 1.6079 1.5331
k 0.652273 0.953480 1.6079 0.621929 1.048790 1.5331
Up 0.0 4.678890 4873611 0.571964 —3.810739 — 3.598413
p ray *y—dv=1y, 1.0 0.918786 0.909549 0.838798 0.846021 0.908481
Cy—0=1, 13.45565 4.185726 7.076241 —11.59228 —4.351828 — 8.62579
(1=k)i+o=0) 4.678890 4873611 0.571964 — 3.810739 —3.598413 1.0
Vg 1.0 0.652273 0.616848 1.091591 1.411640 1.409813
g ray Yo 0.0 — 0.011322 — 0.012491 — 0.147518 —0.150194 — 0.174664
g — 1.0 — 0.761508 — 0.780957 0.846533 0.037455 0.940410
9’ 0.652273 0.616848 1.091591 1.411640 1.409813 0.908480

4=0.061849, p=— (vg3—145d)/ (yps—0ps'd)=0.091520 [from M(33.1)]

Suppose that the object point is at infinity and in the
tangential plane. Then

o=1, #=-0.091520, r=0, 7=1

Therefore the initial data for the ¢ and b paraxial ray
traces are; -

aray yi=1, 1,=0; bray =0.091520, v;=1

Suppose the principal ray from the object makes an
angle of 45° with the axis of the system, hence V;=1.
The ray traced in Table II is the one of this pencil
whose S,, S are 0.015625, 0.015625. T,=Vi/vs=1,
T.=0. Then

IOk’=yak'/vak’= 0908481, hklz T,,/vak'= 1.0
ety = (Ty+0)' — Ty=loi'V'— V'~ I/ =0.003189
exs’ = (T,48) =o' W' — Z'=0.002148.

Suppose a new image plane is distant 0.015625 from
the ideal image plane. Then

&' =0.015625, lp'=0.924106, %,/ =1.015625
&, =0.003498  &.'=0.002428

5. RAY TRACE PROGRAM

The scheme has been programed for a Deuce machine
for systems containing 15 surfaces or less. When
working to an accuracy of six decimal places, the upper
limit of the machine capacity is 27. This restricts the
initial angles of a ray to be less than 80°. Note that
the scheme will not work for angles 2> 90° in any case.
Since S,, S. are the Cartesian coordinates of the inter-
section of a ray with the first polar tangent plane, with
the intersection of the principal ray as origin, it is com-
paratively simple to program the machirte automatically
to trace a pencil of rays, given the principal ray data. If
we remember that for an object point in the tangential
plane T,=constant and 7,=0, the program works as
follows. :

Along with the normal lens parameters, the radii p of
the rims of the components and the radius pp and

position of the diaphram are fed in as initial data.
Following these are the initial data of the paraxial
traces Yai, Ya1, Y1, Us1, Which, as mentioned earlier,
contain the positions of the object and entrance pupils
inherent in them. The machine then calculates the a
and b paraxial coefficients of the system. It then calls
for a “ray data card” on which is punched in binary V,
of the principal ray, Sy, S:, the “scan interval” dand x'.
From V, and v;, the machine calculates T, Lo, 7’
which are stored for the duration of the trace. A pair
of digits associated with ¥ are then examined to
determine what type of trace is required, the four
possible types being (1) full pencil, (2) tangential fan,
(3) sagittal fan, (4) single ray. For the first three,
S,, S must be zero on the ray data card. After assuming
that a full pencil is required, the machine takes as its
starting data S,, S, from the card and hence traces the
principal ray first. Now, at any curved surface
A(y?+2)+P2—1=0 and thus only if ?*+P*—120
will the ray pass through the surface (for plane surfaces
0> V24+277%). At each surface this is checked and only
if the ray is not vignetted will the trace continue. The
coordinates of intersection of a ray in the plane of the
diaphragm are found using Eq. M (3.3) and the ray is not
vignetted here if pp?> #2422 After tracing the principal
ray, the values of e, e, Vi/, Wi’ are stored. Then
5 is added to S, and the trace reentered. Thus a sagittal
fan is traced. This process continues until vignetting
occurs somewhere in the system. Then S is made zero
and § added to S, and the trace restarted. By this means
the first quadrant is scanned by a “grid of rays” spaced

at intervals of 8. The first quadrant scan is terminated -
when a ray whose S, is zero will not pass through the
system. Then the fourth quadrant is scanned in a similar
manner by subtracting & from S, each time a ray is
vignetted. When the lower quadrant has been filled,
all the results are punched out. Along with the ¢’s and
V!, W' for each ray, each card contains thé Cartesian

‘coordinates of the particular ray, taking & as the unit

of length. If, in the example §=2-8, the (y,2) of the ray
would be (44, +4). If an 2’ is punched on the ray data
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TasLe IT.
j— 1 2 3 4 5 6 4
c 13.45565 9.648182 13.13822  —13.13822 —9.648182 —13.45565
d 0.017357 0.001895 0.123697 0.001895 0.017357
’ N’ 1.5331 1.6079 1.0 1.6079 1.5331 1.0
k 0.652273 0.953480 1.60790 0.621929 1.048790 1.5331
Vo 4 1.0 0.918786 0.909549 0.838798 0.846021 0.908481
Vg b 0.0 4.678890 4.873611 0.571964 —3.810739 — 3.598413 1.0
Vb by 0.091520 0.072766 0.070751 — 0.070751 —0.072766 — 0.091520
7p 4 1.0 1.080486 1.062881 1.143938 1.062881 1.080486 1.0
*(ls—129)=(Sy+8) ¢ 0.015625 0.018790 0.018872 0.018930 0.016044 0.016608 0.016578
*ts—tz0)=(S.+8) I 0.015625 0.017131 0.017117 0.016438 0.015211 0.015284 0.015767
Ftrtle)=(Ty+8) 4 1.0 1.084969 1.075404 1.078390 0.993350 1.005195 1.003189
*(tsttag)=(T:48) 4 0.0 0.040444 0.042069 0.004702 —0.031529 — 0.030013 0.002148
histlti=Y Ly 0.107145 0.096212 0.093251 — 0.060433 —0.058708 — 0.076908 —0.076751
bigttils=2 ho 0.015625 0.018683 0.018546 0.013456 0.015163 0.016632 0.014127
botst-taibz=V i 1.0 1.260209 1.235003 1.244667 0.994674 1.026336 1.019767
biteFlats=W b 0.0 0.123855 0.128138 0.014780 —0.091479 — 0.087426 0.017915
b2ttt 1=pe L 20 2.603468 2.541651 2.549415 1.997744 2.061009 2.040245
c(lbni+toha)—biat+1=p [N 0.441708 —0.411322 0.002641 — 0.563787 —0.420950 0.020651
2t +110?) — 2ty —tiz=po tis — 0.760691 —0.886638 0.986559 — 0.760184 —0.813600 — 0.981332
¥ —tistis g 1.716488 2477519 2.507495 2.255881 1.802564 2.022961
(Vhe—th4)/liz="B 4 0.434220 0.762573 0.621984 0.810282 0.882769 0.680083
(R2—1)t13= o ty — 1.149079 —0.2365%4 4029387 — 1.563311 0.199696 2.783178
Ryttt = iy I 1.056369 1.611393 1.587694 1.847675 1.300517 1.450195
k2 (tis4-1)— 62l = fie to  — 0.275278 —1.410904 0.948523 — 1.581077 -—1.351770 — 0.909367
h?—tbiglao Ll 0.799600 2.262777 6.342740 0.942187 1.961288 4.633997
(Vin—tie)/teo=S " tas 0.589098 0.075937 0.981300 0.554693 = —0.073935 — 0.772490
(I—=ti)boz/c=2S 7% 0.024770 0.001869 0.028234 — 0.008010 0.000898 0.018366
Fipo—1=0Q Lo 0.241372 0.029417 0.373400 0.176622 —0.025145 — 0.239390
[tib2a— (82* )23 IN' = Dy tes . 0.192364 0.028815 0.323476 0.189132 —0.027657 — 0.235847
[tstoa— (84*)ta3 JN' =Dy tys  — 0.007165 0.000248 0.003880 — 0.006404 0.001317 0.003543
(cto—t41)tes=AAya tor 0.084969 —0.009565 0.003185 — 0.085239 0.011844 —.0.002006
(ctio—ti2)les=AAsq Lo 0.040444 0.001625 0.037367 — 0.036231 0.001516 0.032161
(cto—t11)l26=AAyp iy — 0.003165 —0.000082 0.000058 0.002886 —0.000564 0.000030
(ctio—ti2)t26=AAp tz — 0.001506 0.000014 0.000679 0.001227 —0.000072 — 0.000483
N (¢10t11—lol12) i3 0.015625 0.017827 0.017614 0.017641 0.015616 0.015862 0.015781
ty/vVhs=aE, 0.011049 0.011049 0.011049 0.011049 0.011049 0.011049 0.011049

card, the final results punched are those for the new
image plane position. After the results are obtained,
anew ray data card is called in and the program restarts.

The tangential and sagittal fans are variations of the
full scan. Incidentally, if ;=0 only the first quadrant
is scanned. Apart from specifying the location of the
ray, the (v,2) in the case of the full pencil give the
apparent shape of the entrance pupil. The V', W,/ are
punched out in case the designer wishes to find xs, 7
(M 203.51, 53).

Since the program is designed to handle chromatic
effects, the e’s are calculated ‘from the equations
involving lo«'. The olos’, ok’ are stored in the machine
and when a new set of refractive indices are fed in
corresponding to a new color, the machine is told to use
the stored olox’ in the calculation of the &’s, the ok’
being selected from the store to correspond to the V;
on the ray data cards for the new color. This of course
presupposes that at least one ray in the base color has

been traced for each of the V; required in other colors.

Note that at each surface, PK1, | S| > [1—k|, ti
must be positive, and #; must be positive. If £ is
negative, the ray has missed the surface (y*+2z2>7?)
and if fy; is negative, total internal reflection has
occurred. Thus the computation can be checked at each
surface, the calculation of aE. checking the ray trace
through the entire system.
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