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INTRODUCTION.  

An extensive theory of aberration coefficients of 

symmetrical optical systems has been developed by Buchdahl in his 

monograph "Optical Aberration Coefficients -  (hereafter called M) and 

3,•99. extended in subsequent papers, 
2, 	The advantages resulting from 

the use of these coefficients rest in two important properties. 

Firstly, the one set of coefficients characterise systems of rays, 

that is, they apply simultaneously to all rays that traverse the 

optical system. Secondly the aberration coefficients are the suns 

of corresponding coefficients computed for each surface  of the system 

(the contributions to the coefficients). This enables the action of 

the system on all rays to be analysed surface  hy surface  and it is 
this that places a powerful tool in the hands of the designer. 

Now, although there is only one set of coefficients for 

each system, it is an infinite set. Obviously the calculation of 

them all is impossible. So far, computing schemes have been designed 

for the computation of all the third, fifth and seventh order 

monochromatic coeff1cients 4 , the coefficients of ninth5 and eleventh9 

order spherical aberration, and several of the more important 

chromatic coefficients (M Chapter XIII). Naturally, the aberrations 

of a system are not completely  described by only these coefficients. 

The object of this thesis is to examine the effectiveness 

of the first three orders of the monochromatic coefficients in the 

description of the aberrations of optical systems. As well as 

enabling a detailed analysis of a system, the coefficients and their 

surface contributions are of considerable use in the differential 

correction of a system following the initial design. 	The effectiveness 

of the coefficients in this field is also examined here. 

The work has been restricted to monochromatic coefficients, 

since, after the initial design, the majority of design is carried 
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out in monochromatic light. Also, the systems studied here have been 

restricted to those containing spherical surfaces only. The extension 

of the work to aspherical surfaces is a matter of detail and not of 

method; as mentioned in M Section 55, the only change is that the 

"intrinsic" coefficients (Section 5, 6 of this thesis) contain 

additional terms which depend on the "extra-axial" curvatures of the 

aspheric surfaces. These additional terms in no way affect the 

general theory or the application of the coefficients. The aberration 

coefficients in no way indicate whether the system they represent is 

aspheric or not. However, in the construction of computing schemes 

for the coefficients, many simplifications can be introduced if only 

spherical surfaces are being considered, resulting in comparatively 

short schemes, e.g. compare M 81.3 with 84.23, 33, 44. 

Since the publication of M, several misconceptions have 

occurred regarding the coefficients and the contributions to them by 

the surfaces, Some of these have been discussed in a paper by 

Cruickshank and Hills10 . 	It is probable that these erroneous 

Impressions have occurred as a result of 1) the multiplicity of 

symbols used in M, and 2) the iterative method used to derive the 

expressions for the coefficients. 

About the symbolism little can be done. As mentioned in 

the preface to M "higher-order optics is a battle of symbolism, not 

of advanced mathematics." Consequently, where type allows, the 

symbolism in this thesis is that of M. The most notable exception 

is the use here of single and double underlines, the symbols so 

marked representing the bold-face type and the Gothic script of M 

respectively. 

Iteration is quite familiar; everyone is acquainted with 

Newtons method for obtaining square roots, in which successively 

better approximations to the square root are obtained with each 
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iterative step. 	Perhaps as a result of this application, some 

workers have supposed that the aberration coefficients are 

approximate. 	This is entirely incorrect. As in the square root _ 

procedure, approximation is involved only by virtue of the fact that 

an infinite series has been terminated without regard to the remaining 

terms. The aberration coefficients are the coefficients of the terms 

In the infinite power series expansion for the "displacement" of a 

ray (See Section 1). When this series is terminated, we have only 

an approximation of the displacement. 	It is the accuracy of this •  

approximation that is being examined here. 	However, the coefficients 

of the series are exact. After each iterative step explicit 

expressions for new higher-order coefficients are obtained, not better 

approximations of earlier ones. 

Failure to realise this may have arisen as a result of the 

iteration in M being applied to a series containing more than one 

variable, which necessarily involves a large number .of symbols. 

Therefore in Part I of this thesis two examples of iteration are 

presented, the second being more complex than the first. The second 

example introduces the idea of "intrinsic" coefficients, these being 

the basic coefficients from which all others are obtained. 	It is 

hoped that these examples will lead to a clearer understanding of 

the methods used in M. 

By choosing suitable coordinates with which to specify a 

ray, considerable advantages ensue both in the computation and 

application of the aberration coefficients. These coordinate 

systems and the advantages thereof are also presented in Part I along 

with the basic theory of the coefficients. 

The examination of the effectiveness of the coefficients in 

describing the aberrations of a number of representative systems 

entails considerable numerical work. Prior to this work, all 
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calculations were performed on desk machines and it was obvious from 

the outset that this was too slow. 	For instance, a set of third, 

fifth and seventh order coefficients for a six surface system 

occupied two girls for four days. Thus my first task here was to 

learn to programme an electronic computer to perform this and other 

calculations. 	Accordingly, an approach was made to the University 

of New South Wales for the use of their machine, an English Electric 

"DEUCE". As a result of their very generous assistance, in about 

nine months I had written a programme for the computation of the first 

three orders of coefficients, which, incidentally, almost exceeded 

the 8,000 word capacity of the machine. 	It has subsequently been 

rewritten to achieve a reduction in computing time of about 20 percent. 

Using this programme, the coefficients for a six surface system can 

be obtained in about 5 minutes machine time. 

Following this, two more programmes were written, one for 

general ray tracing and the other for the computation of the 

displacement of a ray using the aberration coefficients. Apart 

from a few special trignometric ray traces, the entire numerical work 

in this thesis is based on the results of these three programmes. 

Since these programmes were designed for general use in 

optical design, they have all been coded in basic machine language. 

The increase in time and expense for the programming is more than 

offset by the considerable economies in machine time realised during 

their subsequent extensive use. 

The "DEUCE" is an interesting machine in that it uses 

mercury acoustic delay-lines for the high speed stores 'with a 

magnetic drum as the backing store. Notwithstanding this rather 

slow type of high speed storage the machine is quite fast in its 

operation. This is due mainly to the high digit frequency 

(1 megacycle), the arrangement of the arithmetic units and the 

considerable amount of information contained in one instruction word. 

The first section of Part II describes the design and operation of 

the computer. The remaining sections are devoted to the details of 
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the three programmes written for it. 

In Part III the accuracy of the first three orders of 

aberration coefficients in describing the aberrations of optical 

systems is examined. Six modern photographic objectives have been 

used for this work. This is an extension of the work presented in 

a paper6 by Buchdahl in which he uses two systems as illustration, one 

of wide field and the other of large aperture. The quality of the 

predicted displacements has been judged on the appearance of tangential 

curves, annular curvesand spot diagrams plotted for several pencils 

in each of the six systems. 

In the tangential and annular curves are plotted the 

displacements of rays predicted from the first two and the first three 

orders of coefficients, as well as the true displacements obtained 

from ray traces, Predicted displacements calculated using the first 

three orders only are used in the spot diagram comparisons. The 

results of the comparisons have been tabulated in Part III (Table V). 

It would be of advantage to the optical worker if some 

simple criterion could be found which would indicate the reliability 

of the coefficients in predicting displacements of rays. One such 

criterion, which I have termed an "angle criterion" was suggested in 

reference 6, "It is a matter of experience that reliance cannot be 

placed on the values of the predicted displacements if some Isin II 

or isin VI (in a ray trace) exceed a value of about 0.8". 	This and 

other angle criteria have been examined in the light of the six 

additional systems used in Part III. 	Owing to the way the power 

series expansion of the displacement is developed, it appears that it 

is unlikely that any simple angle criterion will ever be completely 

satisfactory. 	It is my conclusion that an examination of certain 

annular curves afford the best means of assessing the reliability of 

the coefficients, the construction of these curves involving very 

little more work than that required for any of the angle criteria. 
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Part IV deals with the methods of application of the 

aberration coefficients in the analysis and differential correction 

of optical systems. 	These are the important applications; the 

mere construction of curves and spot diagrams can be done by ray 

tracing, which, however does not give any indication of why the 

system performs as it does, or how to improve it. On the other hand, 

the aberration coefficients and their derivatives, which characterise 

systems of rays, can indicate which surfaces require modification and 

as well can indicate with considerable accuracy the effect of 

simultaneous changes of parameters at several surfaces. When it is 

known that the coefficients adequately describe the aberrations of a 

system, their use is quite straight forward and is described in the 

paper by Cruickshank and Hills 10 0  This is summarised in Part IV. 

However, the main work in this part is concerned with a 

method that can be used when the first three orders of coefficients 

do not in themselves adequately describe the system. The method is 

based on a property of the coefficients which arises from the 

processes used in initial design. As a result of this property, it 

is still possible to analyse a system and to predict the effect of 

changes of parameters even when the coefficients are known not to 

adequately represent the aberrations. The method is illustrated 

using two of the systems already described in Part III. 

1n order to use the coefficients to predict the effect of 

changes of parameters, it is necessary to know at least the first 

derivatives of the coefficients with respect to the parameters. As 

yet, only the derivatives of the third order coefficients can be 

obtained directly from the expressions in M. While the necessary 

theory has been presented from which the derivatives of higher order 

coefficients may be found, the magnitude of the work involved has 

made this uneconomic at present. Should this ever be done, then 

the explicit expresdions so obtained would enable by far the most 

satisfactory way of calculating the required derivatives. 	In fact, 
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If second derivatives are required then the theory presented in M will 

have to be developed. However, a knowledge of the first derivatives 

of the third, fifth and seventh order coefficients enables the effect 

of 5 percent changes to be predicted satisfactorily. These 

derivatives can be obtained by numerical means using the aberration 

coefficients programme. The accuracy of this method is discussed 

and illustrated with use of a cemented doublet. With the aid of 

certain identities between the derivatives and coefficients, deveiloped 

from the theory in M, it is shown that the first derivatives can be 

computed quite accurately. 
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PART I - Surmnarz of Theory 

1. Sign Conventions. Aberrations of a Ray. 

In M and this thesis, the following conventions for 

symbols and subscripts are used. Upper case letters refer to 

quantities associated with finite rays before refraction at a surface, 

the surfaces themselves being specified by subscripts 1, 2, • , • 

.0, k. The subscript k always refers to the last surface, 

Primed ( 1 ) upper case letters denote the corresponding quantities 

after refraction. Lower case letters refer to quantities 

associated with rays lying everywhere in the infinitesimal 

neighbourhood of the axis (paraxial rays), that is, to quantities 

determined only by the laws of paraxial optics. All superscript 

and subscript conventions apply similarly to paraxial and non-

paraxial syMbols. Unless otherwise stated, symbols from which the 

surface subscript is omitted refer to quantities at au surface. 

These are the principal conventions which apply throughout, but 

additional superscripts and subscripts will be introduced as required. 

Associated with each surface of the system is a 

left-handed set of rectangular cartesian axes with the origin at 

the pole of the surface. The x-axes of these coordinate systems 

lie along the axis of symmetry of the optical system, the positive 

direction being that in which light proceeds through the system. 

All the y-axes lie in the meridional plane. Let Om be the 

axial point of a plane, A, in the object space, normal to the axis, 

Then rays from Om [iim ,0,0] whose paths through the system are 

determined only by the laws of paraxial optics, will intersect 

the axis in the final image space at a point ol& (7.01( . o t o]. 

0(1k is defined as the axial point of the ideal image plane bl/ , 

conjugate to Ft. 	Select any point 01 in the object plane Fi 

and denote its coordinates by (Im 	(Fig.1). 	By 

definition, if the optical system were perfect, all rays from 0, 

which pass through the system would intersect in the image plane 



2, 

Pi in some point J whose coordinates [74 ,-hjk ,-hik ] would be 

such that 

where mg 	is a constant of the system independent of Hy, , Hzi * 

called the paraxial magnification for the conjugate planes PI, 

J is called the umi_image.mint conjugate to 0, 
and hik, hik the ideal image heights. 	In actual practice, 

however, a ray from 0, will not, in general, pass through J, 

but through some neighbouring point Og {7.sJk , 	°RA ). 	The 

aberration qk sik (F1g02) of the ray is defined as 

e j1k 	=Hjk— hjk , 	elk 	= 	hzic 

To simplify the writing, all symbols singly underlined shall be 

taken as referring to both the y- and z- components of the quantity 

in question. Hence the preceding equation will be written 

Since each refracting surface has an object and image plane 

conjugate to PI, the jth image plane being also the 0 + 0th 

Object plane, the aberrations of a ray can be defined at these 

planes in a manner similar to (1.1). 	Thus, at the jth object 

plane, 

ej 	
(1.2) 

and at the jth image plane 

€ 	= 	— 	 ( 1 .3 ) 
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A ray incident at any surface will be specified by the four 

canonical variables "T, Z, V. W. 	Y and Z are cartesian 

coordinates of the point of intersection of the ray with the plane 

tangent to the refracting surface at its pole while V and W are 

related to the direction cosines (cxj3,y) of the ray by the 

expressions 

V 	= -PAk. 	W 	 (1? 

whence it follows that 

i 
= 	ii 	4.  w2 -2 

. 	105) 

In accordance with the convention just introduced Y is to be 

Interpreted as standing for both Y and Z, and V as standing 

for both V and W. 

If is i,i are the coordinates of a current point on a 

ray, then the equation of the ray may be written 

Yr 	= Y V i 	(1 9 6) 

If we put 	= di, the axial distance between surfaces j and 

j f s, then Yr will bethe coordinates of the point of intersection 

of the ray with the (j+1 )th polar tangent plane, 

Thus 

Yj 4.1 d/V1 ; 

•It is convenient to omit the subscript j and to replace the 

subscript j + 1 simply by the subscript +. Then we have 

7+7 

	Y I 	V 	= 	Vt 
	

(1.7) 
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Equations (1.7) are ' the transfer equations for canonical variables. 

2. Paraxial Coefficients  

Defining the symbol A to be the change in a quantity 

on refraction at a surface e.g. AX = X' - X, it is shown in M 

Section 4 that 

I 	cY - V 	(2.1) 

	

A (N a I) 	= 	0 	 (2.2) 

and also 
	

AY = xAV 	 (2.3) 

where c (=1/r) is the curvature of the surface. 	For paraxial 

rays these relations reduce to 

ANi = 0 

	

eAy 	= 	(1 	v) 
	 (2.4) 

since a,a1-,- 1, xAV 

Using (2.4) and (1.7) we get the paraxial recurrence 

relations 

(1-k)cd 9 1y kd'v 

= 	(1 - k)c y 	kv 
	( 2. 5 ) 

where k = N/N 9 . 

Thus we can obtain 39+1 vi+1 from 39 , vi. 	Since 

Yj+s, vh,. are linearly related to yj, vj, then yj, vj are 

linearly related to yi, vi and the constants involved depend 

only on the constitution of the system. Hence 

Yi 	= 	Ypi Yi. + Ycri 

vj 	= 	Vpj yi + Vqj Vt 

 

(2. 6 ) 

 



the yo 9 Yqi, Vpi 9 Vqj being called the "paraxial coefficients" 

of the jth surface. 	Notice that the relations for yj and zj 

contain the same coefficients, and that the same is true of the 

expressions for vj and wj. 	Other paraxial coefficientscan 

be formed from these by linear combination, e,g, 

ipj c yps 	voi 	
(2. 7 ) 

C iqj ■•• Vqj 

so that 

ij 	= 	ipj 	iqj vi 	(2.8) 

and these will be used as the need arises. 

The paraxial "p" coefficients can be most easily obtained 

by tracing a ray by means of (2.5)  whose formal starting data are 

yi = 1, vi = 0 (p-ray). 	Then the values of y, v at each 

surface are yp, vp. 	Similarly the "q" coefficients can be 

Obtained by tracing a second ray naving the starting data yi = 0, 

=1 (q-ray). 

An important identity between the paraxial coefficients 

is obtained as follows. 

Consider two ApbAIrary:  paraxial rays, one of which is 

a tangential ray, denoted by a bar over the symbols. Defining 

a quantity W by 

X 	= 	N(kr 	iry), 	 (2. 9) 

then it is shown in M Section 5(b) that X is an optical 

invariant, that is, its value is constant ‘ throughout the systeM 

for the pair of rays considered. 	If, in (2.9), the tangential 

ray is one from the axial point of the object, and the second ray 

passes through the Object point, then X. can be shown to be the 

5 . 



Lagrange invariant, i.e. X =  Nveh. 	Expressing the paraxial 

variables in (2.9) in terms of their values at the first surface 

by means of (2.6), one obtains 

Xi 	i‘Tj N1 ) (Ypj Vqj 	Yqj Vpi )?ti 

Since X i  = Xi 

ypi vqj 	yqi Vpj 	= 	icr/NJ 	 (2 0 10) 

Apart from enabling the computation of the paraxial 

coefficients to be checked, this identity (2,10) is very useful 

In the simplification of many expressions which occur in the 

development of the aberration coefficient theory. 	Several.other 

Identities can be obtained from it, for example 

vp vci — vo  vli 	= 	c Ni (k - 41)/N 	(201) 

yp vet -:, yq  vpg 	= 	N1 /N I 	(2.12) 

yp  iq  - yq  ip 	= 	-NI /N . 	(2.13) 

To simplify the notation, we introduce the convention 

that if a prime is attached to the left of a symbol, then the 

symbol is divided by M. Such a prime will be termed an 

ante-prime. 	Thus (2.10) becomes 

yp vq . 	yq Vp 	= 	1/ 1 1Sr . 	 2.14) 

The identity (2.14) is used in the following derivation for the 

focal lengths of an optical system. 

Let the axial points of the front and rear principal 

planes be Po  and Pj respectively, these planes, P,P I , having 

the property that the paraxial magnification associated with them 
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and 

(2.16) 

(2.17) 

= 	ypl< 	+Yq Vi k 

Vk 	= 	Vpl< y, 	Vqi Vi 	0 . 

7. 

is unity. 	Let Ft! be the axial point of intersection in the 

image space of a paraxial ray incident on the system parallel With 

the axis. 	Then the posterior focal length, f l , of the system is 

defined as f t  = P0!F4, (Fig.3). 	Likewise, if Po is a point on 

the axis in the object space such that paraxial rays from it are 

parallel to the axis in the image space, then the anterior focal 

length, f, is defined as f = POO, (Fig.4). 	Note that the 

lengths are measured from the principal planes. 

As can be seen in Fig. 3 

r • 

By (2.6) 

vpt y, +Vqi Vi  

y, , since v, = 0 . 

Thus 

f' 	= 1/4 .  (2.15) 

For the anterior focal length, (Fig.4) 

f 	= y/v, 	 , 

Thus 

Vi hpt 
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and (2.16) becomes 

Y l k 	v (y' v' - y l  v )/vA 1 	qk pk 	A 

Nt  v i 	yolk 	from (2,10). 

Hence 

N - Ns  /Ng vrei k 	- 	ft (2.18) 

The distance 7,1) of the first principal plane from the first 

surface is given by 

=  (11 /Tig  Vk )/vA .  (2.19) 

74, the distance of the rear principal plane from the last 

surface is given by 

= 	(4k - 	 (2.20) 

Jberrat ion Coefficient 

(a) 	In section 1, the aberration .  of a ray in the jth 

image plane, E', was defined as 

= 	h' 
	

(3.1 ) 

Thus 	 H' 	E 
	 (3.2) 

Multiplying throughout by N'vj, (the subscript "o" in this 

context denoting quantities associated with rays from the axial 

point of the object) we get 

N 1 v4H 1 
	

N'vgh' 	N'v4E! 	 (3.3) 
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If IA is the axial distance of the Oh image plane from the Oh 

surface, from(1,6)we get 

h t 	= 	/Jv t  - y l 	(3•4) 

remembering the sign convention for h', 

Thus 

N t vjh' 	11'14(14v' - 10 ) 

N'vg(ni/v4Ov t 	y t ] 

N t (yJv t  - vie) 

which is the invariant X, by (2,9). 	Hence (3.3) becomes 

(3.5) 

Writing A for NvoH, and g 	for. Miroe 

AA 	= Ag 	 (3. 6 ) 

Incidentally, since N'vjh is an invariant 

N i vdh t 	Nivot hi 	(3.7) 

t 
or 	h' 	= mh , where m =Nivo, /DIV0 , 

and is termed the paraxial magnification associated with the planes 

Fl and_ 11. The paraxial magnification associated with the 

final ideal image plane Fg is 

	

Ni voi AlivA . 	 (3. 8 ) 
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Now, the fth ideal image plane is also the 	Oth 

object plane, hence 

(3.9) 

Also 	= NJ + i  and v(Ii = ve  	thus 

Now 

A 
el Sj 4.1 (3.10) 

A 

a"'  ei 	E2 	Z2 

( 	I ) 	( 

Ag 2 + • • • 

A 
0 • 0 
	ek + 

— 	4-  i; 	from (3,10) 

) 	(gi 	gk) 

Agk . (3,11) 

A 

ef! 

gs  eI ""' 	a 	goo 

However, e l  E 0, thus, using (3,6) 

A 
ek AAi 

1.1 	— (3.12) 

AA 	= Nev4H 1 	Nvoll 

and 

= Z a V Y, from (1.4), thus 

&A. 	= A[N(veY 
	

(3,13 

Since Y,IT, depend on 	AA may be expanded as a power series 

In Y1  ,V1 , Due to the rotational symmetry of the optical system, 

if Y, 	are reversed in sign, a reverses its sign, and 

therefore also must A4, Thus A4 must be a sequenced' 

polynomials of odd degree in /-1 ,21 . Furthermore, AA tends to 

zero as Y1 	become infiniteSima4 that is, in the paraxial 



limit, so that the series for AA does not contain linear terms. 

Thus the expansion for AA can be written in the form 

where  

Co 	U 	g 
_2 	(fr i,R) Y1 + gp(1 )  Vs ) n il 	v4 1i 

	

v - 	11  n., 	v.0 	v- 

Ei 	= 	Y1 2 + 21 2 , 

111 	= 	+ Z1 W1, 

v1 2 + w1 2  • 

(3.14) 

(3.15) 

For convenience, the early terms of the series (3.14) are written 

AA 	= 	(aYi E 1 + tiVi Es + byi iii + TDVI 1 1 + cY1 4 1 + .c.;Vi 41 ) + _ 	 _ 	_ 	_ 

( si Yi Ei + ii VI Ei -1- 82Y1E1r11 4- ii2V1EIT)I 4- _ 	.... 	- 	 -. 
83 YI E 1 41 -4- T33 Vi E i I + 84 YI 11 i 4- E-54 VI rli 	851111141 4- .. 	 _ 	 _ 	... 

	

i21-3 VI iti  .1. s6 Yi 4; -F. I:14 V1 2 	) + 

(t1 y, 	1  	1/14i ) 	0 (9)9 

where 0(9) denotes terms of degree not less than9 in the 

coordinates. 

Writing 

J-1 
G (n)  

	

1.1,v 	Z 
iu1 	-110 

(3.16) 

and 
	

G ( W i 	= 	,(n ) 

	

1-tv 	 ep..v 

and similarlyfbr the barred coefficients, (3.12) becomes 

E g 	= 	 2 	 . (3.17) 

	

n 01 11.0 v.0  gvk- 	gvk -1  
053 
Z 	2 	(G (11)r Yi + 5 (11)'V 6"N/it-ye 

11. 

Adopting the conventions in (3.16), (3.17) can be written 
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g = 	(My, El + 	. ot! 	) 	(silk yi Ei + ...+  VI 	) + 

(TA( pEt +  Vid) + 0(9).  (3.18) 

The coefficients Gpvk(11)/'  d (p 	are called the (augmented) canonical vk 

aberration coefficients or order ,n of the system, and the 

g/1;,)p g7A are termed the contributions to these by the jth 

surface. 	G (n) Gj 	are called the intermediate canonical plds 	pvj 

aberration coefficients. 	Note that Gig, = .1j11  = 0. 

(b) AAj 	delJends linearly on ym , vm , by virtue of (3.13), 

(2.6). 	Thus the coefficients in (3.14) must depend linearly on 

ym , vm , so that 

(n)  gin) p  Yo + gin(o))  VO 

- (0  - 
=  v  p  Yoi 	gril(0  V q  v0 I (3.19) 

Then the "p" aberration coefficients are 

G 	2 a (11)  p.vpk 	1.1"11Vp1 

and the "q" aberration coefficients are 

G Wicik a 1.1 -11vqi 

and similarly for the barred coefficients, 

Thus '61 can be written as the sum of two series, one containing 

only "p" coefficients, and the other containing the "q" coefficients, 

in the following manner. 

= 	(GI.L(vn)p'  k 	+ dp,(vn); k 	)C1 	s Yot 

+ 222(G v q k V )t T) p,  (3.20) 

In conformity with (3.18), 
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dloPpki 	AP k 	-64 = 	A cjk 

 

GPoi p k B pik 9 • • • 

 

(3.21) 

The correspondence between the alphabetic symbols and the various 

values of g,v 	in the different orders is given in the following 

table. 

Third order 	01 v 	00 10 11 
n=1 	A 	B 	C 

10 11 20 21 22 
82 S3 S4 SS S6 

10 11 20 21 22 30 31 32 33 
T2 T3 T4 Ts T6 T2 Te T9 T10 

Fifth order 	00 
n= 2 	 Si 

Seventh order 00 
n.3 Ti 

4. "a" and "b" Aberration Coefficients 

If the object tends to infinity, i.e. 1,01-00 then 

vm - O and (3.20) becomes 

a 	= 	zzz (G (n)P 130 1-1  + J. 	)Vit-P" g-v v Ym 1.1p - 	1Vpk - (4.1) 

NOW 

Ng VA ell 

Ni/§k(vjk Yol 	Vol ) 

Thus, omitting the subscripts and primes of the coefficients, 

ed K 	 Ps 

 

[2 (G 	+ 	 (4.2) 
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where 11 = 1/tivA 	That is, only the p coefficients are re- 

quired for the description of ei. 

Consider a pencil of rays from an infinitely distant 

object point in the tangential plane. Let this pencil make an 

angle VI  with the axis (VI = 0). 	Let p be the distance of the 

paraxial entrance pupil from the pole of the first surface 

(See M Section 33(a)). 	Then taking polar coordinates p ,O 

in the first polar tangent plane, with the intersection point of 

the principal ray as origin, Fig.5, 

Yi 	=pVi + P cos° , 	Zi 

• 

P sine 

 W1 	0 • 

Equation (4.2) becomes 

e  = 	[ML 04)111k  (pVI + P cose ) 	k v1 ) 

(P2 	+ 2pPVI C080 	p 2  )n41" (pV, + P cog/ )/1 " v  W 4' v  ] 

(4.3) 

Considering third order terms only, and omitting primes and 

subscripts from the notation of (3.21) 

ei 	= 1.1./[A(pVi + Pcose) 	AV1 ][p2 N1 + 2pPcos0 	p 2 ] 

[B(pVI + pose) + BV, ][pV, + Pcos0] 

[C(pVi + pcose) 	av, 	+ 0(5). 	 (4.4) 

Using the identity B =2A, from M 20.42, 

CV 	= 	11 1-AP 3 C 086  4- [PA( 1  4- 2006e) 4. .A(2 4- C01320 )]P 2 V1 - 

[3p2 A + 6pA 4 E 4. C] PVf cos° 

[p3  A + 3p2  A: + p( -3 + a) 4. 6]1.4 I+ 0(5). (14.5) 



›
-
 

 

Polar  coordinates  

 



If, now, p = 0 

= plAp 3cose + A(2 + cos203)0V1 + (E+C)pVicose + dv114. 0(5). 
(4.6) 

In this case, then, the p coefficients control the various well 

known types of aberrations in a simple manner. However, (4.6) 

results from the fact that the object is at infinity and the 

entrance pupil is at the first surface. In view of the 

complexity of (4.5) or (3.20), it 4s obviously of advantage if 

expansions similar to (4.6) could be used even when vel 10, 

and p ((:). 	By choosing a different set of initial coordinates 

to specify a ray this can be achieved. 	The new sets of 

coordinates are called "paracanonical coordinates". 	Para 

canonical coordinates Sy, gz, Ty, Tz, are defined in terms of 

the canonical coordinates by the following 

Yi + 	Vi 

TY, + 	, 	 (4.7) 

where a, a, T, 	are disposable constants subject only,  to the 

condition 

& 	10. 	(4.8) 

Since s, T are linearly dependent on Yi, yl l  then 

any paraxial variable gi is related to the paraxial coordinates 

s, t by 

where 

P•aj S + (4.9) 

 

 

= 	TY, + tiv, 

15. 
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The gal gbj are the paracanonical paraxial coefficients, 	The 

constants yaj , ybj, vaj, vbj are obtained in a similar manner to 

their canonical counterparts, except that here the paraxial 

tangential rays have as their initial data 

"a-ray" 	, 

	 t =0 
,"b-ray" 
	

0, 	t = 1 . 

Thus, in terms of yl, vi, the starting data is, from (4.10) 

"a-ray" 	yi = 't/g, vi 	- 
"b-ray" 	Yi = Ei/g, vu t = a/g, 	 (4.12) 

whence, by using the recurrence relations (2.5) the values of 

y, v at each surface will be Ya va  for the a-ray and yb, Vb 

for the b-ray. 

The identity (2.10) becomes 

Ya Vb 	Yb Va 	= Ni/N g. 	 ( 4.1 3 ) 

Thus an anteprime associated with a symbol is now to be regarded 

as indicating division by NI /g instead of Ni as previously. 

Since S, T are linearly dependent on Y1, Vi, (3.14) 

can be written 

00 	fl 

	

r  n -11.„11- v y  v  
(4.14) 

	

g 	t n.I . .o V4V —  — 

where 



0
- 

•••■ ry.4 



and similarly for C. 

Here 

sy  2 4.  

T I 	= 	Sy Ty + Sz Tz • 

41 	= 	Ty 2 	Tz 2  

(3.20) now becomes 

gg 	= Z2Z(G (M1  ' S 	d (m'  T)61-141-veso + 

	

ilvak - 	Pak 

S + d (r°1  TX veto tlybk 	Ilvbk 

It is worthwhile noticing here that S, T, so, 

(4.15) 

to have no 

surface subscripts since they are defined only at the first 

surface, see (4,7), that is, there are no variables SbTi,s0,to 

A particular Bet of paracanonical coordinates, OT 

coordinates, are defined as follows. 	Let the principal ray of a 

pencil intersect the first polar tangent plane in a point whose 

coordinates are Y.  Then Sy, Sz are defined as the y, z 

coordinates of the intersection of any ray of the pencil in this 

plane, taking YE  as origin. 	Ty = HO 	T2 = 

where /0, is the axial distance of the object plane from the 

first surface, see Fig.6. 	Thus, for these coordinates 

0 	= 	101 (!,m 	p) 9 	3= -13109 401 

1 /7Joi 	, 

1 . 

From (4.10) 

to 	= 	Yol + '7c" vo 

(4.16) 

1 7, 
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to 	= 	Yo 	+ 

0 . 

	 (4.17) 

Thus the term involving to in (4.15) is zero  and does not appear 

in the description of the aberrations in this coordinate system, 

that is, only the "a" coefficients are required. 	Changing the 

polar coordinates, 

	

Sy 	= P OOSO 	 p sine 

 

Ty  = 	= R say, 

 

Tz  = • 0, 

so that p does not appear explicitly. Then taking only 3rd 

order terms and omitting primes and subscript k from the 

coefficients, (4.15) becomes , taking si o  for example 

= 	[ Az P 3  0 Se + Ao ( 2 + c 0820 )P 2  

	

(fa -I- 08,)Pre COSe # 8a1? I 4- 0(5), 	 (4.18) 

where 4 = 1/Ngvoic  . 

sg is now described only by the a coefficients, and 

the form of the expansion is independent of the value of 'Lot 

or p, these being contained in the description of the particular 

coordinates. Note that this simplification comes about only 

if S, T are computed using the relevant values of /o P. 

A particular set of coefficients Aa, Aa... for one position of 

the object and entrance pupil cannot directly be used in (4.18) 

to describe the aberrations for a different object or entrance 

	

pupil plane. 	It is possible to calculate, from a particular 

set of paracanonical aberration coefficients, other sets of 

coefficients corresponding to different situations, see M 

Section 32, but this may not be simple, 
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This simplification of the form of expressions which arises from the 

use of paracanonical coordinates is further demonstrated in the 

following example, 

From (3.7) 

= m0 hi 

= 	Ni vos hs 	vtik 

= 	Ni Vs (I 01 "" p)/Ni (viik 7, et 
	v4k ) , 	(4019) 

where Vs refers to the principal ray. 

The relation between the canonical and paracanonical 

coefficients is given by 

g pj 	= 	Oil,  a 	+ 	bj • 

qj 
	

°P'ai 	T-1-Lbj 
	

(4.20) 

With these and using OT coordinates it is easy to show that 

(4•19) becomes 

hi Ni T/Ni Vik • 	 (4.21) 

It has already been mentioned that to E 0 for OT 

coordinates (4,17), which leads to considerable simplification in 

the computations required to obtain the aberration coefficients. 

This feature is common to all the sets of paracanonical 

coordinates described in detail in M Section 13 (a), (b), (c) 

and (d). 	These'coordinates also possess an additional feature, 

namely that T(= -¶11 1  , M 13.71) is a constant for all rays that 

issue from a particular object point. 	Thus in any pencil, the 

only coordinates which vary are Sy,.Sz, in contrast with 

canonical coordinates, in which, for a near point object, Ys, Zs, 

VI, Ws all vary from ray to ray. This feature is of considerable 
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advantage when spot diagrams are to be computed. 

OT coordinates, in particular, have further advantages 

over the other paracanonical coordinates. 	Firstly, they will 

apply when the object is at infinity, in which case T = 

Secondly, g 1, and thus the factor NI/g is usually unity since 

most optical systems considered work in air. 	This means that 	the 

anteprimes which occur in the iteration formulae (see Section 5) 

may be omitted during computation of the coefficients. 	If NI 

is not unity, say in an oil-immersion lens, then it can be made 

unity by multiplying all refractive indices by 1", the image 

forming properties of the optical system being unchanged by this 

process. 

In view of (2.6), (4. 10); (3.14), (4014);and (2.14), 

(4.13), it is obvious that the derivation of the formulae for 

calculating aberration coefficients using either canonical or 

paracanonical coordinates will be formally identical. Consequently, 

to avoid a multiplicity of symbols, canonical symbols will be 

used almost entirely in the following work. 	If paracanonical 

coordinates are being considered, then, of course 

Yi stands tor S 

VI stands for T , 

stands for (Sy 2  + Sz 2  ), 

it stands for (Sy Ty 4-  

4t stands for (Ty 2 	T2 2 ), (4.22) 

the subscripts p, q are to be replaced by a, b, and the ante-

primes will mean division by NI /g. 	It is worthwhile here to 

repeat that S, T are coordinates defined at the first surface 

only that is, there are no variables SLTj. 

Paracanonical symbols will, in general, be used to 

indicate that only. these coordinates are being considered, e.g. 

(4.21). 
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5, Calculation of Aberration Coefficients  

(a) Iteration 

The formulae for calculating the aberration coefficients 

are obtained by iterative processes. 	To demonstrate this 

process two examples will be used. The first of these indicates 

the basic method of the process. The second example is a 

simplification of the process as carried out in M, so that by an 

extension to a number of quantities, equations of the type M 11.3 

can be obtained. This example also introduces the idea of 

"pseudo—expansion" and "intrinsic coefficients", 

Example 1  

Suppose that x is some function f(t) of t, and that 

x and t are related by the equation 

0 X2 	X 4- t 	• 	 (5.1)  

We shall assume that f(t) is a, power series in ascending powers 

of t, and is valid for all values of x. 	Suppose also that as 

x 0, t-. 0. From this we can deduce that there are no 

constant terms in f(t), 

Rewriting (5.1), we get 

t + 2. 	(5.2) 

Then, as x becomes small, to a first approximation 

= 	t, 	 (5.3) 

Substituting (5.3) in (5,2), one obtains 

= 	t + t2 , 	 ( 5.4) 
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thus we have a better approximation of f(t). 

Reinserting (5.4) in (5,2), 

= 	t + (t + t2  ) 2  

t + t2 	2t3  +0(4) 	 (5.5) 

By continuing this process of substitution, the series for f(t) 

can be determined. 	This process, by which more accurate 

approximations to the series for x are obtained by successive 

back substitution is called iteration. 	Iteration will only work 

when, as a result of resubstitution, the new terms generated are 

of higher order than those that existed before substitution. 

For example, suppose that 	1 as t 	in con- 

junction with (5.1). 	Then to a first approximation 

(5. 6) = 	1 4- t . 

Substituting (5.6) in (5.2), we get 

t 	(1 ÷ t) 2  

= 	1 	3t + t2  . 

Resubstitution of (5.7) in (5.2) gives 

+ 7t + 9t2  + 6t3  + 0 (4). 

(5.7) 

5.8) 

It will be noticed that the coefficients of t o , tl , t2 0 .. will 

now vary at each iterative step so that the process does not 

converge to a fixed series for x. 	This is a result of the 

constant term in (5.6), (5.7), (5.8), 

Consider once again the series (5.5). 	This is develop- 

ing as 
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= 	t + t2  + 2t3  + 5t4  + 0(5) .  (5.9) 

Suppose we write the series for x as 

ao 4. as t + at2  + at3  + a. t4  +  (5.10) 

Now, since x 	0 as t --. 0, 

0, 	 (5.11) 

so that (5.10) can now be written 

as t + a2 .t2  + a3t3  + a. t4  + 0(5). 	(5.12) 

Substituting (5.12)  in  (5.2), (5.2) becomes 

= 	t 	t 	a2 t2  + a3 t3  .2 • 0 ) 

= 	t + a t2  + 2as 82 t5  + ( 2a, a3 + a )t4  + 0(5). (5.13) 

Comparing coefficients between (5.12) and (5.13), one finds that 

as 	1 
2 

8.2  as 

a3 	= 

 

2a1 a2  2 

84 
 (28,e,3 + 	 (5011+) 

thus (5,12) can be written 

X 	t + t2  + 2t3  + 5t4  + 0 ( 5 ) 
	

(5.15) 

which is identical with (5.9).  Thus the "complete" series for x 
can be obtained in one operation. This method will, of course, 
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only give correct results in those cases where direct iteration 

produces a unique series for x (in contrast with (5.7), (5.8)). 

It will be noticed in (5.14) that the coefficient a o  is 

expressed as some combination of coefficients of terms of degree 

lower than n, Thus having found the first coefficient 

explicitly, the rest can be easily computed, 

Example 

Consider the series for AA, (3.14), but for the sake of 

simplicity suppose that there is only one variable Y, so that 

now 

n.I 
g ( " )  Yia 
	

(5.16) 

where CI 	Y. 

As before, we shall write the first three terms of (5,16) 

explicitly as 

that is, 

(I) 

aY, CI 	+ sYi Ci 	+ tYiCi 

a, 	g (2) 	 g 00 

+ 0(9) 

t. 

9 (5.17) 

Now, at any surface 

= 	f(Yi), 	cf(3.1). (5.18) 

Suppose that 

j- 1  
YJ = 	rc(Y, 	+ 	Z (5. 19) 

where i is a constant of the surface j i  depending only on the 
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constitution of the optical system. 
J-I 

Let the series for Z AAi be written 

J-I 
AjYii + SOW + TjYiti + 0(9), (5.20) 

where 

Since A is an optical invariant when Y becomes small, to a 

first approximation 

Yi 	= ky, • 	 (5.21) 

Inserting (5,21) in (5,18), 	AAj = f(YI) is a first 

approximation to AAj o 	Knowing the function facY,), a series 

for AAj in terms of Yi can be formed 'similar to 5,17), 

namely 

AJ  = 	gi(n) yi  

4. jYii 	'DJ YI VII 	0(9) 	(5.22) 

This series is not the one required since the term kZ AAi 

has been '.omitted from the expression for Y (5.19). 	The series 

(5.22) is caned the "pseudo—expansion" of AAj. The coefficients 

of this series j, j, 'W.. depend only on R, and hence they 

also depend only on the construction of the system. For this 
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reason they are called "intrinsic coefficients". 

Now (5.22) gives us hAi correct to the first order, 

cf (5.3), hence (5.20) is also known correct to the first order. 

Thus the substitution of CM 4. 2 &Ai) for M in (5.22) will give 

AAj correct to the second order, since MA is of 0(3) and will 

not affect the terms already present in (5.22), cf (5.4). 	Thus 

we have ZAA correct to the second order, and the process of 

reslibstitution in (5.22) can be continued, and so the series for 

AAA can be obtained. 

As before, the process can be condensed by writing the 

correct series for Aki as 

AA i 	ej.M EI + Si Yi Ei + ti Ei + 0(9) 
	

(5.23) 

and also 

Aj Ei + Sj 	+ Tj Yi 	+ 0(9), 

(5.24) 

J- 1  
then, by replacing M in (5022) by CM 	2aM) and comparing 

coefficients between the resultant series and (5.23), the formulae 

for obtaining the higher order coefficients can be read off 

directly. 	(By way of comparison., in example 1, x = t, (5.3), 

corresponds to the pseudo-expansion of AAj, t corresponds to 

f(kY, ), x to AAj and x2  in (5,2) corresponds to 
_- f(kf  hAi ) 

Thus 



27. 

+ AY, E + SY, EI + TY, Et +.. ) (E, + 2Y, [AY, E, + Sy, Ei + . . + 

+ [AY, E + SY, El + 	) 2  ) 

s (y1 + AY, c + sY, 	+ 	) (1 + 2Y1 [AY, cs + 	+[AYI c I + •. 32 )2 

t (

- 

Y1 + 	) (EI +•)3  + 0(9) 

= a (Y, 	AY1 	SY1 	it (E 1 4- 2AEi + 2SEi + 	+ A2  i + 	) 

(Y, + AY, E +•) 	+ LtAZi 	• • 

t (Y1 + 4).* ) (Et + ..• ) 	0(9) • 	 (5. 25) 

Comparing coefficients between (5,23) and (5.25), we get from the 

coefficient of 'Yis 	a 	= a , 	(5.26) 

Ei 	 s 	= s + (2A + A)a 

= 	s 	3aA, 	(5.27) 

Y, 	 t 	= 	t + s(I4A + A) 

a(2 S + A2 +2A2 + S) 

t + 5sA + 3a(S+A2 ). 

(5.28 

(5.26), (5.27), (5.28) are the iteration formulae which enable' the 

contributions a, s t to the aberration coefficients i (5.23),at 

any surface to be obtained from the intrinsic coefficients of the 

surface and the sum of the contributions over the previous 

surfaces (5. 24). 

For example, at the first surface 

Al 	Si 	= 	Ti 	= 	0, 

since there are no previous surfaces over which to sum contributions, 
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hence, from (5.26), (5.27), (5.28) one finds that 

al 	= 

SI 	= 	Si 

ti 	= 	ti • 

Now 

A2 
	 al 

S2 	 Si 

. T2 	= 	ti, 

so that at the second surface 

a2 a2 

82 = 82 3a2 a, 

t2 =-. t2 + 582 al + 3a2 (s, 	+ a 	). 

Then 

Eli + a2 

S3 	 Si +$2 

and the coefficients az', s3, ta can be found. 

In this manner the contributions to the final aberration 

coefficients by each surface are found. Notice here that any 

inaccuracy in the value of AAj and hence of el/ comes, not  

from the coefficients, which are exact, but from the fact that we 

terminate the infinite series for LA1(eg) without regard to the  

remaining terms, 

In M, iteration is carried out with four variables at 

each surface. namely Yj, Zj, Vj, Wj, and corresponding to these, 

four coordinates at the fist surface, 'Y1 , Z1, VI, WI. The 
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= 	YPJ 
	+ yj 	+ Yqj (VI + Ovi ) 

(5.29) 

Vi 	Vpj Crt + yj 	+ Vqj (VI + 8 %1 ) 

where 

	

•
i'.1 	 , 

6  Yi 	= 	- 2 A Ilv.: • 
, 	- 

	

J- 1 	% 
Ovj 	= + I A AO 

1 	;• (note anteprimes). (5.30) 

Each of the relations (5.30) represents two relations, e.g. 

j - 
- 	A Ayqi 

i . 1 - 2 A A zq i 

9 

( 5 3 1 ) 

L4q is, of course. given by an expression of the form (3.14), 

but containing only q coefficients,(3.19),1.e. ym = 0, and 

similarly for A4p. 

If now "increments" §y, v are neglected in (5.29) 

Yj 	Yp j Yt + Yqj V1, 

Vj= 	vpi Y, + Vqj Yl 

(5. 32) 

then using (5,32) in (3.13) or an equivalent expression, the 

pseudo-expansion of AA will be obtained, see M 10.1. 	If then 

in the pseudo-expansion Y1, 1T, are replaced by 	+ 6 y), 

Ov) the iteration formulae ?Jr 10.2, 11.3, 81,3 can be 

obtained. The intermediate p and q coefficients in M11.3, 81.3 

arise of course from Oil and Oy. 
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Intrinsic Coefficients  

The straightforward method of calculating the intrinsic 

coefficients is to expand the expression (3.13) for AA as a power 

series in Yj, V), cj, nj, 4j, then convert this series to one in 

Y1, IT,, CI, lii, 41 by means of (5,32), whence the coefficients of 

the resultant series are the intrinsic coefficients. However, it 

proves more convenient to first factorize (3.13) and then expand 

one of the factors as a power series. Multiplying the coefficients 

of this series by the appropriate factor then gives the required 

coefficients. 

Now 

AA 	= 	 (6.1) 

from M14.5, where E = NrI and J is given by M 15.1 

namely J = u4($ - 1) - vi(T - 1). 	(6.2) 

Taking first order terms only, 

= 	E 	j(I) 
• -int 	int 

= 	eq 	, 	(6.)) 

where ep = Nrip , eq = Nriq, Here E has already been 

expressed in ,terms of Y1, Vi, by means of (5.32) (i.e. (5.29) 

neglecting increments). 

Now, for example, a is the coefficient of Y1E,, 

that is the product, ep.(coeff, 	of Cs in J i(p. 	(6.4) 

Without going through the algebra, M 17.4 gives the expression 

for J (1) , 

	

1.10Ts + laY2 
	 (6.5 ) 
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where the y's are given by M 17.1, namely 

Yi 	= 	k + 1)c2  - k2 crt + ik(k + 1 )4 

T2= 	.4(k - 1 ) 2  C2 	k (k 	1 )01 4- 	k2 
	

(6.6) 

where k = NAV. 	Since uo. = Ave = v(1 — ve, (6.5) becomes 

J(I ) 
	 = 	(vrj 	ve )y, + 	 (6, 7) 

Now, in (6.6) 

E 	= -il + z1 

YjVj + Zgli 

4 .  

therefore, expressing 	T1, 	in terms of Yi Vi by means of 

(5.32), we get 

= 	Y2pi + 2Yp 	+ y2qi 

Yp Vp 	+ ( Yp Vq + Yq Vp )111 	Yq Vq4 

4 	 2Vp Vq1 + Vit4 
	

(6.8) 

Thus the coefficient of i in y, is 

	

(k2  k + 1 )c2  — 2k2cypvp 	k(k:f1)14 	( 6 .9) 

Now, it can easily be shown that 

= 	(k2 — 2k + 1)02 yp + 2k (1 —k)cyp vp + k2  v', 	(6.10) 
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and 

ip 	 k(C 2  ST2p 	2cypvp 	vt)  ) 
	

(6.11) 

From (6,10), (6,11) it will be seen that (6,9) can be written 

:(ip ill .1. 	) . 	 (6,12) 

Similarly, the coefficient of gi in y2 is 

4-[-(k - 1) 2 02 34 	2k(k - 1 )cyp vp + (1 - k2  )vP 

= ilv2p 	(k2  - 2k + 1)c2 	+ 2k(1 - k)cyp 	+ k2 v2p I 

= i(v2p 	y2) • 	 (6,13) 

Thus, from (6.4). (6.7), (6.12). (6,13) 

a = Nrip [ (via — vo) (ipii + vP 2  ) + va(v — VIP )] 

= Nrip [i (v0- Vp )Yol +(V4—rq )Voi 	ip 	+ VTp  Yeti +Vs; re, I 

Ivf) — v0 2 1 	. 

Now, ap is the coefficient of yol YII (aq is the coefficient of 

Vol Yi 	), thus 

gitP= 	iNrip (VO 	Vp )(1p1 4. 	+ VP (4) 	VIP ) 

iNrip (ip 	) [ (ip 	 (vp  + vpi ) 

k)yp 	(ipt 	), 	see M 24.1 . 	(6.14) 



Since the barred coefficients are associated with V,, then 

q arel from (6.3), eq. (coeff. of yo'  Cs , ViCI 	in J 

In this manner, the coefficients in M 24.2, 24,3, 218,7 are 

obtained, 

33. 
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PART II  - Computer and Programmes 

7. Computer Description 

The computer used for this work is the English Electric 

DEUCE housed at the University of New South Wales, Sydney. The 

machine operates entirely in the serial mode on 32 bit numbers. 

The high speed store consists of acoustic mercury delay lines of 

various lengths, the smallest containing one word (32 bits) and 

the largest containing 32 words. 	In detail, the high speed 

storage is as follows: 

Four single word stores. 

Three double word stores. 

Two four word stores. 

Twelve 32 word stores. 

the total high speed storage being 402 words. 	The slow speed 

backing store is a magnetic drum containing 8192 words arranged in 

256 tracks of 32 words each. The drum has separate read and write 

heads on opposite sides of the drum, each bank consisting of 16 heads 

which can be located vertically in any one of 16 positions, thus 

covering the entire 256 tracks. 	Information is read to or from the 

drum via one of the 32 word delay lines in blocks of 32 words. Drum 

transfers and head shifts proceed automatically once they are set up 
and do not interfere with the normal operation of the machine, 

provided that access to the transfer delay line is not required. 

The transfer of a block of words from the drum takes about 13 m secs, 

and a head shift about 50 m secs. The digit frequency of the 

machine is 1 megacycle; thus a single word store containing 32 bits 

needs 32 gsecs to deliver one complete word at its output. Hence 
the basic timing of the machine is tied to this time which is called 
a "minor cycle" abreviated m.c. The circulation time of a 32 word 

store is 32 m.c., that is, the same word is presented at the output 

every 1024 gsees (approximately I msec). 	This interval of time 

is termed a "major cycle", abreviated M.o. The 32 word stores 

are termed "delay lines". 	Thus the machine contains 12 delay lines, 

numbered for addressing purposes from 1 to 12. The remaining shorter 

delay lines are simply designated as single, double, or quadruple 

stores. 

It is a feature of this machine that arithmetic processes 

are associated with four stores, three of these being single stores, 

and one a double store. The way in which these stores are 
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addressed determines the type of arithmetic operation performed. 

The inputs and outputs of all high speed stores are connected via 

numbered gates to a common line called the "main highway". The 

output gates are called "source gates" or more simply "sources", 

and the input gates are called "destinations". 	Thus the basic 

instruction of the machine contains two addresses, one for the 

source and one for the destination. 	It will be realized that if 
the input and output of any one store are connected, the word 

contained in the store will circulate indefinitely. A non-
destructive read out is obtained simply by tapping this circulation 

path. The read in of a new word ill obtained by breaking the 

circulation path and connecting the input to the main highway, the 

circulation path being restored as soon as the last digit is read 

in to retain the word in the store (the connection to the main 

highway being opened at the same time of course). 

Owing to the fact that words in the delay lines appear 

sequentially at the source gate, the instruction word contains an 

extra number, called the wait number, which determines at what m.c. 

the instruction will be obeyed. Since the circulation time of the 

longest store is 32 	numbers in the range 0-31 are sufficient 

for this purpose. 	Zero time is usually taken to be the m.c, in 
which the first instruction/word enters a delay line from the card 

reader at initial input. Thus words in a delay line are denoted 

by 0, 1„.. 31, "0" referring to the first word read into the 
machine in any particular programme. Programme instructions/words 
are read into the delay lines from cards in binary form, and the 
input programme is so arranged that, having read the first word into 
the first delay line, the first word read into any other delay line 

also has a wait number of 0 associated with it, Thus the sub-
sequent location of words in any delay line is known, 

The control section of the machine which interprets 
Instructions and sets up the required gates has direct access to 

any of the first eight delay lines, However, any particular 

instruction in a delay line is not accessible to control except at• 

the output. Thus an additional number is required in the 

instruction word which indicates to the control when the required 
next instruction is accessible, called a timing number. As with 

the wait number, the timing number is in the range 0-31„ The 
particular delay line is also specified, of course, and the numbers 

here are in the range 0-7, 0 referring to delay line 8. 	Finally, 
in the instruction word, provision is made for continuing a transfer 
between stores for more than 1 m.c. 	It is possible, in fact, to 
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transfer the 32 words of one delay line to another with one 

instruction. With one instruction transfers can be performed for 
from 1-32 m.c. The duration of a transfer is determined by the 
difference between the wait and timing numbers, which, in the case of 
long transfers (more than one word) restricts the location of the 
next instruction. 	The instruction word is as follows: 

Digit position in word Function 

1 	(least significant digit) Not ,  used 
2 Next instruction source, i.e. 
3 Delay line 0-7 
4  

5 
6 

7 Source gate number 
8 Range 0-31 
9 
10 
11 
12 Destination gate number 
13 Range 0-31 
14  . 
15 
16  Long or short transfers 

17 

18 Wait number, referred to time 
19 instruction enters control 
20 
21  
22 

23 
24 Special use 

25  
26 
27 
28 Timing number, referred to time 
29 instruction enter control 
30  

• 	31 Not used 
32 Stop or go 
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It will be noticed in the preceeding table that the wait 

and timing numbers refer to the time that the instruction containing 

them enters control as their time reference, As mentioned before, 

the machine keeps track of m.c, only, hence it does not know which 

m.c, of a delay line the programmer has referred to as 0. Thus it 
Is the programmer's job to keep track of the location of words at any 
subsequent time. For instance, if a word with the m.c. number 6 
enters control, and a transfer of word number 27 is required, then 
the wait number in the instruction will be 19 since a minimum 2 m.c. 

are required to obey an instruction - one m.c, to read in the 

instruction and one m.c, to set up the gates. Then, after waiting 

19 m.o. from the set up 	the gates are opened and word 27 
enters the main highway. The minimum time to Obey any instruction 

Is 2 m.c, e.g. an instruction entering control in m,c. 11 can, at 

best, be obeyed in m.c. 13, the wait number for this being 0. 
Thus the sequence of events here are, instruction enters control 

in m.c. 11, gates set up in mo c e  12, no wait so obeyed in m.o. 13. 
The location of words by the programmer is facilitated by arranging 

the coding sheets in columns of 32 words representing the state of 

a delay line at mo o. times 0, 32, 64, 96, 	Apart from the 

direct access to delay lines 1-8, control can accept instructions 

from any other high speed storage location, but this requires a 

separate instruction, this being considered as simply a normal 

transfer between stores. 	In this event, the next-instruction- 

source number of the instruction is ignored by control, since, when 
the transfer is complete, control has its next instruction. 

The DEUCE machine has no indexing registers, but digits 

22-25 in the instruction word may be used for this purpose, Digits 

in these locations are always ignored by control. However, by 

placing an instruction in one of the stores that has adding facili-

ties, digits may be added into these locations each time the 
. instruction is obeyed during a repetitive loop. 	Eventually, these 
will overflow into position 26, that is, the timing number will be 
Increased by 1 and a different instruction from the normal one of 

the loop will enter control and thus exit can be made from the 
loop. A particular use of this facility is when numbers are being 

transferred successively from a delay line by increasing the wait 
number each time around the loop, 	If the digits 22-25 are all 

ones, when the wait number exceeds 31, the overflow will be carrie4 

right through to the timing number, giving exit to the loop. 

As mentioned before, the minimum time to obey an 

Instruction is 2 m.c. (64 p.sec), but, owing to the facility of being 
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able to transfer words for more than 1 m.c, with one instruction, it is 

possible to add/subtract the entire contents of a delay line (32 words) 
in 33 m.o. For example,words sent to destination 25 are added to 
the contents of the single word store 13 (see Fig. 7). 	Thus; if 13 is 
originally clear, then a long transfer of 32 words from delay line 1 0  
say, to destination 25 will produce in 13 the sum of the contents of 

delay line 1 after 33 m.o, from the time the instruction entered 
control. 	It will be seen in Pig 7, the schematic diagram for DEUCE 

that double word store 21 also has adding/subtracting facilities. 
However, this store is not generally used for sequential adding, these 

facilities are to allow arithmetic operations on the results of 
multiplication/division, which appear in this store, 	Multiplication/ 
division are carried out on numbers stored in 16, 21, and are 
Initiated by "trigger" instructions, 	Shift facilities are associated 
with store 14, the digits appearing at source 23 are those of 14 
shifted down one place, the digits from 24 are those of 14 shifted 
up one place. 	Multiple shifts can be simply obtained by a single 
instruction of the type 23-14 for any number of m.c, up to 32, whence 
the digits of 14 will be shifted as many places as the number of m.c, 
of the transfer. 

Logical operations are performed between the content's of 
stores 14, 15 by sources 25, 26. Discrimination on sign or magni-
tude of a number are performed by destinations 27, 28 respectively 
(negative numbers are two's compliment). If a positive number is 
sent to destination 27, then the next instruction as indicated by ' 

the timing number is taken into control; if the number sent to 27 is 
negative, then the timing number is increased by 1, causing control 
to take a different instruction, 

It is possible to alter the m.c, numbers of words in a long 
delay line by using delay line 10 and store 16. 	By initiating a 
special trigger (T.C.A.) the output of 10 is connected to the input 
of 16, Then a long transfer for 32 m a c, between source 16 and 
destination 10 will result in the words in 10 being shifted down 
one m.0, 0  i.e. word number 0 becomes word number 1 00090 

word number 31 becomes word number 0 0  

Sources27-31 are constants, 28 generates wait numbers and 
Is used mainly for instruction modification. 	Source 30 is used to 
clear stores. 	Source 31 is mainly used in logical operations. 

In normal operations, instructions are punched in binary 
on cards, 12 instructions per card, 3 cards per delay line. Thus 
at a rate of 200 cards per minute instructions are read in at the 



D29 

	

D25 	Short Acc. 
---0-- + 

	

1 	> TS 13 I I 
1 
1 

I TS 14 I 	 

x2 

TCA 
A  

	 TS 16 
A 

0 
	 DS 21 

mo3 	mc2 
A- rem. B/17 , 
L _ _ _ _ 47:la _ I 

me1 	mc2 
	 D$19 

DS 20 
mc3 mc2 mc1 mc0 

> 	I 
 

Q$17  

QS 18 

Discrim. 4. or 

CARD
PUNCH  

D26 

D14 

D15 

D16 

D21 
D22 
D23 

D19 

D20 

D17 

D18 

D27 
D28 

D1 

'CONTROL ID 	 
D7 

D8 

D9 

D10 

• D12 

D11 

S = Head 

\0  C = 0 

READ 

C= 

T8151 	 815 

TRIGGERS. 

0 - 24 Stim. Mat. 
1 - 24 Stim. Div. 

2 - 24 T.I.L. Discrim. 

3 - 24 Stim. TCA. 
4 - 24 Clear TCB 	(2) 

5-24  Stim. TCB 	(1) 

6 - 24 Clear Alarm. 
7-24  Stim. Alarm. 
8 - 24 Clear 0.P.S. 

9 _ 24 Clear Punch and 
Reader. 

10.- 24 Stim. Punch. 
12 - 24 Stim. Reader. 

SO 
 41

CARD 
READER  

	

1\ A 	 

S13 	A 	I.D. 

	 S23 
	 S24 

S14 
	 S25 
	 S26 

	
S18 TCB cleared by mult. and left off. 

TCB stim, by div. and left on 
(single length). 

S1 6 

I ' 

S21 

S22 

S19 

820 

Si? 

	I Discrim. 0 or 
mo31 

isil 	DL 1 	I> 	Si 

NIS 7 	DL 7  

	

NIS 0 1 	 > 	DL 8 	1—÷-38 

> 	' I 	DL  9 	I-----S9 
> 	 •CA * 

	1 	DL 10 	14 	SW 

	1 	DL 12 	F7÷-- S12 

DT. 11 
	 S11 

D30 

D31 

113 M.C.) v  

\fC = 1 

i"-P) 	 S28 
TWRITE 

C =1 	

S29  
S30  
S31 

P1 
P17 
P32 

ZEROS 

S = Position (50 M.C.) 

Fig. 7 	DEUCE Block diagram 



39. 

rate of 2,400 per minute. 	In most cases, numerical data are 

decimally punched and converted to binary by subroutine while being 

read at the normal card-reading rate. The cards used are 80 

column cards of which 32 columns are read by the machine. Punching 

out is at the rate of 100 cards per minute, decimal punching being 
achieved by programme. 

DEUCE has a built-in programme testing facility of con-

siderable power. When a programme is initially written,"stopd'are 

inserted at intervals by simply blocking up hole 32 in the 

appropriate instructions on the cards. When the machine encounters 

an instruction without a "go" digit it will halt, pending an 

external stimulus. 	If it is known that an error is present between 

any pair of "stoppers", it is possible to trigger the machine to 

punch out the instructions as they are obeyed,  whence they can be 
compared with the detailed flow and coding sheets. 	It will be 
realized that instructions in DEUCE are not stored in the order in 
which they are obeyed, they are fitted into the nearest vacant 
word location so as to minimise access time. 	Thus a "store dump" 

does not indicate the order in which instructions will be obeyed. 

The facility of punching out instructions as they are obeyed is 

particularly useful when discrimination is involved, as this 
can be forced by manual control for testing purposes. 	The causes 

of closed loops can also be detected with ease by this facility, 
especially in those cases where the loop is unintentioxlal, i.e. 

caused by instruction overwriting. 
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8. 	 Coefficients 	ramme 

The first programme produced was for the computation of 

the aberration coefficients and the contributions to them by the 

individual surfaces of a system containing 16 surfaces or less, 

The programme is based on a published table 4 for the computation 

of the third, fifth and seventh order coefficients (also termed 

primary, secondary and tertiary aberration coefficients). 	The 

table gives the computation of paracanonical coefficients and 

hence only proceeds as fat as the tertiary "p" coefficients, since 

only the "p" coefficients are required for the description of the 

aberrations of the system, provided that the initial paracanonical 
coordinates are those appropriate to the particular conjugate planes 

(see Section 4). However, primary and secondary "q" coefficients 

are computed, as these are required in the iteration formulae for 

the tertiary "p" coefficients (see Section 5). 

In M Section 81 art listed the iteration formulae for 

the tertiary coefficients. These formulae are applicable directly 

to systems containing aspherical surfaces, the asphericity of ,a- ,  

surface being reflected in the value of the intrinsic coefficients 

(see M Section 65,67). 	Since it would have been an advantage for 
future work to have a computer programme which was applicable to 

any type of system, the possibility of using the iterative formulae 
was considered, 	However, to use these formulae efficiently, high 

speed storage for about 300 words were required. Now, in the 
DEUCE there are 402 words of high speed storage, Owing to the 
magnitude of the numbers which occur during the computation, 
floating point arithmetic has to be used, 	This is done by 
subroutine requiring two delay lines of instructions (64 words), 
Also, delay line 11 is used for all drum transfers so this cannot 
be used as a "permanent" store. Thus the available high speed 
storage is 306 words. Floating point arithmetic requires two 
stores per word, so that the direct computation of the tertiary 
coefficients cannot be easily accomplished. However, in the 
iteration formulae, 55 products of the primary intermediate 
coefficients are used frequently. 	If only these are stored, 

then the computation Of the coefficients requires approximately 
1300 arithmetic operations, after the required intrinsic 

coefficients have been computed. 

Now, the table published in reference 4 is based on the 
method of condensed iteration for spherical surfaces only, 

(Presented in M Section 84. The simplification comes about As 

a result of the factorization of tiA„ 	For spherical surfaces 
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AA = 

 

ID 	= E J , from M 60.3 	(8,1) 

Let the true expansion of °D be 

°D 
00 n 

= Z 2 2all(1°C-P4-11411  n.111.0v.0 	v (8.2) 

and the pseudo-expansion of °D be 

00 

= 2 	2 	'g".(M01-11Titt-vvv 
n01 P.00 v00 41v • 	,01 (8. 3) 

From M 9.51, I can be written 

00 n 	g 
ip (Y, + qV, )+ 	0 	0  (lvt  Yi + 51 (17 111 )0141"111i - 

(8.4) 

where q = iq/ip and 

91" 	G  pr .') 	vq (8. 5) 

and similarly for Ti (Mt 	(these symbols correspond to the 

Gva) 	d p.va) (0 	in M 84.15). p.  

Then, writing gt = ip a 	 (8.6) 

it is easy to arrive at expressions of the type 

Si 	 Bi • + A't a 	 ( 8 . 7 ) 

= 	.sit 4- :A+ a 0 	 (8.8) 

The complete list for the secondary contributions is given in 

M 84.21-22. 	For the tertiary contributions, one has expressions 

of the type 

t, 	= 	t, + At  s,+ Sit  a, from M 84.23 	(8.9) 
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The formulae for obtaining the s't, tt are given by M 84,31, 

84.33 in conjunction with (8.6). 	The primary intermediate q 

coefficients are obtained from the p coefficients by means of the 

Identities given in M Section 20. 

Having computed the G t , by introducing a new quantity 
G such that 
NM 

f 	qGt 
	

(8.10) 

the barred secondary contributions can be obtained from the 

unbarred contributions as illustrated by the following expression 

- qs, 	= 	A a 	(8.11) 
Ur 

The complete set for the secondaries is given by M 84.42. From 

(8,5) one would expect that in order to calculate the S , the 

Sq are required, however these are not computed in the table of 

reference • Having calculated the Sq by means of the 

identities M 21,6, the § t  may be obtained by means of recurrence 

relations, using quantities of the previous surface. These are 

Indicated in the table by asterisks preceeding the quantities in 

question (see entries 102, 104, 106, ... 114 of the table). 	A 
typical recurrence relation is given on p.752 of reference 4. 

Using this condensed iteration scheme, storage is 
required for about 45 terns, and approximately 525 operations are 

needed for the computation of the tertiary coefficients. Thus 

this method is much more suitable for use on a computer. However, 

as mentioned before, the scheme is applicable to systems contain-

ing spherical surfaces only, 

The programme follows the steps in the published table 
except for two sets of results. As mentioned above, in the 
table the § 1.  are computed from results for the previous surface. 
Since this would involve a considerable increase in the number 

of results to be stored on the drum, for which the access time is 

rather long (up to 63 msec), it was decided to compute the § t  
from the definitive equation 

e 	ciep 	eci 	 '(8,12 s) 

For this the §(1 are required and these are not computed in the 
table. 	In the programme, Si q Goo* sq are found using the 
identities of M Section 22 p.32.33. 	§,sci 	is not given by any 
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identity and thus is computed using the last iterative formulae of 

M 11.3, which can be written as 

-egg 	= 3Cd% iap ilT(te 	ie 	vy - 3ve )1 - do, 	(8.13) 

from which -§0q is found by summation (3.16). A section of this 

expression, g (ii + 14 2  4. v 2  —3vq2  ), has the same form as the 

entry t34 of the table, the difference being that t34 used p 

coefficients, and the above, q coefficients. Hence this part of 

the expression is worked out by the same section of programme that 

computes 144 , but using q data, the result being stored until 

required in (8.13). 	Since 66q requires cq, the Aq... Cq 

computed in the table in entries t20 • • • t, 	the programme, 

obtained from aq so. 6 q , these being obtained from M20.21, 33, 34, 

This method also avoids retaining t4 	t23 tu 	Cq aq ) Qf 
the previous surface. 

In the computer programme, as in the table, the parameters 

of the system are to be so arranged that, for the particular pare—

canonical coordinates used, NI /g is unity. 	Thus the antaprimes 

associated with the intermediate coefficients in the iteration 

formulae are omitted in the computations. The final aberration 

coefficients produced by the table are augmented, that is, they are 

the coefficients of the series (3.18). 	To obtain the displacements 

ek', they have to be multiplied byti(. 1/Nk'vpk). 	This is done by 

the programme before punching out, and, to assist in the comparison 

of magnitudes, the contributions to these coefficients by the surfaces 

are also multiplied by p. before punching. Telescopic systems cannot 

be-handled by the programme since v;k is zero for these. 

Using -0-T coordinates, with an object at infinity, the 

initial data for the paraxial traces are, v a, = 0, yal  = 1, 

vb, =1, yb, = p where p is the distance of the paraxial entrance 

pupil from the first polar tangent plane. 	If d is the distance 

of the diaphragm behind  the (i)th surface then 

yq i — v4; d 

yo 	d 
	

(8.14) 

the paraxial coefficients in this expression being canonical.  To 
specify the system, the data given to the machine are 1) 

curvatures cj(j . 1 .. k); 	2) separations dj(d, :4 0); 
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3) ratio of refractive indices kj(=Nj/NI); and 4) the refractive 

index of the image space Ni. With these data and those for the 

"a" and "b" paraxial traces, punched in floating decimal form, the 

machine proceeds through the system, one surface at a time. At 

each surface, all the augmented coefficients up to ilopj and the 

SUM of the coefficients of the kind Ah to -tiopj are calculated 

before proceeding to the next surface. Note that coefficients 

Ah • • • are the intermediate coefficients of the (j+1)th surface. 

At the last surface, the Ow are the final augmented aberration 

coefficients of the entire system. The contributions to these by 

the surfaces, ao... 'Iwo 	are, of course, stored at each surface 
to be punched out with the aberration coefficients. 	The paraxial 

coefficients are also stored for punching. 

Thus the following results are punched out for each 

surface of the system: 1) paraxial coefficients vflap,v4,yq 

(first order), 2) primary p) coefficients (third order), 3) secondary 

p coefficients (fifth order), 4) tertiary p coefficients (seventh 

order); and finally 5) the third, fifth and seventh order 
coefficients of the entire system. 	The coefficients 2), 3), 4) 

and 5) are first multiplied by p. before punching. 	1), 2), 3) 

ahd 4) constitute 41 coefficients per surface, being composed from 

4 paraxial coefficients, 5 primary, 12 secondary, 20 tertiary. 
From the expansion of s1(  (3.18) 6 primary coefficients would be 

expected, but since B = 2i, (M 20,32 9 42) B is not punched. 

Since it is impossible to assess the magnitude of the 
numbers occurring during computation, checks on the accuracy of the 

working cannot be easily performed. The only computation check used 
in this 'programme is as follows. The coefficients of thesecond 

4 surface of the system computed as an example in the table are stored 
in binary in the machine. At the end of the calculation, of the 
coefficients of an entire system, the machine is redirected back into 

the programme, and is given the first surface results.of the known 
system. It then computes the second surface results and compares 
these with the stored information in groups t, t, A, S9 T, T. 
Should any one of these comparisons not agree, the punch—out routine 
will not be entered, and the particular failure will be indicated 

on the console. This method of checking in general only detects 
consistent failure of any one section of the computer. 	It is 
expected that should random errors occur, such as the insertion or 

loss of digits, then these will affect programme instructions, many 
of which pass through the arithmetic units. In this case, errors 
will be detected by virtue of the fact that the programme will fail. 
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The programme length is about 7,600 words, including result 

stores, and floating point subroutines are entered about 890 times 

for each surface. 	The computing time per surface is about 1C A4J .  

seconds, which gives an average time for obeying an instruction 

of about 400 Ilsec, 	Since a particular subroutine must be entered 

at the same m,c. every time, this gives a minimum time between 

entries of 1 M.c. (.== 1 m.sec) so, although the programme has been 

optimised as far as possible the subroutines place an upper limit 

on the minimum time possible to perform the computation in this 

programme. 	Including the punching out of the results, the machine 

time is approximately 45 seconds per surface. 
A sample set of results is given in Appendix 1, 

9. Ray_ira.sfabo ramie 

I. 1112.L.Ty 

It is not feasible to obtain in closed form an expression 

for AA as a function of the coordinates of a ray except in the 

case of a single surface (see M Section 15), 	Thus, in Section 3, 
AA is expanded as a power series in Yi 9 Vt. 	The coefficients of 
the series thus characterize systems  of rays rather than individual 

rays. However, for any particular ray, A4, 9  4A2, 	may be 

calculated by ordinary algebraic means. Having found the AA's, 

then 	in the ideal image plane can be easily obtained by direct 

summation, if p. = 1, by(3.12). In addition, the individual AA's 

will give some information about the way the surfaces contribute 
to the final aberration for the particular ray. An examination 
of the AA's for various principal rays for instance, can give 

some indication of which surfaces contribute mainly to distortion. 

This information can more readily be obtained from the contributions 

to the aberration coefficients, but if a ray trace is to be done, 
then any additional information apart from the final et, is of 

advantage. 

A ray trace scheme designed by Buchdahl on the basis of 
certain equations in M first computes at each surface the 

AA's in (5.30) directly and then uses these in equations (5.29) 

as a means of tracing the ray through the system. This scheme not 
only has the advantage of obtaining the AA's easily, but proves 

to be a very elegant way of tracing skew rays algebraically. The 
ray trace has, so far, been developed for system containing 

spherical surfaces only. Using paracanonical coordinates, the 
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theory is as follows. 

From M 60.3, for spherical surfaces only, 

AA 	=  

That is, writing in full 

Aliya 	= 	Daly 	LlA yb 	= 	Db Iy g 

(9. 1) 

LAza 	= 	Da 1.2 9 
	Lazb= 	biz  p 

	 (9. 2 ) 

where 

D 	= AN[y S 	1) - v(fxS] g 	 (943) 

(904) 

and x is the x-coordinate of the point of intersection ofthe 

ray with the surface, measured from the pole of the surface. 

S in(9.3)is given by M 62,4, namely 

P, 2 82  + 2p. S 	p, 	 9 

	

(9.5) 

where 

go 	= 	(le — 1)(1 -4- )ik2 

gi 	= 	(1 - k)[ci - 4 + (1 +0P/k2 ] 	(9,6) 

L2 	= 	( 	k)2 [c2-  2c1 + 4 — (1 + )11  /k2  ] . 

In (9.6) a. quantity P appears. 	This is defined by M 56.72 :  

1 - cx 	 (9. 7) 

whence 

= 	— p)/o . 	 (9- 8 ) 

Now, for a spherical surface, if xa t z are the coordinates of a 
point on the surface, 
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X2  — 2rx + (y2  + z2 ) 	= 0 . 	 (9.9) 

Substituting x for 5c-  in (1.6) we get 

Y2  + z2 	= 	- 2ix + 	(9.10) 

.thus 9.9) becomes 

(1 	4)x2' - 2x(r + 	+ 	= 	0 • 	(9.11) 

Using (9.8) and (9.11) one obtains an equation for P, namely 

	

+ 4)P2  + 2(c11 - 	+ tc2  - 201 + 4 - 1) 	. 	0 	(9.12) 

Let 

P2 	=  1  + 4 	. 	1 +  + W2  , 

PI= cl 	c(YV + ZW) 	p2 + I 

Po 	= c2 	- 2ci + 4 - 1 	= c2  (Y2  + Z2 ) - 2p, - 1)2 
9.13) 

then 

= 	[k1 (Pi — PoP2 ) — p, VP2 
	 (9.14) 

the positive root always being taken since P 	in the paraxial 
limit. Having found P, then we are in a position to determine 
the 110, gi, P.2 in (9.6). 

First, however, it is convenient to consider, instead of 
S a quantity 

9.15) 

Then (9.5) becomes 

	

§2 	 4. 17LO 
	 (9.16) 

where 

	

k2 112/(1 	k) 2 ,1.s 	k2 111/(1 	k), ji 	k2 p.0 • (9,17) 
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Thus 

= (k2 — 1)(1 +) 	. 	(k2 — 1)p2 

ui 	= k2  (orl 	+ (1 + 4)P = k2 p1 + 

k2  (c2  — 2c1 + 4) — (1+)P2  = k2  (pa+ 1) — P2 P2  . (9.18) 

Then 

= 	+ (15.1 - 	) - 	1/11 2 • 	 (9. 19 ) 

the positive root being taken when k is positive, the negative 
root when k is negative. 	As a result of (9.15), (9.3) becomes 

= 	N t [Y0 (e-  + k 	1) — v4x§) . 	 (9,20) 

Let 

then 

Da 	. N'braCI vbiej 

Db 	IT I [Yb(/ 	vbcd] 
	

(9,2 '1) 

since 

D 	= Paso + Pb to • 

The transfer from one surface to the next is accomplished using 
(5.29) and (5.30) as follows. 

In this work, where Sy, Sz occur as subscripts, the 
letters will be written side by side, in order to simplify the 
printing. 

Using paracanonical coordinates, (5,29) and (5,30) become 

Yj 	= 	yaj (Sy + Osyj 	+ Ybj (Ty + Otyj ) 

Zj 	= 	yai (Si + Oszj ) + Ybi (Tz + Oizi ) 
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where 

Vj 	= 	Vaj (Sy + O syj ) + vbj (Ty + ô tyj ) 

vaj (s , + ô szj ) + vbi (Tz + OfzJ ) 5 
	(9.22) 

I- 1  

	

6  sYi 	= 	— 	Ailsybi i 

- 1  

	

6 szj 	= 	— 	2 dAa2bi 
i 

j- 1  

	

ty j 	= 	+ 	2 	Atyai 
1 re 

- 
6 tzj 	= 	4. 	2AAtni 

ii 5 ( 9. 23) 

the anteprimes being omitted in (9.23), since NI /g is arranged to 

be unity here„ as in the computation for the aberration coefficients. 

To simplify the writing further, 6 sy  shall be denoted by 05yb 6 sz 

by Ozb 45.50 9  and LAsyb shall be denoted by Myb 9 0006 

Now„ from (9.23), we get 

	

yb(j I) 
	= 	6 ybj 	••• AA ybj 

	

zb (j.. I) 
	= 	6 ztjj 	AA zbi 

45 Ya 
	= 	yaj 	+ AA yaj 

 

6 2a(j.1) 	= 	ôzaJ 	+ A.A. raj 	 (9.24) 

By adding Sy9  Sz  •.. to both sides of the appropriate equations 
(9.24) 9  one obtains 

(Sy + Oyb )j. 	= 	[ (Sy + Oyb ) — LlAyb ]j 

(Sz + Ozb )j. t 	= 	[ (Sz + Ozb ) 	A-Azb Jj 

(Ty + Oya )j. 	= 	[ (Ty + Oya ) + LiAya ij 

(Tz + 	)j. 	= 	{(Tz + 6n ) + AAza )j • 
	( 9. 25) 
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Thus, given the AA's and (Sy + Oyb ),... at j  , 	can be 

found using (9.25) and (9,22). 	Note here that (S + 	= S, and 

that (S + .6)i stands for (S + el), since S is defined at the first 

surface only. 	(9.25) are written as they are to indicate that 
(S a) is to be evaluated at each surface for use in (9.2 ). 

To summarize, the ray trace proceeds thus: given (S + 6) 

at a particular surface, Y, Z, V, W are computed using (9,2 ), From 

these, the Pot PI, P2 are obtained next, by (9.13) from which P 
Is calculated using (9.14). 	Then the lams Alt A2 are obtained by 

(9. 18 ) and thus -6 from (9.19). 	Next Da and Db are -oomputed 

by (9.21), and finally the AA's from (9.2) and (9.4). 	Then, using 

(9.25) the (S 6) of the next surface can be obtained. 	It will 

be noticed that this scheme is a skew ray trace scheme in the sense 

that tangential and sagittal rays are special cases determined only 

by the starting data, namely, Sz = 0 for tangential rays, Sy = 0 

for sagittal rays. 

Having computed the As at each surface, then the dis-

placements of a ray from the ideal image point in the ideal image 

plane can be directly obtained by virtue of (3.12), 	For Para- 

canonical coordinates, bearing in mind (4.17) 

= 	p,2 AAyai i tet 

€ 	= 	Z Masi . i.1 (9.26) 

From (9.24) and (9.25) 

	

Z 6Altai 	= 	(Ty + Oya 	— Tit 

	

2 LiAzai 	= 	(Tz + Oza 	Tz 
	 (9,27) 

In practice, the object point is chosen to lie in the meridional 
plane, so that Tz = 0, hence 

	

Mali 	= 	(Tz + Oza )k • 
	 (9.28) 
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If the system is working in air, and has unit focal length. then 
= t, so that for this case 

	

e k 	= 	(Ty + 	ya) " Ty 

	

elk 	= 	erz 	Oza 
	 (9 ,29) 

the quantities in brackets being compute4 in the image space by the 
scheme, 

The refractive indices of a system are chosen appropriate 

to the particular wavelength (colour) of light. These values of 

N determine a particular value of vIk and hence the position of the 

ideal image plane, since the axial distance lAkof the image plane 
from the pole of the last surface is given by 

Ok 	=Yk /vOk . 	(9030) 

To trace rays of a different colour, a new set of values of 
N are required, which in turn fix the position of the new ideal 

	

image plane. 	Equations (9.29), which allow simple computation of 
sij, always give ek in the ideal image plane corresponding to the 
colour of the light. However, one usually requires that for various 
colours, all the displacements be obtained in one plane, whose 
position is determined by a particular "base" colour, 	In these 
circumstances, si can be obtained from M 86,1. namely 

	

sgy 	= 	07, ZkVi< - Y1( - ohic 

era 	Ztik 	VI( • 	 (9031 ) 

where 

ol=-- 	o3rOtk / °yolk • 

	

h 	= 	oTy oN't, 	ak 
	

(9,32) 

The preceding subscript to' refers to quantities associated 
with the base colour. 	The factor NI in oag (see 4,21) has been 
omitted here since OT coordinates are considered to be the most 
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useful set to use for the ray trace. As mentioned before, g =1 
for this set, thus in order to be able to omit the anteprimes 
associated with the AA's, N i  has to be made unity if it is not so 
already. 

If expressions (9.31), (9.32) are used to compute e ll , 

then it is possible to allow for any desired image plane shift. 

For a new image plane F l  which is at a distance x' from 
the ideal plane, 

'14 	oltik +X' 
	

(9.33) 

and for this plane, 

+ X l cr_Vtik 0T • 	 (9.34) 

Hence 

= 4 vv —Y1 - 

1,4( IN - zg . 	 ( 9. 35) 

There are several checks which can be used during the 
computation. 	One of these involves the calculation of an optical 
invariant ocEx „ defined as 

aEx 	aNrIx 

= aN(ZV - YW) 

= 	N(ZIT - Y1/10/4/(1 4. V2  4 le) 

= N(ZV - YW)/ 41)2 . 	(9.36) 

As the factor (ZV - YW) is identically zero for tangential rays the 
following checks can be used in this case 

and,according as c < 0, 

§ 	= 	c 	kir2  - [Y 	V t (d" 	r)) 2 /141 - 
+ 2 .. 

Itt4rtr2  - (Y 	rV)2 	i 	5  (2.37) 



where the subscript + refers to quantities at the next surface. 

If Ek is being checked, then d t  = 0, and the subscript + relates 

to quantities after refraction at the last surface. These checks 

are rather unwieldly and are not used in the ray trace programme 

since the machine is adequately checked when tracing skew rays, 

these rays being in the majority in most pencils. The checks 

(9,37)were designed for use with desk machine computations. 

Equations(9,22)require the paraxial coefficients y 8  
vi , yb, vb. 	These are Obtained from a pair of paraxial ray 

traces, the starting data for which is given by (4,12.) For OT 
coordinates which are used in the ray trace, the constants in 

(4.12)are given by(4.16) 	The p required for these constants is 

given by($.14). 

It is convenient for the numerical calculation of the 

paraxial coefficients, both canonical and paracanonical, to 

rewrite equations e.5)in the following form. 

*vt 

*y — dv 

cy — v 

vt 	= 	(1 	k) 	+ v , 

where *yj = Yj-t and *vt  J -1 	. 

(9.38 ) 

By w y of example, a ray of a pencil from an object at 

infinity will be traced through a wide angle system. The system 

is the Pantoskop, Fig, 8 (Flugge„ p. 283), the dimensions of 

which have been adjusted to give it unit focal length. The 

diaphragm is 0,061849 units behind the third surface. 

Table I shows the paraxial "p" and "or traces necessary 
to determine p, the position of the entrance pupil. To compute 

p it is only necessary to proceed as far as the third surface; 

the trace in the table has been continued to the 6th surface in 

order to check that the focal length is in fact unity (ft =  

From Table I and using (8.14)9 

p = 0.091520 

in the diagram of the system, this is the distance AE. 

The ray chosen for the ray trace is one of the 45° 

53. 
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pencil whose Sy , SZ are 0.015625, 0.015625, Sy being shown in the 

diagram. 

With the object at infinity and in the tangential plane, for 

6T coordinates 

	

= 1, 5 = — 0.091520, 	= 0, ti• = 1, 

thus the starting data for the "a" and "b" paraxial traces are 

a - ray 	= 1, VI = 

b 	ray y 	0.091520, vi  = 1. 

At the first surface, the initial data for the actual ray trace 
is of course 

Sy = 00015625 

Sz = 00015625 

Ty  = 1,0 

= 0.0 

Ty = VI 
	for an object at infinity (V I  = tan 45 ° ). 

Table II shows the ray trace computation. 

From Table II one obtains 

Sk 	= 	/*Oak 	= 0.9081481p 11 11( = 1.0 

iy 	= (Ty  + o) - Ty = l, ,kV 	= 0.003189 

= (Tz + 6 ) 	= l, jkW Vk - 	 = 0.0021148. 

Suppose a new image plane is distant 0.015625 from the ideal 
image plane. Then 

	

xt = 0.015625, la 	0.924106, 	= 1.015625 

	

0.003L.98, t 11Z 	= 0.002428. 



Fig. 8 	Pantoskop 
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(2) Programme 

The programme constructed on the basis of this scheme 
will operate on systems containing 15 surfaces or less. The ray 
trace scheme presented above is very suitable for machine computat-
ion. Owing to the fact that there are no axial intersection 
lengths of rays to be computed, the numbersappearing during the 

course of the calculation are of modest size. There are no 

trignometric functions to be evaluated, and only two square roots are 

required per surface, or three, including the aE r  check. Working 

to an accuracy of six decimal places with fixed point operation, the 

upper limit of the DEUCE machine is 2 7  , This restricts the 

initial value of Ty to be less than 64, which corresponds to an angle 

of about 800  for a pencil from an infinite object. Note here that 

the ray trace scheme will not work for angles >900  in any case. 
Thus fixed point working restricts the machine to systems of 160 °  

full field or less, which is adequate for most of the systems 

generally considered. 

It is desirable to work in fixed point arithmetic since, 

in computing a spot diagram, many rays are required and in these 

cases rapid computation is of considerable economic importance. In 

view of the need for fast calculation, considerable effort - was 

directed towards optimization of the programme, to the extellt that 
special subroutines were designed to carry out the multilSlication 

and divisions for the particular number size used throughout the 

computation. The machine time per surface is 005 seconds, 50 Per 
cent longer than the minimum time in which the instructions could 

be obeyed if all the stores were immediately accessible. 

Also in the design of the programme, thought was given to 
the question of making it as universal in its application as possible. 

Accordingly, the present programme can produce automatically these 

for any one of four types of trace, 1) a full pencil, 2) a tangential 
fan, 3) a sagittal fan, 4) a single specified ray. These results 

can be obt ined for au  pair  of object and image planes, noi, 
necessarily conjugate, providing of course that only finite image 

are contemplated, The punch-out programme restricts the 'displace-

ment se to be less than the focal length (unity) but this could be 
altered should circumstances warrant it. The object point is always 
considered to be in the meridional plane, the only restriction on 

the object height is that Ty  be less than 64. Note here that if VI 
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corresponds to the angle of the principal  ray of any pencil, then 

Ty 	le Hy 	 V / If V b 	. (9.39) 

In the programme, any particular pencil is characterized by its 

VI , the object height as such does not enter into the calculation. 
Knowing VI , lel and p, the designer can compute H yl  if desired 
from 

Hyi at 	VI  (7,0 1 — p) . 	(9.40 

The ideal image point in an out-of-focus image plane is defined as 

the intersection point with the plane of the principal ray ofthe 

pencil when its path through the system is. determined from the laws 
of paraxial  optics. From this definition (9034)can be deduced, 

In addition, if the refractive indices corresponding to 

different coloured light for a given system is fed in subsequent 

to tracing rays through the base colour system, then any of the 

four sets of results can be obtained for the new colour, In this 

case, as before, the image plane can be at any location, However, 

to establish the image height in the base ideal image plane 'fop 
use in tracing "coloured" rays, at least the principal ray of the 
required "coloured" pencils must also be traced through the base 
system. 

To enable the machine to trace utomatically the rays 
for a full pencil, it was necessary to design a vignetting scheme, 
This scheme causes the machine to cease computation on any ray. 
whose intersection point with any surface and with the plane of 
the diaphrapilies outside the limits set by the designer, the 

individual limits for each surface and the diaphregmare ihdepeAdent 

of each other. In the work done in this thesis, the actual rims 
of the components Were used so that'all rays traced will in fact go 
through the actual system as construeted. Should tracing of rays 
be-required which are vignetted by.a particular surface alone, 
this is achieved by simply making all oast .,  limits so large that 
they cannot vignette befori the selected one does. When the 
actual,..rimstof the components do the vignetting, then, as will be 
shown later, the shape of the entrace pupil for the partipular 
pencil -can be obtained from the output result4, , 

The programme requires as its initial data the curvatures(c) 
separations (Ol and refractive indices (N) of the surfaces, 

Yas ; V81  . 3%, 	for the "a" and "b" trace, a,i;.d top 
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vignetting purposes, the radii (p ) of the rims of the components 

(supposed or actual) and, the radius (pd) and location (D) of the 

diaphragm. As mentioned ‘before, the y - , vi for the . "a" - and "b" 

trace contain in them the position of the - object and the paraxial 

entrance pupil. Since "p" and "-" q traces are carried out during 

the initial design of a system, the entrance pupil position p. is 
supposed to be known by the time ray traces are required. Thus 
nothing is gained by programming the machine to compute the "a" and 

"b" starting data by performing a "p" and "q" trace of its own. 

From the initial data, the machine computes the tt-D and 

"b" paraxial coefficients of the System, which are stored until - all 

the ray traces for the particular system are completed. Then the 
machine calls for a "ray data card" on which is •punched, in'binary, 
1) VI  of the principal ray, 2) sy  9 St 9 the value of these' 

depending on the type of trace required, 3) the "scan interval 8. 
From V. , and the paraxial datai eN , ask , oh t are computed, 
which are stored initially for the duration of the particular trace, 
Next, the coordinates Sy g Sz from the card are taken as-the start-

ing data for the ray trace. 	For the first three types of" trace, 

Sy and S z  must be zero on the ray data card. The machine then 
proceeds to trace the ray in accordance with the scheme in table-II, 

also computing and comparing 404Ex. as it goes. At each surface also, 
vignetting is examined. 

Now, for any spherical surface, equation(9,9)holds. 

This can be written 

e2 (y2 + z  2 )  - I- 

or 	02 (y2 4  2 ) 	/32 	using (9 7). 

If y2  4. Z 2 	P2  for a particular surface, the vignetting will not 
occur. 	In this case then, 

1P 2  + P2  -i 	( 9.41) 

For a plane surface the corresponding condition is 

(9.42) 

Depending on the value of c, either 9,L4.1) or(9,42)is used to 

determine whether the ray is vignetted. 
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To determine whether the diaphragm vignettes, the coordin-

ates of the ray in the plane of the diaphragm are found from 1(1.6), 

where here is the distance of the diaphragm from the following 

Jurface. 	Then of course the ray is not vignetted if pad  i?. 

Assuming that the ray is not vignetted anywhere, when the 

image space is reached, se is computed by means of (9.35), taking into 

account the value of 'le given on the ray data card. Then a pair of 

digits associated with Vi are examined to determine Which of the four 

types of trace is required. 	If a full pencil-is indicated, then the 

initial Sy Sv will have been zero, and thus:the principal ray 

will have been traced first. The machine will;then return to the 

beginning of the ray trace programme and add -6" to thd value of S i  

and start again. Thus the next ray tracedwill have coordinates, 

0, 6 , 	On completion of this ray,6 is again added to Sz  and the 

trace ,entered again. 	In this manner, a sagittal,fan is traced, 

the eg ,  from each ray being stored. Eventually, vignetting will 

occur somewhere in the system. At this point ,the tr cc is immediate-

ly terminated, S z  is made zero an46added to S y  . 	In this manner 

the first quadrant of the entrance pupil is scanned by series of rays' 

spaced at intervals of 6 horizontally and vertically. When a ray 

is encountered whose S z  is zero, and is vignetted by the system, 

the first quadrant scan is terminated. 	If, in addition, VI is zero 

this completes the scanning for the axial pencil, since all four 

quadrants are symmetrical in this case. 	If VI - is not zero, then 

the lower quadrant of the entrance pupil is scanned, the first ray 

traced'in this group having coordinates - 6,c. As before, this 

quadrant - is fully scanned when a ray is encountered whose S z  is 

zero and which won't go through the system, Fig. 9. Each time a 

ray ia traced or vignetted the pair of digits characteristic of the 

type of trace is examined and'the behaviour of the machine is 

varied according to the type of trace required. The tangential and 
sagittal-fans are simple variations of the full pencil procedure. 

In order to indicate the shape of the entrance pupil and 
to specify the location of each ray traced in the "grid", along with 

the el for each ray, S y/6 Sz/6 are stored, giving the Cartesian 
coordinates of the ray relative to the principal ray as origin with 

-6-  as the unit of length. 	If, in the example of table II I 6 = 2 -8  9  

then the (y, z) of this ray would be (+ 4, + 4). 	From these figures 
for a full pencil, the shape of the entrance pupil can be plotted. 

In addition, with each set of e punched out, Vkl  , Wi are also 

given, in case the designer wishes to compute X s  9 Xt • Prior to 

punching any one set of results, in the absence of a particular 
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binary digit on the ray data card, the 0Tand Ghe of the pencil are 

stored as a pair for use in "colour tracing." 

After a set of results is punched, the machine calls in 

a new ray data card, which can contain entirely new information 

i.e., new V i  , different type of trace, new Ô and x' 	In this 

way the ray trace remains entirely under the control of the designer. 

To trace rays of a different colour through the system, 

additional data are presented to the machine giving the new refract-

ive indices. 	Included in these data is a parameter whidh tells 

the machine that the 14 is not to be computed from the paraxial 

coefficients but to be taken from the store, i.e. olgk  On 

the ray data cards used for "colour tracing" an extra digit is 

present which causes-the machine to search the "T store" until it 

finds a Ty which matches the Ty computed from the V i  on the card. 

The ohi which is associated with this Ty  is then extracted from 

the store and is subsequently used in the computation of ei 

The computation of aEx at each surface adequately checks 

the machine arithmetic for skew rays. To aid in the checking of 

tangential rays, the following relations are examined at each 

surface. 

9 2) 	e > 11 	i, 	3) 	te >,.(:), 	4) 	1521 	0 

(see Table II). 

If the first two relations do not hold, then the machine has made 

a mistake. Relation 3) will not be true when the ray has missed 

the surface, in the sense that y2  4. z2 > r2 	where r is the 

radius of the curved surface. If the ray is totally internally 

reflected at any surface, then t2i< O. 

100 Predicted Displacements  from Aberration Coefficients 

In the theory of aberration coefficients, el is 
represented as an infinite series of homogeneous polynomials. 	If 

this series is terminated after the seventh order terms, then only•

an approximation to Ok can be obtained. This approximation_ will 

be denoted by e'[3]. 	43] is computed using (3.18  which, written 

In full, and omitting primes and subscripts, becomes 
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ei[3] = 	 2A1 	+ 	+ 	+ s2crit + S3 ,14 + 

3417i 	S5 	+ S6 d )y1 

+(TI 	+ %MTh + ¶II + T411 + Ts1r1141 + T41C? + 

Telt + To ni 41 	+ Told + T, 0A )YI 

+(AEI + 	ii + 	4. 51d. 	171, + 53E141 + §41-1f 

kril 4, + §-64i )v, 

+ 1'2 d r) , + 	 t4 CI Ili + T5I1II + "16 E4 + 

+ l'e1041 + Toild + 	40v, 	 (10.1) 

el[3] = (AE., + 21:111 + 	+ SIM 	+ 32E1ni + 33141 + 

+ s5m41 + s6d )z, 

+ T211 + T3041 + T41111 + T51r1141 + ToCid + 

Toit + To 11+ 41 + T911 4i + Tio4;)z 	 (10.2) 

In these expressions, the identity M20.42 has been used, namely 
B = 2A. p, has been omitted from these expressions since the 
coefficients programme"produces the aberration coefficients already 

multiplied by tL, Also, since paracanonical OT coordinates are 

used throughout, the term involving WI (Tz) is absent in (10.2)as a 
result of the object points always being considered in the meridional. 

plane. The relations 4.22)are to be kept in mind here. 

As well as the final aberration coefficients, this programme 

requires the paraxial coefficients of the surfaces of the system, all 

of these being part of the output from the coefficients programme. 
In addition, the approximate radii p of the components and the 
radiusNand position D of the diaphragm are required. The 
paraxial coefficients and the p are used in a-vignetting scheme 
In such a manner that this programme will produce the four types 

of results mentioned in the ray trace programme. However, here, 
vignetting cannot be based on the path of the actual ray for 

which 0(3] iscomputed since there is no way of determining its 
path using only the final aberration coefficients. This is not 

because the series for eg has been terminated, but because in 



PART III  - Numerical Results 

11. 	Specifications of systems examined. 

In the specifications given for the following systems the 
dimensions have been so adjusted to give a focal length of unity. 
The systems are described by the curvatures c, the separations d 
and the refractive indices N. After these are given the-distance 
D of the diaphragm from the first surface, the stop number v of the 
full aperture as determined from an axial ray trace, and the 

approximate field of the system. 	The diagrams are not to scale. 

System 1  Vega 

3 

5 

6 

7 

8 

6.38090 

4.33692 

7.89645 

9.76526 

-9.76526 

-7.89645 

-4.33692 

-6.38090 

d. 

000 

0.061881 

0.000287 

0.006993 

0.180758 

0.006993 

0.0002874 

0.061881 

1,0 

1.6116 

100 

1.7480 

1.0 

1.7480 

1.0 

1.6116 

D 

field 

00370656 

6.1 

= 	900  

63. 



0.0 1.0 D 0.429197 

0.093077 1.6315 v 1.6 

0.001263 1.0 field 

0.117215 1.6515 

0.070289 1.5095 

0.018600 117467 

0.156704 1.0 

0.024988 1.5202 

0.198942 1.6515 

0.052451 1.5960 

1 1.51831 

2 0.204230 

3 2.83762 

1.16451 

5 -0.193567 

6 4.24506 

7 0.096097 

8 1.64368 

9 -4,60076 

10 -0.960177 

64. 

sigtga Sonnar 

C 
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equations (5.29), from which the path could be determined, the 

intermediate p and q coefficients are required. 	Only the p 

intermediate coefficients are produced by the coefficients 
programme. However, in order to prevent the machine from performing 

a scan indefinitely, at each surface Yj, Z j  are computed using 

(5.32), that is, the increments 6 (5.30) are neglected. 	Then the 

relation Yi + Zi < pf is examined and the ray is considered not 

vignetted if this holds. This method of vignetting is inaccurate as 

a result of two effects. Firstly, 	are measured in the polar 
tangent plane, whereas P is supposed to represent the rim of the 

component. 	Thus, in the case of a "steep" surface, an actual ray 
approaching the rim of the surface and making a large angle with the 

axis may have Y2  + Z 2  >P2  and still pass through unvignetted. 
Secondly, since the 6's have been omitted from the computation of the 
Y, Z , the value of Yj, Zj so obtained may be markedly in error if 
the system possesses large aberrations, or even large surface contribut-

ions and-small final aberrations. 

This programme was designed so that the displacements 
Predicted-by the . first three orders of coefficients could be - compared 

with those computed by ray traces. Thus, in. all systems a set of 
accurately vignetted ray traces are available. By making O and Pd  in 
the present programme sufficiently large, the pencil "traced" Can always 

be so arranged that more than the required number of "rays" are computed. 
The correct set is then determined by comparison with the (y, z) 

coerdinates in the ray trace-results since here also, a set of (y, z) 
coordinates is produced with each "ray" computed. Computing more 1  

• results than required tends to be wasteful-of machine time. However, 
since the machine time per "ray" is 0.5 seconds this is not serious. 
The machine time is almost independent of the number of surfaces in 
the. system since the main body of the computation is taken up in the 

calculation'of eqm, which of-course is a fixed length operation. 
The vignetting section of the programme, which involves the surfaces 
individually is quite fast, and is only a small percentage of the 
total time. 

Owing to the sizes of the numbers encountered in the 

coefficients Of a reasonably well corrected system, it is possible 
to perform the computation to the end of the secondary coefficients 
in fixed point arithmetic with an accuracy of six decimal places. 
The tertiary section is done in floating point arithmetic. The 
results from the primary and Secondary coefficients d[2] are 
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stored and punched with those from the entire set of coefficients 

so that .the improvement in the accuracy of the predicted displacements 

due to the addition of the tertiary coefficients may be examined. 

Naturally a "ray" is examined for vignetting right through the system 

before anycomputation on coefficients is initiated. The results 

produced by this programme are 412], iz[2], 43), 41(3), y, z, the 

(y, z) of a "ray" being computed as in the ray trace programme. -To-

simplify, the tabulation the format of the results is the Same as that 

of the ray trace programme. 

• 	 The same ray data cards used in the ray trace are also used 

here. However, in this case, image plane shifts end "colour" cannot 

be handled. This is because the aberration coefficients give 4 

only in the ideal image plane as determined by the value of y;kMk 

The ideal image height does not directly enter into the power series 

expansion of 4 . In an out-of-focus plane, 4 can be computed 

from M36.4 namely 

÷ xl vatk  8 + 	C at k  vibk 	v ) 	 (10.3) 

which, however, requires a complete set of a and b coefficients, and 

the computation of these is usually not worth the effort. 

The object plane location must also be the same as that 

used in the calculation of the coefficients, owing to the fact that 
the "a" coefficients alone will describe the aberrations of a system 
only when the paracanonical coordinates are chosed appropriate to the, 

object and entrance pupil positions, see Section 4. 
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System 	Tessar 

1 3.35531 0.0 1.0 D 0.1332 

-0,063011 0.0350 1.6226 v 1.6 

3 -2.16390 0.049839 1.0 field 5Q0 

L. 3.77245 o. oi 6o 1.5761 

5 -o.651018 0.044260 1.0 

6 14.52661 0.01650 1.5282 

7 -3.08690 0.0500 1.6133 



c 

1 1.71310 

2 -1.44057 

3 -1.57062 

4 0.0 

5 1.48712 

6 2.50710 

7 1.67694 

8 -0.567497 
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System 4 	Petzval Objective 

d 

0.0 

0.080301 

0.010337 

0.028674 

0.373180 

0.024119 

0.039047 

0.054204 

N 

1.0 

1.5095 

1.0 

1,61704 

1.0 

1.61704 

1,0 

1.5095 

D 

u 

field 

0.239206 

2.8 

= 	200  



agifal Telephoto 

The specifications of this system are not available for publication. 

7.0 

field .=-4 14° 

67. 
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System 6 	Biotar 

1 1:19617 0.0 1.0 D 	0.4210 

0.311526 0.10800 1.6424 1.6 

3 2,23214 0.01700 1.0 field = 	36° 

L. -0.086957 0.15600 1.6231 

5 3.53357 0.05100 1.5757 

-2.59740 0.18900 1.0 

1.98020 0.05100 1.6727 

8 ,1.87970 0,21200 1.6424 

9 0.943396 0,01000 1.0 

lo -0.833333 0.13900 1.6424 



Table III 

Semi-field angles of pencils -6 	(ft =  

Vega 0 10 20 30 35 40 450  0.011719 

Sonnar 0 5 10 15 20 25°  0.033203 

Teaser 0 5 10 15 20 25°  0.011719 

Petzval 0 2 4 6 8 100  0.019531 

Telephoto 0 1 2 3 L 5 6 7o 0.007813 

Biotar o 3 6 9 12 15 18°  0.039063 



Table IV 

Vega Sonnar Tessar 

- 0.7633 0.1778 0.8919 
- 0.1881 0.0242 0.11451 

t 0.1165 - 0.0727 - 0.0430 
C 0.03142 0.1205 0.1017 
C 0.0270 0.2838 0.0048 

Si - 661.2 - 1.389  
el 10.69 - 0.4599 - 	4..923 
82 43.10 - 1.756 - 19.31 
e2 24.46 - 1.062 1.063 
S3 - 	6.4614. - 1.302 - 	3.602 
e3 - 	0.2767 0.0728 - 	0.6016 
84  25.26 - 1.328 0.2279 
.8-4  '' 	042515 - 1.063 - 	1.646 
Ss - 	0.1506 0.0898 - 	1.480 
es  0.3547 - 0.0809 - 	0.2835 
as 0.1493 - 0.3708 - 	0.5708 
as - 	 0.0145 - 0.2756 - 	 0.0194 

T; - 30473 - 8.233 - 2044 
t; 213.1 - 1.953 - 	214.1 
T2 1652 - 12.63 - 1337 
1'2  1023 - 	2.384 42.47 
T3  - 884.8 - 	 7.220 146.9 
T3  13.68 0.6395 19.97 
T4  3426 - 	 0.6876 238,1 
T4 ‘" 	15.42 1.434 - 	36.07 
T6 9.624. 4.263 - 	63.44 
.115 - 	9.4814- 1.896 - 	13.68 
T6 "- 	9.070 - 	0.8988 - 	4.067 
1'6 0.1936 0.4851 - 	1.607 
Ti "'• 14.0.05 2.514.7 10.72 
Ti 38,09 2.481 3.060 
Ts - 29.35 5.994 - 	11.23 

- 	1.000 0.3611, - 	4.565 
T9 - 	0.3155 0.6720 - 	1.992 
119 0.14491 1,1403 1,107 
T! o 0.2097 - 	 0.6713 0.0271 
T0 0.0159 - 	 0.3938 0.07614 



Table IV (continued) 

Petzval Telephoto 
_ 

Biotar 

A 0.0734 0.0862 0.0873 

A 0.0192 0.0559 - 0.0267 

t - 0.1559 0.2026 - 0.1251 

C 0.3388 0.0909 0.0761 

d 0.090 1.710 - 0.2624 

8, 
e l  

- 3.376 
- 1.160 

- 13.15 
- 	4.293 

- 0.3541 
0.o6o6 

S2 - 4.556 - 17.19 0.2914 

S2 - 1.975 - 12.02 - 1.811 

S3 - 1.413 - 	6.873 - 1.512 

3 0.5900 - 	00 3296 - 001433 

54 - 2.033 - 12.39 - 1.864 

84  0.6692 - 	7.386 0.5468 
ss  10311 - 	1.118 - 0.2593 

S5  - 2.520 - 	9.043 1.136 

S6 - 0.8556 - 	3.405 - 0.3394 
S6 0.3925 7.397 - 0.3351 

Ti  -29,17 _ 102.7 _ 1.552 

ti - 	6.427 - 	49.70 0.3322 

T2 - 4.3.61 - 289.2 1.901 

112 _ 11.43 -- 263.7 - 9.438 

Ta - 12.19 - 125.1 - 5.202 
ts  - 	0.3509 - 	72.98 0.1982 

T. - 19.43 - 410.6 -18.28 

itt - 	30790 - 332.9 - 0.2026 

Ts 1.563 - 217.0 - 0.5094 
ts  - 8.258 - 213.8 3.462 
T6  

- 3.406 - 	50.08 - 1.156 

ti6 4.390 - 	0.4926 0.3703 
T7  - 000910 - 171.2 - 0.6656 
T7 2.106 - 104.1 5.156 

T8 - 2.847 - 131.9 5.386 

tii  10.07 90.79 1.488 
T9  5.081 - 	3.832 0.8090 

T9  - 7.456 - 93.91 1.686 
T" - 1.441 - 19.37 0.3795 
ti , 1.495 43.18 - 0.6475 
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12. 	Calculations Performed on the Optical Systems. 

1) 	Ray traces. 

For an Object plane at infinity, sets of ray traces were 

computed at several semi-field angles for each system, with the 

aberrations sk being calculated in the ideal image planes. The 

grid spacing 6 for the full pencil scans was chosen so that at 
least 200 points were available in the axial - spot diagram of each 

system. The various semi-field angles and the -6 for each system are 

listed in Table III, The values of 8 in this table appear to be 
complicated decimal numbers. This is because they are rounded-off 

decimal equivalents of the simple combinations of powers of two 

which were used on the ray data cards, It is easier to punch the 

binary digits for 2 -5 and 	on the cards in the case of the Biotar, 

for instance, than the binary representation of 0.04. 	(2-5  .1- 2 -7  ) 

is a sufficiently close approximation to ensure an adequate number of 

rays per pencil. 

2)_ 	Aberration Coefficients. 

For each of the six systems, the third fifth and seventh 
order coefficients and the contributions thereto were calculated for 

an object plane at infinity. The final aberration coefficients are 

set out in Table IV, in which the primes and subscripts k have been 
omitted from the symbols. The coefficient B has not been included 
since B = aR. The numerical values printed out by the computer from 

the coefficients programme are given to nine decimal figures. These 

are, of course, not all significant and the values given Table IV 

have been rounded off to four or five figures which will be 

significant in most cases, 

3) 	Predicted displacements. 

Corresponding to each of the rays of the pencils in Table 

III, a set of predicted displacements e t [2], e l [3] were computed 

from the first two and first three orders of aberration coefficients 
respectively. As mentioned before, resulting from the choice of 

coordinates used for the coefficients, these displacements in the 

ideal image plane are for an Object plane at infinity. 
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Diagrams 

The information obtained from the computations described 

in the preceding paragraphs is presented in a series of diagrams. 

These are of three types, 1) tangential curves, 2) annular curves, 

and 3) spot diagrams. 

Tangential curves 

These curves show the aberrations of rays lying in the 

meridional plane for various values of p , where p is the radius of 
the zone of the aperture in which-the ray lies, measured in the first 

polar tangent plane of the system. The vertical axis of these 

curves is actually marked in units of 8 , but, for tangential rays 
this is a direct measure of p • The particular value of p 
corresponding to the unit 8 for each system can be ascertained from 
Table 

In these diagrams three curves are drawn. The continuous 

line shows the variation with p of the true aberration syk determin-

ed by ray tracing. The dotted line shows the corresponding 

variation of the predicted displacement sty[2], and the dashed line 

the predicted displacement ey [3]. The difference between the 

dashed and dotted line shows directly the effect of the inclusion 

of the seventh order coefficients in the prediction of the ray 

displacements. 

Annular curves. 

The annular curves are a plot of the y and z components 

of the displacement of rays which lie on one zone of the aperture 

i.e. on the rim of a circle centred on the intersection 'point of 
the principal ray with the first polar tangent plane. 	In each 

diagram, the circle chosen is that one which best fills the 
(equivalent) entrance pupil and which is not vignetted by more 

than 25 percent of its circumference. The corresponding curves 
for 0[2] and O[3] are plotted using the same code as for the 
tangential curves. The radius of the circle is shown on the 

diagrams in units of e• 

It is convenient at times to refer to the polar coordinates 
of a point in the equivalent entrance pupil (i.e. in the first polar 

tangent plane). The point whose y, z cartesian coordinates are 

+n6,0 is designated as having polar coordinates no ;0°. Positive 
rotation is taken in the direction from the positive y axis to the 
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positive z axis i.e. anticlockwise when looking along the direction 
of the positive x axis. The arrows on the annular curves indicate 
the direction of rotation around the curves corresponding to a 
positive rotation in the equivalent entrance pupil, the arr6ws starting 

at the point corresponding to 00 . 

3) 	Spot diagrams. 

For each pencil, the spot diagrams are plotted in.pairs. 

Those in the column marked :Ok  are obtained - from ray traces and 

those in column st[3] from the first three ordersof coefficients. 
Spot diagrams predicted by only the first two 'orders of coefficients 
have not been plotted since the appearance of these can be inferred 
from the behaviour of the s'[3] set in conjunction with the 

tangential and annular curves. 

In all the diagrams, resulting from the definition of Ort  

the origin of the coordinate axes is the ideal. image point -

appropriate to the particular pencil. 	The positive direction for 
el in the annular curves, and spot diagrams is to the right of the 

ideal image point, and positive ei is downwards. 	This corresponds 

to viewing the image plane from the lens side. 

In the tangeLtial and annular curves, where the dotted 
(e[2]) or dashed (s'[3]) curve is not visible, they are to be 

considered coincident with the curve for Et  -k 

In each system, the scale of the annular curves and spot 
diagrams is identical with the scale of 	shown on its tangential 

curves. 
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13. 	Quality of Agreement between ei and _4124 L[3]  

In this section the diagrams of each system are examined 

in order to determine over what range of pencil angles the predicted 
displacements d[2], e[3] are in good agreement with el , 	In this 
context, the displacements c' [2],  e[3] computed from the 
coefficients will be termed secondary or tertiary predictions 

respectively, and the displacement s. 	from ray traces will 
be termed true displacements. 

Before proceeding with the examination of the diagrams, it 

Is necessary to comment on how the comparisons are made. At first, 

an attempt was made to make the comparison of the various curves 
and spot diagrams on a quantitative bgsis. 	In particular, some of 
the spot diagrams were treated in the following manner. First, 

centroids of a set of true and tertiary predicted spot diagrams were 

computed. The distance of the centroids from the ideal-image point 

gives some measure of "apparent distortion" as distinct from 

distortion measured from the intersection point of the principal ray 

which may not be in the region of the brightest part of the image. 

However, a single point does not enable the shape of the image patch 

to be determined. Accordingly, the centroid was taken as the 

origin of a set of rectangular cartesian axes, the y axis of which 

lay in the meridional plane. The z axis then splits-each diagram 

into two parts, termed upper and lower, the upper section being part 

nearest the axis of the system in the case of oblique pencils, or 
In the direction of - ely  in the case of an axial pencil. 	Now, all 
the spot diagrams are symmetrical about the meridional plane, thus 

the shape of the image patch can be ascertained by considering only 

one of the symmetrical halves of the diagram. The coordinates of 

the centroids of the upper and lower "quadrants" on one side of the 

y axis then give some idea of the shape of the image patch, and a 
comparison of these coordinates between corresponding predicted and 
true spot diagrams gives one means of measuring the agreement 
between them. 

This method has the advantage that all points are 

equally weighted. While it may have an application in some form 

of automatic lens design technique to detect improvements in spot 

diagrams as a result of changes in the system, the method proved too 
sensitive for the present work since it was found difficult to 

assign "tolerances" corresponding to "good" and "bad" agreement 
between the corresponding diagrams. 

The decision as to whether a pair of curves or spot 
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diagrams are in good agreement varies according to the person making 

the judgment, Thus, even though a suitable formula may be developed 

by which to make the necessary comparisons, the tolerances to - be 

applied would still vary from person to person. In view of this, 

the comparisons made here will be subjective in nature. 	In-judging 
the spot diagrams, the work of Herzberger

11 
 and Y. Ukita and J. 

12 
Tsujiuchi will be kept in mind. In these papers are published 

geometrical spot diagrams and the corresponding photographic images 

produced by the systems. The shapes of the images are fairly well 

Indicated by the diagrams, but in many cases the intensity distribut-

ions are not clearly predicted by the spot densities. This could 

be due to the techniques by which the photomicrographs were obtained, 
or, perhaps of more Importance, , due to the effect.of non-linearity in 

the film characteristics.. Also, when the dimensions of the spot 
diagram approach the size of the Airy disc, it might be expected 

that diffraction effects will seriously modify the predicted 
geometrical picture. Thus the spot diagrams presented here will 

be compared mainly on the basis of shape, the distribution of 

densities being a secondary consideration. 

The complete set of diagrams for any one system follow 

the page containing the description of their behaviour. 
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1) 	Vega, fig. 'W. 

From an examination of the tangential and annular curves, 
it is obvious that the agreement between the tertiary and true 
curves is excellent up to the 30 °pencil. At 35 °the tertiary 
prediction is adequate, but has become poor at 40°. The secondary 
predictions are satisfactory up to the 30°  pencil, but are start-
ing to differ noticeably at the 350 pencil, At 40o -and 45o the 
secondary and tertiary predictions are totally inadequate, 

- The true and predicted spot diagrams are in good 
agreement up to the 35 °  pencil. Then, as is so in the tangential 
and annular curves, the quality of the predicted spot diagrams falls 
off rapidly by the time the 40 pencil is reached. 

The 450  annular curves have not been plotted since it 
is obvious that nothing can be gained from them. 

Summarising, it can be stated on the basis of this 
system, that for systems of small aperture (f/6,3) the secondary 
predictions give a sufficiently accurate description of the 
aberrations up to a semi-field of 300, and the tertiary predictions 
up to 35°. 
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2) 	Sonnar, fig, 11 

The tangential curves for thissystem exhibit a rather 
unusual feature. In the 50  and 100  pencils the tertiary curve 

over-shoots the true curve in the region of 6 < 9. In addition 
in the 100  pencil overshoot occurs when6> + 6. This behaviour 

will be discussed later. -In the 15 9  pencil the secondary curve-- 

is in closer agreement to the true curve than-the tertiary predict-

ion in the region of large negative 6. The curves-for-the 200  

and 25°  pencils are "normal" in the sense that the tertiary 

predictions are better than the secondary even though the tertiary 
curves themselves are not sufficiently close to the true curves, 

Apart from the overshoot which occurs in .  extreme zone of 
the aperture, the tangential tertiary predictionsare good up to 
the15°  pencil. The secondary predictions improve in quality-up. 

to the:15°  pencil, At 20°  and 25° , neither-6eCOndary'or tertiary 

Predictions show the shape of the true curve.' 

In the annular curves, the tertiary predictions are good 

Up to . the'15°  pencil. 	As before, the secondai ,3r predictions 

improve in accuracy as the 15 0  pencil is approached. 

The spot diagrams reflect the behaviour indicated in 
the tertiary tangential and annular predictions that is, agreement 
Is good up to 150, at 20°  the agreement is fair and at 25° , poor. 

Thus for systems of this type, average semi-field (25° ) 

and wide aperture (f/1.6), the tertiary and secondary predictions 
are quite adequate up to 15 ° , and the tertiary prediction may even 

be satisfactory up to 200  as judged from the spot diagrams and 
annular curves. 
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3) 	Tessar, fig, 12 

For this system, the tertiary tangential curves are in 

excellent agreement with the true curves up to the 15°  pencil. 
The shape of the 20°  and 25°  true curve is adequately predicted 

by the tertiary curve, and is sufficiently close at 20 0  to be 

adequate for design purposes. The tangential secondary curves 

are adequate up to 150 , becoming bad at 25 0 . 

The annular curves show similar behaviour. The 

tertiary curves maintain the shape of the true curve for all 

pencils, being in close agreement up to the 15 °  pencil. The 
secondary predictions are adequate up to the 100  pencil. The 
apparently large discrepancy between the true and secondary curve 

in the axial pencil is not representative of the quality of the 

secondary predictions for all p, as can be seen in the tangential 

curves. The secondary curves differ noticeably in shape from the 
200  pencil onwards. 

The spot diagrams agree very well as regards shape in 

all pencils. The only differences are in the spread of the points, 
/but these are not large enough to cause concern. 

Thus, for systems of this type, the tertiary predictions 

are sufficiently accurate up to at least 25 °  semi-field, and the 

secondary predictions up to about 15°. 
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4)  Petzval, fig. 13 

In all the diagrams, the tertiary predictions are in 

excellent agreement with the true results for all pencils. The 

secondary tangential curves are close enough to the true curves to 
be adequate for design purposes. 

In the annular curves, the secondary agreement does not 

appear to be good, but this is only the result of radii chosen for 
these curves. 

For this type of system then, primary and secondary 

coefficients describe the aberrations with sufficient accuracy up 
to a semi-field of 10 ° . 	The inclusion of the tertiary coefficients 
effects an improvement in the quality of the predicted displacements, 
but are not absolutely necessary. 



7 

6 

5 

4 

3 

2 

Fig. 13 	Petzval 



Er=8 6°  

so 	 .;=7 

I 	I 	IIII 

............ .••/ 
............ 

—: -034  
E y  

=7 

.......... 4 ....... ..... 

° 
4°  68 

io 

Fig. 13 
	

Pet zval 



c'[3] 
o° 

4° 

Fig. 13  Petzval 



78. 

5) 	Telephoto, fig. 14 

The tangential tertiary curves agree well over all 

pencils and the secondary curves have a satisfactory agreement up 

to the 50 pencil. 

The annular tertiary predictions are quite good over all 

the pencils, and the secondary predictions are satisfactory up to 

the 6°  pencil. 

Consistent with the tangential and annular tertiary 

curves, the spot diagrams are in good agreement for all pencil 

angles. 

Owing to the high degree of correction of this system, 

these diagrams are plotted on a scale larger than for the other 

systems. In the tangential curves, the maximum difference 

between the secondary and the true curve is 0.000043 f' inthe 70 

pencil. It may be argued that this difference is so small as to 

be insignificant and hence that the secondary curve for this 

pencil angle is in good agreement with the true curve. The view 

taken here is that since all the aberrations except distortion 

are small, a high degree of precision is also required by the 
predictions if the coefficients are to be of any use in obtaining 

a well corrected system. 

This system was designed originally to work at a focal 
of 48 inches. Under test, it was noted that the performance 
was slightly inferior at the 4°  - 5 °  zone compared with the 

centre and edge. This is in accordance with the appearance of 

the spot diagrams, and indicates that the system could be further 

improved (i.e.diffraction limit has not been reached). 	To 
have any reasonable chance of achieving this, the coefficients 

must very accurately represent the state of correction of the 

system. 	It will be noted that in the 7°  tangential pencil the 
e v [2] curve indicates a range of 01, twice as great as that 

indicated by the true curve, thus at this inclination the 

secondary coefficients are not sufficient. 	In order to "remove" 
the aberrations by balancing between low and high orders, the 

tertiary coefficients must be included to give reliable results. 
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6) 	Biotar, fig. 15 

Over all pencils, the tangential tertiary curves are in 

good agreement with the true curves, except for the marginal rays 
in the early pencils. Not until the 9 °  pencil do the marginal 

tertiary predictions approach the true curve. The secondary 
tangential predictions show similar behaviour, but for these, 

close agreement is attained from the 15 0  pencil onwards. 

The inaccuracy of the secondary and tertiary predictions 
for marginal rays is very clearly indicated by the 3 °  annular 
curves, At 90  the tertiary predictions are considerably better, 
and from this pencil onwards, the tertiary curves show satisfactory 
agreement. 	Only in the 18 0  pencil does the secondary curve give 
any indication of the true shape. 

On the other hand, the spot diagrams do not differ ' 
significantly-from one another in any pencil. 	This, once again, 
indicates that inaccurate predictions for marginal rays are not 
serious, and that annular curves constructed with extreme values 
of i) (p) can lead to erroneous conclusions. 

Thus, tertiary coefficients are needed to describe 
adequately the aberrations of this type of system up to 18°  semi-
field. Primary and secondary coefficients alone will only give 
sufficient indication of the behaviour of the system between 12 °  
and 18 °  semi-field, 
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Some further comments on the behaviour of the curves for the 

Sonnar and Biotar are relevant at this point. 

In both of these systems, the tertiary tangential curves 

differ markedly from the true curves when 6 becomes large in pencils 
for the first half of the f4e14„; 	It will be also 'noticed that 
both of these systems have .maximum - stop numbers f/1.6, being the 

largest apertures of all the systems considered here. From an 

examination of the Biotar tangential curves, it is apparent that 

part of the-discrepancies between the tertiary and true curves 

can be accounted for by higher order spherical aberration (ninth 
order and higher). Using the 00 pencil to obtain an estimate 
of the effect of the higher orders for a 6 = 8, :the 30 annular 
Curves Were redrawn, the predicted curve now including the effect 
of all orders of spherical aberration (fig. 16),: It will be seen 
that the agreement is now considerably better than before. From 
an examination of the 3 0  tangential curves, allowingfor'all orders 

of spherical aberration, it appears very likely that the remaining 

predominant aberration necessary to'account for the-discrepancies 

Will be ninth and higher orders of oblique spherical aberration, 

with small amounts of higher order circular coma-. The reason for 

Choosing these aberrations is based on the fact that the discrepanc-

ies'arebeing caused by higher order aberrationswhich havea 

comparatively large effect for large values of p'; (6 ) and for 
email values of pencil angle (R). Apart from spherical aberration, • 
which does not account for all Of the discrepancies, n-th order 

Circular coma and oblique spherical aberrations, the coefficients 
for which multiply pu - ' R and p a-2  R 2  respectively; will be the 
next most predominant aberrations in the region of interest. 

Higher order circular coma is not likely to be large since the 
asymmetry of the true 30  annular curve is not great. While it is 
possible to obtain an estimate of the effect of higher order 

spherical aberration from the axialtangential curves, it is not 
PossiblelAo estimate easily the effect of other higher order 
aberrations (except distortion) 	If one particular higher order 
aberration is assumed predominant, then its effect can be estimated 9  
but the usefulness of this estimate As dependen tàz  correctness 
Of the assumption. 

The annular curves for ô 7 corresponding to an . aperture 
of 0.8 show that the tertiary curve is in reasonable agreement 

with the true curve (fig. 17) indicating that the unknown residual 

aberrations have a marked effect only at the maxiMUm p , supporting 
.; 

the reasoning already presented. 
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In the Sonnar  50  and 100  tangential curves, the tertiary 
curve crosses the true curve at 	= - 10. 	In the 150  pencil, the 

addition of the tertiary coefficients causes the predicted values 

s'[3] to become worse than e'[2] in the region of 8 < - 6. 	As in 

the case of the Biotar, these effects are due to the omission of 

the 9th and higher order aberrations. The axial tangential curves 

indicate that the predominant higher order spherical aberration 

coefficients are negative. The 9th and 11th order spherical 

aberration coefficients for this system have been computed and they 

are - 30.169 and - 53.71 respectively. However, the addition of 
these, while improving the agreement in the region of positive 9 

would make the agreement worse at the point 8 = -10 in the 5°  
and 100  pencils. 	This system, on further examination, exhibits a 

peouliar behaviour. When the value of 6 is extended beyond 9 in 
the axial pencil, the true curve very rapidly swings - around and 

recrosses the axis, c'. becoming very large and positive in the 

space of a small increase of 8. 	This behaviour is just starting 

to appear in the 5 0  and 10°  pencil at 6 = - 10. 

By using eq.(7.2)in 0.A.C. VIII, reference no. 9 
to compute the effect of higher orders of spherical aberration at 
those surfaces whose contributions to this aberration are 

dominant, the true axial curve can be satisfactorily predicted for 

values of 8 in excess of 9. 	It appears that quite high orders 

may have to be reached (perhaps 21 .1 ) before the coefficients 

become sufficiently positive to make the predicted curve follow the 
true curve in the region of large p • However, in the region of 
interest here, f/106, the spot diagrams are in quite good agreement. 
It will be noticed that the annular curves are plotted for a 

maximum p corresponding to f/1.9, thus avoiding the region of large 

deviations of the tertiary tangential curves from the true ones. 

Thus, although the higher order coefficients of 
spherical aberration have a marked effect at large values of 1 -61, 
the tertiary predictions are quite adequate for pencils up to 15°. 
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14.  Criteria Indicating Accuracy of Predicted Displacements. 

The purpose of this section is to discover what simple 

criteria, if any, will indicate the quality of the agreement between 

predicted and true displacements. Since we are attempting to 

estimata el from only the first two or three orders of its infinite 

series expansion (3.17), the accuracy of the estimate will depend on 

the rate of convergence of the series. 	So far it has proved difficult 

to determine theoretically the rate of convergence, so that conditions 

for good agreement by the secondary and tertiary predictions are here 

and elsewhere obtained by empirical methods. These methods involve 

an examination of the various angles which arise during the tracing of 

the paths of selected tangential rays for several pencil inclinations, 

keeping in mind the quality of the predictions for each pencil. 

If the algebraic ray trace scheme described in Section 9 is 

carried out with a desk machine,the informati9n necessary to compute 

the various angles associated with the ray at each surface is readily 

available. In particular, for tangential rays, at any surface 

V . tan Uy 
	

(14.1) 

. cos (I + U0 
	

(14.2) 

where Uy is the angle of inclination of the ray with the axis, and I 
is the angle of incidence at the surface. (I here is the Conrady 
symbol, and should not be confused with the I (.cY - V) of the 
algebraic theory (ego 2.1) ). 	The programmed ray trace does not 
make available any information relating to the individual surfaces so 
that it was necessary to obtain the required angles by hand ray 
tracing. 	For this purpose, it was found that a trigonometric ray 
trace was somewhat faster than the algebraic method and had the added 

advantage that the angles required appeared directly in the course of 

computation. The gain in speed occurs only when tangential rays are 
/traced. 	In fact, the particular trignometric method used will only 

trace tangential rays whereas the algebraic method is faster for a 
computer and works equally well for skew rays. 

To assist in the examination of the results a table 
indicating the quality of the agreement between the various predictions 
and true results for all the pencils of all the systems has been 

compiled (table V) based on the comments of Section 13. 	In this 
table, for each system, the inclination of the pencils in degrees is 

given in the row marked VI . The agreement of the secondary curves is 



TABLE V 

Quality of agreement between diagrams 

Vega 

VP 0 10 20 30 35 40  45 

5 

T3 

A2 

A3 
S3 

G 

G 

G 
G 
G 

G 

G 

G 
G 
G 

G 

G 

G 
G 
G 

F 

G 

F 

G 
G 

F 

F 

F 

F 

G 

B 	B 

B 	B 

B 	B 

B 	B 

F 	B 

Sonnar 

o 
VI 0 5 10 15 20 25 

T2 

T3 

A2 

A3 

83 

F 

G. 
B 

G 
G 

F 

G 

B 

G 
G 

F 

G 

F 

G 
G 

G 

F 

F 

G 
G 

B 

B 

B 

F 

F 

B 

B 

B 

B 

B 

Tessar 

V,
o 

 0 5 10 15 20 25 

T2 

T3 

A2 
A3 

83 

F 

G 

B 

G 
G 

F 

G 

F 
G 
G 

F 
G 

F 
G 
G 

F 
G 

B 

G 
G 

B 

F 

B 

F 
G 

B 

F 

B 

F 
G 

Petzval 

VIo  a 2 L. 6 8 10 

T2 
T3 

A2 

A3 

83 

F 

G 
B 
G 
G 

F 
G 

B 
G 
G 

F 

G 

B 
G 
G 

F 

G 

B 
G 
G 

F 

G 

B 
G 
G 

P 

G 

B 
G 
0 

Telephoto 

o Vi 0 1 2 3 L. 5 6 7 
T2 

T3 

A2 

A3 
S3 

G 

G 

G 
G 
G 

G 

G 

G 
G 
G 

G 
G 

G 
G 
G 

G 

G 

G 
G 

G 

G 

G 

G 
G.  
G 

G 

G 

G 
• G 
G 

F 

G 

F 
G 
G 

F 
G 

B 
G 
G 

Biotar 

IR 0 3 12 15 18 

T2 

T3 

A2 

A3 

83 

B 

F 
B 

F 
G 

EP 
F 

B 

B 
G 

B 
F 

B 

F 
G 

F 
G 

B 

G 
G 

F 
G 
B 

G 

G 

F 
G 
B 

G 

G 

F 
G 
F 

G 
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TABLE VI 

Vega Sonnar 

0 V I  - 6 I I' U . IT? .6 1 u 

0o 7 385 4 37 0 2 4 
o

o 9  50 9  52 9  31 5  
5 265  134 134 7 365 375 235 
7 395 34-4 324 7 355 365 31 5 
5 276 234 264 50  o 97 8 6  97 

100  o 8 7  97 1 47 -10 579  61 9 26 5  
-5 245  264  226 6 38 5  32 5  365  
-7 355 384 266 1 00 0 18, 15 18 7  

0 7 385 336 373 -9 509  529  13 5  
20 0 177 172 297 5 L.1 5  356 396 

-7 323 384 286 15°  0 28 7  22 5  277  
7 387 356- 544 -9 535 555 237 

30°  0 214.7  252 437 3 446  376 142 5 
-7 353 374 506 20°  o 377 302 377 

6 397 31 6 564 -7 46 9  48 9  347  
L. 357 256 524 2 496  41 2  48 7  

350  0 277  292  507 25°  o 48 7  382  477  
- 14 28 3  362  526 -4 47 7  42 6  46 7  

6 __ 343  392 556 
6 41 , 30 6  61 3  
14 38 7  26 2  603  

140°  0 307 332 577 
-14 -242  402  597 
-6 363 432 61  6 

6 407 292 673 
3.5 38 7  31 2  66 3  

45 °  0 31 7  372  657 
-3.5 267 432 66 7  
-6 353 452 677 



TABLE VI continued 

Te 8 sar Petzval 

VI°  8 1 1 ' U V, it• 

5
0 1 

0 
263  

73  
237 

72 
17 3  

73 6°  
8 
0 

-9 

40 3  
12 7  
22 3 -  

39 2  
13 6  
28 6  

24 3  
8 7  
9 3  

15
o  6 

0 
-6 

393  
203  
356  

29 2  
192 
336 

28 3  
19 3  
20 3  10

0  
7 
0 

-7 

143 3  
21 7  
28 7  

)42 
22 6  
346  

28 3  
147  
13 2  

200  
• 

L. 
0 

-7 

403 
293  
426  

332 
272  
404  

333 
273  
28 6  

Biotar 

25
0 

3 
0 

-6 

14.53 
363 
1456 

392 
344  
1434  

393 
3)43  
355  VI  I °  

0  0 7.5 
6 

376 
29 6  

36 5   
28 5  

225  
17 ' 	5 

Telephoto 

60 

8 
6 
0 

-6 
-8 

148 6  
366  
109  
327  
1437  

33 8  
248  
10 2  
356  
475  

29 5  
23 5  

96  
.12e  
185 

• 

o  9 

5 o 

8 
6 
0 

-6 
-8 

253  
21 3  
13 9  

114.9  
1141  

21 2  
182  
i 78  

21 6  
236  

16 

114.3 
13 9  

139 
13 9  12 o 

7 
4 
0 

- 14 

-7 

496  
326  
209  
33 7  

. 477  

33 4  
2144  
187 
337  
148 7  

32 6  
246  
176 
165  
206  

n  7 ,... 5 
0 

-5 

• 

243  
1 99  
199  

21 2  
238  
27 5  

18 9  
18 9  
18 9  

18 0  5 
0 

-6 

426  
339  

. 	557  

3144  
307  
567  

336  
286  
2913 
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presented in row T2  , and the tertiary agreement in row T 3  ,” Similarly, 

the agreement between the annular curves is given in rows A 2 , A3  

Finally, the comparison of the tertiary spot diagrams is given in 

row S3  

The quality of agreement is indicated by one of three letters 

G, F, B. G(good) is used when the shape and position of the predicted 

figure agrees well with the true result. F(fair) denotes that the 

predictions indicate approximately the shape and position of the true-

figure. B(bad) denotes a bad prediction of either shape or position. 

• 	 In Table VI are tabulated in degrees the maximum angles of 

incidence, I, of refraction, I', and inclination with the axis U, of 

tangential rays whose p is-given by the value of 6 in conjunction with 

table IIX. The signs of the angles have been disregarded. 

Not all the pencils corresponding to the curves and spot 

diagrams have been tabulated as in some systems sufficient information 

Is given by fewer pencils. The tangential rays traced have been 

chosen to cover the main points of interest in the tangential curves. 

The subscripts after the figures indicate the surfaces at which the 

maximum angles occur. 

The values of I for the Sonnar in - Table V exceed - 45o in 

pencils Q0, 50 , 100 ,  150, for those values of p where, in the - - 

tangential curves, the tertiary agreement is poor. - Similarly, in the 

250  pencil for the Tessar, I reaches 45 °  for the 6xtreme rays of the 

pencil, also corresponding to the points of maximum-deviation in the 

.predicted tangential curves. At first sight, then, it would appear 

that the quality of the tertiary predictions is closely correlated 

with the value of I l or I', (as seen in the epencil at 8 - 8 for 

the Biotar). However, in the 18 °  pencil for the Biotar, at a -6 of - 6, 

I and I' are well in excess. of 45 0  but the tertiary agreement is quite 

good in this tangential pencil. 

In the Vega, neither I and I' exceeds 45 0  for any pencil, 

yet the spot diagrams are in poor agreement from the 40 °  pencil 

Onwards. However, U steadily increases as the pencil angle increases, 

tending to suggest that the magnitude of this angle may also control 

the quality of agreement. 

In the course of the expansion of LA as a power series in 

Y1 , V, quantities of the type (1 + ir
,
) -f and (1 - sin 2 W, (1 - sinFW 

are in effect expanded as power series and the convergence of these 

series depends on the magnitude of V, sin I, sin I' . 	Thus it may be 
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expected that quality of agreement between the predicted and actual 

displacements would depend to some extent on the values of I, I t , U 

(tan U = V). 	However, it is the products of the above series which 

occur in the expansion for AA and thus it is not likely that a simple 

and straight forward relation between the magnitudes of the angles 

and the quality of agreement can be Obtained. 

Nevertheless, in an attempt to find - a single criterion, 

the ratio sin 1/cos U was examined. This ratio is equal to I(CY—V), 
for tangential pencils, a factor which occurs In the expansion 

of AA (M 60.3). 	In each of the systems examined here it can be shown 
that providing sin 1/cos U is less than 1 at each surface for the 
tangential rays given in table VI then the tertiary predictions are in 
sufficiently good agreement with the true results. 	(The maximum 

values of sin 1/cos U cannot be Obtained from table VI since the 

angles I, I t , U are not necessarily listed for the same surface). 

In addition, the two systems discussed in 0.A.C.V. 6 were also-examined, 

and here also the behaviour of the ratio was found to be in accordance 
with the above statement. The converse is not necessarily true, 
that is, sin 1/cos U can exceed 1 at some-surface and yet the 	-- 

agreement may still be satisfactory. 	System Z 2  In0.A.C.V. is such a 
case. 

While this ratio shows promise as a criterion for good 
agreement, it has not been possible so far to find any reasonable 
theoretical reason why it should be any more reliable than the value-
of I, 	or U. 	It is very likely that this ratio is just a 
fortuitous arrangement of angles which happens to incorporate the 
features already noted about the magnitudes of these angles. 

To summarize, the following statements can be made. The 
agreement between the tertiary predicted and true displacements will 
be good providing that nowhere in the system does I, I t  exceed 45°  or 
U , exceed 500 . 	It appears (with no theoretical justification) that, 
providing sin I./cos U does not exceed unity anywhere in the system, 
the tertiary predictions will be good. Many more systems will have 
to be examined before the last statement can be relied upon. The 
converses of these statements are not necessarily true. 	It has been 
found on several occasions that the above limits can be exceeded and 
yet the agreement be still good. 

It must be realised that these statements are based on the 
results  of observation,  in some cases coupled with slight theoretical 
justification. Thus they may be found to be wrong at any time. 
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They are intended only as a guide in the use of the aberration 
coefficients, giving the designer a quick means of assessing whether 
the first three orders of coefficients elope are likely to represent, 
with sufficient accuracy, the state of correction of the system. 

There is, however, a more reliable way of determining the 

quality of agteement, which does not involve much - more work. From 

an examination of the diagrams of the various systems, it will be 
noticed that when the predicted tertiary annular curves approximate 

the true curves, - the spot diagrams are in good agreemept. This is 

so providing that the p of the annular ring does not exceed 90 percent 

ofp maximum, thereby avoiding the discrepancies which may exist for 
large values of p , but which will not seriously effect - the appearance 

of the spot diagrams. 	It is suggested that these annular curves 

are constructed for those pencils of interest wlth p< 0.9P max. 
using points on the annular circle whose polar angles-are 0, 45, 90, 
135, 1800 . 	This involves five ray traces, of which three are skew. 

When the quality of agreement is being examined by using 
tangential traces, at least five rays for each pencil have to be 
traced in order to obtain the shape of the curve. Furthermore, if 
the angle criteria are being used, information at each surface is 
required for these rays. In view of the rather unsatisfactory nature 
of the angle criteria, and the fact that skew rays are not examined 

at all the construction of the predicted and true annular curves 
along ithe lines suggested will give a better indication of the 
quality of agreement (for either secondary or tertiary predictions) 

than:the tangential curves. The number of ray traces and 
predictions is the same in either case, and the ray trace programme 
will handle skew rays with equal facility as tangential rays so that 
no extra work is required for this method. 	It is, of course, 

realised that a single annular curve in any pencil does not in 
general indicate the shape or light distribution of the corresponding 
geometrical image patch. The method is intended only to check 
agreement, spot diagrams being the final arbiter in assessing the 
geometrical Image-forming properties of the system. 
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PART IV -  Application of Aberration Coefficients  

15. 	Use of Coefficients. 

The use of the aberration coefficients in optical design 

has been described in a general way in the paper by Cruickshank and 

Hills 10. 	In their paper it was assumed that the first three orders 

of coefficients alone sufficl.ently well represent the state of 

correction of the optical system. 	It is the intention of this 

section of the thesis to indicate the methods presented in their 

paper and in addition present the means of extending the range of 

usefulness of the coefficients to those cases where it is known that 

the first three orders do not sufficiently well represent the state 

of correction of the system. 

a) 	Good agreement between 0[3] ands% 6 

The geometrical representation of the various types of 

aberrations can be most easily realised when the series for egi c  is 

written in the polar coordinates described in Section 4. Writing 

(4.18) in full and including the secondary and tertiary coefficients t  

we get 

ro1cos4P 3  +0 2 (cos20 	+ (3054. 0 4 )cosopif + oje] e k = 

Dl i cosop s  + (112+ 1-La cos2o)p4H + ( .114+ 11 6  COS20)cos op 11 2  .4. 

p, 8c 0 s 2 s)P 2  ri3  + 	o s oP 	11,2 k s ] + Pr i cos0P 7  + 

(s.2 + 	cos2 ) p 611 ++ 	COS2  ) COS pt 2  + (r 7 +T. 8COS24a + TIFOS 	)P4h3  

2 	 2- 	-6 	_ 7 
cos )cos p

3- 4 	
H ts+S.16cos2o)pH 5 

 + T.00sopH + 	+ 0(9) 
12 



T i = Ti  

4-T22  

'r,, 	= T s  + T6 4.  

 

"  6 T 7 -I- T Ti = 76  T  = 

T 3 	iT7 	 T13 = Ts = 

T4 = it 4,  T3 	T 14 = Ta 

T.6 = T4 	 'CI 6 = T6 

	i T8+ T9  W6 = Ts 	T - is  =  -I-  

(  + T 9 ) 
¶ 7 = ti-3 + ill4 4. iT6 + 4 14 	

¶
17 	= 

i T3  

'T's • = i (T4 + Ts + T7) 	TI8 	= T4 + T10 

T9 = iT 5 + *T7 	 't w 9 = T10 
T  1 T7  t 	= if , o  W = 8  2 0 

	

= S1 	 = 	0 -83 + 	+ S s  

P'2 
	

-e, 	is2 
p. 3  
P. 	S2 	SS 4 	-1- 

	

4 5  - Ss 	p. 1 1  = S6 

	

= S4 	 P'12 = E6 

A 
= 0 2  A  

0 3  = it 

0 4  = C-it 

a s  6 

11 6 = ( + s5 ) 
11 9 4-86 

11 1 0  = S6 

07. 

= [0, sinep + o2  sin 2 oaf + (08+04) sir/ea-1 2j + [ p. i sinsp
6 

+ 

	

4- 	 2 	3-2 	 2-3 
p.3sin2sp H + p.. 3 + 11 6  cos 4.4) sineort + p. 9 sin 2 spH 

	

4 	 , pitsinopri 	+ [Tisin op
7 
 + T5  sin 2 op4it + (Ts+ Ts  cos2  o ) sine p5-  H 

	

4-3 	 2, 	3-4 
(ccoSin20 +Ttsin 4 s)p H + (r13  +•r i4cos ) slnGp H 

= 6 
sin2op

2-5  H + 'cosine!) H 	+ 0(9) (15.1) 

The relationships between the o, jt, T and the final aberration 
coefficients are as follows, omitting the subscripts and primes. 

Note that the factor 1/nir: k  has been included in the 
coefficients A, S, T. 
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The geometrical representation of the various types of 

aberrations are given in fig. 18 (Fig. 3 in the Cruickshank and 

Hills paper). 

The presentation of sit  in the form(15.1)is of considerable 

assistance in deciding how to balance the-aberrations of the various 

orders in order to achieve a satisfactory final image. A good 

illustration of the procedure adopted is given in Section 7 of - ref.10, 

where the various stages of the correction of the telephoto system 

used in this thesis are shown, The power of the aberration 

coefficients method lies not so much in the representation of q as 

a power series in the initial coordinates, but in the fact that each 

final coefficient is the linear sum of the contributions by each 

surface of the system, together with the fact that the coefficients 

characterise systems of rays. As can be seen in Section 5, the 

coefficients are independent of the values of 	IL, they depend, 

only on the constitution of'the system. Resulting from these 

properties of the coefficients, the designer has at his disposal a 

powerful tool for use in correcting optical systems. 

From the contributions to the final aberration coefficients by 

the various surfaces of an optical system, one can gain insight into 

the "raison d'etre" of the system. As an example, table VII gives 

the contributions to the coefficients for the Vega. The final 

coefficients are under the column marked Z • Consider the spherical 
aberration of this system. The third, fifth and seventh order 

coefficients controlling this aberration are 00  Ile  T1  0  It can be 

seen that the final coefficients in all three orders are negative. 

This is the result of the large negative contributions by the fourth 

and fifth surfaces. These contributions are to some extent 
compensated by the first and eighth surfaces. In comparison, the 
remaining surfaces contribute little to this aberration. 	On the 

other hand, the contributions to primary coma, °2'  are fairly well 
distributed amongst the surfaces, p2 and p. 3 control secondary circular 
coma, and the surface contributing most to this aberration is the 

first. By scrutinising the surface contributions to the coefficients 

in this manner, one gains an understanding of why the system behaves 

as it does. 

So far, the aberration coefficients have been considered 

only as a means of describing the behaviour of a system. Now, when 

the coefficients are to be used as an aid in the correction of a 
system, it is of considerable advantage to have at least the first 
derivatives of the final coefficients with respect to the parameters 



Table VII 

1 2 3 14 5 7 8 

0, 30.59 0.2563 5.814 -34.24 -42.52 13.53 -1.837 27.65 -0.7633 

02 1.173 -0.1094 -0.4827 0.7130 -0.8675 1.037 -0.5494 -1.102 -0.1881 

03 0.0450 0.0467 0.0401 -0.0148 -0.0177 0.0795 -0.1644 0.0439 0.0583 

os  1.211 -0,8229 1.689 -2,089 -2.089 1.689 -0.8229 1.211 -0.0240 

os  0.0481 0.3313 -0.1436 0.0438 -0.0430 0.1356 -0.2953 -0.0500 0.0270 

II, 

ii2  

714.1 

119.2 

-9.565 

-20.26 

48.57 

53.77 

-983.1 

-31.07 

-1155 

-28.20 

94.08 

-27.88 

42.54 

32.73 

587.5  H 

-66.00 

-661.2 

32.24 

P.3 9 1 .79 -22.99 55.38 -42.19 11.15 -41.21 26.10 -56.47 21.55 

114 30.82 26.33 20.27 -60.67 -57.16 23.45 13.28 21.67 17.99 

As 23.78 5.368 27.45 -57.29 -50.78 24.19 1.913 18.90 -6.464 

116 -20.71 -3.694 -3.744 42.07 52.74 -11.86 -4.815 -24.73 25.26 

42  1.774 2.225 2.078 -3,259 3.897 -0.5308 -3.612 -3.048 -0.4778 

il g  0.8624 0.4950 3.972 -4.946 4.742 -3.176 -0.7778 -1.373 -0.2010 

119 1 . 259 -0.2142 4.018 -4.623 4.330 -3.077 0.1228 -1.891 -0.0753 

1-Lio-o ,1 o53 -0.0733 0.1965 -0.4637 -0.3195 0.2572 -0.1681 0.1722 -0.5040 

-0.2018 0.2559 0.0880 -0.2719 -0.2294 0.1237 0.1599 -0.0736 -0.1493 

1112 -0.0077 0.0666 -0.1073 0.0713 0.0435 0.0083 -0.0217 -0.0675 -000145 

T1 19660 -901.5 1939 -31830 -35940 -836.9 1420 16020 -30470 

T2 4455 5.147 1992 -268.1 539.8 -3266 1841 -4260 1039 

Tg  3702 -385.5 2090 -653.5 1848 -3310 1544 -4008 826.1 

¶4 943.3 806.2 390.4 -2182 -1844 -42.73 1321 746.9 138.8 

Ts  659.5 203.5 661.5 -2019  -1700 365.5 402.3 541.7 -884.8 

T g  -460.2 -159.4 715.6 1553  2382 300.4 -250.4 -654.5 3426 

T 7  -3.508 54.92, 87.37 -162.3  102.1 45.99 -119.4 -9.344 -4.244 

T g  -46.79 40.03 111.2 -209.1  137.0 12.13 -112.6 45.12 -22.93 

¶9  -1.966 3.576 140.3 -191.9  129.5 -36.10 -38.94 -9.613 -5.201 

Tig  -18.00 4.464 -10.21 1.959  -13.48 23.35 -16.45 23.37 -5.007 

Til  -0.047 25.76 -7.835 -22.04  -25.89 17.98 -17.99 11.50 -18.55 

To  4.311 -28.26 22.28 -28.16  -29.77 33.00 -54.32 13.48 -67.44 

T" -2.656 5.485 4.405 -14.86  -17.41 9.354 1.909 4.700 -9.070 

T" 9.832 -8.906 17.11 -34.96  -35.24 22.87 -20.18 20.11 -29.35 

Tig  -0.5829 2.534 -3.217 2.571  -1.727 2,202 -2.854 0.2224 -0.8515 

TI6 -0.4811 0.2023 -1.147 1.229  -1.469 0,1088 0.4344 0.4647 -0.6579 

Ti 7  -0.6695 0.5606 -2.177 2.389 	-0.9879 0.1832 0.3124 0.2310 -0.1578 

Ti e  0.0340 -0.0442 0.1304 -0,0614 -0.9613 0.5934 0.5816 0.3864 0.6588 

To  0.0853 -0.0201 -0.1224 0.1524  -.0.3337 0.2506 -0.0068 0,2044 0.2097 

¶20 0 . 0033 10.0166 -0.0048 -0.0070-0.0157 0.0287 -0.0283 0.0232 0.0159 
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of the system. With these derivatives it is then possible to 
estimate the effect of moderate changes of construction, not only 

of single changes, but simultaneous changes of a number of  parameters, 
which leads to considerable economy of design. Care must be taken 
when assessing the effect of changes since the focal length is usually 
altered as well. Before a direct comparison can be made the focal, 
lengths of the original and modified systems must be identical. 	If 
the original system has unit focal length, then the multiplication of 
the new s tk  or e [3] by the new vtak  will make these displacements 
also correspond to a system of unit focal length. 

It has been found, using only the first derivatives of the 
coefficients, that changes of parameters not exceeding about 5 percent 
(moderate changes) can be made with reasonable accuracy. 	If changes 
greater than this are required then it would be desirable to recompute 
the coefficients and derivatives after, say, each 10 percent change. 
The use of second derivatives would increase the accuracy of the 
estimate of the new coefficients, but, in view of the labour required 
to obtain these derivatives, their use is not considered worth while. 
In any case, the derivatives are used only as a guide to the required 
changes, the performance of the system being more accurately assessed 
from the actual coefficients computed after a change is made. These 
techniques are discussed in some detail in the paper by Cruickshank 
and Hills. 	Methods of obtaining the first derivatives are discussed 

later. 

If a parameter of a system which precedes the diaphragm is 
altered.in general the value of p also is changed. Since OT paraeanon-
ical coordinates depend on p, strictly speaking, each time the 
parameters are so altered, a new set of OT coordinates should be 
computed corresponding to the new value of p. However, if the 
changes are moderate, the effect of the change in p is usually 
negligible compared with the change in the aberration coefficients so 
that p can be considered constant and the coordinates need not be 
altered after such modifications of the system. When the same value 
ofp is used throughout, changes of parameters before the diaphragm 
necessarily imply a change in the position of the diaphragm, which 
will not be serious unless large changes are made. Note also that 
a change in scale of the system (to readjust the focal length perhaps) 
changes p and /01 if the latter is not infinite. 	If a large change is 
made with p constant, it may be found that the diaphragm plane has 
been moved into the glass of a component. 
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By way of example, changes of curvature of three surfaces 

were made in each of the systems, the Vega and the Sonnar. The 

changes made were, for the Vega c2  + 4.6%, c 4 	0.1%, cs +2.0%  and 

for the Sonnar c i  - 2.0%, c3  + 1,1%, 0 5  - 502%. 	The predicted and 

computed coefficients for the modified systems, as well as those for 

the original systems are shown in Table VIII. •Note here that the 

ordinary algebraic coefficients have been tabulated since these are 

the ones used by the programmes. The geometrical interpretations of 

the various types of aberrations are not important in this example. 

On the whole, the predicted coefficients are satisfactory. 

Those cases where the agreement is not so good, mainly in the tertiary 

coefficients, generally correspond to large changes in the coefficients, 

e.g. Ti and T7 for the Vega. 	The T7 predicted coefficient indicates 

a.  93 percent change, whereas the actual change is about 80 percent. 
However, since the tertiary coefficients multiply seventh powers of 

the coordinates of a ray, an occasional error of this magnitude will 

not have a serious effect when the coefficient is comparatively small. 

b) 	Bad agreement between e' [3] and silk  

In those , cases where el[3] does not closely approximate e; , 

it is still possible to use the coefficients as an aid in the 

understanding and correction of a system. Now, although the first 

three orders of coefficients and their contributions alone do not 
exactly represent the aberrations of the system, they are still 

capable of indicating the surfaces whose contributions dominate the 

final amount of any selected aberration. 	For instance, in the notes 

on the Sonnar in Section 13., it was mentioned that the true 
tangential curve could be closely approximated by calculating the 

effects of higher order spherical aberration at those surfaces whose  
primary, secondary and tertiary contributions were predominant. 
Admittedly, an approximation to only higher order spherical aberration 

can be computed so far, the point is that the surfaces at which the 
higher order contributions are likely to be predominant can be assessed 
with reasonable confidence on the basis of the first three orders. 

In the Vega, Table VII, the contributions to circular coma 0 2 ;p 2 ,11 3  

and T . T are comparatively large and are all positive at the first 2 - 	3 
surface, 	It is thus likely that this state of affairs will continue 

in the higher orders. However, the eighth surface contributes 

negatively to this aberration, the contributions here being of 

sufficient magnitude to Just about cancel the effect of the first 

surface. There is no reason to suppose that this cancellation will 

not continue in the higher order contributions to circular coma. 



Table VIII 

Vega Sonnar 

Original Predicted Computed Original Predicted CoMputed 

-0.7633 2.292 2.519 0.1778 0.1716 0.1714.2 
-0.1881 -0.4272 -0.14.114.8 0.0242 0.00514 0.0065 
0.1165 0.0360 0.0389 -0.0727 -Q1155 -0.11.48 

C 0.0342 0.0012 0.0027 0.1205 0.0989 0.0993 
C-  0.0270 0.0026 0.00314, 0.2838 0 0 2619 0.2619 

S i  -661.2 -560.8 -546.9 -1,389. -1.482 -1.468. 
e, 10.69 3.185 3.905 -0.4599 -005539 -0,5523 
S 2  143 0 11 12,50 16.04 -1.756 -2.123 -2.115 
ff2 2446 20,51 20.4-0 -1.062 -1.273 -1.275 
8 3  -6014-614 -6.538 -6.513 -1.302 -104,34 -1.434 
g 3  -0 0 2767 . -0.5226 -0.5115 0.0728 -0.0032 -0.0034 
8 4  25.26 18.06 1787 -1.328 -1.532 -1.537 
8- 4 -0.2515 0.1489 0.1107 -1.063 -1.157 -1.1.59 
S 5  -001506 -0 0 1672 -001875 0.0898 -0.01149 -0.0184 
e• s -0.3547 -0.2669 -0.2646 -0.0809 -0.1483 -0.1490 
S 6  -0,1)493 -0 0 1150 -0.1160 -0.3708 -0.3801 -0.3804 
S 6  -0001)45 -000110 -0 0 0102 -0,2756 -0.2937 -0.2936 

T, -30475 -27999 -27410 -8,233 -9.530 -8.935 
T1  .213.1 15.97 46.04 -10953 -20 352 -2.361 
T2  1652 -86.98 164.7 -12.63 -15.16 -1.5.19 
T2  10214 902,5 898 0 2 -20384 -30227 -3 0 271 
T3  -88408 -854.5 -848.1 -7.220 -7.980 -70997 
T3  13.68 1.984 2.685 0,6395 003704 003605 
T 4  3426 2909 2884 -006876 -20195 -2.319 
T 4  -15.43 5 0 113 1.588 1.434 1,220 1.176 
Ts  9.625 -1.574 -4,1)43 40263 3.686 3.627 
ts  -9.484 -8.708 -8.622 1.896 1.805 1.787 
T6 -9.071 -7.775 -7.907 -0.8988 -0.8738 -0.8828 
Ts -0.1937 -0.1032 -0.0926 0.14851 0.4863 0.4848 
T7 -40.06 -2.908 -8.253 2.547 2.692 2.654 
Ti -38.09 -32 ,.24 -32.18 2.481 2.750 2.7/44 
T8 -29.35 -19097 -19.93 5.994 6.332 6.315 
T8 -10000 -007817 -0,7805 0 0 3611 0066141 0.6649 
T9 -0.3155 -000581 -0.01413 006720 0.8926 008924 
i-t9  0.4491 0.4014 003959 10403 1,559, 1.562 
Tis  0.2098 0.1828 0.1851 -0.6713 -0,06168 -0.6162 
tis  000159 0.0134 0.0132 -0.3938 -0.3580 -0.3569 



91. 

It must be remembered that any inaccuracy in agreement between 

predicted and true displacements is not a result of inaccurate 

coefficients, but simply that the series for e l: - has been terminated 

too soon. 	The first three orders of coefficients work quite well 

for moderate values of R and p . 

In a reasonably well corrected system, that is, after the 

initial design, the primary aberrations tend to be well distributed 

amongst the various .surfaces,. resulting in small final aberrations. 

The distribution of the secondary aberrations is generally such that 

the contributions do not balance one another quite so Well. 	In the 

tertiary aberrations, it is usual to find that the final coefficientis 

are of the same order of magnitude as the contributions as a result of 

a marked lack of balance amongst the contributions. This can v be 

seen in Table VII. Under these conditions, a small change in a 

parameter will have a marked effect on the primary aberrations, a less 
effect on the secondary aberrations and little effect on the tertiary 

aberrations. This can be seen in Table IX which gives the first 

curvature derivatives for a few surfaces of the Vega. Note here 

that the coefficients are A, 5, T and not a, p.,T. 	In this table 

it will be noticed that the ratio of derivative/coefficient 

generally decreases as the order of the coefficient increase 	For 
example, the coefficients of distortion C, 56, T io  and their 

derivatives indicate this quite well. In the case of spherical 
aberration A, Si , T 1  the effect is most noticeable between the 

primary and secondary coefficients. 	The tertiary ratio at the 
surfaces shown is about the same as the secondary ratio, the ratio 

of 
 1

21/T1 having a maximum of approximately 131 . 	Thus, at the 
0 

first surface, a change in curvature of i percent would cause a 36 

percent change in A. a 2 percent change in SI and a 3 percent change 
in T 1  . 	It is for this reason then that the higher order aberrations  
can be considered comparatively stable under moderate changes of the  

parameters of a system. 

This has the undesirable effect of making it practically 
impossible to vary the higher order aberrations without seriously 

upsetting the balance of the lower order aberrations once the initial 

design has been made. On the other hand, this property of the 

coefficients enables the designer to satisfactorily determine the 
effects of moderate' changes in those regions where it is known that 
the first three orders of coefficients do not accurately represent 

the aberrations of the system. 

Denote the difference ek  e[3] by A. 	There is, of course, 
a particular pair of values of corresponding to each value of 
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p, 0 and it used in (15.1). A represents the effect of the 9th and 

higher order aberrations, thus for moderate changes of the system 

A can be considered to be constant. 

Thus o (skt )== 8)(0[31). 	Now •5(c13]) can be satisfactorily determined 

with the use of the first derivatives (Section 15(a)), hence allowing 

for the appropriate values ofA , 	for the modified system can be 

reliably predicted. 	Initially, for those pencils for which the 

tertiary agreement is poor, one requires sets of ray traces, which give 

the values of et: , and corresponding sets of c'[3]. 	The difference 

between the corresponding pairs then of course gives A y., A z  for the 

particular rays chosen.  Having once obtained the A in this manner, 

recourse to further ray traces should only be necessary to check the 

final performance unless the changes made in the system are large. 

To illustrate this method, the effect of the changes to the 

Vega and Sonnar listed in Section15(a) are shown in Figs. 19, 20. In 

these diagrams, the tangential curves for the original systems are 

given in the columns so marked, the true curves being in - solid line, 

the broken line indicating e gy,[3]. 	The required values of (in the 

case of tangential pencils, p y only) are the separations of the curves. 

The changes made in these systems were chosen mainly to cause significant 

changes in the tangential curves, although some attempt was made to 

reduce distortion (which unfortunately introduced more coma, particularly 

in the case of the Vega). 	In the diagrams for the modified (new) 

systems, the broken line indicates e '[3] + p where 0 [3] was obtained 

from the actual coefficients computed for the modified systems. As 

mentioned in Section 15 (a), the coefficients predicted with 

derivatives are used only as a guide to the required changes. 

Considering the large magnitudes ofA y in some cases, it can 

be seen that the true curves have been predicted remarkably well for 
all pencils in both systems. 



Table IX 

Coefficient d/dc, d/dc 2  d/dc4  d/dc s  

-0.7633 27.50 -7.132 -24.99 21,34 

-0.1881 2.131 -0.2046 -0.6558 -1.058 
0.1165 0.3521 -0.2573 0.1562 -0.1346 

C 0.0314.2 0.03658 -0.3184 -0.1359 0.1466 

C 0.0270 0.0981 -0.1058 -0.0425 -0.0179 

si -661.2 1591 -497.7 -1252 892.3 
-g, 10.69 93.24 -32.92 -21.27 -5.406 
S 2  43411 36204. .-12945 •°76432 -26.37 

-82 24.46 6.935 -4.702 15.27 -12.62 
S 3  - 6.464 15.53 -9.610 -9.560 8.240 

-0.2767 0.6326 -0.023 0.1706 ••14,240 

S4 25426 -22.10 2.828 41.65 -35.29 
8 4  -0.2515 -3.413 0.6128 1.869 1.495 
S 5  -0.1506 -3.053 0.2181 1.662 -0.2312 

-85 -0.3547 -0.1279 0.1114 -0.1377 0.3000 

S6 -0.1493 -0.1343 0.0957 0.0111 0.0672 
e6 -0.0145 -0.0208 0.0151 0.0087 0.0017 

Ti -30475 80483 -27366 -54902 314.759 

Ti 213.1 3980 -1531.4 -970.2 498.5 
T2 1652 21466 -8681 -2224 -133.5 
T-2 1024 101.0 -30.22 751.8 -465.5 
Ta -884.9 836.8 -526.1 694.8 574.9 
t 13.68 24.61 -19.22 13.64 .=•384,40 

T4 3426 -2803 701.8 4032 -2854 
' T4 -15.43 -296.0 116.5 106.6 -8.041 

Ts 9.625 -275. 1  63.54 125.9 -113.4 
Tel -9.484 -0.7307 -2.772 -7.582 5.577 
T6 -9.071 -8.992 3.450 1.701 2.491 
Ts -0.1937 0.3591 -0.2500 -0.4431 0.6720 
Ti. '440.06 -432.8 158.1 109.3 32.88 
T7 -38.09 -5.963 9.755 -22.05 15.85 
To  -29.35 1.685 8.816 -39.54 34.52 
T8 "-14000 4.135 -0.6390 -3.811 1.479 
T9 -043155 3.490 -0.3780 -2.611 1,530 

T9 0.4491 0.1317 -0.0089 0.0076 -0.1973 
Tio 0.2098 0.1087 -0.0642 -0.0325 -0.0577 
Tis 0.0159 -0.0020 0.0034 0.0002 -0.0150 
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16, 	Derivatives of the Coefficients. 

The theoretical methods for obtaining the derivatives of the 

coefficients with respect to the various parameters of a system are 

given in M Section 120 - 162. 	In particular, the first separation 

derivatives of the primary aberration coefficients can be computed 

from M 128.51-54, the first curvature derivatives for the same 

coefficients from M 142.4 - 7, and the first chromatic derivatives for 

the primary coefficients from M 152.5 - 8. However, to obtain explicit 

expressions for the first derivatives of all the secondary and tertiary 

coefficients would involve considerable work. As a result, only the 

first derivatives of the primary coefficients have been available so 

far for use in the routine correction of optical systems. 

Now that a comparatively fast programme for the computation 

of the first three orders of coefficients has been developed, the 

first derivatives of these coefficients can also be obtained by 

numerical means. Given the specification and coefficients of any 

system, the derivatives of the coefficients with respect to any 

particular parameter can be found simply by making a small change in 

the desired parameter and recomputing the coefficients. 	Division 

of the difference between the two set of coefficients by the 
increment in the parameter then gives the desired first derivatives. 
The process is of course repeated for each parameter since only one 
of these must be different from normal during any one computation. 

The magnitude of the change to be made in any one parameter 
is governed by two conditions. Firstly, it must not be too small or 

there will be no significant figures in the difference between the 

coefficients, and secondly, it must not be too large or the results 

will be influenced by the second derivatives. In order to determine 
the optimum increment, five sets of separation and curvature 
derivatives were computed for a cemented doublet, one for each of five 

different incremental changes of the parameters. The percentage 

change in the parameters were 0.0001 9  0.001, 0.01, 0 0 1 and 1.0. 

Owing to the fact that at present only the derivatives of the primary 
coefficients can be computed from theoretical expressions, the 
derivatives of the secondary and tertiary coefficients were checked by 

means of the "identities of homogeneity" M Section 1233 The identities 

are formed by considering the effect of a change of scale on an 

optical system. 
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In M Section 123 it is shown that, for any aberration 
coefficient G, 

aG 	aG 

	

OG - Analm  — p ap 	=c1)G 	 (16.1) 

where 0  is the differential operator 

0 	= ze.a 	—Ida 

	

1 1 jw2 
	 (16. 2) 

and I) is factor which depends on the order n and the II I  V of the 
particular coefficient. 

If the object is at infinity, then the term containing 
I" is absent from (16.1). 	Accordingly, the object distance for the 
doublet was made infinite to simplify the work. 

-The derivatives of the coefficients with respect to p which 

occur in(16.1)were Obtained from M Section 34. In this section, the 
changes in the primary and secondary "a" coefficients are given for a 

finite change X in p, (M34.41, 43) using OT coordinates. 	By letting 
X tend to zero, the derivatives of the coefficients with-reapect to 

p can be found. An extension of the work of M Section 34 yields the 
required derivatives of the tertiary coefficients. 

Table X lists the identities for the first three orders of 

augmented aberration coefficients (see 3.18). In this table the 

identity for the most important paraxial coefficient soak  is given. 
The primes and the subscripts ak have been omitted from the aberration 
coefficients. 

Applying these identities to the results from the cemented 
doublet, it was found that the 0001 percent change in parameters gave 
the most accurate values for the derivatives. That this percentage 
change is the best was corroborated by the work done on the Vega and 
Sonnar. The curvature derivatives of the primary coefficients used 

in the example to predict the effect of changes closely agreed with 
those computed from the theoretical expressions of M 142.4 - 7. 

Table XI shows the magnitude of the identities of Table Xforthe doublet, 

the "c" and "d" derivatives in 0(16.2) having been found by the 
numerical means mentioned earlier. 



Table X 

oT Coordinates, object at infinity. 

ev t  
ak 

= v: k  

OA 	= 3A 

ek — pA 	= 2A 

Ot - 4pA 	 = 

pc — 2pA 	= C 

ea p(t + C) 	= 0 

9S, 

el§, - psi 

es2  -14pS, 

— p(4e 

683 - PS2 

683 	13(2 

68 4 	2pSz  

eS 6 	p(2e2. + Sle ) 	= 2e 4  

es, - •2p(S5  + 8 4 ) 	 23. 3  

Ogs  — p(2g3 	2e4  q) = g s  

e86  — 05 . 	= S 6  

Og 6 	.1)(86  4- 3 6  ) 	 0 

5s, 

4$ 1  

= 10 2  

+ 3e2 

356 

+ 33  ) 2 3  

OT, 	 = 7T, 

pT, 	 = 

6PT i 	 = 6T2  

011 2  V p(61-11 , + T2 ) 
	

5 7T2  

OT 3 	pT2 	 = 5i13  

eT3  p (T2 + T3 ) 

eT 4  — 4pT 2  = 5T4  

eT 4  — P(02 + T4) 
	= 411 4  

OT 3  - 2p(2T3  + T4 	 = 475  

61 5 — P(413 + 2 4  + Ts) 
	= jT6  

eT 6  — pT, 	 • = 3T6  

OT 6  7 p(T 5  + T6 ) 	 .= 2T. 

er, , — 2pT4 	= 

&T 7 	i)(21114  +T7 ) 
	 = 3T7  

-• p(2T 5  + T7 ) 
	 = 3T. 

es 7 10 ( 2 s + 3-117 + Te  ) 	= 21). 

eT9  — 2p(T6  + Ts  ) 	 = 2T, 

eT9 	p(21T 6  + 	+ T9 ) 

°T it)  .pT 9 	= T i0 

eftio - ( 1119 + T0) 



Table XI 

0.01% change in parameters c, d. 

G 
aG : 

al - p,..af ,I) G G 
aG 

oa - p 

A 0.0768 0,0768 T 1  -756.4 *-756.3 
A 
t 

0.00706 
0.9897 

0.00,707 
09896 

T, 
T 2 . ;  

-120..9 
-549.1 

.-12o.9 
-549.0 

C 0,8350 0,8350 T2 -1050.6 -105.6 

a -0.0 6 4 0.0 T3  ,-56.89 -56.89. 
t s  -1.2069 -12.69 

S i  -44087 -44.87 T 6  '-128.5 -128.5 
• -6,687 -6.692 T4 -36.37 . -36.37 

82  -26.90 -26.90 .T 5  .- -18.68 -18.6  . 

e2 -0.5124 -005126 T s  2.191 2,190' 
Ss  1.978 1.978 T 5  0,00559 0.00560 

Bs  -009073 -09073 T6 -007721 '-0.7721 
86  -0.5634 -0.5635 T 7  -70619 -7.619. 

86  1.0204 1.0203 T7 '40.4047 -004050 
Ss  2.6131 2.6128 T e  4.995 ..46=99 14.• 
Ss  0.8184 0.8184 TO 40-241 4.240 ,  ' 
S6  -0.1182 -0.1182 T g  1.474 1.475 

0..02 B6 

 

0.,0 T g  -00242 -0 .0243 
T i p 0.03109 0,03109 
T i5  -0.04 2 0.0 
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It is rather wasteful of machine time to compute a complete 
set of curvature and separation derivatives using the aberration 
coefficients programme. On the DEUCE, the derivatives for a ten 
surface system would take 2i hours. However, as mentioned earlier, 
in any change of parameters, the derivatives of the primary coefficients 
have the greatest effect, and the hand computation of these can be 
easily done from the expressions in M Section 120 - 162. An 
examination of the derivatives so obtained will then indicate the 
surfaces and parameters that will be most effective when changed. -  The 

machine can then be used to obtain the derivatives of-the higher order 
coefficients for the selected surfaces and parameters. 	In this way 

machine tithe can be kept to a minimum without sacrificing any of the 
power available to the designer that ensues from the use of 

coefficients and their derivatives. 



APPENDIX 1 

Final Aberration Coefficients of Tessar 

+8.91894 1.09 - 	01 
+1.4 5136 7.19 - 	01 

4.3 0108 2.02 - 	02 
+1.0 1667 8.01 - 	01 
+4.8 2816 9.26 - 	03 

4..7.72429 7.86 01 
...4.923263.28 + 	00 

1.931236.11 + 	01 
+1.06313 1.03 + 	00 

3.6 0236 3.18 + 	00 
.4.6.0 158 7 2.97 01 
+2.2 7 88 9 3.81 01 
4.1.6 4552 9.4 0 + 	00 

1.4 7995 1.21 00 
2.8 3454 5.47 01 
5.7 0777 3.48 01 

I.' 1.9 3 6 91 7.01 02 

-2.044356.90 + 	03 
1.3 3734 0.58 + 	03 

-1.469184.61 + 	02 
+2.3 8115 4.36 + 	02 
-6.344160.79 + 	01 

4.0 667 5 1.70 + 	00 
1.0 7197 8.08 + 	01 

-1.123199.57 + 	01 
l.99204 0.08 + 	00 

+2.708594.16 02 

2.l 4 0 6 2 5. 7 4 4 	0 2 
+4.2 4673 3.94 + 	01 
-1.997468.93 4. 	01 
-3.607190.78 + 	01 
-1.367531.78 + 	01 

I.6 0724 2.67 + 	00 
+3.059753.63 + 	00 
...4.5 6543 0.28 + 	00 
+1.1 0739 9.9 0 + 	00 
+7.6 04 00 4,76 02 
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APPENDIX 2 

Portion of Biotar 12 °  Ray Trace Results 

.- 	 1 a  , 
tyk 	E z  k 	 V iii  

	

_ 	 VV k 	 Y 	 Z 
0 0 2 6 8 0 	* 0 0 0 0 0 0 	 0 O. 1 4 0 4 2 3 	4. 0 0. 0 0 0 0 0 0 	+ 00 	+ 00 

	

... 0 0 2 6 9 0 	+ 000110 	* 0 O. 1 4 0 b 0 9 	• 0 O. 0 3 9 1 8 5 	• 00 	+ 0I 

0 0 2 7 2 1 	* 0 0 0 2 2 3 	+ 0 O. I 4 0 7 7 2 	4 0 0. 0 7 8 5 6 b 	• 00 	+ 0 2 

0 0 2 7 7 1 	4* 0 0 0 3 3 9 	+ 0 O. 1 4 1 2 3 4 	4 0 0. 1 1 8 3 3 4 	4. 00 	4 0 3 

	

. 0 0 2 8 3 7 	+ 0 0 0 4 3 7 	+ 0 0. 1 4 1 9 3 4 	4 0 0. 1 5 8 b 8 4 	4 00 	+ 0 4 

0 0 2 9 1 4 	* 0 0 0 4 6 9 	+ 0 O. 1 4 2 9 3 2 	4 0 0. 1 9 9 7 9 5 	+ 00 	+ 05 

0 0 2 9 9 2 	* 0 0 0 3 3 1 	+ 0 O. 1 4 4 3 2 1 	+ 00.241 8 1 t, 	• 00 	+ 06 

0 0 3 0 5 4 	- 0 0 0 1 8 5 	+ 0 0. 1 4 6 2 3 6 	4 0 0. 2 8 4 8 2 5 	• 00 	+ 07 

M 0 3 0 6 6 	- 0 0 1 5 0 4 	+ 0 0. 1 4 8 8 8 4 	4 0 O. 3 2 8 6 7 5 	+ 00 	+ 08 

0 0 2 7 2 5 	+ 0 0 0 0 0 0 	+ 0 0. 1 7 9 9 3 0 	4 0 0. 0 C 0 0 0 0 	• CI 	+ 00 

0 0 2 7 3 8 	+ 0 0 0 0 8 5 	+ 0 0. 1 8 0 0 5 0 	4 0 0. 0 3 9 4 3 6 	+ 01 	+ 0 1 

0 0 2 7 8 1 	+ 0 0 0 1 7 6 	+ 0 0. 1 8 0 4 1 5 	+ 0 O. 0 7 9 0 7 6 	• 01 	+ 02 

	

0 0 2 8 5 4 	4 0 0 0 2 6 6 	+ 0 O. 1 8 1 0 4 7 	4 0 0. 1 1 9 1 2 4 	+ 0* 	• 03 

0 0 2 9 6 3 	+ 0 0 0 3 3 9 	+ 0 0. 1 8 1 9 8 5 	4 0 0. 1 5 9 7 8 4 	• CI 	4 0 4 

0 0 3 1 1 2 	+ 0 0 0 3 4 6 	+ 0 0. 1 8 3 2 8 8 	• 0 0. 2 C 1 2 5 7 	+ 01 	4 05 

0 0 3 3 1 3 	+ 0 0 0 1 8 1 	+ 0 0. 1 8 5 0 4 3 	+ 0 0. 2 4 3 7 2 3 	• 0* 	+ 06 

n 0 3 5 8 2 	- 0 0 0 3 6 3 	+ 00.187 3 7 4 	4 0 0. 2 8 7 3 0 3 	+ 0* 	+ 07 

0 0 3 9 5 1 	- 0 0 1 7 2 6 	+ 0 O. 1 9 0 4 5 9 	4 0 O. 3 3 1 9 4 0 	4 01 	+ 0 8 

0 0 2 8 5 9 	4 0 0 0 0 0 0 	+ 0 0. 2 2 0 2 1 3 	4 0 0. 0 0 0 0 0 0 	• 02 	+ 0 0 

0 0 2 8 7 8 	* 0 0 0 0 5 4 	+ 0 0. 2 2 0 3 7 2 	4. 0 O. 0 3 9 7 5 2 	+ 02 	+ 01 

0 0 2 9 3 5 	+ 0 0 0 1 0 9 	* 0 0. 2 2 0 8 5 3 	4 0 O. 0 7 9 7 1 7 	+ 02 	+ 02 

n 0 3 0 3 8 	+ 00016 0 	+ 0 0. 2 2 1 6 8 2 	+ 0 0. 1 2 0 1 0 7 	+ 02 	+ 03 

0 0 3 1 9 8 	+ 0 0 0 1 8 4 	+ 0 O. 2 2 2 8 9 7 	4 0 O. 1 6 1 1 4 1 	4 0 2 	 + 0 4 

0 0 3 4 3 4 	* 0 0 0 1 2 5 	+ 0 O. 2 2 4 5 5 9 	4 0 0. 2 0 3 0 3 6 	+ 02 	+ 05 

0 0 3 7 8 1 	- 0 0 0 1 3 3 	+ 0 O. 2 2 6 7 5 9 	+ 0 0. 2 4 5 9 9 7 	+ 02 	4 06 

0 0 4 2 9 3 	. 0 0 0 8 2 1 	+ 0 0. 2 2 9 6 1 7 	4 0 0. 2 9 0 1 8 5 	• 0 2  07 

0 0 5 0 8 3 	• 0 0 2 4 3 9 	* 00.233 2 9 	0 	4 n O. 3 3 5 5 9 2 	+ 02 	+ 0 8 

0 0 3 1 4 3 	+ 0 0 0 0 0 0 	+ 0 O. 2 6 1 5 0 	0 	+ 0 O. 0 0 0 0 0 0 	• 03 	4 00 

0 0 3 1 6 9 	* 0 0 0 0 1 0 	• 0 0.2 6 1 7 0 2 	+ 0 O. 0 4 0 1 4 0 	+ 03 	+ 0 1 

0 0 3 2 5 I 	* 0 0 0 0 1 7 	• 0 O. 2 6 2 3 1 6 	4 0 0. 0 9 0 5 0 1 	• 03 	4 0. 

00 3 4 0 	0 	4 0 0 0 0 0 7 	+ 0 0. 2 6 3 3 68 	• 0 0.1 2 1 30 7 	4 03 	+ 03 

0 0 3 6 3 8 	,.. 0 0 0 0 5 0 	+ 0 0. 2 6 4 8 02 	+ 0 0. 1 6 2 7 8 9 	• 03 	+ 04 

	

. 0 0 4 0 0 	2 	• 0 0 0 2 2 6 	+ 0 O. 2 6 6 9 8 	3 	+ 0 O. 2 0 5 1 8 	0 	+ 03 	+ 0 5 

0 0 4 5 5 5 	• 0 0 0 6 5 9 	+ 0 0. 2 6 9 7 0 	7 	• 0 O. 2 4 8 7 1 0 	• 03 	+ 06 

. 

 

	

00 54 1 6 	. 0 0 1 6 3 9 	+ 0 0.2 73 1 97 	+ 0 0.2 9 35 6 	4 	+ 03 	4 0 	7 

	

. 0 0 3 6 7 	7 	* 0 0 0 0 0 0 	* 0 0. 3 0 4 0 5 	8 	4 0 0. 0 0 0 0 0 	0 	+ 04 	+ 00 

	

. 0 0 3 7 1 6 	• 0 0 0 0 5 3 	+ 0 O. 3 0 4 3 1 	0 	+ 0 O. 0 4 0 6 0 	6 	• 04 	4 0* 

0 0 3 8 4 	0  - 000119 	+ 0 O. 3 0 5 0 7 	6 	+ 0 O. 0 8 1 4 4 	4 	4 0 4 	 * 02 
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Portion of Biotar 12 °  Predicted Displacements 

Ey  [2] E i  [21 Eiy  [3] 
-0026 66 +00000 0 m00.0026 78 #0 LO 0 CO 00 +00 +0 0 

-002676 +000 1 0 8 -00.0026 89 +00.0 0 C1 09 +00 +0 1 

-002708 +0002 22 -00.0027 20 +00.0 0 ( 223 +00 +0 2 

-002760 +00 0 3 4 4 -00.002770 +00.0 0 C339 +00 +0 3 

-002830 .1-00 04 68 -00.0028 36 +03.0 0 C. 4 39 +00 +0 4 

-002916 +000577 -00.00291 +00.0 0 C. 483 +00 +0 5 

-003014 +00 06 38 -00.003000 +00.0 0 0389 +00 +0 6 

-003 120 +000598 ■ 00.003081 +00.0 0 CO 23 +00 +0 7 

-003230 +000383 -00.003144 -0 0.0 0 c 830 +00 +0 

-002721 +00 000 0 m00.00 27 23 +00.00 CO 00 *01 +0 0 

-002735 *00 0083  -00.00 27 37 +00.0 0 CO 85 +01 +0 1 

-002778 +00 0 1 73 ■ 00. 00 2 7 8 0 +03.0 0 C1 75 +01 +0 2 

-002850 +00 0272 ■ 00.00 2 8 5 4 #00.0 0 0266 +01 +0 3 

-002951 +00 03 74 -00.00 29 6 2 +0 10 0 C341 tO 1 +0 4 

-003 081 +00 04 63 -00.0031 08 +0 10 0 C3 59 +01 +0 5 

-003240 +00 05 0 6 -00.003299 +00.0 0 02 4 1 +01 +0 6 

-003 429 +0004 5 1 -00.003541 -00.0 0 0 1 4 d +01 +07 

-003648 +0002 25 -00.0038 4 2 -03.0 0 10 20 +01 +08 

-002875 +00 000 0 ,-00.00 2 8 58 +00.0 0 ( 0 00 +02 +0 0 

-002893 +00005 1 -00.002877 #00.0 0 00 53 +02 +0 1 

-002948 +00 0 1 o 8 -00.00 29 35 +03.0 0 0 1 08 +02 +0 

-003039 +000174 -00.003038 +03.00 GI 60 +02 +0 3 

-003 171 +00 02 42 •00.00 3 1 95 +00.0 0 C 1 88 +02 +04 

-003345 *00 0 2 96 -00.003420 +00.0 0 ( 1 49 +02 +0 5 

-003565 +00 03 0 2 ...00.00 37 29 -00.0O 00 40 +02 +0 6 

-003836 +00 020 9 -00.0041 47 -00.0 0 ( 	1 7 402 +07 

-004 164 -000058 -00.0047 01 -03.0 0 1 4 97 +02 +0 

-003 179 +00 000 0 -00.003146 +010 0 (0 00 +03 +0 0 

-003201 +000011 ..00.0031 72 +00.0 0 GO 09 +03 +0 1 

-003 268 +000027 -00.0032 5 4 #00.00 CO 1 5 +03 +0 2 

-003 382 +00 0050 ■ 00.0036 99 +03.000009 +03 +0 3 

-003 546 +00007 1 ■ 00.0036 25 -03.0 0 GO 36 +03 +0 4 

-003768 +00 00 74 -00.003952 -00.0 0 01 69 +03 +0 S 

-004053 400 00 24 ■ 00.00 44 1 1 -00.0 0 C480 +03 +06 

-004 4 1 1 000 1 31 -00.005043 0 0.00 1 1 1 3 +03 +0 7 

-003688 +00 000 0 ■ 00.00 36 8 4 +00.0 0 GO 00 +04 +00 

-0037 1 5 -00 00 38 -00.003 .722 -0 0.0 0 00 54 +04 +0 1 

-003 7 96. -000072 ■ 00.00 3 8 4 0. -00.0 0 01 1 8 +04 +02 



APPENDIX 4 

Formulae Used in Aberration Coefficients Programme 

*y - Yp 	= 	dv  P 	P 

i 	- P 	 Cyp  - VP 

i i  = ki P 	 P 
V I  P 	= Cyp  - i; 

q 	= 	11 /IP 

j 	= v — qv q 	P 

a 	_ 	(k - 1 )ip i 
.1, T  

- yv -yv P q 	q P 

IN(k - 1)ypilto(vp- i 1 p ) 

qaP 

2 qiip  

 AO 

p A 

t P 

= 

= 

= 

i - i 
2 aP  

i I 1 Z a P t 
i  it 

1 	P 

qcP 
	 tt 

a 
	

It 

ra= qaq  q 
b q 	 q 
c q 	= 1 qb q  

aq 	= 

At 	= qAp - A q  

Aq 

Bt 	= 2c1Ap - B q  
2C q  

C t 	= 	qCp  Cq  
et= c4 _ 
04- 	= 	At_ qA,- 

1-31- 

at gat 

[i2p 	2 2 + 	2  

a L 	

2  + V r  2 	 12 

99. 

8P 	= 

a 	= P 

S p 	= 

c  = EEp - 60 	 It 
P  

aP  

tit 

tt 

It 

3v i; 

•/•7. 3vq2  



SIP  

tt 

- S2p 	= Z S p  

8 p 	= 4 q, + a p  + w2  + 

S s  p p 	=3p 2 ( 	+ 	a- 	s 

33p 	= cp At a p e +  st 
3 p 

J - 
P3  p = Z 

1 	3p 

100. 

I.  = 	(k - 1 )vp  ip  1 

(1, 2 = 	it ettrp  + 311i  - Il2p  - ki2p  ] 

3 	= 2y2  + 8w  
P 	=P 

S 	= 3a W =1p 	 P =P 
St 	2a At  4- 8 tp 	= 	P 	• = 1 P 

S ip = 	aP At + 8 1
t
p 

a 	÷ 	p  

(NO 	j'irp  )ja p  

= 	4C18ip  + WI  

2 ( ciAt 	Bt)ap  
+ rqs2 p 

ap  (2qAt  + BI) + s:p  

2iTtr4 +ap 	qs2p 

W 2 

W3
9 

z(v
2

p 	 ) v; 

2P 

S t 
zp 

8 2p  

2p 

133p 	ap  + cpA+ qs3p 	 It 

2(s3p 	2W2 	) 

-4p 
	2( s 	B3p) 	-@4p 

84p 	= 	2ii Bt  4- 	t p 	4 p 

-64 p 	2iri p 	+ qS4p  

.1 _2 
‘1,4 	=  

q( 283p +4p 	9.22p - 2117 2 	W4 =sp 

Ssp= 	2[ qcf3-t  + Ct  + at iap 	@sp  

B sp 	2ãC'+ cp  Bt + s4 

g5p 	 ?ape + Cp + 9.9 6 p 

Ws 	 J265 

3- 
= Z 3 p 

tt 

(E
P + cP  ) 

J - 
sp 	Z 8 sp  

tt 

8 =6p 	= 	R *C1( 2.W3 - 2 .@3p .." g4p ) + w4 + 2 6 p  k + ws 	 1 
i 

st
sp a p  aq] + 8 1 2[c 

P
o

P 
 -  

3 ° 1  
8 6p 	= 	CP C

t + S t 
 6P 	 S6 p 	= ; 86p 

B lip 	= 	ep  e + CIS 6  p 	 !I 
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2 
Sig 	 A p 	"• A q  ) =•• (Ar".  Aq ) 2  Ap (Aq 	VpVg ) 

82q 	= 	Ap (2A q  • B q 	Vp  Vq  ) + A q V 2p 	A q  (V p V q + 1.3 p) + Ap (2C(1 .'.  Vq 2  

+ f, p vp2 - 3(13 p  •-• Bq  ) (A p 	 2p 

S3 q 	 CA +AO 	AC-A (a + V2) 	2 	 )+V2a 
P 	P 	p q 	q 	p 	q 	p q 	p 	q P P 

- 3(A p .=.. A q ) (o p 	C q  ) + " 3p  

S 4q 	 2 [lip  (2C q 	v(21  ) 	V2p  Cq 	B q  ri p - (T3p - Bq  ) 1(13:p  Bq 	+ Asp  

SRI = 	0 q  (2Cp 	T3' p 	Vp Vq  ) 	vp  vq 	Bq  (a p  + V q2  ) 	( 2k p  + v;) 

S6 q 	 q 	+ Vp 	) °"' Cq 	372 q  ) 	 "" C q  ) 2  + 

-1,12s3p  + 6(A cg  kp cp  + kg  [kp  - Aq ]) 	Vq  (Ap  Vg  •-• 	Vp  ) 

+ Vp  (Ap  - Aq  Vp  

, Sep 	1-1ApCq 	Aq B p 	Bq  C p _ (Bp  
- 

+ 2[Cq  (274)  Aq  ) ••• ; C I) 	Ap  Cq ••. A p C p  

S6p + 6 (Ai) ; • C q Aq 	C [ -O p ° 	) + V C P V-CV P ) 

) 	v Cq  Vq  • aq  vp  ) 

vp  ) + 3 Op 	2Cq  ) 

= at next surface 
i.e.  ( 	,) th 

Cl .e2 p 	5.2q 

4- gm) - 3(14 	Bq  )(o p  - Cq  ) - Cp  v2q  

§1q 

5 2q 

53q  

t 2 

Esc, 

SRI  

k4q(  

St' 

et, 
St 2  = 

Ssq  

q5 ip  

s 

— Vp Co p  Vg 	Vp  

÷ 2 (rip  cq  — 	20,4  Cp  ) 	+ (2:Ap 	q  • Big  

+ 	Vq  (Bq  vq 	2Cq 	) 

286q  + Op  Cq  - 	q  Cp  + Vq  (Cq  Vq  

c q 	+ 5) - 

° SI 

q 

82 q  

7gt 

11 

gip 
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-t S, -qS, 

ap [ 1 OW2p +jap(2Vrl 	= tip 

g2 	= 	[ 1019p 	ja p vp  (ip  + 1)(i it)  - vp  ) ] 

z3 = 465 [4 wptz; +01 (3 -2 	- 8/) ] 

z 4 	 w2  (0 2  - 1 o p  + 5v2p  ) 

4 an 2  (vp + 	) 
z 6 = 	2w3 	+ v2p  - 	4?,) 

Z 7 	
e  ls  

z e 
	 (54Di  + 414 - 2v2p  ) 

j2 w4  

z 10 	-ffJ ws 

t ip 	[ 	(2s 2  - 66Ap) -  Aqip I + ap (At2  + 3Sti )+ At  SP + z i  

p + 805 1 +A 8  tp 

t2p 	 (6qz, + z2) + 4ap ['jai At 	+ Bt  ) + 

+3 [f_32p(Ar• A q ) - 65 (ApAp 	si, p) 

Bt  S 11.1) "' 141p ( Aq + B q  ) 

i2p 	9.(2a 1  + t2p ) + apA2 +AS 2tp + aitp 

at 3 s 	ot 1 
•Di + y 2t  5 + C1.01 

+ 2Ap (f3_3p + 4p) + A S2tp 

t3p 
	 4-C1 [tap + Z2] 1- Z3  + 2 41 + ap  [2 ( 	At ct) + 	 A + 3S1-3  -7t2  

42 

63 GA 2  + AC + e ) P 	P P 	P  + AtAlp + Ct  s t  + 2 [ s3 p  (Ap Aq  ) .1 p 	 c B 

Ap P5  p 	ja=12 p 	.B q 	+ . .c p Sti  

qt3 p  + ap ,Z 3  + p 	04134 	c e  t 

4(143p- z3 + z 4 )1 + ap[2 ( 2 cAt  + AtBt + Bt ) 	B-r2 	3St.] 

a( 14rp + App + Sap) + 14(.411.3.3pm• 2C,1  8 ) 	Bt 	+ At 13t4p 

+ 	fi3 4p (3Ap 	Aq) 	A-p filsp + 	(T3p - 21q '''•) 3N . ) 

:6 4p 	 a p  (2 (1 .42+ 	+ Cit4p + A-84 	B4 



103. 

= 	q(I4p  + 14.t 3p  + 8; — 2q )+ z814- 2a [ q(24 + t2t  ) + "e3.1-  + s:] 
- P 

[At (t+ ot) + At ,t Bt ct] _ co  r — LAp  ( 3Cp  + tp)+ Ap  + p + s3li 2ap   

p(O.  p— 5Cq) + Cf 82tp+ (tp Bq)( 3 .s,p+ S4p) +Bt S p  + 85p (5.171p 	Aq  ) 

At s4 	/ 4(Ap  Np 	gip ) 

4 134 + 33 s,tp  + e s2tp  + ap  (2q3 3  +..:6 6)+ qtsp + cp,42 

)+ ct2 	3sid q(z, + Z4 t3 p 	its!) 	1z5 + 	ap[2 qg:+  At t 

Co (44 -4- A C  + s, p 	Ct 84 4- At sip  + 2(2; s6p  + s3p  (op  — Cq  ) 

82p 	Cp St3 + 	Bq  )85p  

(its p + apZ 6 + CpAl + c5 84 + e sip  

[14q(z4 	z3 ) + p — zs] + z I 	2ap  (2q S + Bi- 	+ 	) 

2 1114p  Di.  ••• Bq  ) 	a (24 f3p + 	p 	+ B t 	+ 4.(111, 1.4 5p 	Cq  thp ) 

2ap 4 + p ) +8 s:p  

to p 

t6 p 

,cf-hrq(z4 — Z3  ) 	3Z7 2; ] 	Ze  Z6 )1  

Co K if3p + Cp ) + 	p 	S3 p 	Cp 	+ 2ap 	6') ..A p ) dst4p  

Bt ;tp 	ap  [ 2 ci ( 2 s: + 	) 	1.31- ct Bt at + 	Bt] 5 

8[-App 	41 0q  (2g3p  + 3@,p)+ aq  _420] + P-sp (34 	20p_ B ) 

q(2a pA5 	tep  ) 	cpA4  + 84 + C St ap 

q[q(4qz, + z5  + -1(z7 	) + t.8p  + 2z6  + 	+ z9  

211 q (2st, + 	) 	 6 1-  (f5t + ct ) + 	] +c , 4 + ct.s:p  

Bt  sip  — 	[ 	+ a:p) + S'sp + S6 p + 	..@6p ( 1-3.p + C)+S14. gisp 	••• Cci  

20q  ( r8ap 	§4p  ) 

q( 2 apti6 	t 9 p) ep 	+ 8 st6p  + C 

ci[ ci q (q[ q(q2, + 22  ) + 	+ 9; ] +; + z, )+; +z e i + z 	+ z,0  

( 2 ci.S: + lJt2  ) + cp  S-6f.  — (ia; 	) 	P6tp 

"" 	 gisp + 146p @6p 

p + Ce56 +C E36tp 

Final tertiary aberration coefficients 

	

T ii pk 	= 	tip  

	

p k 	I 76 1p 	etc. 

i6p 

t7p 

top 

t.4; p 

top 



(1956). 
(1958). 
(1958) 
(1958) 
(1959 

(1960) 
(1960) 
(1960) 
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FIG . 3 . Pantoskop wide-angle lens . 
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