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SUMMARY 

The technique of making inexpensive di!fraotion 

gratings of a quality auitablffl for moire fringe strain 

analysis is described�ogether with a method of viewing 

the gratings for best results. The use of a reference 

grid avoids. the need for resolving fine lines. A secondary 

moire pattern obtained by interfering two primary patterns 

from different loads is used to measure displacements and 

eliminates imperfections from the .gratings. 

The strain and displacement patterns in knee 

joints tested by this method are described, and some 

analytical methods of solving for stress and strain 

distributions are investigated. 
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belief tho thesis conttlrul no copy or par11phrllse of 
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1. 

NOTATION 

x, y z - cartesian coordinate axes 

o( 	 - rotation 

- normal strain (Lagrangian) 

- normal strain in x direction 

- normal strain in y direction 

- displacement in x direction 

V 	 - displacement in y direction 
- shear strain associated with x and y directions 

)CY, 

a-x 	
- normal stress in x direction 

0- 	 - normal stress in y direction 

- shear stress associated with x and y directions 14xy  

- pitch of grating 

Pm 	 - pitch of model grating before loading 

pm 	 - pitch of model grating under load 

Pr 	 - pitch of reference grating 

-  angle betlleen model and reference gratings 

before loading 

9 	 - angle between model and reference gratings under 

load 

- rotation of a line initially parallel to y axis 

- rotation of a line initially parallel to x axis ey  

W -  moire fringe spacing 

-  inclination of moire fringes to reference grid 

f1/ f2 	 - functions of x and y. representing grating lines 

fm 	 - function of x and y denoting grating lines on 

unloaded model 

f - function of x and y denoting grating lines on 

loaded model 

f
r 	 - function of x and y denoting reference grating 

lines 

function of x and y denoting moire fringes 

notion of x and y denoting additive moire fringes 

II 

mr 

F?  mr 

- 
S 

• k21  km, kiln  kr  - constants 

K, KA 	 - constants 

deformation moire pattern 

initial primary moire 

primary moire after loading 

secondary moire 

II 

It 

- angle between emergent ray of the 44 order and 

a secondary plane, 
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- angle between incident rays and a secondary plane 

n, nl, n2  - spectral orders 
- 

X 	 - wavelength of the light 

- resultant spectral order 

- fractional displacement of grating 

- ratio of brightness of field at point of fractional 

displacement A to average brightness of field 
/ P 

B1, B2, - brightness components 

Cl, C2  - phase constants 

- order for which gratings are blazed 
- factor depending on amplitude factors of order sequences 

al  y  a2- parameters 

by  b2  - parameters 

- Young's modulus 

- modulus of rigidity 
-  Poissonls ratio 

2 - E(17i4k) 

- strain energy 

- complementary energy 

- load 

V 	 - shear force 

- moment 

- moment at inside corner of knee 

M
o 	 - moment about line y = 0 

-  normal force 

i( 	 - path of moment (curvature) 
- thickness 

- half-length of beam 

- half-depth of beam 

dt 	 - width of knee measured across line of symmetry 

- slope of edges of knee 

- airy stress function 

Za 	 - section modulus of column 

Zb 	 - section modulus of beam 
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INTRODUCTION 

Knee or mitre joints in rolled steel beams are commonly 

used in structures, but no exact analytical solution has yet 

been found. Knees frequently occur in critically stressed 

regions and while they represent only a small proportion of 

the material they often absorb a large proportion of the 

fabrication cost of a frame. The purpose of this study was 

to develop a method of analysis which, although still 

approximate, more closely agrees with the behaviour of an 

actual structure than those at present available. The approach 

was through experimental models to an approximate mathematical 

analysis. 

All structural analysis is necessarily approximate to 

some degree. Real structures are far too complex to analyse 

completely, and hence the design engineer normally begins his 

analysis by breaking the structure up into various structural 

elements, basing the breakup on some, often intuitive, idea of 

the basic structural action of each part of the complete structure. 

A bridge may be subdivided into parts which act as beams, slabs 

or columns, depending upon their geometric form and statical 

action. The analyst must next further simplify the problem by 

"constructing" a "physical model" of each structural element. 

For example, the physical model of a beam is normally elastic, 

and plane cross sections remain plane during deformation. The 

chief statical action of a beam is to resist bending, and as a 

first approximation shear deformations are normally stated to be 

zero. In order to complete the analysis, a mathematical model 

may be constructed from the physical model, and a numerical 

solution obtained. This last step frequently involves further 

simplification and approximation, in particular where exact 

solution of the resulting equations is impossible or laborious. 

(1, 2). 
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We see from the above that for any structure there 

are three models; the real structure, the physical model 

and the mathematical model (2). The aim of engineers should 

always be to continually refine all three in order to produce 

improved structures. In this refining process there is a 

large amount of cross-feeding; solution of the mathematical 

model may suggest improvements to the physical model, which 

may in turn suggest improvements to the prototype structure. 

On the other hand, observations of the real structure may 

well indicate that the physical model does not adequately 

represent the real structure, and further refinements may be 

necessary. The greatest problem is 2 of course, to determine 

in any particular case just how well the mathematical model 

does predict the true state of the actual structure. Only 

when this last piece of information has been determined 

can a realistic figure for the factor of safety be given. 

In many cases the designer has considerable difficulty 

in deciding how a structural element acts. In other cases the 

structural action is too complex to be amenable to mathematical 

solution, and for one or both of these two reasons a scale 

model may be built. There are, of course, other but - less 

frequent uses of scale models, such as the use of a disc 

loaded in compression along a diameter as a means of checking 

the feasibility and accuracy of a new experimental technique, 

as is described in section 3.3 of this thesis. Another type 

of model may be called a model of the mathematics; this 

class of model includes analogues, such as the membrane 

analogy sometimes used to solve Laplacets equation, as in 

torsion problems, and also models designed to illustrate a 

"law". Although these last types of models do have their 

uses, they have the disadvantage of drawing attention away 

from the real structure, and focusing attention on the 

mathematical solution as some sort of "ideal" to which 

the real structure should correspond. 
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Of the two common uses for scale models described 

in the previous paragraph the first use mentioned, that 

is to obtain ideas about the action of a structure on which 

to base a mathematical treatment, is normally used only by 

research workers. The use of scale models to determine a 

safe working load is more frequent. In this case the 

mathematics consists of calculating from empirical data, 

frequently derived from point measurements using strain 

gauges, and relating the information so derived to the real 

structure by means of scale factors. The information gained 

by point measurements can be applied only to the prototype 

structure, or another geometrically similar one - for 

example, strain readings at a few points on a beam of 

rectangular cross-section would not be much help in predicting 

a safe load of a R.S.J. if the basic statical action of beams 

was unknown. 

Once the rectangular beam problem has been simplified 

to a physical model which describes the beam as being elastic 

with plane cross-sections remaining plane during deformation, 

the position has been reached where the more complex problem 

of the R.S.J. may be attacked. It is a well known fact that 

simple beam theory leads to satisfactory estimates of the 

behaviour of beams of most cross -sectional forms subject to 

certain conditions of loading, span/length ratio, etc. 

The so-called engineering theory of bending referred 

to above is an example of a problem which has been attacked 

with success from the geometric side- the geometry of the 

deformed structure is first defined, and the results of this 

definition compared with the external statics of the system 

to obtain an approximation for the stresses and strains. 

Another case where the shape has been used in this way is in 

calculation of the Euler buckling load for a slender pin-ended 

column. On the other hand a more usual approach to stress 

analysis has been to describe the stress distribution by some 
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means or another (e.g. by an Airy stress function) and 

hence solve from the boundary conditions. 

With the possible exception of photoelasticity, 

all methods of experimental stress analysis are in reality 

methods of experimental strain analysis. Most of these 

techniques give only point by point strain readings over 

a finite gauge length, and hence give no direct indication 

of the overall deformations of the structure, nor do they 

afford adequate means of observing stress concentrations. 

Photoelasticity and moire methods share the advantage of being 

large-field methods, but the moire method alone has the 

advantage of giving directly the deformed shape of the 

model. For this reason the moire methods of experimentation 

are probably the most powerful yet devised for basic structural 

research. Furthermore they have the advantage that experimental 

results are very simply reduced to stress and strain patterns, 

whereas reduction of photoelastic results requires somewhat 

tedious numerical computations. (in this context the phrase 

"moire methods" is intended to include related methods of 

measuring geometry, such as the photogrid method (3) and 

the Salet-Ikdea technique for measuring slope contours 60.) 

This thesis describes how the author developed a method 

whereby moire displacement patterns are used to construct 

mathematical models of knee joint behaviour. The functional form 

of the moire curves for a particular knee joint was observed, 

and used to make guesses of the geometric behaviour of the 

knee joint under load. These guesses, being based on the overall 

pattern of behaviour, and containing several free parameters, 

should give solutions for a wide range of knee shapes and sizes 

with a similar order of precision to that with which they describe 

the knee joint on which they were based. 



7. 

The sensitivity of the moire method of measuring 

displacements is limited primarily by the grid spacing - 

a shift of one fringe in the moire pattern produced by grids 

of 1000 lines/inch corresponds to a displacement of 0.001 

inches in the direction normal to the grid lines. Grids 

used by workers in this field have been largely of the 

slit-and-bar type, which consist of opaque lines and transparent 

interline spaces. These gratings have been produced by 

photographic means, the finest in current use being of 1000 

lines/inch, what appears to be the useful limit for 

photographically produced gratings. Unfortunately most 

common model materials start to yield or creep at strains 

from 0.001-3 in/in, and hence grids of 1000 lines/in and 

more are desirable in order to obtain a useful number of 

fringes over the field of view without using refined 

experimental techniques. 

Guild (5, 6) has described the metrological uses of 

moire fringes produced by transmission type diffraction 

gratings produced by the Merton-N.P.L. process. (7, 8, 9). 

Gratings of this type are, however, expensive (although 

rather cheaper than those produced by conventional ruling 

engines) and are not of a suitable form for attaching to 

model surfaces. A large part of the work described in this 

thesis consisted of developing a simplified method by which 

gratings of 1000 and 3000 lines/inch were quickly and 

cheaply produced in the form of thin perspex films suitable 

for glueing directly onto models, giving a sensitive moire 

method with only the simplest of experimental techniques 

and equipment. 



1. THE USE OF MOIRE FRINGES IN STRAIN ANALYSIS 

1.1 Introduction 

Although the first scientific observation of moire 

fringes was recorded by Lord Rayleigh in 1874 (10), the widespread 

use of the phenomenon has only occurred during the past decade. 

Rayleigh was interested in the possibility of using the fringes 

as a test of diffraction grating quality, and such a test has 

been described by Guild (5). Some idea of the many engineering 

uses of moire fringes may be gauged from references (6, 1 1 -36) )  

while the scientific uses of moire fringes are also growing, 

particularly in crystallographic studies with the electron 

microscope. Theocaris (37) has written a bibliography of the 

more important material published in the field of moire fringe 

techniques up to 1962, 

Moire fringes are produced by "interference" between 

sets of regularly spaced lines of similar spacing and orientation, 

such as are shown in fig. 1. The effect is the same as that 

produced by watered silk, from which the technique takes its name. 

Moire patterns may also be produced by lines or grooves which are 

invisible to the naked eye - the moire fringes described by Rayleigh 

were produced by slit-and-bar type diffraction gratings of 3,000 

and 6,000 lines/inch. 

For moire fringe strain analysis one grid is attached to 

the model surface, and a second grid is normally held parallel to, 

and in close proximity with this model grating. The moire pattern 

produced, or the changes in the pattern, may then be used to 

interpret the deformations of the surface during loading. In the 

case of transparent models, transmitted light may be used for 

illumination, but for opaque models reflected light must be used. 

Unless otherwise stated, all remarks contained in this work apply 

to transmission type setups, although the statements made are not 

necessarily restricted to this class of problem. 
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1.2 Geometric Interpretation of Moire Fringe Patterns 

1.2.1 General 

There are two different approaches to moire fringe 

strain analysis. These have been called the "geometric" method 

and the "displacement field" method (38). The former method 

was apparently also the first historically. It was first used . 

by Rayleigh (10), and has been used by Tollenard (39), 

Guild (5, 6) and Weller and Shepherd (40) for the interpretation 

of displacement measurements. Kaczer and Kroupa (41) were the 

first to use the method for strain measurements. 

The "displacement field" method of attack was first 

used by Dantu (14), but was restricted to small deformations. 

Subsequent work by Dantu (42) and by Sciammarella (38) and 

Durelli has generalised the interpretation. 

Although these methods of analysis ard fully treated 

elsewhere, a brief summary will be included here for the sake 

of completeness. This summary will be continued to small 

deformations. It should also be emphasised that the discussion 

in this section is strictly speaking limited to non-diffracting 

line networks. However, as will be pointed out later (section 1.3) 

diffraction gratings produce fundamental fringes which behave 

exactly as those from non-diffracting grids, but there is the 

possibility that multiple fringes will be produced. 

1.2.2 The Geometric Method of Interpretation 

The geometric approach to moire fringe strain analysis 

is fully treated by Morse, Durelli and Sciammarella (43). 

Briefly, the method consists in relating the moire fringe 

slopes and spacing with the pitch and orientation of the reference 

grid in order to determine strains. The results apply only to a 

homogeneous strain field, but can obviously be used for small 

elements of a non-homogeneous strain field provided deformations 

are small. 
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Under the simple conditions outlined in section 1.1 

above, it is normal for the reference and model grids to be 

arranged so that initially 

G =0 

where pm  = model pitch 

pr  = reference pitch 

4) = initial angle between grid lines. 

Now if the fringe spacing after loading is WI, the 

inclination of the fringes to the reference grid is 1( and 

the model pitch after loading is 11)1:i, 

then (see fig. 2) 
Pt sinlil 

141' 
sin f) 

tan)A — 	  
pr  sin 0

t 

pr  COS 9. -pm  
1 

and 

o 
= pr  

4 

where E)•= final 
t 	
W 

relations used to 

sinpi 

angle between grid lines. 

and p
r 
can all be measured, and the above 
1 

find pm  and 0 at a point. The normal strain 

in the direction perpendicular to the reference grid rulings is 

given by 

where e denotes the conventional (or Lagrangian) strain. 

In order to analyse the complete strain pattern, two 

sets of moire patterns are generally (4.4) required with the grids 

orientated in different directions. These directions are normally 

chosen so that the grid lines are first located parallel to the 

y axis in the x, y plane, and then parallel to the x axis. The 

strain and rotation in the first case will be 
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x = Pm - Pr 
Pr 

and in the second case 

e = PM-  Pr 
Pr 

where x = normal strain in x direction. 

E = normal strain in y direction. 

ex  = rotation of a line initially parallel to y axis. 

y = rotation of a line initially parallel to x axis. 

x and e should both be measured using the same sign 

convention e.g. counterclockwise rotations positive). 

The rigid body rotation 0( will be given by 

	

22-(0 	 e x y 

and the shear strain, 	 by 
XY 

j-r>ry 	 (tr 

or by 	 Icy  =i(ex  -0y) 

depending upon the definition of shear strain adopted. The former 

definition will be used throughout this thesis as being the one 

adopted by Timoshenko (45). 

1.2.3. The Displacement Field Method of Interpretation 

The displacement field method of attack is closely 

related to the "parametric" theory of moire fringes (46, 47). 

A review of the parametric theory will therefore be given first. 

Consider two families of lines in the x, y plane defined 

by the functions 

f
11
(x y) = k

1  

and 

f2(x' 	 = k2 

	 (v) 
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where k.1, k2  vary according to some rule, e.g. 19 k2  take 

integral values. Two such families are sketched in fig. 31  

together with the moire which would be formed by these curves. 

It is apparent that the equation representing the moire pattern 

is given by 

F (x, y) = 	 (x, y) 	 12  (x, y) = 	 - k2  K 

We note from fig3a that the moire has been drawn 

along the shorter of the two diagonals of the areas formed by the 

original families fl  and f2. We could have drawn the moire along 

the longer of the two diagonals, and obtained the equation to the 

moire 

F(x, y) = f1  (x, y) + f2(x, y) = k1  + k2  = Ka 	 (via) 

This moire is known as the additive moire, the former 

being known as the subtractive moire. In all present moire 

techniques the additive moire has no physical significance. 

The moire which is actually seen is always the one with the 

widest fringe spacing, and for the small rotations such as are 

present in normal strain analysis, this moire is fortunately 

always the subtractive moire. A full description of moire fringes 

in general, including additive moires has been given by Pirard (46). 

The treatment given above shows the simplicity (and the power) 

of moire fringe techniques. With the exception pointed out in 

the previous paragraph, moire fringes always show the difference 

between two sets of lines. Thus when a reference grid and a 

deformed model grid produce moire fringes, these fringes represent 

equal increments of displacement in the direction perpendicular to 

the reference grid lines. 

The truth of this statement is best illustrated by 

reference to fig.315, The two grids shown were initially identical 

and superimposed so as to produce no fringes. During deformation 

point A has remained fixed. Point B1  and all points on the fringe 

passing through B have obviously been displaced one grid pitch in 
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y A 

a. Moire fringes from two line networks. 

b. Moire fringes as lines of constant displacement. 

Fig. 3. The Displacement Field Interpretation of Moire Fringes. 

the direction perpendicular to the reference grid lines. Similarly 

all points on the fringe passing through C have moved two grid pitches. 

Since the grid lines have been drawn parallel to the x axis, the 

fringes represent increments of displacement in the y direction, 

which we shall represent by the symbol v. Similarly we shall use 

u to represent displacements in the y direction. 

With two moire patterns, one of u and one of v, strains 

can be calculated (usually by graphical differentiation) using the 

relationships (45) 



	

• = bv 	 bu 

	

x 	 6y 

and the rigid body rotation is given by 

= v _ 	 u 
2 ax 	 by  

Strictly speaking these relationships give the Eulerian description 

of strain, but for small deformations the Lagrangian and Euleriari 

descriptions are essentially the same. 

The above description of Dantufs displacement field method 

is necessarily brief. More complete arguments, and the extension 

of the theory to include large deformations are contained in Dantuts 

papers (14 -18, 42) and also in a paper by Sciammarella (38). There 

are, however, two further points which should be mentioned here. 

Firstly, it is not essential that the two sets of grids used to 

produce the moire patterns be orthogonal, but the accuracy and 

simplicity of the method are both shown to best advantage by this 

system. Secondly, since displacement is a vector quantity, 

displacements in any direction may be found by vector addition. 

By this means strains in any direction can be found without recourse 

to the Mohrts circle construction or similar means which are 

necessary when dealing with a tensor quantity. The interpretation 

of moire patterns in general, including a discussion of singularities 

and symmetry relationships has been presented by Durelli, 

Sciammarella and Parks (44). 

1.3 	 Moire Fringes produced bv.  Diffraction Gratings 

1.3.1 Differences between Slit  and Bar and Ruled Diffraction 
Gratings  

Grids normally used in moire fringe work are of the 

slit-and-bar type, produced by photographic means. This type 

of grid acts on the incident wavefront to give amplitude 

variations in the various parts of the emergent wavefront. 

15. 
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The gratings used in the writer's work have been of the normal 

spectroscopic type. These have grooves ruled in the surface, 

and hence the transparency is essentially the same all over 

the ruled surface. The action of this type of grating depends 

on phase variations in the emergent wavefront,amplitude variations, 

if any, being purely incidental. In slit-and-bar type gratings 

it is the phase variations which are accidental. 

The following description of the action of spectroscopic 

gratings is only an outline. The subject has been fully covered 

in two books by Guild (5, 6) from which most of the information 

in the next sections has been derived. 

1.3.2 A single Diffraction Grating 

It is necessary first to define two planes associated 

with any plane diffraction grating. 

A principal plane is a plane perpendicular to the rulings., 

A aecondarv plane  is a plane perpendicular to both the 

grating plane and the principal planes. 

Consider now collimated light incident on a single grating. 

The relationship between the directions of the incident rays and 

emergent rays Of the nth order is 

sinpn - sin E = r-21 	 (vii) 

where 	 = the angle between.the emergent n
th 
order rays and a 

secondary plane, 

= the angle between the incident rays and any secondary plane 

n = the spectral order 

p = the grating pitch 

X = the wavelength of the light. 

From equation vii it is apparent that the number of emergent 

orders may be large - the total number is either t 

tilmeansuthe integral part of H. 
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or 	 1-2p/x] + 1 

depending upon the angles of emergence. 

1.3.3 A Pair of Gratings in Series 

When two identical gratings are separated by a small 

uniform air gap and have their rulings parallel, each of the 

emergent beams from the first grating vecomes an incident beam 

on the second. It will readily be seen from equation (viii) 

that if the first grating splits the light into N separate orders, 

then the second grating will split each of these orders into N or N 4  1 

orders. Denoting the order numbers from the first grating by nl  

and those from the second by n2, then each of the orders, r, in 

the resultant spectrum will be composed of all the orders Ili  and 

n2  such that 

nl  + n2  = r 	 (ix) 

e.g. the order number 3 produced by the grating pair will be 

made up of orders 

(0, + 3), 	 (+1, +2), (+2, +1), (+3, 0), (+4, -1) 	 etc. 

Under the conditions we have specified the resultant 

spectrum is identical to that which would be produced by a single 

grating. Here we are more interested in the case where there is 

a small pitch difference between the two gratings, and where there 

is a small angle between the rulings of the grating. 

Before proceeding further definitions are required. 

A principal median plane  is one which bisects the angle 

between two principal planes, one from each grating. 

A secondary_median_plane is one which is perpendicular to 

both the grating surfaces and the principal median planes. 
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P
2 D 

Fig. 4. Two Gratings in Series 

GI  

G2 

A 

Fig. 4 shows a normal section through two gratings, 

G1  and.G2, the bars on G1  • 	 and G2  represent the initial points 

of the rulings at the section. The fractional positions of two 

points, P1  and P2  in the rulings are AP1/AB and CP2/CD and are 

independent of the angle at which the section is taken. The 

fractional  displacement 	 g
2 with respect to G1 at the point 

P2 is defined by 

AP CP
2 

AB 	 CD (x) 

(Note thattp  can take values only in the range -1 to +1). 

When two gratings are illuminated by collimated monochromatic 

light at an arbitrary angle of incidence, the ratio, B of the 
/P 

brightness of the field at points of fractional displacement/I 

to the average brightness of the field is given by 

n-1 
= 1 	 B cos(Cn - 2n7r ) (xi) 

where B1 ' • • • Bn-1 = brightness components whose magnitudes are 

determined by the amplitudes and phases of 

the order sequences involved in the emergent 

beam. 

.= number of emergent order sequences emerging 

from second grating 

1 / • • . Cn-1  = phase Constantsdepending upon the differences 

in path lengths of the inverted order sequences 

as they pass through the air gap. 
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When used to measure displacement and, strains these 

gratings are arranged to be mirror images of each other, and 

are viewed under the condition known as minimum deviation. 

When the angles that the incident beam and the emergent beam 

of the order under consideration make with a secondary median 

plane are equal and opposite the deviation of the beam is a 

minimum, and hence this condition is known as the condition of 

minimum deviation (5, 6). Under this condition the phase constants, 

0
n , in equation (xi) are zero, and the expression reduces to 

B/Q 
B
n 
 cos 27rn 

1  

From this equation it can be seen that the characteristics 

of the resulting moire fringe system depends upon the relative 

magnitudes of the coefficients B1 	 . . . . 	 Bn..1. These magnitudes 

are determined by the groove shape of the gratings. With course 

gratings the number of emergent orders is large (about 90 for 

gratings of 1000 lines/inch; see equation viii). Under these 

conditions there is a strong possibility of multiple fringes 

and multiple beam fringe sharpening in some of the orders owing 

to the higher harmonic terms in the intensity function, equation xii. 

Generally speaking, the multiple fringes are of no 

particular benefit, since their distribution, both as regards 

intensity and spatial distribution is normally irregular. 

However the fringe sharpening effect can be of great benefit, 

since the centre of the fringes may be found by eye with greater 

accuracy than is possible with fringes having a sinusoidal 

variation of intensity. Unfortunately, with the multiple beam 

systems the average intensity of the field is low, and photographic 

reproduction becomes difficult. 

In order to increase the average intensity of the transmitted 

light, gratings may be "blazed" so that the light is concentrated 

into a few orders. To achieve this the groove is given a sawtooth 

form, the angle of the sawtooth depending upon the wavelength of the 
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incident light. If the gratings are heavily blazed for one 

order the intensity function reduces to 

= 1 + B cos 2(2q-r)/7)0 
 

Li 

where 	 r = resultant order 

= order for which gratings are blazed 

B = factor depending on the amplitude factors of the 

order sequences q:  r-q and r-q, q. 

Since the q
th 
order dominates, fringes of fundamental 

period can be seen where r = 2q + 1 or 4 = 2q -1. Where r =2q 

no fringes will be seen since the period is now infinite. By 

blazing in two adjacent orders (which are normally low orders 

for practical reasons) the intensity function can be reduced to 

'1,0= 1 + Bcos 	 ( 	 V) 

If the gratings are blazed for the two orders q and q+ 1:  

• the bright, fundamental fringes will be seen in the resultant 

order 2q + 1. 

In practice the groove form and other factors cannot be 

controlled sufficiently to make the intensities of all but one or 

two orders negligible, as the above argument may have implied. 

However gratings can be designed and made in which the one or two orders 

dominate sufficiently to cause behaviour which approximates to that 

outlined above. 

1,4 Experimental Techniques and Apparatus used in Moire 

Fringe Strain Analysis 

1.4.1 The Simple Moire Fringe Technique 

As has been mentioned previously, most moire techniques 

for strain measurement use coarse grids, with perhaps 300-1000 lines/inch. 

These grids are of the amplitude type, and are printed on to the 

model by photographic techniques. 



21. 

The simplest moire fringe strain analysis technique 

is carried out using identical grids for model and reference. 

The reference grid is placed as close to the model as practicable 

and initially the lines on both model and master are parallel. 

After deformation the moire fringes are photographed and 

analysed by either of the methods described in section 1.2. 

Only the simplest of apparatus is required, both for illumination 

and photography when the grids are of 3-600 lines/inch. Transparent 

or opaque models may be used. Provided the optical system and film 

have sufficient resolving power to photograph the individual grid 

lines the reference grid may be dispensed with, and the model grid 

used as its own reference by exposing the film twice, once while 

the model is unloaded, and once while it is loaded. 

At 1000 lines/inch writers report difficulty in 

photographing the fringes. Under the simple conditions of 

illuminating and photographing the fringes diffraction effects 

are troublesome, and hence monochromatic light is used, and a 

vacuum is necessary to ensure intimate contact between the 

reference and model grids after loading (27). In addition, 

photographic reproduction of grids as fine as 1000 lines/inch 

is troublesome, and involves the use of expensive equipment (48). 

For these reasons almost all moire fringe analysis has been 

carried out using grids of less than 1000 lines/inch; most work in 

fact appears to have been carried out using grids in the 3-600 

line/inch range. The result has been that the technique has been 

largely limited to elastic studies with low-modulus materials 

such as urethane rubber, (43) and to studies in the plastic region. 

In the next section some of the methods aimed at increasing 

the sensitivity and accuracy of the moire fringe technique will be 

described. 
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1.4.2 Some Refinements to the Simple Moire Technique 

Two methods have been used to increase the accuracy 

of the moire method. The first of these aims at increasing 

the number of fringes in the field by using grids of different 

pitch for model and reference grids. The apparent initial strain 

or mismatch must be subtracted from the final apparent strain to 

determine the true strain, but the existence of a large number of 

fringes in the field allows greater accuracy in the plotting of the 

displacement curves (and hence in the graphical differentiation to 

obtain the strain) than would be possible with the simple moire 

technique. This method has been used by several authors (28,32,49), 

and has recently been described by Chiang (48), who also extended 

the method to include initial mismatch caused by giving the reference 

grid a rotation with respect to the model grid. 

The other method of increasing the accuracy of the moire 

fringe technique is related to the comparator technique used in 

photoelasticity (50, 51) and involves the determination of 

fractional fringe values. Guild (6) has described electronic 

instruments designed to split fringes produced by spectroscopic 

(or phase-type) diffraction gratings in a homogeneous strain 

field. More recently Sciammarella (52, 53) has described a 

method of splitting fringes produced by slit-and-bar (or amplitude) 

type gratings in a non-homogeneous strain field. The method allows 

a considerable increase in the accuracy obtainable with course grids, 

and is, moreover, capable of extension to fine grids of the 

spectroscopic type. Unfortunately both these methods require specialised 

equipment, and high quality gratings. 
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2. PRODUCTION  OF THE GRATINGS 

2.1 Introduction 

The method used to produce the gratings was a 

modification of the Merton-N.P.L. process for manufacturing 
diffraction gratings (7-9, 54-57). Gratings suitable for the 

type of work described in this paper need not be of spectroscopic 

quality, and this allowed considerable simplification of the original 

process. 

The process used may be briefly summarised as follows. 

A helical groove of the desired pitch was first cut on a brass 

cylinder, and then the periodic errors in the pitch of this groove 

were eiMiniated using a Merton Nut (which is essentially a specially 

designed chasing nut) to produce a master grating on the brass. 

By pouring a solution of perspex over the cylinder, and stripping 

the resultant grating replica, gratings were obtained in the form 

of a thin film. 

2.2 The Master Grating 

2.2.1 PreliminarY 

The master gratings were made in a 17" swing lathe . 

This lathe was chosen because its size and rigidity presumably 

reduced vibration and also because rack feeds as low as 0.001"/rev 

were available without modification of the change gears. Alterations 

to the change gear ratio gave feeds down to 0.00011"/rev allowing 

gratings as fine as 9000 lines/in to be contemplated. 

The gratings were cut on 2" diameter brass bar, the length 

varying between 10 and 12 inches. These bars were given no special 

heat treatment or surface finishing, but were merely trued and 

given a finishing cut with a diamond tool. Once this truing cut was 

made, it was found essential that the work remained in the lathe to 

:preserve the centering. 'or this reason all surface examination 

was carried out with the aid of a stereoscopic microscope mounted 

on the toolpost of the lathe by means of a bracket. The power of 
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this microscope (up to 160x) was found adequate for 

preliminary checks of surface quality and groove form. 

The initial thread used to drive the Merton Nut was 

of similar saw-tooth form to that of the final groove, but was 

rather deeper. For the 1000 line/inch gratings made during 

the preliminary work high speed tool steel and tungsten carbide 

were both tried for the tool material. The groove cut with these 

materials was sufficient to drive the Merton Nut, but the tools 

were incapable of retaining their original sharpness and form for 

the full length of cut. Better results have been obtained since 

by using diamond tools. 

This initial thread was cut at a lathe speed of 47 r.p.m. 

since this was the slowest available. No work has as yet been 

carried out to determine the optimum speed for this or any of the 

other cuts made during the preparation of the master grating. 

2.2.2 The Merton Nut 

The grooves cut as described above possessed all the 

periodic and progressive errors from the lathe rack feed. The 

Merton Nut acted as a chasing nut, and by averaging over many 

threads produced a groove almost free from periodic errors in 

pitch. 

The Merton Nut used consisted of a split tube which clamped 

three timber blocks to the cylinder by the end grain faces. These 

blocks were 2i" long x k wide by 	 thick and were made from Huon 

Pine, an indigenous Tasmanian fine-grained softwood. The ends of 

the blocks were lubricated with a thin film of P.T.F.E. tape. A 

stiff arm with a ball race on the end rested on the tool post and 

prevented the nut from turning. The cutting tool was mounted firmly 

on the end of the nut. Figs. 5, 6, 8 show the Merton Nut in its final 

form. 
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direction 
of 

rotation 

deadweights 

Section A-A 

Fig. 7. SITI/F5 Diamond Tool and Holder. 

The tool and its mounting underwent considerable 

modification during the course of the investigations. Initially 

high speed. tool steel and tungsten carbide tools were tried. 

However the remarks made in the previous section also apply 

here. Gratings produced with these tools lacked the brilliance 

and dispersion of those made later using diamond tools, and moire 

fringes 'were visible only in the zero order. 
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The first diamond tipped tool used was a 

Triefus 	 STU/F5, a faceted turning tool with no rake and 

a 6°  clearance angle. This tool was mounted on edge and 

held against the work with a force of 2-3 lbs by a system 

of deadweights, as shown in fig. 7. This tool was expected 

to form the groove by a squeezing action, as in the normal 

Merton - N.P.L. process, but in spite of the high negative 

rake large quantities of turnings were produced, indicating that 

the tool was, in fact, cutting. 

This system was used to produce a very good 1000 line/inch 

' master grating, but was not entirely satisfactory for the 

following reasons. Firstly, the deadweight system was somewhat 

temperamental, working well on some occasions, and at other 

times showing a tendency to irregular cutting action. Secondly 

it was feared that the diamond, working in a direction different 

from that in which it was designed to cut, may wear out too 

quickly (9). In addition the deadweight system as used had no 

provision for altering the blaze angle without regrinding the 

diamond. 

The final cutting tool and its holder are shown in 

figures A,8. The tool was as Triefus SMS10 parting and grooving 

tool. As can be seen in the figure the tool was held rigidly 

against the work by a set screw, and could be rotated in either 

of two planes. The tool was selected from a batch to have a 

corner radius less than 0.0001 inches. This tool and its mounting 

has cut a grating of 3000 lines/inch with good results, but 

further improvements appear necessary to enable gratings of 

6000 lines/in and finer to be made. 

2.2.3 Use of the Merton Nut' 

Before using the Merton Nut the rubbing faces of the 

kion Pine pads were giveh a light rub on a strip of emery paper, 

Triefus is a trade name. 
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and P.T.F.E. tape glued on with Eastman 910 Cement. The nut 

was then bolted over the cylinder and the pads clamped down 

firmly. The lathe was run at a speed of 47 r.p.m. while a 

full flow of coolant was applied as shown in fig. 5 in order 

to provide extra lubricant for the nut)  as well as for cooling 

and to wash away the ewarf. 

Some skill and patience was necessary with the nut. 

On occasions it did not move at all; on others it moved too 

quickly)  or even backwards. However once it had locked onto 

the driving thread no further troubles were experienced. 

Sometimes a shorter bar was used to support the arm which 

prevents the nut from turning and the rack feed was engaged. 

A sponge rubber pad between this arm and the toolpost was then 

used to encourage the nut to lock onto the thread. This pad 

was, however, used only for the first e of the helix. 

2.3 The Grating Replicas 

2.3.1 The Solution 

The solutions from which the replicas were made consisted 

of polymethyl methacrylate dissolved in methyl ethyl ketone with 

a small quantity of di-butyl phthalate as a plasticiser to aid in 

the stripping process. The solutions were of two different types 

depending upon the source of the polymer, which was either 

"Perspex" 	 shavings (made by cutting Perspex sheets in a 

milling machine) or "Diakon"1-  moulding powder. Presumably 

because of the differing molecular weights of these two polymers, 

differing proportions of solvent were required as follows: 

t "Perspex" is the trade name for polymethyl-methacrylate sheet 

and tubing as marketed by 	 - other trade names are 

"Plexiglass" and Lucite". 

"Diakon" is the trade name for polymethyl methacrylate moulding 

powder as marketed by 1.0.1. 



Soln. a) 

"Perspex" shavings 

methyl ethyl ketone 

di-butyl phthalate 

Soln. b) 

"Diakon" powder 

methyl ethyl ketone 

di-butyl phthalate 

10 grms. 

200 ml 

21 

80 grms 

180 ml 

2 ml 
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Thorough mixing of the ingredients was found essential 

to produce a lump-free mixture - 2- hours for solution (a) 

and 4 hours for solution (b) in a mechanical stirrer (with a 

plain shaft used as the stirring rod) was found to be sufficient. 

A short period of standing allowed all bubbles to escape, but 

the solution improved in consistency with 2-3 days standing. 

Very little difference was found between the solutions, 

either in handling or in the finished replicas, the only significant 

difference being the reduced time required to mix solution (a). 

However the making of the shavings required for this solution 

was a time consuming process, and required the use of a scrupulously 

clean milling machine. 

2.3.2 Making the Grating Replicas 

Initially the pouring process was carried out in a lathe 

with an extra reduction gearbox in the drive to give a turning 

speed of 10 r.p.m., the pouring tray being mounted on the toolpost. 

However the pouring apparatus shown in fig. 9 was later constructed 

from an old woodturning lathe.. The minimum clearance between the 

pouring lip of the tray and the grating surface was adjusted by 

means of a stop on the tray feed screw. This distance was normally 

set at 0.023", and the finished replicas were then 0.007" thick due 

to the high shrinkage of the film. 
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The polymethyl methacrylate solution was poured 

onto the cylinder during the course of one revolution of the 

cylinder. The tray was then returned to the horizontal position 

and the straight pouring lip used to trim the replica for a 

further revolution, after which the tray was quickly withdrawn 

and the excess solution returned to the stock bottle. The 

cylinder was left to rotate until the film was dry. 

The drying period varied considerably depending upon 

the weather conditions and film thickness, but 1 hr. was normally 

sufficient. On days of high humidity (above about 80%) the 

replicas tended to take on a frosty appearance upon drying. 

This was prevented by blowing warm air over the cylinder as 

it dried. 

After drying the cylinder was placed in a drying oven 

at 85°C for 1 hr. to drive off the last traces of solvent. The 

grating was then allowed to cool and immersed in distilled water 

for a further hour. The replica swelled Slightly as it absorbed 

water, and broke free from the master grating. Finally the 

replica was wiped dry, slit along the axis of the cylinder with 

a razor blade or sharp knife and peeled off. The replicas were 

stored flat between sheets of paper until required. 

The master grating was cleaned with chloroform when 

necessary, and in any case after every 4 or 5 replicas were taken. 

2.3 .3 Gluing the Grating Replicas toYde3. 

Much research was necessary to find a suitable gluing 

technique to attach the gratings to models. Since the gratings 

and almost all the models were made from perspex, perspex glues 

were the obvious choice, and after certain difficulties associated 

with their use had been overcome these glues were used almost 

exclusively. 
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The properties of perspex cements and techniques 
(58) 

for their use are fully described elsewhere/but a brief 

summary does not appear out of place here. Perspex cements 

may be divided into three classes, which are, in order of 

increasing strength, 

(a) pure solvents such as chloroform, 

(b) solutions of polymethyl methacrylate dissolved 

in a solvent, 

(c) solutions of polymethyl methacrylate dissolved 

in its monomer (all-acrylic cement). 

All these glues contain a large proportion of a perspex 

solvent, and the difficulties associated with gluing the grating 

replicas arise from this fact. 

The first gratings produced were 0.003-5" thick. 

Gratings thicker than this frequently had wrinkled back surfaces, 

and were at first discarded as unsuitable. However it was later 

found that the all-acrylic cement (type (c) ) would successfully 

glue gratings provided they were 00007" thick, and since this 

cement is gap-filling, and has the same refractive index as Perspex,. 

the irregular back was of no consequence. 

After extensive testing the glue finally chosen 

was Tensol No. 7, an all-acrylic cold setting cement. This 

glue .  was mixed in the manner described by the manufacturers, 

and all parts of the model adjacent to the grating were masked 

with polyethylene film attached at the edges with transparent 

adhesive tape. Excess glue was poured onto the model along a 

line near one end of the grating position. The grating was then 

placed in position and, the glue squeezed along under the grating 

by rolling over the grating surface with a rubber squeegee. By 

this means all bubbles were removed from under the grating. The 

glue was left to set with a clean sheet of glass on top of the 

grating to keep it flat. 

t A Product of I.C.I. 
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Glues of type (a) and (b) were successfully used, but 

the results were not as satisfactory as those obtained with 

the all-acrylic cement. However for gluing these gratings to 

steel it was necessary to use Tensol No. 50 cement, a cement 

of type (D). 

Other glues were used with some success, Eastman 910 

cement and Epimount epoxy mounting medium being the most 

successful of those tried. Eastman 910 cement was somewhat 

tricky to use; excess glue was again required to ensure 

freedom from air bubbles. The Epimount glue was easy to 

use, but the glue joint was weak. Adequate bond was available 

to ensure that the grating followed the master, but the grating 

could be stripped off the model easily. This may, of course, 

be an advantage in certain circumstances. Both these glues 

could be used to fasten very thin gratings. 

2.4 Characteristics of the Gratings 

The bla-e angle and tooth form actually achieved by 

this process is dependent upon so many variable factors that 

each grating master differs in some respects from the last, 

and hence it is impossible to obtain the exact performance 

desired from each grating, even where the pitch is relatively 

course. The only reliable test of a grating in order to assess 

its quality for moire fringe work is to place two replicas in 

the optical bench and observe the fringes, but other tests have 

been made in an attempt to obtain some basic information on 

grating quality. The tests which have been made have mostly 

been limited to gratings from three different masters, and 

hence few definite conclusions have been reached, but some 

indication of the factors which are important in grating 

production has been found. 
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The three different master gratings which will be 

discussed in this section can be described as follows:- 

Grating A. 1000 lines/inch nominal pitch, cut With 

a tungsten carbide tool. 

Grating B. 1000 lines/inch nominal pitch, cut with 

a diamond tool (Priefus sru/F5) 

Grating C. 3000 lines/inch nominal pitch, cut with 

a diamond tool (Triefus SNS10). 

As regards their use for moire fringe techniques, grating B 

gave fringes marginally better than those from grating C, 

while grating B was very poor. 

Observation of the grating replicas after they had 

been removed from the master gave a good indication of 

grating quality. Grating B gave replicas through which 

objects could be seen clearly enough to be recognisable, 

although these objects exhibit edge colouration and were 

displaced somewhat from the straight-through position in 

a direction perpendicular to the grid lines. (This type 

of observation is incidentally the simplest way of determining 

the direction of the rulings, and also of checking grating 

orientation so that two gratings can be placed together 

, with their rulings forming mirror images of each other). 

A light filament or similar source viewed at a distance 

through grating B replicas caused brightly coloured spots 

in several orders. Grating C replicas were very similar, 

but grating A replicas were not so transparent, objects 

being only dimly visible, and not suffering any apparent 

displacement. There were virtually no colour effects at 

all produced by these gratings ,i.e. their dispersion was 

very poor. The surface finish was also markedly inferior 

to those of the other two gratings. 
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Gratings from any master which had been poured under 

conditions of high humidity exhibited a foggy or frosted 

appearance. The brilliance of the colour from these was 

markedly reduced; presumably the diffusion of the light 

reduced the collimation of the incident light. Gratings 

of this type, even when from grating master B or C generally 

produced moire fringes of low contrast, but occasionally a 

grating of this type would produce fringes with good contrast. 

This effect was not common, but indicates that no replica 

which gives reasonable dispersion should be discarded until 

it has been tried with a large number of replicas from the 

same master. It also indicates that there can be some 

variation between replicas which has a large bearing upon 

the fringe quality. 

In order to examine qualitatively the relationship 

between groove form and fringe quality, microscopic examination 

of the grating surfaces was made by means of a metallurgical 

microscope. Photomicrographs of the grating surfaces of 

replicas from gratings A, B and C are shown in fig. 10. 

These photomicrographs show that groove quality is very 

important. Grating B has the most regular groove form. 

Grating C is poorer in this respect, but the effect is 

somewhat exaggerated in this photo since the magnification is 

4X that of the others. Grating A is very much poorer than the 

other two, and indicates that the tungsten carbide tool had 

something of an irregular tearing action. 

Microscopic examination of cross-sections of grating 

replicas from gratings B and C was also undertaken. Gratings 

were mounted in a metallurgical mounting medium (Epimount) 

and ground and polished in the normal manner. (A very light 

final polish on a diamond lap was all that the gratings would 

stand without the grating showing a tendency to flow and distort). 
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A photomicrograph of a cross section of a grating B 

replica is shown in fig. 11. (The replica occupies the 

lower right hand half of the photograph). Burrs at the 

groove corners of the master are in evidence from this 

section, and are presumably due to the partial squeezing 

action of the tool used to produce this grating master. 

Burrs of this type were not shown on grating c, replicas, 

and the groove edges were not as steep. 

As a final test of grating quality the gratings were placed 

in a spectroscope and the spectrum produced by the mercury 

green line was observed (wavelength 5461 angstroms produced 

by filtering mercury light through a Wratten 77 filter). 

The spectrum produced by replicas of grating B is shown in 

fig. 12, in which the zero order is shown by an arrow. This 

spectrum exhibits some ghosting, and the lines are not sharp 

enough for serious spectroscopic work. However the spectrum 

does exhibit two strong orders (the 1st and 2nd), one somewhat 

weaker order (the 3rd) and several other still weaker orders. 

Grating C exhibited a more complex pattern of order intensities; 

one strong order(+1) two somewhat weaker (zero and -1) followed 

by the two other orders (+2 and -2), with a few still weaker 

orders visible. C also shows more ghosts than B. 
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PHOTOMICROGRAPHS OF  SOME GHATIICS 

000 linsilinch, cut with  diamond  tool. 

1000  lines/inch, cut  with  tunoten carbide tool 
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Fig. 13. Test Rig for Knee Joint. 

Fig. 11. Photomicrograph of a Grating Cross-section. 



model 
	

reference grating 

collimator 	 field 
lens 	 lens 

slit 

39. 

3. 	 Experimental Technique 

3.1 The Optical  Bench 

The optical system for viewing fringes is shown in 

fig. 13a. The light is passed through 'a slit and then 

collimated by means of the collimator lens. After passing 

through the gratings the light is collected by the field lens 

and focused onto a second slit. When monochromatic light is 

used for illumination this slit can be reasonably large - it 

merely acts as a stop to select one order in which to view the 

fringes. However it is usual in moire fringe applications to 

use the second slit as a monochromator slit, allowing the use 

of a white light source. A lamp with a fine, straight filament, 

such as an exciter lamp can then be used and the collimator slit 

dispensed with. 

The optical bench and testing machine used for the 

knee joint tests are shown in fig. 13. The testing machine 

was a Shimadzu hydraulically operated universal testing machine. 

In the 0-1000 lb. range this machine was capable of reproducing 

loadings within 1-1b. in the range 10-200 lbs. The machine was 

calibrated by placing deadweights on the lower platen. 

Fig. 13a. Opticals6ystem for Viewing Moire Fringes 
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The light source was a 6 volt 1 amp exciter lamp 

with a 4 x ern. filament. The holder (see fig. 13) was 

designed so that the lamp could be translated in the 

directions parallel and perpendicular to the filament, 

and could be rotated through 3600  about the optic axis 

of the system. Lamps were run at reduced voltage 

(3-5 volts) to allow the filament to operate in any 

orientation while still obtaining useful life from the 

lamp, 

Collimator and field lenses were both single piano-

convex condenser lenses %- inches in diameter and with a 

- 10- inch focal length. The camera used was a half-plate studio 

type camera with air bulb release. The lens and shutter system 

of this camera could be moved in any direction and, being large 

and of the gymmetrical type, the lens could be easily dismantled 
to allow the *slit (cut from stiff black paper) to be inserted 

against the iris diaphragm. Ground glass focusing was used, 

and the large format allowed full-size photographs to be taken. 

Two methods of mounting the reference grating in close 

- proximity with the model grating have been used. In the first 

of these methods the grating was mounted on an adjustable 

bracket attached to the optical.bench. This mounting allowed 

easy adjustment of the reference grating and simplified 

qualitative study of the effect of air gap on fringe contrast. 

However this type of grid mounting was not satisfactory in all 

cases. The knee model deformed sufficiently to cause the joint 

to move about e during loading and hence for measurements after 

the flanges had been glued in place an alternative method was 

necessary. A second disadvantage was that the models generally 

underwent some rigid body rotation. This rotation, if too 

large, can mask the essential form of the displacement curves, 

although, since this is a type of rotational mismatch (4 8 ), 

it may improve the accuracy of measurement of the shear strains 

(provided the amount of rotation is the same for the u and v 

measurements, or can be measured separately). 
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The method of mounting the grid adopted in 

cases where the bench mounting was unsuitable was to 

clamp the reference to the model by various means. The 

detail of the clamping method. variedfrom model to model, 

and will be described where the model tests and results 

are described (pages59,61) Obviously the clamping must 

be such that the reference grating does not place a restraint 

on the model, nor should it suffer deformation during loading. 

Where possible the reference grating was fixed along a line of 

symmetry of the model, since lines of symmetry suffer no normal 

or shear deformations, and were generally chosen as axes for 

the frame of reference.-  

Because of the optical system used, the poor quality 

of the lenses, and the fact that the system was used off 

axis, a small amount of pincushion distortion and curvature 

of field were evident. Other monochromatic aberrations 

were doubtless also present, but their effect was not evident, 

and because essentially monochromatic light was used, 

chromatic aberrations had no effect. Sufficient depth-of-field 

was present to accommodate most of the field curvature, but 

improvement was occasionally possible by tilting the camera 

back. The distortion could not be eliminated, so a grid was 

normally, ruled on the model surface with a sharp scriber or 

with a pantograph engraving machine. These rulings were filled 

with indian ink to allow them to remain visible after the 

gratings had been glued in place. (Alternatively the 

rulings could be scribed after the gratings were in place, 

or merely drawn on with indian ink). 

The bench was set up and, adjusted by the following 

method. 

1. 	 The collimating lens and light source were adjusted. to 

give collimated light. This was done by using a Tuckermann 

strain gauge autocollimator mounted on a V-block type support. 

The lamp was run at 1 volt, and. its position varied until its 

coils could be seen sharply focused on the autocollimator graticule. 



42. 

2. The model, reference grating, field lens and 

camera were placed in psoition and the lamp voltage was 

increased to 5 volts. The lamp was adjusted until its 

filament was parallel to the grating rulings. 

The gratings were aligned with their surfaces 

parallel, and the air gap made as thin as is practicable. 

The better the collimation, the wider this gap can be, but 

in any case the contrast improves as the gap decreases. 

On the other hand the gratings should not be in actual contact. 

Gratings should also be aligned so that both gratings diffract 

the light in the same sense; i.e. the grating rulings should 

be aligned so as to be mirror images of each other. 

3. The spectrum from the grating was brought to focus 

on a piece of white paper placed against the iris diaphragm 

of the camera lens system while only the front lens was in 

place. The slit was then placed in the camera parallel to 

the grating rulings, the back lens of the lens system was 

replaced, and tbemodel brought to focus by adjusting the 

ground glass screen. 

4. The size of the image was varied by adjusting the field 

lens and repeating the sequence 3. 

5. The spectral order in which viewing and photography 

were to take place was selected by moving the camera lens 

(and hence the slit) and finally the system was adjusted 

for minimum deviation. The check for this (6) is to slide 

a microscope cover slip (or a microscope slide in the case 

of course gratings) in between the gratings. Significant 

errors in alignment show up as discontinuities where the 

fringes cross the boundaries of the glass. 
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3.2 Viewing  and Photographing the Fringeg• 

3.2.1 Mismatch 

The gratings produced by the process described show 

remarkably even pitch across the grating surface, but in 

general pitch variations between gratings of up to 1% 

are possible. If a number of reference gratings are 

available, choosing matched pairs may be possible, but 

normally one fringe/inch is the best match that can be 

achieved. Furthermore the gratings may exhibit local 

variations of pitch caused during the gluing process. 

These local variations rarely reach 0.5%. and hence can 

have negligible effect on the accuracy of the method, 

but they do result in poorly defined fringes at wide 

fringe spacings. 

It will be seen, therefore, that the "simple" moire 

technique (section 1.4.1) can rarely be used. The gratings 

lend themselves more readily to the mismatch technique 

(section 1.4.2), which results in greater accuracy in any 

case. The mismatch technique has been used by the writer 

on several occasions, particularly to study stress 

concentrations, but suffers from the disadvantage mentioned 

before, in that the functional form of the displacement 

pattern, and hence the deformed shape of the model, is 

generally not so evident using the mismatch technique. 

The technique described in the next section allows the 

use of randomly mismatch gratings to produce the same 

fringes which would be produced by the simple moire 

technique. 



3.2.2 The Secondary Moire 

If a reference grating is placed over the model 

grid so that a moire pattern is produced, and the model 

is then loaded, this moire pattern changes. All changes 

are due to movement of the grating attached to the model., 

Superimposing photographs of these two moire patterns 

yields a third moire pattern, and since moire patterns 

record only changes (at least under the conditions 

normally encountered in strain analysis - see page 13) 

this "secondary" moire pattern is the same as would 

have been obtained in the simple moire technique, 

(It should be noted that the sharp fringes given by 

this technique are actually the lines where the 

displacements are I*, 1*, 2* etc. grating pitches).. 

The method described above produces fringes 

which are generally somewhat sharper than those produced 

by other methods. Furthermore the averaging effect of 

the moire pattern has been used twice, allowing the use 

of poorer gratings than would otherwise be possible 

(see fig. 14). 

A simple mathematical illustration of the validity 

of the technique used can be given provided once again 

that we restrict ourselves to small rotations (as are 

usual in stress problems) to exclude the possibility 

of obtaining an additive moire. 

Referring once again to fig. 3a (page 14) we 

note that the networks of lines represented by the equations 

f1 (x,Y)  = k1 	
(v) bis. 

f2(xY Y)  = k2 
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cause a moire pattern which is given by 

F(x, y) = f1  (x, y) - f2(x, y) = k1 	 k2 	 (vi) bis. 

Now let fm(xy  y) = km denote the grating lines on the 

unloaded model, 

fm(xy  y) = km denote the grating lines on the 

loaded model 

and 	 fr(x, y) = kr denote the reference grating lines. 

Superimposing the loaded and unloaded model gratings would 

yield the deformation moire pattern 

Fm(x, y) = em(x, y) - fm(xl  y) = k 	km. 

The initial moire produced by the unloaded model 

and the reference grid is given by 

Fmr(x, y) = fr(xl  y) - fm(x, y) = kr- km. 

and the pattern produced by the loaded model and the reference 

grid is given by 

Fmr(x, y) = 	 y) - f
t
(x, y) = kr  - km  . 

Superimposing these two moire patterns yields the secondary 

moire 

Fs(x, y) = Fmr(xy  y) - Flmr(x, y) 

= 	 - k ) - (kr- kii) 

i.e. 	 Fs
(x, y) = fm(x y) - 	y) = k -km  

thus F
s 
is identical with F and therefore the moire lines 

represent lines of constant displacement in the direction 

perpendicular to the reference grid lines. 
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3 .2.3 photography 

The film used for most of the photography was Kodak 

Royal Pan, which is described as a very fast (400 ASA tungsten) 

panchromatic film of moderate contrast, medium graininess and 

with wide exposure and development latitude. This was 

developed using Kodak DK50 developer in accordance with the 

manufacturers recommendations. Prints were made on Kodabromide 

F5 paper, a very high contrast paper. This combination of 

medium contrast film and high contrast paper appears to give 

the best secondary moire patterns, but much work could still 

be done in this field, Because the models normally moved 

during loading, most of the secondary moire patterns were 

obtained by superimposing two separate negatives during 

printing, although double exposure was used on occasion. 

The clarity of the secondary moire depends to a 

certain extent on the number of lines in the initial moire 

pattern. This was varied by rotating the reference grid, 

as well as by using reference grids of different pitchs. 

In most cases about 16 lines/inch in the initial moire 

gave good results. Near stress concentrations the expected 

number of secondary lines/inch would sometimes exceed the 

number there initially, and so the pattern did not appear. 

In these regions the mismatch technique must be used, and 

when there are one or two lines/inch in this region initially, 

the loaded pattern is very close to the true displacement 

pattern. 

3.3 Illutrative Example - Disc with Diametral 

Compressive Load 

In order to test the accuracy of the technique the 

strains in a disc under a diametral compressive load were 

measured. It was during these tests that many of the 

techniques described were developed. 



u pattern; grid lines 

v pattern; grid lines 

Fig. 14. Moire Patterns for Disc. 
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0.006 L 

0.004 

strain 

tcompression 
positive 

0.002 

0 

-0.002 

-0.05 	 0 Y/d 

compression ,600 lbs. load 
positive 

X 

analytical 

0 	 experimental 

Fig. 15. Strains on Vertical Diameter of.Disc. 

The disc used for the tests was made from -e perspex sheet, 

and was 4.18 inches in diameter. The model grating was only 0.005 

inches thick and hence there was much local distortion of the grating. 

Crazing and, bubbles were also present, but the reference grating was 

very much better in every respect. The disc was loaded in a screw-

type testing machine with optical bench attached to the lower (moving) 

platen. 
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The light source was originally provided by a 

fluorescent tube illuminating a variable width slit. 

The light available through a narrow it was not large, 

so slits as wide as e were used, and hence the light 

was not well collimated. Since the light was not split 

into sharply defined orders no mcnochromator slit was 

used, but a type of slit action was achieved by varying 

the size and position of the iris diaphragm. The photographs 

shown in fig. 14 were taken by this means, and are included 

to show how poor the quality of the optical setup can be 

whilst still obtaining useful fringes. The gratings must, 

however,, be blazed as well as those used; poorly blazed 

gratings give poor results no matter how good. the other 

optical equipment is 

The obvious defects of the above setup were 

progressively modified until the type of equipment 

described in section 3.1 was developed, and this has 

since been used exclusively. Improved contrast and 

fringe definition has resulted, and the apparatus is 

also easier to use and adjust. 

Since the movement of the disc during loading 

was negligible, the double exposure technique was used 

'to obtain the secondary moire patterns. The patterns 

for a load of 600 lbs. are shown in fig. 14. The effect 

of rigid body rotations on the displacement patterns can readily 

be seen from these photographs (c.f. patterns shown in (48) ). 

It should also be noted that the rotation during determination 

of the u pattern was different from that which occurred 

during determination of the v pattern, but in this case the 

existence of two lines of symmetry allowed separate determination 

of these rotations. 
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The strains on the vertical diameter calculated 

from these patterns are shown in fig. 15. Also plotted 

in fig. 15 are the results of the analytical solution 

for the strains in a disc (45, 51). The grid pitch used 

for the experimental results was obtained by direct 

measurement using a microscope and eyepiece scale. 

Youngs modulus and Poissonts ratio for the perspex 

were determined using Huggenberger strain gauges. 

The disc experiment has been repeated since using 

the improved optical setup and grids of 3,000 lines/inch. 

Photographs and results of this latter test are given elsewhere 

(59). 
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4. 	 THE KNEE JOINT 

4.1 The Problem and Present Methods ofSolution 

4.1.1 The Problem 

A simple form of knee joint and loading is shown 

in fig. 16. At some distance from the joint (approx.- 1 

beam depths) from the joint, and at a similar distance from 

the load points, the members can be expected to behave 

approximately as normal beam-columns (principle of St. 

Venant), but at the joint simple beam theory obviously 

does not apply. At this joint the flanges impart considerable 

transverse normal stresses and high shear stresses to the 

web, and at the same time the flange stresses near the joint 

are not uniform due to shear lag. Cross-bending of the 

flanges may also occur. 

The problem is normally further complicated by the 

presence of stiffeners, and by haunching or curving the 

inner flange to obtain greater depth of section at the 

knee. Experience has shown that many knees fail because 

of lateral instability of the compression flange, or by 

local web buckling. Further stiffening and bracing is 

therefore usually added to prevent this occurring. 

The problem is, in fact, so complicated that many 

knees are designed "by eye", with only the very roughest 

of calculations to determine sizes and shapes of component 

parts. There aro, however, some approximate methods of design 

for the more common knee shapes and these are summarised in 

the next section. 
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4.1.2' Some Methods of Analysis 

A summary of the methods commonly used. to design knees 

has been written by Gray et al. (60). Much of our present 

knowledge of knee joints and similar connections has resulted 

from the investigations of Hendry (61-63) and from an 

extensive program of testing carried out at Lehigh University 

(64-70). Earlier work was carried out at the U.S. National 

Bureau of Standards (72). 

The simplest approach to the design of knee joints is 

to allow the flanges to take all the bending and axial forces, 

and the web to take all the shear (60, 66). Where the web 

is overstressed, stiffeners are added, frequently according 

to empirical rules due to Hendry (60- 63). As an alternative 

approach Benjamin, in discussing a paper by Grover (71), . 

suggested omitting the web entirely at the joint, and using 

a truss-type knee (fig. 17(a) ) on the assumption that the 

behaviour of this type of knee is accurately prediotable by 

present means of analysis. 

More complex methods of calculating the stress 

distribution in the web are available for right-angle knees 

only. The first of these is apparently due to Osgood (72) 

and consists of assuming the web at the knee to be a 

square flat plate loaded by forces and moments in such a 

way that the edge stresses vary linearly (see fig. 17 (b) ). 

Those conditions are satisfied by the Airy stress function. 

1 	 1 
= b2 xy + 	

(3c
3 
 + d

4 
 y)(a + x)y2  + - (3h

3 
 +b
4 
 x)(b+y)x

2 
 (ii) 

6D 	 6  

It can be shown (60) that 

b2  = 	 -a(2V + Py  )- 	 + M 	 /4abt 
x 	 xy 	 2 x y 

b3  = Py/4abt; c3  = Px(4abt 

b
4 
= 3y4a3bt 

' 
• d
4 
 = Mc,(4ab t 



whence 

Tx = (Px  + 3M?/b2)/(a + x) /4 abt 

2 	 f 	 / = (ID + 3m xia ) 	 + y)/4 abt Y 	 Y 	 Y 

7-xy  =-K-a(2vxy+ Py) Pyx+ Pxy-3My(1-x
2
/a
2
)/2 

31,43co_y2/,2
) 	
'1 / 

/4 /4abt 

where 
normal stress in the x direction 

(7- 	= 	 11 	 11 	 II 
Y 	 11 

7 	 , 

l' = shear stress on x and y planes xy 
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(xviii) 

and other symbols are defined by fig. 17(b). 

Although this method presumably gives more accurate 

results than the previous approach, its accuracy is limited 

by the approximations made in the boundary conditions. Since 

the computations in this'inethod are somewhat lengthy, Wright 

(60) has produced the simplified formula 

I'max  = Mc( 1+ a2t/3Za+ b2t/3zb)/4abt. 

where Mc = moment at inside corner of frame 

Za  = section modulus of the column 

Zb  = section modulus of the beam 

for calculating the maximum shear stress, /max  . A disadvantage 

of both these formulae is that they apply only to webs of right-

angle knees. 

Haunched knees and knees with curved flanges 

(figs. 17c and d) can be approximately analysed by the 

tapered beam formula due to Vierendeel (60) or by a method 

due to Olander (60, 73). Knees with curved flanges where the 

inner and outer flanges are parallel can be analysed with good 

accuracy by means of the well known Winkler curved beam formula. 

The plastic method of design of knees of all forms has 

been treated in references (60, 63, 65-71 and 74). 
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Fig. 18. Symmetrical Knee Joint and 'Loading System 

4.2 Tests of Knee Models 

4.2,1 Preliminary ijolgA 

In order to reduNe the problem to its simplest , 

terms all knees tested have been of the symmetrical 

type shown in fig. 18. The line of symmetry of the 

Ilme was used. as one axis of the coordinate system used 

for all models as shown in fig;18. The origin of this 

coordinate system coincides with the external corner 

of the knee which is a point where all stresses are 

zero. 

As a means of building up an under3tanding of 

the overall behaviour of knees, tests were first carried 

out using knees of rectangular cross-section, and, then 

flanges were added. The next logical step is to add. 

stiffeners before going on to more complex knee shapes 

and loading patterns, but no work has been undertaken in 

this direction. 



. 	 Scale: 6" = 1'0" 
Nom. Thickness 0.25" 

0.6" 

2 holes, drill 9/32" dia. 
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Fig. 19. Small Scale Knee Model. 

4.2.2 Small 	 with  
Crosq Section 

The first knee models tested had the dimensions 

shown in fig. 19. This size was chosen as the largest 

model which could, conveniently be tested. in the photoelastic 

bench available, and to correspond with models of the same 

dimensions which the author had aready tested (75) using 

conventional photoelastic techniques and the moire method 

for determining isopachics (20, 23, 24 ,:nd 46). 

Two identical Models were used. with gratings 

parallel and perpendicular to the line of symmetry 

joining inner and outer corners of the knee. All 

gratings were nominal 1000 lines/inch grating replicas

from master grating B (see section 2.4 p. 34). The 

reference grating was attached to the optical bench 

by the bracket described in section 3.1, and the 

load (57.7 lbs.) was applied by a deadweight and lever 

system. 
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Fig. 20 shows the unloaded and loaded moire 

patterns, and also the secondary moire pattern for the 

case where the grating lines are parallel to the line 

of symmetry, i.e. the secondary fringes represent lines 

Of constant u, the displacement in the direction of the 

x axis. (displacement in the y direction is denoted by 

v), 

It can be seen from fig. 20 that the moire patterns 

produced are not symmetrical. This was due to the large 

rotation of the model relative to the loading frame, 

(approx. 4e). The effect of such rotation was eliminated 

in later tests by attaching the reference grating to the 

model at the ends of the line of symmetry. Another 

fault in the procedure used for this experiment was 

the lack of a grid scribed on the model to allow strains 

to be measured accurately in the presence of optical 

distortion. 

The size of model and the bench was altered for 

later tests because addition of flanges to models of the 

smaller size was not practical. The glue squeezed from 

the joint rendered a large proportion of the web unusable. 

Also flanges stiffened the joint to such an extent that 

the loading frame would not have been capable of producing 

sufficient deformation without being overloaded. For these 

reasons larger models were used in a normal testing machine 

for all subsequent work. 

4.2.3 Lar e Scale Knee Model with Rectangular Cross 

Section 

Having made the decision to use larger models it was 

also decided that the faults in the experimental technique 

noted in the previous section would be rectified by work 

on this larger scale, rather than by repeating the work 

already carried out. This also allowed the work on 

rectangular section knees to be repeated using the gratings 
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of 3000 lines/inch which had been produced in the 

meantime, and in any case it was necessary to make a web 

with gratings attached for experiments on an I section.knee. 

The dimensions of the knee tested are shown in 

fig. 21. 	 A 1" square grid was engraved on one side of 

the model, and 3000 line/in gratings were stuck on each 

side of the model 	 to avoid the need for two 

models. Two separate reference gratings were used, and 

•these were attached to the model in the manner shown in 

fig. 22(a) The clamping screw had a sharp point so that 

any transverse deformations would merely cause the point 

•to sink deeper into the perspex rather than restrain the 

model or deform the reference grating. 

The use of orthogonal gratings attached to opposite 

sides of the same model was very little different from the 

more usual arrangement of one grating. The light was split 

up into orders in the two orthogonal directions, and for 

best results it was necessary to view in the same order 

in each direction. The light intensity was reduced 

considerably by the presence of the orthogonal grating, 

but this was largely counterbalanced by running the lamp 

at 5 volts instead of the 3 volts which was normally sufficient. 

The moire photographs of this large scale knee are 

shown in fig. 2,, and the strains are shown in fig. 26. The 

load on the model was 51.5 lbs. 

4.2.4 I-Section Knee 

The final knee tested had 1-shaped cross sections 

and was made by gluing 2" x 	 perspex flanges onto the 

rectangular section knee described in the previous section 

(see fig. 21). Moire patterns for the web of this knee at 

a load of 200 lbs. are shown in fig. 24, and for the external 

surface of the flanges in fig. 25. Strains are sh-cmt in fig. 27. 



1" square grid ruled 
on surface 

-2 hole drili 9/32"  

Ends strengthened 
with two extra 
thicknesses of 4 

Perspex, glued with 
Tensol'No. 7 cement. 

13' 2 

7---------__ A 

6" 

60. 

The method of attaching the reference grids to 

the model is shown in fig. 22(b). It will be noted 

from fig. 24 that this method did allow small rotation 

of the reference grating during loading. 

Material: -e (nom. thickness) Perspex. 

Fig. 21. Large Scale Knee. 



SBA. Screw 
with sharp 
point 

Perspex 
block 
glued to 
reference 
grating. 

reference 
grating 

Perspex V-block, glued 
to reference with 
Tensol No. • 7 

reference 
grating 

packed with 
brass shim 
when necessary 

I 	It 
I 	I, 	I  
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(a)Rectangular Section Knee 

(b)I-Section Knee. 

Fig. 22. Methods Used. to Attach Reference Gratings 
to Knee Models. 



i etterns for Rectangular Section Knee . 
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Fig. 26. Strains in Rectangulr Section Knee 
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4.3  Llmlitical Treatment of the Knee Problem 

4.3.1 Intta_ZEIhs.61.0 

Since the moire fringes show the functional form 

of the deformed Shape of the model there is a strong temptation 

to use a strain energy method of analysis. If two guessed 

functions representing the u and v displacement curves and 

containing a number.  of free parameters are fed. into a strain 

energy integral, the equation so constructed should provide 

a means of solving for the free parameters. The energy integral 

merely replaces some equationapf statics which could have been 

solved directly, but the advantage of the energy method is that' 

it provides a systematic means of choosing the equations of statics 

required (76). This method is essentipily the same as that 

of Rayleigh. 

Having obtained an approximate solution for the stress 

distribution by the above means, it should be possible to 

improve the solution by making a.guese:of statics based on 

the observed deficiencies of this first stress distribution, 

and using the complementary energy integral to take care of 

the equations of geometry in solving for the required parameters. 

This technique can of course be repeated indefinitely. 

To illustrate the above procedure, consider a 

rectangular section beam in pure bending as shown in fig. 28. 

unit thickness 

Fig. 28. Beam under action of Pure Bending. 
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A first estimate of geometry based on moire 

photographs of a beam of this type is 

U = a1xy 

v = b
1  x2  

where a
1 
and b1 are the free parameters whose values 

are to be determined. Strains and stresses are then given 

by 

x = a1y 	 cr. H 

=0 	 dry  = H aly 

Y47  = (a1+2b1)x 	 = G(a..+2b1)x. 
XY 	 1 

where 	 H = E/(172) 

E = Youngts modulus 

= Poisson's ratio 

G = modulus of rigidity = E/2 (1>4L) . 

The strain energy integral is usually written as 

e 	 d Ex 

1.1 mdkdx- fli td  E 	 dxoly- x x 	

I 

o 

- t  d 	 dxdy 
-Q--do 	 x3r 

where 
	

U = strain energy 

M = the moment at point x 

+(= the path of M. 

t = thickness (= 1 in this case.) 

For structural analysis involving line segments, I(  

is the curvature of the segment and for small deformations 

2, 

63(2 

and it would seem logical to write 

2v  

2  
td E dxdy 
Y Y 



= 2N4-41a1id3/3 - 4.8434/3 - 8G 1:11.04/3 = 0 

U = G (8ai  t 3d/3 + 16b1  e 3013 ) = 0 b
l  
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thus defining as the curvature of the neutral axis. 

.However this expression is correct only when plane cross sections 

normal to the line of centroids remain plane, and it appears 

that rather more complex expressions have to be used in more 

general cases, a fact that has not been pointed out before 

to the writer's knowledge. 

In the present case plane sections do remain plane 

= aly) and thus 

= b1 

Differentiating the strain energy integral with 

respect to the free parameters al  and b1 ' we have 

Solving these equations we have 

al  = 311/2Hd3 	 1)1  = -311/4Hd3. 

whence 

= 3y/2d3  • d' = y1NV/2d3  • Id  = 0 
X  y  xy 

The expressions forko7x  and /' in equation (xxv) xy 

satisfy the boundary conditions ofstatics, but the expression 

for cr does not. The simplest means of satisfying the 

boundary conditions is to put dr = 0. Hence a first 

estimate of statics is 

0-  =ay 	 • or-  = 0 
x 	 1 	 y 

and in order to satisfy the equilibrium condition 

=0 

=0 
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we must have 

= 0 

hence 

E x = alilEP Ey =j4a1Y/E  Z;*r = 

The complementary energy integral is 

e 4 a- 
C = 	 )<cilvicbc - fix  Ex  d Crx  dxdy 	 (xxviii) 

o 	 d o 

differentiating with respect to al)  

d 
6 c j 	 dx + 	 j(  Jry dxdy = 0 2) al 	 al 	 E 	 - 

but = 1 crx cbr  
.d 

= 2 aid3/3 

therefore 	
2 ̀Kd3  .e/3 = 2a1d3-g/3E. 

	

a
l 
	 = E4.  

Henze 	 Ex  = 467" ; Ey 
	 1y; 	 = 0 

The last result satisfies the geometric boundary 

conditions and hence the solution 

dr
x 
= 3V2d3  Gr = /°' = 0 	 (xxx) 

Y 

is the exact solution to the problem, 

The method illustrated above would be a simple and 

straightforward method of obtaining good approximations to 

the stresses and strains in a structure, were it not for 

the difficulties associated with the determination of the 

path followed by the moment (and by the shear and axial 

forces in more complex problems). The determination of 

latter quantities proved too awkward for the method to 

be useful, and therefore an alternative method of attack 

was adopted. 
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4.3.2 	 A Direct  Method of Analuis 

pro#OS 

The method of analysis finally MEOW consists 

of finding approximate expressions for the u and v displacement 

curves and using the conditions of statical equilibrium to solve 

for the free parameters in these expressions. However before 

describing this method a similar technique for finding the 

maximum stress in a straight, symmetrical knee joint will 

be presented. This technique was suggested by the author 

in previous work (75). 

The maximum stress in a straight, rectangular 

section knee joint occurs at the internal corner of the 

joint. For a symmetrical knee the distribution of 6'
x 

across the line x = 0 is represented, to a first approximation, 

by the equation 

Cr'x = , a2 
	 (mi) 

Values for the parameters a
1 and a2 may be obtained using 

the relationships 

d' 

P = f t ( y2  + a2y)dy 
a' 

M
o
= ft (

1
2  
.Y r2  ' • Y)Y dY 

where P = normal force 

(ma) 

M = moment about line y = 0 

d
t 
= width of knee measured along line y = 0 

(see fig.29p y 	 • (4),  

Table I shows the values of a
1 
 and a

2 
and also 

of aTx  at y = d (the maximum stress in the knee) for the 

three rectangular section knees tested by the author. Also 

shown in this table are the corresponding experimental values 

for 0-
x and the percentage difference between the analytical 

and experimental solutions is shown. 
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TABLE I 

, 
araldite 
Knee x 

Small Perspex 
Knee 

Large Perspex 
Knee 

Load (lbs.) 54.9 57.7 51.5 

t 	 (ins.) 0.289 0.251 0.258 

d' 	 (ins) 1.600 1.623 3.248 

a1  2390 2550 244 

a2 -2400 -2570 -492 

0-x(anal) (psi) 2270 2550 981 

Tx(expt)(psi) 2190 2340 934 

difference, % 
_ 

3.8 9 5 

ref. (75). 

(The stress values shown for the perspex knees 

are based on values of E and)a-from bending and tension 

tests using Huggenberger tensometers. However these 

quantities show large variations even between pieces 

of the same sheet and variations of up to 15% between 

the values in orthogonal directions have been frequently 

reported. For this reason the experimental values for 

stresses are not reliable. However displacements have 

been checked by measuring the relative displacement between 

two points by means of Huggenberger tensometers, and the 

values obtained by this means have been within 3% of 

the values obtained from the moire photographs). 

At other points across the section x = 0 

the analytical solution provides values for Crx with a similar 

accuracy to that at the internal corner. Since this section 

is a line of symmetry it is also a principal plane, i.e. 

0 and a-x is also the maximum principal stress. xy 

Application of this method to knees of variable 

cross-section is also possible. In the case of the I-section 

knee tested we find al  = 186, a2  = -510 whence 0-x  = 770 psi 

at y = 3.828" (the internal corner). The corresponding 

experimental result is 879 psi, which is 12% higher than 
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the analytical result. Part of this difference is due to 

shear lag in the flanges, which reduces the load 'carried 

by these members in the vicinity of the joint. 

The experimental result for the stress given in 

the above paragraph is once again open to some doubt because 

of the variation in the values of E andig, but a further 

possible source of error in this case was the glue joint. 

These joints were approximately 0.025" thick, and the 

unavailibility of Perspex glue of the type required led to 

the use of inferior quality glue and thus the interaction 

between web and flange may not have been as great as it 

would normally be. 

The method described above provides estimates 

of the stresses across the line of symmetry (x = 0), but does 

not allow calculation of stresses (or strains) elsewhere. 

This is not, of course, always necessary, but where an 

estimate of these quantities is desirable the method to be 

described provides a next approximation. This analysis is 

based on approximate expressions for the u and v curves 

containing several free parameters, and using the conditions 

of statical equilibrium to find values for these parameters. 

Choice of suitable expressions for the u and v 

patterns may not always be easy. The patterns for the rectangular 

section knee, for example, show superficial resemblance to 

the patterns for a simple beam, and yet an analysis based 

on simple beam theory is inadequate for the present purpose. 

However the graphs of strain, figs. 25,-27 (i.e. graphs of 

etc.)provide much help in this regard. 

In the case of rectangular section knees a first 

approximation to the u and v curves is 

2 u = a1x + 

V = b1 x
2 

2 
a3xY  a4xY  



74. 

in the region bounded by the lines 

X = • x = 	 y = mx 	 y = mx•+ d 

•- where m = slope of the edges of the knee with respect to 

the x - axis (see fig. 29). 

Figure 29, Knee Joint 

Outside this region (i.e. between the lines 

x = 0, dt, y = mx, mx + dl) normal engineering beam-

column analysis may be used. 

	

In the region under consideration p q. 	 i 

gives 

(Tx  = H(2a x + a2y
3 
+ a3y

2 
a4Y
1N  
) 1 

O =H (2a1  x + a2y3  + a3y2  + a4y ) 

rzy  = G(3a2  xy2  + 2a3xy + a4x + 2b1x) . 

The equations of statics used here are 

mx+d1  mx+dt  

0-1c  t dy = P 	 jr  y t dy = 140  

mx 	 mx 
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For the small scale perspex knee (fig. 19) these 

equations may be satisfied along the boundaries x = 0, 

x = d by putting 

al  = -0.000495 ;  = -0.00479 

a3  = 0.0153 	 : a4  = -0.00960 

b1  = - 0.00113 . 

(using E = 432,000 psi, 	 =0.35, P = 57.7 lbs.) 

Fig. 30 shows a comparison between this analytical 

result and the experimental results for 	 across 

two sections of the knee. The analytical expression is not 

a good fit, but does provide an approximation to the 

experimental result. The agreement between analytical and 

experimental results is worse for the large scale knee 

(fig. 21) and so improvements will have to be made before 

the functions can be used as a design tool. However the 

method is capable of indefinite improvements, depending 

upon the desired. accuracy. Nb further work has yet been 

carried out to find better functions for u. and vl  or to 

fit functions to the I-section knee, but the graphs and 

photographs provided in this thesis should allow a design 

method to be produced along similar lines. 
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CONCLUSIONS 

The techniques of making and using cheap diffraction 

gratings for a sensitive moire fringe method of 

strain analysis have been developed. The gratings 

have been used in transmission-type apparatus using 

transparent models. There appears to be little 

problem in using these in reflection once the 

problems of producing a reflecting surface and 

attaching the gratings have been overcome. 

2. Gratings of 1000 and 3000 lines/in produced by 

these techniques were used to study some simple 

knee joints. 

3. Some preliminary suggestions were made regarding the 

use of moire fringe patterns to develop analytical 

treatments suitable for use as a design tool. 

4. A method for finding the maximum stress in a knee 

with moderate accuracy has been described. The 

method has been checked on all the knees tested, 

but applicability to knees with mitre angle other 

than 450  has not been investigated. 
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