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ABSTRACT 

The analysis is presented of pulse arrival time measurements of the Vela 
pulsar, PSR0833-45, obtained principally from near-daily observations conducted at 
the Llanherne Radiophysics Observatory (LRO) between October, 1981, and 
September, 1986. During this interval, the secular decrease in the rotation rate of the 
pulsar was interrupted by glitch events which occurred in October, 1981, August, 
1982, and July, 1985. Each glitch was accompanied by an abrupt change in rotation 
frequency of fractional magnitude Aviv -2x10 -6  of which less than 10% decayed 
within a subsequent interval of one year. The characteristics of these events were 
similar to those reported for the four previous glitches of the Vela pulsar. However, 
because of the regularity of the LRO observations, sufficient post-jump data were 
obtained to allow the reappraisal of the existing glitch models. 

The timing obtained immediately prior to each glitch were found to be 
completely devoid of any distinctive precursor signatures above the level of 
measurement noise, even to within one hour of the July, 1985, glitch. In addition, 
there were no significant changes in the characteristics of the radio emission about the 
time of each glitch. 

The timing signature of each glitch was investigated in terms of the existing 
viable models. The two-component model was rejected on the grounds of its inability 
to account for the long term relaxation behaviour. In addition, there was no evidence 
of the decoupling time predicted by the vortex creep model. 

The phase noise on timescales less than 6 hours was found to exhibit excess 
power in comparison with the expectation from measurement uncertainties. There was 
no evidence for any significant systematic behaviour of the autocorrelation function of 
the phase fluctuations with respect to time lag. Evidence was found that the excess 
noise has a power-law dependence on observing frequency, which may be a result of 
magnetospheric processes. 

Dual frequency measurements made between March and September, 1986, 
have for the first time enabled the character of short timescale variations in the 
dispersion delay along the path to the pulsar to be determined. The measurements are 
consistent with the motion of the line-of-sight through a region of inhomogeneous 
plasma located within the Gum Nebula. 
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COMMONLY USED SYMBOLS 

Boldface symbols denote vector quantities 

Right Ascension 
as 	 scattering spectral index 
B,B 	 magnetic field strength, vector 

speed of light 
Cn2 	 scattering structure coefficient 

dispersion coefficient 
8 	 declination 
An 	 superfluid neutron energy gap 

electric field 
Ep 	 pinning energy 

pulse phase 
wave frequency 

Fm 	 Magnus force 
total moment of inertia 

Ic ,p 	 normal matter, pinned superfluid moment of inertia 
quantum of vorticity 

Xp 	 London penetration depth 
me 	 mass of electron 

pulse frequency 
nB 	 braking index 
ne 	 electron number density 
Nm 	 torque 

superfluid vortex number density 
V 	 second time derivative of pulse frequency 

first time derivative of pulse frequency 
pulse period 
fraction of glitch frequency jump recovered 
wavenumber 

qe 	 charge of electron 
mass density 

po 	 nuclear matter density 
re 	 classical electron radius 

time 
'Cage 	 characteristic age 
ts 	 spindown timescale 

angular frequency 
wer 	 maximum differential angular rotation rate 

second time derivative of angular frequency 
first time derivative of angular frequency 

tn,p 	 neutron, proton superfluid coherence length 
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CHAPTER 1 - NEUTRON STARS AND THE VELA PULSAR 

1.1 INTRODUCTION 

The Vela pulsar, PSR0833-45, is a particularly well-studied astrophysical 
object. It emits highly regular pulses of electromagnetic radiation throughout the radio, 
optical, and gamma-ray regions of the spectrum. Vela's characteristic pulse period of 
—89 ms is evidently controlled by the rotational dynamics of an underlying 
magnetized neutron star, an entity remarkable by terrestrial standards, that is 
characterized by a radius of — 10 km, a mass of 1.4 M o, a central density exceeding 
that of nuclear matter (2.4x10 14  g cm-3 ), and a surface magnetic field strength of 
—10 12  G. 

Neutron stars have been under scrutiny for the past five decades, and are today 
familiar objects. Shortly after the discovery of the neutron, Baade and Zwicky (1934) 
postulated their existence in order to account for the enormous energy release of 
supernova explosions. Oppenheimer and Volkoff (1939) showed that neutron stars 
were theoretically viable by considering the fully general-relativistic equation of 
hydrostatic balance within a Fermi gas of non-interacting neutrons. After this 
development, work proceeded slowly, concentrating on the refinement of the equation 
of state, which expresses pressure as a function of mass-density for matter under 
extreme physical conditions, in order to more precisely model the structure of neutron 
stars. Notably, it was shown that neutron stars of reasonable age and distance should 
be highly inconspicuous sources of thermal radiation (Tsuruta and Cameron, 1966) 
and as a result, it was widely regarded that they would remain theoretical curiosities. 

This view changed dramatically with the serendipitous discoveries of radio 
pulsars and several classes of discrete and highly luminous galactic X-ray and gamma-
ray sources (X-ray pulsars, bursters, quasi-periodic oscillators, galactic bulge 
sources, and gamma-ray bursters). The interpretation of the bewildering cache of 
observational data that has been accumulated for these objects has provided 
unequivocal evidence that magnetized neutron stars are intimately linked with their 
behavioura. 

a For background information, the reader is referred to reviews of the characteristics of radio pulsars by 
Manchester and Taylor (1977) and Taylor and Stinebring (1986), and of high energy manifestations of 
neutron stars by White, Swank, and Holt (1983), Lewin and Joss (1981), van der Klis (1987), Joss 
and Rappaport (1984) and Bignami and Hermsen (1983). 
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The supernova origin of neutron stars is now well accepted (Woolsey and 

Weaver, 1986), largely due to the existence of the Crab pulsar (PSR0531+32) within 
the remnant of an historically recorded supernova. In addition, the processes of 
accretion-induced collapse and stellar coalescence within close binary systems are 
recognized as important birth mechanisms (van den Heuvel, 1987) based on the study 
of X-ray pulsars, and radio pulsars with millisecond periods. 

Arguably, the most valuable information on neutron stars has been obtained 
from studies of pulse timing measurements of the radio and X-ray pulsars. The pulsed 
radiation of these objects evidently represents the cross-section of directional emission 
beams which sweep around the sky in rotational phase with the crust and magnetic 
field of an underlying neutron star. This interpretation is the corner-stone for the study 
of neutron-star rotational dynamics, a field that has significantly advanced the basic 
understanding of the evolution and structure of these objects. 

Pulse timing measurements involve determination of the time of arrival of a 
fiducial phase of a pulse period in some frame of reference. In order to study 
phenomena intrinsic to the rotating neutron star and its immediate environment, the 
reference frame is chosen as that of the barycentre (centre of mass) of the solar .  

system. In this way, the influence of the acceleration of the observer with respect to 
the neutron star due the orbital and rotational motion of Earth is accounted for. 
Usually, individual pulses are too weak to be detected above the intrinsic noise of the 
measurement system. This problem is overcome by the integration of the signals 
synchronous with an accurate estimate of the apparent pulse frequency. The important 
feature of the signals of radio pulsars is that the shape or profile of the waveform 
obtained after integrating over a few hundred or thousand periods is remarkably 
stable with time; the integration process averages out pulse-to-pulse temporal 
fluctuations imposed by phenomena related to the generation of the emission, and 
scattering processes in the line-of-sight plasma. Additionally, the pulse profile of radio 
pulsars is often simple and of narrow duty cycle. These features assist in the accurate 
determination of arrival times. 

Normally, the fiducial phase of a profile is assigned a value j representing the 
total number of phase cycles that have occurred since a reference epoch to. If the 
evolution of the pulse period is known with sufficient accuracy, pulse numbering is 
unambiguous. The value of (1) is paired with the arrival time t which becomes the 
dependent variable. The relationship between 4) and the pulse frequency v is 

4)(t) = 	v (V) dt' 	 1.1 
to 
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By fitting a model to individual measurements of OW, the value of v at a particular 
epoch may be estimated. 

A distinguishing feature between radio and X-ray pulsars is the manner in 
which their pulse frequencies evolve. With the exception of PSR2127+1 1 b , all radio 
pulsars for which there are sufficient measurements show a dominant decrease in 
pulse frequency with time. This behaviour is attributed to the loss of angular 
momentum from the crust of the underlying neutron star due to the action of braking 
torques that arise from the radiation of electromagnetic energy and the ejection of 
particles. Over intervals of years, v(t) in equation 1.1 is adequately modelled by a 
Taylor series expansion with terms involving third and higher order derivatives of v 
neglected, although Barcons, Portilla, and Sanz (1988) have suggested that this simple 
expression is unlikely to be suitable for abitrarily long timescales. The advantage in 
adopting the truncated Taylor series representation for v is that providing the pulses 
are phase locked to the rotation of the crust, then the measured value of V(t) (the first 
time derivative of the pulse frequency) is physically related to the torque acting on the 
neutron star. This is of particular relevance for the investigation of pulsar radiation 
process as well as internal dynamics. 

Both radio and X-ray pulsars display stochastic fluctuations in their intrinsic 
pulse frequencies termed timing noise. This behaviour is thought to reflect variations 
in the torques applied to the crust of the associated neutron stars, and possibly from 
changes in the beaming of the radiation. The study of timing noise has provided 
information on the environment of these objects, as well as insights on the nature of 
the coupling of the interior of neutron stars to their crust. 

A small group of radio pulsars are evidently members of binary systems in 
which the companion object is a white dwarf or neutron star (Taylor and Stinebring, 
1986). This association is revealed by the doppler oscillation of their pulse frequency 
about the general spindown trend. Similarly, the X-ray pulsars also show evidence for 
an underlying binary stellar association. However, unlike the radio pulsars, the 
observed radiation from these objects is a result of the transfer of matter onto the 
magnetic poles of the neutron star from a more normal stellar companion. Importantly, 
X-ray pulsars generally exhibit an erratic increase in pulse frequency which suggests 
that the crustal torque imposed by matter accretion dominates over the radiation 
braking torque: 

b This pulsar lies within the globular cluster M15. It has a positive first time derivative of pulse 
frequency. This is interpreted by Wolszczan et al. (1989) as resulting from the gravitational 
acceleration of the pulsar towards the Earth by the inferred massive core of the cluster. This effect 
masks the spindown due to radiation torques (Appendix G). 
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The most important information directly relating to the internal structure of 
neutron stars has been obtained from the study of the phenomenon known as glitches. 
Glitches are a characteristic of radio pulsars that have been displayed by seven objects 
to date, including the Vela and Crab pulsars. A glitch is an infrequent and seemingly 
abrupt increase in rotation frequency that is large in comparison to the variations due 
to spindown and timing noise. Each glitch is followed by a characteristic relaxation 
effect which removes a fraction of the excess rotation frequency. During the 
relaxation, the first derivative of frequency, which also increases at the time of the 
glitch, recovers towards its usual spindown value over timescales of days to years, 
depending on the pulsar involved. However, in several cases, the steady state value 
of the derivative that is eventually attained has been greater than that prior to the glitch. 
Although a number of theories have been put forward to account for glitches, the 
general consensus is that these events are intimately linked with the dynamical 
consequences of neutron-star spindown on states of interior superfluid matter (Pines 
and Alpar, 1985). 

It is difficult to observe the behaviour at the onset of a glitch owing to the 
evidently short timescales of the phenomena involved and the infrequency at which 
glitches occur. To date, the development of models has been based solely on the 
characteristics of the relaxation process. Unfortunately, it is not yet possible to predict 
the occurrence of glitches, mainly because only sparse statistics have been 
accumulated thus far. However, the glitches exhibited by the Vela and Crab pulsars 
occur at quasi-regular intervals. As a result, these objects have received considerable 
attention. In the case of Vela, the glitch epochs are separated by 2-3 years (Cordes, 
Downs, and Krause-Polstorff, 1988; hereafter CDK-P), while this interval is several 
years for the Crab pulsar (Lyne and Pritchard, 1987, and references therein). It is 
therefore only a matter of patience in order to observe a glitch of one of these objects 
in its entirety. Because both pulsars are relatively conspicuous at radio frequencies, 
several groups have found it feasible to dedicate instrumentation to the regular 
monitoring of their timing behaviour, principally with the aim of capturing a glitch; the 
first successful observations of this type were recently made for the Vela pulsar by 
Hamilton etal. (1989). The wealth of data accumulated in these long-term projects has 
been particularly valuable in studying the rich variety of timing phenomena which 
these pulsars exhibit. 

The scrutiny of the Vela pulsar over the past two decades has revealed the 
occurrence of eight glitches with a typical magnitude expressed by the fractional 
changes Aviv 1-2x10-6  and AV/V 10-2  (CDK-P; Flanagan and Hamilton, 1988). 
These quantities are large in comparison with those for the majority of glitches of other 
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pulsars. In addition, two much smaller though characteristically similar jumps have 
also occurred (CDK-P; Hamilton, personal communication, 1989). Aside from these 
obvious discontinuities, the pulsar's timing noise comprises fluctuations on a range of 
timescales with a bimodal amplitude distribution characterized by lAv/v1 10 -9  and 
IAV/VI 10-4  (CDK-P). 

The only existing published analyses of Vela's long-term timing behaviour 
have been presented by Downs (1981), Manchester et al. (1983) and CDK-P. These 
works utilized radio timing data collected by the facilities of the Jet Propulsion 
Laboratory (JPL) at approximately weeldy intervals over a period of 14.5 years which 
ended in March, 1983. Unfortunately, the resolution of the measurements precluded 
the quantification of the pulsar's timing behaviour on timescales between —2 hours and 
several days. This lack of information, particularly with regard to the immediate post-
glitch behaviour, motivated a programme of intensive contiguous timing 
measurements of the Vela pulsar at the Llanherne Radio Observatory in Tasmania. 
Between October, 1981, and September, 1986, near-daily observations of up to 5.4 
hours duration were conducted. An analysis of the data collected is presented in this 
thesis. 

The Llanherne data has provided detailed information for three glitches as 
well as the pulsar's timing noise. The first 18 months of Llanherne observations 
overlapped with JPL measurements. The Llanheme data set has been augmented with 
observations made at the Haretbeesthoek Radio Astronomy Observatory (HRAO) in 
South Africa in order to support the identification of intrinsic fluctuations in the 
pulsar's timing parameters over the subsequent period. The Llanherne and HRAO data 
have also been jointly employed to indirectly study the variability of the delay 
introduced by the interstellar plasma on arrival of Vela's pulses. In addition, this 
aspect has been directly measured with unprecedented resolution using a series of 
dual frequency timing measurements made during 1986. 

The plan of this thesis is as follows. In the remainder of this chapter, the 
physics of neutron stars and the characteristics of pulsars, with particular regard to the 
Vela pulsar, are reviewed. In chapters 2 and 3, the phenomenology and theoretical 
interpretation of pulsar glitches from the literature are presented. The observation and 
reduction techniques used for the Llanherne timing data are presented in Chapter 4. 

• The short timescale noise and the significance of pulse shape variations are examined 
in Chapter 5. A detailed analysis of three large glitches appears in Chapter 6. 
Measurements of the frequency dispersion of pulse arrival times are presented and 
interpreted in Chapter 7. Conclusions are drawn in Chapter 8. The survey of the 
supporting literature used in this thesis was concluded in May, 1989. 
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1.2 NEUTRON AR PHYSICS  

1.2.1 Neutron Star Structure' 

The macroscopic parameters of neutron stars are largely governed by the still 
uncertain equation-of-state (EOS) in the regime where the mass-density p exceeds that 
of nuclear matter (p0 = 2.8x10 14  g cm-3) (Pandharipande, Pines, and Smith, 1976; 
hereafter PPS). For lower densities, the EOS is now fairly well understood. In the 
sections that follow, an overview is presented of the standard interpretation of neutron 
star structure (figure 1.1). It must be pointed out that only certain aspects of this 
picture have been tested through observation. 

1.2.2 The Outer Crust 

The cooling of neutron star matter is expected to be extremely rapid after 
formation via neutrino (and possibly pion) emission (Tsuruta, 1986). The 
temperatures throughout the bulk of the interior (10 8  - 1010  K for objects of 
reasonable age) are negligible compared with Fermi energies and so phenomena such 
as quantum degeneracy and superfluidity are likely to occur. 

The largest thermal gradient occurs in the outer crust where the structure of 
matter is most strongly influenced by magnetic and thermal effects. The direct 
inference of surface temperatures has been possible for several objects through X-ray 
observations. These results are generally consistent with the predictions of current 
interior cooling models (Nomoto and Tsuruta, 1986). At densities below — 4.3x10 11  g 
cm-3, matter is organized into a nuclear lattice immersed in an electron plasma. The 
most favourable nucleus for p < 8x10 6  g cm-3  is 56Fe, the stable end-point of 
thermonuclear processing. A trace of 4He may initially coexist. These nuclei are 
formed from the photo-disintegration of iron-peak nuclei during the violent stellar birth 
(Rosen and Cameron, 1972) and are expected to be rapidly depleted by the action of 
the surface electric field (Michel, 1975). 

The surface structure of neutron stars is of particular interest for models of 
pulsar glitches and radiation processes. Within a few hours of formation, the surface 
temperature is expected to drop significantly, enabling the crustal lattice to solidify. If 
the initial rotation rate is sufficiently high, it is likely that a non-spherical equilibrium 
shape will be set up before the end of the rapid cooling era. Unless relieved by plastic 

b This topic has been reviewed by Baym and Pethick (1975,1979) and Irvine (1978). 
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Fig. 1.1 	Schematic cross section of a standard 1.4 solar mass neutron star. 
(After Pines and Alpar, 1985). 

Fig. 1.2. 	Superfluid transition temperature Tc  a function of density for superfluid 
components of neutron stars. The ambient temperatures are well below Tc  for all but 
very young neutron stars. The superfluid energy gap, A, is given by A 1.76 T, for 
1 S0 pairing, and A 2.4 Tc  for 31'2 pairing. Note the low energy gap where the two 
neutron superfluids overlap. (After Baym and,Pethick, 1975). 
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flow, increasing stresses will then build in the crust due to the influence of 
spindown from radiation torques. The possibility that the crust may fracture in this 
situation has been addressed in connection with pulsar glitches by Ruderman (1969) 
(section 2.3). 

If ions can be freely ejected from the surface, they will be outwardly 
accelerated by the magnetic field, and may contribute to the observed radiation. 
However, the binding energy of surface ions is still uncertain, although irrespective of 
the initial surface structure, a short-lived thermally ejected atmosphere with a scale 
height of only a few centimeters is likely to form during the rapid cooling era. 

Ruderman (1974) suggested that the magnetic field at the surface of pulsars is 
sufficiently intense for the electron clouds of the outer crustal atoms to be distorted 
into a cylindrical wavefunctions, each with an axis of symmetry that is parallel to the 
field and which passes through the associated nucleus. For such a situation it is 
energetically favourable for cylindrical atoms to bind to others along a field line by the 
quantum-mechanical sharing of electrons in the outer Landau orbitals (Flowers et al., 
1977) thereby creating polymetric chains of nuclei bathed in an anisotropic electron 
plasma. This configuration will have a significant effect on the surface conductivity, as 
the electrons are more mobile parallel to the magnetic field. The electrons are unable to 
completely shield the Coulomb fields of adjacent nuclei and as a result the chains will 
be relatively displaced so that the nuclei adopt a triangular lattice structure. Ruderman 
(1981) considered that despite the strength of this lattice, significant photo-ejection of 
ions continually occurs in the magnetic polar regions of the highly energetic rapidly 
rotating pulsars, such as Vela. In a more recent study, Neuhauser and Koomin (1987) 
have found that for B B12 m  1012  G, isolated atoms are more energetically favoured 
than chains, raising the possibility that matter at the surface of a neutron star is only 
wealdy bound. 

The magnetic field is generally regarded as the result of flux conservation 
during birth. However, Blandford, Applegate, and Hemquist (1983) have suggested 
that as the crust cools, the magnetic field it possesses may be amplified by 
thermoelectric effects. The structure of the field is uncertain. Pulsar emission models 
generally infer a global dipolar structure, however the possibility of significant higher 
order moments at the surface is still largely unknown (Barnard and Arons, 1982). 
Because of the high conductivity of electrons (Baym, Pethick, and Pines, 1969a,b) the 
magnetic field is rigidly tied to the crust. 

As depth and density increase, the electron Fermi energy rises, and exceeds 
the cyclotron energy of the inner orbital for p > 2x104  g cm-3  (assuming B B12) 
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(Baym and Pethick, 1975). Below this level, the lattice structure take on a cubic 
crystalline form. The electron plasma is degenerate for p > 10 5  g cm-3 , and the 
degeneracy is fully relativistic for p> 107  g cm -3 . As the density increases, favourable 
regimes exist for the creation of heavier stable nuclei due to electron capture from the 
highest Fermi states by the protons within nuclei (Baym and Pethick, 1975). The 
neutrons so formed are stable against inverse beta-decay because the electron Fermi 
levels are critically occupied. 

1.2.3 The Inner Crust 

At a densities above — 4.3x10 11  g cm-3 , the so-called neutron-drip point, 
neutrons created within nuclei become unbound and enter a gaseous phase which 
becomes degenerate at p 5x10 11  g cm-3  (Baym and Pethick, 1979). The neutron gas 
is prevented from decaying by a small population (— 5% of the total baryon number 
density) of electrons which maintain charge neutrality with the bound protons (Alpar, 
Langer, and Sauls, 1984). At the onset of degeneracy, surplus neutrons which reside 
below the neutron gas Fermi level within nuclei are prevented from escaping. 

Throughout the inner crust, the inter-neutron spacing is typically larger than the 
effective range of the strong force. The action of a long range attractive force between 
pairs of neutrons (both within the gas and the nuclei) eventually overwhelms their 
thermal motions and they form an isotropic 1 S0 Cooper superfluid. The transition 
temperature at which this behaviour first occurs is in the range 0.1-1.0 MeV (Yang 
and Clark, 1971) and is sensitive to the EOS chosen. The formation of the Cooper 
pairs produces a gap in the energy spectrum of the single particle state with magnitude 

1.8 Tc , where Tc  is the critical temperature for superfluidity (figure 1.2). The 
intra-nuclear superfluid density Po  exceeds that of the surrounding superfluid PG  while 
ratio P0/PG  decreases with increasing mass-density and becomes effectively unity at 
the base of the inner crust (Negele and Vautherin, 1973). 

Superfluidity in neutron stars was first suggested by Migdal (1959) shortly 
after the development of the BCS theory of superconductivity. The support for this 
hypothesis has come principally from the modelling of relaxation processes in pulsar 
glitches and torque fluctuations in the accreting X-ray pulsars (Lamb, Pines, and 
Shaham, 1978a,b). 

The state of the neutron superfluid corresponds to the macroscopic occupation 
by pairs of particles of a single quantum-mechanical wavefunction, and as a result, 
any hydrodynamical flow is irrotational. If the neutron superfluid is to mimic solid 
body rotation, it must contain an array of cylindrical vortices paraxially aligned with 
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the rotation axis (Ruderman and Sutherland, 1974). Macroscopically, each vortex 
column orbits the rotation axis at the solid-body rate. On the microscopic scale, the 
azimuthal velocity at a distance r from a vortex axis is 

vr  = 
4 IC m n  r 

For r 	„/2, where 411  is termed the coherence length, the neutron matter is normal 
and not superfluid; 

_ 2 EF 
‘271 	 1.2 

TE kF An 
where EF and kF are the neutron Fermi energy and neutron Fermi-surface wavelength, 
respectively. Typically 4, 1  = 5 fm for p = 10 13  g cm-3  (Epstein and Baym, 1988). It is 
useful to note than within the Vela pulsar, the expected value of tn  is such that only 
10-18  of the available superfluid neutrons are normalized in the vortex cores. The 
vortex density nv  per unit area is quantized according to 

2 D i  
nv — 	 1.3 

where lc = h/2mn  2x10-3  cm2  s-1  is the quantum of vorticity, and =2irv1 with v1 
being the solid-body rotation frequency. For Vela, nv  = 7x104  cm-2. A static tensional 
force is effective along vortex axes due to bulk rotation. This force resists deformation 
of the vortex line (Rudennan and Sutherland, 1974). 

Within a neutron star undergoing spindown, the superfluid is not fully 
decoupled from the crust. The charged particles (which rotate with the lower rate of 
the crust and magnetic field) couple with and scatter off the vortex cores thereby 
inducing an azimuthal drag force which attempts to reduce the superfluid angular 
velocity. A radial force Fm (the Magnus force) acts to adjust the vortex density 
consistent with the deceleration. If the original and new rotation rates are 01 and f22 
respectively, then 

Fm = nv  K x [ ( 	- 	) x r] 	 1.4 
where bold quantities are vectors (x denotes the operation of the vector cross-product) 
and r is the radius vector in the plane of rotation. However, the radial movement of 
vortices will be impeded at sites where they preferentially anchor or pin. Attractive 
(repulsive) pinning occurs where the energy gap of the superfluid is greater (less) than 
that of the neutrons within nuclei. In a decelerating superfluid, pinning causes the 
vortex density to be higher than the equilibrium value. The free energy associated with 
the excess vorticity is invoked as the source of pulsar glitches. Pinning may be 
broken by the build-up in the Magnus and drag forces, and by thermal fluctuations. 
Vortex pinning is further discussed in section 2.8 with regard to the initiation of 
glitches and their subsequent relaxation. 
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1.2.4 The Core 

Because of the uncertainty of the EOS at trans-nuclear densities, it is unclear 
whether matter can exist in anything other than a liquid phase within the core. Migdal, 
Chernoustsan, and Mishustin (1978) have suggested that pi-meson condensation may 
occur where p > 2p0. Quark matter is unlikely (Baym and Pethick, 1979). 

At a density of p0 the nuclei dissolve. This marks the transition to the core 
region. At this point, the matter exists in degenerate gases of neutrons, protons, and 
electrons, and by coincidence, the dominant neutron pairing shifts to the anisotropic 
3132 state. The protons pair in a 1 S0 superconducting state, while any pions are also 
expected to be superconducting. The electrons are normal throughout the interior, as 
their transition temperature for superfluid behaviour is essentially zero (Alpar, 1977). 
The conducting and superfluid components within the core have a significant bearing 
on the behaviour of glitches, as described in section 2.7, through the evidently strong 
coupling which exists between the core matter and the crust. 

1.3 THE VELA PULSAR 

The discussion returns to the structural properties of neutron stars in chapters 2 
and 3. In the remainder of this chapter, background information is provided on the 
Vela pulsar as well as aspects of the generation and propagation of pulsar emission, 
and pulsar rotational evolution. Reviews of Vela's timing activity are presented in the 
following two chapters. A summary of the general parameters of the pulsar is 
provided in table 1.1. 

1.3.1 Location 

The Vela pulsar is widely regarded as the product of a supernova event. The 
principle evidence comes from the similarity of the positions of the pulsar and the Vela 
supernova remnant (SNR) and the approximate equivalence of the inferred ages of the 
pulsar and remnant (Stothers, 1980; Bignami and Caraveo, 1988, and references 
therein). Bignami and Careveo placed an upper limit on the magnitude of the proper 
motion as 60 mas yr -1 , and on this basis concluded that the pulsar could not have 
travelled from the proposed centre of the remnant during its lifetime. Although the 
verification of the pulsar's distance is hampered by the lack of significant 21 cm HI 
absorption along the line-of-sight (Manchester, Murray, and Radhalcrishnan, 1969) 
the estimation of the pulsar's transverse velocity through the analysis of scintillation 
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TABLE 1.1 
PARAMETERS FOR PSR0833-45a 

Timingb 
v (Hz) 	 11.201539545±2 
✓ (10-12  Hz s-1 ) 	 -15.680±1 
✓ (10-22  Hz S-2) 	 -6±3 
epoch (TJD) 	 6363.4246210 
epoch range of fit (TJD) 	 6309-6417 
rms residual (.Ls) 	 65 
✓ (10-34  Hz s-3)e 	 -4.6 

Position (B1950.0) 
pd 	 08h 33m 39.s22±3 
decd 	 -45000'10" .1±3 
proper motion (mas yr-1)e 	 — 260 
galactic longitude 	 263?6 
galactic latitude 	 -2? 8 

General 
DM (pc cm-3)f 	 69.08±0.01 
RM (rad m-2)f 	 33.6±0.1 
decorrelation bandwidth (IcHz)g ,b 	 0.28 

20/3 n-)h ,i mean structure coefficient <C,12> ( 	 1.5 
scattering spectral index a h 	 3.9 
transverse velocity (km s-1)i 	 53±5 
equivalent pulse width (ms)1(.1 	 2.6 
mean linear polarization (%)k 	 82 
mean flux density (mJy)g ,k 	 4100 
spectral index f 	 -1 
magnetic field strength (1012 G) 	 3.4 
distance (kpc)f 	 0.5 
distance below galactic plane (pc)f 	 24 
characteristic age (104  yr) 	 1.1 

errors are 95% confidence limits, and are quoted for the last significant digit except for DM and 
RM 
from Llanherne observations 
assuming a braking index of 3 
Manchester et a/. (1978a) 
proper motion in RA and dec. from Ogelman, Koch-Miramond, and Auriere (1989, preprint) 
Taylor and Manchester (1975) 
at 635 MHz 
Cordes, Weisberg, and Boriakoff (1985) 
scattering coefficient averaged over the line-of-sight 
Cordes (1986) 
McCulloch et al. (1978) 
pulse energy divided by peak intensity 
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observations combined with VLBI and optical proper motion measurements is a means 
of obtaining an accurate independent check which has yet to be published. 

The Vela SNR (frontispiece) is a shell of anomalous hot turbulent gas which 
represents the interaction of a supernova blast wave with a pre-existing 
inhomogeneous interstellar medium (Jenkins, Wallerstein, and Silk, 1984). It 
produces enhanced emission throughout the electromagnetic spectrum, and is a 
significant partially non-thermal continuum radio source (figure 1.3). Evidently, it has 
a diameter of —40 pc (Green, 1984) and its centre is 500 pc distant. 

The remnant lies wholly within the Gum Nebula. This is an ionized region 
estimated to have a diameter of 250 lcpc, and a near edge 375 pc distant (Reynolds, 
1976), although Brandt et al. (1971) have suggested much larger dimensions. 
Bruhweiler, Kafatos, and Brandt (1983; hereafter BICB) have summarized its 
characteristics. It contains highly inhomogeneous multi-phase components that form a 
hierarchy of structures regarded as representative for the interstellar medium (ISM) 
(McKee and Ostriker, 1977). Plausible models for the region have been reviewed by 
BKB. The lack of definite expansion suggests the region is an extensive Hill cloud that 
has been modified by slow shocks induced by the stellar winds of embedded evolving 
stars, and perhaps more recently by the photopulse that accompanied the supernova 
explosion responsible for the Vela SNR. 

The pulsar is surrounded by a localized synchrotron nebula (Harnden et al., 
1985). This probably originates from the interaction of the pulsar's high energy 
radiation with the local ISM. 

1.3.2 Radio Emission 

PSR0833-45 is one of the most conspicuous radio pulsars. The study of its 
characteristic pulsed emissions has significantly assisted in the quest for a general 
pulsar radiation model. Its spectrum is presented in figure 1.4. The pulsar is most 
readily detected at radio frequencies. The radio emission, when integrated 
synchronous with the apparent pulse period for several hundred periods, has a 
characteristic profile which is highly stable in shape with time (figure 1.5). Above — 
1.6 GHz, the profile shows distinct bifurcation; the energy difference between the 
primary and secondary components shows evidence of variability (Manchester, 
Hamilton, and McCulloch, 1980). 

Pulsar radiowaves are scattered by density turbulence within the ISM (e.g., 
Cordes, Pidwebetsky and Lovelace, 1986; hereafter CPL). Importantly, scattering 
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Fig. 1.3. 	The Vela SNR; (a) isotherms of brightness temperature at 635 MHz 
(Milne, 1967), (b) isophots in the X-ray band 0.1-0.4 keV (Hearn, Larsen, and 
Richardson, 1980). 

Fig. 1.4. 	Total energy spectrum of the Vela pulsar from the radio to gamma-ray 
regions of the spectrum compiled by Grenier, Hermsen, and Clear (1988). In the X-
ray range, 3•3 upper limits are shown assuming a pulsed duty cycle of 0.2. The broken 
lines indicate the extremities of variability of the gamma-ray emission. 
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Fig. 1.5. 	Pulse profiles for PSR0833-45 at (a) 631 MHz (McCulloch et al., 
1978) and (b) 2.3 GHz (Krishnamohan and Downs, 1983). Solid lines - total 
intensity, dashed line - linear polarization, dotted line - circular polarization. The 
position angle (PA) of the linearly polarized vector is is also shown. 

Fig. 1.6. 	Dynamic spectra of PSR0833-45 illustrating the finite frequency and 
time scales of correlated intensity scintillations due to scattering within the ISM. Note 
the decrease of these scales with observing frequency. Top to bottom; (receiver 
bandwidth, number of periods averaged per pixel) = (100 kHz, 50), (33 kHz, 30), (1 
kHz, 20), and (1 kHz, 30). (After Roberts and Ables, 1982). 
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modifies the intrinsic profile shape; the effects become more pronounced as the 
observing frequency is decreased (figure 1.6). Below — 150 MHz for Vela, the 
timescale of the temporal transfer function for the line-of-sight plasma exceeds the 
pulse period thus hampering pulse energy measurements (Komesaroff, Hamilton, and 
Ables, 1972). In addition, scattering introduces intensity scintillations which are 
coherent only over finite frequency and time ranges (the decorrelation bandwidth and 
decorrelation time, respectively) as shown in figure 1.7. 

A significant aspect of Vela's radiation is that it is highly linearly polarized 
throughout the radio spectrum, particularly on the leading edge of pulses 
(Radhakrishnan et a/., 1969; Manchester, Hamilton, and McCulloch, 1980). The 
position angle of the plane of polarization exhibits a smooth rotation across the pulse 
profile (figure 1.5). This behaviour is the corner-stone of the rotating-vector model of 
pulsar emission (section 1.3.6). In additional, the radiation exhibits a small percentage 
of circular polarization which increases with frequency and reaches — 14% at — 1.6 
GHz. Below 400 MHz, the signals are increasingly depolarized by scattering within 
the ISM (Komesaroff, Hamilton, and Ables, 1972). 

From single-pulse polarization measurements at 2.3 GHz, Krishnamohan and 
Downs (1983; hereafter 1(13) have found that the pulse profile has contributions from 
four distinct emission regions. Unfortunately the quantitative modelling of the multi-
component nature of Vela's radio pulses suffers from the lack of a systematic study 
across the spectrum. Such a study may shed light on the magnetic field structure 
which although regarded as dominantly dipolar, may have significant higher order 
multipole components at low altitudes which subtly influence the emission geometry. 

1.3.3 Dispersion 

By far the most important modifications to the phase and amplitude of 
propagating pulsar radio waves occurs within the ISM. Of particular importance for 
pulsar timing studies are the isolation of dispersive arrival time delays and their 
fluctuations which may mask the intrinsic variations. 

It has been demonstrated (e.g. Tanebaum, Zeissig, and Drake, 1968; Goldstein 
and James, 1969) that the constant term of dispersion delay for pulsar signals is 
described to within — 1 part in 10 4  by the first-order approximation to the familiar 
theory of propagation in a weakly-magnetized cold electron plasma. Waves of 
frequency f1 and f2 which have propagated a distance d are delayed by 

27cqe2  
t2 - ti — 	(f2-2 f1 -2) Dm 	 1.5 mec 
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Here DM = jne(1)dl, the dispersion measure, expresses the total electron column 

density along the propagation path. The directly measurable part of equation 1.5 is the 
dispersion coefficient D; 

D 
(t2 - t1) 	 1.6 — 

(f2 -2  - f1 -2 ) 
with 

DM (pc cm-3) = 2.410086x10 -4  D (Hz) 	 1.7 
From the model of the distribution of the galactic electron plasma (Manchester and 
Taylor, 1977, pp. 123-146), it is evident that approximately half of DM for the the 
Vela pulsar is contributed by the Gum Nebula (Manchester, Murray, and 
Radhakrishnan, 1969); the mean electron density to Vela is 0.14 cm-3  compared with 
the value of 0.025 cm -3  held typical for the ISM. 

Hamilton etal. (1977) and Hamilton, Hall, and Costa (1985) have shown that 
DM for PSR0833-45 slowly and systematically varies with time by at least 4%. In 
addition, the amount of ISM Faraday rotation undergone by the plane of polarization 
of the signals is also variable. Hamilton et al. have interpreted these changes as due to 
the motion of a magnetized plasma filament out of the sight-line. The characteristic 
timescales and amplitudes of the plasma variations are poorly known owing to the 
infrequency of the reported measurements. In Chapter 7, new observations of Vela 
DM changes on short timescales (less than 200 days) are presented. 

1.3.4 Scattering 

The frequency scalings of scintillation parameters and the impulse response 
timescale for the line-of-sight to pulsars provides the primary evidence that the ISM 
contains three-dimensional electron density turbulence with a fluctuation power 
spectrum in wavenumber q given by 

psne  = c„.2 cras 	 1.8 

where Cn2  is termed the structure constant, and a, is the spectral index. Typically, 
Cn2  = 10-5  - 10-2 m-2013 and as  3.7 (Armstrong, 1984). The turbulence is regarded 
as inertial (i.e. energy cascades through turbulent eddies of diminishing scale) at least 
for spatial scales r = 27r/q near 108  m (Armstrong and Rickett, 1981; Rickett, 1977). 

Diffractive scattering effects are caused by turbulence with scale sizes on the 

order of the Fresnel zone scale rF = VAT. where L is the distance of the phase screen 
from the observer and is the observing wavelength. The resulting fluctuations in the 
frequency-time plane that are usually narrow-band and rapid in comparison with the 
instantaneous bandwidth and period of pulsar signals, respectively. The temporal 



— 	• Ibi 10° 
	 oyelo 	1641-45 

o 5° 5. I bl < 10 0  
OI bl < 50 
	 0 

0 

1929+10 Se° 
0 

0 	 • 	0 	00 
0 	• 0 0  

	

09 	o Cb 
• a a 

— I • 	0 0 . 	• 	0 0 	0 
• 00  

• it. $ 	SO 0525 
0 v: . 	. 0 • -p 0 

• Crob 
• 0 • 

10 	 100 
	

1000 
DISPERSION MEASURE (pc crn-3 ) 

0 

5 
1 

-4 

29 

1620 MHz 

• 

636 MHz 

408 MHz 

\\*. 

300 MHz 

.--. 	250 MHz 

Fig. 1,7.  Average pulse shape at five frequencies. The baseline covers one 
period. The peak intensities have been normalized and the leading edges have been 
arbitrarily aligned. The horizontal bars indicate the magnitude of instrumental 
dispersion smearing. (After Ables, Komesaroff, and Hamilton, 1970) 

Fig. 1.8. 	Estimates of the mean line-of-sight scattering structure constant <C n2> 
plotted against dispersion measure for three ranges of galactic latitude. (After Cordes, 
Weisberg, and Boriakoff, 1985) 
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smearing of pulsar profiles noted in section 1.3.2 is a manifestation of diffractive 
scattering. The ISM temporal transfer function has geometrical and dispersive 
contributions. The geometrical effect is essentially due to the variation of the path 
length traversed by the scattered rays. The dispersive term arises from the variation of 
the group delay as the scattered rays encounter plasma turbules with a range of 
densities. An additional result of the geometrical scattering is the apparent wandering 
of the angular position of the source. 

The Vela pulsar's diffractive temporal delays are well modelled by assuming 
the existence of a thin screen of homogeneously distributed turbulence within the 
propagation path (Ables, Komesaroff, and Hamilton, 1970; Lee and Jokipii, 1976). 
Cordes, Weisberg, and Borialcoff (1985) have determined ct s  and Cn2  for the path to 
Vela on this basis; these values are listed in table 1.1. The structure constant for 
PSR0833-45 is evidently anomalous (figure 1.8). In addition, the fluctuation spectrum 
is marginally steeper than that expected for a Kolmogorov distribution of density 
turbulence for which cc, = 11/3; this spectral index is consistent with the scintillation 
data for a portion of the pulsar population (CPL). 

Turbulence with spatial scales larger than the Fresnel scale produces refractive 
scattering effects which are difficult to measure as a result of their slow evolution. The 
relative significance of refractive and diffractive effects is dependent on oc s  and the 
inertial range of the turbulence scales. Vela's systematic radio flux variations 
(McAdam, 1981) have been attributed to refractive scintillations (Coles etal., 1987), 
although intrinsic changes within the emission zone may also be responsible (Grenier, 
Hermsen, and Clear, 1988). If density turbulence is inertial at refractive scattering 
scales then dispersive arrival time delays will increase with the length of observing 
time. This is simply due to the increase in the probability that larger density structures 
will become interposed in the line-of-sight. The predictions of refractive scattering 
theory for dispersive delay fluctuations are compared with measurements for the Vela 
pulsar in Chapter 7. Inertial density turbulence will contribute a term to pulsar timing 
noise spectra with a characteristic (odd integer) spectral index. The significance of this 
term will depend on the observing frequency, the span of the observations, and the 
level of intrinsic timing noise. Ideally, the contamination of timing noise spectra is 
avoided by the removal of the dispersive arrival time fluctuations through the use of 
simultaneous observations made at two or more frequencies. 

The estimation of refractive arrival time delays as a function of frequency and 
observing timespan is hampered by the uncertainty in the extrapolation of the 
diffractive-scale turbulence spectrum to small wavenumbers. Several authors have 
addressed observations of pulsar and continuum source refractive scattering to resolve 
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this problem. In general, an enhancement above the extrapolated diffractive-scale 
spectrum is indicated (Rickett, Coles, and Bourgois, 1985), however the interpretation 
of the results are hampered by the lack of a fully general theory. For example, the 
enhancement has been attributed to the presence of a low-wavenumber cutoff by Coles 
etal. (1987), while Blandford and Narayan (1985) have suggested that the diffractive-
scale spectral index increases. 

The true turbulence spectrum over a large wavenumber range is likely to be a 
piecewise ensemble of narrow-band forms. This is because the various phases of the 
ISM support different inertial wavenumber ranges (Cesarsky, 1980), and the galactic 
magnetic field anisotropizes the turbulence spectrum with smaller structures being 
supported orthogonal to the field than parallel with it (Higdon, 1984,1986). Southern 
hemisphere VLBI has the potential to clarify the refractive turbulence spectrum for 
PSR0833-45. However, interim statements are made in Chapter 7 based on the 
observed DM variations. 

1.3.5 Emissions at Shorter Wavelengths 

Of the 450 or so known rotation-powered pulsars, only the four youngest 
objects, including the Vela and Crab pulsars, have been observed outside the radio 
range (Manchester, 1987). 

At optical wavelengths, Vela exhibits a bifarious pulse profile (figure 1.9). A 
significant steady component of emission exists which is too bright to be purely the 
result of blackbody radiation from the surface of the neutron star (Peterson et a/., 
1978). The emission may arise from an extended pulse producing region in the 
magnetosphere, or from the reprocessing of energy in the vicinity of the surface 
(Peterson et al., 1978). Manchester et a/. (1980) have found evidence for a small 
variation in the unpulsed emission. 

The pulsar does not produce a significant observable flux of pulsed or 
continuous X-rays (Harden et al., 1985, (Dgelman and Zimmerman, 1989, preprint). 
An estimate of 10 6  K has been placed on the temperature of the pulsar's surface 
(Harnden et al., 1985); this is in reasonable agreement with the predictions of the 
vortex creep theory of internal dynamics (Alpar et al., 1984a,b; section 2.9). The 
temperature estimate is based on the inferred contamination of the spectrum of the X-
ray synchrotron nebula by blackbody radiation. Smith and Pounds (1977) have 
detected transient X-ray brightenings in a field containing the Vela pulsar, however no 
subsequent activity has been reported. 
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A significant pulsed component of gamma-rays is produced at energies above 

at least 0.3 MeV (Tiimer et al., 1984; Thompson et al., 1977; Bennett et a/., 1977) 
(figure 1.9). Evidence reported by Caraveo et al. (1988) suggests that the gamma-
photons are linearly polarized. Grenier, Hermsen, and Clear (1988) have 
demonstrated that the pulsed flux is variable, and may arise from five distinct emission 
regions indicating that the pulsar's outer magnetosphere is complex. 

Bhat et a/. (1987) have claimed the marginal detection of a pulsed signal at 
ultra-high energies (5-10 TeV) using ground-based Cerenkov detectors. Similar 
observations by Grindlay et al. (1975) were inconclusive. 

1.3.6 Emission Models 

Pulsar emission models are still largely schematic; in the main, no single model 
adequately describes the gross characteristics of all pulsars. It is not the intention to 
review the plethora of models in any depth here. For background information the 
reader is directed to the summaries of Michel (1987, 1982), Arons (1979), and 
Manchester and Taylor (1977, pp. 169-235) in particular. 

In general, the polar cap models (Radhalcrishnan and Cooke, 1969, hereafter 
RC; Arons and Scharlemann, 1979; Cheng and Ruderman, 1977a, 1977b, 1980) have 
been more consistent in accounting for the phenomenological aspects of pulsar 
emission than have the light-cylinder models (Ferguson, 1981). The interpretation of 
Vela's radio emission mechanism is simplified by the complete absence of (1) drifting 
sub-pulses (Biggs et al., 1988), (2) orthogonal polarization modes (1(D), and (3) an 
interpulse. The first two phenomena (which are exhibited by a portion of the pulsar 
population) together with observations of circular polarization and pulse micro-
structure have proven difficult to model. 

In this connection, the rotating-vector polar cap model of RC is no exception. 
However it does provide a convenient way of explaining pulsar polarization 
characteristics; indeed the Vela pulsar was used as the prototype for the theory. The 
model proposes that the radio emission arises from two main mechanisms which 
operate inside the light-cylinder within the open field line region above the magnetic 
polar caps. These are curvature radiation from bunches of charged particles moving 
along curved field lines, and from particles accelerated along the field lines. For both 
mechanisms the emission is linearly polarized, and has an overall radiation pattern 
with an annular cross-section centred on the magnetic axis. The observed position 
angle swing is the result of the changing projection of the magnetic field as the 
obliquely inclined magnetic axis sweeps around the sky. The pulse width is 
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determined by the inclination of the magnetic and rotation axes to the line of sight, and 
the angular divergence of the field lines at the emission region (figure 1.10). 
However, the two widely separated and relatively broad components of Vela's 
radiation at optical and higher frequencies clearly suggests that these emissions are 
produced with a distinctly different geometry. 

A major unresolved issue of all emission models centre on the origin of the 
radiating particles; possible sources include pair cascades (Sturrock, 1971), photo-
ejection from the stellar surface (Ruderman, 1981), the ablation of interstellar grains 
(Cheng, 1985), and ejection from a circumstellar disk (Michel and Dessler, 1981). In 
addition, the organization of global current flow and the magnetic field within the 
magnetosphere is not known with confidence. The high brightness temperature of the 
radio emission implies that it is generated coherently. A variety of mechanisms have 
been proposed which generally invoke some type of plasma instability process, 
however it is unclear whether these can operate effectively within the emission zone 
(Taylor and Stinebring, 1986, and references therein). 

The primary particle acceleration sites for the polar cap models are generally 
regarded as the charge-depleted regions along field lines within the magnetosphere 
termed gaps (e.g. Ruderman and 'Sutherland, 1975; Arons, 1981, and references 
therein). According to Metsel (1971), the magnetospheric charge density for aligned 
and oblique rotators vanishes where S -2.B = 0. The locii of the neutral points separate 
regions with charge density of opposite sign. A charged particle moving outward 
along an open field line outside the neutral sheet leads to an electric field E which 
forces charge of the opposite sign on either side of the sheet to accelerate inwards 
towards the stellar surface. This leads to a gap depleted of plasma with E.B # 0 
inside it, and E-B = 0 on its surface (Cheng, Ruderman, and Sutherland, 1976). The 
accelerating particles below the gap may be sufficiently energetic to produce curvature 
radiation which extends into the gamma-ray region of the spectrum. This is likely the 
case for the fast and highly magnetized pulsars such as Vela and Crab for which 
Cheng, Ho, and Ruderman (1986a,b) predict the gaps to lie near the light-cylinder 
radius. Because of the field strength within the gap, it is favourable for transiting 
gamma-ray photons to pair-produce. Each member of a pair will generate synchrotron 
photons which may lead to further pairs and a consequent cascade which will 
terminate when the pair production energy threshold is reached. The surviving 
photons then constitute the high energy radiation. The low energy particles may 
contribute to the generation of the coherent radio and possibly optical emission. In the 
case of the radio emissions, the generation site is evidently well within the light 
cylinder if the polar cap models are valid (Cordes, 1978; Matese and Whitmire, 1980). 
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Fig. 1.9. 	Comparison of the pulse profiles for PSR0833-45 compiled by Grenier, 
Hermsen, and Clear (1988). 

Fig. 1.10. 	Rankin (1983), in a morphological study of pulse shapes, has provided 
evidence for two different beaming geometries above pulsar polar caps; a filled and 
offset core beam, and a partially illuminated annular conal beam. Three different cross 
sections are shown suggesting how different pulse shapes arise. 
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1.3.7 Pulsar Spindown 

Pulsar spindown is attributed to the loss of rotational energy and angular 
momentum via particle ejection and electromagnetic radiation. These processes are 
influenced by the evolution of the magnetic moment through the growth and decay of 
the field and the alignment or counter-alignment of the magnetic and rotation axes 
(Blandford and Romani, 1988; hereafter BR, and references therein). Additional 
processes may contribute to rotational energy loss; Peng, Huang, and Huang (1982) 
have suggested that neutrino emission by neutrons undergoing cyclotron movement 
may provide an important contribution to spindown in old pulsars. 

If Nm  is the applied spindown torque, then from Euler's equations of motion 
for a spherical rigid body, 

Nm 	 1.9 

where = 21w, and I is the total moment of inertia. Equation 1.9 with an appropriate 
expression for the torque acting on an inclined rotator gives the the evolution of v as 

V(t) = -K(t) vnB(t) 1.10 
where K is a slowly varying coefficient which quantifies the evolution of the magnetic 
and inertial moments, and nB is termed the braldng index. If K is assumed constant 
then the braking index is given by 

nB=vV/V2 	 1.11 

Cheng (1989) has provided general theoretical expressions for the braking 
index based on the standard pulsar radiation models, including terms which account 
for free nutation, axial alignment, and field decay. For the light-cylinder models, the 
dominant spindown torque is produced by the liberation of magnetic dipole radiation 
generated at the pulsar rotation frequency, and results in nB 3. For the standardd 
polar cap models, the dominant torque is due current flow from pair creation outside 
the light cylinder ; here nB 1. 

BR have summarized accurate measurements of the braking index that have 
been made for the three fastest non-binary pulsars (which includes the Crab pulsar). It 
has been possible to accurately determine the secular second frequency derivative for 
only these objects; timing noise masks the true spindown behaviour for the remainder 
of the pulsar population. BR have suggested that the magnetic moment of each of 
these pulsars has increased since birth. In the case of the Crab pulsar, a non-zero third 
frequency derivative has been claimed (Lyne, Pritchard, and Smith, 1988), although 

d The standard models are those which invoke polar cap current flow according to the model of 
Goldreich and Julian (1969). 
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this may be largely a manifestation of timing noise. Using information on the 
evolution of V and V, it is possible to investigate the form of K(t) in equation 1.10. 

For the Vela pulsar, the short term spindown trend is dominated by glitches 
which make it difficult to accurately measure the torque-related value of V and hence 
the braking index. An upper limit to the age of the Vela pulsar (the so-called 
characteristic age) is inferred from the timing measurements using 

ts  
'rage 	( n - 1) — 2 — 104  Yr 	 1.12 

assuming that the pulsar spindown is entirely due to magnetic dipole radiation (i.e., 
n=3) and K is constant; here ts  is termed the spindown timescale. 

1.4 CONCLUSIONS 

The Vela pulsar is a very important object from the viewpoint of probing the 
internal structure of neutron stars. It was the first pulsar to exhibit a discontinuity in 
rotation rate, and the recognition and investigation of this phenomenon has precipitated 
considerable development of neutron star models and theories of ultra-dense matter. 
However, much scope remains for the further progress in these areas. The continued 
development and verification of neutron star models hinges on the acquisition of 
pulsar timing data with improved resolution and contiguity. In addition, uncertainties 
remain as to the general applicability of internal models based on the characteristics of 
observed glitches to the entire neutron star population and so the continuation of pulsar 
timing surveys, particularly of southern hemisphere objects, is of importance in order 
to improve the statistical base for theoretical modelling. 

It is particularly evident that the Vela's broad spectrum presents a challenge to 
current understanding of the emission mechanisms for young pulsars. The apparent 
multiplicity of emission regions and their variability at high energies suggests that the 
pulsar has a complex magnetosphere. A single-pulse multi-frequency polarization 
survey of Vela's radio emission should be considered as a means of clarifying the 
present uncertainty. 

Little published data exists on the refractive scattering of Vela's radiowaves. It 
is apparent that the ISM along the path to the pulsar is particularly turbulent. This is 
held responsible for the small though significant changes in line of sight dispersion 
measure that have been observed. This effect complicates the interpretation of pulsar 
timing noise, and so its characterisation is of importance. 
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CHAPTER 2 - PULSAR GLITCHES 

2.1 INTRODUCTION 

In this chapter, an overview is presented of the current interpretation of pulsar 
glitches. A schematic representation of the typical behaviour of v and V accompanying 
a glitch are shown in figure 2.1. 

Although recurrent glitches are a feature of the young Vela and Crab pulsars, 
the slower and older objects PSR1641-45 (Manchester et al., 1978; Flanagan, 1986, 
personal communication) and PSR0355+54 (Lyne, 1987) have each exhibited two 
glitches. In addition, three other pulsars have shown one distinct glitch; PSR0525+21 
(Downs, 1982), PSR1325-43 (Newton, Manchester, and Cooke, 1981), and 
PSR2224+65 (Backus, Taylor, and Damashek, 1982). 

The basic parameters that are used to characterize a glitch are the immediate 
fractional changes in rotation frequency and its first time derivative (Aviv and AV/V, 
respectively), the timescale(s) of the relaxation effect(s), and the fraction of the 
original frequency jump that is eventually recovered (Q). These parameters vary from 
pulsar to pulsar as reflected in table 2.1. For only the first four pulsars in table 2.1 
have detailed glitch analyses been presented, although in several cases the precise 
determination of the jump parameters is hampered by a lack of sufficiently frequent 
observations. By far the most detailed results have been obtained from observations of 
the four most recent Vela glitches and the 1986 Crab glitch. Importantly, it been 
possible to unambiguously determine the epoch of each of these events.. 

Vela's glitches appear to be divided into two classes based on their amplitudes. 
Two milli-glitches (Downs, 1981a,b; Hamilton, personal communication, 1989) have 
been identified. These events are approximately three orders of magnitude smaller 
than a typical large jump, while their relaxation behaviour is similar to that of the large 
glitches. McCulloch et al. (1983) found that the relaxation following the fifth large 
glitch was well modelled by two superimposed exponential decays with short (— 5 
day) and long (— 150-300 day) time-constants. This behaviour has been observed 
following the three subsequent glitches (McCulloch et al., 1987; Hamilton, personal 
communication, 1989). An important feature noted by Downs (1981b) and Cordes, 
Downs, and Krause-Polstorff (1988) is that immediately prior to each large glitch, the 
spindown has displayed a distinct value of V which is correlated with the value of the 
long time constant of the relaxation in v for the previous glitch. 
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Time (arbitrary units) 	Ti 2  

Time (arbitrary units) 

Fig. 2.1. 	Schematic of the behaviour in frequency and its time derivative for a 
glitching pulsar. The magnitude of the glitch is expressed in terms of the fractional 
changes Aviv and AV/V where v and V are referenced to the glitch epoch T. The post- 
glitch relaxation is well characterized by one or more exponential decays with 
associated time-constants T. The parameter Q measures how much of the initial jump 
in frequency is subsequently recovered. The relaxation in frequency derivative 
asymptotically approaches a trend with gradient VI = V*0 + 	where Vo is a 
contribution from spindown, and Vi is unique to a particular inter-glitch timespan. 



TABLE 2.1 
SUMMARY OF THE CHARACTERISTICS OF PULSAR GLITCHESa 

Pulsar Glitch 
obsewables -model parameters- 

'CI 	 Q 	• 

days 	days 
Epoch 
TJD 

-AP 
(x10 -9  s) 

Aviv 
(x10-9) 

A WV 
(x10-3) 

Svp  
(Hz) 

to to 

0833-45b 
P3.08927 s 

1 
2 

0276.8 - 0283.7 
1185.3- 1199.2 - 

208 
174 

2345 
2045 

10.1 
14.9 

2.6x10-3  
1.5x10-3  

19d 
17d 

10.0±1.0 
4.0±1.0 

1201-6 
94±5 00 . 34003 5 

2a 1308.9 - 1315.9 1.3 1.2 1.9 7.1x10 -5  0.1 d 10.0±0.5 ... 0.55 
3 2680.5 - 2685.7 179 1985 10.6 2.0x10-3  17 d 4.0±0.4 35±.2 0.088 
4 3681.4 - 3704.3 272 3060 18.4 1.9x10-3  25 d 6.0±0.6 75±3 0.024 
5 4888.5707±2 102 1145 8.5 1.5x10-3  150'0 d 9d 1.6±0.2 233±1 0.177 
6 5192.1395±-9 182 2058 16.6 1.4x10-3  1400d 17 d 3.2±0.5 60-1-9 0.035 
7 6257.7309±8 143 1599 12.8 1.4x10-3  11 d 6.5±0.5 332±10  0.155 
8 7250.3037±2 163 1806 7.9 2.5x10-3  

0531+32 lc 0494±1 0.17-0.43 5-13 ... ... 5 0.9-1.0 
P0.03333 s 2" 2445-2451 0.3 10 21.6±1.6 1.0x10-6  ... 10.2±1.2 0.6-0.8 

3e 6664.42±5 0.31 9.2±0.1 2.5±0.2 1.2x10-7  0.8 s 2.5±0.5 5.51-0.5 

0355+54f 1 6079-17 0.9 5.56±3 0.0018±2 2x10 -5  2d 
P0.15638 s 2 6433-6504 685 4385-4367 0.062-0.088 4(-2)x10-4  832 yr 4.9 yr 44;1 

0525+218 1 2050-2064 4.9 1.30-1-0.22 4.61-0.9 1.1x10-6  20d 143±34 
P=3.74550 s la 3780-3834 1.1 0.3±0.8 -0.085±0.150 



TABLE 2.1 (continued) 
SUMMARY OF THE CHARACTERISTICS OF PULSAR GLITCHESa 

Pulsar Glitch 
observables 	 

A V/V 
(x10-3) 

Svp 
(Hz) 

to 	to 
—model parametess-

T 	 Q 
days 	days 

Epoch 
TM) 

-AP 
(10-9 s) 

Av/v 
(x10-9) 

1325+43h 3590-124 .. 62 116 
P=0.53270 

1641-45' 1 3390.162 86.8 1.907114 1.611.2 2.6x10-8  80-160yr 
P4.45505 s 

1906+00' 2161.116.2 0.7 0.7 3717 • • • 

P=1.01695 s 

2224+65k 3034-3109 1170 1710-120 <6 <1.5x10 -8  >17 yr 
P0.68253 s 

6vp  = VAv/AV, to ' = 	to  = Av s/IV.I, where V. is the long-term value of V, and Av s  is the change in superfluid angular rotation frequency. Parameter errors are 
quoted as tla. The numbered glitches with an 'a' postfix have a much smaller amplitude than 'normal', and are classed as 'milli-glitches'. The event listed for PSR1906+00 
may represent a large timing noise fluctuation. The appearence of'...' indicates that there is insufficient published data to provide that parameter. 
Data sources: glitches 1-4 inclusive, Cordes, Downs, and Krause-Polstorff (1988); glitches 5-7 inclusive, McCulloch et al. (1987); glitch 8, Hamilton et al. (1989). 
Groth (1975a) 
Demiahski and Prbszybski (1983) 
Lyne and Pritchard (1987) 
Lyne (1987) 
Downs (1982) 
Newton, Manchester and Cooke (1983) 
Manchester et al. (1983). Parameters for a second glitch of this pulsar (Flanagan, personal communication, 1986) have yet to be published. 
Gullahom et al. (1976) 
Backus, Taylor, and Damashek (1982) 
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Lyne and Pritchard (1987) have found that the behaviour of the Crab pulsar 
following its third glitch shows evidence of a second rapid decay timescale in addition 
to the 6 day relaxation timescale noted following the previous two events. The second 
Crab glitch is notable in that not all of the jump in V diminished during the relaxation 
process (Demiahski and Prbszyfiski, 1983). It is evident that the Crab's spindown 
behaviour between glitches is complex, exhibiting a large level of timing noise, and 
possibly quasi-sinusoidal oscillations. 

The second glitch of PSR0355+54 is the largest yet observed, being about 
twice the magnitude of a typical Vela event. Despite the uncertainty in the jump epoch, 
it is clear that the fractional change in the frequency derivative was large (table 2.1). 
While the majority Of the change AV appeared to decay exponentially with a relaxation 
time of — 50 days, a small positive shift in'? with respect to the preglitch spindown 
value has persisted in the subsequent observations (Lyne, 1987). 

Similarly, the glitch of PSR0525+21 was followed by an exponential decay 
with a long time-constant (— 150 days), although measurement uncertainties and 
timing noise contributions are perhaps 20% of the residuals after the removal of the 
spindown trend (Downs, 1982). There was a small persistent enhancement of V 
following this glitch. 

Several other pulsars including P5R1906+00, PSR1907+10 (Gullahorn etal., 
1976) and PSR1508+55 (Manchester and Taylor, 1974) have also exhibited small 
positive jumps in v. However, these events (with the possible exception of that for 
PSR 1906+00) did not behave in the same manner as the recognized glitches, although 
in general the data coverage is sparse. They probably represent large timing noise 
fluctuations. This is also evidently the case for two jumps reported for the Crab pulsar 
(Groth, 1975c; Cordes and Helfand, 1980) and one for P5R0525+21 (Downs, 1982). 

2.2 MODELS 

Pulsar glitches have been attributed to a wide variety of causes involving 
processes both internal and external to neutron stars. Pines, Shaham, and Ruderman 
(1974) have reviewed the early theories. They found the models involving the 
influence of planetary orbits, matter accretion, and magnetospheric instabilities on the 
pulsar crust to be generally inconsistent with the perceived pulsar environment and the 
accumulated observational data on glitches. The most viable theories propose that 
glitches are initiated when a metastable threshold of the internal energy distribution is 
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reached by the action of the spindown torque. A sudden channelling of part of the 
rotational energy reservoir to the neutron star crust then occurs. 

Alpar and Ho (1983) have examined the expectancy of glitches in pulsars older 
than the Vela using a sample of 267 objects in the light of the starqualce and vortex 
creep models which are discussed below. They found that with either model, the 
statistics of the accumulated timing observations are consistent with the hypothesis that 
glitches occur in all pulsars, with increasingly long inter-glitch intervals as the pulsar 
ages. 

In the remainder of this chapter, the development of glitch models is reviewed. 
The models have been used to infer details of the structure of neutron stars through the 
description of the post-glitch relaxation effects. The development of the models and 
the refinement of the equation-of-state (EOS) have generally proceeded along a 
common path. However, the adequate verification of inferences has generally been 
hampered by a lack of published well-sampled observations. As a result, uncertainties 
still remain. 

2.3 THE CRUSTQUAKE HYPOTHESIS  

The simple and readily visualized icrustqualcet glitch model was proposed by 
Ruderman (1969) shortly after the first Vela glitch, and was developed from his 
investigations of the surface structure of neutron stars (Ruderman, 1968). He assumed 
that a rapidly spinning neutron star solidifies with an oblate and highly rigid crust. 
Stresses steadily build within the crust due to the decrease of centrifugal forces 
relative to gravitational forces, as the spin of the neutron star slows under the influence 
of radiation torques. When the stresses reach a yield point, they are relieved by the 
brealdng of the crust. The moment of inertia decreases as the crustal shape adjusts to a 
new equilibrium configuration. Conservation of angular momentum results in the 
sudden increase of the rotation rate; 

AS2/11 = -AI/I 
The timescale of the glitch is the time required for a shear wave to propagate across the 
stellar radius, which is expected to be << 1 sec. This model sought only to offer a 
mechanism for the glitches, and not the subsequent relaxation behaviour. 

Ruderrnan (1969) gave a general expression for the fractional change in stellar 
radius as a function of latitude when the maximum crustal strain O m  is reached and 
released. The fractional change in the moment of inertia due to the quake may be 
approximated using the expression for the fractional change in equatorial radius; 
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95gc R  SR/R 	 2.1 

7GMp 
where gc is the shear modulus of the crust, and R, M, and p are the radius, mass, and 
mean density of the star. Here it is assumed that (R/Ri) 7  << 1 where Ri is the radius of 
the inner crust. 

In general, the crustal strain 4) at a particular epoch is a function of latitude. At 
the equator, 

A, 7 R3  in  2  (12\  
8GM "3- 	 2.2 

where 00 is the rotation rate at which the crust is unstressed, and f2 is the current 
rotation rate. The maximum stress that can be relieved in a quake is 84) = = 4) m• The 
shear modulus for the crustal Coulomb lattice is approximated by 

pc  = (zcie)2 b-4 

where and Zq is the nuclear charge and b is distance between nuclei. Ruderman has 
argued that the magnitude of the strain needed to break the crust should be similar to 
that required to fracture terrestrial solids of the same composition; that is O m  = 10-2 . 

The most critical test for this model came with the observation of the second 
glitches for both the Vela and Crab pulsars. This enabled the calculation of the relieved 
stress from equation 2.1, and also the stress accumulated since the previous glitch 
from equation 2.2 (assuming a reasonable stellar model). For the Crab pulsar, 64) =- 
Om  = 10-6 . For Vela 84) = 10-3-10-4  >> 4)m  = 10-7  which was clearly not acceptable. 

Before this revelation, Baym and Pines (1971) took up the crustquake idea, 
and proposed that only part of the excess strain was relieved in a quake. They 
presented a more rigourous solution which approached the problem by considering the 
time-dependence of the parameter characterizing the crustal distortion - the oblatness E. 

This enabled them to calculate the inter-glitch timespan based on the parameters of the 
previous glitch. 

For an axially symmetric neutron star at a particular epoch t, E is defined 
according to Ic = 10)(1 - e) where Ic is the crustal moment of inertia, and 'Co = 
Ic(SI=0). The time-dependent mechanical energy is given by 

E(t) = - 	e + Ae2  + B (eo - c)2  

where Co is a reference oblateness at a time to when the stress in the crust had been 
relieved by a previous glitch, and I is the total moment of inertia. The rightmost two 
terms quantify the gravitational and elastic energy, respectively, stored in the crust as a 
result of rotation; here A = 3GM2/25R (M and R are the stellar mass and radius, 
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respectively) and B = Vdtc/2 (Vc is the volume of the crust). The mean stress on the 
crust is 

DI f202  - f2 2  
ac = 1"/C  

where flo = f2(t=t0). A quake takes place when ac exceeds the critical yield stress; 
both E and co then decrease according to 

Ae — (A + B) Aeo 

where AE = AIc / Ico = - (1 — Q)Af2 / f2. Here AI c / 'Co is the fractional change in the 
crustal moment of inertia due to the glitch, and AO / fl is the observed fractional 
change in the rotation speed. The stress builds after the glitch, until it is once again 
relieved; the inter-glitch timespan is given by 

2A2  tg  fl C2 B (aI/aE) I Ac  I 	
2.3 

assuming fl is constant. 

Uncertainty remained in the EOS, which was required to calculate the 
parameters A and B, until the work of Pandharipande, Pines, and Smith (1976; 
hereafter PPS). These authors suggested that if the Crab pulsar is characterized by a 
relatively stiff EOS (with a comparatively thick crust and a mass — 1.3 M0) based on 
the tensor-interaction (TI) model (developed by Pandharipande and Smith (1975) in 
which the attraction of nucleons is due entirely to the contributions of pion-exchange 
tensor interactions), then the inter-glitch timespan should be on the order of several 
years. This hypothesis was supported by the parameters of the Crab's post-glitch 
relaxation in terms of the two-component model (section 2.5) assuming vortex pinning 
(section 2.6), and the subsequently reported observation of the second significant 
Crab glitch. In contrast, the comparatively short interval between the first two glitches 
of Vela required this pulsar to have to have an unreasonably low mass. 

Baym and Pines (1971) examined plastic flow of the crust due to the thermally 
activated motion of dislocations; this process would be expected to relax strain energy 
slowly. Their analysis suggested that the inter-glitch timespan would be marginally 
increased by this process. Pines and Shaham (1972) expanded the crustquake 
treatment of Baym and Pines (1971) to consider the influence of a misalignment 
between the rotation and elastic reference axes of the neutron star. They found that the 
action of a radiation torque may increase the misalignment and hence also the crustal 
stress. As a result, the time between glitches would be reduced, although not 
significantly enough to improve the viability of the crustquake model for Vela. 
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2.4 THE COREQUAKE HYPOTHESIS  

Pines, Shaham, and Ruderman (1972; hereafter PSR) proposed an alternative 
explanation for the Vela glitches in terms of their core quake theory. The development 
of an EOS by Canuto and Chitre (1973) suggested the possibility of solid neutron 
matter at the centre of neutron stars more massive than 0.6 Mo. Such a core is 
expected to be rigidly coupled (via its electrons and protons) to the magnetic field (and 
hence the crust) and will therefore be acted upon by the braking torque. The shear 
modulus of an oblate solid core will be considerably larger than that of the crust, and 
as a result, the core will posses a substantial reservoir of gravitational and elastic 
energy. PSR conceived a mechanism whereby the working of the core material by 
preceding quakes (which release the oblateness strain in a manner similar to the 
crustquake hypothesis) weakens the low-latitude outer core, which then becomes more 
susceptible to cracking under lower strain loading. 

This model seems capable of accommodating both the magnitude and intervals 
for the Vela glitches. However, the existence of solid cores in pulsars is now doubted 
(Baym and Pethick, 1979). If frequent corequakes do occur within Vela, then the 
consequent crustal heating should make it a substantially brighter X-ray source than it 
actually is. An observational consequence of solid interior matter is the free precession 
of the star with a period which will depend on the oblateness of the core (Ruderman, 
1970; Baym, Lamb, and Lamb, 1976; PPS); for Vela, the period should be of the 
order of minutes (PPS). However, it is evident that mechanisms related to interior 
superfluidity will act to dampen such an effect (Shaham, 1977). The topic of 
precession is explored further in section 3.4.3. 

2.5 THE TWO-COMPONENT MODEL 

The preceding models make no predictions of the post-glitch relaxation effect. 
Following on from Ruderman's (1969) crustquake hypothesis, Baym et al. (1969) 
developed the so-called two-component neutron star model in order to explain the 
behaviour following the first Vela glitch. They based their theory on the conclusions 
drawn by Baym, Pethick, and Pines (1969a,b). These workers argued from the 
estimation of the Alfven velocities within a neutron star and its magnetosphere that the 
crust and sub-crustal charged particles are rigidly coupled via the magnetic field. In 
addition, the response of the neutron superfluid to a crustal speed-up should be 
communicated more slowly through the scattering of the charged particles on the 
vortex cores. Baym et al. (1969) then set about describing the interaction of the rigid 
and superfluid components. 
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The equations of motion governing the two regimes are based on the 

consideration of Euler's equation for spindown (equation 1.8) ; 
= -N + (IA) 	- 	 2.4 

In 	= - (Icjtr) (Dm K2) 	 2.5 
where L and In  are the moments of inertia of the charged and neutron superfluid 
components, N is the external braking torque (assumed constant in SI), Tr  is the 
relaxation time between the two components, and O n  is the bulk rotation rate of the 
neutron superfluid (assumed isotropic). Here the total moment of inertia is given by I 
= I + L. In the equilibrium situation S2= = -N/I and so 

In  c 2.6 

where T = -)in. Thus the interior superfluid rotates more rapidly than the crust with 
an excess lead velocity related to the ratio of the inertial moment of the superfluid to 
that of the rigid component. 

A glitch is viewed as the sudden adjustment of AL and AI n  which forces On - 
SI below its equilibrium value. As a result, the braking torque on the rigid component 
increases providing an excess in Cl until the equilibrium is attained. The fractional 
change in Cl is given to first order by 

An MT, AIn/In  — — 
S2 TT 	Aldlc 

In the case of Vela, ASI/S2= 10 -2  and AO./S2 = 10-6, which implies that Aldln  < AIJI,; 
this is consistent with the crustquake theory where changes in the crustal oblateness 
are not expected to significantly influence the shape of the superfluid core. From 
equations 2.4 and 2.5, and neglecting the spindown behaviour (equation 1.9), the 
rotation rate at time t Ti is 

S2(t) = S20(t) + 	(1 - Q(1 - exp(t-Tirt]) ) 	 2.7 
where Ti is the glitch epoch, 00 is the pre-glitch extrapolated value of the rotation 
frequency, and T = Tr  in/i is the relaxation time constant of the excess glitch frequency 
(figure 2.1). The parameter Q (0 Q 1) measures the fraction of the speedup M2 
which decays away, where 

ASP   
Avic 

In the case of the Crab pulsar, detailed analyses have been presented for the 
first two glitches in terms of the two-component model (Boynton et al., 1972; 
Dennahsld and Proszyfisld, 1983), yielding T = 10 days and Q 0.85±0.15. The 
uncertainty in the Q value stems from the precision to which the glitch epochs are 
known, and the small amplitudes of the glitches relative to the inherent timing noise. 
The observed Q suggested that the neutron superfluid constitutes the bulk of the star. 
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This fact, amongst others, lead Pines and Shaham (1972) to propose that the Crab is a 
light (M <0.5 Mo) neutron star. The TI model for neutron stars of mass M = 1.3 Mo 
provides Q = 0.5 for the two-component theory. However, if pinning processes occur 
between the superfluid vortices and the crustal lattice (section 2.6), then Q = 0.8 is 
predicted which is in modest agreement with the interpretation of the timing 
measurements. 

However, quite a different situation exists for Vela. The data published by 
Reichley and Downs (1969) for the first Vela glitch gave Q 0.15. This value was not 
too difficult to accept in terms of the corequake model with the EOS of Canuto and 
Chitre (1973), providing the stellar mass is — 0.7 Mo (PSR). However, Downs 
(1981b) found from the analysis of subsequent glitches and the re-evaluation of the 
original data that Q 0.045. For this value, the TI model predicted a similar mass 
however this did not admit the possibility of a solid core. The discrepancy was worse 
for the model of Canuto and Chitre on which the original corequake hypothesis was 
based. Softer equations of state, contemporary to the TI model gave a similar result 
(PPS). So the situation arose where although the two-component model fitted the 
post-glitch relaxation behaviour well, the parameters it suggested for the internal 
structure of Vela were incompatible with the quake hypotheses of glitches. 

An important step was made by McCulloch etal. (1983) who were able to fit to 
timing data within one day of the 5th Vela glitch. They found that after removing the 
pre-glitch spindown trend, the post-glitch (t Ti) data over a span of — 50 days was 
adequately modelled by augmenting equation 2.7 with a second exponential term 
representing a short-timescale (— 2-5 day) relaxation effect; 

= 00(0 + AS2c + Ano  exp(t-Ti)/To] + AS21 exp(t-Tyril 2.8 
where AS2c is the permanent part of the jump in 0, and the parameters subscribed 
with 0 (except 0.0) and 1 refer to the long and short relaxation processes, respectively 
(figure 2.1 and table 2.1). The applicability of this model is discussed in section 6.6. 
In the same spirit as the two-component model, McCulloch et al. proposed that the 
new term was due to a previously unforeseen region of the superfluid that is closely 
coupled with the crust. As it was not possible to determine what fraction of the initial 
decay contributed to the permanent part of the frequency jump, the Q parameter of the 
new strongly coupled region was set to one. In this case, for the weakly coupled 
region (using the definition of equation 2.7 with equation 2.8) 

ASI 
2.9 Q - 	

O 
AS2c + ASI0 

which gave a value consistent with the previous glitches. 
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The recognition of the second decay term immediately meant that the relaxation 
process was more complicated than previously believed. Although it was possible to 
arbitrarily add-on another superfluid region to the two-component model (McCulloch 
et al., 1983; Lodenquai, 1984), the new behaviour demanded a closer investigation of 
the microphysics involved. In addition, the predictions of the two-component model 
were in conflict with the observed persistent shift in the steady-state frequency 
derivative following the 1975 Crab glitch (Demiahski and Proszyfiski, 1983) and the 
large jump for PSR0525+21 (Downs, 1982), and also the timing noise spectrum for 
the Crab pulsar (Boynton, 1981). These facts lead to the increased scrutiny of the 
dynamics of the interior superfluid, and the subsequent development of the vortex 
creep theory for glitches (section 2.10). 

2.6 THE HEAT-PULSE MODEL 

Greenstein (1975, 1976) and Harding, Guyer, and Greenstein (1978) 
proposed that the angular velocity of the superfluid decreases with radius (in contrast 
to the isotropic rotation proposed by Baym et a/. (1969)), and modified the two-
component model of pulsar spindown on this basis. Significantly, their model totally 
neglected the effects of vortex pinning, which is now regarded as of fundamental 
importance for neutron star dynamics (section 2.9). Greenstein (1975) proposed that 
the force acting to slow the rotation of the neutron superfluid is given by 

Pn pc  F — 	(vc  - vn) 

where pn  and pc  are the mass densities of the neutron and charged components, p = 
pn  + pc, and 't is the relaxation time scale for the interaction of the charged particles 
and the neutrons (discussed in section 2.7). In the steady-state, v c  < vn. At the time of 
a glitch F decreases, and will become negative if vc  > vn; it this latter situation arises, 
the superfluid will accelerate. The total torque on the charged particles is 

N = Next 4-5(r x F)dr 

where the latter term is the reaction torque from the superfluid; a glitch increases N 
which results in the enhancement of the deceleration of the crust. Eventually, N 
relaxes back to its steady-state behaviour. 

The most serious drawback with the model was that it failed to accommodate 
the observed post-glitch relaxation timescales for the Crab pulsar (Greenstein, 1976) 
unless the temperature of the pulsar was reduced to an unacceptably low level. In 
addition, it was implied that the frequency and magnitude of glitches increases as a 
pulsar ages, which appears to conflict with the available, though sparse, statistics. 
Harding, Guyer, and Greenstein (1978) considered the relaxation timescales produced 
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by neutron beta decay, and neutron scattering against phonons and lattice defects 
within the crust. They found that the latter process would result in the rotation rate 
decaying substantially faster than that suggested by the observations. 

Greenstein (1979,1981) proposed a model for the Vela glitches based on the 
response of the neutron star to a perturbation in temperature. The glitch magnitude of 
Aviv 10-6  could be accounted for by a 50% change in internal temperature. The 
temperature perturbation would lead to the decrease of F. Although the general form 
of the relaxation of the crustal rotation rate is similar to the data for the 5th Vela glitch 
as briefly discussed by McCulloch etal. (1983), the predicted jump in the frequency 
derivative was over two orders of magnitude larger than that observed. In addition, the 
comparatively slow evolution predicted for the initial increase in rotation rate is in 
conflict with the data for the 8th Vela glitch (Hamilton, personal communication, 
1989). The source of the thermal perturbation must not only be periodic, but also 
produce glitches with a specific range of characteristic parameters; Greenstein 
suggested the action of corequakes and (less convincingly) magnetospheric 
instabilities. 

2.7 COUPLING MECHANISMS  

Of fundamental importance for the modelling of pulsar spindown and glitches 
has been the development of an understanding of the interaction between the neutral 
and charged matter within neutron stars. In developing the two-component model, 
Baym etal. (1969) assumed that the neutron superfluid vortices within the inner crust 
do not significantly interact with the crustal lattice other than through the scattering of 
electrons on the normal cores. They regarded the forces that pin vortices to lattice 
nuclei as weak in comparison to the forces imposed radially by the Magnus relation 
(equation 1.3) and azimuthally by drag. Ruderman and Sutherland (1974) showed that 
if electron scattering from vortex cores was the predominant means of decelerating the 
interior superfluid, then the development of bulk turbulence through a Rayleigh 
instability, as suggested by Greenstein and Cameron (1969) and Greenstein (1970), 
was unlikely. Because of the large magnetic field strength and high conductivity of the 
degenerate crustal electrons, the field and the crust are locked in rigid corotation. 
Easson (1979b) determined the minimum requirements for the strength and 
organization of the interior field for the corotation of both normal and condensate 
phases of the plasma with the field. Easson (1979a) showed that the crust and the 
normal charged particles within the core are coupled on a characteristic timescale 
which depends on the internal temperature. For cool pulsars (those with an age of - 
106  yr) neutron spin-up is affected via viscous coupling with the plasma, with a 
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timescale ts « T SI-1/2  R 13 27112  (where T is the internal temperature, R is the stellar 
radius, and p is the density of the coupling layer), the so-called Ekman time. For 
young pulsars, such as Vela, the coupling via the magnetic field is the dominant 
mechanism, with Ts oc B-213  f2 -1/3  R213  p 113 . Typically, Ts is of the order of 1-10 
seconds. 

The first detailed work to determine the timescale over which a change in the 
rotation rate of the crust and the plasma is communicated to the superfluid neutrons 
was presented by Feibelman (1971) who considered the effects of scattering of 
electrons on the magnetic moments of thermally excited normal neutrons within vortex 
cores of the 1 S0 neutron superfluid of the inner crust. The characteristic relaxation time 
t(1 S0) is critically dependent on An  and the electron temperature Te. Within the weak 
pinning regions of the Vela pulsar, t( 1 S0) is of the order of days to months. Bildsten 
and Epstein (1988, preprint) have subsequently found that a longer timescale (months 
to years) relaxation exists due to Coulomb scattering from the long-range charge 
distribution around vortex cores set up by the action of the Bernoulli force FB. 

The problem of the coupling of the electrons to the 3P2 superfluid neutrons 
was left open by Feibelman. The important difference between the 1S0 and 3P2 paired 
neutrons is that the latter poses a small spontaneous magnetization which modifies the 
scattering process. It was not until the work of Sauls, Stein, and Serene (1982; 
hereafter SSS) that this situation was considered in detail. These authors considered 
two coupling processes. The first was due to the neutron-excitation scattering 
mechanism considered by Feibelman for the s-phase superfluid. SSS found that the 
scattering relaxation time t(3P2) is sensitive to Te , but weakly dependent on An . For 

P Po, 'r(3P2) = 1 year for the Vela pulsar. The second coupling is due to the 
spontaneous magnetization of neutron vortices, which has a characteristic relaxation 
time of ¶g -"-* 50 days for Vela. 

The above efforts all suggested that the bulk of the interior matter is not rigidly 
coupled with the crust, and therefore takes part in the relaxation process. Recently, the 
work of Alpar, Langer, and Sauls (1984) has changed this view. These authors have 
built on the efforts of SSS to consider more closely the magnetic structure of neutron 
vortices. However, before discussing this work, a digression is made to the original 
picture of the interior proton gas provided by Baym, Pethick, and Pines (1969a; 
hereafter BPP). These workers showed that the high electrical conductivity of the 
degenerate electrons causes the magnetic field to pervade the interior of a newly 
formed neutron star. When sufficient cooling has taken place for the protons to make 
the transition to a superfluid state, they organize into vortex structures because of the 
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presence of the field. BPP showed that the proton superfluid will behave like type II 
superconductor and confine one quantum of magnetic flux 

hc = 	2x10-7  G cm2  
%Ale 

within a radius of Xp  of each vortex axis. Here Xp  (— 10-11  cm) is termed the London 
penetration depth, which satisfies Xp  > 4p .41 where (""' 10-13  cm) is the coherence 
length of the proton superfluid. The vortex density is quantized according to the local 
mean field strength. The upper critical mean H field strength beyond which the type II 
superconductive behaviour is disrupted is — 10 16  G (BPP); this is not likely to be 
exceeded within neutron stars. Shakhabasyan (1986) has shown that a state of 
anisotropic superconductivity due to spin paramagnetism of the protons is unlikely on 
the basis of the expected internal field strength. The electrons and protons are coupled 
with a relaxation time of order 10-14  s (Sedrakyan, Shakhabasyan, and Moveseyan, 
1985); any significant differential rotation would lead to energetically unfavourable 
current flows. BPP proposed that because only a very small fraction of the superfluid 
protons are normal, the coupling between the proton and neutron superfluids is 
extremely weak, and is dominated by the electron-neutron scattering discussed 
subsequently by Feibelman. 

However, Alpar, Langer, and Sauls (1984) have shown that the proton-
neutron coupling is likely to be strong. They investigated the effects of the drag 
induced on the superfluid protons by the rotation of the superfluid neutrons. The drag 
gives rise to a proton charge current around each neutron vortex (for both the 1 S0 and 
3P2 states) which induces a magnetic field of magnitude — 10 15  G. Within a 
penetration length of — 30 fm, a magnetic flux of cb* = ctom(84/mn) is confined, 
where orn; is the difference between the proton effective mass and its bare mass. The 
coupling of the magnetic field to the core neutron superfluid is thus very effective. The 
relaxation timescale is insensitive to the temperature and energy gap of the superfluids; 
a representative value throughout the core is 

100(mp/84)2/v 
(Alpar and Sauls, 1988). Typically td is expected to be of the order of seconds to a 
few minutes. 

A similar investigation has yet to be reported for the case where a pion 
condensate is present within the core, although qualitatively similar results are 
expected. Because the penetration length of condensate is less than that for more 
normal matter (Harvey, Ruderman, and Shaham, 1986), the coupling timescale is 
expected to be shorter. 

Workers have yet to detail the configuration of the internal magnetic field and 
how it behaves when proton superconduction is established. The action of the 
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neutron-proton drag suggests that the core magnetic flux is threaded along the neutron 
vortex lines and hence parallel to the rotation axis. Within the crust, the original field is 
effectively frozen by the electron distribution. It is evident that the axis of the surface 
field is not necessarily aligned with that of rotation. This poses the question as to the 
topography of the field lines at the lower boundary of the inner-crust, and in particular 
their dynamical behaviour in response to a glitch. Sedrakyan (1986) has considered 
the dissipation of magnetic energy at the lower boundary of the inner crust where 
radially moving magnetic 3P2 neutron vortices undergo the phase change to the 'So 
state. He provides an expression for the rate of energy release, which gives for the 
Vela pulsar — 1027  erg s-1 ; this value is very much less than the thermal energy 
dissipated by vortex creep (section 2.9). 

2.8 VORTEX PINNING 

In addition to the influence of the various coupling mechanisms between the 
normal and superfluid components, vortex pinning has been shown to be of 
importance in the dynamics of neutron stars. Packard (1972) briefly suggested that 
vortex unpinning may be linked with glitches. The first quantitative account of vortex 
pinning was presented by Anderson and Itoh (1975). They investigated the 
phenomenon by considering the similarities between the parameters of matter-currents 
in neutron-star superfluids and supercurrents in laboratory type II superconductors. 
They estimated the pinning force per unit length between a vortex core and a nucleus 
and suggested that this force may be sufficiently strong so that the movement of 
vortices via the Magnus force will fracture the crustal lattice. They proposed that 
small-scale unpinning and the subsequent dissipation of the angular momentum of 
expelled vortices on the inner crust leads to the rotational fluctuations of timing noise. 

Ruderman (1976) extended this work by investigating pinning-induced lattice 
fracturing as a mechanism for glitches. He assumed that the nature of the pinning force 
is invariant throughout the crust. Because of the uncertainty of the overlap between the 
energy gap of the 1 S0 and 3P2 superfluids (figure 1.2), Ruderman considered two 
configurations of the interior superfluid. In the first situation, the 1 S0superfluid in the 
inner crust is pinned to the crustal lattice and is separated from the 3P2 superfluid by a 
region of normal matter. In this case, which would be expected for young neutron 
stars, only the outer superfluid will share some of its angular momentum with the rest 
of the star if the lattice is to break causing the expulsion of vortices. Ruderman 
showed that for Vela, the magnitude and interval between glitches can be explained by 
this situation. However, the presence of a layer of normal matter between the two 
different superfluid neutron phases is doubted. In the second configuration, vortices 
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exist throughout the star and the majority of the superfluid is pinned to the crust. As a 
result, the change in the moment of inertia and rotation rate brought about by lattice 
breaking is much larger. The interval between Vela glitches is reduced to not 
unreasonable values, however the predicted increase in rotation rate is an order of 
magnitude larger than that observed. The calculations for the Crab pulsar are in larger 
disagreement with observation for both situations. Subsequently, Anderson et al. 
(1981) showed that vortex crust-breaking is not dynamically plausible because the 
global pinning forces are more strongly constrained by the gravitational force and not 
by elasticity. 

Alpar (1977) provided a substantially more detailed account of vortex pinning. 
Following on from the work of Negele and Vautherin (1973), he examined the 
pinning force as a function of density. A vortex line will pass through a nucleus if the 
energy cost per particle (3A2/8EF) to normalize the matter within the vortex core is 
thereby reduced. Alpar (1977) found that lattice pinning is favourable in the density 
range — 3x1013  to — 2x10 14  g cm-3 . By treating the superfluid neutrons within the 
nuclei as equilibriated Fermi systems, the pinning energy per nucleus is 

3V [ kF(pG)  An2(pG)i  r kF(Po)  An2(Po)  1 1 Ep = 	 2.10 	I. 32 EF(PG) 	t  31E2  EF(Po) j  
where V is the overlap volume (taken as Vnix where Vn  is the volume of a lattice site 
and x is the greater of , the coherence length of the inter-nuclear superfluid, and the 
radius of the nucleus RN ) 

(Alpar, 1977; Anderson et al., 1981). 

The pinning force per unit length of vortex line is Fp  = EF(A,p)/ nb where b is 
the spacing between successive pinning centres.Where E R n , the pinning is 
maximal and Fp  is sufficiently strong to displace nuclei from their equilibrium 
locations. Deeper within the crust, 4,1 > bz/2 (where lh is the lattice constant), and the 
pinning becomes progressively weaker because vortex cylinders can overlap more 
than one lattice column. The pinning is eventually sufficiently weak so that thermally 
activated unpinning can occur. As a result, vortex motion in such regions is akin to 
plastic flow. 

The vortices thread the space between lattice sites instead of pinning when 

4n < 

For this situation, which occurs within the outermost region of the inner crust, the 
vortices are repelled by the lattice sites with a force per unit length of FT = -7FF0/2a, 
where y(A,p) < 1 is a correction factor to Ep  (given by Alpar, 1977) to account for the 
fact that threading vortices do not pass through nuclei. 
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Throughout the pinning and threading regions, a long-range repulsive 
Bernoulli force, FB, acts to repel nuclei from vortex cores thereby enhancing the 
threading force and producing a pinning energy barrier. The Bernoulli force 
redistributes the vortices to minimize the kinetic energy of the superfluid due to the fact 
that the higher density superfluid within nuclei is unable to take part in the vortex 
motion. Alpar (1977) has estimated the height of the barrier as 5 1 MeV. In order for 
vortices to repin, Ep  must exceed the barrier energy. The effectiveness of the pinning 
force is also dependent on the strength of the local Magnus force. The maximum 
differential angular rotation rate that the pinning force can tolerate over a radial distance 
r is given by 

okrOc)max = 	 2.11 
PG K r 

where ST and S2c  are the rotation rates of the local superfluid and the crust respectively 
(Alpar et a/., 1984a). As is discussed below, large-scale unpinning by this process has 
been invoked as a glitch mechanism. 

The work of Alpar (1977) provided the foundation for the understanding of 
vortex movement during pulsar spindown. Pines et al. (1980) subsequently developed 
a model for the dynamical behaviour of a superfluid container with regions of weakly 
or strongly pinned vortices. Importantly, these workers provided the first description 
of the effects of radial movement of vortices through the pinning regions. Firstly, 
Pines et a/. considered the steady state behaviour for a superfluid containing a strong 
pinning layer in a radial range R1 r 5 R2. Within a non-pinning region (0 r < R I ; 

region I) and a threading zone (R2 < r R; region II), the vortices move radially 
outwards as the container undergoes spindown. Whether vortices entering the pinning 
zone accumulate either in a thin layer or throughout the region depends on the rate at 
which vortex capture occurs by potential pinning locations. Within region II, the 
vortex density near r = R2 decreases with time because of the influence of the strong 
pinning zone. Eventually the Magnus force exceeds the pinning force and a 
catastrophic release of pinned vorticity occurs leading to a glitch. 

A second situation was investigated where vortices entering the strong pinning 
zone are not rapidly trapped. Alternating zones of excess and low vortex density 
become established within the pinning region; these zones undergo episodic radial 
movement and cause a quasi-oscillatory behaviour of the crustal spindown rate. This 
behaviour would produce a characteristic signature in the timing noise and would not 
lead to glitches. 

Pines et al. also considered the case of weak pinning. In this case, spindown 
will proceed macroscopically smoothly as pinning energy barriers are easily overcome 
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by thermal effects. If the pinned superfluid is shaken or locally heated, bulk unpinning 
may occur to produce a glitch. 

Based on these investigations, Pines et al. concluded that the glitches for Vela 
are produced by the sudden unpinning of a fraction of the vortices within a strong 
pinning region by the Magnus force. On the other hand, the Crab pulsar was regarded 
as containing a zone of only weakly pinned superfluid. A glitch is produced by a small 
quake which initiates vortex unpinning; it is the motion of the vortices that produces 
the majority of the change in the moment of inertia. Pines et al. regarded the post-
glitch relaxation for both pulsars as reflecting the time taken for the recoupling of the 
superfluid within the glitch region. 

2.9 VORTEX CREEP THEORY 

2.9.1 Pulsar Spindown and Glitches 

The work of Alpar (1977), Pines et al. (1980), Alpar et al. (1981) and 
Anderson etal. (1981) was extended by Alpar etal. (1984a,b) in the development of 
the vortex creep theory of pulsar spindown. The basis of this theory is that the 
dominant internal torque acting on the surface arises from the pinning of vortex lines 
within the inner crust. The equation of motion of the normal stellar component (the 
crust plus the corotating charged particles and core superfluid) is written as 

LO-c(t) = Next + Mitt = Next - fdIp (r,t) 

where Next  and Nita  are the external and internal torques respectively, and lc  and Ip  = 
fdIp  are the moments of inertia of the normal and pinned components respectively. It is 

regarded that vortex pinning takes place over a limited density range of the inner crust. 

Within regions where the relative superfluid angular velocity (co E - 0 e) is 
below and sufficiently close to coe, (equation 2.11) within the pinning region, Alpar et 
al. (1984a) have shown that is is favourable for vortices to thermally tunnel between 
adjacent pinning sites in a radially outward direction. The superfluid spindown is thus 
affected by vortex creep. 

The glitch temporarily decouples all of the pinned superfluid from the 
spindown of the neutron star. The post-glitch relaxation is then contributed by the 
recoupling of the vortex creep process in two physically distinct regions. At the time 
of the glitch, creep is terminated in the inner region, and a bulk unpinning of vortices 
takes place in an inner region G, the glitch site. The cause of the unpinning is a chain-
reaction brought about when a fluctuation in vortex density brings the local value of Co 
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up to co. The free vortices move radially outwards through a region B and eventually 
repin in a second region, G', where the creep process becomes re-established. The re-
establishment of creep within regions G and G' is shown to produce a fundamentally 
non-linear torque on the crust which is manifest as exponential decays in the pulsar's 
rotation frequency. A third torque, which is shown to be linear in the angular velocity 
lag between the crust and superfluid, is produced by the recoupling of creep in the 
boundary region B through which vortex transport takes place. 

Cheng et al. (1988) have examined the distribution of vortices in a region 
where co, has large spatial variations due to structural inhomogeneifies, and have 
found that vortices may be either accumulated or depleted in these regions. 
Specifically, where acocdar > 20-ir, a free vortex line entering an accumulation region 
may initiate the bulk unpinning of a layer of vortices. Cheng et al. (1988) have 
suggested that this situation may give rise to small frequent unpinning events which 
contribute to timing noise. 

Figure 2.2 illustrates the behaviour at the boundary between regions G and G'. 
If it assumed that Nv  vortices travel from region G to G', then the average change in 
the superfluid velocity in region B is 

Nvx 
– 

2irrB2 
where rB is the location of the transition region (whose width is small in comparison 
with rB). Clearly, in regions G and G', SO changes from 0 to MB and MB to 0 
respectively. The changes are bound not to be smooth, but contain local fluctuations 
about these trends. Alpar et a/. (1984a) disregard the fluctuations, and modelled the 
change in SO in regions G and G' by a linear averaging procedure. 

The angular momentum transferred from the superfluid to the crust due to the 
sudden vortex motion is 

IB)81.213 = 	 2.12 
where IA IG + IG. is the total moment of inertia of the pinned superfluid in regions G 
and G', and IB is the moment of inertia of the pinned superfluid in region B. The 
vortex creep theory predicts that the re-establishment of creep in the three regions will 
contribute internal torques of the form 

1  Ni(t) = INI 	 2.13 
1 + [exp(titti)-1] exp(-titi) 

where ti = — (with 8f2i  'th Sfli the change in superfluid velocity in the ith region, and la.1= 
ICU 

INext1  (lc  +EL )). In the regions 0 and G', 6S2i = AS2c, crust velocity at the time 
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Fig. 2.2. 	Schematic description of the boundary region for the Vela pulsar. The 
distance from the rotation axis increases to the right, and density to the left; (a) 
variation of cocr  and woo , (b) vortex density, (c) the change in the superfluid rotation 
rate. (After Alpar et al., 1984b). 

Nit 

Fig. 2.3. 	The behaviour of the torque contributed by region i for the case t i  >> 
(After Alpar etal., 1984a). 
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of the glitch, and in region B, 5S2i = SUB. The form of equation 2.13 is illustrated in 
figure 2.3. 

The term ti describes the average creep relaxation rate and is given by 

= 

	

	 2.14 
I 0.0.1 

where T is the internal temperature of the neutron star. Thus for times t < 
minimum(ti)i, the change in the rotation rate of the pulsar will simply reflect the 
external magnetospheric torque. 

2.9.2 Post-Glitch Relaxation 

Alpar et al. (1984b) provide a general expression for the post-glitch relaxation 
80a for t < tB = — as 
I Oleo  

2 
f INI  

Et E2 
i=1 

INI IA t + ITEIT 2.15 

where 
exp(-A/Ti) [exp(totri)- 1]  

El – 
1+ exp(-A/Ti) [exp(totci)-1] 

exp(-ttri) 

Here Ti is the relaxation time for the i-th pinning region, and A is the uncertainty in the 
epoch of the glitch (O_A..Am , where Am  is the interval between the last pre-glitch 
observation and the first post-glitch observation). In addition 

Anc  ASIc  ts  to  
I ‘21. 	fIc  

where ts  is the spindown timescale (equation 1.9). The separate terms of equation 2.15 
are illustrated in figure 2.4. Possibilities for the the long term behaviour, which 
depend on tB in comparison to the inter-glitch timespan, are illustrated in figure 2.5. 

Alpar et al. (1984b) have shown that this model provides a reasonable 
description of the post-glitch behaviour in 0, for Vela through the analysis of the JPL 
data on 4 large glitches and one milli-glitch presented by Downs (1981b). The 
parameters obtained from the fits to the first four glitches vary (table 2.1), although the 
analysis is hampered by the lack of data immediately following each glitch. The time 
constants obtained are on the order of (ti,t2)  (3 days, 60 days). They note that a 
limited range of relaxation time constants should be associated with each of the 

E2 — 
1 + exp[ - (t+Atti)] [eXP(totti)- 1] 
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Fig. 2.4. 	The separate effects of the three torques NI, N2, and NA on n c(t) 
(lower, middle, and upper curves respectively). Plotted is Sk(t+A) - n c(t) in units of 
10-13  rad s-2  as a function oft > to. (After Alpar etal., 1984b). 
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Fig. 2.5. 	The effect that reestablishment of vortex creep in boundary region B 
would have on the observed L(t). (a) if tB < t8 , the time to the next glitch, creep 
would be reestablished in region B, and n(t) would then take on a non-linear 
behaviour with time. (b) the recoupling of region B is interrupted by a glitch. (c) no 
recoupting takes place before the next glitch. Alpar etal. (1984a) have suggested that 
the reestablishment of coupling in region B may in fact initiate a glitch. (After Alpar et 
a/., 1984b). 
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pinning regions 1 and 2, rather than a unique value. In addition, they predict to = 25 
days, and tB 1500 days. 

Based on the observed relaxation timescales and glitch magnitudes, it is 
apparent that the EOS for the Vela pulsar is stiff, lying between the predictions of the 
mean field (MF) model (which attributes the inter-nucleon attraction to the exchange of 
an effective scalar meson; Panharipande, Pines, and Smith, 1976) and the tensor 
interaction (TI) model (Cheng, 1987a). 

Alpar et al. (1984b) have been able to calculate the internal temperature of the 
Vela pulsar based on the creep rate deduced from the relaxation times. They suggest 
that if the regions 1 and 2 of figure 2.2 contain superweak and weak pinning 
respectively, then T 107  K, in agreement with the predictions of cooling 
calculations, and the upper limit of the surface temperature set by X-ray observations. 

Cordes, Downs, and Krause-Polstorff (1988; hereafter CDK-P) have provided 
a more detailed analysis of the JPL Vela timing data, extending the fits to the fifth and 
sixth glitches. They have suggested that the variation of the relaxation time constants is 
due to the change of the radial location of the pinning/unpinning regions between 
glitches. On the basis of the strong anticorrelation between 'T2 and C1c3 = c IA 

(where nc  is the second time derivative of the spindown due to the external torque), 
CDK-P have tentatively suggested that "C2 is associated with a region of strongly 
pinned superfluid; this is in conflict with the conclusions of Alpar et al. (1984b). 

Although the vortex creep theory adequately predicts the form of the relaxation, 
the strongest test is to examine the rotational behaviour for post-glitch times < to where 
the internal torques should be decoupled. In Chapter 6, it is shown from the Llanherne 
measurements that SIG  exhibits a distinct relaxation for times to within 1.2 days after 
each glitch epoch. 

Alpar, Nandlcumar, and Pines (1985; hereafter ANP1) have successfully 
applied the vortex creep model to the Crab pulsar and PSR0525+21. They explained 
the persistent shift in 0.,c  for these pulsars as due to the pile-up of vortices in a trapping 
zone within the weak pinning region. The trapped vortices add to the internal torque 
following a glitch. The theoretically derived internal temperatures for the two pulsars 
are in reasonable agreement with observational limits. ANP1 suggested that creep is a 
significant source of heat in old pulsars, modifying the cooling trend from that based 
solely on photon emission from the surface. 
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The vortex creep model has recently been applied by Alpar et al. (1988) to the 
large glitch of PSR0355+54 (Lyne, 1987). For this pulsar, to 5 years, which is 
significantly greater than the interval between the glitch and the first post-glitch 
observation. Importantly, the pulsar exhibits relaxation for all post-glitch 
observations. On this basis, Alpar et al. (1988) have modified the vortex creep theory 
to account for these observations. 

2.10 GLITCH-INDUCED TIMING FLUCTUATIONS  

The possibility of the rotational oscillation of the crust of a neutron star 
following a glitch has been addressed by several workers. High resolution timing 
observations offer a means of testing these ideas. Baym, Pethick, and Pines (1969a) 
suggested that internal magneto-hydrodynamic (T'kachenko) waves are initiated by a 
glitch (see also Pines et al., 1980). The waves propagate throughout the superfluid, 
causing the axial oscillation of vortex cores. This situation is akin to acoustic lattice 
vibrations in solids. Ruderman (1970) idealized the situation for neutron stars by 
considering the dynamics of TIcachenko oscillations in a rotating cylindrical container 
of superfluid in the absence of vortex pinning. He suggested that the surface of the 
cylinder oscillates with a characteristic frequency SIT about its mean rotation rate n 
due to the variation in the vortex density immediately adjacent to the inner surface of 
the container. He expressed the fundamental oscillation frequency as 

1.1x10 -5  11-6  Hz 

where R is the cylinder (or stellar) radius (m). For the Crab pulsar, Ruderman 
calculated 27c/S2T 4 months, which was in agreement with the period of the quasi-
sinusoidal oscillations about the spindown behaviour that were reported by Richards et 
al. (1970). For Vela, 271/5/T 200 days. 

However, in a more realistic model, the oscillation period and amplitude will 
depend on the processes of vortex pinning and the coupling between the superfluid 
and charged particle and magnetic field. Jones (1988) has suggested that the drag 
between the neutron and proton superfluids restricts undamped Ticachenko modes to 
the inner crust where superconducting protons are absent. Sonin (1987) has suggested 
that pinning will increase the oscillation frequency, with a maximum value given by 

- K 	ln — 
1/4 

(2))31 
47rR2   

where rarc  is the ratio of the inter-vortex spacing to the vortex core radius. For Vela, 
21rick 16 minutes. A detailed treatment of this problem is clearly lacking. 
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According to Ellison and Kazanas (1983), rapid crustal heating from glitch-
induced Tkachenko waves may play a significant part in the emission mechanism of 
gamma-ray bursters. In addition, magnetospheric shocking and disruption may also 
occur. For pulsars, this aspect could be experimentally investigated through the 
careful measurement of dispersion and pulse parameters. The existence of discrete 
glitch-related changes of the dispersion measure for the Crab pulsar are questionable 
(Rankin et al., 1988), although such an event may be associated with the most recent 
Vela glitch (Hamilton, personal communication, 1989). 

2.11 CONCLUSIONS  

Glitch models have undergone extensive development during the two decades 
since the phenomenon was first identified, largely as the result of the accumulation of 
observational data for the Vela and Crab pulsars. Currently, all models are in conflict 
with the observations at some level. 

The standing of the models for the Vela pulsar can be broadly summarized as 
follows. The crustquake model has not been able to account for the frequency and 
magnitude of the glitches. The corequake model has also been rejected on the basis of 
surface temperature estimates and the refinement of equations-of-state which suggest 
that solid cores are unlikely. The two-component model has failed to predict the rapid 
post-glitch relaxation effect. In addition, it is not compatible with the corequalce model 
as it suggests an internal structure which is in conflict with the viable equations-of-
state. The heat-pulse model has failed to provide a reasonable prediction for the post-
glitch frequency derivative and the immediate post-glitch behaviour. The vortex creep 
theory in its original form predicts an interval during which the crust and superfluid 
are decoupled that is not supported by the observations. However, the model does 
achieve a fundamentally non-linear post-glitch relaxation effect based on interior 
micro-physics that is in reasonable agreement with observation. In addition, it predicts 
a surface temperature that is compatible with the best available upper limit. 

The application of the vortex creep model to the glitches of the Crab pulsar, 
PSR0525+21, and PSR0355+54 has experienced some general success. Although 
this model has achieved the most comfortable acceptance of any proposal to date, a 
confident general theory is considerably lacking. A major aim of future modelling 
must be the reconciliation of the seemingly inherent variability of the magnitude of the 
basic glitOh observables that not only occurs for each event of the Vela pulsar, but also 
between those of different pulsars. This feature may owe its very nature to the 
operation of a fundamentally unstable glitch initiation process that indecisively sets its 
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own threshold level oblivious to the wishes of the external observer hoping to catch an 
event in its entirety during his or her research lifetime. 

Aspects demanding additional theoretical study are the viability and 
significance of glitch-induced magneto-hydrodynamic oscillations in the modification 
of the rotational behaviour and external environment of pulsars, and the description of 
the interior magnetic field topology. In addition, it is evident that the exploration of 
interior coupling mechanisms is yet to be exhausted. 
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CHAPTER 3 - PULSAR TIMING NOISE 

3.1 INTRODUCTION 

It is common practice to fit pulsar arrival time measurements (referenced to an 
inertial frame) with a spindown model which may include terms to absorb any glitch 
events. This work is required, for example, as part of the procedure to obtain a 
prediction of the apparent pulse frequency for a future epoch at which synchronous 
pulse integrations are performed. However, when account is made of the contributions 
of spindown, glitches, relative motion, propagation delays, and measurement 
uncertainties, the residual phase values of most pulsars exhibit the signature of 
inherent timing noise. 

The characterization and interpretation of timing noise is of considerable 
interest for the understanding of neutron star dynamics. Aside from this aspect, timing 
noise ultimately limits the usefulness of most pulsars as precision time reference 
standards and tools for the detection of low-frequency gravitational radiation 
(Mashhoon, 1982; Hellings and Downs, 1983; Romani and Taylor, 1983). The 
millisecond-class pulsars exhibit very little measurable timing noise, and as a result 
have received considerable attention in connection with the aforementioned areas (e.g. 
Blandford, Narayan, and Romani, 1984; hereafter BNR). 

Several workers have undertaken detailed analyses of pulsar timing noise and 
through their efforts it has been possible to restrict models for the underlying 
phenomena. It is evident that the timing noise of an individual pulsar is largely due to 
genuine changes in the rotation rate of the crust of the associated neutron star, rather 
than because of processes that influence the emission and propagation of the pulses. 
Given an understanding of the internal structure and external environment of pulsars, 
several physical processes that may conspire to produce the timing activity of an 
individual object are currently considered viable. Each of these processes involves the 
application of a time-varying component of torque on the neutron star crust which then 
responds over a characteristic timescale. In the next section, the methods that have 
been employed in characterizing timing noise are summarized. In section 3.3, the 
observational data for the Vela pulsar are examined, while the viable physical 
processes for pulsar timing noise are reviewed in section 3.4. 
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3.2 THE CHARACTERIZATION OF TIMING NOISE 

Timing noise of radio and X-ray pulsars is studied through the characterization 
of the statistical and temporal behaviour of pulse phase 4) and its higher order time 
derivatives, specifically the frequency parameters v and V. In the case of radio pulsars, 
the analysis is hindered by secular spindown (and additionally in some cases, by 
glitches) which contaminates the phase values, and by the uneven way in which the 
phases are usually sampled in practice. 

The first published description of timing noise was made by Boynton et al. 
(1972) who examined the first three years of timing data for the Crab pulsar. From 
their work, it was apparent that statistics with stationary (that is, time-independent) 
behaviour could be applied to fluctuations in V, but not to the lower order parameters 
of v and 4). The evidence for this result came from the ability to characterize the 
evolution of v and 4) in terms of random-walk processes driven by white noise in V. 
This suggested that a stochastic component of torque acts on the crust of the 
underlying neutron star. 

Random-walk analysis (Appendix A.2) has been applied to other radio pulsars 
by Cordes and Helfand (1980) and Cordes and Downs (1985; hereafter CD). These 
surveys have found that stochastic torque fluctuations are not solely responsible for all 
manifestations of timing noise. Indeed, pure random-walk behaviour is not exhibited 
by many pulsars, some of which show discrete jumps in their timing parameters. 
Loshen (1972, 1975, 1981) identified significant seemingly abrupt jumps in the timing 
parameters of the Crab pulsar which Cordes and Helfand (1980) regarded as having a 
signature distinctly different to that of glitches. A number of other studies, including 
those of Manchester and Taylor (1974), Gullahorn et al. (1976) and Gullahorn and 
Rankin (1978, 1982) have revealed additional examples of discrete timing events. 
Importantly, Cordes, Downs, and Krause-Polstorff (1988) have shown that discrete 
activity is apparent in the spindown of the Vela pulsar. 

Cordes and Helfand (1980) have shown from an analysis of the timing data for 
50 pulsars that idealized random walks in 4), v, and V are most consistent with the 
behaviour of two, four (and possibly as many as seven), and two different objects, 
respectively. These authors briefly discussed a means of obtaining limits on the rate R 
for steps man idealized "random walk; typically, the-  inferred step rate lies in the range 
many per day to one every few hundred days for pulsars exhibiting a pure walk in V. 
In addition, they proposed that apparent steps in v and distinct values of V (aside 
from that of the Crab pulsar) were possibly the result of fluctuations in a random walk 
process. 
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CD have examined the data for a sample of 24 pulsars in considerable detail. 
They concluded that the timing activity of most objects can not be modelled in terms of 
idealized, large rate random walks. Instead, they suggested that timing activity 
contains discrete, identifiable events in one or more of the parameters 4), V. and V, 
which may be superimposed on an idealized random walk process, or a mixture of 
idealized walks, or another type of process. However, a small number of objects did 
show timing activity consistent with a preferred form of idealized random walk, a 
result supporting the work of Cordes and Helfand (1980). 

The temporal structure of discrete timing activity has been investigated by CD 
utilizing structure function analysis (Appendix A.3); this method has found 
application in the study of the stability of laboratory frequency standards (Rutman, 
1978), and radiowave scattering phenomena (Simonetti, Cordes, and Heeschen, 
1985). The primary aspect addressed by this work is whether the discrete activity can 
be reconciled as the result of fluctuations in a random walk process, or by other 
phenomena of internal or external origin. 

The description of timing noise in terms of the power spectrum of fluctuations 
in 4) and its derivatives (Appendix A.4) has been investigated by Deeter and Boynton 
(1982) and Deeter (1984); this approach has found particular utility in testing 
theoretical models. The spectral techniques developed and assessed by these authors 
are most suited where noise spectra are anticipated as having excess power at low 
frequencies (in which case the noise is termed to be red), and additionally, where the 
noise observable is non-uniformly sampled. It has been shown that the choice of 
power density estimators based on polynomials provides an accurate and 
computationally simple method of extracting spectra in the face of red noise, albeit 
with low resolution. However, the application of this method and alternatives 
considered by the aforementioned authors have only been examined on the basis that 
purely white noise exists in the r-th derivative of 4), in which case the lower order k-th 
derivatives of 4) exhibit noise spectra with a spectral index given by s = 2(r - k). As 
BNR have pointed out, interstellar scattering and background gravitational radiation 
will be associated with characteristic odd integral values of s. Work by Boynton and 
Deeter (1986, preprint) has shown that some pulsars (e.g. the Crab) have a white 
power spectrum in V, while others have a composite spectrum with red and white 
noise components. In some of the latter cases, power in the high cyclic frequency 
domain has the  blue noise. 
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3.3 TIMING NOISE OF THE VELA PULSAR 

Three major works have quantified the non-glitch timing activity of the Vela 
pulsar. 

Cordes, Downs, and Krause-Polstorff (1988) have examined 14.5 years of 
JPL Vela timing data up to March, 1983. They fitted an appropriate model with 
spindown and glitch terms (as described in Chapter 6) to phase values within each 
inter-glitch timespan of the data. Phases over shorter intervals (10-60 days, depending 
on the adequacy of sampling) were then fitted with a cubic model, and estimates of v 
and V for the central epoch t were obtained. These were subtracted from the 
appropriate parameters from the fit to the entire data set to yield differences Sv(t) and 
8V(t). The differences were detrended by removing a running linear fit in order to 
highlight fluctuations. The results for observation intervals common to the Llanherne 
data set are shown in figure 3.1. Importantly, this work revealed several apparently 
discrete changes in V with I 8V / V I < 10 -4. A detailed statistical description of this 
activity in the same vein as conducted by CD for 23 pulsars is yet to be published. 

Alpar, Nandkumar, and Pines (1986; hereafter ANP2) have presented low 
resolution power spectra in SI for the Vela pulsar calculated using cubic and quartic 
polynomial estimators from work by Boynton and Deeter (1986, preprint) using JPL 
data. As shown in figure 3.2, the spectra exhibit power in excess of that contributed 
by measurement noise at cyclic temporal frequencies corresponding to observation 
spans greater than — 20 days. This suggests that the timing behaviour cannot be 
simply ascribed to white torque noise. 

Downs and Krause-Polstorff (1986; hereafter DK-P) have examined the short 
timescale fluctuations in pulse phases for the sample of 24 pulsars, including Vela, in 
the JPL timing programme. Earlier, CD provided evidence (figure 3.3) showing that, 
for most pulsars, the fast (relative to the pulse period) fluctuations in the observed 
phase values are in excess of the estimated contribution due to measurement noise 
alone (Appendix A.2). The origin of this effect has remained unresolved. By 
examining data from at least two separate observation systems, DK-P demonstrated 
that the excess residuals were independent of system sensitivity. A cross-correlation 
analysis was performed between the residuals and associated values of the moments 
quIntifying the stability of the integrated profile shapds - and ineasures-of the profile 
perimeter. No significant correlations were found to exist, suggesting that pulse shape 
changes do not contribute to the excess residuals. 
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Fig. 3.1. 	Data presented by Cordes, Downs, and Krause-Polstorff (1986; 
hereafter CDK-P) from JPL observations of PSR0833-45 illustrating fluctuations in v 
and 9 during the interval spanned by both the JPL and LRO timing programmes. The 
plots show Sv(t) and 89(t) from short polynomial fits after detrending as discussed 
in the text. Vertical bars are ± 1 formal errors. Horizontal bars indicate the time 
interval for the polynomial fit. Vertical arrows identify the epochs of candidate micro-
jumps selected using a threshold test described by CDK-P. 
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Fig. 3.2. 	Logarithm of power density in v as a function of cyclic frequency for 
PSR0833-45. The noise power obtained using cubic and quartic estimators is shown 
in (a) and (b) respectively. The vertical bars give the uncertainty in each power 
estimate, while the horizontal bars approximate the frequency bandpass of the 
estimator. The estimated contribution to each power density from measurement white 
noise is indicated by a diagonal cross. (After Alpar, Nandkumar, and Pines, 1986; 
Boynton and Deeter, 1986 preprint). 
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DK-P evaluated the autocorrelation function Ra  of the timeseries representing 

residuals averaged in non-overlapping spans of 30 minutes. As shown in figure 3.4, 
Ra  exhibits significant non-stationary behaviour with time lag T, particularly for "C < 2 
hours, the maximum contiguous span of arrival time estimates for the JPL 
observations. A similar behaviour is claimed to be exhibited by other pulsars of the 
observing programme. Additionally, for the Vela pulsar in particular, R. at a fixed lag 
shows evidence of non-stationarity with the central epoch of the data set utilized. DK-
P have represented Ra(t) as the combination of an unresolved rapidly decaying 
component, and a second term characterized by a Gaussian function with a half width 
of — 1 hour. The former component remains unresolved with bin widths down to 3 
minutes. DK-P briefly discussed possible sources of the observed behaviour of R. 
and found no viable explanation in terms of magnetospheric, interstellar, and 
observing effects. They called for the confirmation of the observed behaviour; this is 
addressed in Chapter 5 utilizing the Llanherne data for which the maximum contiguous 
sampling span is 5.4 hours. 

3,4 MODELS 

In this section, the conclusions of several studies that have addressed the 
origins of timing noise are summarized. 

3.4.1 Internal Torque Fluctuations 

Cordes and Greenstein (1981) and Greenstein (1981) have examined the ability 
of the heat pulse model (section 2.6) to account for timing noise. They found that 
torque fluctuations caused by the change in coupling between the stellar interior and 
crust due to a local perturbation of temperature are capable of yielding strength 
parameters consistent with those observationally obtained by Cordes and Helfand 
(1980). 

Padmaraj and Nair (1985) have examined the possibility that fluctuations in the 
interior temperature of neutron stars leads to a sympathetic change in the stellar radius. 
These authors do not provide a specific mechanism for generating the temperature 
variations, but suggest that in the case of the Crab pulsar, changes in the stellar 
moment of inertia due to temperature jumps of magnittide — 10 3  K occurring at a rate" 
of approximately one per day is consistent with the timing noise data. 

Boynton (1981), following on from the work of Lamb, Pines, and Shaham 
(1978a,b) showed that the form of the noise spectrum for the Crab pulsar was 
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Fig. 3.4. 	Autocorrelation function of the timing residuals of PSR0833-45. Bin 
width: 30 minutes. (a) Filled circles: mean autocorrelation for all JPL data except TJD 
4557-4582. Filled triangles: data for TJD 183-2671. Open squares: data from TJD 
2685-449,1. Crosses: random sequence in place of the observed residuals. Solid line: 
Non-rigorously fitted Gaussian function. (b) Filled circles: data from TJD 4557-4852, 
Open triangles: data from TJD 4029-5380. Crosses: random sequence in place of the 
observed residuals. (After Downs and Krause-Polstorff, 1986). 
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inconsistent with that expected for white torque noise acting on a two-component 
neutron star with interior parameters derived from the observed post-glitch relaxation 
behaviour. 

ANP2 have predicted the form of the timing noise spectrum for a pulsar with 
rotational dynamics described by vortex-creep theory of Alpar et al. (1984a,b) for 
each of three processes producing torque noise; (1) pure episodic vortex unpinning, 
(2) a process which is accompanied by unpinning of some vortices, for example, the 
breaking of the crustal lattice by the Magnus force (Ruderman, 1976; Cordes and 
Greenstein, 1981; Cheng, 1987b), and (3) a process which is not associated with any 
vortex unpinning. 

ANP2 characterized the spindown rate of the crust by 
Ar2c(t) = Q-1  AO, 8(t) + AZ(t) 	 3.1 

where the frequency jump AO results in a change A1(t) of the internal torques; the 
delta function 8(t) defines the epoch of the jump. In a similar vein to its usage in the 
two-component model, the parameter Q is defined as the fraction of the initial jump in 
Sic  that relaxes; 

00 

Q= 	 3.2 
AC2c 

where the lower integration limit identifies the time immediately after the jump epoch. 
It is presumed that the core superfluid and the crust are rapidly coupled (on the 
timescale of minutes) so that the only component which may contribute an evolving 
internal torque in response to a jump in f2 is the pinned crustal superfluid. The vortex 
lines in this component are presumed to move radially, overcoming pinning energy 
barriers via thermally activated creep. Equation 2.13 describes the evolution of the 
internal torque on the crust contributed by an individual pinning layer following a 
jump. Although ANP2 provide a general mathematical analysis, they restrict the 
comparison of theory and observation for the situation to << T, where to is the delay 
time (equation 2.17) and t is the dominant creep-related relaxation time associated with 
the glitch region. This situation is anticipated where the jumps in f2 are very much 
smaller than those of identifiable glitches. It is expected that the creep relaxation 
timescale is similar to that of the weak or superweak pinning regions (100-200 days 
for the Vela pulsar). 

0  jalci(t) dt 

The jumps in f2 are regarded as a stochastic process. On this basis, ANP 
predict the noise spectrum in r2 to be 

2  (1 _ Q)2 (02 ,r2 

(1 4. (02,12) 
Pn(co) = R Ark to << 	 3.3 
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where co is the cyclic temporal frequency, R is the rate of jumps per unit time, and 
Mk is the jump in the crustal rotation frequency. 

For the pure unpinning process, each jump is presumed to be a scaled down 
version of a glitch in terms of physical origin and timing signature. In this case, Q = 1, 
and so the spectrum of equation 3.4 has a turnover point at co = lit as shown in figure 
3.5 a. 

For mixed events, the domains of interest are Q>> 1 and Q << 1. The spectra 
for these .cases are given in figures 3.5b and 3.5c respectively. When Q = 2, the 
power spectrum shows purely white noise. 

In the case of a process that does not produce vortex unpinning, but whose 
response is governed by the internal torque contributed by vortex creep, Q = I p/Ic  
where Ip  and lc  are the moments of inertia of the superfluid and normal stellar 
components, respectively. From the observation of the large glitches of the Vela 
pulsar, Q 10-2  and so the spectrum has the same form as the case Q << 1 for mixed 
events (figure 3.5c). This situation differs from that investigated in the light of the 
two-component model by Boynton (1981) for which the core superfluid, with its large 
moment of inertia giving Q 0.9, was regarded as the lagging component 

ANP2 examined the experimental timing noise spectra obtained from the work 
of Boynton and Deeter (1986, preprint) with the aim of identifying structure in Co 
which would indicate the type of process responsible for the noise. Importantly, they 
were able to place limits on the range of possible T and Q values under the assumption 
to << T. For the Vela pulsar, all Q values and T in the range 1 - 104  days were rejected 
with more than 98% confidence. This result indicates that pure unpinning events are 
not responsible for Vela's timing noise, nor is there a continuous range of magnitudes 
of unpinning events which extends from glitches down to the unresolved events that 
lead to the noise. For the Crab pulsar, values of T < 1 day and Q - 2 or 0 are not 
significantly rejected, which is consistent with the view that noise events are initiated 
external to the pinning region. The results were inconclusive for other pulsars, some 
of which exhibited complicated timing noise power spectra. However, it appears that 
the noise of most pulsars is not consistent with the predictions of the pure and mixed 
unpinning models, at least for the range of to and values that could be examined with 
the available data. 

3.4.2 External Torque Fluctuations 

The response of neutron stars in binary systems to fluctuations in accretion 
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torque has been studied in connection with timing noise by Baym, Lamb, and Lamb 
(1976), Lamb, Pines, and Shaham (1978a,b), Boynton and Deeter (1979), and 
Boynton et a/. (1988). However, accretion torques are not considered of importance in 
the case of solitary pulsars because the entrainment of plasma from the interstellar 
medium is likely to be insignificant due to the action of the inferred pulsar wind 
(Cordes and Greenstein, 1981). 

Cordes and Greenstein (1981) have investigated eight different mechanisms for 
timing noise. In particular, they considered torque fluctuations arising from 
perturbations in plasma flow and current braking assuming a polar cap emission 
model. Although these workers did not discuss the origin of such fluctuations, they 
concluded that the rate of occurrence of step-like torque variations of magnetospheric 
origin were not precluded by the observed strength parameters of pulsar frequency 
noise under the random walk model. 

Cheng (1987a) has investigated timing noise in the context of the outer gap 
model of pulsar emission (Cheng, Ho, and Ruderman, 1986a,b). In the application of 
this model to the Crab pulsar, it is proposed that primary elle -  pairs created in the gap 
lose the majority of their energy via curvature radiation to y-rays, which in turn 
produce secondary pairs through collision with X-ray photons. The X-rays represent 
the synchrotron radiation from pairs moving beyond the gap boundary. The radiation 
beams of the X-ray photons are narrow and do not uniformly illuminate the outer gap. 
Because the secondary X-rays are largely responsible for the radiation cascade 
process, variations in their flux can significantly change the brightness of optical and 
higher energy emissions (which are observed to vary in the case of the Crab pulsar), 
and the current braking torque Nja acting on the crust of the neutron star. 

Cheng (1987a) considered a simple model in which a neutron star is idealized 
as a rigid body (that is, the relaxation effects due to coupling processes were 
neglected) and provided estimates for the random walk strength parameters. For 
example, 

Rn2  f NJxB  1 2  8NJxB  1 2  1 
S2(ext) 	 Hz2  5-3 	3.4 

167t2  1- NT .1 	NJxB 	,r2 -age 
(Cheng, 1987b) where R is the rate of noise events, 8/4 jxB and Nja are the torque 
perturbation and its steady value, respectively. In addition NT =IT ) is the total 
torque acting on the star, where IT is the total moment of inertia. The noise power 
spectrum in the frequency derivative has an inverse square dependence in cyclic 
frequency; 

P(w) = S2(ext)  or2 (470)-1 	 3.5. 
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Cheng (1987a) estimated the frequency strength parameter Si( ext) for the Crab 
pulsar (as this object shows white noise in n) by selecting ON ja/NT) 2  -.--. 0.1 and 
assuming that the ratio of the IT/Ic is similar to that for the Vela pulsar (which is 
assumed to be characterized by a comparatively stiff equation of state). The value 
obtained is approximately an order of magnitude less than that determined 
observationally. Cheng has argued that (8•Nja/NT) 2  may be of order unity for older 
pulsars with sufficiently small S22B (for which the outer gap model is inappropriate). 
By estimating internal temperatures based on the vortex creep theory, and the 
perturbation and spin-up timescales, S2(ex t) has been evaluated for the pulsars in the 
survey of CD which exhibit timing noise consistent with a random walk in v, based on 
the torque perturbation model for both soft and stiff equations of state. Cheng has 
suggested that cases for which the modelled and observed strength parameters are 
comparable may support the existence of a superfluid (as distinct to a Fermi liquid) 
core within the associated neutron stars. 

In the case of the Vela pulsar, Cheng (1987b) has proposed that the outer gap 
is inherently stable. However he has suggested that a micro-glitch in rotation 
frequency leads to a perturbation of the magnetospheric current flow which alters the 
current braking torque. The variation of the torque persists until the next jump. In this 
model, the timing noise spectrum has contributions due to both external and internal 
physics. Cheng has evaluated the noise spectrum assuming that the external torque 
fluctuations have a stochastic occurrence rate equal to that of torque variations 
generated internally by the pure and mixed unpinning processes considered by ANP2. 

Cheng considered the case where Q 1 as being of most physical relevance. 
The overall noise spectrum was evaluated as 

PO(co)tot = Pn(co)trit + Pel(co)ext 
where the terms on the RHS are internal (equation 3.3) and external contributions, 
respectively. By combining equations 3.3 and 3.5, 

for co small 
47t2  Siont) 

Ptl(w)wt = S2(ext) (L 2  (4/0) -1  
for co large and COT >> 1 	3.6 

SO(int) Ct)   for co large and cot « 1 
where Siono = R AS2g and So(jt) = 4n 2R AfIg T2  are the frequency and phase noise 
strength parameters due to pure and mixed unpinning, respectively. Thus the noise 
spectrum is predicted to be blue at high frequencies, and (depending on the type of 
internal noise process) red or white at low frequencies. 

Cheng (1987b) compared data from Boynton and Deeter (1986, preprint) and 
Cordes and Helfand (1980) with the predictions of his model, and found the observed 
timing noise spectra of several pulsars to have qualitative similarities. Importantly, the 
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predicted random walk noise strengths were more consistent with vortex creep as 
providing the dominant heating mechanism in older pulsars. 

3.4.3 Precession 

Triimper et al. (1986) have identified a 35 day modulation in the arrival times 
of pulses from the X-ray pulsar Her X-1 that is phase-coherent with the well-known 
light curve of the system. The authors have proposed that precession of the underlying 
neutron star, excited by external torques, is responsible. A similar explanation has 
been offered by Jones (1988) to account for the quasi-periodic (— 620 day) oscillations 
in the timing residuals of the Crab pulsar. 

Shaham (1977) has shown that if the superfluid vortex lines are rigidly pinned 
to the crust, then the precession frequency cop  is of the order cop  Ip/I where Ip/I is 
the fraction of the moment of inertia of the pinned component. For a typical neutron 
star, o 10-2  Shaham (1986) has noted that in the case of Her X-1, because of 
the observed amplitude of the precession, the lag between the crustal and superfluid 
rotation rates exceeds the critical value below which absolute pinning occurs. 

Alpar and Ogelman (1987; hereafter AC)) have closely examined the conditions 
imposed on neutron star precession due to internal torques imposed by vortex motion 
with particular application to Her X-1. Importantly, they have provided theoretical 
evidence to suggest that a steady state situation can arise in which the superfluid 
component precesses with the crust. The pinned superfluid in the inner crust takes part 
in precession through vortex creep which is linear in the lag between the rotation rates 
of the pinned superfluid and the crust. Additionally, the required magnitude of the 
external excitation torque is consistent with the torques available in the accreting binary 
system, although AO do not discuss how the precession is forced. AO have also 
suggested how steady-state precession can arise for a particular initial condition and 
propose that Her X-1 is in this situation 

For single radio pulsars, precession is likely to be damped by internal torques 
on timescales less than 1000 years, because the external torques are not considered 
sufficient or appropriate for the development of a steady-state situation (AO). 
However, only limited theoretical discussion of possible internal or external excitation 
mechanisms have been published to date. Additionally, the timing residuals of the 
Crab pulsar have yet to be adequately examined in the light of the current 
understanding of precession and neutron star structure. 
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3.5 CONCLUSIONS  

The study of pulsar timing noise provides an important means of investigating 
the internal structure and external environment of neutron stars. 

A number of techniques have been developed to quantify timing noise. In 
several cases it has been shown that the observed noise is consistent with an idealized 
random walk in 4), v, or V which suggests that a stochastic process influences the 
rotation rate of the underlying neutron star. Several objects exhibit apparent 
discontinuities in rotation rate that are not consistent with fluctuations of a random 
walk process. The adequate characterization of these events has been considerably 
hampered by a lack of well sampled timing observations. 

• The origin of timing noise is still a subject of debate. It is evident that certain 
mechanisms may be specific to only a limited number of objects. It is possible that the 
events leading to timing noise are related to the large glitches observed in only a small 
proportion of the pulsar population. In this connection, crust-quakes, vortex 
unpinning, and temperature fluctuations have been investigated and are considered 
viable. 

By assuming a large-rate random origin for rotation fluctuations, it has been 
demonstrated that the timing noise spectra of the Vela and Crab pulsars does not 
exhibit structure on timescales characteristic of the internal torque relaxation processes 
for the two-component and vortex creep models of internal dynamics. On this basis, 
there is evidently a threshold for the occurrence of glitches. The level of timing noise 
exhibited by a broader group of pulsars is generally consistent with vortex creep 
providing the dominant heat source. 

Braking torque fluctuations due to instability in outer magnetospheric-gaps has 
been suggested as a contributor of noise in rotation of energetic pulsars. In addition, 
the possibility that internally generated discrete jumps in rotation rate leads to changes 
in the magnetospheric current braking torque has also been proposed. For both of 
these models, a blue noise component in the spectrum of V is predicted. 

Evidence of neutron star precession has been used to modify the vortex creep 
theory of internal dynamics. Little work has been conducted to examine the possibility 
of small-amplitude precession as a contributor to timing noise. It is likely that such a 
process will have a narrow-band signature in timing noise spectra. However, the 
established method of spectral estimation is of inherently low resolution, which may 
be inadequate to reveal such a feature. 
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CHAPTER 4 - LLANHERNE TIMING OBSERVATIONS 

4.1 INTRODUCTION 

In this chapter, the observing and data reduction procedures that were adopted 
for the pulsar timing programme at the Llanheme Radiophysics Observatory (LRO) 
during the interval October, 1981, to September, 1986, are described. 

The author was responsible for all aspects of the Llanheme pulsar observations 
described herein subsequent to November, 1984. Prior to this time, the measurements 
were largely under the direction of Mr. G. Royle. In addition to the Vela timing 
programme, regular observations were also conducted of PSR1749-28 and PSR1641- 
45. 

The Llanheme timing programme initially built on experience gained by Dr. 
P.M. McCulloch and Dr. P.A. Hamilton through collaborative work with Dr. R.N. 
Manchester and Dr. J.H. Taylor. These latter workers provided the initial ideas for the 
basic arrival time modelling algorithm. Dr. Hamilton and Dr. McCulloch made 
significant contributions to the initial software and hardware developments, 
respectively. Mr. G. Royle was involved with the development of the receiver and the 
analysis of the initial observations. The contribution of the author was the design and 
construction of the dual frequency receiver and related observing software, the 
collection and processing of the daily data, and the analysis and interpretation 
presented in this thesis. During the course of this project, the data collected by Mr. 
Royle have been reworked. 

Some additional data for the Vela pulsar that have been used in the analysis 
presented in chapters 7 and 8 have kindly been provided by Ms. C. Flanagan from 
observations at the Hartebeesthoek Radio Astronomy Observatory (HRAO), South 
Africa, and by Dr. R.N. Manchester from observations at Tidbinbilla, Australia; due 
indication is made where these data have been employed. 

4.2 THE RECEIVING EQUIPMENT 

The parameters for the Llanheme and Hartebeesthoek observation systems are 
summarized in table 4.1. At Llanherne, observations were made with an equatorially 
mounted 14m parabaloid. Due to restrictions imposed by the mounting, the maximum 
daily tracking time available for PSR0833-45 was 5.4 hours; PSR1749-28 and 
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TABLE 4.1 

RECEIVER AND SAMPLING PARAMETERS FOR PSR0833-45 

Site Name 	 Llanherne 	Hartebeesthoek 

Geocentric Coordinates 
longitude A. 	 147?510711 	-27?685441 
latitude I 	 -42?653972 	-25?739300 
radius R (km) 	 6386.406 	6375.525 

Telescope 
aperture (m) 	 14 	 26 
mounting 	 equatorial 	equatorial 

Receiver 
feed type 	 disc 	 horn 
polarization 	 linear 	 linear/circulara 
centre frequencies (MHz) 
system temperature (K) 
3dB predet. bandwidth (MHz) 
radiometer bandwidth (MHz) 
dispersion smearing (period) 
rotation smearing (degrees) 
post-det. time constant (p.$) 

Sampling System 
sampling rate (period -1 ) 
integration duration (period) 
integrations per session 

Timing Parameters 
typical pulse SN ratio 
measurement uncertainty (1.1.$) 
frequency standard 

635.0/954.0 2320.0/2325.6b 
100/45 40 
0.25/0.80 10.0 
0.32/1.0 12.6 
0.006/0.006 0.006 
0.4/0.4 0.3 
470/470 150 

256 512 
1008 500 
200 4 

20 20 
80 40 
Rubidium Rubidium 

a 	Circular polarization used after TJD 6286 
2320.8 MHz used prior to TJD 6208; 2325.6 MHz used after this date. 
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PSR1641-45 were observed for similar durations. The remainder of this chapter, 
aside from section 4.13, deals with the Llanheme observations of the Vela pulsar. 

A schematic diagram of the Llanheme system is presented in figure 4.1. A disc 
feed (Howell, 1975) was used at the prime focus of the telescope. It provided two 
orthogonal linearly polarized channels centred at 635 MHz. Calibration signals of 
equal amplitude and phase were injected into each channel from a probe on the feed. 
From March, 1986, a novel dual frequency stacked disc feed was used, which 
provided orthogonal linearly polarized channels centred at 635 MHz and 954 MHz. 
Calibration signals for this feed were radiated from a circularly polarized antenna at the 
vertex of the dish. 

Each receiver channel was of the same basic configuration. Broadband GaAs 
FET preamplifiers were operated at ambient temperature. Five-pole Butterworth 
interdigital filters provided a 25 MHz bandpass at radio-frequency (RF) which was 
then mixed to an intermediate-frequency (IF) band centred at 30 MHz. The local 
oscillator signals used in the mixing process were phase-locked to the observatory 
Rubidium frequency standard. Further band-limiting was provided by 3-pole 
Butterworth helical resonator bandpass filters which were followed by square-law 
detectors. The pairs of channels were phase and amplitude matched throughout. 

4,3 THE SAMPLING SYSTEM 

Each detector output was sampled using voltage-to-frequency converters 
(VFCs) at intervals of P a/Ns , where Pa  is the apparent pulsar period, and Ns  is an 
integer. In this way Ns  phase bins were provided per period. The limitation of the 
speed of the observatory computer necessitated that Ns  = 256. This provided 
approximately 10-15 on-pulse bins for PSR0833-45. 

Each VFC output a waveform with an instantaneous frequency directly 
proportional to the instantaneous input voltage. A 16-bit counter accumulated the 
number of waveform cycles. At the end of a sample interval, each counter was read by 
the computer and then reset. The maximum delay between reading adjacent channels 
was 2 ps. The data were then used to modify the running mean for the relevant phase 
bin and channel using a stable averaging algorithm. This integration process continued 
for a preset number of pulse periods. 
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A barycentric timing model, derived from a recent arrival-time analysis and 

adjusted for the motion of the observatory, was used to calculate Pa  for the epoch of 
the mid-sample of each integration. 

The sampling frequency was governed by the Pulsar Timing Unit (PTU) 
which suitably divided the frequency of 2 16/Pa  produced by a programmable 
synthesiser. The synthesiser was phase-locked to the Rubidium standard and could be 
set with the significance of mHz. The PTU also produced a frame pulse with 
frequency of 1/Pa. 

The time as read from the Observatory clock (with the significance of 
microseconds) was buffered in hardware simultaneous with the first sample pulse. 
Upon completion of the integration, the buffered time was transferred to a computer 
disk file together with the integrated profiles of each channel (designated I x  and ly  for 
each frequency) and the value of P. used. A new value of Pa  was then calculated, and 
the appropriate settings for the PTU and synthesiser were automatically made. After 
the completion of these and some additional house-keeping tasks, the next integration 
proceeded on receipt of the following frame pulse. 

4.4 CALIBRATION 

During the operation of the single-frequency receiver, the relative gains of the 
channels were determined by the synchronous integration of the calibration noise 
source which was pulsed with a 2 second period and 50% duty cycle. This procedure 
was conducted on-source prior to the first integration of each session, and the 
information was retained for use in the off-line processing. 

During the dual-frequency observations, the calibration signal was pulsed out 
of phase with the pulsar signal with period P. and 25% duty cycle. This occurred 
during two consecutive integrations per hour. 

The noise source was not calibrated against continuum sources of known flux 
with sufficient regularity to enable the accurate determination of pulse flux values. 

Receiver frequency calibrations were made at approximately six-month 
intervals by radiating a signal from an accurate frequency synthesiser in place of the 
noise source. The centre frequency of each channel was measured as the radiated 
frequency required to produce a signal centred between the -3dB points of the IF filter 
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output. No changes greater than the 10 kHz measurement resolution was noted 
between October 1984 and August, 1986. 

4.5 RECEIVER AND SAMPLING PARAMETERS 

The selection of Afp, the predetection equivalent (or radiometer) bandwidth, "C, 

the time constant of the post-detection RC filter, and N, the number of periods 
integrated, were aimed at minimizing both the temporal smearing of the pulsar's 
waveform and the smallest detectable change in signal noise temperature. 

In order to satisfy the Nyquist sampling theorem, the condition "C > Pa/1028 
was required; for observations of PSR 0833-45, = 470 pis was chosen. 

The temporal smearing of each pulse due to dispersion across the bandpass of 
each receiver may be expressed as 

AtD = 2 D Afp  f-1  
where D is the dispersion coefficient, and f is the receiver centre frequency. For 3-pole 
Butterworth filters, Afp = 1.26 Af3dB where Af3dB is the -3 dB bandwidth (Kraus, 
1986, p. 7.8). Using D 2.84x105  sMHz2  for the Vela pulsar, the values of Af3dg 
(table 4.1) were chosen to give AtD rz; 0.006Pa  0.5 ms. 

In order to provide integrated profiles with signal-to-noise (SN) ratio (pulse 
amplitude divided by off-pulse standard deviation) of — 15 for PSR0833-45 , N = 
1008 was chosen. In practice, the SN ratio for the profiles of the 954 MHz channels 
were higher than those for the 635 MHz channels due to a sensitivity advantage 
resulting from the frequency scaling of the pulsar and background fluxes and the the 
antenna beam solid angle. 

The e-folding geometric time delay tg (interpolated from the observations of 
Komesaroff, Hamilton, and Ables, 1972) due to interstellar scintillations was — 5 ms 
(>> t) at 635 MHz and — 0.1 ms (< t) at 954 MHz. Thus, the pulses received at 954 
MHZ were more strongly modified by the temporal response of the receiver than the 
pulses at 635 MHz. 

From interpolation of the observations of Backer (1974), the decorrelation 
bandwidth Af, was estimated as 0.3 kHz at 635 MHz and 1.5 kHz at 954 MHz. In 
addition, the decorrelation time it at these frequencies is < 10 s. As the bandwidth of 
the receiver and the time-scale of each integration exceeded Mc  and At respectively, 
by some two orders of magnitude, the effect of intensity scintillation on the pulse SN 
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ratio is regarded as minimal. Indeed, in figure 4.2, which shows data from a typical 
observing session, the amplitude of the profiles at each frequency appear stable with 
time. 

In order to illustrate the similarity of the pulse profile shape at the two 
observation frequencies, the individual I integrations of a particular session were 
shifted to a common phase lag and averaged. The results are presented in figure 4.3. 
In figure 4.4, the corresponding averaged I x  and Iy  profiles are illustrated, together 
with the limits of one standard deviation either side of the mean at each phase bin 
within the pooled integrations. Note the absence of power in the orthogonal channels 
of each frequency. This was the result of a fortuitous choice of observation 
frequencies and feed orientation, combined with the prevailing value of the rotation 
measure. Using RM = 38 radians m -2  as an estimate of the rotation measure at the 
epoch of the data presented in figure 4.3 (Costa, 1989, private communication), the 
differential Faraday rotation between the two frequencies (AT = RM c 2  [f1 -2  - f2 2]) 
was approximately equal to the position angle difference of 1.57c radians between the 
two like-named probes on the feed (as measured in the sense of rotation of the plane of 
polarization). 

4.6 PULSE PHASE ESTIMATION 

The phase, 4), of each total intensity (I) pulse was estimated as the lag 
(measured as a fraction of Pa  from the phase origin of the integration) at which the 
cross-correlation between the pulse and a template profile was a global maximum. 
The maximization procedure involved the interpolation of the 2nd degree polynomial 
that was fitted to the set of five correlation values about the maximum via a least-
squares method. 

Template profiles for each frequency were constructed from appropriate total 
intensity profiles obtained by McCulloch etal. (1978) with the Parkes 64m telescope; 
these represented the integration of approximately 2x104  periods of the Vela pulsar 
with a sampling interval of 0.1 ms and a receiver smearing time-constant of — 0.4 ms. 
Each Parkes profile was adjusted to match the lower Llanheme sampling rate through 
interpolation. 

For each phase estimate, a root-mean-square (rms) uncertainty am was 
calculated using the formula given by Downs and Reichley (1983) ; 
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Fig. 4.2. 	Stacked integrations of PSR0833-45 simultaneously recorded at 635 
MHz (left three plots) and 954 MHz. For each frequency, the I x, Iy, and I profiles are 
presented. For each frequency, the Ix  and Iy  profiles were scaled according to the 
calibration data, and then summed to provide a total intensity I profile. The I profiles 
have been used to determine local pulse arrival times as described in section 4.6. The 
mean off-pulse level has been subtracted from each channel. The profiles have resulted 
from the synchronous integration of 1008 periods, and have been windowed to show 
a total of 30 bins (10.5 ins) about the peak of each I pulse (thereby removing the 
relative phase offset between the profiles of the two frequencies due to dispersion 
delay).. The vertical scale is arbitrary but has been adjusted so that the off-pulse 
standard deviation of the I profiles of both frequencies (averaged over the observing 
session) are equal. Increasing time runs from to to bottom. The orientation of the 
probes on the feed for a clockwise rotating polarization vector is shown. 
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Fig. 4.3. 	Mean pulse profiles for (a) 635 MHz, and (b) 954 MHz obtained by 
averaging the integrations for a particular day. The vertical scale is arbitrary, but has 
been adjusted so that the standard deviation of the off-pulse noise for both profiles is 
equal to one unit. The bin width is 1.4° of phase. 
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Fig. 4.4. 	Mean Ix  and Iy profiles for (a) 635 MHz, and (b) 954 MHz for a 
particular day. Each vertical bar represents two standard deviations of the pooled 
values at the corresponding phase bin. Note the similarity of the on-pulse and off-pulse 
bars indicating the stability of the pulse intensity during the session. The phase range 
of each plot is 42°. 
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(pato1/2 

— 	 4.1 

Rs  { j(dU/d4))2d0 la  

where tb is the sampling interval, Rs  is the profile SN ratio, and U is the normalized 
(unit height) template. Equation 4.1 seeks to estimate the arrival time uncertainty in the 
presence of finite gaussian noise on the pulse profile (see also Hertz and Azaria, 
1985). Typically, am 40 - 60 ts for individual Llanherne integrations. 

In order to test the pulse phase estimation procedure, values of am were 
chosen in 5 gs steps from the interval [5 gs, 300 ils], and corresponding values of R s  
were calculated using equation 4.1. Gaussian noise with variance (Io/Rs)2  (where Io = 
1 is the height of the template) was then added to each template to produce simulated 
pulse profiles. A total of 200 simulated profiles were created for each am and 
template. The pulses and their corresponding template were then cross-correlated to 
generate sets of phase lags. In determining each lag, both 3-point and 5-point 
parabolic fits were used in the maximization procedure. The standard deviation am of 
the lags for each am in the interval [5 Rs, 20012s] are displayed in figure 4.5. 

The range of the independent ordinates in figure 4.5 corresponds to a change in 
Rs  of — 127 to — 3. It is evident that the expected and observed rms phase errors are in 
close agreement over this range which atests to the accuracy of the phase estimation 
procedure. For values of am > 250 gs (R s  < 2.5), the cross-correlation method was 
found to fail as evidenced by the divergence of the relationship between am and Gm 
from the expected linear trend. Of additional note is the similarity in the results 
provided by the lag estimation procedure based on 3-point and 5-point fits. 

4.7 DATA COMPRESSION 

The raw phase measurements for which the SN ratio exceeded 2.5 were 
compressed into two additional data sets. Firstly, the phases in non-overlapping spans 
representing —20 integrations were fitted with a first-degree polynomial using a least-
squares procedure, with each point weighted by the inverse of the measurement 
variance, [am } -2. Fits were not made across obvious phase discontinuities which 
occurred whenever observations were temporarily suspended during a power failure. 
If the largest residual from the trend removal exceeded 3.3 standard deviations from 
the unweighted meana, the phase estimate was removed, and the model fit was 

a The probability of a residual of this magnitude occurring is 0.001 assuming that the residual 
distribution is normal. 
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Fig. 4.5. 	Test of the cross-correlation procedure used to determine the local pulse 
arrival phase in the presence of Gaussian noise. Plotted is the rms phase error 
(obtained from a sample of 200 simulated pulses constructed using template profiles as 
described in the text) against the expected rms phase error (crosses - 3-point 
maximization method, squares - 5-point maximization method, solid line - expected 
trend). Plots (a) and (b), have been evaluated using the 635 MHz and 954 MHz Vela 
template profiles, respectively. 
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repeated. This procedure was terminated when no further rejections occurred or too 
few phase values remained for a meaningful fit. The polynomial phase was then 
evaluated for the epoch of the centre of the span. This method gave typically 8-10 
points per day and a rejection rate of — 4%; the data produced formed the medium 
time resolution set. The uncertainty of each phase estimate was taken as the rms phase 
residual of the fit; this was typically 20 gs. 

A similar procedure was used with all of the data of each session to provide 
one point per day; in this case a second degree polynomial was used. The compressed 
data were used in the initial evaluation of the raw data (as described in section 5.2) and 
in some aspects of the timing noise investigation (in order to reduce computing time). 
These data constituted the low time resolution observations. 

4.8 TOPOCENTRIC ARRIVAL TIMES  

The topocentric pulse arrival time for the i-th integration was defined as 
Ti = ()i Pai  + 0.5 Pai  N + ts  + C(ts) + U(ts) 	S 	4.2 

where ts  is the epoch of the start of the integration as read from the clock, C is a 
polynomial describing the offset of the clock time from Coordinated Universal Time 
(UTC), and U(t) is a step function describing the lag between UTC and atomic time 
(due to leap seconds). In this way, each value of Ti represents the arrival time of the 
zero-reference phase at the observatory. 

The difference ATi = T1  - Ti, where Ti is the true topocentric arrival time, was 
minimized to first order by referencing each phase centroid to the commencement 
epoch of the mid-period of each integration. The contribution of higher order 
corrections to equation 4.2, due primarily to the non-zero true barycentric first period 
derivative, were calculated as <2 p.s using the rigourous drift correction formula of 
Downs and Reichley (1983) and have been neglected. 

The rate of phase drift between successive integrations of a session was 
typically < 3 milliperiods per hour. This reflected the drift rate of the Rubidium 
frequency standard and the precision at which the sampling frequency could be set. 
However, a drift rate of up to -33 milliperiods per hour occurred immediately after a 
glitch and before an improved timing ephemeris could be incorporated into the 
software of the observation system. 

The stability of the profile shape is investigated in connection with short 
timescale phase residuals in Chapter 5. 
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4.9 THE OBSERVATORY CLOCK 

The observatory clock was compared on a near-daily basis with the Telecom 
Australia national time standard via a television time transference method. The 
television signals originated from the Australian Broadcasting Corporation transmitter 
in Sydney. The times of arrival of identical synchronization pulses were measured at 
Llanheme and by Telecom in Melbourne. A travelling clock was used to determine the 
propagation delay to within 0.5 gs between the transmitter and the measurement sites. 
The Telecom version of UTC was compared with that maintained by the US Naval 
Observatory, UTC(USNO), on a regular basis through the use of the satellites of the 
Global Positioning System. The measurements enabled the quantity 

ATt  = UTC(USNO) t  - UTC(Llanherne) t  
to be determined for a set of discrete times t; AT t  was then modelled over intervals of 
weeks to months by a low degree polynomial approximation C(t). 

A new expression was required for C(t) after a jump in the phase or rate of the 
local Rubidium standard. A check on the behaviour of the standard was made by 
comparing its phase with the received phase of the signals from the Omega Australia 
transmitter located 300 km north of the observatory using a phase tracking receiver. 
For each polynomial approximation used, the rms time residual 

ac = < (C(t) - AT1)2 >1/2 

was typically 5 ps. 

4.10 BARYCENTRIC ARRIVAL TIMES  

The standard expression (e.g. Downs and Reichley, 1983) for the barycentric 
arrival time of the i-th pulse is 

Tb i  = Ti + tr  + 	n.cri  + td 	 4.3 

where n and ri are vectors directed from the barycentre to the assumed position of the 
pulsar, and from the observatory to the barycentre, respectively (Appendix B); t r  and td 
are corrections for the difference between coordinate and terrestrial times (Appendix 
C), and the dispersion delay to a pseudo-infinite wave frequency, respectively. The 
magnitudes of the right-most three terms of equation 4.3 are summarized in table 4.2. 

Equation 4.3 is a first order approximation to the more rigourous expression 
given by Backer and Hellings (1986) which includes terms for the parallax, radial, and 
proper motions of the pulsar, and spacetime curvature. These terms are negligible for 
Vela (table 1.1). 
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TABLE 42 

CONTRIBUTIONS TO THE BARYCENTRIC CORRECTION FOR PSR0833-45 

Source 	 Annual Amplitude 

Geometric delay : 	 499 s 

Time dilation : 	 1.66145 ms 

Dispersion delaya : 

contribution from doppler shift 	 140 gs @ 635 MHz 
60 ps @ 954 MHz 

constant term 	 0.7049 s @ 635 MHz 
0.3123 s @ 954 MHz 

a for DM = 69.08 pc cm -3  

4.10.1 The Geometric Correction 

The third term of equation 4.3, the geometric correction, represents the light-
time difference between the positions of the observatory and the barycentre with 
respect to the pulsar. 

The vector ri is evaluated using a barycentric ephemeris (Appendix B). For the 
Llanheme and Hartebeesthoek data, the MIT PEP 311 ephemeris (Ash, Shapiro, and 
Smith, 1967) was used. This reference frame for this ephemeris is nominally that of 
the FK4 stellar reference system at the epoch B1950.0; the unit of time is the 
atomic second. Since the development of the MIT ephemeris, estimates of the 
planetary masses have been refined. The amplitude of likely errors in the calculated 
arrival times are summarized in table 4.3 following the method of Mulholland (1970) 
outlined in Appendix D. Fomalont et a/. (1984) have compared the alignment of 
coordinate frame of the VLA (known to agree with the FK4 system to 0.05 arc-sec 
from the work of Perley, 1982) with those of the of the MIT ephemeris and more 
recent JPL DE96 ephemeris. (The DE96 ephemeris has been used by Cordes, Downs, 
and Krause-Polstorff (1988) in the analysis of Vela timing data from 1968 to 1983). 
Due to systematic alignment differences (most likely due to errors in the assumed 
values of the planetary masses), the timing data reduced using both ephemerides are 
likely to have small (-10 gs) residual errors which will leak power into evaluations of 
the timing noise spectrum. 



TABLE 4.3 

ESTIMATES OF THE CONTRIBUTION BY ERRORS IN ESTIMATES OF PLANETARY MASSES ON THE DEDUCED VALUES OF ROTATION PARAMETERS 
PSR 0833-45 

Planet Mass Ratio CM/m) 
MIT 	IAU 1976  

Period 
[Yr] 

Orbital 
Radius (r) 
[x106  k3n1 

A(M/m)in tit 
[s] 

Ar AP/P 

[x10-13 ] 
N-1] 

[x10-29 
[s-2] 

[x10-271 

Mercury 6021000 6026000 0.24 57.9 4.42x10 -2  1.88x10 -8  0.80 1.56 1.29 10.7 
Venus 408250 408523.5 0.62 108.2 1.60x10-3  4.18x10 -7  0.18 1.34 4.30 13.8 
Earth+Moon 328900 328900 1.0 149.6 9.33x10 -4  
Mars 3111200 3098710 1.9 227.9 5.77x10-3  6.96x10 -7  0.30 0.73 0.76 0.80 
Jupiter 1047.355 1047.355 11.9 778.3 5.71x10 -7  
Saturn 3501.6 3498.5 29.5 1427.0 1.04x10 -6  8.51x10 -4  361 57.4 3.87 0.26 
Uranus 22869 22869 84 2869.6 3.38x10 -6  
Neptune 19314 19314 165 4496.6 1.82x10 -8  
Pluto+Charon 360000 1.47x108  247 5900 1.06x10 -2  3.85x10-2  16000 311.0 2.50 0.02 

Notes : 

M is the mass of the Sun, while m is the mass of the planet. The quantity A(M/m)in  represents the fractional change in the International Astronomical 
Union (IAU 1976) reciprocal mass of the planet which will produce at maximum a 1 microsecond error in the barycentric arrival time. The IA1.11976 
planetary masses have been taken to represent the true values. For each planet, the difference between the IAU1976 value and that used in the calculation 
of the MIT PEP 311 ephemeris (where it occurs) has been taken to represent the reciprocal mass error A(M/m) (see Appendix D). At and dr are the likely 
maximum arrival time and baryc.entric position errors respectively for the MIT ephemeris contributed by each planet over one orbital period. Similarly, the 
three right-most columns contain the likely maximum timing parameter errors contributed by the inaccuracies in the MIT ephemeris. The reciprocal mass 
value for Pluto+Charon in the third column is by Tholen (1985). 
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In the evaluation of vector n (Appendix B) for PSR0833-45, the optical 
position (with the E-terms of annual abberation removed) given by Manchester et al. 
(1978b) was used. Timing positions were used for the reduction of PSR1749-28 
(Downs and Reichley, 1983) and PSR1641-45 (Manchester eral., 1978a) data. 

4.10.2 The Dispersion Correction 

From equation 1.5, the time delay between the arrival of pulses at the doppler 
corrected observation frequency fd (Appendix B) and a pseudo-infinite frequency is 
approximated as 

DM  4.4. 
2.410086x10-4  fd2  

Initially, the values of DM given for the pulsars by Taylor and Manchester (1975) 
were used to remove the dispersion delay from the arrival times. 

An error ADM in the assumed dispersion measure will produce errors in the 
arrival times with a constant term proportional to ADM U2  and an annual term with 
peak-to-peak amplitude proportional to 2ADM ve  c- 1  f-2, where f is the uncorrected 
observation frequency, and v e  is the velocity of the observer in the direction of the 
pulsar. As shown in Chapter 7, the dispersion measure of PSR0833-45 has been 
observed to vary by up to ADM 0.02 pc cm-3  over a time-span of 200 days. At 635 
MHz, a change of this magnitude contributes an arrival time offset of - 200 p.s. Of 
less consequence is the contribution of the annual term which has an amplitude of less 
than 1 ps. 

4.11 CONTRIBUTIONS TO THE BARYCENTRIC PHASE 

From equation 1.1, the accumulated pulse phase between epochs ti and to is 
expressed as 

ti 

Ob(ti) - 4ib(to) = f v (e) dt' 
	

4.5 
to 

where the subscript b (which is dropped in all subsequent discussion) identifies 
barycentric estimates, and v is the pulse frequency. 

Following the notation of Cordes and Downs (1985), the barycentric phase 
may be written as 

= (4) rN + 41G)stow + (4)s + 41.1 + 44.4)tast + 
where the slow (relative to one pulse period terms) are due to timing noise and 
glitches, respectively. The fast terms are contributed by the spindown behaviour, 
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phase jitter (conceivably related to fluctuations of size and orientation of the emission 
beam within the pulsar's magnetosphere), and measurement noise. The final term is 
due to refractive group delay fluctuations not accounted for by equation 4.4. 

Cordes and Downs (1985; hereafter CD) have estimated the rms contribution 
of (I)j  (in units of time) over the time-span of an integrated profile as 

At, p <0j2>1/2 = _27 	 4.6 
2N. ln(2)(1+F) 

where At is the width (FWHM) of the integrated profile. F is a dimensionless 
quantity obtained from the relation 

= At011 -I- F2 , 
or equivalently, 

F = AT / 
where AT is the rms fluctuation of the width (FWHM) of an individual pulse. 

CD estimate F 1. Romani, Narayan, and Blandford (1986; hereafter BNR) 
have provided expressions for the t and AT assuming a power-law spectum for 
interstellar density turbulence. The scalings of AT and t are critically dependent on the 
spectral index as  of the density turbulence, which for Vela is approximately 4.1 (table 
1.1). Using expressions given by BNR, F — 0.3 for a s  = 11/3 (diffractive 
Kolmogorov turbulence spectrum) and F — 0.6 for a steeper (refractive) turbulence 
spectrum with as  = 4.3. Using F = 1 as an upper limit, aj  20 Rs for the LRO Vela 
observations. As CD note, phase fluctuations that are correlated from pulse to pulse 
will cause F to be underestimated. Due to sensitivity limitations, no single pulse 
observations were possible, and so F could not be experimentally evaluated. 

CD have considered that the white noise contributions due to fluctuations in 
pulse shape and dispersion delay are dominated by pulse jitter. Both effects are 
considered in Chapter 5. The latter effect is due to density turbulence in the line-of-
sight plasma which alters the effective observing centre frequency. For Vela 
observations, the nns component of the dispersive delay was calculated as ad  « 1 gs 
on the timescale of an observing session using expressions given by Cordes, 
Pidwerbetslcy, and Lovelace (1986) in conjunction with the spectral index of the 
density turbulence (a s; table 1.1) and the assumed distance of the pulsar. Ionospheric 
and interplanetary dispersive effects can be ignored as the total delay through these 
regions amounts to at most 0.1 gs for the LRO observations of Vela at 635 MHz 
(Muhleman and Anderson, 1981; Davies and Hartmann, 1976; Ebel, Schmidt, and 
Taurianen, 1976). 
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4.12 ARRIVAL TIME MODELS  

As noted in section 1.1, a convenient expression for v which adequately 
describes the spindown behaviour over epochs where the effects from any previous 
glitches have 'healed' is the truncated Taylor series" 

v(t) = vo + Vo(t - to) +(t- to)2 	 4.7 

where vo = v(to) (Manchester and Taylor, 1977). 

Combining equations 4.5 and 4.7 gives the cubic phase model 

$(t) = 	+ vo(t - to) + ) (t - to)2  + 	- to)3 	 4.8 

where $o = CO. In modelling the phase measurements, initial estimates of the 
frequency parameters were made, and then equation 4.8 was applied to the data over a 
span of length T in order to yield a set of phase residuals. Providing that the estimates 
of vo, 'do and Vo are sufficiently precise, the accumulated phase will remain close to 
the integral number of actual phase cycles that have elapsed since t = to. For 
convenience, it is assumed that so  0. The residual Ri at t = ti may be expressed as 

Ri = (0i - $i) 
Here sOi is the observed phase of the i-th pulse and Ri is in units of cycles. An 
iterative least-squares procedure is used to fit the model 

1 	1 = (ti  - to) [Avo  + pv(ti-to) + gAv(ti-t0)2] + Rp 	4.9 

to the Ri where the terms prefixed by A are correction coefficients, and R p  is an 
optional term which accounts for proper motion and errors in the assumed position of 
the pulsar (Appendix F). The final value of each frequency parameter is obtained from 
the addition of the initial estimate and the correction. These quantities were substituted 
into equation 4.8 to form the new phase model. The rms value of the residuals 
obtained from the difference of the new model and the observations is given by 

(YR = [N -1  ER 12(n,T) 4.10 

where N is the total number of phase measurements, and m is used to denote the order 
of the Taylor series polynomial used for the frequency model (in the case of equation 
4.7, m=3). It is noted that the frequency parameters have small contributions due to 
the velocity vector of the pulsar with respect to the barycentre; these are evaluated in 
Appendix G where it is shown that this effect is of no concern for the Vela 
observations. 

b The models presented here are defined in terms of parameters relating to pulse frequency and its 
derivatives. These quantities find more utility is describing pulsar dynamics than do parameters based 
on pulse period, and its derivatives. Affine transforms relating the two types of quantity are presented 
in Appendix E. 
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On substituting the typical values of V and V for PSR 0833-45 (table 1.1) into 

equation 4.8, it is evident that an increase in the residual of one milliperiod will occur 
in — 0.5 day if both the V and V terms are disregarded. If V alone is neglected and 
V is set equal to its true value, then the same phase difference will be attained in — 50 
days. The values of V and V are sufficiently small and well known that pulse 
numbering is normally unambiguous. However, immediately after a glitch of 
magnitude AvN 10-6 , the the phase residual reaches a whole period after — 1 day. 
This fact alone suggests the necessity for the daily monitoring of the pulsar so that the 
pulse numbering sequence is not lost. The discussion of the fitting of glitch models 
for (1) is presented in Chapter 6. 

4.13 OBSERVATIONS OF PSR1749-28 AND PSR1641-45  

Observations of PSR1749-28 were made to assist in the interpretation of the 
dispersion delay measurements of the Vela pulsar (Chapter 7). PSR1641-45 was 
observed in the hope of detecting a glitch. The receiver and sampling parameters used 
for both pulsars are presented in table 4.4. Long integrations were required on both 
pulsars to obtain an adequate pulse SN ratio. Because of this, a larger percentage of 
the integrations in comparison with those for PSR0833-45 were subjected to the 
effects of local impulsive noise. Arrival-time estimates not conforming to the general 
spindown behaviour were rejected using the method described in Appendix H. 

4.13.1 PSR1749-28 

Templates for each frequency were constructed by superposed epoch 
integration of all of the available profiles that had a signal-to-noise ratio in excess of 5. 
The shape of each template was in good agreement with the profiles obtained by 
McCulloch etal. (1977). The cross-correlation procedure used to obtain pulse phase 
estimates yielded typical I., values of 0.85. Although PSR1749-28 is a relatively 
bright object, it lies close to the line-of-sight to the galactic centre. The high 
background noise level resulted in the relatively low value of the correlation 
coefficient. Data from a typical observation session are presented in figure 4.6 and 
show evidence of slow intensity scintillations. 

4.13.2 PSR1641-45 

The integrated profiles exhibited the effects of strong scattering. Individual 
profiles were cross-correlated with a template (from McCulloch et al., 1978) and then 
shifted so that their phase centroids coincided with that of the central integration. A 
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TABLE 4.4 
PARAMETERS FOR PSR1749-28 AND PSR1641-45a 

Pulsar 

Timingb 

PSR 1749-28 PSR 1641-45 

V (Hz) 1.77759548831±5 2.1975160257±7 
V (10-14  Hz s-1) -2.578±4 -9.63±5 
epoch (TJD) 6552.9984179 6288.9508212 
epoch range of fit (TJD) 6507 - 6593 6227 - 6345 
rms residual (ms) 1.0 11.1 

Position (B 1950.0)e 
RA 17h 49m 49.a271±6 16h 41m 10.a313±4 
dec -28°6'0".7±5 -45°53'38".7±1 

(mas yr 1 ) 19.1±13.7 
(mas yr 1 ) <40 

galactic latitude 1°.5 339°.2 
galactic longitude -1°.0 
epoch (TJD) 352 

Llanherne Observationsd 
periods integratede 2130 2200 
sampling interval (ms) 2.2 1.8 
time constant (ils) 470 470 
dispersion smear (period) 2.3 x 10-4  2.6x10 -2  
SN ratio 10 5 
50% pulse width (ms)b 25 95 
integrations per session 15 15 
Afc/Afp  f 0.25/0.45 2.5x104  

General 
DM (pc cm-3)5 50.88±0.14 450±10 
RM (rad m-2)h 95±2 
mean linear polarization (%) 1  10 3 
mean flux density (mJy)b.i 580 1300 
spectral indexi -3.1 -1.0 
distance (1cpc)k 1.7 8.2 
characteristic age (106  yr) 1.1 0.36 

a 	Errors are 95% confidence limits, and are quoted for the last significant digit, except for 
proper motion and DM 
Near 635 MHz 
Downs and Reichley (1983) 
For observations of PSR1749-28 at 635 MHz/954 MHz, and PSR1641-45 at 635 MHz. 
Timing ephemeris from Newton., Manchester, and Cooke (1981) for PSR1749-28, and 
Manchester et al. (1978a) for PSR1641-45. 
Ratio of decorrelation to radiometer bandwidths from Cordes, Weisberg, and Boriakoff (1985). 
Lyne and Rickett (1968) 

Ii 	 Manchester (1974) 
McCulloch et al. (1978) 
Taylor and Manchester (1975) 
Assuming a braking index of 3. 
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Fig. 4.6. 	Stacked integrations of PSR1749-28 simultaneously recorded at 635 
MHz (left three plots) and 954 MHz. For each frequency, the Ix, Ii,, and I profiles are 
presented. The Ix  and Iy profiles represent the synchronous integration of 2130 
periods, and have been windowed to show a total of 30 bins (0.066 s) about the peak 
of the pulse (thereby removing the relative phase offset between the I profiles of the 
two frequencies due to dispersion delay). The vertical scale is arbitrary but has been 
adjusted so that the grand-average off-peak standard deviation of the I profiles of both 
frequencies are equal. Increasing time runs from top to bottom. 
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mean profile was then produced and its phase lag was determined. 

4.13.3 Timing Parameters 

The spindown model of equation 4.7 was fitted to the barycentric data. Proper 
motion corrections were ignored. The dispersion measures of table 4.4 were assumed 

r when calculating the dispersion correction. The results from the fits are presented in 
table 4.4 and Appendix H. 

The observed frequency derivative for PSR1749-28 of (2.578±0.004)x10 -14  
Hz s -1  is in good agreement with the value of (2.563±0.019)x10 -14  Hz s-1  obtained 
by Newton, Manchester, and Cooke (1981). 

The rotation frequency of PSR1641-45 is compared with previous 
measurements in figure 4.7; there is no evidence of any large glitch events between 
1978 and 1985. The observed frequency derivative of (-9.63±0.05)x10 -14  Hz s-1  is in 
reasonable agreement with the value of (-9.709±0.017)x10 -14  Hz s-1  quoted by 
Manchester et al. (1983) following the 1977 glitch. 

24133 
	

3200 	 41333 	 4103 
	

55X1 

Julian Dote - 2440000.0 (dare) 

Fig 4.7. 	Timing behaviour of PSR1641-45 from 1972 to 1985. The points from 
TJD 5600 onward are the result of LRO observations. They represent extrapolations 
of spindown fits to data collected during 1983 and 1985 to the endpoints of the 
respective data spans. The other data in the plot have been obtained from Manchester 
et al. (1978,1983). A linear fit to the data after TJD = 3390, the epoch of the glitch 
inferred by Manchester et a/. (1978), is also shown. 
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4.14 CONCLUSIONS  

The methods that were adopted for the collection and reduction of pulsar timing 
data from the Llanherne Radio Observatory, with particular reference to PSR0833-45, 
have been described. Of importance has been the quantification of the uncertainty in 
the barycentric arrival times which constitute the basis for the detailed study of the 
pulsar, its immediate environment, and the line-of-sight interstellar medium; these 
topics are addressed in the following chapters. 

The cross-correlation method employed to obtain the pulse phase within 
individual integrations was robust in the presence of random noise for SN ratios in 
excess of approximately 2.5. Through suitable choice of the parameters of the 
observation system, the typical pulse SN ratio was — 15, for which the rms phase 
uncertainty was calculated as —60 gs on the basis of the estimator provided by Downs 
and Reichley (1983). This estimator is valid if the intrinsic pulse shape is stable on the 
timescale of each integration. This aspect is addressed in the following chapter. 
Additional sources of short timescale phase fluctuations, principally due to pulse 
jitter, were estimated to have an rms amplitude of —20 gs. 

An aspect of the timing programme that received considerable attention was 
the determination of the time offset between the observatory clock and the atomic 
timescale. The method of time transference was sufficiently reliable to confidently 
predict the uncertainty in the absolute time of commencement of the majority of 

• integrations as <5 gs. However, between December, 1984, and March, 1985, and 
from March, 1986, limited data were available on the local arrival times of the 
television synchronization pulses. Time corrections were applied through extrapolation 
of correction polynomials and examination of the output of the phase tracking 
receiver. Due indication has made in the chapters that follow where data associated 
with intervals lacking high quality timing corrections have been employed. 

The accuracy of the MIT ephemeris at the microsecond level is unknown but it 
is anticipated as having only a marginal influence on the timing data particularly over 
intervals less than a few years. 

The modification of the intrinsic pulse shape due to the choice of receiver 
bandwidth and post-detection time constant has been quantified. In addition, it was 
noted that the stochastic effects of interstellar scintillation on the integrated profiles are 
expected to be minimal as a result of the choice of integration time and receiver 
bandwidth. 
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Data has also been collected for PSR1749-28 and PSR1641-45. There is no 
evidence for any significant glitch events for the latter object between 1983 and 1985. 
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CHAPTER 5 - SHORT TIMESCALE PHASE NOISE AND PULSE 

PROFILE SHAPE 

5.1 INTRODUCTION 

As summarized in section 3.3, Downs and Krause-Polstorff (1986; hereafter 
DK-P) found JPL timing measurements of the Vela pulsar to exhibit phase noise in 
excess of that ascribable to measurement effects. These authors were unable to 
definitively identify the origin of this phenomenon. This revelation motivated the 
analysis of the LRO data set in order to examine the long term stability of Vela's pulse 
profile, and the influence of pulse shape changes on the determination of arrival times. 
An additional aim was to quantify arrival time fluctuations on short (< 1 day) 
timescales in order to validate the work of DK-P. The results of these investigations 
are presented in this chapter. 

5.2 DATA SELECTION 

The medium resolution compressed data were subdivided into non-overlapping 
intervals of approximately 100 days duration, with the provision that no interval was 
to contain pre- and post-glitch observationsa. A cubic phase model (based on equation 
4.7) was fitted to each span to yield the coefficient values provided in table 1.1. The 
success of the model fits can be gauged in plots of figure I. la-I.16a. Obvious 
structure is present on a variety of timescales. Broadly speaking, this behaviour is the 
manifestation of processes intrinsic to the pulsar (post-glitch relaxation and timing 
noise) and the interstellar medium (dispersion measure fluctuations); these topics are 
the subjects of the following chapters. The level at which discrete observing-system 
related structure may be present is considered in section 8.2. 

Each model of table 1.1 was applied to high resolution data over an equivalent 
epoch span in order to yield sets of residuals. For each session, the unweighted mean 
residual and its 95% confidence limits were obtained. These values were used to 
determine the validity of any outlying residuals in a manner similar to the rejection 
procedure described in section 4.7. If the ratio of largest deviation from the mean to 
the population standard deviation exceeded 3.3, the residual and its arrival time 
estimate were discarded, and the mean and standard deviation were recomputed. This 

a The identification of glitches is discussed in section 6.2. 



105 
procedure was repeated until no further rejections occurred. The observations 
removed amounted to 4% of those available. 

5.3 PHASE NOISE 

A cubic model was fitted to each 'cleaned' set of data. As expected, the 
resulting coefficient values (table 1.1) were in very close agreement with those 
obtained from the fits to the compressed data. The temporal behaviour of each 
resulting residual set is shown in figure I. lb-I.16b. The dual frequency arrival time 
data are treated separately in Chapter 7. 

The normalized probability distribution was evaluated for the residuals of each 
session after the removal of the session mean. The bin width chosen was 20 gs. The 
daily distributions were then pooled to obtain the mean and associated 95% confidence 
limit at each bin. The distributions obtained are presented in figures I. lc-I. 16c, 
together with theoretical gaussian distributions. A simulation consisting of 100 sets of 
160 gaussian numbers with a standard deviation of 100 gs was also binned, and this 
is presented in figure 5.1. 

The aim of the binning procedure was to verify that the daily residuals were 
approximately normally distributed. This behaviour is apparent in figures I. lc-I.16c, 
although the width of each distribution shows evidence of time dependence (table I.1). 
If the residuals exhibit a significant systematic trend, then the daily distributions will 
be skewed relative to their first moment. This effect will result in the overall 
broadening of the mean distribution. In addition, any variation of pulse energy, 
receiver sensitivity, and intrinsic phase noise will also influence the width of the daily 
distributions. 

As noted in Chapter 4, measurement noise was expected to provide the largest 
contribution to the short timescale residuals. It was anticipated as having a white 
spectrum on the basis of the lack of intensity scintillations achieved through the choice 
of receiver and integration parameters. Cordes and Downs (1985; hereafter CD) and 
DK-P found the level of short-timescale fluctuations in residuals from model fits to be 
in excess of that expected from the contribution of the measurement uncertainty. CD 
used the following structure function to quantify phase noise; 

as2  = (2N) -1  (120.1 - Rj)2 	 5.1 
where R.;  = wrn,T,t;) is the j-th phase residual (defined in equation 4.9) from a 
polynomial fit of order m to data within a span of length T, and N is the number of 
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deviation of 100p.s. 
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paired quantities. The residual pairs are only included in the summation if ti + i - ti < 
Atmax . For normally distributed R and large N, as 2  is equal to the variance of the 
population. 

For each set of residuals from the cubic model fits to the compressed data, 
values of as were calculated for Atmax  selected from an octave" set based on half the 
maximum span length. Values of as for each Atmax  are presented in figure 5.2. It is 
apparent that as becomes an unbiased estimator of white noise for At max  2 days. A 
similar procedure was adopted for the residuals from the cubic fits to the high 
resolution data. Plots of as for At max  < 10 days are provided in figure 5.3, which 
explore timescales down to approximately 5 minutes. In general, no structure is 
evident for Atmax  < 1 day. The interval fitted by model 4 contained relatively few 
sessions of which most produced typically only 20 minutes of contiguous data with 
generally low SN profiles. As a result, the mean value and variability of as for this 
data span appear enhanced relative to other spans over short timescales. 

The value of as for At max  = 1 day was assigned as a measure of the rms white 
noise strength aw. This quantity was evaluated for each observing session using the 
high resolution residual sets. In addition, data from adjacent pairs of sessions were 
fitted with a linear spindown model, assuming fixed V and V, to obtain a second set of 
aw estimates. Each aw was divided by the rms (quadratic average) of the theoretical 
measurement error over the associated data span to obtain the quantity ra ; this 
parameter was tagged with the central epoch of the timespan covered by the 
observations. 

The behaviour of each set of noise ratios is shown in figure 5.4. As shown in 
table 5.1, both ratios exhibit significant mutual correlation and have very similar mean 
magnitudes. This latter result indicates that any distribution skewing introduced into 
the daily residuals of the 100 day model fits does not have a significant bearing on the 
estimation of aw. This is also borne out by the absence of glitch signatures in figure 
5.4(b). 

The results of figure 5.4 confirm the existence of phase noise in excess of the 
level attributable to the measurement process found by CD and DK-P. CD observed ra  
— 3, while the LRO data provide ra  — 1.5 (table 5.1). 

b  The span lengths in the 'octave' set are expressed as At.,,, i  = T. 2i-1  where i = 1, 2, ..., n, and T. is 
the maximum desired span length. The upper value of i (namely n) is restricted by the minimum 
number of phase values required by the fitting procedure. 
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Fig. 5.2. 	Structure function analysis of residuals from cubic fits to compressed 
data. Plotted is the base-10 logarithm of the nns white noise strength aw as a function 
of Atmax. For each plot, the model number (table 1.1) of the spindown equation used to 
obtain the associated residual set is provided. Note the apparent stationarity of Crw for  

<2 days, with an approximate rms magnitude of — 30 p.s. Vertical error bars, 
(where apparent) were calculated using equation A.18. 
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Fig. 5.3. 	Structure function analysis of residuals from cubic fits to high 
resolution data. For each plot, the model number (table 1.1) of the spindown equation 
used to obtain the associated residual set is provided. No distinctive trends are apparent 
for maximum interval lengths less than 1 day. The approximate magnitude of ow on 
this timescale is 95 gs. Vertical error bars (where apparent) were calculated using 
equation A.18. 
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Fig. 5.4. 	Ratio of the rrns white noise level to the rms measurement error as a 
function of epoch obtained (a) from the residuals of cubic models fitted over — 100 
day spans to the high resolution timing data set, and (b) from linear spindown model 
fits to pairs of adjacent daily observations. The glitch epochs are indicated by arrows. 
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TABLE 5.1 
PHASE NOISE PARAMETERS 

Parameter 	 Value 

Method 1 
MLS ra 	 1.48 
mean ra 	 1.45±0.29 
mean ra  (TJD > 5192) 	 1.44±0.19 
mean ow (us) 	 94±30 

Method 2 
rms ra 	 1.51 
mean ra 	 1.49±0.25 
mean ra  (TJD > 5192) 	 1.44±0.24 
mean saw (gs) 	 94±27 

Correlation of r0(l) against ra (2) 
correlation coefficient r 	 0.5 
number of observations 	 773 
P(r) 	 —0 

Measurement Uncertainty 
daily mean (p) 	 64±15 

Notes : 

Methods 1 and 2 refer to estimates from cubic and linear model fits respectively. The 
error range quoted for mean values is the standard deviation of the pooled estimates. 
Unless indicated, the epoch range of the data used was TJD 4889.1-6490.0. P(r) is 
the probability of observing the correlation coefficient r between two samples drawn 
from a normally distributed population. 
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Figure 5.4 contains epoch ranges in which the scatter of ra  appears enhanced. 

These are coincident with intervals during which the duration of the daily observations 
were restricted (January to August, 1982). Figure 5.4a has been replotted in figure 5.5 
after arbitrarily confining the estimate of ra  to only those sessions containing in excess 
of 50 integrations. In figure 5.6 the excess noise has been quantified as a function of 
epoch by the parameter 

GE = .N1 crw2  am 2 	 5.2. 
Systematic behaviour is apparent in this figure that does not appear related to the glitch 
events, particularly jump 7. Further discussion of this behaviour is presented in 
section 5.6. 

5.4 PULSE SHAPE 

The identification of the excess phase noise noted in the preceding section 
motivated DK-P to examine the influence of short timescale pulse shape fluctuations 
on the estimation of arrival times. DK-P quantified the shape of an integrated profile in 
terms of its moments about the axis of maximum correlation with the associated 
template. The j-th moment was defined as 

(Ok i  4) i)i dk i  

j = (1,3) 	5.3 
I dki 

where (tok i  and dki  are the phase and data values of the k-th bin of the i-th profile 

respectively. In addition, the j-th difference moment was defined as 

I (ok i  - 	(dk i  - Tk) 

- 	j = (0,3) 	5.4 
E dk i  

where Tk is the value of the template scaled to the amplitude of the profile at Ok i . 

A geometrical pulse shape factor was also defined; 
KG i  = Ai / li2 	 5.5 

where Ai is the area under the i-th integration, and l is the length of the corresponding 
pulse perimeter. 
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Fig. 5.5. 	Ratio of the rms white noise level to the rms measurement error as a 
function of epoch from figure 5.3a plotted for sessions containing more than 50 
integrations. The glitch epochs are indicated by arrows. 

• Fig. 5.6. 	Excess phase noise as function of epoch for sessions containing more 
than 50 integrations. The glitch epochs are indicated by arrows. 
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To examine the influence of noise on the above pulse shape parameters, a 

series of simulations were conducted. Gaussian noise of predetermined standard 
deviation was added to a template profile to create a simulated pulse and the shape 
parameters were then evaluated. The noise level was selected as a fraction of the 
template height from 0% to 50% in 5% increments. A total of 50 realizations were 
computed for each noise level. For each set of realizations, the mean and standard 
error of the mean for each shape parameter was evaluated. 

From the simulations, it was apparent that noise has the effect of broadening 
the distribution of moments while not contributing a significant systematic trend. On 
the other hand, as shown in figure 5.7, 1CG was underestimated in the presence of 
noise, demonstrating its general unsuitability as a measure of profile shape. 

The shape parameters were paired with their corresponding residual using 
only those data sets of section 5.2 that did not exhibit any significant systematic trend. 
Cross-correlations were then performed. The results are summarized in table 5.3. The 
lack of any significant correlation indicates that pulse shape fluctuations over the 
integration timescale do not bias the pulse phase estimates. This conclusion was also 
reached by DK-P. Scatter diagrams are presented in figure 5.8 for those parameters 
exhibiting the largest correlation coefficient values. 

5.5 RESIDUAL AUTOCORRELAT1ONS  

In this section, the apparent partial correlation of timing residuals on the 
timescale of hours claimed by Downs and Krause-Polstorff (1986) is studied. 

Sets of residuals obtained from cubic fits to 100 day data spans of section 5.2 
formed the basis of the investigation. The data of each observing were firstly binned. 
A variety of bin widths were chosen and a standard value of 5 minutes was settled 
upon as this gave good protection against discontiguous sampling while at the same 
time providing good lag resolution. The values of the residuals lying within each bin 
were averaged. The autocorrelation function R(T) (where t is the lag) was then 
calculated for the binned data of each session. The values of a common lag within each 
data span were then pooled, and the population mean and standard deviation, and the 
standard error of the mean were calculated. A gaussian random number from a 
population with the same standard deviation as the residuals of each data span was 
paired with each residual value, and the binning and autocorrelation processes were 
repeated. The autocorrelation functions are displayed in figures I. id-I.16d. 
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TABLE 5.2 

CROSS-CORRELATIONS FOR PSR0833-45a 

10 12 

Timing Model Number 

14 16 18 

th 3.1 3.5 2.4 3.7 2.0 
ii2 0.4 0.2 -0.3 0.2 0.0 
1.13 0.1 -0.2 -1.4 0.7 -0.9 
lido 1.5 3.2 7.0 4.3 1.6 

3.2 3.8 3.4 4.2 2.3 

142 0.5 0.4 0.2 0.4 0.2 
143  0.1 -0.1 -1.1 0.8 -0.8 

KG -0.6 -0.8 6.6 0.5 1.9 
SN ratio -4.8 -22.7 -1.3 -18.8 2.8 
aM 2.3 21.3 4.0 17.8 -1.9 

OC 2.2 2.0 2.0 2.1 1.8 
8321 9924 9236 8485 12222 
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TABLE 5.2 (continued) 

CROSS-CORRELATIONS FOR PSR0833-45a 

20 22 
Timing Model Number 

24 26 28 

0.4 2.0 5.4 -1.0 1.3 
42 0.2 -1.4 0.1 -4.9 1.4 
Pa 0.3 -1.8 0.7 -4.1 0.0 

0.6 2.5 6.9 -3.2 4.8 

gd1 0.4 2.4 6.3 -1.5 2.0 

142 0.3 -1.1 0.6 -4.9 1.7 
143  0.3 -1.8 0.9 -4.1 0.2 

KG 0.6 -0.3 2.5 -13.8 5.4 
SN ratio 0.9 -0.7 -0.4 -13.5 -3.1 
crild 2.1 8.6 -1.7 11.6 4.3 

ac 1.6 2.4 2.5 2.7 2.2 
15126 6921 6364 5215 7968 

Notes: 

The tabulated values (except for those in the last row) are correlation coefficients 
(expressed in units of 10-2). The first 7 parameters in the left hand column are the 
pulse shape parameters defined in section 5.4. The other parameters are; SN ratio = 
pulse signal-to-noise ratio, am = theoretical measurement uncertainty, N = number of 
observations, and ac = 95% confidence limit. 
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Fig. 5.7. 	Simulations of the influence of white noise on the determination of the 
pulse shape parameter KG. Plotted are the results for simulations based on 635 MHz 
(squares) and 954 MHz (triangles) templates. For large noise levels (low SN ratios), 
the perimeter length tends towards being underestimated. 
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5.6 DISCUSSION 

From section 4.11, pulse jitter was estimated as contributing rms fluctuations 
of order 2011s to each arrival time, while the dispersion fluctuation was estimated to 
be below 1 ps. From the simulation of section -4.6, the uncertainty of the correlation 
procedure was found to be less than 101.is over the range of typical SN values 
encounteredc. The root-square sum of the three aforementioned white noise amplitudes 
is a factor of 2 to 3 less than the typical value of excess noise given by equation 5.2. 
DK-P found that the rms excess phase noise in the JPL timing data was 25 p.s as 
compared with the 40-100p rms excess observed in the LRO data. 

DK-P discussed possible origins for the excess phase noise in terms of 
fluctuations of the radiation beaming angle, the rotation frequency parameters, 
dispersive and geometrical scattering delays, and instrumental effects. The plausibility 
of an association of the observed excess with any of these processes was made 
difficult by their observation of an apparent positive autocorrelation of the phase 
residuals on short timescales. There is no convincing evidence for this behaviour in 
the LRO data, although where weak correlation is evident, it is of the positive sense. 
The measurement uncertainty of the LRO and JPL timing observations differ by a 
factor of approximately 8 owing to the higher sampling rate and (presumed) larger SN 
ratio achieved at the latter observatory. It is conceivable that the higher LRO 
measurement uncertainty overwhelms any underlying autocorrelation. 

In order to account for the excess noise in terms of rotational variability, either 
of the fractional changes lAv/v1 > 10 -7  and IAV/VI > 104  occurring on the timescale of 
an integration would be required. Both of these magnitudes significantly exceed the 
fractional jumps accompanying a typical glitch. The excess phase noise evidently 
scales with fluctuation frequency 1/1' in a manner distinctly different to that of phase 
noise am on timescales exceeding one day. Cordes, Downs, and Krause-Polstorff 
(1988) have estimated 611.1 — 320 (T/300) 1 .5  pts for T 300 days. 

In terms of possible origins for the excess noise in Vela's magnetosphere, a 
spatial variation of — 20 km for the location of the emission site is suggested. This 
change is a factor of 5x10-3  less than the light-cylinder radius, and not unreasonable. 
Alternatively, the axis of the radiation beam would be required to vary in longitude by 

C This conclusion was reached by examination of the confidence limit of the difference between the 
observed and theoretical phase error between SN 5 and SN —20 for the simulation discussed in 
section 4.6. 
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Timing noise of rms amplitude 601.ts would arise if the centre frequency of the 

receiver fluctuated about the nominal value of 635 MHz by — 30 kHz. The 
autocorrelation analysis suggested that the timescale of any such fluctuations would be 
on the order of minutes or less. The phase of the receiver's local oscillator was 
coherent with that of the Rubidium standard., The stability of the standard on the 
timescale of minutes was examined with the aid of the phase-tracking VLF receiver. It 
was confidently predicted that fluctuations of the LO frequency would be less than 10 
Hz due to 1/f noise on the 1 MHz reference output of the standard. An additional 
source of oscillator frequency changes would be the presence of noise on the 
oscillator control voltage. Through careful construction, considerable noise immunity 
was achieved. Based on measurements of the rms amplitude of control voltage 
fluctuations on the timescale of an integration, LO frequency changes of less than 1 
kHz were expected. 

Accurate knowledge of the commencement time of each integration at the 
microsecond level was assured by the construction of the timing hardware and its 
software interface. 

At 635 MHz, a dispersion measure change of rms amplitude 6x10 -3  pc cm-3  
would give rise to the noted excess noise. Taking the transverse velocity of the pulsar 
relative to the scattering medium as — 50 km s -1  (table 1.1) and a fluctuation timescale 
of < 1 hour, then plasmoids of linear dimension — 10 -3  pc, electron number density > 
106  cm-3  and mean space density 2x10 13  pc-3  throughout the line of sight would be 
required. The matter density value is far in excess of that expected for inertial 
turbulence at the proposed spatial scale, for which the fractional density fluctuation 
anticipated on the basis of measured scintillation parameters is Sn e/ne  — 10-3  (Rickett, 
1970). Given the separation of the observing frequencies used in the LRO and JPL 
timing programmes, any dispersion-related timing fluctuations in the LRO data would 
be expected to be a factor 14 larger than those in the JPL data. This scaling is a factor 
of —4 greater than what was actually observed. 

From results in table 7.3 which relate to LRO dual frequency observations, the 
magnitude of the excess noise aE at 635 MHz was 86±18 gs while at 954 MHz it was 
50±12 gs. From DK-P, the excess noise at — 2.4 GHz was 24±4 gs. From the 
aforementioned results, the following power law dependence of GE (1.ts) on observing 
frequency f (GHz) was obtained : 

GE  = 54+7 fo•9±0•2 

The magnitude of the correlation coefficient for the fit was 0.99. If the excess noise is 
due to changes of the longitude of the emission beam, then this scaling may in part be 
due to field line curvature and aberration. 
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The origin of the systematic behaviour apparent in figure 5.6 is unclear. One 

can only speculate that if this behaviour reflects a natural process, then the possibility 
of time-dependent spatial fluctuations of the emission source deserves consideration. 
A long series of precision measurements are required to test the stability or otherwise 
of the excess noise component 

5.7 CONCLUSIONS 

The short timescale behaviour of the LRO data has been investigated and the 
following conclusions are drawn. 

The phase noise on timescales less than one day is evidently white with a 
strength that is approximately a factor of —1.5 greater than that expected simply 
through consideration of estimated uncertainty of each arrival time measurement. 
There is no strong evidence for short timescale correlated phase noise claimed by DK-
P, although the level of the LRO measurement noise may preclude its clear 
identification. 

None of the possible explanations for the excess noise proved to be 
convincing, although instability of the location and beaming angle of the radiation 
were favoured without a detailed investigation of the implications for the emission 
models. There was an indication that the level of phase noise has a power-law 
dependence on the observation frequency with a spectral index of -0.9±0.2. The 
possibility of a measurement-related origin was considered unlikely. 

An aim of a future study would be to use high resolution single pulse 
observations to examine excess phase noise on a hierarchy of timescales, and its 
influence on pulse shape. Confirmatory observations of the frequency scaling of the 
excess noise suggested in the previous section are also required. In addition, the long-
term behaviour of the excess noise should be examined. 
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CHAPTER 6 - THE ANALYSIS OF THREE GLITCHES 

6.1 INTRODUCTION 

In this chapter, analyses of Vela pulsar glitches 5, 6, and 7 which were 
observed in October, 1981, August, 1982, and July, 1985, respectively, are 
presented. 

The work has addressed several aspects of the glitch phenomenon. Firstly, the 
adequacy of the existing models that have been employed to describe the post-jump 
relaxation have been examined. Significantly, because vital observations were secured 
within a day of each of the glitches, important new information was available on short-
term effects. This has allowed the examination of the post-jump timing behaviour with 
unprecedented resolution. In addition, it has also been possible to examine the 
characteristics of the pulse radio emission at the time of the glitch with the aim of 
identifying any significant changes. 

• In order to fully exploit the LRO data set, additional information has been 
obtained from other observatories; attention is drawn to this fact as appropriate. An 
analysis of of glitch 5 has been published by McCulloch et al. (1983) while a 
preliminary comparison of parameters relating to the modified two-component model 
(described in section 6.5) for glitches 5, 6, and 7 has been provided by McCulloch et 
al. (1985). Cordes, Downs and Krause-Polstorff (1988) have presented an analysis of 
glitches 5 and 6 using JPL data. 

This chapter opens with a description of the isolation of data pertaining to 
glitches (section 6.2) and moves to the presentation of data on precursor timing 
activity and pulse characteristics in sections 6.3 and 6.4 respectively. The glitch 
models that have evolved from the two-component and vortex-creep theories are then 
applied to the data in the remaining four sections. / 

6.2 IDENTIFICATION OF GLITCHES  

As noted in section 4.9, each glitch was followed by an anomalous drift (of up 
to -33 milliperiods per hour) in the local pulse phases prior to the adjustment of the 
observing ephemeris. The time at which the effect of a glitch was first manifest in the 
data was readily identified by simply examining the behaviour of the local phase 
values. Unfortunately, none of the three glitches described herein occurred while 
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timing observations were being conducted. The epochs of the last preglitch and first 
postg,litch barycentric arrival times are presented in table 6.1. 

TABLE 6.1 
EPOCHS OF PRE- AND POST-GLITCH ARRIVAL TIMES 

Observatory Glitch Number 
Barycentric Arrival Times (TJD) 

Last Pre-Glitch 	First Post-Glitch 

LRO 5 4888.4196 4889.3055 
6 5191.5897 5192.5568 
7 6257.7284 6260.5532 

MAO 7 6257.0046 6258.0175 

Of initial importance for the fitting of glitch timing models to the data was the 
evaluation of a set of candidate jump epochs. A short span of compressed data (-8 
points per day) prior to each glitch were fitted with a cubic phase model to obtain a 
preliminary secular trend. Glitch 5 occurred only 3 days after the commencement of 
the LRO timing programme. As a result, there were insufficient data for an adequate fit 
of a pre-glitch model. Fortunately, contemporary timing measurements were 
conducted at approximately weekly intervals using a 26m NASA dish at Tidbinbilla 
(Manchester et al., 1983); Dr. R.N. Manchester kindly provided local arrival time 
data which were then used to evaluate the secular trend. 

A preliminary set of phase residuals was obtained for each glitch by applying 
the appropriate pre-glitch secular model to the data spanning an interval of a few days 
either side of the jump. For each set, a candidate jump epoch was then evaluated by 
solving the extrapolations of linear equations fitted to the pre- and post-glitch 
residuals, as illustrated in figure 6.1. An estimate of the frequency jump 1iV 
associated with each glitch was provided by the gradient of the trend in the post-jump 
residuals. 

In the case of glitch 7, the LRO post-glitch observations were sufficiently 
sparse to cause an ambiguity in pulse numbering. After appropriate adjustment for 
integral phase slippage, 5 possible candidate epochs were obtained (McCulloch et al., 
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Fig. 6.1. 	The estimation of candidate glitch epochs for (a) glitch 5 (b) and glitch 
6. Quadratic secular polynomial fits were made to the data prior to each jump. The 
linear trends in the pre- and post- jump residuals were then solved to yield an 
approximate jump epoch. Compressed data (— 8 points per day) have been used in 
estimating the epochs. The extrapolations of formal linear fits are also shown. 
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Fig. 6.2. 	LRO compressed data (points) for a 150 day span prior to glitch 7 have 
been fitted with a cubic polynomial. Residuals for HRAO data for the same span are 
also shown (crosses). They appear offset from the LRO data by — -0.0128 S. 
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1987). Fortunately, HRAO timing data were collected on the important post-jump 
days when LRO data was lacking which enabled the validity of the epochs to be 
assessed. 

The use of this second data set was made with caution. The HRAO data were 
supplied as local arrival times corrected for clock offsets and drift. As for the LRO 
data, these were converted to barycentric times assuming DM = 69.08 pc cm -3 . 
Phase residuals were obtained from a set of pre-glitch HRAO data via the application 
of a cubic phase model fitted to an equivalent span of LRO times. This revealed the 
presence of a relative phase offset between two data sets (figure 6.2). After 
considering possible instrumental and ephemeris contributions to the discrepancy, it 
was concluded that a large portion of the offset was due to dispersion delay not 
accounted for in the conversion of arrival times to infinite frequency using the 
catalogued DM value. This aspect is further discussed in section 7.5. 

Initially, the HRAO times were adjusted by -12.839 ms so that the residuals 
overlapped with those of LRO immediately prior to glitch 7. Significantly, the new 
data immediately suggested the viability of an epoch close to the time of the final LRO 
pre-glitch observation; this had initially been rejected because the extrapolations of 
residuals placed the epoch within the final LRO session. 

The candidate epochs and jump magnitudes are presented in table 6.2. 
Notably, the candidate epoch for jump 5 was the first such unique parameter obtained 
for any pulsar glitch. Additionally, the epoch evaluated for jump 7 suggested that the 
glitch occurred tantalizingly close to the end of the LRO session of 11 July, 1985. 

• 	To illustrate the influence of glitches on the evolution of the pulse frequency, 
fits were made to v over each pair of adjacent observing sessions; the results are 
presented in figure 6.3. 

6.3 IMMEDIATE PRE-GLITCH BEHAVIOUR 

Of particular interest is whether pre-glitch measurements contain any 
information as to the immanence of a glitch. This aspect was approached by examining 
the preglitch residuals for evidence of short-timescale deterministic behaviour. The 
cubic timing model obtained from the Tidbinbilla observations (model 33) was applied 
to the timing data for the three LRO sessions prior to glitch 5. For glitches 6 and 7, 
pre-jump fits were made to compressed data over spans of approximately 54 and 75 



H
I

'T
 :!

1 
8 

' f
t a

 • 
e.

 o
 F

l. 
a,

 
■0

 
' 

'.
7••'

 •
 

ti
t 

P
••

• 
ca

 
c: 

cr
 `O

' 
0 

q iCD
 

.4
 

	

CI
.

C
D

 P
 	

ca
 

CD
 

 

r
11'

 0
  

....
 =

 Q
 

	

cm
 	

V;
 

0
 

00
 @

 0 
a.

 
2
 •

 "
 =

 
g.

  P
 34

.  
R

 g
• 

il 
0  

co - . 16 
a 

c,
/ 

cr
 g

 0
 

g 
- •

 5.
f. 

. 
0
. 

g = S
.  

N
00

 
gt

 (4 
'c'ir

 FT 

-  s... • g
i 6

1. 
0 

g 
C

D
 =

 P
 

Pu
ls

e 
Fr

eq
ue

nc
y 

(H
z)

 

 
 

 

 
 

 
 

••••
• 

O
M

O
V

ID
C

h
L

A
 

 
 

M
O
N
O
N
0
1
M
t
h
4
 

N
N
N
N
N
I
—
m
 

0
N
u
l
t
h
c
m
c
m

■o
m
 

c0
■0
0
o
0
-
4
,
-
.
0
0
 

LA
) 

Cr
N 	

■••I
 :4

 L
A

 
.P

.C
T

I—
L

C
T

W
O

M
 

 
 

 
 

I 	
I 	

I 
1■

,  1
.■

+ 

1••
■

• 
1•

••
• 

I■
L 

ch
 	

;-•
 

 

 
 

 
 

 
 

 
 



129 

 

11.20318 

 

B.. 
Pu

lse
  F

re
qu

e n
cy

  ( H
z)

  

11.20312 

11.20308 

11.20334 

11.20300 

-•-•• 	*4.4_  

N
t* 44‘} 

4k1  I F4%,_  

*4. 

• 

 

 

11.20296 

 

5160 	 5200 
	

5210 	 5280 

Pu
ls

e  
Fr

eq
ue

nc
y  

(H
z)

  11.20168 

11.20180 

 

C- 

\NNs. 
4s, 

441/2, 

4.;\ 

  

11.20152 

 

WOO 
	

8240 
	

6280 
	

6320 
	

63E0 
	

8403 

Julian Date - 2440000.0 (days) 

Fig. 6.3.  (continued) 	Pulse frequency as a function of epoch obtained from 
linear spindown model fits to arrival times from pairs of adjacent sessions; (b) 
illustrating glitch 6, (c) illustrating glitch 7. 
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days respectively. Details of the fits are provided in table 6.3. The residuals for the 
immediate pre-glitch sessions are presented in figure 6.4. 

The probability density function (PDF) was evaluated for the residuals of each 
immediate pre-glitch session using the method described in section 5.3. Each PDF 
was compared with a normal distribution having the same second moment and area 
through the calculation of a reduced X2  statistic. The results presented in table 6.4a and 
figure 6.5 indicate that each distribution is normal. The behaviour of the auto-
correlation functions (section 5.5) shown in figure 6.6 provide further confirmation of 
the stochastic nature of the residuals. 

The residuals were also subjected to three types of runs test. If n contiguous 
residuals (Ri) satisfied a specific condition, they were regarded as forming a run of 
length n. The conditions used were ; 

test A - relative runs : Ri > Ri < R..1 (2 5_ i n) 
test B - mean runs : Ri > R, Ri < R—  (1 	i n) 
test C - median runs : Ri > Rme,d, Ri < Rmed (1 	i n) 

where Rand Rmed are the mean and median, respectively, of the residual set. Only the 
contiguous residuals of appropriate session were used. From each residual, the mean 
value over the session was subtracted. For glitches 5 and 7, three and five consecutive 
pre-glitch sessions, respectively, were pooled without regard for the influence of 
boundary values. Tallies were made of the number of occurrences of runs of length 1 
to 9 for each of the conditions above using the residuals of pooled and individual 
sessions. Runs of length >9 and <-9 were combined into single tallies. Runs tallies 
were also obtained for 5x104  and 160 gaussian random numbers. All of the 
distributions are compared with their theoretical expectations in the figures of 
Appendix K. 

The theoretical and observed distributions were compared through the 
calculation of X2  and z statistics (as appropriate) as described in Appendix K. The 
results (table 6.4b) are somewhat inconclusive. In general, the residuals of the final 
pre-glitch sessions show more evidence of deterministic behaviour. However this 
observation can also be made for the simulations involving gaussian random 
numbers. 



TABLE 6.3 

PARAMETERS FOR PRE-GLITCH FITSa 

Glitch 
(model) 

Data Typeb 
(Hz) (x10-12 Hz s-1 ) 

V 
(R10-22  HZ s-2) 

Mt Epochs (TJD) 
Mid 	 Range 

Residual 
nns (Its) 

ne 

5 (33) 180T 11.2036049179±4 -15.5878+1 3.9±5 4795.8399000 4704.1-4887.5 7 18±2 

6 (34) 54C 11.2031165806±2 -15.6305±1 19.8±3 5166.6505557 5137.8-5191.6 82 91±2 

7 (35) 75C 11.20171872631±2 -15.60765±1 11.4±2 6217.8298453 6182.8-6257.7 34 5a1 
7 (36) 7511 11.20171055088±2 -15.60713±1 6.5±2 6223.8931904 6179.1-6257.0 32 30±1 

7 (37) 150C 11.20177117762±1 -15.610583±3 8.05±3 6178.9381016 6107.0-6257.7 128 37±0.2 
7 (38) 150H 11.20171834188±1 -15.607592±8 8.57+3 6218.1154331 6108.3-6257.0 35 39±0.1 

7 (39) 300C 11.20184805549±1 -15.613811±1 6.612±5 6121.9452433 5957.4-6257.7 107 30-1-0.02 
7 (40) 300H 11.20177098818±2 -15.610372±5 6.87±1 6179.0790402 5961.8-6257.0 156 32±0.05 

7 (41) 600C 11.20207664360±1 -15.623711±1 6.728±1 5952.5532653 5657.2-6257.7 1534 31±0.005 
7 (42) 600H 11.20191604527±2 -15.616763±2 6.750±3 6071.5510247 5702.4-6257.0 254 31±0.01 

• Errors are ± lo in the last digit. 
b  Data types :. C = compressed -8 points per day, T = Tidbinbilla, H = HRAO. The number prefixing each data type indicator is the approximate length of the data span (in 

days) fitted. 
• The theoretical braking index, n B  (equation 1.11), is provided using the model parameter values. 
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Fig. 6.4. 	Residuals from the application of cubic spindown models (table 6.3) to 
timing data prior to (a) glitch 5 (model 33), (b) glitch 6 (model 34), and (c) glitch 7 
(model 38). Data for contiguous integrations are joined by line segments. Note the 
expanded time scale in (c) relative to (a) and (b). 
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TABLE 6.4 

PRE-GLITCH RESIDUALS - TESTS OF NORMALITY AND RANDOMNESS 

(A) RESIDUAL DISTRIBUTIONS 

Glitch 	Central Epoch of Data 	Reduced X2 	aw 	am 

5 4888.4 0.47 89 46±8 
6 5191.5 1.33 122 67±12 
7 6257.6 0.62 77 55±6 

Notes : 
The effective degrees of freedom for each reduced X2  statistic is 48. The levels of white noise and mean 
measurement noise (in units of ps) are given under a w  and erm  respectively. The standard deviation 
of the pooled am  is also provided. 

(B) RUNS TESTS 

Glitch 	Number of 
Sessions 

Test X2 z probability 

5 	 1 (3) 

6 	 1 

7 	 1 (5) 

A 
B 
C 

A 

A 

9.5 (7.4) 

6.4 

5.2 (1.7) 

-1.5 (0.08) 
-1.5 (-0.25) 

-1.35 
-1.35 

0.15(0.29) 
0.13((0.93) 
0.13(0.80) 

0.38 
0.18 
0.18 

0.51(0.95) 
B 0.54 (0.15) 0.58(0.88) 
C 0.54 (0.56) 0.58(0.57) 

5x104  gaussian numbers A 6.5 0.37 
B -1.7 0.09 
C -1.8 0.07 

160 gaussian numbers A 6.3 0.39 
0.32 0.74 
0.0 1.0 

Notes : 
The number of consecutive pre-glitch sessions used in the tests are given in the second column. The 
effective number of degrees of freedom for the X,2  statistic is 7. The z parameter is discussed in 
Appendix K. The final column gives the probability of observing the same distribution from a sample 
of gaussian random numbers. 
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Fig. 6.5. 	Distribution of residuals for the final session prior to (a) glitch 5, (b) 
glitch 6, and (c) glitch 7. The probability density is numerically equal to Mx, where 
N is the number of estimates which fall into a bin of width Ar = 0.020. Here a is the 
standard deviation of the entire population. The values of a for each plot are : (a) 97 
Rs, (b) 128 Rs, and (c) 102 Rs. Superimposed are gaussian functions with the same 
second moment and area as the corresponding observed distribution. 
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Fig. 6.6. 	Auto-correlation function (line) for the final session prior to (a) glitch 5, 
(b) glitch 6, and (c) glitch 7. The bin with used is 5 minutes. Gaussian random 
numbers with the same standard deviation as the pooled residuals have been subjected 
to the same analysis (squares). 
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6.4 PULSE CHARACTERISTICS  

The stability Vela's pulse shape across the epochs of glitches 5 and 7 was also 
investigateda. Mean daily I., Iy, and I profiles were formed, and these are plotted in 
figures 6.7 and 6.8. From an examination of these figures, it is possible to 
qualitatively rule out gross changes in the pulse polarization characteristics following 
the glitches. However, a quantitative assessment cannot be made owing to the lack of 
full polarization information, namely the behaviour of the Stokes parameters as a 
function of pulse phase. The daily variability of the shapes of the Ix  and Iy  profiles 
before and after each glitch epoch is a likely result of temporal changes of the 
ionospheric rotation measure. 

The last pre-glitch and the first post-glitch mean daily profiles are compared in 
figure 6.9. The I profiles show little difference across each glitch. The absence of 
significant change is also evident in the plots of the pulse shape parameters as a 
function of time in figure 6.10. The lack of a distinct glitch-related signature in figure 
6.10 attests to the insignificance of the the increased pulse smearing following each 
glitch due to the discrepancy of the observing ephemeris. This is not surprising given 
that the observed phase drift rate of -33 milliperiods per hour has an effect equivalent 
to the convolution of rectangular filter of temporal width 0.21 bins with an unsmeared 
profile. 

6.5 THE TWO-COMPONENT MODEL 

In the following four sections, attention turns to the modelling of the post-
glitch timing behaviour. 

For a glitching pulsar, the pulse phase as a function of time may conveniently 
be expressed (following the notation of Cordes, Downs, and Krause-Polstorff, 1988) 
as 

= (1)o + vo(t-to) + vo(t-W2  + Vo(t-to)3  + 

( Onj(t) U(t-Tgi) U(Tgi+i -t) 	 6.1 

The secular parameters (1)0, vo, 90, and Vo are referenced to the epoch t = to. Here the 
subscript j identifies parameters pertaining to the j-th glitch; 0, 1(0 is the phase term 
which describes a particular n-th glitch model, and Tg  is the glitch epoch. The unit step 

a Raw profile data near glitch 6 was not available. 
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function U(t-Tgi) restricts the glitch effect to t Tgi, while U(T i-t) terminates the 
relaxation at the time of the next jump, Tgi+1 . 

From the two-component model (section 2.5), the glitch phase term On  may be 
expressed as 

(01(0 = Avc(t-Tg) - Av t exp 	 t Tg 	6.2 
where the subscript j has been dropped for clarity, and the subscript 1 denotes the 
model number. The parameter Av, represents the constant component of the jump in 
pulse frequency that does not relax, while the second factor expresses the relaxation in 
terms of an initial amplitude Avi and time-constant t. In the analysis described 
below, each glitch was treated separately. 

The spindown parameters required in equation 6.1 were obtained from the fit 
of equation 4.12 to an appropriate span of data immediately prior to each jump. The 
primary aim in choosing the span length was to avoid significant contamination from 
any non-cubic relaxation associated with the previous glitch, while at the same time 
ensuring that the accuracy of the parameter values was adequate. A feature of glitch 6 
was that it followed glitch 5 by approximately 203 days. This interval was on the 
order of 1-2 times the typical long time-constant ti reported by Downs (1981) for fits 
of the two-component model to timing data following the first four Vela glitches. The 
likelihood that the secular behaviour prior to glitch 6 was contaminated by the 
relaxation from glitch 5 was kept in mind. 

Cubic models were fitted to chosen pre-jump epoch spans, and the results are 
presented in table 6.3 and figure 6.11. Only a single fit was made to the Tidbinbilla 
data prior to glitch 5 owing to low number of observations available. A problem 
associated with obtaining secular fits prior to glitch 6 was the lack of LRO data from 
February through June, 1982, during which VLBI observations were made with the 
telescope (Preston et al., 1984). The data coverage prior to glitch 7 was nearly 
complete, and four span lengths were chosen in order to test the influence of the 
presumed spindown behaviour on the subsequently fitted glitch relaxation models. In 
addition, fits were made to equivalent spans of HRAO data that were time-corrected as 
noted in section 6.2. 

• From table 6.3 it is obvious that the second frequency derivative assumed a 
significantly different value prior to each glitch. In addition, based on the values of the 
simple braking index inferred from the model parameters, it is evident that the 
underlying secular trend is dominated by a process other than simple electrodynamic 
braking. The value of V prior to glitch 6 is a factor of at least —2 greater than that 
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subsequent to glitches 5 and 7, and this was the likely result of the continued 
relaxation from glitch 5. 

A requirement of the two-component model is that long term secular trend is 
well-behaved up until the glitch epoch. It is apparent from examining figures 6.11b-
6.11i that non-stationary timing activity does occur prior to glitch 7. The residuals for 
both observatories exhibit good correlation over the majority of the fitted epoch 
ranges, although the difference between the residual sets just prior to glitch 7 slowly 
increased and then recovered. This behaviour is interpreted as the result of a 
dispersion measure fluctuation in section 7.6. The slow merging of the residual sets 
apparent over the initial 300 days of figures 6.11h and 6.11i is interpreted in a similar 
manner. 

Fits were made to medium resolution compressed LRO data for a 50 day span 
following each glitch in order to obtain parameter values for the set S1 (iv, Avi, 

Tg  } . The starting values for the fitted parameters were obtained from the 
combination of data presented in table 6.2 and the model fits made by Downs (1981) 
to the first four large jumps. The appropriate cubic model from table 6.3 was used as 
the spindown component of the glitch model. For glitches 5 and 6, the fits converged 
rapidly, resulting in the parameter values given in table 6.5 and the residuals plotted in 
figures 6.12a and 6.12b. 

For glitch 7, spindown models 35 to 40 of table 6.3 were used, and fits were 
made to individual and combined LRO and HRAO data for the 50 day span following 
the glitch. However, convergence could not be achieved while at the same time 
satisfying Tg  > TL (where TL is the epoch of the last high resolution pre-glitch 
observation listed in table 6.1) unless the epoch parameter T g  was held constant. This 
situation was regarded as arising from the inability of the simple single exponential 
model to adequately describe the relaxation effect, the proximity of the glitch epoch to 
the last pre-jump observations and the apparent presence of post-jump timing activity. 
The value for Tg  used in the fits was chosen as TL. Data relating to the combined fits 
using HRAO pre-glitch secular models fits are presented in table 6.5 while an example 
of the residuals obtained is presented in figure 6.12c. The parameters obtained from 
the glitch model fits for various data sets and pre-glitch models of a fixed span length 
exhibited little variation. However, as can be seen in table 6.5, as the pre-glitch span 
length was increased, the parameter values systematically changed. 

It is readily apparent that considerable short-term structure remains in the 
residuals of the above fits. In order to investigate the contamination of the process 
operating this timescale on the long-term relaxation, the data points within a fixed 



147 

0
0

 	
g 

8
csi 

c
n
  

V
D
 
C
s
 r- 	

el  
0

O
\
 
V
I
 

on en eq 	
un vl 

Nt 
*6 06 	

0.6 c4 cq
 	

CD 
m
m
,
0
0
0
 

C
h
 C

h
 C

h
 C

h
 e

l 

W
I
W

;)
"
 

0
1
 
0
1
 
0
1
 
01)

 V
1

,
1
0
1
1
.
1
1
n
 

C
h
 C

h
 C

h
 C
h
 

ts
ie

s
iC

s
its

i 
0

0
0

‘C
h

e
:
h

 C
h

0
0

0
 

0
0
 
0
0
 
0
0
 
0
0
 	

fq
 fq

 e
l 

.er 	
v
l v

l un un 

ql 11 ql g 
ri4 74 1 

tj 
fq

 C
h

 0
0

 0
4

 0
0

 0
0

 N
 

,--I 
■,0

 u
l k

e
l u

l N
 C

›
 
C
h
 
0
0
 

V
I
 ta

l til te
l 

 
-
-
0
0
 

oti Do o
o

 o
o

 c4 e4 e4 e4 
oo oo oo 

0
0
 
C
h
 
C
h
 
C
h
 
C
h
 

0
0
 
0
0
 
0
0
 
0
0
 

w
.
4
 
r
.
4
 
r
■
I 1..1 

in
t
r
iln

in
 

ql `A A 	
q 

4 
N

 	
•
 
A
 
0
,
 

 

cf.) 	
7-1  

dr!, 
r. 

0
0
 
 esi 

Al 
M
4
4

-1-1
-re 

N
e
r
h

u
il 

(
1

0
8,
1
0
 

C
h
 
0
0
 

-
-
;
 

N
N

N
N

 

O
b
b
b
 
o
b

9E) 
C
D
 
c
D
C

)  
C
D
 
0
 
V
I
 
e.% 

	

In
 
C
D
 
V
I
 	

-
-
 

U
1
 
	

un r- 

ce ▪ ) 



TABLE 6.5 (continued) 
PARAMETERS FOR SINGLE EXPONENTIAL GLITCH FITSa 

Glitch' 
(model) 

Data Type Avc  
(Hz) 

Ay i  
(x10-6  Hz) (days) 

Tg  
(riD) 

Post-Glitch Data 
Range (TJD) 

Residual 
tins (its) 

7 (35) 50CH . 17.128±7 0.786±6 61.5±7 6257.7284e 6260.6-6307.9 113 
7 (35) 50CHd 	• 17.065±5 0.846±5 68.7±6 6270.7-6307.9 131 
7 (35) 75CHd 16.625±1 1.273±8 119±1 6270.7-6332.8 247 
7 (35) 100CHd 16.16±1 1.73±1 175±2 6270.7-6356.7 334 
7 (37) 50CH 17.189-17 0.731±7 56.1±8 6260.6-6307.9 113 
7 (37) 50CHd 17.123±6 0.793±6 63.9-17 6270.7-6307.9 151 
7 (37) 75CHd 16.735±8 1.168±8 108±1 6270.7-6332.8 265 
7 (37) 100CHd 16.34±1 1.55±1 157±1 6270.7-6356.7 351 
7 (39) 50CH 17.281±2 0.651±7 46.4±8 6260.6-6305.5 178 
7 (39) 50CHd 17.17±1 0.76±1 59.9±13 6270.7-6305.5 211 
7 (39) 75CHd 16.80±1 Mal 102±1 6270.7-6332.8 308 
7 (39) 100CHd 16.44±1 1.46±1 147+2 6270.7-6356.7 391 

o Errors are ±1 a in the last digit(s). 
b  The bracketted model number refers to the secular trend used from table 6.3. 
c Data type : C = compre,ssed —8 points per day. The number prefixing each data type indicator is the approximate length of the post-glitch span (in days) fitted. 
d  Data spanning —10 days after each glitch have been excluded from the fits. 
• Assumed value. 
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Fig. 6.12, 	Residuals from fits of single exponential glitch models to the data 
spanning an interval of 50 days following each jump. (a) for glitch 5, assuming 
spindown model 33, (b) for glitch 6 assuming spindown model 34, (c) for glitch 7 
assuming fixed Tg  and spindown model 38. In each case, the fitted or assumed glitch 
epoch is indicated-by the arrow. 



150 
timespan Atg  — 10 days following each glitch were zero-weighted. Fits were then 
made to the remaining observations within 50, 75, and 100 days following each 
glitch. In the case of glitch 7, spindown models 38, 40, and 42 were used to 
illustrate the dependence of parameters in the set Si on the assumed secular trend. The 
parameter values are summarized in table 6.5, and examples of residuals for the 100 
day post-glitch span are plotted in figure 6.13. It is apparent from these results that the 
recovered relaxation timescale is dependent on the pre-glitch model assumed. 

6.6 MODIFIED TWO-COMPONENT MODEL 

The behaviour observed in figures 6.12 and 6.13 strongly implied a 
contribution from a short-timescale relaxation. This was first noted by McCulloch et 
al. (1983). In order to examine this behaviour, post-glitch span lengths of 6, 12, and 
25 days were fitted with a single exponential relaxation model. As shown in table 6.6, 
the recovered time-constant was critically dependent on the length of the fitted span, 
while the parameter values in the case of glitch 7 were not significantly influenced by 
the choice of assumed underlying secular trend. 

Following McCulloch et al. (1983), the glitch model of equation 6.1 was 
modified to incorporate an additional relaxation term with parameters subscripted by s; 

= 4)1(t) + iv; [-(t-Tg)/Ts] t ?_ Tg  6.2 
This equation was applied to various data spans to solve for the parameters in the set 
S2 a fAvc , AVE , AV, "Cs , tj, Tg  ) assuming particular underlying secular trends. The 
resulting parameter values and phase residuals are shown in table 6.7 and figure 6.14 
respectively. 

The modified two-component model provided an improved description of the 
post-glitch behaviour, particularly during the initial — 50 day span. However, as can 
be seen in table 6.7, the magnitude of the long time-constant ti was well correlated 
with the length of the fitted data span. A closer examination of the data was called for 
in order to resolve the origin of this behaviour. 

Timing noise (including dispersion delay variations) would be expected to 
contribute to at least part of the discrepancy between model and data. For post-glitch 
spans exceeding — 150 days, it was not possible to obtain stable fits by giving all 
parameters simultaneous freedom. Again it must be recalled that the very nature of the 
model assumes that the underlying cubic trend is known with sufficient accuracy, and 
is invariant at the time of the glitch. The violation of either of these aspects will also 
contribute to the observed long-term discrepancy between model and data. 
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Fig. 6.13. 	Residuals from fits of single exponential glitch models to the data 
spanning an interval from between — 10 days to 50 days following each jump. (a) for 
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(c) for glitch 7 assuming fixed Ts  and spindown model 37. In each case, the fitted or 
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TABLE 6.6 
PARAMETERS FOR SINGLE EXPONENTIAL GLITCH PITSa 

Glitchb 
(model) 

Data Type• Avc 
(Hz) 

Av 
(x10 Hz) (days) 

Ts  
(up) 

Post-Glitch Data 
Range (TJD) 

Residual 
rms (IA 

5 (33) 6C 12.63±3 0.17±2 5.1±17 4888.5688±6 4889.3-4895.3 38 
12C 12.51±1 0.27±1 14.0±12 4888.5674±3 4899.3-4902.4 51 
25C 12.22±2 0.55±2 41+1 4888.565213 4899.3-4913.3 51 

6 (34) 6C 22.77±3 0.367±2 2.3±7 5192.1409±8 5192.6-4895.3 71 
12C 22.65±1 0.403±7 5.7±5 5192.1395±.5 5192.6-4902.4 74 
25C 22.498±8 0.479±5 13.5±6 5192.1365±6 5192.6-5219.5 121 

7 (38) 6CHd 17.79±4 0.19±3 4.3+21 6257.7306±8 6258.0-6263.7 54 
12CHd 17.73±1 0.236±9 7.3±8 6257.7298±2 6258.0-6269.7 53 
25CHd 17.558±5 0.381±4 20.2±5 6257.7280±1 6258.0-6280.8 55 

• Errors are ± lo in the last digit(s). 
b  The bracketted model number refers to the secular trend used from table 6.3. 
c Data type : C = compressed —8 points per day, H = HRAO. The number prefixing each data type indicator is the approximate length of the post-glitch span (in days) fitted. 
d  The compressed data for the last LRO pre-glitch session were replaced by high-resolution data. 



TABLE 6.7 

PARAMETERS FOR DOUBLE EXPONENTIAL GLITCH FITSa 

Glitch' 
(model) 

Data Type Avc  
(Hz) 

AV s  
(x104  Hz) (daYs) 

Avi 
(Hz) (days) 

Tg  
(Fm) 

Post-Glitch Data 
Range (Ti])) 

Residual 
nns (As) 

5 (33) 25C 10.3±23 0.065±5 2.5±50 2.5±23 258±262 4888.56874±5 4889.3-4895.3 36 
50C 10.85±4 0.079±8 1.79±15 1.90±4 191±5 4888.5697±6 4889.3-4938.3 74 
75C 10.82±2 0.074±8 1.91±14 1.92±2 195±2 4888.5694±5 4889.3-4961.2 76 
100C 10.46±2 0.074.4d 1.91d 2.28±2 238±2 4888.5682±3 4889.3-4982.1 103 

6 (34) 25C 22.2±2 0.24±2 2.9±5 0.66±16 46±19 5192.1400±5 5192.6-5218.6 66 
50C 22.01±2 0.243±7 3.31±16 0.82±2 66±3 5192.1397±4 5192.6-5242.5 62 
75C 21.25±4 0.245±3 5.80±16 1.52±4 174±7 5192.1378±3 5192.6-5267.4 74 
100C 20.15±8 0.249-12 7.60±13 2.58±7 345±12 5192.1366±3 5192.6-5290.4 78 

7 (38) 50CHe 16.17±9 0.095±2 4.24±17 1.701-9 188±12 6257.7300±2 6258.0-6307.9 51 
75CHe 15.43±4 0.097±1 5.18±12 2.43±4 288±6 6257.7290±1 6258.0-6332.8 51 

150CHe 13.13±4 0.0893±4 10.7±1 4.70±4 624±6 6257.72625±9 6258.0-6407.8 92 

7 (38) 50He 16.30±8 0.108±2 3.65±12 1.58±8 172±10 6257.7306±1 6258.0-6307.9 48 
75He 15.60±3 0.112±1 4.32±7 2.26±3 264±5 6257.7304±1 6258.0-6332.8 46 
150He 13.53±5 0.0972±8 8.8±2 4.31±5 345±7 6257.7281±1 6258.0-6407.8 69 

a  Errors are ± 1 a in the last digit(s). 
• The bracIcetted model number refers to the secular trend used from table 6.3. 
• Data type : C = compressed -8 points per day, H = HRAO. The number prefixing each data type indicator is the approximate length of the post-glitch span (in days) fitted. 
• Fixed value. 
• 11e compressed data for the last LRO pre-glitch session were replaced by high-resolution data. 
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Fig. 6.14. 	Residuals from fits of double exponential glitch models to the data 
spanning an interval of 50 days following each jump. (a) for glitch 5, assuming 
spindown model 33, (b) for glitch 6 assuming spindown model 34, (c) for glitch 7 
assuming spindown model 38. In (c) the fit was made to a combined set of LRO data 
(points) and HRAO data (crosses). In each case, the fitted glitch epoch is indicated by 
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Fig. 6.14.  (continued) 	Residuals from fits of double exponential glitch models to 
the data spanning an interval of 100 days following each jump. (c) as for (a). (d) as for 
(e). (f) as for (c). In each case, the fitted glitch epoch is indicated by the arrow. 



TABLE 6.8 
POST-GurcH Cum FITSa 

Glitch 	Data Typeb 
	

V 	 Mt Epochs (TJD) 	 Residual 
(Hz) 	 (x10'2  Hz s-1 ) 	(x10-22  Hz s-2) 	 Nfid 	 Range 	rms (Its) 

5 50C 11.20345775120±8 -15.68409±6 83±2 4914.4110064 4889.3-4938.3 71 

6 50C .  • 11.2030543565±3 -15.6990±5 286±8 5229.3850627 5192.6-5242.5 193 

7 50C 11.2016449399-11 -15.6953±1 154±3 6285.6339874 6258.0-6307.9 119 

' Errors are ±1 a in the last digit(s). 
b  Data types : C = compressed —8 points per day, H = BRAG. 
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Fig. 6.15. 	Residuals from fits of cubic spindown models to the data the 50 days 
following (a) glitch 5, (b) glitch 6, and (c) glitch 7. 
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In table 6.8 and figure 6.15, the results of the application of a cubic spindown 

model to the 50 day span after each glitch are presented. The point illustrated here is 
that while the model does provide an adequate description in the short term, it does 
significantly account for the apparent long timescale relaxation. 

The original two-component model was further modified, this time by allowing 
a jump in the first and second derivatives of the spindown at the time of the glitch; 

1 	. 	1 4)3(t) = 10) + Av0(t-T8)2  + AV0(t-Tg)3 	t Tg 	6.3 

As can be seen from table 6.9 and example plots in figure 6.16, this model is equally 
as successful as equation 6.2. Again the parameter values depend on the fit length. 
Clearly, additional guidance must be sought to uncover the relaxation behaviour. 

6.7 EVOLUTION OF THE FREQUENCY DERIVATIVE 

In order to examine the true nature of the relaxation process, quadratic fits were 
made over short spans to obtain V. The minimum span length for which the fractional 
uncertainty was tolerable was 3 days. All of the (non-compressed) timing data were 
assembled into pre- and post-glitch sets of maximum length — 20 days and — 50 days 
respectively. For each set in turn, quadratic fits were made to data within windows of 
length 3 days and 6 days which were successively advanced to later times in 1 session 
increments. The epoch of each value of V so obtained was evaluated at the median 
barycentric arrival time of the window. 

The results of this procedure are presented in figure 6.17. Immediately evident 
is the jump AV/V — 10 -2  accompanying each glitch which subsequently recovered to a 
apparently linear trend. In general, fluctuations about the relaxation trend are not 
significant with respect to the measurement uncertainty. However, following glitch 5 
there a small superimposed discontinuity of fractional magnitude AV/V — 10 -3  with its 
own relaxation effect near TJD 4896 (arrowed) is apparent (figure 6.17a). This feature 
is also resolved using a window length of 4 days (figure 6.18). 

In figure 6.19a, residuals from the fit of the double exponential model to all of 
the high resolution data during the initial 50 day span following glitch 5 are presented. 
Although there is the suggestion of a turning point in the general trend of the residuals 
at the inferred time of the feature in V, this behaviour does not appear significant in 
the broader context of the remainder of the data set. The fractional upper limit for the 
discontinuity in rotation rate accompanying this event is Aviv — 2x10 -10 . The inferred 
magnitudes for AV/V and Aviv are of similar order to the estimated timing noise 
fluctuations according to Cordes, Downs, and Krause-Polstorff (1988). The time 



TABLE 6.9 
PARAMETERS FOR SINGLE EXPONENTIAL + CUBIC GLITCH FITSa 

Glitchb 
(model) 

Data Type Avc  
(Hz) 

Av s  
(x10-6  Hz) (days) 

A 
(x1042  Hz s-I) 

A 
(x10-22  Hz s-2) 

Tg  
(nD) 

Post-Glitch Data 
Range (TJD) 

Residual 
rms (its) 

5 (33) 25C 12.735±6 0.066±5 2.5±5 -0.110±8 46±47 4888.56874±5 4889.3-4913.3 73 
50C 12.7390±5 0.078±8 1.8±1 -0.1133±4 59±2 4888.5696±5 4889.3-4938.3 74 
75C 12.7377±3 0.069±7 2.1±1 -0.1122±2 55.7±6 4888.5691±5 4889.3-4961.2 76 
100C 12.61±4 0.15±4 29±5 -0.073±8 -12±10 4888.5635±3 4889.3-4982.1 86 

6 (34) 25C 22.84±2 0.24+1 2.8±4 -0.16±2 303±143 5192.1400±5 5192.6-5217.6 66 
50C 22.813±3 0.247±6 3.6±2 -0.131±2 152±7 5192.1397±4 5192.6-5242.5 62 
75C 22.759±2 0.245±3 6.1±2 -0.097±1 48±2 5192.1378±3 5192.6-5267.4 77 
100C 22.729±2 0.246±2 8.1±1 -0.0840±5 22.0±9 5192.1366±3 5192.6-5290.4 83 
200C 22.647±1 0.236±1 18.4±3 -0.0634+2 -3.8±2 5192.1258±6 5192.6-5393.1 189 
200C 22.721±1 0.2476  3.66  -0.0774±3 8.6±3 5192.095±2 5192.6-5217.6 1000 

7 (38) 50CHe 17.865±2 0.092±2 4.7±2 -0.102±1 50±4 6257.7291±2 6258.0-6307.9 96 
75CHe 17.865±2 0.092±2 4.7±2 -0.102±1 50±4 6257.7290±1 6258.0-6332.8 51 
150CH6  13.13±4 0.0893±4 10.7±1 4.70±4 624±6 6257.72625±9 6258.0-6407.8 92 

• Errors are ± 1 a in the last digit(s). 
• The bracketted model number refers to the secular trend used from table 6.3. 
• Data type : ,C = compressed -.8 points per day, H = HRAO. The number prefixing each data type indicator is the approximate length of the post-glitch span (in days) fitted. 
• Fixed value. 
• The compressed data for the last LRO pre-glitch session were replaced by high-resolution data. 
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Fig. 6.16. 	As for figure 6.14, except showing residuals from single exponential 
plus perturbed cubic model to 50 day spans following each glitch. (a) for glitch 5. (b) 
for glitch (6). (c) for glitch 7. 
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Fig. 6.16.  (continued) 	As for figure 6.14, except showing residuals from single 
exponential plus perturbed cubic model to 100 day spans following each glitch. (d) for 
glitch 5. (e) for glitch (6). (f) for glitch 7. 
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Fig. 6.18. 	As for figure 6.17a, except using window length of (a) 4 and (b) 5 
consecutive sessions, respectively. 
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Fig. 6.19. 	(a) Residuals resulting from the application of the double exponential 
glitch model to high resolution data for the 50 day span following glitch 5. (b) 
Expanded time-sequence showing the residuals from (a) for two days either side of the 
jump in V apparent in figure 6.17a. 
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sequence of the residuals for the two days either side of the inferred epoch of the V 
feature are shown in greater detail in figure 6.19b. 

As noted by Downs (198 la,b), in the long term V takes on a distinctly linear 
trend which has a gradient (the second frequency derivative) that depends on the 
magnitude of the preceding frequency jump. This phenomenon evidently causes the 
failure of models based on the simple two-component theory to adequately describe 
the long-term phase behaviour. This aspect was not addressed by McCulloch et a/. 
(1983) who were primarily motivated to demonstrate the existence of the previously 
unseen rapid relaxation effect. 

In figure 6.20, values of the first and second frequency derivatives are plotted 
as a function of epoch prior to glitch 7. These estimates were obtained via the 
application of quadratic and cubic spindown models to non-overlapping spans of LRO 
and HRAO data as appropriate. Of note are the apparently significant fluctuations of V 
that are visible in the plots for both observatories. The fluctuations near TJD 6080 
coincide with the erratic behaviour of the residuals in figure 6.11f and figure 6.11g. 

6.8 DISCUSSION 

While it is apparent that the short term relaxation reported by McCulloch et al. 
(1983) to follow the 5th Vela glitch is manifest in the behaviour following the 
subsequent two glitches, the simple modification of adding a second relaxation term to 
the two-component model does not allow a suitable description of the timing 
behaviour in the long-term. In particular, long-term trend in the first-frequency 
derivative is seen to change at each glitch. This is not a specific prediction of the two-
component theory, but has been incorporated in the vortex creep model as a 
manifestation of vortex pile-up in the boundary zone (figure 2.2). 

The vortex creep theory of Alpar et al. (1984a,b) specifically predicts that the 
post-glitch evolution of V is controlled by three relaxation components which take 
effect after the passage of the decoupling time interval to' = AvAV.I where V. is the 
long-term value of V, and Av is the jump of angular rotation frequency. Using 
reasonable parameter estimates, to' = 15-20 days (table 2.1). This timescale is not 
supported by the rapid recovery of' apparent in figure 6.19. 

In the framework of the vortex creep theory, this observation suggests that 
recoupling between the superfluid vortices and the boundary region (figure 2.2) 
through which the vortices move radially at the onset of a glitch has not taken place. 
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Fig. 6.20. 	Evolution of spindown parameters prior to glitch 7 obtained from LRO 
data. (a) V obtained from the fit of a quadratic model to data within non-overlapping 
spans of 13 day maximum duration. (b) as for (a) except for 27 day non-overlapping 
spans based on the fit of a cubic model. (c) V obtained from a cubic model fit to 27 
day non-overlapping spans. 
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Alpar et al. (1984b) have predicted that the timescale required for recoupling to take 
place is to = Avs/IV.I where Av, is the change in the angular frequency of the pinned 
superfluid. Using reasonable parameter values they obtain to — 1500 days, which is 
larger than, though of the same order as, the interval of 1065 days between the 6th and 
7th glitches. 

6.9 CONCLUSIONS  

It is firmly established that the post-glitch behaviour for the Vela pulsar 
exhibits short (1-6 day) and intermediate (— 20-100 day) relaxation timescales. 

The modification of admitting a second exponential decay term to the phase 
model for the two-component theory of neutron star structure was found to be 
inadequate over timescales exceeding — 100 days. 

CDK-P have modelled the glitch behaviour using 
44(t) = Soo + (Vo+U(t-To)Av)(t-to) + f (Vo+U(t-To)AV)(t-to) 2  + 

(V0+U(t-To)Ac)(t-to) 3  + 

U(t-TaVirsit+Ts(e-ti's - 1 )) + [Vitift-Fti(e-tiri  - 1 ))) 	6.4 
where U(t-To) turns on the relaxation effect at To > T g. The form of this model was 
motivated by the post-glitch recovery of V. They achieved some degree of success in 
obtaining stable parameter values, which support the view that the fast and 
intermediate relaxation timescales are — 5 days and — 50 days. This model requires 
future application to the LRO data, for which sufficient immediate post-glitch data is 
available to allow the estimation of model parameters with reduced uncertainty, 
particularly with respect to the rapid relaxation effect. 

In addition, the recent work of Alpar etal. (1988) with regard to large glitch of 
PSR0355+54 repol  rted by Lyne (1987) has suggested that linear (as distinct to non-
linear) vortex creep within the neutron pinning zones may be responsible for the 
observed relaxation timescales and the absence of the delay time to in the post-glitch 
data. This work requires application to the LRO glitch data. 

The behaviour of the frequency derivative preceding the seventh glitch did not 
exhibit any significant fluctuations aside from those attributable to timing noise 
suggesting that the repinning of the superfluid vortices with the boundary region 
between the weak and superweak pinning zones in the vortex creep model of internal 
structure had not taken place. 
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The significance of changes to the mean pulse shape associated with the 5th 
and 7th Vela glitches has been examined, and no substantial modifications were 
apparent. Daily fluctuations of the shape of the I x  and Iy profiles were apparent about 
the time of each glitch, and this is interpreted as the result of variable ionospheric 
Faraday rotation. Future dual frequency polarimeter measurements are urged in 
conjunction with timing observations in order to examine the possibility of subtle 
magnetospheric changes which may accompany glitch events. 

The phase residuals immediately prior to each of the large glitches studied did 
not exhibit any significant precursor activity. This conclusion was reached through an 
examination of the normality of each residual set by comparing the observed 
probability distribution function with that for a Gaussian population. In addition, the 
autocorrelation function and the outcome of runs tests for each set of residuals further 
confirmed their normality. In the case of the 1985 glitch, observations were secured to 
within perhaps 30 minutes of the jump, and yet no significant pre-jump activity was 
present. 

An apparent timing discontinuity of low significance was found in the 
relaxation behaviour following the 1981 glitch. The fractional changes in the rotation 
parameters for this event were estimated as Aviv 2x10 -10  and AV/V — 10 -3 . These 
values are consistent with those of discrete timing noise events observed by CDK-P. 
The jump appeared to be followed by a relaxation in V over an interval of 5-10 days 
which was qualitatively similar to that of a typical macro-glitch. 
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CHAPTER 7 - THE VARIABILITY OF DISPERSION MEASURE FOR 
PSR0833-45 

7.1 INTRODUCTION 

Significant changes have been observed in the dispersion measure (DM) for the 
Vela pulsar (Hamilton, 1977, Hamilton, Hall, and Costa, 1985; hereafter HHC), the 
Crab pulsar (Rankin and Roberts, 1971; Rankin etal., 1988 and referenced therein), 
and the millisecond pulsar PSR1937+21 (Rawley, Taylor, and Davis, 1988). These 
changes are interpreted as due to the motion of large-scale electron density turbulence 
in the interstellar medium across the line-of-sight. For the Vela and Crab pulsars, it is 
plausible that the majority of the turbulence lies in the vicinity of their SNR shells. 

Between March 1 and September 4, 1986, dual frequency timing observations 
of the Vela pulsar were obtained at Llanherne, with the aim of accurately measuring 
the dispersion delay between the pulse arrival times at the two frequencies in order to 
account for the influence of dispersion measure fluctuations on the barycentric times. 
Similar measurements were also made for PSR1749-28. In this chapter, the reduction 
and interpretation of these data are presented. 

7.2 DISPERSION DELAY 

Barycentric times T for which the dispersion correction was neglected were 
used in the determination of the dispersion delay AT = T954 - T635 (where the 
subscripts refer to the observation frequency). Because of the integration process, it 
was only possible to determine AT to within one pulse period. When the catalogue 
values of DM for each pulsar are considered, then 

AT0833-45 0.3955 s 4.4 / v0833-45 

AT1749-28 0.2866 s 0.51 / v • - 1749-28 

In order to obtain the true relative delay for PSR0833-45, the 635 MHz topocentric 
arrival times were incremented by 4Pa  prior to the calculation of T635. 



172 

7.3 DISPERSION PARAMETERS  

7.3.1 Data Selection 

The dispersion constant D associated with each pair of simultaneous dual 
frequency integrations was calculated using equation 1.2 irrespective of whether the 
arrival times passed the selection procedure described in section 4.10. Each value of 
D was then converted to an estimate of dispersion measure (DM) using equation 1.4. 
A standard measurement error aDm2  was assigned to each estimate using the values of 
the (assumed independent) arrival time uncertainties. 

The failure of the arrival time estimation procedure in the presence of strong 
receiver noise lead to a small population of outlying DM estimates. The following 
procedure was used to reject these data with the aim of producing a representative 
sample. From the unweighted mean DM and standard deviation spm of the entire 
sample, the deviation parameter 

SEN 
was then obtained, together with the probability Pp(d) of observing d in a normal 
population of the same size. The estimate responsible for the maximum deviation was 
removed from the population if Pp(d) < 1 - a, where the significance level a was 
chosen as 0.9999, 0.999, and 0.99. Upon rejection of an estimate, the mean and 
standard deviation of the new population were recomputed, and the procedure was 
repeated until no further rejections occurred. 

For PSR0833-45, use of the three significance levels resulted in the rejection 
of 3.8%, 2.1% and 1.8% of the observations respectively. The values of the reduced 
X2  statistic for the corresponding distributions were 3.6, 9.0, and 7.6 respectively for 
\tuff = 98 degrees of freedom. The 0.999 and 0.9999 significance levels offered 
sufficient protection against outlying estimates as indicated by the similarity of the 
resulting population sizes and the lack of truncation in the tails of their respective 
distributions (figure 7.1). The population of N = 17276 estimates obtained with a = 
0.999 was arbitrarily chosen to form the representative sample. 

A similar reduction procedure was adopted for the analysis of PSR1749-28 
data. A value of a = 0.999 was chosen which gave X2  = 1.47 for veff = 48 (figure 
7.2). This restriction removed 3.9% of the observations to yield a final population of 
N = 489. 

d – 
max(IDMi - D—Mul)  
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Fig. 7.1. 	Distribution of individual dispersion measure estimates for PSR0833-45 
resulting from the rejection of outlying values using significance levels of (a) a = 
0.9999 and (b) a = 0.999. The probability density is numerically equal to NAx, where 
N is the number of estimates which fall into a bin of width Ar = 0.02a. Here a is the 
standard deviation of the entire population. Superimposed is a gaussian function with 
the same second moment and area as the corresponding observed distribution. 
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Fig. 7.1(c).  As for figure 7.1 (a) and (b), except in this instance, a = 0.99 
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Fig. 7.2. 	As for figure 7.1 except in this instance a = 0.99 for PSR1749-28. 
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7.3.2 Daily Samples 

For both pulsars, the DM estimates within each session were expected to be 
normally distributed based on the similarity of the individual values of aDM.  The 
processes considered most likely to cause deviation from normality were pulse shape 
changes and short timescale dispersion variations. The significance of these effects 
was examined for P5R0833-45. Pulse shape parameters (section 5.4) and phase 
residuals from fits of cubic spindown models (figure H.1 and table H.1) were 
obtained at each frequency for the integrations that yielded a DM estimate. A series of 
cross-correlation analyses was performed between the shape parameters, the DM 
estimate, the arrival time uncertainties, and the residuals. The results are summarized 
in table 7.1, and scatter diagrams for the parameters exhibiting the largest correlations 
are shown in figure 7.3. The absence of any significant correlation between parameter 
pairs implies that the estimation of DM is not strongly influenced by fluctuations in 
pulse shape or signal-to-noise ratio at either frequency. 

The influence of profile smearing due to the inexactness of the observing 
ephemeris is considered in section 7.3. 

Shape parameters were also obtained for the mean I profile of each session in 
order to examine the stability of the pulse shape with time. These are plotted in figure 
7.4. 

The normality of each daily sample was examined by calculating the reduced 
X2  statistic from binned estimates. This parameter is plotted as a function of 
observation epoch in figure 7.5, demonstrating the consistent normality of the majority 
of samples. 

A structure function based on equation 5.1 (replacing each residual with a DM 
estimate) was applied to all observations to yield daily strength values aDm(s)(T) 
where T is the central epoch of the data span. In addition, the estimates 8bm for each 
session were averaged to provide aDm(m)(T). The noticeable offset between opm(m) 
and crEsm(s) in figure 7.6a is largely a consequence of the excess phase noise noted in 
Chapter 5. From the phase residuals for Vela at each frequency, the ratio crs/om was 
obtained where the numerator and denominator represent the mean values of white 
noise and measurement uncertainty (both in units of time), respectively. The 
theoretical arrival time uncertainty of each integration was then scaled by the 
appropriate value of GS/GM,  and the formal error for each DM estimate was 
recomputed. The effect of the rescaling on opm(m) is presented in figure 7.6b. As 
shown in figure 7.7, the distributions of opm(m) and opm(s), while having equivalent 
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TABLE 7.1 

CROSS-CORRELATIONS FOR PSR0833-45a 

DM 

635 MHz 
DM 

954 MHz 
am  

112 
4.3 
0.0 

2.4 
-5.2 

2.9 
-2.0 

-3.0 
0.2 

0.2 
-0.6 

4.8 
-0.3 

-0.3 -1.4 -1.7 0.2 -0.7 1.4 

Lido 6.2 -6.7 3.8 1.4 -7.8 -0.9 

Pa, 5.0 1.3 3.3 -2.6 -1.4 4.5 

142 0.4 -5.4 -1.7 0.3 -1.4 -0.4 

1413 -0.2 -1.6 -1.6 0.3 -0.1 1.3 

KG 4.5 -7.7 18.3 4.8 -10.5 14.3 
SN ratio -2.7 ... -28.1 -1.4 -28.5 

om 4.4 26.8 0.3 •• • 30.4 
0M(954) 27.8 . . . • • • • • • • • • 

ODM 8.4 • • • • • • 

ac 1.8 1.8 1.9 1.9 1.8 1.9 
11220 	11403 	10527 	11177 	11408 	10541 

Notes: 

The tabulated values (except for those in the last row) are correlation coefficients 
(expressed in units of 10 -2). The first 7 parameters in the left hand column are the 
pulse shape parameters defined in section 5.4. The other parameters are; SN ratio = 
pulse signal-to-noise ratio, am = theoretical measurement uncertainty, aDm = 
uncertainty in DM estimate, oc = the 95% confidence limit for each correlation 
coefficient, N = number of observations, DM = dispersion measure, R = residual 
from the fit of a cubic spindown model. The epoch range of the data set was TDJ 
6497.9 - 6648.5. Minor differences in the size of the data sets used are reflected in the 
values of N. 



a
M

(6
35

)  
(R

S
 X

 10
-1

) 

10 

14 

12 

IS 

2 

• 

4 

14 

12 

2 

aM
( 9

54
)  

(R
S

 X
 10

-2
) 

1.2 

0.5 

0.4 

0.0 

177 

0.4 
	

0.6 
	

0.5 
	

1.0 
	

1.2 
	

1.4 
	

1.5 

aM(635) (PS X WM 

-4 
	

0 
	

4 
	 • 	12 

Residual (Rs x 10-2) 

-40 	 0 

Residual (tts x 10-1 ) 

Fig. 7.3. 	Correlation diagrams : (a) crm at 635 MHz against am at 954 MHz; (b) 
am against residual from cubic spindown model at 635 MHz; (c) as for (b) except at 
954 MHz. The epoch span of the data used in all figures is TJD 6497.9 - 6648.5. 
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means, are distinctly skewed. This is in contrast to the corresponding distributions for 
PSR1749-28 (figure 7.8), for which no evidence of excess phase noise is apparent 
(figure 7.9). Parameters for the distributions of aDm(m) and GDM(S) for both pulsars 
are summarized in tables 7.2 and 7.3. 

An autocorrelation analysis, in a similar vein to that described in section 5.5, 
was applied to the DM estimates of each session to examine their independence. The 
results for 2, 5, 10, and 30 minute bin widths are shown in figure 7.10. There is no 
significant structure in comparison with the expectation for gaussian noise, although 
there appears to be a weak systematic mend. 

7.3.3 Systematic Behaviour 

Daily values were obtained of the weighted mean dispersion measure 
D—Md and its estimated 95% confidence interval 

1 	1 
crpmd = scomd [ 1 4-  4(N-1) -1 N > 1 

where scomd  is the sample standard deviation and N is the number of estimates. For 
Vela, these calculations were made for only those sessions containing 10 or more 
observations. The weighting parameter for each estimate was chosen as the inverse 
square of the formal error, which for PSR0833-45 was calculated from the rescaled 
measurement uncertainties at each frequency. The behaviour of D—Md as a function of 
epoch is presented for Vela and PSR1749-28 in figures 7.11 and 7.12 respectively. 

The mean of the daily DM averages over the entire data set for PSR1749-28 
was 

D M1749-28 = 50.323 ± 0.024 pc cm-3  
This is less than the catalogue value of 50.88 ± 0.14 pc cm -3 . The difference between 
the two values is equivalent to a phase offset of –2 bins between the 635 MHz and 
954 MHz pulses. A systematic error of this magnitude in the estimation of pulse phase 
values is considered highly unlikely. 

For PSR0833-45, 
D M(0833-45) = 68.4735 ± 0.0017 pc cm -3 . 

This value is significantly different to other published measurements as summarized in 
_figure 7.13. The _error values quoted above are one standard deviation of the error in 
the mean. 

The value of the fractional standard deviation sf over the entire data set for each 
pulsar was 
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Fig. 7.9. 	Behaviour of the dispersion measure structure coefficient obm(s) 
(squares) and the formal dispersion measure uncertainty aDm(m) (crosses) for 
PSR1749-28 as a function of epoch. 
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TABLE 7.2 

DISTRIBUTION ANALYSIS 

PSR0833-45a 	PSR1749-28 

55 
1.91x10-2  
0.27x10-2  

0.72 
0.18 
0.09 

98 48 

137 0.45 
1.19x10-2  0.19 
0.42x10 -2  0.04 

a  The reported values were obtained prior to the rescaling of the measurement 
uncertainties at each frequency. 

TABLE 7.3 

DISTRIBUTION ANALYSIS FOR PSR0833-45 AFTER THE RESCALING OF THE 
MEASUREMENT UNCERTAINTY 

distribution of aDm(s) 

reduced X2  
mean (pc cm-3) 
standard deviation (pc cm-3) 
degrees of freedom 

distribution of (Timm) 

reduced X2  
mean (pc cm-3) 
standard deviation (pc cm-3) 
degrees of freedom 	 98 	 48 

scaling factors : 

am at 635 MHz (1.1.$)a 
	

58±15 
am at 954 MHz (J.ts)a 
	

34±10 
as at 635 MHz (Ps) 
	

104.5' 
as at 954 MHz (Ps) 
	

60.0 

as/am at 635 MHz 	 1.82 
as/am at 954 MHz 	 1.75 

distribution of aDm(m) 

redticed X2  - 	 - 36 
mean (pc cm-3) 	 2.15x10 -2  
standard deviation (pc cm -3) 	 0.05x10-2  

a  The error values quoted refer to one standard deviation of the pooled estimates. 
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SDM 1Sfog33_45) - — = .3X10-4  
DM 

Sf(1749-28) =  1.8x10-3  
The value of sf for PSR1749-28 is larger than that for the Vela pulsar because of the 
comparatively longer sampling interval and the lower SN ratio of the integrated pulses. 

As can be seen in figure 7.11, the dispersion measure of PSR0833-45 exhibits 
a quasi-linear trend. Similar behaviour for PSR1749-28 is far less obvious (figure 
7.12) although the contiguity of the sampling is poor. A linear regression analysis was 
performed for both pulsars, and the results are presented in table 7.4. 

A cross-correlation analysis was performed between the values of D M for 
each pulsar obtained on common days in order to examine the independence of the 
data sets. A correlation diagram is presented in figure 7.14. The results presented in 
table 7.4 indicate with high significance that the estimates are uncorrelated with and 
without trend removal from the Vela data. 

In figure 7.15, the result of the application of a five day running binomial 
smoothing filter (with allowance for the regularity of the sampling) to the PSR0833-45 
daily values is shown. While of little quantitative value, this plot highlights the 
possibility of systematic variations of the dispersion measure on short timescales. In 
order to test the significance of the variability, it was hypothesized that the estimates 
within each session were normally distributed and selected from a common normal 
population, and that the means of all sessions were identical. The following statistic 
was evaluated for sessions i and j; 

D Md i  - DMdi  
zij - 	  

CYDM2 ODMd2. 
Ni 	Ni 

where N is the number of estimates in each session. Under the above hypothesis, this 
parameter is normally distributed with zero mean and unit variance. A significance 
level of a = 0.01 was decided upon, and the hypothesis was accepted if 

z0.5a Z 5- z1-0.5a. 

The confidence limit z is the abscissa of a normal distribution with zero mean below 
which the area is equal to c. For the chosen value of a, the confidence limit translates 
to -2.58 5 z 5 2.58. The value of z was calculated for the i-th and j-th sessions with j 

i. From 7021 paired trials, the hypothesis was accepted on 3037 or 43% of 
occasions. The linear trend of equation 7.2 was subtracted, and the fraction of 
acceptances rose marginally to 55%. For a = 0.001, the acceptance levels were 52% 
and 64% for the raw and detrended samples respectively. 
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Fig. 7.11. 	Mean daily dispersion measure DMd as a function of epoch for 
PSR0833-45. The linear trend obtained from the regression analysis summarized in 
table 7.4 is superimposed. The vertical error bars extend aDmd  either side of each 
mean. 
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Fig. 7.12. 	Mean daily dispersion measure D Md as a function of epoch for 
PSR1749-28. The linear trend obtained from the regression analysis summarized in 
table 7.4 is superimposed. The vertical error bars extend aDmd  either side of each 
mean. Note the difference in scales between this figure and figure 7.9. 
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Fig. 7.13. 	Behaviour of (a) rotation measure (RM) and (b) dispersion measure 
(DM) for PSR0833-45. Weighted least-squares linear fits have been superimposed. 
The vertical error bars are represent the range of the 95% confidence limits. The trend 
obtained from the DM observations presented in this chapter is indicated by the dotted 
line connecting interpolated values at the limits of the observation timespan. All other 
data are from Hamilton, Hall, and Costa (1985). 
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FiR. 7.14. 	Correlation diagram of mean daily dispersion measure D Md for 
PSR1749-28 against that for PSR0833-45. The error bars extend opmd  either side of 
each mean. The values of DMd were paired providing that their epochs differed by 12 
hours or less. 
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TABLE 7.4 
LINEAR REGRESSION AND CROSS-CORRELATION ANALYSIS 

PSR0833-45 
	

PSR1749-28 

linear regression : 

gradient (pc cm-3  yr) 
error of gradient (pc cm-3  yr) 
linear correlation coefficient ri 
lower 95% confidence limit on ri 
upper 95% confidence limit on r1 
P(rI) 
number of estimates 

correlation of DM against nM(S) 

re  
lower 95% confidence limit on re  
upper 95% confidence limit on r e  
P(re) 

correlation of DM against Gnm(m) 

lower 95% confidence limit on re  
upper 95% confidence limit on re  
P(re) 

	

-0.040 
	

0.26 

	

0.011 
	

0.17 

	

0.69 
	

0.38 

	

0.34 
	

0.13 

	

1.03 
	

0.66 

	

0 
	

0.003 

	

119 
	

59 

-0.02 (0.04) 
	

0.04 
-0.20 (-0.15) 	-0.22 
0.16 (0.22) 
	

0.30 
0.83 (0.71) 
	

0.75 

0.18 (0.03) 	-0.17 
0.00 (-0.15) 	-0.44 
0.36 (0.22) 
	

0.09 
0.06 (0.72) 
	

0.19 

0.82 
	

0.48 
0.96 
	

0.27 
1.33 
	

0.79 

correlation of saDm(m) against aDm(s) 

re  
lower 95% confidence limit on re  
upper 95% confidence limit on re  
P(r) 

Notes : 

The 95% confidence error is quoted for the gradient of the linear fit. The 
observationally and uniformly weighted product-moment correlation coefficients are 
denoted by ri and re  respectively. The probability of exceeding hi for a random sample 
of uncorrelated variables is denoted by P(r). The bracketed values for PSR0833-45 
were obtained after removal of the linear trend. 
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TABLE 7.5 
CORRELATION OF DM083345 AGAINST  DM1749-28 

raw detrended 

I'. -0.02 -0.10 
lower 95% confidence limit on rc -0.29 -0.36 
upper 95% confidence limit on rc  0.25 0.18 
P(r) 0.88 0.50 

Notes : 

The detrended values have been obtained from paired observations for which a linear 
trend (table 7.4) has been removed from the estimates for PSR0833-45. The uniformly 
weighted product-moment correlation coefficient is denoted by r c . The probability of 
exceeding In for a random sample of uncorrelated variables is denoted by P(r). The 
number of paired observations used in the analysis was 55. 

6520.0 
	

6560.0 	 6603.0 
	

6640.0 
	

6680.0 

Julian Date - 2440000.0 (dove) 

Fig. 7.15. 	Application of a 5 day running binomial smoothing filter (with 
adjustment for uneven sampling) to the dispersion measure data of PSR0833-45 in 
figure 7.11. 
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The data were partitioned into three sets. The overall linear trend was 
removed, and the hypothesis was tested with a = 0.001 giving acceptance ratings of 
72%, 7%, and 71% for the epoch ranges TJD <6560, 6560 5_ TJD 6600, and TJD 
> 6600, respectively. 

For k trials, the probability of rejecting the hypothesis is ak = 0. Given the 
results above, the values of D Md in the central epoch span show evidence of 
belonging to a distribution separate to that for the other epoch spans. 

A comparison of figures 7.6b and 7.11 suggests the possibility of a weak 
correlation between D Md and both aDm(m) and crpm(m), particularly within the central 
epoch span. As shown in table 7.5 and figure 7.16, the correlation of these parameters 
is of low significance, particularly when the linear trend is removed from D Md. 

7.4 MEASUREMENT CONSIDERATIONS  

It is of use to consider the significance of instrumental effects on the behaviour 
of the data presented in the previous section. By requiring the apparent systematic 
trend in DM for PSR0833-45 to be due to the frequency drift of one of the receiver 
centroids, then 

f1(t1) - fi(tf) = 184 kHz and f2(t1) - f2(0 -54 kHz 
where ti and tf are the initial and final epochs of the 200 day interval, respectively, and 
fi(tt) = 635 MHz, f2(ti) = 954 MHz are the nominal receiver centroids. Changes of 
either of these magnitudes would have been detected between the calibrations 
conducted at the start and end of the dual frequency timing programme. It is clear that 
the Rubidium standard would have contributed negligibly to any drift of the local 
oscillator and hence receiver centroids. In any case, such a drift would occur in the 
same direction for both receivers. 

The discrepancy between the observed and catalogued value of DM for 
PSR1749-28 translates to an error of 2.0 MHz in fi(ti) and -6.5 MHz in f2(t1). Either 
of these errors would have been immediately obvious during the frequency calibration 
procedure. 

If the frequency of each receiver centroid was a function of time, then based on 
the Vela observations 

d DM 	-DM 	a [f22] 	a[fo]  _k — 	 - f24  ut 	fl 2f22(f22 _ fi 2) 	i 	at  at I 
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where k is the observed slope of the linear trend. The form of the above expression 
suggests the non-linear variation of f1 and/or f2. These are difficult to conceive given 
their required consistency over the 200 day span. 

The absence of any obvious time dependence of the moments of the mean daily 
profiles rules out significant variability of important instrumental parameters. In 
particular, a change in either or both of the receiver pre-detection bandpass shape and 
the post-detection time constant would be expected to influence pulse width and 
consequently the moment parameters. An additional source of pulse shape 
modification would have arisen from cross-coupling between the receiver channels in 
combination with the phase dependence of the pulse polarization vector and the time 
dependence of the amount of Faraday rotation. The latter effect was due to changes in 
the hour angle of the source and the variation of parameters within the ionosphere and 
ISM. Because the isolation between the receiver channels was better than -30 dB, the 
influence of variable Faraday rotation on the shape of the I profiles was considered 
inconsequential. 

7.5 DISPERSION DELAY VARIATIONS DEDUCED USING HRAO DATA 

As noted in section 6.6, the residuals obtained from the spindown equation 
applied to combined LRO and HRAO data sets suggested that dispersion delay 
variations were present. 

The data studied consisted of the sets of residuals presented in figures 6.11b to 
6.11i, inclusive, as well as the residual set obtained from the application of model 50 
to combined pre- and post-glitch spans of length 600 and 400 days. All of the HRAO 
arrival times were delayed by 12.839 ms so that the last pre-glitch residuals for the 
two sites coincided. 

Weighted averages of the residuals for each site and day were then evaluated. 
The temporal behaviour of each set of averages was approximated by a weighted cubic 
spline. The 'smoothness' of the spline function S(ti) was selected by requiring 

[  woo  S(ti)-R(ti)  As  = 1 
i=1 

to be less than an arbitrarily chosen value. Here R(ti) and w(ti) are the residual and 
weight associated with the i-th observation respectively. The difference 

AR = S(thRo - SOO11RA0 
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was then obtained at regularly spaced epochs. As an example, the results of this 
procedure for residuals of figure 6.11i are presented in figure 7.17. In figure 7.18a, 
AR has been converted to a 'synthetic' dispersion measure ADM s relative to the epoch 
of the last pre-glitch observations. In addition, the data from spline differences of 
other fitted models are overlaid to indicate the stability of the method. Data spanning 
the glitch are presented in figure 7.18b. 

In the construction of the synthetic DM plots it was assumed that all of the 
variable differential timing behaviour between the sites was purely due to dispersive 
effects. The plots are only intended to provide general information on the history of 
dispersion measure changes. The variation prior to February, 1986 (—TJD 6458) is 
considered to be representative of the true DM variation given the accuracy of the 
absolute time maintained at each observatory. However, after this date the data trend 
may include the effects of LRO clock drift, as the uncertainty of absolute LRO 
barycentric arrival times was greater owing to a lack of time transference data needed 
for precise clock corrections. 

Of note in figure 7.18b is the absence of any obvious glitch-related change. It 
is also useful to compare the DM value obtained by Hamilton, Hall, and Costa (1985) 
at TJD 5989 (figure 7.13) with that deduced using data from figures 7.11 and 7.18b. 
HHC obtained DM = 68.2±0.2 pc cm -3  (2a error), while the timing data presented 
here suggested DM — 68.43±0.1 pc cm-3  (2a error). The hypothesis that the two 
values differ because of sampling effects would be rejected with — 50% confidence. In 
any event, the suggestion that DM increased between the HHC observations and those 
made during 1986 at Llanherne are supported by the available data. 

An additional remark concerns the time offset between the LRO and HRAO 
data of — 12.8 ms. If this was totally the result of an erroneously assumed DM when 
removing dispersion delay to obtain the barycentric times, then the suggested value is 
—67.7 pc cm-3 , which is clearly inconsistent with the data in figure 7.11. The origin of 
the implied excess delay (which may be as large as 7 ms) is unknown. 

7.6 DISCUSSION 

--- 	7.6.1 The Vela Pulsar 

The evidence for significant variability of Vela's dispersion measure is firm. 
The long-term change of — 0.04 pc cm -3  yr 1  observed during 1986 is consistent with 
previous measurements. Unfortunately, simultaneous rotation measure observations 
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Fig. 7.17. 	Demonstration of the application of cubic spline approximations to the 
weighted mean daily residual for both sites from the data presented in figure 6.11i. The 
smoothness parameter As (equation 7.1) was arbitrarily set as 10 4  and 103  for the LRO 
and HRAO residuals, respectively. Values of the spline approximation at 10 day 
intervals for each data set are joined by solid line segments. For each curve, the 
associated mean residual values are plotted (points). The standard error of each mean is 
typically less than 101.1.s. The difference AR (equation 7.2) is plotted at 10 day 
intervals (dashed curve). 
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Fig. 7.18. 	(a) Synthetic dispersion measure ADMs obtained from the conversion 
of spline differences presented in figure 7.17 (squares). Also shown are values of 
ADMs obtained from splines constructed using residuals from models 41 (triangles), 
39 (circles) and 40 (points). (b) Spline approximations have been constructed for 
residuals resulting from the application of the 13th model of table 6.7 to pre- and post-
glitch data. The resulting ADMs values have been plotted at 10 day intervals; triangles - 
from HRAO and LRO 635 MHz data, squares - from HRAO and LRO 954 MHz 
data. The 954 MHz residuals were offset by 3.44 ms. This delay represents the 
expected difference between the residuals of the two LRO frequencies given that the 
barycentric times were calculated assuming a dispersion measure of 69.08 pc cm -3  
rather than 68.48 pc cm-3  which was evaluated at the start of the dual frequency 
observations from absolute dispersion delay measurements. 
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were not available, which would have proved useful in isolating the environment 
responsible for the observed changes in the light of the systematic RM and DM 
variability noted by HHC for Vela, and also by Rankin et al. (1988) for the Crab 
pulsar. 

Here, the implications of the observed dispersion measure changes are 
discussed with reference to the sites which are likely to contain regions of turbulent 
enhanced plasma density. 

The shock front of an expanding SNR is thought to be a natural site for the 
diffusive acceleration of interstellar cosmic rays (Blandford and Ostriker, 1978). 
Following Spangler et a/. (1986), the extent of the acceleration layer where the plasma 
density is enhanced may be approximated as 

1 
v2 y ( Bo  )2 f4--: - V 	b 1  

where v and V are the speeds of the accelerated particles and the shock front, 
respectively, y is the Lorentz factor of the particles that generate the wave layer, SI, is 
the non-relativistic cyclotron frequency, Bo and b are the background and wave 
magnetic field strengths, respectively, an' d 1  is fractional bandwidth of the excited 
waves. As noted by Spangler et a/. (1986) the estimation of 1 is subject to the 
uncertainty which accompanies each of the associated parameters. Using reasonable 
values for the above parameters, Spangler et al. (1986) find 1 to be on the order of a 
few parsecs. 

If the region responsible for the changing plasma column density to the pulsar 
is associated with the diffractive scattering region, then a transverse speed of 50 km s -
1  may be assumed (Cordes, 1986). If the excess plasma is confined to a slab of 
thickness Az (pc) lying normal to the direction to the pulsar, then the density gradient 
across the slab scales as — 3.8x10 -3  Az-1  cm-3  AU-1 . By assuming that Az is on the 
order of a few parsecs, then the inferred density gradient is not unreasonable given 
typical conditions for SNR interaction with the ISM (McKee and Ostriker, 1977). 

The possibility of dispersion measure variations on the timescale of days was 
suggested by the LRO observations, although the significance of this activity in 
comparison with measurement uncertainties is low. Time-variable activity would be 
expected if filaments of enhanced plasma density transit the line of sight. 

According to Kennel and Coroniti (1988), the Crab pulsar is immersed in a 
cavity of radius — 0.1 pc which is pervaded by the relativistically out-flowing pulsar 
wind. The majority of the rotational energy lost from the pulsar crosses this region in 
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the form of magnetohydrodynamic (MH:D) waves which disipate their energy at a 
shock front located at a radial distance of —2 pc where the supersonic flow is 
terminated. In the case of the Vela pulsar, it is evident that the wind zone may have a 
radial extent of —25 pc (Seward, 1985). 

Ogelman, Koch-Miramond, and Auriere (1989, preprint; hereafter OK-MA) 
have found evidence for a faint optical counterpart to the 2 arc-sec diameter X-ray 
nebula surrounding the Vela pulsar (Harnden et al., 1985). If the optical nebulosity is 
not due to foreground emission from the surrounding SNR, then its energy content is 
four orders of magnitude less than the rotational kinetic energy loss of the pulsar. This 
would seem to imply that nebular region is wholly pervaded by the supersonic wind, 
and not subjected to significant energy input via shock disipation. 

There is an indication that the optical emission from the wind zone possesses 
spatial structure (OK-MA). In the case of the Crab pulsar, filamentary nebulosity also 
exists in this region. Scargle (1969) found evidence that these features exhibit dynamic 
spatial and energetic activity, that may be associated with rotational fluctuations of the 
pulsar (in particular the September, 1969 glitch). Rees and Gunn (1974) tentatively 
associated the filaments with turbulence at the MHD shock front coinciding with the 
boundary of the wind zone. At this surface, the energy of the MHD waves accelerates 
electrons to relativistic energies, which then radiate via the synchrotron process in the 
toroidal field presumed to pervade the region. However, in the case of Vela, 
supersonic flow is regarded as extending beyond the field of view studied by OK-
MA. 

Dobrowolny and Ferrari (1976; hereafter DF) and Benford, Bodo, and Ferrari 
(1978; hereafter BBF) have sought an explanation for the origin of the Crab's wind-
zone filaments in terms of plasma turbulence set up by parametric (electrostatic and 
electromagnetic) interactions between the energy transported by the wind and the 
magnetic dipole radiation generated at the rotational frequency of the pulsar. At a radial 
distance from the pulsar where the MHD wave and plasma frequencies are equal, 
standing waves of compressed plasma may be set up. OK-MA estimate that this 
situation arises for the Vela pulsar where the radial distance is a few multiples of 
7x10 17 -47y6 cm where y6 is the Lorentz factor of the wind in units of 106. The motion 
of spatial structures this large could not account for short term fluctuations of DM but 
may be a plausible source of the slower variation. However, no information is 
available as to the expected velocity range of the wisps or even why such motion 
should occur. Scargle (1969) has suggested that the Crab wisps have velocities a 
substantial fraction of c. Taking 0.1 c as a velocity value for a moving wisp, then it 
will move its own width in approximately 6 years. 
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7.6.2 PSR1749-28 

The mean plasma column density along the path to PSR1749-28 is — 0.03 cm -3  
which is very close to the value of — 0.025 cm -3  held typical for the ISM (Ables and 
Manchester, 1974). Therefore even though the line of sight to this pulsar lies in the 
direction of the galactic centre, it evidently does not traverse regions of anomalous 
plasma density, in contrast to the situation for the Vela pulsar. 

The observations of PSR1749-28 yielded a mean dispersion measure of 
50.32±0.024 pc cm-3 . This value differed from that measured by Lyne and Rickett 
(1968) by 8131‘4 — -0.56 pc cm-3. For the present observations, inaccurate knowledge 
of the receiver centre frequencies or a systematic error in the phase estimation 
procedure were unlikely to contribute to the majority of this discrepancy. It is possible 
that differential galactic rotation has resulted in the passage of a region of excess 
plasma density out of the line of sight. The excess density required to produce the 
suggested change of 8DM over a timescale of 18 years is 0.56 Az -1  cm-3  (where Az is 
the thickness of region of excess plasma expressed in pc). By assuming a distance of 
1 kpc, Cordes (1986) has estimated the relative transverse velocity between the pulsar 
and the scattering material along the line of sight as — 15 km s -1  using scintillation 
measurements. This value is similar to the expected maximum relative velocity 
between the Earth and the pulsar due to differential galactic rotation (Cordes, 1986). 
The density of a spherical plasma cloud of radius r = 10 -5 v, pc moving out of the line 
of sight with relative velocity vr  (km s-1 ) over an interval of 18 years would require a 
density of Pe = 2.8x104  vr-1  cm-3  to produce the inferred DM change. For v r  = 10 km 
s-1 , r — 10-4  pc, and Pe  3x103  cm-3. The latter value would be anomalous given 
estimates of Pe  thought typical of HI clouds and SNR shock fronts (McKee and 
Ostriker, 1977). 

7.7 CONCLUSIONS  

Observations have been presented which suggest that the dispersion measure 
for the line-of-sight to the Vela pulsar decreased at an average rate of 0.04 pc cm-3  
yr1  occurred during a 200 day span of 1986. This behaviour is consistent with the 
motion of an unresolved large-scale plasma structure, possibly associated with the 
foreground region of the SNR, across the sight-line. 

The quality of the observations was tested in detail in order to ascertain at what 
level fluctuations of the deduced DM values were significant with respect to the 
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expectation of measurement effects. There was some evidence for fluctuations of DM 
on the timescale of a few days however independent confirmation is required. 

It is clear that the pulsar's environment is particularly dynamic and there is 
much scope for further work. High time resolution DM and RM measurements should 
be an integral part of any timing programme. An immediate benefit for the timing data 
would be the ability to remove variable dispersive effects which act to contaminate the 
timing noise spectrum. Areas that demand additional effort are the characterization of 
the timescale of DM and RM variations, and their possible association with rotation 
fluctuations, and the accurate long-term monitoring of the pulse flux and scattering 
parameters. An additional use of polarization information would be in the investigation 
of the stability of the radiation mechanism. 

The discrepancy between the value of DM deduced for PSR1749-28 from the 
LRO observations and that obtained by Lyne and Rickett (1968) suggested that the 
plasma density along the path to this pulsar may have decreased if either of the 
measurements are not subject to systematic errors. Further observations are required to 
verify the measurements of DM for this pulsar and to examine the possibility that this 
quantity is variable. 
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CHAPTER 8 - CONCLUSIONS 

8.1 INTRODUCTION 

Summarized in the following six sections are conclusions drawn from the 
pulse timing observations presented in this thesis. This work, together with the review 
of the current understanding of the nature of the Vela pulsar has suggested areas of 
future research that are discussed in the remaining two sections. 

8.2 QUALITY OF THE LRO TIMING DATA 

The LRO timing data represents the most contiguous high time resolution set 
available for glitches 5, 6, and 7 of the Vela pulsar. 

The locally maintained version of UTC was known to an accuracy of better 
than 5 Rs. The estimation of local pulse arrival times through the cross-correlation of 
integrated pulses and a standard template profile had a typical uncertainty of 40-60 gs. 
The method employed for this purpose was found to be robust for SN ratios in excess 
of 2.5. It was considered that PEP 311 solar system ephemeris that was used in the 
reduction of barycentric arrival times did not contribute significant periodic errors on 
timescales less than the epoch range of the LRO observations. 

Little data was available to check the accuracy of the modelling of the clock 
drift during the last 7 months of observations during 1986. A discrepancy of no more 
than 150 p.s was likely to have existed between the true and observed barycentric 
arrival times at the end of the observing programme. 

8.3 THE GLITCH RELAXATION PROCESS 

It is firmly established that the post-glitch behaviour for the Vela pulsar 
exhibits short (1-6 day) and intermediate (— 20-100 day) relaxation timescales. 

The modification of admitting a second exponential decay term to the phase 
model for the two-component theory of neutron star structure was found to be 
inadequate over timescales exceeding — 100 days. This was largely the result of the 
apparent change of the long-term trend in which takes place at the time of each 
glitch. 

■ 
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The behaviour of the frequency derivative preceding the seventh glitch did not 
exhibit any significant fluctuations aside from those attributable to timing noise 
suggesting that the repinning of the superfluid vortices with the boundary region 
between the weak and superweak pinning zones in the vortex creep model of internal 
structure had not taken place. 

There was no evidence of any significant change to the shape of the mean pulse 
profile as a result of the 1981 and 1985 glitches. In addition, the phase residuals for 
the observing session prior to each of these jumps, and the 1982 glitch were devoid of 
any significant timing activity. In the case of the 1985 glitch, the inferred epoch of the 
jump was within 30 minutes of the final pre-glitch observation. It is tantalizingly 
possible that the final few integrations obtained on TJD 6257 herald the onset of the 
glitch (figure 6.4c). 

A timing discontinuity of low significance was found in the relaxation 
behaviour following the 1981 glitch. The magnitude of this event was estimated as 
Aviv – 2x10 -10  and AV/'' – 10-3 . These magnitudes are consistent with those of 
discrete timing noise events observed by CDK-P. The jump was followed by a 
relaxation in V that was qualitatively similar to the rapid recovery following a typical 
macro-glitch. 

8.4 SHORT T1MESCALE PHASE NOISE 

Phase noise in excess of that expected from measurement considerations was 
apparent in the LRO data on timescales less than the length of an observing session 
(5.4 hours). The influence of the observing equipment on this excess was not 
regarded as significant. The dual frequency data when combined with measurements 
by Downs and Krause-Polstorff (1986; hereafter DK-P) suggested that the excess 
noise has a power law dependence on observing frequency with a spectral index of - 
0.9±0.2. 

The significant positive autocorrelation between phase residuals over 
timescales less than –1 hour claimed by DK-P was not apparent in the LRO data. This 
may have been due to the faci that the ratio of the mealurement dase to the excess — 
noise was – 1.4 for the LRO data, whereas this ratio was – 4 for the JPL data. 
However, where the residual autocorrelation function R(T) exceeded the expectation 
from purely white noise, it did so in the positive sense and for < 1.5 hours (e.g. 
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figure I.6d). In addition, the excess level of R(T) showed some evidence of epoch 
dependence. 

Various origins for the excess noise were examined. Dispersion measure 
fluctuations were ruled out as the required excess electron density was several orders 
of magnitude greater than that considered reasonable for the ISM. In addition, the lack 
of significant autocorrelation between the dispersion measure estimates obtained from 
simultaneous dual frequency observations did not favour this hypothesis. It is also 
apparent that the excess noise is not a high frequency extension of the timing noise 
present over timescales in excess of one day, nor is it likely that fluctuations of either 
the rotation frequency or its first time derivative are responsible. A magnetospheric 
origin was considered possible given that small variations of the source position or the 
longitude of the radiation beaming angle are required. It is also apparent that the level 
of excess noise is epoch dependent, and is not influenced by the occurrence of 
glitches. 

8.5 IMPLICATIONS OF DISPERSION MEASURE VARIATIONS  

The variability of the dispersion measure for the Vela pulsar has been firmly 
established, and new data showing the behaviour on timescales less than 200 days has 
been presented. 

During dual frequency observations made in 1986, the temporal variation of 
the dispersion measure was well approximated by a linear trend with gradient -0.04 
PC cm-3  yrl. This behaviour was consistent with previous measurements, and has 
been interpreted as being the result of the motion of a plasma cloud situated within the 
advancing SNR shell out of the line of sight to the pulsar. 

There was some additional evidence for short-timescale (10-20 day) 
fluctuations of DM. If this phenomenon is of a natural origin, then it may be the result 
of the motion of small plasma structures near the turbulent interface between the 
pulsar's wind zone and the ISM or within the large-scale plasma cloud responsible for 
the long term DM variations. 

Combined LRO and HRAO timing data has suggested that slowly evolving 
though significant DM variations occurred prior to the 7th Vela glitch. A significant 
DM change at the time of this glitch was not evident, although a small and possibly 
coincident decrease in DM may have occurred in the 50 days prior to this event. 
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8.6 PSR1641-45 AND PSR1749-28 

The LRO observations have shown that PSR1641-45 did not experience a 
significant jump in rotation frequency (i.e., of fractional magnitude in excess of —10 -9) 
in the interval TJD 3452 (Manchester et al., 1983) to TJD 6348. It is notable that a 
jump apparently occurred within the 80 days following the final 1985 LRO 
observation of this pulsar (Flanagan, 1986, personal communication, Manchester, 
1986, personal communication). As shown in table H.1, the estimate of the second 
frequency derivative obtained from a quadratic fit to the 1983 data was significantly 
different to that obtained from a similar fit to the 1985 data. The latter value was in 
good agreement with that catalogued by Taylor and Manchester (1975). It is regarded 
that a systematic effect was present in the arrival times obtained during 1983 which 
arose from the phase estimation method. The effect of proper motion and positional 
uncertainties are not considered to be significant in this context. 

A discrepancy was found between the DM measurement for PSR1749-28 
reported by Lyne and Rickett (which is the only published source for this quantity that 
the author could locate) and that obtained from the LRO data. Further observations are 
required to provide an independent verification of both measurements, with a view to 
establishing if the dispersion measure for this pulsar is variable. 

8.7 FUTURE WORK RELATING TO TIMING OBSERVATIONS  

8.7.1 Glitches 

Future observations should attempt to monitor known glitching pulsars as 
frequently as possible in the hope of observing a glitch in its entirety. This latter 
objective has recently been achieved by Hamilton et a/. (1989) for the Vela pulsar. 

In view of the availability of LRO timing observations immediately following 
glitches 5, 6, and 7, it is desirable to examine the applicability of equation 6.4 as a 
description of the short-term relaxation behaviour. This method has been used by 
CDK-P for glitches 5 and 6, and it would be of use to compare the parameter values 
obtained by these authors with those arising through the use of the LRO data. 
Preliminary work has suggested that reasonable agreement occurs, while the -par-thief-6r 
values for the short term relaxation obtained from the LRO data are of significantly 
improved precision. 



207 

In addition, the recent work of Alpar etal. (1988) with regard to large glitch of 
PSR0355+54 reported by Lyne (1987) has suggested that linear (as distinct to non-
linear) vortex creep within the neutron pinning zones may be responsible for the 
observed relaxation timescales and the absence of the delay time to in the post-glitch 
data  This work requires application to the LRO glitch data. 

It is probable that glitches, and indeed discontinuities in rotation frequency, are 
a feature of most pulsars. Efforts should be expanded to extend the number of pulsars, 
particularly those accessible from southern latitudes, for which long-term timing data 
is available. The aim of such work will be to extend the catalogue of glitching pulsars, 
and to gain a more representative picture of neutron star interiors through the 
interpretation of their timing data. 

An area of further observational and theoretical development is with regard to 
possible MHD induced oscillations within a neutron star that are initiated by a glitch. 
Observationally, timing noise spectra would prove useful in establishing whether a 
dominant timescale exists for such oscillations. 

Multi-wavelength monitoring of regularly glitching pulsars, most particularly 
Vela, is desirable in order to investigate the possibility that significant transient energy 
dissipation accompanies a glitch. Such occurrences are predicted on the basis of the 
corequalce theory. 

It is clear that further theoretical work is required in the area of coupling 
mechanisms between the plasma and superfluid components in order to account for the 
scatter of relaxation timescales exhibited by the Vela glitches. It is also important to 
account for the large difference between the magnitudes of the macro- and milli-
glitches. 

8.7.2 Timing Noise 

There is considerable potential for the investigation of timing noise using the 
LRO data. Ultimately, dispersion measure fluctuations are likely to contaminate the 
timing noise spectrum particularly on long timescales. If a Kolmogorov ISM 
turbulence spectrum is assumed, then dispersion measure fluctuations will produce a 
timing noise spectrum of the form 

5(0 cc A. 
f-2/3 

where f is the temporal frequency and X is the observing wavelength (Armstrong, 
1984). However, it is possible that short timescale DM fluctuations do occur, and 
these would provide an additional source of contamination. 
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In principle, the position and proper motion of the Vela pulsar are now known 
with sufficient precision so that barycentric arrival times should not contain significant 
diurnal or annual terms. In addition, the discovery of millisecond pulsars has provided 
a means of testing the accuracy of barycentric ephemerides, and eventually the 
influence of errors in the assumed planetary masses and positions on the inferred 
barycentric arrival times will be quantified to high precision. 

The mathematical methods (Appendix A) are in place to provide a detailed 
description of the timing noise spectrum and the occurrence of discrete timing activity 
for the Vela pulsar. Aspects of such work have been published by various researchers, 
most notably Cordes and Helfand (1980), Alpar, Nandlcumar, and Pines (1986), and 
CDK-P. An advantage associated with the LRO data is that there is adequate temporal 
resolution of the phase estimates to examine the seemingly abrupt timing jumps found 
by CDK-P in greater detail. Of interest is the occurrence rate of these discrete events, 
and their relationship with other observable parameters such as the characteristics of 
the radio emission. 

Cheng (19887b) has proposed that micro-glitches initiated by an internal 
mechanism lead to fluctuations in the current braking torque. He has made specific 
predictions with regard to the form of the timing noise spectrum which require further 
observational testing. 

It is clear that limits may be placed on the energy density of internal torque 
variations due to MHD oscillations through the use of timing spectra. A problem here 
is that theoretical development is required on the viability of such phenomenon given 
an understanding of the pinning and coupling processes within neutron stars. 

8.7.2 Phase Noise 

Simultaneous single pulse observations of high sensitivity should be conducted 
at two or more frequencies to further confirm the existence of the excess phase noise 
and investigate the radio-frequency scaling of its magnitude that has been suggested by 
the present work. These observations will also allow the noise contribution due to 
pulse width fluctuations to be distinguished from that due to variations of the longitude 
or radial position of the emission region. This work should be combined with the 
polarization study suggested in section 8.8.2 to ascertain whether the frequency 
scaling of the excess noise is related to the instability of the emission zone in 
combination with the topology of the magnetic field. In addition, the long-term 
stability of the level of excess noise should be examined. 
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8.7.3 Dispersion Measure 

Further long-term monitoring of the dispersion measure is required to examine 
the variability of the plasma density within the line-of-sight ISM and the immediate 
pulsar environment. This is of particular importance if the intrinsic timing noise of the 
pulsar is to be investigated with high precision, particularly at observing frequencies 
below —1 GHz. 

In addition, the ability to simultaneously determine the rotation measure will 
prove useful in studying the magnetic field structure of the intervening plasma. This 
aspect is of interest with regard to glitches, as it is possible that magnetospheric 
disruption and the short term alteration of the emission geometry are initiated by these 
events. 

The measurement of scattering parameters should be conducted in conjunction 
with DM observations in order to further knowledge of the plasma turbulence along 
the line of sight. Rankin and Counselman (1973) have shown that the level of 
scattering to the Crab pulsar shows evidence of time dependence. It would be of 
interest to ascertain is similar behaviour is exhibited by Vela's scattering media. 

8.8 FUTURE STUDIES OF THE VELA PULSAR 

It is now over two decades since the discovery of the Vela pulsar. During this 
interval, considerable insight as to the general nature of neutron stars as pulsars has 
been gained from the multi-wavelength study of this conspicuous object. However, it 
is clear that further knowledge is required in several key areas. 

8.8.1 Distance 

The distance of the pulsar is a fundamental parameter that was for many years 
accepted without serious reservation by most workers. The association of PSR0833- 
45 with the Vela SNR, first suggested in the discovery paper by Large, Vaughan, and 
Mills (1968) has been used as a key argument in support of 500 pc as a reasonable 
value. Recently Caraveo, Bignami, and Hermsen (1988) have questioned this 
association on the basis that-  the pulsar could not have travelled to its present posititin 
from the centre of the remnant during its presumed lifetime given the upper limit on its 
proper motion. The 40 detection of proper motion by Ogelman, Koch-Miramond, and 
Auriere (1989, preprint) has suggested a space velocity (given the accepted distance) 
relative to the assumed fixed stars which is a factor of two greater than that derived 
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from scintillation measurements. Scintillation observations are used to obtain the 
transverse velocity of the line of sight relative to that of the scattering source. The 
influence of differential galactic rotation is dependent on the distance of the scattering 
region from the pulsar and the Earth. Optical and interferometric astrometry allow the 
measurement of the total transverse velocity of the pulsar relative to the Earth; this 
vector quantity has components due to differential galactic rotation (the magnitude of 
which is expected to be —12 km s -1  for Vela according to Cordes, 1986) and peculiar 
motion. Astrometric VLBI observations are required for comparison with the optical 
measurements in order to confirm the space velocity of the pulsar and draw 
conclusions with regard to the accuracy of its currently inferred distance. 

8.8.2 Radio Emission 

The brightness of the Vela pulsar at radio wavelengths makes it a particularly 
easy object to detect. However, little has been published on the structure of the pulse 
profile at frequencies above — 1 GHz where it has been demonstrated by Manchester et 
a/. (1980) and ICrishnamohan and Downs (1983) that multiple components exist. 
Through high time resolution single pulse polarization measurements, the work of ICD 
can be extended to gain further insight into the size and location of the emission 
regions, and the structure of the local magnetic field. 

McAdam (1981) has suggested that the pulsar's radio flux is variable. It is 
unclear as to whether the origin of this behaviour is related to the emission mechanism 
or to refractive scattering within the ISM. 

8.8.3 Studies at Other Wavelengths 

Further optical measurements are required to confirm the existence of the 
variable unpulsed component detected by Manchester et al. (1980). In addition, it 
would be of use to ascertain the spectrum of the optical emission with greater 
precision. This project may be feasible using the next generation of large optical 
telescopes. Optical astrometry over several more years should result in refinement of 
the proper motion estimates, and examine the possible spatial variability of the faint 
structure that exists within the pulsar's wind zone. 

Unlike the situation for the Crab pulsar, measurements have so far been unable 
to detect infra-red emission from Vela. Such observations are important in the context 
of the emission models based on outer magnetospheric gaps where a large flux of IR 
photons are thought to be generated as a result of the pair creation cascade (Cheng, 
Ho, and Ruderman, 1986a,b). 
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An important area of study which must await the launch into Earth orbit of 
instrumentation of increased sensitivity is the pursuit of the pulsed emission into the 
X-ray region of the spectrum. To date, only upper limits have been placed on the 
pulsed flux. In addition, measurements of improved sensitivity and spatial resolution 
should be able to better distinguish the blackbody spectrum of the surface of the • 

neutron star from the synchrotron spectrum of the surrounding nebula, and thereby 
furnish a more accurate surface temperature estimate for comparison with the 
predictions of cooling models and internal energy dissipation mechanism such as 
vortex creep. 

Measurements at gamma-ray energies are needed to confirm the evidence for 
linear polarization of the photons presented by Caraveo et a/. (1988), and the 
variability of the flux and multiplicity of the source regions suggested by Greiner, 
Hermsen, and Clear (1988). Further observations are required to confidently extend 
knowledge of the spectrum above — 10 TeV. 

8.9 GENERAL CONCLUSIONS  

Sufficient data were available for two of the glitches studied to rule out 
significant changes to the shape of the mean pulse profile as a result of these events. In 
addition, it was found that the onset of a glitch is not obviously manifest in the 
immediate pre-jump LRO phase measurements. The inferred epoch of the 1985 glitch 
was tantalizingly close to the final pre-jump observations, and optimistic speculation 
would suggest that the signature of this event is present in the data. 

A significant component of intrinsic pulse phase noise exists for the Vela 
pulsar on timescales of less than one day. The noise evidently does not conform to the 
frequency spectrum of long term timing noise. These is a suggestion that the level of 
noise has a power law dependence on observing frequency with a spectral index of 
-0.9±0.2. The phase noise is tentatively regarded as originating within the 
magnetosphere of the pulsar due to instabilities within the emission zone. There is 
some evidence that the level of excess noise is time-dependent, and independent of the 
occurrence of glitches (figure 5.6). 

The dispersion measure of the line of sight to the Vela pulsar is variable on 
timescales less than 200 days. A slow variation with a timescale of 1 - 10 years is 
suggested by this and previous work which is likely to be the result of the motion of 
plasma clouds in the ISM across the line of sight. Short-term variations occurring on 
the timescale of 10-30 days may be associated with fine structure turbulence within the 
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ISM or near the boundary between the pulsar's wind zone and its turbulent interface 
with the ISM. 

If a significant systematic error is not present in the DM measurements for 
PSR1749-28 obtained by Lyne and Rickett (1968) or from the LRO observations, 
then the dispersion measure of this pulsar may also be variable. 

PSR1641-45 did not undergo a glitch comparable in magnitude to that which 
occurred during 1977 (Manchester et al., 1983) between TJD 3452 and TJD 6346. 



In equation A.1, it is assumed that ONO = 0 for t To; that is, the random 
walk commences at some arbitrary time t = To. As discussed by Cordes and 
Greenstein (1981), the phase values ORk(t) due to a k-th order random walk which is 
idealized as having commenced at t = 	are related to the values (l)R k(t - To) for a 

similar walk which commenced at t = To by 

ORk 	ORk(t - TO) + 	Cn ft - To n 	t > To 	A.2 
n=0 

where the Cn  are variables which depend only on the steps of the random walk prior 
to To. Fitting an n-th order polynomial to the phase data is equivalent to removing the 
terms involving (t - Tor for m = [0,n] from equation A.2. 
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APPENDIX A - TIMING NOISE ANALYSIS 

A.1 INTRODUCTION 

In the following sections, the three principle techniques that have found 
application for the assessment of timing noise are reviewed. 

A.2 RANDOM WALK ANALYSIS  

The methodology of random walk analysis has been detailed by Groth 
(1975b), Lamb, Pines, and Shaham (1978a), Cordes (1980), and Cordes and Downs 
(1985; hereafter CD). 

A random walk in the k-th phase derivative 4)(k) is defined by 
dk4)(t)  E aik  u(t - ti) To < t < Ti, k = 0,1,2,... A.1 

4)(k)(t)  = dtk 

where a ik  . is a random amplitude with zero mean, u is the unit step function (with zero 

rise-time), and steps occur at times ti with an average rate R. The ti are statistically 
distributed in the interval (To,Ti). By its definition, a random walk in 4(k) requires the 
existence of stationary statistics in 4Ok+ 1 ); that is, the temporal fluctuations in 01(+1)  
have a white power spectrum (Groth, 1975b). 

Is assumed that the phase values reflect only contributions from spindown 
(which is modeled by a low-degree polynomial), timing noise and measurement 
uncertainty. The observed phase values over the data span of length T = T1 - To are 
fitted with an m-th degree polynomial via a least-squares procedure to generate a final 
residual Ri(m,T) for each ti where To Ti. 
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The level of intrinsic timing noise is estimated by 
A.3 

where OR = CYR(M,1) is the mean-square residual over the fitting span and aw = am 
+ a, is (from equations 4.1 and 4.6) the rms white noise contribution. CD have 
provided a suitable means of evaluating aw (section 5.2) and also an estimator for the 
error in aTN (section 9.2) 

Cordes and Helfand (1980) have defined the activity parameter A to broadly 
quantify timing noise relative to that of the Crab pulsar ; 

A = log I . 6T.N  (m,T)  A.4 
6TN (m,T)cRAB 

From a study of 50 pulsars, A exhibited correlation of low significance with V 
(suggesting that timing noise is related to rotational energy loss), and weaker 
correlation with v. 

The moment of idealized random walks in the k-th phase derivative is 
characterized by the strength parameter Sk where 

So = R <OOP>, 
Si = R <(8v)2>, 	 A.5 
S2 = R <(8V)2>, 

where < > denotes ensemble-average and 
8•:1)i = aio  , 
ovi =a11  {t -t1) 1 , 	 A.6 

E•Vi = ai2  (t - 4) -2  

CD have provided estimates for the strength parameters in terms of the mean-square 
timing noise level for the case of uniform sampling and RT >> 1; 

go = 2 T-1 	aiN  (m,T), 
g = 12 T-3  C?.ni 	(m,T), 	 A.7 
t2 = 120 P5  am 	(m,T), 

where Cam  , am  , and am  are correction factors that compensate for the variance 
removed by the m-th order polynomial fit to the data; these latter quantities are given 
by Cordes (1980) and Deeter (1984). CD have discussed modifications to equations 
A.7 for the case of non-uniformly sampled data. 

To test the applicability of a particular random walk model as a descriptor of 
timing noise, the associated strength parameter (for a particular m) is examined as a 
function of T. As pointed out by CD, for RT >> 1 and steps of uniformly distributed 
amplitude, then a random walk in the k-th phase derivative will exhibit gk independent 
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of T. However, the behaviour of t k(T) is modified if the steps are non-uniformly 
distributed. 

A.3 STRUCTURE FUNCTIONS  

Structure functions are useful for examining the range of time scales that 
contribute to fluctuations of a function of the form 

Ak  4)(t) = 	k Xs(t) 

k=0 
where Ak are random variables, and x(t) is a stationary process (Rutman, 1978). The 
m-th order structure function of phase is defined as 

D4,(m)(t,t) =- <fAep(M)(t,T)) 2> 	 A.8 
where 

111 

( - 1) 1  In  Cl 4)(t 	M - 1 ) ) 	 A.9 
t=o 

is termed the increment function. Here t is the characteristic timescale probed by the 
differencing scheme, and t is the epoch of an individual measurement. The m-th order 
structure functions and increments may be defined for higher derivatives of 4). If 4) is a 
polynomial of order p < m, then A4,( 111) =0, and A4,(n) is independent of t for p=m. 
Additionally, step functions in the k-th derivative of 4) have (k+1)-th increment 
functions that are pulses in time which are piecewise polynomials of order k with 
amplitude proportional to Aktk-1  (CD). 

CD have provided a means of assessing the significance of apparent 
discontinuities in 4) or its derivatives by comparing observed structure functions with 
those evaluated for idealized random walk processes. In the case of RI >> 1 (where R 
is the rate of discontinuities), Ao(k) for a type k random walk process is a Gaussian 
random variable with variance given by D4,(k)(t,t). Structure functions find additional 
utility in assessing the order of a random walk process. For a random walk of order k, 
a structure function of order k+1 is time-independent, and has a power law 
relationship with 'T with a spectral index of k (CD). 
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A.4 POWER SPECTRA 

Spectral power density is usually estimated by squaring the linear form 
resulting from the application of a sampling function h(t) to the observed timeseries 
x(t) over an interval a 5..t b, 

b 

Px  = r h(t) x(t) dt 2 	 A.10 
a 

Methodology for the recovery of power spectra characterised by an inverse integral 
spectral index, with particular application to pulsar timing data, has been developed by 
Deeter and Boynton (1982; hereafter DB) and Deeter (1984). These authors have built 
on the work of Groth (1975b,c) to overcome an inherent problem associated with 
conventional power spectrum analysis (based on sinusoidal sampling functions) that 
occurs whenever non-white noise is encountered, namely the under-estimation of 
power density due to leakage through the sidelobes of the frequency transfer function. 
The method summarized below aims to tailor the frequency response of the sampling 
function to faithfully recover the spectral density while sacrificing frequency 
resolution. Application of the technique to experimental data has been made by 
Boynton (1981), Boynton and Deeter (1986, preprint), and Deeter et al. (1989). 

In order for Px  to be a valid estimate in the situation where Sx, the true power 
density at circular frequency f, obeys a power law with an even integral spectral index 

S(f) = Kr  (2/rf) -2r A.11 
(that is, x(t) has an r-th order spectrum) then the sampling function must satisfy r 
moment conditions 

h ;  ti = 0 	 for 0 i < r 	 A.12 

and the boundary condition 
= h(-0(b) = 0 	for 0 	 A.13 

where h( -1)(t) is the i-th integral of h(t). The factor K, in equation A.11 is referred to as 
the noise strength.. Here, the application of the method to experimental data is 
anticipated by the use of discrete functions, which are related to their continuous 
analogues via 

h(t) = E hj 8 (t - ti), 	x(t) = 	xj (t - tj) 	 A.14 

where 8(t - ti) = 1 for t = ti and zero otherwise. Here n is the number of individual 
observations. For each measured quantity xi there is an associated weight w, which 
for the pulsar timing data is taken as am -2(ti). 

The expectation value of the power estimate is given by 
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<P.> = 1H(012 S(f) df 	 A.15 
00 

where H(f) is the transfer function of h(t). Ideally, H(f) is unimodal and of narrow 
bandwidth. For r-th order noise, the expectation is given by 

n  n 
	 E E  Kr 2(;:1)! 	h;  h k  it;  - tkl2r-1 	 A.16 <Px> 	1)   

J1 k=1 
If the expectation is evaluated for unit strength noise, then an estimate of the spectral 
density may be obtained from 

gmed) — <Ppx> 	 A.17 

where fmed is the frequency centroid of the bandpass of H(f). 

The frequency response of a sampling function to white noise is given by 

I H(f) 1 2  = 2 [ I h;  cos(2nfti)] 
2 

+ [ E hi sin(27tfti)] 2  

The effective frequency response of h(t) for r-th order noise may be obtained from 
H(4)(0, the transfer function of h(4)(t), via 

I H(- )(f) 12  = (27I0 -2r 1 H(f) 1 2 	 A.18 
DB have provided a convenient method to evaluate the median frequency associated 
with a sampling function satisfying m moment conditions in terms of the half-width 
AT(m) of h( -0(t); 

fmed(m,r) — AT(m) 
f3(m,r) 	 A.19 

where 1  is a calibration factor tabulated by Deeter (1984). The half-width is evaluated 
from 

where 

AT(m) = [M2  - 
Mo 

ps,4 1  1 2 1/2 
MOJ 

A.20 

k!  
Mk = elYri  ( In  + k)! 	hj tim + k 	k 0 	 A.21 

j=1 
is the k-th moment of h( -m)(t). 

The removal of a polynomial of degree m-1 from x(t) is related to imposing m 
moment conditions on h(t). Specifically, 

E h;  [x;  - 	= E [h;  - 	 A.22 
j= 1 	 j=1 

where the polynomial trend removed from the timeseries, Tc, may be conveniently 
expressed as 
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m-1 

n 
5ils = I pi(to Imo x(ti) 	 A.23 

j=i 
i=o 

Here pi(ti) is an orthonormal polynomial of i-th degree evaluated at time ti. An 
equivalent expression exists for the sampling function : 

m-1 
n 

hk = I Pi(tk) E Pi(ti) h(t) 
i=1 

i.o 
Each orthonormal polynomial is constructed from the following recurrence relation; 

Po(ti)=--  1 
(ti pi_I I pi - 1)  1 	r  (Pi - i I Pi - i)  1 pi(ti) = [ ti - 	, 	i Pi-i(t)i - L 	i Pi-2(ti) A.25 
(P1-11 Pi-ii 	 (Pi-21 P1-2) 

where 
n 

(f I g) = E Wk fk gk 
k=1 

is the scalar product of functions f and g over the set of observational weights w. A 
condition on equation A.25 is that the second term is omitted in the case when i = 1. 

Deeter (1984) has examined the bandpass characteristics of several types of 
sampling functions. He found a convenient sampling function for r-th order noise that 
satisfies the moment conditions to be an orthonormal polynomial of degree i > r. An 
advantage of this type of function is its ease of construction (via equation A.25), 
particularly if the sampling of the timeseries is irregular. In addition, the frequency 
response is largely unimodal, with a bandwidth that is approximately equivalent to the 
median frequency. In figure A.1, the frequency response of orthonormal polynomials 
satisfying m r moment conditions are shown for r=[1,3]. 

The individual power estimates Pi may be expressed as 
Pi = PIi  + Pmi  

where PI and Pm  are the contributions from the phenomenon under investigation, and 
the measurement procedure, respectively. An estimate of Pmi  may be evaluated. The 

aim is to obtain the maximum likelihood value of the intrinsic power, <P>. This is 
obtained through the weighted average of the pooled Pi 

A.24 
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Fig. A.1. 	Frequency response of orthonormal polynomials satisfying m .?. r moment conditions for r = [1,3]. 
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where ai2  = Pi  <P> + Pmi  (Boynton and Deeter, 1986; preprint). The median 

frequencies fmed for each power estimate are also pooled to produce a weighted 
average <f>. 

The effective number of degrees of freedom for each power estimate is given 

Var(Pi)] 2  

Vf - 	 A.26 

	

2(<P>} 2  	 
al; 

	

	
[COV(PiP)]2  

j.k=i 
where n is the number of pooled estimates. Here account is made for correlations 
between power estimates of a common tirnescale when sub-intervals overlap due to 
uneven sampling. In the case of uniform sampling without overlapping, vf = n and n = 
2h - 1. 

The utility of displaying power spectra in terms of <log P> against <log f> has 
been summarized by Deeter. The biasa introduced by the change of scale is given by 

<log P> - log <P> = { --+ —1 } log e 	 A.27 
vf 3vf2  

A model may then be fitted by minimizing S. the weighted sum of squares; 

S = 
I  (<log Pobs> - log Pmode0 2  

(Olog 
	 A.28 

where the weighting term is the square of an approximation to the half-width of the 
distribution for log Pobs; 

(atog 
f 2 

— 
vf 

2 I —
4 (log e)2 	 A.29 — 

v? 3v0 

by 

a The factor of 3 in equation A.27 has been erroneously omitted by Deeter et al. (1989). 
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APPENDIX B - COORDINATE TRANSFORMATIONS 

B.1 INTRODUCTION 

In this section, the methods used to obtain the vectors r and n (which are 
directed from the observatory to the barycentre and from the barycentre to the pulsar, 
respectively) and the doppler correction to the observing frequency (which appear in 
equation 4.3) are presented. 

B.2 OBSERVATORY COORDINATES 

The motion of the Earth is modelled in gross characteristics as a diurnal 
rotation about a reference axis which moves with respect to the barycentric intertial 
frame in a manner described by the theories of precession and nutation (section B.5). 
The reference axis does not coincide with the axis of figure (maximum moment of 
inertia), but exhibits a quasi-circular motion about it. This so-called polar-wandering 
has an amplitude of — 0.3" (corresponding to a 9 m displacement on Earth's surface) 
with principal periods of 365 and 428 days reflecting geophysical influences. The 
departures 6,2■,' and 643' from the mean longitude A., and latitude fi m , respectively, 

are given by 
= {x'sin(Ain) - y'cos(X,m))tan(3m) 	 B.1 

6.13' = x'cos(A,m) - y'sin(Ain) 	 B.2 
The factors x' and y' are tabulated in The Astronomical Almanac (1987, Section K) 
and are usually expressed in arc-sec. The corrections are of importance for the precise 
determination of the local sidereal time and the zenith angle of a source. However, the 
light-travel delays introduced by equations B.1 and B.2 for pulsar timing studies are at 
the sub-microsecond level (table B.1). 

The LRO geodetic coordinates are referenced to the 1965 Australian National 
reference spheroid. The offset of this reference frame from Earth's centre-of-mass is 
represented by the rectangular coordinates (xo, yo, zo) = (-122, -43, 138) metres. 

The geocentric rectangular coordinates of the observatory are given by 
xG = xo + (aC + h)eos(131cos(V) 

	
B.3 

YG = Yo + (aC + h)cos(13 1 )sin(X,') 
	

B.4 
zG = zo + (aC + h)sin(13 1 ) 
	

B.5 
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where p' = p m  + A13', X = Xm  AX', p m  and X m  are measured in the 1965 
reference frame, a = 6378160 m is the equatorial radius of the spheroid, h is the 
height above mean sea-levela (normally expressed in metres) and 

C = Rcos2(13') + (1 - ff)2) sin2(13') ) -1t2. 
In the above expression, ff is the flattening factor with 1/ff = 298.25. The coordinates 
xG, yG, and zG may be expressed in terms of the geocentric coordinates (X,13) and 
radius R (metres) ; 

xG = R cos(13) cos(X) 
YG = R cos(13) sin(X) 
zG = R sin(13) 

Using equations B.3-5 with the above expressions, X, 13, and R may be solved for. 
Uncertainties in p and X, and R, are estimated as < 0.5 arc-sec, and — 100 m, 
respectively, from the analysis of observations made during the SHEVE VLBI 
experiment (Preston et al., 1984). 

B.3 BARYCENTRIC VECTOR OF THE OBSERVATORY 

The geocentric vector of the observatory (figure B.1) is 
4 = [Rcos(X)cos(F-13), Rcos(X)sin(F-13), Rsin(X)] 

The apparent Greenwich sidereal time (F) is given by 
F = 27c R0.276919398 + 100.0021359 T + 1.075x10 -6T2) 

• (1 + 2.7853831x10-3S) + 7.716x10 -9  AT cos (e)} 
where T = (JD - 2415020.0)/36525, S is the number of seconds in the UT day, 
AT is the nutation in longitude" obtained from the barycentric ephemeris, and e is 
the obliquity of the ecliptic of date with respect to the mean equator of date; 

E = 0.40920620 - 2.27135x10 -3  T - 1.59x10 -9  T2 + 8.83x10 -9  T3  
rad. 
The barycentric vector of the observatory r is then calculated from 

r = PN4 q 
where P and N are rotation matrices describing precession and nutation (section B.4), 
respectively, and q is the barycentric vector of the geocentre (obtained from the 
ephemeris). 

The observatory velocity vector in the frame of the barycentre is 
VB = EB + VG 

a Neglecting the variation in h due to gravitational tidal forces on Earth's elastic crust and the plate 
tectonic effects on f3' and X'. 
b The nutations in longitude, AT, and latitude, Ae, may vary by as much as 0.1 arc-sec d -1 . 
Formulae accurate to 0.01 arc-sec are given by Meeus (1979, p. 60). 
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where Eg is the barycentric velocity vector of the geocentre (obtained from the 
instantaneous derivatives of the components of EB), and 

VG = [-peRcos(X)sin(r--13) , coRcos(X)cos(X)cos(r-13), 011 
where Sle  is the angular rotational frequency of the Earth; 

7.292115x10 -5  rad 5-1 • 

Fig. B.1. 	The calculation of the barycentric arrival time requires taking the dot 
product between the unit vector in the direction of source, n, and the vector between 
the barycentre and the observatory in light travel-time units r/c. (After Backer and 
Hellings, 1986). 

B.4. PRECESSION AND NUTATION 

The precession of Earth's rotation axis describes circular paths on the celestial 
sphere of radius — 23.5° centred on the ecliptic poles over a period of — 26,000 yr. 
This motion is the result of the influence of (principally) the lunar and solar 
gravitational fields on Earth's equatorial bulge. 

Nutation is a superimposed oscillation of the polar motion with an 18.4 arc-
sec amplitude and a period of 18.6 years which results from the precession of the 
nodes of the lunar orbit. 
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The precession matrix is given by 

cos(8A)cos(zA) -sin(SA)cos(aA)cos(zA) -s (aA)cos(zA) 
-sin(8A)sin(3A) -cos(sSA)sin(zA) 

P= cos(5A)sin(zA) -sin(SA)cos(aA)sin(zA) -sin(aA)sin(zA) 
+sin(8A)cos(zA) +cos(SA)cos(zA) 

cos(8A)sin (aA) -sin(8A)sin(aA)cos(aA) cos(aA) 

where SA, zA and GA are the angles which specify the portion of the mean equinox and 
equator of date with respect to the mean equator of the standard epoch J1950.0. 

8A = 0.1117470 TE + 1 .464x10-6TE2  + 3.2x10 -6TE3  
zA 8A + 3.835x10-6  TE2  
GA = 9.716904x10 -3TE - 2.065 x10 -6TE2-2.04x10 -9TE3  

Here 
TE = (JD - 243382.423)/36524.22 

which is the number of tropical centuries elapsed since J1950.0. 

The nutation matrix is given by 

1 cos(e) - 	sin(E) 
= AW sin(E) 1 

AT sin(E) Ac 1 

B.5 THE BARYCENTER-SOURCE VECTOR 

The barycentric coordinates of the source are given by 
n = [cos(a0)cos(80), sin(ao)cos(80),  sin(80)] 

where ao and so  are the RA and the dec. of the source, respectively, for the standard 
epoch. These coordinates do not include the contribution from the slowly changing E-
terms of annual aberration. 

Thus if r = (XB, YB, ZB) are the barycentric coordinates of the observatory, 
then 

rn = XBCOS(C(0)COS(80) + YBsin(cco)cos(k) + ZBsin(Oo) 



225 

B.6 DOPPLER RRDEmQm 

The observing frequency in the inertial frame moving with the barycentre f is 
related to the apparent frequency f at the observatory by 

f' 	( 1 - \Tic)  
f \J1 - r3 p2  

where Pp  = vo/c, and vr  is the true radial velocity with 
vo  = q(v .2 vy2 vz2) 

Vr = - (xBvx, yBvy, zBvx) 

Here xB, yB and zB are the barycentric rectangular coordinates of the observatory, and 
vx, vy  and vx  are their corresponding time derivatives (Stumpff, 1979). 

B.7 MAGNTTUDES OF POSITION CORRECTIONS  

The magnitudes of the correction to the observatory and source coordinates 
relevant to the LRO observations are summarized in table B.1. 

TABLE B.1 
MAGNITUDES OF POSITION CORRECTIONS 

TERM MAGNITUDE (arc-sec) 

Polar motion 
(6,20max 0.4 

(APmax 0.4 

Precession and Nutation 
a1950.0 	CC1987.0 66.2 

8 1950.0 - 81987.0 -27.1 

B.8 CONTRIBUTIONS TO ARRIVAL TIME UNCERTAINTIES  

The effect of errors in pulsar and observatory coordinates, and the position of 
the barycentre on arrival times are summarised in table B.2. 
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• TABLE B.2 
ARRIVAL TIME UNCERTAINTIES 

Source 	 Error 	 Timescale 	Time Error 

Geocentric Position 

Pulsar Coordinates 

Barycentric Position 

A13 = 1" 	 sidereal day 	— 100 ns 
AX = 1" 	 sidereal day 	— 100 ns 
AR = 100 m 	sidereal day 	— 350 ns 

Aa = 0.1" 	annual 	 — 340 gs 
A8 = 0.1" 	annual 	 — 400 p.s 

planetary masses 	5. 300 yr 	— 4 ms 
10 yr 	— 0.1 Rs 
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APPENDIX C - PLANETARY MASS UNCERTAINTIES 

Consider the situation in figure C.1 where a planet is orbiting the true 
barycentre (TB) of the solar system. The aim is to determine the errors introduced in 
pulsar timing parameters when a barycentric ephemeris constructed using inaccurate 
planetary masses is used; a similar analysis has been performed by Mulholland 
(1971). Assume that points H, B, B', 0 and P (figure C.1) lie in the plane of the 
ecliptic, and define X to be the longitude of the planet relative to the azimuthal direction 
of the pulsar as seen from B. We may put 0 = 0' as the parallax of the pulsar will be 
insignificant. The vectors BS and B'B are given by 

BS = [cos(0), 0, sin(0)1 
B'B = [ArRcos(X), AR sin(X), 0] 

where AR = IR - R'l (here the A signifies a small perturbation). Thus the projection of 
B'S on BS is given by 

IcT - cTI = AR cos(0) cos(?.). 

From centre-of-mass considerations, 

	

M/m = r/R 	and 
Because r, f >> R, R', then r – r' and thus 

AR = R Am/M 
where Am = Im - m'I. Thus, 

P Am cos(0) cos(X)  

	

–IT nI– 	cM 

M/m' = r'/R'. 

C.1. 

Now if the planet moves with (constant) angular velocity vx (expressed in radians per 
unit time), then 

cos(X) = cos(vxt) 
where t is measured from the epoch at which BP and BO were identically directed. 

Equation B.1 may be re-expressed in terms of the time derivative expressed 
over one pulse period as 

, MR. „ ,,„ IAP/Pi – —vx sin(vxt) cos(8) 
cAm 

= A sin(vxt) 	 C.2 
MR  where A – 	vx cos(0). 
cAm 

Similarly 
IAP/PI = Avx cos(vxt) 
	

C.3 
IAP/PI = Avx2  sin(vxt) 	 C.4. 

Estimates for the deviations given by equations C.2-4 are given in table 4.4. Note that 
in this table, A(M/m) = MIl/m - 1/ml. 



vector magnitudes 
HB = R 
HB' = R' 
BP = r 
B'P = r' 
BS = cT 
B'S = cr 

true mass m 
apparent mass m' 

B' 
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mass M 
H = heliocentre 
B = true barycentre 
B' = apparent barycentre 
P = planet 
S = pulsar 

Fig, C.1 	Geometry for determining the effect of planetary mass uncertainties on 
arrival times. 
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APPENDIX D - THE RELATIVISTIC CLOCK CORRECTION 

The rate of a terrestrial clock as seen by an observer at an infmite distance in a 
frame inertial with respect to the barycentre varies with an annual cycle due to Earth's 
elliptical orbit within the gravitational potential of the solar system. Blandford and 
Teukolsky (1976) give an accurate approximation for the relativistic clock correction 
term in equation 4.3; 

e 2). 	 e  tr  = -1.66145x10-3  (1 - t m(Me)+ esin(2Me)  + 3ee2sin(3Me)2 8 	D.1 

where ee  = e(t) and Me = Me(t) are the eccentricity and mean anomaly of Earth's orbit 
respectively, which are a function of the terrestrial time T. Backer and Hellings (1986) 
consider that higher order terms neglected in equation D.1 contribute less than 100 ns 
to the correction term over a span of —30 years. 
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APPENDIX E - RELATIONS FOR FREQUENCY AND PERIOD 

The pulse frequency v, and its derivatives V and V are related to the pulse 
period P and its derivatives P and P by the following transformations: 

v = P-1 	 E.1 
..p-2p 	 E.2 

V = -P -2P + 2P-3P2 	 E.3 
These equations may be expressed in terms of perturbations, denoted A, as: 

Av = -P -2AP 	 E.4 
AV = -13-2AP + 2P-3PAP 	 E.5 
AV = -P -2AP + 4P-3PAP + (2P-31-6P -4P2)AP 	 E.6 

The fractional changes in the frequency terms are obtained by dividing equations E.1-3 
by the corresponding perturbations of equations E.4-6: 

Av/v = —APR 	 E.7 
AV/V = AP/P - 2AP/P 	 E.8 
AV/V = [AP/P - 2cpAP/P - 2(1 - 3ep/2)AP/P] 

• ( 1 	EP) -1 	 E.9 
where 

Ep = 2P2/PP 	 E.10 
Similar expressions to the above have been provided by Cordes, Downs, and Krause-
Polstorff (1988). The expressions of equations E.1-10 may be recast in terms of the 
pulsation period by simply exchanging the family of parameters based on v with that 
based on P and vice-versa. 
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APPENDIX F - POSITION ERRORS AND PROPER MOTION 

Manchester and Taylor (1977, pp. 105-106) give an expression for R p  in 
equation 4.8 in terms of position corrections in RA and dec., Ace and AS, 
respectively, and the RA and dec. proper motion terms k g  and Ps, respectively; 

Rp  = A [Aa + 1.44(ti - to)] + B [AS + 1.1.8(ti - to)] 
where ti and to are two epochs. The coefficients A and B are given by 

A = —c cos(5e)cos(8)sin(a — (Xe) 

B = —c  [cos(8e)sin(8)cos(a — (Xe) - sin(8e)cos(8)] 

where (a,6) and (ae ,Se) are the coordinates (measured in the frame of a standard 
epoch, e.g. J1950.0), as seen from the barycentre, of the pulsar and the Earth, 
respectively, and r is the barycentre-observatory distance. 

The residual Rp  has an annual term due to Act and AS. In the case of 
PSR0833-45, if Ace = 0.7 arc-sec or AS = 0.6 arc-sec, then R p  250 Ps. If proper 
motion exist, then the residuals calculated between two epochs using equation 4.8 will 
exhibit a sinusoidal behaviour with period one year and increasing amplitude. 



232 

APPENDIX G - THE KINEMATIC CONTRIBUTION TO PULSE 
FREQUENCY 

G.1 EVALUATION 

Following Gallino and Silvestro (1971), consider a pulsar with intrinsic 
rotation frequency vo lying at a distance R. The pulsar is moving with a velocity v in a 
direction which makes an angle 0 with respect a barycentric observer's line-of-sight 
(figure B.1). The rotation frequency deduced by the observer is 

vk = vo(1 + 	 G.1 
where = vr/c = v cos(0)/c, vr  being the radial component of the velocity. The 
subscript k distinguishes kinematic parameters. 

By differentiating with respect to time t 
= -V0(1 +13) -2  v2sin2(0)/(cR) 
= -vovt2(1 + f3)-2/(cR) 
	

G.2 
where vt  = v sin(0) is the transverse component of the velocity. In addition 

= Wk[3COS(0) - 2(1 + 13) -1v sin2(0)/c2VR 
	

G.3 
For all 0, Vk < 0, while for 0 >,=,< n/2, Vk <,=,> 0. 

The above expressions have used the relations dO/dt = -v sin(0)/R and 
dR/dt = -v, where vr  is positive if the relative pulsar motion is away from the observer. 

For PSR 0833-45, R = 500 pc and v t  = 50 km s-1  (table 1.2). Assuming v r  « 
c and thus ignoring 13 

PkImax -6.1x10-18 Hz s-1 . 
Further by putting 0 = n/4 rad 

IVkintax  5.9x10 -32  Hz s-1 . 
By comparing these values with V and V in table 1.2, it is apparent that the kinematic 
contributions to the observed pulsar rotation parameters are completely negligible. 

Equations G.1-3 may be recast in terms of the period parameters : 
P = Po(1 + 13) 
Pk = P0v2  sin2(0)/(cR) = Pov t2/(cR) 
Pk = - 3P0V3  cos(0) sin2(0)/(cR) = -3vPk cos(0)/(cR). 
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G.2 EFFECT ON BRAKING INDEX 

The error expected in the determination of the braking index nB based on the 
kinematic contribution to the observed spindown is: 

MB - (nB - , 

Putting niit =3, then MB 6x10 -9  which is totally negligible. 

pulsar 

observer 

Fig. G.1 	Geometry of doppler corrections. 
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APPENDIX H - TIMING MODEL FITS FOR PSR1749-28 AND 
PSR 1641-45 

11.1 PSR1748-28  

Mean pulse profiles at 635 MHz and 954 MHz for a particular day are 
presented in figure H.1. In figure H.2, the mean I x  and Iy profiles for the same 
observing session are shown with the two standard deviation range at each phase bin 
superimposed. Note the large range of amplitude for the phase bins at the peak in 
comparison with the range for the off-peak bins. This is the result of intensity 
scintillations. In figure H.3, the I profiles spanning a 15 day range have been averaged 
at each frequency. 

In figures H.4 and H.5, residuals from fits of quadratic and cubic spindown 
models are presented. The parameter values obtained are given in table 4.4 and table 
H.1 respectively. Arrival times producing obvious outlying residuals were removed 
prior to the final model fit. The typical arrival time uncertainty was 1 ms. 

H.3 PSR1641-45  

It was much more difficult to obtain accurate phase values for PSR1641-45 
owing to the low signal-to-noise ratio of the pulses. Residuals from quadratic model 
fits to data obtained in 1983 and 1985 are presented in figures H.6a and H.6b 
respectively, while the model parameters are given in table H.1. Outlying observations 
were mechanically removed from separate fits to 1983 and 1985 data. It is evident that 
the value of v obtained from the 1985 data is in much better agreement with the 
catalogue value (section 4.13) than is the corresponding value obtained from the 1983 
data. The latter discrepancy is related to the quality of the raw arrival time data. 
Residuals for a quadratic fit to the combined data set are shown in figure H.6c, 
highlighting the difference in the timing solutions for the two data sets. The typical 
arrival time uncertainty was 5-10 ms. 



TABLE H.1 
PARAMETERS FOR SECOND AND THIRD ORDER FITSa 

Pulsar Model V 
(Hz) 

V 
(X10•12  HZ s' I ) 

V 
(x10 -22  Hz r2) 

Fit Epochs (TJD) 
Kid 	 Range 

Residual 
rrns (Its) 

1741-28 

1641-45 

1 

2 

3 

4 

5 

1.777595488301±5 

1.77759548785±8 

2.197521316±3 

2.197516018±1 

2.197516533±1 

-0.02577±5 

-0.02566±4 

-0.088±7 

-0.09630-±88 

-0.09635±5 

0.0 

-1115±175 

0.0 

0.0 

0.0 

6552.1984179 

6552.1984179 

5657.6371517 

6289.9062455 

6228.0577642 

6507.3-6593.1 

5639.7-5680.6 

6228.1-6343.7 

5639.7-6345.7 

530 

423 

4544 

8523 

14372 

a Errors are ± 1 a in the last digit(s). 
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635.0 Ms. TJ0=6522.19-6522.29 	954.0 M1s. TJD=6522.19-6522.29 
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Fig. H.1. 	Mean Ix  and Iy pulse profiles for PSR1749-28 at (a) 635 MHz, and (b) 
954 MHz. The two standard deviation range of the pooled values at each phase bin is 
indicated. 
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Fig. H.2. 	Total intensity profile for PSR1749-28 at (a) 635 MHz, and (b) 954 
MHz. The epoch range of the summation was TJD 6507.23-6522.28. The two 
standard deviation range of the pooled estimates at each phase bin is also shown. 
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APPENDIX I - TIMING MODEL FITS 

In this appendix, parameters and residuals for fits to Vela timing data are 
presented. Each model is identified by a sequence number. The residuals from the 
model fits, together with their probability distribution and autocorreladon function are 
provided. The model number used is indicated in the top left hand corner or each 
diagram. 



TABLE 1.1 

PARAMETERS FOR SPINDOWN MODEL FITSa 

Model Data Type' 
(Hz) (R10-12  HZ r') 

V 
(x10-22 Hz s-2) 

Fit Epochs (TJD) 
Kid 	 Range 

Residual 
rms (Its) 

1 R 11.20345233231±2 -15.6817±2 52.1±2 4918.4114940 4889.3-4989.1 180 
2 C 11.20345235267±8 -15.68172±8 52.1±6 4918.3964275 183 

3 R 11.20323700101±7 -15.6485±2 23.0±1 5077.5324300 4990.1-5150.7 139 
4 C 11.2033093637±1 -15.65907±7 22.9±2 5024.0290583 69 

5 R 11.2031179218±1 -15.63067±5 20.0±14 5165.6575254 5137.7-5191.6 123 
6 C 11.2031165809±2 -15.6306±1 17.5±28 5166.6505557 74 

7 R 11.20302003146±5 -15.68929±3 77.6±3 5254.7016485 5192.6-5293.4 400 
8 C 11.2030217046±2 -15.6900±1 73.3±11 5253.4677169 435 

9 R 11.20288632209±2 -15.667934±7 13.20±8 5353.4310508 5294.2-5394.1 121 
10 C 11.20288682452±4 -15.66795±1 13.3+2 5353.0598790 56 

11 R 11.20275124209±1 -15.653633±7 5.42±7 5453.2674793 5394.9-5494.8 129 
12 C 11.20275306546±4 -15.65370±2 5.4±2 5451.9193539 78 

13 R 11.20262830583±1 -15.646044±4 13.15±5 5544.1843708 5494.7-5593.6 103 
14 C 11.20262498575±2 -15.645834±8 13.4±1 5546.6404200 42 

15 R 11.20249294981±1 -15.641584±4 1.23±5 5644.3354244 5594.4-5693.3 92 
16 C 11.20249420849±3 -15.641591±9 1.2±1 5643.4040204 49 



TABLE I. 1 (continued) 
PARAMETERS FOR SPINDOWN MODEL F1TSa 

Model Data Typeb 
(Hz) (x10-12  Hz s- 1 ) 

V 
(X.10-22  HZ S-2) 

Fit Epochs (TJD) 
Yfid 	 Range 

Residual 
rms (us) 

17 11.202360353439±9 -15.636484±3 3.86±5 5742.4632733 5694.1-5791.0 95 
18 11.20235964907±3 -15.636460±1 3.87±13 5742.9846672 55 

19 R 11.2022275493331-9 -15.629265±3 3.13±4 5840.7855541 5791.8-5891.7 96 
20 C 11.20222764500±3 -15.62927±1 3.2±1 5840.7147472 66 

21 R 11.20209558105±1 -15.624892±4 5.01±5 5938.5257003 5892.6-5991.5 96 
22 C 11.20209435507±2 -15.624870±8 5.0±1 5939.4338208 43 

23 R 11.20195614607±1 -15.618301±5 6.32±6 6041.8323810 5992.3-6093.1 125 
24 C 11.20195819154±3 -15.61821±1 6.7±1 6040.3166493 51 

25 R 11.201819646372±9 -15.612846±3 1.73±4 6143.0060403 6094.0-6192.9 94 
26 C 11.20181980508±2 -15.612681±7 4.49±9 6142.8876785 44 

27 R 11.20170957006±2 -15.607013±9 10.6±2 6224.6199296 6193.8-6257.7 90 
28 C 11.20171065793±4 -15.60707±2 11.3±3 6223.8131823 35 

29 R 11.20161418510±3 -15.68430±1 42.8±1 6308.3269009 6260.6-6361.4 189 
30 C 11.2016152044±1 -15.68457±4 42.6±6 6307.5746981 177 

31 R 11.20147632190±2 -15.663024±8 20.3±1 6410.1433847 6364.3-6454.2 135 
32 C 11.20147631453±7 -15.66304±3 20.8±3 6410.1487277 95 

a Errors are ± 1 a in the last digit(s). 
b  Data types : R = raw (uncompressed), C = compressed -8 points per day, S = compressed 1 point per day. 
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Fig. 1.16. 	As for figure 1.1. 
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APPENDIX J - RUNS TESTS FOR PRE-GLITCH RESIDUALS 

In this appendix, the distributions for the runs test conducted on sets of pre-
glitch residuals are presented. The distributions in figures J.1 to J.5 are compared with 
their theoretical expectations. 

For relative runs, the sum of the expectations of positive and negative runs 
(i.e. R1> Ri÷i and Ri < R1+1 respectively) of length j > 0 is 

E 	2 (N - 1 - 2) (j 2  + 3j + 1)  i — (j + 3) ! 
where N is the number of observations in the timeseries (Kendall, 1948, p. 125). For 
positive and negative runs (denoted by + and - respectively) 

Ej, = Ei_ = 2 	 J.1 

The tallies for j >7 have been pooled in the 8-th bin, for which 
2N - 7  7  E8 -  

j.1 

The x2  statistic was calculated from 
8 

X2 	(C)i 	 (j)2  Xi 

Xi = Ei 
k=1 

Oi  
[(2N - 7)13] 

as based on the discussion in Kendall (1948), page 126. The effective degrees of 
freedom is 7. 

For mean and median runs, it can be shown that the total expectation is 
E - 1  

The tallies for j >9 were accumulated in the 10-th bin for which 

E10 = 	n--). 	Ej = E9- 
j=10 

Equation J.1 applies to the expectations of the positive and negative runs. The 
expected mean and variance of the total number of runs in a population of size N is 

N (N - 2)  ge = 0.5N + 1 ae — 4 (N - 1) 
(Dixon and Massey, 1985, p. 394). The observed total number of runs u can be 
compared with the expectation value through use of the z statistic; 

z — 	 
ae 

j=1 

where O  is the observed tally for the run of length j, and 
8 
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The probability of exceeding z by taking samples from a population of gaussian 
variable can be obtained from tables for the normal distribution. 
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APPENDIX K - DUAL FREQUENCY ANALYSIS 

In this appendix, the residuals from model fits (table K.1) to simultaneously 
obtained 635 MHz and 954 MHz, and selected mean autocorrelation functions are 
provided. 
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