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1.

ABSTRACT

The work described in this thesis stems from the observation that

a pyrazolyl group in iyie2Pt(HCpz2) imdergoes a CYClometallation
reaction when heated in neat pyridine, giving rise to a NC

coordination mcde, which is uncommon for flexible carbon bridged
maltidentate ligands.

w
Me .C—N

A \ / \ /^^Me Pt(HCpz ) ^ Pt .c
py / \ /

py N—N

U

The chemistry of this novel cyclometallation system has been
ej^lored, together with related polydentate ligand systems and the
oxidative addition reactivity of platinum(II) complexes, in order to
extend our knowledge of reactivity of platinum(II) toward formation
of organoplatinum(II) and platinum(IV) complexes with new structural
features.

A range of polydentate pyrazolyl ligands were chosen, or designed
and synthesized, according to their ability to possibly undergo
cyclometallation reactions. New ligands utilized in this work
include the bidentate donors H2C(py)pz, I^C(mim)pz, and 1,3-

and tridentate donors MeCpz^, HC(mim)pz2, HC(py)pz2 and
HC(thio)pz2.

A range of Me2Pt(II) and Eh^Ptdl) complexes of these and other
ligands were synthesized. The cyclometallation reaction was found to
be feasible only for Me^Ptdl) complexes containing tridentate N-
donor grotps, except for the two bidentate ligands H^Cpz^ and
Eh(H)CpZ2. The reaction also proceeded in cold pyridine and in other
N-donor solvents, eg. and ^f-picoline and N-methylimidazole.

Oxidative addition reactions using simple organohalides (Mel, EtI,

PhCH^Br) converted the cyclometallated tridentate systems (NO ) into



platinum(IV) complexes displaying N^C coordination geometry for the
cyclometallated ligands. Remarkably, addition of these simple

organohalides directly to Me^Pt^tridentate) complexes caused a
sequence of metallation and oxidative addition to occur, also

resulting in the isolation of complexes with the N^C ligand
coordination geometry. Oxidative addition reactions involving

bidentate ligands resulted in the isolation of N,N-coordinated

platinum(IV) species.

Diphenylplatinum(II) did not participate in the cyclometallation

reaction and upon addition of organohalides neutral or cationic

complexes were formed depending on whether the substrate contained a

bidentate or tridentate ligand respectively.

Amore general route to complexes exhibiting the N2C coordination
geometry was sought, and thus N,N bidentate ligands possessing a

halogen atom were synthesized, eg. MeQjz^CH^Cl, Z-PhXCpz^H, (X = Cl,
Br) and their reactions with Ph^Ptdl) complexes
investigated. In both instances Pt(IV) complexes with the ligand

present as a N2C tripodal tridentate were isolated and the first
X-ray structural studies obtained for ligand systems of this type.

The new ligands, and halogen containing reagents used in oxidative

addition reactions, appear to be suitable for applications in other

areas of coordination and organoitBtallic chemistry.
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CHAPTER ONE

1.1 Introduction

Platinum is a member of the 5d transition series, and is the

third menher of the nickel triad, below palladium and adjacent to

both gold and iridium. This proximity is reflected in the similarity

of chemical properties of these elements. Thus, in the divalent

state platinum is isoelectronic with palladium(II) and gold(III), and

these ions often form closely related coitpounds, eg. Me2Pt(bipy),
Me^P^^tjipy) and [Me2Au(bipy) INO^.

1 2 ...Platinum(II), like iridium(I) often participates in facile

oxidative addition reactions with alkyl halides, increasing both its

formal oxidation number and coordination number by two.

trans-Me(I)Pt(PEt^^ + Mel ^ (1)

trans-IIr(PPh^)^(CO) + mi ^ Mel2lr(PPh2)2(CO) (2)

CX^ing to a combination of a high sublimation energy and a high

ionization potential, platinum is a noble metal. However, it will
dissolve in warm aqua regia, and when the nitrogen oxides are removed

from this solution, hexachloroplatinic acid forms and this acid may

be regarded as the starting material for most investigations of

platinum chemistry.

Platinum is an iirportant element in organometallic chemistry

because it forms a wide range of organometallic conpounds, in various

oxidation states, that are sufficiently inert kinetically to enable

them to be isolated and fully characterised. Furthermore, 33.8% of
195 1platinum occurs as the isotope Pt i/diich has nuclear spin I = /^,

and thus offers the possibility of exhibiting spin-spin coupling with
1 31 19other appropriate nuclei (viz. H, P, F) in conpounds. The

presence or absence of such couplings can provide valuable evidence

on which to base structural conclusions.
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In its conpounds, platinum exhibits a distinct preference for

three oxidation states, platinum{0) with a d^^ electronic
o

configuration, platinum(11) [d ] and platinum(IV) [d ]. Platinum is

able to form stable, isolable metal-carbon o bonded (T| bonding)
3

conplexes in its (11) and (IV) oxidation states. Oxidation states

of (1) and (111) are rare,'^ although a range of stable homo- and
hetero-dinuclear platinum(l) conplexes with a variety of bridging

ligands have been isolated,^ whilst the literature reports now
include a smaller number of stable, dinuclear metal-metal bonded

platinum(III) conplexes.^

Zerovalent platinum conplexes exhibit a range of coordination
geometries, including linear, tetrahedral, and distorted trigonal
bipyramidal including cationic conplexes. For exanple, the phosphine
ccaiplex Pt(PPh2)^ is tetra-coordinate, however if bulky substituents
are placed on the phosphine the conplexes are two coordinate, eg.

Pt(PBu^2)2" dominant geanetry of platinum(11) conpounds is
square planar, with both inorganic and organometallic conpounds
exhibiting this characteristic geometry, although distorted five
coordinate trigonal bipyramidal platinum(11) conplexes have also been

isolated.

Of the nine orbitals available for forming bonds, namely 5d, 6s,
g

6p, for a valence bond approach to bonding for a 5d square planar
conplex, those used to form a bonds are, by symmetry requiranents,
and assuming bonding in the xy plane, the 5d 2 2, 6p , 6p and a

X y X y

combination of 6s and 5d 2. Since the 5d 2 orbital is perpendicular
z z

to the xy plane, its overly in the xy plane is relatively small, and
as a consequence the 6s-5d 2 combination orbital has predominant s
character, with the hybridization for square planar described as
dsp^. If a noble gas configuration is to be achieved in these
conplexes, then the remaining p orbital (6p ) must be incorporated

3 ...
into the hybridization schone, resulting in dsp hybridization and
five coordination, presumably square pyramidal. Incorporation of the
6p orbital into the overall hybridization will only be facilitated

z

if the 5d-6p energy difference is relatively small. The effect of

energy separation on hybridization is illustrated in figure 1.1.
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Figure 1.1 Effect of Energy Separation on Hybridization and
Complex Geometry

6 .

On downward progression through the nickel triad the energy-
separation between -tJie 5d and 6p orbitals increases in "tdie order

^ Five coordination is -therefore not favouredNidiX PddiX Ptdl).

for platinumdl).

This simple -valence bond ^proach to square-planar versus five
coordinate geometry for platinumdl) neglects xc-bonding interactions
between a coordinated ligand and metal d and p orbitals, and any
stereochemical requirements of -the ligand. Indeed, five coordinate

g

platinumdl) conplexes have been isolated wi-th tc-bonding ligands and
g

polydentate ligands. (See figure 1.2)

Tetravalent platinum exhibits only octahedral geometries in its
conplexes, al-though the regular octahedral structure may be distorted
depending on -the properties of -the donor ligands and the presence of
bulky substituents.



f "^Pt As
As^ "

L = CO, aUcyne, aUcene As^ = tris-(o-diphenYlarsinophenyl)
arsine

X = Cl, Br, I, SCN

Figure 1.2

Between the three ite.jor oxidation states, platinum conplexes are

relatively easily oxidised or reduced in well defined two electron
processes. Because all oxidation states differ by two electrons,
there has been a wide range of oxidative addition chemistry in both

oxidation states (0) and (II). In some instances reductive

elimination follows oxidative addition if the intermediate

platinum(IV) coirplex is not sufficiently inert. For exairple, methyl

iodide reacts with cis-Ph^Pt(Hyfe^Ph)^ to yield trans-Ph(I)Pt(FMe^Ph)^
and toluene, with platinum(IV) intermediates detected by NMR, but not

isolated.

The ability of platinum coiipounds to exist in a range of

oxidation states, coupled with the ability to change its oxidation

state by (often) facile reaction are inportant properties required
for the role of platinum corpoimds in catalytic processes.

Although palladium coirplexes exhibit a richer catalytic chemistry
than platinum, in many instances stiodies of closely related platinum
chemistry has contributed to an understanding of the role of

palladium in catalytic processes because the greater stability of
platinum conplexes has allowed the synthesis of model intermediates,
and kinetic studies of slower reactions involving platinum

substrates.
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1. 2 Platinum(O) Complexes

7y.tliough zerovalent platinum does not form any coitplexes with

metal-carbon o bonds, and thus falls outside the scope of the

investigation reported in this thesis, some platinum{0) conpounds are

useful substrates for the preparation of platinum (II) and (IV)

coiiplexes which do contain metal-carbon o bonds, eg. monoalkyl

conplexes can be prepared by oxidative addition of alkyl halides to
II 12 13 . . .zerovalent platinum conplexes, ' ' with the order of reactivity

Rl > RBr > RCl. '̂̂

Pt(PEt2)2 + PhCl trans-Ph(Cl)Pt(PEtj)^ + PEt^ (3)

Pt(PPh2)2(C2H4) + CH2CII Cis-Cl(CH2I)Pt(PPh^)2 + C2H^ (4)

Pt(PPh2)2(C2H4) + Mel ^ trans-Me(I)Pt(PPh^)2 + C2H^ (5)

Of the various zerovalent platinum conplexes studied, those

containing a tertiary phosphine, eg. Pt(PR2)^ and Pt(PR2)2(C2H^), are
most numerous. This is due mainly to their inherent stability and

the fact that they are soluble in a number of common organic

solvents. Pt(PPh2)^ dissociates in benzene solution:

Pt(PPh2)4 . Pt(PPb2)3 + PPh^ (6)

Pt(PPh3)3 Pt(PPh3)2 + PPh^ (7)

Kinetic evidence suggests that the chemically reactive
1 R 1 Rintermediate in reactions of Pt(PPh3)^ is Pt(PPh3)2- ' Thus,

analysis of the kinetics of the oxidative addition of IXfel to

Pt(PPh ) showed that reactions (8) to (10) represent the
.15

mechanism.

^1
^ Pt(PPh3)2 + PFh^ (8)

Pt(PRh3)3 + Mel ^ trans-Me(I)Pt(PPh3)2 + PPh^ (9)



^3
Pt(PPh2)2 + Mel

In benzene at 25

^2
^3

indicating that the dissociated species Pt(PPh2)2 is 17.5 times more
reactive than the undissociated species Pt(PPh2)2.

Other platinum(O) precursors studied in oxidative addition
17reactions have included Pt(C0D)2.

1. 3 Platinum(II) Complexes

Divalent platinum forms stable mononuclear conplexes with anionic

and neutral monodentate ligands. Bidentate ligands can form either

mononuclear chelates or bridging dinuclear conplexes. Mononuclear,

four coordinate planar conplexes are normally isolated from reactions

of platinum(11) substrates with tridentate ligands (the tridentate

ligands acting in a bidentate mode). ?ppreciable tendency toward

higher coordination number is manifested when tetradentate ligands,

particularly of the heavier donor atoms (eg. As, Sb), are utilized.

Organoplatinum(ll) conplexes can be derived from a variety of

sources, including oxidative addition of organohalides to zerovalent

platinum conplexes, transmetallation of platinum(11) halide
conplexes, and cyclometallation. These methods of synthesis will be

reviewed in Chapter 2.

The first methylplatinum(ll) conplexes were synthesized by Chatt

and Shaw.^

cis/trans-X^Pt (PR^) ^ + xs MeMgl ^ cis-Me^Pt(PR^) ^ +
trans-Me(l)Pt(PR^)^ (11)

cis-CUPt(PR^)^ + 2MeLi cis-Me^Pt(PRj)^ + ZLiCl (12)

9 .

trans-Me(1)Pt (PPh^) (10)

= 1.8 X 10~^ 1 mol~^ -1
sec

= 3.5 X 10~^ 1 mol~^ -1
sec

= 2.0 X 10~^ 1 mol~^ -1
sec
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Dialkylplatinumdl) corrplexes exist excliosively as the cis
iscHTier.^® The miversal adoption of the cis configuration is a
consequence of the fact that strong o bonding anionic groi:5>s, such as
methyl groups, will require bonding orbitals which are of least
energy, and these will be orbitals vhich are directed at 90 to each
other in the square plane. In general, arylplatinum(II) conplexes
are more thermodynamically stable than their alkyl analogues. With
alkylplatinum(II) a bonds, the bond is formed by overlap of a filled
sp^ hihrid orbital on the alkyl carbon atom with an enpty sp^d^2-^2
h^hrid orbital on the metal atom. In the case of an arylplatinumdl)
bond, overlap is between a filled sp^ hybrid orbital on the aryl
carbon atom with an appropriate sp d 2- 2 hybrid orbital on the!X. ^ j

platinum atom. However, in addition to this direct overlap of
orbitals, there exists the possibility of forming k bonds by overlap
of the filled p^ orbitals of the aryl ligand with the appropriate
eirpty hybrid orbitals on platinum, as well as k back bonds from the
filled platinum hybrid orbitals to the empty p^* antibonding orbitals
of the aryl ligand. Thi:is, it is not surprising to find that
arylplatinum conplexes are more easily prepared and jxnrified, and in
general are more stable, than corresponding alkyl conplexes.

Although scant quantitative evidence exists, it is known that the
-1 19

Pt-C^H^ a bond has an energy of 264 + is kJ mol . The
6 5

methyl-platinum bond energy has been determined from thermal
deconposition reactions of various methylplatinum conplexes, and is

. ^ 20a
considered to be of the same order as a platinum-iodine bond.

Values range from 144 kJ mol ^ to 163 + 20 fcJ mol

Both Pt-C aryl and alkyl o bond energies are rather less than
-1 21

that of the C-C a single bond, 347 kJ mol , and the C-H a bond
—1 99364 kJ mol , which are the bonds formed in the main products of

thermal deconposition. Thus, the stability of the platinum-carbon
bond appears to be of kinetic rather than thermodynamic origin. The
kinetic stability of a caipound decreases with increasing
teiiperature, vhich accounts for the low tenperatures necessary in the
preparation of most conplexes containing metal-carbon a,bonds.
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Initially, the observed instability of siitple organotransition

metal derivatives was ascribed to the inherent weataiess of the

metal-carbon a bond.^ Currently, it is accepted that the instability
of a metal-carbon a bond arises from the availability of low energy

pathways for deconposition. Common cleavage mechanisms include
23reductive elimination and p -hydrogen elimination from the

24
ligand. (equations (13) - (16))

/

\
LpM

R

LnM R—R (13)

cis-Ph^Pt(RjP)^ ^^V^2 \ //~ (14)

trans-C^H^ (C1)Pt (PEt^) ^ •
/ D J Z

Reductive elimination:

H H
I
M -•X'

M — H

(15)

RHC = CH2

trans-H(C1)Pt (PEt^) ^ + H^CKH^ (16)

P-hydrogen elimination:

Usually, after p-hydrogen elimination, the metal hydride formed
is not stable enough to be isolated and deconposes to the metal.

Stabilization of metal-carbon a bonds can be achieved by blocking

of these concerted deconposition pathways, eg. occupation of

neighbouring coordination sites can suppress p-hydrogen elimination.
Ortho-substituted aryl ligands provide a good exanple of a series of

very stable conplexes vhose extra stability relative to conplexes

involving meta, para or unsubstituted aryl ligands is largely of

kinetic origin. BuUq^ ortho substituents prevent the aryl rings from
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rotating about the platinum-carbon o bond,

ortho group remains in a positio

hinder attack at the platinum atom.'

This ensures that the

ortho group remains in a position where it can most effectively
25

The iitportance of p-elimination as a decoirposition mechanism for
platinum(II) alkyIs is eirphasized by the much higher stability of

methylplatinum(II) than ethyl or higher n-alkyl derivatives.

A very large number of X-ray diffraction studies of coirplexes

containing platinum(II)-carbon a bonds have been reported. The mean
! 3covalent radii for carbon atoms have been given as 0.772 A (sp ),

2 260.667 A (sp ) and 0.603 A(sp), which together with a covalent radius
27of 1.31 for platinum(II) suggests typical bond lengths of 2.08 A

(Pt-C sp^), 1.98A (Pt-C sp^) and 1.91A (Pt-C sp). Examination of the
structure of a range of coirplexes, containing platinum(II)-carbon a

bonds trans to ligands of moderate trans influence, yield bond

lengths near the expected value (Table I-I), consistent with a

typical a bond with no appreciable n character.

Table I-l
3

Typical Pt(II)-C (sp ) Bond Lengths

Conplex Pt-C,A trans to Reference

]yie(Cl)Pt(PPh2)2 2.08 (1) C1 28

Me(CI)Pt(Hy[ePh2)2 2.081 (6) CI 30

]yie(C^Hg)Pt(COD) 2.068 (8) COD 29

Me (C2F^ )Pt (HBpz^-N,N' ,N") 2.058 (14) pz 31

The reactions of organoplatinum(II) coirplexes can be broadly sub

divided into four categories:
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(i) Reactions which rely on the variable oxidation states of

platinum. This class of reactions includes oxidative addition
and reductive elimination reactions.

Qxidative-addition and reductive-elimination reactions will be

reviewed in Chapter 4.

(ii) Insertion reactions in which the Pt-C a bond is modified,eg.

90°, 80atm

trans-Me(C1)Pt(PEt^^ + CO , ' trans-MeCO(Cl)Pt(PEtj)^ (17)
140°

Carbonylation of afkylplatinumdl) conplexes usually requires
vigorous conditions and the reactions are reversible on further

??heating. They are considered to proceed via a

five-coordinate intermediate, which has been observed during

MyiR studies, and a conplex actually isolated for
Ph(Cl)Pt(CO) (P(C^H.]SIMe„)_)„.^^ The lower tendency of

D 4 Z o /

platinum(II) to expand its coordination nunber to five in
coirparison to palladium(II) accounts for the irore vigorous
conditions required in carbonylation of platinum(II) coirpared
with organopalladium(II) coiplexes.

Other molecules vbich insert into the organopIatinum( II)-carbon

bond include sulphur dioxide, isocyanides, olefins and
33acetylenes.

(iii) Reactions which involve a strong dependence on the strength of

the platinum-carbon a bond, of vhich both chemical and thermal
cleavage are exaiiples.

Reaction of organoplatinum(II) conplexes with electrophiles

such as anhydrous hydrogen chloride can cause cleavage and

reduce the number of organo groups boimd to platinum. For

exanple, anhydrous hydrogen chloride cleaves the methyl-
platinum bond in cis-Me^Pt (PEtj)2•̂
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1 HCl
Me Pt(PEt ) Me(Cl)Pt(PEt,)„ + CH (18)

benzene

1 HCl

Me(Cl)Pt(PEt2)2 cis-Cl^Pt(PEtj)2 + CH^ (19)
benzene

The cleavage reaction may occur by either an 5^2 mechanism;

Pt-R + H-Cl ^ Pt Pt-Cl + RH
I I
I I

C1 (20)

an oxidative addition - reductive elimination sequence ;

H

k I k
Pt(II)-R + IPCl [Cl-Pt-R] ^ Pt(II)-Cl + HR (21)

(if kj^ > > k^ then the intermediate platinum(IV) complex may be
isolable), or by direct attack by the electrophile on the

platinum-carbon bond.

H
X \

/ S

Pt-R + h"^ [Ft ^R]"^ Pt"^ + HR (22)

The mechanism followed depends on such factors as the nature of

the ligands surrounding platinum, and the nature of the

electrophilic reagent and the organo group bound to platinum,

eg. powerful electron donors such as bipy favour an oxidative

addition - reductive elimination sequence, whilst sterically

demanding and modest ligands such as COD favour the S_2
Hj

mechanism.

Thermal decottposition of acyclic organoplatinum(II) complexes

results in cleavage of the platinum-carbon a bond and formation
34

of alkanes and alkenes.
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(Bu")2Pt(PPh2)2 ^"^4^10 + Pt (23)

In mixed eTkyl corrplexes, the elimination may take place from

either the a , p , or y carton atoms, but it is the hydrogens
bound to the p-carbons which are particularly siasceptible to
this reaction. The distribution of allcane and alkene indicates

that the relative ease of p-hydrogen elimination depends on the
35number of p-hydrogens present in the two alkyl groups.

iyte(Et)Pt(PPh2)2 ^ + C2H^ (24)

+ C3H3 (25)
1 : 0.61 ; 0.64 : 0.95

Photolytic cleavage of organoplatinum(II) conplexes yields
products different than those fonned by thermolysis, and is

35
consistent with the formation of radicals.

(iv) Replacement reactions v4iich involve entities other than bonded

organo groips vhich are bound to platinum. This class of
reaction is very inportant and is responsible for the synthesis

36
of an enormous number of organoplatinum(II) complexes.

Me2Pt(C0D) + L Me2PtL + CDD (26)
L = 2PPh2, 2py, bipy, 2ASMe2f Me2'^2'^2'^2

[Me2Pt(Me2S)]2 + 2L 2iyie2PtL + 2iyie2S (27)
L = bipy, phen

1. 4 Platinum(IV) Complexes

TtLl tetravalent platinum complexes exhibit regular octahedral

structures, except where chelating or bulky ligands cause minor
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distortions. Both solid-state X-ray diffraction studies and solution

% NMR results support the exclusive octahedral structure for
platinum(IV). Because of the considerable ligand field splitting
which rende

diamagnetic.

which renders the d^ metal ion low-spin, all conplexes are

The general preparative methods for platinum(IV) conplexes
containing a Pt-C bond are based on either oxidative addition of an
appropriate reagent to square-planar platinum(II) conplexes
(equations (28), (29), (30)), '̂̂ '̂̂ ® or ligand exchange

39,40processes. '

trans-Me(I)Pt(PEt^^ + Mel ^ (28)

I4e2Pt(CQD) + H^Cpz^ + I2 ^ Me2l2Pt(H2CpZ2) + COD (29)

Me2Pt(bipy) + Mel •- Me2lPt(bipy) (30)

[Me^Ptl]^ + L Me2lPt(L) (31)
L = bipy, HBpz^, 2py

[Me^Ptl]^ + KBpz^ ^ Me2Pt(Bpz2) (32)

Methylplatinum(IV) conplexes are normally classified as
containing the MePt, Me^Pt, Me^Pt or Me^Pt unit. Regardless of
ancillary ligands, the methyl groups are always in a cis or fac
arranganent, emphasizing the high trans influence of the methyl group
(Figure 1.3)

Me

Br^ I ^Me
Me

PhMe2P''^ I Me ~pz
PMeaPh

Pz

cis fac

Figure 1.3
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It is noteworthy that despite a number of claims, IVIe^Pt has not
been isolated as a siirple conplex, although tetramethylplatinumdV)

conplexes do exist, and are usually synthesized by transmetallation
39

of the appropriate trialkylplatinum(lV) precursor.

]yte2lPt(bipy) + IVfeLi ^ ]yte^Pt(bipy) + Lil (33)

Recently,the first binuclear tetramethylplatinum(lV) conplex,

[Me^Pt2(Me2^^ ^2' synthesized.

-4LiCl, -2Lil
2Cl„Pt(Me„S)„ + 6MeLi +2MeLi ^ [Me.Pt„(Me„S) ]„ (34)

The conplex slowly deconposes in acetone at room tenperature to

[Me-Pt(OH) ]., and rapidly undergoes displacanent reactions with
•3 4

bidentate ligands to yield rrononuclear tetramethyl conplexes.

[]y!e^Pt2(Me2S)]2 + 2L 2iyie^PtL + 21^2^ <35)
L = bipy, 1.10-phen, Ph2PCH2PPh2

Homoleptic platinum(lV) lithium alkyls, eg Li2[PtMeg], have been
synthesized.'̂ ^ They are unstable to heat, and are violently
hydrolyzed \dien exposed to moisture.

Alkylplatinum(IV) conplexes are fairly stable with respect to
hydrolysis, but on thenrolysis undergo elimination reactions, an
intermediate platinum(ll) conplex often being isolated, eg. when many

fac-Me^PtdV) conplexes are heated they eliminate ethane cleanly.

fac-Me^lPt (PMe2Ph) 2 ^ trans-Me(1)Pt(H4e2Ph) 2 + (36)

X-ray diffraction studies carried out on methyl conplexes of
platinum(IV) indicate that the methyl bond lengths are almost

identical to methylplatinum(ll) bond distances (Figure 1.4)



Me^ ^C—
Pt .C

/ \ /ny N—N H

MePt(II) 2.024(9) MePtdV)

trans to N 2.032(5)

trans to I 2.077(5)

Figure 1.4
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1. 5 Platinum Complexes of Interest to this
Investigation

The poly(l-pyrazolyDtxDrate ligands, K[H B(pz) ] (n=2-4), first
43

developed as ligands by Trofimenko, have been found to confer

considerable stability on many organometallic coirplexes. Five

coordinate cortplexes of platinum(II) are sufficiently rare that
44 ... ...

Clark investigated the possibility of stabilizing such species

using the tridentate polyd-pyrazolyDborate ligand, HEpz^. In
particular, he was interested in the formation of five coordinate
olefin and acetylene carplexes, since often such complexes have been

postulated as intermediates in the transition metal catalyzed
polymerization and hydrogenation of olefins and acetylenes. He found

that by utilizing trisd-pyrazolyDborate as a tridentate ligand, a
number of five coordinate methylplatinum(II) conplexes of acetylenes,

olefins and allenes could be stabilized and isolated, eg.

spectroscopic studies support the structure (figure 1.5) shown for

several acetylenes.



Figure 1.5

PZ

R. R-= CF3. (CH3)02C
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This approach to the development of higher coordinate geoinetries
O

for d methylinetal systems has been applied in our laboratory, with

the additional utilization of the neutral and isoelectronic poly(l-

pyrazolyl)methanes.

Thus, dimethylgold(III) nitrate reacts with tris (1-pyrazolyl)

Tane to form a sqpiare

interaction (figure 1.6).'
methane to form a sqpiare planar conplex with an additional weak axial

45

Cn-,-
I
I J
AuC J

Me

Me^

ring 3

c;

methyl 2 \ / methyl 1

Au.. .N = 3.139(7)

Figure 1.6

The gold atom is slightly above the square plane defined by the

two methyl groups and the two strongly bonding nitrogen atoms of the

tris (1-pyrazolyl)methane, and is close to (0.33A) the mean plane of
45

the axial pyrazolyl group.
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Dimethylplatinumdl) is isoelectronic with dimethYlgolddll), and

also exhibits square-planar geometries in its ccaiplexes, and thus a

trisd-pYrazolyDmethane derivative of dimethylplatinumdl) was

synthesized to compare its behaviour with dimethylgolddll).

Reaction between Me2Pt(C0D) and trisd-pyrazolyl)methane yielded
an intractable white powder. During preliminary characterization of

this intractable solid, a "crystallization" from hot pyridine gave a

microcrystalline product. Microanalysis, spectroscopic and physical
46

data showed that a cyclometallation reaction had occurred.

Me Nhot \ / \
Me Pt(HCpz ) Pt C (37)

pyridine / \
py u-N "

(A) MePt(HCpz2(C2N2H2)-C,N) (py)

The authors assumed that methane was eliminated from the
46cyclometallation reaction.

The occurrence of cyclometallation reactions for reagents

containing more than one donor group has been reported for two

classes of reagent. The most common are those for which polydentate

coordination by the donor groi:p encourages or requires metallation at

an additional site(s), eg. for nitrogen donor ligands palladation of

phenyl rings of [PhCH2(Me)NCH2]2 and l,3-[py(Me)CH]2CgH^ results in
formation of Pd[PhCH2 (JVIe)NCH2™2CH2N(Me)CH2CgH^-N,N,C]Cl (figure
1.7)^^ and
respectively.

1.7)^^ and Pd[2,6-(py(Me)CH)2CgH2-N,C,N](02Ciyie) (figure 1.8)'̂ ^

However, cyclometallation of a donor ring(s) of a polydentate

ligand, rather than simple donor atom chelation by the ring(s), has
been reported for only a limited nurnber of reagents, eg.

3+ 492,2'-bipyridyl in [Ir(Cj^QHgN2-N,N')2(Cj^qH^(NH)-N,C) (H2O) ] and
[(PtPh(4-Bu^py))2( M-C^QHgN2-N,C,N',C') ] (figure 1.9)^° and
2-(2'-thienyl)pyridine[pyC^H2S], in [Pd(py(C^H2S)-N, )C(^-C1) ]2-^^
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CH2Ph

Figure 1.7 Figure 1.8

Figure 1.9

Coiplex (A) (equation (37)) is the only r^rted exaiiple of
cyclonetallation of a potential donor ring in vMch the rings are
linked ty a bridging group (CH), rather than linked directly as in
ZjZ'-bipyrid^l or 2-(2'-thienyl)pyridine. Reaction of palladium(II)
acetate with pyridine groi5>s linked in this manner, eg. with py^CH^,
py (Eh)CH and py_CH, results in isolation of N,N'-coordination

52
corplexes.

Complex A reacts with triphenylphosphine to form a bis(phosphine)
coiplex in vdiich the tris(l-pyrazolyl)methane ligand acts as a

45
unidentate C-donor.
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A"
\

MeE>t(HCpZ2(C3N2H2)-C,N)py + 2PEh2 PV ^38)
PhaP ^pph3

On heating this phosphine derivative, an additional
cyclcmetallation reaction occurs to form the doubly cyclometallated

46ccarplex [Pt(HCpZ2(C2H2N2)-N,C) (PPh2(CgH^)-P,C) ].

A"
\

MePt(HCpz2(C2H2N2)-C > ^39)
PhaP^ C-N

A / \ / \

N—N + IVMi

In view of the unusual features exhibited by these conplexes,

further studies have been undertaken to ascertain the tendency of

HCpz^ and related polyd-pyrazolyl) ligands to undergo
eyelometanation. The reactivity of scaiie of these corrplexes toward
other phosphine ligands and carbon monoxide has also been studied,
together with oxidative addition reactions to give, for exairple,
methylplatinum(IV) coiplexes with metallated tris(l-pyrazolyl)methane
as a tripodal [N-C-N]" grotp formally isoelectronic with tridentate
[pZ2BH-N,N',N"]~.

The aim of this stix^ is to investigate factors affecting
cyclonetallation reactions of ligands containing at least one
pyrazolyl grorp, and to develop the chemistry of cyclometallated
cojiplexes.

Within these two broad aims, and with methine bricked HCpz^ as
the basic 'model' ligand, specific aims initially included:

(i) to determine whether the cyclometallation reaction can be

extended to related ligand systems, in particular ligands
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containing less than three donor grovps v4iere at least one of

these is pz, to ascertain effects of donor ring basicity and
ligand geometry, and ligands containing other potential

metallating groi:ps and substituents on the carbon.

(ii) to develop the chanistry of cyclometallated ccnplexes to

include a range of ancillary ligands to encourage various modes

of coordination of the cyclometallated group, eg. C,N-bidentate

and C-unidentate, and oxidative addition chanistry to generate
exanples of C,N,N'-tripodal systans.

These aims were sought in several ways, but the general strategy

relied on development of an iirproved procedure for synthesis of
cycloplatinated HCpz^ in MePt(HCpZ2(C2H2N2)~C,N) (py), to give a
better potential route to other cycloplatinated systans, and

extensive development of ligand synthesis to generate a series of
ligands considered appropriate for investigation of the general aims.
Precise reasons for choice of ligand, and reactions with Ft(II) to

form cyclometallated coirplexes are given in the appropriate chapiters.
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CHAPTER TWO

STARTING MATERIALS

2.1 Preparative Techniques

Since the first synthesis of stable platinum(II)-carbon a bonded

conplexes by Chatt and Shaw sate thirty years ago/ numerous diverse
cotplexes have been synthesised by a variety of methods. However,

only a few of these preparative methods are of general synthetic
applicability.

2.1.1 Transnetallation

Transmetallation is the most widely utilized preparative

technique and involves the reaction of a metal salt with a preformed

organometallic reagent. Mast typically, a dihalometal(II) coiiplex is

reacted with a Grignard or organolithium reagent. The reaction can

lead to mono- or disubstituted organoplatinum(II) conplexes depending

upon the nature of the metal precursor, relative amount of

organometallic reagent and whether it is a Grignard or an

organolithium reagent. This is illustrated in the following
/•, 2a,b,c,d.equations (1 - 5). ' '

l2Pt(C0D) + xs Meiy^l

I^PtdSED) + xs M^I

l2Pt(C0D) + 2MeLi

Cl^PtdSED) + 2MeLi

2Cl2Pt(Me2S)2 + 4MeLi

Me2Pt(C0D) + lygi^
(71%)

Me(i)Pt(NBD) + lygi,

(45%)

Me2Pt(C0D) + 2iyieLi
(84%)

(94%)

Ie2Pt(I
(71%)

Me2Pt(NBD) + 2LiCl

[Me2Pt(Me2S)]2 + 2Me2S + 4LiCl

(1)

(2)

(3)

(4)

(5)
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Organolithiim reagents are more powerful alkylating agents than

the corresponding Grignard reagents, and Grignard reagents can

participate in reversible equilibria and lead to a mixture of

products in varying yields, and thus organolithiim reagents are more

often than not the reagent of choice.

Organometallic reagents other than organolithium and Grignard

reagents have been used to transfer an organo group to platinum(II)

coirplexes, eg. organomercurials may be used in essentially the same
3manner as Grignard reagents.

benzene
Eh Hg + C1 Pt(ER ) trans-Ph(Cl)Pt(PRj)^ + PhHgCl (6)

reflux

The reaction of orgaronercurials with platinum(O) coirplexes

provides a versatile route to alkyl-, aryl- and vinylplatinum(II)

coitplexes.

Pt(PPh^)^ + R^Hg ^ R2Pt(PPh2)2 + 2PPh2 + Hg (7)

Organotin reagents, such as Me^ArSn where Ar is aryl or another
unsaturated group (vinyl or alkynyl), have been errployed to transfer

5
the Ar groi:p to platinum.

Cl2Pt(C0D) + Me^^^Sn Ar(Cl)Pt(CQD) + Me^SnCl (8)

Ar(Cl)Pt(COD) + Me^ArSn ^ Ar^PtCCOD) + Me^SnCl (9)

When tetramethyltin is used, methylplatinum(II) conplexes may be

med, although the product of subst

the ejq^erimental conditions eirployed.

formed, although the product of substitution is highly dependent upon
6,7

100°C
Cl„Pt(COD) + SnMe ^ Me(Cl)Pt(COD) (10)

Cl^CHCHCl^

Esyiso
Cl2Pt(C0D) + SnMe^ | ^ Me^Pt (1X050)2 (11)
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Other metals vhich have been enployed as transmetallating reagents
Q

include sodium, potassium, copper and thallium.

These routes to organoplatinum(II) coitplexes are generally

enployed when the corresponding lithio derivative has the potential

to react with another substituent in the platinum substrate.

The use of organolithium reagents derived from ligands containing

a heteroatom can lead to products vhich are analogous to those

derived fron cyclometallation reactions, and these will be discussed

in Chapter 3.

2.1.2 Qxidative Addition of Organohalides to Platinum(O) Complexes

Both platinum(O) and platinumdl) conplexes undergo a wide range

of oxidative addition reactions, many of which are quite facile when

a sirrple organohalide, eg. Mel, is enployed. Thus, platinum(O)

corrplexes can oxidatively add organohalides to form
1 9monoalkylplatinum(II) corrplexes '

Pt(PEh2)3 + Mel trans-Me(I)Pt(PPh3)^ + 2PPh3 (12)

Pt(PPh_)_ + C^H^CH=CHBr ^ (C^H^CH=CH)BrPt(PPh.,)., + PPh, (13)
3355 65 32 3

The product from these oxidative addition reactions may

siibsequently be reacted with a transmetallating reagent to yield

higher organosubstituted corrplexes.

2.1.3 Cleavage Reactions

Cleavage reactions do not generate new platinum-carbon bonds, but

instead reduce the nurrber of platinum-carbon bonds,and reaction

stoichiometry must be carefully controlled to ensure that cleavage is

stopped at the required point.^
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1 HCl

methanol
Me2Pt(C0D) Me(Cl)Pt(CCD) + CH^ (14)

1 HCl

M0(Cl)Pt(CCD) ] Cl2Pt(CQD) + CH^ (15)

After single cleavage from a diorganoplatiniindl) conplex with

formation of a new R(Cl)Pt(II) corrplex, the product can then be made

to undergo a transmetallation reaction to produce a new mixed

diorgano corrplex. UhsYimietrical cis-dialkylplatinum(II) conplexes

can be produced by this method.

(PhCH2CH2)2Pt(C0D) + HCl ^ EhCH2CH2(Cl)Pt(COD) (16)

PhCH2CH2(Cl)Pt(COD) + EtlV^Br PhCH2CH2(Et)Pt(COD) (17)

2.1.4 Cyclometallation

A method of metal-carbon a bond formation used in this work

involves direct reaction of a carbon-hydrogen bond with a metal when

the organic gror:p has a donor atom, and is termed cyclometallation.

This type of reaction is reviewed in Chapter 3.

Other exairples of reactions vhich result in new or modified
12

il-carbon c bonds include insertion

eg. reactions (18) and (19) respectively

12 ... 13
metal-carbon a bonds include insertion and elimination reactions,

trans-H(Cl)Pt(PEt.,).. + C.,H. ^ trans-C.,H^(Cl)Pt(PEt.,)(18)
J Z Z 4 ZD J Z

acetone

trans-Ph Sn(C1)Pt(PPh ) ^ trans-Ph(Cl)Pt(PPh ) + Ph Sn (19)
reflux

2.2 Synthetic Considerations in the Formation of
R2Pt(II)L Complexes

Two general synthetic routes are preferred for the formation of

t(II)]

ligand).

R2Pt(II)L conplexes (R = IVfe, Ph, L = 2 mono-, or 1 polydentate
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(i) Transmetallation of the appropriate dihaloplatinum(II) ligand

conplex, X^PtL.

Qiatt and Shaw eirployed this method in their original preparation

of R„PtL conplexes,^

ci2Pt(PEh2)2 + xs ixHygi ^ ]yEe2Pt(pph2)2 + axgici (20)

This method is applicable in instances where the platinumdl)

substrate exhibits some solubility in the reaction solvent, where the

reaction is not reversible or leads to a mixture of products, and

where L is not susceptible to reaction with the transmetallating

reagent.

(ii) Substitution reaction between a preformed diorganoplatinum

conplex and the required ligand.

A diorganoplatinum(II) precursor containing a labile ligand is

made to undergo a substitution reaction with the ligand of interest.

Clark and Manzer^ synthesised a large range of conplexes by this
method, etiploying Me2Pt(CCD) as the precursor, eg.

Me^PtCCOD) + bipy Me2Pt(bipy) + COD (21)

The cyclooctadiene ligand is strongly bound to platinum, and thus

displacement of COD is difficult for ligands of low trans influence,

and high tenperatures are often required for weak donor ligands, in

particular N-donors.

Dimethylplatinum(II) conplexes of the related diolefin,

norbomadiene, NBD, have also been synthesised and studied as

reagents for synthesis. The coordination bite angle of COD in
o 14platinum(II) conplexes is reported to be about 86 . Although

crystal structures of platinum(II) conplexes with NED have not been

reported, structures of the isoelectronic rhodium(I) conplexes of NBD

show that the coordination bite of this diolefin is approximately
o 1566 . Thus, the overlap between the orbitals of the platinum atom



37.

and the NBD ligand is expected to be much less in conparison with

that of Me^PtCCOD). Consequently, the bonds between the metal atom
and NEID should be weaker, and it is thus proposed that NBD should be

more labile than CCD in sijbstitution reactions.

2cThis IS indeed the case, and lyfe^PtCNHD) has been used to
synthesise conplexes of donor ligands which showed little or no

reactivity toward Me2Pt(C0D), eg.

benzene
Me2Pt(NBD) + 2py ^ Me2Pt(py)2 + NBD (23)

A further series of alkyl- and arylplatinum(II) conplexes v^ich

have proven useful as precursors for the preparation of various R^PtL
16 17conplexes are the dialkylsulphide conplexes. ' Reaction of the

sinple conplexes Cl„Pt(R_S)„ (R = Me, Et, Pr^, Pr^) with MeLi or PhLi
16 18have been reported to yield a variety of conpounds. ' With

careful control of reagent stoichiometry dimeric organoplatinum(II)

dialkylsulphide bridged conplexes are obtained.

2(cis- or trans-)Cl2Pt(R^2^^2 [R^2^^^\^^ ^2
(R^= Me, Et, R^= Me, Ph)

The bridging dialkylsulphide ligands are quite labile and can be

laced,

reagents.'

replaced, in bridge splitting reactions, by various donor
2b,16,19

[Me2Pt(Me2S) ]2 + 2bipy —2Me2Pt(bipy) + 2Me2S (25)

[Me2Pt(Me2S) ]2 + 4L 2Me2PtL2 + 2Me2S (26)

(L= PPh^, 0.5 PPh2(012)2^2, )

Both [Me2Pt(Me2S) ]2 and [Me2Pt(Et2S) ]2 have been enployed as
precursors for substitution reactions, resulting in near quantitative

yields of products.
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An analogous diFhenylplatinum(II)diaIkYlsulFhide coitplex,

[Eh Pt(R„S) ]„, can be otployed as a precursor in the formation of
17 18diphenylplatinum(II) conplexes. '

[Eh2Pt(Et2S)]2 + 2bipy 2Ph2Pt(bipy) +2Et2S (27)

2.3 Results

2.3.1 Preparation of Cl2PtL Complexes

Neutral, inorganic corplexes of the ligands containing pyrazolyl
grot?® H2CPZ2, ]yie(H)CpZ2, Me2Cpz2, HCpz^, and Cpz^, were all
obtained, in high yield, by direct reaction between equimolar amounts
of ligand and potassium tetrachloroplatinate(ll) in a 1:1 aqueous
acetone mixture.

K2PtCI^ + L ^ Cl2PtL + 2KCI (28)

The reaction was coirplete when the red coloration of the solution
7—(due to PtCI^ ) had disappeared. This was achieved by 0.5 hour

reflux or by standing at ambient tenperature for 6-8 hours. All

caiplexes were deposited as yellow microcrystalline solids which were
very insoluble in cormnon solvents, except for Cl2Pt(Me2QPZ2) which
exhibited solubility in most solvents.

2.3.2 Reaction of MeLi with Cl2Pt(HCpz^)

Reaction between Cl2Pt(HCpZ2) in anhydrous THE and MeLi in
anhydrous ether, gave an insoluble purple product, which when heated
with nitric acid evolved iodine vapour. It was assumed that some

halide metathesis had occurred and that the product was l2Pt(HCpZ2)
and/or KCDPtdlCpz^). Reaction of Cl2Pt(HCpz^) with halide free
IXteLi resulted in isolation of unreacted susbtrate, and it was

concluded that synthesis of iyie2Pt(HCpz2) by this method is unlikely
to be feasible or of general applicability.
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2.3.3 Synthesis of Me^Pt(Hc:pZj)

The ccirplex was initially synthesised by the

displacement reaction between lyie^Pt^CQD) and HCpz^ in refluxing
benzene.

Me„Pt(CC3D) + HCpz refluxing benzene^ Me Pt(HCpz ) + COD (30)
30 hours

(58%)

Me2Pt(HCpz2) is insoluble in hot or cold benzene, and the
appearance of it as a v^ite precipitate during its synthesis
indicates the extent of the reaction.

As this coirplex is a key reagent in the studies reported in this

thesis, extensive efforts were made to iitprove the yield for its
synthesis. In addition, it was anticipated that determination of the
ideal conditions for synthesis would inprove opportunities for the

synthesis of complexes with ligands related to HCpz^.

Increasing the reflux time of reaction (30) to 48 hours in

benzene increases the yield only marginally, and removal of the

product by filtration followed by further reflux of the filtrate does
not increase the yield. However, the yield from reaction (30) can be

increased, up to approximately 80%, by the procedure outlined in
Scheme 2.1

As an appreciable additional yield of product is obtained after

initial filtration, followed by removal of volatile substances and

further reflux, it appears that displaced COD, present after initial

substitution, interferes in the reaction. When present in comparable

concentrations, free COD may compete with the HCpz^ ligand.

Although this procedure (Scheme 2.1) allows for an increase in

product yield, reaction time is still quite lengthy (30 hours).

Thus, other dimethylplatinum(II) precursors were investigated for
their reaction with HCpz^. Results from these investigations are
given in Table 2-1



iyie2Pt(CQD) + HCpz^ refluxing benzene ]vie^pt(HCpz2) +COD
12 hours

Me Pt(HCpz-)
gelid
-58%

Me Pt(Hqpz )
gelid
-20%

Combined yield
-80%

Scheme 2.1

Table 2-1

Filter

Evaporate filtrate
to dryness, add
fresh benzene,
12 hour reflux

40,

Preparation of Me^Pt(HCpz^) from Various Me^Pt(II) Precursors

Precursor Solvent^ Time (hrs) Yield (%)

Me2Pt(CQD) Benzene 30 58

Me2Pt(NBD) Benzene 12 72

[Me2Pt(Me2S) ]2 Benzene 0.5 >90

[Me2Pt{Et2S) Benzene 0.5 >90

1, At reflux no reaction was apparent after 3 hrs when either

acetone or chloroform were employed as solvents.

Higher yields are obtained with Me^PtdMBD), presumably for the
reasons outlined earlier, but the highly successful syntheses ijsing
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the dialkylsulFhide conplexes as substrates lead to the use of

[]yfe2Pt{Et2S) as a reagent for all fiarther studies.

hot

[Me2Pt(Et2^^ ^2 ^HCpz^ ^ 2Me2Pt(HCpz2) + 2Et2S (31)
benzene
0.5 hr

It was noticed during this work that [Me2Pt(Et2S) ]2 appears to be
more stable than [Me2Pt(Me2S) ]2, and it can be kept at room
tarperature under normal atmospheric conditions for at least 6

months, whereas [Me2Pt(Me2S) 12 requires storage at ca -20°C, and thus
[Me2Pt(Et2S) ]2 was chosen as the preferred reagent.

2.3.4 Preparation of [Me2Pt(Et2S) ]^

In the first reported^^ preparation of []y[e2Pt(Et2S) ]2 it was
noted that at least three and preferably four equivalents of MeLi

(halide free) were required to avoid extensive decorrposition during

reaction with Cl2Pt(Et2S)2. IMer the experimental conditions
errployed in our procedure it was found that if three to four

equivalents of MeLi were used the mixture darkened considerably

during the hydrolysis step, and the final yield of product was very

low. This may be attributed to the formation of the homoleptic

tetramethyl conplex Li2E^e^, formed in the presence of a large
excess of MeLi. Indeed, if Cl2Pt(Pr^2S)2 reacted with four
equivalents of MeLi, colourless crystals formulated as Li PtMe..ether

16
are isolated as the major product.

On hydrolysis, Li2PtMe^.ether rapidly deconposes. Thus, in the
synthesis of [Me2Pt(Et2S) ]2, 2.1 equivalents of halide free IVfeLi were
errployed, resulting in yields on isolation of product consistently

between 70-80%.

If lyfeLi made from lithium wire and Mel, and thus containing Lil,

was employed in the synthesis, [Me2Pt(Et2S) ]2 was not isolated, but
an iodide conplex is obtained, presumably iyte(I)Pt(Et2S)2, since a
complex of this stoichicanetry is observed fron the reaction of
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Cl2Pt(Et2S)2 with Alternatively, if the MeLi solution
contains Mel then it is possible that the binuclear

tetramethylplatinum corrplex [Pt„Meo (Et„S)„], is formed, in anz o z z 22^
analogous manner to that reported by Lashanizadehgan et al.

2.3.4.1 Conclusion

Of the two general methods available for the synthesis of

dialkylplatinum(II) cortplexes containing HCpz^, the substitution
reaction between a preformed diorganoplatinumdl) conplex and ligand

was found to be the only successful route. The dimeric corrplex

[Me2Pt(Et2S) ]2 is preferred as the precursor.

2.3.5 Preparation of Me^PtL Complexes

A major aim of this work was to investigate the cyclometallating

behaviour of the moiety with a range of ligands containing

at least one pyrazolyl group, but with a minirron of two donor atoms

per ligand. To this end a range of bidentate and tridentate

pyrazolyl ligands were synthesized, and their in soitre

cases their Eh2Pt(II) coitplexes, obtained. The ligands were either
chosen or designed with essentially three factors in mind

(i) a conparison of bidentate versias tridentate ligands, eg. H^Cpz^
versus HCpz^

(ii) pyrazolyl groip metallation versus other donor group

metallation, eg. H^Qpz^ versus H2C(py)pz

(iii) pyrazolyl metallation versus other, non-donor group

installation, eg. HCpz^ versus EhdDCpz^

Table 2-2 lists the ligands used to prepare Me2PtL complexes together
with the method of preparation



Table 2-2

Preparation of Ms^PtL Cctmplexes

Ligand lyfethod of Preparation Yield (%)

H2CPZ2 A 89

Me(H)CpZ2 B 88

^2^^2 B 82

Eh(H)CpZ2 A 90

H2C(mim)pz B 91

H2C(py)pz B 84

HCpz^ A 93

HC(miin)pz2 A 86

HC(thio)pz2 A 82

Cpz^ B 91

lyfethod A
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[Me2Pt(Et2S) and ligand in 1:2 itiole ratio were heated witli
stirring in anhydrous benzene under a nitrogen atmosphere. After 2-5

minutes of gentle warming the platinum precursor dissolved and the

solution generally ejdiibited a yellow coloration. After a further

10-15 minutes heating the required conplex was deposited as an
insoluble, whitish solid. The product was filtered from the hot

solution, washed with ether and air dried.
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Method B

[Me2Pt(Et2S) ]2 and ligand in a 1:2 mole ratio were stirred and
refluxed in anhYdrous acetone, under nitrogen, for 15 minutes to

3 3yield a clear solution. Hexane was added (2 cm per 10 cm of

acetone) and the acetone ranoved by rotary ev^»ration. As the

volume decreased, vdiite solids precipitated. These were collected

and air dried.

2.3.6 Preparation of Ph2PtL Complexes

Some representative Ph2PtL corrplexes were synthesized in order to
carpare both their cyclometallating and oxidative addition behaviour
with their dimethyl analogues. The conplexes synthesized are listed

in Table 2-3.

All conplexes were prepared by method A in 2.3.5, utilizing

[Eh2Pt(Et2S) ]2 in place of [Me2Pt(Et2S) ]2.



Table 2-3

Preparation of Ph^PtL Complexes

Coirplex Yield (%)

Ph2Pt(HCpz2) 94

Ph^PtCH^Cpz^) 92

Pll2Pt(M02CpZ2) 92

Ph2Pt(Me(H)Cpz2) 90

Ph2Pt(H2C(py)pz) 90

Ph2Pt (H2C (niijn)pz) 87

Ph2Pt(HC(Fy)pz2) 84

Pli2Pt (HC (thio)PZ2) 88

Ph2Pt (HC (mim)PZ2) 83

2.4 H IJMR Spectra of Ft(II) Complexes of

Pyrazolyl Ligands

2.4.1 Proton Assignment in Substituted Pyrazoles

45

In the ^ NMR spectrum of N-s\jbstituted pyrazoles (figure 2.1),
the H4 proton resonance is well separated from both the H3 and H5

proton signals, occurring 1-2 ppn iqjfield.
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//•
Ni N2

R

R = organic group (not H)

Figure 2.1

It appears as a pseudo-triplet due to coupling with neighbouring

H3 and H5 protons. The H3 and H5 proton resonances appear as

doublets due to coiqsling with the H4 proton (close exaitdnation
4

sometnnes reveals further splitting due to long range J coupling

with the H3 and H5 protons). The published literature on

organoiietallic derivatives of pyrazoles has lead to seme ambiguity in

the assignments of H3 and H5 proton signals. Observations Vihich
22

assist in the assignment of these signals include,

(i) g is always larger than ^

(ii) The H3 signal is broadened by the nuclear guadrupxple relaxation

effect of N(2). Thus, if the H3 signal is a singlet (4 H),

it is broader than H5, if it is a doublet (4 = H), it is less

well resolved than H5.

(iii) H5 is more sensitive to solvent effects than H3.

Figures 2.2(a) and 2.2(b) illustrate the ^ NMR spectrum of tris-
(l-pyrazolyl)methane, HCpz^, in CDCl^ and D6 acetone respectively.
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JV_

a. i 8 a.n 7.8
I

7.S

CHCI,

I
7.4

PPM
7.1 7.0 e.S S.6 6.4

Figure 2.2(a) ^ MMR spectrum of HCpz^ in CDCl,

CH
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—I 1 1 i 1 1 1 1 1 1 1 1 1 i—
9.0 8 8 8.6 8.4 8.^ 8 0 7.8 7.6 7.4 7.1 7.0 6.8 6.6 6.4

PPM

Figure 2.2(b) ^ NMR spectrum of HCpz in ?iCetone

From the magnitude of the coupling constants and the degree of

resolution the H3 and H5 resonances can be assigned. Note that the

relative positions of H3 and H5 are reversed in acetone and

chloroform. The renaining low field resonance is due to the apical

HCpz^ proton.
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Criterion (i), ^ > J3 4 been supported by a 2D
heteronuclear COSY spectrum for a trisd-pYrazolyDmethane rhodium

23 . . . .coirplex. This showed unambiguously that the proton signal with the

largest coupling constant was bonded to the C5 position of the

pyrazole ring.

To illustrate the generality of this assignment procedure. Table

2-4 contains the proton assignments of some pyrazole based ligands

which will be utilized in coitplexes.

Table 2-4

^ MMR Ligand Assignments

Ligand Solvent H4 Proton Assignment

(ppm) '•^(3,4) ® 'J(4,5)
H2CPZ2 CDCl^ 6.26 7.55 (1.8) 7.63 (2.4)

(CD3)2C0 6.39 7.61 (1.5) 7.98 (1.8)

]yi0(H)Cpz2 CDCl^ 6.35 7.53 (2.0) 7.57 (2.4)

CDCI3 6.30 7.6 (1.8) 7.43 (2.5)

Ph(H)Cpz2 CDCI3 6.40 7.63 (1.8) 7.51 (2.4)

Note that in the ligands and Ph(H)Cpz2, the relative
chemical shift positions are reversed with respect to other ligands.

2.4.2 Proton Assignment in Metal-Pyrazolyl Complexes

The proton resonances for a ligand bound to a metal generally

exhibit a downfield Shift on coordination. In simple coordination

coirplexes the multiplicity of ligand resonances is not normally

altered significantly, and unairbiguous proton assignment is generally
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Straightforward. For exanple, consider the siitple conplexes

X^Hgdi^Cpz^) (X = Cl, MD^) arid Cl2Pd(H2Cpz2) whose NMR data are
given in Table 2-5.

Table 2-5

^ NMR Assignment of Simple Inorganic Metal-Pyrazolyl Complexes

Conplex^^^
^ Assignment (ppn)

H4 ® '•^(3,4) ® '•^(4,5) Reference

6.77 7.47 (1.78) 7.85 (2.40) 31

Cl2Hg(H2Cpz2) 6.52 7.79 (1.9) 8.17 (2.5) 24

(N03)2Hg(H2CpZ2) 6.45 7.66 (1.5) 8.12 (2.0) 24

Cl2Pd(H2Cpz2) 6.56 8.69 (2.4) 8.22 (2.7) 20

(a) Solvent D6 acetone
4

(b) Further splitting of the H3 and H5 is observed ( J) and is in

the order of 0.5 - 0.7 Hz.

195Platinum occurs as several isotopes, and the isotope Ft with

nuclear spin I =V2 occurs in 33.8% abundance. This nucleus can
couple with ^ in its corrplexes, and this coupling is often seen in
NMR spectra as a central resonance flanked by symmetrical smaller

195
resonances. The distance between these Ft satellites is a measure

1^_195.
of the Ft coiqpling constant.

1 195
Clark has observed Ti- Ft coupling in the spectra of

25trisd-pyrazolyDborate conplexes of platinum. Coupling was

observed for all of the three pyrazole protons, confirming that tlie
1 195

pyrazolyl rings are coordinated. TI- Ft coupling constants are of

more value when the ligand donor atom is also bonded to a proton, eg.

the MeFtdl) group.
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For iXte^Pt coirplexes the value of the coupling constant is
dependent upon the electronic properties of the platinum atom,
including its oxidation state.

2.4.3 Characterization of Complexes

Characterization of conplexes is based on microanalytical data,

^ NMR spectra, molecular weights vdiere solubility permitted, and IR
spectral measurements if solubility precluded solution studies. The
relevant data is listed with the respective carplexes in the

Experimental section. Chapter 7.

Incliaded below is a discussion on the EMR aspects of the various

coirplexes.

2.4.3.1 Cl^PtL Complexes

Conplete characterisation of this series of coirplexes was

difficult due to their insolubility, although infrared spectra

exhibit bands in the appropriate position for (PtCl^) in a cis-
Cl2PtN2 arrangement (See experimental).

The platinum(II) and palladium(II) coirplexes of ffe-Cpz^ have been
26reported during this thesis work, although the Pt conplex was not

well characterized. The coirplexes were formed by reaction between

the appropriate benzonitrile substrate and ligand in refluxing
chloroform.

Cl2Pt(PhCN)2 + L ^ CI2ML + 2PhCN (29)
M = Pd, Pt

An X-ray diffraction determination for the soluble palladium
coirplex Cl2Pd(Me2Cpz2^ > i^evealed the structure shown in figure 2.3,
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Ncn

'C<9) ^

(a) (b)

Figure 2.3

with the chelate ring adopting the boat conformation. An agostic
interaction is proposed for a proton of the axial methyl bridgehead

group (Pd H 2.57A).

The ^ NMR spectrum of this conplex exhibits typical pyrazolyl
resonances in the expected positions. Care should be exercised in

reading the interpretation of the NMR data contained in this
2.Sreference as the assignment procedure outlined earlier has not

always been strictly adhered to.

Although most Cl2Pt(II) corrplexes prepared in this work exhibited
poor solubility in deuterated solvents, it was possible in some

instances to obtain low quality spectra using EJVISO as solvent,

although resonances were broad. The aromatic portion of a typical

spectrum, for Cl2Pt(]XIe(H)Cpz2), in DMSO is shown in figure 2.4. The
extremely broad, low intensity signal suggests that inversion of the

metallocycle is occurring and that this process is fast on the NMR
Z6time scale. Minghetti et al. also observed this process for some

closely related palladium coitplexes, and they were able to resolve

this at low torperature.
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CH L

PFM

Figure 2.4 ^ ISIMR spec±rurri of the Aromatic Region of
Cl^Pt(Me(H)Cpz^) in OyiSO

2.4.3.2 Me^PtL Canplexes

Not all canplexes exhibited sufficient solubility in ccirnion
solvents for their % NMR spectra to be recorded. The use of IMSO as
a solvent resulted in low intensity, broad, unresolved signals and

thus this was not enployed. Where solubility permitted, the NMR
spectra were recorded in either CDCl^ or D6 acetone, and if the
conplex was soluble in both solvents the solvent vhich gave the best
recorded resonances was enployed. It is sinplest to discuss the

spectra of these catplexes in four groxps.

(i) Me^PtL where L is a bidentate ligand and contains a single
pyrazole group.

(L = H2C(py)pz, H2C(raim)pz)
The assigned ^ NMR spectrum of Me2E^(H2C(py)pz) is shown in

figure 2.5.
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X

Me ,N—N H
\ / \ /

PI ,c.

' b"Me 1 MePt trans to pz

2 MeR trans to py

i
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—i 1 1 1 1 1 : 1 1 1 1 1 1 1 1 1 1
9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

PPH

Fiqvxre 2.5 ^ ISIMR spectrum of iyfe^Pt(H^C(py)P2) in CDClj

As would be e>53ected, two inequivalent resonances are

observed. In accordance with, later I/feEt assignments (see Oiapter

3,4), the MePt resonance with the largest ^J(^-^^^Pt) is assigned as
trans to coordinated pYtasolyl. ?^)art from a general downfield

shift, the ligand resonances are not altered significantly conpared
with the free ligand except that platinum satellites are observed for

some resonances.

Hie most notable feature of this spectrum (figure 2.5) is the

broad geminal apical ligand resonance at 5.45 ppn. This broadness is

due to ring inversion, vdiich is rapid on the NMR time scale, making

the axial and equatorial protons equivalent. Low torperature spectra

resolve this broad resonance into two sharp doxiblets, with the

coalescence temperature estimated as ca. -15°C (figure 2.6).
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CHCU

ambient

-10®C

. I

-40°C

—I 1 1 1 i 1 1 1 1 1 1 i 1 1 1 1 1
9.0 8.9 8.0 7.9 7.0 6.9 6. 0 5.9 9.0 4. 9 4.0 3.9 3.0 2.9 2.0 1.9 1.0

pDM

Figure 2.6 Variable Tonperature ^ NMR Spectra of ]yte^Pt(H^C(py)p2)
in CDClj

It is generally accepted that a geminal axial proton appears at

higher field coirpared with an equatorial proton due to shielding of
27

the former by the adjacent aromatic rings. Thus, in the low-

teirperature limiting spectrum of Me2Pt{H2C(py)pz) (figure 2.6) the
i^pfield doublet (5.12 ppn) has been assigned to the axial proton, and

the downfield doublet (5.86 ppn) assigned to the equatorial proton.

Me2Pt(H2C(mim)pz) does not exhibit variable tenperature behaviour
in the range 45 to -60°C, with only a sharp singlet being observed
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for the apical protons even at -60 C. This is indicative of toat to

boat ring inversion vhich is very rapid (NMR time scale) and not

resolved under the conditions enployed here.

(ii) ]yte2PtL where L is bidentate and contains two pyrazolyl groups
(L = H^Cpz^, Me(H)CpZ2, Me^Cpz^, Ph(H)CpZ2, PhoyieCiDcpz^)

The only conplexes which exhibited sufficient solubility for %
NMR characterization were L = Me(H)Cpz2, Me2Cpz2, and Phayfe(H)Cpz2.

The airibient tenperature ^ NMR spectrum of Me2Pt(Me(H)Cpz2) is
shown in figure 2.7.

N—N

acetone MePt

N—N
H,0

CH

II

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1—
•5 8.0 7.8 7 0 6.8 6 0 8.8 8.0 4.8 4 0 3.8 3.0 2.8 2.0 1.8 1 0

PP.M

Figure 2.7 NMR Spectrum of ]yfe^Pt(]yfe(H)Cpz^) in D6 Acetone

All resonances are as expected for the structure shown above (a

single IVteE^, and 3-, 4-, 5- pyrazolyl resonances), except that the

signals are broadened appreciably. Both the apical proton and methyl

group resonances are broadened considerably due to rapid (NMR time

scale) ring inversion. Unlike the case of Me2Pt(I^C(py)pz), ring
inversion can lead to two conformers (A, B) (figure 2.8)
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Figure 2.8

The existence of these conformers explains the broadened signals

observed for the py^azolyl ring protons. A variable tenperature

study was undertaken to establish if one configuration (A or B) was

preferred over the other. On decreasing the tenperature, all signals

began to resolve and sharpen (figure 2.9).

The apical methyl group appears as a doublet due to coupling with

the apical proton, which itself appears as a quartet. From the

relative intensity (integration) of the two apical methyl resonances

(and apical proton) it is apparent that one conformer is preferred

relative to the other, in the approximate ratio 3:2. On the basis

established previously, the furthest upfield apical proton (7.28 ppm)

is assigned to the axial position and the resonance at 7.41 ppm to

the equatorial position. These resonances are coupled to the apical

methyl resonances at 2.60 ppm (equatorial) and 2.75 ppm (axial)

respectively. Thus, at low tenperature the preferred conformation is

conformer A, with the apical proton in the axial position.
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2^

Me2Pt(Me2^22^^^^° exhibits rapid ring inversion on the NMR time
scale with a corresponding average apical methyl environment being

observed (2.20 ppn). On cooling, this signal resolves and exhibits

axial and equatorial methyl environments (figure 2.10). By

catparison with Me2Pt(iyte(H)Cpz2) the upfield resonance is tentatively
assigned to the equatorial position.
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(ill) Where L is tridentate and contains 2 pyrazolyl groups

(L = HC(miin)pz2, HC(py)pz2, HC(thio)pz2)

iyfe2Pt(HC(inim)pz2) exhibits slight solubility in D6 acetone,
allowing a ^ NMR spectrum (figure 2.11) to be recorded.
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1

|1 MePt trans to pz

2 MePt trans to py
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P.P.I

Fiqiire 2.11 ^ MMR Spectrum of Me.^Pt(HC(mim)p2 ) in D6 ?tcetone

Two lyfePt resonances are observed, with the resonance exhibiting

the largest MePt coupling constant attributed to the methyl trans to
2 l_ 195the coordinated pyrazolyl group (0.84 ppn, JC^- Ft) 89.98 Hz). A

difficulty in assignment arises in the aromatic region, in atterrpting

to differentiate between pyrazolyl protons belonging to the

coordinated ring and those of the uncoordinated ring.

Double resonance irradiation decoupling experiments have been

used to assist in the assignment of ring protons in

poly(pyrazolyl)borate corrplexes, but become tentative particularly

where signals are coincident or near coincident. The use of two

dimensional COSY spectra eliminates these problems.

Two dimensional homonuclear correlated (COSY) spectra manifest

connectivities between spin coupled nuclei and provide assignments of

individual spin systems in complex ^ NMR spectra.
The COSY spectrum for ]yte2Pt(HC(mim)pz2) in the region 6-10 ppn is

shown.
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Figure 2.12 COSY Spectrum of Me^Pt(HC(inim)pz^)

The diagonal line from lower left to \:53per right represents the

normal frequency versus intensity spectrum, with peak intensity
represented by concentric contours. Those contoured regions off the
diagonal indicate protons related by proton-proton coupling;
uncoupled resonances do not exhibit cross peaks. For exanple, the H4

resonance at 6.41 ppn is coi:pled to the protons at 7.63 ppti and 9.6

ppn, and this constitutes a single spin connected system - a

pyraizolyl ring (ring A). The other pyrazolyl ring resonances are

6.64 ppn, 8.09 ppn and 8.50 ppn (ring B). Protons H3 and H5 within a

ring are then assigned according to 2j(1h-1h) values and physical
characteristics, eg. the H3 proton of a coordinated pyrazolyl ring

1_ 195often exhibits Ti- Ft coupled sidebands. Thus, ring A is assigned

to the uncoordinated pyrazolyl ring, with the large downfield shift
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Of the H5 proton, coirpared with the H5 of the coordinated ring,

ascribed to its close proximity to the metal. Ring B is tlie

coordinated pyrazolyl ring, with the H3 proton exhibiting platinum

coijpling.

Figure 2.13

This structure is further st?3ported by inspection of molecular

models, vhich reveal unfavourable steric interactions between the

uncoordinated pyrazolyl group and methyl group of the N-methyl

imidazolyl when the pyrazolyl ring is placed in the equatorial
position. 7^ identical structure has been assigned to the ]yfe„Pd(II)

oo ^analogue (mim)pz^).

Me2Pt(HC(thio)pz2) exhibits enough solubility in deuterated
acetone to allow a low quality ^ NMR spectrum to be recorded. The

. . . 2 1_ 195spectrum exhibits a single MePt resonance (0.75 ppm, J( h- Pt)

89.4 Hz, 6H), equivalent pyrazolyl resonances with all resonances

being moved downfield by approximately 0.35 ppn (coordination shift),

and thienyl resonances essentially unmoved from those in the free

ligand. This information supports a structure with the uncoordinated

thienyl group in an axial position and orientated such that the

thienyl H3 is neither pointing toward the metal or over either

coordinated pyrazolyl ring.

-H

Figure 2.14
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(iv) Where L is a tridentate or tetradentate ligand with all

coordinating groups being pyrazolyl

(L = HCpz^, MeCJJZ^, Cpz^)

Me^PtdlCpz^) does not exhibit enough solubility in common
solvents to allow a ^ NMR spectrum to be recorded. This
insolubility is either an inherent characteristic of the coirplex or

is due to the coirplex existing in a polyieric form via intermolecular

coordination of the free pyrazolyl groi:p.

The ambient taiperature spectrum of (figure 2.15)

shows two distinct sets of pyrazolyl resonances with the H4 resonances

coincident.

">50

Ha
.1 I.

pz

Me pz pz

1 1 1 1 1 1 i 1 1 1 1
cP •'.0 b- bO FO 4.F iS "SO

PPK]

acetone
MePt

"i 1 \ [~
! 0 ) . S 10 S

Figure 2.15 Anhient Temperature ^ NMR spectrum of Me.^Pt(Cpz ) in D6
Acetone

Protons of the two coordinated pyrazolyl rings give sharp

resonances, while those belonging to the uncoordinated rings are

appreciably broadened, suggesting that an exchange process is

occurring between the axial and equatorial positions.
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This process is slowed appreciably on cooling and all resonances

are fully resolved at -40°C. Coiqjling constant values allow
identification of individual resonances as either belonging to H5 or

H3 protons, but a COSY spectrum is required to allow individual
pyrazolyl ring assignments.

Both the low tenperature spectrum (aromatic region) and associated

COSY spectrum are shown in figures 2.16 and 2.17.

Four distinct pyrazolyl rings are evident, with the coordinated

rings (denoted as and H^,) being inequivalent. The inequivalence
of the coordinated rings can be rationalized by considering the
orientation of the axial pyrazolyl ring, which is facial to and

shielding a trans methyl, thus making the methyl groups inequivalent.
Two methyl platinimi resonances are seen in the appropriate region. In
this orientation the H5 proton of the axial pyrazolyl ring is directly
over one of the coordinated rings and strongly shielded. This proton

is assigned to the resonance at 6.72 ppn to the axial pyrazolyl ring.
The equatorial pyrazolyl ring (denoted H ) is not in a shielding

eq

environment and as its H5 proton is at 7.65 ppn it is assumed to be

pointing downward, and not shielded by the axial pyrazolyl group. It

is difficult to assign the remaining rings (rings ) other than

to say that they are the coordinated rings.



J

Haax

I

a. i

"3aq

"T
I.I 7. B

opM

—1—
7. a 7. Z

64.

Hie- + H4aa '̂ Sax

V )

7.0 S. 6

Figure 2.16 ^ NMR spectrum of Me^Pt(Cpz^) in D6 Acetone -4Q°C
-

*

e
s a

B
a 0 [

g m a

9 a 9
-

»

9

&

£3 23

m ei

S a

a XI

a
-

d JO

^ j - 0 ;q ;a 7 7 7b 'S 7 i 7j 7 1 71 70 68 b'
pptf

5.7

6.8

7 S

7.7

8.1

8 i

- 8 i

Figure 2.17 2D COSY Spectrum of Aromatic Region of Me^Pt(Cpz^)at
-40°C



65

Figure 2.18 Proposed Structure of Me^Pt(Cpz^) at -40°C

2.4.3.3 PIi^PtL Complexes

Diphenylplatinum(II) coirplexes of a representative range of

pyrazolyl based ligands were synthesized in order to coipare their
behaviour with that of their Me2Pt{II) analogues.

Typically, [Ph2Pt(Et2S) ]2 and ligand in 1:2 mole ratio were
warmed in dry tenzene under a nitrogen atmosphere for 5 to 10

minutes, by which time the benzene had almost reached reflux. If the

reaction was carried out on a large scale (> 0.2g [Ph^PtCEt^S) in
20 cm^ benzene) then the product precipitated as a white solid, but

3in smaller scale reactions (< O.lg [Ph^Ptdt^S) m 20 cm benzene)
the product ranained in solution and required addition of hexane

and/or cooling of the benzene solution for precipitation to occur.

Plost of the Ph Pt.(TT) conplexes exhibited greater solubility than
. .1their iMe^Pt-(TT) analogues in common NMR solvents, allowing H spectra

to be obtained for some ligands forming insoluble

conplexes.

A ^ NMR spectrum of Ph2Pt(HCpz2) (figure 2.19) shows two
pyrazolyl ring environments in the ratio 2:1 (H4 pyrazolyl resonances

are coincident) as expected for HCpz^ acting in a bidentate
coordination mode.
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Figure 2.19 ^ MMR spectrxim of Pli^Pt(HCpz^) in D6 Acetone

The separation and sharpness of the H5 and H3 ring protons

indicates that exchange of coordinated and uncoordinated pyrctzolyl

groi-^s is not occurring at ambient teirperature, or that if it is it

is extremely rapid on the WiXlR time scale.

The coordinated H3 protons are coincident with the 2,6-Eiienyl

ring protons (7.50 ppm, COSY), and are upfield of both the

uncoordinated ring H3 protons (7.82 ppn) and H3 for the free ligand

(7.76 ppn). This upfield shift is due to shielding by the phenyl

rings. The orientation of the uncoordinated pyrazolyl ring, axial or

equatorial, can be determined by examining the resonances of the H5

pyrazolyl protons. With complexes in which this ring is in the

equatorial position, eg. (see Chapter 3), the H5

protons of the coordinated rings are strongly shielded and occur well

upfield of the normal position for both H5 and H3 protons. However,

with the ring in the axial position the H5 proton of this ring is

deshielded by its proximity to the metal centre, and moved downfield

from its normal position. From the downfield position of the H5

resonance relative to the coordinated H5 protons (figure 2.19), and

from the position of this resonance relative to all H3 protons of tlie

conplex, a structure with the uncoordinated pyrazolyl group in an

axial position can be deduced.
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—H

Figure 2.20

Although the ^ NMR spectrum of Ph2Pt(HC(mim)pz2) (figure 2.21)
is slightly more conplicated than that for Ph2Pt(HCt)Z2), it supports
a structure with the uncoordinated pyrazolyl ring in a similar axial

orientation.

The individual pyrazolyl rings are labelled as C (coordinated)

and as ax (uncoordinated) with the downfield H5 proton assigned to

the axial ring. N-lVfethyl imidazolyl resonances are coincident with

the 2,6-Fhenyl resonances centred at approximately 7.65 ppn, and

phenyl resonances are mare catplex than for Ph2Pt(HCpz^), owing to
their inequivalence.

C-H

_1 , , j j 1 1 , , jj p

CHCI3

P"3.5 Ph^

~l ! I 1 1 1
9.8 96 9.4 9.2 9.9 8.8 8.6 8.4 8.2 0.0 ^.b 76 7.4 7.2 7.0 6.6 B.b 64 Q

PPM

Figure 2.21 Hi MMR spectrum of Ph^Pt(HC(mim)pz^) in CDClj.
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A corparison between the position of the H5 proton of the

uncoordinated pyrazolyl ring in Ph2ft(HCpz2) (figure 2.19) and
Ph2Pt(HC(iniin)pz2) (figure 2.21), 8.75 and 9.75 ppm respectively,
suggests that closer interaction between the H5 proton and metal

centre occurs in the latter conplex. The methyl resonance of N-

Methyl imidazolyl occurs at 4.66 ppn.

The coiiplex Ph2Pt(HC(thio)pz2) exhibits a ^ NMR spectrum (figure
2.22) vdiich allows for the position (axial/equatorial) of the

uncoordinated ring to be determined, but not its orientation.

CH

—I i 1—
3.8 8.6 3.1

thio,

T 1 i 1 1 1 : 1 1—
J.2 8.0 7.6 7.6 7.1 7.2 7.0 S 6 6.6

PPiJ^

Figure 2.22 %MMR of Ph^Pt(HC(thio)pz^) in D6 Acetone.

As would be expected from the stronger donor ability of the

nitrogen atom, the pyrazolyl groi:ips are coordinated, resulting in a

single pyrazolyl environment, with the H3 protons accidentally

coincident with a platinum satellite of the 2,6-phenyl protons. The

thiophene resonances have been assigned on the basis of J and J,
coupling constant values. From the position of the H5 pyrazolyl

resonance (8.52 ppn), the thienyl ring is in the axial position (vide

supra). The H5 (thienyl) proton (7.85 ppm) is essentially unshifted

from its position in the free ligand (7.75 ppm), and thus the

orientation may involve sulphur directed toward the metal atom

(figure 2.23), although a definite assignment is not attenpted as

spectra of only two thienyl ring containing coirplexes have been

obtained in this work.
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Fiqixre 2.23

Ph^Pt(bid.entate) Conplexes

Like their Me2Pt(II) analogues, the Ph2Pt(bidentate) (bidentate •
H^Cpz^, Me(H)Cpz, H2C(py)pz) conplexes exhibit NMR spectra
that vary with taiperature due to boat to boat ring inversion of the
6 menibered chelate ring:

7
\

For exanple, the ambient spectrum of Ph2Pt(]yfe2QPZ2) (figure 2.24)
exhibits a very broad ligand methyl resonance (5.85 ppn) at ambient

torperature. On cooling to -30°C this resonance is fully resolved
into pairs of doublets at 5.90 ppn and 4.42 ppn, with the upfield
resonance assigned to the equatorial methyl (vide supra).
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Figure 2.24 Variable Ternperature ^ ]N1MR spectrum of Ph^Pt(Me^Cpz^)
in CDClj.

2.5 Discussion

Reflux of HCpz^ and [Me^PtCEt^S) ]2 in acetone solution for an
extended period of time failed to produce the expected conplex,

Me2Pt(HCpz2), and unreacted starting material was isolated. However,
reaction did proceed smoothly in hot benzene (not reflux) over a

period of 10-15 minutes. An induction period for the reaction seems

evident, as the solution ranains clear on warming and suddenly after

a certain tine interval, massive precipitation occurs. Presumably

benzene serves as a medium for a higher tenperature which is required

for reaction to proceed.

Me(H)CpZ2 forms the very soluble white crystalline conplex
iyie2Pt(iyte(H)Cpz2) when warmed with [iyie2Pt(E^2^^ 2̂ acetone solution
for 5 minutes. If benzene is substituted as solvent, the solution
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turns a deep yellow coloiir after 5-10 minutes warming and a tan
deccnposition product is isolated in low yield. Presumably the
required ccarplex is formed in benzene, but deconposes at the higher
tarperature.

Consequently, the preparation of the conplexes required
the use of two solvents. In general, conplexes which exhibited
insolubility in comtion organic solvents required the use of benzene,
vdiile more soluble ccaiplexes could easily be prepared in acetone
solution.

All of the Ph^Ptdl) coiplexes reported were prepared in benzene
solution as they precipitate fron benzene after ajproximately 5
minutes warming. Presumably these conplexes could also be prepared
in acetone solution, as the taiperature of the benzene at the point
of precipitation was under 50°C.

Both Me2Pt(II) and Ph^PtdDconplexes containing bidentate
ligands (except for H2C(mim)pz) exhibit taiperature variable NMR
behaviour due to rapid inversion of the chelate ring giving average
environments for the apical ligand groups. On cooling, the rate of
ring inversion decreases and becomes "visible" on the NMR time scale
and specific axial and equatorial conformations can be observed.

27Polyakov and I^^abov have investigated the dynamic system
chloro(L) [2-(2'-pyridylmethyl)phenyl]palladium (L = substituted
pyridine, particularly 2,4,6 Me^-py, and 2-pyridylmethyl benzene is
cyclometallated) and have proposed that chelate ring inversion occurs
via a planar intermediate without any bond breaking (figure 2.25).

Figure 2.25
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This same process has been used to account for the fluxional
30processes observed in ]yie(PFh2)Pt(Me2Gapz2) •

Molecular models indicate that the pyrazolyl conplexes studied

here can also invert through a planar intermediate similar to that in

figure 2.25. Coalescence tenperatures for the various Me^Ptdl) and
Ph^Ptdl) coiplexes are listed in Table 2-6.

Table 2-6

Coalescence Temperature of Various Me^Pt & Complexes

Conplex Coalescence Tenperature

(°C)
Solvent

Me2Pt(H2C{py)pz) -15 CDCl^

Me2Pt(Me(H)Cpz2) 15, -10 CDCl^

Me^Ptdyie^Cpz^) -5 CDCl^

Ph2Pt(H2C(py)pz) -20 CDCl^

Ph^PtCH^Cpz^) -20 CDCl^

Ph2Pt(Me(H)Cpz2) 0 CDCl^

Ph2Pt(Me2CpZ2) -5 CDCl^

An interesting coitparison exists between Me2Pt(Me(H)Ct>Z2) and
Ph2Pt(Me(H)Cpz2), in that on cooling the Me^Ptdl) coirplex exhibits
two conformers with one being preferred over the other (p. 57), while

for Ph^Ptdl) only a single conformer, presumably the conformer with
the methyl group in the equatorial position, is observed.

Me2PddI) analogues of these conplexes have been synthesized and
their ^ NMR spectral behaviour investigated and they have been found

28to exhibit similar variable tenperature behaviour.
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For R2Pt(II) (R = Me, Ph) conplexes containing tridentate
ligands, a specific conformation, with the uncoordinated donor ring

in the axial position, was observed. This conformation persisted

even at terrperatures of 50°C. When a pyrazolyl gro\:p) was
uncoordinated and in the axial position, its orientation was such

that a ring proton (H^) was directed toward the metal. This may have
inplications for the cyclometallation reaction of Me2Pt(HCpz3) and
will be discussed further in Chapter 3.

By conparing the MePt region of a number of conplexes containing

pyrazolyl donors only, mixed pyrazolyl-imidazolyl donors, and mixed

pyrazolyl-pyridine donors, an order of MePt resonances trans to

pyrazolyl, imidazolyl and pyridine can be established. Table 2-7

lists selected conplexes with the acconpanying MeFt data

Table 2-7

IVtePtdl) Resonances for Pyrazolyl and mixed N Donor Ligand Complexes

Conplex MePt

ppn; ^J(%-^^^Pt)Hz
Solvent

Me2Pt (Me (H)Cpz^) 0.80; 89.71 acetone

Me2Pt(Cpz^) 0.64; 89.70 acetone

Me2Pt (HC (thio)PZ2) 0.75; 89.44 acetone

Me2Pt(H2C(nmn)pz) 0.76; 89.66

0.69; 86.98

acetone

Me2Pt(HC(mim)pz2) 0.86; 89.98

0.74; 87.28

acetone

Me2Pt(H2C(py)pz) 0.91; 86.16

0.86; 85.63

acetone
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In D6 acetone solution a MePt trans to a pyrazolyl ring exhibits

a resonance at a lower field than either an MePt trans to imidazolyl

or pyridine, and has a larger 2j(V"5pt) coupling constant. In
CDCI3, the same trend is observed.

Table 2-8 lists the pyrajzolyl resonances for some

Ph2Pt(II) complexes containing bidentate and tridentate ligands.

Table 2-8

Pyrazolyl Resonances in IVfeoPtdD & PhoPtdl) Complexes

Complex Pyrazolyl Resonances (ppn)

H3 H4 H5

Coord dico Coord l&ico Coord dico

Solvent

Me^Pt (H^C (miin)pz) 7.87 - 6.33 - 7.58 CDCl^

]yte2Pt ((mim)pz) 7.88 6.50 - 8.17 acetone

Me^Pt (HC (mim)pz^) 8.10 7.50 6.64 6.41 8.5 9.6 acetone

Me^Pt (HC(thio)Cpz^) 8.07 6.67 - 8.44 acetone

Eh2Pt(HC(thio)pz2) 7.44 6.61 - 8.52 acetone

Ph2Pt(HCpz2) 7.51 7.82 6.55 6.65 8.61 8.78 acetone

Ph^Pt (HC (mim)pz^) 7.45 7.68 6.20 6.45 7.93 9.73 CDCl^

Ph^Pt (HC (mim)pZ2) 7.41 7.75 6.56 6.66 8.54 9.23 acetone

In Me^Ptdl) complexes a change of NiyiR solvent reverses the
position of the pyrsizolyl H3 and H5 protons, however this is not the

case with Ph^Ptdl) complexes. Molecular models show that the phenyl
rings strongly shield adjacent H3 pyrazolyl protons resulting in an

upfield shift, and regardless of solvent, these protons are always

found upfield of H5 pyrazolyl resonances.
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For conplexes which contain an axial uncoordinated pyrazolyl ring
two sets of resonances are observed. For conplexes the

imcoordinated H3 and H4 ring protons are found upfield in ccnparison
to the coordinated rings (D6 acetone), with the H5 proton well

downfield (conpared with the coordinated rings) due to deshielding by
the platinum atom.

The order of coordinated and uncoordinated H3 and H5 pyraLzolyl

protons is reversed in Ph2Pt(II) conplexes and this can be explained
by phenyl ring shielding. As expected the H5 proton of the
uncoordinated pyrazolyl ring is still found furthest downfield. This
is true for Ph^Ptdl) conplexes regardless of solvent.

2.6 Conclusion

Me2Pt(II) and Ph^Ptdl) conplexes of a range of bidentate,
tri dentate and tetradentate pyraizolyl ligands can be readily prepared
by reaction between the ligand and the Me2PtdI) precursor
[Me2Pt(Et2S)]2.

[Me2Pt(Et2S) ]2 has the advantage over [Me2E^{Me2S) 12 hhat it
is very stable and can be stored at ambient tenperature and does not
require special storage conditions.

All soluble conplexes are easily identified by their
characteristic ^ NMR spectra, with bidentate ligands esdiibiting
variable tenperature behaviour, while tridentate ligands show a
preference for a single conformer ip to tenperatures of 50°C.
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CHAPTER THREE

CYCLOMETALLATION

3.1 Introduction

Most organic molecules, in particular hydrocarbons, must be

functionalized in some fashion prior to the formation of a

metal-carbon bond, eg. formation of an organolithium reagent and

application of it in transmetallation reactions. Direct metallation

of a C-H bond is possible for some combinations of organic and

inorganic substrates, eg. mercuration.

The first example of a "non-functionalized" metallation was

covered by Kleimann in 1963. ^ Nic
affording a metallocyclie complex (I)

discovered by Kleimann in 1963. ^ Nickelocene reacts with azobenzene

Ni
(1)

This type of intramolecular metallation, called orthometallation,

is more commonly termed cyclometallation due to the formation of the

chelate ring.

apparently, prior coordination of the azo group leads to

oxidative-addition of the ortho C-H group with subsequent

reductive-elimination of cyclopentadiene. The general

cyclometallation reaction is shown in equation 2.
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Y

Rf

X{n.i)M

Rr

82.

X(n-i)M.
/ )
Ri
/

(2)

Ra

HX

M = metal

Y = donor atom, eg. N, P, 0, S,

X = leaving groi^)

= appropriate organic groups

The formation of an initial siitple coordination coirpound. A,

(equation 2) allows favourable energetic and entropic contributions
which facilitate the cyclometallation of an appropriately orientated

C-H bond, with the concomitant elimination of a small molecule, HX.

The hydrogen atom of the metallating C-H bond is not always

eliminated and may remain as (formally) a hydrido ligand, eg. stable

octahedral cyclometallated conplexes involving a hydrido ligand have
2 3

been isolated with iridium(I) substrates. '

trans-Cl(CO)Ir(PPh^)^ + PhN=NPh Cl(H)Ir(C^H.N=NPh) (PPh.,)„ (3)
D 4 o Z

ClIr(PPh2)2 Cl(H)Ir(CgH^PPh^)(PPh^)2 (4)

Cyclometallated species have been proposed as intermediates in

the formation of organolithium reagents from heterocyclic

coirpounds,^ eg. the reaction of Bu^i with l,3-(]yte2NCH2^ 2^6^4
the stabilized cycle 2-lithio derivative (C).

+ Bu"Li

Me2N NMes MezN NMe2
(5)
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2In syntheses prior to 1980, the C-donor atom metallated was sp

hybridized and usually part of an aromatic ring. However, the

literature now includes numerous exairples of non-aromatic olefinic
2 . . .

sp carbon atoms. Reviews on the cyclometallation reaction have been
5published. In spite of the fact that aryl C-H bonds are stronger

than aliphatic C-H bonds, aromatic groups are generally more reactive

in the cyclometallation reaction.

In general, cyclometallation reactions are thermally activated

and occur on or near pyrolysis, whether by direct heating of the

metal and ligand as a solid mixture or solution, or a coordination

conpound as a solid or in an inert solvent.

Variations on this strategy involve addition of a sinple base,

eg. sodium acetate or pyridine, to the mixture to help facilitate

metallation. ^ For example, when Na^PdCl^ is treated with
PhCH2(Me)NCH2CH2N(]yfe)CH2Ph in methanol, the N,N-chelate dichloride is
formed, and on prolonged heating no tendency to undergo

cyclometallation is observed. However, addition of sodium acetate

promotes metallation, which is observed in thirty minutes in
7

refluxing ethanol.

TVs well as monodentate coirplexes, cyclometallation reactions have

been reported for metal clusters, notably carbonyl clusters of iron,
o

ruthenium and osmium. In these clusters the metallated ligand is

coordinated to one metal and C-bonded to another metal atom of the
9

cluster.

Os(CO)4
XhXOs(CO)4

/ \ + 1 J (CO)30s^^ 70s(CO)3O8(0O)4 n=/(C0)40s

o
Tpart from the direct activation of C-H bonds, complexes

analogous to those formed in the cyclometallation reaction can be

derived from two other sources. The most common involves a

transmetallation reaction between a preformed lithio-heterocycle and

metal ion to yield a new metal-carbon bond.



Me2N

Bu"Li

NMe2 Me2N

Cl2R(Et2S)2

Br"

NMe2
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Me2N NMe2

(7)

lytetallocycles can also be formed by the oxidative addition of an

appropriate halo-heterocycle to a low-valent metal centre.

+ Pl(PPh3)3

Pt—Br (8)

PPh3

3.2 Requirements for Metallation

Historically, the first cyclometallations centred on azobenzenes.

Subsequent investigations have essentially remained with group Vb

donor atoms, particularly nitrogen and phosphorus, although other

donor atoms have been investigated and include oiygen, sulphur and
. 5

arsenic.

Basic ligand requirements for cyclometallation include:

(i) the presence of a donor atom of sufficient strength to displace

a ligand in the metal substrate.

(ii) such dimensions that it can orientate itself in an appropriate

fashion to bring the required C-H bond into the metal sphere of

influence and form a stable chelate ring.'^

Ligands Tdiich have been utilized in cyclometallation reactions

have been quite diverse, varying in their carbon atom hybridization,

donor atom strength, flexibility and denticity. Table 3-1

illustrates some typical examples for platinum and palladium with N-

donor ligands.



MeOC

MeOC

Table 3-1

Cyclcanetallated N-Donor Ligands of Pt and Pd

Ligand

NMej

H" ^NMe

COMe

COMe

Metal

Pt, Pd

Pd

Pt

Pd

Pt

Pd

Ph

Mepy

MeOC

MeOC

Ccirplex

Mej 2

Me 2

Pd

,pyMe

Ph

COMe

COMe
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Reference

12

13

14

15, 16

15

17

12 ... . .Cope proposed a set of enpirical requirements to which a ligand

must conform before a successful cyclometallation could proceed. One
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of these basic requiranents was that the ligand iriust be able to form

a planar five membered ring in a bidentate ligation mode with the
metal atom. The five menbered cyclic core, M-C-Y occurs in the vast

majority of tabulated cyclometallated conplexes. The rationale for
the enhanced stability iirparted by a five membered ring is based on

I 1

the necessity for such a system to possess a C-M-Y bond angle of

approximately 90° (ideal geometry). Whilst this sirtple premise
appears to have general validity, it by no means preclirdes other

stable multi-membered cyclometallated rings. Formation of rings of

greater or lesser size generally occurs when the ligand geometry

precludes five-membered ring formation. Indeed, coitplexes containing
four and six membered chelate rings are now common.

The C-H bond to be metallated must come into close proximity to

the metal centre. This can be achieved either by the presence of a

vacant coordination site on the metal, or by the presence of

sterically bulky groups on the donor atom of the ligand. An
19 ...illustration which supports the premise of steric crowding

promoting metallation is the observation that the phosphine EMe^Ph
is not metallated by either platinum(II) or palladium(II), whilst the

higher substituted PBu^(Me)Ph is metallated, but less readily than
the very crowded manner by which steric crowding can

encourage an interaction between a C-H bond and metal atom is derived

from both energetic and entropic contributions, and has been likened
20

to the Thorpe-Ingold gem-dialkyl effect. The sheer bulk of the

substituted groups force one of their number sufficiently close to

the metal atom so that metallation can occur, with the resultant loss

of internal rotational entropy being much reduced on cyclization.

Whilst steric crowding is an important factor in promoting

metallation, excessive overcrowding can produce a negative effect.
21For example, it has been reported that l2Pt(P(o-tolyl)2)2 does not

cycloplatinate and this is attributed to such over congestion that

the ligand cannot properly orientate itself for metallation to occur.
22

However, tri-o-tolylphosphine has been reported to undergo

metallation of a methyl group in a ruthenium complex, but the same

authors failed to detect metallation with a number of platinum(II)
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and palladium(II) substrates.

3. 3 MechcUiism of Metallation

Ttfter the initial siirple coordination conpound is formed between

the metal substrate and ligand, cyclometallation is considered to

occur by one of two major activation mechanisms (excluding radical

processes).

(i) Attack on the C-H bond ty an electrophilic metal ion, with loss

of h'^.

w/ V.H.ni v„y---c^y .
V R2

Rr

(ii) Qxidative addition of the C-H bond to an electron-rich metal

centre.

,ii/^ II H M C^Y (10)

Rr

The product from the oxidative addition reaction, formally a

hydride, may spontaneously reductively eliminate if unstable.

I fnii I (11)
H M C^Y C^^Y + HX

Xn

Thus, via an oxidative-addition mechanism two products are

possible depending upon the stability of the hydrido conplex. After

reductive-elimination the resultant product is identical to that

formed via an electrophilic attack nechanism.

To obtain an understanding of the mechanistic pathways in which

platinum(II) can participate in C-H bond activation, it is of

interest to review:
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O

(i) Reaction paths for related d metal conplexes, namely

palladium(II) in cyclometallation reactions.

(ii) cyclometallation by related low-valent transition metals,

which, like platinum(II) can exist in a higher stable oxidation

state.

(iii) the catalytic activity of platinum(II) in the activation of

aromatic and aliphatic C-H bonds toward H-D exchange

(intermolecular reactions).

3.3.1 Cyclometallation by Palladium(II)

Many workers have studied the electronic preferences for the

palladation of ligands containing two or more aromatic rings, each
23possessing a different electron density. For exaiiple, Bruce et al.

stiidied the palladation of asymmetrically meta-fluoro-substituted

azobenzenes. The results were consistent with an electrophilic

attack by the palladium, in that 80% of the mixture was metallated in

the non-fluorinated ring. Further, where palladation had occurred in

the fluoro-substituted ring, reaction occurred in the position most

favoured for electrophilic attack (ie. para to fluorine). Thus,

cyclopalladation is considered to be electrophilic in character.
24These results si^port those of Parshall, who studied the

palladation of azobenzenes bearing a para substituent on only one of
25the two aromatic rings, and agree with those of Hietkarrp et al.

who studied the cyclopalladation of meta-fluorophosphines.

26lyabov has proposed the following general scheme for cyclo

palladation (Schene 3.1).
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Scheme 3.1 Proposed Reaction Sec}uence for Cyclopalladation

2-ZVadition of ligand to PdCl^ can give the anionic coirplex (A).
The stronger kinetic trans effect of chloride coirpared with a N-donor

ligand would result in cis solvation to give the mcharged

intermediate (B). Either this solvated intermediate, or a

coordinatively unsaturated species (C), is electrophilic in nature

and it is at this stage that cyclometallation to yield (D) can occur.

The isolated bridging chloro dimer (E) can be formed in subsequent
27steps. Deeming and Rothwell have demonstrated that

cyclopalladation would occur in the coordination plane of

palladium(II) and have suggested the existence of a three coordinate

intermediate (viz. (C) in Scheme 3.1). This mechanism is consistent
24with the original proposal by Parshall, although for aryl ligands

Parshall proposed the formation of an intermediate 7C-arene-palladium

conplex prior to cyclization. Planar ligands such as

benzo[h]quinoline^^and 8-methylquinoline^^ eyelometallate with
2- . . .PdCl^ , the ligand geometry excluding the formation of a 7C-arene
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coirplex, and thus its existence is not a prequisite for metallation

to occur.

3.3.2 Cyclometallation by Low-Valent Electron Rich IVtetals

The electrophilic cyclometallation mechanism proposed for

palladium(II) coirplexes seems unlikely for related reactions

involving low-valent electron rich metal coitplexes. Indeed, with

Fe(0), Ru(0), Os(0), Rh(I) and Ir(I), the isolated cyclometallated

product generally contains oxidized metal. It has been suggested

that for cortplexes of these metals, the metal may act as a
24nucleophile toward the ligand.

23 . .
Bruce et al. expanded their studies on the metallation of the

asymmetrical meta-fluoro substituted azobenzenes, and included the

reaction with the low-valent electron rich coirplex ]yieiyBi(CO)_.
D

MeMn(CO)5 + T \ + CH4
^Mn{C0)4 (j^2)

The major product is that with managanese substituted ortho to

fluorine, vhich is consistent with nucleophilic attack on the carbon

atom (powerfully activated by the inductive effect of fluorine).

28van Baar et al. have investigated the metallation reactions of

iridium(I) and rhodium(I) with aromatic and olefinic C-H bonds in

azo- and imine- ligands. For reaction of the ligands EhX=NR (X = N

or CH, R = aryl or sOkyl) and H2C=C(]yfe)-N=]XIMe with ClIr(N2) (PPh2)2
the following reaction sequence was proposed.



CI(N2)lr(PPt\3)2 PhX=NR
CeHe
•Na PhaP

Cl

PhaP
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C.

H—C'

(13)

H

..•PPha
N-

Iridium(I) was found to be more reactive than rhodium(I). Thus,

van Baar proposed that the mechanism involved a formal

oxidative-addition of the appropriate C-H bond.

3
A further exairple for iridium(I), and a conparison with the

29related rhodium(I) reaction, are illustrated.

H

CgHs ^
Reflux

PPha

(PPh3)3ir '̂'ci (14)

MeRh '̂\pPha)3 PPhgP Rh<')(PPha)2 + CH4 (15)

\ /
Only in the case of iridium is the trivalent hydrido conplex

stable and isolable under the experimental conditions. After

oxidative-addition of an aryl C-H bond the intermediate Rh(III)

conplex undergoes reductive-elimination of methane. Consistent with

this reaction sequence, pyrolysis of the deuterated conplex
24MeRh(P(CgD^)2)2 produces CH^D.
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Other metal conplexes investigated v^ich appear to undergo

cyclcmetallation via a nucleoi^ilic mechanism include ruthenium and
, a. 8osmium clusters.

The less electron-rich high valent iridium(III) and rhodium!Ill)

ccanrplexes have been reported to eyelonetallate via an electrophilic

mechanism.

3.3.3 Platinum!II) Catalyzed H-D Exchange in Aliphatic and

Aronatic Ccarpounds

Although cyclOTietallation is an intramolecular process, and the
83. 29Pt(II) H-D catalyzed exchange ' is an intermolecular process, some

inportant conclusions can be stated vhich may be of relevance to

cyclometallation.

Two inportant observations reported from the platinum! II) H-D

exchange of aromatic solvents are:

!i) the H-D exchange occurs via a dissociative mechanism,

2
!ii) this mechanism involves a proposed tc !t) ) conplexed metal-arene

intermediate leading to a subsequent platinum! IV)-carbon o

bonded aronatic coiplex.

These observations are illustrated in Scheme 3.2.

. . 32
This mechanism, originally proposed by Gamett, is based on

hydrogen transfer from an- ccatplexed arene to the metal atom, a

formal oxidative addition of platinum!II) to platinum!IV), with

formation of a platinum!IV)-carbon a bond, which is unstable and

reductively eliminates.
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Scheme 3.2 Dissociative mechanisin involving a Pt(IV) C bonded
31

intermediate for H-D exchange on benzene.

3.3.4 Electrophilic Substitution versus Micleophilic Mdition for

Platinum(II) in Cyclcanetallation Reactions

Studies to elucidate the mechanism by which platinum(II)

undergoes cyclometallation have established conflicting results, with

platinum appearing to mimic Pd(II) in some instances, whilst
mimicking Ir(I) and Rh(I) in others.

In the metallation of a wide range of phosphines, it has been

proposed that platinum acts as a nucleophile, vdiilst if the number of

phosphine ligands per corplex is reduced, platinum can act
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essentially as an electroj^ile in a proposed four-centre transition
2-

state mechanism. If the platinum substrate is PtCl. , an
2-electrophilic mechanism, analogous to PdCl^ , has been proposed.

The possible mechanisms ty which platinum(II) can cyclometallate

are shown in Scheme 3.3

n
X„M- C

/ \

XnM. I XnM C + RH

\ C
Y

I
XnM-

I i
I I
I I

R H

A - Direct oxidative addition/reductive elimination

B - Electrophilic attack by metal

C - Four-centre transition state

Schane 3.3 IVfechanisms of Metallation.

Although pathway C has not been discussed previously, it cannot
be dismissed, as this allows for concerted metal-carbon bond making
and breaking with no formal change in the oxidation state of the

metal.

These results suggest that platinum(II) is a borderline case, and

that cyclometallation may proceed via different mechanisms, according
to the metal substrate and ligand, and is a manifestation of the

balance between steric and electronic factors. Three general cases

appear to be evident.

(i) where the electron density on platinum is high. This is

achieved by surrounding platinum with strong electron donor
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ligands, stjcIi as basic phosphines and strongly bonding alkyl
33groijps. Whitesides et al. have proposed a mechanism for the

cyclametallation of dineopentylbis(triethYlphosphine)

platinum(II) which involves cleavage of the C-H bond by

intramolecular oxidative addition.

The mechanism (Scheme 3.4) is analogoias to that shown for

electropiiilic cleavage (equation 2), only differing in the mode

of cleavage.

^CHzR

L CH2R

/
L

+ RCH3

v)
L= EtgP

^CHzR
Pt
\

CHaR

I CHgR n
\l/ '
/

+ L

+ L

Scheme 3.4 Mechanism for cyclometallation of

Dineopentylbis (triethylphosphine)platinum( II)

If the platinum substrate contains the unit, eg.

Me„Pt(COD), then metallation is also considered to proceed via
... . 34

an oxidative addition of the ligand C-H bond.

(ii) where the electron density on platinum is low. This is the

situation generally encountered for metallation of nitrogen
2-based ligands by the Cl2Pt(II) unit (p)articularly PtCl^ ), or

where a very low basicity phosphorus donor ligand is being

metallated utilizing a Cl2Pt(II) unit.
In this case, metallation usually proceeds via electrophilic

attack of platinum on the appropriate C-H bond.

(iii) where the electron density on platinum is intermediate.

This situation generally exists when a nitrogen based ligand is

being metallated by Cl^Ptdl) and the conplex also contains a
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phosphorus donor, or where the coirplex to be metallated

contains only a single phosphine of intermediate basicity,
lytetallation in this instance is reported to favour an

electrophilic mechanism, but it probably occurs via mechanism
. . 35

C, involving a four-centre transition state.

The mode of metallation favoured for a particular system depends

intimately on the system, and thus any generalization is not
possible, as it is in the case with palladium(II).

3. 4 Metallation of Me^Pt(HCpZj)

The cyclometallation of Me^E^CHCpz^) was serendipitoiasly
discovered by Minchin^^ while atteirpting to recrystallize the
intractable complex from hot pyridine.

Me^PtdiQpz^) + xs pyridine •- MePt(HCpz2(C2N2H2)-C,N) (py)
+ CH^ (16)

The authors assumed that methane was eliminated, without attempts at

detection.

During the metallation reaction the pyridine solution turns a
yellow-green colouration, and on additon of hexane the metallated

complex is isolated as a white crystalline solid in 60% yield. If,
after isolation of product, the filtrate is reduced in volume in an

attempt to isolate more product, an off-white solid is obtained, but
on filtration the solid darkens and oils on contact with the

atmosphere.

Canty et al. reported Me^^tdJCpz^) to be insoluble in cold
pyridine, but in initial studies of this reaction it has been found

that if a suspension in cold pyridine is allowed to stand at ambient
temperature, it slowly "dissolves" over a period of hours during
•vhich time the solution tioms a light yellow colour. The metallated

product can be isolated from this solution (dropwise addition of
hexane) in approximately 80% yield. Two competing reactions may be
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occurring in the Me^PtCHCpz^ )/pyt-idin0 suspension, metallation
(equation 16) and siibstitution (equation 17).

Me^PtdiCpz^) + xs pyridine ^ + HCpz^ (17)

The synthesis of Me^Pt^PV)2' heating Me2E^(C0D) in neat
pyridine, was reported tiy Kistner et al.^^ in 1963, although the

38
yield on isolation was only 5%. We, and others, have not been able

38
to reproduce this synthesis, but Williams et al. have reported a

facile preparation of iyte2Pt(PY')2 Me2Pt(NBD) and pyridine in
benzene solution. ^ NMR studies indicate that vdien IVte^Pt^NBD) is
dissolved in neat pyridine, NBD is displaced from the Me^Ptdl)
itoiety (resonances due to free NBD are observed). Only when
stringent experimental conditions (temperature, stoichiometry, rate

38
of addition of pyridine) are exercised can be isolated,
and it is stable as a solid if kept under a nitrogen atmosphere in

the dark at 0°C. If such experimental controls are not exercised, an
off-diite solid is produced, the ^ NMR spe::trum of which shows the

38presence of a variety of mcharacterized species. The yields of
M0Pt(HCpz2(C2N2H2)-C,N) (py) from hot and cold pyridine, 60 and 80%
respectively, suggest that the competing reaction (17), if it occiars,
is less important at aimbient temperature.

It is observed that as Me^PtdiCpz^) metallates in pyridine,
minute bubbles rise from the bulk of the solid to the surface. NMR

studies in deuterated pyridine failed to detect any resonance due to

methane, however this is not entirely unexpected as the reaction
proceeds very slowly in the cold, and thus the concentration of
methane in solution at any particular time itiay be miniscule.

G.C./M.S. analysis of the expelled gas identifies it as methane.

ZUthough Canty et al. reported full characterization data for

MePt(HCpZ2(C2N2H2)-C,N) (py), their ^ NMR spectra were recorded with
a continuous wave instrument with low resolution, and a complete

assignment was not given. A 300 MHz FT ^ NMR spectrum is shown in
figure 3.1, together with an expansion of the aromatic region (figure
3.2), with atom numibering shown in figure 3.3.
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The conplex exhibits major differences from N,N-chelated

complexes in the aromatic region of the spectrum, showing three

inequivalent pyratzolyl rings, with the H4 metallated and H4 N-

coordinated proton resonances coincident (6.35 ppn), and at lower

field than H4 uncoordinated (although this may result from shielding

of this proton by the coordinated pyridine groip), two H5 signals

(7.86 ppn uncoordinated, 8.10 ppn coordinated) and three H3

resonances (7.60 ppn metallated, 6.92 ppn coordinated and 7.58 ppn

imcoordinated), with assignment relying on integration and COSY

spectra. The H3 proton belonging to the coordinated pyrazolyl ring

(6.92 ppm) is shielded by the coordinated pyridine ring and is moved

upfield relative to the H3 signals of the other rings. The H5 proton

of the uncoordinated ring is ipfield in conparison with the H5 proton

of the coordinated ring. This upfield shift is attributed to

shielding by a pyrazolyl ring, with the uncoordinated group in an

axial position with its H5 proton directed away from the metal.

C—N

N—N

Figure 3.4

1 39The H NMR spectra of Ph2Pt(HCpZ2) (Chapiter 2) and Me^^dlCpz^)
indicate that the free pyrazolyl group is in the axial position, but

with the H5 proton adjacent to the metal.

Two extreme mechanisms are available for cyclometallation,

electrophilic attack by the metal or oxidative addition of the C-H

bond to the metal.
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jKn electrop^iilic attack mechanism is unlikely since the Me^Ptdl)
unit is expected to be nucleofaiilic in cliaracter, and in neat
pyridine this nucleophilic character is expected to be enhanced if
pyridine becomes coordinated to the platinum atom. Thus,
cyclometallation is likely to proceed via oxidative addition, for
which two possible pathways are envisaged.

The first involves an intermediate (figure 3.5) witli the

interaction occurring between the H5 proton of the uncoordinated
axial pyrazolyl ring and the metal centre.

Figure 3.5

This interaction, perhaps agostic in nature, leads to a formal
oxidative addition with formation of an unstable platinum(IV) hydride
coiplex, followed reductive elimination of methane and
rearrangenoit of the pyrazolyl ligand and incorporation of pyridine
to form the observed square planar platinum(II) catplex. The role of
pyridine in this reaction sequence is restricted to providing an
ancillary ligand to conplete the square-plane of the final product,
or perhaps to coordinate axially to assist the initial step{s) in
oxidative addition.

The other possible pathway involves a square-planar pyridine
ccaiplex as an intem^iate.
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c

Ficpore 3.6

Pyridine displaces one coordinated pyrazolyl ring, thereby
increasing the nucleophilic character of the complex, and either
allowing the ligand greater flexibility to orientate itself in such a
geometry that metallation can occur, or reducing the flexibility of
the ligand in such a way that cyclonetallation is favoured. Again,
metallation would be ejpected to proceed via oxidative addition.

If a suspension of Me2Pt(HCpz2) is refluxed in toluene
cyclometallation is not observed and starting material is recovered
unchanged, indicating that pyridine may be involved in the mechanism
of cyclometallation. As iyie2Pt(py)2 is thought to be formed (as a by
product) during the metallation reaction, then pyridine substitution
seems likely at same stage prior to metallation.

If solid Me2Ft(HCpZ2) is suspended in deuterated pyridine and its
^ NMR spectrum recorded at successive time intervals, reliable
reproducible spectra are not obtained until the solid has "dissolved"
and mixing has occurred. However, in the initial stages of the
reaction irore than one IfePt signal is observed and a number of H4

pyrazolyl resonances are apparent, perhaps indicating that a pyridine
coordinated caiplex is indeed an intermediate in the reaction.

Crystalline metallated complexes are also formed from
iy5e2Pt(HCpz2) with other N-donor solvents such as N-methylimidazole
and substituted pyridines, eg. a-and y-picoline and 2,6-lutidine.

iyiePt(HCpz2(C2N2H2)-C,N) (py) Slowly decorposes in CDCl^, eg. an
NMR sample left in CDCl^ for 8 hours showed no MePtdl) resonance.
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but a nuntoer of MePt(IV) resonances with a very complicated aromatic

region. Thus, MePtdiCpz^CC^^^J^CjN) (py) would appear to be
reactive toward oxidative addition reactions, and aspects of this

reactivity are discussed in Chapter 4.

Reactions of MePt (HCpz^ (C )-C,N) (py)

When crystalline MePt(HCpZ2(C2N2H2)-C,N) (py) is refluxed as a
siaspension in benzene for 1 hour an amorphous white solid is

obtained. This solid is insoluble in coimnon organic solvents, and an

infrared spectrum shows the absence of pyridine. The solid is

assumed to be a polymer, [MePt(HC:t>Z2(C2N2^2)~ '̂'̂ ^ similar to the
♦ isoelectronic' polymer [MeE^dBpz^) 1^^.

Figure 3.7

N—N N—N

• u o

A
Me M—N i_i
\ / \ /"

Pt B
\ / \ /

N—N N—N

• iJ o

If MePt(HCpZ2(C^2fi2^~ '̂̂ ^ refluxed in acetone, the solid
dissolves to give a clear solution, from which the polymer is

obtained on addition of hexane. In acetone solution the complex is

assumed to be present as a monomeric adduct, and if carbon monoxide

is bubbled through this solution and hexane added, a carbon monoxide

adduct is obtained. The infrared spectrum of the solid complex

exhibits a strong band at 2074 cm consistent with coordinated CO,

and a ^ NMR spectrum (figure 3.8) is also consistent with this
structiore.
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C-N-.,,

N—N
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Figure 3.8 %NMR Spectrum of MePt(HCpz^(CjN^H^)-C,N) (CO).

The H5 pyrazolyl proton resonance occurs 1.1 ppn upfield (7.26

ppn) from that in MeEn:(HCpZ2(C^2f^2^~ '̂̂ ^ ' suggesting that the
uncoordinated axial pyraLZOlyl ring adopts a conformation with the H5

proton away from the metal and in a shielding cone of one of the

coordinated pyrazolyl rings.

Cartion monoxide was not observed to insert into the MePt bond,

even after prolpnged bubbling of CO into the soluble polymeric
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acetone solution.

iyiePt(HCi)Z2(C2N2H2)-C,N) (py) also undergoes ligand exchange
reactions with jSiosphine ligands, with the degree of incorporation of

phosphine dependent i5X)n the buUc of the phosphine. Thus,, refluxing

iyiePt(HCpz2(C2N2H2)-C,N) (py) with various phosphine ligands in either
benzene or acetone resulted in displacement of pyridine, and in some

cases the N-coordinated pyrazolyl group also.

Me ,C—
acetone \ / \ /"^MePt(HCpz_(C-N„H_)-C,N) (py) + 2L Pt ,C + py

/ \ /
L N—N + L

L = P!Fh2(Phayie), PPh2(o-tolYl),

acetone Me C—N]yiePt(HCpz2(C^N2H2)-C,N)(py) +2L —— \ / V
.Pt / \/ \ H pz

L

L = PEh2'̂ , PPhMe2, PPh^Et, PPh2(CH2Ph), P(PhO)2
(n=l, 2),

pz
+ py

(19)

The phosphine ligands trimesitylphosphine and tri-o-tolyl

phosphine failed to react with iyfePt(HCpz2(C2N2H2)-C,N) (py),
presumably due to their bullciness, and polymeric []yiePt(HCpZ2(C2N2H2)-
C,N] was isolated from the reaction mixture. Likewise, the arsine

n

ligands AsPh^ and AsPh^CH^Ph^As also failed to undergo reaction.

Canty et al. have shown that the phosphine caiplex

MePt(HCpz2(C2N2H2)-C) (PPh2)2 undergoes metallation of a phosphine
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ligand 15x311 heating the solid coitplex, with expulsion of the other

phosjiiine ligand.

Me. ^C-N

H pz
\/

.Pt

/ \
PhaP PPh5

C—N

N—N

This doubly metallated conplex contains both six (pyrazolyl) and

four (phosphine) membered metallated chelate rings. To explore the

ease of this type of reaction, the effect of heat on the phosphine

carplexes above was investigated, and the effect of heat on

]y[ePt(HCpZ2(C2N2H2)-C) (PPh2)2 reinvestigated as only scant information
was published earlier.

The mass spectrum of ]yfePt(HC:pZ2(C2N2f^2^~^^ ^^^3^ 2 fragments
with m/e values consistent with a parent ion of molecular weight 947,

a fragment vhich has lost methane (931), and a fragment which has

lost both methane and a single phosphine ligand, (669).

c: A
\_/ rV\ /\

N—N
PI

PhaP PPh§

ly^rt: ^ m 669

Figure 3.9

Thus, the phosphine netallation spears to occur in two distinct

steps, metallation of triphenylphosphine with concomitant loss of

methane, followed loss of trifhenylphosphine

A T.G.A. for MeFt(HCpZ2(C2N2H2)-C) (PPh2)2 is Shown in figure
3.10A.
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Figure 3.IDA T.G.A. of MePt(HCpz^(CjN^H^)-C.N) (PPh^)^.

The initial weight loss (1), corresponds to the loss of acetone,

as the conplex (recrystallized from acetone/hexane, vacuum dried at

80°C for 2 hrs) is a 1:1 acetone solvate. The second weight loss (2)
is rapid and is due to ej^lsion of methane gas (metallation step)

while the third weight loss (3), occurring over the tenperature range

160 - 200°C, is due to loss of PPh^. The calculations for these
weight losses are given in appendix 1. This is interpreted as

indicating that PPh^ is not lost until after CH^ expulsion, i.e.
after phosphine metallation has occurred.

Two other basic types of thermogravimetric curves were obtained

for the other conplexes, depiending upon the phosphine present (figure

3.10 B, C).
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Curve Awas observed for MeFtdlCpz^CC^N^H^)-!^) (PPh2)2 only. This
curve shows loss of CH^ with subsequent gradual weight loss,
presumably of phosfhine, occurring as independent processes. Curve
B, exhibited for conplexes 2-6, shows a rapid expulsion of gas,
immediately followed by gradual weight loss, again presumably of
phosphine. However this weight loss is not stoichiometric and thus
deconposition occurs as part of or at least during loss of phosphine.
Curve C (conplexes 7 - 10) is indicative of slow non-stoichiometric
decoirposition.

The mass spectral results (Table 3-2) for ]ytePt(HCpz2(C2N2H2)~
C)(PPh2)2 interesting in that they show a peak with m/e 16 (m.wt.
CH ) less than the parent ion, and presumably this indicates the
presence of a metallation reaction. From these results, the
metallation reaction for conplexes 2-6 could be considered to occur
as part of the thermal deconposition process, with the metallated
conplex not stable enough to be isolable.
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Table 3-2

jyfetss Spectral and Thermal T^lysis Results for Phospbine

Complexes Containing Cyclometallated HCpz.^
Number Conplex Mass Spectrum Thennogravimetric

Observed, Calc. Fragment Behaviour

Loss (a)

iyiePt(HCpz2(C2N2H2
-C)(L)

1. ZPPh^ 947 947 m.wt.

931 931 CH.
4

A

669 669 (CH^ + PPh^)
2. ZPPh^Me 823 823 m.wt.

614 807 CH^ B

607 (CH^ + PPh^Me:
3. ZPPh^Et 851 m.wt.

835 CH,
4

B

621 621 (CH_^ + EPh^Et)
4. PPh2(Phayfe) 715 m.wt.

699 699 CH,
4

B

5. 2PPh2(CH2Ph) 975 m.wt

959 CH^ B

683 683 (CH^ +
PPh2(CH2Ph)

6. PPh2(o-tolYl) 699 m.wt. B

683 683 CH,
4

7. ZPPh^Me 699 m.wt

683 683 CH,
4

C

545 545 (CH^ + PPh^Me)
8. PPh^CH^Ph^P 807 m.wt.

791 791 CH,
4

c

9. PPh^CH^CH^Ph^P 821 m.wt.

805 805 CH,
4

c

10. 2P(OPh)2 1043 m.wt

1027 CH,
4

c

717 717 (CH^ + P(PhO)^)

(a) A, B, C. refer to the curves A, B, C shown in figure 3.10 p. 106-7
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The only ccarplex which exhibits thenmgravimetric behaviour

exenplified by curve A was the PPh3 conplex, accounting for the
observation that only this coitplex could be isolated after heating.

Me^Pt(L) (L = H^Cpz^. Ph(H)Cpz^)

Me^Ptdi^Cpz^) and Me2Pt(Ph(H)Cpz2) dissolve rapidly in neat
pyridine to yield a deep golden solution, from which white solids can

be precipiated by the addition of hexane. These solids oil on

contact with air and are difficult to isolate as pure substances.

Addition of triphenylphosphine allows the phosphine coitplexes to be

isolated as white solids. In both cases % ISlMR spectrum show the
presence of a single MeiPt resonance (I = 3H) and a H4 pyrazolyl

resonance flahlced with well defined platinum satellites, consistent
31

with cyclometallation having occurrred in the pyrazolyl ring. P

NMR show that in the case of Me^P^dl^Cpz^) a bis (phosphine) coitplex
is formed (figure 3.11 (A)) but with ]yfe2Pt(Ph(H)Cpz2) a monophosphine
(figure 3.11 (B)) is isolated even though the ratio of phosphine :

coirplex was 2:1. By analogy with the phosphine coirplexes of

metallated HCpz^ and HC(mim)pz2, the following structures are
proposed.

W / c—N

\/
Me .C-N. .P"

>

V H H / ^N-N H

r rsj V yMe^ y \ \ /

/ \ " Ph3P
PhgP PPh5

(A) (B)

Figure 3.11

Whether a bis or monofhosphine coirplex is formed is presumably

determined by steric factors, as the C-bound pyrcizolyl ligands differ

in size although their Pt-N and Pt-C bonding character are expected

to be very similar.

For the coirplex Me2Pt(Ph(H)CpZ2), a pyrazolyl ring is metallated
in preference to a non-donor phenyl ring, and this may be a
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reflection of either differing ring reactivities or a preferred

ligand orientation such that a pyrazolyl ring is in the most favoured
orientation for metallation to occur.

In both of these metallation reactions, only the pyridine

displacanent mechanism would seem to be explicable for
cyclometallation. Thus, at least with these bidentate coiiplexes,
metallation can be assumed to proceed via an intermediate pyridine
conplex.

On heating either of the phosphine coirplexes metallation of the
phosphine ligand was not observed to occur. Mass spectral results

gave a m/e value consistent with a metallation reaction occurring,
but this is assumed to be concurrent with decoirposition.

Reaction of the other Me^E^ (L = eg. MeClDCpz^) conplexes with
pyridine, followed 1^ phosphine addition shows that metallation does
not occur. For exanple, Me2Pt(H2(mim)pz) dissolves in pyridine on
warming to yield a deep yellow solution, from which a white
crystalline phosphine derivative can be readily isolated on addition
of PPh3. The ^ NMR spectrum of this complex shows that Me2Pt(PEh2)2
has been formed and metallation has not occurred. This is surprising

since related Me^PtCH^Cpz^) and Me2Pt(HC(mim)pz2) do eyelometallate,
and Me2Pt(H2C{mim)pz) has a strong donor group (mim) to 'anchor' the
ligand during initial reaction with pyridine.

Me2Pt(HC(mim)pz2)

On addition of pyridine to solid Me2Pt(HC(mim)pz2) rapid
evolution of bubbles is observed and the solid dissolves immediately

to yield a deep yellow solution. Addition of hexane to this solution
precipitates a white solid, which on attempted isolation oils in
contact with air to produce a tan decoirposition product. If pyridine

is removed by rotary evaporation, acetone added and the suspension

stirred for 5 minutes and filtered, an off-white solid is obtained

which gives an ill-defined ^ NMR spectrum.
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The ccHtplex formed frcm ]yie2Pt(HC(inim)pz2) in pyridine is best
isolated as the phosEiiine derivative by addition of

trijiienylEhospJiine to the pyridine solution and stirring for 10

minutes. RenovaJL of pyridine, addition of acetone and dropwise

addition of hexane yields a crystalline conplex , the NMR spectrum

(figure 3.12) of vdiich shows that a monoESTOS0iine conplex is formed.

PPha+Hsfnat

NMa

j. f

LA L

1 [ 1 1 1 I I ] 1 1 I
dO 7. ^ 7C* o.S cO T.S bO 4.S 40 B.S 3.0

DOM

solvent

impunty MaPt

MX.

"I 1 1 1 1—
:.3 Z.O 1.3 1.0 .5

Figure 3.12 ^ MMR Spectrum of MePt(HC(mim)pz(C^N^H^)--C,N) (PPh^).

Features of interest which confirm that metallation has occurred
2 1 195are seen in the lyfePt resonance at 0.64 ppn ( J( H- Pt) 82.9 Hz,

J(^^P-^^^Pt)7.90 Hz), which integrates for a single methyl group, and
3 L 195the H4 resonance at 6.10 ppn which shows Pt coiapling, JC^- Pt)

11.9 Hz, typical of a metallated pyrazolyl ring.

This conplex differs frcm that obtained on metallation of

Me^Pt^HCpz^) in that only a single phosftiine groip coordinates, and
this is most probably due to the stronger donor ability of the N-

methylimidazolyl ring forming a strong chelate ring wtiich the



pliosFhine is unable to cleave.

Me

/>=/
pz

Ph3P

Figure 3.13

\/
\

H

.36During an X-ray crystallograFiiic sturiy"

C)(PPh2)2 ati inpurity crystal was found to contain a
Fhosfiiine, which was trans to methyl (figure 3.14).

pyndre

Figure 3.14
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of MePt(HCpZ2(C2N2H2)-
single

This manoi^iosEiiine is in contrast to that obtained from the

MePt(H(mim)Cpz(C2N2H2)-C,N) (py) system in which PPh^ replaces
pyridine and must reflect the relative strengths of the CN(pz),

CN(mim) chelate bonds.
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If iytePt(H(iTUjn)Cpz(C2N2H2)-C,N) (py) is prepared in situ (neat py),
pyridine removed, benzene added and the solution refluxed, a
precipitate is not obtained. After addition of hexane and isolation,
an IR spectrum of the whitish solid obtained shows the presence of

coordinated pyridine (starting naterial), and thus a polymeric
substance analogous to []y!ePt(HCpz2(C2N2H2)-C,N) is not obtained.

Attempted IVfetallation Reactions

Other ligands synthesized which contain sites/geometries
appropriate for metallation reactions include pzCH^CH^CH^pz, 1,3-

, (PhCMe) (H)Cpz2 and 1,3-(pz2CH2)2C5H^) (figure 3.15),
with the appropriate metallation sites marked (*).

V-N^ CH2*
CHa CHa

OMe

pz

Figure 3.15

These ligands contain potential metallating sites, either in the
pyrazolyl ring, in the carbon skeleton supporting the ring or in the
non-donor groups attached to the ligand.

Reaction of PZCH2CH2CH2PZ with [Me2Pt(Et2S) ]2 resulted in the
isolation of an oil from which a solid coirplex could not be isolated.
This oil was reacted with Rfel to give a Pt(IV) conplex which i^owed
that metallation had not occurred. The closely related ligand

py(CH2)2Py iias been reported to undergo a metallation at the central
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metliylene C atom with Pd(CIAc) to form a doubly chelated
yl T

cyclopalladated corplex (figure 3.16), isolated as the chloride.

CH;

CHg

Figure 3.16

CH;

Pd(OAc)

ACOH

100 °C

H"UC—Pd—OAc
acetone

50

-X>
H*

OAc , w..iiC-Pd-CI
> I

" X)
Thus, pzCH^CH^CH^pz was treated with Pd(ClAc)2 in acetic acid at

100°C for 2 hours after vdiich time a yellow solution had formed and
reduction to palladium was visibly evident. The solution was

filtered, acetic acid removed and acetone added, from which a
crystalline yellow solid precipitated. This solid was insoluble in

common organic solvents, but dissolved in warm pyridine from which

yellow crystals of a very soluble conplex were obtained by addition

of hexane. Hie ^ NMR spectrum and melting point of this product
identify it as diacetato-bispyridinepalladium(II). Thus, the ligand
pzCH^CH^CH^pz is not rretallated by palladium, the isolated conplex
after reflux in acetic acid being the simple N,N-chelated

coordination compound.

Extended heating of this coipound in acetic acid (100°C) resulted
in reduction to palladium metal.

PdCClAc)^ was treated with a stoichiometric amount of 1,3-
in acetic acid at 100°C. During the reaction the

solution turned a deep purple colour which slowly faded resulting in
a bright yellow solution from vhich a white crystalline conplex could
be isolated. The ^ NMR spectrum of tliis ccmplex shows the presence
of equivalent pyrazolyl rings, equivalent methylene protons, an
acetate methyl resonance, and integration for 3 phenyl protons, all

consistent with palladation at the C1 position of the phenyl ring.
The caiplex (figure 3.17) is planar and contains 6 membered NC

chelate rings.
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OAc

Figure 3.17

13A C NMR spectrum shows that the metallated carbon of the phenyl

ring occurs at 139 ppn and a proton-carbon correlation spectrum shows

that this resonance is not connected to any proton.

This complex undergoes metathesis with NaCl in acetone at arribient

terrperature to afford the chloro conplex, ClPd( (pzCH„)_C,H_), which
Z Z D o

exhibits similar NMR features to that of the acetate complex.

Cyclopalladation of related pyridine donor ligands, eg. 1,3-
(pyCH(iyie) C H.), has been reported to form planar tridentate N„C

42 •tridentate complexes.

reacted with [Me2Pt(Et2S) to form an
intractable white solid. Addition of pyridine to this solid resulted

in isolation of a solid which oiled and decomposed on contact with
2-the atmosphere, and this may be Me2Pt(py)2- ^tCl^ reacts with 1,3-

((p2CH2)2CgH^) to form a simple coordination coipound which is highly
insoluble in common solvents. Heating this compound in

2-methoxyethanol, even with the addition of base (NaCAc) failed to

cause metallation to occur.

The related ligand l,3-( (pz_CH) „C^H J also reacts with both
2— Z D 4]yie2Pt(II) and PtCl^ but neither system yields a cyclometallated

complex. Reaction of this ligand with Pd(CAc)2 resulted in the
isolation of an unmetallated cotplex, and this behaviour has been

42observed before. {Phayie)HCpZ2 reacts in an analogous fashion to
Ph(H)CpZ2, viz. metallation occurring in the pyrazolyl ring.
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Ph^PtL Complexes

The pyridine metallation reaction was investigated for a small

number of Ph^PtL (L = HCpz^, PhdDCpz^, H^Cpz^) conplexes since
metallation of a Ph^Ptdl) conplex containing the ligand (bipy) has
been reported (figure 3.18)

Figure 3.18

/ \pyBu'4

N vPyBu 4

Reaction occurred between Ph2Pt(bipy) and 4Bu''py (solvent) by a
proposed 'roll-over' mechanism.

Reaction of Ph2Pt(HCpz2) with pyridine (neat) yielded a yellow
solution from vdiich an off-white solid could be isolated with

difficulty. An IR spectrum of this solid showed the presence of

coordinated pyridine, but no absorptions indicative of HCpz^.
Extraction of the reaction mixture yielded a white crystalline solid

identified as HCpz^ (NMR). Thus, Ph^PtdlCpz^) does not appear to
cyclonetallate by this route, and most probably forms the bis

pyridine conplex Ph2Pt(py)2 in neat pyridine. This substantiates the
idea that a first step to metallation for the Me^^^ conplexes is a
pyridine displacaioit of a pyrazolyl group. In the case of Ph^PtL
the Pt atom in the expected intermediate may be less able to undergo

an oxidative addition reaction with a C-H bond, eg. Ph2Pt(bipy)
reacts approximately 100 times slower than ]y[e„Pt(bipy) in the
... 43

oxidative addition reaction.

3 • 5 Conclusion

Cyclometallation of a pyrazolyl ring in Me^PtL conplexes has been
shown for the conplexes with L = HCpz^, H^Cpz^, Eh(H)CpZ2 and
HC(mim)pz2 by reaction with pyridine. Metallation is considered to
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occur via a pyridine displacanent mechanism with the actual C-H
addition to the metal occurring via a conventional oxidative
addition.

With some complexes (L = H2C(iimn)pz, ]yie(H)CpZ2, complete
displaconent rather than cyclometallation was favoured, presumably
rhip to steric properties of the system.
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CHAPTER FOUR

OXIDATIVE ADDITION REACTIONS OF R^PtL COMPLEXES

4.1 Introduction

Oxidative addition of alkyl halides to the platinum(II) conplex

containing metallated tris(l-pyrazolyl)methane, iyfePt(HCpz2(C2N2H2)-
C,N)(py), has been explored in order to atterrpt synthesis of
platinum(IV) conplexes containing tripodal N2C donors. This
approach was successful (Chapter 4, section 4.4.3), and it was

sifbsequently found that reaction of iodonethane with the non-

metallated coiplex, , also gave the cyclometallated

platinum(IV) conplex directly. In view of this unexpected result, a

range of oxidative addition reactions of alkyl halides and iodine

with Me^Ptdl) and Ph^Ptdl) conplexes containing pyrazolyl based
ligands has been investigated.

4.2 General

Organoplatinumdl) conplexes are readily oxidized to platinumdV)

conplexes by the addition of halogens and organohalides, and the

oxidative addition reaction has become an inportant synthetic method

for the synthesis of organoplatinumdV) conplexes. Clark et al.^
have reported the oxidative addition of 12 to a stoichiometric
mixture of Me2^(C0D) and pyrazolyl based ligands in CH^Cl^ to yield
diorganoplatinumdV) conplexes, eg.

iyie2Pt(C0D) + H2C(3,5Mepz)2) + I2 Me2l2Pt(H2C(3,5Mepz)2) (D

A crystallographic determination of the structure of this conplex

showed the nethyl groups to be in the square plane defined by the

platinum and H2CPZ2 ligand, with trans iodo donors. (Figure 1.4,
Chapter 1)
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If the platinum(II) substrate contains tertiary phosphine or
arsine ligands, the nature of the ligand and halogen has a

2
significant effect on the stereochemistry of the product.

cis-Me^Pt (1^2^^) 2

cis-iyfe2^(1^2^^) 2

cis-Me2Pt (AsMe2Ph) ^

BT2

CI2

CI2 or Br2

20°

Me

L.. I

Cl

Br.

Me

I
:pt:

.Me

"Br

Me

(2)

Cl^ I L-^ I ^Cl

Cl.

or

Me

1
:ptc

.Me
(4)

If the oxidizing agent is an alkylhalide, then a
2 3triorganopIatinum(IV) conplex can be formed, ' eg.

Me2Pt(IMe2Hi) + MeCI
L = AS, P

]yie2Pt(PEt3)2 + lyfel

]y[e2(Cl)Pt(lJyte2Ph)2 (5)

M02(I)Pt(PEt2)2 (6)

The only report^ of the oxidative addition of Mel to form a
tetramethylplatinum(IV) corrplex involves the synthesis of the dimeric
dimethyl sulphide bridged conplex [Me^Pt{iyte2S) ]2-

2Cl2Pt(Me2S)2 + 6MeLi + 2MeI [Me^Pt(Me2S) (7)

Up until about the last fifteen years, most oxidative addition
reactions had been carried out rasing platinum(II) siobstrates

2 5containing phosphine or arsine ligands, ' as it was thought that
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these types of ligands were required to irnpart stability to

organoplatinum conplexes.

However, Me Pt(bipy) has since been shown to be very reactive
6towards oxidative addition, together with other imine and diimine
7 8coirplexes such as Me2Pt(py)2 and Me2Pt(phen).

Oxidative addition of alkyl halides to diorganoplatinum(II)

substrates containing diiinine ligands generally produce trans
, . 6a,7b,8addition products. ' '

Me2Pt(bipy) + RX fac-Me^R(X)Pt (bipy) (8)
(RX = Mel, EtI, allyl bromide, benzyl bromide

Me2Pt(phen) + RX ^ fac-iyfe^R(X)Pt (phen) (9)
(R = Me, Et, Pr^, Bu^; X = Br, I)

Me2Pt(py)2 + Mel fac-Me^IPt (py) 2 (10)

4.2.1 IVtechanism of Oxidative Addition to Pt(II)

Two different mechanisms have been proposed for the reaction of
9

organohalides with organoplatinum(II) substrates. The more

classical involves an mechanism, in which the metal acts as the

nucleophile displacing halide from the organohalide to form an

intermediate cationic five coordinate corrplex, vSiich then forms the

final product (Scheme 4.1).

X ^LnM'->--"C X —^"j

Ln(X)M '̂̂ C

Scheme 4.1 Mechanism for Oxidative Addition of RX to Pt(II)
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A cationic intermediate has been observed during an NMR

experiment of the reaction of Me2Pt(J^2^^2 form fac-

lyie^iPtreaction was carried out in CD^CN, rather
than the more comnonlY used solvent acetone, an intermediate assigned

structure (A) (equation 11) was observed, and the intermediate

disappeared as the final product formed.

Mel

Me2Pt(Me2S)2
CD3CN

Me

Me.^ I ^,^SMe2
:PtCL

Me"^ I "SMe2

NCCD3

Me

- NCCD3 Me...^
r ^pt:

Me— I

I

-SMe2

'SMe2
(11)

The Sj^ mechanism for oxidative addition is supported principally by
the following evidence:

(i) Reaction kinetics are overall second order.

(ii) The rate of oxidative addition increases in solvents of

increasing polarity.

(iii) Classical RX reactivity patterns. Me > 1° > 2° > 3° and
I > Br > C1 » F.

(iv) Inversion of configuration of chiral carbon.

The other establidied nechanism involves generation of free

radicals, which can react either a chain mechanism, or a non-chain

mechanism involving paired or caged free radicals. The essential

steps which produce the required product are shown in Scheme 4.2.
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(II) ^ ^ (IV)L ' + R" [LMR]* ^ L 'XR + R*
n n ' n

2A Free-Radical Chain IXfechanism

L + RX [L M]"^* [RX]"' [L MX] * + R"
n •" n n

L M^^^XR
n

2B Free-Radical Non-Chain Mechanism

Scheme 4.2 Free Radical Mechanisms for Qxidative Tuition of RX to

Pt(II).

The two free radical reaction paths result in different reaction

kinetics. The radical non-chain mechanism follows second order

kinetics (as for the mechanism), \diile for the radical chain

mechanism overall kinetics are difficult to predict due to the

coirplex set of initiation, propagation and termination steps

involved. Free-radical mechanisms are generally recognized by

determining the effect that free-radical initiators and scavengers

have on the course of the reaction, and the reaction of halides

follows the order tertiary > secondary > primary. Also, the

detection of radicals by ESR and radical trapping experiments

provides evidence for radical intermediacy, but does not define

whether radicals represent the main mechanism.

Little is known about the factors which influence whether an

oxidative addition will proceed by the S.^ mechanism or a free
11radical pathway, although these factors are beccmung clearer. For

Od corrplexes in vdiich ligand steric effects are low (eg. lyfe^PtL where
L = bipy, phen), primary alkyl halides oxidatively add via an Spj2
mechanism. The point at vdiich free-radical mechanisms can conpete

with the S-^ mechanism is realized vflien isopropyl iodide is used as
12the oxidizing reagent. For exanple, Me2Pt(phen) reacts with

primary halides and isopropyl bromide via an S|̂ 2 mechanism, but with
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isopropyliodide and tert-butyliodide the reaction occurs mainly by a
12

free-radical mechanism.

4.2.2 ^ MMR Spectroscopy of Platinum(IV) Complexes

lyfethylplatinumdl) and IV conplexes generally exhibit well
2 t 195 T_resolved JCTI- Pt) couplings in their TI ISHVIR spectra, with the

magnitude of the coupling constant serving as a definitive tool in

differentiating between the II and IV oxidation states. The

magnitude of the coupling constant is reduced by approximately 20% on
13oxidation of methylplatinum(II) coiiplexes, eg. Figure

illustrates the IVieE^ region for the related conplexes lyfe^Pt
and fac-Me^IPt ^ (bipy).

(II)

(A)

MePt

86.26 Hz

v.. A
I I I I I I I I I I I I i I

2.0 1.5 1.0
PPH

(B)

MePt trans to N
2j(lH.195pi)
70.78 Hz

JlAi

MePt tran.s to I

2j(iH-'®^Pt)
72.50 Hz

l1l_
1111111111111
1.5 1.0 .5

PPH

4.1

(bipy)

Figure 4.1 lyfePt Resonances for a) Me^Pt(bipy) and b) MejIPt(bipy) in
D6 Acetone.

Monomeric trimeldiylplatinum(IV) conplexes derived from

dimetdiylplatinum(II) substrates containing neutral bidentate nitrogen

donor ligands may potentially have two configurations (A and B).
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Me-^l "^N'- X-^I N'
X Me

B

Figure 4.2
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Configuration A is the preferred isomer, as it has the methyl groups

in positions vfliich are not mutually trans to one another.

4. 3 Oxidative Addition of Iodine to
Me^Pt(tridentate) Complexes

Dimethylplatinum(II) coirplexes of the tridentate ligands HCpz^,
HC(py)pz2, HC(mim)pz2 and HC(thio)pz2 exhibit limited solubility in
conrnon organic solvents, and on addition of to acetone suspensions

of these coitplexes black, difficult to characterize solids are

obtained, and thus the method of oxidative addition of iodine to a

stoichionetric mixture of soluble reagents Me„Pt(COD) and ligand, as
1 7

developed ty Clark et al., was adopted. This method was developed

ty Clark primarily because ccarplexes such as could not

be obtained by reaction between Me2Pt(C0D) and H^Cpz^ under reflux in
chloroform.

Stoichiometric quantities of Me^Pt^COD) and tridentate ligand
were stirred in acetone at ambient tetrgperature, and iodine (in

acetone) added drofwise until the iodine colour persisted. Ttfter

removal of excess iodine hy hexane extraction, and recrystallization

frcan a suitable mixture of solvents, yellow to orange crystalline

conplexes of the above ligands were obtained.

The reaction most probably proceeds via reaction of ligand with

an intermediate platinum(IV) conplex of formulation [iyfe2Ptl2^x'
on addition of to iyie2Pt(C0D) in dichloran^thane the solution is
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iirmediately decolorized and an insoluble powder of corposition
14

[Me PtfE ] is obtained in nearly quantitative yield.

This reaction also proceeds if [Me2Pt(Et2S) is used in place of
Me2Pt(C0D) - nost probably by the same mechanism involving a

(Et^S) ]2 intermediate.

The coirplexes were characterized by elemental analysis, NMR
spectroscopy, molecular weight (in chloroform) and conductivity (in
acetone) measurements. All of the coitplexes were found to be non

conducting. Figure 4.3 shows the ^ NMR spectrum for Me2l2Pt(HCpz2).

CH H H,Ks "3

MePt

111 JUU

—1 1 1 1 1 1 1 i 1 1 1 1 1 ' '
[0_0 9.5 g.O 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3. 5 3.0

PPH

Figure 4.3 bi KIMR spectrum of Me2l2Pt(HCpz^) in D6 Acetone.

The single methylplatinum resonance and pyrazolyl ring environments
in the ratio 2:1 are consistent with the ligand acting as if in a
bidentate mode with nitrogen trans to methyl, and trans iodo groups.
Close examination of the aromatic region (figure 4.3B) provides
evidence consistent with the orientation of the uncoordinated
pyrazolyl ring in an equatorial position, as shown in figure 4.4.
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PPH
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Figure 4.3B Arcmnatic Region of lyie^I^Pt(HCpZj).

Me-

Me-

H

I ''UC
ptCT

132.

'4eq

J

7. 0

Figure 4.4

UnccxDrdinated H3 and H5 pyrazolyl ring resonances occur with the H5
proton furthest downfield. Caipared with the free ligand these
protons are deshielded, eg. H3 (7.77^^^, 8.35^^^) H5 (8.00^^^,
8.55 ). but for the coordinated pyrazolyl rings the H5 protons

unco '
show a pronounced upfield Shift cortpared with the free ligand, eg. H5
(8.00^ , 7.75 ,). This ipfield shift results from anisotropic^ free' coord ^
shielding by the equatorial pyrazolyl groip, since it is expected to
be approximately perpendicular to the planes of the coordinated
rings.

In contrast, reaction of [IVte-Ptl]. with HCpz_ gives a cationic
.15conplex with HCpz^ acting as a tripodal tridentate ligand.
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•H

Figure 4.5

X-ray crystallographic studies of the conplexes

Me2lPt(H2C(3,5Mepz)2)^^ reveal Pt-I bond lengths of 2.65 A(trans to
I) and 2.84 A (trans to Me), respectively, and thus iodide trans to
another iodide is more strongly boimd than iodide trans to a methyl

group. Thus, the reason for the difference in product formation

between Me2Pt(COD)/l2/HCt»Z2 and [Me^Ptl ]^/HCpz^, may at least partly
result from the strong trans effect of the methyl group.

On heating solid Me2l2Pt(HCpz2) to ~140°C the orange-brown
crystals suddenly change to bright yellow, which on further heating

decoiipose above ~230°C. A ^ NMR spectrum of these yellow crystals
is shown below.

H; trans to N

He trans to

CH

12.0 11 n 10 n 9 0

trans to N

trans to I

1

8 0 -> 0
PPM

CHCI3

H, trans to N

trans to

jy

6 n B 0 4. 0

Figure 4.6 Me2l2Pt(HCpz2) heated to ~140 C.

MePt

3 0 2.0
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The spectrum is considerably different than that of

iyte„I„Pt(Hqpz,3) (Figure 4.3). The methylplatinum(IV) resonance is
o 1 iqc

moved significantly i^jfield (1.97 ppn, (ty 0.7) J( H- Pt) 70.38

Hz), the apical C-H proton is moved downfield (12.5 ppn, 1^ 2.5 ppn),

and the H3 and H4 proton resonances of the unique pyrazolyl ring are

flanked by platinum satellites, which is indicative of coordination,
although coupling is often not seen in spectra. These changes

suggest that an isomerization has occurred in vhich a cationic
coirplex is formed with HCpz^ acting as a tripodal tridentate ligand.

I ^Mev I mn
TNMe"^ I Me^

I

Figure 4.7

The large downfield shift of the apical C-H proton has been found to

be indicative of HCpz,, in a tripodal tridentate geometry.

A high teirperature study was undertaken to see if this
isomerization occurs in solution. Thus, ]yie2l2Pt(HCpz2) was dissolved
in CDCl^ and the resultant spectra recorded at room tarperature and
successive teaiperatures up to 55°C (Figure 4.8).
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MePt

CHCU

CH

.L

cationic 55°C 60 min

I 1 •UuLLJ 55°G 35 min

1 >1 55°C lOmin LlL

.K_ 45° C 5 min

MePt

CH

ambient

I ' I ' 1 ' I ' \ ' I I I ' 1 1 1 1 1 ' 1—
!^.0 !!.n too 90 80 70 8 0 5 0 40 20 20

PPM

Figure 4.8 High Temperature Study of ]yte^I^Pt(HCpz^) in CEXll^.
-3^

At 45 C a new low intensity MePt resonance is observed at 1.97

Fpn (^J(^-^^Vt) 70.38 Hz), and an apical C-H resonance at 12.5 ppn.
The resonances due to the unique pyrazolyl ring are broadened

considerably and coupling is no longer observed for resonances of the

coordinated pyrazolyl rings. At 55°C considerable conversion has
occurred, and resonances due to both neutral and cationic conplexes

are clearly discernible. If the solution is heated strongly for 45 -
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60 minutes then only resonances due to the cationic conplex are

observed. On standing and cooling, a NMR spectrum shows that the

cationic complex persists, and it is clearly the favoured isomer

thernodynamically. Conductivity measurements were not possible as

this complex does not exhibit sufficient solubility in acetone.

Isomerization was not observed in acetone.

Both exhibit similar

MyiR behaviour and only will be discussed in

detail. The ^ NMR behaviour of iyfe2l2^(HC(mim)pz2) is different in
different solvents. The spectrum in acetone is shown below.

Ll

8. "5
1—
3. n 7.S

'3.5ax

5mim

L

7.0 e 5

j

6 0 5.5
PPM

I
5. 0 4.5

1 MePt trans to pz

2 MaPt trans to mim

NMe

4.0 3. 5 3.0

Figure 4.9 ^ ISIMR spectrum of ]yfeA^Pt(HC(inim)pz.^) in D6 Acetone.

The two methylplatinum resonances are indicative of methyl trans

to a pyrazolyl group (2.68 ppn, ^J(^-^^^Pt) 76.05 Hz) and trans to a
N-methylimidazolyl group (2.55 ppn, ^J(^-^^^Pt) 73.40 Hz). This
structural assignment (figure 4.10) is also consistent with

occurrence of resonances in the 1:1 ratio, for coordinated and

uncoordinated pyrazolyl rings, and the H4 resonance of the

2. 5
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coordinated imidazolyl is clearly evident (inset) with well defined

platinum satellites (^J(^-^^^Pt) 9.44 Hz).

Me-

Me-

I

:Pt:

o
N
1-PZ • >JJQ

"mim H

Figure 4.10

Variable temperature NMR experiments do not indicate a neutral ->

cationic isomerization in the tenperature range 25 - 60°C.

The ^ NMR spectrum of this complex in CDCl^ (figure 4.11) is
quite different from that in (00^)^00 (figure 4.9), but may still be
interpreted in terms of a neutral complex.

NMe

isomer B

NMe

isomer A

1 MePtl£anstopz(A)

2 MePt trans to pz(B)

3 MePt trans to mim

liJ

1 1 1 1 i 1 1 1 1—
4.0 3.6 3 b 3.4 3.2 3.(1 2. 8 2.6 2.4

FPU

Figure 4.11 A ^ NMR Spectrum of Me^I^Pt(HC(inim)pz.,) in CDCl-
AliTAiatic Region

-3—

2.
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Figure 4.11 B ^ ISIMR Spectrum of Me^I^Pt(HC(inim)pz^) in CDClj-
Aronatic Region

The spectrum exhibits three methylplatinumdV) resonances in the

ratio 1:1:1, three pyrazolyl resonances in the ratio 1:1:1, two

imidazolyl resonances in ratio 2:1, and two resonances in ratio 2:1

for the apical C-H proton. This evidence suggests a mixture of two

isaners in the ^proximate ratio 2:1 (figure 4.12), with isomer A

predoninant.

Me-

Me-

I

:pt:

Figure 4.12

'N-N., I Me-

Me-

I

:Pt:

B

^7 H-N—N.,J

//

Isomer A is shown with the uncoordinated pyrazolyl group in the

axial position as molecular models show that steric crowding will not

allow it in an equatorial position adjacent to the N-methyl of the

imidazolyl group. In this position the H5 pyrazolyl proton of this

group is expected to be i^ielded by one of the coordinated rings and
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moved upfield, accounting for the equatorial proton resonance at 8.07
Fpn.

Isomer B has a different configuration for the imidazolyl group,
since the methine CH occurs 1.4 ppn downfield of isomer A, consistent
with the methine proton oriented adjacent to the iodo group. The H5
pyrazolyl ring protons of isomer B are ij^jfield from those of isomer
A, consistent with shielding by an equatorial imidazolyl.

If a solid saitple of ]yie2l2Pt(HC(mim)pz2) is heated to 180°C its
colour suddenly changes from a deep yellow to very light yellow, and
a ^ NMR spectrum (figure 4.13) of the light yellow product in CDCl^
is different from the initial deep yellow conplex.

CH

11.0 !D. 0 9. 0
n—
3.0

GHCIo

Hg+ mim

7.0 6.0
"PM

NMe MePt

.nnor

5.0 4.0 3 0 2.0

Figure 4.13 %NMR Spectrum ]yie2l2Pt(HC(mim)pz2) heated to 180°C

The large downfield shift of the apical C-H protons coiipared with
those in the parent coirplex are indicative of formation of a cationic
cortplex with the ligand in a tripodal tridentate geonetry. Two
isomers are present in the ratio 1:1, as the spectrum displays 2
N-methylimidazolyl methyl resonances and 2 apical C-H resonances in a
1:1 ratio. The methylplatinum resonances (figure 4.13 B) in the
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o n *1 QC O T 195
ratio 1:2:1 (1.93 ppn, JC^- Pt) 70.77 Hz; 1.94 ppn, J( H- Pt)
71.24 Hz; 1.78 ppn# 68.34 Hz) are consistent with the
structures A and B.

1 MePtliansto pz(B)

2 MsPt trans to pz (A)

3 MsPt trans to mim

i.L
ppM

2 0 1.9

Figure 4.13 B MePt Region of [Me^IPt(HC(inim)pz^) 11 in D6 Acetone.

Figure 4.14

I
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Me' 1 •fnim^pC-

N—

B
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Thus, the methylplatinum signal at 1.93 ppn is assigned to the
methyl groups trans to pyrazolyl rings in isomer A, the
methylplatinum signal at 1.94 ppn represents the methyl grortp trans
to the pyrazolyl ring in isomer B, and the methylplatinum resonance
at 1.78 ppn is the methyl trans to the imidazolyl group. Resonances
for the ligand ring protons exhibit the esg^ected relative
intensities.
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High temperature NMR experiments for neutral Me2l2Pt(HC(inim)pz2)
up to 60°C in t)Oth acetone and CDCl^ failed to detect any neutral-
cationic isomerizeration, in contrast to the closely related conplex

]yie2l2Pt(HCpz2). As for , once
been rendered cationic it did not revert back to the neutral species

in solution.

For the neutral conplex the iscmer ratio was

also approximately 2:1, with bound pyridine predominating, based on
integration of the characteristic bound and unbound pyridine H6
resonances and the two distinct apical C-H resonances. The remainder

of the aromatic region is complex and a definitive assignment was not
attempted. The MePt region (figure 4.15) shows three resonances with

2 1_ 195
the downfield resonances (2.76 ppn, J("h- Pt) 74.33 Hz (isomer A)
and 2.71 ppm, ^J(^-^^^Pt) 75.06 Hz (isomer B)) being assigned to Me
trans to pyrazolyl and the furthest ip)field resonance (2.58 ppn,
^j(^-^^^Pt) 72.90 Hz) as Me trans to pyridine. The two isomers are
shown in figure 4.16.

MePt trans to pz (B)

MePt trans to pz (A) MePtiranstopy(A)

PYe coord

ii

mi

—I 1 1— 1 1 1 1 1 r~—I 1 1 1 r 1—
qq 90 8.9 fan 7,9 70 b'.9 faO 59 5.0 4.9 4.0 59 30 79

PPI^

Figure 4.15 %NMR Spectrum of Me^I^Pt(HC(py)pz„) in CDCl.^.-3^
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On heating (190 C) similar conversion to a cationic species was
observed as already described.

The ^ NMR spectrum of ]y[e2l2Pt(HC(thio)pz2) exhibits resonances
(see experimental) consistent with the structure shown in figure
4.17.

Figure 4.17

The pyrazolyl ring H3 resonances are shifted downfield from the
free ligand (~ 0.5 ppm), vSiile the H5 resonances are essentially
unaffected. Any downfield shift of these protons is negated by

shielding from the thienyl ring. On heating, both in solution and

the solid state, no tendency to cationic formation is observed,

perhaps owing to the weak donor ability of the thienyl ring.

The reaction of [Eh2Pt(Et2S) ]2 with in the presence of HCpz^
yielded an orange-yellow coiiplex, for which a ^ NMR spectrum
displayed pyrazolyl resonances in the ratio 2:1 with the apical
proton well downfield (11.70 ppn). An acetone solution of this

—1 2 —1coirplex was conducting (A = 87 Q cm mole ) and thus the conplex
is ionic with the unique pyrazolyl ring coordinated and trans to I.

This is in contrast to the lyie^Ptdl) analogue which forms the neutral
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species and requires strong heating to convert to the cationic

conplex.

If Mel is losed in place of iodine in these in situ reactions,

cationic Me^PtdV) conplexes are formed for the tridentate ligands
HCpz^, MeCJJZ^ HC(mim)pz2, in which the ligand acts as a donor,
eg. [Me^PtCHCpz^) ]I.

^ NMR results for these tridentate conplexes (Table 4-1) show
resonances appropriate for a single MePtdV) and single equivalent

ligand resonances, and in the case of HCpz^ and HC(inim)pz2 apical
resonances consistent with an ionic conplex formation, eg.

]i/ where R = H, Me.

R= H, Me

Figure 4.18

As HCpz^ is known to not react with []yfe2Pt(Et2S) ]2 in acetone at
ambient teperature, these reactions are consistent with initial

oxidative addition of Mel to [iyfe2Pt(Et2S) ]2, to form []yte2lPt(Et2S)
or a monomer, followed by rapid ligand replacement to form iyfe2iPt(L)
species.

Other abq^l halides can be used in place of Mel. For exanple,

propargyl bromide reacts readily with [Me2Pt(Et2S) ]2 in the presence
of HCpz^ to form the conplex [Me2(pr"op)Pt(HCpZ2) ]Br (A= 70Q ^ cn?
mele ^). The ^ NMR spectrum of this coplex (figure 4.19) shows the
presence of both allenyl and alkynyl groups in the ratio 2:1
respectively. This ratio does not change, even on prolonged (1 hour)

20
reflux in acetone or chloroform. Collman et al. have reported the

reaction of a-haloacetylenes with Ir(I) and Pt(0) conplexes to yield

products in which the acetylene groip has rearranged to an allene.
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Table 4-1

IVtejPtdV) Complexes Formed by "In Situ" Reactions of IVle^Ptdl) , lyiel
and Tridentate Ligand

Conplex MeFt Pyrazolyl
/2-r^ppn ppn ( J)

(2j) H3 H3

Other

ppn

A
^-1 2n cm

mole ^

[Me2Pt(HCpZ2) ]I 1.14 7.72 6.55 9.08 apical 83

(72.24) (2.34) (2.76) 12.23

[]y!e2Pt(MeCpz2) ]I 1.26 8.35 6.92 9.04 IVfethyl 78

(72.07) (2.30) (3.02) 4.04

[iyfe2^(^^C(inim)pz2) ]I
trans to mim 1.12 9.44 6.78 8.16 apical 82

(70.22) (2.24) (2.42) 10.88

trans to pz 1.29 mim

(73.29) 7.58

7.64

CH

!2 0

:CH,

CHCI3

= CH

I II il

9 0 8.0 7. 0
PP.M

6.0 5.0 4.0

CH,
MePt

SCH

siX—X v..

—I—
3.0 2.0 1.0

Figure 4.19 ^ IQMR Spectrum of Product from "In Situ" reaction of
[lyie^Pb(Et^S) ]^, HCpz^ + Proparqyl Bromide.
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4.3.1 Reaction of Neutral and Cationic "jyie^I^PtX" Coinplexes with
Pyridine

If deuterated pyridine is added to an acetone solution of

, resonances due to the free ligand are observed and

the methylplatinum resonance is consistent with retention of the

unit. A pyridine conplex of formulation Me2l2Pt(py)2 is
assumed to form by displacement of HCpz^. Indeed, if
is dissolved in pyridine, taken to dryness and recrystallized from

acetone, a bright orange conplex is obtained. An infrared spectrum

shows absorption at 1601 cm ^ (coordinated pyridine) and the ^ NMR
spectrum (figure 4.20) is consistent with the formulation cis-

]yie2l2Pt(py)2*

pyz.e

py4

X

pys.s

CHCI3

Me.

Me"
:pt:

'Py

^py

MePl

I

\ 1 [ ] I 1 I I 1 1 1 1 I 1
'^0 B.S 6 0 7.S 7 0 6 S b 0 S S SO 4 S -1.0 3.S 3.0 2.S

ppk^

Figure 4.20 ^ MMR Spectrum of Me2l2Pt(py)2 Me^I^Pt^HCpz^) +
pyridine

The other conplexes, 1^^212^^ ^ HC(mim)pz2, HC(py)pz2,
HC(thio)pz2), also react with pyridine to yield iyte2l2Pt(py)2-
However, in the case of the cationic conplexes, [Me2lPtL]I (L =
HC(mim)pz2, HC(py)pz2, HCpz^), where the ligands are present as
tridentates, pyridine fails to displace the ligand even on heating to
60°C.
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Summary

The reaction of tridentate N donor ligands with » either

Me2Pt(C0D) or [Me2Pt(Et2'̂ ^ ^2' presence of gives monomeric
six coordinate coiiplexes with the ligand acting in a

hidentate mode. This can be rationalized in terms of 12 reacting
with the Me2Pt(II) unit to form a transient Me2l2^^^^ species,
\^ich reacts with the chelating ligand present.

The preferred orientation of the uncoordinated donor group is
equatorial, but in the case of uncoordinated
pyrazolyl ring is axial due to the steric effect of the N-methyl
group of the coordinated imidazolyl ring.

A single species appears to be present in a solution of

Me2l2^^^'^^3^' exchange is occurring it is too rapid to be
seen on the NMR time scale. A single isomer is preferred for

Me I„Pt(HC(thio)pz ), presumably because the thienyl ring is too weak
^ ^ ^ -I

a donor to coirpete with the pyrazolyl rings for coordination. The
EMR spectrum of Me2l2Pt(HC(mim)pz2) is solvent dependent, with a
single species in acetone D6 (mim coordinated) but a mixture of two
isoners in the ratio 2:1 in CDCl^ solution. The preferred isomer is
the chelating pz-mim bidentate with the uncoordinated pyrazolyl ring
axial, and the minor isomer involves the pz-pz bidentate with the
uncoordinated imidazolyl ring in an equatorial position.

Me„I„Pt(HC(py)pz ) also yields a mixture of isoners, approx. 2:1, but

in both isomers the uncoordinated group (pyrazolyl or pyridine) is in

an equatorial position.

Heating solid Me2l2Pt(N2-tridentate) corplexes results in
displacQtent of an iodo ligand by the free donor ring and formation

of a cationic conplex with the ligand acting as a chelating tripodal
tridentate. To our knowledge replacement of iodo ligands by a

neutral donor ring is unknown. This reaction is general to all

tridentate N donor ligands, it is r^id, clean (no reduction) and

quantitative. Solution studies showed that, at least in the case of

Me2l2Pt(HQpz2), isomerization occurred and could be followed by ^
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NMR. Presumably the other isomerizations could not be achieved in

solution as a high enough temperature could not be attained in the

solvents used.

Pyridine reacts with the neutral conplexes (L = HCpz^,
HC(mim)pz2, HC(Fy)pz2' HC(thio)pz2) to displace L and form the bis
pyridine conplex With the tridentate cations
[Me^IPtL]^ (L = HCpz^, HC(mim)pz2, HC(py)pz2) pyridine fails to
displace the ligand.

The general reaction sequence, of simultaneously reacting a
dimethylplatinum(II) precursor, ligand and iodine, is also successful

if an alkyl halide, eg. Mel, is used in place of iodine. In this
case a Me^PtdV) cationic conplex, with ligand present as a
tridentate, is isolated from the reaction mixture. Mare conplex

halides other than Mel, eg. propargyl bromide and benzyl bromide,

imdergo a similar reaction.

This synthetic strategy allows conplexes to be made

starting from Me^Ptdl) precursors which are easy to prepare and
which can be made in high yield, it negates the need to make

[lyfe^IPt]^, and avoids the formation of cyclometallated ligands (see
Section 4.4)

4.4 Reaction of Organohalides with Me^Pt(HCpZj) and
Related Compounds

4.4.1 Me^PtCHCpZj)

If Me^PtdlCpz^) is suspended in acetone in a stoppered flask with
a five fold excess of Lfel, and allowed to stand for 4-6 hours in the
dark, Me^PtdlCpz^) 'dissolves' and a yellow solution results. Upon
renoval of excess lytel (rotary evaporation) and addition of hexane, a

white solid precipitates. This solid is readily soluble in common
organic solvents, and after filtration and vacuum drying, gives the
^ NMR spectrum shown in figure 4.21.



CH

9.5 9.0
"1—
3. 5 8.0 7.5 7.0

1

6. 5
—I 1—
6.0 5.5

FPU

i

5.0 4.5 4.0
—I—
3.5

H,0

3. 0

Figure 4.21 ^ MMR Spectrum of Me^IPt(HCpz.^(C^N.3.H.^)-C,]SI).

148.

MePt

acetone

VJJ

2. 5 2.0

The MePt resonance at 1.87 ppn (^J(^-^^^Pt) 74.10 Hz)
demonstrates that the coitplex is in oxidation state IV, but the

signal only integrates for two methyl groi^JS, not three as e>q3ected

for oxidative addition of lyfel. The aromatic portion of the spectrum

integrates for 9 protons, not the e}<pected 10. Resonances at 6.18
1 195ppn and 7.54 ppn show well defined H- Pt coi:5)lings, and, from the

COSY spectrum, these protons belong to the same pyrazolyl ring but

neither exhibit connectivity to a H5 pyrazolyl proton. Thus, the

spectrum is consistent with metallation at C5, exhibiting 114^^^
'̂ J(^-^^^Pt) 14.02 Hz and H3 '̂ J(^-^^^Pt) 10.80 Hz, similar to

the single methylplatinum(IV)]yiePt(HCpZ2(C2N2H2)-C,N) (py) ,
met

and

environment is consistent with the fac-C^Pt geometry as expected for
platinum(IV).
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C—N •H

Figure 4.22

This assignment is supported, by a NMR spectrum, which
exhibits platinum-carbon satellites for the 3 and 4 carbon atoms of
the metallated pyrazolyl ring.

A, k
Wi ll
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140 !3C !iO 110 ItlO

Figure 4.23 of Me IPt(HCpz (C N^H^)-C,N,N)
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This reaction also occurs in the presence of a stoichiometric
amount of Mel (in acetone), although the reaction appears to be
slower, and in otlier solveiLs, eg. CHCl^ and neat Mel, and on
reaction with CD^I the product formed is Me(CD2)IPt(HCpz2(C2N2H2)
C,N,N) (^, ki spectra).

The reaction of Me2Pt(HCpz2) with IXfel (equation 12) is
remarkable, and although oxidative addition of alkyl halides to
diorganoplatinum(II) coiiplexes of tridentate ligands have not been
reported, oxidative addition was ej^iected to give
since HCpz^ reacts with [Me^Ptl]^ to form this ionic complex.
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lytei

iyie2Pt(HCpz2)
acetone

iyie2lPt(HCpZ2(C2N2H2)-C,N,N) + CH^ (12)

The metallated conplex reacts with, pyridine to form the well

characterized [Me2Pt(HCi3Z2(C2N2H2)-C,N,N) (py) ]I (section 4.4.3).

The mechanism of metallation under these conditions is not clear,

although it would be expected to be different from the pyridine

induced metallation, since the first step in the latter appears to

involve pyridine coordination with displacement of one pyrazolyl

donor (Chapter 3). Mel can act as a ligand in its own right, and may
19be a stronger ligand than acetone, but at the concentration used it

is not expected to disrupt the N,N-chelated HCpz^. Metallation is
expected to occur vdiile platinum is in oxidation state II, and if the

mechanism followed for oxidative addition of Ifel is Sj^, then it is
possible that a metallation favoured orientation could be achieved

during formation of the cationic intermediate or via Ifel coordination

at Pt(II) to increase the nucleophilic character of Pt(II).

Representations of these possibilities are shown in figure 4.24.

M

Me

'H •H

(A) (B)

Figure 4.24

Of these two possible intermediates, (B) is favoured since the Pt

atom in (A) will be less nucleophilic (toward H5 oxidative addition),

although direct evidence for (B) has not been obtained and the

reaction mechanism may be different from either (A) or (B).
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This metallation/oxidative addition reaction is not restricted to

lyfel, since txDth EitI and PhCH^Br react in the same fashion, although
the reaction of EtI is much slower and requires reflux for

cortpletion.

The ^ NMR spectrum (see experimental) of the product formed on
reaction of ]yfe2Pt(HCpZ2) with EtI exhibits aromatic resonances
consistent with one metallated pyrazolyl ring and two N bound

pyrazolyl grorps, v^ile a single methylplatinum triplet is observed

with a coupling constant 75.00 Hz, consistent with

platinum(IV). By conparison with ]yfe2lPt(HCpZ2(C2N2H2)-C,N,N), the
structure of this coiiplex is expected to be as shown below.

C—N

Figure 4.25

The aliphatic portion of the NMR spectrum shows inequivalent

methylene protons, and these exhibit different coipling
2 2 . .

values of J, 55.54 and J_ 91.55 Hz, and it seems most likely that
A B '

the ethyl group is in a specific orientation rather than in rapid
rotation about the platinum-carbon bond. Molecular models show that

of the orientations available to the ethyl grorp, that shown in

figure 4.26 appears favourable, and would account for the pronounced

downfield shift for one of the methylene protons (Hg) owing to its
orientation near the iodo gro-up.
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The ^ NMR spectrum (figure 4.27) of the conplex
Me(PhCH2)BrPt(HCpz2(C2N2H2)-C,N,N), fonned by reaction of PhCH^Br
with Me2Pt(HCp)Z2) may be similarly interpreted.

CH Ks Hg

J

3.0 B 0 7.0

Ph

H. H4
H3
H4met

i/' n IL
PhCHa

6.0 5.0
PPM

X tlx

4.0

MePt

acetone

y L_uAJlLi_.

3 0 2.0

Figure 4.27 hi NMR Spectrum of iyie(PhCH„)BrPt(HCpz^(CjN^H^)-C.N.N).
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The aromatic region shows that one H3 proton of a N-coordinated

pyrazolyl ring is strongly shielded and moved well upfield (6.65 ppti)

from the other two H3 pyrazolyl ring resonances 8.15 ppn,

H3 7.65 ppn). This shielding is assumed to result from the benzyl
rnot

ring being sitiaated over the H3 proton of the N-coordinated pyrazolyl

group trans to methyl (figure 4.28). ftn expansion of the NMR

spectrum showing the benzylic protons is given below.

PhCHj

Hb
+

—T 1 1 1
4*1 4.2 4.0 3.8

ppt-\

Figure 4.28 Benzylic Protons in ]yfe(PhCH^)BrPt(HCpz^(C^N^H^)-C,N,N).

The benzylic protons are inequivalent and are split into doublets

with each doublet showing the expected platinum satellites, eg.

4.21 Fpn, ^J(^-^^^Pt) 107.31 Hz, Hg 4.04 ppn, ^J(^-^^^Pt) 69.77 Hz.

In the orientation proposed, (figure 4.29) Hg is in a shielding
environment (pyrazolyl rings) corpared with I^, accounting for its
upfield position relative to
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Br~^ I .--N—N
•H

A B

Figure 4.29

In contrast to tlie reaction of Me^PtdiCpz^) with organohalides,
lyie^Pt (MeC^JZ^) reacts with Mel to form the cationic oxidative addition
compound [Me^PtCMeCpz^) ]I, in which the MeCpz^ is acting as a
tripodal tridentate ligand. A reason for this difference is not

apparent, although it is possible that the apical methyl group does

not permit the uncoordinated pyrazolyl gror?) to adopt the required

conformation for metallation to occur.

4.4.2 [MePt (HCpz^ (CjN^H^)-C .N)

When polymeric [MeE^(HCpz2(C2N2H2)-C,N]^ is suspended in acetone
and excess IVfel added the suspension clarifies to give a pale yellow

solution from vhich the neutral coiplex Me2lPt(Hqpz2(C2N2H2)-C,N,N)
can be isolated.

[MePt(HCpz2(C3N2H2)-C,N]^ + Mel M02lPt(HCpZ2(C2N2H2)-C,N,N) (13)

This corrplex is identical to that obtained from the reaction of

Me^PtdiCpz^) with Mel (section 4.4.1, figure 4.21). Reaction of Etl
and FhCH2Br also resulted in isolation of the same coirplexes as those
formed in the reaction of Me^PtdlCpz^) with RX.
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The carbon monoxide adduct, ]ytePt(HCpz2(C2N2H2)-C,N) (CD), formed
by bubbling CD through an acetone solution of MePt(HCpz2(C2N2H2)-
C,N)(piy), does not react with alkyl halide to yield platinum(IV)
conplexes. This is attributed to the lower nucleophilic character of

the metal owing to the n acid character and low donor ability of
carbon monoxide as a ligand.

4.4.3 MePt(HCpz^(CjN^H^)-C,N) (py)

The metallated coiplex iy!ePt(HC5)Z2(C2N2H2)-C,N) (py), as a
suspension in acetone, reacts rapidly (15-20 minutes) with sirrple
organohalides (Mel, PhCH^Br, or propargyl bromide) to form cationic
conplexes in which HCpz^ acts as a tripodal tridentate N^C ligand
and pyridine ranains coordinated in the cationic conplexes. The
conplexes give ^ NMR spectra similar to the neutral analogues,
Me2lPt(HCpZ2(C2N2H2)-C,N,N), as discussed above.

Excess Met reacts in 5 minutes to give a conplex vhiich may be

readily isolated, and which has a molar conductance (in acetone) of

89 cm^ mol~^ (1:1 electrolyte). A NMR spectrum (figure 4.30)
2 1 195

shows a single IXfePtdV) environment (1.55 ppm, J( H- Pt) 69.20
4 1 195

Hz), and a metallated pyrazolyl ring (H3 7.45 ppn, J( H- Pt) 10.71
Hz; H4 6.10 ppn, ^J(^-^^^Pt) 14.34 Hz). The other two pyrazolyl
rings are equivalent (H4 6.50 ppn, H3 7.35 ppn, H5 9.60 ppn) and are
coordinated to platinum.

The large downfield shift of the ^ical C-H ligand proton is

consistent with the ligand acting as a tripod, and the H3 protons of

the N-coordinated pyrazolyl groips occur tpfield of the metallated

ring H3 proton, and are assumed to be shielded by the pyridine ring
(figure 4.31). The pyridine group ^ows the ejpected coiipling

3 1_ 195
between platinum and the ortho protons ( J( n- Pt) 23.90 Hz).
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Figure 4.30 ^ MMR Spectrum of [iyte^Pt(HCpz (C^N^H )-C.N.N) (py) ]!•
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Figure 4.31
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If the reaction proceeds via an Sj^ mechanism then this conplex
may be regarded as a coordination stabilized form of the ionic
intermediate formed during the oxidative addition reaction.

The iodo ligand in undergo

metathesis with AgBF^.

[Me2Pt(HCpz2(C2N2H2)-C,N,N) (py) ]I
AgBF,

acetone

[iyie2Pt(HCpz.,(C,N.,H.,)-C,N,N) (py) ]BF
2^322'

+ Agl

4

(13)

As for neutral iyie(FhCH2)BrPt(HCpZ2(C2N2H2)-C,N,N), the cation
[Me(EhCH2)Pt(HCpz2(C2N2H2)-C,N,N) (py) ]Br exhibits a Hi NMR spectrum
(figure 4.32) permitting assignment of the preferred orientation of
the benzyl groi:^).

OH

impurity

CHCI3 H4'

py2,6 Py3.5 H, Ph.2,6

py4
Phi

J U JL^J JU
acetone

PhOHg

Ha

n,W,,. ,IIJU

—I 1 ; 1 1 1 1 1 1

ton qo 6.0 •'0 fan
ppt^

H. 0
—I ' 1 ' 1—
4 0 i.n 2 0

Figure 4.32 Hi NMR of [Me(PhCH )Pt(HCpz (C-^N H)-C.N.N) (py) ]Br

MePt
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Thus, the H3 proton of the N-coordinated pyrazolyl ring (5.55
ppn) occurs well upfield of all other pyrazolyl protons, and appears
to be strongly shielded by the benzyl group in an orientation over
this proton (figure 4.33 A,B). The ortho benzyl protons (6.38 ppm)
are also upfield conpared with their position in the neutral conplex
Me(PhCH2)BrPt(HCpZ2(C2N2H2)-C,N,N) (p. 152) (7.10 ppn), and with the
orientation proposed these protons would appear to be shielded by a
N-coordinated pyrazolyl group and the coordinated pyridine.

'Hb—C

N //
•N

B

Figure 4.33

2 11
The benzylic protons give well defined doublets ( J( H- H) 9.80

Hz) at 4.18 ppn (H^) and 3.40 ppn (H^) flanked by platinum satellites
with ^J(^-^^^Pt) 78.87 Hz and 94.05 Hz respectively.

For the allyl bromide oxidative addition product,
[Me(allyl)Pt(HCpz2(C3N2H2)-C,N,N)(py)]Br, the methylene resonances
are separated, 2.96 ppn and 3.37 ppn, and bave slightly different
platinum coupling constants, ^J(^-^^^Pt) 91.54 Hz and J(^- Pt)
88.24 Hz respectively.

7^ interesting situation arises with the oxidative addition of
propargyl bromide to MePt(HCpZ2(C3N2H2)-C,N) (py), since the NMR
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spectrum (figure 4.34) does not show the e>q3ected resonance pattern
for a bound propargyl group, but rather an allenyl group.

CH

10.0 9 0

CHCI3

py2,6 pya.s

py4 I

jlLU

H4m0i

i

HCPt

H4

w , -

6 n 1 n B n
PPM

MePt

=CH2

impurity

J

B 0 4.0 3 0 L 0

Figure 4.34 MePt(HCpz2(CjN^H„)-C.N) (py) + Propargyl Bromide

The resonance at 5.78 ppn, ^J(^H-^^^Pt) 67.11 Hz, is assigned to
(figure 4.35) vdiile the resonance centred at 4.45 ppn is assigned

to the protons Hg.

.CH2B

•N I^^
C—N

•H

Figure 4.35
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Infrared spectroscopy shows an absorption characteristic of an

allenyl group, and well removed from the region expected for a

propargyl group. The isomerization of a propargyl group to an

allenyl group is not uncoimnon during oxidative addition reactions and

has been observed.

MePt(HCpz..(C-N..H^)-C.N) (py) + pzCH^CH^Br

MePt(HCpZ2(C2N2H2)-C,N) (py) was heated with a slight excess of
pzCH^CH^Br in acetone until a clear solution resulted (10 minutes).
The solution volume was reduced and hexane added, giving a white

solid. The product was insoluble in common organic solvents but

exhibited enough solubility (CDCl^) for its ^ NMR to be recorded.
'̂ 3met +H30

CHCU

•"SB H. |-|̂ g '~'4A
fisc

impurity

CH

J WiWrlf rm » >»r

.U Li

!0. 0 9. n B. n

lJU

^ 0
—I ' 1—
o n s. p
PPM

CH2
_Aiu_

4.0

CH2

3 0

Figure 4.36 ^ MMR Spectrum of [Me(pzCH^CH^)Pt(HCpz..(C.,N..H..)-
C.N.N) ]Br.

-|
t. 0

MePt

2 1 1 qs
The MePt resonance (1.44 ppn, J( H- Pt) 70.23 Hz) illustrates

that oxidative addition has occurred, while the downfield apical

resonance (10.79 ppn) is consistent with the corrplex being ionic.

The aromatic region of the spectrum shows no evidence for the

presence of pyridine, and this is confirmed in the IR spectrum of the

coiplex which does not exhibit the characteristic absorption for
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coordinated pyridine. The following structure is proposed in which

all pyrazolyl groups are coordinated with C bonding groups in a fac

arranganent and the conplex contains both five and six membered m:

and N^C chelate rings.

o
N-i^C

Figure 4.37

This is an exanple of a corplex in which three pyrazolyl groups

are trans to different bonded carbon atoms, and in \«diich there are

three types of chelate ring; a five merribered and a six membered KC

ring, and a six membered NW chelate ring. The NMR assignment for

individual pyrazolyl rings relies on a COSY spectum while the

assignment of rings trans to the various C donors is arrived at

through molecular models and ring shielding arguments. The

individual rings are labelled as ring A (trans to IXfe), ring B (trans

to CH^) and ring C (trans to metallated pyrazolyl).

The five membered NC chelate ring can be formed by several

processes. Qxidative addition of pzCH^CH^Br would bring the
pyrazolyl groi:®) into a position viiere it could displace pyridine, or

initial heating of the reaction mixture may form the de-pyridinated

polymeric conplex, [MePtdlCpz^(C2N2H2)-C,N) ]^, which then oxidatively
adds pzCH2CH2Br and the pyrazolyl groip coordinates to satisfy the
geometrical requirements of platinum. Alternatively, although

unlikely since pzCH2CH2Br is expected to be a weaker donor than
pyridine, it may coordinate via nitrogen, to form square planar

[iy[ePt(HCpZ2(C2N2H2)-C,N) (pzCH2CH2Br) ] followed by intramolecular
oxidative addition.
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4.4.4 Phosphine Complexes ]yteP1:(HCpz^(CjN^H^)-C) (L) (L = 2PPhj,
PPh„ (PhCMe). FPh^ (o-tolyl))

The bis(phosphine) conplex iyKE>t(HCpZ2(C2N^2'~^^ 2
with lytel in acetone to yield Ph^EMe^I and a platinum (IV) conplex,
for which the ^ NMR spectrum shows a single coordinated Ph^P. This
conplex can be made free from contamination of phosphonium salts by
reacting MePt(HCpz2(C^2^2)~ '̂N^
acetone, removing the solvent to dryness (to remove displaced
pyridine), redissolving in acetone and addition of excess Mel. The
^ NMR spectrum (esqperimental) is consistent with the structure shown
in figure 4.38, with the Ph^P ligand trans to the metallated
pyrazolyl ring to give a ^-C^Pt moiety. Triphenylphosphine shields
the H3 and H4 protons of the N-coordinated pyrazolyl rings giving an
iipfield shift (6.61 ppn and 6.15 ppn respectively) for these
resonances conpared with other neutral conplexes containing HCpz^ as
a N^C" tripod ligand, eg. for Me2PtI(HCpz2(C^2^2^~ '̂̂ 'N^ (section
4.4.1).

C—N

Figure 4.38
*

Other phosphine conplexes iytePt(HCpz2(C2N2H2)-C,)L2 (L = PPh2M0,
PPhMe2, PPh2Et) and MePt(HCpZ2(C2N2H2)-C,N)L (L = PPh2(o-tolyl),
PPh2(Phay[e)) reacted similarly to form [Me2Pt(HCpz2(C2N2H2)-C,N,N)L]I
and, for the bisphosphine conplexes, a phosphonium salt. Bidentate
phosphine conplexes (L = 0.5PPh2(CH2)jHi2P, n = 1,2) failed to react
with Mel.

MePt(HC(mim)pz(C2N2H2)-C.N) (py)

MePt(HC(mijm)pz(C,N„H_)-C,N) (py) reacts with Mel in much the same
o Z Z

way as MePt(HCpz2(C2N2H2)-C,N) (py) does, to form an ionic (A = 78 £2
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2 -1cm mole ) Me^PtdV) cotiplex, []yie2Pt(HC(mim)pz(C2N2H2)-C,N,N) (py) ]I.
The NMR spectrum (figure 4.39) shows two lyiePt resonances

consistent with methyl trans to pyrazolyl (1.47 ppm, ^J(^-^^^Pt)
69.39 Hz) and methyl trans to imidazolyl (1.36 ppn, ^J(^-^^^Pt)
67.80 Hz) with part of each resonance coincident.

CHCU

CH+py2,6

PVa.s
^50

J

NM0

""30

H4C

1 MePt trans to pz
I

2 MePt trans to mim

L

~i 1 r "1 1 1 1 r
^0 a.S 80 7.S 70 6.h 60 S.O 4.S 40 35 30 2.5 2 0 '5

^PH

Figure 4.39 ^ MVIR Spectrum of rMe2P<^(HC(inim)p2(CjN2H2)-C,N.N) (py) 1l

The absence of a low field MePt resonance (eg. ~1 ppn expected
for trans to I) supports the conplex being ionic with the ligand
acting as a N2C tridentate.

N I
C—N

mim

Figure 4.40
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Metallated ring pyrsizolyl resonances exhibit the expected
o 1 195

platinum couplings (H4, 6.08 ppn, J( H- Pt) 14.34 Hz; H3, 7.41 ppn
10.68 Hz, 1.78 Hz), while other resonances

(pyrazolyl, pyridine) parallel those in the closely related conplex
[Me2Pt(HCpz2(C2N2H2)-C,N,N)(py)]I. However, the apical proton is
well upfield in this conplex (8.60 ppn) conpared with that in
[Me2Pt(HCpz2(C2N2H2)-C,N,N)(py)]I (10.45 ppn), and this may be a
consequence of the proximity to the imidazolyl N-methyl group. An
imidazolyl proton resonance is near coincident with the CHCl^ peak.

MePt(HC(mim)pz(C2N2H2)-C,N) (py) (formed in situ) reacts with PPh^
to form the ironophosphine conplex ]yiePt(HC(mim)pz(C2N2H2)-C,N) (PPh^)
which is readily isolated as a crystalline solid. This conplex
reacts with Mel to form an ionic conplex with the tridentate ligand
acting as a N2C~ tripod, giving rise to inequivalent MePt groups
(figure 4.41).

CHCI3

'3frel
NMe

'4met

u V.

CH

q.'"5 8 q 80 •'.0 D.q e.o q.q qo 4.q 40 s.q 5 0 ^q iq
DDl.|

Figure 4.41 ^ MMR Spectrum of []yte2Pt(HC(mim)pz(C2N2H2)-
C.N.N) (PPhj)]!.

impurity

MePt

"I 1 1 r
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4.5 Reaction of Me^PtL Complexes with Alkyl Halides
Where L is a Bidentate Ligcind

Alkyl halides react with IXte^E^ (L = bidentate) to give sinple
neutral platinum(IV) conplexes. Four classes of conplexes were

chosen for study and included:

(i) and iyfe2Pt(Eli(H)Cpz2) which like Me^^^^Cpz^)
metallate in pyridine.

(ii) Me^PtdVtedDCpz^), vdiich is an exairple of one of the few
Me2Pt(II) coitplexes isolated and found to be soluble in
COTimon organic solvents.

(iii) lyie^PtL (L= H2C(mim)pz, H2C(py)pz),which are exairples of
typical Me^Ptdl) coiplexes with unsymmetrical bidentate
ligands.

(iv) Me^Ptdyte^Cpz^) and y]e^{Cpz^ vhich would be expected to
exhibit severe steric crowding in a platinum(IV)

environnent if the carplex forms.

(i)

lyie^Pt(H^Cpz^)

When Me2Pt(H2Cpz2) is suspended in acetone, excess IVfel added and
the solution stirred for 12 hours, either in the dark or in li^t, a

pale yellow solution with much suspended vhite solid is obtained.

After filtration and vacuum drying the white solid was identified (IR

spectrum) as unreacted starting material. If the reaction is

repeated in CHCl^ as solvent, then after 8 hours a pale yellow
solution results, but with much less unreacted starting material

present. On filtration, reduction of volume and addition of hexane,

a pale white solid is obtained. The solid gives an ill-defined ^
NMR spectrum with IXfePtdV) grotps in the ratio 2:1, identical

environments for the pyrazolyl rings, and two bridgehead proton
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doublets separated by ~1.2 with the low field doublet

considerably broader than the upfield one. These results are

consistent with the formulation fac-lXte^IPtL. Me^IPtdi^Cpz^) is more
readily made by the "in situ" reaction between [lyie^PtCEt^S) ]2
/H^Cpz^/IXfel which yields a microcrystalline solid (p. 186).

This contplex reacts with silver acetate in acetone to precipitate

Agl, and from this solution the acetate conplex can be isolated as a

white powder. The acetate complex is far more soluble, and gives an

NMR spectrum (figure 4.42) as e>pected for the same structure,

exhibiting resonances attributable to methyl trans to nitrogen (1.45
2 1_ 195ppn, JCh- Pt) 72.05 Hz), methyl trans to acetate (0.70 ppm,

73.42 Hz), equivalent pyrazolyl rings and two ligand

bridging protons.

acetone

H,0

MePt trans to N

impunty

MePt trans toOAc

li

I —; 1 1 —I 1 1 1 1 1 1 1 1 1 i 1 I
.S fc n ^ S 7.0 6 = 6 0 5.6 5.0 ^.5 4.0 5.5 3 0 2.S 2.0 ! 5 10 .5

.PPK]

Figure 4.42 ^ ISIMR Spectrum of iyiej(aAc)Pt(H2Cpz2^



Two configurations are possible for this conplex.

Me-

Me-

Me

1
isptC

OAc

-pz • 'jjC

•P^ Ha

Configuration 1

Figure 4.43

•Hb
Me-

Me'

M

OAc

Hb

-PZ^^C^Ha
•pz

Configuration 2

167

Both configurations would result in inequivalent apical proton

resonances, but configuration 1, with proton A in the axial position
and adjacent to acetate is considered more likely, as it would result

in lower steric interaction, 0, Me. Thus, the downfield

^ical proton resonance (7.5 ppn) is assigned to (configuration 1)
and the resonance at 6.9 ppn to (configuration 1). This

assignment is fiirther supported by a conparison of the apical regions
of the ^ NMR spectra of Me2lPt(H2Cpz2) and Me2(0Ac)Pt(H2Cpz2)
(figure 4.44), in vhich the downfield resonance is significantly
moved on substituting acetate for iodo, and this proton is thus

adjacent to the acetate coordination site.
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Ha,
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PPM
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Figure 4.44 Aromatic resonances of Me^IPt(H^Cpz^) and
Mej(CF\c)Pt(H^Cp2^)
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Me2Pt(Ph(H)Cpz2) reacts with excess ixiei in acetone to give the
neutral conplex Me2lPt(Ph(H)Cpz^) (p. 186). However, the reaction
takes a different course if carried out in neat Mel.

"dissolves" in neat IXtel and on standing a solid
crystallizes out. This solid is not soluble in acetone, but enough
ccarplex slowly dissolves in CDCl^ fran which its ^ NMR spectrum can
be recorded (figure 4.45). Interestingly, only two MeFt resonances

are observed, both with ^J(^-^^Vt) coip)ling constants consistent
with a Pt(IV) species, with one methyl trans to N (1.84 FPn, ^J(^-
^^^Pt) 72.12 Hz) and one methyl trans to I (0.80 ppm, ^J(^-^^^Pt)
74.73 Hz), although the coupling constant for the methyl trans to I
is larger than normally found. The aromatic region of the spectrum
integrates for 1 proton less than that esqaected for a simple
Me^PtdV) complex, and 2D COSY spectra indicate that 05 of a
pyrazolyl ring is deprotonated.

The H4 pyrazolyl proton of this ring displayed platinum

satellites. This behaviour is consistent with both metallation and

oxidative addition having occurred.
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Figure 4.45 ^ ISHVIR Spectrum of tJie Product from ]yfe^Pt(Ph(H)Cpz^) +
neat Mel. Inset NMR at -10°C

To satisfy the coordination requirements of the platinum atom a

dimeric iodo bridged structure is proposed in which all C-donors are

fac and the Ph(H)Ci)Z2 ligand is cis m: .

Me-
:pt:

N

Figure 4.46

N'

:pt:

Me

•c

"Me

The metallated pyrazolyl ring H3 and H4 resonances are moved

upfield (H4 5.55 ppn, and H3 5.62 ppn) in conparison with the
free ligand (6.34 ppn) • I'he broad phenyl resonance at 6.02 ppn

resolves at -IoSf into two doublets, each with different coupling
constants (8.78 and 6.97 Hz respectively) and are thus not connected
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protons. Molecular models show that the phenyl ring is most probably
in an axial position with its 2 and 6 protons above the pz rings and
thus in the shielding cones of these rings. The fact that the H5

resonance of the unmetallated ring is not moved well upfield is

evidence that the phenyl group is not in an equatorial position.

(ii)

Me..Pt(Me(H)Cpz^)
2^

Me„Pt(Me(H)Cpz ) reacts rapidly (NMR) with excess Mel in a
1

similar fashion to give a white microcrystalline product. The H NMR

spectrum (figure 4.47) shows MePt(IV) resonances in the ratio 2:1 and
a single ligand environnoit.

MePt trans to N
MePt trans to 1

CH, CHCI, CMe

JL
_A- .if

T——, 1 1 1 1 1 1 1 1 1 1 I ^ 1 > tr
i 1 8 0 7 5 7.0 e.S B.O S.B 5 0 A 5 AO 3. 5 3.0 2.5 2.0 1.5 1.0 .5

P P M

Figure 4.47 hi NMR Spectrum of MejIPt(Me(H)Cpz^)

The large downfield shift of the apical proton (1.25 ppti frm the
related Pt(II) conplex) suggests that it is strongly deshielded and
is thus assumed to be adjacent to the coordinated iodo ligand.
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Figure 4.48

If an organohalide other than IVfel is enployed a mixture of
products result.

Oxidative Tuition of Benzylbromide

Benzylbromide adds readily to iyte2Pt(]yfe(H)Cpz2) to give mixtures
of isomers, corresponding to cis and trans oxidative addition. Thus,
the ^ NMR spectrum (figure 4.49) of the vhite crystalline cortplex
iyie„(PhCH )BrPt(iy!e(H)qpz ), in D6 acetone, shows the presence of two

apical ligand proton resonances in the ratio 1:1, and MePt resonances
occur as the expected 'triplet' in the ratio 2:1:1 (1.55 ppn, ^J(^-
^^^Pt) 71.91 Hz (6 protons), 1.53 ppn, ^J(^H-^^^Pt) 72.87 Hz (3
protons), 0.91 ppn, ^J(^-^^^Pt) 73.53 Hz (3 protons), and are
indicative of methyl trans to N,N and Br respectively.

The resonance at 1.55 ppn is assigned to the conformation vhich
has both methyl groups in the plane of the platinum trans to N. Hie
boat conformation with the ^ical proton in the axial position is
preferred, as the related cortplex ]yie2lPt(Me(H)CpZ2) was shown to
exhibit this structure in solution at ambient tenperature.
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The methylene resonances of the benzyl moiety (4.51 pp^f ^J(^-
195 2 1 1 2 1 195Pt) 125.71 Hz, J( H- H) 9.44 Hz IH, 3.12 ppn, J( H- ^Pt) 62.06
Hz, ^J(^H-^H) 9.44 Hz IH, 2.98 ppn, ^J(^-^^^Pt) 92.20 Hz 2H, suggest
that the methylene groups within each conformer are in markedly

different orientations. Examination of molecular models allow the

probable orientations of each conformer to be estimated, with the

syiiiretrical conformer being assigned structure (A).

Figure 4.50 Conformer (A)

The unsymmetrical conformer (B) has the benzyl moiety in an

orientation which strongly shields a H3 proton (5.91 ppn) to such an

extent that this proton resonance is moved upfield of the normal H4

position. This orientation results in a methlyene proton being

adjacent to the brcano ligand, and this is assigned to the downfield

resonance at 4.51 ppn (^J(V^^^Pt) 125.71 Hz).

The phenyl resonances for conformer B are quite different than

those of conformer (A) and may be due in part to ring shielding by a

pyrazolyl ring and proximity to the halide ligand. The structure

proposed for conformer (B) is shown below.
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CH2

-Me

/
•Me

Figure 4.51 Confonner (B)

Assignment of either apical proton resonance to a particular
conformation is difficult and uncertain, however, since by conparison

with Me2lPt(]y[e(H)CpZ2) whose apical proton appears at 8.52 ppn, it
appears that the resonance at 8.44 ppn could be assigned to the more
symmetrical structure, conformer (A). In conformer (B), the coirplex

may be slightly more puckered to accommodate the benzyl group and

thus the apical proton may be more affected by the adjacent halide
ligand and as a consequence is moved downfield relative to that in
confonner (A).

(iii)

Me^Pt (H^C (mim)pz)

The unsymmetrical ccffiplexes (H^C (mim)pz) and

iyie2Pt{H2C(py)pz) react rapidly with Mel in the same fashion as
Me2Pt(Me(H)Cpz2). The ^ NMR spectrum of Me2lPt(H2C(mim)pz) (figure
4.52) exhibits two bridgehead proton resonances, (6.65 ppn)and Hg
(5.45 ppn), consistent with an orientation identical to that proposed
for Me2lPt(Me(H)CpZ2) (figure 4.43)
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Figure 4.52 ^ IJMR Spectrum of Me^IPt(H^C(inim)pz)

Figure 4.53
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The more rapid oxidative addition, in coirparison with

, is expected owing to the higher donor ability of a N-
methylimidazolyl ring conpared with a pyrazolyl ring.

The coitplex iy[e2lPt(J^C(py)pz) exhibits similar NMR features to
that of ]yie2lPt(H2C(mim)pz), except that the downfield bridgehead
resonance for one proton, assigned as adjacent to the iodo groi:p

(figure 4.54) is somevhat broader than the vpfield resonance.
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Figure 4.54 ^ ISIMR Spectrum of Me IPt(H C(py)P2) •

On heating, the broadened apical proton resonance sharpens

considerably, but still does not match the other apical resonance.

If an acetate groiip is substituted for the iodide, the bridging
protons exhibit similar doublets, with the axial proton resonance

adjacent to acetate moved i^sfield by 0.6 ppn, and the equatorial
proton resonance moved only 0.1 ppn upfield (figure 4.55), thus

consistent with assignment of the downfield resonance to the proton

adjacent to iodide.
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Figure 4.55 Comparison of the Aromatic Regions for the Contplexes

Me^IPt.(H^C(py)pz) at ftnribient Temperature and AO^C, and
Me^(Cg>c)Pt(H^C(py)pz).

(iv)

lyiejiPt(Me^Cpz^)

If ]y[e2Pt(Me2Cpz2) is dissolved in acetone, excess Mel added and
the solution is allowed to stand overnight, then Mel removed (rotary

evaporator) and hexane added until cloudiness, yellow microcrystals
are deposited. The ^ NMR spectrum of these crystals show the
presence of ]yfePt(lV) groups (1.72 ppn, ^J(^-^^^Pt) 77.34 Hz) but no
ligand resonances are observed. If the reaction is repeated, excess
Mel removed after 5 minutes reaction and hexane added, a white powder

is obtained. The ^ NMR of this powder in both CDCl^ and D6 acetone
show the presence of a Pt(lV) species, free ligand and a new MePt(lV)
resonance. The ^ NMR spectrum in ax:i2 is shown (recorded 3minutes
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after dissolution). The resonances denoted by an asterisk correspond

to the free ligand. Examination of the MePt region shows the

presence of three separate rfeE^(IV) resonances.

u

H3 Hs
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CHCU

H4
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Figure 4.56 ^ NMR Spectrum of Me^IPtdVle^Cpz^) 3Minutes after
Dissolution.
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The two broad resonances (1.66 ppn, 72.83 Hz, 2H;
2 1_ 196

0.98 ppn, J("Ti- Pt) 72.51 Hz, IH) are consistent with methyl trans

to N and methyl trans to I respectively, with the resonance at 1.72

ppn (^J(^-^^^Pt) 77.34 ppn) unidentified.

If the ^ NMR spectrum of this solution is recorded at successive
time intervals, and eventually after strong warming (50°C, 20
minutes), spectral changes result which are , consistent with

decotposition of this conplex and formation of a new lyfeFt(IV) conplex

with equivalent methyl groips, the resonance of which is centred at

1.72 ppn (figure 4.57).

Ratio

Me2lPt(Me2Cpz2) [Me^Ptl]^

12

j L. 50°C 20 min 1

1 . ' I 50°C 5 min I
, , Mi

I ii ^Ll ambient lOmin

-JlL^ I ambient 3 mm

1 1 1 1 1 1 1 ] 1 ] 1 ] ] 1 ]

B 0 7.0 B h b 0 ^5.0 4.S 4.0 i S '5 0 2.S 2.0 l.S !.0
^PM

Figure 4.57 ^ MMR Spectrum of jytejIPtpyie^Cpz^) after various time
intervals and warming
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These results suggest that oxidative addition of iviel to

lyie^Pt (Me^Cpz^) occurs to form the very crowded Me^IPtdyie^Cpz^) which
undergoes deconposition in CDCl^ solution. The relief of steric
strain may be the major factor influencing the deconposition.

CDCl

Me^IPtdyte^Q^z^) i- [Me^Ptl]^ + (14)

with the resonance at 1.72 ppn (^J(^-^^^Pt) 77.34 Hz) due to
7 1 IPS 21[Me^Ptl]^ (literature 1.73 ppn J(TJ- Pt) 77.5 Hz, in CDCl^).

The conversion of into [Me^Ptl]^ also occurs in
D6 acetone, but less rapidly than in CDCl^. The instability of

iy[e2lPt(]yfe2^^2^ solution is in contrast to that displayed ty
Me2l2PtC^2'^^2 ^ (made by in situ reaction of [Me2Pt(Et2S) ]2/Me2Cpz2/
I2) which is stable in solution. A single methyl ligand resonance is
observed, vhich persists on cooling to -50 C, and thus the methyl

groijps are in rapid equilibrium.

Me.^(Cpz^) reacts rapidly with lyfel to yield a conplex.
The ^ NMR of the conplex ]yfe2iPt(Qpz^) (figure 4.58) is interesting
in that it exhibits two IXfePt resonances (trans to I 0.4 ppm, ^J(^-
195 2 1_ 195Pt) 72.52 Hz, 6H; trans to N 1.60 ppn, JC^- Pt) 73.83 Hz, 3H)
thus indicating that the conplex is neutral with the tridentate

ligand acting in a chelating bidentate mode.

This chelating fashion causes uncoordinated pyrazolyl rings to be

axial and equatorial, with the axial ring adjacent to either methyl

or iodo; in keeping with previous assignments the latter is more

probable.
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Figure 4.58 ^ MyiR Spectrum of Me^IPt(Cpz^)
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MePt trans to N

acetone

MePt trans to I

I. ajl

'SO ^. S 2 0
"1 1 1~

S ID .5

Resonances are assigned to the coordinated pyrazolyl rings

(integration) with the H5 proton resonances moved upfield fron the

free ligand (7.72 ppm) due to shielding by the uncoordinated

equatorial pyrazolyl ring. To accomiodate the relatively large iodo

ligand, the adjacent uncoordinated axial pyrazolyl ring is required

to be 'face-on' to the iodo ligand and thus causing its H5 proton to

be strongly shielded by a coordinated in-plane pyrazolyl ring, and

the upfield H5 resonance at 6.65 ppn (H5 ) is assigned to this
9X

proton. The equatorial pyrazolyl ring can have two orientations,

either with its H5 proton up (N down) or the H5 proton down (N iip).

As the remaining H5 proton resonance is upfield of the coordinated H5

protons (which are known to be shielded) then it follows that this

proton is also shielded and thus the latter orientation (N i^)) is

assumed. Based on this assignment, the structiore (figure 4.59) is

proposed.
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Figure 4.59

Heating Me2lPt(Cpz^) in either CDCl^ (55°C, 30 minutes) or D6
acetone (50°C, 30 minutes) did not affect the ^ NMR spectrum and
thus no conversion to an ionic species was observed, as would be

ejqaected since unfavourable steric interactions would be expected

between the axially coordinated rings and the equatorial pyrazolyl

ring.

If the reaction between Me^^^^p^^) and Mel is repeated in neat
Mel a different cotiplex is obtained. The NMR spectrum (figure

4.60) shows features consistent with metallation of a pyrazolyl ring.

The MePt region shows a singlet resonance (with platinum

satellites) at 1.90 ppn (^J(^-^^^Pt) 73.9 Hz) which integrates for 2
equivalent methyl groups. The aromatic region shows three distinct

pyrazolyl environments, consistent with a C5 metallated pyrazolyl

ring, two coordinated pyrazolyl rings and an mcoordinated equatorial

pyrazolyl ring, as shown below. This ring causes the H5 proton

belonging to the coordinated pyrazolyl rings to resonant well upfield

of the H3 protons.
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acetone

MePt
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Figure 4.60 Me^IPt(Cpz^) from Me^Pt(Cpz^) + neat Mel

Figure 4.61

Me.

Me'
:pt:

C—N' M-
// \

'PZ.

•p2*^C
N

The ligand H2C=C(CH2Pz)2 reacts with [Me2E^(Et2S) in refluxing
acetone to produce a dark oil on rainoval of acetone. Although this

oil did not give consistent ^ NMR spectra, the conplex is assumed to
have the formula iyie2Pt(H2C=C(CH2Pz)2) with the pyrazolyl rings of the
ligand N coordinated. Malecular models indicate that interaction of

the olefin group with platinum is feasible.
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lyiel reacts with *]yie2Pt(H2C=C(CH2Pz)2)' in acetone solution, from
which a yellowish microcrystalline solid can be obtained by addition

of hexane after removal of the excess Mel. A NMR spectrum (figure

4.62) shows the presence of three n^thyl resonances, in 1:1:1 ratio,

with appropriate coupling constants for platinum(lV). The coitplex is

non-conducting in acetone, and the iodo group is assumed to be

coordinated to platinum with the alkene group uncoordinated.

MePt trans to I

acetone

CH,
1 MePt trans to oz

=CH,

1,
HcHb Ha

u

1 1 1 [ 1 1 i i 1 1 1 i 1 1
8.0 7.5 7 0 B.5 B.O 5.5 5.0 4 5 4.0 3.S 3.0 2. 5 2.0 1.5 1

PPM

Figure 4.62 ^ MMR Spectrum of MejIPt(H^C=C(CH^pz)^)

The broadness of signals is assumed to be associated with motion

of the alJcene ligand.

l^n cooling to 0°C, the spectrum becomes slightly sharper.

In addition to three MeEt resonances (MeEt at 1.24 ppn, ^J(^-
195Ft) 69.69 Hz, trans to I), two pyrasolyl ring environments are

observed, together with four methylene proton environments. A COSY

spectrum shows connectivity between methylene protons A and C (

14.80 Hz), and between B and D (^J(^H-^H) 14.86 Hz). The
structure which most readily accounts for this spectrum requires the

symmetrical ligand to be distorted with the pyrazolyl rings forming

different dihedral angles with the platinum square plane, in order to
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CH,

Hd

jL Jli

1 MsPt trans to pz
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MePt trans to I

—i 1 1 1 1 1 1 1 1 i 1 1 1 1
BO 7 5 7. 0 6 5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1
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Figure 4.62 B IH MMR Spectrum of Me^IPt(H^C=C(CH^pz)at 0°C

This orientation places a proton of one methylene group, assigned

over a pyrazolyl ring and it is thus diielded, while a proton of

the other n^thylene group, assigned is required to be in close

proximity to the axial iodo groiqj. The olefinic protons are well

removed frcm the influence of the coordination centre, and exhibit

coincident resonances at ~ 3.3 ppn.

[Me^Pt(Et^5) + L + Mel (L= bidentate ligand)

If a stoichicmetric amount of [Me^E^CEt^S) ]2 and ligand are
dissolved in dry acetone, excess Mel (x5) added and the solution

stirred for 10 minutes, excess Mel removed and hexane added drop^rise,

a white microcrystalline solid is deposited.
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With bidentate ligands simple neutral IVIe^PtdV) complexes are
formed. For example, with L H„C(inim)pz the complex

]yie2lPt(H2C(mmn)pz) is formed which exhibits a H NMR spectrum
consistent with the structure shown in figure 4.53. In this complex

all methyl groups are non-equivalent as they are trans to different

ligands.

If the ligand Ph(H)Cpz2 is used in the reaction in place of the
less sterically demanding H2C(mmn)pz, an analogous complex,
]yfe_IPt(Ph(H)CjDz„), is formed, however this complex exhibits variable

. 1
temperature NMR behaviour. At room temperature the H NMR spectrum

exhibits two lyfePt resonances in the ratio 2:1 (figure 4.63), with the

upfield resonance (Me trans to I) being somewhat broadened.

MePl trans to pz

acetone

MePl trans to I

HjO

JUli I I iL

—I 1 1 1 i 1 1 i 1 1 1 1 : : 1 1 1 1—
9.5 9 0 8.5 B.O 7.5 7.0 B. 5 B. 0 5.5 5.0 4.5 4.0 3. 5 3.0 2.5 2.0 1 5 I.O

PPM

Figure 4.63 ^ NMR Spectrum of Me^IPt(Eh(H)Cpz^).

On cooling to -50 C four MeFb resonances are observed in the

ratio 6:3:2:1 (figure 4.63B) suggesting a mixture of two isomers in



the ratio 3:1 (figure 4.64).

MePl trans to pz

acetone

MePt trans to I

u U

—I 1 1 I
2.5 2. 0 1.5 1. n

PPH

A) Ambient

187 ,

MePt trans to pz

MePt trans to pz
B

MePt trans to I

MePt trans to I

JU xjVa_

1.5 1. 0 D. n

PPH

B) -50 C

Figure 4.63 B IXfePt Region of Me^IPt(Ph(H)Cpz^) at A) Ambient
Teanperature and B) -50°C.

The minor isomer spears to contain the phenyl group in the axial

position, adjacent and facial to a methyl groip), causing strong

shielding of this nethyl grovp vhich is assigned to the MePt

resonance (trans to I) at 0.19 ppn (^J(^-^^^Pt) 74.04 Hz). The
2 1 195major isomer has MeE^t resonances at 1.09 ppn ( J( H- Ft) 72.63 Hz)

(trans to I) and 1.65 fpn (^J(%-^^^Pt) 71.89 Hz).

At this tarperature the aromatic resonances are not well resolved

and individual resonances cannot be assigned on the basis of coi^iling

constant values. However, in conformer A the equatorial phenyl ring

would Shield both pyrazolyl H5 protons and these would be expected to

occur well ipifield in corrparison to unshielded H5 protons.
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Reaction of IVte^PtL Complexes with CD^I
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Qxiciative addition reactions of CD^I with IVte^PtL (L = bidentates,
trid.entate which do not metallate) coirplexes were carried out in

order to determine whether the addition was specific or whether

scrambling of alkyl ligands occurred.

Thus, CD^I was added to D6 acetone solutions of the complexes in
an NMR tube, and their ^ NMR spectra recorded after approximately 2
minutes. The spectra obtained were identical to those from Mel

addition, excepjt that lyfePt resonances were of lower integration but

retaining the same relative integration with each other, indicating

that scrambling of Me and CD^ groijps has occurred.

Reaction of CD^I with the Me^PtL conplex of the tridentate ligand
HC(thio)pz2, which does not metallate tpon reaction with alkyl
halide, also exhibits scrambling.

4.6 Ph^Pt(IV) Complexes

Ph^PtdiCpz^) reacts r^idly with a slight excess of Mel in
acetone, and on dropwise addition of hexane a microcrystalline solid

is deposited. The product forms a conducting solution in acetone
-12-1 1-cm mole ), and its TI NMR spectrum (figure 4.65) shows( = 91

a single lyfePt resonance with

platinum(IV) (73 Hz) trans to N.

2j(V 195Pt) appropriate for
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MaPt

CHCI,

Ph H4
impunty

CH

!2 n !0 0 9 n c n ^ 0 I' 0 i n 3 0

Figure 4.65 ^ JSIMR Spectrum of [Eh^MePt(HCpz )]I

The spectrum also exhibits inequivalent pyrazolyl ring resonances
in the ratio 2:1, although the resonances of the H4 protons are
coincident at 6.58 ppn. The furthest downfield H3 resonance (7.90
ppn) is assigned to the unique pyrazolyl ring , while the x:?)field H5
resonance (9.19 ppn) is also assigned to this ring (integration,
COSY). The phenyl resonances are complicated, but, in comparison
with the substrate Ph^PtdiCpz^), the order of phenyl ring resonances
are reversed, with the 2,6-phenyl protons now furthest upfield.

The large downfield shift of the apical proton (12.5 ppn)
compared with its position in the parent complex Ph2Pt(HCpz2) (9.4
ppn), is consistent with the formulation as a cationic ccaiplex.

Figure 4.66
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Unlike its lyie^Ptdl) analogue ]yie2Pt(HCpz2), Ph2Pt(HCpz2) did not
metallate on addition of lyfel.

Ekhyl iodide oxidatively adds to Eh2Pt(HCpz2) in an analogous
fashion to form [Ph2(Et)Pt(HCpz2) ]I (A= 86 £i ^ cm^ mole ^). The ^
NMR spectrum in CDCl^ (figure 4.67) (although soluble in acetone D6,
part of the ethyl resonance is obscured) shows a 2:1 pyrazolyl

environment for all protons, with the large downfield shift of the

apical proton (12.5 ppn) again indicative of cation formation.

CH

!2. 0 !!. 0 10.0

"s + HaliatisEt

Hg trans Et

9.0 8. 0 7.0 6 0
PPM

I
5 0 4.0

CHoCH.Pl

^1

3.0 2 0

QtbCHgPt

J

-Jl

I
1. 0

Figure 4.67 ^ NMR Spectrum of [Ph^(E)t)Pt(HCpZj) ]I.

As in the product obtained ty the oxidative addition of Mel to

the order of phenyl resonances is reversed on

oxidation, with the 2,6-protons now occurring downfield from the

3,4,5 resonances. lodoethane reacted readily with Ph^PtdlCpz^) in
acetone over one hour to yield [Ph2(Et)Pt(HCpz2) ]I, in contrast with
iyte2Pt(HCpz2) for which refliK with EtI in acetone was required for
conpletion of reaction. This difference in reactivity may be

Ph2Pt(HCpZ2),
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associated with the insolubility of Me Pt(HCpz ) in acetone, since
Me2Pt(bipy) reacts faster than Ph2Pt(biFy) with methyl iodide.

Ph2Pt(HCiJZ2) also reacts readily with propargyl bromide to yield
a mixture of allenyl and alkynyl cationic coiiplexes (A = 11 cm^
mole (which could not be separated by fractional crystallization)
with the ratio approximately 3:1 deduced from the ^ NMR resonances
of the allenyl and alkynyl protons.

CH

12 0 11.0 10 0 9.0 8 0 7 0
PPM

CHPt

6 0 .3.0

=CH2

CHaPt

CH

III .1. 1
I ' I ' 1

4.0 3.0 2.0

Figure 4.68 ^ MMR Spectrum of the Product from Ph^Pt(HCpz^) +
Propargyl Bromide

Essentially the same features are observed in acetone D6, but the
ratio of allenyl : alkynyl conplexes is now approximately 5:1.

An infrared spectrum of a solid sairple (KBr disc) exhibits
absorptions characteristic of both allenyl and alkynyl groups.

Ph2Pt(HC(mim)pz2) reacts rapidly with Mel in acetone, to form a
microcrystalline solid on addition of hexane. The NMR spectrum
(see experimental) in CDCl^ (insoli±)le in acetone D6) shows a methyl
resonance indicative of a platinum(IV) species (1.87 ppn, ^J(^-
195Pt) 73.26 Hz), pyrazolyl resonances in 2:1 ratio and with a molar
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-1 2 -1conductivity of A = 78 cm mole , the structure below is

proposed.

Figure 4.69

In contrast to this reaction, the conplex Ph2Pt(HC(py)pz2) gives
a ^ NMR spectrum which shows two IVtePt resonances (both trans to N)
and two apical proton resonances in the ratio 1:2, along with a

number of very conplicated resonances in the aromatic region. These

results indicate that a mixture of cationic isomers are formed with

the methyl group trans to pyridine and pyrazolyl respectively.

Figure 4.70

Mel also reacts with bidentate complexes of Ph^Ptdl), to yield
products in which the organo groups have isomerized.

The ^ NMR spectrum of Ph^yieIPt(H2C(mim)pz) is very complicated
and difficult to interpret. However, resonances in the aliphatic

region enable probable structures to be assigned to the products of

oxidative addition. Thus, MePt resonances in the ratio 2:2:1 are
2 h 195observed (trans to pz 2.27 ppm JC^- Pt) 74.22 Hz, trans to mim

9 1 1QR 2 1 195
2.15 ppm J( H- Pt) 71.33 Hz and trans to I 1.67 ppm J( H- Pt)

70.2 Hz) together with NMe resonances in the same ratio (3.67 ppm,

3.65 Fpn and 3.79 ppm) and three pairs of doublets are observed for
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the apical protons. Isomerization has occurred to give a mixture of

isomers with isomers A and B being present in approximately similar

amounts, while isomer C is present in half this amount.

Ph Ph Me

Ph.^ 1 Me^^ I I^C-H J^PtCT Z>C-H
Me' 1 ^^mim ] Ph I ^mim | Ph mim

H H I H
1 I I

A B C

Figure 4.71

The apical ligand resonances are all similar, but the separation

of the doublet pairs in isomer C is greater than in both isomer A or

B (isomer A J(^H-^H) 15.87 Hz, A1.18 ppn; isomer B J(^H-^H) 15.56
Hz, A 1.22 ppn; isomer C 15.26 Hz, A 1.70 ppn).

Ph2Pt(H2C(py)pz) reacts with IVfel in a similar way to yield an
isomeric mixture of products analogous to isomers A and B, but

resonances due to the analogue of iscaner C were not observed, and the

ratio of isomers was 2:3 in favour of methyl trans to pyridine.

4.7 Conclusion

A large range of oxidative addition reactions of iodine and

siitple organohalides to Me^Ptdl) and Ph^PtCII) coiiplexes containing
multidentate pyrazolyl based ligands has been described. The

geometries of -the resultant diorgano and triorganoplatinum(IV)

COTplexes depends upon the mode of coordination of the ligand in the

platinum(II) substrate, ligand denticity and in some cases the

reaction conditions. Ligand geometries found include N^, , m: and
N^C-.

In situ reactions between Me^Ptdl) substrate, ligand and
electrophile yield neutral bidentate chelate cotiplexes in the case of

iodine, but triorgano platinumdV) coirplexes in the case of RX with

the CQitplex being cationic vhen a tripod ligand is enployed.
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Reaction of sinple preformed Me^PtL (L = tridentate donor ligand,
HCpz^, HC(mim)pz2) ccgrplexes with Mel causes a sequence of
metallation and oxidative addition to occur resulting in the

isolation of neutral N^C conplexes. This metallation reaction was
also found to occur for the Me^Ptdl) ccarplexes containing the
ligands Ph{H)Cpz2 ,and Cpz^ if carried out in neat Mel but not in an
acetone/Mel mixture, from vdiich neutral moncaneric bidentate Pt(IV)

catplexes were isolated. Substrates containing other bidentate
ligands, eg. H2C(mim)pz, resulted in the isolation of similar neutral
conplexes.

Reaction of conplexes already containing a cyclometallated ligand

resulted in the isolation of cationic N2C products,except for the
cyclometallated polymer [MePt(HCpZ2(C2N2H2)-C,N) vdiich gave neutral
Pt(IV) species with the ligand in a N^C coordination mode.

The different types of reactions for conplexes containing
tridentate ligands are sumnarised in Table 4-2.

Table 4-2

Products from Oxidative Addition of Iodine and Organohalides to

Organoplatinum Conplexes Containing Tridentate Ligands

Starting Material

Me2Pt(axi)/L
L = HCpz^

HC(mim)pz2
HC(py)pz2
HC(thio)pz,

Halide/Halogen

Mel

Me«

Me'
:pt:

Product

—R

H
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Me2Pt-<HCpZ2)
^62?! (HC (mim)PZ2)
[MePt (HCpz^)]^

Mel

EtI

PhCH2Br

R

Me^ 1

N

)
L N

L = py, PPh^
CN = Metallated HCpz^

HC(mim)pz2

Mel

Eti

PhCH2Br
CH2=CHCH2Br

1Me^ 1

1
N—

[Ph2Pt(Et2S)]2/HCpz3 ^2 Phv. N
^Pd \

1

Ph2Pt(HC(py)pz2) Mel
B n*'-

R=Ph,Ph,Me

Ph2Pt(HCpz3)
Ph2Pt (HC (mim)pz2)

Mel

EtI

r n-rPh^ 1
I>Pd \\~^CH

N

Thus, tjy carefully choosing the substrate and reaction
conditions, ccmrplexes can be synthesized in which the ligand can be

N2 bidentate, tridentate or N2C cyclometallated tripodal.

Qxidative addition to iyie2Pt(II) conplexes containing bidentate
ligands resulted in coirplete scrambling of alkyl groups in the case
of CD^I addition, and mixtures of iscmers in the case of PhCH2Br.
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General results frcm acMition of RX to bidentate conplexes are

summarised in Table 4-3.

Table 4-3

Products from Oxidative Addition of Organohalides to Organoplatinum

Complexes Containing Bidentate Ligands.

Ccdiplex Electrophile Product

Me2Pt(H2CpZ2) ftel

Me

Me.^ 1 N-n
Me 1

X

]yie2Pt(PhCH) (Cpz^)
Mel

neat Mel

Me

1^N->,
^PtCTMe— 1

1 H
1

Me 11' ^

C ' 1 Me

N Me

Me2Pt(iyie(H)Cpz2)
Mel

PhCH^Br

Me

Me^ i^N-v ..
^z^ptcr jj—Me"^ 1

1 ^
1

R Me

Me^ 1 N-v R— 1^N-n
JMe 1 Me |

Br Br

iyie2Pt(H2C(py)pz)
Me^Pt (H^C (mim)pz

Mel

Me

Me..^ 1 u
^PtC 1—^Me"^ J

1



(Me^Cpz^) Mel

Pli^Pt (H^C (mim)pz) Mel

Ph2Pt(H2C(py)pz) Mel

[Me3PtI]^

Ph,

Ph"

Ph,

Me"

Me.

Ph"

Me

LiptC
1
I

Ph

I
-i^Pl'

I
I

Ph

1
"iiPiC

Me.

Ph"

Ph

I
:ptC

I
I

Ph

I
:pt::

1
I

Ph.

Me"

-pz-~^

~mim

-pz-~.

•~mim

-pz._

~mim

-pz..

-py'

-pz..

"py'

:C—H

I
H

] 97 .

:C—H

1
H

:C—H

I
H

:c—H

I
H

:C—H

Thus, oxidative addition reactions with bidentate ligands present in

the ccnplex give the expected triorganoplatinum(IV) product without

cyclometallation except for the ligand PhdMC^JZ^ which forms a
cyclometallated dimeric ccxrplex. Sterically crowded conplexes, eg.

Me2Pt(Me2CE)Z2) were not stable in solution and deconposed to free
ligand and [Me^Ptl]^. Oxidative addition reactions of Mel with
Ph2Pt(bidentate) conplexes yielded mixtures of products consistent
with isomerization.
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CHAPTER FIVE

PLATINUM (IV) N^C TRIPODAL COMPLEXES

5.1 Introduction

Qxidative addition of siitple organohalides, eg. Mel, to coirplexes

containing a cyclometallated tridentate ligand has been shown to

produce coirplexes in which this ligand acts in a N2C tridentate mode
(Chapter 4). As it is unusual for tridentate ligands to participate

in the cyclometallation reaction, this route is not of general

applicability for the formation of N^C ligand coordination.

A new synthetic strategy was devised with a view to developnent

of a sitiple, and more widely applicable, route to N2C tridentate
systems. In this approach bidentate nitrogen donor ligands

containing carbon-halogen functional groups were synthesized, and the

organohalide used in oxidative addition reactions with platinum(II)

substrates, to obtain platinum(IV) N^C coirplexes. Several new
reagents were synthesized, with the reagents designed so that 5 or 6

' i I 1 . ...
maiibered N-Pt-N and N-Pt-C rings would be formed if oxidative

addition were successful. This approach to Ft(IV) conplexes was

considered to be favourable because, if direct oxidative addition of

the reagent does not occur, then coordination of the nitrogen donors

may assist subsequent oxidative addition ty bringing the C-X group

near to platinum(II) in much the same way as coordination favours

cyclometallation.

7\s with the investigations into cyclanetallation, this approach

was restricted to pyrazolyl rings as the N coordinating groups.

Use of molecular models suggested that two ligand skeletons were

worthy of investigation:
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Figure 5.1 ^

5. 2 Liqand Syntheses

Ligands containing the -Cpz^- unit have previously been
1

synthesized by a surple procedure developed by Peterson et al.,

involving condensation of bisd-pyrazolyDketone with an appropriate

ketone or aldehyde in the presence of anhydrous cobalt(II) chloride

as a catalyst, eg.

CoCl

pz^CO + (CH^)^C=0 ^ (CH2)2QPZ2 + CO^ (D

Although this reaction has been ^own not to proceed with

hexachloroacetone,^ initial attarpts with 1-chloroacetone were
pronising, and the reaction has been developed to give a high yield

of the new reagent l-chloro-2,2-bis(l-pyrazolyl)propane (88%).

CoCl

(CH2)CCH2C1 + pz^C=0 ^ CH^Cpz^CH^Cl + CO^ (2)
0

Other haloketones which react in a similar fashion include

1,3-dichloroacetone and 1,1-dichloroacetone, to yield
1,3-dichloro-2,2-bis (l-pyrazoly1)propane (equation (3)) and 1,1-
dichloro-2,2-bis(l-pyrazolyl)propane (equation (4)) respectively.

CoCl

ClCH^CCH^Cl + pz^CO (C1CH2)2QPZ2 ^2
0
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COCI

CH^CCHCl., + pz_C=0 ^ CH_Cpz_CHCl„ + C0„ (4)0||Z Z 6 Z. A Z
o

Reaction of l-chloro-2-butanone with bisd-pyrazolyDketone under

various conditions resulted in the formation of black visco\as oils

from which the required ligand could not be isolated. Thus, by this

procedure it does not seem possible to synthesize -Cpz2(CH2)^X
ligands (n > 2) to potentially yield coirplexes containing 6 and 7

membered rings.

5.2.1 Skeletal Systems containing an Aromatic Ring

Three new arylhalide containing reagents have been synthesized,

two designed as potential tripodal N^C ligands and one designed as a
pyrazolyl analogue of the well known planar N„C system developed by

2van Koten et al. (equations (5), (6))

Li

MeaN Br NMea MeaN——NMea

Br"
Cl2R(Et2S)2 i- ^ L (6)

Me2N—^ Li —NMe2 Me2N"~^Pt * NMe2

(5)

Qxidative addition of IVfel to the product from equation (6) does

not produce a Ft(IV) conplex with the ligand acting as a N^C
tridentate, but rather a Ft(II) conplex containing a substituted

3
arenonium ion.



•NMe2

Figure 5.2
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Platinum(IV) conplexes of the ligand [2,6-(Me„NCH„)_C,H_] have
Z Z Z b o

been synthesized by oxidative addition of halogens to the coirplex

ClPt[CgH2(CH2NMe2)2]' resulting in isolation of the tetravalent
conplex Cl2Pt[2,6-(Me^N]CH2)2CgH2] with the ligand acting in a
tridentate mer configuration.^

The reagent 2,6-(pzCH2)2CgH2Br, synthesized by reaction of 2,6-
(BirCH2)2CgH2Br with I^z (equation (7)), exhibits a similar geometry
to 2,6-(Me2^112^2^6^3®^ Offers the possibility of forming a
N2C tridentate conplex with diitethylplatinum(II).

2Kpz + 2KBr (7)
reflux

In this instance, reaction with Me2Pt(II), if successful, would
lead to formation of a conplex containing two 6 menibered chelate

rings, in contrast to 5 menibered rings for van Koten's ligand.

Two potential tripodal reagents were synthesized by Peterson's

approach.

0=C

CoCl2+ PZ2CO T ^ + CO2 (8)
X= Cl, Br
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5 . 3 Platinum(IV) Complexes

5.3.1 ]y!e.,PtLX^

Me^PtdV) conplexes of the above ligands were synthesized by
reaction between []yte2Pt(Et2^^ ^2 ligand (1:2 mole ratio) in
refluxing benzene, under a nitrogen atmosphere. Most of the

conplexes are microcrystalline and reasonably soluble in common

organic solvents, thus allowing full characterization. Microanalyses

and molecular weight determinations (see e>perimental) confirm that

reaction occurs, and ^ NMR spectra, (chemical shift and coupling
constant) show the conplexes to contain Ft(IV) rather than Ft(II)

with the reagents as sirrple N,N-chelates.

Me^Pt (CH^Cpz^CHj)C1

After 10 minutes reflux of a benzene solution containing

[Me2Pt( Et^S)]^ and CH^Cpz^CH^Cl, a microcrystalline precipitate is
deposited. The precipitate is soluble in warm acetone from which it

can be recrystallized by ether diffusion. The ^ NMR spectrum
(figure 5.3) is best recorded in CDCl^.

2 1 195The single tpfield Me^Pt triplet (1.30 ppn, J( H- Pt) 73.7 Hz)
shows that the platinum bound methyl groups are equivalent, and thus

must be in a cis arrangement. The chemical shift and coipling

constant indicate that platinum is in oxidative state (IV), and the
195 2 t 195

resonance at 2.38 ppn with Pt satellites ( J("h- Pt) 51.4 Hz),

is typical of a platinum bound methylene group. (Other ligand

resonances are in the ejpected positions, and are shifted downfield

from the free ligand resonances. Of particular interest, the ligand

methyl group at 2.45 ppn exhibits a '̂ J(^-^^^Pt) coipling of 5.8 Hz.

This evidence suppirts a structure (figure 5.4), in which the

ligand is acting as a N2C tripod forming 2 five mernbered ring
chelate systems with the platinum atom.
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Figure 5.3 ^ MMR Spectrum of Me^Pt(CH^Cpz^CHj)Cl in CDCl^

Figure 5.4 Proposed Structure of Me^Pt(CH^Cpz^^)Cl
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13The C MVIR spectrum of this cotplex (figure 5.5) supports the

propxDsed structure, with two upfield platinum related resonances,

MePt (-9.9 Fpm) and OLPt (32.5 ppn), exhibiting well defined ^J(^^C-
195Pt) coi:5)lings of 693 Hz and 729 Hz respectively.

140 liO

•s Cpza
C4

120
n—
110 100

I

90 80

CHCI,

70
i

SO
PPH

—T—
50

—T—•
40

Ma

I

jl

30
1
20

—r-
10

13,Figure 5.5 C MMR Spectrum of Me,^Pt(CH,^Cpz^CHj)Cl.

Me^Pt (CH^Cpz^CH^Cl)C1

"T
-10

Reaction of stoichiometric quantities of [iyie2Pt(Et2S) and
(C1CH2)2QPZ2 (1:2) in warm benzene results in the isolation of a
microcrystalline solid, the ^ NMR spectrum (figure 5.6) of which
suggests a structure (figure 5.7) analogous to that deduced for

Me^Pt (CH^Cpz^CH^)C1.
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MePt

solvent

CHjPt impurity
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pp^

Figure 5.6 ^ INIMR Spectrum of Me^Pt(CH^Cpz^CH^Cl)Cl in CEx:i^

CHgCI

Figure 5.7

2 1 199
The Me Pt(IV) resonance (1.33 ppm, J( H- Pt) 75.4 Hz) and

2 1 195CH_Pt resonance (2.46 ppn, J( H- Pt) 54.3 Hz) are as expected,
. . . . 41 195but, the bridging CH^Cl unit exhibits a lower J( H- Pt) coupling

constant (2.9 Hz) in conparison to the methyl group in

Me2Pt(CH2Cpz2CH2)Cl (5.8 Hz), and the pyraizolyl H5 and H3 resonances
are not separated by the same amount as in Me2Pt(CH2Cpz2CH^)Cl (0.09
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ppn c. f. 0.21 ppn respectively).

Both of these coiiplexes would be expected to exhibit very similar

^ ISIMR spectra as both contain a mirror plane through the apical
portion of the ligand and bisecting the MePt bonds.

As these conplexes appear to be the first exanple of conplexes

containing the N2C unit in a tripodal orientation, except for the
non-crystalline conplexes of metallated HCpz and related ligands

(discussed in Chapter 4), x-ray diffraction studies were undertaken.

Crystals suitable for x-ray analysis were obtained by the slow vapour

diffusion of ether into a saturated solution of the conplex in

acetone.

The two conplexes have very similar structures, based on a

distorted octahedral geometry for platinum(IV) with the N^C ligands
in a fac tripodal orientation (figure 5.8)

(A) (B)

Figure 5.8 X-ray CrystallograTdiic Structures
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The main distortion from regular octahedral geometry results from

the small bite angles of the tridentate, with C(l)-Pt-Isr and N-Pt-N

angles of 78.5(2) - 82.5(4)°. The chlorine atom is trans to the CH^
group, and the three carbon atoms are in the expected fac-C^Pt
orientation.

The pyrazole rings are planar with maximum deviation from a mean

plane observed for C(4) (0.015 A) of ring B in ,

and the platinum atom is close to the projected planes of the rings

(0.016 - 0.014 A). In addition, the bite of the N2C ligand results
in smaller Pt-N(l)-N(2) angles (108.8(9) - 109.5(4)°) than Pt-N-C(5)
(143.4(8) - 144.6(5)°), and a small value for Pt-C(l)-C(2)
(101.4(6) - 102.2(4)°). The MePtdV) bond distances (2.05(1) and
2.00(1) A for A, 2.043(7) and 2.035(9) A for B) are within the

3
expected bond length for a Pt-C (sp ).

Me^Pt (C (C1)HCpz^CHj)C1

Reaction between [Me^Ff ^2 lVfeCpz2CHCl2 in acetone yields
a clear solution after 5 minutes reflux. Prolonged reflux (15

minutes) causes no observable change. Cooling and addition of hexane

until cloiidiness causes a very fine crystalline solid to precipitate.

The ^ NMR spectrum of this coiiplex, together with the proposed
structure, are shown in figure 5.9.

The molecule, unlike the previous coirplexes, does not possess

syinmetry about the carbon bridging the platinum and pyrazolyl groups,

and consequently two environments for MePtdV) and the pyrazolyl

groups are apparent in the ^ NMR spectrum. Assignment of resonances
to a particular pyrazolyl ring was not possible, although a COSY

spectrum permitted assignment of protons within individual pyrazolyl

rings.
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Me MePt

CHCIa

Cl(H)CPt

impunty
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3.0 7.S 7.0 6.S 6.0 5.S S.O 4.S 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Figure 5.9 ^ MMR Spectrum of Me,^Pt(C(Cl)HCpz^CH^)Cl in CDCl-,^ with
proposed structure.

Me^Pt(2.6-(PZCH^)j)Br

The product from the reaction of [Me^Pt^Et^S) and 2,6-
(pzCH„)„C,.H_Br is sufficiently soluble in CDCl,, to allow its NMR

Z ^ o o o

spectrum to be recorded (figure 5.10).
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Figure 5.10 ^ UMR Spectrum of Me.^Pt(2.6-(pzCH^)^C^H^)Br in CDCl

The single MePt resonance (1.60 ppn, 70.32 Hz),

equivalent pyraLZOlyl environments, and equivalent methylene

resonances illustrates that the conplex is symmetric with a mirror

plane bisecting the MePtPfe bond angle. The high field methylene

resonance (4.87 ppn) is assigned to the axial protons with the

equatorial protons absorbing at 5.85 ppn. The H3 pyrazolyl ring

protons (8.4 ppn) are moved downfield in conparison to the free

ligand (7.58 ppn), and this is ascribed to them being adjacent to a

bromo ligand.

The conplex contains the ligand as a fac-N^C tripod forming two
six manbered chelate rings with platinum (figure 5.11).
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Figure 5.11

iyte^Pt(C^H^(H)Cpz^)X (X = Br, CD

The ligands (2-XCgH^) (H)Cpz2 (X= Br, Cl) react with
[Me2Pt(Et2S) ]2 in reflTJxing t)enzene to precipitate a vhite powder.
This solid is extremely insoluble in all common organic solvents,

although it does dissolve in an acetone - EMSO mixture to give a ^
NMR spectrum (see experimental).

Although resonances are considerably broadened in the presence of

EJyiSO, the spectrum does allow the essential features of the conplex

to be determined. Thus, from the chemical shift (1.13 ppn) and
2 L 195coupling constant ( J(Ti- Pt) 73.11 Hz) for the IVtePt resonance, it

is apparent that oxidative addition has occurred and is consistent

with a structure in which the ligand is acting as a fac-N2C
tridentate forming two six membered chelate rings.

(X = Br, Cl)

Figure 5.12
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5.3.2 Reactions with Pyridine

If Me2Pt(CH2Cpz2Me)Cl is dissolved in pyridine and hexane added,
a micrGcrystalline solid is obtained, which can be recrystallized

from acetone by addition of hexane. After this treatment the

following ^ IMMR spectrum (figure 5.13) is obtained.

Py2,6 PVa.s

LLtU

CHCI,

impurity

CH,

CHaPt

Ja[

MePt

y

1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1—
8.S 8.0 7.8 7.0 6.5 6.0 5. 5 5.0 4. 5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

PPM

Figure 5.13 ^ NMR Spectrum of [iyie2Pt(CH2Cpz2CHj) (py) ]C1 in CDCl^

In cortparison with the parent coiiplex, the H5 pyrazolyl resonance

is moved downfield (~1 ppn) and the apical ligand methyl resonance

also exhibits a downfield shift (~0.5 ppn). Changes in the chemical

shift of these protons (pyrazolyl H5 and apical) are typical upon

cationic formation (see Chapter 4).

Resonances for a single coordinated pyridine molecule are present

together with appropriate ligand resonances. An infrared spectrum of

this conplex also esdiibits a sharp absorption at 1600 cm

consistent with the presence of coordinated pyridine. Conductivity
—1 2 —1measurements in acetone ( A = 72 Q cm mole ) confirm that the

conplex is ionic, and thus it can be assigned the structure shown in

figure 5.14.
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Figure 5.14

Other neutral conplexes which react with pyridine to form

cationic conplexes include

Me2Pt(C(C1)HCpz^CH^)C1.

In contrast, the conplexes ]yte2Pt(2,6-(pzCH2) 2CgH2)Br and
]yfe„Pt(C^H^ (H)Cpz_)X (X = Br, Cl) do not react with pyridine to yield

Z b b Z

cationic conplexes.

5.3.3 Ph.,PtLX
—z——

Two Ph^E^dV) conplexes were synthesized in order to investigate
if this experimental procedure is applicable to Ph^Ptdl) chemistry.

Ph^Pt(CH^Cpz^CH^)Cl

On refluxing [Ph2Pt(Et2S) with CH^Cpz^CH^Cl in the ratio 1:2 in
benzene a white powder is deposited. This powder, although rather

insoluble, can be recrystallized from a large volume of acetone by

the addition of hexane until cloudiness develops. The NMR
2 1 195spectrum (figure 5.15) shows a J( H- Pt) coupling for the ligand

-CH^- protons, and thus oxidative addition has occurred to yield tlie
platinum(IV) conplex.
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Figure 5.15 ^ NMR Spectrum of Ph^Pt(CH^Cpz^CHj)Cl in CDClj witJi
proposed structure

This coirplex reacts with pyridine to yield the cationic conplex
[Ph2Pt(CH2Cpz2Me) (py) ]C1. [Ph2Pt(Et2S]2 also reacts with 2,6-
(pzCH2)2CgH2Br to yield a platinuin(IV) conplex, although the aromatic
portion of the ^ NMR spectrum is conplex and no attenpt was made to
interpret it.

5.4 Discussion

All of the ligands designed to contain bidentate N,N donors and

an appropriately positioned halogen atom have been shown to react

readily with [Me2Pt(Et2S) ]2 to yield neutral Me2Pt(IV) conplexes with
the ligand present as a fac N2C tridentate.

Ligands containing an alijhatic skeletal system give rise to
conplexes possessing five meitibered chelate rings with small bite

angles resulting in slight distortions from regular octahedral

geometry.
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The single Ph2Pt(IV) cciiplex synthesized showed that this
reaction path can occur readily for Ph^E^dD, and the similarity of
the ^ NMR features suggests that the structure of the Ph^PtdV)
conplex is very similar to that of its Me^PtdV) analogue.

Ligands containing an aromatic (other than pyrazolyl) moiety give

rise to coirplexes containing six-maribered chelate rings, again, with

the ligand adopting a fac N^C tripod geometry. Molecular models
show that there is less strain involved with these six-membered

chelate rings, in conparison with the aliphatic skeletal system, and

a less distorted octahedral geometry is expected. Unfortunately,

attaipts to grow crystals of these coiplexes suitable for x-ray

diffraction studies were unsuccessful. Likewise, attenpts to

synthesize aliphatic ligand systems which would result in six-

manbered chelate N^C rings was also unsuccessful.

The ease of this reaction suggests that it is facile, but whether

reaction occurs via N,N-coordination of the ligand followed by rapid

oxidative addition due to the proximity of the halogen atom, or via

oxidative addition followed by N,N-coordination is difficult to

assess. Under a range of experimental conditions only the hexa-

coordinate conplexes could be isolated.

The order of ease of oxidative addition of alkyl halides follows

the halide series C1 < Br < I, and thus organobromides would be

expected to oxidatively add more rapidly than organochlorides. The

only complexes synthesized in which it was possible to compare the

behaviour of chloro- and bromo- substituted ligands was

Me.,Pt(C,,H,(H)Cpz„)X (X= Cl, Br) with the ligands 2-XC^H. (H)Cpz_ (X =
Z D 4 Z b 4 Z

Cl, Br). In both instances reaction was rapid and this appears to be

consistent with initial coordination, either N or N,N, followed by

oxidative addition, with the oxidation being rapid due to the

proximity of the halide to the platinum.

Reaction of CH^Cpz^CH^Cl with Me^Pddl) resulted in the isolation
of a microcrystalline solid, the ^ NMR spectrum of which confirmed
the ligand to be present and palladium to be in the divalent
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oxidation state. Thus, N,N-coordination occurs, but not oxidative

addition, although Me^Pddl) does participate in oxidative addition
reactions with organohalides to form stable isolable palladium(IV)

coirplexes, but generally the organohalide has to be very reactive.

This reaction pathway (coordination followed by oxidative

addition) parallels that proposed for cyclometallation of Me2Pt(II)
(Chapter 3), ie. initial sirtple coordination followed by oxidative

addition of an appropriate C-H or C-X bond to platinum.

Cationic conplexes of all the five-merribered N2C chelate ring
systans are easily prepared by reacting the neutral conplex with

pyridine, with pyridine displacing the halide atom. Pyridine fails

to replace the bromo ligand in Me2Pt(2,6-(pzCH2)2CgH2 )Br and
Me„Pt(C^H.(H)Cpz_)Br even on prolonged heating of a pyridine solution

Z 0 4 Z

of the conplex.

This method of synthesis of N2C tridentate systems offers the
potential to be applicable to other organometallic systems which are

favourable toward the oxidative addition reaction. The conplexes

formed are enpirically analogous to cyclometallated systems except

that they are in a different oxidation state.

5.5 Conclusion

Difunctionalized ligands containing N donor groups and an

organohalide group react readily with [R2Pt(Et2S) ]2 (R = Me, Ph) to
form R2Pt(IV) conplexes containing the ligand in a N2C tripodal
tridentate orientation. Depending on the structure of the ligand

five or six mennbered chelate rings result.
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CHAPTER SIX

LIGAND SYNTHESES

6.1 Introduction

Since the first inajor reports of the conplexing properties of

pyrazole based ligands by TrofimerikD,^ numerous papers have appeared
describing the preparation and characterisation of transition metal

conplexes of these ligands, and this literature has recently been
2reviewed 1^ Trofimenko. lyrazole itself can act as both a

monodentate ligand and, upon deprotonation, as an exo-bridging

ligand, and may be readily incorporated in a variety of polydentate

chelating ligands. Exanples include the much studied poly-

(1-pyrazolyl)berates and the isoelectronic, neutral, less well

studied poly-(l-pyrazolyl)al]canes. Numerous conplexes of a wide

variety of metals have been prepared using these ligands. Some

exairples for palladium and platinum are illustrated in equations

(1) - (4).^"^

Cl2Pd(PhCN)2 + H^Cpz^

a
/ Na(HBpZ3)

Pd

\ PPha

[Me^Ptl]^ + K(HEpZ2)

Cl2Pd(H2CpZ2) + 2PhCN

N—N

N—N

Me^PtCHEpz^) + K1

acetone

Me(Cl)Pt(CQD) + AgPF.

[MePt(CQD) (acetone) ]EF,
HCpz,

[MePt(CQD) (acetone) ]PF^

[MePt(HCpz_) ]PF^
J D

(1)

(2)

(3)

(4)
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All Of the reagents containing donor groi:ps utilized in this

investigation were based on the polyd-pyrazolyDalkane series, and

contained at least one pyrazole groigj linked through the pi^rolic
(Nl) nitrogen to a further donor syston via a bridging saturated

carbon atom(s), or a sinple substituted aromatic ring, eg. figure

G
N

R—I—R
.N pz R pz

G"
R = H, Me, Eh R = H, Br

Figure 6.1

The aims of this work necessitated the use of known ligands and

the preparation of new multidentate ligands. The unusual

cyclometallation of HCpz^ had been shown to proceed quite readily,
and thus new pyrazolyl based polydentate ligands were designed to

investigate this reaction further. Bidentate ligands containing at

least one pyrazolyl group were synthesized to coirpare the behaviour

towards cyclometallation of bidentate and tridentate ligands.

Non-donor groups, both activated and unactivated toward metallation,

were introduced into ligands containing the basic -Cpz^- unit in
order to determine if they undergo metallation in preference to

pyrazolyl rings. When it became apparent that metallated HCpz^ could
act as a N^C tripodal tridentate ligand, following oxidation of
Ft(II) coirplexes of cyclometallated HCpz^, new ligands were designed
to extend the range of coirpounds exhibiting this coordination mode,

and to atterrpt to construct a more general synthetic route to this

new class of intramolecular coordination conpoijnd.

The literature documents two potentially useful methods for the

preparation of the types of pyrazole containing reagents required for

this investigation.
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6 • 2 Synthetic Methods

One inportant method is N-alkylation, involving nucleophilic

displacanent at saturated carbon, with pyrazole or pyrazolide anion

serving as the nucleophile. The saturated carbon precursor is

usually an acetal, ketal, or a suitably substituted organohalide.

Trofimenko has successfully etiployed the acid catalyzed condensation

of pyrazole with dialkoxyalkanes to prepare bis(l-pyrazolyl)aIkane

ligands.

2Hpz + ]yfe2C(0Et)2 I + 2EtOH (5)

The ethanol produced in equation (5) is carefully distilled off as it

is formed, to ensure coirpletion of reaction.

Bis (1-pyrazolyl) alkanes are also accessible by the reaction of
Icalkali metal pyrazolide with geminal dihaloalkanes. Both potassium

and sodium readily react with pyrazole in dry THF to produce alkali

metal pyroizolides,

M + Hpz ^ L^z + V2H2 (6)
(M = K, Na)

which then react with a ganinal dihaloalkane to produce the

bis (1-pyrazolyl)alkane, eg.

2Mpz + CH2I2 H^Cpz^ + 2M. (7)

An analogous procedure, enploying chloroform as the haloalkane,

was first used by Huckel and Bretschneider to prepare
7

tris( 1-pyrazolyl)methane. Trofimenko has also used this procedure

with carbon tetrachloride to produce tetrakis( 1-pyrazolyl)methane,
Icalthough in very low yield.

A siirpler, more efficient synthesis of these derivatives, which

obviates the need for anhydrous conditions and the use of active
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O Q
aUcali metals, arploys phase transfer catalysis (PTC) ' techniques.

A large range of substituted bis (l-pyr£Lzolyl)methanes have been

synthesized using the PTC procedure, eg. bis(l-pyrazolyl)methane in

90% yield. ^

40% NaOH, xs CH Cl
Hpz H^Cpz^ (8)

tetrabutylammonium bromide
Bhrs reflux/stirring

This method of incorporating pyrazole into a ligand systan has
been utilized to replace single reactive halogen atoms in many

organohalide substrates,eg.

PTC

'N ^CHaCI Hpz

PIC

C^CH2-n(3 (9)

•N' -

HCCl^ + 3,4,5-Me2PZ ^ HC(3,4,5-Me^pz)^ (10)

The other major method reported, useful for the synthesis of

ligands containing -Cpz^- units, involves a transition metal mediated
condensation of bis(l-pyrazolyl)ketone with a carbonyl group of a

suitable ketone or aldehyde. Bis(l-pyrazolyl)ketone is synthesized

from sodium pyrazolide and phosgene,

2Ncpz + Cl^CO pz^CO + 2NaCl (11)

and a more convenient synthesis for small amounts of this compound
12chas been published by the same authors. We found that this

reaction is just as effective in diethyl ether, if efficient stirring
12cIS employed, as in the recommended THF. Thus, Hpz (5g, 73.5

3
mmole), triethylamine (10.25 cm , 73.5 mmole) and diethyl ether (200

3
cm ) were mixed by overhead mechanical stirring, under a nitrogen

3
atmosphere, and phosgene (19 cm of 1.93M in toluene) added in two

portions. Stirring was continued for 15 minutes, the precipitate
3

filtered, solvent removed under vacuum and hexane (10cm ) added to

assist in crystallization of the ketone. The ketone (5.66g, 95%) was
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dried under vacaium and stored under a nitrogen atinosFhere. The

conpound did not require further purification and was used as

required.

The condensation between pz^C^O and the appropriate carbonyl
substrate occurs in the presence of a catalytic quantity of anhydrous

cobalt(II) chloride, eg.

CoCl
pz^CO + (CH^j^CO ^ *^^2

If more than a catalytic quantity of C0CI2 is used then a cobalt
coiiplex of the ligand may be isolated. The ligand can be freed from

this coirplex by hydrolysis.

The condensation reaction is sensitive to both electronic and

steric substituent effects of the reacting carbonyl, and is

ineffective in some instances.

6. 3 Results and Discussion

6.3.1 Liqands Containing One Pyrazolyl Group

Although most of these ccarpounds are bidentate ligands, they all

contain one pyrazolyl grorp attached to a bridging carbon atom (Table

6-1)

Compounds 2-9 are new conpounds, vhile the preparation of

conpound 1 was reported^*^ during this work, although the PIC
procedure, and the 3,5-dimethylpyrazolyI analogue of compound 3 has

been reported.

Conpounds 5 and 7 were isolated from the same reaction mixture,

with conpound 5 representing the intermediate to compound 7.

Conpound 6 was synthesized in the same way, but tmder conditions
which maximized its yield.
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Table 6-1

Liqands Containing a Single Pyrazolyl Groijp per Carbon Atom

Compound Preparation Method^ Yield(%)

1 H2C(py)pz B 90

2 H2C(mim)pz B 71

3 l,3-(pzCH2)2CgH^ B 82

4 2,6-(pzCH2)2CgH^Br B 68

5 pzCH^CH^Br C 52

6 pzCH^CH^Cl C 73

7 pzCH^CH^pz C 86

8 pzCH^CH^CH^pz C 92

9 H2C=C(CH2PZ)2 B 79

B - potassim pyrazolide

C - phase transfer catalysis

These corrpoijnds enconpass a varied array of possible coordination

geometries for conplexes. Compounds 1 and 2 would be expected to

form 6 merribered N,N-chelate rings upon coordination, while compounds

7, 8 and 9 could form 7 and 8 maribered rings respectively. In

addition, compound 8 could conceivably undergo metallation at the

central CH2 carbon, as the pyridine analogue of this ligand has been
reported^^ to undergo C(2) metallation with palladium acetate to form
a planar N2C~ chelate.
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H

H "nC-Pd-OAc

Figure 6.2

A similar CYClcmetallation is also considered possible for

conpound 3, with metallation on the central proton (2 position).

Coipounds 4-6 offer the possibility of direct oxidative addition, or

coordination with subsequent oxidative addition, to form N^C or NC
chelates. In addition, molecular models indicate that N^C- chelates
derived from conpounds 3 and 4 could potentially act as either planar
or tripodal donors.

N^C
Figure 6.3

Molecular models show that conpound 22 can coordinate in such an

orientation that the alkene portion of the ligand is available for

bonding to platinum.

6.3.2 Compounds Containing Two Pyrazolyl Groups

These conpounds all contain two pyrazolyl groups attached to a

bridging carbon atcm (Table 6-2)



Table 6.2

Liqands Containing TWo PyrcLzolyl Groups per Carbon Atom

229

Coirpound 3.Preparation Method Yield(%)

10 H^Cpz^ C 88

11 iy!e(H)Cpz2 A 80

12 D 93

13 Eh(H)Cpz2 A,B 75

14 Ph(]yieO) (H)Cpz2 D 58

15 (2-XCgH^)(H)CpZ2 D 48

(X = Cl, Br)

16 HC(py)pz2 D 45

17 HC(mim)pz2 D 49

18 HC(thio)pz2 D 62

19 l,3-(pz2CH)2CgH^ B 74

20 MeCpz^CH^Cl D 82

21 ClCH^Cpz^CH^Cl D 64

22 CH2CPZ2CHCI2 D 41

A - acid catalyzed condensation

B - potassium pyraizolide

C - phase transfer catalysis

D - cobalt chloride catalyzed condensation
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Conpounds 10-13 are taiown, but the preparative procedures

reported here (see e}q:erimental) result in higher yields. Conpound
17 has been reported vdiile this work was in progress, as it was found

to have application for stabilising high oxidation state
15organopalladium(IV) systems.

Attenpted preparation of soine other potential new ligands failed.
For exanple, N-methylimidazole is readily lithiated at the C(2)
position and thus, in a conpound of the type shown in figure 6.4, the
C(2)-H bond may conpete effectively with pyrazole rings for

platination, and thus the ligand would be of interest for a
conparison with HCpz^-

^ Me
P' W

Figure 6.4

Attenpted preparations of this conpoimd via acid condensation failed.

h"^
(EtO)2(H)C(im) + 2Hpz X pz2(H)C(im) (13)

Acid catalyzed condensation of pyrazole with bromoacetaldehdye

dimethyl acetal to produce a bromo derivative analogous to conpound

20 also failed, and resulted in isolation of a moisture sensitive
conpound.

h'̂
(MeO)2(H)CCH2Br + 2Hpz X HCpz2CH2Br (14)

Conpounds 16 and 17 were prepared by an adaption of Peterson's

cobalt(II) chloride catalyzed condensation reaction. The preparation

of these conpounds did not require the addition of cobalt (II)
chloride, eg. in the preparation of HC(py)pz2 (equation (15)) rapid
reaction was found to occur on gentle warming of pyridine-2-aldehyde

and bis(l-pyrazolyl)ketone.
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warm

pyCHO + pz^co ^ HC(FY)PZ2 + CO^ (15)

The reaction was extremely exothermic and rapid and required careful

cooling after it was initiated.

I

Potential coordination geometries obtainable from the coitpounds

in Table 6-2 are varied. Conplexes of coirpounds 10-14 all offer the

potential for fluxional bebaviour via axial-equatorial exchange of

the non-bonding ligand bridgehead groups. Coirpounds 13 and 14 have

substituents lA^iich could possibly conpete with pyrazole rings under

metallating conditions to form six merribered planar CN systems.

(Figure 6.5)

N—N

Figure 6.5

Likewise, coirpounds 16-18 contain groups which could result in

N,N, N,N' or N,S planar coordination, with the added possibility of

coirpetition with pyrazole rings under metallating conditions to form

N C , N',C or S,C coordination (N = pz; N' = mim, py).

The reagents 15 and 20-22 offer the possibility of forming 5 or 6

membered ring tripodal tridentate systems if both N,N coordination

and oxidative addition result upon conplexation with Me^Ptdl). eg.
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pz

.Me

'Me
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(X = Br, CD

Figure 6.6

6.3.3 Liqands Containing Three or Mere Pyrazolyl Groups

Coipouncas utilized which contained three or more pyrazolyl groups

per carbon atom are listed in Table 6-3.

Table 6-3

Ligands Containing 3 or more Pyrazolyl Groups per Carbon Atom

Cctipound Preparation Method^ Yield(%)

23 HCpz^ B 40-45

24 MeCpz^ E 78

25 CPZ4 D 50

B - potassium pyrazolide

D - cobalt chloride condensation

E - lithiation procedure

Corpounds 23 and 25 are well known, and the new corrpound (24) was

prepared 1^ a lithiation procedure using HCpz^ as a starting
material.
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7In our hands the reported preparation of HCpz^ was erratic and
irreproducible, but on iiradifying the reported procedure consistent

yields of 40-45% were obtained (see experimental).

Coordination of Cpz^ could result in the formation of dimeric
'platinum conpounds, analogous to ]yie^Pt(bipym)^®'̂ ^ (figure 6.7), but
not planar, if all pyrazolyl groups participate in coordination.

Figure 6.7

Pt Ft

m/

6.3.4 Reaction of Organolithium Reagents with Pyrazolyl Compounds

Containing Acidic C-H Bonds

Metallation of N substituted pyrazoles with Bu^i yields a range
'Of products after reaction with various electrophiles.^^ Thus, under
kinetic control at -78°C, 1-benzylpyrazole is lithiated at the
bridging CH^ group but at room tenperature rearranges to yield the
thermodynamically more stable S-lithio-l-benzylpyrazole ;

l-methylpyrazole gives mixtures of -and 5-lithiation.

Katritzky has recently reported the reaction of

bis(1-pyrazolyl)methane with Bu^i and its subsequent reactions with
. . . . . 17

various electrophilic reagents to yield a single major product, eg.

bis (1-pyrazolyl)methane on treatment with Bu^i at ambient
terrperature and subsequent reaction with IVtel gave

1,1'-bis (1-pyrazolyl) ethane.

Bu^Li Mel

HzCpz^ LiHCpz^ ^ MedDCpz^ (16)
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However, if carbonyl electrophiles, eg. CH^COCl, were used under the
sarre conditions, pyrazolyl ring 5-lithiated products were isolated.

Bu"Li CH^CCX:i 3
3 'X COCH3

H^Cpz^ ^ LiHCpz^ N (17)
CHa

PZ

The lithiation of pyrazolylalkanes was also independently

discovered and investigated in our lahoratory. Thus, HCpz^ reacts
with Bu^i in anhydrous ether at 0°C to produce a white solid,
presumably LiCpz^, vhich on addition of THF (until the solid
dissolves) and excess Mel produces Mecjjz^ in 78% yield.

Bu^Li Mel
HCpz ^ LiCpz MeCpz (18)

ether THF

By the same procedure, Me(H)Cpz2 and H^Cpz^ gave Me2Cpz2 and
]yfe(H)Cpz2 respectively.

This method was investigated as a possible route to

haloheterocyclic corrpoimds, eg. CH2CpZ2(CH2)^X. Thus,
Me(H)Cpz2/Bu^i was reacted with 1,2-dibromDethane in the e^q^ectation
that CH^Cpz^CH^CH^Br may be foianed. On all occasions, under various
conditions (tenperature control, reverse addition, excess of halide),

the solution darkened on reaction with BrCH^^^Br and the dimeric
coiipound CE^Cpz^(Ji^(Ji^Cpz^CR^ was isolated in low yield.
Trofimenko '̂" has reported the preparation of similar conpounds via an
acid catalyzed condensation procedure. If H^Cpz^ was \:ised as the
substrate, a mixture of products, including the dimeric compound

HCpz^CH^CH^Cpz^H and products from ring lithiation, were isolated in
low yield. The lithiation procedure does not appear to be suited to

the preparation of these types of compound.
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6. 4 Conclusion

A wide range of multidentate pyraizolyl containing ligands have

been synthesized by a variety of methods. Some of these ligands are

obtained in high yield sinple and convenient preparative

procedures. These ligands offer the possibility of a range of

coordination modes, from sinple bidentate N,N coordination to N2C
tripodal tridentate coordination. The platinum(II) and platinum(IV)

chemistry of these reagents, given in Chapters 2-5, indicate that

they may be of general use in a range of applications in coordination

and organometallic chemistry.



References For Chapter Six

1. S. Trofimenko,

a. J. Am. Qiem. Soc., 89 (1967) 3170, 6288.

b. ibid, 91 (1969) 588.

c. ibid, 92 (1970) 5188.

2. S. Trofimenko,

Prog. Iriorg. Qiem., 34 (1986) 115.

3. G. Minghetti, M.A. Cinellu, A.L. Bandini, G. Banditelli,

F. deMartin and M. Manassero,

J. Organonet. Qiem., 315 (1986) 387.

4. M. Qnishi, K. Hiraki, T. Itoh and Y. Ohama,

J. Organomet. Chem. , 254 (1983) 381.

5. R.B. King and A. Bond,

J. Am. Chem. Soc., 96 (1974) 1338.

6. H.C. Clark and M.A. Mesubi,

J. Organomet. Chem. , 215 (1981) 131.

7. W. Huckel and H. Bretschneider,

Chem. Ber., 70 (1937) 2024.

8. S. Julia, P. Sala, J. del Mazo, M. Sancho, C. Ochoa,

J.Elguero, J.P. Fayet and M.C. Vertut,

J. Heterocyclic. Chem., 19 (1982) 1141.

9. R.M. Claramunt, H. Hernandez, J. Elguero and S. Julia,

Bull. Soc. Chim. France, 2 (1983) 5.

10. D.A. House, P. J. Steel and A.A. Watson,

Aust. J. Chem., 39 (1986) 1525.

236



11. F. de Angelis, A. Ganibacorta and R. Nicoletti,

Synthesis, (1976) 798.

12.a. K.I. The' and L.K Peterson,

Can. J. Chem. , 51 (1973) 422.

b. K.I. The', L.K Peterson and E. Kiehlmann,

Can. J. Chem., 51 (1973) 2448.

c. L.K. Peterson, E. Kiehlmann, A.R. Sanger and K.I. The',

Can. J. Chem., 52 (1974) 2367.

13. T.N. Sorrell and D.L. Jameson,

J. Am. Chem. Soc., 104 (1982) 2053.

14. K. Hiraki, Y. Fuchita and Y. Matsumoto,

Chem. Letts., (1984) 1947.

15. P.K. Byers, A.J. Canty, B.W. Skelton and A.H. White,

J. Chem. Soc., Chem. Commun., (1987) 1093.

16. A.R. Katritz]<y, C. Jayaram and S.N. Vassilatos,

Tetrahedron, 39 (1983) 2023.

17. A.R. Katritzky, A.E. Abdel-Rahman, D.E. Leahy and

O.A. Schwarz,

Tetrahedron, 39 (1983) 4133.

18. V.F. Sutcliffe and G.B Yomg,

Polyhedron, 3 (1984) 87.

19.a. J.D. Scott and R.J. Puddephatt,

Inorg. Chim. Acta. , 89 (1984) 127

b. ibid, 5 (1986) 1538.

237,



238,



239 ,

CHAPTER SEVEN

EXPERIMENTAL

General

7.1 Physical and Analytical Measurements

1. Microanalyses

Elemental analyses for C, H, P, Cl, Br and I were perfonned by

the Australian Microanalytical Service Laboratories, IVfelboume or the

Canadian Microanalytical Service Ltd., Vancouver.

2. Melting Points

lyfelting points are reported for coiiplexes which melted without

decoiiposition at less than 200°C and were determined with a Reichart
Thermo apparatus and stereomicroscope, and are uncorrected.

3. Malecular Weights

Molecular weights were determined using a Knauer vapour pressure

osmometer for ca. 1 - 3 x 10 ^ Msolutions in chloroform at 37°C.

4. Conductivities

Conductivities were measured using a Philips PW 9504/00

conductivity meter with a Griffin George conductivity cell. Solution

concentrations were ca. 10 ^ in acetone at 25°C.

5. Spectroscopic Measurearents

(i) Where reported infrared (IR) spectra were recorded using a

Hitachi 270-30 infrared spectrophotometer, as nujol mulls or neat
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liquids between KBr plates.

(ii) Mass spectra (itis) were obtained losing a Vacuum General

Micromass 7070F spectrometer operating at 70 eV.

1 13 31(ill) Nuclear Magnetic Resonance spectra ( H, C, P) were

recorded using a Bnikier AM 300 spectrometer and are reported in parts

per million (ppn). % and chonical shift values are referenced
to internal tetramethyl silane (IMS, 0 ppn) in CDCl^ solvent, or the
central acetone resonance (2.2 ppn) of the acetone quintet in D6

acetone.

^ NMR spectra are tabulated as H^, denoting a pyrazolyl bound
proton, eg. H^, vdiile protons belonging to other groups are denoted
by their nominated abbreviations, eg. Ph., py„

4 Z fb

6. Thermogravimetric Analysis

Thermogravimetric measuronents (T.G.A.) were carried out using a
Rigaku-Denki Differential Scanning Calorimeter (Thermoflex 8085).

7.2 Solvents and Reagents

All general purpose reagents and solvents were distilled prior to

use, but not dried unless stated otherwise. For preparations which

required more specialized solvent and reagent purification, the
xk
,2

methods used were similar to those recommended by Perrin et al.^ and
Vogel

Solvents

Acetone; Dried over CaSO^, filtered and fractionated.

Acetic Acid (glacial): Refluxed and fractionally distilled from
acetic anhydride and potassium permanganate.

Benzene: Washed with conc. H^SO^, H^O, 2M NaDH, refluxed and
distilled from P„Ot-, then stored over sodium wire.

Z O
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Chloroform; Wa^ed several times with H^O, dried over CaCl^,
filtered and distilled from P„0^.

Z D

Dichloromethane: Dried over CaCl2, filtered and distilled from

Diethyl Ether (Ether): Pre-dried over CaCl^, 4A molecular sieves,
followed by refliox and distillation from sodium/benzophenone and

stored over sodium wire.

Ethanol: Absolute ethanol was refluxed with magnesium ethoxide for 1

hour, distilled and stored over 4Amolecular sieves.

Hexane: Dried over CaCl2, distilled from sodium/benzophenone and
stored over sodium wire.

Methanol: Fractionally distilled, refluxed over magnesium methoxide
for 3 hours, distilled and stored over 4A molecular sieves.

Pyridine: Refluxed with solid KOH for 3 hours, fractionally

distilled and stored over 4 Amolecular sieves.

Tetrahydrofuran (TEIF): Pre-dried over solid KOH followed by refliix

and distillation from sodium/benzophenone and stored over sodium
wire.

Toluene: Refluxed and distilled from sodium and stored over sodium

wire.

Reagents

Organic Reagents

Tteetyl Chloride: Refluxed with PCl^ for several hours then
distilled. Redistilled from one-tenth volume of quinoline.

Acetaldehyde: Shaken with NaHCO,, dried over CaSO^ and fractionally
distilled under nitrogen.
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A1ly1 Bromide; Washed with NaHCO^, H^O, dried with MgSO^ and
fractionally distilled.

Benzaldehyde; Washed with aq. Na^CD^ solution, satiorated Na^SO^,
H2O, dried over CaCl^ then distilled at reduced pressure.

Benzyl Bromide; Washed with conc. H^SO^, H^O, 2M NaOH and H^O. Dried
over ly^SO^, fractionally distilled under reduced pressure in the dark
and stored over 4A molecular sieves.

Bromobenzene; Pre-dried over CaCl^, refluxed and distilled from
calcium turnings and stored over 4Amolecular sieves.

l-Bromobutane; Washed with conc. H^SO^, H^O, 2M NaOH and H^O. Dried
over CaCl„, then distilled.

Z Z D

Chloroacetone; Dissolved in H^O, shaken with small amounts of ether,
extracted with a large volume of ether and distilled at reduced

pressure

1,2-Dibromoethane; Washed with conc. H2S0^, H^O, Na^CO^, H^O, dried
over CaCl^ then fractionally distilled.

2,6-Dimethylpyridine (2,6-lutidine): Dried over solid KOH decanted

and fractionally distilled.

lodoethane; Washed with dilute aq. NaHSO^, H^O, dried over CaCl2,
distilled in the dark and stored over 4A molecular sieves.

lodomethane; As for iodoethane.

N-Methylimidazole; Distilled under reduced pressure and stored over

4 A molecular sieves.

4-]Xtethylpyridine (Y-picoline): As for lutidine.

Proparqyl Bromide; As for allyl bromide.
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Pyridine-2-ald^yde: Fractionally distilled under reduced pressure.

Triethylamine; Dried over CaCl^, distilled from P2O5 stored over
4 A molecular sieves.

Orqanolitliium Reagents

Some preparative procedures required the use of pyrophoric

organolithium reagents, eg. MeLi, PHLi and Bu^i. When required for
use these reagents were transferred by either gas tight syringe (less

3 . . .
than 10 cm ) or flexible polyethylene tubing into a burette under a

nitrogen atmosphere. Transfer by polyethylene tubing is more

advantageous than by metal cannula as it is flexible, allows visible

transfer, and is easily cleared, cleaned and dried.

The concentration of organolithium reagents was determined by
3

titration with l,3-diphenyltosylhydra2;one in THE.

When mentioned in the text, organolithium reagents were prepared

by the following procedures.

4
(I) Lithium and lodomethane;

To a stirred suspension of finely cut lithim wire (0.70g, 100

iTffnole) in anhydrous ether (50 cm ) at 0°C (ice) and under an
3

atmosphere of dry nitrogen, was added Mel (3.2 cm , 51 irenole) in
3 ...

ether (10 cm ) at such a rate that the surface of the lithium chips

appeared as metallic silver. At the cortpletion of the addition the

solution was titrated and used immediately. Yields were consistently

in the 40 - 50% range.

. 5
(II) Halide-free MeLi;

The preparation of methyllithium using methyl iodide results in

the formation of ether soluble lithium iodide. Halide free

methyllithium can be prepared using chloromethane since LiCl is

insoluble in ether. It is critical for the success of this
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preparation^ that the lithium contain a small percentage of sodium (~
1%), and be of correct particle size. Lithium particles of an

appropriate size can be prepared by vigorous mechanical stirring of

molten lithium (1% Na) in dry paraffin oil (~ 220°C) under an
atmosphere of argon, ftn easily manageable quantity was found to be

3approxrmately 7g (1 mole) of lithium in 350 - 400 cm of paraffin.

As the oil is slowly cooled, with stirring, lithium shot of an

appropriate particle size forms. When the tenperature falls to

approximately 80°C, excess oil is siphoned off, and the lithium shot
3

washed with several portions of dry hexane (3 x 50 cm ) and dry ether
3

(3 X 20 cm ). Lithium produced in this manner was suitable for the

preparation of methyl lithium by reaction with chloromethane as

described by House

reported ty House.

5 ....
described by House et al., and resulted in yields similar to those

Halide free MeLi was stored at -20°C, but required weekly
titration as the concentration slowly decreased on storage.

7Phenyllithium, PhLi

To a stirred suspension of finely cut lithium wire (l.Og, 144
3

mmole) in anhydrous ether (50 cm ) under an atmosphere of dry
3

nitrogen was added a small portion (1 cm ) of bromobenzene to

initiate reaction. Once reaction had begun the remainder of the
3 3bronobenzene (6.58 cm , 62.5 mmole) in ether (10 cm ) was added at

such a rate as to maintain the reaction. At the coirpletion of the

addition the mixture was refluxed for 2 hours. This procedure

reliably resulted in a near quantitative reaction yield, and

titration was not required. Rienyllithium was prepared as required

and was not stored.

n-Butyllithium, Bu^Li '̂̂

To a stirred suspension of finely cut lithium wire (5.3g, 0.75
3

nrnole) in anhydrous ether (200 cm ) under an atmosphere of dry
3

nitrgoen was added a small amount of neat l-bromobutane (0.5 cm ) to

initiate reaction. When reaction had begun the mixture was cooled to
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approximately -10°C and the remainder of the l-bromobutane (39.5 cm^)
3in ether (20 cm ) added dropwise at such a rate that the reaction

solution tenperature never rose above about -5°C (35 - 40 minutes).
At the coirpletion of the addition the mixture was stirred at room

tenperature for 0.5 hour, and stored at -20°C. Titration of this
solution indicated a Bu^i concentration of approximately IM (70%).

O

Platinum Recovery - Platinum was recovered according to scheme 7.1.

All platinum containing residues were coirbined and evaporated to

the lowest possible volume on a steam bath. The semi-solid residue

was transferred to a small crucible, placed on a sand bath and

gradually heated over 8 hours to maximum. Solid residues, such as
filter papers, were carefully burnt and the ashes combined with the

residue from the solution recovery. The combined residues containing

platinum, inorganic salts and organic compounds were placed in a

furnace and heated to 750 - 800°C for 8 hours. On completion of
firing the crucible was slowly cooled to room temperature, and the

contents washed several times with hot .water (x5) and dilute

hydrochloric acid solution (x5) to remove inorganic salts. The
remaining solid, predominantly platinum metal, was dissolved in hot

aqua-regia by the addition of small portions of aqua-regia to the

residue, and the resulting solution taken to near dryness on a steam
3

bath. Cone, hydrochloric acid was added (20 cm ) and the mixture

evaporated to near dryness. This procedure was repeated 3 times in
order to remove all oxides of nitrogen. The final hydrochloric acid

solution, containing "H^PtClg", was diluted with an equal volume of
distilled water, filtered, and an excess of KCl added to precipitate

yellow K2PtClg. After filtration and drying, K^PtCl^ was reduced to
K^PtCl^ in hot aqueous solution by the addition of a stoichiometric
quantity of solid hydrazine hydrochloride or hydrazine sulphate.
Addition of the solid reductant is regulated to avoid the reaction

becoming too vigorous. The resulting red solution, containing
K^PtCl^, and scame metallic platinum, was filtered and the volume
reduced (water bath) to yield, on cooling, crystalline K^PtCl^.
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Potassiijm tetrachloroplatinate, K^PtCl^, was then used to
synthesize either Cl2Pt(C0D) or Cl2Pt(EtS)2 as required.

Platinum Residues

ignition (sand bath)

Furnace 750 - 800 C 6-8 hours

Ft metal

aqua-regia

H.,PtCl^
2 6

KCl

K_PtCl,
/ fa

hydrazine hydrochloride

K^PtCl^

Scheme 7.1
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7.3 Experimental for Chapter Two

^pPtX (L = HCpZj, H^Cpz^, Me(H)Cpz^. Me^Cpz^. Cpz^)

K^PtCl^ (O.lg, 2.4 mmole) was dissolved in H^O (5 cm^), filtered,
and added to an acetone solution (5 cm^) of ligand (2.4 mmole). The
mixture (red in colour) was allowed to stand for 6-8 hours during
which time the red colour discharged and a microcrystalline yellow
solid deposited. Alternatively, the mixture was refluxed and a

yellow powder precipitated over 0.5 hour. All complexes with the

exception of were insoli±)le in common organic
solvents.

Yields, microanalyses (where applicable), melting points and far

infrared spectral data are given below. Calculated microanalysis
values (%) are given in parentheses.

Cl^Pt(HCp2j); 97%;
Microanalysis: C 24.94 (25.00), H 2.20 (2.10), N 17.30 (17.50), C1

15.30 (14.76)

I.R. (KBrdisc): V(PtCl2) 342,358 cm~^.
QCl^Pt(H^Cpz^): This corplex has been reported.

94%;

I.R. (KBr disc): 1) (PtCl^) 338, 345 cm~^.

Cl^Pt(Me(H)Cpz^): 94%;
Microanalysis: C 22.61 (22.40), H 2.52 (2.41), N 13.00 (13.07), C1

16.94 (16.53)

I.R. (KBr disc): 1) (PtCl^) 332, 338, 348 cm~^.

Cl^Pt(Cpz^): 92%;
Microanalysis: C 28.04 (28.58), H 2.02 (2.21), N 19.50 (20.51), C1

12.80 (12.98)

I.R. (KBr disc): d' (PtCl2) 335, 350 on-^.
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Cl^Pt(COD);

Prepared by the procedure of Whitesides et

]yie^Pt(COD):

Prepared by the procedure of Clark and Manzer.^^

Cl^Pt(NBD) and Me^Pt(MBD);

12Prepared by the procedure of ?^leton et al.

cis-Cl^Pt(Et^S);

K2PtCl^ (lOg, 24.1 mmole) was dissolved in H^O (120 cm^) and Et^S
(10.4 cm^) was added with stirring. Stirring was continued until the
red colour had faded and a thick yellow precipitate formed. The

suspension was stoppered and allowed to stand for 12 hours until the

precipitate had dissolved. The resultant yellow solution was
3extracted with CH^Cl^ (2 x 30 cm ), dried with ly^SO^, filtered, and

allowed to evaporate to dryness. The yellow solid was crushed and

vacuum dried at 50°C for 2 hours. Yield lOg, 94%

[Me^Pt(Et^S)

Dry crushed cis-Cl^Pt(E^^S)^ (6.8g, 15.25 mmole) was suspended in
anhydrous ether (200 cm^) with stirring at 0°C under a nitrogen
atmosphere. Halide free IVKLi (32.03 mmole) was added dropwise over

10 minutes, stirred at 0°C for 2 hours and carefully hydrolyzed
3

(saturated NH.Cl, 10 cm ) until no solid was evident. The mixture
3

was separated, the aqueoias layer extracted with ether (3 x 20 cm ),

the combined ether extracts dried (IX^SO.), filtered and evaporated to
3near dryness on a rotary evaporator. Benzene (10 cm ) was added and

vhite crystalline [iy!e2Et(Et2S) filtered off.
Yield: 3.8g, 80%

Malecular weight: 641 (630)
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^ NMR (CDCl^):
MePt 0.49(t) 86 Hz, 6H; 1.60(t) 3H;

CH2qi2 3.05(q), 2H.

iy[e2Pt(HCpz2) from Me2Pt(C0D) and Me^PtdSED)

]yte„Pt(COD) (0.5g, 1.50 inmole) and HCpz, (0.33g, 1.54 mmole) were
. 3dissolved in anhydrous benzene (20 an ) under an atmosphere of dry

nitrogen and refluxed with stirring. Reflux was continued for 24

hours during which time a white solid precipitated. The solid was

filtered, washed with ether, air dried and vacuum dried (60°C, 2
hours) to yield 0.38g, (58%) of Me2Pt(HCpZ2).

If toluene was substituted as the reaction solvent and the scheme

in Chapter 2 followed, the yield was increased to 80% over 20 hours.

used in benzene in the above method to give a

yield of 72%.

Me2Pt(L) (L = H2Cpz^, HCpz^. Ph(H)CpZ2)

[Me2Pt(Et2S) ]2 (O.lOg, 0.16 mmole) was suspended in anhydrous
benzene (20 on^), ligand (0.32 mmole) added and the mixture stirred
and heated to reflux under a nitrogen atmosphere. Near reflux the

[Me2^(^2^^^2 to yield a pale yellow solution from which a
solid precipitated after a further 10 minutes heating. The solid was

filtered, washed with ether, air dried and vacuum dried (60°C, 2
hours). All complexes were insoluble in cormon organic solvents.

amorphous solid. This corpound has been

reported in 19% yield.

te^tUiCpz^; 93%, vhite amorphous solid.

iyte2Pt(Ph(H)Cpz2): 90%, white amoiphous solid.
Microanalysis: C 39.82 (39.96); H 4.28 (4.31); N 11.98 (12.47)
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]yie^Pt(L) (L = iyte(H)Cpz^, Lfe^Cpz^. H^C(mim)pz, H^C(py)P2i HC(miin)pz^^
HC(-tJiio)pz^, Cpz^)

[Me2Pt(Et2S) (O.lg, 0.16 itimole) was dissolved in acetone (20
cm^), ligand added (0.32 mmole) and the solution stirred and heated
under a nitrogen atmosphere. After 10 minutes heating the solution

(sometimes slightly yellow) was cooled, hexane (5 cm ) added and the

solution volume reduced on a rotary evaporator until the product
began precipitating, the product was filtered, washed with ether, air

dried and vacuum dried (50°C, 2 hours).

Me^Pt(Me(H)Cpz^): 88%, white crystalline solid;
MDlecular Weight (CHCl^): 388 (387)

^ NMR (D6 acetone), ambient terrperature:
MePt 0.80(t) ^J(^-^^^Pt) 89.7 Hz, 6H; 2.64, 3H;
6.57, 2H; CH 7.36, IH; H_ 7.93, 2H; 8.27, 2H;

O D

All ligand resonances were broad.

^ NMR (D6 acetone) -25°C:
2 1 195Conformer (B); MePt 0.76(t) J( H- Pt) 88.8 Hz;

2.60(d) ^J(^-^) 6.96 Hz; H^6.60(t); CH7.28(q) ^J(^-^)
6.92 Hz; H^ 7.90(d), ^2; H^ 8.39(d) 5)2-73
Hz;

9 1 1QRConformer (A): IXfePt 0.78(t) J( H- Pt) 89.2 Hz;

2.74(d) ^J(^-^) 6.63 Hz; H^ 6.60(t); CH 7.41(q) ^J(^-^)
6.62 Hz; H„ 7.98(d) J,_ -,2.07 Hz; H^ 8.27(d) J,„ ^,2.67

Hz.

Me^Pt(Me^Cpz^); 82%, white crystalline solid.
Molecular Weight (CHCl^): 392 (401)
^ NMR (CDCl^), ambient teaiperature:

MePt 0.84(t) ^J(^-^^^Pt) 88.2 Hz, 6H; 2.71(s,broad)
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6H; 6.35(t) 2H; 7.76(cl) 5)2-79 Hz, 2H; 7.94(d)
J,^ 2.10 Hz, 2H.(3,4) '

^ MyiR (CDCl^) , -20°C:
lyiePt 0.82(t) ^J(^-^^^Pt) 87.4 Hz; 2.46(s) axial, 3H,
2.96(s) equatorial, 3H; H^ 6.36(t); H^ 7.78(d) J^^gj2.79
Hz; H^ 7.91(d) 4)2-07 Hz.

Me^Pt(H^C(iiiim)pz): 91%, white crystalline solid.
Molecular Weight (CHCl^): 372 (387)

^ NMR (D6 acetone):

MePt trans to mim 0.69(t) ^J(^-^^^Pt) 87.0 Hz, 3H; MePt
trans to pz 0.76(t) ^J(^-^^^Pt) 89.7 Hz, 3H; Mfe 4.05(s)
3H; CH., 5.65(S) 2H,- H. 6.50(t) IH; H. . 7.25(d) ^J(^-

—2 4 4miin
195

Pt) 12.62 Hz, J,„ ^,1.42 Hz IH; H^ . 7.30(d) J, . ^.1.44(4,5) 5nmn (4,5)

Hz, IH; H^ 7.88(d) 4)2-18 Hz, 2H; H^ 8.17(d) 5)2-47
Hz, 2H.

Me^Pt(H^C(py)pz); 84%, pale yellow crystalline solid.
Molecular Weight (CHCl^): 379 (384)

^ NMR (CDCl^), ambient teaiperature:
MePt trans to py, 0.86(t) ^J(^-^^^Pt) 85.6 Hz, 3H,- MePt
trans to pz, 0.91(t) ^J(^-^^^Pt) 86.2 Hz, 3H; 5.45(s,
broad) 2H; H^ 6.35(t) IH; py^ 7.33(m), IH; py^ 7.35(d),

IH; H^ 7.63(d) 5)2-52 Hz, IH; H^ 7.80(d) 5)2-21 Hz,

IH; py. 7.89(t), IH; py,, 9.02(m) IH.
4 b

^ NMR (CDCl^), -40°C:
MePt trans to py, 0.85(t) ^J(^-^^^Pt) 84.0 Hz, 3H,- MePt
trans to pz, 0.89(t) ^J(%-^^^Pt) 83.9 Hz, 3H,- Ol^ 5.12(d)
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14.54 Hz, axial, IH; 5.86(d) 14.54 Hz,

equatorial, IH; H^ 6.42(s) IH; py^ 7.42(t) IH; py^ 7.47(d)
IH; H^ 7.74(s) IH; H^ 7.81(s) IH; py^ 7.98(t) IH; py^

8.97(d) IH.

Me^Pt(HC(inim)pz^) 86%, white ainorphous powder.

^ NMR (D6' acetone):

MePt trans to mim, 0.74(t) ^J(^-^^^Pt) 87.3 Hz, 3H; MePt
trans to pz, 0.84(t) ^J(^-^^^Pt) 90 Hz, 3H; 4.11(s) 3H;
H,, ,6.41(t) IH; H,, ,,6.64(t) IH; H. . +
4(unco) ' 4(coord) ' 4itain

H-, ,7.50(m) 2H; H^ . 7.63(d) J,. .,1.54 Hz, IH;3(mco) ' 5iTmn (4,5) ' '

H3(coord)J(3 4)2.06 Hz, IH; CH 8.37(s), IH;
H^, ,,8.50(d) J,. ^,2.70 Hz, H^, ,9.59(d) J,. ^,2.565(coord) (4,5) ' 5(unco) (4,5)

Hz, IH.

Me^Pt (HC (thio)pz^);
Molecular Weight (CHCI^): 438 (443)

^ NMR (D6 acetone):

MePt 0.75(t) ^J(^-^^^Pt) 89.50 Hz, 6H; H^ 6.66(q) 2H;
^4thio^-0^(t) H3^.^7.24(s,broad) M; H3^.^7.63(d) IH;
H3 8.07(d) ^J(^-^^^Pt) 9.29 Hz, 4)2.10 Hz, 2H; CH
8.65(S) IH.

Me^Pt(Cpz^): 91%, white crystalline solid.
Molecular Weight (CDCI3): 497 (505)

^ NMR Ambient (D6 acetone):

MePt 0.63(t) ^J(%-^^^Pt) 89.7 Hz, 6H; H4 6.76(m) 4H; H^
6.91(s, broad) 2H; H^ 7.44(dd, broad) 2H; H^ 8.04(s, broad)

2H; H3 8.26(dd, broad) 2H.
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NMR (D6 acetone), -40 C:

2 1 195 21iy[eE>t 0.56(t) J( H- Pt) 89.78 Hz, 3H; MePt 0.60(t) J("^-
195Pt) 89.5 Hz, 3H; 72(d) 5)2-73 Hz, IH; H^^
6.90(t) IH; H^j^, 7.08(d) 5)2-63 Hz, IH; H^^ 7.42(d)
J^^^gj2.99 Hz, IH; Hg^7.65(d) J(4^gj3.00 Hz, IH; H3^,
7.95(d) J^3 4)1-15 Hz, IH; H3^8.22(t) 4)1-51 Hz, IH;
H3ax8.33(d) 4)1-53 Hz, IH; H^^^ 8.38(d) 4)1-^^
IH.

[Ph.,Pt(Et.,S) 1.,^^
^ A

Dry crushed cis-CI^PKEt^S)^ (4.00g, 8.97 mmole) was suspended in
anhydrous ether (150 cm^) with stirring at 0°C under a dry nitrogen
atmosphere. Phenyllithium (19.7 mmole) was added dropwise over 10

minutes and the mixture stirred for 2 hours. The off-white

suspension was worked up as for [iyte2En:(Et2S) (p. 248). The solid
was recrystallized from a benzene-ether mixture to yield the white

product.

Yield: 2.95g, 75%

Mnlecular Weight(CHCI3): 856 (878)
^ NiyiR(CDCl3):

Qi^CH^ I.85(t), 6H,- 013012 2.50(q), 4H; Ph^ 6.79(m) 2H,-
Ph3 3 6.94(m) 4H,- Ph2 ^ 7.32(m) ^J(^-^^^Pt) 71.9 Hz, 4H.

Ph2Pt(L) (L = H2CPZ2, HCPZ3, Me(H)Cpz2, Me2CpZ2 .HC(py)pz2.
HC(mfm)pz2, HC(thio)pz2, H2C(py)pz, H2C(mim)pz)

[Ph2Pt(Et2S) ]2 (0.20g, 0.23 mmole) was suspended in anhydrous
benzene (20 cm^), ligand (0.46 mmole) added and the mixture heated
and stirred under a nitrogen atnosphere. After 5-10 minutes heating

the solution turned pale yellow and (in most cases) a white

precipitate was deposited. In cases vSiere precipitation did not

occur, cooling and/or dropf/ise addition of hexane facilitated
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precipitation. The solid was filtered, washed with ether, air dried

and vacuum dried (50°C, 2 hours).

Ph^Pt(H^Cpz^): 92%.

^ NMR (CDCl^), airibient terrperature:
5.91(s, broad) 2H; 6.21(t) 2H; Ph^ ^ ^ 6.82-6.93(m,

broad) 6H; 7.33(dd) 4)2-22 Hz, 2H; 7.39(dd)
J, . ^,2.67 Hz, 2H; Ph_ ^ 7.50(m) ^J(^-^^^Pt) 68.9 Hz, 4H.
(4,5) 2,6

^ NMR (CDCl^), -40°C:
qi2 4.36(d) ^J(^H-^H) 14.17 Hz, axial, IE; 5.79(d) ^J(^-^)
14.09 Hz, equatorial, IH; H^ 6.15(t) 2H; H^ ^ ^ 6.86-
6.93(m) 6H; H_ ^ 7.22(s, broad) 2H; Ph., ^ 7.56(m) 4H.

O fD Z fO

Ph^Pt(HCpz^); 94%.
Microanalysis: C 47.10 (46.85); H 3.27 (3.57); N 14.87 (14.98).

^ NMR (D6 acetone):

H^ 6.69(m) 3H; Ph^ 6.82(m) 2H; Ph^ ^ 6.84-6.94(m) 4H;

«3(coora) + ®2,6 73.5 Hz, 6H;
"3(unco)'-=2<« J(3,4)l-''^' "5(coora)S-"'®'
J(^_5)3.03 HZ, 2H; 8.78(3) J,4_5)2.57 Hz, OH; CH
9.38(S), IH.

Ph^Pt(M0(H)Cpz^); 90%.
Malecular Weight (CHCl^): 501 (511)

^ NMR (CDCl^), ambient terrperature:
Qfe 1.02(s,broad) 3H; H^ 6.23(t) 2H; Ph^ ^ ^ 6.79(m, broad)

6H; H_ ^ + Ph_ ^ 7.49(m, broad) ^J(^-^^^Pt) 68.2 Hz, 8H;
3,5 2,6

CH 7.97(s, broad), IH.
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hi NMR (CDCl^), -20°C:
0.75(d) 6.51 Hz, 3H; 6.26(t) 2H; Ph^ ^ ^

6.69-6.82(m) 6H; H, 7.18(d) J,_ .,1.92 Hz, 2H; H^ 7.38(d)

^j2.43Hz, 2H; Ph^ ^ 7.44(m) 4H; CH 8.01(q) ^J(^-^)
6.65 Hz, IH.

Ph^Pt(Me^Cpz^); 92%.
MDlecrular Weight(CHCl^): 523 (525)
%NMR (CEXTl^), ambient temperature:

CMe 2.83(S, broad) 6H; H^ 6.27(t) 2H; Ph^ 6.85(m) 2H;

Ph^ g 6.98(m) 4H; H^ 7.44(d) 4)2-13 Hz, 2H; Ph^ ^
7.55(m) ^J(^-^^^Pt) 73.6 Hz, 4H; H^ 7.69(d) J,, ^,2.82 Hz,

j \ 4 ^^ j

2H.

^ NMR (CDCl^), -30°C:
Me^ 2.19(3) 3H; Me^^ 3.11(s) 3H; H. 6.20(t) 2H; Ph.

3X 4 4

6.81(t) 2H; Ph^ ^ 6.94(t) 4H; H^ 7.37(d) 4)1*52 Hz,
2H; Ph_ ^ 7.48(m) ^J(^-^^^Pt) 69.03 Hz, 4H; H^ 7.63(d)

^ / D 3

J,. ^.,2.67 Hz, 2H.
\ 4 / ^ /

Ph^Pt(HC(w)pz„): 84%.

^ NMR ((IDCl^): the ^ NMR spectrum is very coiiplex and assignment
has not been attempted, however the spectrum shows 4 separate H4 and

2 py^ resonances consistent with a mixture of two conformers in
b

approximately equal proportions.

H^ 6.34(m) 3H; H^ 6.68(t) IH; 6.74-6.94(m, complex);

7.24(m), 7.26-7.67(m, complex); 7.85 (m); 7.91(m); py
b̂

8.68-8.69(dd) 2 signals, 2H; CH 9.04(s).
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Ph^Pt (HC (miin)p2^); 83%.
MDlecular Weight (CHCl^): 552 (577)
^ NMR (D6 acetone):

Iffe 4.15(8) 3H; «4(unco)^-^^<^>

P^4 + «4(nmn) ^H; Ph3^5 6.89-6.97(m) 4H;
+ I^(nain) 7.40(in) 2H; Ph^ ^ 7.50-7.63(m) 4H;

J(3,4)^-75 HZ, IH; 8.54(c3d)
J(4^3)2.74 HZ, IH; CH8.56(s)IH; H3(^^^^)9.70(dd)
2.62 Hz, IH.

Ph^Pt(HC(thio)pz^); 88%.
IVblecular Weight (CHCI3): 567 (579)

^ NMR (D6 acetone):

H^ 6.61(t) 2H; PH^ 6.79(m) 2H; Ph3 ^ 6.88(in) 4H;

«3,4(thio)^-25(n^) 2H; H3 7.44(d) J(3^4)2.14 Hz, 2H; Ph^^^
7.52(m) ^J(^-^^^Pt)72.8 Hz, 4H; H3^^^^j7.86(dd) ^^4.9
Hz, IH; H3 8.52(dd) 5)2-70 Hz, 2H; CH 8.82(s) IH.

Ph^Pt(H^C(py)pz);

Molecular Weight (CHCI3): 529 (508)

^ NMR (D6 acetone), ambient tai^jerature:
CH^ 6.06(s,broad) 2H; H^ 6.48(t) IH; Ph^ 6.86(m, complex)
2H; Ph3 3 6.92(m,conplex) 4H; 7.44-7.61 v. conplex pattern

containing py^, H^ and Ph^ ^ (2 distinct resonances) 6H; py3
7.93(d) IH; pY^ 8.20(td) IH; H3 8.23(d) J^3 4)1-76 Hz, IH;
PYg (m) IH.

^ NMR (D6 acetone), -60°C: apical protons resolved into broad
doublets.
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Heq 5.99(d) 14.21 Hz, IH; Hax 6.14(d) ^J(^-^)
14.21 Hz, IH.

Ph^Pt(H^C (inim)pz):

Molecular Weight (CHCl^): 532 (511)

^ NMR (CDCl^):
NMe 5.28(S) 3H; H. 6.22(t) IH; H^ . 6.68(d) J,, ^,1-48 Hz,4 5iiUJn (4,5)

IH; H^jj^6.71(d) J^^^gjl.48 Hz, IH; Ph^ 6.80(iii) 2H;
Ph, ^6.87(m), 4H; H_ 7.43(d) J,_ .,2.26 Hz, IH; H^ + Ph., ^

•J/O «J J ^

7.49(m), ^J(^-^^^Pt) 63.06 Hz, 5H.



258 .

7 • 4 Experimental for Chapter Three

MePt(HCpz^(CjN^H^)-C.N) (py)

3lyte^PtdiCpz^) was suspended in dry pyridine (5-10 on ) under a
nitrogen atmosphere and allowed to stand at ambient terrperature until

all of the solid had dis^peared. Hexane was added dropwise until

cloudiness developed, at which time crystallization occurred. The
3product was filtered, washed with ether (3 x 5 cm ) and vacuum dried

at 50°C (2 hours).
Yield: 80%

^ NMR(CDCl2):
MePt 0.92(t) ^J(^-^^^Pt) 86.4 Hz, 3H; 6.24(t) IH;

H./ 4-^ ^J/ 24.43 Hz, 2H; H_, ^4(coord + met) (met) 3 (coord)

6.92(d) 4)2.13 Hz, IH; py^ ^ 7.36(m) 2H;

«5(utx:o) + »4 "5(ooord)®-l°'®
J, . _,2.55 Hz, IH; CH 3.38(s) IH; py_ , 8.54(q) J(%-

^ fO
1

Pt) 24.6 Hz, 2H.

MePt (HCpz., (C.,N.,H„) -C .N) (mim)

This cdrplex was synthesized in an analogous manner to

MePt(HCpz2(C2N2H2)-C,N) (py) using N-methylimidazole as solvent.
Yield: 76%

Microanalysis: C 35.73 (35.61); H 3.57 (3.59); N 22.06 (22.24)

^MXCKCDCl^):
MePt 0.88(t) ^J(^-^^^Pt) 86.20 Hz, 3H; MVIe 3.73(s) 3H; H
6.20(t) IH; H^icoora + 24.2
Hz, 2H; H^ . 6.92(s) IH; H. . 7.02(t) ^J(^-^^^Pt) 15.2

oirom 4mim

«3(coord)7-13(^^ J(3,4)21-0 HZ, IH; H3(^^^j7.53(d)
*^(3,4) ^3(met) H3(coord)H5(unco)
7.94(d) 5)2.70 Hz, IH; CH 8.37(s) IH.

4
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MePt (HCp2^(CjN^H^)-C ,N) (y-picoline)

This coirplex was synthesized in an analogoxjs manner to

iyiePt(HCpz2(C2N2H2)-C,N) (py) using 7-picoline as solvent.
Yield: 82%

Microanalysis: C 40.28 (39.49); H 3.79 (3.70); N 18.78 (19.06)

^ NMR (CDCl^):
MePt 0.94(t) ^J(^-^^^Pt) 83.62 Hz, 3H; py^^ 2.41(s) 3H;
H,, ,6.27(q) IH; + H., ,,6.37(m) ^J, ^.v(^-4(unco) ^ ' 4(iTiet) 4(coord) (met)
1-'''''Pt) 24.02 Hz, 2H; 6.96(d) J^3^^^2.13 Hz, IH;
py3^5 7.17(m) 2H; H3(^^^)7.61(d) J(3^4)1.41 Hz, IH;

«3(met)^-"(^) J(3,4)l-^« ^5(unco)^-51 '̂̂ ) ^(4,5)2-31
3H; H3(^^^^)8.12(d) J(4^5)2.70 Hz, IH; H t py^^^

8.42(m) 3H.

[MePt(HCpz^(C3N^H^)-C.N)

Method 1

Crystalline MePt(HCpZ2(C3N2H2)-C,N) (py) was refluxed in anhydrous
benzene for 30 minutes during which time the crystalline solid

dissolved and a white powder precipitated. The powder was collected

by filtration and vacuum dried (2 hours, 50°C).

Method 2

A suspension of MeET:(HCpz2(C3N2H2)-C,N) (py) was heated with
stirring in acetone until a clear solution formed. Hexane was added

to the hot solution to precipitate a white solid which was collected

and vacuum dried (2 hours, 50°C).
Yield: 96%

Microanalysis: C 31.85 (31.20); H 2.98 (2.86); N 20.16 (19.86)
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]yiePt(HCpz^(C-N..H„)-C.N) (CO)

A suspension of iyieE^(HCpZ2(C2N2H2)-C,N) (py) was refluxed in
acetone until a clear solution had formed, at which time heating was

stopped and carbon monoxide was bubbled through the solution for 10

minutes. Tifter cooling, hexane was added to precipitate a white

solid, which was collected by filtration, washed with ether and vacuum

dried.

Yield: 95%

Microanalysis: C 32.01(31.93); H 2.68 (2.68); N 18.48 (18.62)

I.R. (Nujol): D(CO) 2074 cm ^ (strong)
^ NMR (CDClg):

lyiePt 1.21(t) ^J(^-^^^Pt) 87.16 Hz, 3H; H^^^^^j6.21(t) IH;
"-56 HZ, IH;

^3,^)7.54(3) IH;
^J(V^pt, 9.09 HZ, IH; 7.75(3)

IH; (coord)^^(4 5)^* '̂̂ 8.38(s) IH.

IXtePt (HCpz^ (CjN^H^) -C) (phosTdiine) (phosphine = 2PPhj, ZPPh^^,
ZPEhMe^, 2PPh^Et. 2PPh^(CH^Ph), PEh^(o-tolvl). PPh^(Phayie). P(PhO) ^
PPh^CH^Ph^P. PPh^CH^CH^Ph^P)

MeE^(HCpz2(C3N2^2^~'̂ '̂ ^ (O.lg, 0.2 mmole) and phosphine (0.4
rrnnole) were heated with stirring in acetone (20 cm^) under a nitrogen
atmosphere. As the mixture neared reflux the suspension cleared,

heating was stopped and the solution allowed to cool to ambient

temperature with stirring. The solution was filtered, the voliime

reduced and hexane added dropwise until cloudiness developed and the

solution was set aside to allow crystallization to occur. The

crystalline product was collected and vacuum dried.

Alternatively, the reaction can be carried out entirely in neat

pyridine starting with lyfe^Pt (HCpz^) and adding the required amount of
phosphine ligand after Me2Pt(HCpz2) had "dissolved". However, it is
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preferable to isolate the intermediate pyridine coitplex, where

possible, as reactions carried out in neat pyridine have yielded

mixtures of mono and bis(phosphine) conplexes.

Generally the ^ NMR spectra of these conplexes were difficult to
assign due to the large number of phosphine ligand resonances.

31Consequently, NMR characterization was by P NMR spectroscopy and the

lyfeEb region of the ^ NMR spectra only are reported.

MePt(HCpz^(C^N^H^)-C)(PPh^)2
^ NMR (CDCl^):

MePt O.ll(tt) ^J(Hl-^^^Pt) 64.81 Hz.

^^P NMR (OXll^):
1 31 196 2 31 31

P trans to Me 20.5(td) J( P- Pt) 1808 Hz, J( P- P)

14.7 Hz; P ^ to Me 22.9(td) ^J(^^P-^^^Pt) 2239 Hz, ^J(^^P-
^^P) 14.7 Hz.

MePt (HCpz^ (CjN^H^) -C) (PPh^) ^
Yield: 88%.

Microanalysis: C 53.52 (53.94); H 4.95 (4.65); N 10.30 (10.20); P

7.90 (7.52).

^ NMR (CDCl^):
MePt 0.18(tt) 0.18 ^J(%-^^^Pt) 62.86 Hz.

^^P NMR (CDCl^):
P trans to Me 1.6(td) ^J(^^P-^^^Pt) 1718 Hz, ^J(^^P-^^P) 16.1

1 31 195 2 31 31Hz; P ^ to Me 2.3(td) J( P- Pt) 2262 Hz, J( P- P)

16.1 Hz.

MePt(HCpz^(CjN^H^)-C) (PPhMe^)^
Yield: 81%

Microanalysis: C 46.24 (46.35); H 4.85 (4.89); N 11.90 (12.01); P

9.90 (9.85)
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^ NMR (OXl^):
MePt 0.25(tt) 65.0 Hz.

NMR (CDCl^):

P trans to Me -14.3(td) ^J(^^P-^^^Pt) 1690 Hz, ^J(^^P-^^P)
1 31 195

17.1 Hz; P ^ to Me -15.0(td) J( P- Pt) 2214 Hz,

2 31 31
J( P- P) 17.1 Hz.

MePt (HCpz^(c)-C) (PPh^Et) ^
Yield: 74%

Microanalysis: C 55.18 (54.96); H 5.50 (4.97); N 9.61 (9.91); P 7.70

(7.27)

%NMR (CDCl^):
MePt 0.12(tt) 64.35 Hz.

^^P NMR (CDCl^):
P trans to Me 11.2(td) ^J(^^P-^^^Pt) 1752 Hz, ^J(^^P-^^P)
15.6 Hz; P to Me 14.1(td) ^J(^^P-^^^Pt) 2264 Hz, ^J(^^P-
^^P) 15.6 Hz.

MePt(HCpz^(CjN^H^)-€) (PPh^(CH^Ph))^
Yield: 76%.

Microanalysis: C 60.55 (60.30); H 4.85 (4.75); N 8.53 (8.61); P 6.80

(6.35)

^ NMR (CDCl^):
WSePt 0.26(td) Pt) 72.33 Hz.

^^P NMR iCDCl^):
P trans to Me 12.8(td) ^J(^^P-^^^Pt) 1779 Hz, ^J(^^P-^^P)
15.5 Hz; P cis to Me 12.6(td) ^J(^^P-^^^Pt) 2281 Hz, ^J(^^P-
^^P) 15.5 Hz.

MePt(HCpz^(CjN^H^)-C.N) (PPll^(o-tOlVl))
Yield: 70%
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Microanalysis: C 52.49 (51.50); H 4.32 (4.18); N 12.36 (12.01); P

5.00 (4.43)

^ NMR (CDCl^):
lyiePt O.SKtd) ^J(^-^^^Pt) 77.50 Hz.

NMR (CDCl^):
1 31 195

P CIS to Me 21.8 (t) J( P- Pt) 2504 Hz.

MePt(HCpz^(C^N^H^)-€,N) (PPh^PhOyie)
Yield: 68%.

Microanalysis: C 51.10 (50.34); H 4.15 (4.08); N 11.55 (11.75); P

3.70 (4.33)

^ NMR (ax:i2):
MePt 0.65(td) ^J(^-^^^Pt) 83.37 Hz.

^^P NMR (CDCl^):
1 31 195

P CIS to Me 20.7(t) J( P- Pt) 2599 Hz.

MePt(HCpz^(CjN^H^)-C,N) (P(OP]l)^)^
Yield: 88%.

Microanalysis: C 53.55 (54.07); H 4.07 (4.06); N 7.92 (8.05); P 6.10

(5.93)

^ NMR (CDCl^):
MePt 0.28(tt) ^J(^-^^^Pt) 67.14 Hz.

^^P NMR ((ZDCl^):
1 31 195 2 31 31

P trans to Me 111.7(td) J( P- Pt) 2863 Hz, J( P- P) 33

Hz; P cis to Me 106.5(td) ^J(^^P-^^^Pt) 3820 Hz, ^J(^^P-^^P)
33 Hz.

MePt(HCpz^(CjN^H^)-C) (PPh„CH„Ph^P)
Yield: 75%.

Microanalysis: C 53.70 (53.53); H 4.41 (4.24); N 10.55 (10.40); P

7.30 (7.67)
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^ NMR (CDCl^):
MePt 0.86(tt) 70.20 Hz.

NiyiR (CDCl^):

P trans to Me -40.0(td) ^J(^^P-^^^Pt) 1291 Hz, ^J(^^P-^^P)
1 91 196

20.7 Hz; P ^ to Me -43.6(td) J( P- Pt) 1959 Hz,
2 91 91
J( P- P) 20.7 Hz.

MePt (HCpz^ (CjN^H^) -C) (PPh^CH^CH^Ph^P)
Yield: 72%

Microanalysis: C 53.85 (54.08); H 4.37 (4.42); N 10.21 (10.23); P

7.70 (7.54)

^ NMR (CDCl^):
MePt 0.48(tt) ^J(^-^^^Pt) 67.14 Hz.

^^P NMR (CDCl^):
1 91 195

P trans to Me 40.9(t) J( P- Pt) 1663 Hz; P ^ to Me

1 91 195
44.0(t) J( P- Pt) 2228 Hz.

MePt(HCpz(CjN^H^)-C.) (PPh^)^

In the preparation of the following three coitplexes the initial

metallation reactions were carried out in neat pyridine, phosphine

ligand in an equivalent volume of acetone added and the phosphine

conplexes isolated, as the intermediate pyridine corrplexes were

difficult to isolate in a pure form.

Yield: 58%.

Microanalysis: C 59.52 (59.93); H 4.37 (4.57); N 6.12 (6.36); P 6.80

(7.02)

^ NMR (CDCl^):
MePt 0.09(tt) ^J(^-^^^Pt) 64.26 Hz.
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NMR (CDCl^):

P trans to Me 23.5(td) ^J(^^P-^^^Pt) 1804 Hz, ^J(^^P-^^P)
1 3] 105 2 3114.0 Hz; P^ to Me 19.8(td) J( P- Pt) 2219 Hz, J( P-

^^P) 14.0 Hz.

MePt(Ph(H)Cpz(CjN^H^)-C.N) (PPh^)
Yield: 63%

Microanalysis: C 55.24 (55.24); H 4.32 (4.20); N 7.91 (8.01);

^ rMR (OXllg):
MePt 0.24(tt) ^J(^-^^^Pt) 86.91 Hz.

^^P NMR (CDCl^)
1 31 195

P Cis to Me 20.1(t) J( P- Pt) 2560 Hz.

MePt(HC(inim)pz(CjN^H^)-C.N^) (PPh^)
Yield: 79%

Microanalysis: C 51.4 (51.50); H 4.4 (4.18); N 12.3 (12.02)

^ NMR (CDCl^):
MePt 0.58(td) ^J(^-^^^Pt) 82.48 Hz.

^^P NMR (CDCl^):
1 31 195

P cis to Me 25.1(t) J( P- Pt) 2552 Hz.

Pd(1.3-(pzCH^)^C^Hj) (CHjCOO)

Pd(oAc)., (0.24g, 1.07 mmole) and l,3-(pzCH.,)X^H^ (0.26g, 1.09
2 2 2 6 3 -

itimole) were heated with stirring in glacial acetic acid (25 cm ) under

a nitrogen atmosphere. The suspension clarified on further heating to

give a golden yellow solution which darkened to a purple colour as the

acetic acid neared reflux. After twenty minutes at gentle reflux the

solution lightened to a golden yellow colour and palladium reduction

was not evident. Acetic acid was removed under vacuum at 70°C and the
yellow oli recrystallized from CH^Cl^/hexane to yield a white
crystalline solid.
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Yield: 0,39g, 92%.

Microanalysis: C 47.40 (47.71); H 4.10 (4.00); N 12.30 (13.91)

^ JSIMR (CDCl^):
Pd(CH2CXX)) 1.94(s, broad) 3H; CH^ 5.3(s) 4H; 6.32(t) 2H;

Ph^ ^ g 6.98(in) 3H; 7.64(d) ^^2.25 Hz, 2H; 7.90(d)
4)1-'77 Hz, 2H.

NMR (CDCl^):

25(s, broad); CH^ 58.4(s); 106.6(s); Ph^

124.5(s); Pb, ^ 125.9(s); 130.9(s); Ph_ ^ 136.3(s); Ph^
D fD D Z ,0 1

139.9(8); €3142.4(8); 013000178(8).
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7. 5 Experimental for Chapter Four

Me^Ptl^L (L = HCpZj, HC(tliio)pz^, HC(iiuin)pz^, HC(py)pz^)

Me„Pt(COD) (O.lg, 0.30 mmole) and ligand (0.30 mmole) were
3dissolved in acetone (10 cm ), and iodine (O.OSg, 0.32 mmole)

3 .....
dissolved in acetone (2 cm ) was added dropwise with stirring until

the characteristic iodine colour persisted. The solution was taken to

diyness (rotary ev^x)rator) and excess iodine extracted from the
3

residue with warm hexane (3 x 20 cm ). The residue was dissolved in
3

acetone (10 cm ) and hexane added dropwise until cloudiness developed.

Microcrystalline solids precipitated on standing, these were filtered,

air dried and vacuum dried (50°C, 2 hours).

The same products were obtained if []yte2Pt(Et2S) ]2 was used in
place of ]yfe2Pt(C0D).

Me2l2Pt(HCpz2); 95%, orange crystalline solid, m.pt. isomerizes
140°C, decoirposes 225°C

Microanalysis: C 20.46 (20.78); H 2.22 (2.32); N 12.07 (12.18); I

36.60 (36.59)

Molecular Weight (CHCl^): 669 (693)

^ NMR (CDCl^):
MePt 2.67(t) ^J(^-^^^Pt) 75.3 Hz, 6H; H^^^^^^j6.46(t) 2H;
"4(unco)^-^3^t) «5(coord)^-5^('̂ ) ^(4,5)2-40 Hz, 2H;
^5(unco)"^(4,5)^*®^ ^(coord + unco)^*®^^"^^
3H; CH 10.12(S) IH.

^ NMR (D6 acetone):

MePt 2.72(t) ^J(%-^^^Pt) 75.41 Hz, 6H; H^^^^^^j6.82(t) 2H
«4(unco) «5(coord)^-«2(^) ^(3,4)^'^^
^3(coord)^J(^-^^^Pt) 9.52 Hz, 4)2-23 Hz, 2H
H,5(unco)®*^°^^^ J(4 gj2.60Hz, IH; CH 9.93(s) IH.
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Me^I^Pt(HC(iniin)p2^); 76%, yellow microcrystalline solid. Isomerizes
at ~180°C

Molecular Weight (CHCl^): 682 (707)

^ NMR (D6 acetone):

MePt trans to mim 2.55(t) ^J(^-^^^Pt) 73.4 Hz, 3H; MePt
trans to pz 2.68(t) ^J(^-^®^Pt) 76.1 Hz, 3H; 4.06(s)
3H; H,, ,6.93(m) IH; H, , ^,6.88(m) IH; H., . ,7.62(d)

' 4(mco) ' 4(coord) ' 4(iniin)

^J(^-^^^Pt) 9.44 Hz, J,, ^,1.63 Hz, IH
\ 4 ^D /

2H; H^, . ,7.74(d) J,. ^a.60 Hz, IH' 5(rrujn) (4,5) '
3 1 195J( H- Pt) 9.82 Hz, 4)2.33 Hz, IH
J,, ^«2.76 Hz, IH; CH 8.71 IH.

V4 /

^ NMR (CDCl^):

H_ ,7.66(in)3,5(mco)

H_, .,8.32(d)
3(coord)

H^, ,,8.60(dd)
5(coord)

2 1 195
Isomer A; MePt trans to mim 2.49(t) J( H- Pt) 72.18 Hz;

lyfeEt 2.69(t) ^J(^-^^^Pt) 75.13 Hz; NMe 3.59(s);
H^ax'̂ .29(g); 6.59(t); H5^7.15(a) 7,4,5,1.54 Hz;
H, . 7.53(ta) J(^- Pt) 9.58 Hz, J,, ,,1.56 Hz;4mrm ' (4,5) '

H3^7.58(d) 7(3,4)1.73 Hz; H5^8.00(a) 7,4,5,2.52 Hz; H5
7.97(a)7,, ,,2.74 Hz; CH 8.04(s); H, 8.11(a) 7,, ,,2.28 Hz.

Isomer B; MePt 2.61(t) ^J(^-^^^Pt) 75.93 Hz; NMe 3.90(s);

«4 ^•^2(q); H5^7.12(d) J(4^5)1.17 Hz; H^7.39(d)
5)1-17 Hz; H^ 7.96(d) 5)^-76 Hz; H^ 8.07(d)
4)2.37 Hz; CH9.48(s).

Me^I^Pt(HC(py)pz^); 79%, orange crystalline solid. Isomerizes at
~190°C.

Molecular Weight (CHCI^): 688 (704)

^ NMR (CDCI^):
Isomer A; MePt trans to py 2.60(t) ^J(^-^^^Pt) 72.89 Hz;
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MePt 2.75(t) 74.32 Hz; H^, 6.4 or 6.6; pz +
py 7.4-8.5 conplicated overlapping resonances; py^ 9.26(q)

b

20.65 Hz; CH 9.61(s).

Isomer B; MePt 2.70(t) ^J(^-^^^Pt) 75.06 Hz; H^, H_^ 6.4 or
6.6; pz + py 7.4-8.5 conplicated overlapping resonances;

py^ 9.01(d); CH 9.31(s).
b

Me^I^Pt (HC (thio)pz^); 94%, black ndcrocrystalline solid.
IVfolecular Weight (CHCl^): 700 (708)

^ WMR (CDCl^):
jyfePt 2.64(t) ^J(^-^^^Pt) 74.8 Hz, 6H; H^ 6.45(t) '̂ J(^-
195Pt) 7.54 Hz, 2H; ^4(thio)'^'^^^'^^ ^5 '̂ •^^(d)

5)2.55 Hz, 2H; H^ ^3

^J(^-^^^Pt) 9.32 Hz, 4)2.26 Hz, 2H; CH 9.36(s) IH.

[Ph^IPt(HCpz^)]I 79%

IVblecular Weight (CHCl ): 627 (622)
-12-1Conductivity (acetone): 87 £2 cm mole

^ NMR (CDCl^):
H^ 6.65(q) 3H; Ph 7.0-7.20(m) lOH; H^ trans to I 7.77(d)
J,^ .,2.35 Hz, IH; H„ 8.17(d) J,_ .^2.37 Hz, 2H; H^ 9.07(d)

5)2.70 Hz, 2H; H^ trans to I 9.29(d) 5)^-'̂ ^J

CH 11.7(S) IH.

Me^I^Pt(L) + Heat (L = HCpz^. HC(mim)pz^, HC(py)pz^).

Finely crushed ]yie2l2PtL (5Qmg) was heated on a microscope cover
slip until a colour change was observed, or deconposition occurred.
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[lyte^IPt(HCpz^) ]I; yellow crystalline solid. Isomerization occurred
at 140-150°C

^ NMR (CDCl^):
2 1 3 0^

MePt trans to Me 1.95(t) J( H- Pt) 70.5 Hz, 6H;

6.47(t) , 2H; trans to I 6.60(t), IP; trans to I

7.95(d) 4)2-46 Hz, IH; H^ trans to Me 8.03(d) 4)2-37
Hz, 2H; H^ trans to Me 9.04(dd) ^5

to I 9.29(dd) J,, ^>2.94 Hz, IH; CH 12.57(s) IH.
\ 413 /

[Me^IPt(HC(inim)pz^) ]I; yellow crystalline solid. Isomerization
occurred at ~180°C.

^ NMR (CDCl^):
Isomer A; MePt 1.93(t) ^J(^-^^^Pt) 71.25 Hz; NMe 4.41(s);

^^4 ^(4,5)1-5^ ' «3
8.00(d) 4)2-16 Hz; H^ 9.34(d) 5)2-73 Hz; CP 11.20
or 11.25(s).

Iscmner B; MePt trans to mim 1.78(t) ^J(^-^^^Pt) 68.34 Hz;
MePt 1.94(t) ^J(^-^^^Pt) 70.78 Hz; MMe 4.50(s) ; H^
6.49(m); H^ trans to I 6.60(m); H^ trans to I 7.17(m);

J(4,5)^-^^ ^3 ^(3,4)2-31 Hz; H^
9.24(d) ^j2.70Hz; H^ trans to I 9.60(d) 5)2-88 Hz;
CP 11.20 or 11.25(s).

Me^(R)XPtL (L = HCpz^, lfe(3pz^, HC(inim)pz^,- RX = IXfel, propargyl
bromide)

[Me2Pt(Et2S) (O.lg, 0.16 innole) and ligand (0.32 mmole) were
dissolved in acetone (10 cm^) and excess RX (x5) added. The solution
(stoppered flask) was stirred for 10 minutes, excess RX removed
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(rotary evaporator), acetone atlded if required and hexane added
dropwise until cloudiness developed. The products precipitated as
white or slightly yellow solids.

[Me Pt(HCp2 )]I; 92%,
—1 2 —1Conductivity: 76 Q cm mole

^ NMR (CDCl^):
MePt 1.14(t) ^J(^-^^^Pt) 72.24 Hz, 9H; 6.55(t) 3H;
7.72(d) 4)2-34 Hz, 3H; 9.08(dd) 5)2-76 Hz, 2H;
CH 12.23(S) m.

[Me Pt(MeCpz )]I: 79%.
—1 2 —1Conductivity: 68 cm mole .

^ NMR (CDCl^):
MePt 1.07(t) ^J(%-^^^Pt) 71.53 Hz, 9H; MeC 4.06(s) 3H; H^
6.63(q) 3H; H^ 7.75(q) ^J(^-^^Vt) 8.66Hz, 4)2.23 Hz,
3H; H^ 8.85(d) J,. ^.2.99 Hz, 3H.

5 (4,5)

Me^IPt(H^C(mijm)pz): 89%.

^ NMR (CDCl^):
MePt 0.99(t) ^J(^-^^^Pt) 72.70 Hz, 3H; MePt trans to mim
1.51(t) ^J(^-^^^Pt) 70.31 Hz, 3H; MePt trans to pz 1.61(t)

Pt) 73.44 Hz, 3H; H^ 5.39(d) ^J(^-%) 15.45 Hz,
eq

IH; H 6.38(t) IH; H^ 6.63(d) ^J(^H-^H) 15.45 Hz, IH;
ft oX

J(4_5,1.55He, IH; 7.17(a) ^JcV^Pt)
6.87 Hz, 1.56 Hz, IH; H^ 7.69(d) 4)2-56 Hz, IH;
Hg 7.72(d) 5)2-76 Hz, IH.

[Me^ (proparqyl)Pt(HCpz^) ]Br: 92%, vAiite crystalline solid. Isomeric
mixture

—1 2 —1Conductivity: 70 fi cm mole
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^ NMR (CDCl^):
(alknynl): ]yi^ 1.28(t) 71.24 Hz, OT 2.19(t)

19.79 Hz, J(^-^) 2.82 Hz; CH^ 2.51(t) ^J(^-
97.00 Hz, J(^-^) 2.83 Hz;

(allenyl); MePt 1.31(t) ^J(^-^^^Pt) 71.55 Hz, =CE^ 4.29(t)
^J(^-^^^Pt) 46.90 Hz, J(^-^) 6.35 Hz; =CH 5.57(t) ^J(^-
^^^Pt)85.29 Hz, J(%-^) 6.35 Hz; H^ 6.51-6.57(m) ; H^
7.79(m); H^9.01(m); CH 12.55{s)

Me^I^Pt(py)2 Me^I^Pt(L) (L = HCpz^, HC(nmn)pz^, HC(tliio)pz^,
HC(py)pz^)

3
(50iiig) was dissolved in dry pyridine (5 cm ) and allowed

to stand for 10 minutes. Hexane was added dropwise until cloudiness

whereupon a yellow microcrystalline solid precipitated. In all cases

the same product was isolated.

hi NMR (CDCl^):
MePt 2.51(t) ^J(^-^^^Pt) 72.5 Hz, 6H; (py) _ ^7.37{t) 4H;

O ,D

py^ 7.84(t) 2H; py^ g 9.08(m) 4H.

Me..IPt (HCpz.. (C-N..H^) -C ,N ,N)

Me Pt(HCpz ) (0.15g, 0.34 mmole) was siispended in dry acetone (10
3cm ) with stirring and excess Mel (100 1, x5) added. The flask was

stoppered, wrapped with Alfoil and the suspjension stirred for 3 hours,

ty ^fthich time a yellow solution resulted. Excess Ifel was removed and

hexane added to precipitate a vdiite solid. The product was filtered,

air dried and vacuum dried (60°C, 2 hours).
Yield; 0.17g, 89%.

Microanalysis: C 29.44 (28.90), H 3.45 (3.4), N 13.87 (13.48), I

20.46 (20.36). Calculated for 0.1 acetone solvate.
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^ NMR (D6 Acetone):

MePt 1.87(t) 74.1 Hz, 6H; 6.18(t) ^J(^-
Pt) 14.02 Hz, 1.87 Hz, IH; H^ 6.76(t) 2H195

H3(j^^)7.54(t) '̂ J(^-^^^Pt) 10.80 Hz, ^J(^-^) 1.87 Hz, IH
Hg 8.33(d) 5)2-16 Hz, 2H; H^ 8.63(d) 4)2-64 Hz, 2H
CH 9.47(S), IH.

NMR (D6 Acetone)

1 1 QS
MePt -8.74(t) J( C- Pt) 617.26 Hz; CH 81.80(s);

C4(n^t)10'7-31(t) 84.60 Hz,- 109.40(s) ;
133.37(s); S,^)134.16(s); 03,^,141.38(t) 5("c-"=Pt)
63.70 Hz; 144.55(s).

Me (Et) IPt (HCpz., (C„N..H..) -C ,N ,N)

Me2Pt(HCpz2) (O.lg, 0.23 irniole) was suspended in acetone (20
cm^), excess EtI (100 ul) added and the suspension refluxed until
solution was conplete, by v4iich time the acetone had changed to a pale

yellow colour. The volime was reduced and excess hexane added to

precipitate a white solid, which was filtered, air dried and vacuum

dried (50°C, 2 hours).
Yield: O.llg, 81%.

^ NMR (CDCl^):
qi^CH^ 0.90(m) ^J(^-^^^Pt) 49.7 Hz, 3H,- MePt 1.74(t) ^J(^-
1 q5 2 1 3 96Pt) 75.0 Hz, 3H; CH^O^ 2.46(dd) J( H- Pt) 55.5 Hz,

^J(^-^) 7.58 Hz, IH; CH^O^ 3.09(dd) ^J(^H-^^^Pt) 91.55
Hz, ^J(^-^) 7.65 Hz, IH; ^J(^-^^^Pt) 14.00
Hz, ^J(^-^) 1.0 Hz, IH; H^ 6.42(m) , 2H,-
'̂ J(^-^^^Pt) 11.00 Hz, ^J(^-^) 0.98 Hz, IH; H^ 7.98(d),
J,^ ^,2.62 Hz, 2H,- H, 8.09(d) J-, ^^l•53 Hz, IH; H^ 8.23(d)

4)1-63 Hz, IH; CH 8.63(s) IH.



274.

NMR (CDCl^ + IMSO):

-7.68 J(^^C-^^^Pt) 637.8 Hz; MePt 5.92 J(^^C-^^^Pt)
600.7 Hz; CH2q|2 17.68 ^J(^^C-^^^Pt) 30.5 Hz; OH 78.83(s),
^4(inet) 105.14(t) 82.5 Hz; 106.99(s);
130.99(s); Cg^^^jl32.10(s); C3^j^^jl39.32(t)
65.05 Hz, 142.03(S), 143.58(s).

Me (PhCH^)BrPt(HCpz^ (CjN^H^) -C ,N .N)

Prepared by an analogous procedure to Me2lPt(H2Cpz2(C2N2H2)-
C,N,N) substituting EhCH^Br for IXfel.
yield: 93%.

Molecular Weight (CHCl^): 612 (594)

^ MMR (D6 acetone):
2 1 195 2 1MePt 1.80(t) J( H- Pt) 73.8 Hz, 3H; PhOl^ 4.05(d) J("Ti-

^^^Pt) 69.77 Hz, ^J(^-^) 8.79 Hz, IH; 4.21(d) ^J(^-^^^Pt)
107.31 Hz, ^J(^-^) 8.78 Hz, IH; H^ trans to Me 6.27(t) IH;
H4(i^t)6-5V(d) ^J(^-^^^Pt) 12.33 Hz, ^J(^-^) 1.50 Hz, IH;
H^ trans to lyfe 6.64(d) ^4 "ttans to benzyl

6.71(t) IH; Ph 7.03-7.27(m) 5H; H2(jj^^j7.65(d) ^J(^-^^^Pt)
9.05 Hz, 4)^*^^ ^3 trans to benzyl 8.13(d)

4)2-04 Hz, IH; H^ trans to Me 8.39(d) 5)2-54 Hz, IH;
H^ trans to benzyl 8.57(d) 5)2-50 Hz, IH; CH 9.38(s) IH.

[Me2lPt(HCpz2(C2N2H2)-C.N.N)] from rMePt(HCp22(C^N^H^)-^.N) 1^^ + Mel

[MePt(HCpz (C2N2H2)-C,N)]^ (O.lg, 0.23 iimole) was suspended in
acetone (10 cm ) and IXfel (100 ul) added, the flask stoppered, and

stirring continued until solution had occurred. The solution was

filtered, excess hexane added and the precipitate collected by

filtration and vacuum dried (50°C, 2 hours).
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^ MVR (D6 acetone):

275 ,

MePt 1.51(t) 69.ZHZ, 6H; ^J(^H-
^^^Pt) 14.34 Hz, J(^-^) 1.70 Hz, IH; H^ 6.47(t) ZH; H^
7.3Z(d) 4)1.65 Hz, ZH; H2^^^)7.43(d) ^J(^-^^^Pt) 10.71
Hz, J(^-^) 1.71Hz, IH; py^ ^ 7.69(t) ZH; PY4 8.19(t) IH;
py„ ^ 8.35(m) ZH; H^ 9.61(d) J,. ^,2.36 Hz, ZH; CH 10.45(s)

^ f b O \4^0/

IH.

This coiipound is identical to that formed by reaction of

Me2Pt(HCpz2) with Mel (p. Z7Z)

[Me^Pt(HCpz^(CjN^H^)-C,N,N) (py) ]I

Me2lPt(HCpz2(C2N2H2)-C,N,N) (50ing) was dissolved in pyridine (5
cm^) and hexane added to precipitate a microcrystalline white solid
which was collected, filtered and vacuum dried (60°C, Z hours).
Yield: 54mg, 95%.

-1 Z -1Conductivity (acetone); 89cm mole

^ MyiR (acetone):

MePt 1.51(t) ^J(^-^^^Pt) 69.Z Hz, 6H; H., ^,6.09(d) ^J(^H-
4(met)

^^^Pt) 14.34 Hz, J(%-%) 1.70 Hz, IH; H^ 6.47(t) 2H; H^
7.3Z(d) 4)1.65 Hz, ZH; H2jjj^^)7.43(d) ^J(^-^^^Pt) 10.71
Hz, J(^-^) 1.71Hz, IH; py^ ^ 7.69(t) ZH; py^ 8.19(t) IH;
py^ g 8.35(m) ZH; H^ 9.61(d) 5)2.36 Hz, ZH; CH 10.45(s)
IH.

rMe(R)Pt(HCpz2 (C2N2H2)-C.N.N)(py)]X (RX = Mel, allylBr. PhCH^Br,
proparqyl bromide)

]yKE>t(HCpz2(C2N2H2)-C,N) (py) (O.lg, mmole) was suspended in dry
acetone (10 cm^), excess RX (100 1) added and the suspension stirred
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until no solid was evident. Hexane was added until the solution

became cloudy wherei:5X)n a white microcrystalline solid precipitated.

rMe^Pt(HCpz^(CjN^H^)-C,N.N) (py)]I 95%.
Microanalysis: C 32.98 (33.25), H 3.44(3.66), N 14.61 (14.87)

(calculated for 0.5 acetone solvate; (C=0) 1724 cm ^)
MDlecular Weight (CHCl ): 643 (652)

-12 -1Conductivity: 89 Q cm mole

^ NMR (CDCl^):
MePt 1.51(t) ^J(^-^^^Pt) 69.2 Hz, 6H; 09(d) ^J(^-
^^^Pt) 14.34 Hz, J(^-^) 1.70 Hz, IH; H^ 6.47(t) 2H; H^
7.32(d) J,- ..1.65 Hz, 2H; H,, 7.43(d) '̂ J(^-^^^Pt)(3,4) 3 (met)

10.71 Hz, J(^-^) 1.71 Hz, IH; py^ ^ 7.69(t) 2H; py^
8.91(t) PH; py., ^ 8.35(m) 2H; H^ 9.61(d) J, . ^,2.36 Hz, 2H;

CH 10.45(s) IH.

[Me(PhCH^)Pt(HCpz^(CjN^H^)-C.N.N) (py) iBr 88%.

Microanalysis: C 41.15 (41.02), H 3.60 (3.59), N 14.33 (14.56), Br

11.93 (11.86)
-1 2 -1Conductivity (Acetone): 65Q cm mole

^ NMR (CDCl^):
MePt 1.56(t) ^J(^H-^^^Pt) 69.73 Hz, 3H; 3.40(td) ^J(%-
^^^Pt) 94.05 Hz, J(^-^) 9.80 Hz, IH; 4.18(td) ^J(^-^^^Pt)
78.87 Hz, J(^-^) 9.80 Hz, IH; H^ 5.54(d) 4)2-31 Hz,
Hi; H^ 6.03(t) IH; H^, +H^^j^^j6.39(m) ^J(^-^^^Pt) 14.21
Hz, 2H; Ph^ g 6.50(m) 2H; Ph^ ^ 6.86(t) '2H; Ph^ 7.03(m)
Hi; H^, 7.12(d) 4)2.10 Hz, IH; 7.55(d) ^J(^-
^^Pt) 10.50 Hz, IH; FY3 5 7.73(t) 2H; 1^4 8.27(t) IH;
py„ ^ 8.41(m) ^J(^-^^^Pt) 22.21 Hz, 2H; H^ 9.48(d)

z ,o

5)2.70 Hz, Hi; H^, 9.53(d) 5)2-61 Hz, Hi; CH
10.78(s) IH.
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fiyte(allvl)Pt(HCp2^(CjN^H^)-C.N.N) (py) ]Br 91%.

Microanalysis: C 36.71 (36.60), H 3.57 (3.56), N 15.60 (15.73), Br

12.94 (12.82)

MDlecular Weight (CHC1_): 622 (631)
-12 -1Conductivity: 84 £2 an mole

^ NMR (CDCl^):
lyiePt 1.51(t) ^J(^H-^^^Pt) 69.63 Hz, 3H; 2.96(dd) ^J(^-
^^^Pt) 91.54 Hz, J(V^) 9.90 Hz, IH; 3.37(dd) ^J(^-^^^Pt)
88.24 Hz, J(^-^) 9.94 Hz, IH; =CH^ 5.06(m) 2H; -Oi
5.62(in) IH; H^^^^j6.19(t) ^J(^H-^^^Pt) 11.76 Hz, J(^-^)
1.59 Hz, IH; H^ 6.41(t) IH; 6.46(t) IH; H^ 7.20(d)
J^3 4)1-59 Hz, IH; 7.4I(t) J^3^^jl.83 Hz, IH; 7.47(t)
^J(^-^^^Pt) 8.70 Hz, J(^-^) 1.64 Hz, IH; py3 5 7.70(t)
2H; py^ 8.21(t) IH; py^ g8.36(m) ^J(^-^^^Pt) 22.03 Hz, 2H;
Hg 9.59(d) 5)2-68 Hz, IH; 9.66(d) 5)2-65 Hz, IH; CH
I0.8I(S) IH.

r]Xle(allene)Pt(HCpz^(CjN^H^)-C.N.N) (py) ]Br 84%

Molecular Weight (CHCI^): 549 (540)
-I 2 -I

Conductivity (Acetone): 70£2 an mole

hi NMR (CDCI^):
MePt I.67(t) ^J(^H-^^^Pt) 69.06 Hz, 3H,- 4.45(m) J(^-
^^^Pt) 45.05 Hz, J(%-%) 6.3 Hz, 2H; =CH 5.89(tt) ^J(^-
^^^Pt) 67.11 Hz, ^J(^-^^^Pt) 6.3 Hz, IH; H^^j^^j6.I7(td)
^J(^-^^^Pt) 13.78 Hz, ^J(^-^) I.7I Hz, IH; H^ 6.47(m) ZH;
H3 7.36(d) J(3^4)2.I0 HZ, IH; H3 7.44(m) ZH; py3^3
7.68(m) ZH; py^ 8.Z0(t) IH; py^ ^ 8.38(m) ZH; H^ 9.58(d)
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5)2-70 Hz, IH; 9.68(d) 5)2-70 Hz, IH; CH 10.88(s)
IH.

[]yie(pzCH^CH^)Pt(HCpz^(CjNJ^)-C.N) (py) ]Br 84%

(pzCH2CH2)Br (0.04g, 0.23 itimole) was added to a siaspension of
MePt(HCpZ2(C2N2H2)-C,N) (py) (O.lg, 0.2 mmole) in acetone (20 cm^) and
the mixture refluxed for 30 minutes. After cooling (ambient) the

volume was reduced to half and hexane added until cloudiness

developed. Overnight small crystals deposited, which were insoluble
in common organic solvents.

Yield: 0.12g, 89%.

^ NMR (CDCl^):
MePt 1.42(t) ^J(^-^^^Pt) 70.23 Hz, 3H,- CH^ 2.88(m) 2H,- CH^
4.47(m) 2H; trans to pz + H^ trans to IVfe 6.17(m) 2H;

H^ trans to CH^ 6.49(t) IH; H^ trans to 6.62(t) IH;
H^ trans to CH^ 6.95(d) 4)2.10 Hz, IH; f^3(ipg-t-)^ ^3
to 7.42(m) 2H; H^ trans to CH^ 7.77(d) 4)^*^^
Hz, IH; H^ trans to 8.10(d) ^^2.40 Hz, IH; H^

trans to Me 9.40(d) ^^2.40 Hz, IH; H^ trans to CH^
9.55(d) J,, 1-^2.73 Hz, IH; CH 10.77(s) IH.

\ 41 iD /

[Me^Pt (HCpz^(CjN^H^)-C ,N.N) (L) ]I (I^ PPh^. PPh^(o-tolyl))

MeE^(HCpz2(C2N2H2)-C,N) (py) (O.lg, 0.2 mmole) and phosphine
ligand (0.2 mmole) were warmed and stirred in acetone, (10 cm^) under
a nitrogen atmosphere, until no solid was evident (10 minutes). The

clear solution was cooled to ambient tenperatiore, excess Mel (x5)

added and the solution stirred for 30 minutes. Excess lyfel and some

acetone were removed (rotairy evaporator) and hexane added until solids

began to precipitate. These were filtered and vacuum dried (2 hours)

at 50°C.
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[]yie^Pt(HCpz^(CjN^H^)-C.N.N) (PPhj) ]I
Yield: 92%

MicroanalYSis: C 43.76 (43.54); H 3.77 (3.65); N 10.45 (10.12); P
4.00 (3.74); I 15.20 (15.33)

MDlecailar Weight (CHC1_): 794 (827)
—12 —1Conductivity (T^etone): 95 Q an mole

^ WMR (CDCl^):
1 195 1 31

lytePt 1.45(td) J( H- Ft) 70.66 Hz, J( H- P) 7.06 Hz, 6H;

H4 + H^^^^j6.13(m) 3H; H^ 6.56(d) 4)2-08 Hz, 2H; Ph^ ^
7.12(m) 6H; Eh^ 7.58(td) 3H; H^ 9.54(d) 5)2-73 Hz, 2H;
CH 10.58(S) IH.

^^P WMR (CDCl^):
1 31 195P trans to PZ(j^^) -6.89(t) J( P- Pt) 1491 Hz.

[Me^Pt(HCpz^(CjN^H2)-C,N.N) (PPh^(o-tolyl) ]I
Yield: 79%.

Molecular Weight (CHCl ): 832 (841)
—1 2 —1Conductivity (acetone): 102 £1 cm mole .

^ NMR (CDCl ):
? 1 ? ^1

MePt 1.55{tci) J( H- Pt) 69.63 Hz, J( P- Pt) 6.90 Hz,

™3(tolyl)l-^7<^) 3H; H^ t 6.12(m) 3H; H3
6.36(d) 4)1-80 Hz, 2H; Ph 7.24-7.39(m) 8H; H2(j^,q^)+ Ph
7.44-7.55(m) 7H; H^ 9.58(d) 5)2-70 Hz, 2H; CH 10.54(s)
IH.

^^P ISDVIR (CDCl ):
oi -iQir

P to Me -11.6(t) J( P- Pt) 1533 Hz.

[Me^Pt(HC(mim)pz(C^N^H^)-C,N.N) (py) ]I

Me2Pt(HC(mim)pz2) (0.2g, 0.44 mmole) was added to dry pyridine (5
cm^) under a nitrogen atmosphere. The solid dissolved almost
immediately with bubble evolution and the solution turned a yellow

colour. Eiccess hexane was added vhich caused a white solid to

precipitate. The precipitate was filtered and washed well with hexane
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3 3(5 X 5 an ) and ether (5 x 5 an ) to remove all traces of py^idine.
3The danp solid was dissolved in acetone (10 an ), Mel (x5) added and

the mixture stirred for 30 minutes, after which time it was filtered

and excess hexane added to precipitate a white solid. The solid was

vacuum dried for 2 hours at 50°C.
Yield: O.lBg, 64%.

Molecular Weight (CHC1-): 649 (657)
-12-1Conductivity (Acetone): 78 Q an mole .

^ NMR (CDCl^):
MePt trans to mim 1.36(t) ^J(^-^^^Pt) 67.77 Hz, 3H; MePt
trans to pz 1.46(t) ^J(^-^^^Pt) 69.27 Hz, 3H; NMe 4.37(s)
3H; ^J(^-^^^Pt) 14.00 Hz, IH; H^ 6.46(t)
IH; H^ 6.71(d) 4)1-53 Hz, IH; Hg^7.18(d) 5)1- '̂̂
Hz, IH; H^^^7.27(broad,s) IH; 7.42(t) '̂ J(^-^^^Pt)
10.41 Hz, IH; py^ ^ 7.68(t) 2H; py^ 8.15(t) IH; py^ ^

8.56 (m) ^J(^-^^^Pt) 21.19 Hz, 2H; CH 8.60(s) IH; H
D̂

9.18(d) J,. ^,2.58 Hz, 2H.
V4 j D /

[Me^Pt (HC (mim)pz (C^N^H^) -C,N ,N) (PPh^) ]I

MeE^(HCpz2(C2N2H2)-C,N) (PPh^) (O.lg, 0.14 mnole) was dissolved in
acetone (10 an^), excess Mel added (x5) and the solution stirred for
30 minutes. Excess Mel was removed and hexane added dropwise mtil

crystallization began.

Yield: O.llg, 96%

Microanalysis: C 51.50 (51.40); H4.18 (4.40); N 12.02 (12.30)

Molecular Weight (CHCl ): 813 (841)
—1 2 —1Conductivity (Acetone): 91 £2 an mole .

^ NMR (CDCl^):
2 1 195 31

MePt trans to mim 1.30(td) J( H- Pt) 68.41 Hz, J( P-

195 2 1_ 195
Pt) 7.02 Hz, 3H; MePt trans to pz 1.38(td) JCTI- Pt)

31 19571.02 Hz, J( P- Pt) 7.02 Hz, 3H; NMe 4.43(s) 3H;
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H. . 5.92(d) J-_ .vl.SB Hz, IH; H. + H. ^6.12(in) 2H; H-4iniin (3,4) ' ' 4 4inet 3

6.48(d) J,_ ,.2.18 Hz, IH; H^ . 6.76(d) J, . 1.58 Hz, IH;(3,4) biimn (4,5)
4 1 195Phg 5 7.23(td) 6H; H2j^^7.38(td) J( H- Pt) 9.32 Hz, IH;

Fh^ g 7.49(m) 6H; Ph^ 7.56(in) 3H; CH 8.66(s) IH; H^ 9.44(d)
J, . _,2.67 Hz, IH.
\ 4 ^D /

^^P NMR (CDCl^):
n 195

P trans to pz . -11.80(t) J( P- Pt) 1503 Hz.
met

MejIPt(H^Cpz^)

Method A; Me2Pt(H2Cpz2) was suspended in CHCl^ and excess Mel added.
The solution was stirred for 8 hours after vhich a pale yellow

solution with suspended white solids resulted. This was filtered and

hexane added to the filtrate to precipitate a white solid.

Yield: 42%.

Method B; Excess Mel (x5) was added to a stoichianetric mixture (1:2)

of [Me2Pt(Et2S) and H^Cpz^ in acetone. Tlie solution was stirred for
10 minutes, excess Mel removed and hexane added until crystallization

began. The crystalline precipitate was filtered and vacuum dried.

Yield: 91%

Molecular Weight (CHCl^): 498 (515)

^ NMR (D6 Acetone):

MePt 0.96(t) ^J(^-^^^Pt) 71.64 Hz, 3H; MePt 1.69(t) ^J(^-
^^^Pt) 73.15 Hz, 6H; H^ 6.72(q) 2H; H^ 7.00(d) J(^-^)
13.92 Hz, IH; H- 8.00(d) J-_ ;,x2.27 Hz, 2H; H^ 8.05

J 1.3 / 4 ^ 3X

(d,broad) J(^-^) 16.1 Hz, IH; H^ 8.33(d) 5)2-58 Hz,
2H.
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Mej(aAc)Pt(H^Cpz^)

I^3lPt(H2Cpz2) (BOrng, 0.16 mmole) was siaspended in acetone (10
cm^), AgC5\c (28ing, 0.17 irniole) added and the mixture stirred for 30
minutes. The flocculent Agl precipitate was filtered, the filtrate

3
reduced to approximately 5 cm and hexane added dropwise until
crystallization began.

Yield: SOmg, 87%

Molecular Weight (CHCl^): 429 (447)
^ NMR (D6 acetone):

2 1 196MePt trans to QAc 0.67(t,broad) J( H- Pt) 73.42 Hz, 3H;

MePt 1.39(t) ^J(^-^^^Pt) 72.05 Hz, 6H; H, 6.67(t) 2H; H
'4 ' eq

6.90(d) ^J(^-^) 14.05 Hz, IH; H^^ 7.47(d) ^J(^-%) 14.08
3X

Hz, IH; H^ 7.96(d) 4)2-39 Hz, 2H; H^ 8.29(d) 5)2-46
Hz, 2H.

[Me^Pt (Fh(H)Cpz^ (CjN^H^) -C ,N)AI ]2

Me2Pt(Eh(H)CpZ2) (80mg) was suspended in neat Mel (2 cm^) and
allowed to stand at airbient tenperature. After 5 minutes the

suspension had dissolved and formed a clear solution. On further

standing a white solid precipitated. This was filtered, washed with
ether (3x5 cm^) and vacuum dried at 40°C.
Yield: 81%

Microanalysis: C 31.32 (31.40); H 2.98 (3.10); N 9.74 (9.70)

^ NMR (CDCl^) airibient tarperature:
MePt trans to I 0.80(t) ^J(^-^^^Pt) 74.55 Hz, 3H; MePt
trans to N1.84(t) ^J(^-^^^Pt) 72.30 Hz, 3H;

Pt) 16.16 Hz, IH; 65(d) 4)2-22 Hz, IH;
Eh 6.02(s, v.broad) 2H; H^ 6.76(t) IH; Eh 7.16-7.21(m) 3H;

Hg 8.29(d) 5)2-13 Hz, IH; CH 9.01(s) IH; H^ 9.25(d)
4)2-00 Hz, IH.
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^NMR(CDCl^)-10°C:
MeFttranstoI0.76(t)^J(^-^^^Pt)73.36Hz,3H;IVlePttrans
toN1.82(t)72.63Hz,3H;^4(niet)^*^^^^^
^J(^-^^^Pt)16.8Hz,IH;H2^^^j5.62(s,broad)IH;Ph^g
6.04{dd)2H;H^6.79(t)IH;Ph^^^7.22(in)3H;H^8.31(d)

J,.^,2.22Hz,IH;CH8.96(s)IH;H,9.25(d)J,-.,2.02Hz, \4^iD/.J\jy4/

on.

MejIPt(Me(H)Cpz^)

3
Mel(100yUl)wasaddedtoanacetonesolution(10cm)of

1x^2^(^6(^)0^22)(O.lg,0.26mmole)andthemixturestirredfor10
minutes.Hexanewasaddeddropwiseuntilcloudinessdeveloped

whereuponneedle-likecrystalsdepositedover30minutes.Thesewere

collected,washedwithetherandvacuumdried(50°C)for2hours.
Yield:89%.

MolecularWeight(CHCl^):513(529)

^NMR(CDCl^):
MePttranstoI0.81(t)^J(^-^^^Pt)71.97Hz,3H;MePt
1.62(t)^J(^-^^^Pt)72.33Hz,6H;CMe2.31(d)^J(^-^)
6.81Hz,3H;H^6.44(q)^J(^-^^^Pt)8.76Hz,4)2-25Hz,
2H;H^7.75(d)5)2-73Hz,2H;CH8.58(q)^J(^-^)6.81
Hz,IH.

Me^(PhCH^)BrPt(Me(H)Cpz^)

Ananalogousproceduretothatusedabovewasfollowed,

substitutingPhCH2BrforMel.
Yield:89%

MolecularWeight(CHCl^):538(556)

%NMR(CDCI3):
ConformerA:MeE>ttranstoN1.55(t)2j(lH-155p,-)71^91hz.
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6H; CH3 2.26(d) 6.82 Hz, 3H; CH2 2.98(t)

92.20 Hz, 2H; Ph2 5 6.12(q) 2H; H^ 6.26(t)

2H; Ph3^5 6.73(m) 2H; Ph^ 6.86(m) IH; H3 7.37(d)

J(3 4)2.42 Hz, 2H; H^ 7.68(d) J(4 5)2.70 Hz, 2H; CH 8.47 or

8.86(q) IH.

Confonner B; IfePt trans to Br 0.91(t) ^J(%-^^^Pt) 73.53 Hz,

3H; MePt trans to N 1.53(t) ^J(^H-^^^Pt) 72.88 Hz, 3H; CH3
2.26(d) ^J(%-%) 6.82 Hz, 3H; CH2 A3.12(t, d) 2j(%-^^^Pt)
61.95 Hz, 2j(%-%) 9.44 Hz, IH; B 4.51(t, d) 2j(%-^^^Pt)

125.84 Hz, %(^H-%) 9.44 Hz, IH; pz ring trans to MfeFt H3
5.91(d) J(3^4)2.09 Hz, IH; H4 6.06(q) IH; H5 7.58(d)
J(4 3)2.52 Hz, IH; pz ring trans to benzyl H4 6.44(t) IH;

H3 7.60(d) J(3^4)1.89 Hz, IH; Hg 7.69(d) J(4^5)2.70 Hz, IH;

CH 8.47 or 8.86(q) IH.

]yie2lPt(H^C(liiiin)pz)
lyiade by an analogous procedure to iy[e2lPt(Me(H)Cpz2).

Yield: 89%

Molecular Weight (CHCl^): 526 (529)
^ NMR (CDCl^):

MeE>t trans to I 0.91(t) ^J(^-^^^Pt) 73.50 Hz, 3H;
2 1 195

trans to itum 1.46(t) J( H- Pt) 70.00 Hz, 3H; MePt trans

to pz 1.56(t) ^J(^-^^^Pt) 72.86 Hz, 3H; NMe 3.82(s) 3H;
H 5.45(d) 15.45 Hz, IH; H 6.38(t) IH; H
6^ 4 9X

6.64(d) ^J(^-%) 15.43 Hz, IH; H^jnim ^(4
Hz, IH; H^jj^ 7.17(q) ^J(^-^^^Pt) 6.87 Hz, Hz,
IH; H^ 7.69(d) 4)2.26 Hz, IH; H^ 7.72(d) 5)2-46 Hz,
IH.
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Yield; 88%

Molecular Weight(CHCl^): 515 (526)
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^ NMR (CDCl^):
MePt trans to I 0.96(t) ^J(^-^^^Pt) 71.63 Hz, 3H; MePt
trans to py 1.57(t) ^J(^-^^^Pt) 70.91 Hz, 3H; MePt trans
to pz 1.69(t) ^J(^-^^^Pt) 70.80 Hz, 3H; H^ 5.25(d) ^J(^-

eg

^) 15.07 Hz, IH; H. 6.45(t) IH; H^ 7.01(d, broad) ^J(^-
4 3X

%) 15.07 Hz, IH; py^ ^ 7.51(m) 2H; H^ 7.64(d) s)^-^
Hz, IH; H^ 7.75(d) 2.35 Hz, IH; py^ 7.91(t) IH; pyg
8.80(q) IH.

Mej(C!Ac)Pt(H^C(py)pz)

]yfe2^Pt(H2C(py)pz) (O.lg), 0.19 mmole) was dissolved in acetone
(10 cm^), solid Ag(QAc) (0.032g, 0.19 mmole) added and the mixture
stirred for 30 minutes, filtered and hexane added to the filtrate to

precipitate a microcrystalline solid.

Yield: 0.09g, 79%.

Molecular Weight (CHCl^): 442 (458).

%NMR (CDCl^):
Lfe trans to I 0.68(t) Lfe trans to py 1.19(t) ^J(%-^^^Pt)

2 3 3 95
68.94 Hz, 3H; Me trans to pz 1.29(t) J( H- Pt) 69.32 Hz,

3H; QAc 1.92(S) 3H; CH^ 5.75(d) ^J(^-^) 14.62 Hz, IH;
CH 6.29(d) ^J(^-^) 14.62 Hz, IH; H 6.43(t) IH; py
3^ *3 ^ ID

7.47(m) 2H; H^ 7.63(d) 5)2-52 Hz, IH; H^ 7.69(d)
J,_ „v2.45 Hz, IH; py. 7.88(t) IH; py,, 8.66(q) IH.
(3,4; 4 b

Mej]3>t (Me^Cpz^)
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MeUTod_A: Mel (100 /ll) was added to a solution of Me2Pt(Me^Cpz^)
(lOOing, 0.25 iranole) in acetone (10 cm^) and the mixture stirred for 5
minutes. Eiccess Mel and some acetone were removed under vacuum and

hexane added to precipitate a white powder.

Yield: 112mg, 83%.

^ MVIR (CDCl^): Recorded after 3minutes dissolution.
MePt trans to I 0.98(t,broad) ^J(^-^^^Pt) 71.00 Hz; MePt
trans to N 1.66(t,broad) ^J(^-^^^Pt) 72.54 Hz; MePt
([Me^Ptl]^) 1.72(t) ^J(^H-^^^Pt) 77.34 Hz; CMe 2.18
(s,broad); CMe^ 2.29(s); CMe 2.51(s,broad); ^4(free)

6.27(t); H^^ 6.49 (t) ; H^^^^^j7.40(d,d) J^^^^j2.45 Hz;

^3(free)^"^^^^^ '̂ (3,4)^*®^ ^5C '̂ (4,5)^"^^
H^i^ 8.13(d) 4)2-20 Hz.

IXfethod B: The reaction in A (above) was repeated except that it was

allowed to continue overnight (12 hours). The product, yellow

microcrystals, were isolated in the same manner.

Yield: 72%

M.pt.: Decomposes ~200°C.
%NMR (CDCl^): MePt 1.72(t) ^J(^-^^^Pt) 77.34 Hz.

MejIPt(Cpz^)
Made by an analogous method to ]yfe2lPt(J^(H)CpZ2).

Yield: 76%

Molecular Weight (CHCl^): 641 (647)

^ NMR (D6 acetone):

MePt trans to I 0.40(t) ^J(^-^^^Pt) 72.52 Hz, 3H; MePt
trans to N 1.60(t) ^J(^-^^^Pt) 73.83 Hz, 6H; H^^ 6.66(d)
J^^^^j2.67 HZ, IH; H^^^ 6.75(q) IH; H^^^ 6.81(q) IH; H^^ +
H^gg 6.92(m) 3H; H^,^ 7.41(d) 5)2-76 Hz, 2H,- H^^
7.90(d) 4)1*75 Hz, IH; H^^^ 8.20(d) 4)1*"^^ 1^'
H^^ 8.50(d) 4)1*80 Hz, 2H.
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Me^IPt (HCpZj (CjN )-C,N .N)

]y[e2lPt{Ct)z^) was added to neat Mel and dissolved over 15 minutes.
After 1 hour acetone was added, lyfel removed (rotary evaporator) and

hexane added until cloudiness developed and the solution was then set

aside. Microcrystals formed overnight.

Yield: 65%

^ NMR (D6 acetone):

MePt 1.90(t) ^J(^-^^^Pt) 73.86 Hz, 6H; H^^^^j6.30(t,d)
^J(%-^^^Pt) 15.88 Hz, IH; H^^ 6.75(q) 2H; H^^ 7.09(q) IH;
H3(i^t)'7-63(t, d) ^J(^-^^^Pt) 9.78 Hz, IH; H^^ 7.83(d)

5)2-67 Hz, 2H; H^^ 8.38(d) 4)1-55 Hz, IH; H^^
8.41(d) 4)1-45 Hz, 2H,- H^^ 9.47(d) 5)^-79 Hz, IH.

MejlPt(H^CC (CH^pz))

[Me2Pt(Et2S) ]2 (O.I5g, 0.24 mmole) and H2C=C(CH2Pz)2 (0.092g,
0.49 iimDie) were refhixed in acetone (20 cm^) for 15 minutes during
which the solution turned a yellow colour. The solution was cooled

(ambient), excess IVtel (x5) added and the solution stirred for 30
minutes. Excess Mel was removed and hexane added until cloudiness

developed. Microcrystals deposited overnight.

Yield: 0.15g, 58%

Molecular Weight ((ZHCl^): 523 (555)

^ MMR (D6 acetone) ambient temperature:
MePt trans to I 1.24(t) ^J(^-^^^Pt) 69.67 Hz, 3H; MePt
trans to N 1.70(t, d) ^J(^-^^^Pt) 73.58 Hz, 6H,- CH^, A
4.59(d) ^J(^-^) 14.31 Hz, IH; B 4.85(d) ^J(%-^) 14.68
Hz, IH; C 4.98(d) ^J(^H-^H) 14.35 Hz, IH; D5.75(d)
^) 14.68 Hz, IH; 5.49(s) 2H,- H^ 6.68(s, broad) 2H,-
H^ 7.88(s, broad) IH; H^ 8.12(s, broad) 2H; H^ 8.29(s,
broad) IH.
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^ NMR (D6 acetone) 0°C:
? 1 1

lyi^ trans to I 1.24(t) J( H- Ft) 69.69 Hz, 3H; IXEePt

trans to N 1.64(t, d) ^J(^-^®^Pt) 73.42 Hz, 6H; CH2 A
4.56(d) ^J(^-^) 14.57 Hz, IH; B 4.87(d) ^J(^-^) 14.87
Hz, IH; C 5.00(d) ^J(^H-^H) 14.57 Hz, IH; D5.71(d) ^J(^-
^) 14.62 Hz, IH; =CH2 5.50(s) 2H; H^ 6.71(m) 2H; H3
7.88(d) J(3^4)2.36 Hz, IH; H5 8.13(d) J(4^5)2.49 Hz, IH; H5
8.17(d) J(4 5)2.51 Hz, IH; H3 8.27(d) J(3^4)2.44 Hz, IH.

Me3lPt(Ph(H)Cpz^);

StoicMoinetric quantities of []yfe2Pt(Et2S) ]2 atid Ph(H)Cpz2 (1'2)
were dissolved in acetone and excess Mel added. After 10 nunutes

stirring excess Mel was removed and hexane added to precipitate a
microcrystalline product.

Yield: 88%.

Melecular Weight (CHCl^): 568 (591)

^ NMR (D6 acetone), ambient terrperature:

M^ trans to I 0.93(t) ^J(V^^^Pt) 72.50 Hz, 3H; MePt

trans to pz 1.68(t) ^J(^-^^^Pt) 72.79 Hz, 6H; H^ 6.76(t)
2H; Ph 7.78(s,broad) 2H; Ph 7.85(m) 3H; H^ 8.10(d)

J,, ^,2.68 Hz, 2H; H_ 8.15(d) J,, ^.2.20 Hz, 2H; CH
(4,5) 3 (3,5)

9.62(s,broad) IH.

^ NMR (D6 acetone), -40°C: mixture of conformers - aromatic region
not assigned.

Isomer A: MeFt trans to I 1.09(t) ^J(^-^^^Pt) 72.63 Hz;
MePt trans to pz 1.65(t) ^J(^-^^^Pt) 71.89 Hz.

Isomer B: MePt trans to I 0.19(t) ^J(^-^^^Pt) 74.04 Hz;
MePt trans to pz 1.44(t) ^J(^-^^^Pt) 73.06 Hz.
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Reactions with CDjI

lOmg of sanple was dissolved in D6 acetone in a NMR tube and CD^I
in D6 acetone (usually 10 ul of a 0.24M solution) added in one

portion, and the ^ NMR spectrum recorded after approximately 3
minutes.

This reaction was carried out with Me2Pt(H2C(mim)pz),
Me2Pt(H2C(py)pz) and ]y!e2Pt(Me(H)Cpz2), to produce Me2(CD2)I
Pt(H2C(mim)pz), iyie2(CD2)IPt(H2C(mim)pz) and Me2(C3D2)IPt(J^(H)c:pz2)
respectively.

In all cases spectra of the coirplexes showed IXfeFt resonances

consistent with Me trans to I and N, and thus coirplete scrambling

(integration values) occurred. The spectra were identical to the

related Mel oxidative addition coiiplexes.

[PhjyfePt(HCpz.,) ]I

Ph^PtdiCpz^) was dissolved in acetone, RX added and the mixture
stirred for 15 minutes, excess RX removed and hexane added until

cloudiness.

Molecular Weight (CHC1_): 726 (705).
""1 2 ~1Conductivity (acetone): 91Q cm mole .

^ NMR (CDCl^):
MePt 1.90(t) ^J(^-^^^Pt) 72.93 Hz, 3H; 6.58(q) 3H; Ph^ ^
6.99(m) 4H; Ph. ^ 7.03(m) 4H; Ph. 7.08(m) 2H; H- 7.79(d)

O ,D 4 o

4)2.25 Hz, 2H; H^ trans to Me 7.88(d) 4)2.16 Hz, IH;
H^ trans to Me 9.19(s, near coincident with H^ trans to Ph)
5 5

IH; Hg 9.21(d) 5)2-'76 Hz, 2H; CH 12.49(s)

[Ph2EtPt(HCpz2)]I
Molecular Weight (CHC1_): 730 (719)

—1 2 —1Conductivity: 86 Q cm mole .
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^ NMR (dXZl^):
^ 1 19S ^11Oi^CH^Pt 0.78(tt) J( H- Pt) 52.22 Hz, J( H- H) 14.71 Hz,

CH^Pt 2.73(tq) ^J(^-^^^Pt) 67.23 Hz, ^J(^H-^H) 14.713H

Hz, 2H; H^ trans to Et 6.52(t) IH; H^ 6.58(t) 2H; Ph 6.77-

7.20(m) lOH; H^ trans to Et 7.82(d) 4)1-'̂ ^ ^3
7.86(d) 4)1-80 Hz, 2H; H^ trans to Et 9.12(d) 5)2-70
Hz, IH; H^ 9.25(d) 5)2-70 Hz, 2H; CH 12.44(s) IH.

[Ph^(proparqvl)Pt(HCpZj) ]I
Mixtxare of isomers (allenyl/alknynl)

-1 2 -1Conductivity (acetone): 77 £2 an mole .

^ NMR (CDCl^) 3:1 allenyl:aHoiynl
CH 2.04(tt) '̂ J(^-^^^Pt) 21.76 Hz; H^ '̂ J(^-^^^Pt) 2.79 Hz;
CH^Pt 3.14(td) ^J(^-^^^Pt) 88.60 Hz, '̂ J(^-^) 2.79Hz; =CE^
4.11(td) '̂ J(^H-^^^Pt) 46.97 Hz, '^J(^-^) 6.18 Hz; CHPt
6.08(tt) ^J(^-^^^Pt)49.46 Hz; H^ 6.53(q), 6.58(t); Ph 6.95-
7.10(m); H3 7.78(d) 4)2-10 Hz,; H^ 9.09(d) 5)2-76
Hz; CH 12.76(S)

[Ph^MePt(HC(iimn)pz^) ]I
Molecular Weight (CHCl ): 701 (719)

-12 -1Conductivity (acetone): 78£2 cm mole .

^ NMR (CDCl^):
MePt 1.87(t) ^J(%-^^^Pt) 73.53 Hz, 3H; NMe 4.45(s) 3H,- H^
6.48(q) 2H; Ph + H. . 6.95-7.08(m) IIH; H,, . 7.30(d)

4mlm 5miin

J, . ,,,1-50 Hz, IH; H_ 7.60(d) J,_ .,2.40 Hz, IH; H_ 7.78(d)

J,- .,2.10 Hz, IH; H,. 6.48(m) 2H; CH 11.04(s) IH.
\ "J / 4} o



291.

7. 6 Experimental for Chapter Five

R^PtliX Complexes

All R^PtLX (R = Me, Ph) conplexes were synthesized by the same
general procedure using [Me2Pt(Et2S) or [Ph^PtCEt^S) as platinum
substrate, and the preparation of Me2Pt(CH2Cpz2CH2)Cl is given as an
exairple.

Me^Pt (CH^Cpz^CH^)C1

[Me2Pt(Et2S) (0.15g, 0.24 mmole) and CH^Cpz CH2CI (O.llg, 0.52
nitiole) were stirred and heated in benzene (20 cm ) solution under a

nitrogen atmosphere. After 10 minutes heating a white
microcrystalline precipitate was siaddenly deposited, which was
filtered hot, washed with warm benzene (2x2 cm^) and dry ether (2 x

3
5 cm ) and air dried. The coirplex was readily recrystallized from a
low volume of acetone by ether diffusion.

Yield: O.lVg, 74% (recrystallized).

Microanalysis: C 30.62 (30.31), H 3.90 (3.93), N 13.04 (12.86), C1
8.30 (8.13)

Malecular weight (CHCl^): 429 (435)
^ NMR (CDCl^):

MePt 1.30(t) ^J(V^^^Pt) 73.70 Hz, 6H; CB^Pt 2.38(t) ^J(^-
^^^Pt) 51.48 Hz, 2H; CH^ 2.45(t) '̂ J(^-^^^Pt) 5.83 Hz, 3H;
H^ 6.37(t) 2H; H^ 7.65(d) ^ 2.61 Hz, 2H; H^ 7.86 (d)

4 1.98 Hz, 2H.
13,C NMR (CDCl^):

MePt -9.95(t) ^J(^^C-^^^Pt) 693.4 Hz; CH^ 20.6(t) ^J(^^C-
195Pt) 51.9 Hz; CH^Pt 32.4(t) 729.4 Hz; Cpz^

2 13 ]9585,66(t) ''Pt) 51.9 Hz; 108.7(s) ; 126.7(s);

139.7(S)
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Me^Pt(CH^Cpz^CH^Cl)C1
Yield: 78%.

Recrystallized from acetone by ether diffusion.

Microanalysis: C 28.22 (28.09), H 3.22 (3.43), N 11.78 (11.92), C1
15.10 (15.08)

MDlecular weight (CHCl^): 459 (470)
^ NMR (dXZl^):

MePt 1.33(t) ^J(^-^^^Pt) 73.58 Hz, 6H; CH^Pt 2.46(t) ^J(^-
^^^Pt) 54.29 Hz, 2H; CH^Cl 4.65(t) ^J(^-^^^Pt) 2.89 Hz, 2H;
H^ 6.42(t) 2H; H^ 7.85(d) ^ 2.64 Hz, 2H; H^ 7.89(d) ^
2.04 Hz, 2H.

EMR (CDCl^):
] 13 195IVfePt -9.57(t) J( C- Pt) 689.33 Hz; <^2^ 28.85(t)

^J(^^C-^^^Pt) 730.62 Hz; CH^Cl 42.31(t) ^J(^V^^^Pt) 60.30
1 13 195Hz; 87.84(t) J( ^C- Pt) 51.88 Hz; 109.19(s);

Cg 127.50(8); 139.61(s).

Me^Pt (C(C1)HCpz^CHj)C1

This coiiplex was not deposited from hot benzene solution but

required addition of hexane and cooling. The conplex was
recrystallized from acetone by the dropwise addition of hexane.

Yield: 74%.

MDlecular Weight (CHCl^): 464 (470)
^ NMR (CDCl^):

MePt 1.36(t) ^J(^-^^^Pt) 75.30 Hz, 3H; 1.39(t) ^J(^-^^^Pt)
73.83 Hz, 3H; CH^ 2.55(s) 3H; HCPt 4.53(t) ^J(^-^^^Pt)
34.54 Hz, IH; H^ 6.47(m) 2H; H^ 7.73(d) ^ 2.70 Hz, IH;
7.78(d) 2.73 Hz, IH; H^ 7.90(d) J3 ^ 1.92 Hz, IH;
7.92(d) ^ 1.98 Hz, IH.
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NMR (CDCl^):
195.MePt 9.6(t) J( -^C- ^Pt) 685.3 Hz, CH^Pt (t)

730.2 Hz; CH^ (t) ^J(^^C-^^^Pt) 60.1 Hz; Qpz^ (t) ^J(^^C-
195Pt) 51.9 Hz; 109.2(s); 127.5(s); C 139.8 (s).

lyie^Pt (2.6- (pzCH^) ^C^Hj )Br
Yield: 92%, white microcrystalline.

MDlecular Weight (CHCl^): 528 (542)
^ IMKori^):

MePt 1.60(t) ^J(^-^^^Pt) 70.32 Hz, 6H; ^^(axial) 4.87(d)
^J(^-^)14.85 Hz, 2H; CH^(equatorial) 5.85(d) ^J(^-^)14.75
Hz, 2H; H. 6.33(t) 2H; Ph 7.05(in) 3H; H^ 7.48(d) J, , 2.10

^ o 4,b

Hz, 2H; 8.37(d) ^ 1.42 Hz, 2H.

NMR(CIX:i2):

MePt -8.31(t) J(^^C-^^^Pt) 649.9 Hz; CH^ 59.22(t) ^J(^\-
195Pt) 30.50 Hz; H^ 107.30(s); Ph^ ^ 125.12(s); Ph^ ^

*3 1 o 1 qc129.59(t) •^J(-'-^C-- '̂'''Pt)45.66 Hz; H^ 131.76(s); Ph^^-Pt
133.22(s), Ph^ 137.35(s); H^ 141.67(s).

Me^Pt(C^H^(H)Cpz^)Br
Yield: 88%, white powder.

^ NMR(acetone + 3 drops IMSO):
MePt 1.69(t) ^J(V^^^Pt) 73.74 Hz, 6H; H^ 6.66(t), 2H; Ph^
7.24(m) IH; Ph^ ^ 7.39(m) 2H; Ph^ 7.59(m) IH; H^ 8.10(d)
J3 ^ 2.12 Hz, 2H; CH 8.42(s) IH; H^ 8.48(d) ^ 2.68 Hz,
2H.

Me^Pt(C^H^(H)(pz^)Cl
Yield: 90%, vhite powder, insoluble in common NMR solvents.
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Ph^Pt(CH^Cpz^CH^)C1
Yield: 92%, white amorphous powder which could be recrystallized

from a large volume of hot acetone by cooling and drofwise addition

of hexane.

^ NMKCDCl^):
4 1 19"^ 2 1_CH^ 2.51(t) J( H- Pt) 5.82 Hz, 3H; CH2Pt 3.08(t) J("Ti-

1 Q5Pt) 47.15 Hz, 2H; H^ 6.43(t) 2H; Ph^ ^ ^ 6.96(m) 6H;

Ph2 g 7.03(dt) ^J(^-^^^Pt) 48.80 Hz, 4H; H^ 7.69(d)
J, . ^,2.73 Hz, 2H; H„ 7.99(d) J,- ,,2.04 Hz, 2H.

Reaction of R^PtLX with pyridine

3
The complex (50mg) was dissolved in pyridine (5 cm ) and the

stoppered flask allowed to stand for 30 minutes, at which time hexane

was added until cloudiness developed and crystallization began. The

product was filtered, washed with ether, air dried and vacuum dried

at 50°C (2 hours).

Yield: 92%, clear microcrystalline.

Molecular Weight (CHC1_): 496 (513)
-12-1Conductivity (acetone): 72 cm mole .

^ NiyiKCDCl^):
MePt 1.18(t) ^J(%-^^^Pt) 70.95 Hz, 6H; CH^Pt 2.57(t)
^J(%-^^^Pt) 44.90 Hz, 2H; CH^ 2.92(s) 3H; H^ 6.46(t) 2H;
H3 7.41(d) J^3 1.98 Hz, 2H; py^^^ 7.73(t) 2H; py^
8.16(t) IH; pYg 8.57(m) ^J(%-^^^Pt) 18.52 Hz, 2H; H^
8.79(d) J,. ^,2.70 Hz, 2H.

\ 4 ^o j
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7 • 6 Experimental for Chapter Six

The synthesis of some liganas required the preparation of known

coirpounds as starting materials. These are listed below, and changes

in procedures are fully described.

1. Chloramethylpyridine: made the chlorination of 2-picoline as
17reported Mathes and Schuly.

2. l,3-bis(branoTiethyl)benzene: prepared by the free radical

bromination of ^xylene using N-bromosuccinimide as reported by
18

Wenner.

3. 2-thioFhene carboxaldehyde: prepared by the method of Weston and
19

Michaels.

4. N-methyl-2-imidazole carboxaldehyde: prepared by a modification
20of the reported method.

Bu\i (140 cm^ of 1.2M) was added drofwise to a stirred solution
of N-methylimidazole (13.4 cm , 0.168 mole) in ether (20 cm ) at -80 C

under a nitrogen atmosphere. After all of the Bu^Li had been added
the lithio-reagent was allowed to slowly warm to 0°C. The lithio-
reagent was re-cooled to -80°C and added dropwise at this tenperature

3 3to a well-stirred solution of EMF (25 cm , excess) and ether (30 cm )

also at -80°C. When the addition was coirplete the white siaspension
was allowed to warm to room tenperature and left, with stirring, for 6

3hours, after which time HCl (5M, 100 cm ) was added and the acidified

aqueous layer separated, the organic layer was washed with small
3

portions of 5M HCl (2 x 20 cm ). The combined acid extracts were made

slightly alkaline with solid sodium bicarbonate, extracted twice with
3CHCl^ (40 cm ), and the combined extracts dried over lygso^. After

removal of solvent and vacuum distillation a clear oil was obtained

(60-65°C/lnm Hg) vdiich crystallized on standing.
Yield: 12.8g (69%)

2-(chlorQmethyl)-l-methylimidazole hydrochloride (mirnCH Cl.HCl):
. . . 21was prepared ty a similar method to that described by Jones.
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6. 2-broiTiD-l ,3-bis(broinDinetliYl)benzene: prepared by the free radical
22

23

22bromination of 2-bronio^ni-XYlene, as described by Vogtle.

2-bronio-^xylene was prepared by the method of Newman and Wise.

7. 1,3-bis(dibromomethyl)benzene: prepared by the bromination of
24m-xylene using bromine as describbed by Snell and Weissberger.

General Preparative Methods

Acid Catalyzed Condensation

The acetal or ketal (50 mmole), pyrazole (100 mmole) and p-

toluene sulp^ionic acid (200 mg) were heated with stirring under a

nitrogen atmosphere in a distillation apparatus. Heating was

continued until either the theoretical amount of alcohol was distilled

from the mixture or distillation ceased. The product was sublimed and

recrystallized from a minimum volume of hot hexane.

Conrpounds made by this procedure included compounds 11 and 13.

Potassium Pyrazolide

(i) FY^azole (8.7g, 128 imole) was added to a stirred suspension of
3

finely cut potassium (5g, 128 irniole) in anhydrous THF (150 cm )

under a nitrogen atmosphere. After the initial rapid evolution of

hydrogen the mixture was heated to reflux with continued stirring.
Reflux was continued until beads of molten potassium were no

longer evident. The thick vhite suspension was cooled and used

immediately.

(ii) l^pically, the appropriate halide was added (neat) in one

portion to a suspension of potassium pyrazolide with stirring

under a nitrogen atmosphere at room temperature. The resultant

mixture was refluxed for a sufficient length of time, cooled,

filtered and the filtrate stripped on a rotary evaporator. The

residue was purified as reported.
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Conpounds synthesised by this niethod included conpounds 1-4, 9,

13, 19 and 23.

C. Phase Transfer Catalysis (FTC)

Pyrazole (7g, 102.9 iranole), tetrabutylaimnonium bisulphate (0.4g),
3 340% sodium hydroxide solution (30 cm ) and benzene (50 cm ) were

vigorously stirred under a nitrogen atinosphere. The appropriate

quantity of halide substrate was added and the mixture vigorously

refluxed for the appropriate length of time (generally 8 hours). In

some preparations the halide substrate was used in place of benzene as

the organic phase. Mter cooling, the organic phase was separated and
3the aqueous layer extracted with CH2CI2 (3 x 20 cm ). The combined

organic extracts was dried (P^SO^), taken to low volume on a rotary
evaporator and purified as reported.

Conpounds made by this procedure include coirpounds 5-8 and 10.

D Cobalt(II)Chloride Condensation

(i) Bis- (l-pyrazolyl)ketone

3
Fyrazole (5g, 73.5 mmole), triethylamine (10.25 cm , 73.5 mmole)

3
and anhydrous diethyl ether (200 cm ) were mixed by overhead

3
mechanical stirring under a nitrogen atmosphere, and phosgene (19 cm

of 1.93 M in toluene) was added in two portions. Stirring was

continued for 15 minutes, the precipitate filtered at the punp,
3

solvent ranoved under vacuum, and hexane (10 cm ) added to assist in

crystallization of the ketone. The solid ketone (5.65g, 95%) was

dried imder vacuum and stored under a nitrogen atmosphere. Generally

this material was made as required and used immediately.

(ii) CoCl^ Condensation
2

To a side arm flask flushed with nitrogen was added bis(l-

pyrazolyl)ketone (Ig, 6.17 mnole), the appropriate ketone or aldehyde

(6.17 itinole) and a catalytic quantity of anhydrous cobalt(II) chloride
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(IQmg). If reaction did not occur immediately as evidenced by lack of

CO^ bubbles, the mixture was gently warmed until bubbling was
observed. The mixture was allowed to stand until the reaction had

3subsided, water (5 cm ) added and the mixture extracted with CH^Cl^ (2
X20 cm^). The combined CH^Cl^ extracts were dried (ly^SO^) and CH2CI2
removed under vacuum. The product was purified as reported below.

Corpounds prepared by this procedure include coirpounds 12, 14-18,

20-22 and 25.

E. Lithiation Procedure

The lithiation of tris(l-pyrazolyl)methane is given as a typical

exanple.

3
HCpz_ (Ig, 4.67 mmole) was dissolved in anhydrous ether (20 cm )

O Qunder a nitrogen atmosphere and cooled to 0 C. Bu ni (5 an , 0.94 M

in ether) was added dropwise with stirring to produce a thick white

solid (LiCpz^). After 10 minutes stirring sufficient anhydrous THE
3(4-6 cm ) was added to dissolve the lithio salt and produce a light

yellow solution, to which an excess (x 3) of Mel was added. Stirring
3was continued for 2 hours, water ( 2 cm ) added and the volume reduced

3under vacuum. The residue was extracted with CH2CI2 (2 x 15 cm ), the
extracts dried (IX^SO^), CH^Cl^ removed and the product recrystallized
from hot hexane (20 cm^) to yield a vMte solid.
Yield: 78%.

2^ H^Cipylpz

lytethod

Starting Material

Halide : pyrazolide

Reflux Time

Purification

Yield

Mass Spectrum

B

Chloranethylpyridine (9.2g, 72.2 nmole)

1 : 1

5 hours

Vacuum distillation, 76-78°C/0.1 urn Hg
10.2g, 90%, viscous oil

m/e(%l): 159(m"^, 100), 92 (56), 81 (54),
65(46)
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^ NMR (D6 acetone)

pz resonances; CH^ 5.60(s) 2H; 6.43(t) IH; 7.62(d)

J,, .xl.50 Hz, IE; H^. 7.91(d) J-. ^,2.25 Hz, H.

py resonances; H^ 7.10(d) ^5 7.42(m) IH;

H. 7.88(td) J,. .v7.74 Hz,lH; H^ 8.64(d) J,^ ^^4.4
4 (4,5) (3,4) 6 (5,6)

Hz, IH.

^ NMR (CDCl^)
pz resonances; CH^ 5.46(s) 2H; H^ 6.32(t) IH; H^ 7.47(d)

4)2-10 Hz, IH; H^ 7.54(d) 5)2-34 Hz, IH;

py resonances; H^ 6.98(d) 4)^-68 Hz, IE; 7.21(in) IH;
H^ 7.59(ddd) 5)^^(3 4)'7-52 Hz, IH; H^ 8.56(d) ^^4.2
Hz, IH.

2. H^C(nujn)pz

r/fethod : B

Starting lyiaterial : 2-(chloronethYl)-l-inethYlirnidazole

iTYdrochloride (5g, 30 inmole)

Halide : Eyrazolide

Reflux Time

Purification

Yield

MicroanalYSi s

Mass Spectrum

1 : 2

5 hours

Sublimation, m.pt 77-79°C
3.44g, 71%

C 59.07 (59.24), H 5.94 (6.21), N 34.25

(34.55),

m/e(%I): 162(m'̂ , 30), 95 (100), 81 (15), 54
(30)

^ NMR (acetone D6)

pz resonances; CH^ 5.40(s) 2H; H^ 6.24(t) IH; H^ 7.42(d)

4)1-20 Hz, IH; H^ 7.59(d) 5)2-10 Hz, IH.
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mim resonances; NMe 3.72(s) 3H; 6.85(d) ^jl.OOHz,

IH; H.-„.7.02(d) J,. ^,1.14 Hz, IH.
4^0/

3. 1.3-(pzCH^)^C^H^

Methcxi

Starting IVIaterial

Halide : Pyrazolide

Reflux Time

Purification

Yield

MicroanalYsis

M^s Spectrum

^ NMR (OXTl^):

B

l,3-t)is(bromometh.Yl)benzene (4g, 15.2 mmole)

1 : 2

6 hours

RecrYStallization hot hexane/charcoal,

m.pt 36°C
2.96g, 82%

C 70.50 (70.56), H 5.78 (5.92), N 23.62 (23.52)

m/e(%I): 237(m'̂ , 15), 170 (100), 143 (10), 103
(12)

CH^ 5.29(s) 4H; 6.28(t) 2H; Ph^^ 7.04(s,broad) IB; Ph^ ^
7.10(dd) J 7.72 Hz, 2H; Ph^ 7.30(d) ^5

7.37(d) 5)2-28 Hz, IH; H^ 7.54(d)

4, 2.6-(pzCH^)^C^H3r

lytethod

Starting Material

Halide : lYtazolide

Reflux Time

Purification

Yield

Mass Spectrum

^ NMR (CIXZl^):

B

2,6-bis(bromoinethYl)bromobenzene (4.5g, 13.1

irinole)

1 : 2

8 hours

RecrYStallization hot hexane/charcoal,

m.pt 95°C.
2.83g, 68%

m/e(%I): 317(M"^, 2), 237 (100), 169 (50).

CH^ 5.46(S) 4H; H^ 6.32(t) 2H; Ph^ ^ 6.77(d) ^J(^-^) 7.72
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Hz, 2H; Eh^ 7.21(t), 7.71 Hz, IH; H^ 7.47(d)

5)2.32 Hz, 2H; H^ 7.58(d)

5. pzCH.^CH.^Br

lytethod

Starting Material

Reflux Time

Purification

Yield

Mass Spectrum

^ NMR (CDC1-):

1,2-dibramoethane (halide and organic phase)

1 hour

Vacuum distillation 64-66°C/0.5 mm Hg
52% (based on pyrazole), viscous oil

m/e(%I): 175(m'̂ , 5), 174 (60), 176 (60), 95
(100), 81 (100), 68 (100)

pzqi^ 3.73(t) ^J(H-^) 12.71 Hz, 2H; qi.,Br 4.51(t) ^J(^-^)
12.71 Hz, 2H; H^ 6.26(t) IH; H^ 7.47(d) ^z, IH;
H, 7.56 (d) J,^ /,\1.56 Hz, IH.

pzCH.,CH^Cl

Method

Starting Material

Reflux Time

Purification

Yield

Mass Spectrum

^ ISIMR (CDC1_);

1,2-dichloroethane (halide and organic phase)

1 hour

Vacuum distillation 46-49°C/0.5 mm Hg
73% (based on pyrazole), viscous oil

m/e(%I): 130(m"^, 20), 95 (16), 81 (100), 68
(70)

PZCH2 3.86(t) ^J(^-^) 12.01 Hz, 2H; 012^1 4.44(t)^J(^-^)
12.04 Hz, 2H; H^ 6.27(t) IH; H^ 7.48(d) 5)2-28 Hz, IH;
H^ 7.58(d) 4) Hz, IH.



7. pzCH^CH^pz

lyiethod

Starting Material

Reflux Time

Purification

Yield

Mass Spectrum

^ NMR (CDCl^):

302,

1,2-dibromoethane (4.4 cm , 51 itmole)

12 hours

Vacuum distillation 76-78°C/0.5 mm Hg
7.l7g, 86%, viscous oil

m/e(%I): 162(m"^, 16), 94 (100), 81 (100), 68
(100)

CH2 4.53(s) 4H; H4 6.26(t) 2H; 6.92(dd)

2H; 7.56(dd) 4)1-50 Hz, 2H.

8^ pzCH^CH^CH^pz

IVfethod

Starting Material

Reflux Time

Purification

Yield

%MMR (CDCl^):

1,3-dibromopropane (5 cm3, 49.25 mmole)

12 hours

Vacuum distillation 92-94°C/0.5 mn Hg
7.90g, 92%, viscous oil

CH^ 2.45(q) 2H; CH^ 4.10(t) 4H; H^ 6.23(t) 2H; H^ 7.38(d)
4)1*^0 Hz, 2H; H^ 7.52(d) 5)2-20 Hz, 2H.

9. ^^2

Method

Starting Material

Reflux Time

Purification

Yield

^ NMR (acetone D6):

CH^Cl^ (halide and organic phase)
8 hoijrs

Recrystallization from hot hexane/charcoal

88%

H^ 6.27(dd) J,. ^,2.37 Hz, 2H,- CH 6.41(s) 2H; H,, 7.47(d)
4 \ 4 ^D}

4)1-'75 Hz, 2H,- H^ 7.85(dd), 5)^-'̂ °



10. ]yie(H)Cpz,

Methcxl

Starting IVIaterial

Purification

Yield

^ NMR (acetone D6)

acetaldehyde diethyl acetal

Sublimation, m.pt 53°C.
80% (based on pyrazole)

303,

CMe 2.13(d) ^J(^-%) 6.84 Hz, 3H; H. 6.25(dd) J,^ ^,2.35
4 ^4 ^3 )

Hz , 2H; CH 6.76(q) ^J(^-^) 6.84 Hz, IH; H^ 7.80(dd)
J(4^5)2.40, 2H.

hi HMR (CDCl^):
2.17(d) ^J(^-^) 6.8 Hz, 3H; H^ 6.25(t) 2H; CH 6.61(q)

^J(^-^) 6.8 Hz, IH; H_ 7.54(d) J,, ..2.0 Hz, 2H; H^
7.57(d) 5)2-4 Hz, 2H.

11. -^2^2

Method

Starting Dfeterial

Reaction Time

Purification

Yield

^ NMR (acetone D6):

D
3

Acetone (5 cm , excess)

5 minutes

Recrystallization fran hot hexane/charcoal,

93%

CMe 2.26(s) 6H; H^ 6.24(dd) 5)2-57 Hz, 2H,- H^ 7.47(s)
2H,- H^ 7.58(dd) 5)2-57 Hz, 2H.

^ NMR (CDCl^):
CH^ 2.80(S), 6H; H^ 6.30(t) 2H,- H^ 7.43(d) ^^2.5 Hz,
2H,- H^ 7.60(d) 4)1-80 Hz, 2H.



12. Ph(H)Cpz.

lyfethod

Starting Material

Purification

Yield

^ NMR (CDCl^):

Benzaldehyde dimethyl acetal

Vacuum sublimation, m.pt 60°C.
75% (based on pyrazole)

304.

6.40(t) 2H; Ph 7.33(m) 5H; 7.59(d) 5)2-40 Hz, 2H;
7.63(d) ^jl.8 Hz, 2H;

13. Ph(MeO)HCpz,

lyfethod

Starting Material

Reaction Time

Purification

Yield

^ NMR (CDCl^):

D

3-methoxi4Denzaldehyde (0.85g, 6.2 mmole)

2 hours with wanning

Recrystallization from minimum volume of hot

hexane, m.pt 49°C.
0.91g, 58%

CMe 3.74(s), 3H; H^ 6.33(t) 2H; Ph^ 6.56(s, broad) IH; Ph^
6.62(dd) J 7.68 Hz, IH; Ph. 6.91(dd) J 8.25 Hz, IH; Ph,

4 b

7.28(t) IH; H^ 7.52(d) 5)2-16 Hz, 2H; H^ 7.60(d)

4)1-14 Hz, 2H; CH 7.71(s) IH.

14. (2-XC^,H^) (H)Cpz^; X= Br. C1

Method

Starting Material

Reaction Time

Purification

Yield

D

2 halobenzaldehyde (6.2 mmole)

2 hours with wanning

Recrystallization from hot hexane/charcoal,

m.pt (X = Br) 73°C
m.pt (X = CD 62-63°C
48%



X = Br

Mass SJsectrum

^ NMR (CDCl^):

305 .

m/e(%I): 258(M , 2), 223 (82), 191 (54), 156

(100), 101 (12)

H. 6.35(q) 2H; Eh^ 6.82(dd) J 7.56 Hz, IH; Ph. 7.30(in) 2H;
4 o 4

7.37(d) 5)2.37 Hz, 2H; Ph^ 7.62(dd) J 7.80 Hz, IH;
H., 7.66(d) J (3,4) 1.44 Hz, 2H; CH 7.90(s)

X = C1

Microanalysis

Mass Spectrum

^ NMR (CDCl^):

C 60.12 (60.35); H 4.30 (4.28); N 21.51 (21.66)

m/e(%I): 304 (60) 303(m'̂ , 12), 302 (60), 223
(80), 191 (50), 111 (100), 101 (20)

H^ 6.34(t) 2H; Ph^ 6.84(dd) IH; H^ 7.30(td) IH; Ph^
7.35(td) IH; H^ 7.39(d) 5)2-42 Hz, IH; Ph^ 7.43(td) IH;
H^ 7.65(d) 4)^-^^ ^ 7.98(s) IH.

15. HC(py)pz,

Pfethod

Starting Pb-terial

Reaction Time

Purification

Yield

Microanalysis

Mass Spectrum

^ NMR (D6 acetone):

D
3

2-pyridinecart)oxyaldehyde (0.60 cm , 6.3 mmole)

5 minutes with cooling. This reaction proceeds

without the addition of CoCl^ catalyst also.
Recrystallization fron hot hexane/charcoal,

m.pt 55°C
0.62g, 45%

C 64.24 (63.98), H 4.82 (4.92), N 31.42 (31.10)

lVe(% ): 225(m'̂ , 15), 158 (100), 147(68),
131 (35)

pz resonances; H^ 6.36(dd) ^^2.36 Hz, 2H; H^ 7.57(d)
J,^ ^xl.73 Hz, 2H; H^ 7.85(m) 2H; CH 7.88(s) IH.
\ 314 / Id
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py resonances; 7.15(d) 4)7.92 Hz, IH; 7.42(ddd)

J(4 5)7.59 Hz, 4)4-81 Hz, IH; H^ 7.85(in) IH; H^ 8.61
(ddd) 6)'̂ '® '̂ *^(4 6) '̂®^

^ NMR (CDCl^):
H ^ 6.35(q) 2H; 7.02(d) IH; H^ + H^ 7.65(t) 4H; py^ +
CH 7.74(m) 2H; py,. 8.66(m) IH.

6

16. HC(inim)pz..

lyfethod

Starting Material

Reaction Time

Purification

Yield

^ NMR (acetone D6)

D

N-iietliyl-2-iinidazole carbaldehyde

(0.68g, 6.2 mmole)

5 minutes with cooling. This reaction proceeds

in the absence of CoCl^ catalyst.
Recrystallization from hot hexane/charcoal,

m.pt 104-106°C
0.70g, 49%

pz resonances; H^ 6.33(dd) 2H; H^ 7.52(s) 2H; H^ 7.93(d)

5)2.56 Hz, 2H; CH 8.00(s), H.

mim resonances: NMe 3.56(s) 3H; H^,,. 6.95(d) J,. „.1.11
5(4) (4,5)

Hz, IH; H.,^. 7.16(d) J,. ,,.1.08 Hz, IH.
4vi5/ \4|5/

17. HC(thio)pz,

Method

Starting Material

Reaction Time

Purification

Mass Spectrum

D
3

2-thiophenecarboxaldehyde (0.58 cm , 6.2 mmole)

2 hours with warming

Recrystallization from hot hexane, m.pt 87°C
m/e(%I): 230(m'̂ , 5), 214 (8), 163 (100),

91 (2)
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MVIR (D6 acetone)

6.47(t) 2H; thio^^ 7.22(in, conplex) 2H; 7.71(d)
4)1-52 Hz, 2H; thio^ 7.72(dd) J 5.08 Hz, IH; H^ 8.05(d)

J, . ^,2.43 Hz, 2H; CH 8.31(s) IH.
\ 4 /

18. l,3-(pz^CH)^C^.H^

Method

Starting Material

Reaction Time

Purification

Yield

^ NMR (CDCl^):

B

2,6-bis(dit)romomethYl)benzene (5g, 11.86 itunole)

12 hours

Recrystallization from hot hexane/charcoal,

m.pt 126°C
3.25g, 74%

H. 6.31(8) 4H; Ph_ 6.59(s) IH; Ph. ^ 7.04(d) J(^-^) 7.82
4 Z 4, b

Hz, 2H; Ph^ 7.38(t) IH; H^ 7.51(d) 4)1-68 Hz, 4H; H^
7.72(d) J, . ^,2.52 Hz, 4H.

\ 4 ^ /

19. MeCpz CH..C1

IVtethod

Starting Material

Reaction Time

Purification

Yield

Microanalysis

Mass Spectrum

^ NMR (CDCl^):

D
3

1-chloroacetone (1.70 cm , 21.6 mmole)

15 minutes with warming

Recrystallization from hot hexane/charcoal,

m.pt 60-62°C
3.73g, 82%

C 51.50 (51.31);H 5.52 (5.26); N 26.88 (26.60);

C1 16.2 (16.83)

m/e(%I): 210(m'̂ , 20), 175 (22), 161 (50),
143 (100), 107 (38)

CH_ 2.38(S) 3H; CH„ 4.56(s) 2H; H. 6.30(t) 2H; H^ 7.36(d)
O Z 4 D
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J,. ^>2.59 Hz, 2H; H_ 7.61(d) J,, .^1.56 Hz, 2H,

20. z^CHXlClCH^Cpz

lyfethod

starting Material

Reaction Time

Purification

Yield

Microanalysis

Mass Spectrum

^ ISMR (CDCl^):

D

1,3-dichloroacetone (1.5g, 11.81 imiole)

30 minutes with warming

Recrystallization from hot hexane/charcoal,

m.pt 127°C
1.85g, 64%

C 44.33 (44.10); H 4.07 (4.11); N 23.12

(22.86); C1 28.80 (28.92)

m/e(%I): 246 (15), 245 (m"^, 2), 244 (24), 195
(100), 177 (65), 176 (60), 141 (70)

106 (82)

CH2 4.78(S) 4H; H^ 6.34(t) 2H; H^ 7.52(d) 5)2-53 Hz,
2H; H^ 7.61(d) 4)^- '̂̂

21. CHjCpz^CHCl^

Method

Starting Material

Reaction Time

Purification

Yield

Microanalysis

Mass Spectrum

^ NMR (CDCl^):

D

1,1-dichloroacetone (1.5g, 11.81 irmole)

5 hours with warming ^
Recrystallization from minimum volume of hot

hexane/charcoal, m.pt 83°C
1.19g, 41%

C 44.80 (44.10); H 4.89 (4.12), N 22.25 (22.86)

m/e(%I): 244 (20); 245 (m"^, 2); 244 (35); 209
(36); 177 (35); 161 (100); 141 (22);

109 (25)

CH_ 2.29(s) 3H; CHC1„ 2.62(s) IH; H 6.26(t) IH; H
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6.37(t) IH; 7.40(d) 5)2-46 Hz, IE; 7.55(d)
4)1-62 Hz, IH; H^ 7.63(d) 4)1-68 Hz, IH; H^ 7.81(d)

J,. ^,2.58 Hz, IH.(4,5) '

22. H^C=C(CH pz).

Method

Starting Material

Reaction Time

Purification

Yield

Mass Spectrum

NMR (D6 acetone)

B

3 chloro-2-chloroiTiethYl-l-propene

4 hours

Vacuum distillation, viscous oil

79%

m/e(%I): 188 (m'̂ ,2), 121 (100), 81 (52)

CH_ 4.64(t) 4H; =CH_ 5.13(t) 2H; H. 6.28(t) 2H; H^ 7.35(d)
^ / 4 D

5)2.32 Hz, 2H; H^ 7.55(d) 4)1-65 Hz, 2H.

23. HCpZj

Method; B.

This coiipound was made by an adaption of the original procedure
25as reported by Huckel and Bretschneider.

To a stirred suspension of potassium pyrazolide (30g pyrazole and
3

17.25g K) in THF (400 cm ) under a nitrogen atmosphere at ambient
3temperature was added distilled chloroform (11.76 cm , 147 mmole) in

one portion. After 30 minutes stirring the suspension was slowly

heated to gentle reflux and left for 8 hours during which time the

mixture turned a tan colour. The mixture was filtered hot, the
. . 3precipitate of KCl washed with CHCl^ (3 x 30 cm ) and the combined

organic extracts reduced to a minimum volume under vacuum. Zone

si±»limation of the resultant semi-solid residue gave a yellow solid

which was continually extracted with hot hexane. on reduction of

volume and cooling, tris-(l-pyrazolyl)methane crystallized out.

Yield: 13.53g, 43%
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NMR (acetone D6):

6.41((ad) gj2.56Hz, 3H; 7.63(d) 4)1*53 Hz, 3H;
7.87(d) 5)2-51 Hz, 3H; CH 8.74(s) IH.

^ NMR (CDCl^):
H^ 6.25(t) 3H; H^ 7.51(d) 5)2-51 Hz, 3H; H^ 7.62(d)
J,^ ^,1.89 Hz, 3H; CH 8.37(s) IH.
\ ^ ^O /

24. MeCpz,

Method: Described on p. 234.

Purification : Zone sublimation followed by ciystallization

from hot hexane, m.pt. 77°C
Yield : 78%

Microanalysis : C 57.77 (57.78), H 5.22 (5.30), N 37.12 (36.82)

^ NMR (D6 acetone):

CMe 2.93(s) 3H; 6.39(dd) 5)2-53 Hz, 3H; H^ 6.94(dd)
5)2-69 Hz, 3H; H^ 7.67(d) 4)1*58 Hz, 3H.

25. Cpz.

Method

Starting Material

Reaction Time

Purification

Yield

D

Bis-(l-pyrazolyl)methane (3g, 18.5 mmole)

8 hours at 190°C (bomb)
Recrystallization from hot hexane/charcoal,

m.pt

1.30g, 50%

^ NMR (acetone D6):

6.45(dd) 5)2*73 Hz, 4H; 7.58(dd) 5)2*58 Hz,
4H,* 7.70(dd) 4)1*71 Hz, 4H.
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APPENDIX 1.

T.G.A. ]yiePt(HCpz2(C2N2H2)-C) (PPh2)2 P- 106

Weight Loss 1; 0.48ing, acetone solvate.

Weight conplex: 9.59 mg Weight acetone: 0.48ing
-2 -2irenoles conplex: 1.013 x 10 mmoles acetone: 1.041 x 10

Weight Loss 2: O.lTmg, 124-131°C, methane gas.

Weight corplex: 9.42mg Weight methane: 0.17ii^
-2 -2

mmoles conplex: 1.012 x 10 mmoles methane: 1.062 x 10

Weight Loss 3: 2.64 mg, 160-200°C, PPh^.

Weight caiplex: 6.78mg, Weight PPh : 2.64mg
-2 -2mmoles conplex: 1.013 xlO mmoles PPh^: 1.008 x 10
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Dimethyl[tns(l-pyrazolyl)methane]platinum(II),
Me2Pt(HCpz3), undergoes a cyclometallation reac
tion in warm pyridine to formMePt(HCpz2(pzH_i))-
(py) involving presence of the ligand as a bidentate
'NC~' donor, characterized by spectroscopic [1, 2]
and X-ray structural analysis [2]. As this represents
a new binding mode of tris(l-pyrazolyl)methane we
have sought derivatives involving the metallated
ligand as a tridentate 'N2C~' organometaUic analogue
of 'N3' tris(l-pyrazolyl)methane and 'N3~' tris(l-
pyrazolyl)borate, e.g. as in [Me3Pt(HCpz3)] [PF^]
[3] and MePt(HBpZ3XCF3C2CF3) [4], and as a
tripodal analogue of planar intramolecular 'N2C^'
coordination systems, e.g. as m Cl3Pt[C6H3(CH2-
NMe2)2-o,o'] [5].

N —N

N-
Me I

1 CM.

Pt
N

IMc

+

MePt(HCpz2(pzH_i))(py) [Me2Pt(HCpz2(pzH_i))-
(L)]^
(L = py.PPhs)

We report here the synthesis of organoplatinum-
(IV) cations involving metallated tris(l-pyrazoiyl)-
methane, [Me2Pt(HCpz2(pzH_,))(L)]^ (L=py,
PPh3), and related complexes with intramolecular
coordination by pyrazole groups, prior to investiga
tion of their reactivity and further development of
the organometalhc chemistry of these ligands.

0020-1693/86/53.50
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Platinum(II) derivatives of metallated tris(l-
pyrazolyl)methane were oxidized to Pt(IV) deriva
tives via oxidative addition of iodomethane, since
diorganoplatinum(II) complexes may be readily
oxidized m tliis manner, e.g. Me2Pt(2,2'-bipyridyl)
[6—9], and characteristic octahedral geometry for
Pt(IV) is expected to ensure 'N2C~' coordination.
Thus, MePt(HCpZ2(pzH_i))(py) reacts with a 4-5
fold excess of iodomethane m acetone under nitro
gen at ambient temperature in darkness (12 h) to
form a pale yellow solution, from which, after
removal of excess iodomethane and some acetone
followed by addition of petroleum—ether, colourless
crystals were isolated. The complex has infrared and
'H NMR spectra (in CDCI3 at 300 MHz) consistent
with the formulation* [Me2Pt(HCpz2(pzH_i))(py)] I*
0.5Me2CO, e.g. p(C=0) for solvate at 1704 cm"',
appropriate relative intensities in NMR spectra, a
single Me2Pt(IV) resonance at 1.51 ppm fromMe4Si
with V('H-'''Pt) 69.2 Hz, a single methme reso
nance at 10.45 ppm, and V('" '̂"'H—"^Pt) 20.5 Hz
for the pyridine group. A similar procedure, but
with prior addition of a molar equivalent of triphenyl-
phosphine, gave [Me2Pt(HCpz2(pzH_i)XPPh3)] I,
which exhibited a similarNMRspectrum, e.g. 5 [Me2-
Pt(IV)] 1.45 with V('H-"=Pt) 70.6 Hz and V('H-
^'P) 7.0 Hz. The PPh3 complex is sufficiently soluble
for measurement of conductance in acetone, giving a
molar conductance of 100 ohm~^ cm^ moF', appro
priate [10] for a 1:1 electrolyte.

As the complexes did not give crystals suitable for
X-ray structural analysis, related pyrazole donor
Pt(IV) complexes involving 'N2C~'coordination were
sought via oxidative addition reactions of a Pt(II)
substrate with haloalkane reagents containing two
pyrazole groups. The new reagents l-chloro-2,2-bis-
(l-pyrazolyl)propane (CICH2 Cpz2 CH3) and 1,3-di-
chloro-2,2-bis(l-pyrazolyl)propane [(ClCH2)2Cpz2]
were obtained in high yield by condensation reactions
as shown, using anhydrous cobalt(II) chloride as cata
lyst m the manner described [11] for related bis(l-
pyrazolyl)alkanes.

PZ2C=0 (C1CH2XXCH2)C=0—^

C1CH2CPZ2CH2X + C02

(X = 11,Cl)

The complex [Me2Pt(SEt2)]2 was chosen as a sub
strate because the diethylsulfide ligands are readily
displaced by nitrogen donors and the complex under
goes facile oxidative addition reactions [6]. If nitro-

*A11 complc.xes have satislactory microanalyses (C, H, N, P,
lialojicn).

© Elsevier Sequoia/Printed in Switzerland
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TABLE I. Crystal Data for Complexes MeifCllPtlClhCpzjCHjX)

Complex X = H X = C1

Formula CiiHnClNaPt CiiHi5Cl2N4Pt
M 435.8 470.3

Space group ^2i2,2,, P2ilc
a (A) 14.206(8) 8.407(2)

b (A) 10.888(6) 13.836(6)

c (A) 8.959(5) 113.139(4)

0 (deg) 110.16(2)

V (A^) 1386(1) 1434.6(8)

T^calc ^ 2.09 2.17

Z 4 4

F(OOO) 824 888

Mmo (cm ) 99 97

Crystal dimensions (mm) 0.18 X0.16 X0.48 0.15 X 0.40 X 0.10

•^min.max 4.0,6.3 2.3, 3.4

29max (deg) 60 60

Number of unique data 2248 4213

Number of data with I > 3a(r) 1818 2912

R 0.032 0.032

R' 0.029 0.033

(preferred chirality)

gen donor complexes such as 'Me2Pt(ClCH2Cpz2-
CH2X)' form, subsequent oxidative addition is
expected in view of theproximity of chlorine atom(s)
and platinum.

On heating [Me2Pt(SET2)]2 with CICH2CPZ2-
CH2X in benzene under nitrogen for 15 min a colour
less crystalline precipitate formed, and was collected
from the hot solution by filtration, washed with
benzene and diethyl ether, and recrystallized by
exposure of an acetone solution to diethyl ether
vapour in a closed container. The complexes were
characterized as Me2(Cl)Pt(CH2Cpz2CH2X) by
microanalysis, osmometric molecular weight deter
minations m chloroform at 37 C [found 421 (X =
H), 449 (Cl); calc. 435 (H), 470 (Cl)], conductance
measurements (non-electrolytes in acetone), NMR
spectra and X-ray structural analysis. Thus, in addi

Me2(Cl)Pt(CH2Cpz2CH2X)

(X= H,C1)

tion to pyrazole resonances, NMR spectra exhibit
Me2Pt(IV) resonances at 5 1.30 (X=H), 1.33 (X=
Cl), with V('H-'"Pt) 73.7 Hz (H), 73.6 Hz (Cl);
PtCH2 resonances at 5 2.38 (H), 2.46 (Cl) with
V('H-'''Pt) 51.4 Hz (H), 54.3 Hz (Cl); and CHjX
resonances at 5 2.45 (H), 4.65 (Cl) with/('H—^"Pt)
5.8 Hz(H) and 2.9 Hz (Cl).

Single crystal X-ray diffraction studies were
undertaken for both complexes using a Syntex Pi
four-circle diffractometer in conventional 2616 scan
mode with Mo Ka radiation (Table I)*. Full matrix
least-squares refinements, after analytical absorption
corrections, involved amsotropic thermal parameters
for the non-hydrogen atoms with hydrogen atoms
included with calculated (x, y, z, U^^) and cons
trained, with reflection weights w = \la^(F) and
a^([) = ad,ff(/) + 0.00012ad,(f(/). Neutral complex
scattering factors were used [12]; computation
used the XTAL 83 program system [13] implement
ed by Dr S. R. Hall on a Perkin-Elmer 3240 com
puter. Details of the coordination geometry for
platinum are given in Table 11, and the structure of
Me2(Cl)Pt(CH2Cpz2CH3) is illustratedm Fig. 1.

The complexes have very similar structures,
based on distorted octahedral geometry for Pt(IV),
with the 'N2Cr"' iigands confirmed as tripodal (J'acial)
tridentates. The main distortion from regular octa
hedral geometry results from the small bite angles
of the tridentate, with C(l)—Pt—N and N—Pt—N
angles 78.5(2)-82.5(4)°. The chlorine atom is

*l"urttier information is available, see Supplementary
Material.
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TABIJC II. Bond Distances (A) and Angles (°) for Platinum in MejfCOPtlCIIiCpzjCIIjX)

Atoms X = H X = C1 Atoms X = H X = C1

Distances

Pt-C(l) 2.06(1) 2.030(6) Pt-CI 2.421(3) 2.443(2)
Pt-C(A) 2.05(1) 2.043(7) Pt-N(al) 2.129(8) 2.166(4)
Pt-C(B) 2.00(1) 2.035(9) Pt-N(lb) 2.145(7) 2.163(6)

Angles

C(A)-Pt-C(B) 89.2(5) 88.1(3) C(B)-Pt-Cl 91.3(3) 90.8(2)
C(l)-Pt-C(A) 93.8(5) 94.3(3) N(al)-Pt-N(bl) 82.5(4) 81.4(2)
C(l)-Pt-C(B) 94.7(4) 93.6(3) N(al)-Pt-Cl 94.5(3) 96.6(1)
C(l)-Pt-N(al) 78.7(4) 78.5(2) N(bl)-Pt-Cl 95.9(2) 96.4(1)
C(l)-Pt-N(bl) 77.9(3) 79.1(2) C(l)-Pt-Cl 171.2(3) 173.6(2)
C(A)-Pt-N(bl) 93.6(4) 93.7(3) C(A)-Pt-N(al) 172.1(4) 171.9(2)
C(A)-Pt-Cl 92.8(4) 90.4(2) C(B)-Pt-N(bl) 172.1(4) 172.5(2)
C(B)-Pt-N(al) 93.8(5) 95.9(2)

Pt-C(l)-C(2) 101.4(6) 102.2(4) Pt-N(al)-C(a5) 143.4(8) 143.4(4)
Pt-N(al)-N(a2) 108.8(6) 108.8(9) Pt-N(bl)-C(b5) 144.3(7) 144.6(5)
Pt-N(bl)-N(b2) 109.1(5) 109.5(4)

Tig. 1. Projection of Mc2(CI)Pt(CH2CpZ2CIl3) with selected
atom numbering; 20% thermal ellipsoids are shown for the
non-hydrogen atoms, and hydrogen atoms have been given
an arbitrary radius of 0.1 A.

traits to the CH2 group, and the three carbon atoms
are in a facial 'CsPt' orientation.

Although metallated tris(l-pyrazolyl)methane acts
as a tripodal, 'N2C~' ligand with Pt(lV), the new
chloro-bis(l-pyrazolyl)propane reagents may be of
more general interest as sources of tripodal 'N2C~'
coordination because they are readily synthesized
and the presence of halogen should allow the synthe
sis of derivatives for a wider range of metal species,
e.g. RjSnOV) [14], Pd(ll) and Pt(II) [15], Pt(IV)
[5], and Ni(ll) [16] recently studiedwith the planar
'NjC"' ligand [C6H3(CH2NMe2)2-rAD']~.

Supplementary Material

The atomic coordinates, ligand geometries, least
squares planes for pyrazole rings, thermal parameters,
and diagrams of both structures are available on
request from the Director of the Cambridge Crystal-
lographic Data Centre, University Chemical Labora
tory, Lensfield Rd., Cambridge CB2 lEW, U.K.
Any request should be accompanied by the full
literature citation for this Letter.
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