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INTRODUCTION 

A. Fuhrmann [8] generalizes Sperner's definition 

of the cross ratio of four collinear points with coord-

inates in a division ring to apply to four linear vari-

eties over a division ring. The form of, his cross ratio 

is still very classical. In Part 2 of this a cross ratic 

is defined for a configuration of subspaces of a contin. 

uous or discrete geometry. Although this cross ratio 

could'nt be further removed in appearance from the 

classical form we give a simple proof (Section 4) to 

show that, for the case of four points on a line , it 

does in fact agree with the usual cross ratio. Moreover, 

it will follow from the results of Sections 5,6 that 

for the case of finite dimensional (i.e discrete) geom-

etries, Fuhrmann's cross ratio is essentially the same 

as the one introduced here. The cross ratio has the 

desired property of invariance under collineations ( 

Theorem 3 ). 

Results, similar to classical ones are obtained for 

the properties of the cross ratio under permutations 

of order in the configuration.( Theorems 4-9 ). 

In Section 5 a representation, in terms of three 

"fixed" subspaces and a fourth subspace depending only 

on the cross ratio, is obtained for an arbitrary conf- 



-iguration (satisfying a minimum of position conditions) 

Section 6 is devoted to studying the invariance 

properties' of this representation. Several complete setE 

of invariants for the representation , under collineatic 

-ns , are obtained. These involve a cross ratio and 

some position conditions (Lemmas 4,5).  Theorem 12 goes 

half way towards providing a complete set of invariants 

in terms of cross ratios alone. However, the converse 

of this theorem is out of reach at present. Lemma 3 

reduces the question of invariance to one of a special 

kind of similarity involving the cross ratio. 

Part 1 contains a general discussion of continuous 

geometries. The exposition follows the original papers 

N-[5.1 of von Neumann, who invented the subject. Also, 

in Section 6 of Part 1 we collect some other results 

needed for Part 2. The references given for these are 

mainly to [7], since the original work [6] is unavail-

able. 

The author wishes to acknowledge that the results 

contained in Part 2, Sections 1-5 were obtained in 

collaboration with Dr. R.J.Smith; the remainder of 

Part 2 is due to the author alone. 
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PART 1  

CONTINUOUS GEOMETRIES AND REGULAR RINGS  

The axioms and basic properties of the systems call-

ed continuous geometries were developed by J. von 

Neumann in the sequence of papers [1] - [51 . The follow-

ing brief summary of these results forms a background to 

Part 2. 

I. AXIOMS:  Consider a class L of at least two differ-

ent elements .ov, -t 9 -C , 	 and in it a relation "4", 

with the following properties: 

A. /01,4-e is a partial ordering of L, relative to 

which L is a complemented, modular lattice with unit and. 

zero elements, i.e 

(i) For each pair "iv, -- there are(necessarily) 

unique elements.uvve(join),AwnI(meet) satisfying 

tl 	 and 1:4 

(ii) The zero(unit) element 0(1) is also unique 

and satisfies 0 4/01v(Alt. , 4 1 ) for all4r/vin L. 

(iii) The modular law holds in 

n (41 	lE ) = 	,n 'V) whenever 4: 4 Aut. . 
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(iv) For every/at,  in L there exists at least one 

-e (called a complement of -cA- ) in L such that 

‘e = I and 	-e= 0 . 

B. L is complete,relative the partial order < 1, i.e 

for any subset N of L there exists an element UN(r) N) 

	

of L such that : UN 4 	<=> -e 4  -al_ for all 4 in N ( 
4 N <=> 	-e for all 	in N). 

C. The lattice L is irreducible i.e 0 = n L, 1 =UT., 

are the only elements of L with unique complements. 

D. A limit notion can. be  introduced in L as foll-

ows: Let 2 denote an infinite aleph and consider a sequ- 

ence S of /cr. from L I  where a runs over all ordinals a 

< 2 • Define 

	

(1) If a <3 <2 implies ,trt,a  < 	then  
a-> 2 	a  

( ii) If a < <2 implies ,c.A-0  4 /ov a  then lim* (tit. )=n S a 
Otherwise 1im* (4,v

a
) is undefined. 

E. The lattice operations up n are continuous in L 

i.e,a<0<2 =>4„,c6. 4,6,, then 1 im*  (/r.n. rt -*) =1 i in*  ( /CA- )n.ie a 	0 	a ---...2 	a  

and if a< r3< 2=> '01- <,r.n,- then lim* (vt- v-e) = lila** )v-le 13` 	a 	 a 	 a 



( 3) 

The axioms (A)-(E) are invariant under the dualizat-

ion obtained by reversing the partial order, along with 

the resulting interchanges of u n and 0,1 . Hence the 

dual of any theorem derived from these axioms is also 

derivable from them. 

The axioms can clearly be satisfied when L is the 

lattice of subspaces of a finite-dimensional projective 

geometry; in particular, the notion of lintis void. 

2. THE DIMENSION FUNCTION: It is possible to define,Ln 

exactly one way, a function D = D(,,c/1-) on the elements 

of L such that the following conditions are satisfied: 

(i) D takes real values O, 41. 

(ii) = 0 <=>-crt-= 0, D(1) = 1 . 

(iii) -Zs ) + D(-rAdn-t) = D(-it) + D(- e) • 

(iv) The range of D is one of the sets 

D = 	0,1/n,2/n,....,1 1, some integer -n 

n or, 	Deo = 	all real numbers ;.(:), <1 1 

If D has range Dn  then L = Ln  is the lattice of sub-

spaces of an irreducible projective geometry with ordina: 

-ry dimension n+1. In this case L is called a discrete 

geometry. On the other hand, if D has range D,o , then 

L = L eo is the lattice of "subspaces" of an irreducible 

continuous geometry. All geometries mentioned will be 

irreducible. 



3. IDEALS IN RINGS:  We consider only rings 9?. with 

unit 1. The results stated below for right ideals have 

obvious counterparts for left ideals. 

A subset ALA-of A, is a right ideal if (i) xpy in 

AcA. => x+y in-at,  and (ii) x 	=> xy in -u--,all y in 

. The principal right ideal generated by an a in A, 

is the set (a) r = 	ax; xe A. I 

In any ring with unit the right ideals form a lattic ■ 

L under the relation of set indlusion; lattice meet is 

set intersection , whilst lattice join is defined by 

= x+y; x 	y in-e 1. L has as zero elemem 

the empty ideal 01 and as unit element the ideal A, 

An element e in A, is called idempotent if e 2 = e. 

If e is idempotent so also is 1-e. For idempotent e we 

have : x belongs to (e) r  <=> ex = x. 

Two principal right ideals ,ot., ,e are inverse if and 

only if they are complements in the lattice of right ide 

-1s. This being,there exist a unique idempotent e such 

that /‹.^.= (e) r ,  = (1—e) r . 

4. REGULAR RINGS:  A is said to be regular if it satis-

fies one of the following equivalent conditions: for 

every a in A. there exists 

(i) x in A such that axa = a 

(ii) an idempotent e in A such that (e) r =(a) r 



(5) 

(iii) an idempotent f such that (f) 1  = (a) 1 . 
ideal 

(iv) a right'inverse to (a) r . 

= (e)1  = 

 

) a left ideal inverse to (a) I . 

Every division ring is regular( x = a -1  in (i) ). 

Let A, be a regular ring. IfAcrt,is a right ideal in 

A, then the left annihilator of 'Cr" is defined as 
/ = x in A/  ; xy = 0 for all y 	1 

The set 4n'ris a left ideal, principal if -VI, is princip-

al. In particular, 	= (e) r for idempotent e, then 

a / 1-e) l e  

Denote by R 	) the set of all principal right 

(left) ideals in a regular , ring A, . Then 

(i) R 	are complemented modular lattices. 

(ii) Rk.  is anti-isomorphic to L 	under the one-one 

inverse mappings 

in R, 	/cry 	, 4 in L, -> r  

(cf. Lemma 1) 

The centre g of a regular ring is a commutative 

regular ring. An ideal in a regular ring which is both 

left and right is called a two-sided ideal. A principal 

ideal ,<Jt,  is a two-sided ideal if and only if it is 

generated by an idempotent in the centre. 



(6) 

A reduction of a ring Ar is a decomposition of X 

into two two-sided ideal direct summands. If A, is 

regular its only reductions are of the form (e)ilt u(1-e) t  

where e is a central idempotent and ()denotes two-

sided ideal. Since the only idempotents in a division 

ring are 0,1 it follows that A,  is an irreducible 

regular ring if and only if its centre is a field. 

5. COORDINATIZATION:  It is well known that any discrete 

(projective) geometry Ln satisfying Desargue t s theorem 

(in particular with n>3) can be coordinatized, using 

homogeneous coordinates for the points of the geometry. 

v.Neumann expressed this classical result in the followL 

-rig way: Let 7 denote a division ring and T n  the ring of 

all nxn matrices over 	; then for each (n-1)-dimension 

al projective geometry Ln(satisfying Desargue t s theorem) 

there exists a suitable division ring T such that the 

class of all linear subspaces of Ln, partially ordered 

by inclusion, can be put in lattice isomorphism with 

the class of all right ideals of T n . Generalizing this 

result von Neumann showed that for any complemented 

modular lattice possessing a homogeneous basis of order 

n(cf. 6 for the definition of this) a regular ring can b 

-e found such that L is isomorphic to the lattice of 
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principal right ideals of A . Moreover, for 143 this 

ring 	is uniquely determined by L, to within ring 

isomorphism. 

Thus, the lattice of subspaces of every 

discrete or continuous geometry is isomorphic to the 

Rp,  of an irreducible regular ring A, 2 unique to within 

isomorphism(except for the exceptions mentioned). 

If L is a discrete geometry Ln  then is the complet 

matrix ring PI, over, a division ring ID, whilst if L is a 

continuous geometry L 00 2 then the corresponding irreduc-

ible regular ring is called a continuous ring. 

An algebraic characterization of the continuous ring; 

may be obtained as follows: For any geometry L the num-

bers 

D((a) r ) 	D'((a) I ) 9  1-D((a) 11,5 	1-D'((a)) 

are equal, for any a in the ring of the geometry, where 

D( D' ) is the dimension function defined on  

Their common value is called the rank, R(a) , of a. The 

function R(a) has the following properties 

(i) 0 	R(a) < 1 for all a in 17, 

(ii) R(a) = 0 <=> a = 0. 

(iii) R(a) = 1 <=> a -1 
exists in A . 
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(iv) R(a) = R(b) <=> a = ubv 1  where u-1 1 v -1  exist. 

(v) R(ab) 	mini R(a),R(b) 1 

(vi) R(a+b) ‘ R(a) + R(b) . 

(vii) For e2  = e l  f2  = f, ef = fe = 0 we have 

R(e+f) = R(e) + R(f) . 

The function R(a-b) serves as a metric in 	( the 

rank distance ). If *fi is the ring of a discrete or 

continuous geometry , it is complete in the topology of 

the rank distance i.e, if a 1 ,a2 ,a3 ,....- are in > then 

the existence of a in A with 

lim R(a -a) 

is equivalent to 

lim R(aR -a w)=  0 co 

If, conversely, •a rank function with the properties 

(i)-(vii) is defined on the elements of an irreducible 

regular ring A., then 	will be the ring of a discrete 

or continuous geometry if and only if it is complete in 

the topology of the rank distance. It will be a discrete 

ring(i.e matrix ring) if the range of the rank function 

is the set i0,1/n 2 2/n,....,11 for some integer n, and 

a continuous ring if the range of the rank function is 

the set of all real numbers >0,41. In either case 
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is called a complete rank ring. In this way a one-one 

correspondence between continuous geometries and contin-

uous rings is obtained. 

• 

• 
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6. 	It is convenient to list below some other defin- 

itions , theorems and lemmas which will be drawn upon 

in Part 2. We give these results in the setting of a 

system L satisfying axious (A)-(E), and the associated 

complete rank ring A, (i.e L is RA ), although many 

of them remain valid in a more general setting. 

ar The operations 9  introduced in 4 have the addition 

-al properties given by 

LEMMA 1:  For each re.",, ,e in L 
a , => "ON. 

&I" (ii) 	--4J2.- 	 , 

rra 
47",  = 

( iv) 	(,)tite 	= 

A proof is given in [ 7; Hilfssatz 1.3, ch. VI 

LEMMA 2:  If epf are idempotent elements of A ,then 

(i) (e) rL/(f) r  = (e+g) r  , where g is any 

idempotent such that (g) r  = ((l-e)f) r  

(ii) (e) rn (f) r  = (f-fg) r  „ where g is any 

idempotent such that (g) 1  = (f-ef) x . 

r-7; Hilfssatz 3.2,3.3, ch VI 



LEMMA 3:  If e l f are idempotents elements of A, ,then 

(i) (e) r  = (f) r  <=> e = f+fy(1-0, some y in A 

(ii) (e) = (f) 	<=> e = f+(1-f)zf, some z in A 

17; Hilfssatz 1.5, ch VI -1 

Call an element a of A non-singular if a ' 	in 

• Then 

LEMMA 4:  If epf are idempotents of the same rank in 

A then e = sfs -1 , for some non-singular s in A . 

E9; Lemma 9, p 4.00 1 

LEMMA  5: (a) r  = (b) r  <=> a = by for some non-singul-

ar v in 

r7; Hilfssatz 1.6, ch VII -1 

LEMMA 6:  (i) If e is a non-zero idempotent in A 

then Ote ( = iexe;x in )k 1) is the complete regular 

rank ring corresponding to L((e) r) (= the sublattice of 

L of all ,01- such that-o'4 (e) r) . 

(ii) If 	is the centre of )1 then e,e 

is the centre of eike . 

D ;  Lemma 10, p 61 
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RELATIVE COMPLEMENTS:  If,r..te4 _e in L then a relative 

complement of .cdt,  Lin -e is an element (not necessarily 

unique) of L such that 'en- ri = 0 and. 'al, 	= -6:(  
Since L is complemented and modular it is also relativel2 

complemented, i e whenever -c'-- 	exists at least 

one relative complement of /en-- in.t ( for, if 1".1 is a 

complement of 	then - e n 1? is a relative complement 

of 'en- in 	). 

LEMMA 7:  If ape in A are such that e2=e and (e) r 

(a) r then (a-ea) r is a relative complement of (e) r 
in (a) r . 

[11; 3.2(111) 

INDEPENDENCE:  A finite set krti ;I = 1, 	of elementE 

of L is called independent if 

• 	 ( 1 ) 

Equation (1) holds if and only if for every two disjoint 

subsets I 1 I 2  of the index set 	 we have 

(2) 	(run. ) 	r r 1.1 ) =0 
lei 1  icI2 

E7 ;  Definition 1.15, Satz 1.8, ch I 

For independent -riti. (1=1,...,k) write 	e 	 E9 

in place of ■at-i 	v vtic  . 

	Li4 	n 	= 0, all I = 1, ...,k-1. i+1 
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A setie.-1'  i = 1,....,k1 of idempotents is called indep-

endent if 

e.e = e. if i=j 
j 	0 if i/j 

i,j=1,... 1 k 

THEOREM 1:  If e1' 	ek  are independent idempotents 

from 94, then the (e. ) r  are independent subspaces of L 

and 
(e. ) e r 

 

9 (e iR ) r  = (ta il  + 	+ e ) r 

 

for every set of distinct integers 	 on the 

range [1, 	. ( the e i  +...+e ;  are idempotent) 
J*1  

THEOREM 2:  -ovi 1 	wk  are independent if and only 

. if there exist independent idempotents e i 	ek  such that 

= (e i ) r  p I = ipoopk. 

[7; Satz 1.3,Satz1.4, ch VI] 

HOMOGENEOUS BASIS:  If two elements rat-, -g of L possess a 

con 	non complement 	(i.e 	= 	e ) then we sa3 

"at- is perspective to -e (writtenm..~-e ) with axis 

Notice that the conditions (1)v1- 9 	= -e 	-E 	some 

,C and ( ii) 	= 4 EDI-. =(i) r some 'es_ are equival- 

ent. 

[1; par 6.2 
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n independent subspaces'O'- 1,..., ir 	are said to 

form a basis for L if 	1 	= 1. If also 

ipj = lpoolon 

then the basis is called homogeneous. n is called the 

order of the basis. 

We also require 

LEMMA 8: -1-/-■ 	<=> D ('r.A-) = D(4 ) 

(in fact this is how v Neumann defines D; see E13) 

EXISTENCE OF MATRIX UNITS:If 	= 0 for some-. 

in L then we denote by L. 	the set of all relative 

complements of 4A-in IA. 	,i.e 

Eite trt.  <=> "Cm 9  = 

THEOREM  3: Let e 1 ,e2  be independent idempotents such 

that ,01-= (e i ) r , 	= (e2 ) r . Then ,C is in L4 	and 

only if there exists a unique e 12  ink such that 

e l e12 e2  = e12  and 	= ( e2-e12 ) r 

THEOREM 4:With the same notation as in Theorem 3, 

/c. is in both L 	L 4 if and only if there exist 

unique elements e 21 ,e12  in A such that 

e l e l _e_= e12, e2e21e1 = e 21 , e21 e12  = e2 , e12 e21  = e1, 
and /ID= ( e l —e21 ) r = (e2 —e12)r 

[7; Hilfssatz 4.1 1  Satz 4.2, ch vi 3 
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The left multiplications in A carry right ideals 

into right ideals and so induce mappings in L. Denote 

by yt  the mapping (x) r  -> (tx) r, all x and some fixed t 

in 2. . Then 

LEMMA  9: (i) yt  is an order-preserving enclomorphi-

sm of L, i.e 

==> Yt'lln- 4 Yt -e 

(ii) If t is non-singular then (y -t  ) -1  

exists and equals y t-1  and Y't  is a lattice automorphism, 

i.e 	"-cm. < <=> Yt'IrL Yt-t.  
[9; Lemma 3, p 3993 

It follows easily that the y t  with non-singular t 

have the additional properties 

Yt (4A- u 	= 	Yt 

Yt (-(fl-n 	= Yt -zr" Yt-t  
D(roft. ) =  
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A system of n2 elements eij (i,j = 1 1 ...,n) of X is 

called a system of matrix units if 

{O.  if j # k 
(i) 	e. .e 	- ij kh e

ih if j = k 

(ii) fe ii  = 1 

If the e 1  are a system of matrix units then the e 1  

j 

independent idempotents. 

LEMMA 10:<n- 1 	i =1,..,n1 is a homogeneous basis 

for L if and only if there exist n matrix units e. . in 

A such that-4A- = (e. ) r° 

[7; Satz 1.1,1.2„ch IX -1 

LEMMA 11:  rn ,the nxn matrix ring over r , is a 

regular ring if and only if r is regular. 

D; Satz 2.1, ch 

THEOREM 5:  L has order n if and only if there exists 

a regular ring r n  such that 	is isomorphic to r n  

Lemma 10 provides a system of matrix units e 1 ; taking j 

= 	e l' e
l = ell, we have an isomorphism as follow: 

XS R and (x ii )e rn correspond if and only if 

x = Ze. A x ij e lj  
till   1 

and 
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= elixe ji 	1,j = 1,....,n 

[7; Hilfssatz 2.2,ch IX] 

THE CORRESPONDENCE BETWEEN MODULES AND IDEALS:  Let r 
be a regular ring and denote by V nr  the n-dimensional 

vector space over r • A subset M of Vrir  is called a 

r right submodule if (i) v 1 ,v2 eM => vi +v2 eM and (ii) 

veM => vye M all y e F. For every right submodule M set 

ecx(M) = ( ii ); 	 M, j = 1 . 

Then r."-(M) is a right ideal in rn  • Conversely, given 

a right ideal An- in rn  let 

M (•(71-) = 	(. 	n . • 	) '• (' 1 ) = A 1  ), some A e 
 ' 

Then M(4A-) is a right submodule of V rn  and 

= "r-rt- 	M(4"-(M)) = M. 

THEOREM 6:0The correspondence M <->(M) is a lattice 

isomorphism between the lattice of all r- right submodules 

of Vrn  and the lattice of 'right OP • 

(ii) Under this isomorphism the right 

submodules which correspond to principal ideals are 

exactly those which are finitely generated. 

[ 7; pp 186-188 
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PART 2 

A CROSS RATIO IN CONTINUOUS GEOMETRY 

In all of what follows, A will always denote, 

without explicit mention to the contrary, a complete 

rank ring and L its lattice of principal right ideals. 

1. Firstly, we prove two theorems which will be useful 

later on. 

THEOREM 1: For any apb in it , with (h) 1  = (a)1 

(i) D((a) r..)(b) r) = D((hb) r) + D((a) r ) 

(ii) D((a) rn (b) r) = D((b) r) - D((hb) r) . 

PROOF: Let 	= (a) r 	= ( b) r  p 'C =  

and let 11 be a relative complement of I."' in 7774 p  i.e 

< ED 	= 77), . Then 

"MI 	771, = 

	

= 	7? 	p  as t 

Also, ?)n 	= (0) r  , as 

D( 	n h ) = D( 	) + D( 	) - D( rni 	) 

= - D(70i .71),) +D( 7ni  ) - D(Mi n Mt) +D(m1 ) 

= 0 

so that 
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= (0)1 = ( 717i n h ) r  

= (Th lr n  xr)z 

= 77)1 1' 	h a ) rr 

= 7711  

E Part 1 ; LemnEt 1 and its dual 
In other words, 

	

(h) v 	= (1 )1, 

and for some y in A p in 71 1  we have 

yh + p = 1 

From Pk = 	77 it follows, by Part 1 ; Theorem 2] 

that there exist independent idempotents e l  ,e2  such that 

= (y r  , 	71 = (e2 ) r  , 7r 	(e l  + e2 ) T, 

and hence that 

b = (e l + e2 )b = e l b + e2b . 

Then, since e l b c  771 

hb = he2b = hn 

where n = e 2b and clearly R(n) = D(7) ) . 

Thus 

	

R(hb) = R(hn) 	R(yhn) 

= R((yh + p)n) 

= R(n) 
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And, as obviously R(n) R(hn), equality must hold p i.e 

R(hb) = R(n) = D(7) ) . 

En addition we have 

D( 	) = D ( ) - D( 	rt Mx ) 

=- D( 702.y 	- D( 	) 

and therefore 

R(hb) = D((hb) r) = D(Mi ‘ant  ) -D(7771 ) . 

This proves (1); (ii) follows immediately. 

Now let a = cf, b = c(1-f) for some cpf in A. . 

Then 777,,772, = (co ru (c(1-f)) r  contains cf + c(1-f)= c. 

But cf, c(1-f) belong to (c) r, which therefore contains 

, and so equality holds i.e in this case we have 

D(Nunk) = D((c) ) 

and we have proved 

COROLLARY 1: R(c) = R(hc(1-f)) + R(cf) , for any 

c o f in /Z. with (h) 1  = (cf)f, . 

Furthermore, let c = df + e(1-f) ; then cf = df C(1-f) 

= d(1-f) and Corollary 1 gives 
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COROLLARY 2: For any d re,f in A- with (h) 1  = (af) 7, 

R(df +e(1-0) = R(df) + R(he(1-f)) . 

THEOREM 2: Let apf in A be such that f 2  = f 

) = (a(1-f)f, . Then 

R(haf) = R(h) = R(f) 

if and only if 

(a(1-4))r 	(af) r 	(1) r  . 

PROOF: Necessity: R(haf) = R(h) = R(f) => a is 

non-singular by [ 10] . Then (a(1-t)) r%d (af) r  contains 

a(1-f) + af = a, i.e 

(a(1-0) r N./(af) r  > (a) r  = (i) r  

and equality must hold. Also 

(a(1-0) r 1 (af) r  = (0) r  

for, if x belongs to the left-hand side, then for some 

y 2 z in A, x = a(1-f)y = afz ; thus .a-l x = (1-0y = 

- 
= ft , and left multiplying by f gives ft = a

1  x = 0. 

Sufficiency: Suppose (a(1-f)) ra)(af) r  = (1) r  . Then 

a is non-dingular, since for some y o z in 



(22) 

a[(1-f)y +fzi = 1 . 

Also, 

h = ha(1-0y + hafz = hafz 

so that 

R(h) 4 R(haf) 4 R(h) 

i.e 

R(h) = R(haf) 4 R(f) . 

But, 

R(h) = 1- R(a(1-f)) 	1- R(1-f) = R(f) . 

This completes the proof. 

COROLLARY 31  For any b,c,f in A. with f 2  = f, 

(h) I  = (b(1-f))1, 

R(hcf) = R(h) = R(f) 

if and only if 

(b(1 -f) li_e a ( cf ) r  = (1 ) r  

PROOF  : Let a = b(1-f)+cf in Theorem 2 . 
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2. THE CROSS RATIO 

By a configuration we mean p as always, an ordered. 

quadruple. Let Pn(K) be an n-dimensional projective 

space over a field K. Suppose that two hyperplanes u •  

th 
w2  are defined by the (n+1) -order row vectors r1  ,r2  

% 
and the two points wit it2  by means of the (n+1) th  -ord.er 

column vectors r3, r4. Then the cross ratio of the confi-

guration iw 1 ,w In1'n2I  can be defined uniquely as 

116) 1 , w2 0'1 ,7'2 )  = 

. 1' 1  r3  r2 . r3  

rer r2 .r 

For K a division ring, Sperner defines the cross 

ratio as 

R = (ri .r4) -  ( 1 .r3 )(r2 .r4) -1 (r2 .r3 ) 

and shows that it is uniquely determined up to inner 

automorphisms of K. 

If iV1 ,V2 ,V3 ,V41 is any configuration of subspaces 

of P(K) (K a division ring), where V. is spanned by the 

columns of a matrix M and the null-space of V. by the 

rows of a matrix 'M. 1  Fuhrmann [8] defines a formal 

matrix 

A = (*Mi.M4)-1(*Mi.M3)(*M2.M)-1('M2.M3) 



2 14-) 

and shows that an N.S.0 for A to exist is 

V-I 	V14. = v 	V3 = V (n)  

the space spanned by the columns of the (n+l) th-order 

unit matrix. This being so , the class of all matrices 

similar to A is invariant under non-singular collineat-

ions, and is by definition the cross ratio 13c(V i ,V2 ;V3 0/4, 

of the configuration. 

For a configuration 	TP1 from L the 

conditions 

(1)  

hold if and only if there are unique idempotents e tf 

with 

(2) = (e) r 	= (1-e) r  'C = (f) r 	= 

For any a in A. , <a> will denote the set of all 

sas -1 , for non-singular s in A • We make the 

DEFINITION 1:  The cross ratio of a configuration 

42,4,1 satisfying (1) is 

C.'en• 	; 	) = <efe> 

where ea are given by (2). 
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THEOREM 3:  The cross ratio is invariant under all 

non-singular collineations y t  . [Part 1 ; p 15] 

PROOF :  Sinceyt  is a lattice automorphism , it 

follows from (1) that 

yt 	ey t 	= ( ) r = yt,ceyt,z0 

-1\ 

	

and since yt 	= (te) = (tet ) r 	it follows 

that tet -1 ,tft-1 are the unique idempotents in the sense 

of (2) . Hence Cyiv1, 2 yt4E;yt -c l yi.1,9) is defined and 

equals 

	

- 	- 	-1 <tet 1  tft 1  tet > = <tefet -1 > =  

3. PERMUTATION PROPERTIES OF THE CROSS RATIO 

All told there are 24 possible cross ratios, corres-

ponding to permutations of order in the configuration . 

Of course, different conditions (1) are required to 

define them ,and therefore it is reasonable to expect 

some cross ratios to be equal. 

THEOREM 4: 	nks1. 2 -e;s9,t ) = <e-efe> 

PROOF:  Obvious. 
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THEOREM 5:  4.51. Q: -  =  40.0  =-v-9 = ( 1 ) r  imply 

= 	cu9  

PROOF: There exists a unique idempotent g such that 

?/1/1.= ( e ) r  = (g) r  andl, = (1-f) r  = (1-g) r(i.e, (f) I  = (g) 1; 

Hence, [ Part 1 ; Lemma 3 J, for some xiy in 

g = e + ex(1-e) 	f = g + (1-g)yg 

and as fg = f eg = g we have 

fef = fefg = fefeg = (g +(1-g)yg)efeg 

	

Let e l = (1-g)yg 	= ex(1-e) Then 0.1.sX1  - 

= 1-s i  (i = 1,2), gs 1 =s2e=0, s i g=s i , es2=s2  and 

	

( 1 +s)( 1 -s l  )fef ( 1 	) ( 1 -s 2 ) 

= (1+s2 )(1.46: 1 )(g 	(1-g)T6efeg(l+st )(1-82 ) 

= (l+s2 )efeg(1-93. 2 ) 	as ge = e 

= ( 1 +82  ) efe( 1 +s2  ) ( 1 -s 2  ) 

= efe 

i.e, we have shown <fef> =<efe> , which is the de6ired 

result. 

THEOREM 6: ,tn/ G 4 = 	-e 	= (1 ) r  imply 

X('C,APVert-, -g) =-11c(1/1-p -eVe t/P 
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PROOF:  Interchange 411, -le with'e I I,  respectively, 

in Theorem 5 . 

THEOREM 7:  '.0,1a)...e = <=631.0 =-e 	'c =—m, E91.9 = (1) r  

imply 13,(17v 1 /1); ( wher4 	f.€ 01-emotes th-e 

ibxretse 	Jzfe 	e  9z,e  the sy htini until unit 4) 

PROOF:  There exist unique idempotents g v h such that 

(e) r  = (g) r , 4 =(I—e ) , =(I—h) r  , ,c =(44 = ( h)r P 

= 1 •"•f) r  = (1 	r  . 

Since 13c(vt, 	vc, ) = <ghg> we are required to 

show that <ghg> = <efe>. As ge = e, he = h, hf = f, gi=g 

we have 

eghgefe = ghefe = ghfe = gfe ge = e , 

so that —efe exists and equals eghge. Then, as eg = g 

and g = e + ex(1-e) for some x in A • 
ghg = eghgeg = eghge(e + 6x(1--e)) . 

Let s = ex(1-e). Then se = 0, es = s so that 

(1+s)ghg(1-s) = (1+s)eghge(e + ex(1-e))(1 - ex(1-e)) 

= eghge . 

Hence <ghg> = <eghge> = <efe> 

THEOREM  8: ii = 6)IP 	= (1) r  imply 

( i) Ii4(1A. 	; 	, tP ) = )3,(tP g ; 42 1 -zA-) and 

( ii)
; 111- 	 = R(--e ,;-co ,t ) 
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PROOF: There exists a unique idempotent g such that 

/1 ".= (e) r  = (g) r  = (f) r  = (1g) r(Orp = (g)') 

ad (i): For some xpy in A we have 

g = e + ex(1-e) , 1-f = g + (1-g)yg . 

Then, since (1-f)g = 1-f 0  eg = g 

(1-f)e(1-f) = (1-f)e(1-0g = (1-f)e(1-f)eg . 

Let s i  = (1 -g)yg, s2  = ex(1-e) .Then, since ge = e, 

(1+s2 )(1-s 1 )(1-0e(1-f)eg(1+s i )(1-s2 ) 

= (1+s2 )(1-8 1 )(g+(1-g)yg)e(1-f)eg(1+s 1 )(1-s2 ) 

= (1+s2 )ge(1-f)eg(1-s2 ) 

= (1+ex(1-e))e(1-0e(e+ex(1-e))(1-ex(1-e)) 

= e(1-f)e 

so that <(1-1)e(1-0> = <e(1-f)e> . Also, 

(1+s2 )(1-s i )(1-f)(1+8 1 )(1-ts2 ) 

= (1+s2 )(1-(1-g)yg)(g+(1-g)yg)(1+(1-g)yg)(1-s 2 ) 

= (1+s2 )g(1-s2 ) 

=(14.8 2 )e(14-s2 )(1-s2 )  

= e 

so that <1-f> = <e> . Finally, since 

(1-f)(1-e)(1-f) = 1-f-(1-f)e(1-f),efe = e-e(1-f)e 

we must have <(1-f)(1-e)(1-f)> = <efe>, which is (i) . 

ad (ii): (f) r  = (1-g) r  and (1-e) = (1-g) mean ,for 

some y,z in A , 
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1-g = f + fy(1-11 ) and 1-e = 1-g + gz(1-g). Let 

= gz(1-g), 2  = fy(1-f). Then, as (1-e)(1-g) = 1-e s, 

“1-g) = 1-g, 

(1+B 2 )(1-s 1 )(1-e)f(1-e)(1+s,i )(1-s2 ) 

= (1+82 )(1-s 1 )(1-e)f(1-e)f(1-g)(1+s i )(1-s2 ) 

= (1+s2 )(1-g)f(1-e)f(1-g)(1-s2 ) 

= f(1-e)f, 

so that <(1,e)f(1-e)> = <f(1-e)f>; similarly, using the 

same non-singular t = (1+8 2 )(1-si ) we find “1-e)t -1 = f, 

i.e, <1-e> = <f>. Finally we have 

= <fef>, 

which is (ii). 

THEOREM 9:  ,01, 	_e = C IP = 4 (6) -to = (1) r  imply 

( 	461- , ; ,-tp = 13kep 	 and. 

(ii) 	0,0 ;02-40 = 8c(--et-m-;-tp,t ) 

PROOF:  Interchange',- with c , -tP respectively 

in Theorem 8. 
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From Theorems 4-9 we can deduce the situation illus-

trated in Table 1, where we have made the identification: 

= 1, 	= 2, 	= 3, 4P = 4. Relations in the margin 

are necessary and sufficient for the existence of the 

cross ratios in the corresponding rows. Either condition 

at the end of a double arrow is sufficient for the equa-

lity of the cross ratios connected. Irr.general the cross-

ratios in any one column are distinct, whilst equality 

in one row indicates the corresponding equality in the 

other rows. When -tn. 	=  ED 14. =  =  iv = (1) 

it is clear that, in general , there are exactly six 

distinct cross ratios(viz., those in the same column). 

• 



• 

TABLE 1 

( 31 ) 

(12;34) = <efe> (34;12)=<fef> (21 ;43)=<(1-e)(1-f)(1-e)> 
1+2 
3+4 1+4 	< 	 > 2+3. 1+4 	< 	 > 2+3 

(12;43) = <e(1-f)e> (34;21)=<f(1-e)f> (43;12)=<(i-f)e(1-f)> ( 21 ;34)=<(1 .-e)f(1-e)> 
1+3 	< 	 > 2+4 

1+3 <  	> 2+4 

2+3 
1+4 

2+4 
1+3 

(14;23) 

(13;42) 

(13; 24) 

= <eife> 
1+2 < 	 

= <e- i > 
1+3 	< 	 

( 32 ;14)=<fef> 
> 3+4 

(41 ;23)=<(1-f)( 1-e) (1-f)> 
1-+2 <   	

(23;41)=<(1-41 -f)(1-e)> 

(41;32)=<(1-f)-(1-..r)(1-e)(1-f)> 
>2+14 

--> 3+4 

(23;14)=<(1-e)-(1-e)(1-f)(1-e)> 

 	2+4 > 

(32;41 )=<f-fer> 

1+3 	< 	 

= <e(1-f)e> 
1+2 < 	 

(31 ;24)=<f(1-e)f> 
> 3+4 

(42 ;13)=<(1-f)e(1-f )> 
142 	< 

( 24; 31)=(l -e)f(1-e)> 
	>3+4 

(31;42)=<f-fef> = <e-efe> 42; 31)=<(1-f)-(1-e) (1-e)(1-f)> ( 24.;13)=<(1-e)(1--P:.)(1-‘)(1-e)> 
1+4 < 	 > 2+3 

1+4 < 	 > 2+3 

(04;32) 
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L1. FOUR POINTS ON A LINE 

Let A be the 2x2 matrix ring r 2  over a division 

ring r • We will establish the connection of our cross 

ratio with the one usually ascribed in this case. 

Considertwor-submodules(points).of P i 

X. 
P. = 

 

 
1  

(
1
1 p ; fixed?1

1' 
arbitrary p in r I, (i = 1,2), 

andx, /x 2 . From 74 ,94 x2  it follows that P 1  and P2  are 

complementary. Now, under the one-one correspondence 

between submodules of V2 and principal right ideals in 

r describedin[Part1;Theorei orresponds 

	

2 	 1 

to the principal right ideal 

= ( 11_1  0 
I x. 	0 

t 

	

J 	r 
where1-1 (1=e.,say, is idempotent. Moreover, the 

X- 0 
1 

lattice isomorphic nature of the correspondence shows 

ru Ge(fj,. = r 
2 

and hence there exists a unique idempotent e in r 
2 

such that (e 1 ) r = (e) r and (e2 ) r = (1-e) r . Therefore, 

for some x11x2 in r 2  we must have 

e = e l + e 1 x 1 (1-e 1 ) = 1 - (e2 + e2x2 (1-e2 )) • 

Now, 



and 

(2) 4-e2 -e2x2 (1-e2 ) = 
C 2 

X2
-1 
 c X 2

-1 
 - X

-1 
1 -X 2

-1 c 2  

x2= 
cX -1  

-1 1 411DX 
(1) e 1 +e 1 x 1 (1-e 1 ) = 

-1 	-1 	-1 
X
-1
b 

=  

(33) 

Equating (1) and (2) we find 

- 	-1 -1 b =-c, cX 2 1  = 1-bX 1 	,-X2 	+X-1 cX -1 =X -1 
2 	2 	1 	- X i  bX i  $ 

-1 	-1 
and 	1- 2 c=X b $  ie 

(3) -bx2  = 1-bx -1  

(4) -•x. -1 	-1  2 	2 	2 

(5) 

(3) and (5) give the same solution, viz 

(6) b = (XT1 -X -2-1 ) -/  = X2 ( x 2  X 1 ) -1 1. 1  = x/  (x 2  - 	) .-1 X 2  

whilst (4) holds whenever (3) does, for (4) is t using (3) 

- X-1  2 (1+13X-2 1 ) = - X-2
1 b X-1 = 	(1 X.71 b)x71   1 

so that, finally, we have 

 

1-X 2( 	-X1) -1 	X2 ( X 2 -X 1) -1 X i 	, 
-1 -1 	-1 	-1 

X i -X i X 2 ( X 2 - X 1 ) 	X i X 2 ( X 2 - X  ) 

 

e = 

 

  

2 



-A 2 

1 

0 

0 

Then 

efe = 
A 3 	0 

A 3  

(x2  - x 1 ) 1  o 

0 0 X i  -A4 

1 1 0 X, 

-A2 

0 	1 

( x2....x1 )1 ( x4...x3 )1 0  

0 	0 

( x2 - 	) ( x3 - x 2 ) ( x4 - k3 ) X, 

1 

0 0 

- 	) ( x 2  - x, ) 
( x2 - 	) 

Similarly, if P3 ,P4  are r-submodules with different 

parameters 1.3 2 1.4  , we find for the unique idempotent f 

such that /r/2 ED ,o2.= r I.  2 

f = 
-x 3 (x4  -x 3 ) 1  

-( x4 - x3) -1  

x3( x4 - x3 ) -1  x4 

( x4 - x3 ) -1  x4 

Using (6) we find 

1 0 1 X 2 (A 2 •- 0 

0 1 0 0 

and 

1 0 1 A4 -x3 ( x4  - x)_1  
1 f 1 



• 
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x1 	0 	0 (X2 —X 1 ) -1 	0 —1 	X 2 

1 	A1 0 	0 0 	 0 0 	-1 

where 

* = (X 2  - ) -1  (X 3  - X 2 )(X4  - X 3 ) -1  (Xi - x4 ) 

and just as well 

efe 

where 

= 

= 

1, 

1 

b 	I *  

1 

1 

(X 2 -  
,-2 

0 

11 

° 00 

0 

1s. 1  

X i 

1 

( x2- 

b 

-2 

1 

-1  , 

X i 	(X 2 -X i )  

) -1  

0 

x2 

b = 

0 

xi 

Al 

X 1 )  

0 

0 

—1 

0 

0 

7. 11  

X 2 X1  

1 

X 2 

-I 

11 

1 

0 

0 

A l 

1 

1 

1 

0 

0 

0 

A l  

0 

Al 

1 

—1 

0 

1 

—1 

and finally, we conclude that, due to the isomorphism 

between r ol and r  there is a one-one correspondenct 0 0 

  

<efe> <-> <4r>. 

when 	Theô'em II a4Na 12- a*e the same as 1:9 ;Theolems 214 
; he'nce a? afrfrficatior) of Lenrbla 2 wi/i Show tAat-  °Ult. CliofS 

'IN. a rio coincides wit-I) &bat- 0H:2j 	Ex,s case. 
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5. THE NORMAL FORM OF A CONFIGURATION 

The following theorem will ensure the existence of 

matrix units. 

THEOREM 10:  Let e1'e2 be idempotents in 	with the 

following properties: (i) e 1 e2  = e2 e1  = 0 and (ii) 

R(e l ) = R(e 2 ) . Then there exist unique elements e 12 , 

e21 in A such that 

e l e i -e- e e = e12, e2e21e1 = e21 , e21 e12 = 

PROOF: It suffices to show the existence of a 17 in 

L such that : 	(el ) r  G (e 2 ) r  = (e l ) r e 	= (e2 ) r 	. 

Then the existence and uniqueness of e12 ,e21  is guarant-

eed by Part 1; Theorem 4]. Let fit. = (e l ) r ,4 = (e2 ) r . 

Then El(m) = D(4!) is equivalent 	Hence there 

is a 	in L such that 'T/1.. G)10 = 4 6319 . Then 

) (ta 	= 	((viQ ) n -t ) 

as 	. 	-ED 

= 	(( ( 	PI 1W )) 

as 	itO=J.1 LO (./ 

= /tit ul 

But this is equivalent to '0.-vtP-rit,u_1(  . Let 

4": = -19 n (--tft. 	i) 

e2  and e12e21  = el  
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and we have 

re. 	= tea n 19 ( ,w_ 

= (0) r / as 'CRM 4.0  = (0) r 
and 

= ern_ ci 	(r/L c) 	)) 

= erf u tf) n (-eri 	as ire- 'fa ci -e 

= /Ca 4.1 	y  i. e 

Similarly, -v-t- G 4 = 	. This completes the proof. 

The configuration irca- 0 -it t -0 0 101 will be denoted by 

C . If C 0 6 are two configurations such that for some 

non-singular a in A. 
A ^ 

= 	. 	= t 
' 
. 	4.9 = 
 'a 

then we say that there exists a non-singular collineatiol 
A 

of C onto C and write ya : C -> C 

We will now give a generalization of the well-known 

theorem which states that any four distinct collinear 

points can be projected onto the points 0 1 1,00 0  r, where 

r is their cross ratio. 
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Suppose(from now on) that the members of C satisfy 

( 1 ) rex), 	0 	= 	= -MOO= ( 1 ) r  

and. let M I  1n-2. be  relative complements of 	rvC in 

Arit„ 	respectively l i.e 

• 	 crta 	 = /-a/ 	n /C. ) 	177z  = 	. 

Then 
)(./ /21) 

ci 

= (1) r . 
Also 

( put 	) )791 ) 702.  = 	n 

= ,u2 7)72  n , as /PL  
= eta n T. 	Tht  

= (o) r  . 

and since 

(/canT )07b1  = (0) r  

we conclude that rvin' • Th i  9 ML  are independent and 

[Part 1 ;Theorem 2 there exist unique 5  independent 

idempotents e l  ,e2  9 e3  such that ( e l ) = /ran (e2  ) r= P71  , 
(e3 ) r = ?'?and e 1  + e2 + e3 = 1 . a_  

Since ee2' e3 are independent, 
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= (e 1 ) r 	(e2 ) r = (e l 4. e2 ) r ' 	= (el + e3 ) r ' 
Taking, as in Section 2, e and f to be the unique 

idempotents defined by the conditions 

rut q).t= (1) r  = etc) 
(i.e, 'at = (e) r ,J = (1-e) r,42 = (f) 1, 1 1E0 = (1-f) r) we 

have : (e 1 i-e2 )e = e, e(e 1 +e2 ) = 	(e1 i-e3)if = f, 

f(e 1 +e3) = e 1 i-e3 , and since (e l ) r4 (e) r , also eei  = ei , 

(i = 1,2); similarly fei  = e i (i = 1,3). 

Moreover, from (e l +e2 ) r  = (e) r  and 1-(e 1 +e2 ) = e3  

, .1 follows: (e3 ) 	k / = e) r  = (1-e) 1  ; similarly, (e2 ) 1=(1 -f) 

From the relations (1) we deduce 

(2) D(4A-) = D(-c ) , D(.1`) = D(W ), D(-r, ) + D(2) = 1. 

Hence, also D(77/1 ) = D(711L ) ,i.e e 2 ,e3  are independent 

idempotents af the same rank, and by Theorem 10 there 

exist unique matrix units 

e22 = e2 , e 23' e32' e33 = e3 

such that 
e .e 	=ejq,jfj = P ( i,j,p,q  = 2,3 ) .  
ij Pq 	0, if / P 

Since e32  = e32 e2 , e2  = e23e32  , it follows that 

(e32 ) = (e2 ) 14 similarly, (e23), = (e3 ) 1 1  so that 

R(e32 ) = R(e23 ) = R(e2 ) = R(e3 ) • 

Since, by assumption 



'UI et.9 = ( 1 ) r  f 

we have (e i +e2 ) r 	(1-1) r  = (1) r  • Hence there is an 

idempotent h such that (e l +e 2 ) r  = (h) r, (1-f) r  = (1-h) r . 

The latter means, for some z in A , 1-h = 1-f+(1-f)zf. 

r Also, (h) r  = (e3) and by Theorem 2, 

(h) r  e (1-h) r  = (1) r  implies R(e 3(1-h)) = fl(e 3) = R(1-h) 

But, R(e3(1-h)) = R(e3(1-f)(1+(1-f)zf)) = R(e 3(1-f)), 

since 1+(1-f)zf is non-singular; so that, using (1-f)e 2  

= (1-1) , we have 

R(e3 (1-f)e2 ) = R(e3) = R(e2 ) 

But clearly (e3(1-0e2 ) 1  4 (e2 ) 1  = (e32 ) 1  ; hence 

equality must holdpise 

(e3(1-f)e2 ) 2c = (e32 )a 

and , for some x in A , we have 

e32  = xe3(1-0e2  = e3xe3(1-f)e2  . 

Clearly, this means 

R(e32 ) 4 R(e3xe3 ) 	R(e3) = R(e32 ) 

so that equality holds,i.e 

R(e3xe3) = R(e3 ) 

and e3xe3  has an inverse, e3xe3 , in the subring e3e3. 
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Consider 

a = e l - e 1 (1-f)e 2 + e 2 + e3xe3. 

a is non-singular; for, 

a( 1 + e 1 (1-0e2 )(e 1 + e2 + e3
xe

3
) = e 1 + e 2 +e3 = I. 

Let us examine the effect of the non-singular collineatio: 

.11 ya  on C. 

( 1 ) Ya -E/1.- = Ya( e l+e2)r 

= 1  - e1 (I-f)e2  + e2 ) r  

= (e 1 +e2 ) r = AVL 

since: e -e1 (1-f)e 2+e2 )(1+e 1 (1-f)e 2 ) = e1 +e2 implies 

Ya1/1- 	(e l +e2 ) r . The reverse inclusion is clear since 

contains ee2 and so must contain e1 -e 1 (1-f)e2 +e2' 

(ii)Ya /C  = Ya(e 1 +e3 ) r 

=
1
+e

3
xe

3
)
r 

= (e 1 +e3 ) r = 1.0 

since.• 
(e

1 
 +e

3 
 xe

3 
 )(e 1 

 +e
3 
 xe

3 
 ) = e

1 
 +e

3 
 implies Yo/C 

(e l +e3 ) r  ;on the other hand, since (e 1 +e3)(e 1 +e-oce3) = 

e 1 +e3xe3 , it follows that ya /17. 	• 

(iii)Since (1-f)e2  = 1-f, e2 (1-f) = e2 , we have 

1-f = (e 1 +e2+e3)(1-0e2  = e1 (1-0e2+e2 +e3(1-f)e2 , so 

that 



ru9 = Y
a
(1-f) r Ya  

= 

= 	(e1 (1-0e2 -e / (1-f)e 2+e2+e32 ) r  

= 	(e2+e32 ) r  . 

(iv) Since (1-e)e3  = 1-e, e3(1-e) = 1-e we have 

1-e = (e 1 +e2+e3)(1-e)e3  

= e 1 (1-e)e3+e2 (1-e)e3+e3  

and Yal= Ya (1-e) r  

= y (e1 (1-e)e3+e2 (1-e)e3+e3 ) r  

= (e 1 (1-e)e3-e 1 (1-f)e 2 (1-e)e3+e2 (1-e)e3+e3xe3 ) r  

((e 1  (1 -e)e3-e1  (1-f)e2 (1-e)e3+e2 (1-e)e3+e3xe3 )(e3(1-f)e 2  

) )1. 

= (b+e2 (1-e)e3(1-0e2+e3xe3(1-0e2 ) r  

= (b+e2 (1-e)e3(1-0e2+e32 ) r  p  

where b= Cel(1-e)e3-e1(1-f)e2(1-e)ei)e3(1-f)e2 

Equality must hold as 

D(Ya-it) = D(..e) = 1-D('m) = 1-R(e 1 +e 2 ) = R(e3 ) 

whilst 

R(b+e2 (1-e)e30-0e2+e32 ) 	R( 3(b+e2 (1-e)e3(1-f)e2+e32 )) 

= R(e3e32 ) 

= R(e32 ) = R(e3 ) . 

i.e, 
= (b+e2 (1-e)e3(1-0e2+e32 ) r  



But, since (1-f) 1  = (e2 ) 1 , (1-e) 1  = (e3 ) 1 , ee2  = e2  

e2 (1-e)e3(1-f)e2  = e2 (1-e)(1-0e2  

= e2-e2ee2 -e2fe2+e2 efe2 
= e2efe2  = e2efee2 , 

and 

b = le 1 (1-e)e3-e 1 (1-f)e2 (1-e)e3 le3(1-f)e2  

= e 1 11-e-(1-0(1-e)i(1-f)e 2  

= e 1 f(1-e)(1-0e 2  

= e 1 be2 

so that,finally 

ya4 = (e 1 be2+e2 efee2+e32 ) r  

Writing efe = 13(  we have the 

LEMMA 1: 	(i) <e2yke2> = 4K/0 ,41;.e,20..) 

(ii) <e 1 +e 1 be2+e2ce2> = 

PROOF: Since (e 2 ) 1  = (1-1), we have, for some y in 

e2  = 1-f+fy(1-f). Then 

e21e2  = e2 (1-e)(1-f)e 2  

= t1-f+fy(1-f)1(1-e)(1-f) 

Let s = fy(1-0; then (1-0(1+s) = 1-f and 

(1-s)e2/02 (1+s) = 1-fy(1-f) 1 1+fy(1-f) (1-if)(1-e) (1 -f) 

= (1-f)(1-e)(1-f) 



i.e, 	<e24:0
2
>- = <(1-f)(1-e)(1-f)> 

which proves (i). 

Again,since (e) r = (1-e3 ) r and (f) r = (1-e2 ) r' we 

have for some x,z in A 

e = 1-e3+(1-e3)xe3 	f = 1-e 2+(1-e2 )ze2  

and so 

efe = 11-e3+(1-e3)xe3 10- 2+(1-e2 )ze2 111-e3+(1-e 

= (1-e3 )(1+ze2+xe3+xe3ze2+xe3ze2xe3 ) 

. Let s i  = ei xey  s2  = e 1 ze 2xe3  , 53  = e 1 ze2 ,s4  = e 1 x.e3ze2  

2 ands5 =e2xe3 .Thens.=0 (i = 1,....,5) and after a 

simple calculation, 

(1+85 ) 	 (1+8 1 )efe(1-s 1 ) 	 (1-85 ) 

= e1 +e 1 xe3ze2+e1 ze2xe3ze2+e2xe3ze2 

On the other hand, 

e 1 +e 1 be2+e 2102  = e 1 +e 1 f(1-e)(1-0+e 2 (1-f)(1-e)(1-0 

and easy calculations show,successively 

(1-e)(1-f) = -e 3ze2+(1-e3 )xe3ze2 	e1 (1-e)(1-f) = 

e 1 xe3ze2 ; (1-f)(1-e)(1-f) = e 2xe3ze2 -(1-e2 )ze2xe3ze2 , 

(e 2 -e 1 )(1-f)(1-e)(1-f) = e 2xe3ze2+e 1 ze2xe3ze2  . 

so that 

e 1 +e 1 be 2+e2Xe2  = tefet -1 , t = (1+s 5 ) 	
 
( 1 +s ) 

This completes the proof of (ii). 
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Denoting by N (normalform) the configuration 

i(effe2) rp(elbe2+e24.e2 4"e32) r p (effe3) 10 (e2+e32) r i 

we have proved the 

THEOREM 11:  For any configuration C satisfying (1) 

there is a non-singular collineation 

ya : C -> N 

such that 

and 
	= <e l +e 1be2 +e21/e2> 

11( -10 , ,c ; 42 ,14 ) = <e 2Re2> ° 

When, in addition to (1)the members of C 

satisfy ,cotri 4: = (0) r, N reduces to 

i(e2) r, (e0p2 	e32 ) 10 (e3 ) r ,(e32 4-e2 ) r i 

Corollary 4 will show that, in this case, N 

actually characterizes the cross ratio, i.e. we . 

could use N as a means of defining ;lc  . This is 

actually what Baer [12; p does for four points 

on a line, over a field. 



• 

Conversely, given a non-singular collineation 

Ya : 	-> 

then the members of C must satisfy the relations (1). 

For, by [Part 1; Lemma 2], 

(i) (e1 +e2 ) 	(e1 +e3 ) r = (e 1 +e2+g) r 

where (g) r  = ((1-e i -e2 )(e i +e3)) r  = (e3 ) r 	i.e g = e3  

and. so 	ya'ut 	= (1)1., • 

(ii) (e l +e2 ) r 	(e2+ 3  ) = (e l +e3 ) r  (e2+e32 ) r  

= (1) r 

The "u" part follows as in (i) whilst xe(e l +e2 ) r n (e2+ 

e32 ) r => x = (e1 +e2 )x = (e2+e32 )x => e3
x = 0 = e32x ' 

i.e e2x = 0; but then x = 0. Similarly for the other came 

(iii) (e i +e 2 ) r e(ei be2+e213;e 2+e32 ) r  = (1) r  .For, 

(e 1 +e2 )x = (e1 be2+e211e 2+e32 )z => e3x = 0 = e32z 

=> e2z = 0, i.e x = 0; whilst 

R(e 1 be24,24e2+e32 )  R(e3(e 1 be2+e24e2+e32 )) = R(e32 ) 

= R(e3 ) 

=> D((e l +e2 ) r) eD((e l be2+e2lie2+e32 ) r ) 	1, so that 

equality must hold. 

Finally, as 

Ya  (t ) = (1) r 	Ya(4n- 11-t ) = 
if and only if 

/1/1- (11-= (1) r 

we see that C does satisfy (1) . 
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6. SIMILARITY INVARIANTS FOR THE NORMALFORM 

• The object of this section is to determine the 

extent to which the cross ratios provide similarity 

invariants for the normalform N. We will see that being 

given a non-singular collineation between two configurat- 
A 

ions 0,0 implies a special kind of similarity of their 

cross ratiost:Theorem 12:1; on the other hand, if e v e 

have a cross ratio in common it is , in general, necess-

ary to assume that their members satisfy some further 

conditions(i.e in addition to 5.1) before there will be 

a non-singular collineation between them ELemmas 4,51. 

Notice that the existence of a non-singular collinea- 
A 

tion yn : C -> C implies the existence of one between thE 

normalforms,viz ria. 1 YA(Y (Y -1  • •)) I N a n a 
A 	 A 

where a,a are the non-singular elements for 0,0 respect- 

ively in the sense of Theorem 11. Conversely, Yn :N -> N 
A 

=> yA4  :C -> C. a na 
A 	 A 

Let the normalform N, provided by Theorem 11, of C be 

i(f 1 +f2 ) /0(f 1 f2+f2142 +f32 )e (f 1 +f3 ) r 2(f2+f32 ) r/ 

where the matrix units f have similar properties to their 

counterparts e in N. 

A 
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THE GENERAL COLLINEATION:  Assume that there exists a 

non-singular collineation 

Clearly, corresponding members have the same dimension, 

and therefore corresponding matrix units have the. same ra 

-nk. This information allows us to replace the f's by the 

e's, for 

LEMMA 2:  If ie ij i,ifij i are two systems of n 2  matrix 

units(cf.[Part 1; p 16]) such that 

R(e11 ) = R(f 1 ) 1  i =  

then there exists a non-singular m in 	such that 

-1 mfijm 	= eij , i,j = 1,...,n. 

PROOF:  By [Part 1; Lemma 14] we have non-singular 

= 1,...,n) in 	such that s i  

s.f.s.
-1  

""= "e—=e—If.=fii ).  

Hence 

Let 

e.s.f.s. -1 e. 
1 1 1 1 	1 

m = 	e.11s.f. 	p  

	

1 	1 i i i=1 	i=1 

and then, since the f i  are independent idempotents, 

mp.= 2 e.1s.1fij  2f.s-le i    

-1 = 2 e.s f.s. e. i 1 1 1 

= 2 e 4  =1, 
i 

bydefinitionofthee.1 .Thus m is non-singular; further-j 
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more 

Let 

- mfJn-1 = e.s f.s 1. e. = e (i =  21. i 

= 	(i,j =  

Thengil .. = e. and 	I is a system of n2 matrix units, gij 

-1 for Z gii  = 1 and gi jgkh = mfi
f

j- khm  

{b. 

fih  

if j/k 

-1 m m = 	if j=k gih 

for all i t j,k,h = 1,..,n . 	Now, r- Part 1; Theorem 4=1„ 

(fi ) r ()(fi -f ji ) r = (f i ) r (). (f j ) r 

and since m is non-singular (i.e since ym  is a lattice 

automorphism) it follows that 

ym(fi 	i -f ii ) r  = Ym(fd r  Ym(f i ) r  

i.e 

(ed r  E) (e.1 -g jd r  = (e i ) r 	(e i ) r  

and,by the uniqueness part of the last theorem referred 

to) we can only havegij = 	, all ipj . e ij  

Now, even though the matrix units of N 9 N do not form 

a complete 32 system(the elj alj pe jil f il  with j = 2,3 are 

absent),it is still clear that the assertion of Lemma 2 

holds for them, with exactly the same proof. Therefore, 

there exists a non-singular m in A such that 

-1 	mf1-1 	. . = 2,3). j 
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A 	A* 	A*  
Then y N -> N , where N is 

i(e l +e2 ) r,(el b* e2+e2i*e2+e32 ) r,(el +e3 ) r ,(e2+e32 ) r i 

and b*  = mtm-1 , A7 = mi m-1 .Consequently, we may as well 
A 

assume, from the outset, that N is the configuration 
A 

obtained by replacing b* and ic *  in N *  with b and R resp-

ectively. This assumption will apply for the remainder of 

the section. 

The relations (n(e l +e2 )) r = (e1 +e2 ) r  

(n(e 1 +e3 )) r = (e 1 +e3 ) r and (n(e2 +e 32  )) r  = (e2  +e ) 32 r 

are equivalent to 

(i) (e1 +e2 )n(e 1 +e2 ) = n(e1 +e2 ) 

(ii) (e 1 +e3)n(e 1 +e3) = n(e 1 +e3 ) 

(iii) (e2+e32 )n(e2+e32 ) = n(e2+e32 ). 

Right multiplying (i) by e 1 ,e2 ( (ii) by e 1 ,e3 ) and then 

left multiplying the two resulting equations by e3(e2 ) 

gives 

(1 ) 

	

epel  = e3ne2 = e2ne1 = e
2ne3 = 0- 

Since e 1 +e2+e3 = 1, we can write (iii) as 

(iv) (e 1 +e3-e32 )n(e 2+e32 ) = 0 

and left multiplying (iv) by e l  we find e 1 ne2  = -e 1 ne32 , 

i.e 

(2 ) 

	

e ne = -e ne 1 3 	1 23 
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Finally, taking (1),(2) into account, (iv) becomes 

e3ne32  = e32ne2  + e32 e2ne3e32  = e32ne2  y 

that is 

(3) 	e3ne3  = e32ne23  . 

Then, as e 1 +e2+e3  = 1, n = (e 1 +e2+e3 )n(e 1 +e2+e3) and 

• 	(1),(2),(3) combine to give 

14) 	 n= 
e 1 ne 

0 
0 

e 1 ne2 
e2ne2 

0 

-e 1 ne23 
0 

e32ne23  

    

where the matrix denotes the sum of its entries. Since 
A 

also yn- 1 : N -> N 

  

e1 n
-1

e1 	e 

e2 n

-1 e -e i n-1
e23 1

n- e2  
1 2 

0 	0 

e32n-1  0 	0 	e23 
(5)  n-1 = 

  

   

and it is clear that npn-1 have the most general form 

possible under the conditions. We note also, for future 

reference, that 

e.ne. = e n 	e.neA . = e 1n-1 (i = 2,3) 
(6) i 9  1 

e l 	= ne l  , e l  11 -1 e l  = n-1 e l  . 

yn : N -> 11 also implies 

(n(e l be2+e2Re 2+e32 )) r  = (e i te2+e24e2+e32 ) r  
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that is , for some y in A_ , 

n(e 1 be 2+e 2+e32 ) = (e 1 be2+e2lie2+e32 )y . 

Then 

e23n(e 1 be2+e21e2+e32 ) = e23e32y = e2y 

and as e3n = e3ne3  = e32ne23  we have 

e2y = e23ne32  = e23e32ne23e32  = e2ne2  • 

Hence 

(7) n(e 1 be 2.4-e 211e2+e32 ) = (e 1 te2+e2 ke2+e32 ) ne2  . 

But, by (3), e i ne l  = ne l 	e2ne2  = e2n and therefore 
A 	A 

e 1 ne 1 be2+e 1 ne24e2+e 1 ne32  = e 1 be2ne2  = e 1 be2n ; 

and as e1 ne2  = -e1 ne32  this yields 

A 	 - (8) e 1 be2  = e 1 ne 1 be2n 	- e1 ne2 (e2 -e2102 )n 1  . 

Also from (7), 
A 	A 

e2ne24e2  = e24,e2ne2  = e213,e 2n , i.e 
A 

(9) e24,e2  = e2ne2g 2n 	. 

But, from (1),(2),(3), 
-1 	-1 	-1 n e2n = e2n e2ne2  = e2n ne2  = e2  

so that 

e2 e 2 = ne2Re2n-1 , i.e 
A 

(10) <e2gre2> = <e21e2> . 



-1 	-1 e l n e l 	e 1 n e2  
0 	e2n

-1 e2 

Writing 

e l ne 1 
0 

e l ne2 

e2ne2 

n12 = 

(53) 

and. g= 
e l 	el be 2 

0 	e211e2  
1  we have the 

  

LEMMA 3: The following condition is necessary and 

sufficient for the existence of a non-singular coll ineat-

i on of N onto 	for some non-singular n in Pt we have 
A 

n12 12 = g 

where n12n12 = n12n12 = el +e2 . 

PROOF: Assume y n  is a non-singular coll ineat i on of 
^ 

N onto N. Then 

n12 12 
-1 	• - 	-1 	-1 el ne l n e 1 	e1 n.e l n

1  e2  +e 1  ne 1  be2  n e2  +e1  ne 2  13,e2  n e . 	2 
-1 0 	e2ne24e2n e2  

and as e 1 n-1 e l = ne1 we have e1 ne 1 n
-1 e 1 = e l. Also, by 

• 	

A 
( 9) , • e 2ne24e2  = e213,e 2n, that is 

A 
e2ne24e2n-1 e2  = e213,e2  . 

Finally, by ( 8) , 
-1 	-1 	-1 el  ne l  n e2 +e1  ne l  be2n e2+e 1  ne24e2n e2 



= p= 
00 

n • 12. 	-e 1 ne23 
0 

e32ne23 

we have 

Mp = 

n -ei n-1  e23 • 12. 
0 
- 0 0 e32n 1  e23  

A 
= e 1 be2+e 1 ne2n

-1 e2+e 1 ne 1 n
-1 e2 

= e 1 be9 2  

for, since e 1 +e2+e3  = 1 and e3n-1 e 2  = 0, 

\ -1 0 = e 1 e2  = -1 e2  = e i n(e i +e2+e3)n e2 

= e 1 ne 1 n
-1 e2+e 1 ne2n

-1 e2 

We have shown that 
A 

n12 12 = g • 

Also, as e2ne2  = e 2n, it follows that 

e2ne2n-1 e2  = e2  

and hence that 

n12.
E.
12 = 

e 1 ne 1 n
-1 e 1 	e1 ne 1 n

-1 e2+e 1 ne2n
-1 e2 

-1 0 	e2ne2n e2 

= e l +e2  . 

Conversely, assume that there is a non-singular n such 

that (11) holds. Then letting 

51-0 
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' 1 2" l 2 • 	-e 1 ne 1 n-1 e23-e1 ne 23e32n-1 e23  

. 0 

0 	0 	e32ne23e 32n-1 e23  

= e1  +e2  +e3  = 1 

as 9  by (11) , e i  ne i  n -1  e2 +e i ne 2n-1  e 2  = 0, that is 

- 	- e i ne i n 1  e23+e i ne 2n 1  e 23  = 0; also by (i1 ) 

- 	 - e32ne23e32n 1  e 23  = e32 e2ne2n 1  e 2 e23  = e32 e23  = 

A 

Thus m is non-singular. In order that Y m: N -> N it 
A 

suffices that Yra( e i be 2+e 213,e 2+e 32 ) r  = ( ei be 2+e 213,e 2 +e32  ) r  . 

But this is so, since (11) implies (8) and (9) and. hence 

n12 ° -e 1 ne2 
0 00 0 	0 

0 	e32ne23 

O e 1 l':;e 2 

O e2ie2 
0 e 32  

O el be 2 	0 

O e 2 -e2 	0 

O e 32 	0 

-1 
1112 ° 	e23 

• 0 

-1 e32ne23 

0 

0 

00 



(56) 

Combining Lemmas 1 and 3 with (10) we have 

THEOREM 12: The existence of a non-singular collin- 
^ 

eation of N onto N implies 

13C( 	 = 	IP /C 	 ) • 

COROLLARY 4:  If el  = 0 and C has the form 

i(e2 ) r ,(e2 re2+e32 ) r ,(e3 ) r,(e2+e32 ) r i 

for some r in k , then 

,to:) = <e2 re2> 

PROOF: x=e2x = (e2re2+e32 )z => e32z = 0 , i.e e2z 

= 0; hence x = O. Since e 2+e3  = 1 and R(e2re2+e32 ) 

R( e32 ) = R(e3 ) we must have (e2 ) r  e (e2re2+e32 ) r  =(1) r  

so that the cross ratio is defined. Then Theorems 11,12, • 	and 6 combine to give the result. 
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RANK RELATIONS:  Recall that ya(-tn_n 	) =Zn = (ei  ) r st 

a 
	= (e2+e32 ) r  and ya-e = (e 1 be2+e2Re2+e32 ) r  . 

Since (e2 +e32 ) r  = (e3+e23 ) r  and both e 2+e32  and 

e3+e23 are idempotent, we have 

(1--e3-e23 ) y  = (e2 +e32 ) r  . 

An easy calculation shows that 

e2 -e24e2 -e 1 be2  = -(1-e3-e23 )(e 1 be2+e24,e 2+e32 ) . 

Hence, by Theorem 1(ii), 

R(e2 -e24.'„e2 e1be2) = R(1 ".'e3 e23)(e1 be24. e24:e2+e32 )) 

= D(ya -61 ) - D(ya-en y a-1.0 ) 

= D(ya -e ) - D(ya  (-en 	)) 

(1 2) 	 = D( -41") - D( 	ri  'to ) . 

By [Part 1; Lemma 1] we have 

((-'Li' 'E )Li  ya 7.9 	= ('01 	) 1.1 (yaw )1  
= (1-ei  )In (1 -e3-e23 ) 

and, as e 1 +e2+e3  = 1, we see that 

1-e3-e23  = e1 +(e2 -e23 ) ; 

since e e -e 23 are independent idempotents , this means 

(1-e3-e23 )z  = (e 1 )(:) (e2 -e23 ) 1 ; 

hence, 

(krt. 	)v y atO 	= ((e1 )() (e2 -e23)) (1-e1)a 
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= e2 -"e23)1' 

by modularity, since (e 2 -e23)(1-e 1 ) = e 2 -e23  implies 

(e2 -e23 )a 	(1-e 1 ) /' 

Then, as 

e 2 -e21?(e2  = (e23-e2 )(e 1 	
+e24e2+e32 )  P  

we have, by Theorem 1(i), 

R(e 2 -e2Re2 ) = R((e23-e2 )(e 1 be2+e2IO 2+e32 )) 

= n(((-ra (11: )u -ra:(P )u ra t ) -D“,ran )kncx -19) 

D(lct ( ( ,tn. /1 	) 	z9 	 -D( 161 ((Tar) 	)u LO )) 

(13) = D((tta(lt ) 	via) - D((Puirve)uto) 

= D( (-) 	) +D ( u 	) -D (('tftr) 	) 	(u) 	) ) 

= D(Ifin 	) + D(-/P) + D($) - D( -toti-g/-  ) 

- D ( ( 4it 	) (-0 I.)) - D((-ta 	) 

since (-can 	)n ,to = (zfla '0 )/7 (/est-t-t0 ) = (0) r • Thus, 

(14) R(e 2 -e2102 ) = D(..e ) -D(4-0/7.-e ) -D((-atn( )r)(-Oui ) 

and taking (12) into account 
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(15) R(e2 -e2/3ce2 ) = R(e2 -e2102 -e 1 be2 ) - D((elna'r- )/1(10(},* 

LEMMA 3:  If e 1 ,e2  are independent idempotants and 

u,v arbitrary elements in A , then for some w in 

(e l u + e 2v) 1  = (e2v)/  6) ( e l u - e 1 we2v) a, . 

PROOF:  (e2v)I 	(e1 u+e2v)v  since e2v = e2 (e 1 ui-e2v). 

If h is any idempotent such that (h) k  = (e2v) 1, , then 

, [Part 1; Lemma 7], a relative complement of (0 1  in 

(e 1 u+e2v) 1  is given by 

( ( e i u+e2v)(1-h)) 1, =(e 1 u-e1 uh)1  

since e2vh = e2v. Now, h = ze2v for some z in 	and 

hence e 1  uh = e 1 uze2v. Let w = e 1  uz and we have 

(e 1 u+e2v) 1  = (e2v) z. 	(e i u-e l we2v) I . 

Clearly, we also have 

R(e 1  u+e 2v) = R(e2v) + R(e 1  u-e 1 we2v) . 

Lemma 3 shows that for some w in -k 

(16) R(e2 -e211e2 -e1 be2 ) = R(e 2 -e2102 ) + R(e 1 b l e 2 ) 

where 
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(17) 	e1 b t e2  = e 1 be2  - e 1 we2 (e2 -e24e2 ) . 

Moreover, (17) shows that 

e 1 	e1 we2 

0 	e2 

 

e l 	eI be2 

0 	e R 2-e2 

 

e l 	-e1 we2 

0 	e2 

  

     

• 

e
l 	e1 b t e2 

0 	e2lice2  

i.e Lemma 3 applies and gives a non-singular collineation 

carrying N into 

i(e l +e2 ) r ,(e i b l e 2+e24e2+e32 ) r ,(e l +e_) .(e +e ) 1 . 5 r 7  2 32 r 

For this reason we may assume (16) to hold with b' 

replaced by b. 
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COMPLEMENTS  TO LEMMA 3: Notice that the similarity of 

(10),(11) is actually in the following stronger sense: 

if a l beeAe(some idempotent e) then write <a> = <b> if 

xay = b where x,yeeAe and xy = yx = e. From now on < > 

will have this meaning. Similarity in the new sense inip.1- 

ies similarity in the old sense . ; for, x+1-e is non-singul 

-ar with inverse y+1-e and (x+1-e)a(y+1-e) = b. Let n = 

x+1-e; then ene = x and en-1 e = y. 

In general, in order to obtain a non-singular collin- 
A 

eation of N onto N, it is not enough to be given one 

cross ratio. However, by assuming in addition that the 

members of N,R satisfy one other condition 1  we can 

arrive at this position. 

A 	, 
LEMMA 4:  If (i) <g> = <g> and (ii) both c,e satisfy 

-ton.42 = (0) r ' then there exists a non-singular collineat 
A 

-ion of N onto N . 

PROOF:  By (i) , we have for some non-singular r, 

(e 1 +e2 )r-1 (e 1 +e2 )g(e1 +e2 )r(e 1 +e2 ) = 

\ - 	 \ _, 
where (e l +e2 )r(e l +e2 ) r 1  (e l +e2 ) =(e l +e2 )r

1
(e i +e2 )r(ei +e2  

= e1 +e2° 

Hence, just as well 
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g(e 1 +e2 )r(e 1 +e2 ) = (e 1 +e2 )r(e1 i-e 2 )g 

i.e, subtracting each side from (e 1 i-e 2 )r(e 1 i-e2 ), 

( e2 -e21:02 -e1 be 2 )( (e 1 +e2 )r(e1 +e2 )) 

= ((e 1 +e 2 )r(e 1 +e2 ))(e2 -e2ie2 -e 1 be2 ) 

and hence 
(18) 
	

(e2-e24:e2 -e 1 be2 )e2 re 1  = 0 . 

But, from (ii), we have using (12) 

R(e2 -e2102 -e 1 be2 ) = R(1-e) = 

and since, obviously , (e 2 -e24e2-e 1 be2 ) 1 	(e2 ), we 

must have equality. Hence also 

(e2 -e2102 -e 1 be2 ) 1; = (e 2 ) 

i.e, (18) holds if and only if 	e2re1  = e2e2re 1  = 0. 

Similarly e2 r-1 e 1  = 0. We have shown that (11) holds, 

and therefore there is a non-singular collineation of 

A 
N onto N. 

LEMMA 5:  If (i) <e24e2 > = <e2 e2> and (ii) both c,6 
satisfy ka n n u = (0) r  , then there is a non-

singular collineation. of N onto N. 
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PROOF:  (ii) implies, by (15), 

R(e2 -e2102 ) =R(e2 -e2102-e i be2 ) 

i.e, by (16), 

R(e 1 be2 ) = 0 

A 
so that e 1 be2  = 0, and similarly e 1 be2  = O. 

(i) implies, for some non-singular r, 

A 
e24 2 = e2 re2Ile 2r e2 ' 

-1 where e2r e2 is the inverse of e2re2 in e292 e2. Then 

an easy calculation shows that 

A 
(e l i-e 2 r-l e 2 )g(el +e2 re2 ) = g 

i.e (11) holds. 

When 471-n/E = (0)
r 

(i.e e 1 = 0 ) Lemma 5 is the 

converse of Theorem 12. For then <g> = <e 24e2> and Lemma 

5 shows that <g> = <a> => the existence of a non-singular 
A 

collineation of N onto N • In the general case however, 

we have been unable to establish this converse . 
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7 . 

When. ,  ( '01 n ) 	 u--t) = (0) r we have seen(Lemma 5 

that e1 be2 = 0. In this case N can be decomposed into 

i(y r,(0) r,(y r ,(0) r i 	i(e2 ) r ,(e211,e 2+e32 ) r,(e3 ) 10, 

(e2+e32 ) r i 

where the direct sum means component-wise direct sum. 

The left hand summand is obviously uninteresting and 

from now on we neglect it. We may as well assume that 

e l  = 0, i.e AA- 0PC. = (0) r . Then 

(1 ) /DI ED = q/1-69 t = 	= 	= (1) r  

From (1 ' ) we deduce that rvi.- 1 -e,'C, tio all have dimension 

1/2. Moreover, since e 2+e3  = 1 and R(e 2 ) = R(e3) it 

follows that 	/C. form a homogeneous basis of order 

two for L E Part 1; Lemma 10 J. 

' We can extend the range of (1') as follows: Let g 
denote the centre of A ( 	is a field) . Then e 2 "-e2  

is the centre of e2A e2  E Part 1; Lemma 6 ], and is 

isomorphic to 7 under the correspondence :; 9 X <-> 

e2xe 2 . Let 

= (e2ae2+e32be2 ) r 

where a„b e 	3, and define 

NJ = 	(a,b); a v b e 	I. 
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Clearly, b 	0 <=>"(4. (a,b) /•rA,  . For, since e2ae2  

exists in e2 'e2 , ,riz. (a,0) = (e2ae2 ) r  = (e2 ) r . Conversely 

if 	= 1A-(a,b) then e 2ae2 +e32be2  = e2z, some z in 

=> e32be2 = 0 => e 2  be2  - 0 => b = 0. Since </1-(a l lo) = 

(e2ab -1 e2+e32 ) r if b 	0, if we agree to write 'zit= 'Vico 

then we can( symbolically) parametrize M as 

=(eLae2 +e32 ) r ; a s. 	u 'envoi . 

M includes vtit. = 42.0 1 	= 0 , 	= ''1• Moreover, when 

ever, a / 0, we have 

(2) efit. a  9 'C/L 0  = /22 a  e  ,cse, = 44.6  GI /tie,  = (1) r . 

To see this , notice that 7 ■1 is a subspace satisfying 

(3)  

if and only if there exist Part 1; Theorem 41] unique 

matrix units u,v such that 

uv = e3' 	= e2 , e3ue2  = u., e2ve3  = v and 

= ( e2 -u) r = ( e3-v) r . 

Then, since by [7; Satz 3.3]  we have a one-one corres-

pondence between the 1v  satisfying (3) and the invert-

ible elements of e2 . e2, given by 

/v1 <-> e 2ae2  = -e23u, where e 2 ae2  = -ve32 1  
it follows that (2) holds. 

Also, if a e , then e 2 -e2ae2 e e 2 . e2  and therefore 

e2 -e 2ae2  exists in e 2 j. e2 . Then 
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x = (e232)x = (e2ae2 -4-e32 )z => e32x = e32z => e 2x = 

e2z. Hence (e 2 -e2ae2 )x = O,i.e e2x = 0 and we can only 

have x = 0. This shows that /a 1 n rrzta = (0) r' for a/1. 

Since R(e2ae2+e32) 	R(e32 ) = R(e3
) we have 

D(4%1- a  El) 4.,/to = D(vt a )  D('et i ) >„R(e 3)+R(e2 ) = 1 9  

so that equality must hold, i.e 

(3) 	a 6)/  1  &t,  = (1) r  whenever a / 1. ' 

(2) and (3) show that cross ratios are defined for all 

permutations of kele./el. a,t 09,,ey; moreover, cross ratf-

os in the rows of Table 1(with 	replaced by -•e,e. a) are 

equal. 

Define 

ki= AV (m,0 9 1) = ix6 9t ;x€ ,e.za  some /eA ae M. 

744 is closed for cmultiplication, but not for addition. 

For any a e 	let -* (a) = (e2 (k7a)e2 ) 11 9, i.e 

xE -e(a) <=> e2lite2x = e2ae2x. Now, if y e 4,en M 9 then 

y = (e24e2+e32 )z 1  = (e2ae2+e32 )z29  for some a 	and 

zi9 z2  e 	so that e3y = e32z 1  = e32z2 , i.e e2z 1  = e2z2  

= z, say. Hence y = (e 2lie2 +e32 )z = (e2ae2+e32 )z and the- 

refore z 	i(a). Conversely, assume that y E 

where t = e24p2+e32 . Then y = (e2 e2+e32 )x where ' 
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cs,  

xe 49,- (a). Hence also y = (e 2ae2 -1-e32 ), i.e ye lonh7. 

Finally, if R(e211e2 -e 2ae2 ) = R(e 2 ) then clearly 

..e(a) = (e3 ) r  and hence yl't(a) = (0) r . Defining e 2ae 

to be an eigenvalue of e2/e2  in e2 'je 2  if R(e2 (4r-a)e2 ) 

< R(e2 ) , we have shown 

(4) 	i a 114  =ix; xe Yt 

where e2Ae2  denotes the set of eigenvalues of e24,e2  in 

e2 e2 . 

By Corollary .4, R(41,0 ,Cka ;tkotty = <e2ae2>. 

Hence a permutation of 21-, f, W amongst themselve6 

(obviously leaves in unchanged) induces the correspon-

ding permutation of the parameters. Moreover, assume 

that the inverses referred to in Table 1 exist, and we 

have 

(e2 -e 2102 )-(e2 -e2ae2 ) = -(e 24e2 -e 2ae2 ) and 

e2 e2  -e2ae 2  = -e2ae2Re2 (e24e2 -e2ae2 ) . 

Hence the eigenvalues transform under permutations down 

the columns of Table 1 in exactly the same way as the 

cross ratios. This enables to determine the relative 

position (4) for configurations defined in terms of 

another cross ratio, provided the latter is obtained by 

a permutation of the above type. Hence it suffices to 

consider this relative position in relation to the perm-

utations of the Klein four group. 
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8. SOME COLLINEATIONS INDUCING PERMUTATIONS 

Case (i): e 2Re2  exists in e 2Ae2 . Than n = e32+e24e23  

is non-singular with n -1 = e23+e32 e2102  and 

Yn i'01-•2 • 1: 

= i(e32) r y(e32102+e211e2) r ,( e2Rte23) r ,(e32+e24e2) r i 

i(e3 ) r ,(e2+e32 ) r ,(e2 ) r ,(e24e2+e32 ) r i 

= 

Case (ii): e 2 -e2Re2  exists. Then n= e 2+e32 -e2Re23-e3  

- is non-singular with n 1  = (e2+e3  )(e2 -e 2102 )-(e 2Re 2  + 

e32 )(e2-e211e2 )e23' 

and yn  kft. v .t,/ic t ipl = 

(e 2 4.e32 ) /0(e3211e -e32 ) ro (e21°. 23+e3) P(e 2 -eAe2 ) r i  

= i(e2+e32 ) r' (e3 ) rP (e211e2 4.e32 ) r' (e2 ) r 1  

4-9  • Pc--• efIA-1• 

Case (iii): Both e 2 te 2  and e2 -e210 2  exist. Then 

n = e23+e3' -e2 -e32 e2Re2 
is non-singular with 
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and then 

fC pv 

= i (e2+e32eAe2 ) r' (e23 ) 10(e2+e32 ) x0(e32 ) r 1  

= i (e 213ce2+e32 ) 10(e2 ) r 9(e2 4-e3 ) ' (e3 ) r 1  

tr: 	9 1, 9 1P 9 1:1* 

Hence, corresponding to (i),(ii),(iii) 9 the positic 

-la of 	relative to M(4 ,0,0 ,1) corresponds to the 

position of 

(i I ) ID relative to q)1(0,07,230 

(ii') 'C relative to 7/7(1 1  4,000) 

(iii') ,CA relative to 717(441,o) 

respectively. 

• 
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