A CROSS RATIO IN CONTINUOUS GEOMETRY

by

B.D.JONES, B.SC.

submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

UNIVERSITY OF TASMANIA

HOBART

(25-2-61)

INTRODUCTION

A. Fuhrmann [8] generalizes Sperner's definition of the cross ratio of four collinear points with coordinates in a division ring to apply to four linear varieties over a division ring. The form of his cross ratio is still very classical. In Part 2 of this a cross ratic is defined for a configuration of subspaces of a contin uous or discrete geometry. Although this cross ratio could'nt be further removed in appearance from the classical form we give a simple proof (Section 4) to show that, for the case of four points on a line , it does in fact agree with the usual cross ratio. Moreover it will follow from the results of Sections 5,6 that for the case of finite dimensional (i.e discrete) geometries, Fuhrmann's cross ratio is essentially the same as the one introduced here. The cross ratio has the desired property of invariance under collineations (Theorem 3).

Results, similar to classical ones are obtained for the properties of the cross ratio under permutations of order in the configuration. (Theorems 4-9).

In Section 5 a representation, in terms of three "fixed" subspaces and a fourth subspace depending only on the cross ratio, is obtained for an arbitrary conf-
-iguration (satisfying a minimum of position conditions)
Section 6 is devoted to studying the invariance properties of this representation. Several complete sets of invariants for the representation, under collineatic -ns, are obtained. These involve a cross ratio and some position conditions (Lemmas 4,5). Theorem 12 goes half way towards providing a complete set of invariants in terms of cross ratios alone. However, the converse of this theorem is out of reach at present. Leinma 3 reduces the question of invariance to one of a special kind of similarity involving the cross ratio.

Part 1 contains a general discussion of continuous geometries. The exposition follows the original papers [1]-[5] of von Neumann, who invented the subject. Also, in Section 6 of Part 1 we collect some other results needed for Part 2. The references given for these are mainly to $[7]$, since the original work $[6]$ is unavai able.

The author wishes to acknowledge that the results contained in Part 2, Sections 1-5 were obtained in collaboration with Dr. R.J.Smith; the remainder of Part 2 is due to the author alone.

PART 1

CONTINUOUS GEOMETRIES AND REGULAR RINGS

The axioms and basic properties of the systems called continuous geometries were developed by J. vo Neumann in the sequence of papers [1] - [5] . The following brief summary of these results forms a background to Part 2.

1. AXIOMS: Consider a class L of at least two differen elements or, $t, c, \ldots \ldots$. , and in it a relation " \leqslant ", with the following properties:
A. $\Omega \leqslant \notin$ is a partial ordering of L, relative to which L is a complemented, modular lattice with unit and zero elements, ie
(i) For each pair N, there are (necessarily) unique elements $\not \subset V^{2}$ (join), Mun (meet) satisfying
 $\tau \leqslant \pi \cap t \Leftrightarrow \tau \leqslant t$ and $\tau \leqslant t$.
(ii) The zero(unit) element $O(1)$ is also unique and satisfies $0 \leqslant ル(\nsim N \leqslant 1)$ for all \mathcal{L} in L.
(iii) The modular law holds in L,i.e $\operatorname{crn}(t \cup \tau)=t \cup(\tau \cap \tau)$ whenever $t \leqslant c \Omega$.
(iv) For every on in L there exists at least one \notin (called a complement of r) in L such that or $W_{2}=1$ and er $n K=0$.
B. L is complete, relative the partial order \leqslant, ie for any subset N of L there exists an element $U N(\cap N)$ of L such that : $U N \leqslant \omega \Leftrightarrow A \leqslant \pi$ for all k in $N($ or $\leqslant \cap N \Leftrightarrow$ for all in N).
C. The lattice L is irreducible ie $O=\cap L, 1=U L$ are the only elements of L with unique complements.
D. A limit notion can be introduced in L, as follows: Let \& denote an infinite aleph and consider a sequence S of c_{α} from L, where α runs over all ordinals < Ω. Define
(i) If $\alpha<\beta<\Omega$ implies $\sim_{\alpha} \leqslant \sim_{\beta}$ then $\lim _{\alpha \rightarrow \Omega}{ }^{*}\left(\tau_{\alpha}\right)=U s$
(ii) If $\alpha<\beta<\Omega$ implies $\sim_{\beta} \leqslant \sim_{\alpha}$ then $\underset{\alpha \rightarrow \Omega}{\lim ^{*}\left(\tau_{\alpha}\right)=\cap \mathrm{S}}$ Otherwise $\lim _{\alpha \rightarrow \Omega}^{*}\left(\tau_{\alpha}\right)$ is undefined.
E. The lattice operations U, n are continuous in L
 and if $\alpha<\beta<\Omega \Rightarrow \tau_{\beta} \leqslant \sigma_{\alpha}$ then $\lim _{\alpha \rightarrow \Omega}\left(\tau_{\alpha} v k\right)=\lim _{\alpha \rightarrow \Omega}{ }_{\alpha \rightarrow \Omega}\left(\tau_{\alpha}\right) \cup k$

The axioms (A)-(E) are invariant under the dualization obtained by reversing the partial order, along with the resulting interchanges of u, n and 0,1 . Hence the dual of any theorem derived from these axioms is also derivable from them.

The axioms can clearly be satisfied when L is the lattice of subspaces of a finite-dimensional projective geometry; in particular, the notion of $\lim ^{*}$ is void.
2. THE DIMENSION FUNCTION: It is possible to define, in exactly one way, a function $D=D(\Omega)$ on the elements of L such that the following conditions are satisfied:
(i) D takes real values $\geqslant 0, \leqslant 1$.
(ii) $D(\tau)=0 \Leftrightarrow \pi=0, D(1)=1$.
(iii) $D(c \sim \cup b)+D(c r \cap b)=D(c r)+D(t)$.
(iv) The range of D is one of the sets

$$
\begin{aligned}
& \underline{D}_{n}=\{0,1 / n, 2 / n, \ldots \ldots, 1\}, \text { some integer } \\
& \underline{D}_{\infty}=\{\text { all real numbers } \geqslant 0, \leqslant 1\}
\end{aligned}
$$

If D has range D_{n} then $L=I_{n}$ is the lattice of subspaces of an irreducible projective geometry with ordina: -ry dimension $n+1$. In this case L is called a discrete geometry. On the other hand, if D has range \underline{D}_{∞}, then $L=L_{\infty}$ is the lattice of "subspaces" of an irreducible continuous geometry. All geometries mentioned will be irreducible.
3. IDEALS IN RINGS: We consider only rings \nsim with unit 1. The results stated below for right ideals have obvious counterparts for left ideals.

A subset or of \mathcal{R} is a right ideal if (i) x, y in $\Omega \Rightarrow x+y$ in Ω and (ii) x in $\Omega \Rightarrow x y$ in u, all y in \mathcal{R}. The principal right ideal generated by an a in \mathcal{N} is the $\operatorname{set}(a)_{r}=\{a x ; x \varepsilon$ 仅 $\}$ 。

In any ring with unit the right ideals form a lattice L under the relation of set inclusion; lattice meet is set intersection, whilst lattice join is defined by er v $t=\{x+y ; x$ in r, y in $t\}$. I has as zero element the empty ideal $\{0\}$ and as unit element the ideal \mathbb{R}. An element e in Ω is called idempotent if $e^{2}=e$. If e is idempotent so also is $1-e$. For idempotent e we have : x belongs to $(e)_{r} \Leftrightarrow e x=x$.

Two principal right ideals on, bare inverse if and only if they are complements in the lattice of right ide -ls. This being, there exist a unique idempotent e such that $<$ or $=(e)_{r}, \vec{A}=(1-e)_{r}$.
4. REGULAR RINGS: \Re is said to be regular if it satisfies one of the following equivalent conditions: for every a in ℓ there exists
(i) x in \approx such that taxa $=a$
(ii) an idempotent e in R such that $(e)_{r}=(a)_{r}$
（iii）an idempotent f such that $(f)_{1}=(a)_{1}$ ．
（iv）a right ideal inverse to（a）${ }_{r}$ ．
（v）a left ideal inverse to（a）\neq
Every division ring is regular（ $x=a^{-1}$ in（i））．
Let $火$ be a regular ring．If π is a right ideal in $\%$ then the left annihilator of $o n$ is defined as

$$
\Omega^{ \pm}=\{x \text { in } \gtrsim ; x y=0 \text { for all } y \text { in or }\}
$$

The set \sim^{\neq}is a left ideal，principal if \because is princip－ al．In particular，if $0=(e)_{r}$ for idempotent e ，then $a^{\frac{1}{x}}=(e)_{r}^{\frac{1}{r}}=(1-e)_{I}$ 。

Denote by $R_{k}\left(L_{凡}\right)$ the set of all principal right （left）ideals in a regular ring $\%$ ．Then
（i） $\mathrm{R}_{12}, \mathrm{~L}_{/ 2}$ are complemented modular lattices．
（ii）R_{R} is anti－isomorphic to $L_{N_{2}}$ under the one－one inverse mappings
$o \operatorname{cn~}_{R} / \cos ^{x}, t^{\prime}$ in $L_{k} \rightarrow t^{r}$. （cf．Lemma 1）

The centre \mathcal{z} of a regular ring is a commutative regular ring．An ideal in a regular ring which is both left and right is called a two－sided ideal．A principal ideal er is a two－sided ideal if and only if it is generated by an idempotent in the centre．

A reduction of a ring \mathcal{R} is a decomposition of \mathcal{R} into two two-sided ideal direct summands. If \mathcal{R} is regular its only reductions are of the form $(e)_{*} \cup(1-e)_{*}$ where e is a central idempotent and ($)_{*}$ denotes twosided ideal. Since the only idempotents in a division ring are 0,1 it follows that R is an irreducible regular ring if and only if its centre is a field.
5. COORDINATIZATION: It is well known that any discrete (projective) geometry L_{n} satisfying Desargue's theorem (in particular with $n>3$) can be coordinatized, using homogeneous coordinates for the points of the geometry. v.Neumann expressed this classical result in the followi $-n g$ way: Let Ψ denote a division ring and Ψ_{n} the ring of all $n \times n$ matrices over Ψ; then for each ($n-1$)-dimension al projective geometry L_{n} (satisfying Desargue's theorem) there exists a suitable division ring Ψ such that the class of all linear subspaces of I_{n}, partially ordered by inclusion, can be put in lattice isomorphism with the class of all right ideals of Ψ_{n}. Generalizing this result von Neumann showed that for any complemented modular lattice possessing a homogeneous basis of order n (cf. 6 for the definition of this) a regular ring ${ }^{\mathcal{R}}$ can b -e found such that L is isomorphic to the lattice of
principal right ideals of k ．Moreover，for $n \geqslant 3$ this ring \mathcal{R} is uniquely determined by L ，to within ring isomorphism．

Thus，the lattice of subspaces of every discrete or continuous geometry is isomorphic to the R_{Ω} of an irreducible regular ring k ，unique to within isomorphism（except for the exceptions mentioned）．

If L is a discrete geometry L_{n} then K is the complet matrix ring Ψ_{n} over a division ring Ψ ，whilst if L is a continuous geometry L_{∞} ，then the corresponding irreduc－ ible regular ring is called a continuous ring．

An algebraic characterization of the continuous ring may be obtained as follows：For any geometry L the mum－ bers

$$
D\left((a)_{r}\right) ; D^{\prime}\left((a)_{X}\right), 1-D\left((a)_{r}^{\frac{1}{r}}\right), 1-D^{\prime}\left((a)_{X}^{r}\right)
$$

are equal，for any a in the ring of the geometry，where $D\left(D^{\prime}\right)$ is the dimension function defined on $R_{R}\left(I_{/ 2}\right)$ 。 Their common value is called the rank，$R(a)$ ，of a ．The function $R(a)$ has the following properties
（i） $0 \leqslant R(a) \leqslant 1$ for all a in $\%$ ．
（ii）$R(a)=0 \Leftrightarrow a=0$ 。
（iii）$R(a)=1 \Leftrightarrow a^{-1}$ exists in $/ 2$ 。
(iv) $R(a)=R(b) \Leftrightarrow a=u b v$, where u^{-1}, v^{-1} exist.
(v) $R(a b) \leqslant \min \{R(a), R(b)\}$
(vi) $R(a+b) \leqslant R(a)+R(b) \cdot$
(vii) For $e^{2}=e, f^{2}=f$, ff $=f e=0$. we have $R(e+f)=R(e)+R(f)$.

The function $R(a-b)$ serves as a metric in \mathcal{R} (the rank distance). If ℓ is the ring of a discrete or continuous geometry , it is complete in the topology of the rank distance i.e, if $a_{1}, a_{2}, a_{3}, \ldots$. are in \mathcal{R} then the existence of a in $\%$ with

$$
\lim _{\pi \rightarrow \infty} R\left(a_{\pi^{-a}}\right)=0
$$

is equivalent to

$$
\lim _{\pi, \omega \rightarrow \infty} R\left(a_{\pi}-a_{\omega}\right)=0
$$

If, conversely, a rank function with the properties (i)-(vii) is defined on the elements of an irreducible regular ring k, then $\$$ will be the ring of a discrete or continuous geometry if and only if it is complete in the topology of the rank distance. It will be a discrete ring (i.e matrix ring) if the range of the rank function is the set $\{0,1 / n, 2 / n, \ldots, 1\}$ for some integer n, and a continuous ring if the range of the rank function is the set of all real numbers $\geqslant 0, \leqslant 1$. In either case \mathbb{R}
is called a complete rank ring. In this way a one-one correspondence between continuous geometries and continuous rings is obtained.
6. It is convenient to list below some other definitions, theorems and lemmas which will be drawn upon in Part 2. We give these results in the setting of a system L satisfying axioms (A)-(E), and the associated complete rank ring ℓ (ie L is $R_{/ 2}$), although many of them remain valid in a more general setting.

The operations X, r introduced in 4 have the addition -al properties given by

LEMMA 1: For each on, t in L
(i) or $\leqslant Q_{2} \Rightarrow a^{X} \geqslant \mathbb{E}^{X}$
(ii) $\quad a \leqslant \pi \not \approx r$
(iii) $w^{x}=w^{X r ł}$
(iv) $\quad\left(c o v t^{X}=a^{X} \cap \not 一 ⿻^{X} \quad\right.$.

A proof is given in [7; Hilfssatz 1.3, ch. VI]
LEMMA 2: If eff are idempotent elements of \mathbb{R}, then
(i) $(e)_{r} \smile(f)_{r}=(e+g)_{r}$, where g is any
idempotent such that $(g)_{r}=((1-e) f)_{r}$
(ii) (e) $\left.r_{r}{ }^{(f}\right)_{r}=(f-f g)_{r}$, where g is any
idempotent such that $(g)_{X}=(f-e f)_{X}$.
$[7$; Hilfssatz $3.2,3.3$, ch VI $]$

LEMMA 3：If eff are idempotent elements of $\%$ ，then （i）$(e)_{r}=(f)_{r} \Leftrightarrow e=f+f y(1-f)$ ，some y in k
（ii）$(e)_{X}=(f)_{X} \Leftrightarrow e=f+(1-f) z f$ ，some z in \neq
［7；Hilfssatz 1．5，ch VI］
Call an element a of k non－singular if a^{-1} exists in R．Then

LEMMA 4：If eff are idempotent of the same rank in \mathcal{K} then $e=s f^{-1}$ ，for some non－singular s in $火$ 。
［9；Lemma 9，p 400］
LEMMA 5：$(a)_{r}=(b)_{r} \Leftrightarrow a=b v$ for some non－singul－ ar v in k ．
［7；Hilfssatz 1．6，ch VII］
LENMA 6：（i）If e is a non－zero idempotent in \mathcal{R} ， then $\mathrm{e} \mathcal{R} \mathrm{e}(=\{$ axe； x in $火\}$ ）is the complete regular rank ring corresponding to $L\left((e)_{r}\right)$（＝the sublattice of L of all er such that ers（e）r_{r} ）．
（ii）If \mathcal{z} is the centre of \mathcal{R} then $e \mathcal{j e}$
is the centre of $\mathrm{e} \mathcal{R} \mathrm{e}$ ．
［9；Lemma 10，p 400］

RELATIVE COMPLEMENTS: If $\mathscr{C} \leqslant \begin{aligned} & \\ & b\end{aligned}$ in L then a relative complement of er in t is an element τ (not necessarily unique) of L such that $\pi \cap \tau=0$ and $\pi \cup \tau=t$. Since L is complemented and modular it is also relative: complemented,i.e whenever $c \sim / \mathbb{L}_{4}$ there exists at least one relative complement of in (for, if τ is a complement of or then th $_{\sim} \tau$ is a relative complement of ar in t).

LEMMA 7: If a, e in k are such that $e^{2}=e$ and $(e)_{p}$ $\leqslant(a)_{r}$, then $(a-e a)_{r}$ is a relative complement of $(e)_{r}$ in $(a)_{r}$.
[11; 3.2(iii)]
INDEPENDENCE: A finite set $\left\{e r_{i} ; i=1, \ldots, k\right\}$ of elements of L is called independent if
(1) $\quad\left(v_{1} \cup \ldots . . \cup \sim_{i}\right) \cap v_{i+1}=0$, all $i=1, \ldots, k-1$. Equation (1) holds if and only if for every two disjoint subsets I_{1}, I_{2} of the index set $\{1, \ldots, k\}$ we have

$$
\begin{equation*}
\left(\underset{i \varepsilon I_{1}}{\cup} \sim_{i}\right) \cap\left(\underset{i \varepsilon I_{2}}{\cup} \sim_{i}\right)=0 \tag{2}
\end{equation*}
$$

[7; Definition 1.15, Satz 1.8, ch I]
For independent $\imath_{i}(i=1, \ldots, k)$ write $\tau_{1} \oplus \ldots . . \oplus v_{k}$ in place of $0 r_{1} \cup \ldots \cup v_{K}$.

A set $\left\{e_{i} ; i=1, \ldots \ldots, k\right\}$ of idempotent is called indepindent if

$$
e_{i} e_{j}=\left\{\begin{array}{l}
e_{i} \text { if } i=j \\
0 \quad \text { if } i \neq j
\end{array} \quad i, j=1, \ldots, k\right.
$$

THEOREM 1: If e_{1}, \ldots, e_{k} are independent idempotent from $\%$ then the $\left(e_{i}\right)_{r}$ are independent subspaces of L and

$$
\left(e_{i_{1}}\right)_{r} \oplus \ldots \ldots \oplus\left(e_{i_{\pi}}\right)_{r}=\left(e_{i_{1}}+\ldots+e_{i_{\pi}}\right)_{r}
$$

for every set of distinct integers $\left\{i_{1}, \ldots, i_{\pi}\right\}$ on the range $\{1, \ldots, k\}$. (the $e_{i_{1}}+\ldots+e_{i_{\pi}}$ are idempotent)

THEOREM 2: $\tau_{1}, \ldots \ldots, \tau_{k}$ are independent if and only if there exist independent idempotent e_{1}, \ldots, e_{k} such that

$$
v_{i}=\left(e_{i}\right)_{r}, i=1, \ldots, k
$$

$[7 ; \operatorname{Satz} 1.3, \operatorname{Satz1.4,~ch~VI]}$
HOMOGENEOUS BASIS: If two elements er, C_{2} of L possess a common complement c (i.e $\tau \oplus \tau=\psi^{2} \oplus \tau$) then we say c is perspective to (written: \&~ \mathcal{L}^{2}) with axis τ. Notice that the conditions (i) $\because \oplus \tau=\mathbb{C} \oplus \mathbb{C}$ some τ and (ii) $a \oplus \tau=\mathscr{L} \oplus \tau=(1)_{r}$ some τ, are equivalint.
[1; par 6.2]
n independent subspaces $\sigma_{1}, \ldots, v_{n}$ are said to form a basis for Leif $\sigma_{1} \oplus \ldots \oplus v_{n}=1$. If also

$$
\operatorname{cr}_{i} \sim \text { orr }_{j}, \text { each } i, j=1, \ldots, n
$$

then the basis is called homogeneous. n is called the order of the basis.

We also require
LEMMA 8: or $\sim b \Leftrightarrow D(r)=D(k)$
(in fact this is how v Neumann defines D; see [1])
EXISTENCE OF MATRIX UNITS: If on $n=0$ for some ∞, in L then we denote by $L_{\text {友o }}$ the set of all relative complements of Ω in $\Omega \oplus \in$, ie

$$
\tau \varepsilon L_{\text {bor }} \Leftrightarrow \approx \oplus \tau=\sim \omega t
$$

THEOREM 3: Let e_{1}, e_{2} be independent idempotents such that $o=\left(e_{1}\right)_{r}, V_{r}=\left(e_{2}\right)_{r}$. Then τ is in $L_{\text {E or }}$ if and only if there exists a unique e_{12} in k such that

$$
e_{1} e_{12} e_{2}=e_{12} \text { and } \tau=\left(e_{2}-e_{12}\right)_{r}
$$

THEOREM 4: With the same notation as in Theorem 3, τ is in both $L_{f r r}$ and $L_{a r e}$ if and only if there exist unique elements e_{21}, e_{12} in \mathcal{K} such that

$$
\begin{aligned}
& e_{1} e_{12} e_{2}=e_{12}, e_{2} e_{21} e_{1}=e_{21}, e_{21} e_{12}=e_{2}, e_{12} e_{21}=e_{1} \\
& \quad \text { and } \tau=\left(e_{1}-e_{21}\right)_{r}=\left(e_{2}-e_{12}\right)_{r} \\
& {[7 ; \text { Hilfssatz 4.1, Satz 4.2, ch VI }]}
\end{aligned}
$$

The left multiplications in k carry right ideals into right ideals and so induce mappings in L. Denote by γ_{t} the mapping $(x)_{r} \rightarrow(t x)_{r}$, all x and some fixed t in R. Then

LEMMA 9: (i) γ_{t} is an order-preserving endomorphism of L, ie

$$
a \leqslant b \Rightarrow r_{t} \pi \leqslant r_{t} b
$$

(ii) If t is non-singular then $\left(\gamma_{t}\right)^{-1}$
exists and equals γ_{t}^{-1} and r_{t} is a lattice automorphism, i.e $\quad \sim \leqslant t \Leftrightarrow r_{t} \imath \leqslant r_{t} t$
[9; Lemma 3, p 399]
It follows easily that the γ_{t} with non -singular t have the additional properties

$$
\begin{aligned}
r_{t}(\Omega \cup \mathbb{Z}) & =r_{t} \Omega \cup r_{t} \\
r_{t}(\Omega \cap \mathbb{Z}) & =r_{t} \Omega \cap r_{t} t \\
D\left(r_{t} \Omega\right) & =D(\Omega)
\end{aligned}
$$

A system of n^{2} elements $e_{i j}(i, j=1, \ldots, n)$ of R is called a system of matrix units if
(i) $e_{i j} e_{k h}=\left\{\begin{array}{l}0 \text { if } j \neq k \\ e_{i h} \text { if } j=k\end{array}\right.$
(ii) $\sum_{i} e_{i i}=1$

If the $e_{i j}$ are a system of matrix units then the $e_{i i}$ are independent idempotent.

LEMMA 10:\{ $\overbrace{i} ; i=1, \ldots, n\}$ is a homogeneous basis for L if and only if there exist n^{2} matrix units $e_{i j}$ in \mathcal{R} such that or ${ }_{i}=\left(e_{i i}\right)_{r}$.
[7; Satz 1.1.1.2, ch IX]
LEMMA 11: Γ_{n}, the $n \times n$ matrix ring over r, is a regular ring if and only if Γ is regular. [7; Satz 2.1, ch IX]

THEOREM 5: L has order n if and only if there exists a regular ring Γ_{n} such that \mathcal{R} is isomorphic to Γ_{n}

Lemma 10 provides a system of matrix units $e_{i j} ;$ taking

$$
\Gamma=e_{1} k e_{1}, e_{1}=e_{11} \text {, we have an isomorphism as follows }
$$

$x \varepsilon \mathcal{K}$ and $\left(x^{i j}\right) \varepsilon \Gamma_{n}$ correspond if and only if
and

$$
x=\sum_{i, j}^{\sum e_{i 1}} x^{i j} e_{1 j}
$$

$$
x^{i j}=e_{1 i} x e_{j 1} \quad, \quad i, j=1, \ldots, n
$$

[7; Hilfssatz 2.2, ch IX]

THE GORRESPONDENCE BETWEEN MODULES AND IDEALS: Let \boldsymbol{r} be a regular ring and denote by V_{Γ}^{n} the n-dimensional vector space over Γ. A subset M of V_{Γ}^{n} is called a
Γ right submodule if (i) $v_{1}, v_{2} \varepsilon M \Rightarrow v_{1}+v_{2} \varepsilon M$ and (ii) $\mathrm{v} \varepsilon \mathbb{M} \Rightarrow \mathrm{V}^{\ell} \mathrm{M}$ all $\gamma \in \Gamma$. For every right submodule M set

$$
\Omega(M)=\left\{\left(\xi_{i j}\right) ;\left(\xi_{1}, \ldots, \xi_{n j}\right) \varepsilon M, j=1, \ldots, n\right\} .
$$

Then $\operatorname{cr}(M)$ is a right ideal in r_{n}. Conversely, given a right ideal on in Γ_{n} let

$$
M(\Omega)=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right) ;\left(\begin{array}{c}
\xi_{1} \\
1 \\
\xi_{n}
\end{array}\right)=A\left(\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \text { some } A \varepsilon \text { en }\right\}
$$

Then $M(\Omega)$ is a right submodule of V_{Γ}^{n} and

$$
\Omega(M(\Omega))=\imath, M(\Omega(M))=M
$$

THEOREM 6 (i)The correspondence $M \leftrightarrow<(M)$ is a lattice isomorphism between the lattice of all Γ - right submodules of V_{r}^{n} and the lattice of Pightideals of T_{n}. .
(ii) Under this isomorphism the right submodules which correspond to principal ideals are exactly those which are finitely generated. [7; pp 186-188]

PART 2

A CROSS RATIO IN CONTINUOUS GEOMETRY

In all of what follows, \mathcal{R} will always denote, without explicit mention to the contrary, a complete rank ring and L its lattice of principal right ideals.

1. Firstly, we prove two theorems which will be useful later on.

THEOREM 1: For any a, b in k, with $(h)_{x}=(a)_{r}^{x}$,
(i) $D\left((a)_{r} \cup(b)_{r}\right)=D\left((h b)_{r}\right)+D\left((a)_{r}\right)$,
and
(ii) $D\left((a)_{r} \cap(b)_{r}\right)=D\left((b)_{r}\right)-D\left((h b)_{r}\right)$.

PROOF: Let $m_{1}=(a)_{r}, m_{2}=(b)_{r}, \tau=m_{1} n m_{2}$ and let n be a relative complement of τ in m_{2}, i.e
$\tau \oplus \eta=m_{2}$. Then

$$
\begin{aligned}
m_{1} \cup m_{2} & =m_{1} \cup c \cup \eta \\
& =m_{1} \cup \eta \quad, \text { as } \tau \leqslant m_{1}
\end{aligned}
$$

Also, $\quad m_{1} n \eta=(0)_{r}$, as
$D\left(m_{1} n n\right)=D\left(m_{1}\right)+D(\eta)-D\left(m_{1} \cup n\right)$
$=-D\left(m_{1} \cup m_{2}\right)+D\left(m_{1}\right)-D\left(m_{1} n m_{2}\right)+D\left(m_{2}\right)$

$$
=0
$$

so that

$$
\begin{aligned}
(1)_{I}=(0)_{r}^{X} & =\left(m_{1} n n\right)^{X} \\
& =\left(m_{1}^{X r} \cap n^{X r}\right)^{X} \\
& =\left(m_{1}^{X} \cup n^{X}\right)^{r X} \\
& =m_{1}^{X} \cup n^{X},
\end{aligned}
$$

$$
\text { [Part } 1 \text {; Lemma } 1 \text { and its dual] }
$$

In other words,

$$
(n)_{x} \cup n^{x}=(1)_{x}
$$

and for some y in k, p in n^{1} we have

$$
y h+p=1
$$

From $m_{2}=\tau \oplus \eta$ it follows, by [Part 1 ; Theorem 2], that there exist independent idempotents e_{1}, e_{2} such that

$$
\tau=\left(e_{1}\right)_{r}, \quad n=\left(e_{2}\right)_{r}, \quad m_{2}=\left(e_{1}+e_{2}\right)_{r}
$$

and hence that

$$
b=\left(e_{1}+e_{2}\right) b=e_{1} b+e_{2} b
$$

Then, since $e_{1} b \in \tau \leqslant m_{1}$,

$$
h b=h e_{2} b=h n
$$

where $n=e_{2} b$ and clearly $R(n)=D(n)$. Thus

$$
\begin{aligned}
& R(h b)=R(h n) \geqslant R(y h n) \\
&=R((y h+p) n) \\
&=R(n)
\end{aligned}
$$

And, as obviously $R(n) \geqslant R(h n)$, equality must hold,i.e

$$
R(h b)=R(n)=D(n) .
$$

In addition we have

$$
\begin{aligned}
D(n) & =D\left(m_{2}\right)-D\left(m_{1} n m_{2}\right) \\
& =D\left(m_{2} \cup m_{1}\right)-D\left(m_{1}\right) .
\end{aligned}
$$

and therefore

$$
\mathrm{R}(\mathrm{hb})=\mathrm{D}\left((\mathrm{hb})_{\mathrm{r}}\right)=\mathrm{D}\left(m_{1} \cup m_{2}\right)-\mathrm{D}\left(m_{1}\right) .
$$

This proves (i); (ii) follows immediately.

Now let $a=c f, b=c(1-f)$ for some c, f in \mathcal{R}. Then $\quad m_{1} \cup m_{2}=(c f)_{r} \cup(c(1-f))_{r}$ contains $c f+c(1-f)=c$. But cf, $c(1-f)$ belong to (c) $)_{r}$, which therefore contains $m_{1} \cup m_{2}$, and so equality holds i.e in this case we have

$$
D\left(m_{1} \cup m_{2}\right)=D\left((c)_{r}\right)
$$

and we have proved

$$
\begin{aligned}
& \text { COROLLARY 1: } R(c)=R(h c(1-f))+R(c f) \text {, for any } \\
& c, f \text { in } R \text { with }(h)_{X}=(c f)_{r}^{Y} \\
& \text { Furthermore, let } c=d f+e(1-f) ; \text { then } c f=d f, C(1-f) \\
& =d(1-f) \text { and Corollary } 1 \text { gives }
\end{aligned}
$$

$$
\begin{gathered}
\text { COROLLARY 2: For any } d, e, f \text { in } R \text { with }(h)_{X}=(d f)_{r}^{X}, \\
R(d f+e(1-f))=R(d f)+R(h e(1-f)) .
\end{gathered}
$$

THEOREM 2: Let af in \mathcal{R} be such that $f^{2}=f$, $(h)_{X}=\left(a(1-f)_{r}^{Y}\right.$. Then

$$
R(\text { haft })=R(h)=R(f)
$$

if and only if

$$
(a(1-f))_{r} \oplus(a f)_{r}=(1)_{r}
$$

PROOF: Necessity: $R(h a f)=R(h)=R(f) \Rightarrow$ a is non-singular by $[10]$. Then $\left(a\left(1-f^{\prime}\right)\right)_{r} u(a f)_{r}$ contains

$$
a(1-f)+a f=a \text {, i.e }
$$

$$
(a(-1-f))_{r} \vee(a f)_{r} \geqslant(a)_{r}=(1)_{r}
$$

and equality must hold. Also

$$
(a(1-f))_{r} n(a f)_{r}=(0)_{r}
$$

for, if x belongs to the left-hand side, then for some y, z in $\mathcal{R}, x=a(1-f) y=a f z ;$ thus $a^{-1} x=(1-f) y=$ $=f z$, and left multiplying by f gives $f z=a^{-1} x=0$. Sufficiency: Suppose $(a(1-f))_{r} \oplus(a f)_{r}=(1)_{r}$. Then a is non-siingular, since for some y, z in \mathcal{R}

$$
a\{(1-f) y+f z\}=1 .
$$

Also,

$$
h=h a(1-f) y+h a f z=\text { haft }
$$

so that

$$
R(h) \leqslant R(\text { hat }) \leqslant R(h)
$$

i.e

$$
R(h)=R(\text { hat }) \leqslant R(f)
$$

But,

$$
R(h)=1-R(a(1-f)) \geqslant 1-R(1-f)=R(f) .
$$

This completes the proof.

COROLLARY 3: For any b, c, f in $火$ with $f^{2}=f$,

$$
(h)_{\underline{I}}=(b(1-f))_{r}^{y}
$$

$$
R(\text { hf })=R(h)=R(f)
$$

if and only if

$$
(b(1-f))_{r} \oplus(c f)_{r}=(1)_{r}
$$

PROOF: Let $a=b(1-f)+c f$ in Theorem 2 .

2. THE CROSS RATIO

By a configuration we mean, as always, an ordered quadruple. Let $P_{n}(K)$ be an n-dimensional projective space over a field K. Suppose that two hyperplanes ω_{1}, ω_{2} are defined by the $(n+1)^{\text {th }}$-order row vectors r_{1}, r_{2}, and the two points π_{1}, π_{2} by means of the $(n+1)^{\text {th }}$-order column vectors r_{3}, r_{4}. Then the cross ratio of the confguration $\left\{\omega_{1}, \omega_{2}, \pi_{1}, \pi_{2}\right\}$ can be defined uniquely as

$$
r\left(\omega_{1}, \omega_{2} ; \pi_{1}, \pi_{2}\right)=\frac{r_{1} \cdot r_{3} r_{2} \cdot r_{3}}{r_{1} \cdot r_{4} r_{2} \cdot r_{4}}
$$

For K a division ring, Sterner defines the cross ratio as

$$
z_{k}=\left(r_{1} \cdot r_{4}\right)^{-1}\left(r_{1} \cdot r_{3}\right)\left(r_{2} \cdot r_{4}\right)^{-1}\left(r_{2} \cdot r_{3}\right)
$$

and shows that it is uniquely determined up to inner automorphisms of K .

If $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}\right\}$ is any configuration of subspaces of $P_{n}(K)$ (K a division ring), where V_{i} is spanned by the columns of a matrix M_{i} and the null-space of V_{i} by the rows of a matrix ${ }^{M_{i}}{ }_{i}$, Furman [8] defines a formal matrix

$$
A=\left(\cdot M_{1} \cdot M_{4}\right)^{-1}\left(\cdot M_{1} \cdot M_{3}\right)\left(\cdot M_{2} \cdot M_{4}\right)^{-1}\left(\cdot M_{2} \cdot M_{3}\right)
$$

and shows that an N.S.C for A to exist is

$$
\mathrm{v}_{1} \oplus \mathrm{v}_{4}=\mathrm{v}_{2} \oplus \mathrm{v}_{3}=\mathrm{v}^{(\mathrm{n})}
$$

the space spanned by the columns of the $(n+1)^{\text {th }}$-order unit matrix. This being so, the class of all matrices similar to A is invariant under non-singular collineations, and is by definition the cross ratio $\mathrm{R}_{\mathrm{k}}\left(\mathrm{V}_{1}, \mathrm{~V}_{2} ; \mathrm{V}_{3}, \mathrm{~V}_{4}\right)$ of the configuration.

For a configuration $\{0, t, \tau, v\}$ from L the conditions

$$
\begin{equation*}
v \oplus t=(1)_{r}=\tau \oplus v \tag{1}
\end{equation*}
$$

hold if and only if there are unique idempotent e, f with
(2) $\sim=(e)_{r}, \forall=(1-e)_{r}, \tau=(f)_{r}, \mathcal{O}=(1-f)_{r}$

For any a in \mathbb{K}, <a> will denote the set of all sas^{-1}, for non-singular s in k. We make the

DEFINITION 1: The cross ratio of a configuration $\left\{c, c_{2}, \tau, \infty\right\}$ satisfying (1) is

$$
R_{x}\left(\sim, x^{\prime} ; \tau, \infty\right)=\langle e f e>
$$

where eff are given by (2).

THEOREM 3: The cross ratio is invariant under all non-singular collimeations γ_{t} • [Part $\left.1 ; p 15\right]$

PROOF : Since r ${ }_{t}$ is a lattice automorphism, it follows from (1) that

$$
r_{t} \approx n \oplus r_{t} t=(1)_{r}=r_{t} c \theta r_{t} 0
$$

and since γ_{t} 片 $=(t e)_{r}=\left(t^{-1}\right)_{r}, \ldots$, it follows that $t e t^{-1}$, eft $^{-1}$ are the unique idempotents in the sense of (2). Hence $R_{x}\left(\gamma_{t} \Omega, \gamma_{t} ; \gamma_{t} \tau, \gamma_{t} 0\right)$ is defined and equals

$$
\left\langle\text { tet }^{-1} \mathrm{tft}^{-1} \mathrm{tet}^{-1}\right\rangle=\left\langle\text { tefet }^{-1}\right\rangle=\langle\text { eff e }\rangle .
$$

3. PERMUTATION PROPERTIES OF THE CROSS RATIO

All told there are 24 possible cross ratios, coresbonding to permutations of order in the configuration. Of course, different conditions (1) are required to define them, and therefore it is reasonable to expect some cross ratios to be equal.

THEOREM 4: $P_{k}(\imath, \nsucceq ; \imath, \tau)=\langle e-e f e>$
PROOF: Obvious.

$$
R_{x}(\tau, \nu ; \imath, t)=R_{k}(\Omega, t ; \tau, \infty)
$$

PROOF: There exists a unique idempotent g such that

$$
r=(e)_{r}=(g)_{r} \text { and } \mathscr{O}=(1-f)_{r}=(1-g)_{r}\left(i \cdot e,(f)_{X}=(g)_{X}\right.
$$

Hence, [Part 1 ; Lemma 3], for some $x ; y$ in \mathcal{R}

$$
\begin{aligned}
& g=e+e x(1-e), f=g+(1-g) y g \\
& \text { and as } f g=f, e g=g \text { we have } \\
& f e f=f e f g=f e f e g=(g+(1-g) y g) \text { efeg } \\
& \text { Let } s_{1}=(1-g) y g, s_{2}=e x(1-e) \text {. Then } s_{i}^{2}=0,\left(1+s_{i}\right)^{-1} \\
& =1-s_{i}(i=1,2), g s_{1}=s_{2} e=0, s_{1} g=s_{1}, e s_{2}=s_{2} \text { and } \\
& \left(1+s_{2}\right)\left(1-s_{1}\right) f e f\left(1+s_{1}\right)\left(1-s_{2}\right) \\
& =\left(1+s_{2}\right)\left(1+s_{1}\right)(g+(1-g) y g) f e g\left(1+s_{1}\right)\left(1-s_{2}\right) \\
& =\left(1+s_{2}\right) \operatorname{efeg}\left(1-s_{2}\right), \text { as ge }=e \\
& =\left(1+s_{2}\right) \operatorname{efe}\left(1+s_{2}\right)\left(1-s_{2}\right) \\
& =
\end{aligned}
$$

THEOREM 6: $2 \sim \notin=\tau \oplus v=k \oplus \tau=(1)_{r}$ imply

$$
B(\tau, \nu ; \tau, 2)=R_{k}(\sim, \infty ; \tau, v)
$$

PROOF: Interchange u, thoth τ, ω respectively,

 in Theorem 5 .THEOREM 7: $u \oplus k=\tau \oplus v=b \oplus \tau=\sim \oplus v=(1)_{r}$ imply $\left.R_{x}(\sim, v ; \tau, \vec{C})=\overline{\langle e f e}\right\rangle$. (where $\overline{e f e}$ denotes the inverse of eff in eRe, the subring with unit e)

PROOF: There exist unique idempotent g,h such that $\mu=(e)_{r}=(g)_{r}, V=(1-e)_{r}=(1-h)_{r}, \tau=(f)_{r}=(h)_{r}$, $v=(1-f)_{r}=(1-g)_{r}$.

Since $B_{x}(\tau, \tau ; \pi, *)=$ <ghg> we are required to show that <ghg> $=$ <eff>. As ge $=e$, he $=h$, hf $=f, g f=g$ we have

$$
\text { eghgefe }=\text { ghefe }=\text { ghfe }=g f e=g e=e,
$$

so that $\overline{\text { efl }}$ exists and equals eghge. Then, as $\mathrm{eg}=\mathrm{g}$ and $g=e+e x(1-e)$ for some x in ℓ,

$$
\text { ghg }=\text { eghgeg }=\text { eghge }(e+\operatorname{ex}(1-e)) .
$$

Let $s=e x(1-e)$. Then $s e=0$, es $=s$ so that $(1+s) \operatorname{ghg}(1-s)=(1+s)$ eghge $(e+e x(1-e))(1-e x(1-e))$ = eghge .

Hence <chg> = <eghge> = 〈र्efe>.

THEOREM 8: $\approx \oplus \omega^{\ell}=\tau \oplus v=\pi \oplus \tau=(1)_{r}$ imply
(i) $R_{x}\left(\varkappa, R_{2} ; \tau, \omega\right)=R_{x}(\nu, \tau ; \neq \sim \Omega)$ and

PROOF: There exists a unique idempotent g such that $\mathcal{L}=(\mathrm{e})_{r}=(g)_{r}, \dot{c}=(f)_{r}=(1-g)_{r}\left(\right.$ or, $\left.(1-f)_{X}=(g)_{X}\right)$ ad (i): For some x, y in k we have

$$
g=e+e x(1-e), 1-f=g+(1-g) y g
$$

Then, since $(1-f) g=1-f, e g=g$,

$$
(1-f) e(1-f)=(1-f) e(1-f) g=(1-f) e(1-f) e g .
$$

Let $s_{1}=(1-g) y g, s_{2}=e x(1-e)$.Then, since ge $=e$, $\left(1+s_{2}\right)\left(1-s_{1}\right)(1-f) e(1-f) \operatorname{eg}\left(1+s_{1}\right)\left(1-s_{2}\right)$
$=\left(1+s_{2}\right)\left(1-s_{1}\right)(g+(1-g) y g) e(1-f) \operatorname{eg}\left(1+s_{1}\right)\left(1-s_{2}\right)$
$=\left(1+s_{2}\right) \operatorname{ge}(1-f) \operatorname{eg}\left(1-s_{2}\right)$
$=(1+e x(1-e)) e(1-f) e(e+e x(1-e))(1-e x(1-e))$
$=e(1-f) e$,
so that $\langle(1-f) e(1-f)\rangle=\langle e(1-f) e\rangle$. Also,
$\left(1+s_{2}\right)\left(1-s_{1}\right)(1-f)\left(1+s_{1}\right)\left(1-s_{2}\right)$
$=\left(1+s_{2}\right)(1-(1-g) y g)(g+(1-g) y g)(1+(1-g) y g)\left(1-s_{2}\right)$
$=\left(1+s_{2}\right) g\left(1-s_{2}\right)$
$=\left(1+s_{2}\right) e\left(1+s_{2}\right)\left(1-s_{2}\right)$
$=\mathrm{e}$,
so that $\langle 1-\mathrm{f}\rangle=$ <e> . Finally, since
$(1-f)(1-e)(1-f)=1-f-(1-f) e(1-f), e f e=e-e(1-f) e$,
we must have $\langle(1-f)(1-e)(1-f)\rangle=\langle e f e\rangle$, which is (i).
ad (ii): $(f)_{r}=(1-g)_{r}$ and $(1-e)_{X}=(1-g)_{X}$ mean ,for some y, z in R,

$$
\begin{aligned}
& 1-g=f+f y(1-f) \text { and } 1-e=1-g+g z(1-g) . \text { Let } \\
& s_{1}=g z(1-g), s_{2}=f y(1-f) . \text { Then, as }(1-e)(1-g)=1-e, \\
& f(1-g)=1-g, \\
& \left(1+s_{2}\right)\left(1-s_{1}\right)(1-e) f(1-e)\left(1+s_{1}\right)\left(1-s_{2}\right) \\
& =\left(1+s_{2}\right)\left(1-s_{1}\right)(1-e) f(1-e) f(1-g)\left(1+s_{1}\right)\left(1-s_{2}\right) \\
& =\left(1+s_{2}\right)(1-g) f(1-e) f(1-g)\left(1-s_{2}\right) \\
& =f(1-e) f,
\end{aligned}
$$

so that $\langle(1-e) f(1-e)\rangle=\langle f(1-e) f\rangle ;$ similarly, using the same non-singular $t=\left(1+s_{2}\right)\left(1-s_{1}\right)$ we find $t(1-e) t^{-1}=f$, i.e, 〈1-e〉 = <ff. Finally we have

$$
\langle(1-e)(1-f)(1-e)\rangle=\langle f e f\rangle,
$$

which is (ii).
THEOREM 9: $\pi \oplus \notin=\tau \oplus v=6 \oplus v=(1)_{r}$ imply
(i) $R_{x}\left(v, k_{2} ; \tau, v\right)=R_{x}(v, \tau ; \infty, v)$ and
(ii) $R_{x}(\tau, v ; \imath, \notin)=R_{x}(t, \tau ; \nu, \tau)$.

PROOF: Interchange σ, t with τ, ω respectively in Theorem 8.

From Theorems 4-9 we can deduce the situation illustrated in Table 1, where we have made the identifications $: \omega=1, t=2, \tau=3, \infty=4$. Relations in the margin are necessary and sufficient for the existence of the cross ratios in the corresponding rows. Either condition at the end of a double arrow is sufficient for the aquality of the cross ratios connected. In general the cross ratios in any one column are distinct, whilst equality in one row indicates the corresponding equality in the other rows. When $\because \oplus \in=\tau \oplus u=u \oplus \omega=\tau \oplus \bullet=(1)_{r}$, it is clear that, in general , there are exactly six distinct cross ratios(viz., those in the same column).

4. FOUR POINTS ON A LINE

Let \mathcal{Z} be the 2×2 matrix ring Γ_{2} over a division ring Γ. We will establish the connection of our cross ratio with the one usually ascribed in this case.

Consider two Γ-submodules(points) P_{i} of Y^{2}, $P_{i}=\left\{\binom{\lambda_{i}}{i} \rho ;\right.$ fixed λ_{i}, arbitrary ρ in $\left.\Gamma\right\},(i=1,2)$, and $\lambda_{1} \neq \lambda_{2}$. From $\lambda_{1} \neq \lambda_{2}$ it follows that P_{1} and P_{2} are complementary. Now, under the one-one correspondence between submodules of V_{Γ}^{2} and principal right ideals in Γ_{2} described in [Part 1; Theorem 6], P_{i} corresponds to the principal right ideal

$$
\tau_{i}=\left(\left|\begin{array}{cc}
1 & 0 \\
\lambda_{i}^{-4} & 0
\end{array}\right|\right)_{r}
$$

where $\left|\begin{array}{cc}1 & 0 \\ \lambda_{i}^{-1} & 0\end{array}\right|=e_{i}$, say, is idempotent. Moreover, the lattice isomorphic nature of the correspondence shows

$$
\Omega_{1} \oplus v_{L}=\Gamma_{2}
$$

and hence there exists a unique idempotent e in Γ_{2} such that $\left(e_{1}\right)_{r}=(e)_{r}$ and $\left(e_{2}\right)_{r}=(1-e)_{r}$. Therefore, for some x_{1}, x_{2} in Γ_{2}, we must have

$$
e=e_{1}+e_{1} x_{1}\left(1-e_{1}\right)=1-\left(e_{2}+e_{2} x_{2}\left(1-e_{2}\right)\right) .
$$

Now,
(1) $e_{1}+e_{1} x_{1}\left(1-e_{1}\right)=\left|\begin{array}{cc}1-\mathrm{b} \lambda_{1}^{-1} & b \\ \lambda_{1}^{-1}-\lambda_{1}^{-1} b \cdot \lambda_{1}^{-1} & \lambda_{1}^{-1} b\end{array}\right|, x_{1}=\left|\begin{array}{cc}* & b \\ * & *\end{array}\right|$ (2) $1-e_{2}-e_{2} x_{2}\left(1-e_{2}\right)=\left|\begin{array}{lr}c \lambda_{2}^{-1} & -c \\ \lambda_{2}^{-1} c \lambda_{2}^{-1}-\lambda_{2}^{-1} & 1-\lambda_{2}^{-1} c\end{array}\right| x_{2}=\left|\begin{array}{l}* \\ *\end{array}\right|$

Equating (1) and (2) we find

$$
b=-c, \quad c \lambda_{2}^{-1}=1-b \lambda_{1}^{-1},-\lambda_{2}^{-1}+\lambda_{2}^{-1} c \lambda_{2}^{-1}=\lambda_{1}^{-1}-\lambda_{1}^{-1} b \lambda_{1}^{-1}
$$

$$
\text { and } 1-\lambda_{2}^{-1} c=\lambda_{1}^{-1} b ; \text { i.e }
$$

(3) $\quad-b \lambda_{2}^{-1}=1-b \lambda_{1}^{-1}$
(4) $-\lambda_{2}^{-1}-\lambda_{2}^{-1} b \lambda_{2}^{-1}=\lambda_{1}^{-1}-\lambda_{1}^{-1} b \lambda_{1}^{-1}$
(5) : $1+\lambda_{2}^{-1} b=\lambda_{1}^{-1} b$
(3) and (5) give the same solution, viz
(6) $b=\left(\lambda_{1}^{-1}-\lambda_{2}^{-1}\right)^{-1}=\lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{1}=\lambda_{1}\left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{2}$
whilst. (4) holds whenever (3) does, for (4) is, using (3)

$$
-\lambda_{2}^{-1}\left(1+b \lambda_{2}^{-1}\right)=-\lambda_{2}^{-1} b \lambda_{1}^{-1}=\left(1-\lambda_{1}^{-1} b\right) \lambda_{1}^{-1}
$$

so that, finally, we have

$$
\begin{aligned}
e & =\left|\begin{array}{ll}
1-\lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)^{-1} & \lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{1} \\
\lambda_{1}^{-1}-\lambda_{1}^{-1} \lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)^{-1} & \lambda_{1}^{-1} \lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{1}
\end{array}\right| \\
& =\left|\begin{array}{ll}
-\lambda_{1}\left(\lambda_{2}-\lambda_{1}\right)^{-1} & \lambda_{1}\left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{2} \\
-\left(\lambda_{2}-\lambda_{1}\right)^{-1} & \left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{2}
\end{array}\right|
\end{aligned}
$$

Similarly, if P_{3}, P_{4} are Γ-submodules with different parameters λ_{3}, λ_{4}, we find for the unique idempotent f such that $\Omega_{3} \oplus \pi_{4}=\Gamma_{2}$,

$$
f=\left|\begin{array}{lr}
-\lambda_{3}\left(\lambda_{4}-\lambda_{3}\right)^{-1} & \lambda_{3}\left(\lambda_{4}-\lambda_{3}\right)^{-1} \lambda_{4} \\
-\left(\lambda_{4}-\lambda_{3}\right)^{-1} & \left(\lambda_{4}-\lambda_{3}\right)^{-1} \lambda_{4}
\end{array}\right|
$$

Using (6) we find

$$
\left|\begin{array}{cc}
1 & 0 \\
-\lambda_{1}^{-1} & 1
\end{array}\right| e\left|\begin{array}{cc}
1 & \lambda_{2} \\
0 & 1
\end{array}\right|=\left|\begin{array}{cc}
-\lambda_{1}\left(\lambda_{2}-\lambda_{1}\right)^{-1} & 0 \\
0 & 0
\end{array}\right|
$$

and

$$
\left|\begin{array}{cc}
1 & 0 \\
-\lambda_{3}^{-1} & 1
\end{array}\right| \mathrm{f}\left|\begin{array}{cc}
1 & \lambda_{4} \\
0 & 1
\end{array}\right|=\left|\begin{array}{cc}
-\lambda_{3}\left(\lambda_{4}-\lambda_{3}\right)^{-1} & 0 \\
0 & 0
\end{array}\right|
$$

$$
\left.=-\left|\begin{array}{cc}
\lambda_{1} & 0 \\
1 & \lambda_{1}
\end{array}\right|\left|\begin{array}{cc}
\left(\lambda_{2}-\lambda_{1}\right)^{-1}\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)^{-1} & 0 \\
0 & 0
\end{array}\right| \right\rvert\,
$$

$$
\left.\begin{array}{cc||cc|}
\left(\lambda_{1}-\lambda_{4}\right)\left(\lambda_{2}-\lambda_{1}\right)^{-1} & 0 \\
\left(\lambda_{2}-\lambda_{1}\right)^{-1} & 0 & -\lambda_{2} \\
0 & 1
\end{array} \right\rvert\,
$$

$$
\left.=\left|\begin{array}{ll}
\lambda_{1} & 0 \\
1 & \lambda_{1}
\end{array}\right| \begin{array}{ll}
\psi & 0 \\
0 & 0
\end{array}\left|\begin{array}{ll}
\left(\lambda_{2}-\lambda_{1}\right)^{-1} & 0 \\
0 & 0
\end{array}\right| \begin{array}{ll}
-1 & \lambda_{2} \\
0 & -1
\end{array} \right\rvert\,
$$

where

$$
\psi=\left(\lambda_{2}-\lambda_{1}\right)^{-1}\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)^{-1}\left(\lambda_{1}-\lambda_{4}\right)
$$

and just as well

$$
\begin{aligned}
& \text { eff } \left.=\left|\begin{array}{cc}
\lambda_{1} & 0 \\
1 & \lambda_{1}
\end{array}\right|\left|\begin{array}{cc}
1 & -\left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{2} \lambda_{1} \\
0 & 1
\end{array}\right|\left|\begin{array}{ll}
\psi & 0 \\
0 & 0
\end{array}\right| \right\rvert\, \\
& \quad\left(\lambda_{2}-\lambda_{1}\right)^{-1}
\end{aligned} \quad 0 .\left.\left|\left|\begin{array}{cc}
-1 & \lambda_{2} \\
0 & -1
\end{array}\right|\right| \begin{array}{cc}
\lambda_{1} & 0 \\
1 & \lambda_{1}
\end{array}| | \begin{array}{ll}
\lambda_{1} & 0 \\
1 & \lambda_{1}
\end{array}\right|^{-1} .
$$

where $\eta=\left(\lambda_{2}-\lambda_{1}\right)^{-1} \lambda_{2} \lambda_{1}$

$$
=b\left|\begin{array}{ll}
\psi & 0 \\
0 & 0
\end{array}\right| b^{-1}, b=\left|\begin{array}{cc}
\lambda_{1} & 0 \\
1 & \lambda_{1}
\end{array}\right|\left|\begin{array}{cc}
1 & -\eta \\
0 & 1
\end{array}\right|
$$

and finally, we conclude that, due to the isomorphism between $\left|\begin{array}{ll}\Gamma & 0 \\ 0 & 0\end{array}\right|$ and Γ, there is a one-one correspondent
<eff> <-> 〈џ> .

When $R=\Gamma_{n}$ Theorems 11 and 12 are the some as $[8 ;$ Theorems 21,22$]$; fence, an application of Lemma 2 will show that our cross $x a r i o$ coincides with that of $[8]$ in $t 6, s$ case.

5．THE NORMAI FORM OF A CONFIGURATION

The following theorem will ensure the existence of matrix units．

THEOREM 10：Let e_{1}, e_{2} be idempotent in \mathcal{R} with the following properties：（i）$e_{1} e_{2}=e_{2} e_{1}=0$ and（ii） $R\left(e_{1}\right)=R\left(e_{2}\right)$ ．Then there exist unique elements e_{12} ， e_{21} in \mathcal{R} such that $e_{1} e_{12} e_{2}=e_{12}, e_{2} e_{21} e_{1}=e_{21}, e_{21} e_{12}=e_{2}$ and $e_{12} e_{21}=e_{1}$

PROOF：It suffices to show the existence of a τ in L such that ：$\left(e_{1}\right)_{r} \oplus\left(e_{2}\right)_{r}=\left(e_{1}\right)_{r} \oplus \tau=\left(e_{2}\right)_{r} \oplus \tau$ Then the existence and uniqueness of e_{12}, e_{21} is guarant－ ed by［Part 1 ；Theorem 4］．Let $\Omega=\left(\mathrm{e}_{1}\right)_{\mathrm{r}}, G=\left(\mathrm{e}_{2}\right)_{\mathrm{r}}$ ． Then $D(v)=D(t)$ is equivalent to $\sim \&$ ．Hence there
 $(\Omega \cup \sim) \cap(\Omega \cup t)=\Omega \cup((\Omega \cup 0) \cap t)$ as $⿰ \leqslant \Omega \cup ひ$
$=ひ \cup(($ 长し $(t \cap v))$
as $\because \sim 0=t \cup b$ $=a \cup t$

But this is equivalent to $\Omega v v \geqslant \Omega u t$ ．Let

$$
c=v \cap(v \cup t)
$$

and we have

$$
\begin{aligned}
\imath \cap \tau & =\sim \cap Q \cap(\imath \cup t) \\
& =(0)_{\mathrm{r}}, \text { as } v \cap \rho=(0)_{\mathrm{r}}
\end{aligned}
$$

and

$$
\begin{aligned}
\Omega \cup c & =\Omega \cup(v \cap(\Omega \cup t)) \\
& =(\approx \cup v) \cap(\Omega \cup t), \text { as } \approx \leqslant \Omega \cup t \\
& =\approx \cup t, \text { i.e }
\end{aligned}
$$

$n \oplus \tau=n \oplus t$.
Similarly, $\because \oplus \forall=A^{A} \oplus \tau$. This completes the proof.

The configuration $\{\tau, t, \tau, \infty\}$ will be denoted by C. If C, \hat{c} are two configurations such that for some non-singular a in k,
$r_{a} \imath=\hat{\imath}, \quad r_{a}^{t}=\hat{t}, r_{a} c=\hat{\imath}, r_{a} 0=\hat{v}$
then we say that there exists a non-singular collineatio of C onto \hat{C} and write $r_{a}: C \rightarrow \hat{C}$.

We will now give a generalization of the well-known theorem which states that any four distinct collinear points can be projected onto the points $0,1, \infty, r$, where r is their cross ratio.

Suppose(from now on) that the members of C satisfy (1) $\Omega \cup \tau=\imath \oplus t=\tau \oplus v=\imath \oplus v=(1)_{r}$, and let m_{1}, m_{2} be relative complements of $\Omega \cap \tau$ in Ω, τ respectively,i.e

$$
(\Omega \cap \tau) \oplus m_{1}=\pi, \quad(\Omega \cap \tau) \oplus m_{2}=\tau
$$

Then

$$
\begin{aligned}
(\approx \cap \tau) \cup m_{1} \cup m_{2} & =\left((\tau \cap \tau) \cup m_{1}\right) \cup\left((v \cap \tau) \cup m_{2}\right) \\
& =\sim \sim \tau \\
& =(1)_{\mathrm{r}} .
\end{aligned}
$$

Also

$$
\begin{aligned}
\left((v \cap \tau) \cup m_{1}\right) \cap m_{2} & =\Omega \cap m_{2} \\
& =\approx \cap m_{2} \cap \tau, \text { as } m_{2} \leqslant \tau \\
& =(\Omega \cap \tau) \cap m_{2} \\
& =(0)_{r} .
\end{aligned}
$$

and since

$$
(\Omega \cap \tau) \cap m_{1}=(0)_{r}
$$

we conclude that $u \cap \tau, m_{1}, m_{2}$ are independent and [Part 1;Theorem 2] there exist unique, independent idempotent e_{1}, e_{2}, e_{3} such that $\left(e_{1}\right)_{\mathrm{r}}=\pi \Omega \tau,\left(e_{2}\right)_{\mathrm{r}}=m_{1}$, $\left(e_{3}\right)_{r}=7 n_{2}$ and $e_{1}+e_{2}+e_{3}=1$.

Since e_{1}, e_{2}, e_{3} are independent,

$$
\leadsto=\left(e_{1}\right)_{r} \oplus\left(e_{2}\right)_{r}=\left(e_{1}+e_{2}\right)_{r}, \tau=\left(e_{1}+e_{3}\right)_{r}
$$

Taking, as in Section $2, e$ and f to be the unique idempotent defined by the conditions

$$
u \oplus \vec{b}=(1)_{r}=c \oplus v
$$

(ice, $\left.\tau=(e)_{r}, t=(1-e)_{r}, \tau=(f)_{r}, T=(1-f)_{r}\right)$ we have : $\left(e_{1}+e_{2}\right) e=e, e\left(e_{1}+e_{2}\right)=e_{1}+e_{2},\left(e_{1}+e_{3}\right) f=f$, $f\left(e_{1}+e_{3}\right)=e_{1}+e_{3}$, and since $\left(e_{1}\right)_{r} \leqslant(e)_{r}$, also $e e_{i}=e_{i}$, ($i=1,2$); similarly $f e_{i}=e_{i}(i=1,3)$.

Moreover, from $\left(e_{1}+e_{2}\right)_{r}=(e)_{r}$ and $1-\left(e_{1}+e_{2}\right)=e_{3}$ follows: $\left(e_{3}\right)_{Y}=(e)_{r}^{\nsucceq}=(1-e)_{Z}$; similarly, $\left.\left(e_{2}\right)_{\neq(1-f}\right)_{Z}$

From the relations (1) we deduce
(2) $D(\imath)=D(\tau), D(t)=D(w), D(v)+D(\tau)=1$. Hence, also $D\left(m_{1}\right)=D\left(m_{2}\right)$,ie e_{2}, e_{3} are independent idempotent of the same rank, and by Theorem 10 there exist unique matrix units

$$
e_{22}=e_{2}, e_{23}, e_{32}, e_{33}=e_{3}
$$

such that

$$
e_{i j} e_{p q}=\left\{\begin{array}{l}
e_{i q}, \text { if } j=p \\
0, \text { if } j \neq p
\end{array} \quad(i, j, p, q=2,3)\right.
$$

Since $e_{32}=e_{32} e_{2}, e_{2}=e_{23} e_{32}$, it follows that $\left(e_{32}\right)_{X}=\left(e_{2}\right)_{\Varangle}$; similarly, $\left(e_{23}\right)_{y}=\left(e_{3}\right)_{モ}$, so that

$$
R\left(e_{32}\right)=R\left(e_{23}\right)=R\left(e_{2}\right)=R\left(e_{3}\right)
$$

Since, by assumption

$$
\tau \oplus v=(1)_{r} \text {, }
$$

we have $\left(e_{1}+e_{2}\right)_{r} \oplus(1-f)_{r}=(1)_{r}$. Hence there is an idempotent h such that $\left(e_{1}+e_{2}\right)_{r}=(h)_{r},(1-f)_{r}=(1-h)_{r}$. The latter means, for some z in $\ell, 1-h=1-f+(1-f) z f$. Also, $(h)_{r}^{Y}=\left(e_{3}\right)_{Y}$ and by Theorem 2,
$(h)_{r} \oplus(1-h)_{r}=(1)_{r}$ implies $R\left(e_{3}(1-h)\right)=R\left(e_{3}\right)=R(1-h)$ But, $R\left(e_{3}(1-h)\right)=R\left(e_{3}(1-f)(1+(1-f) z f)\right)=R\left(e_{3}(1-f)\right)$, since $1+(1-f) z f$ is non-singular; so that, using ($1-f) e_{2}$ $=(1-f)$, we have

$$
R\left(e_{3}(1-f) e_{2}\right)=R\left(e_{3}\right)=R\left(e_{2}\right)
$$

But clearly $\left(e_{3}(1-f) e_{2}\right)_{z} \leqslant\left(e_{2}\right)_{x}=\left(e_{32}\right)_{z}$; hence equality must hold,i.e

$$
\left(e_{3}(1-f) e_{2}\right)_{x}=\left(e_{32}\right)_{x}
$$

and, for some x in ℓ, we have

$$
e_{32}=x e_{3}(1-f) e_{2}=e_{3} x e_{3}(1-f) e_{2}
$$

Clearly, this means

$$
R\left(e_{32}\right) \leqslant R\left(e_{3} x e_{3}\right) \leqslant R\left(e_{3}\right)=R\left(e_{32}\right)
$$

so that equality holds,i.e

$$
R\left(e_{3} x e_{3}\right)=R\left(e_{3}\right)
$$

and $e_{3} x e_{3}$ has an inverse, $\bar{e}_{3} x e_{3}$, in the subring $e_{3} \mathcal{R e} e_{3}$.

Consider

$$
a=e_{1}-e_{1}(1-f) e_{2}+e_{2}+e_{3} x e_{3}
$$

a is non-singular; for,

$$
a\left(1+e_{1}(1-f) e_{2}\right)\left(e_{1}+e_{2}+{\overline{e_{3} x e_{3}}}^{a}\right)=e_{1}+e_{2}+e_{3}=1 .
$$

Let us examine the effect of the non-singular collineatio -n r_{a} on C.

$$
\text { (i) } \begin{aligned}
r_{a} u & =r_{a}\left(e_{1}+e_{2}\right)_{r} \\
& =\left(e_{1}-e_{1}(1-f) e_{2}+e_{2}\right)_{r} \\
& =\left(e_{1}+e_{2}\right)_{r}=\Omega
\end{aligned}
$$

since: $\left(e_{1}-e_{1}(1-f) e_{2}+e_{2}\right)\left(1+e_{1}(1-f) e_{2}\right)=e_{1}+e_{2}$ implies
$r_{a} \Omega \geqslant\left(e_{1}+e_{2}\right)_{r}$. The reverse inclusion is clear since Ω contains e_{1}, e_{2} and so must contain $e_{1}-e_{1}(1-f) e_{2}+e_{2}$.

$$
\text { (ii) } \begin{aligned}
r_{a} \tau & =r_{a}\left(e_{1}+e_{3}\right)_{r} \\
& =\left(e_{1}+e_{3} x e_{3}\right)_{r} \\
& =\left(e_{1}+e_{3}\right)_{r}=\tau
\end{aligned}
$$

since: $\left(e_{1}+e_{3} \mathrm{xe}_{3}\right)\left(e_{1}+\overline{e_{3} x e_{3}}\right)=e_{1}+e_{3}$ implies $r_{a} c \geqslant c$ $\left(e_{1}+e_{3}\right)_{r}$;on the other hand, since $\left(e_{1}+e_{3}\right)\left(e_{1}+e_{3} x e_{3}\right)=$ $e_{1}+e_{3} x e_{3}$, it follows that $r_{a} \tau \leqslant \tau$.
(iii) Since $(1-f) e_{2}=1-f, e_{2}(1-f)=e_{2}$, we have
$1-f=\left(e_{1}+e_{2}+e_{3}\right)(1-f) e_{2}=e_{1}(1-f) e_{2}+e_{2}+e_{3}(1-f) e_{2}$, so that

$$
\begin{aligned}
r_{a} \boldsymbol{\rho} & =r_{a}(1-f)_{r} \\
& =r_{a}\left(e_{1}(1-f) e_{2}+e_{2}+e_{3}(1-f) e_{2}\right)_{r} \\
& =\left(e_{1}(1-f) e_{2}-e_{1}(1-f) e_{2}+e_{2}+e_{32}\right)_{r} \\
& =\left(e_{2}+e_{32}\right)_{r} .
\end{aligned}
$$

(iv) Since $(1-e) e_{3}=1-e, e_{3}(1-e)=1-e$ we have

$$
\begin{aligned}
1-e & =\left(e_{1}+e_{2}+e_{3}\right)(1-e) e_{3} \\
& =e_{1}(1-e) e_{3}+e_{2}(1-e) e_{3}+e_{3}
\end{aligned}
$$

and $r_{a} \neq r_{a}(1-e)_{r}$

$$
=r_{a}\left(e_{1}(1-e) e_{3}+e_{2}(1-e) e_{3}+e_{3}\right)_{r}
$$

$$
=\left(e_{1}(1-e) e_{3}-e_{1}(1-f) e_{2}(1-e) e_{3}+e_{2}(1-e) e_{3}+e_{3} x e_{3}\right)_{r}
$$

$$
\geqslant\left((e _ { 1 } (1 - e) e _ { 3 } - e _ { 1 } (1 - f) e _ { 2 } (1 - e) e _ { 3 } + e _ { 2 } (1 - e) e _ { 3 } + e _ { 3 } x e _ { 3 }) \left(e_{3}(1-f) e_{2}\right.\right.
$$

$$
))_{\dot{r}}
$$

$$
=\left(b+e_{2}(1-e) e_{3}(1-f) e_{2}+e_{3} x e_{3}(1-f) e_{2}\right)_{r}
$$

$$
=\left(b+e_{2}(1-e) e_{3}(1-f) e_{2}+e_{32}\right)_{r}
$$

where $b=\left(e_{1}(1-e) e_{3}-e_{1}(1-f) e_{2}(1-e) e_{3}\right) e_{3}(1-f) e_{2}$.
Equality must hold as

$$
D\left(r_{a} t\right)=D(t)=1-D(\imath)=1-R\left(e_{1}+e_{2}\right)=R\left(e_{3}\right)
$$

whilst

$$
\begin{aligned}
R\left(b+e_{2}(1-e) e_{3}(1-f) e_{2}+e_{32}\right) \geqslant & R\left(e_{3}\left(b+e_{2}(1-e) e_{3}(1-f) e_{2}+e_{32}\right)\right) \\
& =R\left(e_{3} e_{32}\right) \\
& =R\left(e_{32}\right)=R\left(e_{3}\right) .
\end{aligned}
$$

i.e,

$$
r_{a} t=\left(b+e_{2}(1-e) e_{3}(1-f) e_{2}+e_{32}\right)_{r}
$$

But, since $(1-f)_{1}=\left(e_{2}\right)_{1},(1-e)_{1}=\left(e_{3}\right)_{1}, e e_{2}=e_{2}$,

$$
\begin{aligned}
e_{2}(1-e) e_{3}(1-f) e_{2} & =e_{2}(1-e)(1-f) e_{2} \\
& =e_{2}-e_{2} e e_{2}-e_{2} f e_{2}+e_{2} e f e_{2} \\
& =e_{2} e f e_{2}=e_{2} \text { fee }
\end{aligned}
$$

and

$$
\begin{aligned}
b & =\left\{e_{1}(1-e) e_{3}-e_{1}(1-f) e_{2}(1-e) e_{3}\right\} e_{3}(1-f) e_{2} \\
& =e_{1}\{1-e-(1-f)(1-e)\}(1-f) e_{2} \\
& =e_{1} f(1-e)(1-f) e_{2} \\
& =e_{1} b e_{2}
\end{aligned}
$$

so that, finally

$$
r_{a} b=\left(e_{1} b e_{2}+e_{2} e f e e_{2}+e_{32}\right)_{r}
$$

Writing eff $=B_{X}$ we have the
LEMMA 1:

$$
\begin{aligned}
& \text { (i) }\left\langle e_{2} B_{x} e_{2}\right\rangle=R_{x}(v, \tau ; x, \tau) \\
& \text { (ii) }\left\langle e_{1}+e_{1} b e_{2}+e_{2} R_{x} e_{2}\right\rangle=B_{x}(\sim, k ; \tau, \tau)
\end{aligned}
$$

PROOF: Since $\left(e_{2}\right)_{1}=(1-f)_{1}$ we have, for some y in R, $e_{2}=1-f+f y(1-f)$. Then

$$
\begin{aligned}
e_{2} R e_{2} & =e_{2}(1-e)(1-f) e_{2} \\
& =\{1-f+f y(1-f)\}(1-e)(1-f)
\end{aligned}
$$

Let $s=f y(1-f) ;$ then $(1-f)(1+s)=1-f$ and

$$
\begin{aligned}
(1-s) e_{2} \mathcal{R e}_{2}(1+s) & =\{1-f y(1-f)\}\{1+f y(1-f)\}(1-f)(1-e)(1-f) \\
& =(1-f)(1-e)(1-f)
\end{aligned}
$$

i.e, $\quad\left\langle e_{2} \mathrm{Re}_{2}\right\rangle=\langle(1-f)(1-e)(1-f)\rangle$
which proves (i).
Again, since $(e)_{r}=\left(1-e_{3}\right)_{r}$ and $(f)_{r}=\left(1-e_{2}\right)_{r}$, we have for some x, z in \mathcal{R}

$$
e=1-e_{3}+\left(1-e_{3}\right) x e_{3}, f=1-e_{2}+\left(1-e_{2}\right) z e_{2}
$$

and so

$$
\begin{aligned}
\text { eff } & =\left\{1-e_{3}+\left(1-e_{3}\right) x e_{3}\right\}\left\{1-e_{2}+\left(1-e_{2}\right) z e_{2}\right\}\left\{1-e_{3}+\left(1-e_{3}\right) x e_{3}\right\} \\
& =\left(1-e_{3}\right)\left(1+z e_{2}+x e_{3}+x e_{3} z e_{2}+x e_{3} z e_{2} x e_{3}\right)
\end{aligned}
$$

Let $s_{1}=e_{1} x e_{3}, s_{2}=e_{1} z e_{2} x e_{3}, s_{3}=e_{1} z e_{2}, s_{4}=e_{1} x e_{3} z e_{2}$ and $s_{5}=e_{2} x e_{3}$. Then $s_{i}^{2}=0(i=1, \ldots ., 5)$ and, after a simple calculation,

$$
\begin{aligned}
& \left(1+s_{5}\right) \ldots\left(1+s_{1}\right) \operatorname{efe}\left(1-s_{1}\right) \ldots\left(1-s_{5}\right) \\
& \quad=e_{1}+e_{1} x e_{3} z e_{2}+e_{1} z e_{2} x e_{3} z e_{2}+e_{2} x e_{3} z e_{2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
e_{1}+e_{1} b e_{2}+e_{2} x e_{2} & =e_{1}+e_{1} f(1-e)(1-f)+e_{2}(1-f)(1-e)(1-f) \\
& =e_{1}+e_{1}(1-e)(1-f)+\left(e_{2}-e_{1}\right)(1-f)(1-e)(1-f)
\end{aligned}
$$

and easy calculations show, successively

$$
\begin{aligned}
& (1-e)(1-f)=-e_{3} z e_{2}+\left(1-e_{3}\right) x e_{3} z e_{2}, e_{1}(1-e)(1-f)= \\
& e_{1} x e_{3} z e_{2} ;(1-f)(1-e)(1-f)=e_{2} x e_{3} z e_{2}-\left(1-e_{2}\right) z e_{2} x e_{3} z e_{2} \\
& \left(e_{2}-e_{1}\right)(1-f)(1-e)(1-f)=e_{2} x e_{3} z e_{2}+e_{1} z e_{2} x e_{3} z e_{2}
\end{aligned}
$$

so that

$$
e_{1}+e_{1} b e_{2}+e_{2} R e_{2}=\text { tefet }^{-1}, t=\left(1+s_{5}\right) \ldots\left(1+s_{1}\right)
$$

This completes the proof of (ii).

Denoting by N (normalform) the configuration $\left\{\left(e_{1}+e_{2}\right)_{r},\left(e_{1} b e_{2}+e_{2} \mathrm{Re}_{2}+e_{32}\right)_{r},\left(e_{1}+e_{3}\right)_{r},\left(e_{2}+e_{32}\right)_{r}\right\}$ we have proved the

THEOREM 11: For any configuration C satisfying (1) there is a non-singular collineation

$$
r_{a}: C \rightarrow \mathbb{N}
$$

such that
and

$$
\begin{aligned}
& R_{x}(v, b ; \tau, v)=\left\langle e_{1}+e_{1} b e_{2}+e_{2} R e_{2}\right\rangle \\
& R_{x}(v, \tau ; b, v)=\left\langle e_{2} R e_{2}\right\rangle .
\end{aligned}
$$

When, in addition to (1) the members of C satisfy $\operatorname{con} \tau=(0)_{r}, \mathbb{N}$ reduces to

$$
\left\{\left(e_{2}\right)_{r^{\prime}}\left(e_{2} R_{x} e_{2}+e_{32}\right)_{r},\left(e_{3}\right)_{r^{\prime}}\left(e_{32}+e_{2}\right)_{r}\right\}
$$

Corollary 4 will show that, in this case, \mathbb{N} actually characterizes the cross ratio, i.e. we could use N as a means of defining R_{α}. This is actually what Beer $[12 ; p 72]$ does for four points on a line, over a field.

Conversely, given a non-singular collineation

$$
r_{a}: C \rightarrow N
$$

then the members of C must satisfy the relations (1). For, by [Part 1; Lemma 2],
(i) $\left(e_{1}+e_{2}\right)_{r} \cup\left(e_{1}+e_{3}\right)_{r}=\left(e_{1}+e_{2}+g\right)_{r}$,
where $(g)_{r}=\left(\left(1-e_{1}-e_{2}\right)\left(e_{1}+e_{3}\right)\right)_{r}=\left(e_{3}\right)_{r}$, i.e $g=e_{3}$, and so $r_{a} \because \cup \gamma_{a} \tau=(1)_{r}$.

$$
\text { (ii) } \begin{aligned}
\left(e_{1}+e_{2}\right)_{r} \oplus\left(e_{2}+e_{32}\right)_{r} & =\left(e_{1}+e_{3}\right)_{r} \oplus\left(e_{2}+e_{32}\right)_{r} \\
& =(1)_{r}
\end{aligned}
$$

The " u " part follows as in (i) whilst $x \varepsilon\left(e_{1}+e_{2}\right) r^{n}\left(e_{2}+\right.$ $\left.e_{32}\right)_{r} \Rightarrow x=\left(e_{1}+e_{2}\right) x=\left(e_{2}+e_{32}\right) x \Rightarrow e_{3} x=0=e_{32} x$, i.e $e_{2} x=0$; but then $x=0$. Similarly for the other case
(iii) $\left(e_{1}+e_{2}\right)_{r} \oplus\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right)_{r}=(1)_{r}$. For, $x=\left(e_{1}+e_{2}\right) x=\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right) z \Rightarrow e_{3} x=0=e_{32} z$ $\Rightarrow e_{2} z=0$, ie $x=0$; whilst

$$
R\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right) \geqslant R\left(e_{3}\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right)\right)=R\left(e_{32}\right)
$$

$$
=R\left(e_{3}\right)
$$

$\Rightarrow D\left(\left(e_{1}+e_{2}\right)_{r}\right) \oplus D\left(\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right)_{r}\right) \geqslant 1$, so that equality must hold.

Finally, as
if and only if

$$
\approx \cup t=(1)_{\mathrm{r}}\left\{\quad \approx \cap \Delta=(0)_{\mathrm{r}}\right\}
$$

we see that C does satisfy (1) .

6. SIMILARITY INVARIANTS FOR THE NORMALFORM

The object of this section is to determine the extent to which the cross ratios provide similarity invariants for the normalform N. We will see that being given a non-singular collineation between two configurations C, \hat{C} implies a special kind of similarity of their cross ratios $[$ Theorem 12$]$; on the other hand, if C, \hat{C} have a cross ratio in common it is, in general, necessary to assume that their members satisfy some further conditions(i.e in addition to 5.1) before there will be a non-singular collineation between them $[$ Lemmas 4,5].

Notice that the existence of a non-singular collineation $\gamma_{n}: C \rightarrow \hat{C}$ implies the existence of one between the normalforms, viz $\gamma_{a n a^{-1}}\left\{=\gamma_{\hat{a}}\left(\gamma_{n}\left(r_{a}^{-1} \ldots\right)\right)\right\}: N \rightarrow \hat{N}$, where a, \hat{a} are the non-singular elements for C, \hat{C} respectively in the sense of Theorem 11. Conversely, $\gamma_{n}: N \rightarrow \hat{N}$ $\Rightarrow r_{\hat{a}^{-1} n a}: C \rightarrow \hat{C}$.

Let the normalform \hat{N}, provided by Theorem 11 , of \hat{C} be

$$
\left\{\left(f_{1}+f_{2}\right)_{r},\left(f_{1} \hat{b} f_{2}+f_{2} \hat{R_{k}} f_{2}+f_{32}\right)_{r},\left(f_{1}+f_{3}\right)_{r},\left(f_{2}+f_{32}\right)_{r}\right\}
$$

where the matrix units f have similar properties to their counterparts e in N.

THE GENERAL COLIINEATION: Assume that there exists a non-singular collineation

$$
\gamma_{n}: N \rightarrow \hat{N} .
$$

Clearly, corresponding members have the same dimension, and therefore corresponding matrix units have the same ra -nk. This information allows us to replace the f^{\prime} s by the e's, for

LEMMA 2: If $\left\{e_{i j}\right\},\left\{f_{i j}\right\}$ are two systems of n^{2} matrix units(cf.[Part 1; p 16]) such that

$$
R\left(e_{i i}\right)=R\left(f_{i i}\right), i=1, \ldots, n
$$

then there exists a non-singular m in R such that

$$
\mathrm{mf}_{i j} \mathrm{~m}^{-1}=e_{i j}, i, j=1, \ldots, n
$$

PROOF: By [Part 1; Lernna 4] we have non-singular $s_{i}(i=1, \ldots, n)$ in such that

$$
s_{i} f_{i} s_{i}^{-1}=e_{i}\left(e_{i}=e_{i i}, f_{i}=f_{i i}\right)
$$

Hence

$$
e_{i} s_{i} f_{i} s_{i}^{-1} e_{i}=e_{i}
$$

Let

$$
m=\sum_{i=1}^{n} e_{i} s_{i} f_{i}, p=\sum_{i=1}^{n} f_{i} s_{i}^{-1} e_{i}
$$

and then, since the f_{i} are independent idempotents,

$$
\begin{aligned}
m p & =\sum_{i} e_{i} s_{i} f_{i} \sum_{j} f_{j} s_{j}^{-1} e_{j} \\
& =\sum_{i} e_{i} s_{i} f_{i} s_{i}^{-1} e_{i} \\
& =\sum_{i} e_{i}=1
\end{aligned}
$$

by definition of the $e_{i j}$. Thus m is non-singular; further
more

$$
\mathrm{mf}_{i} m^{-1}=e_{i} s_{i} f_{i} s_{i}^{-1} e_{i}=e_{i}(i=1, \ldots, n)
$$

Let

$$
m f_{i j} m^{-1}=g_{i j}(i, j=1, \ldots, n)
$$

Then $g_{i i}=e_{i}$ and $\left\{g_{i j}\right\}$ is a system of n^{2} matrix units, for $\sum_{i} g_{i i}=1$ and $g_{i j} g_{k h}=m f_{i j} f_{k h} m^{-1}$

$$
=\left\{\begin{array}{l}
0 \text { if } j \neq \mathrm{k} \\
\mathrm{mf}_{\mathrm{ih}^{m}} \mathrm{~m}^{-1}=g_{\text {in }} \text { if } j=\mathrm{k}
\end{array}\right.
$$

for all $i, j, k, h=1, \ldots, n$. Now, [Part 1; Theorem 4],

$$
\left(f_{i}\right)_{r} \oplus\left(f_{i}-f_{j i}\right)_{r}=\left(f_{i}\right)_{r} \oplus\left(f_{j}\right)_{r}
$$

and since m is non-singular (ie since γ_{m} is a lattice automorphism) it follows that

$$
r_{m}\left(f_{i}\right)_{r} \oplus r_{m}\left(f_{i}-f_{j i}\right)_{r}=r_{m}\left(f_{i}\right)_{r} \oplus r_{m}\left(f_{j}\right)_{r}
$$

i.e

$$
\left(e_{i}\right)_{r} \oplus\left(e_{i}-g_{j i}\right)_{r}=\left(e_{i}\right)_{r} \oplus\left(e_{j}\right)_{r}
$$

and, by the uniqueness part of the last theorem referred to, we can only have $g_{i j}=e_{i j}$, all io.

Now, even though the matrix units of N, \hat{N} do not form a complete 3^{2} system(the $e_{1 j}, f_{1 j}, e_{j 1}, f_{j 1}$ with $j=2,3$ are absent),it is still clear that the assertion of Lemma 2 holds for them, with exactly the same proof. Therefore, there exists a non-singular m in 22 such that

$$
e_{1}=m f_{1} m^{-1}, e_{i j}=m f_{i j} m^{-1}(i, j=2,3)
$$

Then $\quad \gamma_{m}: \hat{\mathrm{N}} \rightarrow \hat{\mathrm{N}}^{*}$, where $\hat{\mathrm{N}}^{*}$ is
$\left\{\left(e_{1}+e_{2}\right)_{r},\left(e_{1} \hat{b}^{*} e_{2}+e_{2} \hat{\mathrm{R}}^{*} e_{2}+e_{32}\right)_{r},\left(e_{1}+e_{3}\right)_{r},\left(e_{2}+e_{32}\right)_{r}\right\}$
and $\hat{b}^{*}=\hat{m b m}^{-1}, \hat{\mathrm{P}}^{*}=\mathrm{m} \hat{\mathrm{R}}^{-1}$. Consequently, we may as well assume, from the outset, that $\hat{\mathrm{N}}$ is the configuration obtained by replacing \hat{b}^{*} and $\hat{\mathrm{R}}_{x}^{*}$ in $\hat{\mathrm{N}}^{*}$ with \hat{b} and $\hat{\mathcal{R}_{x}}$ respectively. This assumption will apply for the remainder of the section.

$$
\begin{array}{r}
\text { The relations }\left(n\left(e_{1}+e_{2}\right)\right)_{r}=\left(e_{1}+e_{2}\right)_{r}, \\
\left(n\left(e_{1}+e_{3}\right)\right)_{r}=\left(e_{1}+e_{3}\right)_{r} \text { and }\left(n\left(e_{2}+e_{32}\right)\right)_{r}=\left(e_{2}+e_{32}\right)_{r}
\end{array}
$$

are equivalent to

> (i) $\quad\left(e_{1}+e_{2}\right) n\left(e_{1}+e_{2}\right)=n\left(e_{1}+e_{2}\right)$
> (ii) $\left(e_{1}+e_{3}\right) n\left(e_{1}+e_{3}\right)=n\left(e_{1}+e_{3}\right)$
> (iii) $\left(e_{2}+e_{32}\right) n\left(e_{2}+e_{32}\right)=n\left(e_{2}+e_{32}\right)$.

Right multiplying (i) by $e_{1}, e_{2}\left(\right.$ (ii) by $\left.e_{1}, e_{3}\right)$ and then left multiplying the two resulting equations by $e_{3}\left(e_{2}\right)$ gives

$$
\begin{equation*}
e_{3} n e_{1}=e_{3} n e_{2}=e_{2} n e_{1}=e_{2} n e_{3}=0 \tag{1}
\end{equation*}
$$

Since $e_{1}+e_{2}+e_{3}=1$, we can write (iii) as

$$
\text { (iv) }\left(e_{1}+e_{3}-e_{32}\right) n\left(e_{2}+e_{32}\right)=0
$$

and left multiplying (iv) by e_{1} we find $e_{1} n e_{2}=-e_{1} n e_{32}$, i.e

$$
\begin{equation*}
e_{1} n e_{3}=-e_{1} n e_{23} \tag{2}
\end{equation*}
$$

Finally, taking (1),(2) into account, (iv) becomes $e_{3}{ }^{n e}{ }_{32}=e_{32^{n e}}^{2}+e_{32} e_{2} n e_{3} e_{32}=e_{32^{n e}}$, that is

$$
\begin{equation*}
e_{3} n e_{3}=e_{32}{ }^{n e_{23}} \tag{3}
\end{equation*}
$$

Then, as $e_{1}+e_{2}+e_{3}=1, \quad n=\left(e_{1}+e_{2}+e_{3}\right) n\left(e_{1}+e_{2}+e_{3}\right)$ and
(1),(2),(3) combine to give

$$
n=\left|\begin{array}{ccc}
e_{1} n e_{1} & e_{1} n e_{2} & -e_{1} n e_{23} \tag{4}\\
0 & e_{2} n e_{2} & 0 \\
0 & 0 & e_{32} n e_{23}
\end{array}\right|
$$

where the matrix denotes the sum of its entries. Since also $\gamma_{n}{ }^{-1}: \widehat{N} \rightarrow N$,

$$
n^{-4}=\left|\begin{array}{ccc}
e_{1} n^{-1} e_{1} & e_{1} n^{-1} e_{2} & -e_{1} n^{-1} e_{23} \tag{5}\\
0 & e_{2} n^{-1} e_{2} & 0 \\
0 & 0 & e_{32^{n^{-1}} e_{23}}
\end{array}\right|
$$

and it is clear that n, n^{-1} have the most general form possible under the conditions. We note also, for future reference, that

$$
\begin{array}{r}
e_{i} n e_{i}=e_{i} n, e_{i} n^{-1} e_{i}=e_{i} n^{-1}(i=2,3) \tag{6}\\
e_{1} n e_{1}=n e_{1}, e_{1} n^{-1} e_{1}=n^{-1} e_{1} .
\end{array}
$$

$$
\begin{aligned}
& r_{n}: N \rightarrow \hat{N} \text { also implies } \\
& \quad\left(n\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right)\right)_{r}=\left(e_{1} \hat{b} e_{2}+e_{2} \hat{R_{x}} e_{2}+e_{32}\right)_{r}
\end{aligned}
$$

that is, for some y in \mathbb{R},

$$
n\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right)=\left(e_{1} \hat{b} e_{2}+e_{2} \hat{R} e_{2}+e_{32}\right) y
$$

Then

$$
e_{23} n\left(e_{1} b e_{2}+e_{2} \mathrm{Re}_{2}+e_{32}\right)=e_{23} e_{32} y=e_{2} y,
$$

and as $e_{3} n=e_{3} \mathrm{ne}_{3}=e_{32^{n e}}^{23}$ we have

$$
e_{2} y=e_{23} n e_{32}=e_{23} e_{32} n e_{23} e_{32}=e_{2} n e_{2}
$$

Hence

$$
\begin{equation*}
n\left(e_{1} b e_{2}+e_{2} \mathrm{R}_{2} e_{2}+e_{32}\right)=\left(e_{1} \hat{b} e_{2}+e_{2} \hat{R}_{x} e_{2}+e_{32}\right) n e_{2} . \tag{7}
\end{equation*}
$$

But, by (3), $e_{1} n e_{1}=n e_{1}, e_{2} n e_{2}=e_{2} n$ and therefore

$$
e_{1} n e_{1} b e_{2}+e_{1} n e_{2} R e_{2}+e_{1} n e_{32}=e_{1} \hat{b} e_{2} n e_{2}=e_{1} \hat{b} e_{2} n ;
$$

and as $e_{1} n e_{2}=-e_{1} n e_{32}$ this yields
(8) $e_{1} \hat{b} e_{2}=e_{1} n e_{1} b e_{2} n^{-1}-e_{1} n e_{2}\left(e_{2}-e_{2} R e_{2}\right) n^{-1}$.

Also from (7),

$$
e_{2} n e_{2} \mathrm{Re} e_{2}=e_{2} \hat{\mathrm{R}} \mathrm{e}_{2} n e_{2}=e_{2} \hat{\mathrm{R}} \mathrm{e}_{2} n, \text { i.e }
$$

$$
\begin{equation*}
e_{2} \hat{\hat{R}_{k}} e_{2}=e_{2} n e_{2} R e_{2} n^{-1} \tag{9}
\end{equation*}
$$

But, from (1),(2),(3),

$$
n^{-1} e_{2} n=e_{2} n^{-1} e_{2} n e_{2}=e_{2} n^{-1} n e_{2}=e_{2},
$$

so that

$$
\begin{align*}
& e_{2} \hat{\vec{R}} e_{2}=n e_{2} R e_{2} n^{-1}, \text { i.e } \\
& \left\langle e_{2} \hat{R_{x}} e_{2}\right\rangle=\left\langle e_{2} R_{k} e_{2}\right\rangle . \tag{10}
\end{align*}
$$

Writing

$$
n_{12}=\left|\begin{array}{cc}
e_{1} n e_{1} & e_{1} n e_{2} \\
0 & e_{2} n e_{2}
\end{array}\right|, \bar{n}_{12}=\left|\begin{array}{cc}
e_{1} n^{-1} e_{1} & e_{1} n^{-1} e_{2} \\
0 & e_{2}^{n^{-1}} e_{2}
\end{array}\right|
$$

and $g=\left|\begin{array}{ll}e_{1} & e_{1} b e_{2} \\ 0 & e_{2} \mathrm{Re}_{2}\end{array}\right|$, we have the

LEMMA 3: The following condition is necessary and sufficient for the existence of a non-singular collineation of \mathbb{N} onto \hat{N} : for some non-singular n in R we have (11) \{ $\begin{gathered}n_{12} \overline{g n}_{12}=\hat{g}, \\ n_{12} \bar{n}_{12}=\bar{n}_{12} n_{12}=e_{1}+e_{2} .\end{gathered}$

PROOF: Assume γ_{n} is a non-singular collineation of N onto \hat{N}. Then
$n_{12} g_{12}=$
$\left|\begin{array}{cc}e_{1} n e_{1} n^{-1} e_{1} & e_{1} n e_{1} n^{-1} e_{2}+e_{1} n e_{1} b e_{2} n^{-1} e_{2}+e_{1} n e_{2} R e_{2} n^{-1} e_{2} \\ 0 & e_{2} n e_{2} R e_{2} n^{-1} e_{2}\end{array}\right|$
and as $e_{1} n^{-1} e_{1}=n^{-1} e_{1}$ we have $e_{1} n e_{1} n^{-1} e_{1}=e_{1}$. Also, by
(9), $e_{2} \mathrm{ne}_{2} R e_{2}=e_{2} \hat{R_{x}} e_{2} n$, that is

$$
e_{2} n e_{2} \mathcal{R e}_{2} n^{-1} e_{2}=e_{2} \hat{B_{x}} e_{2}
$$

Finally, by (8), $e_{1} n e_{1} n^{-1} e_{2}+e_{1} n e_{1} b e_{2} n^{-1} e_{2}+e_{1} n e_{2} R e_{2} n^{-1} e_{2}$

$$
\begin{aligned}
& =e_{1} \hat{b} e_{2}+e_{1} n e_{2} n^{-1} e_{2}+e_{1} n e_{1} n^{-1} e_{2} \\
& =e_{1} \hat{b} e_{2}, \\
& \text { for, since } e_{1}+e_{2}+e_{3}=1 \text { and } e_{3} n^{-1} e_{2}=0, \\
& \begin{aligned}
0=e_{1} e_{2}=e_{1} n n^{-1} e_{2} & =e_{1} n\left(e_{1}+e_{2}+e_{3}\right) n^{-1} e_{2} \\
& =e_{1} n e_{1} n^{-1} e_{2}+e_{1} n e_{2} n^{-1} e_{2}
\end{aligned}
\end{aligned}
$$

We have shown that

$$
n_{12} \overline{g n}_{12}=\hat{g}
$$

$$
\text { Also, as } e_{2} n e_{2}=e_{2} n \text {, it follows that }
$$

$$
e_{2} n e_{2} n^{-1} e_{2}=e_{2}
$$

and hence that

$$
\left.\begin{aligned}
n_{12} \bar{n}_{12} & =\left|\begin{array}{cc}
e_{1} n e_{1} n^{-1} e_{1} & e_{1} n e_{1} n^{-1} e_{2}+e_{1} n e_{2} n^{-1} e_{2} \\
0 & e_{2} n e_{2} n^{-1} e_{2}
\end{array}\right| \\
& =e_{1}+e_{2}
\end{aligned} \right\rvert\,
$$

Conversely, assume that there is a non-singular n such that (11) holds. Then letting

$$
m=\left|\begin{array}{cc}
n_{12}: & -e_{1} n e_{23} \\
\cdot & \cdot \\
0 & 0 \\
0 & 0
\end{array} e_{32}{ }^{n e_{23}} .\left|, p=\left|\begin{array}{cc}
\bar{n}_{12}: & -e_{1} n^{-1} e_{23} \\
\dot{0} \cdot & 0 \\
0 & 0 \\
e_{32^{n}}{ }^{-1} e_{23}
\end{array}\right|\right.\right.
$$

we have

$$
\mathrm{mp}=
$$

$$
=\left\lvert\, \begin{array}{ccc}
n_{12} \bar{n}_{12} & \cdot & -e_{1} n e_{1} n^{-1} e_{23}-e_{1} n e_{23} e_{32} n^{-1} e_{23} \\
0 & \cdot & 0 \\
0 & 0 & e_{32} n e_{23} e_{32^{n}}{ }^{-1} e_{23}
\end{array}\right.
$$

$$
=e_{1}+e_{2}+e_{3}=1
$$

as , by (11), $e_{1} n e_{1} n^{-1} e_{2}+e_{1} n e_{2} n^{-1} e_{2}=0$, that is

$$
\begin{aligned}
& e_{1} n e_{1} n^{-1} e_{23}+e_{1} n e_{2} n^{-1} e_{23}=0 \text {; also by (11) } \\
& \quad e_{32} n e_{23} e_{32} n^{-1} e_{23}=e_{32} e_{2} n e_{2} n^{-1} e_{2} e_{23}=e_{32} e_{23}=e_{3}
\end{aligned}
$$

Thus m is non-singular. In order that $\gamma_{m}: N \rightarrow \hat{N}$ it suffices that $r_{m}\left(e_{1} b e_{2}+e_{2} \mathcal{R e}_{2}+e_{32}\right)_{r}=\left(e_{1} \hat{b} e_{2}+e_{2} \hat{R}_{k} e_{2}+e_{32}\right)_{r}$. But this is so, since (11) implies (8) and (9) and hence $\left.\left|\begin{array}{ccc}n_{12} & \cdot & -e_{1} n e_{23} \\ 0 & \cdots & 0 \\ 0 & 0 & e_{32} e_{23}\end{array}\right|\left|\begin{array}{ccc}0 & e_{1} b e_{2} & 0 \\ 0 & e_{2} k_{x} e_{2} & 0 \\ 0 & e_{32} & 0\end{array}\right| \right\rvert\, \begin{array}{ccc}\bar{n}_{12} & \cdot & -e_{1} n^{-1} e_{23} \\ \cdot & \cdot & 0 \\ 0 & 0 & e_{32} n^{-1} e_{23}\end{array}$ $=\left|\begin{array}{lll}0 & e_{1} \hat{b} e_{2} & 0 \\ 0 & e_{2} \hat{R_{x}} e_{2} & 0 \\ 0 & e_{32} & 0\end{array}\right|$.

Combining Lemmas 1 and 3 with (10) we have

THEOREM 12: The existence of a non-singular collincation of \mathbb{N} onto \hat{N} implies

$$
\begin{aligned}
& P_{x}(v, t ; \tau, v)=B_{x}(v, \widehat{l} ; \tau, v) \text { and } \\
& R_{k}(v, \tau ; t, v)=R_{k}(v, \tau ; \vec{l}, v) .
\end{aligned}
$$

COROLLARY 4: If $e_{1}=0$ and C has the form

$$
\left\{\left(e_{2}\right)_{r},\left(e_{2} r e_{2}+e_{32}\right)_{r},\left(e_{3}\right)_{r},\left(e_{2}+e_{32}\right)_{r}\right\}
$$

for some r in k, then

$$
R(\imath ; t ; \tau, v)=\left\langle e_{2} r e_{2}\right\rangle
$$

PROOF: $x=e_{2} x=\left(e_{2} r e_{2}+e_{32}\right) z \Rightarrow e_{32} z=0$, i.e $e_{2} z$ $=0$; hence $x=0$. Since $e_{2}+e_{3}=1$ and $R\left(e_{2} r e_{2}+e_{32}\right) \geqslant$ $R\left(e_{32}\right)=R\left(e_{3}\right)$ we must have $\left(e_{2}\right)_{r} \oplus\left(e_{2} r e_{2}+e_{32}\right)_{r}=(1)_{r}$ so that the cross ratio is defined. Then Theorems 11,12, and 6 combine to give the result.

RANK RELATIONS: Recall that $r_{2}(\tau \cap \tau)=\tau \Omega \cap \tau=\left(e_{1}\right)_{r}$,

$$
r_{a} \vartheta=\left(e_{2}+e_{32}\right)_{r} \text { and } r_{a} t=\left(e_{1} b e_{2}+e_{2} \mathrm{Re}_{2}+e_{32}\right)_{r}
$$

Since $\left(e_{2}+e_{32}\right)_{r}=\left(e_{3}+e_{23}\right)_{r}$ and both $e_{2}+e_{32}$ and $e_{3}+e_{23}$ are idempotent, we have

$$
\left(1-e_{3}-e_{23}\right)_{x}=\left(e_{2}+e_{32}\right)_{r}^{x} .
$$

An easy calculation shows that

$$
e_{2}-e_{2} R e_{2}-e_{1} b e_{2}=-\left(1-e_{3}-e_{23}\right)\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right) .
$$

Hence, by Theorem 1(ii),
(12)

$$
\begin{aligned}
R\left(e_{2}-e_{2} R e_{2}-e_{1} b e_{2}\right) & \left.=R\left(1-e_{3}-e_{23}\right)\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right)\right) \\
& =D\left(r_{a} t\right)-D\left(r_{a} t \cap r_{a} \sigma\right) \\
& \left.=D\left(r_{a} t\right)-D\left(r_{a}(t) \omega\right)\right) \\
& =D(t)-D(t \cap \omega) .
\end{aligned}
$$

By $[$ Part 1; Lemma 1] we have

$$
\begin{aligned}
\left((\tau \cap \tau) \cup r_{a} v\right)^{ \pm} & =(\tau \cap \tau)^{ \pm} n\left(r_{a} v\right)^{ \pm} \\
& =\left(1-e_{1}\right)_{x} \cap\left(1-e_{3}-e_{23}\right)_{x} ;
\end{aligned}
$$

and, as $e_{1}+e_{2}+e_{3}=1$, we see that

$$
1-e_{3}-e_{23}=e_{1}+\left(e_{2}-e_{23}\right) ;
$$

since $e_{1}, e_{2}-e_{23}$ are independent idempotents, this means

$$
\left(1-e_{3}-e_{23}\right)_{x}=\left(e_{1}\right)_{x} \oplus\left(e_{2}-e_{23}\right)_{\searrow} ;
$$

hence,

$$
\left((\Omega \cap c) \cup_{r_{a}} v\right)^{x}=\left(\left(e_{1}\right)_{X} \oplus\left(e_{2}-e_{23}\right)_{X}\right) \cap\left(1-e_{1}\right)_{X}
$$

$$
=\left(e_{2}-e_{23}\right)_{x},
$$

by modularity, since $\left(e_{2}-e_{23}\right)\left(1-e_{1}\right)=e_{2}-e_{23}$ implies $\left(e_{2}-e_{23}\right)_{I} \leqslant\left(1-e_{1}\right)_{I}$.

Then, as

$$
e_{2}-e_{2} R e_{2}=\left(e_{23}-e_{2}\right)\left(e_{1} b e_{2}+e_{2} R e_{2}+e_{32}\right),
$$

we have, by Theorem 1 (i),

$$
\begin{aligned}
& R\left(e_{2}-e_{2} \mathrm{Re}_{2}\right)=R\left(\left(e_{23}-e_{2}\right)\left(e_{1} b e_{2}+e_{2} \mathrm{Re}_{2}+e_{32}\right)\right) \\
& =D\left(\left((\tau \cap \tau) \cup r_{a} \vartheta\right) \cup r_{a} t\right)-D\left((\Omega \cap \tau) \cup r_{a} \downarrow\right) \\
& =D\left(r_{a}((\imath \cap \tau) \cup v \cup t)\right)-D\left(\gamma_{a}((\imath \cap \tau) \cup v)\right) \\
& =D((\imath \cap \tau) \cup t \cup \vartheta)-D((\approx \Omega \cap \tau) \cup \sim) \\
& =D(\Omega \cap \tau)+D(v \cup t)-D((\sim \cap \tau) \cap(\tau \cup t)) \\
& -D((\leadsto \cap C) \cup \infty) \\
& =D(ひ \cap \tau)+D(\tau)+D(Z)-D(0 \cap t) \\
& -D((\Omega \cap \tau) \cap(v \cup t))-D((\imath \cap \tau) \cup v)
\end{aligned}
$$

since $(\Omega \cap \tau) \cap \omega=(\Omega \cap \sim) \curvearrowleft(\tau \cap \vartheta)=(0)_{r}$. Thus,
(14) $\quad R\left(e_{2}-e_{2} R_{x} e_{2}\right)=D(t)-D(v \cap t)-D((e \sim \cap \tau) n(v u t)$
and taking (12) into account
(15) $R\left(e_{2}-e_{2} R e_{2}\right)=R\left(e_{2}-e_{2} R e_{2}-e_{1} b e_{2}\right)-D((o n n \tau) n(\mathcal{O} \cup)$

LEMMA 3: If e_{1}, e_{2} are independent idempotent and u, v arbitrary elements in \mathcal{R}, then for some w in \mathcal{R}

$$
\left(e_{1} u+e_{2} v\right)_{x}=\left(e_{2} v\right)_{x} \oplus\left(e_{1} u-e_{1} w e_{2} v\right)_{x}
$$

PROOF: $\left(e_{2} v\right)_{1} \leqslant\left(e_{1} u+e_{2} v\right)_{Y}$, since $e_{2} v=e_{2}\left(e_{1} u+e_{2} v\right)$. If h is any idempotent such that $(h)_{\underline{1}}=\left(e_{2} v\right)_{X}$, then , [Part 1; Lemma 7], a relative complement of (h) I $^{\text {in }}$ $\left(e_{1} u+e_{2} v\right)_{\neq}$is given by

$$
\left(\left(e_{1} u+e_{2} v\right)(1-h)\right)_{y}=\left(e_{1} u-e_{1} u h\right)_{\neq},
$$

since $e_{2} v h=e_{2} v$. Now, $h=z e_{2} v$ for some z in R and hence $e_{1} u h=e_{1} u z e_{2} v$. Let $w=e_{1} u z$ and we have

$$
\left(e_{1} u+e_{2} v\right)_{z}=\left(e_{2} v\right)_{x} \oplus\left(e_{1} u-e_{1} w e_{2} v\right)_{x} .
$$

Clearly, we also have

$$
R\left(e_{1} u+e_{2} v\right)=R\left(e_{2} v\right)+R\left(e_{1} u-e_{1} w e_{2} v\right)
$$

Lemma 3 shows that for some w in \Re,

$$
\begin{equation*}
R\left(e_{2}-e_{2} R e_{2}-e_{1} b e_{2}\right)=R\left(e_{2}-e_{2} R e_{2}\right)+R\left(e_{1} b^{\prime} e_{2}\right), \tag{16}
\end{equation*}
$$

where
(17)

$$
e_{1} b^{\prime} e_{2}=e_{1} b e_{2}-e_{1} w e_{2}\left(e_{2}-e_{2} k e_{2}\right) .
$$

Moreover, (17) shows that

$$
\begin{aligned}
& \left|\begin{array}{cc}
e_{1} & e_{1} w e_{2} \\
0 & e_{2}
\end{array}\right|\left|\begin{array}{ll}
e_{1} & e_{1} b e_{2} \\
0 & e_{2} k_{2} e_{2}
\end{array}\right|\left|\begin{array}{cc}
e_{1} & -e_{1} w e_{2} \\
0 & e_{2}
\end{array}\right| \\
& \quad=\left|\begin{array}{cc}
e_{1} & e_{1} b^{\prime} e_{2} \\
0 & e_{2} \mathrm{e}_{2} e_{2}
\end{array}\right|
\end{aligned}
$$

ie Lemma 3 applies and gives a non-singular collineation carrying \mathbb{N} into

$$
\left\{\left(e_{1}+e_{2}\right)_{r},\left(e_{1} b^{\prime} e_{2}+e_{2} k_{2} e_{2}+e_{32}\right)_{r},\left(e_{1}+e_{3}\right)_{r},\left(e_{2}+e_{32}\right)_{r}\right\} .
$$

For this reason we may assume (16) to hold with b ' replaced by b.

COMPLEMENTS TO LEMAA 3: Notice that the similarity of (10),(11) is actually in the following stronger sense: if $a, b \varepsilon e^{\mathcal{R}} e($ some idempotent e) then write $\langle a\rangle=\langle b\rangle$ if xay $=b$ where $x, y \varepsilon e \mathcal{R} e$ and $x y=y x=e$. From now on $<>$ will have this meaning. Similarity in the new sense implies similarity in the old sense; for, $x+1-e$ is non-singul -ar with inverse $y+1-e$ and $(x+1-e) a(y+1-e)=b$. Let $n=$ $x+1-e$; then ene $=x$ and $e^{-1} e=y$.

In general, in order to obtain a non-singular collineation of N onto \hat{N}, it is not enough to be given one cross ratio. However, by assuming in addition that the members of N, \hat{N} satisfy one other condition, we can arrive at this position.

Lemma 4: If (i) <g> $=\langle\hat{g}\rangle$ and (ii) both C, \hat{C} satisfy on $t=(0)_{r}$, then there exists a non-singular collineat -ion of N onto \hat{N}.

PROOF: By (i), we have for some non-singular r,

$$
\left(e_{1}+e_{2}\right) r^{-1}\left(e_{1}+e_{2}\right) g\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right)=\hat{g}
$$

where $\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right) r^{-1}\left(e_{1}+e_{2}\right)=\left(e_{1}+e_{2}\right) r^{-1}\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right.$ $=e_{1}+e_{2}$.

Hence, just as well

$$
g\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right)=\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right) \hat{g},
$$

i.e, subtracting each side from $\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right)$,

$$
\begin{aligned}
\left(e_{2}-e_{2} R e_{2}-e_{1} b e_{2}\right)(& \left.\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right)\right) \\
& =\left(\left(e_{1}+e_{2}\right) r\left(e_{1}+e_{2}\right)\right)\left(e_{2}-e_{2} \hat{R_{x}} e_{2}-e_{1} \hat{b} e_{2}\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left(e_{2}-e_{2} \mathrm{Re}_{2}-e_{1} b e_{2}\right) e_{2} r e_{1}=0 \tag{18}
\end{equation*}
$$

But, from (ii), we have using (12)

$$
R\left(e_{2}-e_{2} R e_{2}-e_{1} b e_{2}\right)=R(1-e)=R\left(e_{2}\right),
$$

and since, obviously , $\left(e_{2}-e_{2} \mathrm{Re}_{2}-\mathrm{e}_{1} b e_{2}\right)_{y} \leqslant\left(e_{2}\right)_{y}$ we must have equality. Hence also

$$
\left(e_{2}-e_{2} R e_{2}-e_{1} b e_{2}\right)_{x}^{r}=\left(e_{2}\right)_{x}^{r}
$$

i.e, (18) holds if and only if $e_{2} r e_{1}=e_{2} e_{2} r e_{1}=0$. Similarly $e_{2} r^{-1} e_{1}=0$. We have shown that (11) holds, and therefore there is a non-singular collineation of N onto $\hat{\mathrm{N}}$.

LEMMA 5: If (i) $\left\langle e_{2} R_{k} e_{2}\right\rangle=\left\langle e_{2} \hat{\underline{p}}_{x} e_{2}\right\rangle$ and (ii) both C, \hat{C} satisfy $(\tau \cap \tau) \cap(v \cup t)=(0)_{r}$, then there is a nonsingular collineation of N onto \hat{N}.

PROOF: (ii) implies, by (15),

$$
R\left(e_{2}-e_{2} R x e_{2}\right)=R\left(e_{2}-e_{2} R e_{2}-e_{1} b e_{2}\right)
$$

i.e, by (16),

$$
R\left(e_{1} b e_{2}\right)=0
$$

so that $e_{1} b e_{2}=0$, and similarly $e_{1} \hat{b} e_{2}=0$.
(i) implies, for some non-singular r,

$$
e_{2} R_{x} e_{2}=e_{2} r e_{2} \hat{R_{e}} e_{2} r^{-1} e_{2},
$$

where $e_{2} r^{-1} e_{2}$ is the inverse of $e_{2} r e_{2}$ in $e_{2} \mathcal{R} e_{2}$. Then an easy calculation shows that

$$
\left(e_{1}+e_{2} r^{-1} e_{2}\right) g\left(e_{1}+e_{2} r e_{2}\right)=\hat{g}
$$

i.e (11) holds.

When $\mathbb{O} \cap \mathcal{C}=(0)_{r}\left(\right.$ i.e $\left.e_{1}=0\right)$ Lemma 5 is the converse of Theorem 12. For then $\langle g\rangle=\left\langle e_{2} R_{e} e_{2}\right\rangle$ and Lemma 5 shows that $\langle\mathrm{g}\rangle=\langle\hat{\mathrm{g}}\rangle=>$ the existence of a non-singular collineation of N onto \hat{N}. In the general case however, we have been unable to establish this converse .

When $(v \cap \tau) n(v \cup t)=(0)_{r}$ we have seen(Lemma 5 that $e_{1} b e_{2}=0$. In this case N can be decomposed into

$$
\begin{array}{r}
\left\{\left(e_{1}\right)_{r},(0)_{r},\left(e_{1}\right)_{r},(0)_{r}\right\} \oplus\left\{\left(e_{2}\right)_{r},\left(e_{2} R e_{2}+e_{32}\right)_{r},\left(e_{3}\right)_{r},\right. \\
\left.\left(e_{2}+e_{32}\right)_{r}\right\}
\end{array}
$$

where the direct sum means component-wise direct sum. The left hand summand is obviously uninteresting and from now on we neglect it. We may as well assume that

$$
e_{1}=0 \text {, i.e } \operatorname{con} \tau=(0)_{r} \text {. Then }
$$

(1^{\prime}) $\tau \backsim \tau=\Omega \oplus t=\tau \oplus v=\tau \oplus v=(1)_{r}$.
From (1^{\prime}) we deduce that Ω, t, τ, ω all have dimension
$1 / 2$. Moreover, since $e_{2}+e_{3}=1$ and $R\left(e_{2}\right)=R\left(e_{3}\right)$ it
follows that τ, τ form a homogeneous basis of order two for L [Part 1; Lemma 10].

We can extend the range of (1') as follows: Let \mathcal{Z} denote the centre of $\mathcal{R}\left(z\right.$ is a field). Then $e_{2} z e_{2}$ is the centre of $e_{2} \mathcal{R} e_{2}$ [Part 1; Lemma 6], and is isomorphic to \mathcal{Z} under the correspondence $: \mathcal{F} \ni x \leftrightarrow$ $e_{2} \mathrm{Xe}_{2}$. Let

$$
\leadsto(a, b)=\left(e_{2} a_{2}+e_{32} b e_{2}\right)_{r}
$$

where $a, b \in \mathcal{Z}$, and define

$$
M=\{\Omega(a, b) ; a, b \in\}\} .
$$

Clearly, $b \neq 0 \Leftrightarrow n(a, b) \neq \pi$. For, since $\bar{e}_{2}{ }^{a e_{2}}$ exists in $e_{2} z e_{2}, \Omega(a, 0)=\left(e_{2} e_{2}\right)_{r}=\left(e_{2}\right)_{r}$. Conversely if $\Omega=u(a, b)$ then $e_{2} \mathrm{ae}_{2}+\mathrm{e}_{32^{b e}}^{2}=e_{2} z$, some z in \mathcal{R}, $\Rightarrow e_{32} b e_{2}=0 \Rightarrow e_{2} b e_{2}=0 \Rightarrow b=0$. Since $\Omega(a, b)=$ $\left(e_{2} a b^{-1} e_{2}+e_{32}\right)_{r}$ if $b \neq 0$, if we agree to write $\Omega=\Omega_{\infty}$ then we can(symbolically) parametrize .M as

$$
\left.M=\left\{n_{a}=\left(e_{2} a e_{2}+e_{32}\right)_{r} ; a \in\right\}\right\} \cup\left\{e_{\infty}\right\}
$$

M includes : $\Omega=\pi_{\infty}, \tau=\pi_{0}, \mu=\Omega_{1}$. Moreover, when ever a $\neq 0$, we have
(2) $n_{a} \oplus n_{0}=n_{a} \oplus n_{\infty}=n_{0} \oplus n_{\infty}=(1)_{r}$.

To see this, notice that m is a subspace satisfying (3) $\quad u \oplus m=\tau \oplus m=u \oplus \tau$
if and only if there exist [Part 1; Theorem 4] unique matrix units u, v such that

$$
\begin{aligned}
u v=e_{3}, \text { vi }=e_{2}, & e_{3} u e_{2}=u, e_{2} v e_{3}=v \\
& m=\left(e_{2}-u\right)_{r}=\left(e_{3}-v\right)_{r} .
\end{aligned}
$$

Then, since by $[7$; Satz 3.3] we have a one-one corespondence between the m satisfying (3) and the invertible elements of $e_{2} \mathcal{R} e_{2}$, given by
$m \Leftrightarrow e_{2} \mathrm{ae}_{2}=-e_{23} u$, where $\overline{e_{2} \mathrm{ae}_{2}}=-\mathrm{ve}{ }_{32}$,
it follows that (2) holds.
Also, if $a \in z$, then $e_{2}-e_{2} a e_{2} \in e_{2} z e_{2}$ and therefore $\overline{e_{2}-e_{2} e_{2}}$ exists in $\left.e_{2}\right\} e_{2}$. Then
$x=\left(e_{2}+e_{32}\right) x=\left(e_{2} a_{2}+e_{32}\right) z \Rightarrow e_{32} x=e_{32} z \Rightarrow e_{2} x=$ $e_{2} z$. Hence $\left(e_{2}-e_{2} a e_{2}\right) x=0$,ie $e_{2} x=0$ and we can only have $x=0$. This shows that $n_{1} n n_{a}=(0)_{r}$, for $a \neq 1$. Since $R\left(e_{2} e_{2}+e_{32}\right) \geqslant R\left(e_{32}\right)=R\left(e_{3}\right)$ we have $D\left(m n_{a} \oplus n_{1}\right)=D\left(n n_{a}\right)+D\left(n_{1}\right) \geqslant R\left(e_{3}\right)+R\left(e_{2}\right)=1$, so that equality must hold, i.e
(3) $\quad \mu_{a} \oplus \mu_{1}=(1)_{r}$, whenever a $\neq 1$.
(2) and (3) show that cross ratios are defined for all permutations of $\left\{\mathbb{R}_{\infty}, N_{a}, u_{0}, \pi_{1}\right\}$; moreover, cross ratio. os in the rows of Table 1 (with t replaced by $a a_{a}$) are equal.

Define

$$
M n=W(\infty, 0,1)=\left\{x \in R ; x \in \Omega_{a} \text { some } \Omega_{a} \in M\right\}
$$

2 is closed for multiplication, but not for addition.
For any $a \in \mathcal{y}$ let $f(a)=\left(e_{2}(x-a) e_{2}\right) \frac{r}{x}$, i.e $x \in \mathscr{C}(a) \Leftrightarrow e_{2} R_{i} e_{2}=e_{2} a_{2} x$. Now, if $y \in \hat{X} n M$, then $y=\left(e_{2} R e_{2}+e_{32}\right) z_{1}=\left(e_{2} a e_{2}+e_{32}\right) z_{2}$, for some $a \in \mathcal{Z}$ and $z_{1}, z_{2} \in R$, so that $e_{3} y=e_{32} z_{1}=e_{32} z_{2}$, i.e $e_{2} z_{1}=e_{2} z_{2}$ $=z$, say. Hence $y=\left(e_{2} R e_{2}+e_{32}\right) z=\left(e_{2} e_{2}+e_{32}\right) z$ and therefore $z \in \mathbb{Z}(a)$. Conversely, assume that $y \in \gamma_{t} \mathbb{t}^{(a)}$, where $t=e_{2} \operatorname{Re}_{2}+e_{32}$. Then $y=\left(e_{2} R e_{2}+e_{32}\right) x$ where
$x \in t(a)$. Hence also $y=\left(e_{2} \mathrm{ae}_{2}+e_{32}\right)$, ie $y \in \ln m$. Finally, if $R\left(e_{2} R e_{2}-e_{2} a e_{2}\right)=R\left(e_{2}\right)$ then clearly $t(a)=\left(e_{3}\right)_{r}$ and hence $\gamma_{t} t(a)=(0)_{r}$. Defining e_{2} ae to be an eigenvalue of $e_{2} R e_{2}$ in $e_{2} Z e_{2}$ if $R\left(e_{2}(R-a) e_{2}\right)$ $<R\left(e_{2}\right)$, we have shown

$$
\begin{equation*}
\ell \cap M=\left\{x ; x \in r_{t} \notin(a), \text { a } \varepsilon \Lambda\right\} \tag{4}
\end{equation*}
$$

where $e_{2} \Lambda e_{2}$ denotes the set of eigenvalues of $e_{2} R e_{2}$ in $e_{2} \mathcal{Z e}_{2}$.

By Corollary 4, $\mathrm{R}\left(u_{\infty}, u_{\mathrm{a}} ; \boldsymbol{u}_{0}, u_{1}\right)=\left\langle e_{2} a e_{2}\right\rangle$. Hence a permutation of $\mathscr{\alpha}, \tau, \infty$ amongst themselves (obviously leaves M unchanged) induces the corresponding permutation of the parameters. Moreover, assume that the inverses referred to in Table 1 exist, and we have

$$
\begin{aligned}
& \left(e_{2}-e_{2} R e_{2}\right)-\left(e_{2}-e_{2} a e_{2}\right)=-\left(e_{2} R e_{2}-e_{2} a e_{2}\right) \text { and } \\
& \quad \overline{e_{2} R e_{2}}-\overline{e_{2} a e_{2}}=-\overline{e_{2} a e_{2} R e_{2}}\left(e_{2} R e_{2}-e_{2} a e_{2}\right) .
\end{aligned}
$$

Hence the eigenvalues transform under permutations down the columns of Table 1 in exactly the same way as the cross ratios. This enables to determine the relative position (4) for configurations defined in terms of another cross ratio, provided the latter is obtained by a permutation of the above type. Hence it suffices to consider this relative position in relation to the permutations of the Klein four group.
8. SOME COLLINEATIONS INDUCING PERMUTATIONS

Case (i): ${\overline{e_{2}} R_{x}}_{2}$ exists in $e_{2} \mathbb{R} e_{2}$. Then $n=e_{32}+e_{2} R e_{23}$ is non-singular with $n^{-1}=e_{23}+e_{32}{\overline{e_{2}{ }^{R e}}}_{2}$ and

$$
\begin{aligned}
& r_{n}\{v, t, \tau, v\} \\
= & \left\{\left(e_{32}\right)_{r},\left(e_{32} R_{e}+e_{2} R_{x} e_{2}\right)_{r},\left(e_{2} R_{x} e_{23}\right)_{r},\left(e_{32}+e_{2} R e_{2}\right)_{r}\right\} \\
= & \left\{\left(e_{3}\right)_{r},\left(e_{2}+e_{32}\right)_{r},\left(e_{2}\right)_{r},\left(e_{2} R_{e} e_{2}+e_{32}\right)_{r}\right\} \\
= & \{\tau, v, v, t\} .
\end{aligned}
$$

Case (ii): $\overline{e_{2}-e_{2} R_{2}}$ exists. Then $n=e_{2}+e_{32}-e_{2}{ }^{R e_{2}} 3^{-e_{3}}$ is non-singular with $n^{-1}=\left(e_{2}+e_{32}\right)\left(\overline{e_{2}-e_{2} R_{x} e_{2}}\right)-\left(e_{2} R_{x} e_{2}+\right.$ $\left.e_{32}\right)\left(\overline{e_{2}-e_{2} R e_{2}}\right) e_{23}$,
and $r_{n}\{\imath, t, \tau, v\}=$

$$
\begin{aligned}
& \left\{\left(e_{2}+e_{32}\right)_{r},\left(e_{32} \mathrm{Re}_{2}-e_{32}\right)_{r},\left(e_{2} \mathrm{Re} e_{23}+e_{3}\right)_{r},\left(e_{2}-e_{2} \mathrm{Re}_{2}\right)_{r}\right\} \\
& =\left\{\left(e_{2}+e_{32}\right)_{r},\left(e_{3}\right)_{r},\left(e_{2} R e_{2}+e_{32}\right)_{r},\left(e_{2}\right)_{r}\right\} \\
& =\{v, c, t, v\} .
\end{aligned}
$$

Case (iii) : Both $\overline{e_{2} R_{k}}{ }_{2}$ and $\overline{e_{2}-e_{2} R_{k}} 2$ exist. Then

$$
n=e_{23}+e_{3}-e_{2}-e_{32} \overline{e_{2} \operatorname{Re}_{2}}
$$

is non-singular with

$$
\left.\left.n^{-1}=\overline{\left(e_{2}-\overline{e_{2} R_{x} e_{2}}\right.}\right)\left(e_{2}-e_{23}\right)+e_{32}\left(\overline{e_{2}-e_{2} R_{2} e_{2}}\right)+e_{32} \overline{\left(e_{2}-\overline{e_{2} R_{x} e_{2}}\right.}\right) e_{23}
$$

and then

$$
\begin{aligned}
& T_{n}\{r, v, \tau, 0\} \\
= & \left\{\left(e_{2}+e_{32} \overline{e_{2} R_{2} e_{2}}\right)_{r^{9}}\left(e_{23}\right)_{r},\left(e_{2}+e_{32}\right)_{r}\left(e_{32}\right)_{r}\right\} \\
= & \left\{\left(e_{2} k_{2}+e_{32}\right)_{r},\left(e_{2}\right)_{r},\left(e_{2}+e_{32}\right)_{r},\left(e_{3}\right)_{r}\right\} \\
= & \{t, a, \tau, \tau\} .
\end{aligned}
$$

Hence, corresponding to (i),(ii),(iii), the positic -n of t^{t} relative to $\operatorname{man}(\infty, 0,1)$ corresponds to the position of
(i') 20 relative to $m\left(0, \infty, \mathbb{R}_{k}\right)$
(ii') τ relative to $m(1, \mathbb{R}, \infty)$
(iii') u relative to $m(k, 1,0)$
respectively.

REFERENCES

J.von Neumann, Proc. Nat. Acad. Sci. U.S.A ,
(1) On continuous geometries, 22(36)92-100.
(2) Examples of continuous geometries, 22(36)101-8.
(3) On Regular Rings, 22(36)707-713.
(4) Algebraic theory of continuous geometries, 23(37)16-22.
(5) Continuous Ri ngs and their arithmetics,

$$
23(37) 341-347
$$

(6) Princeton Lectures, vols I-II-III, 1936-7.
(7) F.Maeda, Kontinuierliche Geometrien, Springer 1958. (8) A.Fuhrmann, Klassen Ahnlicher Matrizen als verallgemeinerte. Doppelverhaltnisse, Math.Zeit. 62(55)211-240. (9) G.Ehrlich, A continuous geometry within the unit group, Trans. Amer. Math. Soc. 83(56)397-416. (10) R.J.Smith, A generalization of Ore's determinant, Proc. S. Dak. Acad. Sci. 37(59)196.
(11) I.Halperin and K.Fryer, The von Neumann coordinatization theorem, Acta. Sci. Math. (Szeged) 17(56)203-249. (12) R.Baer, Linear Algebra and Projective Geometry, Academic Press, 1952.

