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Abstract 

Striped trumpeter (Latris lineata) is currently being researched as a new 

candidate for the Tasmanian aquaculture industry. Larval development is 

protracted and unusual in the striped trumpeter, and successful mass culture 

has taken over 15 years. Recent breakthroughs have been made in the 

successful culture of seedstock, including the use of ozonated water to 

reduce and control microbial communities. The subject of this thesis was the 

implementation of research to further improve larval and juvenile rearing 

success through the use of bacterial probionts. 

A knowledge of the microbial bacterial community of the larvae, seawater 

and live feeds was necessary in order to develop an understanding of what 

represents a healthy microbial ecology relevant for larval fish rearing 

success. 16S ribosomal RNA (rRNA) gene-based clone library and terminal 

restriction fragment length polymorphism (TRFLP) analyses were utilized to 

examine the microbial community associated with larvae cultured under 

different "greenwater" conditions. It was discovered that the larvae-

associated microbial diversity was restricted but varied considerably between 

culture conditions. Most bacteria detected on the basis of cloned16S rRNA 

gene sequence data, belonged to class Alphaproteobacteria (predominantly 

of the Roseobacter clade), Gammaproteobacteria (genus Psychrobacter and 

Pseudoalteromonas) and Actinobacteria (genus Microbacterium). No 

association was found between larval survival and microbial community 

structure. Using TRFLP analysis, similar results were obtained and 

demonstrated that the bacterial composition was in agreement with the clone 
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library data. It was found that the microbial community in the larvae was 

distinct from the bacterial community present in the surrounding water. 

Potential probiotic candidates were identified using antimicrobial in vitro plate 

testing against known pathogenic Vibrio species, with six out of 25 isolates 

tested selected for further testing. The 25 test bacteria were obtained in a 

previous experiment and were determined to be a representation of the 

bacterial community present in 15 days post-hatch (dph) striped trumpeter 

larvae. In both the rotifer and Artemia challenge trials, it was determined that 

Pseudoalteromonas agarivorans ST18 and Aliivibrio fischeri ST7 had the 

least negative effect on rotifer and Artemia survival numbers. To further 

assess the probiotic capability of strains ST18 and ST7 rotifer and Artemia 

cultures were challenged with pathogenic strain Vibrio proteolyticus V760 

mixed with strains S118 or ST7. Strain ST18 was found to have a probiotic 

effect in that cultures containing both V760 and 5T18 were not significantly 

different from the controls but produced significantly better survival compared 

to the pathogen-only treatments. 

To further investigate ST18 and ST7 probiotic capability, they were added to 

striped trumpeter larvae cultures either directly through addition to water or 

through bioencapsulation in live fed rotifers. TRFLP was used to monitor the 

change in bacterial community and to track individual probionts by detection 

of unique terminal restriction fragments (TRF). The addition of strain ST7 

alone was found to be disadvantageous to the culturing of striped trumpeter 

yolk sac larvae, while the addition of strain 5T18 and a combination of 

strains 5T18 with ST7 showed no significant reduction in survival. Tracking 
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of strain ST18 using TRFLP was successful with the strain specifically 

detected in treatments where it was added by both bioencapsulation and 

direct addition. 

When ST18 was directly added to both the water and through rotifers 

simultaneously it resulted in decreased larval survival due to the high number 

of bacteria present, and possibly resulting in a reduction in dissolved oxygen 

levels. However, in first-feeding larvae it was seen that the addition of the 

probiont via enriched rotifers was a promising mode of addition, as it was not 

significantly different from the control. Thus the introduction of strain ST18 to 

the larvae bioencapsulated in rotifers may have resulted in the introduction of 

comparatively smaller numbers of bacteria that did not compromise the 

growth of the developing larvae due to excessive biological oxygen demand. 

This resulted in this treatment being not significantly different to the control in 

terms of larval survival. 

With the knowledge gained from this study we have learnt that during the 

early larval stages of striped trumpeter, the bacterial flora is low in diversity 

and opportunistic. The methods developed during this study have shown 

how it is possible to use bacterial isolates as probionts. It also shows that by 

using TRFLP it is possible to track a species of bacteria through an 

experimental aquaculture system. 
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Chapter 1: General Introduction 

1.1 Introduction 

Bacteria are unicellular microorganisms. Typically, they are a few 

micrometres in diameter, have a wide range of shapes, ranging from 

spheres (cocci) to rods and spirals. Bacteria are ubiquitous in every 

habitat on earth, growing in soil, acidic hot springs, radioactive waste, the 

deepest seawater, and deep in the earth's crust (Madigan et al., 

2000).There are typically 40 million bacterial cells in a gram of soil and a 

million bacterial cells in a millilitre of sea water. Bacteria are vital in 

recycling nutrients, and many important steps in nutrient cycles depend 

on bacteria, such as the fixation of nitrogen from the atmosphere 

(Madigan et al., 2000). In industry, bacteria are important in processes 

such as wastewater treatment, the production of cheese and yoghurt, and 

the manufacture of antibiotics and other chemicals (Pianka, 1970). They 

also play an essential role in aquaculture, none more so than in the seed 

production of marine fish where the control of the bacterial community in 

larval rearing tanks is of paramount importance (Verschure et al., 2000). 

1.2 Microbial flora of larval fish culture and their control 

Many problems associated with the rearing of delicate marine fish relate 

to excessive bacterial populations. Bacterial blooms that occur in the 

culture systems may lead to disease, reduced growth rates, or even to a 

complete crash and loss of stock (Verschuere et al., 2000; Schulze et al., 

2006). The reason for this is that these animals are cultured under 

optimal conditions, e.g. pH, water quality, temperature, and nutrients. 
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However, this also creates optimal conditions for various species of 

microorganisms, including pathogenic bacteria, to proliferate. This is 

particularly true when water treatment reduces or alters the natural 

microbiota, thus providing space for the colonisation and invasion of 

different species (Verschuere et al., 1997). The resulting environment is 

extremely well-suited for the growth of opportunistic bacteria that are 

classified as r-strategists, as they grow quickly and dominate under 

conditions that are eutrophic (nutrient rich) (Verschuere et al., 1997). In 

contrast, k-strategists are classified as bacteria that can effectively exploit 

resources under oligotrophic (nutrient-limited) mixed culture conditions, 

and tend to grow slowly (Verschuere et al., 1997). In general, r-strategists 

are characteristic of unstable environments, while k-strategists 

predominate in stable, nutrient-limited environments and are more likely 

to be physiologically specialised (Pianka, 1970). Therefore, when we add 

nutrient to the cultures, be it in the form of live feeds or artificial feeds, it 

results in a disturbance of the natural relationship between the fish and 

the bacteria (Verschuere et al., 1997). By understanding bacterial 

interactions within a culture unit, it may be possible to manipulate the 

bacterial communities with non-pathogenic bacteria (probionts), which 

may then in turn inhibit the establishment of potentially pathogenic r-

strategists (Hansen and Olafsen, 1999). 
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Host 	 Pathogen 

Environment 

Figure 1.1: Disease triangle concept showing the interaction between the 

host, pathogen and environment and how they are all interconnected. 

As with all live animals, larval fish have their own bacterial communities, 

which they acquire from their surroundings. This can be seen graphically 

in the disease triangle concept, described in the 1960s by George 

McNew, a scientist at the Boyce Thompson Institute for Plant Research 

(Fig. 1.1) (Scholthof, 2007). In larval rearing, the environment is the 

water, the host is the larvae, and the pathogens, in the case of the 

systems being explored in this thesis, are typically bacterial species. 

With this in mind, hatchery producers of larvae must be informed about 

the bacteria associated with each stage of production. As the larvae 

obtain their microbiota from their surroundings, management of the 

number and types of bacteria present is highly desirable. Bacteria are 

present throughout the process, from egg collection, egg incubation, and 

through to the culture tanks. 

Fish also contain a specific intestinal microbiota that becomes 

established at the juvenile stage or soon after metamorphosis (Hansen 
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and Olafsen, 1999; Verschuere et al., 2000). During the establishment of 

the gut microbiota it is likely a series of transitional changes occur 

throughout the stages of the fish's life (Hansen and Olafsen, 1999). This 

is due in part to the varying conditions to which the larvae are exposed 

during larval culture. In the Atlantic halibut (Hippoglossus hippoglossus 

L.), gut-associated bacteria are detected towards the beginning of the 

non-feeding yolk sac stage (Verner-Jeffreys et al., 2003). These bacterial 

isolates are predominantly non-fermentative, gram-negative rods, (e.g. 

Pseudoalteromonas spp.), and they increase in number once active 

feeding by the larvae commences. Vibrio spp. also become associated 

with the gut during this stage of growth (Verschuere et al., 2000; Verner-

Jeffreys et al., 2003). Other species which have been studied in detail 

included turbot larvae (Scophthalmus maximus). Blach et al, (1997) found 

that oxidative gram negative rods dominated during the early stages of 

the turbot larvae while this shifted to Vibrio sp during the final stages. It 

was also observed that high mortality coincided with high heterogeneity of 

Vibrio spp. In Atlantic cod (Gadus morhua) larvae this pattern has also 

been seen (Hansen and Olafsen, 1989). 

To control the microbial communities of larval systems, many different 

approaches have been taken. With the understanding of the above 

information in regards to the types of bacterial present and the ways by 

which they interact with the larvae, it is possible to explore ways of 

managing bacterial populations to avoid pathogenicity. Skjermo et al. 
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(1997) has suggested a strategy for microbial control that uses a modified 

disease triangle concept, as shown in Fig 1.2. 

Improvement of 
larval resistance 

Non-selective 
reduction of bacteria z  

Selective 
enhancement of 
bacteria 

Figure 1.2: Outline of the three elements in the strategy to obtain 

microbial control in the rearing of marine fish (taken from Skjermo et al., 

1997) 

Two of the elements involve environmental factors, with the third being 

the fish itself (Fig. 1.2). Non-selective reduction of bacteria relates to the 

reduction in microbial load through disinfection of eggs and tanks, 

through water treatment including filtration, ozonation and UV, and 

through treatment of live feeds. 

Since microbial communities in marine fish culture are influenced by the 

water treatment systems in place, which can be seen in Fig. 1.2, a 

common approach is to use greenwater cultivation. This is a term to 

describe a culturing method in which microalgae are added to the rearing 

environment of larval fish (Palmer et al., 2007). This may be carried out in 

tanks or in ponds and this type of greenwater environment affords better 

larval survival (Palmer et al., 2007). This is generally attributed to: i) better 
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direct and indirect nutrition of larvae; ii) reduced stress levels; iii) 

enhanced environmental conditions for feeding from increased turbidity, 

light scattering and attenuation, and visual contrast enhancement; iv) 

improved water quality due to stripping of nitrogenous substances and 

increased oxygenation rates; and v) the possibility of antibacterial 

properties of the microalgae (Palmer et al., 2007). 

The implementation of filtration systems may also control the microbial 

communities as can the use of ultra violet (UV) and/or ozonation of water. 

In UV treatment the water passes by a UV light were the UV irradiation 

inactivates and kills bacteria. Similarly, ozonation of water reduces the 

microbial numbers, through oxygen free radicals which induce severe 

oxidative stress in bacterial cells and result in inactivation, reduced 

growth and death. 

Larvae are fed live feeds, which have their own bacterial communities 

associated with them (see Section 1.3 Role of live feed). Therefore, at 

different stages, the larvae are exposed to an array of different bacterial 

communities that often contain pathogens, albeit usually at very low 

levels. It is standard practice to clean culture tanks on a regular basis to 

remove detritus and to reduce potential bacterial proliferation. 

Antibiotics have been used widely in aquaculture, but they are non-

selective, meaning they will act on all bacteria present, both harmful and 

beneficial. Also the use of antibiotic prophylaxis may have reduced 
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effects over time, if the target microorganisms become resistant (Vadstein 

et al., 2004). Antibiotics are further discussed in Section 1.5. 

Use of a selective method such as the incorporation of probiotic bacteria 

may prove advantageous. As here, known bacteria can be added to the 

community with the knowledge that it will only have an interaction with the 

target, here being pathogenic bacteria. However, with the modification of 

any microbial environment, there are always challenges. The major 

difficulties in the use of probionts are that they can modify the native 

microbial communities (affecting the microbial balance) and the choice of 

the correct balance of the probiont (how much and when). During the 

development of fish larvae, the stomach, foregut, midgut and hind gut 

become compartmentalized in terms of pH, enzyme content and digestive 

mechanisms. Consequently, the probionts chosen must be able to cope 

with these varying environments and be maintained in different areas of 

the gut (Vine et al., 2006). Probionts are further discussed in Section 1.6. 

Finally, improvement of resistance against bacteria can be obtained by 

stimulation of the immune system of the larvae to better cope with 

microbial challenges (Fig. 1.2). Fish larvae, in particular striped trumpeter, 

do not have the ability to develop specific immunity as their immune 

systems are not yet fully developed (Covello et al. 2009). An 

immunostimulant can be defined as an agent that stimulates the non-

specific immune system mechanisms when given alone, or the specific 

aspects of the immune system when given together with an adjuvant (e.g. 
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through vaccination). Immunostimulants include bacterial products, 

muramyl dipeptides, polysaccharides and synthetic chemicals (Vadstein 

et al., 1997). 

1.3 The role of live feed 

Over 85% of cultured marine species are fed live feeds in aquaculture 

(Hameed and Balasubramanian, 2000). The purpose of a live feed is to 

simulate the naturally occurring food source upon which the larvae would 

normally prey. These natural preys are often free-living zooplankton, such 

as copepods. However, as copepods are difficult to rear intensively 

(Cheng-Sheng et al., 2005), the industry relies heavily on more easily 

cultured zooplankton such as rotifers (Brachionus spp.) and brine shrimp 

(Artemia spp.) (Douillet, 2000). 

Rotifers are often used as an initial feed, as their small size (0.1-0.5 mm 

length) allows effective feeding by larval fish. They are common in 

freshwater throughout the world and some saltwater species also exist. 

They are an easy animal to culture at densities up to 10 3  m1-1  and can be 

cultured to densities exceeding 104  m1 -1  (Douillet, 2000, Vine et al, 2006). 

They are also an easy animal to nutritionally enrich, thus providing the 

means to improve their nutrient value, which can then be passed onto the 

fish larvae. Skjermo and Vadstein (1993) reported that some of the 

bacteria associated with rotifers may have a detrimental effect on the 

larval fish to which they are fed. Mass culture of rotifers, which involves 

high densities, warm temperatures of around 25°C and enriched media, 
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encourage proliferation of undesirable bacteria. The numbers of Vibrio 

spp. have been found to increase significantly during mass culture and to 

displace other bacterial groups(Olsen et al., 2000) These bacteria can 

contribute to the poor reproducibility often seen in replicated systems in 

terms of survival and growth rates of rotifers (Skjermo and Vadstein, 

1993). When the rotifers are fed an enrichment diet, a shift in the bacterial 

communities also occurs. Opportunistic bacteria bloom at this point and 

after a few days, the "normal" communities re-establish; these often being 

members of the phylum Bacteroidetes (formerly referred to as the 

Cytophaga/Flavobacterium/ Bacteroides group) (Skjermo and Vadstein, 

1993). 

Brine shrimp (Artemia spp.) are an important live feed in aquaculture due 

to their ease of production and their suitable biochemical composition 

(Verschuere et al., 1999). They have been used as a live feed since the 

1940s and often follow the initial use of rotifers as a first stage feed 

(Rollefsen 1940 in Straub et al., 1993). Extensive cultivation-based 

research has been undertaken to investigate the bacterial communities 

that are present in Artemia populations (Solangi et al., 1979; Austin and 

Allen, 1982; Straub and Dixon, 1993; Lopez-Torres and Lizarraga-

Partida, 2001). Freshly hatched Artemia nauplii are deficient in essential 

fatty acids, particularly docosahexaenoic acid (DHA) (Sargent et al., 

1999). To overcome this dietary limitation, Artemia are enriched in a 

similar way to rotifers with lipid emulsions, to optimise lipid nutrition 

(Sargent et al., 1999). As with rotifers, increasing the nutrient load of 

9 



Artemia culture can result in increased bacterial populations. Bacteria 

isolated from Artemia have been shown to belong to genera Bacillus, 

Micrococcus, Staphylococcus, Erwinia and Vibrio (Austin and Allen, 

1982). However, the problem for fish culturists is that Vibrio spp. may 

become dominant during the hatching process, which is usually 

conducted at incubation temperatures around 28°C for 24 hours. As the 

cysts break down, an organic reserve (glycerol) is released into the water 

and this provides an organic substrate that is used efficiently by the Vibrio 

spp. already present in the surrounding water (Vine et al., 2006). The 

resultant bloom of Vibrio spp., when transferred with the Artemia to the - 

larvae, may lead to larval mortalities. It is important to stress that Vibrio 

spp. are not directly associated with Artemia, but instead originate from 

the seawater in which they are hatched (Lopez-Torres and Lizarraga-

Partida, 2001). 

Factors associated with both nutrition and bacteria have been suggested 

for the high numbers of mortalities during the first feeding of larval fish 

(Olsen et al., 2000). As discussed, both rotifers and Artemia may carry a 

large bacterial load that, when transferred to the larval fish, can account 

for fish mortalities (Hameed and Balasubramanian, 2000). The 

relationship between the presence and predominance of r-strategists and 

fast growing bacteria in Artemia intestinal tracts is a direct result of the 

systems in which they are cultivated. The food, fishmeal, and fish oil 

commonly used for the cultivation of Artemia are rich substrates suitable 

for the proliferation of opportunistic bacteria (Olsen et al., 2000). Artemia 
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that are fed microalgae (Tetraselmis sp.) have a 75% lower bacterial 

population load and a more diverse community with fewer Vibrio spp. 

when compared to Artemia fed commercial feeds (Olsen et al., 2000). 

The domination by Vibrio spp. can be as high as 58% in Artemia fed 

commercial feeds (Olsen et al., 2000). Verschuere et al. (1997) observed 

that r-strategist bacteria constituted 90% of the bacteria present in three 

day-old Artemia cultures. Verschuere et al. (1999) showed that axenic 

cultures of Artemia grown under suboptimal conditions yielded better 

survival and/or growth rates when grown in a preemptively colonized 

culture medium, compared with strains of Artemia fed in the standard 

way. This suggests that the bacterial flora present is important for the 

growth and survival of Artemia. 

1.4 Methods used to reduce the bacterial populations of rotifers and 
Artemia 

With the knowledge of bacterial associations within live feed, culture 

methods have been developed to reduce the bacterial loads. Rotifers are 

now commonly cultured in recirculation systems rather than in batch 

cultures, to stabilise bacterial loads (Doulillet, 2000). Commercial 

enrichment products are also better designed to reduce bacteria, either 

through the inclusion of disinfectants or by reducing the enrichment time 

required. The emphasis on lipid nutrition is also now better understood. A 

method widely used in the industry is called decapsulation, which is the 

process of removing Artemia cysts with sodium hypochlorite. Gomez-Gil 

(1994) reported on the use of disinfectants for Artemia nauplii and 

showed that exposures to sodium hypochlorite (5 mg 1 -1  for 15 min), 
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formaldehyde (70 mgr .' for 5 min) or hydrogen peroxide (60m11 -1  of a 6% 

solution for 5 min) provided the greatest reduction in bacterial loads. The 

best results were found for sodium hypochlorite or formaldehyde, both of 

which resulted in a 90% reduction in the heterotrophic bacteria. When 

sodium hypochlorite was used, it also resulted in the complete elimination 

of Vibrio spp. 

More traditional enrichment procedures can also decontaminate Artemia. 

Using algae such as Chaetoceros muelleri and ozone (4 ppm for 5 min), 

final bacteria loads can be reduced by 99.5% (Tolomei et al., 2004). The 

use of enrichment products to decontaminate Artemia is feasible because 

they have a relatively short gut passage time, as quick as 10 minutes 

(Smith et al., 2002). 

1.5 Antibiotics 

Reducing antibiotic usage helps prevent the development of antibiotic 

resistant bacteria, which have become a serious problem in the prawn 

industry, where a Vibrio spp. has become resistant to multiple antibiotics, 

leaving farms in South America unable to treat disease outbreaks 

(Moriarty, 1998). In this case, the solution has been to use a probiotic 

strain of the genus Bacillus. The probiont acted prophylactically against 

Vibrio spp. when added to the water and feed (Moriarty, 1998). 

Antibiotics have been used widely in the aquaculture industry to reduce 

and control disease outbreaks; however, it has been shown that 
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indiscriminate use can lead to an increase in antibiotic resistance and 

problems with tissue residues (Vine et al., 2006). Antibiotics still play an 

important role in the control of new fish diseases or as a tool for 

identifying bacterial disease as a cause of fish mortalities (Battaglene et 

al., 2006; Kersarcodi-Watson et al., 2008). Oxytetracycline (OTC) has 

been studied as an antibiotic addition to modify the bacterial flora of 

striped trumpeter (Latris lineata) larvae (Battaglene et al., 2006). The 

bacteriology of this study provided a snapshot of Vibrionaceae the 

primary flora colonizing the gut of larval fish (Munro et al., 1994) and was 

based on culture techniques. The bacterial load was found to be reduced 

by the OTC treatments, and the larvae were significantly larger than the 

ones not treated, and had a five-fold increase in survival. The OTC 

treated larvae also had less "grey gut", a measure of intestinal 

dysfunction and the results indicated that bacterial infection was a major 

source of mortality in the larvae and also reduced growth. The study, 

indicated that microbial control had a greater influence than lipid nutrition 

on the survival and growth of the larvae during rotifer feeding stages 

(Battaglene et al., 2006). 

Increased political and environmental pressure has led to a decrease in 

use of antibiotics, particularly the latest generation of antibiotics reserved 

for human health treatment (Vine et al., 2006; Kersarcodi-Watson et al., 

2008). Other therapeutic chemicals have also been developed in 

agriculture and aquaculture, particularly in developed countries (Vine et 

al., 2006; Ziaei-Nejad et al., 2006). Importantly, there has been a push for 
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the development and use of alternative strategies to manage and control 

bacterial contamination and disease. These activities have opened up the 

field of probiotics as a viable and effective management approach in 

aquaculture. 

1.6 Probiotics 

The word probiotic originates from the Greek word for 'for life' and is 

currently used to describe bacteria that have beneficial effects in both 

humans and animals (Farzanfar, 2006). They have been used in 

terrestrial farming since the 1970s, with the chicken, cow and pig 

industries being the biggest users. Recent probiotic research (Verschuere 

et al., 2000) has centered on two major strategies: bioremediation 

(modification of an established biota to one that is supportive of the host) 

and biocontrol (use of a specific microorganism to minimize the impact of 

a specific pathogen). The former introduces benign bacteria that either 

displace or deny access to more aggressive opportunistic bacteria 

(Skjermo et al., 1999; Gomez-Gil et al., 2000; Huys et al., 2001). In 

contrast, biocontrol focuses on the use of host-benign species of bacteria 

to control specific pathogens that are associated with disease outbreaks 

(Skjermo et al., 1999; Gomez-Gil et al., 2000; Huys et al., 2001). In terms 

of fish culture, one strategy is to first establish a process that can be used 

for assessing the type of bacterial interactions associated with fish larvae 

and to devise a means of evaluating the properties of potential probionts. 

These processes can then be extended to develop standard methods that 

can be used for evaluating the effectiveness of probionts for 
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bioremediation or biocontrol in hatcheries. Isolation and evaluation of 

probionts involves a mixture of in vivo and in vitro experimentation. The 

use of larval animals reared under hatchery conditions is essential for the 

development of a bioremediation strategy, since the bacterial ecology of 

larval fish is complex (Vine et al., 2006). 

A number of criteria have been determined for bacteria to be considered 

as candidates/probiotics to improve the health of their host (Gatesoupe 

1999; Vine et al., 2006). Put simply, a probiont must: 

1) Be antagonistic to pathogens in vitro. 

2) Have a colonization potential that ensures that it does actually 

colonize the target's gut. 

3) Pass challenge tests that confirm that it does increase the 

host's resistance to disease. 

Previous research has looked into methods of manipulating the bacterial 

communities of culture environments (Gatesoupe, 1991; 1997; 1999; 

Bruce et al., 2003). Bacteria have been added directly to the water andto 

the artificial feed while live feeds have also been enriched with probionts. 

There are a number of reviews written that describe the various probionts 

used in aquaculture; for example Vine et al. (2006) and Kesarcodi-

Watson et al. (2008) and Tinh et al. (2008). It is important to note here 

that even Vibrio spp. can be probionts, although they are thought to be 

indicators of poor conditions (Garriques and Arevalo, 1995; Gatesoupe, 

1997; Ringo and Vadstein, 1998; Ottesen and Olafsen, 2000; Huys et al., 
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2001; Makridis et al., 2001). Inclusion of probiotic bacteria may alter the 

indigenous microbiota of the target species. Tinh et al. (2008) suggests 

this alteration may come about by (1) the stimulation of the humoral 

and/or cellular immune responses, (2) the modification of the metabolism 

of bacterial pathogens by changing their enzyme levels, and/or (3) 

competitive exclusion either through production of inhibitory compounds 

that are antagonistic towards pathogens, or by competing for nutrients, 

attachment sites, or oxygen. 

Previous studies have shown that when probiotic bacteria were added to 

the ambient water, larval fish (Turbot, Psetta maxima) and prawns 

(Penaeus monodon), had an increased survival rate, which was 

considered to be due to Bacillus spp. being antagonistic to the pathogenic 

bacteria in the culture water (Skjermo and Vadstein, 1999; Verschuere et 

al., 2000; Devaraja et al., 2002; Bruce et al., 2003). Addition of a probiont 

can be incorporated at the yolk stage, just prior to first feeding. Fish begin 

to osmoregulate and drink water at this time (Verschuere et al., 2000), 

thereby introducing bacteria into the intestinal tract. As well as having a 

potentially positive effect on larval survival, probiotics also have the 

added benefit of reducing the need for antibiotics. The need to add 

probiotics to artificial feed has received attention because some 

probiotics are not native to the microbiota of the animal or are not in high 

enough numbers to be of use via the water. One example is the use of 

lactic acid bacteria in turbot Lactobacillus spp., which are native to the 

turbot gut but only occur there in low numbers (Ringo and Gatesoupe, 
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1998). In this case, Lactobacillus spp. needed to be administered through 

the feed at all times, as it could not build up an effective population due to 

other bacteria out-competing it. To overcome this problem, research has 

looked at other bacteria that are present in the gut of fish and that adhere 

to the intestinal wall (Ringo and Gatesoupe, 1998; Gatesoupe, 1999). As 

previously mentioned, members of the genera Vibrio, Pseudomonas, 

Achromobacter, Micrococcus, and members of the Actinobacteria and 

Flavobacteria, can be readily cultured from the gut of fish (Hansen and 

Olafsen, 1999). Bacteria that have probiotic properties and the ability to 

adhere, will also persist within the fish intestinal environmental to avoid 

fish culturists having to repeatedly re-administer probiotics (Ringo and 

Gatesoupe, 1998). 

1.7 Development and delivery of selected probionts 

Recent research has focused on encapsulation of probiotic bacteria into 

live feeds, a process which is called bioencapsulation' and which enables 

transmission of probiotic bacteria to larval fish. 

Studies have investigated the benefits of encapsulating bacteria 

(Verschuere et al., 1999) and drugs (Dixon et al., 1995) into Artemia, 

which then acts as a live feed for larval fish. These studies have 

concluded that Artemia are a useful vector to transmit these products to 

the larval fish (Dixon et al., 1995; Gomez-Gil et al., 1998; Verschuere et 

al., 1999). Drugs such as the antimicrobials romet-30, sulphonamides, 

erythromycin, and sarafloxacin, can also be bioencapsulated by rotifers 
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and Artemia in quantities that could be therapeutic (Benavente and 

Gatesoupe, 1988; Verpaet et al., 1992; Dixon et al., 1995; Majack et al., 

2000). However, it should be noted that each of these studies used 

different life stages of Artemia, which makes it difficult to draw general 

conclusions on the exact usefulness of bioencapsulation. In addition, the 

active feeding rate of Artemia changes with time and each drug has a 

different particle size, making the concentration different for each. 

Probionts may also be used as a benefit to raising live feed species. 

Adding Pseudomonas spp. delayed mortality in Artemia when no other 

food was available and was a major source of amino acids and other 

proteins (Verschuere et al., 1999). Villamil et al. (2003) have reported that 

the use of Lactobacillus brevis and L. casei significantly reduced the 

amount of Vibrio alginolyticus load in Artemia cultures. It has also been 

hypothesized that dissolved nutrients that are normally unavailable to 

Artemia may be converted to bacterial biomass when probionts are 

added, which are in turn grazed upon by the Artemia (Verschuere et al., 

1999). 

It is also possible to encapsulate introduced bacteria into live feed, such 

as rotifers. Lactic acid bacteria had been fed to rotifers which in turn were 

fed to turbot (Ringo and Gatesoupe, 1998). Rotifers acted as a vector to 

introduce the probiotic bacteria into the intestinal tract of the larvae. 

Douillet, (2000) demonstrated that the growth of rotifers was affected by 

the presence or absence of bacterial communities and showed that best 
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growth rates were achieved with the cultures that had been inoculated 

with an Alteromonas strain or a mixed bacterial culture. The lowest 

growth rates were observed in the controls that were inoculated with 

bacteria freshly collected from seawater samples. Martinez-Diaz et al. 

(2003) found that encapsulation of probiotic bacteria was promoted by 

reducing the initial bacteria load of the culture system. 

Bioencapsulation success and derived benefits strongly depends on the 

type and strain of bacteria used, time of exposure and whether the 

bacteria are dead or alive (Gomez-Gil et al., 1998). Lysed cells or 

extracellular activity may be an important factor as they can deliver 

enzymes that remain active in the gut (i.e. acquired bacterial enzymes), 

and may therefore result in an increased ability for the host to digest food 

. If the bacteria are dead, then only the concentration is an important 

factor in the uptake of bacteria by Artemia nauplii, but if the bacteria are 

alive, the species or strain is also a significant factor. It has been 

demonstrated that in most cases, the bioencapsulation of bacteria occurs 

during the first 30 minutes, in both rotifers and Artemia (Gomez-Gil et al., 

1998; Makridis et al., 2001). This is a direct result of the live food having 

relatively short gut passage times. 

It is possible, after short term incubation, to replace opportunistic bacteria 

present in live food cultures with other bacteria, which persist for a 

relatively long period of time (4-24h) as a dominant part of the bacterial 

community of live food 
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(Majack et al., 2000). The composition of the bacterial community 

changes, as the bioencapsulated strains comprise up to 100% of the 

colony forming units (CFU). Some Vibrio strains are grazed on more 

effectively than other strains and thus may persist longer (Gomez-Gil et 

al., 1998). 

1.8 Experimental approach 

1.8.1 Molecular analysis of microbial communities 

With the addition of a probiont to the culture system, it is difficult to 

monitor changes that may occur in the microbial community. A valid 

approach is to track populations using microbiological and molecular 

methods. 

Traditionally, microbiology methods are culture based. These methods 

have the advantage of providing information about the phenotypic 

characteristics (e.g. morphology, growth rate and metabolic capabilities) 

of a culture. However, this is very time consuming, and often takes many 

days to culture and process. The identification of fish microbiota, in the 

past, has typically relied on phenotypic and biochemical key 

characteristics (Cahill, 1990). Molecular analysis now reveals a vast 

diversity of bacteria, but only a relatively small proportion of bacterial 

species have been so far cultured (Hugenholtz et al., 1998). This is 

mainly due to the lack of knowledge of growth requirements for many 
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bacteria, the often limited nature of diversity surveys, and the inherent 

bias towards the analysis and study of fast-growing species. 

1.8.1.1 Clone libraries 

The highest resolution assessment of microbial diversity of an 

environmental sample is obtained by constructing a 16S rRNA gene 

clone library. Here, after the nucleic acids have been extracted from the 

sample, a clone library can be constructed in three different ways: shot 

gun cloning of DNA; cloning of rRNA genes after reverse-transcriptase-

polymerase chain reaction (RT-PCR); and direct cloning of PCR-amplified 

16S rRNA genes. The most popular and widespread method is the latter 

approach, since the PCR products can be easily cloned into several 

commercially available sequence ready vectors (Theron and Cloete, 

2000). These clones can then be sequenced directly and the sequences 

compared to nucleotide databases (e.g. Genbank). For complex 

communities, it is necessary to sequence a large numbers of clones (in 

the 1000s) in order to gain an accurate insight into the community 

diversity (Kemp and Aller, 2004). While more recent studies have shown 

that the use of 16S rRNA microarray analysis can offer great insights into 

community structure (DeSantis et al., 2007), exhaustive analysis of 

diversity is very expensive to complete and rather time-consuming. 

Instead a valid goal that can be attained cost- and time-effectively is to 

simply establish the major players in systems i.e. the most numerically 

dominant species. Though it is possible to deeply sequence or analyse 

diversity, many basic questions remain about the role or significance of 
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low abundance members of the community. Clone libraries therefore still 

offer the highest resolution in assessing community structure, however, 

practicality may also demand that a more focused approach be 

undertaken. 

1.8.1.2 Denaturing gradient gel electrophoresis (DGGE) 

DGGE was first used by (Muyzer et al., 1993) to analyse natural microbial 

communities. DGGE is based on the concept that DNA PCR fragments of 

the same length but with varying sequences have different melting 

properties (Heuer and Smalla, 1997). With this approach, PCR-amplified 

DNA is electrophoresed through a linearly increasing gradient of chemical 

denaturants, usually urea and formamide, which partially melts the DNA 

strand, causing the DNA to become branched and leading to sharply 

decreased mobility of the DNA through the gel. A GC rich clamp on one 

end of the primer set prevents the complete melting of the DNA fragment. 

As the melting temperature of a fragment is determined by its sequence, 

the fragments remain double stranded until a point is reached that causes 

melting of domains within the DNA duplex. DGGE has been in favour for 

many years in the analysis of environmental samples, as it allows the 

rapid generation of snapshots of complex microbial communities (Muyzer 

and Ramsing, 1995). However, the method is technically demanding, can 

lack resolution when complex samples are investigated and is subject to 

PCR and gel bias (Powell et al., 2003). 
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1.8.1.3 Automated ribosomal intergenic spacer analysis (ARISA) 

To overcome the limitations of cultivation, molecular techniques that 

adapt the well established (PCR) technique for amplification of target 

genes from organisms have been used along with automated ribosomal 

intergenic spacer analysis (ARISA). ARISA involves the use of PCR to 

obtain fluorescently labeled amplicons comprising the Internal 

Transcribed Spacer (ITS) region between the 16S and 23S rRNA genes. 

These amplicons are then resolved using capillary electrophoresis to 

obtain a profile of the bacterial community, which appears as a series of 

peaks of specific sizes. The ITS region has highly variable lengths 

between different bacterial taxa and has proven very useful for tracking 

bacteria in natural samples, e.g., seawater (Brown et al., 2005). By 

correlating the length of each fragment corresponding to a peak in the 

electrophoretogram obtained, it is also possible to identify the source 

micro-organism. 

1.8.1.4 Terminal restriction fragment length polymorphisms (TRFLP) 

Another relatively new molecular approach that allows the assessment of 

the diversity of complex bacterial communities is terminal restriction 

fragment length polymorphism (TRFLP) analysis. This technique has 

been used for rapid assessment of ecosystem diversity and the structure 

of complex bacterial communities in various environments. TRFLP is a 

community profiling method, usually based on the 16S rRNA gene, and 

can be used with universal primers down to species level primers, 

depending on the resolution required. This method does require 
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amplification of the 16S rRNA gene with specific primers and is thus more 

susceptible to biases and skewing of the native community. The 

technique itself depends on the amplification of the DNA with a primer 

set, one with a fluorescently end labeled primer and restriction of the 

resulting product with frequently (4-base) cutting restriction enzymes. Due 

to sequence variations, the terminal restriction site for each species in the 

community should be different. The output is digital and provides 

information on the size of the product in base pairs (i.e. species) and the 

intensity of fluorescence or relative abundance of the various community 

members. Only the fluorescently labeled terminal restriction fragments 

are detected. Their sizes are determined by comparison to those of a 

known internal standard consisting of DNA of known length (Hewson et 

al., 2003; Smith et al., 2007). The approach also has a relatively high 

signal-to-noise ratio requiring the application of both technical and 

biological replicates. A source of signal noise is due to the formation of 

pseudo terminal restriction fragments (TRF), as explained in reviews by 

Egert and Freid rich, (2003), Nocker et al. (2007) and Orcutt et al. (2009). 

It was found that like PCR pseudo-TRFs can be formed with the left over 

primer bases and thus give false peak readings. It is therefore advised to 

perform virtual digestion of corresponding sequence data such as clone 

library-derived sequences. It is also important to design the primers being 

used correctly, to optimise primer levels in the TRFLP PCR thermocyling 

process, and to take account of PCR run-to-run variations (Schutte et al., 

2008) thus minimising pseudo-TRF artifacts. If this is not done, there is a 

risk of missing important TRFs and thus data for later analysis. Primers 
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1OF and 907R were used in this study. This primer set was used for the 

formation of the clone libraries and TRFLP, constancy through the study 

with the primers was believed to be the best approach. 

1.8.1.5 Real time PCR 

Through the use of specific primers targeting the probionts ITS region, 

RT-PCR can be correlated to other experimental data, such as survival 

rates and effects of nutrients. By allowing the binding of a DNA-

intercalating dye, Sybr-Green II, the amount of amplified product being 

produced during the PCR thermocycling process is automatically 

determined. By determining the minimum time for the fluorescence to 

exceed a certain threshold, the copy number of the target gene (16S or 

23S rRNA genes) is calculated by comparison to a standard curve 

calculated from measurements of known target gene copy numbers. 

From this, a relative abundance of the probiont population can be 

established. In addition, the same approach can be used to rapidly 

monitor bacterial pathogen populations, which are also detected by using 

a specific primer set (Theron and Cloete, 2000). 

1.9 Fish model used in study 

The model fish used in this study was striped trumpeter Latris lineata. 

This species was identified as a new candidate for aquaculture in the late 

1980s and is being investigated as an alternative cold temperate species 

for sea cage culture of salmonids in Tasmania (Battaglene and Cobcroft, 

2007). The fish was chosen for its docile nature, fast growth and 
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tolerance to high holding densities. It is a highly prized fish in restaurants. 

The species is widely distributed in the temperate latitudes of southern 

Australia, around Tasmania and New Zealand, and in isolated island 

groups in the Indian and Atlantic Oceans (Tracey et al., 2006). Striped 

trumpeter was once plentiful in Tasmania but the Tasmanian fishery has 

declined to a catch of less than 30 metric tonnes per annum. Work 

started on striped trumpeter during the late 1980s with a production 

method based on that of Atlantic salmon. It was quickly seen that striped 

trumpeter were not easy to culture and had a complex life cycle, including 

a nine month neustonic `paperfish' stage. Due to the extended larval 

stages, it has been difficult to rear large numbers of larvae for a variety of 

reasons, including key development issues such as poor swim bladder 

inflation, jaw malformations, inadequate larval nutrition and bacterial 

problems (Battaglene and Cobcroft, 2007). 

Striped trumpeter are now cultured under "greenwater" conditions and fed 

enriched live feeds, which has resulted in increased production. 

Measures are taken to reduce the bacterial loads including egg 

disinfection, washing of the live feeds, the use of ozone treated seawater 

and use of OCT (Battaglene, 2006, Battaglene and Morehead 2006; 

Battaglene and Cobcroft, (2007). 

Pilot sea cage trials are underway with cultured striped trumpeter but 

production of high quality juveniles is still a bottleneck in commercial 

development of this new candidate for aquaculture. Research is 
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underway to improve larviculture techniques, through the use of 

formulated diets, improved tank design, and microbial control (Battaglene 

and Brown 2006; Battaglene and Cobcroft, 2007). 
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1.10 Thesis aims 

The aim of the thesis was to establish a process that could be used for 

assessing the type of bacterial interactions associated with fish larvae, 

using striped trumpeter larvae as a model and developing the means for 

evaluating the properties of potential probionts. The goal was to develop 

standard methods that can be used to identify possible probionts for 

bioremediation or biocontrol in hatcheries and also to develop methods of 

identifying/ tracking the probionts once added. Isolation and evaluation of 

probionts involved a mixture of in vivo and in vitro experimentation. The 

use of larval animals reared under hatchery conditions is essential for the 

development of a bioremediation strategy, since the bacterial ecology of 

larval fish is complex. To develop a robust process that could identify and 

culture probionts in larval fish cultures, the following goals were 

developed: 

1) Identification of the bacterial communities in striped trumpeter 

larval cultures through the use of a 16S rRNA bacterial gene clone library 

and TRFLP analysis. 

2) Determination of the bacteria that possess probiotic activity against 

Vibrio spp., by using in vitro antimicrobial plate tests and assessment of 

possible candidates on live feeds. 

3) Development of the use of TRFLP to enable tracking of the 

probionts in a mixed environment. 
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4) 	Exploring the best mode of action to introduce the probiont to 

the larvae and at which stage. The tracking of the probionts in an 

experimental striped trumpeter larvae system was to be achieved using 

TRFLP to match the probionts' unique TRF. 

1.10.1 Experimental constraints 

It must be noted that this thesis has certain experimental constraints 

associated with it. Replication in Section 2.3.2.3 is lacking due to samples 

coming from a previous experiment. During the study the use of clone 

libraries and TRFLP required considerable optimisation. These processes 

took a substantial amount of time and had an associated cost-burden and 

thus led to the number of replicates used for TRFLP analysis being 

suboptimal (typically n=3) and clone libaries (typically n=50). 

1.10.2 Thesis structure 

The thesis consists of Five Chapters: 

Chapter One includes a general introduction into the microbiology of the 

larvae of marine fish and the methods to be used in this study. Chapter 

Two involves an investigation of the bacterial communities, using 16S 

rRNA clone libraries and TRFLP analysis, associated with 15 dph striped 

trumpeter larvae grown under different conditions. It includes an 

assessment of whether microbial communities could be linked with larval 

survival performance. Chapter Three includes the results of experiments 

in which potential probionts were identified. This research also included 

utilisation of the TRFLP approach to track the isolates within experimental 
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systems. The chapter also explores the efficacy of probionts against a 

pathogenic Vibrio proteolyticus strain in experiments involving live feed 

species, rotifers and Artemia. Chapter Four utilizes findings from the 

previous chapters and assessed different ways to introduce the probionts 

to larval fish, be it by directly adding them to the tank water, or via 

bioencapsulation within live feed species. Within this chapter there was 

also an assessment of the probionts performance to determine whether 

they had a detrimental, neutral, or positive benefit to larval survival and 

growth during the yolk sac and first feeding phases. Chapter Five 

summarizes the thesis. It also discusses further directions and areas of 

importance to be researched that could further increase our 

understanding of the microbiota communities of striped trumpeter. 

30 



Chapter 2: Microbial communities of post hatch striped trumpeter 
(Latris lineata) larvae held under different rearing conditions, 
determined using cultivation-independent approaches 

2.0 Abstract 

A knowledge of the microbial bacterial community of the larvae, seawater 

and live feeds was believed to be necessary in order to develop an 

understanding of what represents a healthy microbial ecology relevant for 

larval fish rearing success. 16S rRNA bacterial clone library and terminal 

restriction fragment length polymorphism (TRFLP) analysis was utilized to 

examine the microbial community associated with striped trumpeter 

larvae (Latris lineata) cultured under different "green water" conditions. It 

was discovered that the larvae-associated microbial diversity was 

restricted but varied considerably between culture conditions. Most 

bacteria detected belonged to class Alphaproteobacteria (predominantly 

the Roseobacter clade), Gammaproteobacteria (genus Psychrobacter 

and Pseudoalteromonas) and Actinobacteria (primarily genus 

Microbacterium). No association was found between larval survival and 

microbial community structure. Similar results were obtained using 

TRFLP analysis, though it was found that the larval microbial community 

was distinct from the bacterial community present in the surrounding 

water. 
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2.1 Introduction 

Intensive cultivation of most marine larval fish is potentially subject to 

bacteria-associated problems that result in poor growth and mass 

mortalities (Skjermo and Vadstein, 1999; Vadstein et al., 2004). An 

understanding of the microbial bacterial community of the larvae, 

seawater and live feeds is necessary in order to develop an 

understanding of what represents a healthy microbial ecology relevant for 

larval fish rearing (Nicolas et al., 1989; Hansen and Olafsen, 1999; 

Verschuere et al., 1999). As with all live animals, larval fish have their 

own bacterial communities that they acquire from their surroundings. It is 

possible that, as in mammals, fish contain a specific suite of intestinal 

microbiota that establish during juvenile developmental stages (Hansen 

and Olafsen, 1999; Verschuere et al., 2000). 

New techniques are required to better understand these bacterial 

communities and their interactions. Traditionally, culture-dependent 

studies of hatchery fish have been conducted on identifying the major 

families of bacteria associated with marine fish at different stages of life. 

Hansen and Olafsen, (1989) found that larvae and juvenile cod (Gadus 

morhua), were made up of predominantly Vibrio, Lactobacillus and 

Bacillus, while this changed to Vibrio, Photobacterium, Pseudomonas, 

and Afteromonads during the adult stages. Studies on the Atlantic halibut 

(Hippoglossus hippoglossus) have also shown a shift during the yolk sac 

stage through to larval stages (Verschuere et al., 1999). During the yolk 
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sac stage, it was observed that the dominant genera present were 

Cytophaga, Flexibacter, Flavobacterium and Pseudomonas, while during 

the feeding larval stages, Vibrio and Aeromonas were detected (Bergh et 

al., 1992). While using a culture-dependent approach does give an insight 

into the bacterial communities, often a high proportion of bacteria are 

overlooked, either due to inadequate surveying or because they cannot 

be cultured on standard agar media. For this reason, more recent studies 

have applied molecular-based approaches (Jensen et al., 2004; Romero 

and Navarrete, 2006; McIntosh et al., 2008; Zhong et al., 2008). These 

methods have allowed the identification of bacteria without isolation and 

allow the phylogenetic affiliation of the community present to be 

accurately determined. Overall, this information has greatly increased our 

knowledge of the microbiology of fish (Romero and Navarrete, 2006). 

Methods based on the amplification of the 16S rRNA gene, have 

emerged as powerful tools (Holben et al., 2002). Examples of these are 

DGGE, TRFLP, clone libraries and real time PCR, which have been 

discussed in Section 1.8. These techniques are subject to PCR biases 

and resolution limits, meaning that even when precautions, such as 

multiple PCR reactions are made, PCR can skew community composition 

data. This may also result in species with a smaller amount of DNA 

present to remain undetected. Using these methods, it has been found 

that the microbial diversity of larval fish is relatively similar on a broad 

level with most taxa belonging to the phyla Proteobacteria, 

Actinobacteria, and Bacteriodetes. On a species level, the differences are 
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much greater. It has also been reported that these differences can occur 

within different parts of the fish, e.g. foregut or hind gut (Verner-Jeffreys 

et al., 2003) and that skin mucus and the surrounding water also have 

different microbial populations (Smith et al., 2007). The age of the fish, as 

well as whether it is either wild or captive, can also influence microbial 

communities (Romero and Navarrete, 2006). Therefore, by utilizing 

molecular biology techniques, it is possible to obtain insights into the 

microbiota and thus better understand how the microbial ecology of the 

fish and its environmental influences health and growth. 

While the microbial community of the striped trumpeter larvae has been 

previously investigated following culture (Battaglene et al., 2006) to gain a 

greater understanding of the microbial community of striped trumpeter 

larvae, a molecular approach was applied. This study uses 16S rRNA 

and TRFLP molecular techniques described in Sections 1.8.1.1 and 

1.8.1.4 respectivly. Samples were obtained from 15 day-old striped 

trumpeter larvae that were grown under three different green water 

conditions. The main objectives of this study were to: 

1.Determine the bacterial communities associated with 15 day-old striped 

trumpeter larvae reared under different conditions, by using 166 rRNA 

gene clone library analysis. 

2. Identify and track the dominant bacterial species on fish tissue 

samples using TRFLP analysis. 
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3. Determine how the microbial communities are influenced by different 

greenwater rearing approaches and to determine whether microbial 

communities affect growth and survival of larvae. 

2.2 Methods 

2.2.1 Background 

The study formed part of a larger experiment investigating the effects of 

three water treatments on the survival and growth of striped trumpeter 

larvae (Cobcroft et al., 2010). 

2.2.1.1 Larval rearing 

Eggs were collected from a female striped trumpeter broodstock by strip-

spawning, and fertilized with the milt of four males. Fertilized eggs were 

incubated and hatched as previously described (Bransden et al., 2004). 

Larvae (4500 per tank) were stocked into twenty-four, 300 I black 

hemispherical fiberglass tanks at 1 dph. Larvae were held under static, 

clear water conditions from 1 to 5 dph. A photoperiod of 18 hours light: 6 

hours dark was used throughout the experiment and was produced by a 

computerized halogen light source (-11 pmol s -1  m -2  at the water surface) 

using a gradual fade in and fade out process. During 6 dph internal 

screens (390 pm mesh size) were placed into the centre of each tank to 

allow outflow and removal of rotifers, algae and incoming seawater 

overnight (see below). 

There were three treatments each with eight replicated tanks. The first 

treatment, designated "Fresh Algae" (FA), consisted of rearing larvae in a 
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'greenwater' environment that included live Nannochloropsis oculata at a 

turbidity level of 3 Nephelometric Turbidity Units (NTU) (HACH 2100 

portable turbidity meter). The second treatment, designated "Instant 

Algae" (IA) was an algal paste of concentrated N. oculata (Reed 

Mariculture Inc., California, USA) that was also used to produce a green 

water environment by re-suspension of the concentrate in seawater to a 

turbidity level of 3 NTU. The final treatment, designated "Clear Water" 

(CW) consisted of rearing larvae without addition of algae (<0.01 NTU). 

The algal additions were added to each tank at a rate of 8.8 I min -1  (total 

100 I) from the reservoirs accompanying each individual tank. The algal 

suspensions or seawater had been acclimated to tank temperature in the 

reservoirs overnight and provided with aeration. Tanks remained static 

during the light phase with gentle aeration (200 ml min -1 ). A central 

screen (mesh size 390 pm) was placed in the tank and incoming 

seawater (112.5 I hr-1 ) that had been passed through primary filtration 

was supplied. The screen prevents the loss of larvae but allows the 

passage of algal cells and live food (see below). All tanks were supplied 

with live food rotifers (Brachionus plicatilis) enriched on Algamac 2000 

(Aquafauna Biomarine, USA) as described by Bransden et al. (2004). 

Enriched rotifers were supplied at 10mI -1  every morning. Surface 

skimmers were used from 8-15 dph to remove surface oil and promote 

swim bladder inflation (Trotter et al., 2003). Water quality was measured 

daily with a range of temperatures of 15.5-16.5°C, salinity of 34.1- 

34.7ppt, pH of 8.1 and dissolved oxygen of greater than 90% saturation. 

Mortalities were spot siphoned and counted daily, up to the conclusion of 
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the experiment (15 dph) when all live larvae were removed and counted 

to determine final survival. 

2.2.2 Larval sampling 

Larvae were sampled from each tank on 15 dph. Fifty larvae were 

removed from each tank and following anesthesia; 30 were used to 

determine morphormetric indices and dry matter content and 20 were 

used for the assessment of the microbial community. At the same time 20 

ml of water was removed via a sterile pipettor from each tank and placed 

into sterile containers. All sampling took place prior to feeding. 

The larvae and water samples selected from the six treatment tanks for 

the study were chosen from tanks that performed at different levels for 

each of the three treatments, designated "good performance" and "poor 

performance" i.e., the best and worst performing tanks for each treatment. 

Further information on performance of tanks not chosen for analysis can 

be found in Cobcroft et al. (2010). In addition water samples relating to 

each of these six larvae samples were also obtained for TRFLP analysis. 

No replication was possible because of the constraints described in 

Section 1.10.1. 

2.2.3 DNA extraction 

Extraction of bacterial DNA from the homogenized striped trumpeter 

larvae was performed utilizing the DNeasy Tissue Kit (Qiagen Pty. Ltd., 

Australia). An initial pretreatment step employing lysozyme was 
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incorporated to lyse Gram-positive bacteria. Additional wash steps were 

employed in addition to the manual protocol which resulted better yields 

of DNA as it removed salts and other inhibitors that were present in the 

samples. This was done by repeating the initial wash step as per manual. 

Extraction of bacterial DNA was also performed on water samples, 

utilizing the MoBio water extraction kit (MoBio Laboratories, Inc) following 

the manufacturer's instructions. The amount of DNA present in larval and 

water extracts was measured by spectrophotometry using a SmartSpec 

3000 (BioRad). 

2.2.4 Clone library polymerase chain reaction (PCR) 

Clone libraries were generated using DNA extracted from the six samples 

types. PCR amplification of the 16S rRNA gene, used the primers 10f 

(GAG TTT GAT CCT GGC TCA G) and 907r (CCG TCA ATT CCT TTG 

AGT TT). Each reaction was a 50p1 reaction mix with 5p1 of 10X buffer, 

1p1 of Advantage Taq (1.1 ilg/1.11 of TITANIUM taq DNA polymerase and 

TaqStart Antibody, Clontech), 4p1 of a deoxynucleotide mix solution, 4p1 

the forward primer, 4p1 of the reverse primer, and approximately lOng 

DNA template. A final volume of 50 pl was obtained using milliQ water. 

The following thermal cycling program was used: initial denaturation at 

94°C for 3 minutes, 30 cycles of denaturation for 1 minute, annealing at 

50°C for 1 minute, extension for 3 minutes: final extension at 72°C for 10 

minutes. The reactions were purified using the Qiagen PCR cleanup kit 
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2.2.5 Clone library construction 

PCR-amplified 16S rRNA gene samples to be cloned were ligated into 

the pGem-T vector (Promega) according to the manufacturer's 

instructions and transformed into Epicurian coli XL ultracompetent cells 

(Stratagene). Transformants were then screened using blue-white 

selection on Luria agar containing XGal/IPTG and 100 mg 1 -1  ampicillin. 

Approximately 50 white colonies from each library were then transferred 

to fresh plates and re-incubated overnight. Plasmids were extracted using 

the Ultraclean miniplasmid extraction kit (MoBio). Positive clones were 

sequenced in both directions using primers M13 forward and M13 reverse 

using the Ready Reaction Dideoxy Cycle Sequencing kit (Beckman-

Coulter). Sequencing was performed using a Beckman-Coulter 

CEQ2000XL automated capillary sequencing system. 

2.2.6 Sequence analysis 

Sequences were aligned against reference sequences obtained from 

GenBank (http:/www.ncbi.nlm.nih.gov/Bast  (Altschul et al., 1997) using 

BioEdit (version 7.0.9) (Hall, 1999). Automated alignment using_Clustal X 

was performed and aligned data exported to the CLC free workbench (v4) 

where similarity trees were produced, using the Neighbour-joining 

algorithm. The 16S rRNA gene sequences from Thermotoga maritima 

and Coprothermobacter platensis were used as outgroup references on 

the Alphaproteobacteria, Gammaproteobacteria and Actinobacteria 

sequence based-trees, while the plastid 16S rRNA gene sequence from 

Fucus versiculosus was used for the plastid sequence-based tree. Clones 
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with a sequence similarity of 98% were considered to be the same 

phylotype (Keswani and Whitman, 2001) for the purposes of assessing 

diversity. Clone library comparisons method utilized the LIBSHUFF v. 

1.22 computer program (http://libshuff.mib.uga.edu/)  (Singleton et al., 

2001) to generate homologous and heterologous coverage curves from 

clone libraries, which were then compared statistically. The DNADIST 

program of PHYLIP using the Jukes-Cantor model for nucleotide 

substitution was used to construct the distance matrix submitted to 

LIBSHUFF. 

2.2.7 TRFLP sample preparation 

TRFLP was used to determine the changes in bacterial communities 

between the six larvae samples held under different conditions and to 

assess whether there were differences in the bacterial community that 

could have resulted in higher or lower survival rates of the larvae. 

Fluorescently labeled primers were labeled with Beckman Coulter 

WelIREDtm fluorescent dyes. Primer1Of (GAG TTT GAT CCT GGC TCA 

G) was labeled with the D4 (Blue) dye while primer 907r (CCG TCA ATT 

CCT TTG AGT TT) was labeled with the D3 (Green) dye. Each PCR 

reaction comprised of 12.5 pl HotstartTaq MasterMix (Qiagen, Australia), 

1.0 pl of each primer and approximately lOng DNA template, with a final 

volume of 25 pl obtained with milliQ water. The following thermal cycling 

program was used: initial denaturation at 94°C for 15 minutes, 34 cycles 

of 94°C for 1 minute, 50°C for 1 minute, 72°C for 1 minute with a final 

extension at 72°C for 10 minutes. Four identical PCRs per sample as 
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outlined above were run separately and the resulting products were 

pooled during the PCR purification process. The reactions were purified 

using the Qiagen PCR cleanup kit. 

Purified PCR products were digested with 20U of enzymes Haelll, Hhal 

and Hinfl (New England BioLabs) 10p1 reaction were prepared using 2 pl 

of DNA template, 20U of enzyme 1p1 of bovine serum albumin solution, 

1p1 of NEL Buffer and milliQ water was used to obtain a volume of 10 pl. 

Each digest was incubated at 37°C for 3 h. At the end of the incubation 

the digestion was stopped using heating in a thermocycler with the Hhal 

digestion stopped by incubating at 65°C for 20 min while Hinfl and Hael II 

digestion were stopped by incubation at 80°C for 20 min. Each digest was 

done separately in duplicate. Digests were then desalted and purified 

using an ethanol precipitation method. To each well, 1p1 of 3M sodium 

acetate and 0.5 pl of glycogen was added and mixed; 30 pl of ice-cold 

absolute ethanol was added and the sample vortexed. Plates were 

covered with an aluminum sealing mat and incubated at -20°C for 20 

minutes. Plates were then centrifuged at 4°C for 30 minutes at 4300rpm 

(Sorvall Super T21 Thermo Electron Corp. Waltham, USA). Removal of 

ethanol was achieved by inverting the plate onto size cut absorbent 

paper, followed by centrifugation for 30 s at 300 rpm (Quantum Scientific, 

Murarrie, Australia). This was followed by a wash with 200 pl 70% 

(vol./vol.) ethanol, which was removed as previously described. Plates 

were left to air dry in a laminar flow cabinet, until there was no more 

remaining ethanol residue. Each digest was performed in duplicate. 
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The dried pellets were re-suspended in 30 pl Sample Loading Solution 

(Beckman Coulter) and 0.3 pl of the 600bp DNA size standard (Beckman 

Coulter) was added to each well. Samples were then analyzed on a 

Beckman Coulter CEQ800 Genetic Analysis System, using the Frag-4 

program, injection 2.0 kV/30sec, run at capillary temperature 50 °C /4.8kV 

for 60 minutes. 

2.2.8 TRFLP data analysis 

The TRFLP analysis procedures employed by Dann et al. (2009) were 

used to ensure TRFLP profiles were reproducible and also to minimize 

baseline noise. In summary this was done by producing in silico digests 

using workbench 4.0. Clone sequences were submitted and digested 

within the program generating the corresponding base position size for 

each TRF. Duplicate samples were analysed using T-ALIGN (Smith et al., 

2005), with a confidence interval of 0.5 bp in order to generate a 

consensus TRFLP profile in which TRFs present in both replicates were 

represented. Multi-dimensional scaling (MDS) plots were obtained using 

Primer v. 6 (Primer-E Ltd., Plymouth UK) to determine the similarity of the 

microbial community between treatment replicates and between separate 

treatments. Stress values obtained with each MDS plot provide an 

indication of the "goodness of fit" with the data set with the lower the 

value indicating a more representative analysis of the dataset. The 

similarity of treatments was determined using ANOSIM analysis using 

Primer v. 6. This analysis produces R statistic values that provide an 
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indication of the level of similarity between sample sets within a spatial 

scale, where 1 indicates completely different sets of samples while a 

value of 0 indicates sample sets that completely overlap. Permutation 

analysis was also performed to obtain a significance value. Percent 

similarity within sample sets and the average percent contributions of 

individual TRFs to the total peak area TRFLP profile were determined 

using SIMPER analysis within the Primer 6 software package. 

In relation to the MDS plots the actual location of each data point in space 

is arbitrary, and the axes can be rotated freely. It is the relationship of the 

data points to each other that is of importance, with two near points 

representing more similarity to each other than to another point located at 

a distance. The stress of the plot, generated as part of the MDS analysis 

in Primer 6, is a measure of how much distortion was introduced to allow 

the representation of the data in the specified dimensions, i.e. a 

"goodness of fit". A stress of 0 gives a perfect representation while a 

measure of stress <0.2 indicates the plot is a good represnatation of the 

data set and can be used for interpretation. A measure of >0.3 indicates 

that the level of distortion that was required to display the data on the 

map is too high for any reliable inferences to be made from the 

configuration. 
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2.3 Results 

2.3.1 Clone library data and comparisons between treatments 

Larval survival, 15 days post-hatch, was most consistent in the clear 

water treatment tanks (38 ± 5% survival) (Table 2.1) and also yielded 

larvae of the greatest size. The use of fresh algae resulted in similar 

outcomes, but was more variable (36 ± 9% survival). The use of "instant 

algae" preparations resulted in poor outcomes (7 ± 4% survival) (Table 

2.1). Overall, the microbial communities directly associated with the 

larvae were low in diversity (Table 2.2) with the microbial community 

dominated by members of the class Alphaproteobacteria (Fig. 2.1 to 2.4). 

Members of the Actinobacteria (Fig. 2.6) and Gammaproteobacteria (Fig. 

2.7) were also detected in certain samples. 16S rRNA-like gene 

sequences derived from the plastids of Nannochloropsis species (Fig. 

2.5) were detected in all samples (Fig. 2.1 to 2.3). 

2.3.1.1 Clear Water tanks 

Both clear water-based tank samples were dominated by the seawater 

species Suffitobacter pontiacus, Rue geria mobilis and Microbacterium 

oxydans/M. marinotypicum (Table 2.2). Collectively, these species made 

up 95% and 48% of the bacterial clones, respectively in the two samples 

analysed. The species Suffitobacter dubius and Sphingomonas 

paucimobolis were also detected in the clear water treatment sample with 

the poorest survival outcome (CWP). In the case of the sample with the 

best survival outcome (CWG) 38% of bacterial clones were most closely 
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related to the species Psychrobacter nivimaris (Fig. 2.2). In the same 

sample additional clones were found to belong to a clade of uncultivated 

alphaproteobacteria found in various marine ecosystems based on 

unpublished cloned sequence data on GenBank; these are most closely 

related to the genera Thalassobius and Thalassobacter. 

2.3.1.2 Instant Algae 

Only Sulfitobacter pontiacus was found to occur in both good and poor 

performinginstant algae treatment samples. Clones related to 

Psychrobacter nivimaris and Microbacterium oxydans were detected in 

the sample with the poorest survival (designated IAP). In comparison the 

alphaproteobacterial species Phaeobacter gallaeciensis and Nautella 

italica were only detected in a second sample (designated IAG) that 

demonstrated better but still comparatively poor survival (Table 2.1). 

45 



Table 2.1: Striped trumpeter larval survival and size for three different 
water treatments: fresh algae, instant algae and clear water. Survival of 
fish in single tanks chosen for anaylsis from the best and worst tanks in 
the treatment ("good" and "poor" n=1), along with overall treatment means 
for survival and Total Length (TL) (n=8 see Cobcroft et al., 2010) 

Fresh 
Algae 

Instant 
algae 

Clear 
water 

Good 
% survival: 

Performance 50 13.4 45.6 
Poor 
Performance 22.5 1.1 30.1 
Overall % 
survival 
(mean, SD) 35(± 9) 7± 4 38± 5 

Overall larval 
size TL 
(mm ,SD) 7.1±0.3 6.6±0.3 6.6±0.3 
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Figure 2.1: Percent proportion of major taxonomic groups occurring 
between the samples divided between the three different green water 
treatments. Abbreviations: clear water, CW; fresh algae, FA; and instant 
algae, IA. 
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Figure 2.2: Percent proportion of major bacterial taxonomic groups 
occurring between the different treatment samples analysed. 
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Figure 2.3: Percent proportion of major bacterial taxonomic groups 
occurring in samples pooled on the basis of poor and good larval survival 
performance as indicated in Table 2.1. 
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2.3.1.3 Fresh Algae 

Overall diversity was found to be greatest in the fresh algae supplied 

tanks and the communities differed almost completely between the 

samples analysed. The only phylotypes in common were related to 

Rue geria mobilis and to deep-branching alphaproteobacteria distantly 

related to the family Rickettsiales, very similar to clones derived from the 

gut microbiota of zebrafish (Rawls et al., 2004). The sample with the best 

survival outcomes (FAG, 50% survival, Table 2.1), also possessed 

phylotypes related to uncultured marine alphaproteobacteria, 

Psychrobacter and Pseudoalteromonas. The comparatively poorer 

performing tank (FAP), though still several times better than both IA 

samples, had phylotypes related to Phaeobacter gallaeciensis as well as 

Methylobacterium aquaticum and Sphingomonas paucimobilis. 

2.3.1.4 Comparison of rearing performance based on clone library data 
comparisons 

In order to find whether microbial communities influenced larval rearing, 

samples were defined in terms of performance 'pools' (Table 2.1), 

designated simply as either "good" and "poor" performers. From the 

clone library data (Table 2.2) most species detected were found in tanks 

with different performance outcomes and thus could not be expected to 

be influencing larvae survival. The species Methylobacterium aquaticum, 

Sphingomonas paucimobilis and Suffitobacter dubius were only found in 

poorly performing tanks based on fresh algae and clear water treatments. 
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Table 2.2: Distribution of cloned bacterial 16S rRNA sequences detected 

in striped trumpeter larvae grown under different green water conditions. 

Species: Similarity 

(%) 

Clear water 	Instant algae 	Fresh algae 

Sample name and relative larvae survival (performance): 

CWP CWG 	IAP 	IAG 	FAP FAG 

Proportion of clones sequenced (°/0):* 

Class Alphaproteobacteria: 

Sulfitobacter pontiacus >99 36 27 50 36 35 

Sulfitobacter dubius >99 2 

Uncultivated species (closest 

species Thalassobius 

mediterraneus) 

96 10 

Phaeobacter gallaeciensis >99 43 16 

Nautella italica 21 

Ruegeria mobilis >99 6 13 16 23 

Uncultivated species (closest 

species Bartonella 

bacilliformis) 

90 3 

Methylobacterium aquaticum 16 

Sphingomonas paucimobilis >99 2 8 

Uncultivated species (most 

similar to Rickettsia & relatives) 

<80 41 19 

Class Gammaproteobacteria: 

Psychrobacter nivimaris/P. 

glacincola 

98-99 16 38 15 9 

Pseudoalteromonas elyakovii >99 9 

Phylum Actinobacteria: 

Marinobacterium oxydans; M. 

maritypicum 

>99 16 12 35 
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However, as these species were not detected in the corresponding 

instant algal treatments it cannot be suggested they are linked to poor 

survival outcomes. Furthermore, the species were encountered only 

sporadically and at lower proportions than other species detected. 

Similarly, no one species can be indicated as being responsible for 

improving outcomes based purely on the clone library data. 

The null hypotheses that the three tank treatment libraries derived from 

15 day post hatch larvae would not be significantly different were tested 

by using a statistical approach useful for comparing clone library data - 

the LIBSHUFF method (Singleton et al., 2001). It was found that all 

sample clone libraries were significantly different from one another 

(p<0.01) (Table 2.3) due to the low diversity but distinct speciation was 

encountered. Under-sampling may thus contribute to this finding as 

LIBSHUFF analysis sensitivity is considerably affected by the sampling 

effort (Singleton et al., 2001). When the performance data is pooled, 

coverage values derived from LIBSHUFF analysis are relatively small, 

suggesting that performance variations are not linked to microbial 

community composition within the resolution limits of the available data. 
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Table 2.3: LIBSHUFF comparisons of the heterologous and homologous 
coverages (delta-C) of bacterial clone library data on the basis of larval 
sample green water treatments and larval survival outcomes. 

Comparison Homologous Heterologous Pb  delta- 
Data Data C 

Number 
1 FAPa  FAG 0.003 4.198 

FAG FAP 0.003 5.232 
2 IAP IAG 0.003 4.364 

IAG IAP 0.009 0.616 
3 CWP CWG 0.012 0.173 

CWG CWP 0.003 1.766 
4 IAP CWP 0.003 1.96 

CWP IAP 0.006 0.634 
5 IAP CWG 0.003 0.899 

CWG IAP 0.009 0.615 
6 IAP FAG 0.003 1.232 

FAG IAP 0.006 1.107 
7 IAP FAP 0.006 1.087 

FAP IAP 0.003 2.205 
8 FAG IAG 0.003 2.276 

IAG FAG 0.003 3.01 
9 FAG CWG 0.003 1.394 

CWG FAG 0.003 1.893 
10 FAG CWP 0.003 2.95 

CWP FAG 0.003 2.303 
11 FAP CWP 0.003 4.198 

CWP FAP 0.003 5.232 
12 FAP IAG 0.003 3.93 

IAG FAP 0.003 3.11 
13 CWP IAG 0.003 2.692 

IAG CWP 0.003 0.844 
14 FAP CWG 0.003 1.812 

CWG FAP 0.003 5.246 
15 IAG CWG 0.003 3.093 

CWG IAG 0.003 4.474 
16 Poor Good 0.003 0.287 

Good Poor 0.003 0.457 

aAbbreviations for treatments are provided in the Methods section. 

bp-values were Bonferroni-corrected to account for the possibility of false 

positive significance values. 
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Figure 2.4: 16S rRNA gene-based phylogenetic tree showing position of phylotypes in 
comparison to other members of the class Alpha-proteobacteria. Values in parentheses 
indicate the number of clones found for each phylotype. Numbers at each branch point 
are bootstrap values. See methods section for abbreviations. 
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Fucus vesiculosus (DQ307678) 
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1 	 1 

Figure 2.5: Phylogenetic tree showing position of clones in comparison to 
algal plastid-derived 16S rRNA gene sequences. Clones labelled as 
"cyanobacteria" are erroneously labelled in the GenBank database. 
Values in parentheses indicate the number of clones found for each 
phylotypes. Numbers at each branch point are bootstrap values. See 
methods section for abbreviations. 
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Figure 2.6: 16S rRNA gene-based phylogenetic tree showing position of 
clones in comparison to closely related members of the phylum 
Actinobacteria, in particular genus Microbacterium. Values in parentheses 
indicate the number of clones found for each phylotype. Numbers at each 
branch point are bootstrap values. See methods section for 
abbreviations. 
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Figure 2.7: 16S rRNA gene-based phylogenetic tree showing position of 
clones in comparison to other members of the class 
Gammaproteobacteria. Values in parentheses indicate the number of 
clones found for each phylotype. Numbers at each branch point are 
bootstrap values. See methods section for abbreviations. 
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2.3.2 TRFLP results 

The relationship between the composition of total bacterial communities 

of the six larval samples, including treatment effects and performance 

outcomes, with the surrounding tank water was investigated using TRFLP 

analysis. In order to further understand microbial communities associated 

with 15 day post-hatch larvae TRFs were compared to clone library 

sequence data that was digested in silico (Table 2.4). 

2.3.2.1 Changes in the composition of the larval bacterial communities 
within Good versus Poor performing tanks. 

On the basis of ANOSIM no differences in the structure of the total 

bacterial community of the tanks defined on the basis of performance 

(Table 2.1) were detected (Table 2.1, Fig. 2.8). To further evaluate the 

data, SIMPER analysis was performed to specifically delineate TRFs that 

may differ on the basis of performance (Table 2.5). It was found that for 

poor and good performance pooled samples, there was on average 

61.7% dissimilarity. Two TRFs were found that were significant 

contributors to the microbial communities in both tanks while four TRFs 

were identified that contributed the greatest to differences on the basis of 

performance (Table 2.5). The source species of several of these TRFs 

could not be confidently identified on the basis of the clone library data 

digests (Table 2.4). In the poor performance sample pool TRF 568 Hinfl 

(r) was likely derived from a Nannochloropsis plastid; TRF 257 Haelll (f), 

observed as a significant contributor to the better performing tanks, is 
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also likely derived from the same source. The tanks contained a number 

of slightly different plastid phylotypes (Fig. 2.7), suggesting that different 

source Nannochloropsis strains may be present across the different 

greenwater tank treatments with TRFLP analysis results suggesting that 

they are not present equally between tanks. 

Similarity based SIMPER analysis of the poor performance tanks 

revealed only a low average similarity between replicates of the CWP, 

IAP and FAP samples (31.4% similarity). TRF 66 Hhal (r) was the largest 

contributor in the dataset, possibly deriving from members of the 

Roseobacter clade. The next highest was TRF 570 Hinfl (r), likely deriving 

from chloroplasts of ingested Nannochloropsis (Table 2.5). SIMPER 

analysis indicated slightly higher congruence between the CWG, IAG and 

FAG samples (42.5% similarity) with TRFs 66 Hhal (r), 66 Hinfl (f) and 

257 Haelll (f) contributing approximately equally in these sample (10- 

14%; Table 2.5). As previously indicated, some of these TRFs could not 

be identified based on clone library data. This suggests cloned 16S rRNA 

genes were not retrieved from the microorganisms that are the source of 

these TRFs during the clone library analysis. 
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Table 2.4: Restriction enzyme TRFs of microorganisms detected in larval 
samples determined by in silico digestion a . 

Clone identification: Hinfl (f) Hinfl (r) Hhal (f) Hhal (r) HaelII (f) Haelll (r) 

Sulfitobacter pontiacus 296 538 60 66 - 568 

Sulfitobacter dubius 296 538 60 66 - 568 

Uncultivated species (closest 

species Thalassobius 

mediterraneus) 

282 538 60 66 - 483 

Phaeobacter gallaeciensis 296 538 60 66 - 483 

Nautella italica 296 538 60 66 - 483 

Ruegeria mobilis 296 538 60 66 - 483 

Uncultivated species (closest 

species Bartonella 

bacilliformis) 

296 563 - - 192 483 

Methylobacterium aquaticum 81, 298 367 515 68 62 292 

Sphingomonas paucimobilis 102 272 81 68 70 - 

Uncultivated species (most 

similar to family Rickettsiales) 

- - - - 197 71 

Microbacterium oxydans/M. 

marinotypicum 

123, 

129 

79 138, 

144 

228 223, 229 - 

Psycrobacter nivimaris/P. 

glacincola 

118 473 - - 254 - 

Pseudoalteromonas elyako vii 324 588 366 545 - - 

Nannochloropsis plastids 199 567- - - 258, 260 -(489) 

569, 

575 

aTRFs <60 bp are not included. 
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Figure 2.8: MDS plot of pairwise comparisons between 16S rRNA gene-

based TRFLP profiles from larvae reared using - (A) instant algae (IA), 

clear water (CW) and (FA) fresh algae green water treatments. (B) Data 

compared on the basis of survival performance (P, poor; G, good 

performance). 
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Table 2.5: SIMPER analysis results for TRFLP profile data obtained from 
larvae-associated bacteria derived from tanks samples pooled on the 
basis of survival performance and treatment. 

TRFa  Predicted species: b  Green water treatment Larval survival 
Performance 

Fresh 
Algae 

Clear 
Water 

Instant 
Algae 

Poor Good 

% contribution to % similarity: 
66 Hhal (r) 
66 Haelll (f) 
66 Hinfl (f) 
67 Hhal (r) 
69 Haeftl (f) 
76 Haelll (r) 
90 Hhal (f) 
197 Hinfl (f) 
202 Haelll (r) 
257 Haelll (f) 
296 Hinfl (f) 
326 Hinfl (f) 
484 Haelll (r) 
568 Haelll (r) 
570 Hinfl (r) 
Similarity%: 

Sulfitobacter/ Roseobacter clade 

- 

Methylobacterium/Sphingomonas 
Sphingomonas - 
_ 
Nannochloropsis plastids 
- 

Nannochloropsis plastids 
Sulfitobacter/ Roseobacter clade 
Pseudoafteromonas 
Sulfitobacter/ Roseobacter clade 
Sulfitobacter pontiacus 
Nannochloropsis plastids 

23.95 

28.67 
- 

25.49 

7.03 
10.74 

- 
16.48 

_ 
_ 
- 

17.29 

33.58 
15.67 

11.10 - 
- 
- 
- 

12.87 
- 

5.42 

10.68 

35.78 
15.45 
32.92 

7.49 

2.79 

6.09 
12.27 

28.12 
8.37 
12.26 
9.38 
7.59 

- 
4.35 
10.80 

■ 

■ 

- 
- 
- 

6.91 
16.33 

34.08 
12.37 
3.42 
4.59 - 
2.62 

- 
8.79 
4.06 
17.24 
3.73 
2.11 

2.65 
10.49 

32.2 44.0 42.3 31.4 42.5 

aTRFs indicated are the main contributing TRFs matching between 

replicate samples. 

bTRF peak values can vary by ±1-2 bp due to inaccuracies in the size 

estimation during electrophoresis. The species or genera indicated are 

the closest matches based on the in silico digests indicated in Table 2.4. 

However, a significant caveat should be noted that the identification is at 

best a prediction. 
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2.3.2.2 Changes in the composition of the larval bacterial communities 
between fresh algae, instant algae and clear water treatments. 

TRFLP analyses indicated that CW and FA treatments had higher 

similarity to each other (R = 0.25) compared to that of the IA supplied 

tanks (Figure 2.9, Table 2.6, R = 0.5 & 0). Similarity for the FA samples 

was only 32.2% while the other treatment similarities were 42-44% (Table 

2.6). However variation in the microbial communities between tanks of the 

same treatments was high, indicating that specific relationships between 

microbial community differences are difficult to determine. This is 

suggested by the fact that only one TRF was common between all 

treatments — 66 Hhal (r). The comparatively higher similarity between the 

CW and FA treatments despite high inter-tank variation is suggested by 

three TRFs contributing 47-55% of the peak area (Table 2.6). 

2.3.2.3 TRFLP analysis of tank water samples comparing treatment and 
performance 

Water samples from the corresponding tanks were also analysed using 

TRFLP. Data mining of the possible TRF originators again relied on the 

clone library data derived from larvae samples as it was assumed that 

microorganisms colonising the larvae mainly derived from surrounding 

tank water. As previously described water samples were collected from 

two tanks for each treatment including one in which survival was the best 

and a second tank in which survival was the least. 

TRFLP profile data indicated water samples for the IA treatment were 

very similar (63.8% similarity) but the other treatments had less similar 
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communities particulary the FA treatments (23.3% similarity) (Table 2.6). 

No differences in community structure were present for samples pooled 

on the basis of larval survival (R=-0.07, p=0.8). ANOSIM data indicates 

the FA and CW water samples based TRFLP profiles were similar overall 

(R=0) but that IA and CW water samples were completely different (R=1). 

Some overlap was observed for the FA and IA samples (R=0.25). MDS 

analysis (Fig. 2.9) suggests a polarisation occurs between TRFLP profiles 

when based purely on the basis of performance independent of 

treatment. IAP, IAG and FAP (survival 1-22.5%, Table 2.1) water sample 

profiles were completely separate to the profiles from water from the 

better performing tanks (FAG, CWP, CWG, survival >30.1%). MDS 

analysis also demonstrates the high divergence between FA tanks 

samples and homogeneity for the IA samples. This suggests that poor 

larval survival may not be linked to colonisation by deleterious bacteria 

but is rather more dependent on the nature of the microbial community 

present in the water. 

SIMPER based analysis reveals that fundamentally the greenwater 

treatments lead to considerably different communities that may have as 

much variation between individual tank samples as it does between 

treatments, especially in the case of the FA tanks. A high proportion of 

TRFs could not be identified from the clone library data and also suggests 

greater diversity occurs in the water as compared to what is observed in 

the larval samples. 
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2.3.2.4 Comparison of water and larval communities 

Using TRFLP analysis bacterial communities were compared between 

the larval samples and the surrounding water. MDS, ANOSIM and 

SIMPER analysis results suggests the communities are different. Overall, 

dissimilarity was high at 84.3% correlating with an R value of 0.91 

(p<0.02) (Fig. 2.10A). Several TRFs were more abundant in larval 

samples including 60-Hhal (f), 66-Hhal (r), 66-Hinfl (f), 257-Haell/ (f) and 

570-Hinfl (r). Most of these TRFs likely derive from Roseobacter clade 

members and Nannochloropsis plastids. Several water sample TRFs [e.g. 

81-Hinfl (f), 228-Hha/ (r)], were found to be specific to water samples. By 

comparison pooling water and larvae-derived TRFLP data revealed no 

significant difference on the basis of treatment-dependent performance 

(R=-0.11, Fig. 2.10). In the case of individual treatments the CW and IA 

treatment tanks appear to form rough subsets of the overall FA 

community diversity. 
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2.76 

Table 2.6: SIMPER analysis results for TRFLP profile data obtained from 
larvae-rearing tank water compared on the basis of survival performance. 

Green water treatment 
	

Treatment 
Performance:  

Fresh 
	

Clear 	Instant 	Poor 	Good 
Algae 
	

Water 	Algae  
% contribution to % similarity: 

TRF 
	

Predicted species 

60 Hhal (f) 
61 Haelll (f) 
61 Hinfl (r) 
64 Haelll (f) 
66 Haelll (f) 
66 Hhal (r) 
69 HaelII (f) 
70 Hhal (r) 
71 Hinfi (r) 
74 Hhal (r) 
76 Hhal (f) 
76 Haelll (r) 
81 Haelll (f) 
81 Hinfl (r) 
90 Haefil (f) 
90 Hinfl (f) 
100 Haelll (f) 
100 Hhal (f) 
100 Hinfl (f) 
113 Haelll (r) 
115 Haelll (r) 
183 Haelll (f) - 
190 Haelll (f) 
197 Hinfl (f) 
202 Haelll (r) 
228 Hhal (r) 
241 Hinfl (r) 
267 Hinfl (f) 
270 Hinfl (r) 
296 Hinfi (f) 
326 Hinfl (f) 
349 Hhal (r) 
366 Hinfl (r) 
461 Hinfl (f) 
484 Haelll (r) 
524 Hhal (r) 

563 Hinfl (r) 
572 Haelll (r) 
587 Hinfl (r) 
Similarity%: 

- 8.39 
	

4.81 	5.84 	2.96 
- - 	1.49 

10.75 	- 	- 	- 

	

2.27 	5.12 	- 	3.00 	2.65 
7.38 	- 	- 	- 
19.14 
	

13.53 	7.40 	5.83 

	

5.57 	- 	7.82 	4.00 	7.47 
- 7.88 
	

5.28 	2.67 	6.10 
- - 	 4.39 

3.20 
	

2.12 
4.38 	 - 	2.03 
3.71 	- 	- 	1.62 

	

6.11 
	

2.54 
19.21 
	

13.69 	4.50 
- - 	1.78 

11.21 	- 	- 	- 
1.71 

- 2.04 

	

13.59 	 - 	- 	8.56 

	

3.47 	 - 	4.51 	2.14 
3.27 

- 3.33 
- - 	3.94 	 2.74 

5.00 
8.39 	- 	7.11 

	
2.72 

12.68 	 3.89 
	

10.24 
4.62 	2.08 

4.21 

	

3.88 	2.04 
3.29 	- 	4.81 	_ 

	

24.12 	16.40 
	

11.93 

	

7.40 	1.58 	- 
- - 	1.24 

	

23.10 
	

1.36 

	

10.56 	- 	- 

	

6.11 
	

2.42 
	

3.48 

- - 	10.02 

	

4.57 	- 	4.23 

	

23.3 
	

33.8 	63.8 

Sulfitobacter/ Roseobacter clade 
Methylobacterium 
Sulfitobacter/ Roseobacter clade 
- 
- 
Suffitobacter/ Roseobacter clade 
Sphingomonas 
Methylobacterium/Sphingomonas 

_ 
_ 
- 
- 
Methylobacterium 

_ 
- 
- 
Sphingomonas 
- - 

Nannochloropsis plastids _ 
Microbacterium 

- 
Sulfitobacter/ Roseobacter clade 
Pseudoalteromonas - 
Methylobacterium 

Roseobacter clade 

Uncultivated 
alphaproteobacterium 
Sulfitobacter 
Pseudoalteromonas 

4.73 
- 
- 

4.95 
5.54 

- 
4.90 

- - 
1.99 
	

4.83 
23.1 
	

31.8 

aTanks are compared on the basis of survival performance. 
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Figure 2.9: MDS plot of pair wise comparisons between 16S rRNA gene-
based TRFLP profiles from water samples in which larvae are reared — 
(A) using instant algae (wIA), clear water (wCW) or (wFA) fresh algae 
treatments. (B) Data pooled in regards to survival performance (P, poor; 
G, good performance). 
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Figure 2.10: MDS plot of green water treatment samples showing a 
comparison of TRFLP profiles obtained from tank water and larvae 
samples: water;  •  larvae. 

Figure 2.11: MDS plot of green water treatment samples showing a 
comparison of TRFLP profiles obtained from samples defined on the 
basis of larval survival performance. Performance:  •  Poor; Good 



Figure 2.12: MDS plot of green water treatment samples showing a 
comparison of TRFLP profiles obtained from water samples and larvae 
samples. Treatments: Clear Water; 	Instant algae; 	Fresh Algae. 



2.4 Discussion 

The overall results of this study showed that the microbial community of 

the 15 days post hatch larvae was relatively low in complexity, in 

comparison to other microbial environments, such as soils and marine 

sediment, with majority of phylotypes belonging to class 

Alphaproteobacteria. The bacterial diversity in this study is in general 

agreement with other studies of larvae microbiota (Jensen et al., 2004; 

Romero and Navarrete, 2006; Schulze et al., 2006) that show only low 

diversity occurs and the predominance of proteobacteria. No Vibrio spp. 

were detected; however, Vibrio spp. are likely to have been present since 

in culture based studies they have been isolated, following enrichment 

using a selective media (see Chapter 3). However, in the Vibrio 

populations are likely too low to be detected in the randomized clone 

library survey performed here. It has been found that it can be difficult to 

generate good quality genomic DNA preparations from a number of Vibrio 

spp. (Wong and Kuo, 2006), however this could be due to interfering 

components derived during extraction of relatively large amounts of 

biomass. 

This low complexity in diversity observed may be a result of the 

shortcomings of PCR based studies, as reported by Wintzingerode et al. 

(1997). Other groups may have been missed through selection of the 

primers used to construct the libraries, such that only the predominant 

species in a microbial community were detected through the use of clone 

library construction and the use of TRFLP (Vlasov et al., 1998; Smith et 
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al., 2007). It has also been suggested that bacteria already present in 

hatchery environments may influence the composition of subsequent 

larvae-associated microbiota (Cahill, 1990; Ringo and Olsen, 1999; 

McIntosh et al., 2008). 

Differences in communities suggested by the clone library may have 

been caused by the different treatments that changed the microbial 

community structures. However, as the time frame for colonisation is 

relatively short, the colonisation process could be stochastic in its early 

phases. This is suggested by the presence of several similar phylotypes 

that occurred sporadically from sample to sample. This is similar to what 

is observed during juvenile development of animals and humans, in which 

heterogeneous communities tend to occur in neonates but with 

maturation the communities converge towards homogeneity (Palmer et al. 

2007). These different colonisation outcomes may have produced an 

effect that was deleterious to larvae survival; however, based on TRFLP 

data, no differences in performance in the larvae-associate communities 

could be observed, either dependent on or independent of the green 

water rearing approach. In the case of the tank water, survival outcomes 

could potentially be related to tank water microbial communities (Fig 2.9). 

This suggests that the deleterious effects on larval survival could be due 

to microorganisms occurring in the water but not necessarily active in 

larval fish colonisation. 
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The predominant species in the larvae-associated microbial community 

belong to the Roseobacter clade (Table 2.2). This is also apparent in the 

TRFLP data, which shows that the major taxonomic group present was 

comprised of Roseobacter clade members (Table 2.5). The only detected 

gammaproteobacteria belonged to the genera Psychrobacter and 

Pseudoalteromonas, both of which are commonly found in marine 

samples and are not noted for pathogenicity to fish (Hjelm et al., 2004; 

Bowman, 2006). It is possible that another potentially antagonistic 

species may become more prevalent in the absence of typical pathogens 

like Vibrio. 

Members of the genus Microbacterium have been isolated from marine 

samples but have never been shown previously to cause problems 

related to fish health, although they have been found on rare occasions to 

be associated with animal infections (Funke et al., 1997). It is remotely 

possible that particular conditions provided in the samples examined in 

this study allowed for Microbacterium strains to become sufficiently 

abundant to have deleterious effects on the larvae. 

As no Vibrio spp. were detected, they cannot immediately be painted as 

an indicator of poor health as has been done in other studies. When 

comparing data from other studies, it is sometimes difficult to compare 

culture-based studies to molecular-based studies. Culture-based studies 

select and enrich for certain bacteria, for example with TCBS agar, which 

selects for Vibrio spp. and has additives (bile salts) that prevent most 
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other species from growing. This may explain why no Vibrio spp. were 

detected in this study and why they were detected in previous culture-

based studies (Battaglene et al., 2006). Battaglene et al. (2006) used 

selective TCBS to study microbiota associated with striped trumpeter 

larval cultures, but did not use other media to culture other heterotrophic 

bacteria. Although it is thought that Vibrio spp. are an indicator of poor 

tank hygiene (Villamil et al., 2003), some Vibrio strains have probiotic 

properties, including, for example, V. alginolyticus (Ringo and Vadstein, 

1998; Ottesen and Olafsen, 2000; Huys et al., 2001; Makridis et al., 

2001). 

No concrete reason can be given for why one tank of a treatment 

performed better than another, but it may be proposed that the conditions 

that they provided do influence the bacterial community. There is a 

suggestion that the differences that occur are possibly induced by the 

initial availability of nutrients and what subsequently occurs during the 

feeding process (Romero and Navarrete, 2006). 

The change in the community when different conditions occur is seen 

also in the water samples. A more diverse community is present in the 

seawater while larvae harbour a more restrictive range of microbiota 

(Jensen et al., 2004). This can perhaps be explained by the bacteria 

being part of either autochthonous (adherent) or allochthonous (transient) 

communities. Investigation of the intestinal bacterial community of Atlantic 

salmon found that when fish were fed two varying diets, the population 
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changed in regards to autochthonous and allochthonous communities 

(Ringo and Olsen, 1999; Schulze et al., 2006). As larvae get older, their 

microbiota also changes, as seen by Jensen et al. (2004), who reported 

that feeding Atlantic halibut larvae had more complex DGGE profiles than 

non-feeding larvae. Hansen and Olafsen (1989) proposed that bacteria in 

the surrounding water mass are involved in the initial colonization of larval 

fish and dominate subsequent communities in adult fish. The TRFLP 

results from the current investigation also support this idea, as the 

dominant species found in the larvae were also detected in the water. 

This investigation found that the water sample TRFs, compared to those 

of the larvae, were different (R=1, Fig 2.10) but compositionally 

analogous; that is, certain members of communities co-occurred in both 

locations but in different proportions. A similar observation was also 

reported by Smith et al. (2007) who observed that the flora of the outer 

mucus layer of whiting (Merlangius merlangus) is more diverse than that 

of its mouth and gut. Smith et al. (2007) also saw found that the bacteria 

associated with whiting had limited similarity to the bacterial community of 

the surrounding water when analysed using culture-independent 

approaches, including 16S rRNA gene-based clone libraries and TRFLP. 

These findings support what has been observed in this investigation, 

because although larvae and surrounding tank water did share some of 

the same TRFs, they were in different proportions and some were not 

present at all in the larvae. This may be explained by the diet of the fish 
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and that certain bacteria are better suited to colonise the larval gut than 

others. 

Conclusions: 

This investigation provided an insight into the bacterial diversity of striped 

trumpeter using 16S rRNA bacterial clone libraries and TRFLP. It showed 

that under different green water culture conditions the bacterial diversity 

appears relatively low. Definite conclusions cannot be drawn about the 

influences of the bacterial community of the larvae from the information 

obtained, although the surrounding water seems to have a potential 

influence on larval survival performance outcomes. 

From this initial knowledge of the bacterial diversity of the striped 

trumpeter and the changes that different rearing conditions bring upon it, 

further investigations can now be conducted by screening isolated 

bacteria from these larvae cultures for their probiotic capabilities. 

Assessment of ways of altering the bacterial communities of live feeds, 

including Artemia and rotifers, and devising methods to track probionts 

within changing bacterial communities will also be explored. 
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Chapter 3: Assessment and tracking of bacterial probionts within a 
striped trumpeter larvae rearing system 

3.0 Abstract 

Potential probiotic candidates were identified by using antimicrobial in 

vitro plate testing against known pathogenic Vibrio species, with six out of 

25 isolates tested selected for further testing. In Artemia challenge trials, 

it was determined that Pseudoalteromonas agarivorans ST18 and 

Affivibrio fischeri ST7 had the least effect on Artemia survival. To further 

assess the probiotic capability of strains ST18 and ST7, rotifer and 

Artemia cultures were challenged with pathogenic strain V. proteolyticus 

V760 mixed with strains ST18 or ST7. Strain ST18 was found to have a 

probiotic effect in that cultures containing both V760 and ST18 were not 

significantly different from the control system but produced significantly 

better survival compared to the pathogen-only treatments. To further 

investigate ST18 and ST7 in a mixed cultured system terminal restriction 

fragment length polymorphism (TRFLP) analysis was applied to monitor 

the change in bacterial community. Through tracking probiont strain 

specific terminal restriction fragments (TRF) the probionts could be 

distinguished within the microbial community associated with rotifers and 

appeared to be readily taken up by rotifers. However, in Artemia 

experiments, uptake of the probionts appeared to be less successful. 
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3.1 Introduction 

In Chapter One a review of the literature indicates bacterial probionts may 

have protective and/or beneficial effects in aquaculture processes. It was 

also discussed that since rotifers and Artemia are common live feeds, 

they could act as vectors for Vibrio spp., many of which are pathogenic 

(Lopez-Torres and Lizarraga-Partida, 2001). With this in mind, research 

has been undertaken to explore ways of manipulating the bacterial 

community associated with rotifers and Artemia. The manipulation is first 

designed to reduce harmful Vibrio spp. populations. Once successful the 

live feeds are fed to the larvae with the knowledge that they contain 

reduced amounts of harmful bacteria. Also once reduced it is also 

possible to introduce beneficial bacteria to the live feeds, by adding them 

during the enrichment stages. By doing this after the live feeds have been 

reduced in bacterial populations it increases the probability of the 

beneficial bacteria being incorporated into the live feed (Douillet, 2000). 

The aim of Chapter Three was to identify potential probiotic bacteria 

using previously obtained isolates. This was done by assessing their 

ability to produce antimicrobial compounds that inhibited growth of known 

pathogens. These potential probionts were then inoculated into bacteria-

reduced rotifer and Artemia cultures and survival was assessed. This was 

achieved by: 

1) Assessment of the probiotic properties of 22 bacterial isolates obtained 

from striped trumpeter against five known fish-pathogenic Vibrio strains 

by employing in vitro antimicrobial plate tests. 
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2) Assessment of four strains of bacteria isolated from striped trumpeter 

larvae that were shown to have some level of antimicrobial activity 

against at least one of the five known fish-pathogenic Vibrio strains by: 

i) Assessing the four candidates for probiotic capacity in rotifer cultures 

when challenged with a pathogen. 

iii) Evaluating probiotic capacity in cultures when challenged with a 

pathogen in Artemia cultures. 

iii) Terminal restriction fragments (TRFs) were determined for each 

potential probiont so that it could be specifically identified when in a 

mixed community. This allowed an assessment of probiont uptake by the 

rotifer or Artemia. 

3.2 Materials and Methods 

3.2.1 Bacterial Isolates 

A total of 22 bacterial isolates obtained by enrichment from striped 

trumpeter cultures (Table 3.1) (see Chapter 2, Section 2.2.1) were tested 

against 5 pathogenic Vibrio strains (Table 3.2) that were obtained from Dr 

Jeremy Carson of the Fish Health Unit of the Department of Primary 

Industries, Water and the Environment, Launceston, Tasmania. The 

bacterial isolates obtained from striped trumpeter larvae were sampled 

from three days post hatch to 15 days post hatch, at two day intervals. 

The larvae were washed in sterilized sea water (three washes to remove 

external bacteria) and homogenized, and plated on marine agar media 

and thiosulfate citrate bile salts sucrose agar (TCBS, Difco) after serial 

dilutions. After incubation at 25°C for 48 h isolated colonies were 
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randomly selected and purified on ZoBell's marine agar (Oxoid) plates. All 

strains were phenotypically identified with the MicroSys @ V48 kit for the 

identification of Vibrio spp. (Carson et al., 2001) and the data matched 

with the probabilistic identification software for Windows (PibWin) (Bryant, 

2004). The five pathogenic strains tested were isolated from culture tanks 

in which rotifers, Artemia or larval fish or rock lobsters had been cultivated 

at the Marine Resarch Laboratories, Taroona, Tasmania, and undergone 

mass mortalities (J. Carson personal communication). The culture 

methods are as described for striped trumpeter samples. 

3.2.2 In vitro antimicrobial activity assay 

Antimicrobial activity was assessed against five known fish-pathogenic 

bacteria (Table 3.2) using the cross-streak assay desribed by Lemos et 

al. (1985). The assay was performed by heavily inoculating each isolate 

onto one third of a marine agar plate and incubating at 25°C for 7 days. 

This was done by swabbing and covering one third of the agar with 

enriched isolates grown for 48 h at 25°C grown in marine broth. 

Pathogens were then inoculated as a single streak at right angles to the 

isolate growth and the plates re-incubated for a further 48 h. Extensive 

zones of inhibition of a known pathogen were scored as "++", narrow 

zones of inhibition were scored as "+" and no inhibition was scored as " 2  . 

3.2.3 Bacterial production 

Bacterial strains were grown in marine broth, which was made in the 

same manner as marine agar, but with the omission of the agar; 250 ml 
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Schott bottles were filled with 100 ml of marine broth and autoclaved. The 

broths were loop inoculated with bacteria that had been previously sub-

cultured on marine agar for 24 h and then incubated at 25°C for 48 h. 
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Table 3.1: Species identification of potential probiotic bacteria used in the 

in vitro antimicrobial activity test, all isolates were obtained from striped 

trumpeter larvae. 

Strain no. 
ST1 
ST2 
ST3 
ST4 
ST5 
ST7 
ST8 
ST9 
ST11 
ST12 
ST13 
ST14 
ST15 
ST16 
ST17 
ST18 
ST19 
ST20 
V4 
V8 
V17 
V52 

MicroSys ID 
Vibrio alginolyticus 
Vibrio alginolyticus 
Vibrio anguillarum 
Vibrio anguillarum 
Vibrio chagasii 
Vibrio fischeri I 
Vibrio fischeri II 
Vibrio ichthyoenteri II 
Vibrio penaeicida 
Vibrio splendidus I 
Vibrio splendidus I 
Phenon 36 
Phenon 36 
Type 1 
Type 2 
Type 3a 
Type 3b 
Type 5 
Phenon 29 
Phenon 29 
Phenon 59 
Phenon 59 

Table 3.2: Pathogenic Vibrio species used in the in vitro antimicrobial 
activity tests. All were isolated from water or animals that had been 
identified to have had a bacterial issue that resulted in mortalities. 

Strain MicroSys ID 

no. 

V34 	Vibrio alginolyticus 

V568 	Vibrio anguillarum 

V760 	Vibrio proteolyticus 

V886 
	

Vibrio alginolyticus 

V890 	Vibrio harveyi 

Host species or source 

Seawater 

Rotifers 

Artemia 

Rock lobster phyllosoma 

Rock lobster phyllosoma 
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The densities of the cultures were calculated by taking a subsample of 

the broth and counting populations using a haemocytometer. For the 

haemocytometer counts the following formula was used: 

Total cells counted x (25 x 10 4) x no. of triple ruled squares counted = 

Number of cells/ml x the dilution factor (if applied). 

3.2.4 Rotifer production 

Rotifers (Brachionus plicatilis) were harvested daily from semi-

continuous stock cultures raised on a diet of the microalgae 

Nannochloropsis sp. (Battaglene et al., 2006). Harvested rotifers were 

rinsed in °zonated seawater and then transferred to 500 ml Schott 

experimental glass vessels for 12 h enrichment, at 400 rotifers m1 -1  and 

23°C. Rotifers were enriched with AlgaMac (Aquafauna Biomarine, 

Hawthorne, California, USA) at 0.2 g per million rotifers. AlgaMac was 

blended with seawater and otherwise added according to the 

manufacturer's instructions. Aeration and oxygen were provided to 

maintain dissolved oxygen above 4 mg 1 -1 . Probionts were added to the 

corresponding rotifer enrichment vessel at the same time as the AlgaMac 

was added. 
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3.2.5 Artemia production 

Decapsulated Artemia cysts (E.G. Artemia Systems, INVE, Belgium) were 

hatched in a 100 I conical tank at 28°C in sea water with vigorous 

aeration and 24 h light. After 24 h hatched nauplii were rinsed for 5 min 

with seawater after passing through a 180pm screen filter to remove the 

hatched and unhatched cysts and then through a 60 pm screen filter to 

catch the Artemia nauplii, which were then placed into a 11 beaker to a 

final approximate density of 50 Artemia m1 -1 . The Artemia bacterial load 

was reduced using Sanocare Hatch control (INVE) at a rate of 0.1 m11 -1 . 

Prior to stocking Artemia were also washed in ozonated sea water for 5 

min. 

3.2.6 DNA and extraction and purification 

DNA was extracted from bacterial cells using the same methods set out 

in Chapter Two Section 2.2.2 

3.2.7 PCR amplification of 16S rRNA genes 

PCR amplification of the 16S rRNA gene was performed using the 

Hotstart Taq kit (Qiagen) and universal bacterial primers 10f (5'-GAG TTT 

GAT CCT GGC TCA G-3') and 907 (5'-CCG TCA ATT CCT TTG AGT 

TT-3'). Each reaction was a 25 pl reaction mix with 12.5 pl of HotStart 

mastermix, 1 pl of the forward primer, 1 pl of the reverse primer, and 

approximately 10 ng of DNA template. A final volume of 25 pl was 

adjusted with sterile milliQ water. The following thermal cycling program 
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was used: initial denaturing at 94°C for 15 min, 34 cycles of denaturing 

for 1 min, annealing at 55°C for 1 min, extension for 3 min: final extension 

at 72°C for 10 min. The reaction was purified using the Qiagen PCR 

cleanup kit. 

3.2.8 DNA Sequencing and TRFLP analysis 

Both DNA sequencing and TRFLP analysis was performed as described 

in Chapter Two Sections 2.2.6 and 2.2.7. 

3.3 Probiotic activity assessment of V52, ST18, V8, ST14, ST7 

3.3.1 Experimental design 

The experimental vessels were 500m1 Schott bottles with aeration inlets 

and outlets. Each treatment had three replicates. The air inlet had a 

sterile, 0.2 pm pore size hydrophilic filter in place to stop any airborne 

contaminants entering and the outlet had sterile 0.2 pm hydrophobic 

filters to stop bacteria escaping from the cultures. Fig.3.1 provides a 

schematic of the set up. Oxygen was provided using an oxygen 

concentrator (Millennium M5, Respironics, Pennsylvania, USA). At the 

point at which the glass tube entered the lid of the bottle a piece of rubber 

tube was fitted to make an airtight fit. The cultures were placed into a 

climate-controlled room set at a 12:12 light:dark cycle and a temperature 

of 25°C± 1°C. 

To 400 ml of ozonated sea water a total population of 2 x 10 5  rotifers 

(500 m1 -1 ) or 2 x 10 4  Artemia nauplii (50 m1 -1 ) was added. Rotifers and 
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Artemia were enriched in the same process as that used in the TAFI 

hatchery to mirror the process in a working hatchery, by adding the 

required amount of AlgaMac as outlined above. Bacterial isolates were 

inoculated to achieve a final concentration of 5 x iø cellsm1 1 , to assess 

if they have any detrimental effects on the rotifer population. This was 

determined by plate counts performed on the broth cultures. The broths 

were homogenized and the calculated amount of broth required to achive 

the final concentration was taken aseptically and transfered into sterile 

vials. All experimental units were treated the same with all receiving the 

same amount of broth by adding uncultured sterilized marine broth to 

those which needed more and to the controls. As a pathogenic control 

Vibrio proteolyticus was used as it is a known marine pathogen (Vadstein 

et al., 2004). The cultures were enriched for 14 h after which survival was 

assessed and samples taken for further analysis. Survival was assessed 

by taking triplicate 1 ml subsamples and counting them under a 

dissection microscope. If the rotifers or Artemia moved freely and were 

active, they were considered to have survived. If they were moribund, 

they were classified as effectively deceased. Samples were taken for 

TRFLP analysis by separating the rotifers and Artemia from the culture 

water using a 62 pm screen, and washing three times in sterilized water 

to remove external bacteria resulting in a 500 pl sample. All samples 

were kept on ice until frozen within 2 h. 
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Figure 3.1: Experimental Schott bottle vessel set-up used for 
survival assessment Experiments. 
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3.3.2 Assessment of potential probiotic bacteria V52, ST18, V8, 
ST14, ST7. 

Assessment of potential probiotics V52, ST18, V8, ST14, ST7 and effects 

on rotifer and Artemia cultures during the enrichment process was 

performed through a series of experiments described below. In all 

experiments survival of the rotifers was assessed after 14 h. 

3.3.2.1 Screening of V8, V52 and 5T18 on rotifer survival during lipid 
enrichment (Experiment 1). 

The aim of the experiments was to determine if potential probionts had 

any effect on rotifer survival when added to achieve a final concentration 

of 5 x 105 cells m1-1 . Six different treatments were assessed: 1) a control 

that had no bacteria added; 2 and 3) pathogen-only containing controls 

had a known pathogen added, including V. proteolyticus V-760, V. 

alginolyticus V-34; 4 to 6) treatments that included isolates V8, V52, and 

ST18. 

3.3.2.2 Screening of ST7, 5T14 and ST18 on rotifer survival during lipid 
enrichment (Experiment 2). 

Experiment 2 repeated the first experiment but tested five different 

treatments. They included: 1) a control that had no bacteria added; 2) a 

pathogen-containing control with V. proteolyticus V-760 added; and 3-5) 

the probiont-containing treatments including strains ST14, ST18, and ST7 

added to achieve a final concentration of 5 x 105 cells/ml. 
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3.3.2.3 Survival of rotifers when challenged with a known pathogen V-760 
and combinations of potential probionts (Experiments 3 and 4) 

The aim of the experiments was to determine if potential probionts could 

reduce the pathogenicity of a known pathogen when added to rotifer 

cultures. There were six different treatments: 1) a control that had no 

bacteria added; 2) a pathogen control that V. proteolyticus V-760 added, 

and 3-6) the test probionts (ST7, ST18) were added singularly or as 

mixtures with the pathogen (ST7 +V-760, and 5T18 + V-760). Strain V-

760 was added to achieve a final concentration of 5 x 10 4 cells m1 1  

(Experiment 3) or 5 x 10 5 cells m1-1  (Experiment 4). The test probionts 

were added at 5 x 10 4 cells m1-1 . 

3.3.2.4 Survival of Artemia when challenged with a known pathogen V-
760 and combinations of potential probionts (Experiments 5 and 6). 

The aim of the experiment was to determine that potential probionts had 

on Artemia cultures when the known pathogen V-760 and the test 

probionts are added at the same time in order to assess whether the 

probionts can reduce the effect of the pathogen. The experiment 

consisted of 1) a control that had no bacteria added; 2) a pathogen-

containing control in which V. proteolyticus V-760 was added, 3-4) 

treatments in which the test probionts (strains ST7, ST18) were added 

singularly; 5-6) and added with strain V760 as done in rotifer 

Experiments 3 and 4. Experiments 5 and 6 were except involved different 

initial bacterial loading (to achieve a final concentration of 5 x iø cellsml - 

1  for Experiment 5 and 5 x 10 4 cells m1 1  for Experiment 6). 
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3.3.3 TRFLP analyses 

TRFLP was analyzed as outlined in Chapter Two, section 2.2.7. In 

addition TRFLP analysis was performed on selected strains ST7, ST14, 

ST18, V52, V34, V760, V8, (Tables 3.1 and 3.2) so that their TRFs could 

be determined experimentally (not just in silico), thus enabling them to be 

potentially identified within a mixed population sample. PCR pseudo-

TRFs can be formed with the left over primer bases and thus give false 

peak readings. Which is why it is advised to perform virtual digestion of 

corresponding sequence data (i.e. clone library-derived sequenes). It is 

also important to design the primers being used correctly, to optimise 

primer levels in the TRFLP PCR thermocyling process, and to take 

account of PCR run-to-run variations (Schutte et al., 2008) thus 

minimising pseudo-TRF artifacts. By using SIMPER analysis (Primer v.6) 

an estimation of the average contribution to the total profile peak area of 

the probiont-derived TRFs within the sample was obtained. 

3.3.4 Statistical analyses 

Statistical analysis was performed by one-way analysis of variance 

(ANOVA). For all tests a significance level of P<0.05 was adopted. 

Tukey's post hoc test was used to compare means. Homogeneity of 

variance was evaluated using residual plots. The statistical package 

SPSS V.10 was used. 
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3.4 Results 

3.4.1 In vitro antimicrobial plate results 

Using in vitro antimicrobial plate tests it was found that five of the 22 

species had some antimicrobial activity against the test pathogens (Table 

3.3). Strains ST7, ST18, V8 and V52 exhibited the most inhibition. All of 

the five strains were found to inhibit V. alginolyticus (V-34) with ST18 also 

inhibiting V. proteolyticus (V760). Strain ST18 was seen to have the most 

inhibition across the test pathogens having an effect on all but V. harveyi 

(Table 3.3). A typical in vitro antimicrobial plate is shown in Fig. 3.2. 
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Table 3.3: Results of the in vitro antimicrobial plate test. 
++ indicates strong inhibition + indicates slight inhibition and — indicates 

no inhibition seen on test pathogen growth. 

Bacterial 
Isolate 

V. algino- 
lyticus 
(V34) 

V. 
anguillarum 
(V568) 

Test Pathogens: 
V. proteo- 
lyticus 
(V760) 

V. algino- 	V. 
Lyticus 	harveyi 
(V886) 	(V890) 

ST1 - - - 
ST2 - - 
ST3 - 
ST4 - - 
ST5 - - - 
ST7 ++ - + - 
ST8 - 
ST9 - 
ST11 - - - 
ST12 - - - 
ST13 
ST14 + - - 
ST15 - - - 
ST16 
ST17 - - - 
ST18 ++ + ++ + 
ST19 - 
ST20 - - 
V4 - - 
V8 ++ + - 
V17 - - - 
V52 ++ - - 
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Figure 3.2: Photograph of an in vitro antimicrobial plate showing 

inhibition of Vibrio test pathogens by putative probiont isolate ST18. A 

maximum inhibition score of "++" was recorded against streaks of strains 

numbered 4 and 2. Strain streaks 1 to 5, are V. anguillarum (V568), V. 

alginolyticus (V34), V. harveyi (V890), V. proteolyticus (V760) and V. 

alginolyticus (V886), respectively. 
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Seventeen isolates had no detectable activity against any of the Vibrio 

test pathogens (Table 3.3). Of the pathogens examined V. alginolyticus 

(V34) showed a tendency to be more readily inhibited. 

3.4.2 Identification of putative probiont isolates 

Putative probiont isolates not identifiable with the MicroSys system 

(strains ST14, ST15, ST16, ST17, ST18, ST19, ST20, V4, V8, V17, and 

V52; Table 3.2) were identified using 16S rRNA gene sequencing. The 

following strains were grouped as glucose non-fermenters: ST16, ST17, 

5T18, ST19 and ST20. Strains V4, V8, V17, and V52 were identified as 

Vibrio spp. by MicroSys but these could not be given a species name as 

the data obtained could not be matched with any known members of the 

family Vibrionaceae. 

Table 3.4 shows the 16S rRNA gene sequencing results determined by 

GenBank BLAST matches (http:/www.ncbi.nlm.nih.gov/Blast  (Altschul et 

al., 1997). Strain ST7 is likely a strain of Affivibrio fischeri (Urbanczyk et 

al. 2007). ST14 was most likely a strain of Vibrio penaeicida (99% 

similarity to the type strain LMG 19663 T). Strain ST18 was likely a strain 

of Pseudoalteromonas agarivorans (>99% similarity to type strain KMM 

255T). Strain V8 was found to group in the V. splendidusN. 

tasmaniensis/V. lentus complex of strains (99% similarity to Vibrio sp. 

V004 isolated from Latris fineata; Gudkovs et al, unpublished). 
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Table 3.4 Comparison of MicroSys system identifications to 16S rRNA gene sequence data results. The five isolates with potential 

as probionts are highlighted in bold. 

Strain 

no. MicroSys ID IDS Host 

Closest 16S rRNA gene sequence match (GenBank 

accession number): 

% 

similarity 

ST1 V alginolyticus 0.99906 Striped trumpeter Vibrio alginolyticus strain UQM 2770 (AY264938) 99 

ST2 V alginolyticus 0.99888 Striped trumpeter Vibrio alginolyticus strain SR1 (DQ269211) 98 

ST3 V anguillarum 0.99999 Striped trumpeter Vibrio anguillarum (EF467287) 99 

ST4 V anguillarum 0.99984 Striped trumpeter Vibrio anguillarum strain MH K11 (EF091706) 99 

ST5 V chagasii 0.99703 Striped trumpeter Vibrio pomeroyi (AJ491290) 99 

ST7 V fischeri 1 0.99967 Striped trumpeter Allivibrio fischeri strain VFISC2 (AY780014) 99 

ST8 V fischeri 11 1.00000 Striped trumpeter Aliivibrio fischeri strain 082205 (DQ174503) 99 

ST9 V ichthyoenteri 11 1.00000 Striped trumpeter Vibrio ichthyoenteri (AJ437192) 99 

ST11 V penaeicida 1.00000 Striped trumpeter Enterovibrio norvegicus (AJ437193) 97 

ST12 V splendidus 1 0.99715 Striped trumpeter Vibrio tasmaniensis strain 562 (AY620964) 99 
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ST13 V splendidus I 0.99964 Striped trumpeter Vibrio splendidus (AJ874367) 99 

ST14 Phenon 36 0.99927 Striped trumpeter Vibrio penaeicida (AJ437191) 99 

ST15 Phenon 36 0.99992 Striped trumpeter Enterovibrio norvegicus (AJ437193) 99 

ST16 Type 1 0 Striped trumpeter Marinomonas aquimarina (AJ843079) 99 

ST17 Type 2 0 Striped trumpeter Marinomonas aquimarina (AJ843079) 99 

ST18 Type 3a 0 Striped trumpeter Pseudoalteromonas sp. P11 -B -12 (EU016154) 99 

ST19 Type 3b 0 Striped trumpeter Pseudoalteromonas agarivorans (AB049728) 99 

ST20 Type 5 0 Striped trumpeter Enterovibrio norvegicus (AJ437193) 99 

V4 Phenon 29 0.99995 Striped trumpeter Vibrio splendidus (AJ874367) 98 

Vibrio sp. (DQ146970) (V. splendidus strain 

V8 Phenon 29 0.99995 Striped trumpeter complex) 99 

V17 Phenon 59 1.00000 Striped trumpeter Affivibrio fischeri (DQ090767) 97 

V52 Phenon 59 1.00000 Striped trumpeter Aliivibrio fischeri (DQ090767) 97 

V34 V. alginolyticus 0.99994 Seawater Vibrio alginolyticus (DQ269211) 98 
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V568 V. anguillarum 1.00000 Rotifers Vibrio anguillarum strain MHK11 (EF091706) 99 

V760 V. proteolyticus 1.00000 Artemia Vibrio proteolyticus (AF513463) 98 

Rock lobster 

V886 V. alginolyticus 0.99787 phyllosoma Vibrio alginolyticus strain SR1 (DQ269211) 97 

Rock lobster 

V890 V. harveyi 1.00000 phyllosoma Vibrio harveyi (AY967728) 99 
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3.4.3 Determination of the probiotic capabilities of possible candidates on 

two live feeds - Rotifer and Artemia challenge experiments. 

Results from Experiment 1 and 2 indicated that the controls with no bacteria 

added survived significantly better (75±2%) (F=19.713, Df=5,12 P<0.001) than 

other treatments (Figure 3.3 and 3.4). Addition of strain ST18 lead to significantly 

better survival (63 ± 2%) than the other isolates (Fig. 3.3). Experiment 2, adding 

ST14 significantly reduced survival (43 ± 4%) (F= 156.288, Df=5,12 P<0.001) . 

Experiments 3 and 4 confirmed that adding ST18 had no significant impact on 

rotifer survival (Figs 3.5 and 3.6). Results from Experiment 3 where lower 

inoculums of bacteria were added indicated that adding both ST18 and ST7 

together provided significantly better survival than ST7 added alone but was not 

significantly different from the control in which probiotics were not added (F= 

32.198, Df =4,10 P<0.001) (Fig.3.5) while adding ST18 or ST7 to cultures 

challenged with V-760 significantly improved survival compared to the negative 

controls in both experiments (F=33.854 Df=5,12 P=<0.001), F=42.11 Df=5,12 

P=<0.001) (Figs 3.5 and 3.6). 

Experiments 5 and 6 confirmed that the addition of ST18 and ST7 to Artemia 

showed no significant difference to the control (F=63.129 Df=5,12 P<0.001). 

When added with V-760 it improved survival (F=42.612 Df=5,12 P<0.001) 

compared to treatments that received only strain V-760 (Figs 3.7 and 3.8). 
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Figure 3.3: Mean survival (± standard deviation) of rotifers when challenged with 
V. proteolyticus V760, V. alginolyticus V34, and isolates V52, ST18 and V8, over 
a 14 h enrichment period. Bacterial cell concentrations used were 5 x 10 5 cells 
m1 -1 . Columns sharing the same letter are not significantly different (P< 0.05). 
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Figure 3.4: Mean survival (± standard deviation) of rotifers when challenged with 
V. proteolyticus V-760, ST14, ST18, and ST7, over a 14 h enrichment period. 
Bacterial cell concentrations used were 5 x 10 5 cells m1 -1 . Columns sharing the 
same letter are not significantly different (P< 0.05) in mortality between each 
treatment. 
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Figure 3.5: Mean survival (± standard deviation) of rotifers when challenged with 
V. proteolyticus V-760, ST18, ST7 over a 14 h enrichment period. Bacterial cell 
concentrations used were 5 x 104 cells m1 -1 . ST18 + V-760 and ST7 + V-760 had 
both the bacteria isolates added at the same time at a concentration of 5 x 10 4  
cells m1 -1  for each isolate. Columns sharing the same letter are not significantly 
different (P< 0.05) in survival among treatments. 
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Figure 3.6: Mean survival (± standard deviation) of rotifers when challenged with 
V. proteolyticus V-760, ST18, ST7 over a 14 h enrichment period. Bacterial cell 
concentrations used were 5 x 10 cellsm1-1 . ST8 + V760 and ST7 + V760, had 
both the bacterial isolates added at the same time at a concentration of 5 x 10 5  
cells m1-1  for each isolate. Columns sharing the same letter are not significantly 
different (P< 0.05) in mortality between each treatment. 
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Figure 3.7: Mean survival (± standard deviation) of Artemia when challenged 
with V. proteolyticus V-760, ST18, ST7 over a 14 h enrichment period. All initial 
bacterial cell concentrations used were 5 x 10 5 cells m1 -1 . Columns sharing the 
same letter are not significantly different (P< 0.05). 
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Figure 3.8: Mean survival ± SE of Artemia when challenged with V. proteolyticus 
V-760, ST18, ST7 over a 14 h enrichment period. All initial bacterial cell 
concentrations used were 5 x 10 cellsm1 -1 . Different letters indicate significant 
difference (P< 0.05) in mortality between each treatment for individual days 
(n=3). 
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Table 3.5: TRFs representing putative probiont strains utilising restriction 

endonucleases enzymes HaeIII, Hinfl and Hhal determined using TRFLP 

Hae/// 
Strain: Forward fragments: 	 Reverse Fragments: 
ST14 	 190 
ST18 64 	 508 
ST7 	84 
V52 	84 
V34 	78,84 	 190 
V760 78,84 	 190 
V8 	78, 84 

Hinfl 
Strain: Forward fragments: 	 Reverse Fragments: 
ST14 	71, 172, 338 	 270 
ST18 104 	 270 
ST7 	268 	 270, 
V52 	328 	 270, 588 
V34 	72, 338 	 270, 587 
V760 	72, 338 	 270, 587 
V8 	 270 

Hhal 
Strain: Forward fragments: 	 Reverse Fragments: 
ST14 	179, 226, 	 350,549 
ST18 60 	 366 
ST7 	68 	 177 
V52 	179, 226, 	 349 
V34 	475 	 349, 579 
V760 	179, 226, 	 579, 475 
V8 	178 	 349 
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3.4.4 TRFLP analysis and TRF tracking results 

The MDS plot derived from the TRFLP data for probiotic assessment 

Experiments 1 and 2 (Figs 3.9 and 3.10) shows that all samples have some 

overlap with the control bacterial community in which putative pathogens or 

probionts were not added. The addition of strains V760, V34, V52, V8, and ST14 

resulted in TRFLP profiles not significantly different to the control sample (p>0.7, 

Figs 3.9 and 3.10). ANOSIM values, however indicated the treatment in which 

strain ST18 is added alone to rotifer cultures (at 5 x 10 5  cells/m1) was most 

consistently different to the control as well as the other treatments (R = 0.185 to 

0.667, significance p<0.3, and only 28% similar to the control profile). Using 

SIMPER analysis it was possible to track 5T18 and detect it through the 

observation of distinctive TRFs (Table 3.5) amongst the other TRFs present. 

Strains V760, V34 and V52 could not be readily tracked (Table 3.6) as their TRFs 

were not distinct from each other and thus TRF information could not be used for 

confident identification with any of these strains. The same identification problem 

was also observed in the other Experiments using these isolates. It was found 

that with addition of a bacterial isolate to the rotifers, the overall similarity 

between the replicates increased. The controls with no addition of bacteria were 

only 27% similar to each other, while the addition of V760, V52, ST18, V8 and 

V34 increased the similarity between the replicates (53, 43, 42, 44.2 and 25% 

respectively). Table 3.6 indicates which TRF distinct to ST18 that they were 

detected and the percent contribution they represent within the overall profile. It is 

possible other related members of Pseudoalteromonas or Aliivibrio may be 
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present in the samples, however ST18 or ST7 distinct TRFs were not detected in 

the controls suggesting the populations are below the sensitivity level of the 

TRFLP method to detect. When strains ST18 and ST7 were added at higher 

numbers (5 x 10 5  cell m1 -1 , Experiment 2) TRFLP profiles obtained were 

significantly different (R >0.78) and were only 18-21% similar to the control. ST18 

and ST7 could also be more readily identified through the observation of distinct 

TRFs, which showed increased contributions to the total peak area (Table 3.7). 

The same trend in similarity between treatments increasing with addition of 

isolates ST18 was also seen in Experiment 3 with the control profiles being 42% 

similar. This similarity increased when other isolates were added to about 46- 

57%. When added in combination with V760 fewer differences were observed in 

the profiles than when they were added independently (Fig. 3.11, Table 3.8). 

When a lower population of V760 was added a more marked difference was 

apparent (R=0.30, P<0.1). The effect of adding an order of magnitude more 

bacterial cells, as examined in Experiment 4, made no specific difference to 

profiles. However ST7 and ST18 additions created distinct TRFLP profiles while 

sole V760 additions did not differ from controls (Fig. 3.12, Table 3.9). It was 

observed that the control and V760 were 53% similar, while ST18 and 

ST18+V760 were 63% similar; by comparison ST7 and ST+V760 were 48% 

similar, resulting in clustering of these groups (Fig. 3.12). TRF tracking data for 

ST18 and ST7 were in the same general range, though TRF abundances were 
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approximately halved when they are added with strain V760 (Tables 3.8 and 3.9) 

which is possibly indicative of competition between strains for uptake into rotifers. 

In Experiments 5 and 6 the addition of V760, ST7 and ST18 to Artemia had a 

different response to what was observed for rotifers. In general the strain 

differences were not largely different to the controls with SIMPER similarities 

mostly 50%. This may be due to a higher level of bacteria in the Artemia 

samples at the beginning of the experiments. TRFLP patterns of the treatment in 

which V760 was added at 5 x 104  was not different from the control (R=0.07, 

P=50%, Fig. 11; 73.6% similar). However, when added at higher populations a 

greater difference was observed (R=0.26, P<0.1). In the case of sole additions of 

strains ST18, ST7 or V706, differences to the control were not significant (Tables 

3.10, 3.11) with similarity between 50-60%. The TRFLP profiles were significantly 

different to the profile of the treatment in which ST18 was added with V706 

suggesting together the strains more significantly influence the overall 

community. Large variances were observed between replicates, especially for the 

additions of ST7 in combination with V706, suggesting ST7 populations may 

have fluctuated widely between treatments and replicates making separation of 

differences difficult. 5T18 and ST7 unique TRFs were detected using SIMPER 

(Tables 3.10, 3.11), but only occurred in small numbers, which could be due to 

the higher abundances of other bacterial species present. 
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Figure 3.9: MDS plot of TRFLP profiles of bacterial communities associated with 
rotifers challenged with different bacterial strains added at 5 x i0 5  cellsm1 -1  and 
incubated over a 14 h period (Experiment 1): (1)  A  Control, no bacteria added; (2) 
V  V. proteolyticus V760; (3) V. alginolyticus V-34; (4)  •  strain V52; (5) strain 
ST18; and (6) + strain V8. 

Table 3.6: Summarized SIMPER output utilised for tracking of probiont strain 
ST18 through detection of distinguishing TRFs for ST18 within the rotifer 
challenge treatment experiment (as shown above in Fig. 3.9). 

Treatment 	SIMPE 
	

Distinguishing TRFs (% contribution to % 
similarity): 

Simile 
rity 
(%): 

1 

2 
3 
4 
5 
6 

Contr 
ol 
V760 
V34 
V52 
ST18 
V8 

26.66 

53.46 
24.57 
42.95 
42.04 
44.20 

ST7 	I 
177 Hhal(r) 60 

Hhal(f) 
64 

HaelII(f) 
104 

Hinfl(f) 

ST18: 
366 	 508 HaeIII(r) 

Hhal(r) 

8.53 5.17 4.50 5.23 
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2D Stress: 0.13 

Figure 3.10: MDS plot of TRFLP profiles of bacterial communities associated 
with rotifers challenged with different bacterial strains added at 5 x 10 5  cells m1 -1  
and incubated over a 14 h period (Experiment 2): (1)  •  Control, no bacteria 
added; (2)  V  V. proteolyticus V760; (3)  •  strain ST14; (4)  •  strain ST18; (5)* 
strain ST7. 

Table 3.7: Summarized SIMPER output utilised for tracking of probiont strain 
ST18 through detection of distinguishing TRFs for strains ST7 and ST18 within 
the rotifer challenge treatment experiment (as shown above in Fig. 3.10). 

Treatment 	SIMPE 
	

Distinguishing TRFs (% contribution to % similarity): 

Similar 
ity (/o): 

1 

2 
3 
4 
5 

Contr 
ol 
V760 
ST14 
ST18 
ST7 

41.98 

45.15 
46.77 
55.00 
57.29 

ST7 	I 
177 Hhal(r) 

ST18: 
60 	64 	104 

Hhal(f) 	HaelII(f) 	Hinfl(f) 
366 

Hhal(r) 
508 Haelil(r) 

- 	 I 
20.07 

12.76 15.87 15.87 
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Figure 3.11: MDS plot of TRFLP profiles of bacterial communities associated 
with rotifers challenged with different bacterial strains added at 5 x i0 5  cellsm1 -1  
and incubated over a 14 h period (Experiment 3): (1)  •  Control, no bacteria 
added; (2)  V  V. proteolyticus V760; (3)  •  strain ST18; (4)  •  strain ST7; (5)* 
strains ST18 + V760; (6) + ST7 + V760. 

Table 3.8: Summarized SIMPER output data utilised for tracking of probiont 
strains through detection of distinguishing TRFs for strains ST7 and ST18 within 
the rotifer challenge treatment experiment (as shown above in Fig. 3.11). 

Treatment 	SIMPER 
	

Distinguishing TRFs (% contribution to % similarity): 
Similarit 
y (%): 

1 
2 

Control 	46.05 
V760 	39.52 

ST7: 
177 Hhal(r) 60 Hhal(f) 64 Haelll(f) 

ST18: 
104 Hintl(f) 	366 Hhal(r) 508 Haelll(r) 

- 
- 

_ 
- - 

3 ST18 	50.52 23.23 14.13 10.90 22.02 
4 ST7 	56.40 16.77 _ 
5 ST18 + 	42.19 _ 11.90 11.48 - 	7.67 12.96 

V760 
6 ST7 + 	51.56 9.93 - - - 

V760 
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Figure 3.12: MDS plot of TRFLP profiles of bacterial communities associated 
with rotifers challenged with different bacterial strains added at 5 x 10 4  cells m1 -1  
and incubated over a 14 h period (Experimentt 4): (1)  A  Control, no bacteria 
added; (2)  V  V. proteolyticus V760; (3)  RI  strain ST18; (4)  •  strain ST7; (5)* 
strains ST18 + V760; (6) + ST7 + V760. 

Table 3.9: Summarized SIMPER output data utilised for tracking of probiont 
strains through detection of distinguishing TRFs for strains ST7 and ST18 within 
the rotifer challenge treatment experiment (as shown above in Fig.  3.12). 

Treatment 	SIMPE 
	

Distinguishing TRFs (% contribution  to  % 
similarity): 

Similari 
ty (%): 

ST7: 
177 

Hhal(r) 
60 Hhal(f) 	64 Haelll(f) 

ST18: 
104 Hinfl(f) 366  Hhal(r) 	508 Haelli(r) 

1 Contro 60.04 

2 V760 44.23 
3 ST18 56.54 13.17 19.94 5.29 
4 ST7 67.04 15.97 
5 ST18 43.15 13.98 19.50 13.77 

V760 
6 ST7 + 55.57 13.23 

V760 
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Distinguishing TRFs (°/0 contribution to % similarity): 

1 
2 

Control 
V760 

79.01 
69.30 

ST7: 
177 Hhal(r) 

ST18: 
60 Hhal(f) 	64 Haelll(f) 	104 Hinfl(f) 	366  Hhal(r) 508 Haelll(r) 

- - 	- 	- 	- 
- 	- 	- 

- 

3 ST18 66.26 - - 	- 	- 	2.53 - 
4 ST7 40.02 - - 	 - 
5 ST18 + 82.51 - 	- 	 4.14 1.06 

V760 
6 ST7 + 68.61 - 

V760 

Treatment 	SIMPER 
Similarit 
y (%): 

2D Stress: 0.13 

Figure 3.13: MDS plot of TRFLP profiles of bacterial communities associated 
with Artemia challenged with different bacterial strains added at 5 x i05  cellsm1 -1  
and incubated over a 14 h period (Experiment 5): (1)  •  Control, no bacteria 
added; (2)  V  V. proteolyticus V760; (3) strain ST18; (4)  •  strain ST7; (5) e 
strains ST18 + V760; (6) + ST7 + V760. 

Table 3.10: Summarized SIMPER output data utilised for tracking of probiont 
strains through detection of distinguishing TRFs for strains ST7 and ST18 within 
the Artemia challenge treatment experiment (as shown above in Fig. 3.13). 
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41102D  Stress: 0.17 

4.14,41 
Figure 3.14 MDS plot of TRFLP profiles of bacterial communities associated with 
Artemia challenged with different bacterial strains added at 5 x 10 4  cells m1 -1  and 
incubated over a 14 h period (Experiment 6): (1)  •  Control, no bacteria added; (2) 
V  V. proteolyticus V760; (3) strain ST18; (4)  •  strain ST7; (5) e strains ST18 + 
V760; (6) + ST7 + V760. 

Table 3.11: Summarized SIMPER output data utilised for tracking of probiont 
strains through detection of distinguishing TRFs for strains ST7 and ST18 within 
the Artemia challenge treatment experiment (as shown above in Fig. 3.13). 

Treatment 	SIMPER 
Similarit 
y (%): 

Distinguishing TRFs (% contribution to % similarity): 

ST18: 
60 Hhal(f) 	64 Haelll(f) 	104 Hinn(f) 	366  Hhal(r) 	508 Haell1(r) 

1 	Control 	64.57 
2 	V760 	59.23 
3 	ST18 	55.81 
4 	ST7 	61.39 
5 	ST18 + 85.34 	 2.49 

V760 
6 	ST7 + 	43.86 	 - 

V760 

ST7: 
177 Hhal(r) 
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3.5 Discussion 

Vibrio proteolyticus has been previously recorded as a pathogen of both rotifers 

and Artemia (Puente et al., 1992; Vandenberghe et al., 1999; De Schrijver and 

01levier, 2000; Verschuere et al., 2000). For example, Verschuere et al. (2000) 

found that a strain of V. proteolyticus (CW8T2) at 3 x 106  cells m1 -1  killed 80 % of 

Artemia within two days. Isolates ST18 and ST7 demonstrated probiotic 

characteristics when added individually or mixed together. These two isolates 

were identified as Affivibrio fischeri and Pseudoafteromonas agarivorans. 

Verschuere et al. (2000) suggested that a probiont may remove toxic metabolic 

substances that could otherwise adversely affect the growth and survival of the 

Artemia. Furthermore, they suggested that bacteria that are well adapted to the 

conditions prevailing in intensive Artemia culture (as used here) may also be able 

to prevent the proliferation of opportunistic bacteria. Given the rapidity with which 

V. proteolyticus V-760 was able to increase in numbers and to affect both 

Artemia and rotifers, it appears to be an effective opportunistic colonising 

bacterium. 

TRFLP analysis of the homogenized rotifers and Artemia demonstrated that the 

background bacteria detected in the controls had no obvious effect on the 

survival of the rotifers or Artemia, as the mortality was only high in the pathogen 

controls where no putative probiont was added. Even though efforts were made 

to reduce the background bacteria as much as possible, it was observed from the 
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TRFLP data, using SIMPER analysis, that the use of ozone reduced the bacterial 

microbiota diversity (data not shown). It is likely that Vibrio spp. are part of the 

rotifer- and Artemia-associated microbiota and are able to survive this 

decontamination step (Tolomei et al., 2004). From the TRFLP analysis, clear 

shifts in community structure away from the controls could be observed when 

strain ST18 was added. When ST18 was challenged with V. proteolyticus V706, 

it out-competed the pathogen, resulting in a community shift to be more similar in 

structure to the sole ST18 treatment than the sole V. proteolyticus V706 

treatment. Based on the TRFLP profiles, strain 5T18 also generated the largest 

changes in the initial starting profiles. This suggests that it both persisted and 

competed well for the 14 h treatment period and that other Pseudoalteromonas 

strains were not a major community component in the control rotifer samples. In 

Artemia samples, fewer differences were observed and a lower abundance of 

specific TRFs, suggesting that existing Pseudoalteromonas strains or 

alteromonads were present. This makes ST18 specifically more difficult to 

differentiate from the background community TRFs. 

The ability of ST18 to protect rotifers and Artemia against a challenge from 

pathogen V. proteolyticus V760 could result from its ability to: 1) inhibit 

colonisation and growth of strain V760; 2) inhibit pathogenicity of V760 through 

destruction of secreted toxins or by preventing their expression; 3) improve the 

immune response of the Artemia, 4) or, a combination of mechanisms 

(Kesarcodi-Watson et al., 2008). As the numbers of V. proteolyticus V760 did not 
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appear to vary much between treatments with or without the putative probiont, it 

is unlikely that the probiont inhibited colonisation by V. proteolyticus V-760 per 

se. This implies that the action of the probiont was directed towards inhibiting the 

virulence factor expression in V. proteolyticus V-760. 

Lately, quorum-sensing has been demonstrated as a mechanism for controlling 

virulence factor expression in some Vibrio spp. (Defoirdt et al., 2004) and 

(Bassler, 2002). Interference in quorum-sensing (i.e., due to the activity of 

enzymes that cleave the signal compounds, such as acylated homoserine 

lactones or furanone-derivatives) may reduce virulence expression e.g. of V. 

harveyi in Penaeus monodon (Manefield et al., 2000). Whether or not interruption 

of quorum-sensing in V. proteolyticus by ST18 can explain the improved survival 

of rotifers and Artemia that was observed remains to be determined. The data 

from the current study supports the notion that selected naturally occurring 

bacteria can be encouraged to dominate the normal microbiota of rotifers and 

Artemia and can protect them from subsequent pathogen challenge. Combined 

with decontamination procedures (Tolomei et al., 2004) and sound husbandry, 

this suggests a useful way of reducing striped trumpeter larval mortality when 

rotifers and Artemia are used as live feed. The rotifers and Artemia can be used 

as a vector to introduce desirable strains into the host microbiota instead of 

allowing entry of pathogens (Lopez-Torres and Lizarraga-Partida, 2001). The 

strength of this colonisation approach is that the bacteria need only be added 

once or infrequently. In contrast, other approaches such as using Bacillus spp. 
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require the organism to be added continually, as they often do not colonise the 

larvae effectively (Vine et al., 2006). 

Conclusion 

Of the 22 isolates obtained from striped trumpeter culture systems, five isolates 

ST7, ST14, ST18, V8 and V52 showed some antimicrobial activity against known 

marine animal pathogens. Pseudoafteromonas sp. ST18 and Aftivibrio fischeri 

ST7, when inoculated at 5 x 10 4  cells m1 -1  and 5 x 10 5  cells m1-1 , respectively, 

were found to cause the least mortality in rotifers and Artemia. In addition, they 

protected Artemia against a challenge by a virulent strain of V. proteolyficus, 

which could cause >60% mortality of rotifers within 14 h and approximately 50% 

mortality of Artemia within 24 h. Survival of rotifers and Artemia when exposed to 

the strains ST7 and ST18 were not significantly different from the control. 

Furthermore, survival of rotifers and Artemia in mixtures of ST18 and V. 

proteolyticus V760 and ST7 V. proteolyticus V760 was significantly greater than 

in Artemia exposed only to V. proteolyticus V760 alone.-Improved survival of 

Artemia required the presence of isolate ST18 or ST7 or a mixture of both. 

Through TRFLP analysis, it was possible to detect the probionts in the rotifers 

and to a lesser extent Artemia by observation of distinctive TRFs. 

The practical use of probionts ST7 and ST18 is further explored in Chapter Four. 
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Chapter 4: Addition and tracking of probionts to yolk sac and first-feeding 
striped trumpeter larvae 

4.0 Abstract 

The protective capacity and most effective delivery mode of putative probionts 

Pseudoalteromonas agarivorans ST18 and Afiivibrio fischeri ST7 was 

investigated in the rearing of yolk sac and first-feeding striped trumpeter (Latris 

lineata) larvae. In these experiments 4500, larvae were randomly stocked into 24, 

300 I black hemispherical fiberglass tanks at 1 dph and held under static 

conditions for 5 days after which 300% daily water changes was applied. 

Terminal restriction fragment length polymorphism (TRFLP) was used to monitor 

the changes in bacterial community. The addition of strain ST18 to yolk sac 

larvae showed no significant reduction in survival (70 ± 6%) versus a control 

group (83 ± 5%) reared without potential probionts being added. The addition of 

strain ST7 with and without strain ST18 was found to be more disadvantageous 

(58 ± 7% and 55 ± 8% survival respectively). By tracking distinct 16S rRNA-

derived TRFs, strain ST18 was specifically detected in treatments where it was 

added by both bioencapulsation and by direct addition. When strain ST18 was 

added directly to the water it resulted in decreased survival, due to the high 

bacterial load and possibly potential oxygen demand. The introduction of ST18 to 

the larvae bioencapsulated in rotifers resulted in the introduction of comparatively 

smaller numbers of bacteria that did not compromise the growth of the 

developing larvae. 
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4.1 Introduction 

There has been a realization that throughout development, fish intestinal 

microbiota is strongly dependent upon the characteristics of the aquatic 

environment and this has consequences for fish health and productivity. There is 

therefore a need to investigate the influences and modifications both induced by 

changes in the local environment during development, as well as those 

influenced through the introduction of probiotics. It is necessary to better 

understand how probiotics, either directly released into the surrounding water or 

administered within the diet, alter larval fish microbiota, thus allowing us to 

determine the mode of action that most effectively introduces the probiont to fish 

larvae (Nikoskelainen et al., 2003; Vine et al., 2006). Studies involving the use of 

beneficial bacteria in aquatic production systems have focused on increased 

performance, measured in terms of improvements in survival and growth. This 

can come about by boosted disease resistance in the animals, as well as 

increased stress tolerance. Such improvements have been observed in some 

cases after just a single species probiotic treatment; for example, the whiteleg 

shrimp (Litopenaeus vannamei), Indian prawn (Fenneropenaeus indicus) (Ziaei-

Nejad et al., 2006; Wang, 2007), Indian carp (Labeo rohita), and red drum 

(Sciaenops ocellatus) (Ghosh et al., 2003). 

Microbial probionts have been defined previously in this thesis (Chapter Three). 

Probiotics may inhibit the colonization of the harmful bacteria through competitive 

exclusion, for example by out-competing for attachment sites and nutrients. They 
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may also use other mechanisms such as secretion of antimicrobial compounds 

that may inhibit other bacterial growth or through interference of quorum sensing 

by enzymatic cleavage of autoinducer molecules (Olsen et al., 2000). Probiotic 

research has centered on two major strategies: bioremediation (modification of 

an established flora to one that is supportive of the host) and biocontrol (use of a 

specific microorganism to minimize the impact of a specific pathogen) 

(Verschuere et al., 2000). Methods for selecting potential probionts have been 

generally based on in vitro tests, such as the test used in Chapter Three, or 

predominance in gut microbiota in fish groups that come from high survival and 

better performance (Makridis et al., 2005; Planas et al., 2006; Vine et al., 2006). 

Challenge tests can be applied to determine the ability of probiotic bacteria to 

prevent disease, as outlined in Chapter Three (Section 3.2.4). They can also be 

used to determine if the bacterial isolate is harmful in any way to live feeds. The 

selection of potential probionts was conducted in Chapter Three (Section 3.3.2) 

and the best candidates were isolates Aliivibrio fischeri ST7 and 

Pseudoalteromonas sp. 5T18. TRFLP also revealed that it is possible to track 

these isolates in culture and during enrichment of both rotifers and Anemia, using 

the isolate's distinctive fingerprint TRFs (Table 3.5). The next step in assessing 

the potential efficacy of the identified probionts was to test them in larval culture 

through the ability to bioencapsulate the potential probiont within rotifers and 

Artemia. 
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Within this chapter two major questions are explored: 

1) What is the effect of adding potential probionts to striped trumpeter yolk sac 

larvae, either singularly or in combination? 

To answer this question, strains ST7 and ST18 were introduced to yolk sac 

larvae held under static clear water conditions, with the aim of modifying the 

microbial community of both the yolk sac larvae and the surrounding water. 

Assessment of larval performance when reared with different combinations of 

both probionts was undertaken. 

2) What is the effect of adding combinations of potential probionts using different 

strategies, either through rotifer bioencapsulation, direct addition to the culture 

water or both? These additions would occur when the larvae are in a phase of 

active rotifer feeding, from 6 to 15 days post-hatch (dph). 

To answer this question, the performance of the feeding larvae was assessed 

under a series of different treatments, using TRFLP analysis to track the uptake. 

In this case, the changes in the microbiota of larvae and the surrounding water in 

association with the treatment were investigated. 
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4.2 Material and Methods 

4.2.1 Culture of yolk sac larvae 

Eggs were collected from a female striped trumpeter broodstock by strip-

spawning, and fertilized with the milt of four males. Fertilized eggs were 

incubated and hatched as previously described (Bransden et al., 2004). Larvae 

(4500) were randomly stocked into 24, 300 I black hemispherical fiberglass tanks 

at 1 dph. Larvae were held under static conditions in seawater from 1 to 5 dph. A 

photoperiod of 18 h light: 6 h dark was used throughout the experiment, 

produced by a computerized halogen light source (-11 pmol s -1  m -2  at the water 

surface) with a gradual fade in and fade out. Dead larvae were siphoned twice 

daily and deducted from the original numbers stocked to estimate survival in 

each tank. 

4.2.1.1 Experiment 1: Effect of potential probionts on yolk sac larvae 

The aim of this experiment was to determine the effect that the potential 

probionts ST18 and ST7 have on non-feeding yolk sac larvae. The null 

hypothesis was that were would be no significant difference in survival of the yolk 

sac larvae over the six days in which they rely on endogenous food reserves. A 

further aim was to determine if the uptake and changes in the bacterial 

communities of the larvae could be explored using the capabilities of TRFLP 

analysis to track the isolates. 
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Four treatments were assessed, each with six replicate tanks. The control 

treatment consisted of rearing larvae in seawater with no added bacteria. The 

second treatment involved addition of live bacterial cultures of both strains ST7 

and ST18 at a final concentration of 5 x 10 -5  cells m1 -1 . The third and fourth 

treatments involved individual addition of ST7 or ST18 at a final concentration of 

5 x 10 -5  cells m1 -1  each. 

Initial samples of 50 yolk sac larvae were siphoned from each tank at stocking to 

determine the size and condition of the larvae. TRFLP analysis was also 

undertaken on these samples to gain a baseline assessment of the bacterial 

community. At 1, 3 and 6 dph further larval and water samples were taken for 

TFRLP. Larvae (n=50) were removed from each of the experimental tanks using 

a siphon and anesthetized in 0.06% 2-phenoxyethanol as described in 

Battaglene et al. (2006). Of these larvae twenty, were examined using an 

Olympus SZ microscope to determine morphormetric indices, including standard 

length, swim bladder inflation, grey gut and condition. Samples of a further 20 

larvae were analysed by TRFLP analyses. At the same time 50 ml water samples 

for TRFLP analysis were removed with a beaker (assigned to each tank) and 

placed into 50 ml Falcon tubes and frozen at -20°C. 

4.2.2 Culture of feeding larvae 

Egg collection, incubation and yolk sac rearing is as described in section 4.2. At 6 

dph internal 390 pm mesh screens were placed into the centre of each tank to 
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allow seawater outflow and removal of rotifers, algae and incoming seawater 

overnight. A `greenwater' environment was then provided with live 

Nannochloropsis oculata at a turbidity level of 3 Nephelometric Turbidity Units 

(NTU) (HACH 2100 portable turbidity meter). Each morning the various feed 

treatments were added to each tank at a rate of 8.8 I min -1  (total 30 I) from the 80 

I reservoirs accompanying each individual tank. The algal suspensions or 

seawater had been acclimated to tank temperature in the reservoirs overnight 

and provided with aeration. Tanks remained static during the light phase with 

gentle aeration (200 ml min -1 ) (Shaw, 2006). All tanks were supplied with live 

rotifers (B. plicatilis) enriched on Algamac 2000 (Aquafauna Biomarine, USA) 

from 6 dph, as described by Battaglene et al. (2006). Enriched rotifers were 

supplied at 10 m1 -1  each morning following probiont enrichment as described 

below in section 4.2.3. Surface skimmers were used from 8-15 dph to remove 

surface oil and promote swim bladder inflation (Trotter et al., 2003). Water quality 

was measured daily. Temperatures ranged from 15.5— 16.5°C, salinity 34.1-34.7 

Too, pH 7.9-8.2 and dissolved oxygen was greater than 90% saturation. Larvae 

were spot siphoned to determine mortality levels and counted daily up to the 

conclusion of the experiment (15 dph) when all live larvae were removed and 

counted to determine final survival. The final survival tally was determined by a 

series of volumetric counts on each tank. Prior to counts heavy aeration was 

applied to the tanks so that the larvae were distributed evenly. 
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4.2.2.1 Experiment 2: Effect of potential probionts added directly to the culture 
water, to the enriched rotifers or a mixture of both 

The aim of this experiment was to determine the effect that the potential 

probionts ST18 have on first-feeding larvae. The null hypothesis was that there 

would be no significant difference in survival of the larvae over the seven days 

compared to the control reared larvae 

Four treatments were assessed each with 6 replicate tanks: 

Treatment 1: control rotifers enriched with Algamac 2000 and fresh algae 

(Nannochloropsis oculata) greenwater culture at 3 NTU. 

Treatment 2: ST18 enriched rotifers plus ST18 added to the culture water to 

achieve a concentration of 5 x 10-5  cells m1-1 . 

Treatment 3: ST18 enriched rotifers but not added to the culture water. 

Treatment 4: ST18 added to the culture water to achieve a concentration of 5 x 

10-5  cells m1 -1 . 

Fifty larvae were siphoned and water samples taken from each of the treatments 

as described in section 4.2.1.1. Sampleing took place at 6, 10 and 13 dph. 

An initial sample of 20 larvae and a 50 ml water sample were taken from the 

incubator before stocking to assess the existing bacterial community using 

TRFLP. All sampling took place in the morning prior to feeding. 
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4.2.3 Rotifer enrichment 

Rotifer enrichment was as described in Section 3.2.4 but modified by the rotifers 

being transferred to 200 I vessels for 12 h enrichment, at 400 rotifers m1 -1  and 

23°C. Rotifers were enriched with AlgaMac at 0.3 g per million rotifers according 

to the manufacturer's instructions. Aeration and oxygen were provided to 

- maintain dissolved oxygen above 4 mg 11  in the enrichment vessels. Probionts 

were added to the corresponding rotifer enrichment vessel at the same time as 

the AlgaMac was added, to achieve a concentration of 5 x 10 -5  cells m1-1 . At the 

end of the enrichment period rotifers were rinsed and cleaned with ozonated 

seawater and counted using a Coulter counter. 

4.2.4 Bacterial preparation 

Bacterial strains were grown as in Chapter Three, section 3.2.3 

The bacterial inoculums were grown in 2000 ml broth and shaken daily, the final 

volume was standardized for each tank so that they all received the same 

amount of broth being added, the short fall if any was made up using sterilized 

marine broth. 

4.2.5 DNA extraction 

Extraction of DNA was done as in Chapter Two Section 2.2.2 

4.2.6 16S rRNA gene PCR. 

PCR conditions was performed as in Chapter Three Section 3.2.7 
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4.2.7 TRFLP sample preparation 

Preparation for TRFLP was performed as Chapter Two Section 2.2.6 

4.2.8 TRFLP data analysis 

TRFLP analysis was done as in Chapter Two Section 2.2.7 

4.2.9 Survival Statistical analyses. 

Survival statistical analyses was performed as in Chapter Three Section 3.3.4 

4.3 Results 

4.3.1 Determination of the probiotic capabilities of possible candidates on 

yolk sac larvae 

The inclusion of strain ST7 to the culture water resulted in significantly reduced 

survival of 55 ± 8% compared to 83 ± 5% survival in the controls (Fig. 4.1). The 

addition of ST18 resulted in 70 ± 6% survival. A combination of ST18+ST7 

resulted in 58 ± 7% survival. Only the addition of ST7 was significantly different to 

the control (Fig. 4.1). 
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Figure 4.1: Yolk sac larvae survival over the time for Experiment 1 (Section 
4.2.1.1). Values for the 6 dph samples not sharing a common letter are 
significantly different (P<0.05). 
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Table 4.1: Yolk sac larvae Experiment 1 (see section 4.2.1.1) showing larval size 
and survival and water physicochemical parameters. 
"'Values within rows sharing a common letter indicates statistically significantly 
differences P>0.05 determined usin one-way ANOVA. 

Treatment Control ST7+ST18 	ST18 ST7 
Age 

Standard 
1 DPH 

length mm 5.1±0.03 
Survival % 100.0 

pH 8.1±0.0 
DO % 90±1 

Temperature °C 15.4±.0.1 
Age 2DPH 

Standard 
length mm - - 	 - - 

Survival % 100a  100a 	100a  100a  
pH 8.14±0.1 a 81 00b 	8.2±0ab  8.1±0.01 b  
DO °A) 81 . 65±1 . 2a 74.6±0.6b 	73.1±0.7b 767161b 

Temperature °C 15.3±.0.1 a 15.38±.0.1 6a 	15.4±0.02a  15.4±0.02a  
Age 3DPH 

Standard 
length mm - - 	 - - 

Survival % 97 ± .0.3a  98 ± 0.2a 	97 ±0.1 a  97 ± 0.1 a  
pH 8.1±.0.1 a  8.0±0.0ab 	8.0±0.0b 7.9±0.0b  
DO % 86 . 1 ±0 . 8a  77.0±1.1 ab 	75.2±0.7b  72.4±4.0b  

Temperature °C 16.1±0.1 a  16.1±0.1 a 	16.1±0.1 a  16.0±0.0a  
Age 4DPH 

Standard 
length mm - - - - 

Survival % 96 ± 1 a  90 ± 6a 	95 ± la 90 ± 4a  
pH 8.1±0.0a  7.9±0.0b 	7.9±0.0b  7.9±0.0b  
DO % 86.2±0.9a  73.9±2.1 b 	71.9±0.9b  69.2±4. 1 b  

Temperature °C 16.2±0.0a  16.2±0.0a 	16.2±0.0a  16.2±0a  
Age 5DPH 

Standard 
length mm - - - - 

Survival % 95 ± 1 a  81 ± 10a 	92 ± 1 a  86 ± 6a  
pH 8.1±0.0a  7.9±0.0b 	7.9±0.0b  7.9±0.1 b  
DO °A) 85 . 5±1 . 31 a  73.1±1.9b 	74.8±1.15b  67.9±5.1 b  

Temperature °C 16.2±0a  16.2±0a 	16.2±0a  16.2±0a  
Age 6DPH 

Standard 
length mm 5.3±0.1 a  5.3±0.1 a 	5.3±0.1 a  5.3±0.1 °  

Survival cyo 83 ± 5a  58 ± rb 	70 ± 6ab  55 ± 8b  
pH 8.3±0.1 a  7.9±0.1 b 	7.9±0.1 b  7.9±0.3b  
DO % 83.6±2.2a  73.4±3.1 ab 	75.8±1.5ab  68.8±4.5b  

Temperature °C 16.2±0a  16.2±1 ° 	16.2±2a  16.2±3a  
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4.3.2 TRFLP analysis of yolk sac larvae (Experiment 1) 

The MDS plot derived from the TRFLP data obtained from yolk sac larvae at 1, 3 

and 6 dph was inconclusive when all replicates were presented due to the 

overwhelming similarity between groups (data not shown). The only significant 

change found was between the treatments and the initial larval sample taken 

from the incubator before stocking (TRFLP profiles, treatment 1, R=0.45; 

treatment 2, R=0.22; treatment 3, R=0.30; and treatment 4, R=0.52). There were 

no significant differences in treatment samples between sampling days. Similar 

patterns were observed for the tank water TRFLP profiles. For the water samples 

there were no significant differences in profile patterns with time and only very 

slight changes were apparent in comparison with the initial sample (R values 

<0.10). 

After addition of the ST7, ST18 and 5T7 and ST18 in combination at 1 dph it was 

possible to track both strains the culture water and the larvae through the 

presence of their distinctive TRFs using SIMPER analysis. In both water and 

larvae samples ST18 and ST7-derived TRFs were not detected in the control 

samples (Table 4.2). 

When ST7 and ST18 were added in combination within the larval samples ST18 

was only detected at 6 dph, however ST7 was detected at all sample times and 

made a greater contribution to average similarity, which was albeit rather low. In 

water samples, however ST18 appeared to be much more abundant while ST7 
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was not detected. When added singularly, ST7 was detectable in larvae at 4 and 

6 dph but again was not detected in the water samples. ST18, when added 

singularly on the other hand was readily detected in both larval and water 

samples, though in the case of larvae, the abundance appeared to decline 

considerably by dph 6. 

Based on the TRFLP data ST18 thus appears to become a major component of 

the microbial community in the tank water, however direct uptake of the probionts 

appeared to be limited. It was observed that the inoculation of bacteria at the yolk 

sac larvae stage provided no boosting of larval survival and direct addition 

generally resulted in slightly reduced survival, however, this apparent reduced 

survival appeared to be attributable to dissolved oxygen availability. 
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Table 4.2: Summarised SIMPER output data in which TRFLP analysis was used 
to track probionts ST7 and ST18 in treatments in which the strains were added 
directly to tanks holding 1 dph yolk sac larvae. Samples analysed included larval 
and water samples. 

Treatment Dph 	Sample Similarity% ST18 TRFs 	 ST7 

 

104 Hinfl (f) 	366 Hhal 
(r) 

508 Haelll 
(r) 

268 Hinfl 
(0 

Contribution to average similarity (%): 
Control 
Control 
Control 

Control 
Control 
Control 

ST7+ST18 
ST7+ST18 
ST7+ST18 

ST7+ST18 
ST7+ST18 
ST7+ST18 

ST7 
ST7 
ST7 

ST7 
ST7 
ST7 

ST18 
ST18 
ST18 

ST18 
ST18 
ST18 

2 
4 
6 

2 
4 
6 

2 
4 
6 

2 
4 
6 

2 
4 
6 

2 
4 
6 

2 
4 
6 

2 
4 
6 

larvae 
larvae 
larvae 

Water 
Water 
Water 

larvae 
larvae 
larvae 

Water 
Water 
Water 

larvae 
larvae 
larvae 

Water 
Water 
Water 

larvae 
larvae 
larvae 

Water 
Water 
Water 

10.61 
24.49 
12.60 

37.27 
55.91 
45.72 

7.62 
5.22 
9.71 

48.86 
44.66 
48.78 

6.36 
23.57 
3.14 

53.73 
46.69 
50.54 

12.65 
22.41 
13.88 

34.72 
56.36 
62.60 

- _ 
.■ 

■ 

_ 
- 

- 
- 

- 
- 

26.03 
14.39 

- 

8.12 
14.63 
20.61 

- 
- 
■ 

2.43 

10.36 
11.28 

10.29 
7.29 
5.23 

- 

- 

■ 

■ 

.■ 

15.95 
10.78 
14.07 

■ 

- 
- 

■ 

.■ 

■ 

19.24 
18.60 
24.93 

- 
- 

10.65 
15.45 
11.24 

5.64 
3.95 

- 

- 
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4.3.3 Determination of the probiotic capabilities of possible candidates on 

first feeding larvae (Experiment 2) 

The larval response to the introduction of ST18 enriched rotifers, ST18 to the 

water, or both in combination held under greenwater conditions was found to 

accelerate between 10 to 13 dph (Fig. 4.2). At 13 dph, survival in treatments in 

which ST18 was provided bioencapsulated in rotifers were not significantly 

different to the controls (F=6.099, df=20,3 P=0.06) with the control having the 

best survival of 87.5 ± 0.4% while the ST18/rotifer addition was similar at 84.4 ± 

1.9%. The combined addition of ST18 in the form of rotifer bioencapsulation and 

direct addition to the tank water was the worst performing treatment with only 

70.9 ± 3.3% larvae survival occurring at 13 dph (Fig.4.2, Table 4.3) while direct 

water addition alone provided more intermediate survival outcomes. 
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Figure 4.2: Survival percentage over the time of the Experiment 2 during first 
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Table 4.3: First feeding larvae Experiment 2 (see section 4.2.2.1) showing 
outcomes for larval size and health and water chemical parameters. 

Age 
Treatment 

2 dph 
Initial 
state 

Average size (mm) 4.8 ± 0.1 
Swim bladder inflation - 

Grey gut - 

pH 8.1 ±0.1 
Dissolved oxygen (%) 99.1 ± 0.6 
Salinity (%0) 34.8 ± 0.1 
Temperature (°C) 15.7 ± 0.1 
Survival (/o) 	' 100 
Age 5 dph 
Treatment Control ST18r + ST18 w ST18r ST18w 
Average size (mm) 5.1 ±0.1 5.1 ± 0.1 5.1 ± 0.1 5.1 ±0.1 
Swim bladder inflation - 
Grey gut - - - 
pH 8.1 ± 0.1 8.1 ± 0.1 8.1 ±0.1 8.1 ± 0.1 
Dissolved oxygen (/0) 99.1 ± 0.6 98.3 ± 0.6 98.8 ± 0.5 98.9 ± 0.6 
Salinity (%0) 34.7 ± 0.1 34.7 ± 0.2 34.7 ± 0.1 34.7 ± 0.1 
Temperature (°C) 16.2 ± 0.1 16.2 ± 0.1 16.2 ± 0.1 16.2 ± 0.1 
Survival (°/0) 97.9 ± 0.4 98.5 ± 0.2 98.7 ± 0.1 97.9 ± 0.2 
Age 10 dph 
Treatment Control ST18r + ST18 w ST18r ST18w 
Average size (mm) 6.1 ±0.1a 5.7 ± 0.1 °  6.1 ± 0.1 a  5.1 ± 0.1 b  
Swim bladder inflation 79.1 ± 3•7a  43.3 ± 4•5 1)  82.5 ± 3.5a  36.6 ± 4.4°  
Grey gut 90 ± 2.7a  42.5 ± 4.56  85 ± 0.1 a  20.8 ± 3.8 c  
pH 8.2 ± 0.1 8.2 ± 0.1 8.2 ± 0.1 8.2 ± 0.1 
Dissolved oxygen (%) 108.8 ± 0.6 107.0 ± 1.4 108.5 ± 0.6 107.3 ± 1.4 
Salinity (%0) 34.9 ± 0.1 34.9 ± 0.2 34.9 ± 0.1 34.9 ± 0.1 
Temperature (°C) 15.8 ± 0.1 15.8 ± 0.1 15.8 ± 0.1 15.8 ± 0.1 
Survival (%) 97.7 ± 0.4 96.1 ± 0.4 98.1 ± 0.1 97.8 ± 0.3 
Age 13 dph 
Treatment Control ST18r + ST18 w ST18r ST18w 
Average size (mm) 6.9 ± 0.1 a  6.1 ± 0.1 °  6.9 ± 0.1 a  6.1 ±0.1a 
Swim bladder inflation 98.3 ± 1.2a  77.5 ± 4.8c  95.8 ± 1.8 ab  86.7 ± 3.1 bc  
Grey gut 97.5 ± 1.4a  77.5 ± 3•2 b  99.2 ± 0.8 a  79.2 ± 3•3 b  
pH 8.2 ± 0.1 8.2 ± 0.1 8.2 ± 0.1 8.2 ± 0.1 
Dissolved oxygen (%) 107.5 ± 0.4 108.4 ± 0.5 107.7 ± 0.5 108.1 ±0.4 
Salinity (%m) 34.7 ± 0.1 34.7 ± 0.2 34.7 ± 0.1 34.7 ± 0.1 
Temperature (°C) 15.8 ± 0.1 15.7 ± 0.1 15.7 ± 0.1 15.7 ± 0.1 
Survival (%) 87.5 ± 0.4a  70.9 ± 3.3 b  84.4 ± 1.9a  76.1 ± 4•5b  

a, b, 
cWhere significant interactions between factors occur a one-way ANOVA 

analysis of all treatments is provided. Values within rows sharing a common 
superscript do not significantly differ (P>0.05). 
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A similar result was observed for other larvae quality features including swim 

bladder inflation and presence of grey gut (Table 4.3). Therefore, the 

addition of the potential probiont appears to be best done through 

introducing it to the larvae via bioencapsulation within rotifers. 

4.3.4 TRFLP analysis for Experiment 2 

The MDS plot derived from the TRFLP data for probiotic assessment 

experiment was inconclusive when all replicates were presented in an MDS 

due to the overwhelming similarity between groups. No changes could be 

seen and are therefore not presented. The only significant change found 

was when comparing the treatments to the incubator TRFLP baseline 

profiles: treatment 1, R=0.22; treatment 2, R=0.37; treatment 3, R=0.1; and 

treatment 4, R=0.15. It was also found that during the time of the experiment 

that all treatments were similar to each other on each sampling day and as a 

whole shifted in a similar manner resulting in the clustering of sampling days 

together with no differences observable. For the water samples it was found 

that there was no significant difference throughout the trial and even 

comparing 13 dph to the initial incubator water profiles there were only 

moderate changes (R=0.19-0.33). When assessing the total difference 

between the larval fish TRFLP profiles to that of the water it was found that 

they were significantly different at all time points sampled (global R=0.67). 
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Tracking strain ST18 was successfully done using TRF data in both the 

water and the larvae samples. For the experiments in which ST18 is applied 

to striped trumpeter larvae by bioencapsulation in rotifers the tracking of 

strain ST18 could be achieved at all sampling time points (Table 4.4) while it 

was not detected in the controls. In the larvae-derived TRFLP profiles it was 

seen that ST18 was only detected in the larvae fed enriched rotifers while 

the inclusion of ST18 to the water directly indicated ST18 appeared to be 

detectable in larvae 10 and 13 dph (Table 4.4). In addition there seems to be 

some suggestion that ST18 relative abundance appears to decline over time 

in the tank water (Table 4.4). 

The similarity between replicates of treatments in both the larvae and water 

samples also increased over time as it did in the previous experiment and 

was seen to be highest at 13 dph in the ST18 addition treatments. The fact 

ST18 had become a major component of the microbial community in the 

replicates was further emphasized by the large abundance recorded in 

larvae samples (Table 4.4). Through this experiment not all TRFs of ST18 

were detected using SIMPER based analysis and this may be due to biases 

occurring during the TRFLP analysis. The TRFLP profile data is a 

compilation of replicates of three separate restriction enzyme digestions and 

likely results in greater representation of certain TRFs compared to others in 

individual samples. 
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Table 4.4: Tracking of strain ST18 using TRF data during the rotifer 
bioencapsulation experiment applied to striped trumpeter larvae. 

Treatment Dph Sample Similarity% ST18 TRFs 
60 Hhal (f) 104 Hinfl (f) 508 Had!! (r) 

% contribution to % similarity: 

rotifers + algal feed 
rotifer + ST18 

Control 
Control 
Control 
Control 
Control 

Control 
Control 
Control 
Control 
Control 

ST18 (water + rotifers) 
ST18 (water + rotifers) 
ST18 (water + rotifers) 

ST18 (water + rotifers) 
ST18 (water + rotifers) 
ST18 (water + rotifers) 
ST18 (water + rotifers) 

ST18 (rotifers) 
ST18 (rotifers) 
ST18 (rotifers) 

ST18 (rotifers) 
ST18 (rotifers) 
ST18 (rotifers) 
ST18 (rotifers) 

ST18 (water) 
ST18 (water) 
ST18 (water) 

ST18 (water) 
ST18 (water) 
ST18 (water) 
ST18 (water) 

5 
5 

2 
5 
6 
10 
13 

2 
5 
6 
10 
13 

6 
10 
13 

5 
6 
10 
13 

6 
10 
13 

5 
6 
10 
13 

6 
10 
13 

5 
6 
10 
13 

larvae 
larvae 

larvae 
larvae 
larvae 
larvae 
larvae 

water 
water 
water 
water 
water 
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4.4 Discussion 

A combination of bacterial strains that complement each other and occupy 

different niches within the gut environment could result in an enhancement 

or prolongation of the desirable effects on the host immune response and 

health (Timmerman et al., 2004; Panigrahi and Azad, 2007). The present 

results indicate that during the yolk sac period the treatments with ST18 and 

ST7 proved to be unfavourable. The reduced dissolved oxygen (DO) levels 

observed on addition of the probionts to the tank water (Table 4.1) occurred 

possibly due to the bacterial inoculums being too high for the static system 

being investigated. The DO levels within the tank declined in the treatments 

in which the bacterial probionts were added (Table 4.1). Treatments 2 and 4 

had the lowest DO levels of 73.4% and 68.9% of saturation respectively 

(Table 4.1) which coincided with lowest survival levels (58 ± 7% and 55 ± 

8%). A bacterial bloom was also visible to the eye in the form of a floating 

mat. The water had slightly increased acidity with pH dropping from 8.1 to 

7.9 (Table 4.1). The lower DO level may have stressed the larval fish and 

contributed to their lower survival and growth (Vine et al., 2006). . The 

inoculated bacteria also proliferated in the °zonated water possibly due to 

lack of other competitive bacteria. An improved balance in probiont 

populations may result in better outcomes for larval survival. The problem 

with striped trumpeter is they do best in very static conditions especially as 

yolk sac larvae and water exchange is difficult (Shaw 2006). Static 
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conditions promote bacterial proliferation especially with the addition of 

nutrient rich rotifers. 

The sole addition of strain ST7 was found to be disadvantageous to the 

culturing of striped trumpeter yolk sac larvae, while the addition of strain 

ST18 was shown to be less harmful. Strain ST7 is a member of the genus 

Aliivibrio and is related to Vibrio spp. that have been tested as probiotics in 

earlier studies (Gatesoupe, 1999; Makridis et al., 2001; Vine et al., 2006) but 

there is some criticism of their use as probiotics due to the possibility of them 

becoming virulent after prolonged application (Vine et al., 2006). The 

negative impact of strain ST7 was partially mitigated by co-addition of ST18 

suggesting an interaction could have been occurring between the strains. 

This interaction could be in the form of strain ST18 producing an 

antimicrobial compound that inhibited strain ST7. The ability of strain ST18 

to inhibit Vibrio strains due to a diffusible antimicrobial compound was 

observed in Chapter Three (section 3.4.1). It is possible that this 

antimicrobial compound was also actively produced during the current 

experiments. Whether production is a consequence of mechanisms such as 

quorum-sensing, in which a minimum population is needed before 

antimicrobial production is triggered, requires further investigation. Strain 

ST18 belongs to the genus Pseudoalteromonas, which has been frequently 

reported to produce a range of antimicrobial compounds (Bowman, 2007). 

The genus Pseudoalteromonas is common in marine environments and has 
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been seen to comprise the microbiota of rotifers and Artemia (McIntosh et 

al., 2008, Bowman, 2007). It has been previously reported before that both 

antibacterial and antifouling activities are present in marine 

Pseudoalteromonas (Holmstrom et al., 1999). It is therefore it is possible that 

ST18 produces a probiotic effect through its release of water soluble 

compounds that inhibit or influence the growth of various bacterial species, 

including various pathogenic Vibrio spp. 

In first-feeding larvae it was seen that the addition of the probiont via 

enriched rotifers was the most promising mode of addition. When ST18 was 

added to both the water and through rotifers it resulted in decreased survival, 

possibly due the number of bacteria present being too high. This is 

surprising as water was exchanged daily (300% exchange) and other studies 

have shown that the addition of probionts directly to the water have no 

detrimental effect (Makridis et al., 2000, Planas et al., 2006, McIntosh et al., 

2008). These differing results may be due to the bacterial species being 

used and also differences among fish species. Striped trumpeter has 

previously been shown to be sensitive to bacterial infections and perform 

best in bacteria reduced conditions (Battaglene et al 2006; Battaglene and 

Cobcroft 2007). Thus the introduction of strain ST18 to the larvae 

bioencapsulated in rotifers may have resulted in the introduction of 

comparatively smaller numbers of bacteria that did not compromise the 

growth of the developing larvae. 
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It was encouraging that it was possible to track the probionts through the use 

of TRFLP analysis. By tracking distinct 16S rRNA-derived TRFs, strain ST18 

was specifically detected in treatments where it was added by both 

bioencapsulated and by direct addition. Thus by successfully tracking strain 

ST18 greater confidence is provided for its biological impacts in the 

experiments. The TRFLP data also interestingly indicated that strain ST18 

did not change the bacterial community of the larvae substantially (as 

suggested by ANOSIM data). This is the first study to the author's 

knowledge where TRFLP has been used for this type of application. In an 

aquaculture setting TRFLP has been used previously to assess the 

difference between the composition of bacteria associated with whiting 

mucus and the surrounding water (Smith et al., 2007). Other studies have 

also used TRFLP to help explain temporal bacterial changes in seawater 

(Hewson et al., 2003). No previous studies have used TRFLP to actively 

track a known bacterial isolate within an experiment environment before. It 

may be plausible to conclude that ST18 may release substances that do not 

substantially reduce the number of most bacteria present but may inhibit 

specific species from increasing to too high a population and/or inhibit their 

ability to produce pathogenic effects, for example proteolytic degradation of 

secreted enzymes or toxins. 
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It has been reported widely that one of the main modes of action and 

beneficial effects of probiotics in aquaculture organisms is enhancement of 

nutrition of host species through the production of supplemental digestive 

enzymes and higher growth and feeding efficiency, prevention of intestinal 

disorders and pre-digestion of anti-nutritional factors present in the 

ingredients (Verschuere et al., 2000). However, in aquaculture, probiotics 

can be administered either as a food supplement or as an additive to the 

water (Moriarty, 1998). In the current study we administered strain ST18 

both in live food and water separately and live food with water in the same 

environment, thus: it was clearly determined where probiotics colonized and 

worked effectively in terms of growth, and survival in different environments 

(by live food and/or water). At the doses tested the most effective way to 

administer probionts appears to be via live food due to colonization observed 

within larvae. This is in agreement with Suzer et al. (2008) who found similar 

results when administering probionts to gilthead sea bream (Sparus aurata) 

via addition to water or lives feeds, and saw that the best results were 

obtaining using live feed treatments. It has also been seen that through 

addition of probionts to the water or live feeds, the resulting colonization of 

the larvae gut may not be the amount expected. Planas (2006) found that 

when a Roseobacter sp. probiont was introduced to turbot larvae directly or 

through enriched rotifers, it did not colonise the gut in high numbers but was 

found in substantial numbers in the water. It was also seen in this study that 

the presence of ST18 was detected on both the water and the larvae. These 
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experiments did not quantify the exact amount present but through 

occurrence of the TRF signal and the fact that ST18 TRFs were more readily 

detected in the water thus were possibly present in the water at higher 

numbers than in the larval gut. 

Some of the proposed mechanisms for the probiont activity include greater 

survival, growth, viability or adhesion to mucosal surfaces of one species in 

the presence of another species, the production of different enzymes or 

other proteins, the creation of a probiotic niche and additive/synergistic 

effects of strain specific properties (Vine et al 2006). It must be taken into 

account that prior inactivation of probiotic bacteria does not necessarily 

result in the loss of adhesion to intestinal mucus, although it may depend on 

the bacterial strain and the inactivation method used. Other studies have 

postulated probiotic modes of action to be dependent on interactions 

between probionts and pathogens in the digestive tract, such as competition 

for space or nutrients, or production by the probiotic of growth-inhibiting 

metabolites (Balcazar et al., 2006). Therefore, the possibility of an increased 

adhesion of one of the assayed bacteria in the presence of the other cannot 

be ruled out. 
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Conclusions 

This study showed that the addition of Pseudoalteromonas sp. ST18 at the 

yolk sac larvae stage was not significantly different from that of the control 

and that during first feeding the best mode of addition of ST18 was through 

enriched rotifers. Through the use of TRFLP strain ST18 could be tracked 

and identified in situ. The experimental set up for these experiments resulted 

in the questions posed in the introduction being successfully answered, 

however many new questions have arisen during the course of the study. 

These unknown factors potentially set out future directions for research. The 

following Chapter Five will discuss further directions that may increase our 

knowledge in this field of research. 
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Chapter 5: Outcomes and Future Directions 

The intention of this study was to investigate and develop a robust process 

that could identify and culture probionts in larval fish cultures focusing on 

these major aims: 

1) Identification of the bacterial communities in striped trumpeter larval 

cultures through the use of 16S rRNA gene-based clone libraries and TRFLP 

analysis. 

2) Determination of the bacteria that possess probiotic activity by using 

in vitro antimicrobial plate tests and assessment of possible candidates on 

live feeds and development of the use of TRFLP to enable tracking of the 

probionts in a mixed species environment. 

3) Exploration of the best mode of action to introduce the probiont to the 

larvae. The tracking of the probionts in an experimental striped trumpeter 

larvae system was to be achieved using TRFLP to match the probiont's 

unique TRFs. 

The first phase investigated and provided an insight into the bacterial 

diversity of striped trumpeter larvae using 16S rRNA gene-based clone 

libraries and TRFLP analysis. It showed that under the three different rearing 

conditions that the bacterial diversity was limited and varied considerably 

between samples. With this information we cannot draw any definite 

conclusions that the bacterial community of the larvae and the surrounding 
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water were influencing larval survival performance. Through the investigation 

of larvae-associated microbiota using 16S rRNA clone libraries it was also 

observed that the phylogenetic distribution of the clones was found to 

include four major taxonomic groups. They were, in order of abundance 

class Alphaproteobacteria (42%), the chloroplasts of the algae 

Nanochloropsis granulate (38%), phylum Actinobacteria (11%) and class 

Gammaproteobacteria (10%). The overall results of the study showed that 

the microbial community of the 15 dph larvae was occurring randomly at this 

early stage. The bacterial diversity was in general agreement with other 

studies of larvae microbiota (Jensen et al., 2004; Romero and Navarrete, 

2006). No Vibrio spp. were observed, however, Vibrio strains were likely 

present in low numbers, as in culture-based studies they were isolated 

following enrichment in a selective medium. The population density of Vibrio 

was too low to be detected in the randomized clone library survey. 

Through the use of TRFLP analysis, microbial communities in the rearing 

sea water were more diverse than were present in the larvae. This could be 

due to the bacteria being comprised of both autochthonous (adherent) and 

allochthonous (transient) sub-populations. As the Atlantic halibut larvae 

become older their microbiota also changes, as seen by Jensen et al. 

(2004), finding that feeding Atlantic halibut larvae had a more complex 

DGGE profiles then with non-feeding larvae. The microbial community at 15 

dph is clearly in a transient developmental phase with dominant species 
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found in the larvae as well as in the surrounding water. A similar change 

through time is seen in mammals and both age and diet have been found to 

affect the gut microbiota (Mozes et al., 2008). It has been observed for 

example that by giving rat pups a higher energy diet it resulted in the gut 

microbiota being modified leading to an obesity phenotype (Mozes et al., 

2008). Once gut microbiota are established at an older age the community 

becomes relatively stable (Jensen et al., 2004, Mozes et al., 2008). 

Therefore it is vital if any changes are to be made it must be done during this 

transition time of establishment in the juvenile phases. 

The second phase of this study was the assessment of probiotic bacteria 

and was undertaken with the aim of ultimately being able to alter the 

bacterial communities associated with striped trumpeter larvae live feeds 

that typically include rotifers and Artemia. The end goal was to produce 

positive benefits, such as increased growth rates, reduction of deformities, 

increased health of larvae and ultimately better survival. 

Through the screening of isolated bacteria using an antimicrobial agar plate 

assay, five candidate strains were further assessed (strains V52, ST18, V8, 

ST14 and ST7). Of these strains all but strain ST18 were Vibrio spp. Strain 

ST18 belonged to the genus Pseudoalteromonas. All strains showed some 

antimicrobial activity when screened against known Vibrio pathogenic 

strains. Isolates ST18 and ST7, identified as Aliivibrio fischeri, were found to 
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cause the least mortality in rotifers and Artemia and protected the Artemia 

when challenged with a virulent strain of V. proteolyticus. Results suggest 

that probiont Pseudoalteromonas sp. ST18 successfully competes with 

larvae pathogen Vibrio proteolyticus and interferes with its pathogenesis 

(see below). Rotifer and Artemia survival experiments were consistent with 

this result. The conclusion was that isolate ST18 showed potential as a 

probiont for rotifers and Artemia feed cultures and to potentially diminish the 

growth of Vibrio in these cultures. The reduced growth of the Vibrio in these 

cultures may be due to ST18 having out-competed the Vibrio through 

production of water soluble antimicrobial compounds. 

Approaches were also explored that would ensure that the potential probiotic 

isolates were successfully delivered to the larval fish. Delivery of potential 

probionts was tested by using probionts added directly to the seawater and 

by enriching live feeds with the probionts. TRFLP profiling analyses were 

also used to see if the probionts could be readily detected during the survival 

experiments. Using probiont-unique TRFs it was possible to detect the 

probionts in both the rotifer and Artemia experiments. It was also possible to 

observe changes that the isolates made to the overall microbial communities 

structure associated with rotifers and Artemia, and was assessed using non-

parametric ordination of the TRFLP profile data. Here it was seen that when 

the probionts were added the community shifted to one becoming dominated 
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by ST18 while in the absence of ST18 TRFs typical of Pseudoalteromonas 

spp. were never detected (Chapter Three section Three). 

The mechanism for the protection conferred by probiotic strain ST18 could 

include : 1) inhibition of colonisation and growth of the pathogenic strain by 

efficient competition for nutrients and/or by the production of inhibitory 

secondary metabolites, a common feature of the genus Pseudoalteromonas 

(Bowman 2007); 2) inhibition of the pathogenicity of V760 through 

destruction of secreted toxins or by preventing their expression by 

interference with quorum sensing that may activate pathogenicity factors; 3) 

stimulation of the immune response of the Artemia, or 4) a combination of 

the aforementioned mechanisms. 

In the study it was found that the addition of bacteria (at 10 4-105 cells ml) to 

the yolk sac larvae had the undesirable effect of dissolved oxygen levels 

falling to critical levels. This was likely due to direct bacterial activity. Even 

with this phenomenon it was still possible to determine that the larvae still 

acquire the probionts within their gastrointestinal tracts. 

During the first feeding experiment it was found that there were no significant 

differences between the control and the enriched rotifers treatment indicating 

the probionts did not have any unexpected deleterious affects on the larvae. 

It was encouraging to find that it was also possible to track the probionts 
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through the direct use of TRFLP analysis by identifying their unique TRFs. In 

the TRFLP experiments ST18 was only detected in the treatments where it 

was added, further proving that TRFLP is a useful way to tracking a bacterial 

species within a mixed microbial community. 

In the third phase of the study probiont ST18 was administered to striped 

trumpeter larvae in live feed, by direct addition to tank water and by a 

combined live feed/direct addition approach. It was clearly determined which 

probiont's addition approach colonized and worked most effectively in terms 

of growth and survival of the larvae. The data strongly indicated that the 

most effective approach involved live feed additions, and is advantageous 

possibly due to colonization of the probiont within rotifers and subsequent 

transfer to larval fish following digestion. 

Studies concerning the use of beneficial bacteria in aquatic production 

systems have focused on increased performance measured by survival, 

boosted disease resistance in animals, and increased capabilities under 

stress usually after receiving a single species probiotic treatment (Kesarcodi-

Watson et al., 2008). The use of probiotics shows increasing promise as a 

strategy that can be used to reduce hatchery mortality and promote larval 

rearing performance. It has been successfully applied in crustacean and 

marine fish hatcheries (Gomez-Gil et al., 2000; Panigrahi and Azad, 2007; 

Kesarcodi-Watson et al., 2008). However, the diversity of species raised in 
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hatcheries and the specifics of the bacterial interactions means that there is 

no universal solution to problems associated with fish health. 

Striped trumpeter are reared in a very controlled manner, with water quality 

being monitored and the water being ozonated or UV treated and thus it can 

be thought that any addition of bacteria to this 'clean' environment may incur 

problems (Battaglene and Morehead, 2006; Battaglene and Cobcroft, 2007). 

This was demonstrated in the experiments where the probiotic bacterial 

strains were added directly to the water. It may be concluded that the 

mortality rate was higher here as the larvae had no other bacteria present 

and are relatively sensitive to impacts on water quality. With this in mind, 

further studies into the effectiveness of the probiont are needed including an 

appraisal of protective capacities under a range of conditions. These could 

include experiments introducing the probiont to the larvae that are cultured in 

non-treated water. In practical terms, if this is achieved it could be 

simultaneously shown that the probiont is safe and effective. In the case of 

the specific studies performed in this thesis, the experiments would benefit 

from running for longer periods in order to determine if changes in the larval 

microbiota are stable. And also there is the need to better define the 

numbers of starting probiont cells to be added to the tanks, as it is possible 

much smaller inocula will yield the same affect, especially if added 

periodically. 
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As with all scientific studies many more new questions arise while trying to 

answer other questions. This area of research must be further explored to 

expand the understanding of the interactions of bacteria in marine animals 

and in order to better define their potential benefits and detriments, 

especially in the context of intensive aquaculture systems. For example, in 

relation to this study, it is important to gain a greater understanding of the 

way strain ST18 interacts in inhibiting pathogenic activity and its specific 

effects on fish larvae. 

Gaining knowledge into the bacterial diversity of the striped trumpeter and 

the changes that different rearing conditions bring upon it warrants further 

investigation. This could involve more targeted isolation and screening of 

bacteria associated with larvae cultures to assess potential beneficial roles in 

larval growth and possible probiotic capabilities. Answering these questions 

would provide useful underpinning knowledge for the application of probionts 

in aquaculture systems. 

There are so many questions to ask and research to be performed in 

regards to this research. As Claude Levi-Strauss said "The scientific mind 

does not so much provide the right answers as ask the right questions." 
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