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Abstract 

At any point in time a significant fraction of the globe is covered by liquid 
water clouds. Understanding the relationship between cloud and solar radiation 
is therefore of great importance for both climate modelling and remote sensing. 
Previous studies have found that cloud spatial structure has a significant effect on 
cloud albedo, with spatial inhomogeneities leading to less reflection of solar radia-
tion than was predicted by the traditional homogeneous cloud model. This thesis 
investigates further the consequences of cloud spatial variability on atmospheric 
radiation, with the aim of developing methods to improve radiation modelling and 
remote sensing of cloud properties. 

The basis of this study is the quantification of the scaling and intermittency 
of liquid water fields using a multifractal model. The fractionally integrated flux 
(FIF) model is used to both describe and numerically simulate cloud fields, with 
model parameters being determined from aircraft measurements made during 98 
flights over northern Tasmania, Australia. The aircraft data set is divided into 
three broad cloud types: stratocumulus, altostratus and low level cumulus. The 
horizontal fluctuations in all three cloud types are shown not only to be scale 
invariant and non-stationary, but also to have very similar statistics with only one 
out of three model parameters varying significantly between cloud types. 

Clouds with horizontal structure described by the FIF model but constant ver-
tical profiles are then used in Monte Carlo radiative transfer calculations. The 
differences between the multifractal and homogeneous cloud results are larger than 
those previously reported for marine stratocumulus, due to the larger degree of 
inhomogeneity in the cloud types considered. The results of the Monte Carlo simu-
lations are used to derive the "effective optical properties" of the multifractal cloud 
fields, defined as the optical properties of a homogeneous cloud producing the same 
radiative transfer results as the multifractal cloud. This allows the well-known and 
efficient radiative transfer techniques for homogeneous cloud to be applied to mul-
tifractal cloud. The effective optical properties were found to vary with the spatial 
scale under consideration, and an empirical parameterisation for the effective op-
tical properties is presented that is a function of spatial scale, mean cloud optical 
depth and single-scattering albedo. 

The range of conditions under which the effective optical depth approximation 
can be used is then examined, with vertical fluctuations in cloud liquid water, 
radiance changes with viewing angle, and differing single-scattering properties all 
considered. The approximation is found to be reasonable for most low-level cloud 
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conditions, with the greatest discrepancies occurring for absorbing clouds with ver-
tical fluctuations and significant vertical extent. Finally, the effective optical depth 
parameterisation is tested in the satellite remote sensing of cloud liquid water path, 
with the results being compared to simultaneous aircraft measurements. The agree-
ment between the data sets is significantly improved when the results are corrected 
for cloud inhomogeneity using the effective optical depth approximation, with the 
remaining errors being shown to be of the level expected due to the discrepancies 
in measurement scales. These (root-mean-square) errors due to the mismatch of 
measurement scales when comparing satellite-based and in situ measurements are 
estimated, using the spatial statistics of liquid water, to be approximately 27%. 
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Chapter 1 

Introduction 

1.1 Motivations 

Low-level, mainly liquid water clouds have been estimated to cover an average 

of approximately one quarter of the globe [Hartman et al., 1992]. This means 

that they have a significant impact on a wide range of fields: from hydrology and 

weather forecasting, to global energy balance and global circulation models, and 

even to the satellite remote-sensing of non-cloud atmospheric quantities (which 

cloudiness often impedes). In many of these applications, the study of clouds in the 

atmosphere requires, at various times, an understanding of atmospheric dynamics, 

the chemistry of cloud condensation nuclei, the statistics of droplet growth and 

aggregation, and other areas of knowledge. This thesis focuses on the relationship 

between clouds and solar radiation, an area of research relevant to both climate 

modelling and the remote sensing of cloud properties. The former is of interest due 

to the current concerns about climate change and the consequences of anthropogenic 

climate forcing; the latter is important because only satellite-based observations 
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can cover the wide spatial and temporal scales over which clouds occur in the 

atmosphere. 

In the case of climate modelling, it has long been recognised that a significant 

proportion of the earth's radiation budget can be attributed to cloud radiative 

forcing [e.g. Wielicki et al., 1995; Mitchell, 1989]. However, clouds influence the 

radiation budget in a variety of ways, both cooling the earth by increasing the 

albedo of the earth-atmosphere system and heating the earth by lowering the level 

of outgoing longwave radiation. While cirrus clouds are usually high, cold and 

optically-thin, and hence have a net heating effect, low level clouds have a net 

cooling effect because they are optically thick, reflect a relatively large amount of 

solar radiation, and are warm enough to have little net effect on longwave radiation 

[Rossow and Lacis, 1990]. Of these two cases, global radiation studies have found 

that the net radiative forcing by clouds is greatest in regions of low level cloud, 

and that the greatest effect is the reflection of shortwave radiation [Harrison et al., 

1990; Ramanathan et al., 1989; Rossow and Zhang, 1995] . Cahalan et al. [1994a] 

estimated that a 10% change in the global average albedo of stratocumulus cloud 

would produce a 5°C change in the equilibrium surface temperature, equivalent to 

the change in surface temperature since the last ice age. From another point of 

view, this means that if global circulation models are incorrect in their predictions 

of liquid water cloud albedo then surface temperature predictions would contain 

significant errors. This is particularly important when considering that not only do 

clouds affect the climate but also changes in climate can affect cloud formation - 

clouds are formed by dynamic atmospheric processes affected by global warming or 

cooling [Rogers and Yau, 1989] leading to a range of possible feedback mechanisms. 

This makes accurate cloud modelling necessary for research into climate change. 

The remote sensing of clouds has many applications beyond studying the effects 
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of cloud on the radiation budget. These include: global surveys of cloud properties 

to develop cloud climatologies [e.g. Han et al., 1994; Kawamoto et al. 2001]; 

the estimation of rain rates and precipitation area [e.g. Lensky and Rosenfield, 

1997]; the investigations of the effects of weather modification through cloud-seeding 

[e.g. Sassen and Zhao, 1993]; the estimation of radiation levels at the surface 

[e.g. Pinker et al., 1995]; the validation or initiation of numerical cloud models 

[e.g. Fouilloux and Iaquinta, 1997]. Because of the vantage point they occupy, 

high above the earth's surface, satellite platforms are able to cover a wider range 

of spatial scales than ground based or aircraft measurements. This is of great 

advantage in measurement programs involving liquid water clouds because, as will 

be examined later in this thesis, their properties and structure fluctuate widely 

over a wide range of scales [Davis et al., 1996a]. Many techniques for the remote 

sensing of cloud properties have been developed and they utilise many wavelengths 

of radiation from radar [e.g. Belton et al., 1980; Lin et al., 2002], through microwave 

[e.g. Simmer et al. 1989] and thermal infrared [e.g. Liou et al., 1990], to the solar 

spectrum [e.g. Nakajima and King, 1990]. However, the scope of this work is 

restricted to the last of these, as the bulk of global cloud data is obtained from 

satellite observations of reflected solar radiation. 

1.2 Radiative transfer under cloudy conditions 

Both climate modelling and remote sensing of cloud properties require the ability 

to calculate the radiation reflected and transmitted by cloud fields under various 

conditions. This in turn requires a cloud model to be used in these calculations. 

The simplest cloud model is a homogeneous distribution of liquid water bounded 

above and below by flat surfaces and extending indefinitely in the horizontal - this 
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model is known as the plane-parallel homogeneous (PPH) cloud model. However, 

real clouds do not conform to the PPH model, and this has consequences for ra-

diative transfer. Clouds with inhomogeneous liquid water fields have been found 

to have a significantly lower average reflectance (and higher average transmittance) 

than a PPH cloud field with the same mean liquid water content, if the observa-

tion scale under consideration exceeds a photon mean-free-path length [Davis et 

al. ,1991]. This general result has held true for all types of inhomogeneous cloud 

fields so far examined, including: clouds with small sinusoidal variations in water 

content [Romanova, 1998;19991; aircraft observed cloud fields [Los and Duynkerke, 

2001]; cloud fields generated by dynamical models [Macke et al., 1999]; and fractal 

cloud models of various types [e.g. Davis et al., 1990; Cahalan et al., 1994a; Horde 

and Isaka, 1996]. Despite these consistent findings, most of the radiative transfer 

algorithms in climate models [e.g. Tiedke, 1993; McGuffie and Henderson-Sellers, 

1997; Gregory et al., 2000] and in cloud property remote sensing [e.g. Nakajima and 

King, 1990; Kuji et al., 2000; Szczodrak, 2001] are still based on the simple PPH 

cloud model. Presumably this is because of the simplicity and speed of radiative 

transfer calculations made using the PPH assumption, because the algorithms were 

developed before the effects of cloud inhomogeneities became known, or because 

of the difficulty in completely parameterising the variability in the cloud structure. 

Speed of calculation is particularly important when considering the radiation flux 

calculations for general circulation models (GCMs) where a vast number of calcula-

tions must be made, and for multispectral remote sensing where a large number of 

variables is involved. There are many fast algorithms that can calculate radiative 

transfer for a PPH cloud, such as the delta-Eddington approximation, the doubling 

adding method, and discrete-ordinate radiative transfer (for summaries of various 

methods, see Liou [1990] or Lenoble [1985]). On the other hand, very accurate cal- 
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culation methods for radiation in inhomogeneous cloud fields - such as Monte Carlo 

radiative transfer [Marchuk et al., 1980], the diffusion approximation approach [e.g. 

Cu and Liou, 2001], or the spherical harmonic discrete ordinate method [Evans, 

1998] - are generally much more time consuming. 

Several faster, approximate methods of radiative transfer have been developed 

for these applications. The first is the independent pixel approximation (IPA) 

[Cahalan et al., 1994b], in which PPH cloud calculations are performed for pixels 

at a scale equal to or smaller than a photon mean-free path length, and then these 

results are averaged over whatever scale is being considered. The IPA avoids the 

effects of sub-pixel scale variability because liquid water content variability at scales 

smaller than the mean free path length does not have a significant effect on the 

radiation field [Marshak et al., 1998]. The area averaging then reduces the error 

due to horizontal transport of radiation. If the area under consideration is small 

enough that horizontal transport of photons is significant, the variant known as 

the non-local IPA (NIPA) [Marshak et al., 1996] may be used instead to take this 

into account. There is no particular cloud model inherent in the IPA, so some 

cloud model must be chosen to determine the distribution of the cloud liquid water 

content. Calculations performed using the IPA are much faster than Monte Carlo 

radiative transport code, but if the pixels or grids under consideration are at the " 

meso-scale (or larger) the IPA calculations are still many times slower than PPH 

calculations, because they effectively require tens or hundreds of PPH calculations 

per grid point. 

An alternate approach to the IPA for quick radiative transport calculations is 

the concept of effective optical properties. In this approach the inhomogeneous 

cloud is replaced in the radiative transfer calculations by a PPH cloud with the 

same reflectance (and/or transmittance). The optical properties of this substitute 
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PPH cloud are referred to as the "effective" optical properties of the inhomogeneous 

cloud. Since this approach only involves a single PPH calculation, the calculation 

is fast. This approach also has the important advantage of being very easy to add 

to existing radiation algorithms in climate models or remote sensing. However, 

the effective optical properties will depend on the precise distribution of the liquid 

water content, i.e. they will depend on the cloud model used. This concept was 

used by Cahalan et al. [1994a] in the effective thickness approximation (ETA) 

for cloud fields generated by the bounded cascade fractal model, and also in the 

`renormalisation' scheme used by Cairns [2000]. In the ETA an effective optical 

depth is found as a function of the fractal parameter of the cloud model. The 

bounded cascade model was also used to formulate the equivalent homogeneous 

cloud approximation (EHCA) [Szczap et al., 2000a;b;c], although in the EHCA the 

parameterisations of the effective optical properties were written in terms of generic 

statistics rather than model-specific parameters. The other differences between the 

ETA and the EHCA include the fact that the ETA only applies at the scale of 

the entire cloud domain and has no dependence on cloud optical depth, whereas 

the parameterisations in the EHCA have a direct dependence on optical depth and 

an indirect dependence on spatial scale. The EHCA also improves on the ETA by 

including absorbing clouds [Szczap et al., 20004 where an effective single-scattering 

albedo is used in addition to an effective optical depth. 
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1.3 Cloud spatial structure and the approach taken 

in this thesis 

To implement any of these radiative transfer schemes, an accurate model of cloud 

structure is required. Over the last two decades the need for a realistic cloud 

model for radiative transfer has led various researchers to investigate cloud spatial 

structure and to develop inhomogeneous cloud models. This has occurred along 

side a general recognition that atmospheric structures and processes occur over 

a wide range of scales, and as part of the development of a paradigm of scale 

invariance and (multi)fractal analysis. Lovejoy [1982] first suggested that cloud 

spatial distributions could be modelled as a fra,ctal structure. Various measurements 

since then, including Cahalan and Joseph [1989], Malinowski and Zawadzki [1993], 

and Davis et al. [1996a], have shown that cloud structure is scale invariant, and 

hence that a fractal model is applicable. These studies have generally concentrated 

on overcast marine stratocumulus cloud. Multifractal analyses to further quantify 

the intermittency of cloud liquid water content have been performed [Davis et al., 

1994; Marshak et cd.,1997], also on marine stratocumulus. In this study an attempt 

is made to significantly extend this data set and begin a move toward a more 

complete climatology of cloud internal structure. 

A range of multifractal models have been developed to describe scale invari-

ant processes, including the lognormal model [Kolmogorov, 1962] and the bounded 

cascade model [Cahalan, 1989; Cahalan et at., 1994a]. For thorough reviews of mul-

tifractal modelling and analysis, the reader is referred to Schertzer and Lovejoy 

[1991] and Davis et al. [19964 The cloud model used in this study is the Frac-

tionally Integrated Flux (FIF) multifractal model of Schertzer and Lovejoy [1987; 

1991], a continuous multifractal model which has been used for cloud modeling 
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[e.g. Wilson et al., 1991], as well as for modeling other atmospheric quantities in 

the "unified scaling model" of the atmosphere [Schertzer and Lovejoy,1985; Chin-

girinskaya et al., 1994; Lovejoy and Schertzer, 1995a]. The FIF model has the 

advantages over other multifractal models of being able to be adjusted to a wider 

range of statistics [Davis et al., 1994] and of being based on the symmetries of the 

equations governing atmospheric turbulence. While in general multifractals could 

require an infinite number of parameters to completely define them, this model 

posits that atmospheric phenomena fall into universality classes of multifractals 

defined by three parameters. These are stable, attractive multifractal processes. 

Although there has been some debate about the mathematical existence of these 

classes due to a possible divergence in the small scale limit, this seems to be re-

solved by taking alternate routes to universality - see Schertzer and Lovejoy [1997] 

for details. 

Measurements have shown, for example, that turbulent velocity fields [Chin-

girinskaya et al., 1994; Lazarev et al., 1994] and rain radar reflectivities [Tessier 

et al., 1993; Lovejoy and Schertzer, 1995] can be described by these universality 

classes. Analysis of cloudy satellite images have shown that the statistics of cloud 

radiances also closely fit these universal multifractals [Lovejoy et al., 1993; Tessier 

et al., 1993; Lovejoy et al., 2001a]. However, the FIF model has not yet been fitted 

to direct in situ measurements of cloud liquid water content. This is of importance 

considering the non-linear relationship between liquid water content and the radi-

ation field, and between liquid water content and precipitation. This is highlighted 

by the fact that when examining satellite images of cloudy atmospheres, Tessier et 

al. [1993] found different values for the FIF parameters at different wavelengths. 

Therefore in this study the FIF model is compared to in situ measurements 

made during 98 flights over Tasmania, Australia. These measurements are used 
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to directly determine the FIF model parameters for three different categories of 

liquid water clouds. In this manner multifractal analysis is extended to cloud types 

other than the marine stratocumulus that have been the focus of previous analysis. 

Subsequently, the radiative properties of such multifractal clouds are investigated, 

with an eye to determining if there are differences between these clouds, described 

by the FIF model, and those previously examined using the bounded cascade model 

(with marine stratocumulus parameters). An effective properties approximation 

is developed for use in radiative transport calculations, in an approach similar 

to that taken by Szczap et al. [2000a;b;c] in developing the EHCA. As in the 

EHCA, the focus is on meso-scale pixels suitable for moderate resolution remote 

sensing or regional climate models. However, this approach is expanded to other 

liquid water clouds apart from overcast marine stratocumulus, and to include a 

direct dependence on pixel or grid size. The effects of such an approximation on 

some applications, such as the remote sensing of cloud properties or determining 

radiation at the surface, are also examined, as are the radiative implications of 

vertical variations in the liquid water field. 

1.4 Thesis structure 

The general goal of this work is therefore to improve the understanding of cloud 

spatial structure and determine how this knowledge can be used in radiative transfer 

applications, such as existing climate models and remote sensing algorithms. With 

this is mind, the structure of the thesis is given as follows: 

• Chapter 2 contains a description of the models used throughout this study 

- both the FIF multifractal model used to describe the cloud fields and the 
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Monte Carlo radiative transfer model used to determine the radiative prop-

erties of multifractal clouds. Also presented in this chapter is a summary of 

multifractal statistics and analysis. In general, chapter 2 describes the major 

tools and methods used later in the thesis. 

• Chapter 3 focuses on the analysis of the in situ measurements of cloud liquid 

water fields. The data is shown to fit the multifractal model and the associated 

multifractal parameters are empirically determined for three different cloud 

types. The diurnal and seasonal variation in stratocumulus spatial structure 

is also examined in this chapter. 

• Chapter 4 is a presentation of the results of radiative transfer calculations 

carried out using clouds with horizontal spatial inhomogeneities described by 

the FIF model, but with a homogeneous vertical structure. The effective opti-

cal properties of both absorbing and non-absorbing clouds are parameterised, 

and the accuracy of the parameterisation under different conditions is tested. 

A comparison of our results with the EHCA is also made. 

• Chapter 5 describes the results of radiative transfer through clouds with a 

multifractal structure in the vertical as well as horizontal dimensions, in order 

to determine the errors that result from the earlier assumption of vertical 

homogeneity. 

• Chapter 6 investigates further the consequences of using the effective opti-

cal depth approximation by considering the radiance distributions instead of 

total reflectance and transmittance. A test case is considered that involves 

transmitted UV radiance under stratocumulus clouds. Radiance distributions 

calculated for multifractal clouds are compared to those of a PPH cloud with 
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the same total transmittance, and these results are compared to radiometric 

measurements. 

• Chapter 7 presents a comparison of cloud properties derived from satellite 

remote sensing with those found from in situ measurements. The result of us-

ing the effective optical properties approximation in cloud property retrieval, 

instead of the PPH model alone, is examined. Also investigated is the impact 

of multifractal cloud structure on the comparison of data sets measured at 

different resolutions. 

• Chapter 8 concludes this thesis and contains a summary of results, as well as 

recommendations for further study. 

Of these chapters, the second contains no new work but is simply a summary 

of methods and models developed by others, while all of the subsequent chapters 

present original results of the doctoral research project. 
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Chapter 2 

Cloud and Radiation Models 

Many of the results that appear later in this thesis are produced in the framework of 

two key models: the FIF multifractal model that describes the spatial statistics of 

the cloud liquid water content field, and the Monte Carlo simulations that calculate 

the radiative properties of clouds given their spatial structure. In this chapter these 

two models are described, along with the analysis technique used to determine the 

parameters of the multifractal model from measured cloud fields, and the numerical 

method used to generate cloud fields. 

2.1 The multifractal cloud model 

Fractals are characterized by the fact that their general structures and level of detail 

are unaffected by changes of resolution, which is to say that they are scale invari-

ant. Dissipative systems with non-linear dynamics, such as cloud formation and 

atmospheric turbulence, typically show a high degree of variability over a very wide 

range of scales. This makes scale invariant models such as fractals an appropriate 
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choice for phenomenological or statistical modelling. The original fra,ctals used to 

model clouds and rain were monofractal models [e.g. Mandelbrot 1983] - geomet-

ric models containing 'simple' scaling which is characterized by a single (generally 

non-integer) fractal dimension. However, this approach has been found to be in-

sufficient to fully describe the statistics of cloud fields [Davis et al. 1994; Schertzer 

and Lovejoy 1985] and multifractal models which require multiple parameters to 

describe their scaling behavior have been developed. For a more general review of 

multifra.ctal models see Davis et al. [1990] and for multifractal modelling applied 

to remote sensing applications see Lovejoy et al. [2001b]. 

It should also be noted that in this work all scaling is assumed to be isotropic, 

that is the scaling is assumed to be the same in all dimensions. This assumption 

is made because the primary data set examined here is one dimensional horizontal 

aircraft flight data, and hence the data is not available to analyse any anisotropy 

of scaling, or to implement the framework of generalised scale invariance developed 

by Schertzer and Lovejoy [1987;1991]. 

2.1.1 The cascade process 

The universal FIF multifractal model [Schertzer and Lovejoy, 1987; 1991] which 

is used here, was developed out of the theory of turbulent velocity cascades. It 

is based on three properties of the (incompressible) Navier-Stokes equations that 

govern atmospheric turbulence: 1) scaling symmetry or invariance under dilations 

(zooms); 2) conservation of a quantity with changes of scale - the energy flux, E, 

from large to small scales; 3) the fact that the dynamics are most effective between 

neighbouring scales i.e. energy transfer between very large and very small structures 

is inefficient. These properties lead to a cascade process, with large structures 
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being made up of substructures on a smaller scale, which are in turn made up of 

even smaller structures, and so on. This downwards cascade will only end when 

a scale is reached that is so small that frictional losses of energy dominate, which 

in the atmosphere is on the order of millimetres. Mathematically, this process can 

be represented by a multiplicative cascade, where at each step down in scale the 

substructures are formed by multiplying the parent structure by different (random) 

factors. That is, if Eeddy  is a variable representing a cascade structure at a large 

scale then the values of the substructures are given by 

Esubeddy =  Eeddy•PE, 	 (2.1) 

where me is a (stochastic) multiplicative factor. A schematic representation of this 

process is shown in Figure 2.1. 

In the velocity cascade process, the energy flux E is conserved with the change of 

scale but the velocity fluctuations are not. In the model used here this conservation 

is canonical, i.e. statistical - in the average over the entire ensemble rather than 

in any particular realisation. Following the convention of labelling the scale under 

consideration, or resolution, by the ratio 

A  Lmax  
1 

(2.2) 

where Lmax  is the greatest length in a data set and 1 is the length of grid sides at 

current scale, then the following scaling relation for the velocity field (v) measured 

at scale A [Kolmogorov, 1941; Obukhov, 19491: 

(2.3) 
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The cascade process in one dimension: 

2 =1 
	  .7 -..., ,-,-,.- f -,--i•-•,-.+4. 
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uniform field 

2 =4 

After multiplication 
by 2 random 
factors 

After multiplication 
by 4 more random 
factors 

 

4441 
etc. 

Figure 2.1: A schematic representation of the cascade process in one dimension, 
with shading used to represent the value of the scalar field. Each structure is broken 
up into two substructures, transfering some or all of its value to the substructures. 
This is modelled mathematically by multiplicative factors being applied at each 
level. The scale is labelled by the ratio A = (maximum length)/(current grid size). 
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where Av(l) = v(x + 1) — v(x). So as the cascade process continues from large 

to small length scales, the velocity fluctuations decrease on average, although the 

ensemble-mean energy flux is constant. As each area on a larger scale is divided 

into smaller areas, in the cascade process, the redistribution of energy is uneven, 

leading at much smaller scales to some (randomly distributed) areas of extremely 

high values and many others with very little energy or velocity. In this way a very 

intermittent velocity field is formed. 

This model of the spatial distribution of turbulent velocity fields can be extended 

to cloud fields. Schertzer and Lovejoy [1987], constructed the FIF model for clouds 

and rain, where the transport of liquid water content (p) by the turbulent velocity 

field leads to the formation of the same type of cascade for liquid water as exhibited 

by velocity. This cascade produces an inhomogeneous field that obeys a scaling law 

of a similar form to that respected by velocity [Obukhov, 1949]. Specifically, this is: 

Ap(1) ix 
	

(2.4) 

where Ap(1) = p(x + 1) — p(x) and cp is some generic flux field of liquid water 

resulting from the non-linear interactions between velocity and liquid water content. 

This flux is a conserved field with respect to scale changes - that is, the ensemble 

mean < cp > is constant with scale - and underlies the non-conserved liquid water 

fluctuations. The scalar parameter H is a measure of how much the non-conserved 

field varies from the conserved one. The exact form of yo and the value of H are 

dependent on the precise form of the equations governing the transport of liquid 

water by the velocity field. Schertzer and Lovejoy [1987] show that if liquid water 

field is transported by passive advection then H = but passive advection is not 

assumed a priori in this study because the assumption that (2.4) holds is more 
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general, and the field (p and the parameter H can be calculated from the aircraft 

liquid water data. For a positive value of H the observed field p is non-stationary, 

while the field cp is always stationary. This means that is often easier to deal with 

the flux field than use the density field directly. 

The flux of liquid water cp can be calculated from the observable p by using 

a power-law filter, multiplying in Fourier space by 'kr [Schertzer and Lovejoy, 

1991], where k is the wavenumber. Alternatively, the field p can be produced from 

a known flux (p by filtering by Ik1 -11 , also known as fractional integration [Wilson 

et al., 1991], and this gives the model its name. This is further outlined in section 

2.1.6. 

2.1.2 Multifractal Statistics 

The statistics of a multifra,ctal field can be described by the formalism of the codi-

mension [Schertzer and Lovejoy, 1992; Mandelbrot, 1991]. The codimension is used 

to define the statistics of the multifractal field in a scale independent manner. For 

any (normalised) multifractal field x A  measured at the scale A the codimension, c(-y), 

is defined by the following relationship, in terms of the probability distribution: 

Pr(xA  > Al Pe., A-47) , 	 (2.5) 

where -y can be any real number. Here the "" symbol indicates equality up to a 

prefactor which is a function of 'y.  So c(y) is independent of scale and can be used to 

find the probability of obtaining x), greater than a threshold value. The codimension 

c(-y) will vary depending on the exact multifractal dynamics that produce the field. 

However the universal FIF multifractal model that is used in this study argues that 

all multifractals fall into certain universality classes, whose codimension functions 
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are described in section 2.1.3. If the codimension c(y) is known then we have a 

statistical description of the multifractal. 

Another useful statistic for a scale invariant field x x  is the universal scaling 

exponent, K(q), which is defined in terms of the scaling properties of the qth order 

statistical moment: 

<4 >. A K (q)  , 	 (2.6) 

where the brackets < . > indicate ensemble averaging. Note that the multifractal 

field xA must be normalised so that < xx > = 1. Like c(-y) the function K (q) 

is independent of scale. Also like c(-y), the function K(q) could theoretically be 

of almost any form, but the K(q) of the universality classes of the FIF model is 

described in section 2.1.3. Thus there are two statistical functions describing the 

multifractal, one related to the scaling of the probability distribution, the other 

to the statistical moments. However the description using codimensions and the 

description using the universal scaling exponent are interchangeable because the 

functions c(-y) and K(q) are related by the Legendre transform [Parisi and Frisch, 

1985]: 

K(q) = mlax(q-y — c('y)), 	 (2.7) 

c(7) = mr(q-y — K(q)). 	 (2.8) 

The only restriction on the c(y) and K(q) functions for multifractals is that they 

be convex functions (positive second derivative). Thus either one of these functions 

is sufficient to describe the fractal properties of a field, because one can be derived 

from the other. 

Returning to the FIF model specifically, if a conserved flux cp is related to liquid 

water content p by (2.4), then it is possible to show [Schertzer and Lovejoy, 1991] 
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that their codimensions, c,(-y(p ) and cp (ryp ), are identical, that is 

cp('lp) = c(p(7,p)• 
	 (2.9) 

The fluctuations in the observed field, Ap, also have the same codimension func-

tion but the related scaling exponent function K(q) is modified by the parameter 

H according to equation (2.4) to give: 

K1 (q) = K(q) — qH. 	 (2.10) 

Thus the statistical properties of the observed field are directly and relatively simply 

related to the those of the underlying flux. And because the flux field is stationary, 

it is often easier to work with than the non-stationary field p. 

2.1.3 Universality classes 

The functions c(y) and K(q) would be sufficient to define the multifractal structure 

of cloud liquid water fields. However, the codimension and universal scaling expo-

nent are continuous functions and hence could require an infinite number of param-

eters to describe accurately. Fortunately, Schertzer and Lovejoy [1987] demonstrate 

that stable, attractive multifra,ctal processes exist and that the mixing of different 

multifra,ctal processes (or the densification of a multifractal process) leads to these 

universality classes. As a result, according to the universal FIF model, all multi-

fractal fields have conserved flux so with the following codimension function and 
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universal exponents [Schertzer and Lovejoy, 1991]: 

c(-y) = 

K(q) = 1 
1 

 C1  (G-711w + V
e  

CI  exp (. — 1) 

fli (q. _ q) 

Ciqln q 

a1 

a = 1 

1 

a = 1 

(2.11) 

(2.12) 

with c+, 	= 1. The two parameters in equations (2.11) and (2.12), C 1  and a, 

therefore fully define the statistics of the conserved flux in universal multifractal 

processes. The statistics of the field with non-conserved fluctuations can then be 

found using equations (2.9), (2.10) and the non-conservation parameter H. Hence 

there are three basic universal parameters required to describe any field in this 

scheme: 

• C1  is a measure of the mean inhomogeneity or intermittency, as it is the 

codimension of the mean field value. In the case of the conserved flux, it is 

the fixed point of c(7). A totally homogeneous field has C 1  = 0. 

• a is a measure of the degree of multifracticality. This means that it determines 

the magnitude of the departures from the mean, and the radius of curvature 

of the codimension function. While C 1  is a measure of the sparseness of the 

mean process, a is a measure of how much the sparseness varies as you move 

away from the mean. A geometric fractal, or monofractal, has a = 0. 

• H is a measure of the departure from conservation of the fluctuations of the 

field, as described in the previous section. It also describes the degree of 

non-stationarity of the field. A stationary field has H = 0. 
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By varying these three independent parameters the FIF multifractal model can 

be used to describe or simulate a wide range of statistical behaviour. Examples 

of the functions c(7) and K(q) for several different parameter values are shown in 

Figure 2.2a and Figure 2.2b respectively. The parameter values appropriate for 

cloud fields are determined from aircraft measurements of cloud liquid water in 

Chapter 3. 

2.1.4 'Bare' and 'dressed' quantities and multifractal phase 

transitions 

It must now be noted that the relationships for c("y) and K (q), described by (2.11) 

and (2.12) respectively, are only seen to hold in observed data up to some critical 

value of -y or q, above which the behaviour of these functions becomes linear [e.g. 

Tessier et al., 1993; Chigirinskaya, 1994]. This behaviour at extreme 1,  and q is 

known as Self Organised Criticality (SOC) and is described further in Schertzer 

and Lovejoy [1992] and Bak et al. [1987]. 

To explain the reason for this behaviour it is necessary to consider the conse-

quences of how measurements of multifractal quantities are made, and to draw the 

distinction between "bare" and "dressed" quantities [Schertzer and Lovejoy, 1987]. 

The base quantities are those that have been discussed so far - they are the result 

of a cascade process from large scales all the way down to the homogeneity scale. 

However, experimentally measured quantities generally have a resolution that is 

much coarser than the homogeneity scale of the atmosphere. Dressed multifractal 

quantities are defined as those quantities obtained by integrating, or averaging, over 

a completed cascade to produce a value at a lower resolution, corresponding to the 

way that experimental measurements are made. Both types of quantities have the 
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Figure 2.2: Examples of the functions: a) c(7) and b) K (q) , for two values of a 
and for C1  = 0.4. Note that K (q) must pass through the origin and (1, 0), and that 
c(7) has the fixed point (C1, CO. 
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same spatial statistics for low values of the exponents q (or 7), and for the univer- 

sality classes of the FIF model, these are described by (2.11) and (2.12). But while 

the bare quantities follow these relationships for all values of q (or 7), the dressed 
. 1.1q1c quantities have a critical-order moment qD (and corresponding 7D = (TD )) above 

which the functions K (q) are not well defined because the statistical moments di-

verge [Schertzer et al., 1993]. For dressed quantities of dimension D, the critical 

value qD  is given by: 

K(qD) — (qD  — 1)D. 	 (2.13) 

However, for any particular measurement with a finite number of sampled 

points, the maximum value of q (or 7) for which K(q) (or c(7)) is well defined 

may be less than qD  and is determined by the number of samples as well as the di-

mension [Schertzer and Lovejoy, 1992]. In this case the critical order qs  below which 

the structure functions show the behaviour predicted by the FIF model (equation 

2.12) is predicted to be [Tessier et al., 1993]: 

/.1) + Ds  Via 
= 	C1 ) 

where the sampling dimension Ds  is given by D, = log N,/ log As . Here A, is the 

maximum scale ratio in the measurements (i.e. maximum length divided by length 

of smallest resolution) and Ns  is the number of realisations measured. For example, 

if the data set were 5 aircraft flights measuring cloud properties at resolution of 

100m for a total path of 100km per flight, then Ns  would be 5, A, would be 1000 

(=100km/100m) giving D, = 0.23. 

The maximum q below which measured values of the universal exponent K(q) 

are well defined is therefore the smaller of qD  and qs . The value of qD  represents a 

firm limit that is determined solely by the number of dimensions of the quantity, 
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while q, is determined by the number of realisations sampled - this indicates that 

once the value of q, exceeds qD  then any further increase in the number of sam-

ples studied will not enlarge the range of exponents for which information can be 

obtained. 

So for dressed quantities such as integrated measurements, the function K (q) 

(and c(7)) does not conform to equation (2.12) when q > min(qp, q,), but is instead 

linear in q. This change in the behaviour of the statistics of a measured multifractal 

field at a critical exponent is labelled a "multifractal phase transition" [Schertzer et 

al., 1993]. Examples will be seen in the statistics of in situ measurements of liquid 

water content that are examined in Chapter 3. 

2.1.5 Double trace moment analysis 

The method used in this work to determine the multifractal behaviour of cloud 

liquid water content is the Double Trace Moment (DTM) technique of Lavallee et 

al. [1993]. This method is summarised below for a one dimensional data series, such 

as the liquid water content measured from aircraft-mounted instruments. It can 

be used to test scaling and universality, and determines the parameters of the FIF 

model. 

First consider the stationary flux field, cp. The flux can be determined from 

the measured liquid water content by power law filtering by k", i.e. fractional 

differentiation of order H. Although the dimensional analysis and passive scalar 

model [Schertzer and Lovejoy, 1987] predicts a value of H = 1, as in (2.4), a value 

of H is not assumed here. Fortunately, Lavallee et a/41991] demonstrated that a 

power-law filter of any order greater than H would produce the same results in 

the DTM technique. Therefore the procedure of Tessier et a/41993] is followed 
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and differences are taken between the adjacent points in the data series, since this 

approximates the effect of multiplying by the wavenumber k in Fourier space. This 

will produce the correct results as long as H is less than 1. If the resolution of the 

sensor is at scale A', then the "pseudo-flux", coy , at point x is given by 

40A,  (x) = IP(x + Axv) — p(x)I (2.14) 

where AxA, is the distance between adjacent points at resolution A' (AxA, = 

Lmax /A'). The flux is then raised to a exponent, n , and integrated to give a field at 

a lower resolution A. This field is labelled the "71-flux" I -1,71)  and is given by: 

Hill)  (Xi) = (2.15) 

with x1+1  = xi  + AxA , i = 1, 2, ...., A, and Ax), is the distance between adjacent 

points at resolution A (ax,. = Lmax/A). The double trace moment of the field at 

the scale A is then found by raising H(x) to a second exponent (q), summing over 

the entire range (i.e. summing over all x i ) and then taking the ensemble average, 

i.e. 
A 

TrA (WI ) q  = (E[H (An) (Xi)] q) 	 (2.16) 
e 

with an independent second exponent, q, being used. This process is repeated for 

various values of exponents n and q, and for a range of scales A (all lower resolutions 

than A'). If the process modelled is scale invariant then [Tessier et al., 1994 

TrA((plij )q pc AK(q,n)-(q-1) (2.17) 

where the double exponent K(q,n) has been introduced. When n  = 1 the usual 

scaling exponent is retrieved i.e. K(q,1) = K(q). When this process is applied to 
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a universal (FIF) multifractal the following holds [Lavanee et al., 1993]: 

K(q,n) = qaK(q). 	 (2.18) 

Therefore a graph of log K(q, n ) versus log 7? for a range of values of n  should produce 

a linear relationship, the slope of which is a. The intercept of the line is log K(q) 

and hence, with a known a, the parameter C 1  can be found using equation (2.12). 

This can be done for various values of q to improve the accuracy of the parameter 

derivation. 

It should be noted here that when considering dressed multifractal fields, such 

as measurements with resolution above the homogeneity scale, the double exponent 

K(q, n ) is affected by undersampling problems at high values of q or 1). This means 

that like K(q), the double exponent has critical order values above which it is not 

well defined and observations will not follow the relation (2.18). This problem 

should occur when the value of max(qn, n ) is greater than min(qs , qp), where qs  and 

qD  are the critical exponents defined in the previous section. As long as only values 

of n  lower than this are considered, then the relation (2.18) holds and can be used 

to find the parameters a and C1. 

With a and C1  estimated, the parameter H can then be found from the energy 

spectrum, E(k), defined by 

E(k ) = ( I "(k)1 2  + IX-0 2 ) , 	 (2.19) 

where k is the wavenumber and fi(k) is the Fourier transform of the liquid water 

content, p. If the energy spectrum follows a power law with E(k) oc k -13 , then 

the scaling exponent fi  is obtained from the slope of a log-log graph. The scaling 
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exponent, )3, is related to the parameter H by [Lovejoy and Schertzer, 1995b]: 

/3 = 1 — K(2) + 2H, 

and hence substituting from equation (2.12) for K(2) and rearranging, the following 

expression for H is obtained: 

H
3 -1 Ci  (2" — 2) 

= 	 
2 	2(a — 1) 

(2.20) 

In this manner all three of the parameters of the FIF model can be estimated using 

this technique. 

2.1.6 Numerical simulation of multifractal fields 

In order to use multifractal clouds in radiative transfer calculations, a method of 

numerically generating FIF multifractal fields is required. The generation technique 

used here is the "continuous cascade" method developed by Pecknold et al. [1993], 

and it is summarised below. In this method the Fourier space techniques are used 

to generate a multifractal field at any scale. 

As described in section 2.1.1, a multifractal cloud liquid water field p A  at scale 

A can be generated from the stationary (multifractal) flux field (p), using Fourier 

filtering. The question is then how to generate a stationary multifractal field such as 

cpx . To determine the stochastic generation process, first we consider the properties 

of the multifractal field co A  and then find a random generation process that produces 

fields with these properties. 

The basic properties of the stationary multifra,ctal field are: the statistics given 

by the codimension (c(ry)) and universal exponent function (K(q)) described in 
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section 2.1.2; scale invariance; the multiplicative nature of the cascade process, as 

was described by equation (2.1) and shown in Figure 2.1. Scale invariance and 

the multiplicative nature of the cascade combine to give the following relationship 

between the field values at the same point but at two different scales: 

= WAWA, 	 (2.21) 

where A and A' are two spatial scales, so that AA' is a third scale at higher resolution 

than either of the two. Equation (2.21) is a result of scale invariance - it is saying 

that zooming in from scale A to scale AA' is the same as going from the top scale 

(A = 1) to A'. 

Since it is often easier to deal with additive properties than multiplicative ones, 

it is convenient to introduce the generators FA of the multifractal field (pA  such that 

at each point 

cloA = exp(rA ). 	 (2.22) 

Determining the generators FA is then sufficient to find the field (p A  - so the goal is 

now to find generators F A  that satisfy all the known properties of the multifractal 

field. The multiplicative property of the field, (2.21), becomes an additive property 

of the generators so that 

FAA, = FA' + FA 
	 (2.23) 

If the field is normalised so that < cp), >= 1 then the definition of the universal 

exponent function K (q), given by equation (2.6), gives 

(exP(grA)) = (A) = ,) K(q). 	 (2.24) 

If a new function K A (q) is defined by K A (q) = K (q) ln(A), then equation (2.24) 
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gives 

exp(KA (q)) = AK(q)  =< exp(qFA) > . 	 (2.25) 

This means that the function K),(q) describes how the statistical moments vary 

with A and is the 2nd Laplace characteristic function of the generator FA i.e. the 

logarithm of the Laplace transform of the probability density [Schertzer and Love-

joy, 1991]. From this it is possible to determine all the properties required for the 

generators r), and these are [Pecknold et al., 1993]: 

1. The set of generators must be stable under addition so that equation (2.23) 

always holds, i.e. the random number distribution must be such that the 

addition of numbers drawn from the distribution produces the same distribu-

tion. 

2. In order to be certain that the structure functions are finite (and K(q) is 

well defined) the probability distribution of the generator must fall off faster 

than exponentially for positive rA , as can be shown from (2.24) [Schertzer 

and Lovejoy, 1991]. 

3. From equation (2.25), the Fourier spectrum of FA must fall off as the inverse 

of the wavenumber k in order to obtain a K),(q) that scales as In A, and hence 

to produce a K(q) independent of A [Pecknold et al., 1993]. 

4. If A is the highest resolution then the generator field rA  must be band limited 

to between [1, A], since there should be no variations in the field at resolutions 

higher than A. 

5. The field should be normalised so that K(1) = 0 to maintain conservation of 

the field i.e. so that <p,, >= 1 for all A. 
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So to determine the generators r, the problem is then: what type of random 

number distribution will fit these 5 criteria? Levy distributions are the only stable, 

attractive classes of random variables under addition [Feller, 1971], and hence the 

only set of distributions that satisfy the first criterion. Levy variables are defined 

as the limits of the normalised sum of independent random vectors, i.e. a Levy 

variable S is 
X1 + X2 ± 	Xn S 

71-400 	ni/C( 
(2.26) 

where x i  are independent random variables in R, and a is the Levy parameter 

(0 < < 2). To satisfy the second condition listed above we must choose only an 

extrema' asymmetric Levy distribution for the generators, that is one that has sig-

nificantly more large negative values than large positive values, so that (epl) is finite 

for all q after exponentiation of the generators. A random value from an extrema' 

Levy distribution can be calculated using the following expression [Chambers et al., 

1976]: 
sina.(1)-400)  

S(a) = 	(cos cl))1/a 	w  
_ 4,) tan (1)  + (r-W7r  co2r  )) 

a1 

a = 1 
(2.27) 

where (Do =- (1- 1 1  — al )/a, 41 is a random value drawn from a uniform distribution 

on (—I, I), and W is a random value drawn from an exponential distribution 

(Pr(W) = e-w). The random deviates 4:0 and W are mutually independent. 

So to satisfy the first two criteria the asymmetric Levy variables are used. Using 

the relation (2.27) a single independent value S(a) is randomly generated from the 

Levy distribution for each point in the field at the finest scale A. To obtain the 

correct statistics for the multifractal field, as given by (2.11) and (2.12), each of the 

variables S(a,x) is multiplied by ( 10 1/a [ Wilson et al., 1991]. The conditions 3 

and 4 are then satisfied by Fourier filtering. The first step in doing this numerically 
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is to apply a fast Fourier transform (FFT) to the field of random Levy variables. 

The lc' behaviour of the Fourier spectrum demanded by condition 3 is achieved by 

multiplying the resulting Fourier spectrum by 'kr [Pecknold et al., 1993], where 

d is the number of dimensions of the field being generated. The fourth condition is 

satisfied by filtering out any of the spectrum outside of the desired range of [1, A], 

i.e. multiply by the function f (k, A) which is 1 for lki < A and decays exponentially 

for lki > A. The exponential decay is used instead of a sharp cutoff to zero because 

sharp cutoffs cause sinusoidal 'ringing' effects when transformed back to real space. 

Finally the difference between the FFT and the continuous Fourier transform is 

taken into account by multiplying by the following factor [Pecicnold et al., 1993] 

k -ddk  

isd(A) 	17,A 	• 
ka 

This gives a final expression for the field of generators of 

(2.28) 

)1/- rA  = 	((  ca —1
1 	S(a, k) IkI 	f (k, A) tcd(A)) 	(2.29) 

where ,§(a, k) is the Fourier transform of the field of random Levy variables, and 

.7*-1  is the inverse Fourier transform function. The multifractal field, WA,  is then 

found by taking the exponential of the generators FA, according to (2.22). The fifth 

and final criterion is then satisfied by dividing this field by the expectation value 

Acli (a-1)  to normalise coA . Some examples of simulated fields WA  generated in this 

manner are shown in Figure 2.3. Part a) of the figure shows three versions of WA, 

generated using different values of a but leaving C 1  constant, with the same seed 

used in the random number generator to show the effect of varying a. Figure 2.3b on 

the other hand shows three curves generated with the same a but different values 

of the parameter C1 . Note that the Levy parameter a used in the simulation of 
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Figure 2.3: Randomly generated 1D flux fields CpA at a scale of A = 256. a) shows 
the effect of changing the value of a. C1  is held constant at 0.1 b) shows the effect 
of changing C1  when a = 1.5. In both plots the 3 fields are linearly offset for ease 
of viewing, and the same seed is used in the random number generator for all 3. 
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the field and the multifractal parameter a are the same quantity, i.e. multifractals 

generated using this method have a multifractica,lity parameter a equal to the Levy 

parameter used in their generation. 

Generating the non-stationary field 

Figure 2.4: A numerically generated flux (pA  in one-dimension, and the field PA 
that results from fractionally integrating the flux with H = 0.3. Both fields are 
normalised so that the mean is one. Parameters are a = 1.5, C1  -= 0.1 and A = 256. 

The non-stationary liquid water content field p is related to the stationary flux 

field cp by equation (2.4). This relationship shows that if the non-stationarity 

parameter H were equal to 1, then p could be found by integrating the field (p. But 

since H could be any real number, p must be found by a process known as fractional 

integration of the flux field (p. This process involves taking the Fourier transform 

of (p, multiplying the field by the factor lki , where k is the wavenumber, and 
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(1) 

p 

Figure 2.5: Examples of 2d multifracta1 generation with scale A =  128,  a = 1.5, 
C1  = 0.1. a) shows the flux field cp and b) shows the fractionally integrated field 
p. Both are normalised so that the mean is 1. The coordinates are specified as 
grid-point number, absolute length is not yet specified. 
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then taking the inverse transform, that is 

P = -7.-1  (43(k)ikl -H) , 
	 (2.30) 

where -0(k) is the Fourier transform of the field of random Levy variables, and T - ' 

is the inverse Fourier transform function. This is known as fractional integration 

because if H is a positive integer then the result is the same as integrating the 

field H times. This process allows the liquid water content field to be simulated 

at any scale A by fractionally integrating the flux field, yoA, numerically generated 

as described above. The final step in generating the liquid water content field 

is to multiply p by the desired mean of the entire field (since the mean of the 

field generated by the process so far is one). An example of the one dimensional 

simulated field (pA and the resulting PA  are shown in Figure 2.4 for A = 256 and 

H = 0.3. Note that the general effect of the fractional integration from cpA  to PA is 

a smoothing of the field. Figure 2.5 shows the same results for an example value 

of a two dimensional flux field (p A  and the resulting PA  with A = 256 and H = 0.3. 

It will be seen in section 3.2 that these simulated fields closely reflect the statistics 

of cloud liquid water. 

A summary of all the steps taken in generating the multifractal liquid water 

content field is shown in flow diagram form in Figure 2.6. 

2.2 Monte Carlo Radiative Transfer 

The Monte Carlo radiative transfer technique is probably the most straightforward 

method to find the radiative properties of inhomogeneous media such as cloud 

fields. It involves the direct simulation of the process of radiation propagation 
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This stage generates a random Levy variable at each point 
in the field at the highest resolution A, using equation 
2.27. The variable x is the position, and a is the fractal 
parameter chosen for the field. 

This stage takes a Fast FourierTransform FO, of the field 
S(x,a). The result is the field S(k,a), where k is the 
wavenumber 

The Fourier transform of the generators TA  is found by applying 
the power law factor Ikrdkt .  , where d is the no. of dimensions of 
the field, and the normalisation factor c l  

a - 1 ) 

The inverse Fourier Transform F -  is then applied to the field, 
with the factor xd  being a correction for the use of a FFT rather 
than a continuous Fourier transform, as given by equation 2.28 

The stationary multifractal field yA  is then found by taking 
the exponent of the generator field rA 

A non-stationary multifractal field is then found using a 
Fourier Filter of Ikl -H on the stationary field CpA, where H is the 
chosen non-stationarity parameter. 

Figure 2.6: Flow chart summarising numerical generation of multifractals. 
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- a large number of photons are traced through the media in question as they 

are scattered or absorbed. The main drawback of the Monte Carlo method is the 

relatively large amount of computer time necessary to trace a statistically significant 

number of photons through the system in order to get reasonably accurate results. 

A thorough description of the Monte Carlo method in radiative transfer and its 

various applications can be found in Marchuk et al. [1980]. In this section the 

basic technique used throughout this study to determine cloud radiative properties 

is outlined. 

In this work the forward simulation method is used. This means that the pho-

tons are traced from the time they enter the system until they leave or are absorbed, 

as opposed to a backwards Monte Carlo method where photons are traced in re-

verse out from a fixed detector until they reach a light source. In this case the 

system in question is either a column of the atmosphere containing a cloudy layer, 

or simply the cloudy region alone. Both will be used later in this thesis, when the 

exact geometries used for different applications will be specified. 

2.2.1 Photon tracing 

The photons are defined by a position within the system, described by the po- 

sition vector x ={x, y, z} , and direction of propagation, specified by the vector 

= {a, b, c} which is normalised so that its modulus equals one. In order to 

simulate the possibility of absorption, each photon is also given a weight W that 

represents the probability that it has not been absorbed during its motions through 

the system. The photons enter at the top surface of the system at a (uniformly 

distributed) random position in a direction determined by the position of the sun. 

Obviously W = 1 when the photon enters the system. The following steps are then 
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used to trace each photon through the system: 

1. The free path length 1 that the photon travels before the next collision is 

determined (see section 2.2.2). 

2. The possibility of the photon leaving the system is considered. If the photon 

encounters the top or bottom of the system before travelling a distance 1, the 

current weight W is added to the total of the photons leaving the system, and 

the simulation of this photon is finished. Exiting photons are binned by exit 

position, exit direction, total path length travelled and number of scattering 

events before leaving. The horizontal boundaries are considered periodic, so 

that if they are encountered the photon reappears at the opposite side of the 

system at the same height. 

3. If the photon has not escaped, the position of the next collision are calculated 

using the transforms x —> x + al, y y + bl, z —> z + cl. 

4. The chance of absorption is taken into account. The probability that the 

photon is scattered at a collision event is the single-scattering albedo, w, of 

the medium, so the chance of absorption rather than scattering is (1 — w). 

The weighting, W, of the photon is reduced to Ww, and the remainder of the 

weight, W(1 — w), is added to the total absorption in the medium. 

5. The direction of the photon after the collision is determined from the phase 

function of the scattering medium. The phase function, P(0), is the probabil-

ity density of having a scattering angle 0 between the incoming direction and 

outgoing direction of the photon at the collision. The cumulative probability 
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PP of a photon being scattered between 0 and 0 is then 

PP(0)= fo
e  

P(01 )d01 
	

(2.31) 

A uniform random number is chosen on [0,1] and PPM is set to this number. 

Equation (2.31) is then solved numerically to give the upper limit 0, the 

scattering angle. The azimuth angle, 0, of the scattering is then randomly 

chosen from a uniform distribution on [0, 27r]. If p = cos 0 then the direction 

of the photon after the collision is found using the transforms: 

a —> ap — (b sin 0 + ac cos 0) [(1 — p2 ) ÷ (1 — C2 )} 112  (2.32) 

b—> ap — (a sin 0 + bc cos 0) [(1 — p2 ) ÷ (1 — c2 )1 112  (2.33) 

c --+ cp — (1 — c2 ) cos (/) [(1 — p2 ) ÷ (1 — c2 )} 1 1 2  (2.34) 

6. With the new direction, position and weight, return to step 1. 

This process is repeated for all of the photons considered. After all the pho-

tons have been traced until they exit the system, the sum of weights that have 

been binned as passing out the top of the system, passing out the bottom of the 

system, or being absorbed, are used to calculate the reflectance, transmittance or 

absorptance of the system respectively. Radiance distributions can also be found 

for the transmitted or reflected radiation from the binned photons exiting the sys-

tem. These quantities are calculated for the whole system but also for separate 

grid-squares within the system so that the radiative properties at different spatial 

scales can be examined. 
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2.2.2 Maximal Cross-section method for finding free-path 

length 

The only step not fully detailed in the previous section was the method of deter-

mining the path length 1 of the photon before a collision occurs. If the radiance of 

a beam of radiation in a particular direction is initially 10 , then after a distance 1 

the radiance in the beam is 

i 
/ = /0 exP(— Jo  Oext(x)dx). 	 (2.35) 

where Oext (x) is the volume extinction coefficient in the medium at the position x 

and is defined as the rate of extinction of a beam of radiation per unit length (with 

units of m-1 ). The exponent in (2.35) is the optical depth T along this particular 

path, that is r=  I 1 
f3est (x)dx = — ln —

/ 
o 	 /0 

(2.36) 

The optical depth is therefore dimensionless. The probability of a photon having 

a collision in distance 1 is then PR = L. The simplest way to randomly generate 

a free path length 1 for a particular photon is therefore to generate a random PR 

using a uniform distribution on (0, 1). This is then used to give a random value 

of T using the expression T = - in PR. The equation (2.36) is then solved for the 

free path length 1. However this method can be difficult, or at least very time 

consuming, if the function Oext  is complicated, such as a multifractal field on a high 

spatial resolution grid. Even though the field f3ext  is known, to solve (2.36) for 1 in 

a multifractal field it is generally necessary to accumulate optical depth grid-square 

by grid-square, and then linearly interpolate in the last grid-square. 

Therefore in this study we use the maximal cross-section method used by Mar- 
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shak et al. [1995] and Marchuk et al. [1980]. This method involves transforming 

the integral radiative transfer equation [Marshak et al., 1995] 

it • V/ +13ext (x)/(x, ft) = wfiest  J/(x, ST)P(SZ • rndST 	(2.37) 

where gx, n) is the radiance at position x and in direction 1, and P is the phase 

function. The first term on the left of equation (2.37) is the gradient of the intensity 

field, the second term represents the extinction of the intensity already travelling 

in the direction n, and the term on the right of equation (2.37) is the scattering 

source function. Equation (2.37) can be manipulated to give 

1IV/+0,,ax /(x, SZ) =i3„,ax  rext(x) wP(11 • IT) + (1 	 t)  6(1— ST)] /(x, ST)da, 
Omax 	 Omax 

(2.38) 

where Omax  = MaXx  Oext  (x). Equation (2.38) can be interpreted as the radiative 

transfer equation for a fictitious medium in which f3max  is the constant extinction 

coefficient throughout the medium, and the phase function at any point is a com-

bination of: 

• wP(11 • ST), which occurs with a probability of r3eit(x)  (physical scattering) 

• Oft — ST), which occurs with a probability of 1PeZ(x) . ("mathematical 

scattering") 

The first part of this modified phase function represents the physical scattering. 

The second part is purely a mathematical construct since the photon always goes in 

the same direction after it "scatters", because the delta function, 6(11— ST), is only 

non-zero when ft = ST. The true path length 1 in the real medium is then found 

by tracing the photon through this fictitious medium (using the simple method 
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of solving (2.36) for the path length since the extinction coefficient is constant) 

until a collision occurs in which there is physical scattering rather than "mathe-

matical scattering". Which type of collision occurs is randomly determined by the 

probability rietl:.(x)  of physical scattering. 

In summary, the following steps are followed to find the path length 1 in the 

(real) medium: 

1. Calculate the optical depth covered in the fictitious medium before scattering 

using T = — In PR, where PR is a random number from a uniform distribution 

on (0,1). 

2. The distance travelled is l' = Ti-Ana,„ since the fictitious medium has constant 

volume extinction coefficient Omax . 

3. Determine whether scattering at this point is physical or mathematical, using 

a uniform random number R between 0 and 1. If R < 13)er (x)  then the scat-

tering is physical, if R > )5eit (x)  then the scattering is purely mathematical 

and the photon continues straight ahead. 

4. If the scattering is purely mathematical then return to step 1 and repeat 

the process, if the scattering is physical then the process stops and the path 

length in the real medium 1 is the sum of the values of l' since the last physical 

scattering. 

This value of 1 is then used in the Monte Carlo algorithm described in the 

previous section (i.e. section 2.2.1). The advantage of this method of calculating 1 

is that it makes the calculation time almost insensitive to the size of cloud grid used 

or the variability of the cloud field [Marshak et al., 1995]. It is of no advantage for 
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calculations in homogeneous cloud fields, but it is much faster for radiative transfer 

in multifractal clouds at small grid sizes. 

2.2.3 Cloud properties 

While the cloud properties used in the Monte Carlo simulations throughout this 

study will vary, it is possible to make some general comments about them here. 

Throughout this work the inhomogeneity in clouds is assumed to be solely due 

to variations in the number density of cloud droplets, not in the size of cloud 

droplets. Therefore the liquid water content varies but the droplet size distribution 

is constant throughout the cloud. In terms of optical properties this means that 

the scattering phase function and single-scattering albedo are constant throughout 

the cloud but the volume extinction coefficient O ezt  varies in space. Although in 

some cases completely homogeneous clouds will be used in calculations for the sake 

of comparison, more often the focus will be on clouds whose liquid water content 

is multifractal and generated as was described section 2.1.6. The exact geometry 

and dimensions of the clouds will be specified later as they vary with the different 

applications. The resolution of the multifractal cloud is generally 25 m, meaning 

that the cloud is generated in a grid of cubes that are 25 m x 25 m x 25 m. The 

scale parameter A will then be given by 

_  MaX  

25m 
(2.39) 

where Lmax  is the total side length of the cloud field. Within the grid-cubes the 

clouds are assumed to be homogeneous. Although this assumption of small scale 

homogeneity is unrealistic, it has been shown that variations at or below the scale 

of the photon mean free-path have very little effect on the radiative properties of 
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clouds [Marshak et a/., 1998; Cahalan, 1989]. This mean free-path length in liquid 

water clouds varies with the cloud properties but is on the order of 50 m [Marshak 

et al., 1998]. 

If the cloud liquid water content allocated to grid-cube by the multifracta1 gen-

eration method is p, then it can be related to the optical properties in the following 

manner The cloud liquid water content (in units of gm -3 ) at any point is related 

to the droplet size distribution by 

00 4 0 

p = DN i -ren(r).dr, 
Jo 3 

(2.40) 

where D is the density of water (in gm-3 ), N is the total droplet number concen-

tration (units of m -3 ) and n(r) is the (normalised) probability of the droplet radius 

being between r and r + Ar, for infinitesimal Ar. On the other hand, the volume 

extinction coefficient is given by 

1.00 
Oext = N I Qextn(r). 7rr2dr Jo 

(2.41) 

where the extinction efficiency factor Q ext  is defined as the ratio between the ex-

tinction cross-section of a particle and its geometric cross-section and is given by 

the Mie scattering formula for spherical droplets [e.g. Goody and Yung, 1989]. 

Combining the two relationships (2.40) and (2.41), it can be shown that 

3(2 P  
Oext = 4D ref f 

(2.42) 

where Q is the mean extinction efficiency factor, given by Q = ir Qextn(r)r2dr ÷ 
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n(r)r2 dr, and ref f  is the effective cloud droplet radius defined by: 

r 	
n(r)r3dr 

ref 	fo" n(r)r2dr .  
(2.43) 

For the UV and visible wavelengths where the droplet radius tends to be signifi-

cantly larger than the wavelength, Qt and therefore Q is very close to 2 [Stephens, 

1976]. For other wavelengths, the Mie scattering formulae can be used to find Q 
for the droplet radius distribution in question, as well as the other single-scattering 

properties such as the phase function and single-scattering albedo. However Hu and 

Stamnes [1993] demonstrated that the single scattering properties of clouds varied 

with changing effective radius but did not vary much between different shaped ra-

dius distributions with the same ref f.  In the same work, parameterisations of some 

of these single scattering properties were developed as functions of ref f and wave-

length, and these are used here to find Q and other single scattering properties. 

Therefore if ref f is chosen, the multifractal liquid water content field can be used 

in (2.42) to give Oext  for each grid-cube. Generally a value of approximately 10 pm 

will be taken, since this is typical for low level liquid water content clouds [Han et 

al., 1994], but this is varied in some cases. 

Apart from )3,t , the other properties required for the Monte Carlo model are 

the single-scattering albedo w and the phase function P(0). The parameterisation 

of Hu and Stamnes [1993] give the w and the asymmetry factor g for each ref  I (at 

each wavelength). The asymmetry factor is defined in terms of the phase function: 

g = 	P(0)cosOde, 	 (2.44) 

and determines the relative ratios of forward to backward scattering of radiation 

from the droplets: g = 1 represents forward scattering only, g = —1 backwards 
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only and g = 0 represents perfectly isotropic scattering. For visible wavelengths 

and typical ref  f values the asymmetry factor of liquid water clouds is approximately 

0.85, indicating strong forward scattering. With the known asymmetry factor, the 

Henyey-Greenstein phase function PHG(0,g) is used in the Monte Carlo radiative 

transfer - it is given by 

1 - 
PHG(0 , 9) = (1 g2  - 2g cos 0) 3/2.  

(2.45) 

This phase function, as opposed to a phase function constructed from the Mie 

scattering theory and typical droplet size distribution, was chosen in order to allow 

the phase function to be easily varied to test the effect of changing scattering 

properties on cloud radiative transfer. 

Therefore a known liquid water field p and a chosen reff  can be used to calculate 

all the optical properties required for the Monte Carlo radiative transfer simulations. 

In this manner the multifractal model of cloud liquid water content and the Monte 

Carlo radiative transfer model are combined to determine the solar radiation field 

in clouds. 

2.2.4 Whole atmosphere calculations 

If we are performing radiation calculations for the whole atmosphere rather than 

just the cloud, as is done in section 6.2, the scattering properties neeii to be adjusted 

for non-cloud attenuation, such as Rayleigh scattering, aerosol or molecular absorp-

tion (see Goody and Young [1989], Paltridge and Platt [1976], or Chandrasekhar 

[1950] for more details on these types of extinction). The model is modified by 

replacing the cloud volume extinction coefficient in each grid square by the sum of 

the individual volume extinction coefficients for all attenuating species. The phase 
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function in each grid square is then the weighted average of the phase functions, 

with the weighting for each species being given by the value of fl ext  for that species. 

Similarly, the single-scattering albedo for each grid-square is the weighted average 

over all the species, with each value of w being weighted by the value of O ert  for 

that species. Finally, surface reflectance can be taken into account by including the 

chance of the photons being reflected from the lower surface of the system (instead 

of passing out of the system), with the probability of reflection being given by the 

ground albedo at that wavelength. 
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Chapter 3 

Analysis of in situ measurements 

of liquid water content 

3.1 Introduction 

In this chapter the spatial distribution of cloud liquid water content is examined, 

using the framework of the FIF multifractal model to analyse aircraft measure-

ments. As outlined in Chapter 1, fitting the FIF multifractal model to in situ data 

forms the basis of this thesis, since it is this knowledge of the spatial statistics of 

low- and mid-level liquid water clouds that allows the analysis of radiative proper-

ties that follows in subsequent chapters. One question of interest here is how the 

in situ data compares with the remote sensing studies of cloud fields [e.g. Lovejoy 

et al., 2001b; Tessier et al., 1993] that have found different FIF parameters. Apart 

from finding the parameters of the FIF model for use in radiative studies, the other 

goals of this chapter include extending multifractal analysis of in situ data from 

the marine stratocumulus type concentrated on in previous studies [e.g. Mars hak 
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et al, 1997; Davis et al., 1994] to two other types of low-level liquid water clouds - 

altostratus and low-level cumulus clouds. In this case there are two key questions: 

are they also scale invariant over a range of scales, and if so how do their fractal 

parameters compare to stratocumulus. In the case of stratocumulus cloud, not 

only are a significant number of flights added here to increase the data set analysed 

(over land in this case rather than in purely marine conditions) but an attempt is 

made to investigate the variability of the multifractal properties over time - both 

the diurnal and seasonal variations are considered. 

To achieve these objectives, this chapter is structured in the following way. Ini-

tially, some of the statistics of the liquid water field are presented for all three cloud 

types (stratocumulus, altostratus and cumulus) and the cloud fields are shown to be 

scale invariant. Subsequently, the data is compared to the FIF universal multifrac-

tal model and the associated multifractal parameters are empirically determined. 

The diurnal and seasonal variation in stratocumulus spatial structure is then in-

vestigated. In addition, once the spatial distribution of the cloud fields has been 

parameterised, a relationship is found between mean liquid water content and the 

percentage of the horizontal layer filled with cloud. 

3.2 Measured multifractal statistics of liquid wa-

ter content 

3.2.1 The data set 

Liquid water content was measured in cloud fields over northern Tasmania, Aus- 

tralia, with an aircraft-mounted King hot-wire probe [King et al., 1978]. Flights 
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were made over the course of three years: 1999, 2000 and 2001. Data collection 

was spread over the months between April and November, inclusive, because the 

aircraft was not available during summer. A variety of cloud conditions were in-

vestigated. Three broad categories of cloud type were examined: stratocumulus, 

altostratus and cumulus. Cloud type was determined by visual observation from 

the aircraft while above the cloud field that was measured, with the height of the 

cloud bank (determined when descending through the cloud) also taken into ac-

count. Approximate cloud cover was also determined visually from above the cloud 

field. The minimum cloud cover for which data was collected was 0.25, but there is 

some selection bias toward higher cloud cover because flights were not made unless 

satellite images seemed to indicate "cloudy" conditions. On occasions when mul-

tiple cloud layers were present the cloud type and approximate cover recorded are 

those of the layer in which liquid water content was measured. 

An example data series taken in stratocumulus cloud on October 31, 2000 is 

shown in figure 3.1. It shows strong intermittency - the majority of values are 

small but there are a few extreme values that are much greater than mean. 

On each flight the liquid water content was recorded on horizontal runs, at a 

frequency of 1Hz. Aircraft speed was used to convert this time series into a spa-

tial series. This gives a resolution of approximately 100m. For analysis purposes 

each data series was considered to begin once the aircraft levelled off at the de-

termined measurement height, and to end when the aircraft deviated significantly 

from horizontal flight. 
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Figure 3.1: The liquid water content measured by a King hot-wire probe during 
a flight through stratocumulus cloud on the 31 Oct 2000, as a function of flight 
distance. 

3.2.2 Energy Spectra 

In the multifractal analysis of these liquid water content series, the first thing 

considered is the energy spectrum E(k) of the liquid water content field, p, as given 

by equation (2.19). When comparing a range of liquid water content probes, Davis 

et al. [1996a] found that King probe to be reliable at measuring energy spectra 

down to scales on the order of 10m. 

Fourier transforms were carried out using a numerical Fast Fourier Transform 

(FFT) algorithm. To remove the noise present in individual spectra, the method of 

"octave averaging" has been used, as suggested by Davis et al. [19964 following 

their comparison of noise reduction techniques. This involves averaging E(k) into 
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bins of increasing size, Em : 

1 2m+1-1  
Em=  (3.1) 

i=2*4  

The energy spectra for four individual stratocumulus cloud flights are shown in 

figure 3.2, plotted on logarithmic scales. As the results of interest are the linear 

behaviour and slope of these data sets, the spectra have been offset vertically for 

ease of viewing. The lines shown are least squares fitted to data for scales less than 

251cm. These spectra all seem to demonstrate scaling behaviour for the majority of 

the scales covered, as can be seen by their linear behaviour. This implies that the 

same processes are at work over all these scales. The scaling exponent, 0, of the 

energy spectra vary, with the average value for stratocumulus being )3 = 1.43, and 

a standard deviation of 0.11. Note that this is lower than the value of 3 calculated 

for turbulent velocity fields using dimensional analysis [Kolmogorov, 1941].This is 

significant becasue the 5/3 value for the spectral slope has often been assumed 

a priori in statistical models of clouds [e.g. Cahalan et al., 1994; Baker, 1993; 

Marshak et al., 1995]. The lower spectral slope observed here means that although 

the cloud fields are non-stationary, they are relatively hgher degree of variation at 

smaller spatial scales then predicted by these models. 

Some flights ;  such as that on 03/10/01 shown in Figure 3.2, seem to show a scale 

break at 20-40km, with the spectrum flattening out in this range. Similar scale 

breaks have been noted by other researchers [e.g. Davis et al., 1996a]. However, 

as can be seen with the flight on 06/06/01 in figure 3.2, other flights extending 

out to the same scale range do not show any obvious break in scaling. Since the 

spectral exponents of intermittent quantities are often difficult to estimate reliably, 

and require large data sets, ensemble averages are considered to resolve this issue 
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Figure 3.2: The energy spectrum of liquid water content, plotted on logarithmic 
scales. For four individual flights, with octave averaging to reduce noise in the 
spectra. 
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of the scale breaks. 

When the stratocumulus data was considered as a whole ensemble, no scale 

break was apparent at low frequencies for stratocumulus. This can be seen in Figure 

3.3, where the energy spectrum is plotted for all the stratocumulus data considered 

a single ensemble. Figure 3.3 also contains the energy spectra of the other two cloud 

types, again with the spectra of all flights of each type averaged to give an ensemble 

spectrum (as directed by the definition (2.19)). Again all three cloud types exhibit 

a power law behaviour, which is linear on the log-log plots, over the majority of 

the scales shown. This implies that the processes of cloud formation and transport 

are the same over these scales. Since we are interested in testing linear behaviour 

on this graph and finding the slope of the line, but not the intercept, the data sets 

in figure 3.3 have been vertically offset for ease of viewing. Note that although the 

plots in Figure 3.3 cover a range of scales up to 160km, the only cloud type that 

shows signs of a scale break (or change of slope in the plot) at low frequencies (large 

spatial scales) is the altostratus, which seems to begin to level out at around 25- 

50km. The stratocumulus and cumulus spectra maintain their power law behaviour 

up to the lowest frequency (largest scales) measured. At the highest frequencies 

however all three plots seem to flatten out slightly. This flattening of the spectrum 

at high frequencies has been traced to noise in the electronics which was observed 

even in clear sky flights. These data points were therefore excluded from the linear 

fits shown in Figure 3.3. Because of this noise, no attempt was made to ascertain 

the high frequency limit of the scaling regime. 

The slopes of all three spectra are slightly, but significantly, lower than the value 

of calculated for turbulent velocity fields using dimensional analysis. Also note 3 

that with ensemble averaging, the level of noise is a lot lower so octave averaging is 

not necessary. The value of the power law exponent, /3, that is found from the slope 
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Figure 3.3: The energy spectra, E(k), of the liquid water content of three different 
cloud types (altostratus, stratocumulus and cumulus), derived from in-situ mea-
surements of cloud liquid water content. Each spectrum is an ensemble average 
over all flights of each cloud type. A line with a 5/3 Kolmogorov slope is included 
for comparison. 
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3.2.3 The universality parameters 
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Figure 3.4: The double trace moment TrA (4,)q as a function of scale, A, plotted 
on a log-log graph for q=2 and a range of i values. For a flight in stratocumulus 
cloud on the 6th of June 2001. 

Using the DTM technique described in section 2.1.5, the data was analysed 

both as individual realisations and as ensemble averages of the three cloud types. 

Figure 3.4 shows the logarithm of the double trace, ln[Tr A (4,)q], versus ln A from 

an example of the individual flight data, from 06/06/01. The same plot for when 

the double trace of all the flights is averaged to give ensemble values in each of 

the three cloud categories is shown in figure 3.5. The fact that these plots are 

nearly linear confirms that these fields are scale invariant over the range covered, 

as spectral analysis has already shown. The slopes of these lines were computed 

to yield the double exponent K(q,q), as described in (2.17). A plot of log K(q,n) 

against log n  for the example flight is then shown in figure 3.6, with an identical plot 

for the ensemble averaged quantities shown in Figure 3.7. All of these plots show 
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Figure 3.5: The ensemble averaged double trace moment, Tr ),(cp7„)q , as a function of 
scale, A, plotted on logarithmic axes for cloud types: a) stratocumulus, b) cumulus 
and c) altostratus. For q = 0.8 and a range of 77 values. 
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near straight line relationships up until a critical moment, after which point the 

value of K(q,n) starts to become almost independent of (due to under-sampling). 

This is the consequence of examining "dressed" multifra,ctals with a finite number 

of samples, as was identified by Tessier et al. [1993] when presenting the DTM 

method. As noted in sections 2.1.4 and 2.1.5, the multifractal parameters can be 

found if only values of n lower than the critical value are considered, since below 

that point the plots in Figure 3.7 should be linear with slope a. Testing this, if 

only points where log n  < 0 are considered then the correlation coefficient r 2  for 

the linear relationships shown in Figure 3.7 is above 0.92 in every case, while the p 

values of the fit is always less than 0.01. This linear behaviour indicates that the 

horizontal liquid water content series are behaving as predicted by the universal 

FIF model. The universal parameters, a and C 1 , were derived from the slope and 

intercept of these plots, as was described in section 2.1.5. The parameter values 

calculated for the ensemble averages are shown in Table 3.1. 

As with the spectral exponent, 8 , the values for a in table 3.1 are close enough 

that the parameter can be considered constant across cloud types. However the 

ensemble averaged values of C1  show more significant (relative) deviation, although 

the values are still not vastly different. With C1 = 0.126, the cumulus cloud fields 

have a higher mean intermittency than the stratocumulus, with C1 = 0.108, which 

in turn is slightly more intermittent then the altostratus (C1= 0.082). The low 

values of C1  implies that the conserved multifractal flux is not extremely sparse 

in comparison to other multifra,ctal fields (for example, Chigirinskaya et al. [1994] 

found C1  0.3 for horizontal measurements of the turbulent velocity field). The 

relatively large a indicates that a monofractal description would not fit the data 

well, as it is far from the monofractal value of a = 0. 

It may be seen from equation (2.18) that the scaling exponent K(g) should be 
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Figure 3.6: The double exponent K(q,n) as a function of n  on a log-log plot. The 
data was taken during a flight through startocumulus cloud on 6/6/2001. 

retrieved from the double exponent K(q,n) when 71 = 1 i.e. K(q) = K(q,1). To 

confirm that the spatial statistics of the liquid water content can be described by 

the FIF model, the scaling exponents K(q) for the three cloud types are plotted 

in figure 3.8 along with the theoretical values calculated using the universal pa-

rameters in table 3.1 and equation (2.12). In each of the three cases there is a 

close fit to the universal model until a critical exponent, at which point there is 

a multifractal phase transition followed by a linear relationship. These changes 

in behaviour at high q appear to be the first order multifractal phase transitions 

described in Schertzer and Lovejoy [1992], which are due to the divergence of mo-

ments in "dressed" multifractal quantities, combined with the effect of finite sample 

size as discussed in section 2.1.4. For the stratocumulus the critical exponent is 

6.2, for the altostratus it is also 6.2, and for the cumulus cloud the critical ex- 
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Figure 3.7: The logarithm of the double exponent K(q, n) as a function of log n , 
calculated from the ensemble averaged trace moments for the three cloud types: a) 
stratocumulus, b) cumulus, c)altostratus. The plots are shown for various values 
of q. They all show linear behaviour with equal slope (a) up to some critical value 
of 77 , at which point they become constant with n. 
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ponent is approximately 4.8. Compare this to the critical exponents qs  predicted by 

the multifractal parameters in Table 3.1 using the relations in section 2.1.4, which 

are rs,  6.4 for stratocumulus,. 6.5 for altostratus and 5.2 for cumulus cloud. 

The differences between cloud type are caused by the differing value of C 1  and the 

different number of flights for each type. The measurements therefore show critical 

exponents slightly lower than predicted. 

Finally, the value of the non-conservation parameter H was determined using 

equation(2.20), and is also listed in the table 3.1. The values are again very similar 

across the cloud type groupings. They are also very close to the value of that 

is predicted by the passive advection transport model of Schertzer and Lovejoy 

[1987]. In general this value of H between zero and one indicates that the cloud is 

non-stationary, i.e. the statistical properties are not invariant under translations, 

but has stationary increments [Davis et al., 1996b]. 

The properties found for stratocumulus clouds in Table 3.1 agree well with the 

multifractal analyses of liquid water content from ten flights in marine stratocu-

mulus in Marshak et al. [1997]. That study found ensemble averaged values of 

= 0.10 and H = 0.28 (they did not calculate a). The universal parameters 

calculated using satellite-measured cloud radiances by Tessier et al. [1993] are also 

in general agreement for values of C1  (0.07-0.10 for different satellite channels) and 

H (0.3-0.5), although the a values of 1.1-1.35, are generally lower. On the other 

hand, Lovejoy et al. [2001a] found a = 1.87 and 1.90 for visual and infrared satellite 

images respectively, while again finding similar C 1  values. Of course, due to the 

non-linear relationship between cloud liquid water content and the reflected radia-

tion field, it is not clear that there is any reason to expect their fractal parameters 

to be same. 
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3.2.4 Diurnal cycle of stratocumulus clouds 

Using lidar measurements, Cahalan et a/41994], found a diurnal cycle of stratocu-

mulus spatial structure in the framework of the bounded cascade model. This 

indicated that the stratocumulus structure was altered by the well-known daily cy-

cle of the atmospheric boundary layer. To investigate this with in-situ flight data 

and the FIF model, the data series was divided according to which hour of the 

day the run occurred. Each hour of the day was then considered to be a separate 

ensemble. Note that data from any particular flight may fall into several different 

hours. The DTM analysis was then performed for each of these hour-ensembles. 

To reduce the effect of any annual or seasonal cycle (as will be examined in section 

3.2.5), the data in each hourly bin was weighted so that each month made an equal 

contribution to the ensemble. This was done by multiplying the data from each 

flight in a month by the inverse of the number of flights in that month. The re-

sulting universal fractal parameters are shown in Figure 3.9, plotted as a function 

of time of day. Only stratocumulus data was used here. The number of flights in 

each hour bin is listed in Table 3.2. 

Table 3 2: The number of flights in each hour-based bin. 
hour (AEST) 1 2 3 4 5 6 7 8 9 10 11 12 
# flights 2 2 1 2 2 3 4 2 2 3 4 5 
hour (AEST) 13 14 15 16 17 18 19 20 21 22 23 24 
# flights 6 2 2 5 4 4 1 2 2 0 1 2 

Cahalan et a/119941 used a "bounded cascade" model, with their fractal pa-

rameter f measuring inhomogeneity. Although there is no direct relationship, this 

parameter is most equivalent to the parameter C1  used here, as both are measures 

of mean inhomogeneity. The results found in that study are qualitatively similar 

to the cycle of C1  seen in Figure 3.9a, with the inhomogeneity decreasing in the 
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Figure 3.9: The diurnal cycle in the multifractal parameters of stratocumulus cloud. 
While a) C1 , and b) a, show signs of a diurnal pattern, c), H, does not. Time is in 
Australian Eastern standard time (AEST). 
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afternoon and increasing over the evening. There also appears to be a cycle in a 

over the day shown in Figure 3.9b, with higher values during the day. There is no 

discernible pattern with time of day for the nonstationarity parameter H (Figure 

3.9c). It must be pointed out however that due to the low number of data series 

associated with some of these times of the day, the parameters calculated here are 

not as robust as those for all series of each cloud type as shown by the error bars 

in the figure (which show standard deviation in the data set for the hour). 

Although not shown here, there were no clear patterns to be seen in the param-

eters of the other two cloud types. This may be a result of the smaller number of 

flights in those to cloud types, which not only increased the standard error at each 

point but left gaps in the daily record. 

3.2.5 Annual/Seasonal cycle of stratocumulus clouds 

If the spatial structure of stratocumulus clouds changes with the diurnal cycle of 

the atmospheric boundary layer, it is not unreasonable to expect that it will also 

show signs of the annual or seasonal cycle that exists in the boundary layer. To 

investigate this the 48 flights in stratocumulus cloud were regrouped according 

to which month of they were conducted in. Flights were only conducted in the 

9 months between April and November (inclusive) so the complete annual span 

cannot be observed, but the variation in cloud spatial structure over the seasons 

of autumn, winter and spring can be examined. All the flights conducted in each 

month were then considered a single ensemble for the purpose of applying the DTM 

analysis method. To remove the diurnal cycle seen in section 3.2.4, the data in each 

monthly bin was weighted so that each hour of the day made an equal contribution 

to the monthly-ensemble. This was done by multiplying the data from each flight in 
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an hour of the day by the inverse of the number of flights in that hour. The results 

of the multifractal analysis are plotted in Figure 3.10 as a function of the month. 

The number of flights in each month is listed in Table 3.3 Again there is some 

Table 3.3: The number of flights in each month-based bin. 
month 1 2 3 4 5 6 7 8 9 10 11 12 
# flights 0 0 0 9 3 8 4 8 3 7 5 0 

evidence of a cycle in the parameters C1  and a, but not for the non-stationarity 

parameter H. The variation in the mean-intermittency parameter, C 1 , is such that 

it increases over autumn, is largest in the winter months of June, July and August, 

and decreases during spring until November. As in the diurnal case the change in 

the multifracticality parameter a is roughly opposite to that of C 1 , with decreases 

over autumn, the lowest values in the winter months and a steady increase over 

spring. 

3.3 The probability distribution and cloudy frac-

tion 

The cloud cover fraction of a cloud field is clearly related to the spatial distribution 

of the liquid water content. In this section the Probability Distribution - Multiple 

Scaling (PDMS) method of Lavallee et al. [1991] is used to independently calcu-

late the codimension function and confirm the universal parameters found in the 

previous section. In doing this the probability distribution is also calculated, which 

allows us to deduce the probable fraction of the horizontal flight layer taken up by 

cloud. 

The PDMS method is discussed in more detail in Lavallee et al. [1991] and 
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Schertzer and Lovejoy [1995b]. Given the similar values of the universal parameters 

found in section 3.2.3, all three cloud types are considered a single ensemble in 

this section. By using a larger ensemble it is hoped to produce a more accurate 

estimation of the fractal statistics. 

The liquid water content, p, was first normalised by the ensemble average to 

give a dimensionless quantity p = 45 . From the definition of the codimension, 

(2.5), if p is a scale invariant then its probability distribution is given by 

Pr(p > 	= BA-c(7) 	 (3.2) 

where B is a function of -y,. Plots of log Pr(p > XI as a function of log A for 

various values of are shown in figure 3.11. Regression analysis of all fitted 

lines shown gave a Pearsons correlation coefficient /:1 2  greater than 0.9 and p values 

less than 0.01. The linear behaviour confirms, once more, that the data set is 

scale invariant. The lines shown are least squares fits. The slopes of these lines 

estimate the codimensions, c(7), while the (fitted) intercepts give the logarithm 

of the prefa.ctor B. The c(7) thus derived are shown in figure 3.12, plotted as a 

function of -y. Also shown in figure 3.12 are the theoretical values of c(7) that were 

calculated using equation (2.11) for a universal multifractal process with parameters 

a = 1.5, C1  = 0.1. The close agreement between these two again confirms that the 

liquid water content can be described by the universal FIF multifra,ctal model with 

these parameters. This agreement continues up until the critical singularity, -y 

D-20.45, where there is again a multifractal phase transition and the onset of self 

organised criticality due to the fact that the measurements are dressed rather than 

bare quantities. The logarithm of the prefactors B, determined from the intercept 

of the lines fitted in figure 3.11, are plotted as a function of 7 in figure 3.13. These 
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(3.3) loglo  B(7) = 
o 1 —0.820-y + 0.318 -y < —0.388 

7 < —0.388 

appear to be fairly linear with -y, except for the very small singularities (<-0.4). In 

determining the probability distribution for cloud fraction calculations, below, the 

linear relation shown in figure 3.13 is used. This parameterisation is 

This should approximate the probability distribution well except for the singulari-

ties much less than the mean. 

The resolution of liquid water content measurements is ,,, 100m. Under the 

multifractal model there is always some positive level of liquid water in each 'pixel', 

but it can be arbitrarily small. Therefore in order to use the flight data to model 

the fraction of the horizontal flight level covered by cloud, a cut off level must be 

chosen - below what average liquid water content in the 100m segment do we call 

the segment clear? This cut off level can be above zero for two reasons: noise 

in the liquid water content signal and small amounts of liquid water in a mainly 

clear 100m. However, exactly what this cut off level, A rlin , should be is not clear. 

Observation of the instrument signal in known clear sky conditions indicates that 

this level should be , 0.01 — 0.02 gm -3 . Clear sky conditions were identified by 

visual observation that no cloud was nearby. In the remainder of this section, this 

cut off is set to 0.01 gm -3 . However, the following method could be used with any 

choice for Nth,. 

The problem of cloud fraction in certain horizontal layer, given a certain mean 

liquid water content for a Flight, is effectively "downscaling" or "zooming in" from 

a coarse resolution to a finer one. Downscaling is described further in Lovejoy et 

al. [20014 The objective is to estimate the fraction of data points with a liquid 

water content greater than prnin , at a resolution of 100m, given a mean liquid water 
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content for a particular flight. If the liquid water content field were constant in the 

vertical this would be effectively estimating cloud cover at a resolution of 100m, but 

in reality it only estimates the fraction of cloud in the particular height layer of the 

flight. This assumes that the liquid water statistics are isotropic in the horizontal 

i.e. that the probability of a point being cloudy is the same in the rest of the layer 

as it is on the flight track. 

The scale ratio for the flight, Ai , is given by 

total length of flight 
A i  = 

100m 
(3.4) 

and the mean liquid water for the particular flight is o umean• The scale invariance of 

the field means that the statistical relation (3.2) holds at this scale as well, giving 

the following equation for the probability of a segment being cloudy: 

Pr( "cloudy" ) = Pr( P   > Pmin  = Xlmin = B (-yrnin ) . A C(.7min)  , 	(3.5) 
Pmean 	Pnzean 

where ryinin  -= logA , (onun, romean, / 	1 • Using (3.5) with the codimension function given xr   

by (2.11) for a universal multifractal with the mean fractal parameters for all cloud 

types, a = 1.48, C1  = 0.106, the predicted cloud fraction in the layer was calculated 

as a function of mean liquid water content for the flight. The prefactor 13(-y) was 

calculated using the relationship shown in Figure 3.13. The total flight length was 

assumed to be 100km and the pmin  to be 0.01 gro-3 . This function is shown in 

Figure 3.14. The sharp cut off when the cloud fraction reaches unity is due to the 

linear approximation of log io  B(-y). To test this function, it was compared to the 

sixty three flights that extended for more than 100km. For each flight two cloud 

cover values are plotted: one derived from the King hot wire probe data and the 

other dathered by visual information. The King probe data series were severed to 
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Figure 3.14: The cloud cover as a function of the mean liquid water content mea-
sured by the King hot-wire probe. The solid line is the modelled relationship value, 
while the triangles are the visually estimated cloud cover and the solid diamonds 
are the cloud cover deduced from the King hot-wire probe measurements. The King 
probe values are determined by finding the fraction of the series above 0.01g/m3. 

be 100km in length; then fraction of these data series above 0.01 gm was taken 

to indicate the cloud fraction on the flight track, and plotted on the Figure 3.14 as 

a function of the mean liquid water content for the flight (as measured by the King 

probe). Finally the visual estimations of cloud cover in the flight layer were also 

added to this figure, again plotted as a function of the measured mean liquid water 

content. Although there is a lot of scatter in figure 3.14, this is not surprising given 

the statistical nature of the relationships involved and the difference in definition 

between visual cloud cover and liquid water content estimated cloud fraction - the 

visual 'estimation was made from above the cloud before the data collection began 
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so may not be relevant to the horizontal run, most of which is separated from the 

visual observation in both time and space. It also takes into account the cloud 

at range of heights, not just the specific height of the horizontal run. The hot-

wire probe and the modelled values show a much better correlation than the visual 

estimation and the model. The figure indicates that there is a relationship between 

mean liquid water content and cloud fraction at that height as estimated by the 

hot-wire probe, and that equation (3.5) can be used to estimate this relationship. 

To quantify the accuracy of the cloud cover prediction consider the relative bias, 

defined as 

cloud fraction (predicted) - cloud fraction (King probe) 
relative bias = 

	

	 (3.6) 
cloud fraction (King probe) 

The mean relative bias is +2.1% and the standard deviation of the relative bias is 

12.5%, showing a reasonable mean prediction of cloud cover but significant scatter. 

Note that the approach to cloud cover used here can also be applied to radia-

tive modelling of broken cloud fields - in the model used here "clear" pixels are not 

required to have no liquid water content, but simply small enough values that ex-

tinction due to cloud droplets becomes insignificant compared to other atmospheric 

extinction. This can represent a generally clear pixel with a very small fraction of 

cloud in it or simply such a low number of liquid water drops spread across the pixel 

that they have no visible effect. A randomly generated multifractal liquid water 

field can then be used to simulate broken cloud conditions, so long as the mean 

liquid water content of the field is low enough to give the desired cloud percentage 

using equation (3.5). 
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3.4 Summary of Chapter 3 

In this chapter in-situ liquid water content data was analysed with a focus on 

multifractal properties. All flights from three different cloud types were shown 

by their energy spectra to be scale invariant for a range of scales up to 25Icm, 

as expected from previous studies. Although some flights seemed to indicate a 

scale break between 251cm and 501cm, others seemed to show the same power-law 

extending up to the limit of the data, ,,, 160Icm. When considering ensemble 

averaged data however, only the altostratus ensemble indicated a scale break at 

the meso-scale. This implies that the scaling regime in the (horizontal) spatial 

structure of the low-level water clouds extends to the range of this data set - to the 

hundreds of kilometers, if not further. The altostratus data set was the smallest of 

the three cloud types considered, with only 22 flights examined, but if the scale-

break is genuine the smaller scaling regime may be due to the higher clouds being 

above the boundary layer where different dynamic processes apply. 

The statistics of the horizontal cloud distribution were further analysed using 

the double trace moment analysis, with a focus on testing the universal FIF model. 

The multifra,ctal statistics of all three cloud type ensembles were found to be well 

described by the universality classes predicted by this model. Furthermore, the 

universal parameters of all three cloud types were very similar. All three cloud 

types were found to be non-stationary and multifractal. The only parameter found 

to differ between cloud types by more than a standard error in the estimate was C1, 

the mean intermittency parameter. Even C 1  did not vary greatly between cloud 

types, with all cloud types having a relatively low sparseness in the mean underlying 

flux. This implies that the horizontal variations in all cloud types are created by 

the same processes. 
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The diurnal cycle of stratocumulus multifractal parameters was also investi-

gated, with a cycle being observed despite the smaller ensembles considered when 

the data was divided into hourly blocks. In this cycle the mean inhomogeneity 

decreased in the afternoon and increased in the evening, with a peak at 6am, while 

the degree of multifracticality varied in the opposite manner. Similarly, a pattern 

of changes with the seasons were seen in the fra,ctal parameters of stratocumulus 

cloud when monthly means were considered: in this case C 1  was highest in the 

(southern-hemisphere) winter, while a was at its highest values at this time. These 

variations mirror the cycles of the atmospheric boundary layer, in which the solar 

forcing produces diurnal and annual cycles in boundary layer height, temperature, 

and degrees of turbulence [Stull, 1988]. 

Finally, the fit to the universal model and the universal parameters were con-

firmed using the scaling properties of the probability distribution of the data. This 

probability distribution information was then used to determine a relationship be-

tween cloud fraction at the flight height and the mean liquid water content. This 

highlights the fact that this cloud model can be applied, not only to overcast skies 

and internal cloud variations, but to broken cloud fields as well. In the remainder 

of this study the cloud model and parameters found here are used to investigate 

the radiative properties of inhomogeneous cloud fields. 
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Chapter 4 

Radiative properties of 

horizontally multifractal clouds 

4.1 Introduction 

In this chapter the multifractal cloud model is used to examine the radiative proper-

ties of cloud fields that are horizontally inhomogeneous but constant in the vertical 

direction. The goal is to first understand the effects of the multifractal cloud struc-

ture on the cloud radiative properties, and then to develop an effective optical 

properties approximation so that multifractal cloud fields can be replaced with a 

homogeneous cloud in radiative transfer algorithms. Both of these objectives have 

already been achieved for overcast marine stratocumulus cloud using the bounded 

cascade model [e.g. Cahalan et al., 1994; Szczap et al., 2000a], but in this study a 

different cloud model is examined, with parameters that are based on a wider range 

of clouds and cloud covers. This is of interest because these different conditions 

may produce differences in the radiative properties. 
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To begin the chapter, the exact geometry and parameters used in the numer-

ical generation of inhomogeneous cloud fields and the radiative transfer code are 

outlined. The results of the radiative transfer calculations and the parameterisa-

tion of the effective optical depth of non-absorbing clouds are then presented in 

section 4.3. This is followed in section 4.4 by a similar analysis of the radiative 

properties of absorbing clouds. Section 4.5 then examines the accuracy of the pa,- 

rameterisation of the effective optical depth under different conditions, including 

varying the asymmetry factor and considering the reflected radiance distribution 

instead of total reflectance. For the majority of this chapter only clouds with the 

mean fractal parameter values found in chapter 3 are used, but in section 4.5.2 

the consequences of varying the FIF parameters are presented and the difference in 

radiative properties between the cloud types are shown. Finally, a comparison of 

the parameterisation developed here with the EHCA of Szczap et al. [2000a;b;c] is 

included in section 4.6. 

4.2 The Cloud and Radiation Models 

4.2.1 Numerical generation of multifractal cloud fields 

In the first part of this study stratocumulus clouds, altostratus clouds, and cumulus 

clouds all demonstrated very similar fractal model parameters. Therefore for the 

majority of this chapter the parameters used are a = 1.48, C 1  = 0.106, H = 0.3, 

which are the mean parameter values for all cloud fields considered in chapter 

3. The effects of varying these parameters will be considered in section 4.5. These 

parameters only apply to the horizontal spatial structure of these cloud types, since 

the aircraft measurements from which they were derived were taken on horizontal 
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flight tracks. Therefore, in this chapter the multifra,ctal model is used to simulate 

only the horizontal variations in the cloud liquid water fields. Liquid water content 

is kept constant in the vertical. Although these clouds may be referred to in this 

work as "2-dimensional" multifra,ctal clouds, the cloud fields modeled are three 

dimensional - the label refers to the fact that the multifractal structure only applies 

to the two horizontal dimensions. This simple assumption of vertical homogeneity 

should be reasonable for clouds with relatively low optical depth such as typical 

stratiform cloud and low level cumulus [Rornanova, 1998], but errors will increase 

with optical depth as the total height of the cloud becomes greater than the photon 

mean free path length. The effect of vertical variations is further investigated in 

chapter 5. 

With the mean parameters derived from aircraft measurements, the continuous 

cascade simulation method in section 2.1.6 was used to generate multifractal liquid 

water fields whose (horizontal) statistics match those of real clouds as closely as 

possible. The multifractal liquid water fields were generated to be 6.4km x 6.4km 

squares in the horizontal with the minimum grid size being 25m in length. The 

liquid water field is homogeneous within each 25 m grid squares but varies from 

square to square. Therefore the maximum scale ratio of the multifractal liquid water 

field, p, is A = _6425oo -= 256. Although the measurements analysed in the previous 

chapter only had a resolution of 100m it is assumed that the scaling regime extends 

down to 25m, as was seen for marine stratocumulus by Davis et al. [1996a] and also 

by Gerber et al. [1994]. The height of the cloud field, h, was set to 500m, since this 

is approximately the mean global height for low level stratiform cloud [Kawamoto et 

al., 2001]. The effective droplet radius ref f , was assumed to be constant throughout 

the cloud. Therefore the volume extinction coefficient Oest was proportional to the 

liquid water content p, and was given be equation (2.42). The vertical optical depth 
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for any of the 25m grid squares was then T = Oexth, and the mean optical depth 

for any area simply the arithmetic mean over the grid squares within the 

area. After the numerical generation of the multifractal liquid water field, the field 

was scaled by a constant factor to give a chosen value of Tm  e a n• 

4.2.2 Monte Carlo radiative transfer calculations 

The Monte Carlo radiative transfer - described in section 2.2 was used to estimate 

the radiative properties of the cloud fields. Since the droplet radius distribution was 

assumed to be constant throughout the cloud, so was the scattering phase function. 

The baseline case of this study was a cloud with effective radius T el I = 10pm at 

a wavelength of 0.55pm. Using the parameterisation of Hu and Stamnes [1993], 

these properties give an assymetry factor of g = 0.85 and a single scattering albedo 

(w) very close to 1. Clouds with these parameters were used initially, and then 

the effect of varying the single scattering albedo was investigated by varying the 

single-scattering albedo through the values of w = 1.0, 0.999, 0.99, 0.98, 0.95, 0.92, 

0.9. The sensitivity to variations in the assymetry fra,ctor, g, were also considered 

and will be discussed in section 4.5. 

Note that although these studies are essentially considering changes in a com-

bination of different varaibles, i.e. different wavelength, different particle size and 

different liquid water content, they provide information on the sensitivity to each 

of the optical parameters separately. This allows the study to determine the range 

of application of the resultant parameterisation. For instance, the different single 

scattering albedo would be applicable for results in the near infra-red wavelengths. 

As a specific example, of ref I = 15 and a wavelength of 2.247pm gives w = 0.95 

and g = 0.87, but so does ref/ = 36 and a wavelength of 1.855pm. The results 
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found here for w = 0.95 would apply to both cases. 

This Monte Carlo radiative transfer code was used with both plane-parallel 

homogeneous clouds and multifractal clouds. Both PPH cloud and multifractal 

cloud had the same geometry: a square prism of 6.4km x 6.4kro in the horizontal 

and 500m in height. For multifractal clouds, mean optical depth over the entire 

cloud domain was set to T 0  = 2, 4, 8, 16, 32, 64, 100. Since the generation of 

multifractal fields is a stochastic process, five different cloud fields were generated 

for each optical depth. 

The radiation simulations for each cloud field was done using 20 million photons. 

The model was run with photons entering the top surface of the model with incident 

zenith angle, 00 ,of 00 , 20°, 40°, 60° and 80°, in order to simulate the clouds being 

illuminated from different solar zenith angles. The transmittance, reflectance and 

absorptance were recorded for each 25m x 25m grid square at bottom and top surface 

of the cloud. The area averaged transmittance, reflectance and absorptance were 

calculated for squares with sides of 0.8km, 1.6km and 3.2km, as well as 6.4km, in 

order to simulate the effect of spatial variations on pixels of different sizes. 

4.3 Conservative Scattering Results 

In this section the results of the radiation modelling are reviewed for the case where 

the single-scattering albedo is set to one, i.e. the case in which there is no absorption 

within the cloud.. The reflectance and transmittance calculated at the 6.4km scale 

for both the multifractal and homogeneous clouds, are shown on figure 4.1 as a 

function of the mean optical depth, T - mean • These results are for a solar zenith 

angle of 40°. The error bars shown in the graph for the multifractal cloud are the 

standard errors resulting from the variations between the five cloud fields at each 
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Figure 4.1: The transmittance and reflectance of cloud fields at a solar zenith 
angle of 40 degrees. Diamonds indicate the points for multifractal clouds at a 
spatial averaging scale of 6.4 km, with the error bars showing the variation due 
to the random generation of cloud fields. The lines without individual data points 
represent homogeneous clouds. Dashed lines indicate transmittance and solid lines 
indicate reflectance. 
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optical depth - the point plotted is the mean value of the five cloud fields. It can be 

seen that, as previous studies have shown, the inhomogeneities in the multifractal 

cloud fields reduce the reflectance, and increase the transmittance, in comparison 

with homogenous cloud. Note that the (absolute) difference between the two cloud 

types is smallest when the mean optical depths are very low, and this difference 

increases with optical depth until around Tm  = 20. From optical depths of 20 to 

100, the difference remains roughly constant at approximately 0.15, which is close 

to 30% at T mean = 20 and just below 20% at Trnean = 100. This is somewhat larger 

than the absolute bias of 0.09 in the same range found by Cahalan et al. [1994a] 

for bounded cascade clouds with the parameters of marine stratocumulus, probably 

due to the more inhomogeneous nature of the clouds examined here. 

4.3.1 Definition of the effective optical depth approxima-

tion 

The aim is now to find, for a multifractal cloud at a particular averaging scale, 

the optical depth of a PPH cloud with the same radiative properties. Denote the 

optical depth of a homogeneous cloud with the same transmittance as the multi-

fractal cloud by 7-Tff  , and the optical depth of a homogeneous cloud with the same 

reflectance as TZI  . Both 7-11f  and 7-Ti. f  were found by matching the multifractal 

cloud properties with those of the homogeneous cloud, using cubic spline interpola-

tion. At the maximum pixel size of 6.4 km the periodic boundary conditions of the 

radiative transfer model ensures that = ierf ,  f  , but at smaller averaging scales 

this no longer holds because of horizontal transport between pixels. Hence if the 

effective optical depth is defined based on the reflectance, there is some error in 

transmittance, and vice versa. Figure 4.2 shows TZ:f1  plotted against 'af  for clouds 
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illuminated at solar zenith angle, 00, of 20 0  and 80° at averaging scales of 3.2 km 

and 1.6 km. At 00  = 20° there is little difference between f and 'T- ff . But when 

00  = 80° the horizontal transport of photons is increased and there is a much lower 

correlation between the two. Following Szczap et al. [20004 the relative differences 

can be quantified using the root-mean-square dispersion, defined in general between 

two series Ai  and B. to be: 

2 N  [Ai  — 134 2  1 1/2 ,  
Bi) = A 	[Ai  ± B2]2 

(4.1) 

where N is the total number of data points. As discussed in Szczap et al. [2000a], 

the root-mean-square (RMS) dispersion is a measure of the mean divergence from 

the 1:1 line (where A i  equals Bi ). Although defined in terms of the relative diference 

between data series (in equation 4.1), the RMS dispersion can also be thought of 

as Ddisp  = 2Vsin2  a where a is the angle between the 1:1 line, and the line between 

the origin and point (A i ,Bi ). In the case of effective optical depths, Dd,82,(r ff , T111 ) 

is approximately proportional to the relative error in transmission and reflection 

for moderate values of the optical depth i.e. between 10 and 40 [S,zczap et al., 

20004 At low optical depth Ddisp (rIff , -it) underestimates the relative error 

in transmission or reflection, while at high optical depths in overestimates them. 

However, the RMS dispersion is used to evaluate the relative error in the model 

because it allows a summary of the relative errors in reflection and transmission 

(and later absorption) in a single value. 

The values of Ddisp  (71f f  , 7-4/ff  ) for averaging scales of 3.2, 1.6 and 0.8 kilometers 

are shown in Figure 4.3 as function of the solar zenith angle. This shows that the 

difference between TIff  and rfff  increases with increasing solar zenith angle and 

with decreasing pixel size, due to the fact that both increase the effect of horizontal 
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Figure 4.2: Comparisons of the effective optical depth based on reflectance and that 
based on transmittance. The solar zenith angle is a) 20 degrees and b) 80 degrees. 
Both show points for multifractal cloud in pixel sizes of 3.2 km and 1.6 km. The 
solid lines shown are 1:1 reference lines. 
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transport of radiation between pixels. If a homogeneous cloud with optical depth 

T .frf  is used in radiative transfer calculations of both reflectance and transmittance, 

Figure 4.3 gives the size of the errors that can be expected in calculating transmit-

tance. So if 5% is chosen as a reasonable level of error, then Figure 4.3 shows that 
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Figure 4.3: The root-mean square dispersion between T11 f and f Ddisp  (TTff T1)1) 

- as a function of solar zenith angle. Shown for three different spatial averaging 
scales. This function quantifies the error involved in using a single effective optical 
depth when estimating both reflectance and transmittance. 

TlIf can be used in transmittance calculations when the solar zenith angle is 60 0  or 

less for a pixel size of 3.2 km, or when the solar zenith angle is 40 0  or less for a pixel 

size of 1.6 km, but never for a pixel size of 0.8 km. Larger averaging scales would 

increase the acceptable solar zenith angle range further. The reflective case (7-1.11 ) 

was chosen here because of its application to moderate-resolution satellite remote 
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sensing,  and due  to  the  fact  that  most  climate  models  have  sufficiently  large  grid 

Again  there  is  an  increase  in  differences  with in- other  solar  zenith angles.  
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creasing solar zenith angle and with decreasing pixel sizes. Since the values of 

Ddi3p (7-1.1f (0°), rlh(00)) are less than 5% in the ranges indicated above, i.e. for 

00  < 40°at a resolution of 1.6 km, for 00 < 60 0  at 3.2 km and for all zenith an-

gles considered at 6.4 km, a single effective optical depth can be used within these 

ranges with a minimum of error in the approximation. 

Having defined when a PPH cloud with optical depth 7 -11f  can be substituted 

for an multifractal cloud in radiative transport calculations, now consider the effect 

of pixel size on the effective optical depth. Figure 4.5 shows ;I f  for two different 

averaging scales as a function of the mean optical depth, T mean of the multifractal 

cloud. The dotted 1:1 line in the figure is where a homogeneous clouds would fall. 

It can be seen in Figure 4.5 that TI11  is smaller, i.e. further from the homogeneous 

case, for the larger pixel size. Figure 4.5 also shows that 1 -1,f  is closest to T mean ) 

and therefore behaving most like a homogeneous cloud, when r mear, is small. Al-

ternatively, when Tmean  is large -t- ff  seems to approach a straight line, with a lower 

slope at the larger pixel size. 

4.3.2 Parameterization of the effective optical depth 

Noting the behavior observed for 7 -1.1f  as pixel size and Tmean  varied, an empirical 

relation for the effective optical depth was determined by fitting the data for all 

pixel sizes and zenith angles to the following function of rmean  and pixel scale: 

1 + BTmean) 
 DA—kTmean) • (1 e 	—Tmean  

T5afc  = (A(1 - DA-k` xp 
) 

	

Can) 	 A(1 - DA-k))) 
(4.2) 

where A, B, C, D and k are constants and A is the scale ratio, i.e. the ratio 

between the pixel size under consideration and the minimum grid size used in our 
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Figure 4.5: The effective optical depth based on reflectance, 1 -11f  , plotted as a 
function of the mean optical depth, Tmean. For a solar zenith angle of 40 degrees and 
pixel sizes of 6.4 km and 1.6 km. Solid lines are the empirical parameterizations for 
the two pixel sizes. The dashed line is the one-to-one reference line that represents 
the homogenous cloud case. 
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calculations: A = current spatial scale  The function (4.2) is of the same form as that 25m 

developed for lognormal multifractal clouds by Borde and Isaka [1996] and for 

bounded cascade clouds by Szczap et al. [20004 but here an explicit dependence 

on pixel size has been introduced in order to generalize the parameterization to 

different resolutions. The pixel size is used as a substitute for a measure of the 

inhomogeneity - since according to the multifractal model the average degree of 

fluctuation should be function of scale ratio A. For example, the structure functions 

of the variations in the optical depth of the FIF multifractal cloud are [Schertzer 

and Lovejoy, 1991] 

((ATM 	AK(q)-Ifq, 	 (4.3) 

where AT are the fluctuations in optical depth at scale A, q is any positive exponent 

and K (q) is a function that is characteristic to the multifractal. The degree of 

departure froth the PPH case should be related to fluctuations of T in some way, 

but without knowing the exact relationship involved the very simple form A' is 

assumed to quantify the degree of homogeneity. 

The constants in (4.2) were determined using a Levenberg-Marquardt non-linear 

least squares fit to the 7-:!ff  values for all pixel sizes from 0.8 to 6.4 kilometers and 

for all solar zenith angles. Since there were many more data points at the smaller 

spatial scales, the points were weighted by the inverse of the number of points at 

that pixel size, in order to assign each scale equal importance. The parameter 

values that were determined in this manner are: A = 11.26, B = 8.02, C -= 10.1, 

D = 6.72, k = 0.607. The solid lines that are shown in figure 4.5 are the values 

calculated using equation (4.2) with these parameters, at the spatial scales of 1.6 

km and 6.4 km. 

To further illustrate the effect of spatial resolution, Figure 4.6 shows the values 
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calculated using (4.2) at 4 different pixel sizes. At small pixel sizes and small 

values of rmean , Tell approaches rmean . As pixel size increases, the deviation from 

PPH behavior (where ref  f = also increases. Note that equation (4.2) is 

not meant to be used for pixel sizes less than 0.8 km due to the errors between 

and TT", and between it at different solar zenith angles. Nevertheless, it 

is interesting to note that the asymptotic slope DA -k would achieve a PPH value 

of 1 for a spatial scale of close to 575m (A 23). This would imply that at this 

scale the horizontal photon transport completely smooths over any inhomogeneity 

effects (see also Marshak et a/11995] for radiative smoothing). 

To investigate the accuracy of the parameterization, equation (4.2) is compared 

with the 7-1!" determined from the Monte Carlo radiative transfer results. The 

root-mean-square dispersion between the two series, D thspOft", 'it), is presented 

in Figure 4.7 as a function of solar zenith angle for the pixel sizes 1.6 km, 3.2 

km and 6.4 km. Again, the errors in the parameterization increase with zenith 

angle and decrease with spatial averaging size. For comparison, the root-mean-

square dispersion that results from the traditional approach of using a PPH cloud 

ff with the same mean optical depth as the multifractal one, Dchsp(Tni ean T1) 7 is  

also shown in Figure 4.7.Typically the errors when using the effective optical depth 

parameterization are 2 to 4 times smaller than when using the PPH assumption 

alone. Furthermore, the error when using the PPH assumption alone increases with 

pixel size, as previously noted in section 4.3.1 and shown in figure 4.5. This means  

that the larger the spatial scale, the greater the improvement in using the effective 

optical depth approximation. 

To show how these values of Ddisp (Telf,7-11f ) translate to transmittance errors, 

Figure 4.8 shows the absolute errors in transitta,nce that would result from using 

relic in PPH calculations instead of a true multifractal cloud calculation. For corn- 
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Figure 4.6: The parameterization of the effective optical depth, T4 11, as a function 
the mean optical depth and pixel size. Plotted to show the effect of pixel size. No 
true values are shown, only the parameterized values from function . The dotted 
line is a one-to-one reference line that shows the position of PPH cloud in the graph. 
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Figure 4.8: The absolute errors in transmission when using the effective optical 
depth approximation with re711, instead of a monte carlo radiative model with 
multifractal cloud. For solar zenith angles of a) 20 and b) 60 degrees 
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parison Figure 4.9 shows the absolute errors in transmittance that results from the 

traditional approach of using a PPH cloud with the same mean optical depth as the 

multifractal one. It can be seen that while significant errors remain when using the 

effective optical depth approximation with 7fy-11, they are significantly lower than 

the traditional method and the mean bias has been removed so that the errors are 

distributed around zero. 

4.4 Non-Conservative Scattering Results 

In this section the effective optical properties of absorbing cloud fields are consid-

ered. Figure 4.10 shows the transmittance (T), reflectance (R) and absorptance 

(A) for homogeneous and multifractal clouds, both with single-scattering albedo w 

of 0.99. The spatial scale of these results is 6.4 km and the solar zenith angle used 

is 40°. The error bars shown are again due to the difference between the five dif-

ferent realizations of the multifractal field. As in the case of non-absorbing clouds, 

the transmittance is consistently higher, and the reflectance lower, for multifractal 

clouds than for homogeneous clouds. The absorptance too is lower in multifrac-

tal clouds. The absolute differences in radiative parameters (R, T, A) between the 

cloud model types are in general slightly less than those of the purely scattering 

clouds shown in figure 4.1, but are still significant. Moving to the case of w = 0.95, 

shown in figure 4.11, it can be seen that with absorption increased even more the 

differences between the PPH cloud and the multifractal cloud are further reduced. 

This general trend of decreased differences with decreased w is presumably because 

the increase in absorption reduces the average distance travelled by photons in the 

cloud and hence reduces the importance of cloud spatial structure. Note that the 

radiative properties dependence on optical depth are decreased for the lower values 
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Figure 4.9: The absolute errors in transmission when using PPH assumption, in-
stead of a monte carlo radiative model with multifractal cloud. For solar zenith 
angles of a) 20 and b)60 degrees 

98 



— ' 	• ... .. ......... 

—R (pph) 
- 6-R (fractal) 
- - - T (pph) 
- 	T (fractal) 
- -A (pph) 
-6-A (fractal) 

• 	. 

	

..... 7 ' 	- 

20 	40 	80 	80 	100 

;new 

Figure 4.10: The reflectance, transmittance and absorptance for clouds with single-
scattering albedo of 0.99. Multifractal points are for 6.4 km pixels. Both PPH and 
multifracta1 cloud values are for a solar zenith angle of 40 degrees. 
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of T. 

As in the case of the non-absorbing clouds, the goal is to find a PPH cloud 

that can replace the multifractal cloud in radiative transfer calculations. However 

there are now three radiative values to keep constant between the multifractal cloud 

model and the equivalent PPH cloud: T,R and A. Even using the approximation 

that in large enough cloud fields 

T+R+A. , 1, 	 (4.4) 

this still demands two independent properties to define the equivalent PPH cloud. 

Again following Szczap et al. [2000b], an effective single-scattering albedo is there-

fore added to the effective optical depth used in section 4.3. Specifically, the effective 

single-scattering albedo is defined as the single scattering albedo of the PPH cloud 

with the same radiative properties as the multifractal cloud field under considera-

tion. 

4.4.1 Consistency of the approximations for absorbing clouds 

For cloud fields of sufficiently large horizontal extent (which makes horizontal trans-

port of photons negligible), the condition (4.4) holds and the effective optical prop-

erties may be calculated using any two of the three radiative outputs (T, R, or A). 
However, for smaller pixels horizontal transport may be significant, so that instead 

of equation (4.4) we have 

T+R+A±H=1, 	 (4.5) 
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where H is the horizontal flux. Now we have 3 free parameters instead of 2. That 

is, even if a PPH cloud has the same T and R as the multifractal cloud field it 

will not have the same absorptance if the net horizontal transport is not the same. 

Denote the effective optical depth and effective single-scattering albedo based on 

transmittance and reflectance by Telg and welrf  respectively. Similarly, the optical 

properties of a PPH cloud with the same transmittance and absorptance as the 

multifractal cloud field are TM and wM, while those of a PPH cloud with the 

same R and A values are 741 and w. All these effective optical properties were 

calculated by comparing the Monte Carlo radiative transfer values of T, R, or A for 

the multifractal cloud fields to those values for the PPH cloud, using (2D) spline 

interpolation to fill the gaps between calculated values. 

Effective optical depth 

To quantify the differences between the three different definitions of the effective 

optical depth the root-mean-square dispersion, as defined in equation (4.1), is again 

used. The values of Ddisp(reig, TM) are shown in Table 4.1. These values were cal-

culated for all single-scattering albedos considered three different single scattering 

albedos: ca.) = 0.90, 0.95, 0.99. As in the non-absorbing case, it can be seen that the 

discrepancy between different effective optical depth definitions is greater at the 

higher solar zenith angles and smaller pixel sizes. If the acceptable level of discrep-

ancy is taken to be 5%, Table 4.1 shows that the 3.2 km pixels meet this criterium 

for 00  < 600 , and that the 1.6 km pixels are within this range for 00  < 40°, but the 

0.8 km pixels generate errors of less than the acceptable range only when 00  = 00 . 

Very similar results are seen for Ddi3p(Te151;, 7 ). 
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Table 4.1: Presents the root-mean-square dispersion, Ddi3p(;F.1f7;,§),  between two 
definitions of the effective optical depth of multifra,ctal cloud, re  ff and 1-Tfl. Also 
shown is the root-mean-square dispersion between two defmtions of the effective 
single-scattering albedo, Ddisp (we7f ,(41). Both calculated at 5 solar zenith angles 
(00 ) and three spatial averaging sizes, for absorbing clouds with single scattering 
albedos w = 0.9, 0.95, 0.99. 

CV 00 
DdisPerff7; , 71A) Ddisp(WZ , 44'14f) 

3.2 km 	1.6 km I 0.8 km 3.2 km 1.6 km 	0.8 km 
00 0.014 0.019 0.036 0.007 0.009 0.102 
20° 0.020 0.023 0.081 0.016 0.037 0.144 

0.9 40° 0.029 0.034 0.141 0.021 0.028 0.206 
60° 0.038 0.084 0.260 0.033 0.044 0.211 
80° 0.151 0.147 0.305 0.053 0.058 0.315 
0° 0.023 0.027 0.049 0.012 0.017 0.119 

20° 0.031 0.032 0.093 0.021 0.044 0.154 
0.95 40° 0.038 0.044 0.174 0.030 0.036 0.247 

60° 0.049 0.098 0.285 0.041 0.051 0.258 
80° 0.169 0.182 0.327 0.063 0.065 0.373 
0° 0.030 0.034 0.053 0.021 0.022 0.125 
20° 0.042 0.041 0.109 0.031 0.053 0.163 

0.99 40° 0.047 0.044 0.185 0.044 0.049 0.259 
60° 0.050 0.110 0.295 0.053 0.068 0.269 
80° 0.179 0.222 0.379 0.077 0.079 0.320 
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Effective single-scattering albedo 

Table 4.1 also shows the root-mean-square dispersion between wegfrf  and 41, Ddisp (wZ, weTh). 

This shows the same general trends of discrepancies increasing with solar zenith an- 

gle and decreasing with increasing pixel size. Using the same criteria of 5% error, 

both 3.2 km and 1.6 km pixels are acceptable for solar zenith angles of 60 0  or less, 

but the 0.8 km pixels are never within this acceptable range. Combining these 

results with those for the effective optical depth, it can be seen that 3.2 km pix-

els are acceptable for 0 0  < 60°, 1.6 km pixels are acceptable when 0 0  < 40°, and 

0.8 km pixels are never acceptable. Pixels larger than 3.2 km would increase the 

acceptable solar zenith angle range even further. Note that this acceptable range 

for the absorbing cloud is the same as that for the non-absorbing cloud found in 

section 4.3.1. 

For the remainder of this analysis it was chosen, fairly arbitrarily, to work with 

re7; and wZ. Using a PPH cloud with these optical properties would produce the 

same reflectance and transmittance as the multifractal cloud field - there would be 

some error in absorptance as detailed above, but as long as the pixel size and solar 

zenith angles were within our acceptable range, this error would be small. 

4.4.2 Empirical parameterization 

Effective optical depth 

The parameterization of effective optical depth of non-absorbing clouds found in 

section 4.3.2 is now generalised to include clouds with single scattering albedo less 

than 1. Figure 4.12 shows Tly; as a function of rniec„, for four different single-

scattering albedos, at a pixel size of 6.4 km. The general trend is for the effective 
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Figure 4.12: The effective optical depth rly} as a function of the mean optical 
depth, for clouds with a range different single-scattering albedos. All values are for 
pixels of 6.4km x 6.4 km. Points are the average values of reiy; over 5 multifractal 
realizations. The dashed line is the one-to-one reference line, and the solid lines are 
the values given by the empirical parameterization. 
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optical depth to be lower for lower single scattering albedos, i.e. for the effective 

optical depths to decrease with increased absorption. The asymptotic slope (that 

the effective optical depth approaches at high Tmean) is also lower for lower w. 

The values of re% for absorbing cloud with different values of single scattering 

albedo were fitted to the function (4.2) that was used for non-absorbing clouds in 

section 4.3.2. The parameters B and D in (4.2) were adjusted for absorbing clouds, 

with the other parameters held to the same values as for non-absorbing clouds. 

These two parameters were allowed to vary becasue visual observation of the data 

indicated that changing single scattering albedos changed the slope and intercept 

of the assymptotic line (which rly; aproachs at high Tmean) • This fit was performed 

using a non-linear least squares fit for all pixel sizes calculated between 0.8 and 6.4 

kilometers and all solar zeniths angles considered. Figure 4.13 shows the values of 

the parameters B and D as a function of (1 — w), which is a measure of the degree 

of absorption per scattering event. The parameter B is roughly linear in (1 — w) 

and fits the line 8.02 — 20.19(1 — w). The parameter D on the other hand appears 

to be exponentially decreasing with (1 — w) and can be estimated by the relation 

6.7 exp(-8.26(1 — w)). This gives a final set of parameters for equation (4.2) to 

estimate the effective optical depth: A = 11.26, B = 8.02 — 20.19(1 — w), C = 10.1, 

D = 6.7 exp(-8.26(1 — w)), k = 0.607. The solid lines shown in figure 4.12 are the 

values calculated using the parameterization (4.2) with these parameters at pixel 

size 6.4 km. 

Effective single-scattering albedo 

Figure 4.14 shows the ratio weirdw as a function of the mean optical depth of the 

multifractal cloud field for a pixel size of 3.2 km and three different single-scattering 

albedos. This ratio is usually less than one, i.e. the effective single-scattering albedo 
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Figure 4.13: The parameters of the empirical fit that were varied with single scat-
tering co-albedo (1-w). 
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is less than the actual single-scattering albedo in the multifractal cloud. 	The 
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Figure 4.14: The ratio of the effective single-scattering albedo to the true value 
in multifractal cloud, w7/w, as a function of the mean optical depth. For three 
values of the single scattering albedo, at a pixel size of 3.2 km. The solid lines 
represent the empirical parameterization. 

general trend with T an  is a rapid decrease in coe7f/(4) to a minimum, followed by 

a slow asymptotic return to unity. This indicates that the increased absorption is 

most significant at low to moderate cloud optical depths. Also, the ratio (.4/co is 

in general lower for lower w. Finally, the effect of spatial averaging scale is shown 

in figure 4.15, for a single-scattering albedo of 0.90. Again the difference between 

the multifractal cloud and PPH cloud increases with averaging scale, demonstrated 
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Figure 4.15: The ratio between the effective single-scattering albedo to the actual 
single-scattering albedo in the multifractal cloud, w e7f/w, as a function of mean 
optical depth when w = 0.90. For three different pixel sizes. The solid lines are the 
values for the empirical parameterization. 

Having observed these trends in the values of the effective single-scattering 

albedo, an empirical fit to the data was made using the following function: 

Ti 

4-711 =1,41 - E(1 - w) 1 7-"nnear, exp 
(F(1 - GA-P)) 	

(4.6) 

where E, F, G, 1, m, n, and p are constants. The function (4.6) has the general 

form of that used by Szczap et al. [2000b], but once more their inhomogeneity 

parameter has been replaced in (4.6) by an explicit dependence on the spatial scale 
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A. Another non-linear least squares fit was performed to find the values of the 

constants in the function (4.6), using all data points of spatial scale 0.8, 1.6, 3.2 

and 6.4km and all solar zenith angles. The values of the constants were thus found 

to be E -= 0.061, F = 17.37 , G = 6.59, 1 = 0.603, in = 0.489, n = 0.784, and 

p -= 0.613. The solid lines shown in figure 4.14 and figure 4.15 were found using 

these parameter values in the function (4.6). 

4.4.3 Error analysis 

The errors in the effective optical depth parameterization for absorbing clouds, in 

the form of Ddisp (reFfi, 'If), are shown in Table 4.2, for all solar zenith angles 

and for spatial scales of 1.6 km, 3.2 km and 6.4 km. This error is approximately 

5% for the 6.4 km pixels, and 10% for the 1.6 km pixels, with the 3.2 km pixels 

falling between the two. There is less of an increase in dispersion with solar zenith 

angle in Table 4.2 then there was for the non-absorbing case, shown in Figure 4.7, 

presumably because absorption decreases horizontal transport of photons and hence 

the effect of solar zenith angle. The errors for the parameterisation are significantly 

less then those for the PPH assumption alone, Ddisp(re%, Tmean ),shown in Table 4.3 

to be on the order of 20-30%. 

Table 4.2 also presents the error in the parameterization of the effective single-

scattering albedo, D sp  (47; . For both the 6.4 km and 3.2 km pixels, errors 

are less than 5% with little variation with solar zenith angle, but errors for the 1.6km 

pixels vary between 5 and 15 percent as solar zenith angle increases. At the smaller 

pixel size the dependence on solar zenith angle is larger because the horizontal 

transport becomes more significant. At all three pixel sizes the parameterization of 

the effective single-scattering albedo gives a significant improvement on the errors 
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Table 4.2: Contains the root-mean-square dispersion, Ddisp (relli:, 7-41f), between 
the parameterised effective optical depth. and the effective optical depth of the 
multifractal cloud found using the radiative transport results. Also shows the root-
mean-square dispersion, Ddi sp (welrf  ,41), between the effective single-scattering 
albedo that was derived from the Monte Carlo radiative transfer results and that 
predicted by the parameterisation. These were found for absorbing clouds at 5 solar 
zenith angles 00  and three spatial averaging sizes. 

eo  
D disp(T1Z , T1 f) Ddisp(wz,WVf) 

6.4 km 3.2 km I 1.6 km 6.4 km 3.2 km 1.6 km 
00 0.032 0.045 0.097 0.006 0.013 0.048 
20° 0.035 0.052 0.106 0.008 0.013 0.044 
40° 0.044 0.055 0.111 0.008 0.014 0.065 
60° 0.057 0.085 0.109 0.010 0.030 0.093 
80° 0.051 0.096 0.133 0.019 0.044 0.144 

Table 4.3: The relative dispersion, Ddisp(if:f, Tmean), that would result from using 
the common assumption of a PPH cloud with optical depth equal to the mean 
optical depth of the (multifractal) cloud. Also presents Ddi sp(w57; , w) - the error 
that results from using a PPH cloud with the same single-scattering albedo as the 
multifractal cloud (rather than the effective). Found for absorbing clouds at 5 solar 
zenith angles (00) and three spatial averaging sizes. 

D disp(TSFrif; 1 Tmean) Ddisp(WZ ) W) 
00 6.4 km 3.2 km 1.6 km 6.4 km 	3.2 km 1.6 km 
0° ‘ 0.306 0.240 0.177 0.047 0.053 0.087 
20° 0.310 0.246 0.198 0.047 0.052 0.103 
40° 0.321 0.252 0.187 0.046 0.053 0.117 
60° 0.334 0.273 0.185 0.045 0.057 0.224 
80° 0.328 0.268 0.196 0.046 0.096 0.265 
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that results from using the PPH assumption when the cloud is multifractal in 

nature, Ddisp (weRfTf , w), which are shown in Table 4.3. 

To further explore the absolute errors when using the effective optical properties 

approximation, Figure 4.16 plots the absolute error in transmittance when using 

the effective optical properties parameterisation instead of a monte carlo simula-

tion with multifractal cloud. Results are shown for three different single-scattering 

albedos, with errors decreasing as w decreases. 

4.5 Accuracy of the approximation under differ-

ent conditions 

In this section the focus is on the accuracy of the empirical optical properties 

approximation and our parameterization of it, when the scattering phase function 

or the cloud fractal parameters vary. The case where a reflected radiance value is 

required, instead of the total reflectance, is also considered. 

4.5.1 Varying the asymmetry parameter 

Thus far in the analysis the single-scattering albedo has been varied, but the scat-

tering phase function has not. This is clearly not realistic since the scattering phase 

function will vary with cloud droplet size distribution and the wavelength of light 

under consideration. In order to test the effect of different phase functions on the 

parameterisation of the effective optical properties, the Henyey-Greenstein phase 

function was kept but the asymmetry parameter g was varied. Figure 4.17 shows 

the variation in g with cloud effective droplet radius for four wavelengths between 

112 



•o
, 

• 
• 6 

0
 

0
 

•
13 

3
3
 

0 
er

ro
r i

n 
tr

an
sm

itt
an

ce
 —

 
0
0
0
0
0
 

cn
 

A 
(4

 	
••• 

9
0
9
0
0
 

o 	
GO

 	
0
 

3 
3 

g • 8 e
r-4'

 
•

(1)1-1 
cp

 
c-r

- 
o

G3
 :—

 
,—

 
o

Sr,
 

R
 

,_3
 

c

• 

b 
oz

 e
+ 

P
 

(S
- 

C/3
 

0
 

O
CD

 
0
 

■-•
 • 

P-
1 

eg
 

g
 1

'i
 

0
 

CD
 

C
I'
 l
't

 
Z
. 

C
D

 0
 

1-,
•  

0,4
 	

-.
 

0
 

I.
 	

C
r 

gt
 

g 
.-

 
a 

C.
4 	

• 

P
 	

3 

	

F4
  0

—
 E

n 	
so = 

rt
 0

4
. 

-.
 

O
0
 	

cn
 

P
0
 

04
 

'E
r 

tz
e co
 

.1
 

11,
 

1:3 
ia.

.. 
0 

w▪ 

•  e+
 

	

,_, 
15 •

 	
tv

 
0
 

<
 
•
 
C

K
I
 
0
 

CD
 5 

eq.  
0 ra,

 C
D  

CD
 

01
  

,_. 
5.

N)
 

	

a 
7
4_,

  • 	
al

 
0
 

17
' a

l  0
 

5 
74

. 

'T
".

. 

er
ro

r i
n 

tr
an

sm
itt

an
ce

 LI
' 

!..b 
P
O

P
P
 	

P
P
P
P
P
 

cn
 
A

L
0
N

-
L
0
-

,
1■3

4
) 
A

O
 

er
ro

r i
n 

tra
ns

m
itt

an
ce

 
2

: 
P
P
O

P
P
 

0
9
9
9
2
 

A
C

O
N

-,
0
-

,
N

G
J
A

0
 



9.00E-01 

8.80E-01 - 

s_ 8.60E-01 
0 

to 8.40E-01 

8.20E-01 

E 8.00E-01 - 
>• 
(0) eti 7.80E-01 - 

7.60E-01 - 

7.40E-01 	 
0 
	

10 	20 	30 	40 	50 
	

60 

effective radius (gm) 

Figure 4.17: The asymetry factor, g, as a function of the effective cloud droplet 
radius for several wavelengths across the solar spectrum. 
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0.314 pm and 1.855 pm. These were calculated using the parameterisation of Hu 

and Stamnes [1993]. From figure 4.17 it can be seen that for much of the solar spec-

trum and for typical droplet radius values, the asymmetry parameter is between 

0.8 and 0.9. Therefore the Monte Carlo radiative transfer calculations described in 

sections 2.2 and 4.2.2 were performed for both multifractal and PPH cloud fields 

with g = 0.8 and g = 0.9. Only the non-absorbing case is considered here. 

The effective optical depths were found from the radiative transport results as 

described in section 4.3.1, using PPH cloud with the same asymmetry parameter as 

the multifractal cloud. The 715 1  found for multifractal cloud fields of spatial size 6.4 

km and 1.6 km, with g = 0.8 and g = 0.9 are plotted in Figure 4.18. Also in the 

figure are solid lines that represent the parameterization described in section 4.3, 

which were derived uisng g = 0.85. These results indicate that there is only a small 

variation in it with the change in the asymmetry factor between 0.8 and 0.9. To 

further quantify the parameterization errors Table 4.4 shows Ddi8p (11,7-1.1 ) for 

g = 0.8 and g = 0.9. Although there is an increase over the dispersion found in 

Figure 4.7 (where g = 0.85), it is relatively small, especially when considering that 

these are relatively extreme values of g within the solar spectrum. Of course this 

increase in error could be reduced by recalculating the constants in (4.2) at the new 

asymmetry factor. 

The absolute errors in transmission when using the effective optical properties 

approximation with clouds with different values of g are can be seen in Figure 4.19. 
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Figure 4.18: The effective optical depth for clouds with two different values of the 
asymmetry parameter, g=0.8 and g=0.9. The spatial averaging size is a)6.4 km 
and b)1.6 km. In both cases the parameterized values (derived using g=0.85) are 
also plotted as a solid line, and the 1:1 reference line is also shown. 
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Figure 4.19: The absolute errors in transmission when using the effective optical 
properties approximation with varying assymetry parameter. For a) g=0.8 and b) 
g=0.9 
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Table 4.4: The errors involved in using the parameterisation developed here, if the 
asymmetry parameter is g = 0.8 and g = 0.9. Found for non-absorbing clouds at 5 
solar zenith angles 0 0 ) and three spatial averaging sizes. 

Ddisp (T f , IV IC  ) , g = 0.8 Ddisp ( Tell 1  , T;111 ) , g = 0.9 
610  6.4 km I 3.2 km 1.6 km 6.4 km I 3.2 km 1.6 km 
00 0.074 0.075 0.081 0.053 0.063 0.075 

20° 0.077 0.083 0.103 0.054 0.072 0.100 
40° 0.088 0.101 0.110 0.057 0.091 0.106 
60° 0.107 0.131 0.147 0.081 0.124 0.145 
80° 0.123 0.158 0.212 0.101 0.135 0.206 

4.5.2 Varying the fractal model parameters 

The fractal model parameters used thus far were found, in chapter 3, by consider-

ing the liquid water content data from 98 flights considered as a single ensemble. 

However within these flights there was some small variation between cloud types 

and even an indication of diurnal variability for stratocumulus clouds. The fractal 

model parameters, a, C1  and H, were calculated for each flight separately, solely to 

get some indication of how widely the fractal parameters may vary. This was done 

using the double trace moment analysis, described in section 2.1.5. These param-

eters approximated a normal distribution about the ensemble values. Cloud fields 

were generated using parameters at approximately one and two standard deviations 

above and below the mean values, as well as at the mean values, to give 3 3  = 27 

cases. The parameter values used were a = 1.2, 1.48, 1.7; C 1  = 0.05, 0.106, 0.15; 

H = 0.2, 0.3, 0.4. 

Radiative transfer calculations were performed for all of the multifractal cloud 

fields, assuming no absorption. Some reflectance results are graphed in Figure 4.20. 

Each part of figure 4.20 plots the three cases for one fractal parameter varying while 

the others are held at the mean value. The reflectance for PPH cloud is presented 
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for comparison. Figure 4.20a) shows that as the inhomogeneity parameter, C 1 , 

increases, the reflectance values decrease, as the cloud moves further from the ho-

mogeneous case. Similarly as a increases and the more extreme values appear in 

the field, the reflectance values decrease as seen in figure 4.20b) . However, figure 

4.20c) reveals that a higher value of the non-conservation parameter H yields a 

higher reflectance curve that is closer to the homogeneous case, as increasing H has 

a smoothing effect on the field. 

To analyze the accuracy of the effective optical depth parameterization, the 

two most extreme of these cases are considered: case A, where the cloud radia-

tive properties are furthest from the homogeneous case, with a = 1.7, C 1  = 0.15, 

and H = 0.2; case B, in which the radiative properties are closest to the homoge-

neous case with a = 1.2, C1 = 0.05, H = 0.4. For these two extreme cases the 

effective optical depth 7-: 1  was found from the radiative transfer results and the 

degree of error in the effective optical depth parameterization was estimated using 

Ddi8p(r:711, "1-1.11), where r:l ifc is that given by the function (4.2). The results are 

presented in Table 4.5. Comparing these to the original ensemble-mean case (see 

Figure 4.7), it can be seen that the error is larger in both case A and case B, with 

the values of the root-mean-square dispersion at low solar zenith angles increasing 

from below 5% in the ensemble-mean case to around 10% for extreme cases. At 

High solar zenith angles the increase is not as great, but the errors were already 

large in the mean case. Note that in case B the usual pattern of greater errors at 

smaller spatial average size is reversed at low zenith angles. This is because the 

pixel size dependency in the parameterization moves it closer to the case B results 

as the pixel size decreases. 

The absolute errors in transmission when using the effective optical properties 

approximation in case A and case B are shown in Figure 4.21. 
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Figure 4.21: The absolute errors in transmission when using the effective optical 
properties approximation with varying fractal parameters. For two extreme cases 
(case A and B). 
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Table 4.5: The errors resulting from using our parameterisation if the cloud has 
different fractal parameters. Two extreme fra,ctal parameter cases are considered: 
case A, where a = 1.7, C1  = 0.15, and H = 0.2, and case B, where a = 1.2, 

= 0.05, H = 0.4. Calculated for non-absorbing clouds at 5 solar zenith angles 
Os  and three spatial averaging sizes. 

Os  
Ddisp(0 f )T:711), case B Ddispl f , 'Of), case A 

6.4 km 	3.2 km 1.6 km 6.4 km 3.2 km 1.6 km 
00 0.073 0.094 0.105 0.116 0.096 0.066 
20° 0.081 0.095 0.103 0.126 0.098 0.078 
40° 0.092 0.108 0.131 0.129 0.102 0.105 
60° 0.130 0.134 0.161 0.132 0.112 0.136 
80° 0.149 0.179 0.207 0.164 0.152 0.174 

It should be noted that the two extreme cases considered are indeed quite ex-

treme. Since each extreme fractal parameter was chosen to be at 2 standard devi-

ations from the mean values, the probability of all three parameters being as far 

from the mean as case A or B would be of the order of 0.05% if the variations 

in the fractal parameters are independent. However, the analysis in sections 3.2.4 

and 3.2.5 show that in both the diurnal and seasonal cycles C 1  and a vary roughly 

in opposition, so are they are not independent. These opposed cycles will tend to 

keep the radiative properties of the clouds close to the mean values. Therefore the 

extreme cases considered here are even less probable then 0.05%. Thus these values 

are taken to be the upper limits on the error in the parameterization. 

Variations between cloud types 

As well as these extreme cases defined by the variation in fra,ctal parameters among 

individual flights, it is also possible to consider the difference in radiative proper-

ties between the three cloud types whose statistics were described in Chapter 3. 

The Monte Carlo radiation simulations were performed for multifractal cloud fields 
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generated using the mean parameters for altostratus, stratocumulus and cumulus 

clouds that were presented in Table 3.1. Once again only conservative scattering 

was used. The resulting reflectance values for each cloud type in 6.4 km pixels 

are shown in Figure 4.22. Also shown for comparison is the reflectance of a PPH 
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Figure 4.22: The reflectance of multifractal clouds generated using the measured 
parameters of the three cloud types considered in chapter 2: altostratus, stratocu-
mulus and cumulus. The reflectance of PPH cloud and multifractal cloud with the 
mean parameter values are also shown for comparison. 

cloud and that of a multifractal cloud with the mean parameter values. As noted 

in Chapter 3, the only parameter that differed significantly between these three 

cloud types was the intermittency parameter C 1 . It was seen above that increasing 

the parameter C1  caused the fractal cloud to be further from the PPH case, and 

thus we would expect cumulus cloud, with the highest C 1 , to be the furthest from 
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the PPH case and altostratus to be the closest. This is reflected by the results 

in Figure 4.22, which shows the cumulus cloud to have lower reflectance than the 

mean parameter case, stratocumulus to be very close to the mean parameter case, 

and altostratus to have a slightly higher reflectance at T an -- - mean • The difference 

between the mean case and the altostratus, and between the mean case and the 

cumulus, is approximately 3% for 

4.5.3 Reflected radiance distributions 

For satellite remote sensing calculations it is not only the entire reflectance that 

is important but the radiance in a particular direction. Thus it is not sufficient 

for remote sensing calculations to have a PPH cloud with the same reflectance as 

the multifractal cloud, it must also have the same reflected radiance distribution. 

This hypothesis was tested using the radiance distributions output from the ra-

diative transport calculations, which were recorded at a resolution of 5 degrees in 

the zenith and 10 degrees in the azimuth. Figure 4.23a) shows reflected radi-

ance distribution for a multifra,ctal cloud with mean optical depth of 32 and figure 

4.23h) shows reflected radiance distribution for a PPH cloud with the same total 

reflectance i.e. a PPH cloud with optical depth '7-1.11 . These plots are for a single 

multifractal realisation. Both are for a solar zenith angle of 60° and are the aver-

age values over 6.4 lam The radiance distributions have been normalized so that 

ff 1(0, 0) sin 0 cos Od0d0 = 1, where 1(0, 0) is the radiance reflected from the top of 

the cloud in the direction with zenith angle 0 and azimuth angle 0. Azimuth angle 

here is defined such that the sun (or light source) is at 0 = 180, so forward-scattered 

light proceeds in the direction 0 = 0. Figure 4.23 shows the two distributions to 

be quite similar. 

Tmean between 32 and 100. 
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Figure 4.23: A contour plot of the distribution of the reflected radiance for: a) a 
multifractal cloud with a mean optical depth of 32, b) a PPH cloud with the same 
total reflectance as the multifractal cloud (r = 14.5). Both plots are for solar zenith 
angle of 60 degrees and a pixel size of 6.4 km. 

125 



To quantify the difference between the PPH and fractal cloud radiance distri-

butions, the relative error in the reflected radiance was considered; if 1(0, (/)) is the 

radiance reflected from the multifra,ctal cloud and /ppH (0, (/)) is the radiance re-

flected in the same direction from the PPH cloud of optical depth T1 .11 , the relative 

error is 
I 	0 	0 

relative error in / = 
ppH(0, ) — 10, )

. 
/(0, 0) 

(4.7) 

The mean of the relative error across the distribution is zero because the total 

reflectance in the PPH cloud is equal to the fractal cloud. The standard deviation 

of the relative error, as the azimuth and the multifractal reaslisation was varied, is 

shown in a contour plot in Figure 4.24 as a function of T mean and viewing zenith 

angle. This relative error was found, when all realisations were considered, to be 

approximately normally distributed about with change in the azimuth, so that the 

standard deviation apeears and approximate measure of the spread in the error. The 

figure shows the results for 4 different zenith angles. The general trend seems to be 

an increase in spread of the error with both solar zenith and viewing zenith angles, 

and a decrease with increasing optical depth. This shows that the differences 

involved are relatively small, with the standard deviation exceeding 0.05 only when 

the viewing zenith angles or solar zenith angle is very high (above 70 degrees). Thus 

the reflected radiance distribution of the fractal cloud is quite similar to that of the 

PPH cloud with the same total reflectance. This implies that the effective optical 

properties approximation considered here can be used in satellite remote sensing 

applications, at least in the case of conservative scattering with large pixels. The 

error in radiance distribution does increase slightly with decreasing pixel size, as 

can be seen in Figure 4.25 for 3.2 km pixels and Figure 4.26 for 1.6 km pixels. 

But even in the case of 1.6 km pixel the error only exceeds 10% at high viewing 

and solar zenith angles and for low optical depths. 
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Figure 4.24: The standard deviation in the relative error between the upwelling 
radiance given by a multifractal cloud and a PPH with the same reflectance. Shown 
as a contour plot as a function of viewing zenith angle and optical depth. For a 
spatial size of 6.4 km and for 4 different solar zenith angles. 
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Figure 4.25: The standard deviation in the relative error between the upwelling 
radiance given by a multifractal cloud and a PPH with the same reflectance. Shown 
as a contour plot as a function of viewing zenith angle and optical depth. For a 
spatial size of 3.2 km and for 4 different solar zenith angles. 
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Figure 4.26: The standard deviation in the relative error between the upwelling 
radiance given by a multifractal cloud and a PPH with the same reflectance. Shown 
as a contour plot as a function of viewing zenith angle and optical depth. For a 
spatial size of 1.6 km and for 4 different solar zenith angles. 
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4.6 Comparison with the EHCA 

As noted in chapter 1, the approach taken in this study is based on that developed 

by Szczap et a/[2000a; b; c], in the EHCA. In both cases the goal is to replace an 

inhomogeneous cloud with a PPH cloud with the effective optical properties. In this 

sense the approximation developed here could be considered a version of the EHCA 

with different parameterization of the effective optical properties. One reason that 

the parameterisations differ is that they are based upon different fractal cloud 

models. The EHCA was developed using the bounded cascade model [Cahalan et 

al., 1994]. The parameterization for the effective optical properties in the EHCA 

uses the "relative inhomogeneity parameter", p,-, defined by Pr = u(r)Irmean where 

(TM is the standard deviation of the optical depth within the averaging area. For 

example the effective optical depth for non-absorbing clouds is parameterised by 

[Szczap et al., 20004 

Tell 'ell 
A1 + BTmean  

L 1 + armean 
(1- exp(DP-r)) + Tmean 11 E (1- exP(FPT))}] (4 . 8) 

Tmean  
A(1 - exp(Dp,) )1 

where the constants are A = -4.53 x 10 -2 , B = 1.57 x 10-2 , C = 2.64 x 10 -1 , 

D = 12.6, E = 5.68 x 10-2 , F = 3.78. Although this does not contain any explicit 

reference to the parameters of the bounded cascade model, the constants in the 

parameterization were derived using this model with the typical parameters for 

marine stratocumulus clouds. On the other hand, in this study the FIF model was 

used to generate cloud fields with the mean parameters derived from measurements 

of an ensemble of stratocumulus, altostratus and cumulus cloud with cloud covers 

ranging from 0.25 to 1.0. As a result the clouds used here in radiative transport 
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calculations are more variable than those used in creating the EHCA. 

The parameter pr  was calculated for the FIF multifractal clouds considered in 

section 4.3, and this was used to find the effective optical depth that would be pre-

dicted by the EHCA using equation (4.8). The effective optical depths predicted 

by the EHCA at a spatial scale of 6.4 km are plotted in Figure 4.27 against T f the 

effective optical depth determined from the radiative transfer calculations. The 
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Figure 4.27: A plot of estimated effective optical depth against the effective op-
tical depth determined from Monte Carlo radiative transfer calculations. Points 
estimated using the parameterisation of Szczap et al [2000a] are shown, as well as 
those estimated using the parameterisation developed here. Values shown are for 
multifractal cloud generated by the FIF model, and a spatial averaging size of 6.4 
km. 
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effective optical depth predicted by the parameterization developed here, (4.2), is 

also plotted for comparison. This comparison shows that the EHCA parameter-

ization consistently overestimates the effective optical depth, especially at higher 

values. This should not be surprising since in their analysis of the applicable range 

of the EHCA Szezap et al. [2000c] found that their parameterization did not fit well 

clouds with a very high degree of inhomogeneity. Specifically they found that their 

parameterization could be applied to clouds with pr  < 1.5, and the average value 

for the FIF cloud fields used here is pr  = 1.63 at 6.4 km. Therefore the EHCA 

parameterization is not applicable to the cloud model used here. 

Not only is the cloud model used here more inhomogeneous, the nature of the 

parameterization used here is also different from the EHCA. Equations (4.2) and 

(4.6) express the effective optical properties as functions of the pixel size and mean 

optical depth, and make no mention of a local measure of the inhomogeneity such as 

Pr. The degree of inhomogeneity is instead indirectly included as a function of pixel 

size. This means that these functions are specific to this cloud model. Although 

a new parameterization could be fitted using a local measure of sub-pixel inhomo-

geneity such as Pr,  using the local properties in this way is of little advantage in 

practice because in most applications, such as remote sensing or climate models, 

the sub-pixel variations are not known for each case and some average model value 

would have to be assumed anyway. Thus our method subsumes this average inho-

mogeneity value into the parameterization. This also has the added advantage of 

making the dependence on pixel size explicit - and pixel size is a factor that does 

vary across applications. 
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4.7 Summary of chapter 4 

In this section the radiative properties of multifractal cloud fields were investigated 

using Monte Carlo radiative transfer. The general results of cloud inhomogeneity 

that other researchers have found were confirmed - specifically that inhomogeneous 

clouds have higher transmittance but lower reflectance and absorptance than PPH 

clouds of the same mean optical depth. However, clouds considered here varied 

more from the PPH case than was shown for marine stratocumulus in other stud-

ies (with the bounded cascade models). Furthermore, the multifractal cloud fields 

were found to vary more from the homogeneous case as spatial averaging size in-

creased above 0.8 km. In order to provide a framework for simple radiative transfer 

using PPH cloud models, the effective optical properties of the multifractal cloud 

fields were then examined. The conditions under which the effective optical prop-

erties approximation could be used to derive all radiative outputs were found in 

terms of solar zenith angle and spatial averaging size. Under these conditions the 

parameterizations that were found for effective optical depth and, in the case of ab-

sorbing clouds, effective single-scattering albedo, can be used to easily generate a 

homogenous cloud to replace the multifractal one in radiative transfer calculations. 

The errors involved in using this parameterisation, which depends explicitly on the 

pixel size and implicitly on the cloud model, were seen to be significantly less than 

those that would result from using the simple PPH assumption alone. Varying the 

scattering phase function and asymmetry factor, within the typical range seen for 

the solar spectrum and for most values of the cloud effective droplet radius, was 

found to have minimal effect on the effective optical properties. In addition, little 

difference was found between the reflected radiance distributions of the multifrac-

tal and PPH clouds with the same total reflectance, allowing the effective optical 
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properties approximation to be of use in satellite remote sensing calculations. 

The effect of varying the fractal parameters of the model were also considered. It 

was found that increasing C1  or a increased the difference from the PPH case (low-

ering reflectance and raising transmittance) while the smoothing effect of increasing 

H had the opposite effect. The errors in effective optical depth parameterisation 

when varying the multifractal parameters was also examined. 
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Chapter 5 

Radiative properties of 

3-dimensionally multifract al 

clouds 

In the previous chapter, the focus was on clouds with horizontal inhomogeneity 

but with constant liquid water profiles in the vertical direction. However, vertical 

inhomogeneity can also influence the degree of solar radiation reflected and trans-

mitted by cloud, and hence affect cloud properties retrieved from satellite data as 

well as radiation levels at the ground. Therefore in this chapter the consequences 

of vertical variability for cloud radiative properties are examined. Previous studies 

[Romanova, 1998; Stephens et al., 1991; Marshak et al., 1998] have found that 

vertical inhomogeneities have relatively little effect in clouds of low vertical extent. 

However these same studies have also demonstrated that the differences between 

the radiative properties of vertically homogeneous and vertically inhomogeneous 

clouds increases with increasing vertical optical depth. The magnitude of these dif- 
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ferences and at which optical depth they become significant depends on the amount 

of inhomogeneity of the cloud liquid water content. This of course is determined 

by the cloud model used. Therefore the effect of vertical variations based on the 

FIF cloud model are examined here. 

Unfortunately, unlike the case for horizontal liquid water data, little in situ 

data was available to provide information on vertical cloud structure. Given this 

limitation, an isotropic cloud model is used in this chapter - the horizontal vari-

ations measured in chapter 3 are assumed to also apply to the vertical structure 

of the cloud and the spatial statistics are therefore assumed to be the same in all 

dimensions. This is not necessarily realistic, since there are different structures and 

processes in the vertical dimension, but it is the simplest inhomogeneous model 

that incorporates vertical variations in a multifractal structure. However, there is 

some evidence for such an assumption: in the case of radar refiectivities of rain 

clouds Tessier et al. [1993] found that horizontal and vertical structure were both 

multifractal in nature and that both fit the FIF model with parameters that were 

very similar (horizontal a = 1.4, C1  = 0.12, = 1.45; vertical a = 1.35, C1  = 0.10, 

= 1.4). 

The main objective of this investigation of 3-dimensionally multifractal clouds 

is to determine the effects on the radiation field caused by the addition of vertical 

variations and test the accuracy of the (2D multifractal cloud-based) results found 

in chapter 4 under these conditions. The possibility of developing an effective 

optical properties approximation for the 3-dimensionally multifractal clouds is also 

examined. Little previous work has been done on 3D fractal cloud properties; 

although Borde and Isaka [1996] found the effective optical properties of lognormal 

multifra.ctal clouds with both vertical and horizontal variations, the calculations 

were done in only two dimensions (1 vertical and 1 horizontal), and before this 
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thesis the effective optical properties of fully 3-dimensionally multifractal clouds 

have not been considered. 

The structure of this chapter is very similar to that followed in chapter 4 for 

vertically homogeneous clouds. First the results of the Monte Carlo simulations for 

non-absorbing clouds are examined and used to find the effective optical depths. 

The errors in the parameterisation of the effective optical depth when there are ver-

tical variations are then presented. Following this the same steps are then followed 

for absorbing clouds. 

5.1 The modelling 

This numerical process described in section 2.1.6 was used to generate the 3- 

dimensional multifractal liquid water content fields for the Monte Carlo radiation 

modeling. Again, the mean parameters of all clouds considered in Chapter 3 were 

used for the FIF model: a = 1.48, C1  = 0.106, H = 0.3. The multifractal cloud 

fields were generated to be cubes of side length 3.2 km. Within these cubes was a 

grid, with grid cubes being 25 m on each side. This gives a highest resolution with 

a scale ratio of A = 128. As in the previous modelling, the liquid water content, p, 

is constant within each 25m grid cell - but now the value of p varies with both the 

vertical and horizontal position of the grid cell. The continuous cascade generation 

method as described in section 2.1.6 was used to give the value of p at each point 

in the grid. The droplet radius distribution (and hence the droplet effective radius) 

is again held constant throughout the cloud, thus allowing the volume extinction 

coefficient it t  in each grid cell to be proportional to the liquid water content in 

the cell, as given by equation (2.42). Since the vertical profile is no longer constant, 

the vertical optical depth at any point is now T = (3f 200m next  p dz, where z is the ver- 
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tical displacement. The mean optical depth Tmean  of the multifractal cloud is still 

the arithmetic mean over the cloud area of the vertical optical depths. After each 

random generation, the liquid water content, p, (and therefore Azt ) were scaled 

to give the desired value of Trnean  for the cloud field. The mean optical depths 

chosen for the multifractal clouds were: Tmean  = 2, 4,8, 16,32,64,100. The Monte 

Carlo radiative transfer method presented in section 2.2 was then used to find the 

radiative properties of these cloud fields. Twenty fields were randomly generated 

at each optical depth and the radiative results averaged. Like in chapter 4, for 

the majority of the calculations the asymmetry factor was taken to be g = 0.85, 

calculated using the parameterisation of Hu and Stamnes [1994] with a wavelength 

of 0.55pm and effective radius of lOpm. But as was discussed in section 4.5, the 

asymmetry factor does not vary much over most of the solar spectrum. Also as in 

chapter 4, the single-scattering albedo, w, was varied through the values of w = 

1.0, 0.999, 0.99, 0.98, 0.95, 0.92, 0.9. 

This Monte Carlo radiative transfer code was used with homogeneous clouds 

(homogeneous in 3 dimensions), as well as the multifractal clouds. The simulations 

for each cloud field was done using 50 million photons. The model was run with 

photons entering the top surface of the model with zenith angle, 00 , of 0°, 20°, 

40°, 60° and 80°, in order to simulate the clouds being illuminated from different 

solar zenith angles. The transmittance, reflectance and absorptance were recorded 

for each horizontal 25m x25m grid square in the model. The area averaged trans-

mittance, reflectance and absorptance were calculated for square areas with sides 

of 0.8km and 1.61m, as well as 3.2km, in order to simulate the effect of spatial 

variations on pixels of different sizes. 
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Figure 5.1: The reflectance and transmittance calculated from the Monte Carlo 
radiation code for homogeneous clouds, 2D multifractal clouds (horizontally in-
homogeneous, vertically constant) and 3D multifi-actal clouds. Calculated for an 
averaging scale of 3.21cm. The error bars shown are the standard error due to 
averaging over the 5 realisations of the multifraktal cloud field. 

5.2 Conservative scattering results 

The reflectance and transmittance calculated when w = 1 for the homogeneous 

and 3D multifractal clouds at the 3.21cm scale, are displayed in Figure 5.1 as a 

function of T mean• Points are the mean values over the 5 realisations at each optical 

depth. Also shown in figure 5.1 are the reflectance and transmittance that are 

calculated using the effective optical depth approximation, (4.2), developed for 2D 

multifractal clouds in section 4.3 - the 2D curves in the figure are found by finding 

the parameterised value of the effective optical depth and then finding the radiative 

properties of a PPH cloud with that optical depth. The cloud fields with variations 

in all three dimensions vary further from the homogeneous case than the cloud with 
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only horizontal variations. This difference increases with r meon , with the reflectance 

bias going from less than 1% for Tn., < 10 to "5 — 7% for optical depths between 

20 and 100. These differences decrease with decreasing pixel size. Therefore it is 

confirmed that for clouds with low optical depths the error caused by using a cloud 

that has constant liquid water content in the vertical is quite small. However, once 

the optical depth reaches 15 or 20, the bias becomes more significant. To put these 

optical depths in context, the typical for stratocumulus value is "13 [Cahalan et al., 

1994a]. It will depend on the application whether thick clouds must be considered 

and whether a 5-7% bias is important. If this is significant, it is possible to alter 

the effective optical depth parameterisation to more correctly model 3D multifractal 

clouds. 

The effective optical depths based on the cloud transmittance (71.1), and those 

based on cloud reflectance (7-e5f ), can be determined by comparing the Monte Carlo 

model outputs for the 3D multifractal cloud with the PPH cloud, as in section 4.3.1. 

Cubic spline interpolation was used to find the optical depth of the PPH cloud 

with the same transmittance (or reflectance) as the multifractal cloud. As shown 

in Figures 5.2 and Figure 5.3, the two types of effective optical depths for the 3D 

multifractal cloud are quite similar for low solar zenith angles, with the differences 

between them following similar patterns as those of the 2D multifractal clouds in 

chapter 4. The notable difference here is that while the discrepancies between 

7- .1.f  and TT." in Figure 5.3 are less than or equal to those in the 2-dimensionally 

multifractal case (for the same pixel size) at solar zenith angles < 40, they are 

greater than in the 2D case at solar zenith angles of 60 and 80 degrees (see Figure 

4.3 for the 2D case). Similarly the 3D multifractaLs follow the same trends as the 

vertically homogeneous cloud in the area of solar zenith dependence of the effective 

optical depths, but there is again a higher increase of dispersion at higher zenith 
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Figure 5.2: A comparison of the effective optical depths obtained from the re-
flectance and transmittance of 3D multifractal clouds. Horizontal averaging scales 
used are 1.6km and 0.8 km, and the incident zenith angle is: a)twenty degrees and 
b) eighty degrees. 
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Figure 5.3: The relative dispersion between 7 -1,1  and Te7f I as a function of incident 
zenith angle for averaging scales of 1.6Icm and 0.81cm. 

angles. This last point is shown for '7- 1.f  in Figure 5.4, which plots the relative 

dispersion Dthsp  (7-1.11 (0°), T; f ( 0 0 )) (as defined by equation (4.1)) as a function of 

00 . Despite this increased dependency on solar zenith angle, the root-mean-square 

dispersion was still less than 5% for solar zenith angle less than 45 degrees for 

a pixel size of 1.61cm, indicating that the effective optical depth approximation 

could still be used to calculate both T and R for low solar zenith with minimum 

error. The increased dependence on solar zenith angle could well be a result of 

the geometry changes in this case, with the higher cloud height allowing greater 

horizontal transport of photons before exiting the cloud when the solar zenith angles 

are higher. 

Next consider the pixel size dependence of the effective optical depth. Figure 5.5 

shows 7-1.f , for different averaging scales, as a function of the mean optical depth, 

Trnean of the multifractal cloud. These values are for an incident zenith angle 

142 



--+- 3.2km 
--a-- 1.6km 

- --A-- 0.8km 

. 
....-- 

. ..4 

.... .••- 	. 
.••• 	• 

II; ........ --- 	.......... 

0.45 

0.4 

0.35 

0.3 

- 0.25 

• 0.2 
ce 

a. 0.15 co 

0.1 

0.05 

10 	20 	30 	40 	50 	60 	70 
	

80 
	

90 

solar zenith angle (degrees) 
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3-dimensionally multifractal clouds. 
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Figure 5.5: The effective optical depth as a funtion of mean optical depth of the 
multifraetal cloud segment. Calculated for pixel sizes of 0.8km, 1.6km, and 3.2km, 
with an incident angle of zero. The lines shown are those calculated by the empirical 
fit found specifically for the 3D multifractal clouds. 

of 00 , and the dotted 1:1 line in the figure is where homogeneous clouds would 

fall. This figure shows behaviour qualitatively the same as for 2D multifractal 

clouds, with 7-1,f  decreasing, moving further from the homogeneous case, as the 

averaging scale increases. Figure 5.5 also shows, for all pixel sizes, that T iel f is close 

to Tmea„, and therefore behaving like a homogeneous cloud, when Tmean  is small. 

Alternatively, when T mean is large 7- 11  seems to approach a straight line. All of this 

is the same as for cloud with only horizontal variations. However, when the 7 -11f  

for the 3D multifractal cloud were fitted to the function (4.2), which was used to 

parameterise effective optical depth in chapter 4, some differences are revealed. The 

non-linear least squares fit to the function yielded the following parameter values 
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Figure 5.6: A comparison between the effective optical depth parameterisations for 
3-dimensionally and 2-dimensionally (vertically homogeneous) multifractal clouds. 
Shown for 0.8 and 3.2 km pixels. 

for the relationship: A = 8.448, B = 7.56, C = 8.49, D = 2.54, k = 0.475. The 

solid lines in Figure 5.5 are the parameterised values produced by using these new 

parameters in the function 4.2. The noteworthy difference here is the lower value of 

the exponent k, compared to the value of 6.72 found for 2D multifractal cloud. The 

lower value of k indicates a lesser degree of dependence on the spatial averaging 

size. This is illustrated in Figure 5.6, which compares the values of T ell calculated 

using the parameters found here for 3D fraktal clouds and those found using for 

2D fractal clouds in chapter 4. Both cases are shown for 0.8 km and 3.2 km pixels. 

This shows that while effective optical depths at 3.2 km are relatively similar, at 

the 0.8 km scale the 2D multifraktal clouds are much closer to homogenous case. 
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This means that the values of the effective optical depth of the 3-dimensionally 

multifractal clouds do not approach the homogeneous case as rapidly as the pixel 

size decreases. 

Figure 5.7 shows the errors in the effective optical depth of 3D multifractal cloud 

estimated by this parameterisation, in the form of Ddisp (T 1, recy-11) where T 

the parameterised value. Values are also shown for pixel sizes of 3.2 km and 1.6 

km. Also shown in the figure is the error that results from using the parameter-

isation with the parameter values found for 2D multifractal clouds in chapter 4, 

and the error resulting from the traditional assumption of using a PPH cloud with 

an optical depth equal to T mean of the multifractal cloud. This figure shows that 

both parameterisations are significant improvements over the PPH model alone, as 

hoped. It is also possible to see that the original 2D parameterisation produces an 

error of 0.02 to 0.03 above that of the approximation developed especially for the 

3D clouds. This is largely due to the differences at relatively high optical depth. 

If the root-mean-square dispersion, Ddisp  , is calculated only for optical 

depths < 20, than the use of the 2D parameterisation produces a value approxi-

mately 0.01 higher than the specifically created 3D parameterisation. In both cases 

the relatively small increase in error indicates that the parameterisation developed 

for vertically homogeneous clouds is reasonable, even when clouds are vertically 

variable. 

The absolute errors in transmittance that occur when using the effective op-

tical properties approximation for 3D multifractal clouds are shown in Figure 

5.8.Compare this to errors in transmittance that result from using the traditional 

method of PPH calculations with same mean optical depth an the multifractal 

cloud, which are shown in Figure 5.9.Note that, as in the 2D case, using the ef-

fective optical depth approximation, instead of the traditional PPH assumption, 
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Figure 5.7: The root-mean-square dispersion between the effective optical depth 
found using the Monte Carlo results and that found using the empirical parame-
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original parameterisation (2D) as well as for parameters determined for 3D mul-
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Figure 5.8: The absolute errors in transmittance that occur when the effective 
optical depth approximation is used instead of a monte carlo radiative transport 
code with 3D multifractal cloud. For solar zenith angles of a) 20 and b) 60 degrees. 
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alone is used instead of a monte carlo radiative transport code with 3D multifractal 
cloud. For solar zenith angles of a) 20 and b) 60 degrees. 
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eliminates the mean bias in the data and reduces the absolute errors. 

5.3 Non-conservative scattering results 

The results of the Monte Carlo simulations for absorbing clouds with single-scattering 

albedo of 0.99 are plotted in Figure 5.10. Part a of the figure shows the reflectance 

and transmittance at a spatial size of 3.2km, while part b shows the absorptance. 

The figure also shoWs the radiative properties of PPH cloud and those that are 

calculated using the effective optical properties parameterisation developed for 2D 

multifractal absorbing clouds in section 4.4. Unlike the conservative scattering case, 

the 3D multifractal cloud with w = 0.99 behaves quite differently from the vertically 

homogeneous version. The reflectance of the cloud demonstrates much the same 

trends as in the non-absorbing case, i.e. diverging from the 2D multifractal case as 

Tmean  increases above 10 and generally being further from the PPH curve. However, 

the transmittance and absorptance both behave differently - they are very close to 

the 2D multifractal curve for low values of -rmean, but when they diverge they actu-

ally move closer to the PPH curve rather than away. In fact, the absorptance of the 

3D multifractal cloud is almost identical to that of the PPH cloud at Tmean = 100. 

These differences between the 3D multifractal and vertically-homogeneous multi-

fractal cases become quite large, reaching an absolute value of 0.1 at Tmean  = 100, 

which is ,,,50% of the transmittance and ,,,25% of the absorptance at that optical 

depth. Therefore the parameterisation developed for the 2D multifractal cloud is 

clearly not suitable for absorbing clouds with large optical depths. On the other 

hand, smaller optical depths (below 15-20) the parameterisation appears to produce 

more reasonable results. 

Some further light is shed on this phenomenon by some other statistics of the 
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Figure 5.10: a) the reflectance and transmittance of 3D multifraktal cloud with 
single scattering albedo 0.99, spatial scale 3.2 km. b) shows absorptance for the 
same conditions. Results for 2D multifracta1 and PPH cloud are also shown for 
companion. All for a solar zenith angle of 40 degrees. 
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Monte Carlo modeling - the mean free-path length and average number of scatter-

ing events of photons in the cloud. Table 5.1 contains the mean free-path length 

and average number of scattering events per photon, for 2D multifractal and 3D 

multifractal clouds. For the purposes of this comparison the 2D multifractal case 

Table 5.1: The mean free-path length (mfp)and average number of scattering 
events (# scat. events) in the cloud, for 3-dimensionally multifractal clouds and 
clouds with horizontal fractal structure and vertically costant profiled (labelled 2D 
multifractal clouds here). For a range of mean cloud optical depths, T mean • 

Trnean 

3D multifractal cloud 2D multifractal cloud 
mf P (m) # scat events mfp (m) # scat. events 

2 829 6.37 796 6.86 
4 421 13.5 393 15.2 
8 214 28.6 196 31.0 
16 109 60.2 99.5 62.9 
32 50.9 135 38.4 106 
64 25.8 255 19.8 187 
100 19.6 326 12.9 242 

listed here is from a simulation of vertically homogeneous, horizontally multifractal 

clouds with the same geometry (3.2 km cubes). The single scattering albedo is 0.99 

in each case. For 3D multifractal clouds with large optical depths (Tmean > 36), 

the mean free-path length is greater than for 2D multifractal clouds with the same 

Trnean) but so is the number of scattering events. This means that although the 

photons are travelling further between collisions, they are not passing out of the 

cloud. This would suggest that the photons almost become "trapped" in low liquid 

water areas of the cloud field, bouncing between "walls" (regions of higher extinc-

tion) - travelling a long distance between collisions but not being able to escape 

the cloud field. The higher number of average scattering events leads to the higher 

level of absorption. On the other hand, at optical depths of 16 or less the number 

of scattering events are similar for the two cases. 
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To determine if an effective optical properties approximation can be found for 

absorbing clouds, the relative differences between the effective optical properties 

determined using reflectance with transmittance, and those found using reflectance 

and absorptance were again considered. Figure 5.11 displays Ddisp (TeRrp r) and 

Ddzsp(wef f f f) ' This shows the differences between the different definitions 

of the effective single scattering albedo to be very large in comparison with 2D 

multifractal clouds. The errors of above 8% in all cases indicates that the effective 

optical properties approximation cannot be applied without quite large errors in at 

least one of T, R or A. This is due to the larger total photon path length in cloud 

and hence larger horizontal transport of photons. 

It is possible of course to only consider, for example, the effective optical prop-

erties based on R and T and ignore the errors in A. Of course this is not useful 

for studies of the radiation budget but may be sufficient for remote sensing studies 

- space (ground) based remote sensing only requires he calculation of reflectance 

(transmittance). Similar calculations could of course be done for any combination 

of 2 of the 3 radiative properties. The effective optical depths defined in terms 

of a PPH cloud with the same reflectance and transmittance, TZ, are graphed 

in Figure 5.12 as functions of Tmean , for the spatial averaging size of 3.2 km. For 

comparison the effective optical depth for 2D multifractal clouds at the same pixel 

size is also shown in the figure. Although the same general trends seen for the 2D 

multifractal clouds are also observed again here, with -rly; decreasing with decreas-

ing single-scattering albedo, the values for different values of w are much closer to 

each other at low values of rmean. Also the values of relyi at high optical depth 

are also significantly lower (up to 25% lower at Tmean  = 100) than those in the 2D 

multifractal case at the same spatial scale. However the values of T ,17.i do appear 

to have the correct shape to be fitted to an empirical function of the same form as 
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Figure 5.11: The root-mean-square dispersion between the effective optical proper-
ties of 3D multifractal cloud calculated using reflectance and transmittance (RT) 
and that found from reflectance and absorptance (RA). a) shows for effective opti-
cal depth and b) effective single scattering albedo. Both for 1.6 and 0.8 km pixels 
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clouds at the same pixel size and single scattering albedo is shown for comparison. 
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that used the effective optical depths of the 2D multifractal cloud (equation (4.2)) 

Now consider the effective single-scattering albedos defined by the PPH cloud 

with the same reflectance and transmittance, (4. Figure 5.13 displays the ratio, 

4Tf/w, of the effective single-scattering albedo divided by the actual droplet single-

scattering albedo, plotted against T an.  Figure 5.13a shows the ratio weRi; /w for 

three different values w at the spatial scale of 3.2 km. On the other hand, Figure 

5.13b shows weirf  /w for three different spatial scales with w = 0.90. These graphs 

show two clear differences from the effective single scattering albedos that were 

developed for vertically-homogeneous clouds. The first of these is shown most 

clearly in Figure 5.13a where the values of wel7; /w can be seen not to return quickly 

to 1 at high values of T,,,„„ as was seen for 2D multifractal clouds. This is a result 

of the high absorptance at high Tmean - the effective single scattering albedo must 

remain lower than w to produce the higher absorptance while maintaining a lower 

reflectance. The other departure from the patterns seen for 2D multifractal clouds 

is that in Figure 5.13b there is no clear increase in wlw with decreasing pixel 

size - in fact there is no clear pixel size dependence. This seems to indicate that 

the degree of vertical inhomogeneity is important in determining w e7f , since it is 

not affected by changing the horizontal pixel size. Because of these differences the 

form of the equation (4.6), used to parameterise the effective optical depth for 2D 

multifractal clouds, is not suitable for 3D clouds if large values of Tmean  are included. 

Therefore it is not possible to correct for vertical variations by simply changing the 

parameter values in the approximation for absorbing clouds, in the way that was 

done for 3D non-absorbing clouds. 

The errors in the effective optical properties of absorbing clouds that result from 

using the parameterisation determined for 2D multifractal clouds were determined 

using the functions Ddisp (reig, relf) and Ddisp (wrfTf , (4f), where the superscript 

156 



0 3.2km w=0.99 
 x 3.2km w=0.95 
• 3.2km w=0.90 

0 o 
x 	13  

o 
o a 

— 

x 

x 
• 

x 

• 
x x 

• • 
• 

• • 

a) 	
1 

0.96 

0.97 

v 
40 a 0.8km w=0.90 

x 1.6km w=0.90 
• 3.2km w=0.90  

_ 
0 
6 

U 
X 

a o n 
x 

o 
3x1:1 X 13 	o . . 	a o tg 

o 

a 

ix 
X 	

a 

a 
o 

r,• .91 	A  93 
.. 	,. 	• 	0 

' 	 CI  XCI al(  

0 6 
X Er-

X 0 	0 	CI 

b) 

0.99 

0.96 

0.95 

0 
	

20 
	

40 
	

60 
	80 	100 

	120 
Imean 

0 
	

50 
	

100 
	

150 
	200 	250 	300 

tmean 

Figure 5.13: The ratio of effective single scattering albedo 47 to the droplet single 
scattering albedo w, for 3D multifractal cloud, a) plots the data for different values 
of w, while b) varies the pixel size for w = 0.90. 
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cale indicates the values given by the parameterisation found in section 4.4. The 

root-mean-square dispersion of the effective optical depth is found in Figure 5.14 

and that of the effective single-scattering albedo in Figure 5.15. Part a in both 

figures shows the errors at a spatial scale of 3.2 km while part b shows the errors 

for pixels of 1.6 km. In addition to the discrepancies in the parameterisation for 

2D multifractal clouds if 3D multifractals are present, these figures also show the 

errors that result from this parameterisation if only clouds with T - mean < 20 are 

considered. Finally, the errors resulting from using the PPH assumption alone, 

Ddisp(T1g, Tmean) and Ddisp (we7f , w), are also shown for comparison. It is apparent 

that the 2D parameterisation for absorbing clouds is not suitable when clouds have 

vertical variations - indeed for 1.6 km pixels the parameterisation is little better 

than the PPH assumption. However, these figures also demonstrate that the error 

in the parameterisation is much smaller when only clouds with relatively small 

mean optical depths are considered. 

5.4 Summary of Chapter 5 

In the case of non-conservative scattering, the radiative properties of the 3D multi-

fractal clouds were found to be quite similar to those of clouds which are horizon-

tally multifraktal but vertically homogeneous. The non-absorbing 3D multifractal 

clouds simply had properties which were slightly further from the PPH case than 

the 2D multifractal clouds. As previous studies had found, the difference caused 

by introducing vertical variations increased with mean cloud optical depth. An 

alternative set of parameters was found for the empirical function for the effective 

optical depth of 3D multifraktal cloud, but using the original parameters found for 

2D cloud only increased the root-mean-square dispersion by at most 0.03, or 0.01 
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if only optical depths less than 20 were considered. Therefore the original param-

eterisation can probably be used with confidence in most cases where there is no 

absorption. Furthermore, if a more accurate model of the vertical statistics were 

derived, the consistent trends in the effective optical depth of non—absorbing clouds 

indicates that a new parameterisation could be found by simply recalculating the 

parameters of the approximation. There was an increase in the error between ;I f  

and /III  at high solar zenith angles in this case, compared to the 2D case. 

Absorbing clouds by contrast displayed qualitatively different behaviour when 

vertical inhomogeneity was introduced, specifically for large T mean • Although multi-

fractal clouds with vertical variations reflect less radiation than those with constant 

vertical profiles, they absorb more and transmit less when the mean optical depths 

are large. That is, they do not simply move further from the PPH case as might 

have been expected and was seen for the elastic scattering in 3D clouds. As a 

result the effective optical properties could not be estimated using the parameter-

isation developed for multifractal clouds with no vertical variations, except where 

the mean optical depth was small (< 20). In fact, not only the particular param-

eterisation but the whole concept of an effective optical properties approximation 

could not be applied to absorbing clouds due to the difference between weRfrf  and 

41, which indicates that there is no single PPH cloud that can accurately be sub-

stituted for an absorbing 3D multifractal cloud. This casts doubts on the validity 

of other studies that have found parameterisations for absorbing clouds by consid-

ering only 2-dimensionally variable clouds [e.g. Szczap et al., 2000b] - although 

these parameterisations may be valid for determining a single radiative parameter 

(eg reflectance), it does not seem likely that they can accurately produce all three 

of T, R and A for realistic clouds. 

To put these results in context, note that for an effective droplet radius of 
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Tel I  = 10, co <0.99 for wavelengths greater than 1.4pm, while in the range of 0.3- 

0.7 pin the single scattering albedo is ,,-, 0.99999. Therefore the elastic scattering 

results are applicable in the UV and visible wavelength ranges, but not in the 

infrared region. So the effective optical depth approximation may be applicable to 

the shorter wavelengths, but not to the infrared. That is, for calculations in the 

infrared it does not seem possible to simply correct current PPH algorithms for 3- 

dimensional variations in clouds with large vertical dimension. This means another 

approach will need to be developed for these cases, probably involving radiation 

calculations performed directly on 3D clouds. 
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Chapter 6 

Transmitted radiation under 

cloudy skies 1  

In the Chapter 4 it was shown that a homogeneous cloud with a reduced optical 

depth could be used to replace a multifractal cloud in radiation calculations and the 

error in the reflected radiance distribution would be very small. Although this is 

sufficient for satellite remote sensing, other applications such as climate models and 

ground based remote sensing are dependent on the transmitted radiation. In this 

chapter the distribution of transmitted radiance is considered and it is shown that 

even if a multifractal cloud and a PPH cloud have the same total transmittance 

the distribution of the radiance varies. 

To demonstrate the effects of the spatial structure of clouds on the sky-radiance 

distribution, the ultraviolet (UV) section of the solar spectrum is used as an ex- 

1 The majority of this chapter can be found in the paper "A comparison of cloudy-sky UV-
B radiance distribution measurements and radiative transfer calculations using a fractal cloud 
model" by K. Kuchinke, K. Fienberg and M. Nunez, submitted to J. AppL MeteoroL Although 
the copyright is held by the American Meteorological Society, permission has been granted for 
publication in this thesis. 
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ample. This allows the comparison of the modelled results with measurements of 

the UV sky-radiance distribution made in Hobart, Tasmania. As discussed in sec-

tion 4.5, there is relatively little difference between the optical properties of cloud 

droplets in the UV and the visible parts of the spectrum, so the results should be 

easily generalisable. The transmitted UV radiance under cloudy conditions is also 

of interest for its own sake, since many biological processes are dose-dependent, 

reacting to intense UV radiation events at short time scales [Lesser et al., 1994; 

Cullen and Lesser, 1991] so that the spatial and temporal distribution of the ra-

diation is as important as the total average transmittance. Various studies have 

been undertaken in an attempt to replicate the UV sky radiance distribution under 

cloudy skies [e.g. Harrison and Coombes, 1988; Rosen and Hooper, 1989; Grant 

and Heisler, 1997]. However, actual cloudy-sky analytical sky radiance distribution 

functions are limited, with Grant et al. [1997] finding a best fit for UV radiance 

measurements to an empirical distribution function [Coombes and Harrison, 1988]. 

Measurement of sky radiance can also be difficult because it is hampered by an 

inability to encapsulate rapid variations in the sky hemisphere. This shortfall is 

of particular concern in cloudy sky conditions where short-term variability of solar 

radiation is more likely. Most scanning systems take a relatively long time to cover 

the sky compared to the speed with which clouds move overhead and hence alter 

the radiation field. Under these conditions, any radiometric interpolation to correct 

for the mismatched temporal scans results in a possible loss of valuable cloud/sky 

information that could be retrieved. Although various attempts have been made 

to overcome this deficiency [eg. Weihs et al., 2000], instantaneous measurement of 

the complete sky radiance field is not yet possible. 

In this chapter a sky radiance measurement and modelling scheme is developed 

for some common cloud conditions. Emphasis is on encapsulation of the real spatial 
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and temporal radiance variability that exists. For high quality measurements of sky 

radiance distribution, the instrument utilised is the Variable Sky Platform (VSP) 

first documented in Kuchinke [2002] and Kuchinke and Nunez [2003]. This device 

allows for retrieval of 2-min azimuthally-averaged sky radiance information as a 

function of zenith angle. In effect it facilitates rapid scans of the sky by sacrificing 

knowledge of the azimuthal dependency. These measurements are compared to the 

results of the Monte Carlo radiative transfer simulations for UV radiation under 

stratiform cloud conditions, using both PPH clouds and the 2D verison of the FIF 

multifractal cloud model. Some parameterisations are then suggested so that PPH 

calculations can be corrected to accurately model the radiance distribution under 

variable cloud. 

6.1 VSP radiance measurements 

6.1.1 VSP Description 

The VSP instrument is fully described by Kuchinke [2002] and Kuchinke and Nunez 

[2003]. Only a brief outline of the functioning of the instrument is given here. The 

basic concept involved is the hydraulic movement of a specially modified Solar Light 

Company 501-A UV biometer (SLC) within a vertically-mounted shading cylinder. 

A schematic representation of the VSP is shown in Figure 6.1. The internal wall 

of the cylinder is specially coated to minimize reflection and emphasis during its 

design was on timing accuracy. The erythemal filter of the SLC is thus exposed 

to varying degrees of sky view factor over very short time intervals. As a result of 

this it was necessary to correct all signal output from the sensor due to the effect of 

the 0.14-sec instrument time constant. A comparison of measurements just before 
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and after the sun is exposed to any and all of the SLC phosphor filter respectively 

(positions (1) and (2) in Figure 6.1a) will give us the following 

1(2) — 1(1) -= Id COS 00 + D02 — D01 = Id COS 00 + D, 	(6.1) 

that is the difference between the measured irradiance at the two points, 1(1) and 

1(2), is equal to the direct beam irradiance, Id COS Op (where Id is the intensity and 

00  is the solar zenith angle) plus a residual diffuse quantity AD = D92 D91- 

This residual value is the quantity of radiation that exists in the portion of sky 

A0 subtended by the ffiter as it moves vertically between the described before and 

after-sun positions. Extrapolation across this relatively small A0 allows us to easily 

determine AD. Once the direct irradiance is obtained, it can be subtracted from 

all readings corresponding to all cylinder positions above where the sun strikes the 

sensor. Subsequent comparison of any two positions of the sensor in the cylinder 

- positions (4) and (3) in Figure 6.1b - allow for derivation of AD for all zenith 

angles 0 using 

1(4) — 1(3) = (/d cos 00  + D04) — ( Id COS 00 + D93) = D04 — D03 = AD(4_3), (6.2) 

where 1(3) and 1(4) are the measured irradiance at points 3 and 4 respectively, and 

AD is related to the uncorrected azimuthally averaged sky radiance P(0) by 

AD = 2irr (0) sin 0 cos 0A0. 	 (6.3) 

This represents the radiation in a thin annulus of sky centred directly above the 

instrument. In this study, the steradian interval for VSP averaging is approximately 

0.1 steradians. Thus, the radiance value P(0) is the azimuthally-averaged value for 
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direct 

.■.■ 

a b 
Figure 6.1: Figures la and b: schematic of VSP cylinder with SLC. Successive 
vertical positions of the sensor allows the radiance from an increment of sky 450 to 
be sampled 
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a small zenith angle interval. Based on the given steradian interval, this equates to 

a zenith angle interval of two to three degrees at low zenith angles and one degree 

at high angles, centred at the zenith angle in question. The final VSP-measured 

radiance P(0) is equivalent to the real radiance I(0) multiplied by instrument cosine 

response C(0) [Kuchinke and Nunez, 2001]. In this manner the azimuthal average 

radiance 1(0) may be obtained for any zenith angle 0. 

Similarly, the cosine corrected total diffuse irradiance (Dvsp) for any two-

minute interval is obtained by application of the relationship: 

27r ji(9)  Dvsp = 27r f — sin 9 cos MO, 
o C(0) 

(6.4) 

Note that in this method the cosine response is accurately weighted with regards 

to the real sky distribution, and it avoids the temporal interpolation errors and sky 

radiance homogeneity assumptions that are implicit to shadow-band arrangements. 

Division of each 1(0) by Dvsp gives a normalized sky radiance measurement f(0) 

to be used in this paper. Here, f(0) is proportional to 1(0) in any direction and 

the implication is that the difference across any zenith curve is now largely due to 

cloud distribution. Under normal operating conditions, it takes 120 seconds for the 

SLC instrument to move from its uppermost position, offering an uninterrupted 

view of the sky, to its lowest position 459 0-mm from the top of the cylinder. At 

this bottommost position the zenith angle sky view of the sensor is 10.5, accom-

plished at a platform speed of 3.82 mm s -1  and a sampling rate of 0.75 seconds. At 

this sampling rate, much slower than the instrument time constant, the coarsest 

zenith angle resolution (450 in Figure 6.1b) for a sensor approaching the top of the 

cylinder is 1.35. A five second pause in hydraulic movement is then performed 

once the instrument actually reaches the top of the cylinder. This facilitates VSP 
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measurements of global irradiance, GvSP. 

6.1.2 Measurement Acquisition 

The VSP is mounted on the roof of the Geography Department climate station 

platform at the University of Tasmania, Hobart, Australia (42.90S; 147.33E). The 

site rests 38-metres above mean sea level and is situated 3-km south of the Ho-

bart city centre. The observing site affords maximum exposure from the northeast 

through east to the southeast. Exposure from northwest through west to south is 

affected by Mt. Wellington and the surrounding foothills by up to 8.0. At no time 

are instruments subject to shading from nearby obstacles. The SLC instrument 

inside the VSP was calibrated as described Kuchinke and Nunez [2001]. 

The accurate VSP-determination of the direct beam intensity, Id in equation 

(6.1), relies on a relatively static cloud field during any two minute VSP run. Cloud 

disruption of the direct beam during this time makes it difficult to separate the 

direct and diffuse components and hence retrieve a sky radiance profile. To ensure 

reliable radiance data in this study, the VSP algorithm in section 6.1.2 was only 

applied to 2 min runs characterized by an unchanged global irradiance signal during 

the same time interval. For this purpose, a SLC instrument similar to that deployed 

in the VSP operates in tandem five metres from the VSP. The standard deviation 

of the global signal from this instrument was calculated for every two minutes (at 

a sampling rate of 0.75s). If the standard deviation was greater than 2.0 mWm-2 , 

the cloud field was considered non-static and the VSP run was rejected from the 

scheme. VSP measurements were retrieved for the morning of 7 January 2001 and 

the afternoon of 5 January 2002. The selected morning was characterized by 8 octas 

total cloud cover. This was further subclassified as 5 octas of low level 1 stratus 
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nebulosus cloud and 7 octas of low level 2 stratus nebulosus cloud. The selected 

afternoon was characterized by 6 octas total cloud cover. This was broken down into 

3 octas of low level 1 stratus nebulosus cloud and 3 octas of stratocumulus cloud 

(with no stratocumulus cumulogenitus). Cloud measurements were undertaken 

every three hours by the Hobart Bureau of Meteorology in accordance with WMO 

cloud types and levels. The total cloud cover during each period was constant 

whereas the instances of the low level 1 and 2 clouds varied by ±1 oct as. At no time 

were other clouds present. Both days were also characterized by similar ozone and 

visibility conditions, a requisite for modelling cloud optical depth to be discussed 

ahead in section 6.2.1. For the morning period, two sets of eight consecutive 2 min 

VSP radiance runs were selected corresponding to solar zenith angles (at the mid-

point of each run) of 29.8 to 32.6 and 48.5 to 51.9. For the afternoon period, five 

runs from 29.29 to 33.15 and eight runs from 48.10 to 51.66 were selected. All of 

the runs within each solar zenith angle set were then averaged across zenith angle 

to give one azimuthally averaged sky radiance curve approximately centred at solar 

zenith angle of 30 and 50, and corresponding to the average over around 18 mins in 

duration. Note here that three 2 min runs are missing at 00  = 30 on the 5 January 

2002. This is because on partial-cloudy days significant cloud disruption of the 

direct beam during any 2 min run is more likely. Hence, the data set was rejected 

using the standard deviation criterion based on the in situ global measurements 

described earlier. 

6.2 Radiance modelling 

Monte Carlo radiative transfer calculations (described in section 2.2) were per- 

formed using clouds generated by the FIF multifractal model described in section 
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2.1. The fractal parameters used were a = 1.48, C1  = 0.106, H = 0.3, which are 

the mean parameter values for all cloud fields considered in chapter 3. The cloud 

fields were taken to be 6.4 x 6.4-km in horizontal dimensions, 0.5-km thick and with 

a base 1.0-km above the ground. Unlike in the previous chapters where only the 

radiative transfer through the cloud field was considered to compare cloud models, 

in this part of the study an entire column of the atmosphere is considered and the 

radiation at the ground (rather than at the cloud base and top) is the quantity of 

interest. For non-cloud attenuating species the atmosphere was assumed to have a 

typical mid-latitude summer profile, as used in the MODTRAN radiative code [Berk 

et al. 1989, Berk and Anderson, 1995]. Each cloud liquid water field had a constant 

profile in the vertical and a multifractal horizontal structure generated according 

to the guidelines in section 2.1.6. A wavelength of 0.3086 pm was used, since this is 

the nominal wavelength of the VSP-mounted SLC instrument based on its response 

curve. A constant effective radius of r ef/ = 10 pm was assumed throughout the 

cloud field. This is acceptable since at this wavelength g is relatively insensitive to 

changes in droplet radius distribution. This wavelength and droplet radius implied 

an asymmetry factor g of 0.869, which was calculated using the parameterization 

of Hu and Stamnes [1992]. The parameterization of single-scattering albedo in the 

same work yielded a value of 0.99994, or almost no absorption. Model input for 

UV ground albedo was 0.08, based on spectral measurements conducted at the VSP 

site utilizing a Macam SR9910 spectroradiometer. Each simulation was undertaken 

using 50 million photons and the model was initially run with solar zenith angles 

(00 ) of 00 , 20°, 30°, 40°, 50°, 60° and 80°. Mean cloud optical depths Trnean  of 2, 4, 

8, 16, 32, 64 and 100 were used as input at each solar zenith angle. In addition to 

clouds generated with liquid water content varying according to the 2-dimensional 

version of the FIF multifractal model, calculations for the traditional plane paral- 
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lel homogeneous (PPH) clouds were also made for comparison purposes. For each 

simulation the irradiance at the ground in each 25m ground pixel was recorded, as 

was the incoming radiance distribution averaged in bins of 5 degrees in the zenith 

and 10 degrees in the azimuth. Model data was then averaged over all pixels in 

the 6.4-km grid. The modelled direct beam was then subtracted from all global 

radiance distributions to give diffuse sky radiance distributions. Modelled radiance 

data was then azimuthally integrated and divided by the total diffuse irradiance in 

order match the VSP measurements described earlier in section 6.1. 

6.2.1 Cloud optical depth retrieval 

For determination of cloud optical depth, a clear sky calculation was generated 

using the Monte Carlo model described above. The global irradiance at the ground 

calculated for each of the cloudy cases (Gdoud ) was then compared to that under 

clear sky conditions (Ga,) to give a ground-based "cloud transmittance", Tg  = 

G doud I G clear at each of the solar zenith angles used in the cloud simulation. Shown 

in Figure 6.2 is a plot of Tg  as a function of the mean cloud optical depth (7 -  mean) 

for both the multifractal and PPH cloud models. Example results here are for 

00  = 300  and show once again that the multifractal cloud has a consistently higher 

transmittance than the PPH cloud due to the inhomogeneity of the cloud. Note 

the similarity to the cloud transmittance for visible wavelengths that was seen in 

Figure 4.1 in the previous chapter. The optical depth of the cloud under which 

the VSP measurements were made was determined by comparing the real cloud 

transmittance at that time to those calculated for the two cloud models in Figure 

6.2. The cloud transmittance (rather than irradiance at the ground) was used to 

reduce the influence of other atmospheric conditions. Its real value was estimated 

by dividing the cloudy-sky VSP-measured global irradiance by the same quantity 
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Modelled cloud transmission 

20 	40 	60 	80 	100 
mean 

Figure 6.2: The modelled values of the ground-based "cloud transmittance" 
(Ga,,,d/Gdear) versus mean cloud optical depth. For a solar zenith angle of 30 
degrees. 
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measured using the VSP on a clear day with the same ozone and similar visibility. 

For the cloudy case, the global irradiance was found using the 2 minute VSP global 

irradiance measurements in situ to the radiance data described in section 6.1. The 

mean of each set of 2-min global irradiance data gave the desired cloud-sky global 

irradiance quantity centred about the solar zenith angle in question. VSP clear-

sky data was obtained in the same manner and temporally aligned for comparison 

purposes. Table 6.1 gives the selected clear sky and two cloud days used for the 

analysis as well as TOMS derived ozone. Visibility is also given and derived from 

Hobart Bureau of Meteorology observations. Cubic spline interpolation was then 

used to find the optical depths of the multifractal and PPH cloud with the same 

transmittance as measured by the VSP, and these optical depths are also shown in 

Table 6.1. Note that the optical depth found for the PPH cloud is, by definition, 

the value of the effective optical depth for the multifractal cloud field. 

After determining these optical depths, the Monte Carlo radiation code was 

then executed with both multifractal and PPH cloud corresponding to the exact 

optical depths derived from the VSP measurement conditions. A single realisation 

of the multifractal cloud was generated for each analysis. The resultant radiance 

distributions are given in the following section. 

Table 6.1: The measured mean of the ground-based cloud transmittance and cor-
responding cloud optical depths (for fractal and plane parallel scenarios), as well 
as other statistics for each day. 

Date Ozone Visibility Cloud Cover 00 = 30 degrees 00 = 50 degrees 
(DU) (km) (octas) Tg 	_ Tfracta/ TPPH Tg Tfractal TPPH 

14 Dec 99 298 30 0 1 0 0 1 0 0 
05 Jan 02 294 20-25 6 0.638 10.06 5.5 0.573 12.64 6.63 
07 Jan 01 296 30 8 0.301 56.30 19.16 0.368 38.48 15.98 
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6.3 Comparison of VSP radiance measurements 

with model output 

In this section the transmitted radiance modeled under multifractal clouds is com-

pared with VSP sky radiance measurements. The normalised diffuse radiance func-

tion f(0) is also considered for homogenous cloud with the same total transmittance 

as the multifractal cloud (therefore with a lower optical depth). Figures 6.3 and 6.4 

give the f (9) results for overcast and 6-octas (from herein referred to as broken) 

stratiform clouds respectively. Within each figure are two graphs representing B o  

of 30 and 50 (a and b respectively). Recall that the modelled radiance distribu-

tions are an ensemble average across a 6.4 km grid at a 25 m resolution, while the 

measured distributions are averaged over approximately 20 minutes. In addition, 

all radiance values are azimuthally integrated, spanning 0 to zenith angle range 

at a resolution of five degrees for model data and one to two degrees for measured 

data. This small zenith angle interval is denoted zenith-discrete-angle. For a purely 

isotropic sky field the normalised radiance parameter f(0) would be constant and 

equal to . In reality, this is seldom the case. Contributing to the anisotropy is 

the aerosol forward scattering of the direct beam above the cloud field, namely the 

diffuse circmnsolar component as argued for clear skies by Morris and Lawrence 

[1971]. It is recognized that optically thick cloud in this region of the sky is likely 

to diffuse this component due to the accompanying increase in multiple scattering 

events. For example, the PPH model assumes a uniformly distributed mean cloud 

field with no inhomogeneities. For realistic liquid water content and transmission 

values, the circurnsolar effect is completely smoothed out, resulting in a smoothly 

decreasing PPH curve in all the figures. In contrast, the inhomogeneity in the 

multifractal cloud field results in regions of low liquid water content where the 
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—PPH model 
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SZA = 30°  
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Figure 6.3: Comparison of VSP measured sky radiance with the modelled results 
using multifractal and PPH cloud models. For overcast stratiform cloud conditions 
and solar zenith angles of a) 30 0  and b)50°. The function f, plotted as the ordinate, 
is the normalised and azimuthally-averaged radiance. 
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Figure 6.4: comparison of VSP measurements of the sky radiance distribution mod-
eled results using Multifra,ctal and PPH cloud models. For 6-octas stratiform cloud 
conditions and solar zenith angles of a) 30 0  and b) 50°. The function f, plotted as 
the ordinate, is the normalised and azimuthally averaged radiance. 
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smoothing of circnmsolar irradiance is much less than for the PPH model. In some 

instances, the liquid water content approaches zero and is therefore much less than 

the aerosol optical depth. For these sky regions, the clear-sky circumsolar effect 

will be noticeable in the multifractal model, as evidenced by the hump around 00 

in some of the multifractal curves in the same figures. Note that the effect in the 

multifractal curves is more pronounced under broken (lower mean optical depth) 

cloud conditions where the circnmsolar forward scattering is less diffused, shown in 

Figures 6.4. The performance of the fractal and PPH models can be checked by 

comparison with the VSP measurements in each of the figures. For overcast stratus 

conditions, the agreement between multifra,ctal and VSP data is exceptional, apart 

from the small scale variability in the measurements, as seen in Figures 6.3a and b. 

For broken stratus cloud conditions, Figure 6.4, the circumsolar hump is not evident 

in the measurements and hence the PPH model is in better agreement. The trend 

here is deemed to be a result of sampling bias in the VSP data at the lower cloud 

optical depth rather than under-performance in the fractal model. As described in 

section 6.1.2, 2-min VSP data were only accepted for analysis if the variability in 

measured global irradiance during the same time interval was low. As a result of 

this sampling method, measurement periods in which the direct beam is sometimes 

present and sometimes covered during the 2-min interval are rejected. Hence there 

is a bias towards periods where the direct beam is either completely obscured or 

continuously uncovered. However, the latter are very rare during the 6-octas cloud 

conditions. The result is an excess of cases where the cloud cover is concentrated 

around the sun position, and any gaps in the cloud cover are well away from the 

sun (since the cloud cover is constant). This leads not only to a diffusion of the 

circumsolar radiance but also an artificial raising of the radiance away from the sun 

through the gaps in the cloud. Thus the final effect of this sampling bias is that 
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the 6-octas measurements show an even smoother radiance distribution than the 

overcast conditions, as the circmnsolar hump is completely hidden. The sampling 

problem does not appear in the completely overcast conditions because the sun is 

always obscured and no sampling periods need to be rejected. 

6.4 Parameterisation of multifractal-cloud radi-

ance distribution 

From the previous section it is clear that the multifractal and PPH cloud mod-

els produce significantly different transmitted radiance distributions even when the 

total transmittance is the same. In addition, at least for overcast conditions, the 

results when using the multifractal cloud model are much closer to measured val-

ues than when using the PPH cloud model. Therefore a parameterisation of the 

diffuse radiance distribution under multifra,ctal cloud is sought. This would ex-

tend the utility of the effective optical properties approximation, since it could be 

used to determine the probable sky radiance distribution after the effective PPH 

calculations have been used to determine the total transmittance. 

The incoming radiance distributions at the ground under multifractal cloud 

fields were found using all of the Monte Carlo simulations described in section 6.2. 

At each cloud optical depth a Levenberg-Marquardt least-squares procedure was 

performed, fitting the calculated radiance distribution for multifractal clouds to the 

function: 

/(0, 4)) = imean{Po —p92  + P2 ex1)( —P3 41)} 
	

(6.5) 

where 1(9, 0) is the radiance at (viewing) zenith angle 9 and azimuth angle .0; 'mean 

is the mean radiance over the sky distribution; p i  (i = 0, .., 3) are the parameters 
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of the fit; and ill is the scattering angle defined by 

cos 111 = cos cos 90  ± sin 0 sin 00  cos 0 	 (6.6) 

Note that this formula assumes that the azimuth angle is defined such that the 

sun is at 0 = 0. The function (6.5) is similar in form to that used by Grant 

et al. [1997]. The first term in equation (6.5) represents a constant background 

skylight, the 2nd term describes the horizon darkening under cloud, and the third 

term represents any circumsolar component. The four parameters in equation (6.5) 

that were found by the least squares fit at each cloud optical depth are shown in 

Figure 6.5. Here, parameters p2  and p3  decrease and increase respectively with 

fit parameters under multifractal cloud 
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Figure 6.5: The fit parameters pi  (i = 0, .., 3) as a function of cloud optical depth 
for an empirical radiance distribution function under a multifractal cloud field. 
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increasing cloud optical depth. This indicates that the circumsolar term becomes 

less important as the cloud becomes thicker, as would be expected. In order to find 

values of the parameters at other optical depths, the curves shown in Figure 6.5 

were fit to the pi  values. Resultant radiance curves based on the given empirical 

parameterization are given below. 

Figures 6.6 and 6.7 compare (multifractal cloud) Monte Carlo model output 

with output from the empirical radiance distribution function (6.5). The results 

are grouped as in the previous section: Figures 6.6 is for overcast conditions, Figure 

6.7 is for the 6 octas cloud and both have values for two different solar zenith angles 

(a and b). The mean optical depths used for each case are those found in Table 

6.1. For additional comparison, Figures 6.6a and b also include output based on 

parameterizations from previous works for both translucent overcast skies [Grant 

et al., 1997] and obscured overcast skies [Grant and Heisler, 1997] for a range of 

WMO low and middle cloud types. Recall that in the overcast case the multifractal 

model was in very good agreement with the VSP measurements. Results show that 

for both solar zenith angles, the Grant translucent-overcast parameterization is in 

better agreement with multifractal model at low zenith viewing angles. The Grant 

obscure-overcast parameterization represents optically thicker cloud increasing the 

likelihood of circumsolar smoothing. In contrast, the obscured-overcast parame-

terization is in better agreement with the multifractal model as it approaches the 

horizon. This difference is increased at high solar zenith angles. These parameteri-

sations of Grant et al. [1997] and Grant and Heisler [1997] were developed from sets 

of observations and have no explicit optical depth dependence, and it would appear 

from the comparison that the overcast day observed here has optical depths that lie 

somewhere between the translucent and obscured cases as they have defined them. 

The advantage of the parameterisation developed here is that the optical thickness 
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Figure 6.6: The sky radiance distributions for overcast stratus cloud conditions, 
with a) 90 = 300  and b) 00 = 50°. Both show the Monte Carlo results with 
multifra.cta1 cloud, the parameterised values for multifractal cloud and the two 
Grant parameterisations (translucent and overcast). 
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Figure 6.7: The sky radiance distributions for 6 octas stratiform cloud conditions, 
with a) 00  = 300  and b) 00 = 500 . Shows the Monte Carlo results with multifratal 
cloud and the results of the parameterisation of multifractal cloud. 
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of the cloud can be taken into account when it is known. Finally, results in all four 

graphs show that the multifractal model and output from the fractal parameteri-

zation are similar. Of course, this is to be expected since the incoming radiance 

distributions used in the parameterization were derived from the same Monte Carlo 

simulation used in the fractal model. This attaches a degree of confidence to use 

of this parameterization (equation (6.5)) as a surrogate for the multifractal model 

in other radiative transfer applications. 

6.5 Summary of Chapter 6 

Azimuthally-integrated measurements of UV-B sky radiance distribution were com-

pared with modelled radiances under a multifractal cloud field using a relatively 

new instrument. Data were also compared with model output for a plane parallel 

homogenous cloud layer and several empirical parameterisations. Sources of error 

in the comparison can be found in both the measurements and modelling. The 

SLC sensor in the VSP is relatively insensitive to near-horizon radiation due to 

the low amount of flux available to the erythemal filter and the cosine error of the 

filter/dome assembly. In addition, VSP two-minute measurement sampling was 

biased towards incidents of direct beam obscurity by clouds. This smoothed the 

broken cloud fields measurements so that they appeared even more isotropic then 

the overcast conditions. 

Errors in the modelling scheme are primarily attributable to the input parame-

ters. For example, the average cloud transmittances in this study were derived by 

comparison of VSP-measured clear-sky and cloudy data at the given solar zenith 

angle intervals. This allowed for derivation of relevant cloud optical depths for 

model input. Care was taken to ensure a constant ozone data set. However, some 

184 



error may be introduced here should atmospheric aerosol vary across both clear 

and cloudy measurement days. Although inter-day visibility agreement was fac-

tored into the data selection, diurnal variation in aerosol optical depth becomes 

significant if the aerosol single scattering albedo is low during any of the measure-

ment times. This may result in UV radiance (and thus transmission) differences as 

intense cloud scattering events increase the likelihood of aerosol absorption. An-

other possible input error may also be attributable to the cloud fractal parameters 

themselves. The values used were mean values for low cloud and hence may not 

exactly represent the cloud structure on the given days. 

Results show that for overcast conditions, the multifractal model is superior to 

the PPH model for producing realistic radiance distributions at the ground. For 

broken cloud conditions, the radiance measurements are biased towards higher in-

stances of circumsolar smoothing by cloud as discussed. Under these conditions 

the multifractal model continues to exhibit the circumsolar effect, indicating that 

its performance may be still valid for radiation modelling. An empirical parame-

terization of the multifractal model produced similar sky radiance profiles for the 

given sky conditions in this study. Analysis for a more comprehensive range of sky 

conditions may confirm its suitability for further use as a tool in radiative transfer 

models. Overall, the study shows that bahomogeneities within the real cloud field 

have a significant effect on the radiation distribution at the ground even on an 

overcast day. 
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Chapter 7 

Comparison of satellite cloud 

property retrieval with in situ 

measurements 

7.1 Overview 

Observations of cloud properties such as liquid water path is an important step in 

many endeavors, including: studying atmospheric processes, testing and providing 

input for global circulation models, and estimating radiation levels or rain rates at 

the surface. In making these observations, satellite remote sensing has the advan-

tage of being able to cover a wider range of spatial scales than ground based or 

aircraft measurements. However, this raises the question of the accuracy of such 

satellite-derived estimations, and a straightforward way of evaluating this is by 

comparison with in situ measurements. 

Some of the earliest comparisons of remote sensing with in situ measurements 
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of cloud properties demonstrated great discrepancies between the two data sets 

[Twomey and Cocks, 1982; Rawlins and Foot, 1990]. As new remote sensing tech-

niques were developed [e.g. Nakajima and King, 1990; Minnis et al., 1992; Rosen-

field and Gutman, 1994; Evans and Haigh, 1995], the agreement between remotely 

retrieved cloud properties and aircraft measurements improved [e.g. Nakajima et 

al., 1991; Kuji et al., 2000], but these studies used aircraft mounted radiometry in 

the comparisons rather than satellite platforms. The problem in comparing satel-

lite data directly with in situ measurements is generally the mismatch of scales 

involved, with satellite pixels representing an average over an area while aircraft 

measurements are generally a time series taken at very high spatial resolution but 

covering only a small fraction of each pixels area. In some cases this problem has 

been overcome - for example Young et a/41998] examined orographic wave clouds 

because they are quite spatially and temporally homogeneous, while Fouilloux and 

Iaguinta [1997] used a mesoscale numerical model to link aircraft and satellite 

measurements. In this chapter another method of comparison is examined that is 

applicable to more cloud types and does not rely on a numerical model, but rather 

uses the spatial statistics and scaling behaviour of cloud liquid water fields found in 

chapter 3. These statistics are used in this study to "upscale" aircraft liquid water 

measurements, i.e. to estimate the average liquid water path in a satellite pixel 

from the small scale measurements inside the pixel. This is done using multifractal 

objective analysis based on the method developed by Salvadori et a/12001]. Due 

to the lack of measurements for the vertical variations in the cloud field, in this 

chapter the cloud model again assumes vertical homogeneity so that the statistics 

of the liquid water path are assumed to be the same as for the liquid water content 

measured in chapter 3. 

As well as investigating the effects of cloud spatial structure on the comparison 

187 



of data at different scales, the satellite and aircraft measurements are also used to 

show the effects of the PPH albedo bias and to test the effective optical properties 

approximation in the retrieval of cloud properties. Although the radiances reflected 

off cloud tops are used here, instead of total reflectance, section 4.5.3 shows that 

this introduced minimal errors into the calculations. 

Therefore the structure of this chapter is as follows. The method of upscaling, 

or objective analysis, of aircraft measurements is described in section 7.2. Section 

7.3 details the remote sensing technique and the data set used. The comparison 

between aircraft measurements and remote sensing results is then presented in 

section 7.4. 

7.2 Objective Analysis of Multifractal Fields 

The multifractal statistics of cloud fields found in chapter 3 can be used to extrap-

olate from sparse data points at a high resolution to a value at a lower resolution. 

In remote sensing validation this can be used to extrapolate any multifractal field 

from high resolution ground-truth data to the scale of the satellite pixels. It is use-

ful whenever the high-resolution in situ data does not cover the whole of a satellite 

pixel. But not only is a method of upscaling measurements necessary to compare 

data taken at different scales, it is also important to understand the errors that 

result from the mismatch of scales. 

The multifractal objective analysis developed by Salavadori et al. [2001] was 

used here for upscaling, and the full mathematical derivation can be found in that 

work. This method is used to first examine the possible errors when sampling a 

multifractal liquid water path field at random points, and then modified to take into 

account integration across a pixel rather than point sampling. A numerical version 
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of the analysis is used rather than the analytic formulae developed by Sal avadori 

et al. [2001] because those only applied to lognormal multifractal fields. 

First consider the differences between scales in the unconditional probability 

distributions. These are determined from the codimension function c(y) by equation 

(2.5), that is 

Pr(xA  > 	) -c(7) , 	 (7.1) 

for any multifra.ctal field xA  at resolution A. The probability density p(x A ) can easily 

be found from the probability Pr(x ), > Al by taking differences for finite bins (size 

AxA ), or the derivative for a continuous distribution: 

Pr(x'A  > xx ) — Pr(x1A  > xA  AxA) 
p(x),) = 	  AxA  

(7.2) 

While the codimension c(7) is independent of resolution, the final probability den-

sity will vary with A. Figure 7.1 shows the probability densities p(x),) for A = 128 

and A = 2560, calculated using the codimension function of the FIF multifrac-

tal model with the mean parameters from the aircraft measurements described in 

chapter 3, and normalised so that the mean of SA is 1. In terms of the remote 

sensing of cloud fields, the former scale could represent a 1 km satellite pixel with 

the scaling invariance extending out to 128 km, while the latter scale could then 

be ground-truth data taken at a 50 m resolution. At the higher resolution the 

probability density has a peak at 0.25, while the peak at the lower resolution is 

around 0.5. Thus the most probable single point sample at the higher resolution 

is lower than the most likely single point sample at the lower resolution. However, 

it can also be seen that above 2.2 the probability densities cross again, so that the 

higher resolution also has a greater chance of getting an extremely high value. The 

result of this is that the high resolution, A = 2560, will have many low points and 
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Figure 7.1: The probability density of a (normalised) multifractal field, shown for 
two spatial scales A that are separated by a factor of 20. 

a sparse few very high ones. The lower resolution follows the same pattern but in 

a less extreme manner with more values closer to the mean. The question now is 

how to move from one to the other. 

7.2.1 Method description 

The technique used to estimate values at a lower resolution from a sample at the 

higher resolution is known as Most Likely Parent (MLP) estimation [S alavadori 

et al., 2001]. This name comes from the concept of fra,ctals being formed by a 

cascade process, as described in Chapter 2. This assumes that the multifractal 

field is formed of a number of independent, stochastic cascade steps, and that the 

multifractal statistics described in section 2.1.3 apply to each step. That is, the 

values of the field at a higher resolution, A = A say, are the "offspring" formed by 
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the division in a cascade process of the "parent" structure at the lower resolution 

(A = A0 ). This is shown schematically in Figure 7.2. In the validation of remote 

sensing the parent field would be at the resolution of the satellite images, so that 

each parent value is an average over a satellite pixel, and the offspring would be the 

points within each pixel at the resolution of the in situ data. Let the ratio between 

the parent and offspring resolution, A- , be given by 

A 
A0 

Then the relationship between the parent field x and the offspring field X is 

(7.3) 

X = 	 (7.4) 

where "i is a multifractal field of scale A, due to the scale independent and multi-

plicative nature of the cascade process [Schertzer and Lovejoy, 1995]. That is, at 

any point in the offspring field, for example X2 shown in the Figure 7.2, is a prod-

uct of the parent value at that point (x i  in the figure) and an independent factor 

(2 in the figure) that is also multifractal in nature with scale parameter A. This 

means that the probability distribution of the field is given by equation (2.5), 

i.e. Pr( i > kr) A-c(). Therefore if the codimension c(-y) of the mutlifractal field 

is known, then the probability distributions of the three multifractal quantities, X, 

x, and are also known. In this work the c(7) is given by the FIF model value 

with the parameters determined from the aircraft measurements in chapter 3. Of 

the three quantities the parent x and the multiplicative ratio"i are independent. 

The objective now is to use these known probability distributions to extrapolate 

from a set of N known offspring values, that do not cover all of the parent pixel, 

to the most likely value of the field in the parent pixel. To work with these fields 
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Figure 7.2: An example of the relationship between a parent structure at a low 
resolution (A = Ao ) and an offspring at a high resolution (A = A). The value 
of the field at low resolution is the parent value x i , where the subscript i is used 
because it is just one pixel in a larger field (not shown here). The values at a higher 
resolution in the same area are the offspring values Xi  (j = 0, .., 5), with each Xi  
being related to the parent xi  by the ratio field as shown. When using the MLP 
upscaling method only a subset of the offspring will be known - in this example this 
is represented by the known offspring values been shown in black and the remainder 
in grey. 
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that are at different resolutions, it is convenient to use exponential notation, where 

the values of the (normalised) multifractal field are given as powers of the scale. 

Therefore let the parent field be x = A-or, the offspring field be X = Ar, and the 

ratio field be If we have measurements of a particular set of N samples at 

the offspring scale (higher resolution) within the parent pixel, then let the offspring 

set be 1= {Fi  s.t. .X1  = Ars, i = 1, ..., N}, let the values of the ratio field at those 

points is described by the set 7y. ={. s.t. =- A , i = 1, .., N}, and let 7 be the 

exponent of the common parent of all the offspring (e.g. the total pixel value). 

The equation (7.4) relating the offspring, parent, and ratio fields can then be 

rewritten in terms of the exponents: 

Ar' 

	

=AA , 	i = 1, .., N. 	 (7.5) 

From (7.3), the scales are related by A = 51/4A0, so if we define k = ln Ao/ ln A. , then 

the relation (7.5) becomes 

	

.A(k+i)ri 	 (7.6) 

and this can be manipulated to give the exponents of the ratio field in terms of the 

offspring and parent values: 

	

= (1 + k)Fi  — 	i= 1, .., N. 	 (7.7) 

Of these fields only the offspring set F is initially known, but equation (7.7) gives 

the set 5'  in terms of the other two fields, leaving the single parent exponent -y as 

the only free variable. A probability density p(70 can then be found for each field 

using (7.2) and (2.5). 

To determine the most likely parent exponent given the known set of offspring 
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exponents, we use the conditional probability distribution p(-y I  F) of obtaining -y 

given the particular offspring set I' . To obtain this we first need to consider the 

joint probability distributions p(y, ) and p('y, r). The joint probability of having 

both the parent exponent -y and the ratio values 5'  is p('y, 5, ), and since the parent 

and ratio field are independent, 

p(7 ,5' ) = e) (5' ) = P(7) II P(5'i). 	 (7.8) 
i=1 

Therefore the joint probability p(5,  I r) can be found from the single point probabil-

ities that are given by the PIP multifractal model. The joint probability of having 

both the parent and the offspring fields p(-y, r) can then be written as 

per,[) = (1 + k)"  P(7, 7y), 
	 (7.9) 

where the factor of (1 + k)N is the Ja,cobian of the transform of F to (given by 

equation (7.7)). The MLP method then estimates the most likely parent, using 

the conditional probability distribution p('yI F) of -y given the particular offspring 

values r, which is given by: 

/3(7 It) = f PP(
,), 	,)

)
dy 
	 (7.10) 

The estimate of the parent exponent is then the value of -y for which the conditional 

probability 23(7 I  F) is a maximum. While Salvadori et al. [2001] found an analytical 

solution to this for the case of a = 2, it is not clear that one is possible in the general 

case. In this work the maximum is numerically estimated from the probability 

distributions. If -ymax  is the value of -y for which p(-y I  I') is a maximum, then the 

best estimate of the parent field is then x = XoYmaz 
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An example of the conditional probability density is shown in Figure 7.3, for 

seven offspring values, {0.5, 0.85, 0.95,1.0, 1.05,1.15,1.5}. This was again done 
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Figure 7.3: The conditional probability density of a parent-pixel value of the field 
occurring at scale A = 128, given that seven samples were taken of the offspring field 
in the pixel at scale .\ = 2560. The 7 samples are {0.5, 0.85, 0.95,1.0, 1.05,1.15,1.5}. 

with a parent resolution of A o  = 128 and an offspring resolution of A = 2560 to 

simulate a typical case for moderate resolution remote sensing compared to ground 

truthing (1 km satellite pixels, ground based data at five points with 50m resolution, 

with scaling regime out to a scale of 128 km) . Note that the maximum point, or 

the MLP estimate, is 1.24, despite the fact that the mean of the offspring values is 
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1. The 95% confident values of 0.91-1.61 are plotted as dotted lines, and show the 

relatively wide range of possible values. 

7.2.2 Numerical Simulation 

To examine the results of the MLP method, multifra,ctal fields were generated nu-

merically using the discrete cascade algorithm given in Chapter 2 and the mean FIF 

model parameters derived for cloud fields from the flights in Chapter 3 (a = 1.48, 

C1  = 0.106, H = 0.3). Again the parent resolution was Ao = 128 and the offspring 

scale was A = 2560, for a scale ratio of = 20. The values at A o  are considered 

to represent a perfectly accurate satellite measurement of moderate resolution pix-

els (1 km say), while the values at A are considered to be in-situ samples taken 

at much higher spatial resolution inside these pixels (point measurements at 50m 

resolution). The multifractals were two dimensional to simulate cloud liquid water 

path. Since the multifractal generation is stochastic, 30 fields were generated with 

different seed values. 

Inside each of the 128 x 128 pixels at the low resolution in each field, a number 

of points at the high resolution were randomly selected. Several cases were investi-

gated with different amounts of sampling - of the 400 high resolution points in each 

pixel we found the results when using 1,3,5,10, 20, 40,60, 80, 100, and 200 randomly 

selected points. From these points the MLP estimate was calculated, as was the 

mean of the sampled points, which would be the traditional estimate. Figure 7.4 

contains a 1D cross-section of an example multifractal field, showing both the true 

pixel values and the MLP estimates with 10% of the pixels sampled. Although 

there is some error in the MLP estimate, it follows the general trend of the field 

quite well. To test the accuracy of this estimate we use the the relative error (RE) 
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Figure 7.4: A 1-dimensional cut through a multifracta1 field, showing both the 
values of the field and the MLP estimate of this value given a random sample of 
5% of the field. 
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in the estimation, given by 
E - xA  RE = 	 (7.11) 

xA  

where E is the estimation of the true parent value x A . Figure 7.5 shows the mean 

relative error and the root-mean-square relative error, i.e. V ;1-, E RE2 , for both the 

estimation made using the MLP method and the estimation made by simply taking 

the mean of the sampled points. This shows that the mean of RE is close to zero 

for both methods, but the root mean square relative error for the MLP method is 

slightly above half of that of the estimation by the mean value. This is true for 

all sampling numbers. Also note that even using the MLP method a significant 

proportion of the parent structure must be sampled to produce small root-mean-

square errors - for example 20% of the area must be sampled to reduce the root 

mean square relative error to less than 10%. 

7.2.3 Simulation of upscaling aircraft data 

The MLP method described so far is useful for upscaling ground-truth data made 

at a small number of points inside a pixel, such as a radiosonde estimate, a lidar at 

a point, or a restricted aperture radiometer. But for in-situ data taken by aircraft-

mounted instruments, the data is generally not recorded as randomly scattered 

points but rather as a line across the pixel at a very small scale. Therefore this 

situation was also simulated here using a numerical simulation of a multifractal 

field. The parent scale was again taken to be A o  -= 128, while the offspring scale 

was now A = 128, 000. This was done to simulate an aircraft run with resolution of 

10 m, through parent pixels of 1 km, with a scaling regime assumed to extend from 

the 10 m scale to 128 km. The offspring values were chosen to form a line across the 

parent pixel, to simulate a single crossing of the satellite pixel by the aircraft. The 
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number of point samples inside the area at a higher resolution, shown as a function 
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relative error. Both are shown for the MLP upscaling method and the traditional 
approach of taking the average of the points. 
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sampled line was placed at a random position but the orientation of the line was 

always parallel to one of the pixel edges, so that the sampled line across the parent 

pixel was always lkm in length. Twenty realisations of the field were generated, 

with the estimation of the parent values being made using the MLP method, and 

also by simply taking the mean of the measurements across the field. The relative 

errors were calculated for both methods and a frequency histogram of these relative 

errors are shown in Figure 7.6. The mean of the relative errors are close to zero in 

both cases, so there is no absolute bias but it is clear that the MLP errors shown 

in past b) of the figure are clustered much closer to zero than the errors in mean 

estimation method. This is reflected by the fact that the root mean square of the 

relative error is 0.27 in the case of the MLP method but 0.43 when only the mean is 

used to estimate the whole pixel value. Therefore the MLP method is a significant 

improvement in zooming out to the coarser resolution, but there still remains a 

significant error (27%) when comparing the data taken at different scales. 

7.3 Data Acquisition Methods 

The upscaling method is used to compare the cloud liquid water path derived from 

the satellite and aircraft data. This data was taken on the 3rd of April 2000 and 

the 23rd of May 2000 over northern Tasmania, designated flight A and flight B 

respectively. Cloud type on both days was predominantly stratocumulus. Care was 

taken to select overcast days with only a single layer of low cloud. 
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Figure 7.6: Frequency histogram of the relative error in the estimation of a 2- 
dimensional multifracta1 cloud field, given that each pixel is sampled by flight 
through it at a spatial scale 1/1000-th the pixel size. a) shows the relative er-
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b) shows the relative errors if the MLP upscaling method is used. 
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7.3.1 Satellite Retrieval 

The satellite retrieval of cloud liquid water path was done using the algorithm 

described in Kuji et al. [2000] with data from the Advanced Very High Resolution 

Radiometer (AVHRR) on the polar orbiter NOAA-14. This algorithm uses three 

channels of the AVHRR. The reflected solar radiation measured by channel 1 (0.58- 

0.68 pm) and channel 3 (3.55-3.93 pm) are the primary channels used to retrieve 

cloud properties, while channel 4 (10.5-11.5 pm) is used to correct the channel 3 for 

thermal emission. This algorithm retrieves cloud optical depth and effective droplet 

radius, as channel 1 is predominantly dependent on the former while solar radiation 

in the channel 3 band varies with the latter [Nakajima and King, 1990]. A multi-

dimensional lookup table is used to derive the cloud properties from the satellite 

radiances, and this was created using the 16-stream discrete ordinate (DISORT) 

multiple scattering option of the MODTRAN 4 radiation code [Berk et al., 1989; 

Berk and Anderson, 1995] with a typical mid-latitude winter atmospheric profile. 

This radiation code uses a PPH cloud model. 

The use of the PPH cloud model in the calculations introduces a bias to the 

albedo in the visible channel as discussed in Chapter 4. However, since the re-

flectance in channel 3 is primarily dependent on the single-scattering albedo, the 

spatial structure in the optical depth (or liquid water path) considered in this work 

has comparatively little effect on the channel 3 reflectance. To demonstrate this 

the Monte Carlo model radiative transport code was used to find the reflectances in 

the middle infrared for 3-dimensionally multifractal cloud as described in Chapter 

6. Figure 7.7 shows the ratio between reflectance found for 3D multifractal cloud 

(R,„f ) and the reflectance found for PPH cloud (RppH ) when the single-scattering 

albedo is 0.74 and the asymmetry factor is 0.84, which corresponds to ref I = lOpm 
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Figure 7.7: The ratio of the reflectance of a multifractal cloud to the that of a PPH 
cloud, for a wavelength of 3.69 pm and rem  = 10pm. For a pixel size of 1.1 km. 

1.1km, the nominal size of AVHRR pixels. This shows Rmf /Rpph  to be very close 

to one, with the greatest scatter at low values of T mean • The mean value of the ratio 

is 0.984, which is a small bias in comparison with those seen in the visible portion 

of the spectrum in the previous chapter. Therefore no correction was made to the 

PPH calculations in channel 3. 

For the visible optical depth (primarily dependent on channel 1 radiances) how-

ever, a correction to the PPH result was found using the parameterisation of the 

effective optical depth (4.2) found in section 4.3. The optical depth retrieved from 

the look-up table created using PPH cloud, labelled Tppff, is actually the effective 

optical depth of a multifractal cloud with the same reflectance. Therefore the pa-

rameterisation of the effective optical depth can be used to give the relationship 
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- - - 1:1 reference 
— multifractal cloud (1.1 km pixels) 

between the PPH estimate of the optical depth with the estimate made assuming 

multifractal cloud, rnif. A plot of the rppif value given by equation (4.2) as a 

function of rmf  is shown in Figure 7.8 for a pixel size of 1.1 km. This uses the 

Figure 7.8: The PPH effective optical depth of a multifractal cloud, plotted as a 
function of the mean optical depth of the multifractal cloud. For a pixel size of 1.1 
km. 

parameters found for 2D multifractal cloud. Notice that at small optical depths the 

difference between TppH and rn,f  is relatively small. Once the value of TppH for a 

pixel was determined from the look-up table, the best estimate of the mean optical 

depth of a multifractal cloud in the pixel was therefore found by using cubic spline 

interpolation to find the value -rmf that gives this rppif  in Figure 7.8. 

Therefore the retrieval produces a droplet effective radius r ef f  and mean cloud 

optical depth. These quantities can then be used to find the cloud liquid water 
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path, LW P, using the relationship [Stephens, 1978]: 

LW P = -
2 

Tref f Du') 3 
(7.12) 

where T is the cloud optical depth and D„ is the density of water. Since we have two 

estimates of the optical depth, the PPH optical depth (TppH) and the multifractal 

optical depth (7,,1), there are similarly two estimates of the LWP that can be found 

with equation (7.12). Label these LWPppH and LWPmf for the PPH and mean 

multifractal values respectively. 

7.3.2 Aircraft Data 

Cloud liquid water content was recorded on horizontal runs through cloud using an 

aircraft-mounted King hot-wire probe [King et al., 1978]. A vertical flight was also 

carried out at the beginning and end of each horizontal run to measure the vertical 

profile of the of the liquid water content and hence by integration derive a LWP 

value. The values for the beginning and end runs were smoothed then averaged to 

produce a vertical profile to apply to the run. Following the procedure of Kuji et al. 

[2000], the "effective geometric height" was then taken to be the total cloud LWP 

for this profile divided by the liquid water content at the height of the horizontal 

run. This effective geometric height determined from the two vertical flights was 

then multiplied by the liquid water content at each point in the horizontal run to 

produce the LWP value. Note that this method assumes that the vertical structure 

and height of the cloud is relatively constant during the run. 

The flight data used in the comparisons here was taken from the horizontal runs 

that were centered in time about the crossing time of the NOAA-14 satellite. The 

data used is restricted to 15 minutes either side of the image time, which was 5:39 
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UTC for flight A and 6:09 UTC for flight B, in order to reduce the effect of temporal 

changes in the cloud conditions. At an average speed of approximately 90 ms -1  

this led to a data set covering a horizontal track of approximately 150 km in length. 

A sampling frequency of 10 Hz was used, meaning that the spatial resolution was 

,,,9 m. GPS positioning was used to determine the aircraft position at any time. 

For each satellite pixel, the aircraft LWP was determined in two ways: firstly by 

taking the mean of the values of the aircraft LWP measured inside the pixel, and 

secondly by using the MLP upsca,ling analysis for integrated pixels described in 

section 7.2.3. Label these two estimates LW Pmean  and LWPAILp respectively. The 

multifractal objective analysis assumed that the scale invariant regime in the cloud 

fields extended to a scale of 150 km, and down to a scale of 10 m. That the scaling 

regime reached the top scale was shown in Chapter 3 but as this was the top scale 

measured it could extend further. That it extended down to 10 metres was shown 

by Davis et a/11996] for stratocumulus cloud. The MLP upscaling procedure also 

requires that the field be normalised, and this was done by dividing the data by 

the mean of the entire horizontal run, as this is our best estimate of the ensemble 

average. After the procedure had been carried out, the MLP estimate for each pixel 

was re-multiplied by this ensemble mean in order to get the final LWPAILp value. 

7.4 Comparison of results 

Table 7.1 shows the mean and standard deviations of the cloud liquid water path 

observed on the two days. Four versions of each statistic are shown: two for the 

two satellite estimates of liquid water path, LW PppH and LW/9,7,1, and two for 

the aircraft estimates LW-Pmean and LWPAILp. For both flights LW-Pmean  and 

LWPAfLp have very similar mean values, with the difference being that the MLP 
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Table 7.1: Mean and standard deviation of the four estimates of cloud liquid water 
path: the two in situ estimates for pixels, LW-Pmean and LWPA/Lp, and the two 
satellite values, LWPmf  and LW Pppx. 

Flight A Flight B 
Quantity mean (gm') std. dev.(gm-2 ) mean (gm') std. dev.(gm-2 ) 
LW Pmean 99.6 73.3 61.2 45.4 
LWPAnp 100.4 52.4 61.8 33.2 
LW Pmf 102.9 58.7 59.1 29.3 

LW PPPH 72.5 38.5 48.2 22.32 

estimate has a lower standard deviation - the general effect of the MLP upscaling 

procedure is to reduce the outliers and bring the distribution closer to the mean. 

The two methods of satellite retrieval, on the other hand, did produce significantly 

different mean values of the liquid water path. The mean PPH-model estimate of 

LWP is significantly lower than the mean multifractal value, because PPH clouds 

reflect more light than an inhomogeneous cloud with the same LWP. Note that on 

both days the mean of LWPppH  is significantly lower than the mean of the aircraft 

estimates, while the mean of LWP,,,,f  is quite close to the mean aircraft values of 

liquid water path. 

The PPH results agree with the results of a comparison between satellite-

based AVHRR data with aircraft-mounted microwave radiometer data by Kuji et 

al. [2000], which found on three separate flights that the (PPH based) satellite re-

trieval produced a lower mean LWP than the aircraft observations. Note that the 

aircraft mounted radiometer does not suffer a mean albedo bias caused by inho-

mogeneities because its spatial resolution is no bigger than the photon mean-free 

path length in the cloud, although it may have errors in individual point readings 

due to horizontal transport[Caha/an et al., 199413]. Our data not only confirm this 

result, but also indicates that the agreement in the mean satellite and in situ data 

can be improved if the satellite retrieval uses a correction for multifractal cloud 
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structure. This is graphically illustrated for flight A in Figure 7.9, where LWPppll 

and LWPmf  are both compared to the aircraft estimate LWPm-Lp as function of 

flight distance. Part a compares the multifractal estimate with the aircraft data, 

part b compares the PPH estimate with the aircraft data. It can be seen in this 

figure that the PPH and multifractal retrieved values are practically identical at 

small liquid water path values, but that the larger the liquid water path the greater 

the difference between the two. The same plots for flight B are shown in Figure 

7.10. Here the difference between LWPppH (Figure 7.10a) and the multifractal 

estimate LWPmf (part b) is lower because the optical depths are lower on average 

and hence the correction predicted by Figure 7.8 is smaller. 

The mean of LWPmf is very close to the mean of both the aircraft estimates, 

but what about the correlation between individual points? There are two compar-

isons made now: between the remotely sensed value LWPmf and the two aircraft 

estimates (LWPmLp and LWPme„,„). It is LWPA/Lp that is considered the best 

estimate of the liquid water path in the pixel, as was shown by the numerical sim-

ulation in section 7.2. The traditional estimate of LWPmean  on the other hand 

is used to demonstrate the results that would have been seen without the MLP 

upscaling method. 

To quantify the agreement between the satellite and aircraft estimates we again 

consider the relative error, RE, as defined by equation (7.11). The root-mean-

square relative error (/ RE2 ) for the comparison of LW/3,f  and LWPA/Lp is 

given in Table 7.2. Also shown in the this table is the error in the satellite estimation 

that would have been found if MLP estimation had not been used, i.e. the error in 

LWPmf  vs LWP - - mean• The root-mean-square errors in both flights of around 30% 

between LWPmf and LWPAH,p is quite large, but it is only slightly above the error 

of 27% found for the MLP estimate of the true value in the pixel by the numerical 
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Figure 7.9: A comparison of retrieved liquid water path with the aircraft estimated 
value for flight A (3 April 2000) . a) shows the retrieval when a multifractal 
cloud is assumed, while b) shows the PPH cloud retrieval with no correction for 
inhomogeneity. The aircraft value is the same in both - the MLP estimate of the 
whole pixel value for each pixel the plane went through. 
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Figure 7.10: A comparison of retrieved liquid water path with the aircraft estimated 
value for flight B (23 May 2000) . a) shows the retrieval when a multifractal 
cloud is assumed, while b) shows the PPH cloud retrieval with no correction for 
inhomogeneity. The aircraft value is the same in both - the MLP estimate of the 
whole pixel value for each pixel the plane went through. 
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Table 7.2: The root-mean-square relative error, (4 E RE2 ), for the comparisons 
of the satellite retrieved liquid water path (LWPmf ) with the two versions of the 
aircraft data, the MLP estimate (LWPAH,p) and the estimate made by simply 
taking the mean of all points in the satellite pixel (LWPme,a ). For comparison the 
errors with respect to the PPH retrieval (LWPppH) are also shown. 

Flight A Flight B 
LW Pm f  vs. LWPA/Lp 0.308 0.291 
LWPmf  vs. LW Pm. 0.472 0.442 
LWPppH  vs. LWPAnp 0.491 0.487 
LWPppH  VS. LW Pmean  0.586 0.563 

simulations in section 7.2.3. Similarly the root-mean-square errors between LW Pm  f 

VS LWPmean  of around 45% is close to the value of the error found for the estimation 

of the pixel value using the mean of a thin line flown across it. Finally, Figure 

7.11 shows the frequency histogram of the relative error, RE, between LW Pm f  and 

LWPAfLp. This is similar to the frequency histogram of the errors in the numerical 

simulation shown in Figure 7.6b, and a two-sample Kolmogorov-Smirnov test [e.g. 

Rhogati, 1976] produced a significance level of p = 0.69, indicating a 69% probability 

that the two error distributions are the same. 

The implication of this error analysis is not that the satellite estimation of 

the liquid water path is perfectly accurate, but rather that any errors in LWPmf 

are small enough to be masked by the significant errors in the upscaling from the 

aircraft-instrument scale to the scale of the AVHRR pixel. Although the MLP 

method has allowed us to reduce this root-mean-square relative error, the compar-

ison of satellite to aircraft data still did not show much more discrepancy than 

would be caused simply by upscaling error alone. 
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Figure 7.11: Frequency histogram of the relative error between the MLP estimate 
from the aircraft data, LWPmLp, and the satellite estimate LW/3,7,1 . Mean of 
distribution is 0.011, std. dev. is 0.298. 
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7.5 Summary of Chapter 7 

In this chapter the implications of a multifractal cloud structure for moderate-

resolution remote sensing have been examined, with a focus on the comparison 

between satellite data and in situ measurements. The numerical simulations have 

shown the high levels of error that result from comparing measurements at different 

resolutions in a multifractal field. The MLP method was summarised and shown 

to reduce these discrepancies by slightly less than half, for both spot measurements 

in a multifractal field and a line integrated across the field. This upscaling method 

was then used in the comparison of aircraft measurements with AVHRR data. This 

comparison showed that the traditional PPH cloud model led to a mean bias in liq-

uid water path retrieval, as has been predicted by previous theoretical studies, but 

that this mean bias was almost totally eliminated by using an empirical correction 

to the retrieved optical depth that takes into account the multifractal structure of 

the cloud. Although the retrieval contained little or no mean bias after this cor-

rection had been made, there were still significant differences between the satellite 

retrieval of the LWP and the aircraft estimate in any particular pixel. However, 

these discrepancies were only slightly greater than those predicted for the MLP 

upscaling procedure i.e. they were not much greater than would have been seen 

even if the satellite estimation were perfect. 

One of the key implications from these results is that ground-truthing of moderate-

resolution cloud LWP retrieval cannot be made significantly more precise with single 

aircraft passes, because of the inherent errors involved in the comparison of data 

at very different spatial scales even when the MLP method is used. This is even 

ignoring any errors due to vertical inhomogeneity which was not considered in the 

simulations here. If a cloud remote sensing technique is to be compared with in 
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situ data with greater precision than the ,--30% errors seen here, then it would 

seem that a greater degree of sampling in each pixel is required. This may require 

more than one aircraft or alternate instrumentation which covers a greater area. 

Even with greater sampling, the statistical upscaling like that used here will still 

be needed for the extrapolation between scales. 
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Chapter 8 

Conclusion 

8.1 Summary of Results 

In this section the major results of the thesis are outlined, with special emphasis 

on those that are new or differ from the findings of others. 

8.1.1 Cloud Spatial Structure 

The FIF multifractal model was developed by Schertzer and Lovejoy [1987] for 

clouds using the theory of turbulence and the passive scalar advection of liquid water 

content. Since then the model has been shown to fit experimental observations of 

rain radar reflectivities [Tessier et al., 1993; Lovejoy and Schertzer, 1995b], satellite-

observed radiance reflected from cloud fields [Lovejoy et al., 1993; Tessier et al., 

1993; Lovejoy et al., 2001a] and rainfall measured at the ground [Lovejoy and 

Schertzer, 1995], and the parameters of the model have been found experimentally 

for these quantities. However, to the best of the author's knowledge the model has 
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not been compared or fitted to direct in-situ measurements of cloud liquid water 

content before this study. Since the relationship between cloud liquid water content 

and the radiation field - and the total liquid water content and precipitation - is 

complex and non-linear, the earlier observations do not translate directly to the 

spatial structure of cloud fields, and there is no reason at this stage to assume 

that the FIF model parameters found for those quantities can be used for liquid 

water content. Therefore the aircraft-based observations from flights presented in 

Chapter 3 add a significant degree of certainty to the use of the universal FIF 

multifractals to model cloud fields. Those observations were used to show that 

the horizontal spatial statistics of stratocumulus, altostratus and low-level cumulus 

clouds are scale invariant over a wide range of scales, and that their statistics 

behave as predicted by the universality classes of the FIF model. The FIF model 

parameters (a, C1 , H) for liquid water content modelling were obtained from these 

measurements. 

The scale invariance of cloud fields has long been known, but an interesting 

result here is the lack of evidence of a scale break in the power spectrum at the low 

spatial frequencies (large scale) for stratocumulus and cumulus cloud, despite the 

fact that the scale extends out to ,160 km. The power spectrum of some individual 

flights in these cloud types did appear to flatten out at low frequencies, but this was 

not reflected when the ensemble averages for each cloud type were examined. The 

only cloud type that did show signs of flattening of the ensemble-averaged spectrum 

at low frequencies was altostratus. These results differ from those of Davis et al. 

[1996a] who found such a break in the scaling regime of stratocumulus cloud in 

the range of 20 - 60 km. This difference in the stratocumulus statistics is probably 

due to different climatological conditions - a generally thicker boundary layer and 

more vigorous dynamics over the Tasmania than seen over the ocean for the two 
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experiments analysed in Davis et al. [1996a]. Despite the difference in scaling 

range, the spectral exponent 0 of 1.42 found here for stratocumulus is effectively 

the same, given the error ranges in the estimations. 

Although the FIF model has not been previously fitted to in situ cloud data, 

aircraft measurements of marine stratocumulus have also been used by Marshak 

et al. [1997] to find the mean intermittency and non-stationarity parameters (C 1  

and H respectively) directly from the structure functions and singular measures of 

the liquid water content. The ensemble mean values found in that study of C 1  = 

0.1 and H = 0.29 are similar to those found here for stratocumulus cloud, C1  = 

0.108 ± 0.002 and H = 0.30 ± 0.02. However, no equivalent of the multifracticality 

parameter a of the FIF model was found, so this is the first time a full set of the 

parameters required to use the universal multifractal classes of the FIF model to 

simulate cloud fields have been determined from in situ data. It is interesting to 

note that the two experiments in Marshak et al. [1997] of five flights each over the 

Pacific and Atlantic, and the 48 flights over Tasmania studied here, all produced 

approximately equal parameters (C1 , H) for stratocumulus cloud despite the widely 

different geographical locations. This implies some degree of commonality in the 

processes that shape the horizontal spatial structure of stratocumulus cloud, even 

under apparently different climatological conditions. 

Another contribution from this project is the extension of the fractal analy-

sis of liquid-water cloud structure, from marine stratocumulus that have been the 

primary focus of previous studies, to other cloud categories. The horizontal struc-

ture of altostratus and low-level cumulus were both confirmed as scale invariant 

over a wide range of scales, with the cumulus scaling over all ranges observed and 

altostratus scaling up until flattening of the power spectrum above 20-40 km as 

noted earlier. The spectral exponents 0 were found not to differ from that of the 
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stratocumulus by more than the error in the parameter estimation. Similarly the 

multifracticality parameter a and the non-stationarity parameter H could not be 

seen to vary between the three cloud types given the errors in estimation. Again 

this is an argument for some universality in the processes that create the horizontal 

structure of the three categories of cloud. However, the mean degree of inhomo-

geneity in the fields did vary, as measured by the parameter C 1 . Altostratus were 

found to be the most homogeneous with C1  = 0.082 ± 0.001, altostratus was the 

middle case C1  = 0.108 ± 0.002, and low-level cumulus had the most intermittent 

result of C1  = 0.126 ± 0.003. 

Anther interesting result from the analysis of the spatial structure in Chapter 

3 was the diurnal cycle in the fractal parameters of stratocumulus cloud. Cahalan 

et al. [1994a] found a similar diurnal cycle in the fractal parameter of the bounded 

cascade model in ground-based microwave -radiometer measurements of the liquid 

water path of stratocumulus clouds. Although there is no simple relation between 

the parameters of the different models, the f parameter of the bounded cascade 

cloud measures the mean inhomogeneity, as the FIF parameter C1  does. A cycle 

was found here in C1  which was qualitatively similar to that found for the bounded 

cascade, with the mean inhomogeneity being lowest in the afternoon and highest in 

the early morning. There was also a cycle in the a parameter, roughly the opposite 

of the other. This means that although the mean inhomogeneity decreases during 

the day, there are still some extreme points that get further from the mean as the 

day progresses. 

In addition to the daily cycle, a steady change in the multifractal parameters 

with the seasons was also observed here. Although there was no measurements 

in the summer months, so a complete annual cycle could not be investigated, the 

monthly averaged data showed the mean-intermittency parameter C 1  increasing 

218 



through the months of autumn, reaching a maximum in winter and then increasing 

in spring. This suggests a yearly cycle. As in the case of the diurnal cycle, the 

multifracticality parameter a was seen to be approximately the opposite of C1, 

with a decrease in autumn, minimum in winter and increase in spring. These two 

cycles, daily and yearly, indicate a climatology of cloud spatial structure that is 

based on the similar cycles in the atmospheric boundary layer, but determining the 

exact link between boundary layer properties and cloud spatial statistics requires 

further investigation. 

8.1.2 Radiation modelling 

The mean parameters for all three cloud types considered as a single ensemble, 

a = 1.48, C1  = 0.106, and H = 0.3, where then used to numerically generate FIF 

multifra,ctal cloud fields for use in radiation studies. One of the key goals was to 

find an effective optical properties approximation so that widely used PPH radia-

tive transfer algorithms could easily be corrected for multifractal clouds. This has 

already been done for bounded cascade clouds with marine stratocumulus parame-

ters in the effective homogenous cloud approximation [Szczap et al., 2000a;b;c] and 

a very similar methodology was used here in Chapter 4 for the FIF cloud model 

with constant vertical profiles. The parameterisation of Szczap et al. [2000a] was 

found to overestimate the effective optical depth of the multifractal clouds consid-

ered in this thesis, due to the fact that our clouds were more inhomogeneous than 

the marine stratocumulus model used in Szczap et al. [2000a]. But it was found 

to be possible to fully define an effective optical properties approximation for the 

FIF clouds when the pixel size is > 1.6 km and the solar zenith angle is not too 

high - i.e. it is possible to replace the multifra,ctal cloud with a PPH cloud and 

still calculate all 3 of reflectance, transmittance and absorptance with a minimum 

219 



of error. This is in contrast to the case of the bounded cascade model of cloud 

when the parameters were set to inhomogeneity levels higher than marine stratocu-

mulus, which a previous study found to not admit an effective optical properties 

approximation [Szezap et al., 2000c]. The reason for this difference requires further 

investigation. 

The FIF model, with the mean fractal parameters used here, was found to pro-

duce reflectance further from the PPH cloud value than was determined for typical 

overcast marine stratocumulus by Cahalan et al. [1994a]. This difference in the 

PPH bias was seen to increase with the spatial averaging size under consideration. 

Thus the effective single scattering albedo also depended on pixel size. A new 

parameterisation for the effective optical properties was developed that took this 

pixel size dependence into account explicitly. The effect of varying the asymmetry 

factor was also considered, and it was found to only change the effective optical 

properties by a small amount for the typical range of values. The result of changing 

the fractal parameters of the multifractal cloud was also investigated: increasing 

C1  and a were found to increase the difference from the PPH case results, while 

increasing H was found to lead to results closer to the homogeneous case. One 

consequence of this relationship is that the radiative effects of the diurnal cycles 

observed in the a and C1  (for stratocumulus cloud) will oppose one another - for 

example, the diurnal cycle sees C1  increasing at the same time as a is decreasing, 

the former causing lower reflectance and the latter higher. The difference between 

the radiative properties of the three cloud types due to horizontal spatial structure 

was also found, with altostratus having a reflectance 3% higher than stratocumu-

lus which in turn was 3% higher than low level cumulus. The reflected radiance 

distribution from multifractal cloud was found to be relatively similar to that of 

PPH cloud, except at very high viewing and solar zenith angles - meaning that 
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the effective optical depth approximation can be used in application like satellite 

remote sensing where reflected radiance distribution is important. 

In the fifth Chapter of this thesis the radiative properties of clouds with a mul-

tifractal structure in all three dimensions was investigated. Until now, the effective 

optical properties concept has only been applied to vertically homogeneous clouds 

or 2-dimensional clouds, and studies of the radiative properties of 3-dimensionally 

fractal clouds have been rare [e.g. Davis et al., 1991; Liou et al., 2001]. For 

the case non-absorbing clouds the results were found to follow the same trends 

as the vertically homogeneous clouds, simply having reflectance and transmittance 

slightly further from the PPH results. The differences between 2-dimensionally and 

3-dimensionally multifi-actal clouds increased with cloud optical depth, as previ-

ous studies have also shown [Romanova, 1998; Stephens et al., 1991; Marshak et 

al., 1998]. The other difference discovered here was the higher solar zenith angle 

dependency of the effective optical depth in 3D multifractal clouds, presumably 

due to the increase in horizontal transport of photons. In the case of absorbing 

clouds on the other hand the behaviour of the 3D multifractal clouds was seen to 

be qualitatively different from the vertically constant case at larger optical depth, 

with transmittance and absorptance actually moving closer to the PPH values as 

the mean optical depth increased. It was also found that an effective optical prop-

erties approximation could not be applied because of the differences between 147; 

and weRi). Only once the values of the mean optical depth were restricted to less 

than 20 were reasonable results produced by the parameterisation for the effective 

optical properties found in Chapter 4. 

Although most studies on the radiative properties of inhomogeneous cloud con-

centrate on the reflected radiance field or the radiation budget, in Chapter 6 of this 

work the transmitted radiance distribution was investigated. This topic is also per- 
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tinent to the effective optical properties approximation, because the fact that a PPH 

cloud has the same total transmittance as the multifractal cloud does not mean the 

radiation field is necessarily identical. The modelled transmitted radiance distri-

bution for a PPH and a multifractal cloud were compared to azimuthally-averaged 

measurements of the diffuse radiation field made by the Variable Sky Platform in-

strument. In overcast conditions the multifractal model produced a radiance field 

in good agreement with the observations - in both cases an increase around the 

solar zenith angle could be seen despite the complete coverage by cloud. However, 

the PPH cloud with the same transmittance as the multifi-actal cloud (and the 

measured conditions) produced radiance distributions noticeably smoother than 

the overcast observations, showing no sign of a circurnsolar hump. Under the 6 

octas cover however, the observations were actually smoother than the overcast 

measurements and closer to the PPH results than the multifractal. This is thought 

to be due to a bias in the VSP methodology under broken cloud fields, because of 

the need to discard 2-minute runs during which the sun is alternatively obscured 

and visible. An empirical parameterisation was found for the radiance under mul-

tifractal fields. Note that these results for transmitted radiance are in contrast to 

those for reflected radiance in chapter 4, where the PPH and multifractal radiance 

distributions were relatively similar. 

8.1.3 Remote sensing 

The comparison of the remote sensing data with in situ measurements in Chapter 

7 uses both the radiation modelling results and the spatial statistics of the cloud 

field. The spatial statistics are used to upscale the aircraft measurements using 

the Most Likely Parent method. This method was developed, and tested using 

lognormal fractals, by Salvadori et al. [2001], but is applied to the comparison of 
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in situ and satellite-based comparisons for the first time here. It was first tested for 

FIF multifractal fields with the parameters measured here and was found to give 

a significant improvement in estimating the whole-pixel mean when compared to 

simply taking the mean value of point measurements inside the pixel. Values of 

the expected error were found that could be used in the experimental planning to 

determine the number of point measurements necessary to sample a multifractal 

field. Even using the MLP method the errors were still large until a significant 

percentage of the pixel was sampled, such is the nature of non-stationary fields. 

The original method was then modified here to represent taking an integrated path 

across a pixel rather than point measurements. Numerical simulation of this process 

on cloud fields showed that although it reduced the error of estimation, the root-

mean-square relative error in the predicted pixel-scale value was still 27%. Just 

taking the mean value gives errors greater than 40%. These would be the minimum 

expected RMS errors when comparing moderate resolution remote sensing to single-

aircraft measurements. 

Despite these errors, it was seen that the use of the effective optical proper-

ties approximation to correct the satellite-retrieved liquid water path increased the 

agreement of the two data sets, as judged by their mean values. That is, the use of 

the effective optical depth approximation rather than the PPH assumption alone 

eliminated the mean bias, but significant scatter remained. This scatter was consis-

tent with what was expected when comparing moderate resolution remote sensing 

to single aircraft measurements. 
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8.2 Outlook 

The effective optical depth approximation that was the focus of this study was 

found to have many limitations. These include: a limit on the zenith angles and 

pixel sizes to which it can be applied when calculating all radiative quantities (T,R 

and A); that it is not applicable to absorbing 3-dimensionally multifractal clouds; 

that the transmitted diffuse radiance distribution of the PPH cloud is not the same 

as the multifractal cloud even when the total transmittance is equal. Thus while it 

is suitable to some applications, it does not seem a good choice for models that are 

required to calculate the radiation budget for all conditions. On the other hand, 

it does seem most applicable to satellite remote sensing applications such as the 

one used here, where only the reflectance is important and it can easily be used 

to correct current algorithms. It could also be used for estimating radiation at the 

ground if only irradiance is important, or if the parameterisation of transmitted 

radiance found in Chapter 5 was considered sufficient. 

One area in which further work is required is the testing of the transmitted ra-

diance distribution modelled by multifractal cloud under broken cloud conditions. 

This could be achieved using the Variable Sky Platform if the methodology of its 

use is altered. This could possibly be done by using a sky camera to assess the 

sampling bias by analysing cloud position and hence attempting to correct for it. 

Alternatively if the direct beam were measured with a separate shaklowband in-

strument then this could be subtracted from the VSP distribution where necessary, 

negating the need to find the direct beam from the VSP output itself and thus the 

need to reject the 2-minute runs where the sun is alternatively visible and obscured. 

The most obvious improvement that could be made to the cloud model and 

hence the radiation results that stem from it involves the measurement of the ver- 
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tical structure of clouds, and subsequent inclusion of these measurements into the 

cloud model. While in the 3-dimensionally multifractal cloud used here the scaling 

was assumed to be isotropic, so that the spatial statistics were the same in the 

vertical as the horizontal, in reality the force of gravity leads to different structures 

in the vertical direction. The natural theoretical framework for the inclusion of 

a more realistic vertical structure in the cloud model is the Generalised Scale In-

variance of Schertzer and Lovejoy [1987, 1991], which is the generalisation of the 

fractal model used here to cases of "anisotropic scaling" where the spatial statistics 

can be different in different dimensions. To implement this extension of the cloud 

model would require sufficient vertical measurements of cloud liquid water content 

to determine the vertical parameters. 

One final thing to note for future work in remote sensing is the implications 

of the errors found when simulating comparisons of multifractal data at different 

scales in Chapter 7. Although the MLP method shown here significantly decreased 

the errors in these simulations, they are still quite large for both point samples and 

integrated paths, unless a significant proportion of each pixel is sampled. The ways 

to reduce these errors is to increase the number of sampled points, or reduce the 

difference in resolutions compared. Similar results would apply to other multifractal 

fields. This needs to be considered in the planning of measurement campaigns that 

compare multifractal data at different scales. 
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