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Abstract 

In recent years, there have been serious concerns about the declining stocks of wild 

abalone combined with a rapidly increasing market demand and so aquaculture 

researchers are continuously investing in new methods for growing and monitoring 

cultured abalone. There are a number of new programs that have been planned for 

farmed abalone, such as selective breeding and genetic manipulation to meet world 

demand. 

These methods can only be successful if abalone traits and behaviour can be 

identified properly. Therefore, physical tagging of abalone shells and DNA 

(Deoxyribonucleic Acid) pedigree markers have been developed to enable tracking 

and tracing of individuals. Researchers are continually finding more effective 

methods of physical tagging so that tags can be visualised more readily and will be 

retained on the abalone shell for a longer period of time. Identifying the tag and 

character information is also time and labour intensive. Therefore, automated image 

analysis of abalone tags may provide a solution for tracking abalone and for 

identifying abalone behaviour and pedigree information. After reviewing the broad 

field of computer vision, an image processing system was developed in MATLAB 

using appropriate image analysis and processing techniques, to automate the process 

of extracting sub-images of physical tags attached to the abalone shells, in 

preparation for input to an optical character recognition system, which would read 

the tags on the shells. 

The image processing system developed was able to successfully identify a number 

of tags from digital images directly taken from land-based tanks on various abalone 

farms; tag colour and character recognition was achieved. In addition, this research 
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will help aquaculture researchers to study abalone movement, behaviour and 

performance traits in a cultured environment. 
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Introduction 

Chapter 1 

Introduction 

Abalone is an important single-shell shell-fish species found in Asia, Australia, 

United States, Mexico, New Zealand, Canada and South Africa (Selvamani et al. 

2001, p.478). Australia is one of the major sources of the world's abalone. Tasmania 

supplies nearly 50% of Australian wild abalone and approximate 25% of abalone 

globally, to which the cultured abalone contributes only 2%, at approximately 500 — 

600 tonnes (Elliot et al. 2004). 

Cultured abalone farming is undertaken with appropriate planning and management 

to maximise the quality of the abalone for commercial purposes and for selective 

breeding purposes. Improving performance traits such as growth rates of cultured 

abalone will lead to significant cost savings in the abalone aquaculture industry. To 

obtain the desired results, researchers have suggested two genetic methods that could 

help to increase traits in farmed abalone (Li et al. 2008, p.15; Hulata 2001) — 

selective breeding and chromosome manipulation. In addition, non-genetic methods 

such as improved husbandry and nutrition can also be crucial in improving traits such 

as abalone growth. 

To meet world demand for abalone, it is necessary to work on effective selective 

breeding techniques for farming cultured abalone. As part of successful breeding 

programs, tools are required that can identify individuals, groups or families of 

abalone. Currently this is achieved through physical tagging, DNA 

(Deoxyribonucleic Acid) marking and growing abalone families in different tanks. 

These are the most common techniques used in selective breeding programs. 

However, growing abalone families in separate tanks is not the most efficient method 
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Introduction 
of culture for a breeding program due to the expense and time required for tank 

maintenance and tank effects can also limit the genetic gain. 

Therefore, tagging and DNA markers provide effective avenues for individual 

identification in selective breeding programs, but on the other hand, molecular 

markers are not as cost effective as physical tags because amplifying the DNA 

markers in thousands of individuals can be very expensive (Appleyard et al. 2008). 

Physical tags are also still required for a visible method of identification — DNA 

markers can not be seen by eye (Appleyard et al. 2008). 

However, physical tagging methods in abalone are also very labour and time-

intensive, and there are a number of issues related to tag durability, including tag loss 

by dislodgment, fouling, and grazing. Therefore, some method is required to monitor 

growth and behaviour using individual tags that can enable researchers to find the 

same individual repeatedly throughout an animal's lifetime. However, manually 

monitoring abalone movement and behaviour in order to get the survival and 

heritability information is complex and time consuming. Therefore, this research 

focuses on the development of image analysis algorithms that can assist abalone 

farmers and researchers to track and trace individuals within a tank and monitor 

abalone behaviour more easily. The visualisation of the tags on animal surfaces is 

important for automatic tag recognition through image analysis. Automated image 

analysis is particularly important when the manual process is slow and expensive, as 

is the case for tracking of abalone with attached tags in image sequences. 

Analysing tags on abalone shells using images can be an effective way to identify 

abalone pedigree information. The image analysis can be of benefit, not just in 

selective breeding programs, but also in the analysis and identification of the best 

characteristics of the abalone both for selection and commercial purposes. Currently, 

CSIRO and the Tasmanian abalone farms use Labview software to collect the images 

and then NI Vision to estimate abalone lengths. In addition, a Victorian farm uses 

digital callipers to obtain length data for various abalone species. 
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Introduction 

However, although it may be easy for humans to analyse the tags in images, again 

this process is a very time consuming process if it needs to be undertaken on a large 

set of images. On other hand, an automated system must have knowledge of the 

colour and shape of each tag in order to extract it from the image background. 

Therefore, this project involves the use of the Image Processing Toolbox from 

MATLAB, which is very suitable for work with colour images. It provides a 

comprehensive set of algorithms and graphical tools for processing digital images. 

This project involves the development of suitable image processing techniques to 

identify tags and other parameters such as position, orientation and colour 

information of tags. The extraction of tag ID (identification) is important to derive 

the pedigree information of each abalone. The development of the application 

provided an initial confirmation of the hypothesis that image analysis is suitable for 

identifying and extracting the tags from abalone images. However, it is important to 

recognise that the success of image processing techniques can be affected by a 

number of factors such as image quality, how far away from the tank the images are 

taken and image size. Any input images presented to the current image analysis 

system need to be clearly human readable before the system is likely to produce 

acceptable results. 

The system development process is divided into three main categories, which include 

pre-processing, shape comparison and extraction processes on abalone images and 

lastly preparation of characters from each tag for optical character recognition. 

In this research, tagged abalone images were obtained from Victorian and Tasmanian 

farms. These farms use land-based tanks to grow abalone and the images were taken 

directly from these tanks. The images were in JPEG format and were approximately 

2000 * 3000 pixels in size. Image quality and image size can make a major 

difference to the success of the image analysis system. The process for analysing the 

tags can suffer if the images are of poor quality, if the images are very large in size, 
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Introduction 
if the abalone depicted in the images are very small or if the camera is poorly 

positioned with respect to the tank. 

Once sub-images containing the tags had been extracted from the images, they were 

presented to an optical character recognition system, to enable the system to 

understand the characters on each tag. Currently, the system uses a template-

matching algorithm to recognise the characters on binary sub-images of each tag, 

extracted from the surrounding image. In this process, the characters are passed 

through number of pre-processing steps before the optical character recognition 

process applied. 

At last, the system accuracy is checked using two approaches. Firstly a comparison 

between manual evaluations and system-produced results for the position, width, 

height and orientation of each tag was carried out. Secondly, a manual analysis was 

used to determine the accuracy of the automated system when identifying tag colours 

and counting the number of tags as well as determining the number of times the 

system recognises an object as a tag when it is not a tag. 
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Literature Review 

Chapter 2 

Literature Review 

The aim of this chapter is to briefly discuss the abalone aquaculture industry, and to 

explain how tagging techniques can be used to assist in the selection of the best traits 

in farmed abalone using selective breeding programes. In addition, some image 

analysis and automated recognition systems are discussed for identification and 

extraction of tags for further processing. 

2.1 Abalone Aquaculture 

Abalone is an important single-shell shell-fish species found in Asia, Australia, 

United States, Mexico, New Zealand, Canada and South Africa. Abalone species are 

marine gastropod mollusks, belonging to the family of Haliotidae and the genus 

Halitosis (Selvamani et al. 2001, p.478). Abalone are usually found in temperate 

locations worldwide, and are recognised as a highly prized animal in the consumer 

seafood industry (Elliot 2000). In recent years, abalone stocks have been declining 

due to a number of factors including overfishing, illegal harvesting and habitat 

destruction (Lee et al. 2007; Dixon et al 2006; Wilding 2007). 

2.1.1 Production 

The farming of abalone has rapidly risen in importance between 1992 and 2007 and 

now produces approximately 26000 tonnes globally, on an annual basis. In 

contrast, the wild harvest has declined to 9500 tonnes annually due to overfishing, 

illegal harvesting, habitat destruction, and diseases within the population (Lee et al. 

2007; Dixon et al 2006; Wilding 2007). Therefore, cultured abalones are in high 

demand, with a wide diversity of abalone species available to offer to world 

markets and the industry can produce a more consistent supply of high quality 

farmed products. 
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A major component of the world's abalone fishery comes from Tasmania. Tasmania 

supplies nearly 50% of Australian wild abalone and approximate 25% globally 

(Elliot et al. 2004) with wild abalone taken directly from the sea. In contrast, 

cultured abalone farming is done inside land based tanks enabling proper planning 

and management to be undertaken to maximise the quality of the abalone for 

commercial purposes and selection purposes. 

Australia currently farms two pure abalone species: Haliotis rubra, the blacklip 

abalone and H. laevigata, the greenlip abalone and their interspecies hybrid (Elliott 

2000). The hybrid combines the market quality traits of the greenlip with the 

endurance and growth rates of the blacklip ablone (Appleyard 2008). Australia 

makes a profit of $A246 million each year exporting abalone to major markets in 

Hong Kong, China and Japan (Appleyard 2008). 

2.1.2 Methods 

2.1.2.1 Factors in Cultured Abalone Growth 

To protect abalone species and to meet world demand for abalone, it is necessary to 

work on effective selective breeding techniques for farming cultured abalone. 

Abalone are generally slow growing gastropod mollusks with a five stage life cycle-

embryo, larvae, postlarvae, juvenile and adult (Grubert 2005, p.8). The grow-out 

time to market size for cultured adult abalone in temperate Australian regions is 

approximately three to four years; it starts with one year of juvenile development. 

Given this, improvement in growth (i.e. faster growth or production of larger abalone 

in a four year time frame) is a very important trait for the abalone industry. For 

example, greenlip abalone have been shown to grow faster than blacklip abalone and 

so provide better returns on investment for farmers (Weston et al. 2001). The 

considerable time for growth to market size contributes to the high operating costs 

associated with culturing abalone (Appleyard 2008; Li et al. 2008). Consequently, 

improving growth rates of cultured abalone will lead to significant cost savings in the 

abalone aquaculutre industry. 
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To obtain the desired results, researchers have suggested two genetic methods that 

could help to increase the growth rates in farmed abalone (Li et al. 2008, p.15; 

Hulata 2001) — selective breeding and chromosome manipulation. Other non-genetic 

methods such as improved husbandry and nutrition can also play a major role in 

improving abalone growth. 

Selective breeding uses targeted mating to produce a large number of abalone 

families and individuals with desirable commercial traits. Aquaculturists commonly 

use different types of breeding methods for intraspecific genetic improvement (Li et 

al. 2008, p.15; Hulata 2001) including mass selection, within and among family 

selection and multiple trait selection using selective indexes. For example, genetic 

variation in the red abalone (H.rufescens) can lead to a 50% to 100% increase in 

growth rate (Elliot 2000). 

In all selective breeding programs, farmers need to select their broodstock from 

either farms or wild abalone stocks. Selecting individuals from the wild, farmers 

usually target abalone that are in reproductive condition. Farmers bring the ripe 

broodstock back to the farm, where the broodstock are induced to spawn. However, 

this approach is not suitable for all farmers because collecting the brood stock from 

the sea at different sites poses different problems such as the total absence of 

appropriate animals in some years and unreliable supply of abalone during the 

spawning season almost every year (Fleming 2001). In addition to selective breeding 

programs, ploidy or chromosome manipulations are the second type of genetic 

modification which can help improve abalone traits although this technique 

requires direct genetic modification of the abalone genome. Chromosome 

manipulations are best undertaken within a selective breeding program using 

known sires and dams and monitoring of performance on the farm alongside 

diploid controls (Appleyard 2008). 

2.1.2.2 Selective breeding 

One of the key research challenges for the Australian abalone aquaculture industry is 

the development of selective breeding programs to improve the productivity of the 

farm populations. An important first phase in selective breeding is to measure the 
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genetic variation in commercial traits and estimate a standard measure of the 

proportion of genetic variation in a population. A number of industry-based selective 

breeding programs currently concentrate on a number of commerical characteristics, 

including growth rate, foot meat, and disease resistance in pure abalone species and 

in hybrids (Kube et al. 2007). 

An issue which needs to be considered in selective breeding is the high 

environmental variation that is introduced in the early stages of abalone development 

and which heavily impacts on the attainable genetic improvement. The age at which 

selections are made also needs to be considered carefully (Kube et al 2007, p.823). 

On other hand, the process of crossing from the best parents of each generation and 

explains that it was possible to achieve a gain of approximately 5% in total weight 

using this process. However, their research faced some limitations, such as frequent 

loss of tags, and significant environmental variation at in the early stages of the 

abalone life cycle, even for families that were raised in different tanks. The research 

project only recovered 17 families, out of a total of 21, due to poor durability of tags 

(Kube et al. 2007). 

Alongside managing high environmental variation, success in breeding programs 

will rely on individually identifiable pedigreed abalone (Appleyard et al. 2006). To 

maintain the familial or pedigree information in abalone, farmers often grow the 

abalone in separate tanks so they can select appropriate family members for 

breeding. However, rearing families in separate tanks is not the most efficient 

method of culture for a breeding program due to the expense, labour and time 

required for maintaining multiple tanks. Tank effects can cause growth related 

differences due to different tank environments, and they can also limit the genetic 

gain made within a breeding program (Appleyard et al. 2008). 

Controlling environmental variation by growing families within the same tank 

environment will help to increase the gains made in selective breeding programs for 

abalone. However, when different families are gown within the same tank 

environment, farmers and researchers must have the tools to be able to identify, 

monitor and track individuals and families at all stages of their life cycle from the 

juveniles to the adult broodstock (Kube et al. 2007). Repeated trait measurements 
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across an individual's life-time are required - accurate trait data from both 

individuals and families will help to increase genetic gain and hence profit for the 

farmer. Therefore, a major challenge in selective breeding is to grow out a large 

number of families in a communal environment where families and individuals can 

be uniquely identified. However, overstocking/density of abalone in tanks may also 

affect on the abalone growth directly because competition of shelter space and 

indirectly because of degradation of water quality in tanks (Huchette et al. 2003; 

Weston et al 2001). 

In cultured systems which use a communal grow-out environment, marking and 

tagging is regarded as the most effective way to acquire valuable information about 

abalone, from the larvae to the adult growth stage, and to obtain pedigree 

information. Using this approach, a researcher can also obtain other information on 

growth and mortality, as well as on movement and foraging behaviour. CSIRO is 

currently using several specific types of physical tags and DNA markers to provide 

pedigree information on abalone when they are grown in the same tanks (Appleyard 

et al. 2008). 

2.1.2.3 Physical Tagging 

Physical tagging enables researchers and farmers to repeatedly measure, track and 

trace the same individual over its life-time. A number of different types of tags have 

been used in cultured abalone breeding programs including nail polish, paint pens, 

small coloured beads, PIT tags, spring tags, and Hallprint shellfish tags (Appleyard 

et. al 2008) (see Figure 1). 

Figure 1: Tagged abalone (image provided by CSIRO Marine and Atmospheric Research 
(CMAR) 
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Prince (1991) also explained the different ways of tagging abalone, including the use 

of tags affixed to the abalone shell with adhesive and tagging using a wire or split 

pin. All of these techniques, however, increase the stress on the abalone because of 

the handling required and may cause mortality of some abalone. 

Prince (1991) proposed a technique that uses central laminated numbered discs with 

a hole inside and nylon rivets, with the tags assembled prior to insertion into the 

abalone shell. This technique serves to minimise the stress associated with tagging. 

McShane et al. 1988 explained that attaching tags with adhesive produces more 

stress than attaching tags with stainless steel. This study shows that laminated 

numbers can be easily applied under the water without bringing the abalone to the 

surface, while the adhesive tags were difficult to apply under water. 

2.1.2.4 Effectiveness of Physical Tags and Tagging Issues 

There are a number of issues related to tag durability, including tag loss by 

dislodgment, fouling, and grazing. In one experiment on greenlip abalone families, 

the tag recovery rate after eight months of monitoring varied from 21 to 100%. The 

experiment was affected by crushed shells, visualisation problems and tag fouling 

(Appleyard et al. 2008). Various kinds of tags have been used in an attempt to solve 

to these problems, but no one has yet found the perfect solution for tagging. 

Tagging is also very labour and time-intensive. Therefore, some method is required 

to monitor growth and behaviour using individual tags that can enable researchers to 

find the same individual repeatedly throughout an animal's life time. Similarly, the 

ability to visualise the tags and to retain the tag on the abalone shell is important for 

automatic tag recognition through image analysis. 

2.1.2.5 Alternative Methods 

Researchers are currently searching for better methods of identifying individual 

abalone to provide solutions to some of these physical tagging difficulties. One 

alternative is the molecular marker which is a fragment of DNA which is inherited 

from both the sire and dam. Molecular markers can be used to assess stock diversity, 
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broodstock relatedness and identification of pedigree information relating to the 

abalone (Carr et al. 2008). The molecular marker is amplified from an individual's 

DNA using the PCR (Polymerase Chain Reaction) technique (Semagn et al. 2006). 

The main advantage of molecular tagging is that it is determined at birth, the marker 

stays with the abalone for its entire life and can be amplified in young juveniles (as 

PCR techniques require only a small amount of tissue) (Appleyard et al. 2008). 

Importantly, if implemented correctly, molecular markers can be used to identify 

individual family members from a communal tank. Markers are amplified in the 

offspring and 'putative' broodstock. Using genetic software, offspring can then be 

assigned to their correct sires and dams; hence family information is retrieved. 

However, molecular markers are not as cost effective as physical tags because 

amplifying the DNA markers in thousands of individuals can be very expensive 

(Appleyard et al. 2008). Physical tags are also still required for a visible method of 

identification — DNA markers can not be seen by eye (Appleyard et al. 2008). 

However, using stable oxygen isotopes is one of safest method to determining the 

age and growth of abalone, in contrast, to tagging methods which can create adverse 

effects on the abalone shell surface (Gumery et al. 2005). 

As highlighted above, the key challenge for the abalone aquaculture industry is to 

increase the growth rate (and other commercially important traits) in abalone species 

to reduce the cost of maintenance/grow-out and to increase profit for the industry. 

This challenge can only be addressed by thorough planning in the appropriate 

selection of abalone for broodstock, accurate trait monitoring and by using 

appropriate techniques for identification of abalone families. However, manually 

monitoring abalone movement and behaviour in order to get the survival information 

is complex and time consuming. Therefore, this research focuses on the development 

of image analysis algorithms that can assist abalone farmers and researchers to track 

and trace individuals within a tank and monitor abalone behaviour more easily. 

2.2 Image Analysis 

Image analysis is a field of the computer vision to give a meaningful description to 

physical objects in an image (Ballard & Brown 1982). The field of image analysis is 
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a broad discipline. Therefore, it is important to focus on the actual requirements for 

image analysis techniques in this research. The main focus of the research is to 

develop image analysis techniques to automatically analyse abalone images to detect 

the tags attached to the abalone and to derive significant attributes relating to the 

tags, such as tag ID number (used for heritability information) and colour, as well as 

the position of the tag. 

2.2.1 The MATLAB Image Processing Toolbox 

The Image Processing Toolbox from MATLAB is very suitable for work with colour 

images. It provides a comprehensive set of algorithms and graphical tools for 

processing digital images. MATLAB also provides an analyser which can be used to 

inspect algorithms and to create source code. A user can restore noisy or degraded 

images, enhance images for improved intelligibility, extract features, and analyse 

shapes and textures. 

2.2.2 Related work 

Image processing work has been carried out for chromosome analysis on the Pacific 

red abalone (Kober et al. 2004) using rank order and digital morphologic filters to 

determine the total length of chromosomes and relative arm lengths in digitally 

enhanced images. These digital filters are very efficient in removing additive and 

impulsive noise, as well as enhancing and restoring the microscope images. The 

reason for their success in image processing is that they can suppress noise without 

destroying important image details, such as edges and fines lines (Kober et al. 2004). 

2.2.3 Image Analysis Procedures 
2.2.3.1 Image Enhancement 

The first step in analysis involves attempting to improve the quality of underwater 

images. One of the fundamental steps in the design of image processing techniques is 

to make sure that a given image is optimized for enhanced quality (Trussell 2005). 

Images can be degraded by two main factors, light absorption and scattering. The 

quality of the water controls and influences the filtering properties of the water. The 
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reflected light is partly polarised horizontally and partly vertically. An important 

characteristic of the vertical polarisation is that it makes the object less shiny and 

therefore helps to capture deep colours which may not be possible to capture 

otherwise (Iqbal et al. 2007). 

Some techniques, such as ACE (Automatic Colour Equalisation) enhance the image 

without supervision and reduce the loss of contrast in an image by applying contrast 

stretching to an RGB colour model. It also does saturation and intensity stretching on 

the HSI colour model. These two stretching techniques help to equalize the colour 

contrast in the images and at the same time solve the problem of lighting. Figure 2 

shows the result after applying the two operations on an under water image (Iqbal et 

al. 2007). 

Figure 2 Enhancement in underwater image Octal et al. 2007) 

2.2.3.2 Colour models 

The second step relates to the use of colour models such as HSI and CIE. This step 

converts the RGB images provided by the camera into an appropriate HSI or CIE 

colour space for colour analysis. Numerous methods for working with images are 

provided, including histogram methods, smoothing and sharpening operations, 

segmentation operations, and edge detection. These methods are designed 

specifically for grey scale image analysis. The RGB colour space is the most 
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common model used for the display of colour images but the  red,  green and blue 

components within this model are highly correlated and so  it  is not the most 

appropriate model to use for processing colour images (Luijten 2005). 

On the other hand the HSI and CIE colour spaces are appropriate for most work 

undertaken with colour images. Rasras, Emary and Skopin (2007) reported on a 

study in which they showed that the CIE model produced better results than the RGB 

and the HSI models when calculating the distance colour, a method applied between 

two colours, but the drawback of the CIE is that it is not as computationally efficient 

as RGB or HSI. This means that execution times in the CIE colour model are higher 

than in other colour models for producing the output result on each selected region 

(see Graph 1). 

Graph 1: A comparison between colour Models (Bueno  et  al. 2008) 

Therefore, the HSI model is generally used for controlling the various elements of a 

colour image individually. The Hue (H) determines the perceived colour of the image 

(for example blue) while the Saturation (S) determines the depth  of  the colour (from 

a pale blue to deep blue) and the Intensity (I) is the brightness  of  the colour (from 

dark to bright). Saturation and Intensity help to produce a wide range of colours. 

Therefore, it is easy to decrease or increase values to control the contrast ratio in an 
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image. The process can be carried out by using a histogram of the digital values for 

an image, and redistributing the stretching value over the image to get the maximum 

possible values of colour variation ( Figure 3) (Iqbal et al. 2007). 

Transform ROB 
to HSI 

 

--110 

 

Saturation & 
Intensity 

Stretching HSI 

   

     

Output Image 

Figure 3: RGB to HSI image process (Iqbal et al. 2007) 

In this research, it is the Hue value that enables an application to determine the 

colour of the tags; categorised as red, yellow, green, pink or white. According to the 

International Commission on Illumination (CIE), "hue is the attribute of a visual 

sensation according to which an area appears to be similar to one of the perceived 

colours, red, yellow, green and blue, or a combination of two of them" (Finlayson & 

Schaefer 2000).. 

The calculation for the Hue, in terms of the R, G and B values of an RUB image is 
given by: 

H = cos-1 0.5[(R — 	(R-B)]  
(R-G)(R-G)+(R-B) (G-B) 

2.2.3.3The Segmentation Process 

The third important step in image analysis is related to the separation of objects from 

the image background. Segmentation is the process of splitting an image into regions 

such that each region is characterised by having relatively uniform properties, such 

as grey level, hue or brightness. Segmentation methods can be broadly classified as 

grey level or texture-based and can make use of histogram features or edges 

identified in the image using an edge detector (such as a Sobel or Canny edge 

detector). Normally, medical image processing is based on grey-level segmentation 

methods, which sometimes do not produce very clear or relevant results. On the other 

hand texture-based analysis is still a complex and challenging problem for image 

segmentation (Sharma et al. 2008). 
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Cheriet, Said and Suen (1998), proposed using Ostu's algorithm, which uses a 

threshold value, to segment an image. This algorithm is used for computer vision and 

image processing. It uses the image histogram to predict the optimum threshold value 

for separating the two classes within an image and so is capable of separating a 

foreground from a background. At each recursion, the object with the lowest 

intensity is segmented from the given image. The recursive process continues until 

only the darkest element is left in the image. This method was trained on 220 real-

life bank cheques and tested on another 505 cheques to eliminate their background to 

facilitate the processing of cheques (see Figure 4). 

Figure 4 a) Original image of bank cheque b) Two threshold values  c)  The output result 
(Cheriet, Said & Suen 1998) 

Similarly, a novel algorithm is reported for analyzing tongue images for improving 

the effectiveness of tongue inspection. This algorithm used the HSI color model, as 

discussed in section 2.1, for converting the RGB color values into hue, saturation and 

intensity values and using its red hue to segment the tongue from the image 

background. Later, morphological operations were performed to fill small holes in 

the tongue area. Finally, the new generated image was combined with the original 

image to produce a successfully separated tongue image (see Figure 5). As result 

of this experiment, they segmented the tongue images correctly, but further research 

is required for cases where it is necessary to identify a white coating on tongue (Jian-

qiang 2008). 

Figure 5: a) Before segmentation b) After segmentation (Jian-qiang 2008) 
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2.2.4 The Feature Extraction Process 

This step is also very important for extracting tag-shaped objects from abalone RGB 

images. Feature extraction is a process for identifying an essential object in an 

image. This process is utilised in a number of fields such as robotics, computer 

technology and medical image analysis. 

2.2.4.1 Feature extraction in the robotics industry 

Guzman and Parra (2007) described the importance of feature extraction in the 

robotics and computer vision fields. With the help of feature extraction, it is possible 

to reduce unnecessary computation and speed up the process of analyzing images to 

detect selected objects from an image. 

Guzman and Pan-a (2007) suggested that the robotics community could provide a 

mechanical automated solution for many problems if robots could clearly visualise 

path information. Their study explored different ways for analysing path information 

to assist in robot understanding. They analysed the path information from a selected 

region, calculating the centroid of the region, along with the direction of the path, to 

give useful information to the robot to find the path and guide the control system to 

plan and undertake autonomous navigation (Figure 6a and Figure 6b). 

Figure 6a): Original image b): Resulted Image (Guzman & Parra 2007) 

A similar study (Kang et al. 1992) developed a technique for industrial robots that 

can recognize and classify industrial objects such as numbers on tires. From this 

study, they described the extraction of arcs which form parts of the digits, using a 

Hough transformation method, and subsequent use of these for recognition purposes 

(see Figure 7). 
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Figure 7 ' Segmentation on tire image with line operator (Kang et al. 1992) 

2.2.4.2 Feature extraction for medical imaging analysis 

Feature extraction has also been used to identify the hemorrhaged region of a 

patient's brain, enabling doctors to determine the position, shape and size of that 

region. The best method for identifying parts of the brain is by determining the 

position, size and shape of each part of the brain. Therefore, they developed an 

automatic image classification system to identify different syndrome types (head 

trauma types). Using this tool, doctors can now study different syndrome types and 

can educate other medical professionals in this field (Gong et al. 2007). In 

conclusion, the feature extraction process is based on extracting geometric features 

of each segment within the image, and so this process has potential for determining 

the position and orientation of abalone tags based on their centroid coordinates and 

their major and minor axes. 

2.2.5 Optical Character Recognition 

In this project, optical character recognition is an important step in enabling the 

machine to analyze the characters that appear on the tags attached to the abalone 

shells. This project aimed to extract the tag characters from the image in preparation 

for input into an OCR (optical character recognition) system. 

There are three main types of methods used for optical character recognition. 

Template matching methods match characters from a reference character set with 

each of the input characters. Statistical methods perform the character recognition 

based on various attributes extracted from the input character and represented as N- 
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dimensional vectors. The prototype character whose N-dimensional vector is most 

similar to that of the input character is matched to the character. Structural methods 

recognise the character on the basis of structural relationships between primitives 

(such as individual strokes) of the character (Kang et al. 1992). 

A statistical method is used to match input characters to prototypes in Kang's system 

for recognising raised characters for rubber tire classification. In their studies, they 

proposed a recognition algorithm using sequentially designed rule-based methods. 

The characters were divided into groups on the basis of partial width (the ratio of 

black pixels to the character width is used). Subsequently, these character groups 

were sub-divided using the cross-point and partial projections. Finally the distance 

feature (distance from enclosed rectangular window to black points of the character 

at several positions) was used to recognise the character among several candidates 

(Kang et al. 1992). 

Optical character recognition can also be useful in analysing text and then 

synthesizing it into speech. This research is useful in enabling humans with impaired 

vision to read road signs by recognising the sign and providing a voice output 

alerting the driver (Hague et al. 2007). The automatic sign translation system used a 

digital camera to capture images of road signs, and then employed an adaptive 

threshold method to binarise the text block. The text recognition was done using a 

neural- network-based OCR. Finally, identified text was converted into a synthesized 

voice output. This study reported a success rate of 84.7%, which was considered 

reasonable. The 15.3% failure rate of the system resulted from complex backgrounds 

behind the text in some of the signs, low intensity signs and multiple sign boards 

appearing in the same image frame. 

 

3irszRotiw 

i I 
Figure 8: Original Image 	Figure 9: Vertical edge detection 

(Hague et al. 2007) 
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Figure 10: Extracted text area and Binary image (Hague et  al.  2007) 

Modules Correct Error 
Text Detection 84.7% 15.3% 
Segmentation 93.9% 6.1% 
Character 
Recognition 95.7% 4.3% 

Whole system  91.4% 8.6% 
Figure 11: Test result of proposed System (Hague et al.  2007 

In summary, the classification and recognition of objects in images represents a 

broad sub-field within robotics and computer vision. Automated image analysis is 

particularly important when the manual process is slow and expensive, as in the case 

for tracking of abalone with attached tags in image sequences. 
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Chapter 3 

Methodology 

This chapter discuss the methodology for implementing the work undertaken in this 

project. The discussion is divided into four sections. Firstly, the platform, tools and 

the other requirements needed to develop the application are discussed. The second 

section discusses the pre-processing stage of the implementation work. The methods 

explained in this section are very important in ensuring the overall success of the 

application. The third of these discusses the development of image analysis 

techniques which extract individual tags from the image and present them to an 

optical character recognition. The final part discusses how the evaluations of the 

image analysis techniques are carried out. 

3.1. Requirements and Work 

The main aim of this research is to develop image-processing techniques for 

analysing underwater images to identify tags affixed to abalone shells. The 

techniques would enable abalone researchers to identify individual animals and to 

track their movement over time. The underwater images of tagged abalone are 

collected from Victorian and Tasmanian farms. These farms use land-based tanks to 

grow abalone and the images are taken directly from these tanks. The images are in 

JPEG format and are about 2000 * 3000 pixels in size, creating difficulties in 

handling because of their size. Therefore, the images are reduced in resolution before 

other pre-processing functions are carried out on them. 

Currently, CSIRO and the Tasmanian abalone farms use Labview software to collect 

the images and then NI Vision to estimate abalone lengths. The Victorian farm work 

uses digital callipers to obtain length data. This software just gives size information 

and, for this process, they need to take each abalone out of its tank to be 

photographed. This is very labour intensive and time-consuming way to determine 
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the growth and mortality rates in the abalone. Therefore, this image analysis 

application development is important because it will enable the images to be 

obtained directly from the tanks and then processed in order to monitor abalone 

behaviour. The techniques developed in this project could also be incorporated, in 

future, with other software to obtain the size of the abalone as well as the value 

(heritability information) of the tag attached to its shell. 

The main aim of this research is to develop techniques for enhancing the images and 

detecting the tags; then determining the colour of each tag and segmenting it from 

the background. After the tags have been segmented from the background the 

techniques calculate the location of the centroid, and the orientation of each tag, 

enabling the tag information to be extracted for further processing. 

3.1.2 Development Platform 

The MATLAB Image Processing Toolbox is a suitable package for this application. 

It offers image-processing tools, which include a wide range of standard algorithms 

and graphical tools for image processing and visualisation. It is easy to get access to 

these standard algorithms in MATLAB, and it also provides a multi-platform 

capability to run programs on any operating system, including Windows or Mac OS 

X, that is supported by MATLAB. 

3.1.3 Input Data 

The input images used for this research are ROB images stored in JPEG format. 

There are three categories of images; images with rounded-rectangle tags in a wide 

variety of colours, images of abalone with pairs of tags all yellow in colour, and 

images with rounded-rectangle tags and round tags in a variety of colours. Each of 

these categories of images has tags with different size dimensions and other 

characteristics, such as colour and shape. 
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3.3 Pre-Processing for Tagged Abalone Images 

3.3.1 Size classification 

The dimensions of the input images are calculated using the size 0 function and this 

can be used to classify the images into each of the three categories described above. 

The size 0 function gives the value of XY dimension of images. The second value of 

size (file, 2) function is used in this process. As described in Table 1 , the images are 

categorised according to their sizes. 

Filename 	Size 	Category 

Families071.jpg 3264 *2448 I 

Photol.jpg 2304* 3456 II 

IMG_1126a.jpg 778*1166 III 

Table 1: Three categories of images 

The next challenge is handling these large files. The main concern is the time it 

takes to process these very large images. Therefore, an analysis was done to 

determine ways of reducing the size of the images. Category I images could be 

handled easily with no significant reduction in quality by using the imresize 0 

function to resize the image, reducing it to a manageable level by reducing the 

resolution. However, the imresize function was found not only to be suitable for 

category II images, so these images were cropped into three equal sizes using the 

imerop 0 function before further processing was carried out. For category III 

images, there was no requirement to resize or crop the image, because they were 

small enough to be processed easily. 

3.3.2 Colour Classification 

As described in chapter 2, section 2.2.3.2, the colour values in an image can easily be 

calculated using the HSI colour space where the Hue value is important as an 

intuitive cue to identifying the tags' colours. Basically, the objective is to select tags 

of particular colours from the input image. Each tag colour is identified separately. 

The extracted images are then combined to make one image. For this project 
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implementation, the HSI (Hue, Saturation, and Intensity) colour space was used for 

colour segmentation. 

The first step involves identifying which colours in the image are associated with 

which Hue values in the histogram after converting the image from RGB to the HSI 

colour space. This process involves manually observing the values from the 

histogram. For example, the colour yellow is found between hsilmage (:,:, 1)>0.17 

&& hsilmage (:,:, 1)<0.2. The histogram produced from a category I type image is 

shown in Figure 12. 

Figure 12: Hue values from HSI model Image 

However, manually observing the colours associated with particular values of a 

single histogram are not suitable for all images. Therefore, selection on the basis of 

"angle of hue" provides more reliable results than analysing colour values via the 

histogram of hue values. Hue can be calculated from the RGB image using the 

following formula. 

H = cos'  0.5[(R — G)  +  (R-B)]  
N (R-G)(R-G)+(R-B) (G-B) 

The HSI colour model uses a hue value of 0 degrees to 360 degrees, with the red 
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Colour at 0, yellow at 60, green at 120, cyan at 180, blue at 240 and magenta at 300 

(see Figure 13). 

Figure 13 HSI Colour Space (Hengl 2003) 

Therefore, it is possible to calculate threshold values that can operate on a 

combination of hue, saturation, and intensity by using different colour angles. For 

example, to identify yellow coloured tags in HSI images (see Figure 15), one would 

calculate the hue angle value H using the formula above and then extract all pixels 

for which: 

((pi/3 <= H) & (H < 2*pi/4))); 

Where Pi= 180°  

Figure 14: Original Image (provided by CMAR) 
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Figure 15: Results of identifying Yellow tags 

3.3.3 Noise Removal and Background Detection 

After identifying pixels with a particular colour within the image, the next task is to 

remove all pixels that don't belong to a tag of that specified colour. The background 

in this image is tank concrete and that surface can produce yellow-coloured pixels 

that could be recognised as belonging to a yellow tag. To remove the pixels, the 

following method can be used. 

This first step is completed using the im2bw 0 function, which produces an output 

image in which all pixels in the input image with luminance greater than a specified 

threshold level are given the value 1 (white) and all other pixels are given the value 0 

(black). The threshold level used here can be calculated using Ostu's Algorithm 

(Cheriet et al. 1998) as discussed in chapter 2. 

3.3.4 Tag Segmentation 

This processing task involves segmentation of the tags from the surface of the 

abalone (i.e. the background). Initially erosion and dilation operations are used to 
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obtain more accurate and smoother images. The structuring element used for the 

dilation and erosion is a 4* 4 pixel rectangle. Flow chart 1, illustrates how this 

morphological processing is carried out for each image (Figurel6 and 17). 

Flow Chart 1: Image segmentation using morphological operators 

Figure 16: Image after Colour Segmentation 
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Figure 17: Image after Morphological Processing 

The next step in this segmentation process involves labelling each separate object 

within the image. This process labels all groups of connected pixels in a binary 

image (with the option of setting the connectedness level to 4- connected or 8- 

connected). This process produces an image in which each pixel  has  a value that is 

the label of the group (or object) to which it belongs. It also gives the number of 

labelled objects in the image. 

The final step in this process involves calculating the regional descriptors of each 

labelled object in the image. The information obtained from the region descriptor 

includes the area of the object region, the centroid, which provides the position of 

centre of mass of the object, the length of the major and minor axes of the region, 

and finally the orientation of the region. 

3.4 Analysis 

3.4.1 Area Estimation 

Even after performing the segmentation process there are some objects in the images 

that do not represent tags. However, the area estimation process  can  remove those 

objects that do not have the same area as the tags. For this process,  a  minimum and a 

maximum area is estimated by manually analysing the tags in a  range  of images and 
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any objects which fall outside this area range (either smaller or larger) are rejected as 

not being tags. 

3.4.2 Rectangle Fitting and Rotation 

The next step involves plotting a rectangle around each object that has been 

identified as a tag. The centroid location, the major axis and minor axis lengths and 

the object orientation can be used to do this, using the following equations: 

x = Centroid (1) — MajorAxisLength/2 

y = Centroid (1) — MinorAxisLength/2 

Width = MajorAxisLength 

Height = MinorAxisLength 

xpointslx x+Width x+Width x x] 

ypoints=[y y y+Height y+Height y] 

plot(xpoints, ypoints). 

The rectangle is rotated through the angle represented by the object orientation, 

Figure 18: Rectangle fitting and rotation for extracting the tags 
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3.4.3 Extracting Tag Sub-images 

This next step in the image analysis process is to extract a sub-image for each tag in 

the original image and prepare it for presentation to an optical character recognition 

system. The characters on extracted tag images are aligned in a horizontal direction. 

The orientation value can be obtained using the region descriptor function 

(regionprops). 

As described in section 2.2.1, category III images include round tags and, in this 

case, it is not possible to compute the orientation from the outline of the tag. 

Therefore, these category images will require a different process to determine the 

orientation of the tag. 

3.5 Optical Character Recognition 

This is the final step in the image analysis process. Currently a template matching 

method is used to recognise the character from extracted tags. There are certain steps 

that need to be considered before applying a template matching operation to the 

characters. These are: 

- removing the unwanted pixels around the border. 

- creating a skeleton of the character 

- performing an erosion operation to separate characters 

- re-filling holes in the characters that are produced by the erosion operation. 

- applying the template matching optical character recognition function to read the 

characters on the tag. 

3.6. Evaluation 

For the evaluation process, five images were selected for training and six for testing. 

The evaluation was carried out as follows: 

Firstly, the positions and colours of all the tags in these images were observed 

manually and these subsequently compared with the system-generated output. 
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Secondly each tag was outlined manually using the region of interest tool in 

MATLAB. This produces a binary image of the manually selected region and with 

the selected region it is easy to identify the orientation, major axis and minor axis of 

each tag. These results can also be subsequently compared with results produced 

automatically by the image analysis system. 

The methodology chapter described the tasks undertaken by the image analysis 

system and how the system was evaluated. The system produced some useful results. 

However, the results obtained vary significantly with the nature of the input data. 

For example, images obtained from dark areas or taken from too far away in the tank 

produce poorer results. In conclusion, any input images presented to the image 

analysis system need to be clearly human readable before the system is likely to 

produce acceptable results. 
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Chapter 4 

Results and Discussion 

This chapter presents the evaluation of the final application. The discussions are 

divided into three main sections. In the first section, the image classification and 

analysis results are discussed. The second section discusses the system accuracy and 

presents the tag extraction image output results, including a comparison of the 

accuracy of the system with manual analysis of the abalone images. The final section 

discusses the optical character recognition system. 

4. 1 Image Analysis Process 

The image analysis system was developed using five images, containing 

approximately 18-20 tags each, and four images, also with about the same number of 

tags in each, were set aside for testing. To achieve the desired results, the system 

uses a set of operations for identifying the colour values, segmenting the tags from 

the background, and finding the tag colour after extraction of each tag. Finally, the 

extracted tags are prepared for optical character recognition. 

As described in Chapter 3, the images were divided into three categories according to 

size. After being classified, the images were either cropped or resized to contain 

approximately 500* 500 pixels. The third category of images can easily be processed 

without resizing. The reason for resizing images is to increase the speed of 

processing to get the final output. Table2 shows the times taken to process the three 

different categories of images. 
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Filename 	Size 	 Category Total Time (sec) 
Families_072.jpg 3264 * 2448 I 18 

Photo4.jpg 2304 * 3456 II 20 

IMG_1126a.jpg 778*1166 III 20 

Table 2: Time taken to process each Image 

As described in Chapter 3, the colour values from an image can easily be identified 

within the HSI colour space. For this process, colour values were identified as 

described in Table3. The value of H (the Hue) was computed as hsiImage (:, :, 1). 

Similarly, the Saturation was computed as hsiImage (:, :, 2), and the Intensity as 

hsiImage (:, :, 3). The first step is to identify the colour values. Hue values were 

considered most appropriate for colour thresholding, not Saturation or Intensity, 

since these just provide the depth of the colour or the brightness of the object. 

Colours Hue Colour Values 

Yellow pi/4 <= H & H < p1/2 

Green 2*pi/3 <= H & H < 3*pi/4 

White pi <= H & H < 1.2*pi 

Blue 
3•45*pi/3 <= H 
3•7*pi/3 

& H < 

Pinlc 
5*pi/3 < H) 	& 
5•5*pi/3) 

(H <= 

Red 5.5 * pi/3 < H 

Pi) • 
& H <2 * 

Total Accuracy in Colours 

estimation 

99% 

.. 
Table 3: Colours and Hue Angle values Pi = 180 
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4.2 Tag Segmentation 

The segmentation process was carried out in three steps in order to get a better output 

result from the system. The first step involves the segmentation of the foreground 

object from background noise. This step was completed with the im2bw() function. 

This function replaces all pixels in the input image, with luminance greater than a 

selected level, with the value 1 (white) and all other pixels with the value 0 (black). 

The next step was to label each region and to create a region descriptor for those 

regions. In addition, the width and height of an object was estimated using the minor 

and major axis lengths of each region, and then the area of each labelled object was 

calculated. 

Table 3 describes the results from the segmentation. There were 50 objects in the 

test images that were identified manually as tags. Of these 50 tags, those that were 

successfully identified automatically by the system as tags are called "true positives". 

Those that were not identified as tags are called "false negatives" and objects that 

were identified as tags by the system but were not real tags in the image are called 

"false positives". The Overall Accuracy is defined as the number of true positives 

divided by the total number of tags (identified manually) while the False Positive 

Rate is defined as the number of false positives divided by the total number of tags 

(identified manually). The aim is to maximise the Overall Accuracy of the system, 

whilst still maintaining an acceptably low False Positive Rate. The images used for 

testing the system are shown in Figures 19, 20, 21 and 22. 

As indicated in Table 4, the system identified 78% of the tags from the four images 

with a false positive rate of 14%. 
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Figure 20: Si ngle Tagged  Abalone I mage ( provided by  CMAR) 

Figure 1 9: Si ngle Tagged Abalone I mage ( provided  by CMAR) 

Table 4: Fi nal Result of  the Tag Segmentation Process 
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Results and Discussion 

Figure 21: Triple Tagged Abalone Image (provided by CMAR) 

Figure 22: Single Tagged Abalone Image (provided by CMAR) 

As far as system performance is concerned, there are a number of factors that reduce 

the accuracy of the system. These include the poor quality of some tags, the fact that 

some tags are on the border of the image and the fact that some tags have the same 

colour as the shell of the abalone (such as yellow or green). 
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4.3 Extraction of Tag Sub-images 

This process involves the extraction of a rectangular sub-image, containing each tag, 

from the original RGB image. The reason for using the original image was because 

the quality of characters is low on the binary image after the dilation and erosion 

operations have been performed on it. The values retrieved from the binary image 

such as tag position, width and height, and orientation assist in extracting the tag 

object from the original image (Table 5, Table6, Table 7 and Table 8). The resulting 

extracted tag image is always oriented in a horizontal direction so it can be presented 

to the optical character recognition system in standard way. The centroid positions, 

heights, widths and orientations for all objects detected as tags in the four test images 

are presented in following tables. 

Objectes geometric attributed identfied as Tags in image Manual object 
identification 

Tags Width Height X Y 	Orientation 
1 44 23 31 64 	26.934 Tag 

2 41 23 57 327 45.392 Tag 
3 45 17 69 417 1.7153 Tag 

4 49 22 105 100 12.8637 
Tag  

5 45 27 121 173 62.1772 
Tag  Tag 

6 45 27 131 281 33.6307 Tag 
7 41 27 219 172 61.7583 Tag 
8 50 22 272 116 11.7271 Tag 
9 37 25 269 402 88.1213 Tag 
10 35 28 323 360 71.1314 Tag 
11 51 24 337 149 3.5596 Tag " 
12 39 23 356 80 	55.7356 Tag 
13 41 23 395 196 17.2988 Tag 
14 44 26 448 413 64.4005 

Table 5: Results on Object attributes (Figure 19) 
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Objectes geometric attributed identfied as Tags in image Manual 
object 
identification 

Tags Width Height X Y 	Orientation 
• 	1 98 48 198 119 4.2652 Tag 

Tag 
2 78 . 	32 418 15 	3.8476 Tag 	. 
3 88 43 455 428 5.6566 

Tags Width Height X Y 	Orientation Tag 
1 80 44 125 180 0.8872 Tag 

.2 102 46 293 341 4.4763 

Tags Width Height X Y 	Orientation Tag 
1 77 42 167 176 4.444 Tag 
2 112 40 441 388 4.4061 Tag 
3 71 	• 44 472 84 	9.4398 

Table 6: Results on Object attributes (Figure 20) 
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Objectes geometric attributed identfied as Tags in image Manual object 
identification 

Tags Width Height X Y 	Orientation 
1 56 30 17 363 56.2126 Tag 
2 61 31 107 280 61.8033 not Tag 
3 113 57 151 173 12.4856 Tag 

4 67 30 141 49 	32.5311 Tag 
5 59 35 160 353 49.1255 Tag 
6 75 30 173 444 14.5722 Tag 

7 68 33 184 240 29.7932 Tag 

8 78 28 253 111 3.9939 Tag 
9 65 34 273 312 32.2869 Tag 

10 69 36 304 67 	26.3671 Tag 

11 63 34 289 404 89.4371 Tag 
12 58 33 352 253 82.5532 Tag 

13 64 57 376 132 23.8396 Tag 

14 54 35 373 472 46.5481 Tag 
15 65 28 456 66 	28.4658 Tag 

Table 7: Results on Object attributes (Figure 21) 

39 



Results and Discussion 

Objectes geometric attributed 
image 

identfied as Tags in Manual object 
identification 

Tags Width Height X Y 	Orientation 
1 32 20 42 343 18.5382 Tag 
2 64 55 202 295 36.7512 Tag 

3 58 40 214 86 	89.3833 not Tag 
not Tag 

4 44 21 324 215 5.175 not Tag 
5 68 45 344 364 60.6919 Tag 
6 31 24 359 292 1.3348 not Tag 

7 34 27 402 161 30.8086 not Tag 

8 79 33 434 317 76.5475 
Table 8: Results on Object attributes (Figure 22) 

Using the results from these tables, images are extracted for further processing. 

Figures 23 and 24 showed the extracted tags from the original image, together with 

the colour information on those extracted tags. However, the resulting image after re-

orientation is again resized with common values of length and width to display each 

extracted tag clearly. 
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Figure 23: Single Tagged Image Tags Extraction Results 

Figure 24: Triple Tagged image Tag Extraction Results 
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Results and Discussion 

4.3.1 System Evaluation 

The tag extraction system was evaluated by comparing the results obtained using the 

system with a manual analysis undertaken on the same test images. Two approaches 

were used to make the comparison. In this first approach, the images were analysed 

manually to estimate the X and Y positions of each of the tags in  the  original image 

using cursor positioning. These were then compared with system-generated X and Y 

positions (Chart 1). The results from the chart clearly showed that system generated 

values of (XY) position and (X",Y") tag position values from manual analysis were 

same. 

Chart 1: Comparison of Manual Analysis Data (X" and Y" values) with System Generated 
Data (XY values) 

In the second approach, MATLAB's function roipoly 0 was used  to  extract the tags 

from the images. This function will return a binary mask representing the shape of 

each tag and from which we can determine the width, height and orientation (angle) 

of the tag. This comparison was made with five tags (see Chart 2). 
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Results and Discussion 

Chart 2: Comparison of Manual Analysis with System Data (Width, Height, 
Angle of tag) 

Chart 2 results depict a comparison between values (Width, Height and Angle) 

produced by the system and the manual analysis data (Width", Height", Angle"). 

Some differences were found between system generated data and manual analysis 

data (e.g. A539). Possible reasons for this difference include inaccuracies in the 

segmentation process by which the system extracts the tags from the surrounding 

background and the possibility that the manual selection process did not extract a 

perfect representation of the shape of the tag. 

4.5 Optical Character Recognition 

This stage of the image analysis process involves preparing the characters on the tags 

for optical character recognition. Firstly the extracted tag sub-images were converted 

into binary images. For this conversion, two approaches were employed. The first 

makes use of the Ostu's algorithm (Cheriet et al. 1998), but this approach failed to 
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provide a useful result for characters that are set on a light-coloured background, 

such as yellow and white. 

In the second approach, the coloured tag sub-images were changed into greyscale 

images, after which the contrast function imadjust 0 was used  to  improve the 

contrast between the characters on the tags and the tags themselves. After that, the 

Ostu's algorithm was used on some extracted tags but not all. The remaining 

coloured tags such as those that were yellow or white in colour were converted into 

binary images by manually observing the level value for im2bw  0  function. This 

process obtained a better result than just using Ostu's algorithm. 

To optimise the result, the MATLAB function imclearborder  0  was used to 

remove unnecessary information, such as the border, from around the tag characters. 

Figure 25 and Figure 26 represent the final output as binary extracted tags. 

Figure 25: Single Tagged Binary Sub-images 

44 



Results and Discussion 

Figure 26: Double Tagged Binary Sub-images 

These sub-images were then presented to a standard template-matching character 

recognition system but the results were disappointing and there is  a  need to consider 

use of a better optical character recognition system that can more accurately 

recognise the characters on the tags. Table 9, shows the optical character recognition 

system results compared with the original values of the tags, and it also compares the 

system generated colour information result of each tag with the actual colour of 

found tags in the four test images. 
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Results and Discussion 

In summary, the research described here has been successful in developing image 

analysis techniques to extract the tags from the abalone images, determine their 

colour, location, height, width and orientation and use that information to extract 

sub-images containing the tags and present them to an optical character recognition 

system. However, more advanced techniques in optical character recognition will be 

needed to recognise and classify the characters on the tags accurately. 

47 



Conclusion and Future Development 

Chapter 5 

Conclusion and Future Development 

This research sought to develop an automated system for tracking and analysing 

tagged abalone in images, a task that is difficult and time consuming if the process 

has to be done manually. The classification and recognition of objects in images also 

represents a broad sub-field within robotics and computer vision. 

For this project, images were collected from Tasmanian and Victorian abalone farms 

and used to design and implement an image analysis system that allowed the 

hypothesis to be tested directly on images taken from abalone farm tanks. In system 

development, significant progress has been made. The pre-processing techniques 

contribute to the overall success of the system not just in terms of identifying the 

object but also in reducing the execution time of the overall analysis process. The 

segmentation analysis is also an essential component in extracting and preparing the 

object for the optical character recognition system. 

The results reported in this research confirm the hypothesis that image-processing 

techniques can successfully detect tags in the image. The pre-processing and 

segmentation results reported show that an acceptable number of tags can be 

identified with an acceptably low false positive rate. 

The research described here has been successful in developing image analysis 

techniques to extract tags from abalone images, determine their colour, location, 

height, width and orientation and use that information to extract sub-images 

containing the tags, subsequently presenting them to an optical character recognition 

system. 
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Furthermore, the research results also confirm that appropriate image processing 

techniques can be applied in order to prepare the characters for optical character 

recognition and make them ready for the application of the template matching optical 

character recognition process. However, the results from template matching optical 

character recognition were not as effective as required. More advanced techniques in 

optical character recognition will be needed to recognise and classify the characters 

on the tags accurately. 

For shape analysis, further image processing is needed in order to address issues such 

as tag orientation and the existence of double tags on an abalone. The present system 

tries to handle this problem to some extent. However, an assumption has been made 

that the double tag can be separated with a dilation process. If that can be done then 

the two tags can be identified separately and the second tag can be identified at a pre-

defined distance from the first tag. 

For further system development, there is a need to consider an optical character 

recognition system that can better understand the characters on tags. Instead of using 

the template matching system, a neural network may provide more accurate results. 

A change in the camera position may provide further benefits for the image 

processing techniques used, which in turn will benefit the whole system. It is clear 

that an increase in distance between the camera and the abalone leads to lower image 

quality, because it is harder to read the characters on the tags in a long distant 

picture. In addition, future work can be undertaken to identify the size of abalone 

thus helping to understand the growth rate in the abalone species. 

The current version of the image analysis system that has been developed is flexible 

enough to accept new changes in order to support the future research and 

development work discussed above. 
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Conclusion and Future Development 

Finally, the research concludes that tracking and extraction of tags from images is 

achievable. Automatic image processing techniques for abalone image analysis will 

help researchers to identify individuals, monitor their behaviour in slab tanks and 

assess the performance traits of cultured abalone in breeding programs. 
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Appendix 

A.1 Application CD 

There are four directories available on the sample CD: 'Images', Results', 'Source 

code' and 'Data'. 

The 'Images' folder contains the Testing image and Training image directories 

containing images obtained from CSIRO Marine and Atmospheric 

Research.(CMAR). 

The 'Results' folder contains the results of training and testing images in the Results-

Training-Images and Result -Testing Images directories respectively. 

The 'Source code' folder contains the MATLAB source code for the image analysis 

and tag recognition system. 

The 'Data' folder contains system evaluation results and optical character 

recognition results. 

A.2 Application File List 

A.2.1 ALLOPERATION.M 

The main file to run the system, and it performs initial size classification function 

and converts the images from the ROB model to the HSI model. Once this is 

performed the results are passed to the colour segmentation stage of the application. 
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A.2.2 HSI2RGB.M 

This stage performs the initial colour segmentation to identify the tag colours (such 

as green, pink, yellow, white etc.), and the output images are then passed to the 

segment analysis stage. 

A.2.2.1 YELLOW.M, GREEN.M, WHITE.M, PINK.M, RED.M, BLUE.M, 

REDPINK.M 

The code in these files identifies the colour in images with Hue and colour variation 

with Saturation and Intensity. The name of the file represents the colour it can 

identify. 

A.2.3 TAGS.M 

This stage performs the detection of tags. The unwanted pixels are removed using the 

erosion operation, and then shape analysis is performed to detect the tags. The output 

images are then passed to the extraction stage. 

A.2.4 TRANFORMATION_ON_TAGS.M 

In this stage, the value of tag's position and size are retrieved in order to extract sub-

images, containing the tags, from the original image. The sub-images are then 

oriented in a horizontal position. Once this is performed, the RGB colour sub-images 

are then converted into binary images. This is the first step to prepare the character 

for the optical character recognition system. 

A.2.5 CHARACTER_READER.M 

Performs the morphological operation to improve the character quality on the tag 

sub-images and the result is passed to a template matching optical character 

recognition system. 
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A.2.6 OCR.M 

This code performs the template matching optical character recognition on the 

characters depicted in the tag sub-images The output results are then displayed on 

the MATLAB output screen. 
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