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SUMMARY  

The ecology of the juveniles of two species of Tasmanian 

flounder, Rhombosolea tapirina and Ammotretis rostratus, which occur 

sympatrically on nursery grounds was investigated in order to determine 

which environmental parameters are important in habitat selection and 

resource partitioning. 	The reproductive strategies of adults also 

were examined and methods were developed for the cultivation of 

flounder. 	A third species, Ammotretis lituratus, was caught in low 

numbers and some aspects of the ecology of this species are also 

discussed. 

Field studies showed that both R. tapirina and A. rostratus 

juveniles were abundant on estuarine sandflats and were concentrated 

mostly in shallow water (0-1 m depth). 	They apparently partially 

partitioned the spatial and trophic resources of the habitat but were 

not segregated temporally. 	Newly-metamorphosed juveniles of both 

species occurred in the highest densities from late winter to early 

summer. 	Although they were widely distributed within the estuary, 

A. rostratus was most abundant at the mouth and R. tapirina on the 

extensive shallow sandflats. 	A. rostratus juveniles also were caught 

more frequently in deeper water (1 m) than in the shallows whilst 

R. tapirina did not show a clear pattern of depth distribution over 

0-1 m depth. Newly-metamorphosed juveniles of both species were 

daytime feeders and consumed the same food organisms - predominantly 

amphipods, harpacticoids and polychaetes. 	However, the relative 

proportions of each food type eaten differed between the species. 

A. lituratus juveniles were caught only on semi-exposed beaches. 

They, therefore, were segregated spatially from the major populations 

of the other two flounder species. 

Experimental studies indicated that the field distributions of 

R. tapirina and A. rostratus juveniles were related to their differing 

swimming abilities, preferred substrate types and possibly levels of 

turbulence. 	Temperature and salinity preferences were not considered 

to be as important. 



The results also suggested that the larvae of R. tapirina 

and A. rostratus are dependent on water movements to transport them 

towards nursery grounds. 	An ontogenetic change in preferred salinity 

was observed in both species, and position in the water column in 

R. tapirina, at metamorphosis. 	These factors, in association with a 

preference for fine sand..and probably shallow water, would play a role 

in guiding larvae towards settling on estuarine sandflats. 

R. tapirina and A. rostratus adults appeared to have a similar 

reproductive strategy of a prolonged spawning season, serial spawning, 

relatively high fecundity and both species were mature for the first 

time at approximately the same length. 

These two species were cultivated in the laboratory to the post-

metamorphosis stage. The high survival rates obtained indicate that 

both species could be readily cultured using the techniques developed. 

Developmental stages of eggs and larvae were described and were used 

to'identify planktonic stages. 
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CHAPTER 1 

GENERAL INTRODUCTION  



Studies on the ecology of fishes, particularly those of commercial 

importance, have traditionally centred on adults or those age groups 

which are important to the fishery. Although a large amount of inform-

ation has been amassed on the biology of some fish stocks, the mechanisms 

controlling the size of fish populations have generally remained obscure. 

This has been particularly emphasised when recruitment failures have 

occurred, or some important fish stocks have declined in abundance, 

independently of the rate of exploitation. 	In recent years there has 

been an increasing interest in the ecology of the pre-recruit stages, 

especially the mechanisms which control year class strength, i.e. 

survival from egg to recruitment. 	It is now generally accepted that 

predictions of recruitment to an exploitable parent stock require a 

fuller understanding of the stages before recruitment (Cushing, 1975; 

Pitcher and Hart, 1982). 

Many marine fishes have life history strategies that result in the 

spatial segregation of eggs and/or larvae, juveniles and adults. Thus, 

the factors affecting the survival rates of each stage in the life cycle 

often differ. The highest mortalities generally occur during the plank-

tonic egg and larval stages although fluctuations in survival during the 

period on the nursery ground may be substantial (Cushing, 1975). 

Estuaries and shallow coastal waters are utilized by many species 

of fish as nursery grounds. There have been numerous studies on the 

factors affecting distributions and abundances of juveniles in these 

areas, but relatively few on habitat selection, or habitat partitioning 

amongst co-existing species. 	Investigations on the partitioning of 

resources of sympatric species in various taxonomic groups indicate, 

however, that such studies are important to an assessment of the factors 

affecting the survival of a species (see MacArthur, 1972; Schoener, 

1974; Diamond, 1978; Pianka, 1978). 

Preliminary observations of fish populations in estuaries and 

shallow coastal waters around south-eastern Tasmania indicated that the 

juveniles of three species of flatfish, Rhombosolea tapdrina, Ammotretis 

rostratus and A. lituratus provided an ideal group for ecological study 
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because they comprise a guild of closely related species which pre-

sumably must partition the structurally-simple sedimentary environment. 

These three species present, therefore, an opportunity to examine 

patterns of habitat utilization and co-existence amongst juvenile flat-

fish. Moreover, the adults of the three species are commercially 

important and a knowledge of the factors affecting the survival of 

juveniles would be useful in any attempt to manage these species. This 

is especially important for R. tapirina and A. rostratus juveniles 

because they apparently extensively utilize estuarine samdflats as 

nursery grounds; areas which are threatened by the activities of man 

(e.g. by siltation, pollution, changes in salinity regime, foreshore 

development). 

Seven, species of pleuronectids, five species of bothids and one 

soleid species have been recorded in Tasmanian waters (Table 1.1). Of 

these, only three are of commercial importance (viz. R. tapirina, 

A. rostratus and A. lituratus):; the other species.do  not reach an edible 

size. 	A key for the identification of the thirteen species of Tasmanian 

flatfish, descriptions and general information on their biology are 

given by Last et a/. (1983). 	Notes on the systematic positions of six 

species of Tasmanian Rhombosoleinae are provided.by  Last (1978). 

Although the three commercial species of flounder caught in 

Tasmania have high market acceptability, they are captured only in 

relatively low numbers. 	The annual weight of flounder sold to fish 

merchants in Tasmania for the years 1978/79 to 1982/83 constituted only 

0.01-0.14% of the total annual sales of all tinfish gable 1.2). The 

weights of the three species have been recorded in the one category 

of flounder, however R. tapirina comprise the bulk of the commercial 

catch and A. rostratus are caught more frequently than A. lituratus 

(unpublished data, Tasmanian Fisheries Development Authority). 

Flounder are caught mostly as an incidental by-catch of Danish-

seine trawling for predominantly school whiting (Siiley° bassensis) 

and tiger flathead (Platycephalus richardsoni), although some target 

fishing for flounder does occur. They are taken mostly during the winter 

months as in other seasons, particularly summer, Danish-seine trawling 

for tiger flathead is conducted in deeper water. Furthermore, some 

Danish-seine boats transfer to the rock lobster r fishery . Commercial 
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TABLE 1.1  Flatfish species occurring in Tasmania (Order Pleuronectiformes) 

Scientific Name 
	 Common Names 

	
Comment 

Family Pleuronectidae 

Subfamily Rhombosoleinae 

Rhombosolea tapirina (Glinther, 1862) 

Ammotretis rostratus (GUnther, 1862) 

Ammotretis lituratus (Richardson, 1843) 

Ammotretis maOrolepis (McCulloch, 1914) 

Ammotretis elongatus (McCulloch, 1914) 

Taratretis derwentensis (Last, 1978) 

Azygopus pinnifasciatus (Norman, 1926) 

Family Bothidae 

Arnoglossus andrewsi (Kurth, 1954) 

Arnoglossus armstrongi (Scott, 1975) 

Arnoglossus bassensis (Norman, 1926) 

Arnoglossus muelleri (Klunzinger, 1872) 

Lophonectes gallus (Gunther, 1880) 

Family Soleidae 

Zebrius fasciatus (Macleay, 1882) 

Spotted sole or flounder 

Large-scaled flounder 

Elongated flounder 

Derwent flounder 

Banded-fin flounder 

Andrew's flounder 

Armstrong's flounder 

Bass Strait flounder 

Mueller's flounder 

Crested flounder 

Many-banded sole 

Caught infrequently, of commercial size 

Very rare 

One specimen only, from Bass Strait 

Not commercial 

Not commercial 

Not commercial 

One specimen only 

Not commercial 

Not commercial 

Not commercial 

Not commercial, rare 

Greenback flounder 	Most abundant, caught commercially 

Sole, long-snouted flounder Caught occasionally in commercial quantities 

L.) 



TABLE 1.2 Total annual weight of flounder, and of all finfish, 
sold to fish merchants in Tasmania for the years 
1978/79 to 1982/83 (unpublished data, Tasmanian 
Fisheries Development Authority) 	- 

Year • Flounder Weight 
(kg) 

Total •Finfish Weight 
(kg) 

1978/79 347 6,803,455 

1979/80 1,430 6,829,666 

1980/81 10,639 7,594,074 

1981/82 10,581 15,865,932 

1982/83 7,736 18,158,845 

spearfishing for flounder also occurs in many sheltered bays and estuar-

ies around Tasmania. Adult R. tapirina, in particular, are common in 

the intertidal, zone in all months of the year. 	However, no statistics 

are collected on the quantity of flounder caught by this method. Simil-

arly, the impact of amateur spearfishmen on the flounder population 

is not known. Nevertheless, as the coastline of Tasmania is regularly 

inhabited, except on the west and south coastswhere few suitable embay-

ments occur, the numbers taken by spearing are probably considerable. 

Few studies have been conducted on the ecology of flounder in 

Australia, probably because of their relatively low commercial importance. 

The two most comprehensive studies have been by Kurth (1957) on the 

biology of adult R. tapirina in Tasmania and by Burchmore (1982) on the 

comparative ecology of nine species of sympatric flatfish in Botany Bay, 

New South Wales. 	Of the nine species studied by Burchmore, only A. ros- 

tratus also occurs in Tasmania. 

Aspects of the biology of R. tapirina examined by Kurth (1957) 

include growth rates and reproduction. He calculated that the mean 

length of I+ flounder at approximately three months after the nominal 

birthday of 31 July was 10.5 cm, II+ 19.4 cm and III+ 26.6 cm. Kurth 

(1957) also observed that R. tapirina had a.prolonged spawning season 

and were probably serial spawners. 

Burchmore (1982) found that small samples of A. rostratus juveniles 

showed clear growth patterns, and in the warm waters of Botany Bay were 
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approximately 20 cm in length after one year. 	However, only one fish 

less than 5.5 cm total length was caught. 	The smallest fish were 

taken in October and the larger I+ juveniles disappeared from the catches 

after December when about 24 cm in length. A. rostratus juveniles were 

caught most frequently on shallow sandy and/or vegetated areas of the 

bay. 

A study by Last (1983) of the fish communities inhabiting inshore 

Tasmanian sedimentary habitats included some information on the distrib-

utions of juveniles of the three species. 	A. /ituratus were most 

abundant on exposed and semi-exposed beaches, A. rostratus at the mouths 

of estuaries and R. tapirina further up estuaries. 

A greater number of investigations on the biology of flatfish has 

been conducted in New Zealand, particularly on the two most important 

commercial species Rhombosolea plebia and R. leporina (e.g. Tunbridge, 

1966; Coleman, 1972, 1973, 1974a,b, 1978 and Webb, 1972, 1973). 

R. tapirina also occur in New Zealand but are only of minor commercial 

importance and little is known about the biology of adults. 	However, 

juvenile R. tapirina have been studied in some detail by Roper (1979) 

and Roper and Jillett (1981). 	They were most abundant in shallow water 

over tidal sandflats and sandy beaches during the summer but few juvenile 

fish were caught in winter. Growth rates of juveniles could not be 

determined because the population was continually turning over. They 

concentrated in shallow water at low tide and migrated onto tidal sand- 

flats at high tide. 	R. tapirina juveniles possessed an endogenous 

circatidal activity rhythm and tidal changes in hydrostatic pressure 

was probably the Zeitgeber for this rhythm. Coastal inlets were con-

sidered to be of vital importance to R. tapirina populations because 

the juveniles are dependent on these areas as nursery grounds (Roper 

and Jillett, 1981). 

Investigations on the ecology of juveniles of commercially important 

species of flatfish in the northern hemisphere have increased during the 

last two decades. These studies have been conducted for several reasons. 

As part of the predictions of recruitment and hence management of a 

fishery, factors affecting survival of the pre-recruit stages have been 

examined. 	An example of such research is a series of papers summarized 

by Steele and Edwards (1970), on the ecology of 0-group plaice, Pleuro- 



nectes platessa. They evaluated the relative importance of factors 

which determined the population size after one year on the nursery 

ground and concluded that food supply and mortality were the controlling 

factors rather than initial numbers of fish. 	Similarly, Bannister 

et al. (1974) examined the survival of different year classes of plaice 

from the egg to 0-group stage in relation to environmental variables 

and population density. They suggested that the density-dependent 

mortality of larvae was most important in some years and environmental 

variables, particularly temperature, in other years for controlling year 

class strength. 

Studies on the ecology of juvenile flatfish have also been conducted 

to evaluate the importance of estuaries or shallow coastal waters in 

their life histories. 	These areas are becoming increasingly subjected 

to alteration by man and it is feared that any intervention may have 

deleterious effects on flatfish populations which use these areas as 

nursery grounds. 	For example, Zilstera (1972) concluded that the Wadden 

Sea was a major nursery ground of plaice and sole, Solea solea, and if 

this area was reduced then flatfish population numbers in the North Sea 

would also decrease. 

Techniques for rearing larval and juvenile flatfish have also pro-

gressed in the last two decades. 	Concomitant with these developments 

has been the requirement for further knowledge on the biology of natural 

populations to provide a basis for rearing methods. 	Studies on the 

ecology of juvenile plaice by Riley and Corlett (1966) and on juvenile 

turbot (Scophthalmus maximus) by Jones (1973a), for example, were con-

ducted to provide this background information. 

Most studies on juvenile flatfish, however, have concentrated on 

one particular species and there have been relatively few investigations 

on the comparative ecology or habitat partitioning of co-existing species. 

The factors which influence the distributions of 0-group fish, including 

several species of flatfish, in shallow coastal waters were examined by 

Gibson (1973) and Riley et al. (1981). 	They both found that each species 

occupied a distinct depth zone which differed from other species. These 

depth preferences were correlated with other environmental variables. 

Macer (1967) and Edwards and Steele (1968) observed that juvenile plaice 

and dabs (Limanda limanda) occurred sympatrically on nursery grounds but 
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showed distinct differences in time of settlement, depth distribution 

and food organisms eaten. 	Similarly, Roper (1979) suggested from 

field and experimental studies that differences in depth and dietary 

preferences were the most important factors in segregating juvenile 

R. tapirina and Peltorhamphus latus. The co-existing species of flat-

fish studied by Burchmore (1982) were found to partition mainly the 

spatial and trophic resources of the habitat. 

Thus, in view of the paucity of information concerning the juvenile 

stages of Tasmanian flounder and on the co-existence of juvenile flat-

fish species in general, as well as the importance of ecological studies 

overseas, the present investigation was initiated with four specific 

objectives. 	These were: 

(1) to investigate the ecology of juvenile R. tapirina, 

A. rostratus and A. lituratus on estuarine sandflats and 

sandy beaches and to evaluate the importance of these 

areas as nursery grounds; 

(2) to determine which environmental parameters are important 

in habitat selection and resource partitioning by juveniles 

on the nursery grounds; 

(3) to examine the reproductive strategies of adult flounders 

and to compare them with abundances of larvae and juveniles; 

and 

(4) to develop methods for the artificial cultivation of 

flounder,to describe the egg and larval stages, and to assess 

the possibility of commercial farming. 

It should be noted, however, that because A. lituratus were caught 

infrequently, this study has been concerned mainly with R. tapirina 

and A. rostratus. 
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CHAPTER 2  

DISTRIBUTIONS AND SEASONAL ABUNDANCES  

" OF JUVENILE FLOUNDER  



2.1 INTRODUCTION  

The importance of estuaries and shallow coastal waters as nursery 

grounds for juvenile flatfish has been well documented and there have 

been numerous studies overseas on the ecology of juveniles of commerc-

ially important species, (e.g. Edwards and Steele, 1968; Jones, 1973a; 

Kuipers, 1977; Riley et al., 1981; 	Roper, 1979). In Australia nearly 

all information on juvenile flounder has resulted from general studies 

of fish communities in selected geographical areas,(e.g. Lenanton, 

1974, 1977). Last (1983) has provided some information on the dis-

tributions of juvenile flatfish in the shore zone around Tasmania and 

Burchmore (1982) studied the ecology of juveniles of several flatfish 

species in Botany Bay, N.S.W. 

In this Chapter the seasonal abundances and distributions of 

larvae and juveniles.of Rhombosolea tapirina and Ammotretis rostratus 

around south-eastern Tasmania are reported in some detail and those 

of the third species Ammotretis lituratus only briefly. From these 

results, the ability of R. tapirina and A. rostratus to co-exist on 

the nursery grounds was investigated. Habitat partitioning on a spatial 

and a temporal level was examined. 

2.2 METHODS  

2.2.1 Planktonic Eggs and Larvae 

Planktonic samples were collected from two stations (DP1, 2) in 

the Derwent Estuary and four stations.(FP3,4,5,6) in Frederick Henry 

Bay (Figure 2.1) during most months from August 1980 to December 1981. 

An unencased high-speed plankton net (Lockwood, 1974a)with mouth diameter 

20 cm, mesh 250 pm and a flowmeter in the mouth was used. At each 

station the net was towed for 15 min during flood to high tide. 

Initially, samples were collected during the day by oblique tows. 
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FREDERICK 
HENRY 	 
BAY 	 

DERWENT 
RIVER 

FIGURE 2.1 Map of the Derwent River and Frederick Henry Bay 
estuaries showing the position of sampling sites for 
plankton' 	IDP1, DP2, FP3, FP4, FP5, FP6 and 
juvenile flounder 0 D1, D2a,b, F3a,b,c,d and F4a,b,c. 
The location of this area in south-eastern Tasmania is 
shown in the inset. 
Depth contours are in metres. 
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However, as few larvae of either species were caught, horizontal tows 

near the surface at night were made from June to December 1981 because 

Roper (1979) reported that he obtained the largest catches of R. tap-

irina, R. plebia and Peltorhamphus latus in this way. The plankton 

samples were preserved immediately in 5% v/v buffered formalin in sea-

water. Large samples were divided for counting using a whirling sub-

sampler (Kott, 1953). 

2.2.2 Juvenile Flounder 

(i) Sampling Sites 

Juvenile flounder were sampled monthly for 15-17 months in shallow 

water at two sites (D1, D2) in the Del-went Estuary and two sites (F3, F4) 

in Frederick Henry Bay. 	One station at site D1, two at site D2, four 

at site F3 and three at site F4 were sampled each month (Figure 2.1). 

Site D1, Nutgrove Beach, is a small sheltered beach with a greater 

slope than the other sites. At approximately 2 m below low tide mark 

the bottom drops off rapidly to a depth of about 20 m. This site 

receives low energy wave action, mostly from northerly winds. 

Station D2a at Kingston Beach is a semi-exposed beach which receives 

moderate wave action, especially from southerly or south-easterly winds. 

Station D2b is at the mouth of a freshwater creek, Brown's Rivulet, 

which flows into the Derwent Estuary across Kingston Beach. It is a 

small area (c. 10
4
/m 2 ) of sheltered sandflats, which are mostly exposed 

at low tide, and one deeper channel. 	This area is flushed with sea- 

water during high tide; at low tide the freshwater outflow is dominant. 

Twice during the study period this area was dredged by local authorities 

to increase the rate of flushing with seawater. 

Site F3, at Pittwater, is an open estuarine lagoon into which run 

four small rivers; it is connected to Frederick Henry Bay by a narrow, 

deep channel. 	The lagoon has extensive sheltered sandflats. Station 

F3a, at the entrance to the lagoon, is characterized by strong current 

velocities and a narrow platform of sandy beach at.high tide mark which 

drops off steeply to the channel. 	Station F3b is located at the 

beginning of the sandflats and closer to the channel than Station F3c 
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which consists of extensive unvegetated sandflats protected from 

northerly winds by Woody Island. 	Station F3d has a softer substrate 

with patches of tunicates and seagrasses. 

Site F4 at Cremorne is a marine inlet with large sheltered sand-

flats; it opens into Frederick Henry Bay via a narrow channel at one 

end of a semi-exposed beach. This semi-exposed beach, station F4a, 

receives moderate wave action from northerly to easterly winds. Within 

the marine inlet, station F4b is a gently-sloping sandflat which is 

close to the channel and station F4c is part of an extensive area of 

shallow sandflats. 

(ii) Sampling Procedure 

All samples were taken around the time of a high tide. In shallow 

water (maximum depth 120 cm) a 1.5 m wide push-net (Riley, 1971) with 

5 mm mesh knot to knot was used. This net was either pushed by hand 

for 100-300 m or towed behind a dinghy with a 15 h.p. outboard motor at 

35-40 m min-1 for 300-400 m. 	Four trials were conducted to test for 

any differences in numbers of fish caught by pushing or by towing the 

push-net over 100 in at 50-70 cm depth. 	The numbers of R. tapirina 

and A. rostratus caught by the two methods were not significantly differ-

ent (t-test, P>0.05). 	The area swept by the net was determined from 

the distance covered and the width of the net. 

At stations D1, D2b, F3c and F4b two to four samples were collected 

each month in different depths up to 100 cm and mean abundances per 

500 m 2  were calculated. 	At stations D1 and F3c these samples were 

taken at depths of 10-30 cm, 50-70 cm and 90-110 cm to examine for depth 

preferences of R. tapirina and A. rostratus. 	In the estuarine lagoon, 

site F3, samples were also collected monthly at stations F3a,b and d 

in 50-70 cm depth to compare the distributions of the two species within 

the lagoon. 	Distributions of juvenile flounder at the marine inlet, 

site F4, were also investigated by sampling at stations F4a and c in 

addition to station F4b, as mentioned above. Sampling in shallow water 

at station F4a, however, was not always possible due to strong wave 

action. 	One or two tows were made each month at station F4c where the 

depth never exceeded 50 am. 

1 1 



The abundances of newly-metamorphosed juveniles of R. tapirina 
and A. rostratus in three depths at different times of the day and 

stages of tide were investigated at site D1 in January 1982. The 

push-net was pushed for 100 in along the beach at depths of 20-30 cm, 

50-70 cm and 90-110 cm every 3 h for 27 h. 

Juvenile flounder were also sampled in deeper water (1.5 - 4.0 m) 

adjacent to several push-net sampling stations. A miniature Granton 

trawl slung to and held open by a 3 m beam pole in a similar way to 

Japanese beam trawls was used. 	This net, which was designed by 

Mr. D. Wolfe, Tasmanian Fisheries Development Authority, consisted of 

16 mm mesh, knot to knot, and a codend of 7 mm mesh. 	It was towed 

behind a dinghy at 35-40 in min-1  for 15 min; the area swept was calcul-

ated from the time and speed of each tow. One or two tows were made 

at stations D1, F3b, c and F4,b, c in and on the edge of the channel 

and at stations D2a and F4a close to the shore. Tows could not be made 

at station D1 from November 1980 to January 1981 due to obstructions on 

the bottom. 

Temperatures and salinities were recorded at each station from near 

the bottom. Substrate samples were collected at all stations on two 

occasions and analysed for sand grain sizes using the methods of Buchanan 

and Kain (1971). 

The fish caught were preserved immediately in 5% v/v formalin; 

those required for gut content analysis were first anaesthetized in 

0.2% w/v tricaine methanosulfonate solution to prevent regurgitation 

of food. The total lengths of all fish were measured to the nearest 

mm and subsamples were weighed to 0.001 g for fish <3 cm and 0.01 g . 

for fish 	am, within two weeks of capture. As changes in weight and 

length occurred due to preservation in formalin (Appendix 1), measure-

ments were adjusted to correspond to fresh lengths and weights. 

2.2.3 Statistical Analysis  

A model I two-way analysis of variance (ANOVA) was performed to 

examine the effects of different factors on abundances of each species 

separately. Mean monthly abundances were used, as the number of samples 

taken each month were unequal, and they were grouped into three monthly 
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periods (seasons). 	Before analysis abundances were transformed by 

ln(x+1) to normalize the distributions (Zar, 1974); after transformat-

ion Bartlett's test for different error variance and tests for skew-

ness and kurtosis were not significant. 

If the Anova showed a significant difference between levels of a 

factor then the specific levels between which differences occurred were 

determined using the Student-Newman-Keuls test (SNK test) (Zar, 1974). 

This test compares the levels (overall means) of each factor by ranking 

the means in order of magnitude and testing for significant differences 

between pairs of means. 	If the interactions of two factors were signif- 

icant, subgroup means were tested separately for significant differences 

using the SNK test, i.e. the means of all levels of one factor were com-

pared at each level of the second factor. 

The results of the SNK test using P = 0.05 level of significance 

are shown by ranking the levels of a factor in order of increasing mag- 

nitude of their means and by underscoringlevels which had non-significant 

differences between their means. 

2.3 RESULTS  

2.3.1 Planktonic Eggs and Larvae  

Although samples and descriptions of developmental stages of 

R. tapirina eggs were available (Chapter 6) it was not possible to 

positively identify and separate these eggs from others in the plankton 

samples. 	Undescribed eggs of similar characteristics from other species 

of fish were common in the samples. 	Also, very few A. rostratus eggs 

were collected. 	Thus, only larval densities at each site are given 

(Table 2.1). 

The number of flounder larvae caught in the plankton tows was low. 

Seventy R. tapirina and 4A. rostratus larvae were caught, with a 

maximum of 8 R. tapirina in one tow. The numbers of larvae caught 

and volume of water filtered per tow are given in Appendix 2. 

As the larval numbers were low, the data were not analysed statist-

ically. 	However, Table 2.1 shows that R. tapirina larvae were present 



TABLE 2.1 The number of larvae per 100 m 3  (N) and mean length in mm () at the River Derwent and 
Frederick Henry Bay sites. (- not sampled, 0 - no larvae caught) 

R. tapirina 

Date 

Derwent River Frederick Henry Bay 

DP1 
N 	(R) 

DP2 
N 	(Ft) 

FP3 
N 

FP4 

N 	(R) 

FP5 

N 

FP6 

N 	(R) 

1980 

1981 

August 
September 
October 
November 
December 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

0 
0 
0 

1.6(3.8) 
- 

0 
0 
0 
0 
0 
0 
2.7(6.1) 
0 

2.7(4.3) 
0 
0 

1.4(2.9) 
0 
3.7(3.2) 
4.4(3.4) 

0 
3.5(2.1) 
0 
0 
0 
0 
2.5(2.6) 
2.8(7.0) 
- 

6.4(3.8) 
0 
0 

0 
1.4(3.3) 
4.2(2.6) 
5.9(5.1) 
_ 

0 
0 
0 
0 
0 
0 
8.6(3.3) 
5.3(5.1) 

3.3(5.7) 
0 
0 

4.9(2.0) 
0 
11.1(2.6) 
0 
- 

0 
0 
0 
0 
3.2(2.5) 
0 
2.8(6.6) 
6.8(3.0) 

1.8(7.3) 
0 
0 

1.6(3.8) 
4.5(3.8) 
1.3(3.1) 
0 
- 

0 
0 
0 
0 
2.6(3.0) 
5.8(3.7) 
2.9(4.9) 
6.9(6.9) 

0 
0 
0 

4.2(3.1) 
4.0(2.4) 
0 
0 
- 

0 
0 
0 
0 
2.2(6.9) 
0 
0 
4.1(8.0) 

1.8(6.8) 
0 
0 

A. rostratus: 	Larvae were catight - Only.on three occasions 
Date 	Site 	N 	(R) 

1980 November 	FP3 	1.2 	(10.7) 

February 	FP1 	1.3 	(3.1) 
1981 October 	FPS 	2.2 	(3.0) 



in the plankton from the start of sampling in August to November 1980 

and May-October 1981; two larvae only were caught in other months. 

The numbers of larvae caught each month were generally higher at the 

entrances to the Derwent Estuary and to Frederick Henry Bay than at 

other sites in each area. The results also show a trend towards smaller 

larvae being caught each month at the entrances of the two estuaries. 

Differences in day and nighttime catches of larvae on any one day 

were not compared. However, the numbers of larvae caught during the 

day in August, September and November 1980 were not significantly different 

to the numbers caught at night in the same months of 1981 (t-test, 

P>0.05). 

2.3.2 Juvenile Flounder  

(i) Physical and Chemical Parameters of the Four Sites 

The maximum and minimum temperatures recorded during the study 

period were 25.5 °C and 6.1 °C respectively. 	Yearly ranges in temperature 

were greatest on the shallow sandflats, e.g. stations D2b and F4c and 

least on the semi-exposed beaches, e.g. stations D2a and F4a (Figure 2.2). 

Temperature differences between sites in each month were generally low; 

a maximum difference of 7.1 °C was recorded between sites F3c and F4b in 

January 1982. Similarly, temperatures generally varied by only 1-2 °C 

at the stations within site F3 and site F4. 

In contrast, salinities varied considerably between sites (Figure 2.2). 

A minimum of 2%0 and a maximum of 38.9%0 were recorded during the study 

period. Monthly variations in salinities were low at the open beach 

stations (D2b, F4a) and at the stations within the marine inlet (F4b,c) 

and the estuarine lagoon (F3a,b,c,d). 	Salinities were generally lower 

in winter at site D1 due to freshwater runoff. At site D2b salinities 

fluctuated markedly with the stage of the tide. 

Substrate grain size analysis (Figure 2.3) showed that the substrate 

at site D1, low tide mark, was coarser than at all the other sites. The 

substrate consisted mainly of medium sand (0.25 - 0.5 mm) at this site 

and of fine sand (0.125 - 0.25 mm) at the other sites. There was little 

variation in percentage grain sizes at the three stations of site D2. 

15 



FIGURE 2.2  Water temperatures and salinities recorded at 

each site in different months. At sites F3a-d 

• and F4b-c, the mean (circle) and range (vertical 

bar) of temperatures and salinities at stations 

a-d and b-c, respectively, are given. 
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FIGURE 2.3  Percentage frequency distribution of substrate 

particle size at 

Site Dl: (i) HWNT, (ii) LWNT 

Site D2: Station a HWNT, station b - (i) HWNT, 

(ii) LWNT 

Site F3: stations a,b,c,d HWNT 

- Site F4: stations a,b,c HWNT 

phi units: (0) l.00 mm, (1) 1-0.5 mm, 

(2) 0.5-0.25 mm, (3) 0.25-0.125 mm, 

(4) 0.125-0.062 mm, (5),g0.062 mm. 

Of the two numbers in each histogram, the top 

number is the mean grain size (4d0) and the bottom 

number is the sorting coefficient (QD0) 
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At site F3 the percentage of very fine sand and silt generally increased 

from stations F3a - F3d and at site F4 the percentage of coarse and 

medium sand was greatest at station F4a. 

(ii) Seasonal Abundance in Shallow Water 

Juvenile R. tapirina and A. rostratus were abundant in the push-

net catches in 0-100 cm depth at all four sites during most months of 

the year (Figures 2.4 and 2.5 respectively). 	In some months abundances 

varied markedly with depth over 0-100 .cm, resulting in large standard 

deviations; variation with depth is discussed in Section 2.3.2(iii). 

R. tapirina juveniles clearly occurred in higher densities than 

A. rostratus at all four sites. The numbers of each species caught 

per area covered at all sites are listed in Appendix 3. 

Mean monthly abundances of each species separately at the four 

sites in five seasons were compared by analysis of variance. Abundances 

of R. tapirina were significantly different between sites and between 

seasons, and there was a significant site x season interaction (Table 

2.2). 	Over all seasons, densities of R. tapirina were highest at, 

and not significantly different between, sites F3c and D2b, although 

the greatest densities on any one date were recorded in the River Derwent. 

For all sites, densities were significantly higher in August 1981 - 

October 1981 and November 1981 - January 1982 than in other seasons, 

and were significantly lower in February 1981 - April 1981 and May 1981 - 

July 1981. Abundances in November 1980 - January 1981 were significantly 

different to all other seasons. 

As the site x season interaction was significant, means of abundances 

each season were compared for each site separately. 	The results of the 

SNK tests indicate seasonal differences in abundances between the Derwent 

River and Frederick Henry Bay sites. 	Abundances at the Derwent River 

sites were significantly higher in August 1981 - October 1981 and November 

1981 - January 1982 than in other seasons, including November 1980 - 

January 1981. However, at the Frederick Henry Bay sites there was little 
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TABLE 2.2 Results of two-way ANOVA comparing 9,n(x+1) transformed 
mean abundances of R. tapirina at four sites in five 
seasons (seasons: 1 = November 80 - January 1981, 
2 = February 81 - April 1981, 3 = May 81 - July 1981, 
4 = August 81 - October 1981, 5 = November 81 - January 
1982) 

ANOVA Table 
SS 
	

DF 	MS 

Site 	9.3319 	3 	3.1106 	4.9880 	P<0.01 

Season 	47.0912 	4 	11.7728 	18.8782 	P<0.001 

Site x season 	25.4248 	12 	2.1187 	3.3975 	P<0.01 

Error 	23.6975 	38 	0.6236 

Total 	105.5454 	57 	1.8517 

SNK Test 

Sites 	F4b 	D1 	D2b 	F3c 

Seasons 	3 	2 	1 	5 	4 

	

Site x season interaction 	Seasons 

Site D1 	3 	1 	2 	5 	4 

D2b 	3 	2 	1 	5 	4 

F3c 	2 	3 	5 	4 	1  

F4b 	3 	2 	5 	4 	1 

Sites 

	

Season 1 	D1 	F4b 	D2b 	F3c  

	

2 	D1 	D2b 	F4b 	F3c  

	

3 	D2b D1 	F4b 	F3c 

	

4 	F4b D1 	F3c 	D2b 

	

5 	F4b F3c 	D1 	D2b 

21 



TABLE 2.3  Results of two-way ANOVA comparing in(x+1) transformed 
mean abundances of A. rostratus at four - sites in five 
seasons (seasons: 1 = November 80 - January 1981, 
2 = February 81 - April 1981, 3 = May 81 - July 1981, 
4 = August 81 - October 1981, 5 = November 81 - January 
1982) 

ANOVA Table 
SS 
	

DF 	MS 

Site 	29.0577 	3 	9.6859 	17.2996 	P<0.001 

Season 	8.1479 	4 	2.0370 	3.6382 	P<0.05 

Site x season 	8.7039 	12 	0.7253 	1.2955 	P>0.05 

Error 	21.2758 	38 	0.5599 

Total 	67.1853 	57 	1.1787 

SNK Test 

Sites 	F4b 	F3c 	D1 	D2b 

Seasons 	3 	2 	4 	1 	5 

difference in the densities of fish between seasons; in particular 

densities in November 1980 - January 1981 were not significantly differ-

ent from November 1981 - January 1982. However, a comparison of abund-

ance means at the four sites in each season separately showed that 

generally abundances did not differ markedly between sites in each 

season. 

Abundances of A. rostratus were significantly different between sites 

and between seasons but the interaction of site x season was not significant. 

They occurred in significantly higher densities at the Derwent River sites 

than in Frederick Henry Bay, densities at site D2b being significantly 

greater than at site Dl. 	For catches over time, the SNK test implied 

subsets of significantly different seasons. Abundances were significantly 

different between May - July 1981 and November to January in both 1980-81 

and 1981-82 (Table 2.3). 

Patterns of recruitment of juvenile R. tapirina into shallow water 

were examined from seasonal abundances (Figure 2.4) and from length 

frequency histograms (Figure 2.6). 	At sites D1 and D2b a small influx 

of newly-metamorphosed juveniles occurred in December 1980. 	From 
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FIGURE 2.6  Length frequency histograms of R. tapirina 

juveniles caught in the push-net in 0-1 m 

depth at sites D1, D2b, F3c and F4b from 

November 1980 to January 1982. 
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January until June 1981 at site D1, and until July 1981 at site D2b, 

fewer fish were caught and they were generally larger in size. The 

densities of recruits at site D1 increased from July to November 1981 

(except for October) and from July to October at site D2b. The numbers 

then declined at both sites until January and a greater percentage of 

larger fish were caught, especially at site D2b. 

At the Frederick Henry Bay sites, R. tapirina recruits were more 

abundant in November 1980 than at the Derwent River sites. The numbers 

of fish caught increased in December due to an influx of recruits at 

site F3c and an increase in the number of larger fish at site F4b. From 

December 1980 until May 1981 at site F3c and until June 1981 at site F4b, 

abundances generally decreased and the size of fish progressively in-

creased. 	Modal lengths at site F3 increased from 1 - 1.5 cm to 4.5 - 

5 cm from December to May, and at site F4 from 1 - 2 am to 4 - 4.5 cm 

during November to April. The densities of recruits increased at site 

F3c from June to September 1981 and from July to August 1981 at site 

F4d. 	Densities then generally declined to January 1982 at both sites 

and overall the mean length of fish increased. 

Seasonal abundances (Figure 2.5) and length frequency histograms 

(Figure 2.7) of A. rostratus show that at sites D1 and D2b the numbers 

of recruits increased in December 1980. 	They then declined at site D1 

in January 1981 but remained high at site D2b. 	Densities remained low 

at site D1 until March 1981; in April an influx of recruits occurred but 

abundances were low again in May and June. At site D2b densities were 

low from February to June 1981 with only a minor increase in the numbers 

of recruits in April. Abundances peaked again in July 1981 at site Dl; 

they dropped in August and then generally increased to January 1982 with 

both recruits and larger juveniles being caught. At site D2b densities 

increased in July and were highest in August and October 1981. 	The 

numbers of recruits decreased from November 1981 to January 1982 and the 

mean length of fish increased. 

At the Frederick Henry Bay sites abundances of A. rostratus juveniles 

were high in December 1980. 	From January until July 1981 at site F3c 

and until October 1981 at site F4b abundances were generally low and 

larger fish were caught. 	Newly-metamorphosed juveniles were caught at 

site F3c in August 1981 and at site F4b in November 1981. Densities of 
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FIGURE 2.7  Length frequency histograms of A. rostratus 

juveniles caught in the push-net in 0-1 m 

depth at sites D1, D2b, F3c and F4b from 

November 1980 to January 1982 
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juveniles generally increased to January 1982 at site F3c with a 

progressive monthly increase in mean length from 1.5 - 2 cm in August 

to 3.5 - 4 cm in January. 	At site F4b densities and mean length 

increased in December 1981; in January 1982 fewer, larger fish were 

caught. 

Monthly rates of decline in numbers of both species at the four 

sites were determined for the four month periods after peaks in recruit-

ment as the maximum decline in numbers generally occurred during this 

time, or until the time of the next recruitment if this occurred within 

four months. 	The rates of decline in numbers (Z) were calculated from 

the slope of the regression line of log e  mean abundances against time. 

The values of Z for R. tapirina varied from -0.14 at site F4b to -0.86 

at sites D1 and D2b in November 1981 - January 1982 and September 1981 - 

January 1982 respectively. 	The values of Z for A. rostratus were, 

overall, marginally higher; they varied from -0.24 at site D2b in October 

1981 - January 1982 to -0.92 at this site in December 1980 - March 1981 

(Table 2.4). 	These values of Z are, however, only approximate because 

small numbers of recruits were caught in many months. 

(iii) Depth Distributions 

In months of relatively low abundances at both sites D1 and F3c, 

R. tapirina juveniles were generally distributed over the three depths 

(0-100 cm) and the variation in mean length of fish at each depth was 

high (Figure 2.8). 	At site F3c, in particular, larger fish occurred in 

deeper water. 	However, during months of peak recruitment, newly- 

metamorphosed juveniles were most abundant in deeper water (50 - 70 cm 

and 90 - 110 cm) but the mean lengths were similar at each depth. 

Few A. rostratus juveniles were caught at the shallowest depth at 

either site (Figure 2.9). 	At site D1 they were abundant at depths of 

50 - 70 am and 90 - 110 cm in most months; at site F3c the highest den- 

sities mostly occurred in 90 - 110 cm depth. 	The mean lengths of 

A. rostratus at both sites were generally higher during months of low 

densities than in months of recruitment. 

Analysis of the data by ANOVA showed that abundances of R. tapirina 

were significantly different between depths and between seasons at site 
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TABLE 2.4  Monthly mortality rates (Z) with 95% confidence limits and percentage monthly mortality 
(%) for R. tapirina and A. rostratus at the four sites 

Rhombosolea tapirina Ammotretis rostratus 

Site Months 95% 
C.L. Months 95% 

C.L. 

D1 Dec. 1980 - Mar. 1981 -0.29 ±2.65 25.2 Dec. 1980 - Mar.1981 -0.47 ±2.05 37.5 

Nov. 1981 - Jan. 1982 -0.86 ±0.12 57.7 Apr. 1981 - Jun.1981 -0.78 ±18.03 54.2 

D2b Dec. 1980 - Apr. 1981 -0.46 ±0.76 36.9 Dec. 1980 - Mar.1981 -0.92 ±2.63 60.1 

Oct. 1981 - Jan. 1982 -0.86 ±0.82 57.7 Oct. 1981 - Jan.1982 -0.24 ±0.28 21.3 

F3c Dec. 1980 - Apr. 1981 -0.68 ±0.46 49.3 Dec. 	1980 - Apr.1981 -0.52 ±0.55 40.5 

Sep. 1981 - Jan. 1982 -0.24 ±0.55 21.3 

F4b Dec. 1980 - Apr. 1981 -0.14 ±1.18 13.1 Dec. 1980 - Apr.1981 -0.43 ±0.62 34.9 

Aug. 1981 - Dec. 1981 -0.15 ±0.28 13.9 Dec. 	1981 - Jan.1982 -0.43 34.9 
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D1 but only between seasons at site F3c. 	The depth x season interaction 

was not significant at either site (Table 2.5). Abundances of R. tapirina 

at site D1 were significantly higher at 50 - 70 cm than at 10 - 30 cm, 

but were not different between 10 - 30 cm and 90 - 110 cm or between 

90 - 110 cm and SO - 70 cm. They were significantly higher in August 

1981 - October 1981 and November 1981 - January 1982 than in February 

1981 - April 1981 and May 1981 - July 1981. 	At site F3c, densities of 

R. tapirina were significantly different between August 1981 - October 

1981 and March 1981 - April 1981 but did not differ between other seasons. 

Densities of A. rostratus at both sites D1 and F3c differed signific-

antly with depth but not with season, and the depth x season interaction 

was not significant (Table 2.6). They were significantly more abundant 

at depths of 90 - 110 cm and 50 - 70 cm than at 10 - 30 cm at site D1, 

and at 90 - 110 cm than at 10 - 30 cm and SO - 70 cm at site F3c. 

The relative number of recently metamorphosed R. tapirina and A. ros-

tratus juveniles at each depth over 27 h indicates that both species moved 

up and down the shore with the tide but occupied different depths during 

the sampling period (Figure 2.10). 	R. tapirina juveniles were most 

abundant at the shallowest depth (10 - 30 cm) at high tide and during the 

night, and at medium depth (50 - 70 cm) at other times. A. rostratus 

were caught in the highest numbers at the medium depth except around the 

time of low tide at night when they were most abundant in shallow water. 

These results indicate that although both species have tidal-related move-

ments, the depths they occupy are apparently more related to the time of 

day than the stage of the tide. The numbers of fish caught at different 

depths during the day and the night were compared using ANOVA for each 

species separately. 	Abundances of each species were not significantly 

different between day and night over all depths, and the interaction of 

time and depth was not significant (Table 2.7). 	Thus, although relative 

abundances at 10 - 30 cm and 50 - 70 cm depths differed between day and 

night, the variation in actual numbers of fish caught resulted in a non- 

significant interaction. 	Abundances of each species, however, were 

significantly different between depths, for day and night combined. 

The numbers of R. tapirina were significantly higher at 50 - 70 cm and 

10 - 30 cm depth than at 90 - 110 cm. 	A. rostratus were significantly 

more abundant at SO - 70 cm than at 90 - 110 cm depth but were not 

different between 90 - 110 cm and 10 - 30 cm or 10 - 30 cm and 50 - 70 cm 

depth. 
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TABLE 2.5 Results of two-way ANOVA comparing Ln(x+1) transformed 
mean abundances of R. tapirina at different depths in 
different seasons at sites D1 and F3c; 
(seasons: 1 = February 81 - April 1981 Site D1, March 
81 - April 1981 Site F3c, 2 = May 81 - July 1981, 
3 = August 81 - October 1981, 4 = November 81 - January 
1982). 

ANOVA Table SS 

Site D1 

DF 	MS 

Depth 17.1919 2 	8.5960 5.0889 P<0.05 

Season 40.6208 3 	13.5403 8.160 P<0.01 

Depth x season 10.8190 6 	1.8032 1.0675 P>0.05 

Error 33.7830 20 	1.6891 

Total 101.4395 31 	3.2722 

SNK Test 

Depth (cm) 10-30 90-110 50-70 

Season 2 	1 3 4 

ANOVA Table 
SS 

Site F3c 

DF MS 

Depth 1.7262 2 0.8631 0.5190 P>0.05 

Season 18.7626 3 6.2542 3.7604 P<0.05 

Depth x season 7.6545 6 1.2758 0.7671 P>0.05 

Error 34.9269 21 1.6632 

Total 63.0366 32 1.9699 

SNK Test 

Season 1 2 4 3 



TABLE 2.6 Results of two-way ANOVA comparing 2n(x+1) transformed 
abundances of A. rostratus at different depths in 
different seasons at sites D1 and F3c; 
(Seasons: 1 = February 81 - April 1981 site D1, March 81 - 
April 1981 Site F3c, 2 = May 81 - July 1981, 3 = August 
81 - October 1981, 4 = November 81 - January 1982). 

Site D1  

ANOVA Table 
SS DF MS 

Depth 16.0013 2 8.0007 5.4591 P<0.05 

Season 2.2533 3 0.7511 0.5125 P>0.05 

Depth x season 1.9089 6 0.3182 0.2171 P>0.05 

Error 29.3114 20 1.4656 

Total 49.2791 31 1.5896 

SNK Test 

Depth (cm) 10-30 	90-110 50-70 

ANOVA Table 
SS 

Site F3c 

DF 	MS 

Depth 9.8872 2 4.9436 6.7362 P<0.01 

Season 2.3408 3 0.7803 1.0632 P>0.05 

Depth x season 2.3128 6 0.3855 0.5253 P>0.05 

Error 15.4115 21 0.7339 

Total 30.4461 32 0.9514 

SNK Test 

Depth (cm) 10-30 50-70 90-110 
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LT = low tide, HT = high tide 



TABLE 2.7  Results of two-way ANOVA comparing 2.11(x+1) transformed 
abundances of R. tapirina and A. rostratus juveniles, 
separately, at different depths between day and night 
at site Dl. 

ANOVA Table 

R. 

SS 

tapirina 

DF 	.MS 

Depths 14.7153 2 	7.3577 9.7691 P<0.01 

Times 0.7443 1 	0.7443 0.9883 P>0.05 

Depth x time 2.7558 2 	1.3779 1.8295 P>0.05 

Error 15.8163 21 	0.7532 

Total 33.4963 26 	1.2883 

SNK Test 

Depth (cm) 90-110 	50-70 10-30 

A. rostratus 

ANOVA Table 
SS DF MS 

Depths 7.3445 2 3.6723 5.3538 P<0.05 

Time 2.1334 1 2.1334 3.1103 P>0.05 

Depth x time 4.6578 2 2.3289 3.3953 P>0.05 

Error 14.4043 21 0.6859 

Total 28.1325 26 1.0820 

SNK Test 

Depth (cm) 90-110 10-30 50-70 
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(iv) Distributions Within an Estuarine Lagoon and 
a Marine Inlet 

Abundances of R. tapirina juveniles in the estuarine lagoon were 

highest in most months on the extensive, unvegetated sandflats (stations 

F3b and F3c) and were slightly less on the partially vegetated sandflats 

at station F3d (Figure 2.11). Few fish were caught at the entrance to 

the lagoon except in September. 	By contrast, densities of A. rostratus 

juveniles were highest in most months at station F3a, and were generally 

low at stations F3b, F3c and F3d. 	No A. lituratus juveniles were caught 

in the lagoon. 

Abundances of R. tapirina only were compared using ANOVA; the 

numbers of A. rostratus caught were too low for statistical analysis. 

Abundances differed significantly between stations and between sites but 

the station x season interaction was not significant (Table 2.8). 	Abund- 

ances at stations F3b, F3c and F3d were similar and significantly higher 

than at station F3a. 	They were significantly greater at all sites in 

July - September and October - December than in January - March and 

April - June of 1981. 

TABLE 2.8  Results of two-way ANOVA comparing 2.n(x+1) transformed 
mean abundances of R. tapirina at different stations of 
site F3 in different seasons; (seasons: 1 = January 81 - 
March 1981, 2 = April 81 - June 1981, 3 = July 81 - 
September 1981, 4= October 81 - December 1981) 

ANOVA Table 
SS 

R. 

DF 

tapirina 

MS 

Station 37.1260 3 12.3753 8.0265 P<0.001 

Season 28.8664 3 7.6221 4.9436 P<0.01 

Station x season 8.1825 9 0.9092 0.5897 P>0.05 

Error 49.3377 32 1.5418 

Total 117.5126 47 2.5003 

SNK Test 

Station a 

Season 2 1 3 4 
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Distributions of flounder at the three stations of site F4, a 

marine inlet, are presented as mean monthly abundances for seven months 

at station F4a and 12 months at stations F4b and F4c (Table 2.9). 

TABLE 2.9  Mean monthly abundances R (number of fish per 500 m 2 ) 
of R. tapirina, A. rostratus and A. lituratus at 
stations a, b and c of site F4. 

37 

Stations 

a 
Species S.D. S.D. X S.D. 

R. tapirina 

A, rostratus 

A. lituratus 

0.14 

0.14 

1.29 

±0.38 

±0.38 

±1.38 

22.54 

5.68 

0 

±11.49 

±2.38 

60.68 

0 

0 

±93.03 

A. lituratus were caught only at station F4a, a semi-exposed beach. 

A. rostratus juveniles were most abundant at station F4b and were never 

caught on the shallow sandflats of station F4c. 	R. tapirina, overall, 

occurred in the highest densities at station F4c, although the high 

standard deviation shows that densities varied greatly between months 

at this station. The mean monthly abundance at station F4b was lower 

but difference between months was not as great as at station F4c. 

(v) Seasonal Abundances of Juvenile Flounder in Deeper Water 

The numbers of juvenile R. tapirina and A. rostratus caught in deeper 

water (1.5 - 4 m) were much lower than in shallow water, especially at 

site D1 (Figure 2.12). 	As few fish were caught, the data were not anal- 

ysed statistically. The numbers of each species caught per area fished 

are given in Appendix 4. 

R. tapirina juveniles occurred in higher densities at the Frederick 

Henry Bay sites than in the Derwent River; densities of A. rostratus 

were lowest at site Dl. 	In most months, R. tapirina were more abundant 

at the Frederick Henry Bay sites than A. rostratus, but were less abundant 

than A. rostratus at site D2a., Overall, the densities of R. tapirina 

were highest in October - December 1980, March - April 1981 and November 

1981; A. rostratus were most abundant in March - May 1981. 
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Length frequency histograms for R. tapirina (Figure 2.13 ) and 

for A. rostratus (Figure 2.14) show that although the smallest fish 

of either species caught in the beam trawl were 2-3 cm in length, the 

majority were from 5 to 15 am. 	By contrast most fish caught in the 

push-net were 1-4 cm in length. 	Smaller juveniles are apparently 

more abundant in shallow water and larger juveniles in deeper water. 

The push-net, however, was probably less efficient at catching larger 

juveniles than the beam trawl. 

Length frequency histograms for R. tapirina do not show clear trends 

in monthly abundances or length increments of the population as few fish 

were caught at sites D1 and D2a, at site F3b,c greater numbers of fish 

were caught only in three months and at site F4a the few fish caught each 

month generally varied in length. Densities of R. tapirina were consid-

erably higher at site F4b,c but a progressive monthly increase in the 

mean length of the population was apparent only in February to May, 1981. 

Length frequency histograms for A. rostratus also do not show any 

clear patterns. Abundances were low in most months at each site and 

the lengths of fisli caught varied. 	From the few fish caught, a progressive 

monthly increase in length from 6 cm in February to 12 cm in November, 

1981 at site F4a is suggested. 

The estimation of growth rates from the progressive monthly increase 

in mean length was not possible for juveniles of R. tapirina or A. lituratus 

in either shallow or deeper water. The length frequency histograms showed 

little evidence of monthly increases in length of the populations as re-

cruitment to shallow water occurred in many months and juveniles were not 

consistently abundant in deeper water due possibly to emigration of larger 

juveniles from the nursery grounds. 

A. lituratus juveniles were caught in low numbers at depths of 1.5 - 

4 m at the semi-exposed sites, D2a and F4a, only (Figure 2.15). 	The 

length frequency histograms show a progressive monthly increase in length 

from 7-9 cm to 12-14 cm during March to December, 1981 at site D2a but 

not at site F4a. 	The smallest fish caught were 3.5 cm TL which suggests 

that juveniles move into the shore zone at a later stage of development 

than R. tapirina or A. rostratus. 
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FIGURE 2.13  Length frequency histograms of R. tapirina 

juveniles caught in the beam trawl in 

1.5-4.0 in depth at sites D1, D2a, F3b,c 

F4a end F4b,c from August 1980 to January 

1982 
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FIGURE 2.14  Length frequency histograms of A. rostratus 

juveniles caught in the beam trawl in 1.5-4.0 in 

depth at sitesD1, D2a, F3b,c F4a and F4b,c 

from August 1980 to January 1982 



LENGTH (cm) 

1 Oct. 	29 Oct. 
5 	5 0L.A 	5 L 	0]  

5 Nov. 	26 Nov. 

6 Jan.1981 

0 
15 

1 5 

10 

5- 

0 

51 

I 

5 
20 Aug.1980 

51 

Site 01 	Site 02a 

I 

14 Oct 

, 

-11L 5 m_, 	5] 
18 Sep. 	3 Nov, 

• 0 	 0 
14 Oct. 10 Dec. 

16 Aug.1980 
5 

Site F3b,c - 	Site F4a 	Site F4b,c 
1980 
5 1 

23 Sep.1980 	8 Aug.1980 
5 

24 Feb. 

4 Mar. 

0 

26 May 	7 Apr. 	22 Apr. 
51 

01 	milk 	, 01  
19 Jun. 	7 May 

51_,AILL.,  5  

, 	41 II  ' 0 	0 

1  
1 	, 111111  

23 Sep. 	5 Jun. 	20 Jul. 

5 1 	5 1 

04 	. 	III% la  ■  1  , 	1 	5 

NU
MB

ER
 O

F F
IS

H 

4 Mar. 

i
Apr. 11 Feb. 23 

0 I 	I 	. 	. o I  
1  5 1  5 

10 Mar. 

I—  I 0 
5  Likr_di  5  1 

1 0 

joimocp  

0 

S i  

01  5-1 

9111 ,  
22 Apr. 

19 Nov. 
5 

5] 

0  sr 1 	I 	I 	I . 	•  •  

5 

0 

1 

0 	5 	10 	15 	20 	0 

2 Dec. 	21 Sep. I III 0 

5 
21 Oct. 	3 Nov. 	19 Aug. 

51 	5] 	0 

01 	0 	. ma  I o 
 

21 Sep. 

01  10 115 5 	17 
P4 " 	

5 

as 
1 

•  0 	I 	ILI 	1 	I 
0 	5 10 15 20 51 

Nov. 
0  1  5 

01 
 

ma OW  
28 Jan.'8211.4.  

51 	0 

5 

o

1 

010111  
16 115 	

1 
0 5 	20 

Ai  

20 Oct. 

17 Nov. 

16 Dec. 

01-m,a,"LI 0 1111 	' , I 0 1  i lill  • ' 
7 Dec. 	15 Jan.1982 	20 Oct. 

41 

29 Oct. 

11  
26 Nbv. 

51JMIII „amp 	, 

5 

• , 0 	0 
19 Jun.1981 

5 1 	5 
14 Jan.1981 

0 

51 1  

0 1 

0 	0 	• 	I 

5 7Jul 	24 Mar. 

I. 

5- 

0 1 

5 -  

0 -"4"4-1•11,-11—,  

22 May. 

II  

18 Jun. 

20 Jul. 

IS 

22 May 
0 

5 

3 Dec. 	31 Dec 
5 5-1 

01 I 	•. 41111" o 
27 Jan.1981 	24 Feb.1981

1  5 

m 	, 01 NIB  

31 Dec. 



Site D2a 

MONTH 

23 Sep.1980 

 

0] 	

fl fl  

 

  

 

29 Oct 

42 

5 	23 Apr.1981 

rtui  

26 Nov. 
51 

0 
irL   rip , 

31 Dec. 
0 

31 	
26 	. 

2 1 
May 

01 	, rfl, 	n n  , 	1 

	

19 Jun. 	21 
:3 	.  rgi 	,nn , 	I 	 1 -I 

23 Sep. 

Iril 	, 
 

fl, 	i 	1 1 

n  

3 Mar.1981 

fl  

22 Apr. 
r  , 

22 May. 
n  n 	n.  

21 Oct. 	11 	 

4  

20 Jul. 

19 Aug. 
q•-• 

1  

rfli, 

1 n n  
o 	I 	Il 	1 	1 
0 	5 10 •15 20 25  

21 ep. 

	

11  r  

20 Oct. 

	

11 	. n , 	p  
17 Nov. 

1 1 n I i n  I 	I 	1 n  

	

0 	5 10 15 20 25 

19 Nov. 

1 
7 Dec. 

5- 

301 

LENGTH (cm) 

FIGURE 2.15 Monthly abundances and length frequency histograms 
of A. lituratus juveniles caught in the beam trawl 
in 1.5-4 m depth at sites D2a and F4a from August 
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2.4 DISCUSSION  

The abundances of R. tapirina larvae in the plankton were low com-

pared with the numbers of newly-metamorphosed juveniles caught in shallow 

water. The larvae were possibly widespread over the area or the samples 

taken may not have been representative of the region because of patchy 

distributions of larvae. 	Patchiness of larval fish distributions fre- 

quently occur (Steele, 1976). 	Larvae occurred in the plankton from 

May to November which indicates that spawning occurs from late autumn to 

spring. At surface water temperatures of 8.5 - 16.5 °C during these 

months, the time from hatching to metamorphosis and movement inshore 

would be 2-3 months (Chapter 6). 	This agrees with the high densities 

of juveniles found inshore from late winter to early summer. 	In Otago 

Harbour, New Zealand, R. tapirina larvae were abundant in the plankton 

for a shorter period of time and later in the year, August to November. 

Peak abundances of juveniles inshore also occurred later in summer 

(Roper, 1979). As both larvae and juveniles were collected using nets 

of larger mesh size than in the present study, only well-developed larvae 

and juveniles of greater mean length were caught. Peaks in abundance 

would thus be expected to occur later. Also the mean monthly water temp-

eratures at the New Zealand site ranged between 6.4 and 16.0 °C; it is 

probable that spawning is delayed until the water temperatures increase 

in spring. 

The higher numbers of R. tapirina larvae caught at the entrances to 

the Derwent Estuary and Frederick Henry Bay and their generally smaller 

size than at other sites in each area suggests that spawning occurs in 

deeper, coastal waters. 	Roper (1979) also suggested that most juvenile 

R. tapirina originated from off-shore waters. The very low numbers of 

A. rostratus larvae in the plankton implies that either the larvae do 

not move through these areas to the nursery grounds or they occur too low 

in the water column to be sampled by the net. 

The larvae of both R. tapirina and A. rostratus appear to settle in 

water deeper than 100 cm and then move into shore along the bottom. 

Abundances were highest at 100 cm depth in months of peak recruitment. 

The numbers of metamorphosing larvae were also greatest at this depth. 

Turbot larvae, Scophthalmus maximus (Jones, 1973a) and plaice larvae, 

Pleuronectes platessa (Gibson, 1973; Lockwood, 1974b) have also been 
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observed to settle and metamorphose in deeper water before moving in-

shore. 	Gibson (1973) suggests that newly-metamorphosed plaice actively 

select for a particular depth, or factors associated with depth, accord-

ing to their length; R. tapirina and A. rostratus juveniles may also 

behave in this way. 

Juveniles of the two species were sympatric in shallow water at the 

four sites. However, R. tapirina were obviously more abundant than 

A. rostratus at all sites. The abundances of juveniles inshore depends 

on several factors including numbers of spawning adults, their fecundity, 

survival of eggs and larvae and the number of larvae which find suitable 

nursery areas. As fewer A. rostratus adults are caught locally (unpub-

lished data, Tasmanian Fisheries Development Authority), the lower den-

sities of A. rostratus juveniles than R. tapirina probably reflects the 

smaller size of the spawning stock. 

Differences in abundances amongst sites of R. tapirina juveniles in-

shore were not independent of differences between seasons. Seasonal 

densities at the Derwent River sites apparently differed from those at 

the Frederick Henry Bay sites. 	A. rostratus juveniles, however, were 

more abundant at the Derwent River than Frederick Henry Bay sites, over 

all seasons. There are several possible explanations foi these differ-

ences in abundances between sites for A. rostratus and between sites and 

seasons for R. tapirina including proximity of sites to spawning grounds 

and/or favourable water movements in the area, or selection by juveniles 

for particular environmental variables. Abundances of R. tapirina may 

have differed because current flows to, or environmental parameters of, 

the Derwent River sites were more favourable in November 1981 - January 

1982 than in the same months of 1980-81, but did not differ between the 

two years at the Frederick Henry Bay sites. 	It is also possible that 

recruitment to the two areas originated from different spawning stocks. 

Differences in environmental parameters at the four sites and habitat 

selection by A. rostratus are probably important in determining their 

distributions, as discussed later. 	However, the lower abundances of 

A. rostratus at the Frederick Henry Bay sites may be partly due to sampling 

on the large sandflats rather than at the entrances of the inlet and the 

lagoon. 
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It is difficult to compare densities of R. tapirina and A. rostratus 

with those of juveniles of other species of flatfish because of the dif-

ferent sampling methods and gear used. Also, many authors do not give 

all the information required to determine numbers of fish per unit area, 

However, rough comparisons can be made with 0-group plaice which were 

caught in 2 m or 4 m beam trawls with mesh of similar size to that used 

in the present study. 	To enable comparisons, densities per unit area 

are used. 	The maximum monthly densities over 0-1 in depth at the four 

sites ranged from 0.11 to 1.38 fish per m 2  for R. tapirina and 0.02 to 

0.16 fish m-2  for A. rostratus. 	The maximum mean density of R. tapirina 

over all sites was 0.51 fish m -2  and of A. rostratus 0.06 fish m-2 . 

These densities are not corrected for gear efficiency and are almost 

certainly underestimated as the smallest juveniles were observed to escape 

through the mesh. 

Kuipers (1977) sampled the plaice population in the western Wadden 

Sea by a series of tows at four sites. 	After correcting for gear effic- 

iency, he estimated a maximum density of 0.5 0-group plaice per m 2  at 

any one site and 0.22 fish m -2  for all sites. 	In Britain population 

densities of 0-group plaice were estimated from the average number of . 

fish caught in several tows made from the shoreline to the outer limit of 

the area occupied by plaice. 	These densities were corrected for gear 

efficiency. The maximum mean population densities of 0-group plaice 

observed by Lockwood (1981) were 0.02, 1.17, 0.27 and 0.15 fish per m 2  

for the years 1968-69 and 1972-73, and by Steele and Edwards (1970) 0.72, 

0.33, 0.29 and 0.15 fish per m 2  for 1965-68. 

Thus, the uncorrected densities of R. tapirina observed in this study 

were within the range of densities (corrected for gear efficiency) of 

0-group plaice whereas the uncorrected densities of A. rostratus were 

generally lower than those of plaice. 	It would not be appropriate, how- 

ever, to extrapolate the efficiencies of the nets used to catch plaice to 

the net used in the present study because of differences in the biology 

of plaice and flounder. 	Also plaice net efficiencies varied between 

studies from 15 to 100% (Kuipers, 1975a). 

Major recruitment and highest abundances of R. tapirina and A. ros-

tratus juveniles at each site generally occurred at the same time of 

year, from late winter to early summer. Few newly-metamorphosed 
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juveniles of either species were caught in other months except for a 

large recruitment of A. rostratus in April at site Dl. There is thus 

no evidence for temporal habitat partitioning by juveniles of the two 

species. 

Evidence for partitioning the spatial resources of the habitat, how-

ever, was found from abundances of the two species at different stations 

of the estuarine lagoon and the marine inlet, and from densities at 

different depths. 	A. rostratus were most abundant at the mouth of the 

lagoon and towards the entrance of the marine inlet whereas densities of 

R. tapirina were highest on the large sheltered sandflats. The higher 

abundance of A. rostratus juveniles at the mouths of estuaries was also 

evident in the Derwent River. They were most abundant at site D2b which 

is 9 km closer to the mouth than site Dl. 	Although depth distributions 

varied during the year, overall A. rostratus juveniles were most abundant 

in 50-110 cm depth whilst R. tapirina were widespread over 0-100 cm depth. 

The absence of A. rostratus on the extensive shallow sandflats of station 

F4c may be partly due to a preference for deeper water. Over 24 h both 

species were caught, more frequently at the shallowest depth (10-30 cm) 

than in the monthly samples. 	R. tapirina, however, were relatively more 

abundant at this depth for a longer period of time than A. rostratus. 

They also occurred less frequently at 90-110 cm in comparison to other 

depths, than A. rostratus. 

The partitioning of the habitat by the two species on a spatial level 

is probably linked with preferences for substrate type, particularly by 

A. rostratus. 	At the Derwent River sites where A. rostratus were most 

abundant, the percentage of medium-sized sand grains was considerably 

higher than at the Frederick Henry Bay sites. 	Also, within the estuar- 

ine lagoon, the percentage of very fine sand and silt was least at the 

mouth. 

Ranges in temperature and salinity did not, however, appear to be 

important in determining the distributions of the two species. They 

were both tolerant of widely fluctuating temperature and salinity regimes, 

in particular at site D2b. 

A. lituratus juveniles were caught in low numbers on semi-exposed 

beaches only. They were thus separated spatially from the major populations 
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of R. tapirina and A. rostratus. 	Also, as no newly-metamorphosed 

juveniles of A. /ituratus were caught, they must occupy a different 

habitat to those of R. tapirina and A. rostratus. 

The distributions of the three species observed in this study gen-

erally agree with the results of Last (1983). He found that A. lituratus 

occurred on semi-exposed and exposed beaches only whilst A. rostratus 

and R. tapirina occupied a wide range of habitat types. A. rostratus 

were most abundant at the mouths of estuaries and R. tapirina on sheltered 

sandflats. 	However, he also observed that R. taoirina occurred frequently 

at the mouths of estuaries. 

Distributions and abundances of juveniles of other flatfish in 

shallow coastal waters have also been found to be influenced by environ-

mental factors. 	For example, Gibson (1973) and Riley et al. (1981) 

found that when several species of flatfish occurred together, each 

species occupied a distinct depth zone thus reducing overlaps in dis- 

tribution. 	They suggested that the depth distribution is selected and 

maintained by each species. 	In New Zealand, R. tapirina and P. latus 

also showed differences in depth distribution (Roper, 1979). 	These 

differences in preferred depth probably reduce competition for food. 

Gibson (1973) and Riley et a/. (1981) also suggest that depth distribution 

is linked with other environmental factors such as preferred temperature, 

salinity, turbulence level or substrate type. 

After the peaks in abundance of 0-group A. rostratus and R. tapirina 

in shallow water, the monthly rates of decline in numbers of the two 

species were similar to those recorded for other species of flatfish. 

Plaice (Pleuronectes platessa) juveniles decreased at a rate of 30-50% 

per month (Riley and Corlett, 1966; Macer, 1967; Edwards and Steele, 

1968; Kuipers, 1977), turbot (Scophthalmus maximus) at 52% (Jones, 

1973a), dabs (Limanda limanda) at 44% (Macer, 1967), R. tapirina at 37-48% 

and R. plebia at 35-48% (Roper, 1979). 	However, in years of large settle- 

ments of plaice inshore, the rates of decrease were much higher (Steele 

and Edwards, 1970; Lockwood, 1981). 

No direct evidence of predation by other fish on juvenile flounder 

was obtained. 	However, this is possibly a major cause of the decline in 

numbers. Metamorphosing flounder have been found seasonally in 



large quantities in the guts of salmon Arripus trutta and hardyheads, 

Atherinosoma presbyteroides and A. microstoma (P. Last, personal commun-

ication). The former two species occur in high numbers at site D1 

(Last, 1983) and to a lesser extent at the other sites. The flathead 

Platycephalus bassensis has also been observed to consume small quantities 

of R. tapirina (Brown, 1977). 	Riley and Corlett (1966), Macer (1967) 

and Edwards and Steele (1968) attributed predation by other fish on 

0-group plaice as a major cause of mortality. The amount of predation 

on juvenile flounder by shore birds is unknown although local fishermen 

have reported that shags, Phalacrocorax spp. feed on flounder in the 

shallows. 	Serventy et a/. (1971) list fish as the major food of several 

species of shags, but do not specify flounder. 	In New Zealand, juvenile 

flounder are a major component of the diet of shags (Roper, 1979). 

Movements of juvenile flounder into deeper water may also be partially 

responsible for the decline in numbers. 	Emigration from the nursery 

ground must occur as adults of both species are caught in deeper, coastal 

waters. 	However, the age at which emigration occurs is not known, although 

juveniles of both species were caught in Danish-seine nets at depths of 

5-10 m. 	Roper (1979) suggested that most R. tapirina emigrate to deeper 

offshore waters near the end of their first year. Adult R. tapirina 

and A. rostratus are also found in shallow water; they possibly returned 

at a later stage or are a residual population that did not emigrate. 

An increase in preferred depth with increase in age has been observed in 

other species of flatfish, e.g. plaice and dabs (Gibson, 1973; Lockwood, 

1974b), turbot (Jones, 1973a)and English sole, Paraphrys vetulus (Toole, 

1980). 	These movements may be to avoid low sea temperatures inshore in 

winter (Gibson, 1973; Jones, 1973a) or a change to different feeding 

grounds (Gibson, 1973; Lockwood, 1974b). 

However, the low abundances of larger R. tapirina and A. rostratus 

juveniles in deeper water on semi-exposed beaches or in the channels 

adjacent to push-net sampling sites implies that these areas do not 

support large populations of juvenile flounder. 	R. tapirina juveniles 

were most abundant at the Frederick Henry Bay sites; these areas adjacent 

to large sandflats may provide a more favourable environment than at the 

Derwent River sites. 	Seasonal trends in abundances of both species in 

deeper water were not obvious except for possibly a peak in autumn. 
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This suggests that juveniles may move into deeper water in winter to 

avoid low temperatures inshore. 	The seasonal changes in densities 

of juveniles in deeper water thus differed to those in the intertidal 

region. The higher numbers of A. rostratus relative to R. tapirina, 

caught in the beam trawl than in the push-net indicates that either 

the areas sampled were more suited to A. rostratus or that the emigration 

and/or mortality rates of R. tapirina were higher. 

In summary, although juvenile R. tapirina and A. rostratus are widely 

distributed from semi-exposed beaches to upper reaches of estuaries, they 

appear to partially partition the habitat on a spatial level but not 

temporally. 	A. lituratus juveniles, which only occurred on semi-exposed 

beaches, were separated spatially from the major populations of the other 

two species. 
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CHAPTER 3  

ABIOT IC FACTORS INFLUENCING HAB ITAT SELECTION  

AND DISTRIBUTIONS OF LARVAL AND JUVENILE  

FLOUNDER  



3.1 INTRODUCTION  

Field studies on the distribution of planktonic larvae and the 

reproductive biology of adult R. tapirina and A. rostratus suggested 

that the major spawning grounds of both species are in deeper, coastal 

waters (Chapters 2 and 5). After passing through planktonic embyronic 

and larval stages, newly-metamorphosed juveniles of the two species 

occur together in high densities on estuarine sandflats during late 

winter to early summer. 	Although both species are widespread over 

the sandflats, differences in distributions have been observed (Chapter 

2). 

These field results prompted certain questions. How do larvae 

move to and select estuarine sandflats as nursery grounds? Which environ-

mental parameters are important in determining the distributions of the 

two species on the nursery grounds? 

Previous workers have suggested that flatfish larvae congregate at 

the nursery grounds by utilizing preferences for particular environmental 

conditions, such as shallow water (Gibson, 1973; Lockwood, 1974b; Toole, 

1980; Riley et al., 1981), optimal feeding conditions (Lockwood, 1974b; 

Creutzberg et al., 1978) or low salinities (rsuruta, 1978; Riley et al., 

1981). Larvae generally depend on water movements rather than active 

swimming for transportation to these grounds (see Ketchen, 1956; Simpson, 

1959; Smith, 1973; Cushing, 1975; Markle, 1975; Skud, 1977). Within 

nursery areas, juvenile flatfish have been found to respond to a wide 

range of interacting environmental factors, including depth, substrate 

type, degree of exposure, tidal scour, temperature and salinity (Gibson, 

1973; Roper, 1979; Riley et al., 1981; Burchmore, 1982). 	These findings 

have usually been based on field studies. 

In order to determine which abiotic factors influence habitat 

selection and distributions of larval and juvenile R. tapirina and 
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A. rostratus, a series of laboratory experiments was conducted. The 

factors considered to be of potential importance, and therefore investig-

ated in this study, included current velocity, light and position in the 

water column because R. tapirina larvae were most abundant and A. rostratus 

larvae rarely caught amongst surface water plankton. Substrate, temper-

ature and salinity preferences were also examined because the two flounder 

species were most abundant in different areas of the estuary and at dif-

ferent depths, which correspond with gradual changes in these conditions. 

3.2 METHODS  

3.2.1 Experimental Animals and Experimental Conditions  

Wild 0-group R. tapirina and A. rostratus of length 1.2 - 3.0 cm 

were caught in the push-net at sites D1 and D2b (Chapter 2) from 

September 1982 to January 1983. They were kept in holding tanks at 

13 °C temperature, 32-36%0 salinity and 12 h light:12 h dark for 3-14 

days before experimentation. Juveniles used more than once were left 

in the holding tanks for at least three days between experiments. 

Cultured larvae and juveniles of both species were obtained from rearing 

experiments detailed in Chapter 6. 	They were maintained in static sea- 

water until after metamorphosis at either ambient room or seawater temp-

erature, salinity 32.6 - 34.5%0 and a natural light regime. The develop-

mental stages of larvae are described in Chapter 6. In the present 

Chapter, stage 5-M refers to larvae which have settled on the bottom and 

are undergoing metamorphosis and those which are less than five days 

post-metamorphosis. 

All experiments were conducted separately for each species and were 

repeated at least once. Environmental conditions, other than those being 

examined, were kept constant throughout each experiment. 	When necessary, 

fish were first acclimatised to the experimental temperature over at least 

4h. 

3.2.2 Current Velocity 

The effect of water current velocity on the behaviour of larvae of 

different developmental stages was examined using an apparatus similar to 
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that of Bishai (1960). 	This consisted of an experimental tube, 100 cm 

long and 2.5 cm in diameter, with T-pieces at either end. One branch 

of each T-piece received inflowing water from a constant-level header 

tank and the other was connected to an overflow tube. 	The direction of 

water flow was controlled by stopcocks on the inflow and outflow tubes 

and could be reversed when required. 	The flow rate in the experimental 

tube was altered by opening or closing a stopcock positioned below the 

header tank. 

-1  The mean current velocity (V cm sec ) in the tube was measured 

using the equation 

= 

where q is the volume of water passing along the tube in one second and 

r is the radius of the tube. The velocity (V 1  cm sec
-1

) at a point b 

from the centre of the tube was calculated using 

2q 1 	b 2  

	

V1 = Tr  LT. 2 - (72  ) 	(Ryland, 1963) 

Larvae were added individually to the experimental tube and left for 

15 min to acclimatize to the experimental conditions before being exposed 

to a flow of current. 	The behaviour of larvae at each current velocity 

was recorded for 15 min or for 5 traverses of the experimental tube if 

they were displaced along the tube. The current velocity was increased 

in stages until the larvae were rapidly swept away. 	The reactions of 

from five to ten larvae of each developmental stage to different current 

velocities were observed. 	Occasionally larvae did not react to the 

current and were swept away; these results were discarded. 

3.2.3 Light  

The responses of larvae of different stages of development to light were 

investigated. 	Between 20 and 30 larvae of each developmental stage were 

placed in a vertically-mounted glass tube filled with seawater. The tube 

was 150 cm long, 2.4 cm in diameter and was marked off into 30 sections. 

The positions of larvae in the tube were recorded every 30 min for 2 h 

when a light source was directed at the top of the tube, or the bottom, 

or in total darkness. 	Larvae in total darkness were observed quickly 

using a dull light. 	The light source was a 25 W light bulb and the 



light intensity, measured using a Licor Quantum/Radiometer/Photometer, 

ranged from 67-0 iE m -2sec-1 from the top to the bottom of the tube 

when the light was at the top, and 0.1-59 11E m -2sec-1  when the light 

was at the bottom. 

3.2.4 Salinity 

The preferred salinities of metamorphosing and metamorphosed juveniles 

of both species were examined using a salinity gradient apparatus modified 

after that of Hansen (1972). This apparatus, which is described in 

Appendix 5, regularly provided salinity gradients of 0-33%0. 	The 

observation chamber contained 1.7 cm depth of water and was marked off 

into 12 equal sections. 	Between 20 and 30 fish were placed in the middle 

sections and their positions and corresponding salinities were monitored 

at 30 min intervals for 4 h. 	Control experiments with seawater entering 

both inlet reservoirs were conducted. 

3.2.5 Substrate 

Preferred substrate types of wild R. tapirina and A. rostratus juveniles 

were investigated by monitoring their positions in a choice situation of 

four substrates. 	The floor of each quarter (96 x 73 mm) of a 20 It tank 

was covered with sand of different particle sizes to a depth of 10 mm. 

The particle sizes of sand in different quarters were 

2.0 - 0.5 mm 	coarse sand 

0.5 - 0.25 mm medium sand 

0.25 - 0.125 mm fine sand 

<0.125 mm very find sand and silt. 

The tank contained aerated seawater of depth 60 - 80 cm and was illumin-

ated from above by dull red light. Between 20 and 36 juveniles, fed prior 

to each experiment, were evenly distributed over the four substrates. 

The number of fish on each substrate type was recorded at approximately 

6 h intervals for 48 h. Each experiment was repeated with the four sub-

strates rearranged so that different substrates were diagonally opposed. 

Control experiments were conducted with sand of particle size 0.5 - 0.125 

mm evenly distributed over the floor of the tank. 
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3.2.6 Temperature 

Temperature preferences of wild-caught juveniles were investigated 

by observing their positions in a temperature gradient. 	This gradient 

was set up in a galvanized-iron experimental chamber (length 120 cm, 

width 15.5 cm) by circulating heated or cooled water through reservoirs 

at each end of the chamber. 	Glass baffles across the chamber and 2 cm 

above the bottom divided it into 12 sections and reduced the vertical 

temperature gradient. 	The chamber contained aerated seawater of salinity 

34%0 to a depth of 3-4 cm. 	The temperature of each section close to 

the bottom was measured to 0.1 °C with a mercury thermometer. 	A temper- 

ature difference of 7-10 °C was regularly obtained between the two ends 

of the gradient and this was maintained for up to 24 h. 	Maximum temp- 

erature variation in each section of the chamber during an experiment 

was 2-3 ° C. 	At the commencement of each experiment 20 fish were placed 

in the section with temperature closest to that of the holding tanks 

(13 ° C). 	The fish were left overnight (8-12 h) to gravitate towards 

their final preferred temperature (Fry, 1947). 	During the next day 

their positions in the gradient and corresponding temperatures were 

recorded every 0.5 - 1 h for up to 8 h. 	Control experiments were con- 

ducted under the same conditions except that the heating and cooling units 

were not operating; the temperature of the experimental chamber was uni-

formly 14 ° C. 

3.2.7 Statistical Analysis  

The results of replicate experiments on distributions of fish in 

salinity, temperature and substrate preference tests were pooled and 

relative frequency distributions were determined. 	The null hypothesis 

that the absolute frequency distribution of experimental fish was inde-

pendent of the distribution of control fish was tested using Chi-square 

analysis. 	To avoid bias in the Chi-square value, due to low numbers in 

some sections of the temperature or salinity gradient, the total number 

of observations in sections 1-3, 4-6, 7-9 and 10-12 of the gradient were 

pooled before computing the Chi-square value. 
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3.3 RESULTS  

3.3.1 Current Velocity  

Current velocities in the experimental tube were much higher at the 

centre than near the sides. For example, at a mean current velocity of 

2 cm sec -1 , the velocity was 4 cm sec
-1 at the centre and 0.61 cm sec -1 

at 1 mm from the sides. Larvae of both species spent much of their time 

near the sides of the tube. 	They swam against the current for only a 

few seconds at a time, regardless of flow rate. 	At the lower current 

velocities against which larvae could swim in the centre, the fish gen-

erally alternated between remaining stationary near the sides and short 

bursts of active swimming followed by drifting passively with the current. 

In this way they either maintained their position, or were slowly dis- 

placed along the tube. 	As the current velocity increased stronger swim- 

ming was required to move against the current, and the fish spent less 

time stationary near the sides and were more readily displaced along the 

tube. 

The swimming ability of each developmental stage of larvae was examined 

by measuring the current velocity which larvae could just swim against 

in short bursts of activity. As larvae usually swam against the current - 

in between the sides and the centre, the mean current velocity (V) was 

used. 	The maximum current velocity at which larvae could remain station- 

ary near the sides of the tube was also recorded. This velocity (V 1 ) 

was calculated at 1 mm from the side of the tube. 

Average current velocities V and V 1  withstood by larvae of both 

species increased with development of larvae (Table 3.1). 	They were 

not significantly different (t-test, P>0.05) between R. tapirina and 

A. rostratus larvae at similar stages of development before metamorphosis. 

Metamorphosing and metamorphosed A. rostratus larvae, however, could swim 

against significantly stronger current velocities than R. tapirina larvae. 

Displaced A. rostratus larvae were able to re-establish contact with the 

sides of the tube more readily and remain stationary at higher current 

velocities than R. tapirina. 

55 



TABLE 3.1  Mean current velocity (V) which larvae could just move 
against in short bursts of rapid swimming and maximum 
current velocity (V 1 ) at which larvae could remain stat- 
ionary near the side of the tube. V 1  was calculated at 
1 mm from the side of the tube. Current velocities are 
averaged for 4-8 larvae at each stage of development. 

Developmental 
Stage 

Rbombosolea 
tapirina 

V 	V1 
(cm sec-1 	

-1 
) 	(cm sec 

Developmental 
Stage 

) 

Ammotretis 
rostratus 

V 	V 

	

(cm sec -1 	
1 

) 	(cm sec -1 ) 

2a 1.1 0.5 

2b 1.8 0.8 2b-3b 1.5 0.8 

3b4b 2.2 1.0 4b 2.3 0.9 

5-M 5.2 2.5 5-M 7.4 >2.8 

3.3.2 Light  

Regardless of the experimental light regime, R. tapirina larvae at 

stage 2a were significantly more abundant in the bottom 25 cm of the tube 

than the top 25 cm (t-test, P<0.05) (Figure 3.1). 	The numbers at the 

surface increased at stage 2b and by stage 3b4b were significantly higher 

at the surface than the bottom (t-test, P<0.05). 	After settling on the 

bottom (stage 5-M) the number of larvae at the surface decreased, and 

juveniles metamorphosed for 2-3 weeks were significantly more abundant 

at the bottom (t-test, P<0.05). 	A. rostratus larvae, however, were 

significantly more abundant at the bottom of the tube than the top at 

all three developmental stages (t-test, P<0.05), irrespective of the light 

regime employed. 

Thus, larvae of both species apparently had a stronger preference 

for position in the water column than light intensity. The results sug-

gest, however, that stage 2a and 2b R. tapirina larvae avoided light 

whereas stage 5-M larvae appeared to be attracted to it. 

3.3.3 Salinity 

Cultured, metamorphosing R. tapirina were distributed across the 

salinity gradient. 	This distribution, however, was significantly different 
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to that of control fish (x 2  = 11.71, P<0.01). 	They were slightly more 

abundant and differed the most from control fish at 31-32%0 (Figure 3.2a). 

After 12-14 h from the start of the experiment, the distribution of fish 

in the gradient was similar to that occurring during the first four hours 

(X 2  = 6.50, P>0.05), although more fish were observed at each end of the 

gradient (Figure 3.2b). 	Stage 5-M larvae showed a bimodal distribution 

in the salinity gradient which was significantly different from that of 

the control fish (x 2  = 101.95, P<0.001); 30% of the fish were in 0-5%0 

and 35% in 32-34%0 (Figure 3.2c). 	At the end of the experiment, the 

mean length of fish (9.6 mm) in sections 1-3 of the observation chamber 

(0-10%0) was significantly greater than themean length (7.7 mm) in 

sections 10-12 (30-34%0) (t-test, P<0.001). 

Juveniles which had been metamorphosed for approximately 2 weeks 

and 7 weeks had similar distributions in the salinity gradient (x 2  = 7.34, 

P>0.05) and the results were combined. They congregated at the freshwater 

end of the gradient with 61% of the fish in 0-5%0 (Figure 3.2d); this dis-

tribution was still apparent 24-29 h after starting the experiment 

(X 2  = 1.51, P>0.05) .  (Figure 3.2e). 

Cultured stage 5-M A. rostratus were observed in the salinity gradient 

most frequently in 19-24%0  with most other fish at salinities >24%0 (Figure 

3.3a). This distribution, however, was not significantly different to 

the control (x 2  = 7.72, P>0.05). 	At the end of the experiment, the mean 

length of fish (11.6 cm) in sections 1-6 of the observation chamber (0-27%0) 

was significantly greater than the mean length of fish (9.7 mm) in sections 

7-12 (25-33%0) (t-test, 0.005<P<0.01). 	A. rostratus juveniles, approx- 

imately three weeks after metamorphosis, preferred low salinities with 

51% of the fish in 0-6%0; this distribution was significantly different 

to the control (x 2  = 153.60, P<0.001) (Figure 3.3b). 

Wild-caught R. tapirina juveniles rapidly moved towards freshwater 

when placed in the salinity gradient; 58% of the fish were recorded in 

0-2%0 (Figure 3.4a). This distribution was significantly different to 

that of control fish (x 2  = 46.85, P<0.001). 	Similarly, wild A. rostratus 

juveniles were observed most frequently in low salinities; 75% of the fish 

were in 0-4%0 (Figure 3.4b). 	However, control fish (1) of Figure 3.4b 

also showed a strong preference for section 1 of the observation chamber. 

Water entered the mixing compartment of section 1 at the bottom only but 
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dropped from a height of 12 cm into the other mixing compartments, thus 

causing turbulence. Only when the inlet reservoirs were turned around, 

so that water entered mixing compartment 12 from the bottom only, did 

fish move from section 1 to section 12 (Figure 3.4b, control 2). 	Control 

A. rostratus thus appeared to prefer the least turbulent section of the 

observation chamber. The experiment was repeated with the maximum flow 

of freshwater dropping from a height, causing turbulence at section 12 

and seawater at section 1 with least turbulence. The fish again selected 

low salinities, with 63% occurring in 0-6%0 (Figure 3.4c). A. rostratus 

juveniles thus have a stronger preference for low salinities than low 

levels of turbulence. The distribution of control fish was re-examined 

with the tubing removed; they showed an equal end-of-tank bias and the 

distribution was significantly different to that of fish in the salinity 

gradient (x 2  = 60.72, P<0.001; Figure 3.4c). 

3.3.4 Substrate 

Both wild R. tapirina and A. rostratus juveniles showed a preference 

for fine sand of particle size 0.25 - 0.125 mm (Figure 3.5). 	However, 

the distributions of the two species on the four substrate types were 

significantly different (X 2  = 43.40, P<0.001). 	R. tapirina were con- 

siderably more abundant on the fine and very fine (<0.125 mm) sand, but 

less abundant on the coarse sand (2.0 - 0.5 mm), than A. rostratus. 

Also, R. tapirina juveniles showed a strong preference for fine sand 

whereas abundances of A. rostratus were similar on coarse, medium and 

fine sand. 

The distributions of both species were significantly different to 

the controls (R. tapirina x 2  = 53.03, P<0.001; A. rostratus x 2  = 17.20, 
P<0.001). 

3.3.5 Temperature  

• Wild-caught R. tapirina juveniles in a temperature gradient were most 

abundant at 11.3 - 15.0 °C (56.0% of total observations). 	Wild A. rostratus 

juveniles, however, preferred higher temperatures with 47% of fish at 

18.0 - 20.9 °C (Figures 3.6a,3.6b).The distributions of both species in 

the temperature gradient were significantly different from the controls 

(R. tapirina x 2  = 11.48, 0.001<P<0.01; A. rostratus x 2  = 29.33, P<0.001). 
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3.4 DISCUSSION  

The larvae of both R. tapirina and A. rostratus were observed to be 

weak swimmers. They mostly drifted passively with the current and only 

swam against low current velocities in short bursts of activity. Once 

settled on the bottom they were able to maintain themselves against current 

velocities which were more than twice those withstood by planktonic larvae. 

Plaice, Pleuronectes platessa, larvae generally showed similar responses 

to current velocities but were able to swim against stronger currents 

than the two species in the present study (Arnold, 1969; Ryland, 1963). 

Plaice larvae, however, are larger in size at all stages of development. 

The results therefore suggest that R. tapirina and A. rostratus larvae are 

mainly dispersed by water currents or wind-induced surface water movements 

until they settle on the bottom. Other flatfish larvae are also thought 

to be transported mainly by water movements, e.g. turbot, Scophthalmus 

maximus (Riley et al., 1981), plaice (Rauck, 1974) and lemon sole, 

Paraphrys vetulus (Ketchen, 1956). 

The greater ability of A. rostratus to withstand higher current veloc-

ities than R. tapirina after settlement on the bottom is probably related 

to the larger size of A. rostratus at metamorphosis (Chapter 6). 	This 

is also in accordance with the greater abundances of A. rostratus juveniles 

than R. tapirina, at the mouth of the Pittwater estuary where the current 

flow was stronger than on the large sheltered sandflats (Chapter 2). 

However, the responses to current velocities of metamorphosing larvae 

and juveniles, which have settled on the bottom, may be different in the 

natural environment to those in a glass tube. The fish can bury into a 

sandy substrate or seek protection behind sand ripples. 	Nevertheless, 

Arnold (1969) observed that buried 0-group plaice generally did not react 

to the current until the covering layer of sand had been eroded away. 

They then orientated upstream which was hydrodynamically advantageous in 

maintaining station on the sea-bed. As the morphology of R. tapirina and 

of A. rostratus are similar to that of plaice, they may behave in a 

similar manner. 

R. tapirina larvae showed an ontogenetic change in their response 

to position occupied in the water column and possibly to light intensity. 

Conversely, A. rostratus larvae were most abundant at the bottom of the 
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tube at all developmental stages studied, regardless of light regime. 

These results suggest that A. rostratus larvae were selecting for depth 

or proximity to the substrate, which might explain their low numbers in 

the plankton tows (Chapter 2). 	The larvae of each species were most 

abundant at different levels of the water column at the three develop-

mental stages studied. This separation of larvae by depth may reduce 

interspecific competition, particularly for food, in the natural environ- 

ment. 	From these results additional experiments are suggested, e.g. 

monitoring the positions of larvae in a horizontal tube with light at one 

end, to investigate the responses of larvae to light without the influence 

of depth. 	However, only one batch of larvae was cultured in 1982 and 

further experimentation was not possible. 

There was no evidence of vertical movements in response to different 

light regimes by larvae of either species at any one stage of development. 

Vertical migration, however, has been observed in R. tapirina in the 

field (Roper, 1979). 	Other species of flatfish also undergo vertical 

migration, although the results vary in the time and duration of migrat- 

ion between methods of study and between species. 	Late larval stages 

of R. tapirina, R. plebia and Peltorhamphus latus (Roper, 1979) and the 

stone flounder, Kareius bicoloratus (Tsurata, 1978) were more abundant 

near the surface at night than during the day. 	Creutzberg et al. (1978) 

caught higher numbers of late larval stages of plaice during the flood 

tide than the ebb, regardless of time of day. 	However, Blaxter (1973) 

and Gibson et al. (1978) found experimentally that plaice larvae moved to 

the surface at dusk and moved away at dawn in response to changing light 

intensities. 	The lack of evidence for vertical migration in the two 

species of flounder studied may be due to experimental conditions not 

reflecting the natural situation or because the cultured larvae had not 

been exposed to natural environmental variables such as tidal movements. 

An ontogenetic change in preferred salinities from marine to almost 

freshwater conditions was observed in both R. tapirina and A. rostratus 

during metamorphosis. 	After metamorphosis they both preferred 0-6%0 

salinity. This change in preferred salinities is probably important in 

drawing larvae into estuaries. 	However, salinity preferences after 

metamorphosis probably do not influence habitat partitioning by the two 

species. 	Evidence for similar changes in preferred salinities during 

the larval to juvenile stage of other species of flatfish have been found. 
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Stone flounder (Tsuruta, 1978) and flounder Platichthys flesus (Riley 

et al., 1981) spawn in the open sea whereas 0-group juveniles are abund-

ant in areas of low salinities in estuaries. 	Early post-larvae of 

summer flounder, Paralichthys lethostigma had maximum growth rates at 

30%0 (Deubler, 1960) and more advanced post-larvae at 5-15%0 (Stickney 

and White, 1973). 	Also, plaice yolksac larvae tolerated salinities of 

15-60%0 for one week but only 2.5-45%0 after metamorphosis (Holliday and 

Jones, 1967). 	They suggest that at metamorphosis, functional changes 

in the epidermis reduce the high salinity tolerance, and the development 

of a well-organized kidney increases the ability to survive at low 

salinities. 

Young winter flounder, Pseudopleuronectes americanus, were observed 

in laboratory studies by Frame (1973) to consume 40-50% less oxygen when 

the salinity decreased from 30%0 to 20%0 or 10%0. 	This decrease in 

respiration represented a significant decrease in energy expenditure and 

apparently resulted from a reduced osmotic load as the external medium 

approached isotonicity. 	Frame (1973) suggested that this is a physio- 

logical reason why juvenile winter flounder are abundant in estuaries. 

After settling on the bottom, the type of substrate available (which 

is related to the degree of exposure and turbulence) is probably important 

in determining the distributions of the two species. Although wild-

caught fish of both species preferred fine sand, A. rostratus were more 

abundant than R. tapirina on coarse and medium sand. By contrast, 

R. tapirina showed a stronger preference for the finest sand. Roper (1979) 

also found that R. tapirina juveniles preferred fine sand and were not 

common on the coarser substrates. 	These substrate preferences of the 

two species agree with their distributions in estuaries (Chapter 2). 

A. rostratus were most abundant at the mouth of the estuary which had 

a slightly coarser substrate than on the large, sheltered sandflats where 

R. tapirina occurred in the highest numbers. Distributions of other spec-

ies of flatfish have also been related to substrate types. The distribut-

ions of 0-group turbot were linked with shallow depths and exposed beaches 

of coarse sand by Gibson (1973) and Riley et al. (1981). Dover sole, 

Solea solea and plaice occupied nursery grounds which were characterised 

by shallow water protected from wave and tidal scour and a mud/sand sub-

strate.  (Riley et al., 1981). 
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The effect of turbulence on the distributions of juvenile R. tapirina 

and A. rostratus was not examined experimentally due to the practical 

difficulties of establishing a gradient of turbulence and associated 

tidal scour conditions which simulated the natural situation. However, 

the results of the salinity gradient experiments suggest that A. rostratus 

have a stronger preference for low turbulent conditions than R. tapirina. 

The highest abundances of A. rostratus in deeper water, therefore, may 

be related to a preference for low turbulent and tidal scour conditions. 

As mentioned above, the distributions of other species of flatfish have 

been found to be influenced by levels of turbulence. 

In a temperature gradient, the higher preferred temperatures of 

A. rostratus compared to R. tapirina are not in accordance with their 

field distributions. 	A. rostratus were most abundant in deeper, cooler 

water during spring and summer. This possibly relates more to A. ros-

tratus being at the southern end of its distributional range. Even so, 

Roper (1979) found that the critical thermal maximum for R. tapirina 

was 32.6 °C which is higher than any field temperatures recorded during 

the present study. Thus temperature does not appear to be important in 

separating the distributions of the two species of flounder although it 

has been found to be important in other species of fish (e.g. Reynolds, 

1977; Magnuson et al., 1979). 

These results thus suggest that larvae are dependent on water move-

ments to transport them towards nursery grounds. During metamorphosis 

ontogenetic changes in preferred salinity, position in the water column 

in R. tapirina and possibly depth (Chapter 2), as well as a preference 

for fine sand, would play a role in guiding larvae towards settling on 

shallow estuarine sandflats. Once on the nursery grounds different 

swimming abilities and preferences for depth (Chapter 2), substrate type 

and possibly levels of turbulence by each species appear to play a partial 

role in determining the local distributions and partitioning of the habitat. 

These results agree with the ideas presented by Moore (1975) that the 

local distribution of a marine species is determined initially by ecolog-

ical opportunity followed by behavioural habitat selection in conjunction 

with habitat availability. 

The behavioural and physiological responses of other flatfish larvae 

and juveniles to environmental factors during immigration onto nursery 
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grounds are not well understood. As high mortalities occur at this 

stage, such information is important to the study of fish population 

dynamics. 	Tsuruta (1978) suggested from field studies that stone 

flounder develop the ability to perceive changes in salinity and light 

intensity, and become strongly dependent on substrate at metamorphosis. 

This results in the larvae being transported onto the nursery grounds 

by the night flood tide. Creutzberg et al. (1978) found evidence for 

the immigration of plaice larvae onto tidal sandflats by selective trans-

port in tidal currents; the larvae move with the flood tide and settle 

on the bottom during the ebb where they are probably retained by favour-

able feeding conditions. 	They suggest that larvae move from the open 

sea to tidal inlets by transport in onshore residual currents along the 

bottom. Moreover, prolonged periods of pelagic swimming by larvae are 

probably induced in situations of an inadequate food supply and are 

reduced when larvae detect food substances transported from inshore waters. 

It is not known whether R. tapirina and A. rostratus larvae behave in a 

similar way but the results suggest that they may also move into estuaries 

by selective tidal transport. 	Both species are sensitive to changes in 

salinity at this time. It is also likely that the newly-metamorphosed 

juveniles are retained in shallow water by the favourable feeding con-

ditions. 

The distributions and abundances of other 0-group flatfish which co-

exist in shallow, coastal waters have been found to be influenced by many 

interacting environmental parameters. 	In particular, the juveniles of 

numerous species have distinct depth distributions which differ from 

species to species (Gibson, 1973; Pearcy, 1978; Roper, 1979; Riley et a/.,1981). 

These preferred depths are usually linked with other factors which var- 

iously affect distributions, e.g. substrate, degree of exposure, tidal 

scour, temperature, salinity (Gibson, 1973; Riley et al., 1981). The 

differences in depth distributions of R. tapirina and P. latus were also 

related to differences in temperature and oxygen concentration tolerances 

of the two species (Roper, 1979). 	The distributions of two congeneric 

species of bothid flounders,..however, were found by Burchmore (1982) to be 

governed mainly by substrate, and by Powell and Schwartz (1977) by both 

substrate and salinity. 



CHAPTER 4  

FEEDING OF JUVENILE FLATFISH  



4.1 INTRODUCTION  

The food and feeding habits of juveniles of many northern hemis-

phere species of flatfish have been studied, often in conjunction with 

a study of their population dynamics on the nursery grounds; for example, 

turbot, Scophthalmus maximus (Jones, 1973a); plaice, Pleuronectes platessa 

Thijssen et al., 1974; Kuipers, 1975b,1977); plaice and dabs, Limanda 

limanda (Macer, 1967; Edwards and Steele, 1968) and English sole, 

Parophrys vetulus (Toole, 1980). 	The feeding of plaice, in particular, 

has been well documented and, due to their high numbers, they are con-

sidered to be important secondary consumers of the intertidal ecosystem 

(Kuipers, 1977). 	These studies have shown that juvenile flatfish feed 

predominantly on benthic invertebrates. 	Their feeding activity, however, 

may vary between habitats. 	De Groot (1971) reviewed the interrelation- 

ships between types of food eaten, feeding behaviour, diurnal activity 

and morphology of the alimentary tract in flatfishes. 

Several studies on the morphology and the feeding of flatfishes 

in Australasia have shown that the morphology of the alimentary tract 

and diets of Rhombosolea tapirina and Ammotretis rostratus are similar. 

They both have asymmetrical jaws, small teeth, moderate number of small 

gill rakers and an elongate and convoluted intestine (Norman, 1926). 

Also, neither species has a functional stomach or pyloric caecae (Grove 

and Campbell, 1979). 

The diets of juveniles of the two species have been examined in 

areas where they do not occur together. 	Burchmore (1982) found that 

juvenile A. rostratus (<14 cm T.L.) ate predominantly crustaceans 

(amphipods) and polychaetes in Botany Bay, N.S.W. and R. tapirina were 

observed by Roper (1979) during one day in Otago Harbour, New Zealand, 

to consume harpacticoids, amphipods and polychaetes. 	In Great Swanport 

Bay, Tasmania the two species occurred sympatrically and larger juveniles 

of both species ate mainly amphipods and polychaetes (Last, 1983). 
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These findings raise the question of whether co-existing juveniles 

of R. tapirina and A. rostratus on the nursery grounds consume the same 

food organisms or partition the food resources of the habitat. This may 

be critical during periods of peak recruitment when newly-metamorphosed 

juveniles of the two species occur together in high densities on estuarine 

sandflats. The aim of this particular study, therefore, was to investigate 

the feeding patterns of R. tapirina and A. rostratus juveniles and to 

examine for partitioning of the food resources of the habitat. Feeding 

patterns of A. lituratus juveniles also were studied, but in less detail. 

The diets and feeding activity of newly-metamorphosed R. tapirina and 

A. rostratus each season in two areas, and at one site over 24 hours were 

compared; those of larger 0-group and I-group juveniles, including 

A. lituratus, were studied at one site over 24 hours. 

4.2 METHODS  

4.2.1 Sampling Procedure  

The food organisms eaten by recently-metamorphosed juveniles of 

R. tapirina and A. rostratus (T.L. 1-3 cm) were investigated at site D1 

(Nutgrove) and site F3b,c (Pittwater). 	The foregut contents of twenty 

fish of each species, or less depending on the numbers caught, which 

were sampled in the push-net at each site (see Chapter 2) in December 

1980 (summer), March-April 1981 (autumn), July-August 1981 (winter) and 

October 1981 (spring) were examined. No small A. rostratus were caught 

during March-May 1981 (autumn) at site F3. 	The diets and diurnal feed- 

ing activity of newly-metamorphosed R. tapirina and A. rostratus were 

examined in fish caught every 3 h for 27 h at site D1 in January 1982 

(see Chapter 2). 	The push-net was pushed for 100 m along the beach at 

three depths 20 - 30 cm, 50 - 70 cm and 90 - 110 cm. 	The foregut contents 

of up to ten fish of each species in each depth at every time interval 

were examined. 

The food and feeding habits of larger 0- and I-group R. tapirina, 

A. rostratus and A. lituratus were studied over 24 h at site F4 (Cremorne) 

in March 1981. The beam trawl was towed for 15 min every 3 h for 24 h 

at a depth of 1.2 - 2.4 m at station F4a, a semi-exposed beach, and at 
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station F4b, a sheltered sandflat in the marine inlet. The foregut 

contents of ten fish of each species, or less depending on the numbers 

caught, were examined from each time interval at each station. 

4.2.2 Gut Content Analysis  

All fish caught were immediately anaesthetised in tricaine methano-

sulfonate solution to prevent regurgitation of food and then preserved. 

in 5% V/V formalin. In the laboratory they were weighed and the total 

length was measured. The contents of the first loop of the foregut 

were removed and sorted into taxonomic groups under a dissecting micro-

scope. The percentage by volume of each major food category (e.g. 

amphipods, polychaetes) was estimated by visual inspection to the nearest 

5% for dominant food types and to 1% for those which were not abundant. 

Further identification of prey animals was often difficult as many guts 

contained partially digested food segments, particularly of amphipods. 

Where possible, the relative abundances of dominant prey species of 

each food category were recorded. 

After this assessment, the total volume of the foregut contents was 

determined using a method similar to that of Hellawell and Abel (1971). 

The foregut contents were squashed to a uniform depth between two glass 

squares which were placed in a vertically-mounted slide projector. The 

outline of the squashed gut contents was projected onto graph paper and 

the area of the squash image was determined by counting the number of 

squares that it occupied. 	The relationship between a known volume of 

water and the area it covered when projected was used to calibrate the 

volume of the squashed gut contents. 

4.2.3 Data Presentation and Analysis  

The relative importance of each taxonomic group in the diets of the 

three species was examined by calculating the percentage volume,A..e. the 

volume of each taxonomic group expressed as a percentage of the total 

volume of food in the foreguts. The percentage frequency of occurrence, 

i.e. the percentage number of foreguts containing each food type to the 

total number of foreguts containing food,was also calculated. This 
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measure is useful in characterizing diets but not in determining over-

lap (Wallace, 1981). 

The quantity of food eaten at different times of the day or in 

different months by fish of different sizes was standardized by expressing 

the weight of foregut contents as a percentage of fish weight (% S.S.R.), 

after converting gut volume to weight assuming that the specific gravity 

of gut contents equalled unity. 

Intraspecific and interspecific differences in gut contents were 

estimated using the Schoener (1970) diet overlap index 

a = 1 - 0.5( 	- PYil) 

where Pxi and Pyi are proportions of food category i in the diet of 

species x and y, or one species at sites x and y or in seasons x and 

y, respectively. 	This index is considered to be an adequate measure of 

dietary overlap in the absence of resource-availability data (Hulbert, 

1978; Wallace, 1981). 	Percentage volume of food organisms only were 

used to calculate the index; the percentage frequency of occurrence is 

not suitable because it is not a proportional measure of diet. Overlap 

is accepted as being biologically significant when the index is greater 

than 0.6. 

4.3 RESULTS  

The food organisms found in the foreguts of the R. tapirina and 

A. rostratus juveniles,identified to the lowest possible taxonomic level, 

are given in Table 4.1. 	All food types were eaten by both species except 

for Isopoda by R. tapirina, and Leptostraca by A. rostratus, only. The 

organisms eaten by A. lituratus juveniles were identified only to the 

major food category as few fish contained food in their guts and always 

only small quantities of well digested prey segments. 

4.3.1 Seasonal Feeding Patterns of Newly-metamorphosed R. tapirina  
and A. rostratus  
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TABLE 4.1 	Food organisms found in the foreguts of juvenile 
R. tapirina and A. rostratus 

Amphipoda 

Paracorophium excavatum 
Corophium sp. 
Limmoporeia yarrague 
Metaphoxus tuckatuck 
Podoceropsis sp. 
Guernia sp. 
Paradexamine sp. 
Exoediceros sp. 
Primitive Oedicerotidae 
Eusiridae 
Other unidentified amphipods 

(Corophiidae) 
(Corophiidae) 
(Phoxocephalidae) 
(Phoxocephalidae) 
(Corophiidae) 
(Dexaminidae) 
(Dexaminidae) 
(Oedicerotidae) 
(undescribed genera) 
(not identified further) 

Harpacticoida 

Dactylopodia sp.? 	(Thalestridae) 

Polychaeta 

Harmothoe sp. 
Phyllodoce sp. 1 
Phyllodoce sp. 2 
Eusyllis sp.? 
Armandia sp. 
Other unidentified polychaetes 

Mysida 

Leptomysini? 

Cumacea 

Cyclaspis caprella 
Cyclaspis australis 
Anchistylis waitei 

Leptostraca 
Calanoida 
Ostracoda 
Isopoda 
Nemertea 

(Polynoidae) 
(Phyllodocidae) 
(Phyllodocidae) 
(Syllidae) 
(Opheliidae) 

(Mysinae) 

(Bodotriidae) 
(Bodotriidae) 
(Diastylidae) 

(minor occurrence in foreguts, 
not identified further) 
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metamorphosed juveniles of R. tapirina and A. rostratus at sites D1 

and F3 in different seasons (Figure 4.1) indicates that the diet of 

each species generally varied seasonally and between sites. Diet over-

lap indices for each species were significantly different between the 

two sites in all seasons, except for A. rostratus in spring (Table 4.2). 

Both species consumed a greater quantity of poiychaetes and amphipods 

at site D1 than site F3. 	Harpacticoids, as well as mysids for A. rostratus, 

were eaten more frequently at site F3. 	Overlaps in the diet of R. tap- 

irina between seasons at site D1 were significant in autumn-winter when 

amphipods and harpacticoids were the major components of the diet, and 

in spring-summer due to the high consumption of polychaetes. 	At site 

F3 overlaps were significant in all seasons due to the high percentage 

volume of harpacticoids in the guts. The diet of A. rostratus in summer 

was significantly different from autumn and winter at site D1, and from 

winter and spring at site F3. The percentages of polychaetes and sand 

in the guts at site D1, and mysids at site F3, were highest in summer. 

The diets of R. tapirina and A. rostratus overlapped significantly 

in autumn and winter at site D1 when both species consumed predominantly 

amphipods, and in winterat site F3 when harpaaticoids were the major 

component of the diet of both species (Table 4.3). The overlaps in diets 

of the two species were not significant at either site, or for the two 

sites combined,when the results were pooled for all seasons (Table 4.4). 

Figure 4.1 and Table 4.4 show that although both species generally ate 

the same food organisms, the proportions of each food type differed 

between the two species. 	R. tapirina consumed a greater quantity of 

polychaetes and harpacticoids but fewer amphipods and mysids than 

A. rostratus. 

• TABLE 4.3 Schoener diet overlap indices between R. tapirina and 
A. rostratus (calculated using percentage volume of 
food organisms) 

Summer Autumn Winter Spring All Seasons 

Site D1 

Site F3 

All sites 

0.57 

0.34 

0.52 

0.75 

0.52 

0.62 

0.69 

0.45 

0.39 

0.37 

0.38 

0.56 

0.41 

0.50 



FIGURE 4.1  Cumulative percentage volume of food organisms 

in the foregut of newly-metamorphosed R. tapirina 

and A. rostratus at site D1 and site F3 in four 

seasons 

n = number of fish examined, all contained food 

in the foregut 
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TABLE 4.2  Schoener diet overlap indices (calculated using 
percentage volume of food organisms) 

(a) Between sites D1 and F3 for each species 

Summer Autumn Winter Spring 	All Seasons 

R. tapirina 	0.21 
	

0.42 	0.48 
	

0.27 	0.38 

A. rostratus 
	

0.34 	0.34 	0.62 	0.48 

(b) Between seasons for each species 

Site D1 	Site F3 
A 	W 	SP 	S 	A 	W 	SP 

R. tapirina 	S 	1 	0.18 0.15 0.80 	S 1 	0.89 0.86 0.85 

	

A 	1 	0.88 0.38 	A 	1 	0.84 0.78 

1 	0.36 	W 	1 	0.91 

	

SP 	1 	SP 	1 

A 	W 	SP 	S 	W 	SP 

A. rostratus 	S 	1 	0.44 0.39 0.61 	S 	1 	0.37 	0.40 

	

A 	1 	0.95 0.83 	W 	1 	0.60 

1 	0.78 	SP 	1 

	

SP 	1 

S = Summer; A = Autumn; W = Winter; SP = Spring 
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TABLE 4.4  Percentage frequency of occurrence and percentage volume of food organisms in the foregut of 
R. tapirina 
seasons. 

and A. rostratus juveniles at site D1 and site F3. 	The results are pooled for all 

Prey Taxa 

R. tapirina A. rostratus 

Site D1 Site F3 Site D1 Site F3 

Frequency 	Volume 
(%) 	(%) 

Frequency 
(%) 

Volume 
(%) 

Frequency 	Volume 
(%) 	(%) 

Frequency 
(%) 

Volume 
(%) 

Amphipoda 68.24 31.56 53.95 10.92 92.21 75.34 66.67 36.62 

Harpacticoda 62.35 11.91 98.68 67.28 25.97 1.98 69.70 14.74 

Polychaeta 62.35 45.51 14.47 4.04 38.96 12.84 9.01 0.08 

Mysidacea 3.95 3.53 27.27 29.62 

Sand 50.59 9.06 73.68 12.53 .  36.36 8.33 69.70 10.41 

Digested material 18.82 1.68 21.05 1.69 12.99 1.32 36.36 8.49 

Number examined 80 76 77 38 

Number empty 0 0 

Size range (mm) 10-28 11-29 11-29 12-27 

Schoener diet overlap index (percentage volume) between R. tapirina and A. rostratus at 

Site D1 = 0.56 

Site F3 = 0.41 

Sites D1 + F3 = 0.50 



The seasonal pattern of feeding of the two species was examined 

using the seasonal mean % SSR at the two sites (Figure 4.2). Feeding 

levels of R. tapirina were highest in summer at site D1, and in autumn 

at site F3. 	They were low in winter at site D1 and in summer at site 

F3. 	A. rostratus had the highest levels of feeding in autumn at site 

D1 but no fish were caught in this season at site F3; feeding levels at 

both sites were low in spring. The % SSR's of R. tapirina only, were 

compared by ANOVA (as described in Chapter 2). They were not compared 

for A. rostratus because the numbers of fish caught at site F3 were 

much lower than at site Dl. 	The site x season interaction was signif- 

icant and further testing showed that the % SSR's were significantly 

different between sites D1 and F3 in summer only (Table 4.5). At site 

D1 the % SSR's were significantly higher in summer than winter and at 

site F3 were higher in autumn and spring than summer. 

TABLE 4.5 Results of two-way ANOVA comparing 9..n(x+1) transformed 
% SSR's of R. tapirina at sites D1 and F3 in each season 

ANOVA Table 

SS 
	

DF 	MS 

Site 	0.0015 	1 	0.0015 	0.0123 	P>0.05 

Season 	1.0035 	3 	0.3345 	2.7699 	P<0.05 

Site x season 	1.8991 	3 	0.6330 	5.2422 	P<0.01 

Error 	17.8718 	148 	0.1208 

Total 	20.7344 	155 	0.1338 

Site x season interaction  

t-test of site D1 versus site F3 

	

Summer 	t = 3.3175, P<0.01 

	

Autumn 	t = 1.0259, P>0.05 

	

Winter 	t = 1.8159, P>0.05 

	

Spring 	t = 0.7009, P>0.05 

S.N.K. test for seasons 

Site D1 	Winter Spring Autumn Summer 

Site F3 	Summer Winter Spring Autumn 
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FIGURE 4.2  Seasonal pattern of feeding: mean % S.S.R. (± S.E.) 
of newly-metamorphosed R. tapirina and A. rostratus 
in each season at site Dl and site F3 



4.3.2 - Diel Feeding Patterns of Newly-Metamorphosed  
R. tapirina and A. rostratus  

Newly-metamorphosed juveniles of both R. tapirina and A. rostratus 

at site D1 over 27 h ate predominantly amphipods, in particular species 

of corophiids (Figure 4.3, Table 4.6). The diet overlap index between 

the two species was significant. However, Table 4.6 shows that harpacti-

coids, polychaetes and sand particles occurred more frequently, by 

percentage volume and percentage frequency of occurrence, in the guts of 

R. tapirina than A. rostratus. 

TABLE 4.6 Percentage frequency of occurrence and percentage volume of 
food organisms in foregut of R. tapirina and A. rostratus 
juveniles caught during 24 h sampling at Nutgrove (site D1) 

R. tapirina A. rostratus 

Prey Taxa Frequency 	Volume Frequency 	Volume 
(%) 	(%) (%) 	(%) 

Amphipoda 96.9 	71.9 98.8 	92.8 

Harpacticoida 68.0 	11.3 28.8 	1.3 

Polychaeta 10.2 	6.1 5.0 	1.7 

Nemertea 1.6 	0.1 2.5 	0.1 

Sand 71.1 	7.9 38.8 	2.3 

Digested material 33.6 	2.3 16.3 	1.6 

Other 3.1 	0.4 2.5 	0.2 

Number examined 196 118 

Number empty 68 38 

Size range (mm) 10-40 17-40 

Schoener diet overlap index (percentage volume) between R. tapirina 
and A. rostratus = 0.791 

Both species were predominantly daytime feeders. The % SSR of 

each species increased during the day and decreased during the night to 

lowest levels at dawn, and then increased during the next day (Figure 

4.4). The percentage of fish with empty guts also increased during the 

night. 	A. rostratus, however, continued to feed for longer after 

nightfall than R. tapirina and both species had the greatest variation 

in % SSR values at this time. 
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FIGURE 4.3  Cumulative percentage volume of food organisms 

in the foregut of R. tapirina and A. rostratus 

every 3 h for 27 h at site D1 (Nutgrove) 

The key to the different food types is given 

in Figure 4.1 

n = number of fish with food/number of fish 

examined 
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FIGURE 4.4 Diel pattern of feeding: mean % S.S.R. (± S.E.) 
of newly-metamorphosed R. tapirina and A. rostratus 
every 3 h for 27 h at site Dl (Nutgrove) 
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Relative abundances of newly-metamorphosed juveniles of R. tapirina 

and A. rostratus at different depths over 24 h indicate that both species 

move up and down the shore with the tide but are more concentrated in 

shallow water (10 - 30 cm) at night than during the day (see Figure 2.10). 

These movements into shallow water, however, are apparently not related 

to feeding as little or no food was consumed during the night. Both 

species were feeding predominantly at the same depth of 50 - 70 cm as 

they were both relatively more abundant at this depth during the day. 

4.3.3 Diets and "Diel' , Feeding Activity of Larger 0-group and  
I-group Flounder  

At site F4, Cremorne, amphipods were the major component of the 

diet of all three species with mysids, cumaceans and polychaetes of 

minor importance for R. tapirina and A. rostratus and cumaceans for 

A. lituratus (Figure 4.1, Table 4.7). The food categories eaten by 

R. tapirina and A. rostratus did not differ between day and night time. 

The index of overlap in diet between these two species was significant. 

However, when the'amphipods were divided into families, clear differences 

in the diets of the two species were apparent (Table 4.8). Corophiids 

and oedicerotids were dominant more frequently in the diet of R. tapirina 

than A. rostratus. 	Conversely phoxocephalids and eusirids were con- 

sumed more often by A. rostratus. 

The feeding activity over 24 h was similar for R. tapirina and 

A. rostratus (Figure 4.6). 	The % SSR of both species, pooled for the 

two stations, was highest during the daytime high and ebb tides, although 

the greatest variation in % SSR's also occurred at these times. They 

were lowest after low tide during the day. 	During the night small 

quantities of food were eaten by both species irrespective of the stage 

of the tide. 	The ratio of fish with food in the foregut to the total 

number of fish examined was generally higher at night than during the 

day for both species (Figure 4.5). However, the fullness of the foregut 

varied during the day from empty to full whereas most fish caught at 

night had eaten only small quantities of food. 	A. lituratus juveniles 

contained comparatively low volumes of food in the foregut during the 

night only. 
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FIGURE 4.5  Cumulative percentage volume of food organisms in 

the foregut of larger 0-group and I-group 

R. tapirina, A. rostratus and A. lituratus every 

3 h for 24 h at site F4 (Cremorne) 

n = number of fish with food/number of fish 

examined 

LT = low tide, HT = high tide 
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TABLE 4.7  Percentage frequency of occurrence and percentage volume 
of food organisms in the foregut of R. tapirina, A. rostratus 
and A. liturata juveniles over 24 h at site F4a,b 

R. tapirina 	A. rostratus 	A. lituratus 

Prey Taxa Frequency Volume Frequency Volume Frequency VVolume 
(%) (%) (%) (%) (%) (%) 

Amphipoda 98.8 64.5 100.0 70.8 90.0 52.3 

Polychaeta 17.9 3.5 16.7 2.0 20.0 3.7 

Mysidacea 29.8 1.8 14.8 1.8 

Cumacea 41.7 1.8 24.1 4.7 50.0 12.1 

Ostracoda 14.3 0.6 7.4 0.1 

Nemertea 10.7 0.3 1.9 0.1 20.0 0.9 

Isopoda 9.5 0.6 
, 

Leptostraca 1.9 2.3 

Sand 95.2 12.4 94.4 5.9 80.0 8.8 

Digested 
material 96.4 13.9 85.2 12.1 60.0 22.1 

Other 4.8 0.6 1.9 0.2 10.0 0.1 

Number examined 114 79 21 

Number empty 30 25 11 

Size range (mm) 44-130 44-134 71-152 

Schoener Diet Overlap index between R. tapirina and A. rostratus 

= 0.886 (percentage volume) 
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FIGURE 4.6 • Diel pattern of feeding over 24 h: mean % S.S.R. (± S.E.) 
of larger 0-group and I-group R. tapirina, A. rostratus and 
A. lituratus at site F4 (Cremorne) 
LT =10w tide, HT = high tide 
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TABLE 4.8  Percentage frequency of occurrence of the most abundant 
families of Amphipods in the guts of R. tapirina and 
A. rostratus 

Percentage Frequency 

Amphipoda 	R. tapirina 	A. rostratus 

Corophiidae 	64.1 	37.1 

Phoxocephalidae 	22.5 	49.6 

Dexaminidae 	3.0 	1.4 

Eusiridae 	0 	11.9 

Oedicerotidae 	10.4 	0 

The variation in abundances over 24 h of R. tapirina and A. rostratus 

juveniles were similar at each.station. 	However, the times of peak 

abundances differed between the two stations for both species (Figure 

4.7). 	At station F4a they were most abundant during the high and 

flood tides at night; few fish were caught during the day or around 

low tide at night. At station F4b a peak in abundance occurred during 

the daytime flood tide for both species. 	R. tapirina juveniles were 

generally least abundant during the night whilst the numbers of A. ros-

tratus were lowest during the day and nightime low tides. A. 1ituratus 

juveniles at station F4a did not show any trends in abundance; highest 

numbers were caught after the daytime low tide and high tide at night. 

4.4 DISCUSSION  

Newly-metamorphosed juveniles of both R. tapirina and A. rostratus 

were observed to be daytime feeders and consumed crustaceans, especially 

amphipods,and polychaetes. 	The quantities of each prey type eaten 

varied seasonally and between sites which implies plasticity in the feed- 

ing habits of both species. 	However, as the abundances of prey species 

in flounder habitat are not known, the change in diet could not be related 

directly to the availability of prey. 

Although newly-metamorphosed juveniles of both species ate the same 

food organisms, they appear to partially partition the food resource by 

consuming different proportions of each food type. The greater number of 
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FIGURE 4.7  Number of larger 0-group and I-group R. tapirina, 

A. rostratus and A. lituratus caught per 15 min 

tow at site F4a and site F4b 

LT = low tide, HT = high tide 
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the smaller harpacticoids eaten by R. tavirina probably relates-to their 

differences in size at metamorphoses; R. tapirina are 8.5-9.5 mm in 

length and A. rostratus 10.5-11.5 mm (Chapter 6). 

Larger 0-group and I-group R. tapirina and A. rostratus were not 

segregated by major food categories eaten or by time of feeding. 

Amphipods were the major prey of both species; however, the proportions 

of each family of amphipod eaten differed between the two species of 

flounder. 	Thus, the larger juveniles of A. tapirina and A. rostratus 

partially partitioned the habitat on the food species level. 

Although A. lituratus juveniles also ate mainly amphipods, the 

results suggest that their feeding habits are segregated from those of 

A. rostratus and R. tapirina. They apparently feed in areas other than 

those sampled as relatively low volumes of food were found in the gut, 

and they are probably night-time feeders. 

The diets of juvenile R. tapirina, A. rostratus and A. lituratus 

observed in the present investigation' are similar to those found in 

,previous studies; regardless of whether the species occurred sympatrically 

oriallopatrically: 	Last (1983) also found that the major components of 

the diet of A. rostratus and R. tapirina were amphipods and polychaetes, 

and of A. lituratus, amphipods and cumaceans. 	He observed that different 

prey species were taken by R. tapirina and A. rostratus at each area of 

the estuary. 	Although diets were similar at any one site, subtle differ- 

ences in prey selection were apparent between the species. 	In particular, 

the relative proportions of each prey type eaten by R. tapirina and 

A. rostratus varied. 	In New Zealand 0-group R. tapirina also consumed 

mainly harpacticoids, amphipods and polychaetes. They ate significantly 

less at night in terms of dry weight but not numbers of individuals as 

many small harpacticoids were eaten (Roper, 1979). 	The diet of small 

A. rostratus juveniles was observed by Burchmore (1982) to be dominated 

by amphipods and polychaetes. 

De Groot (1971) classified the Pleuronectiformes into three groups 

- fish feeders, crustacean feeders and polychaete-mollusc feeders. 

Pleuronectids, however, had representatives in all three groups. He 

placed R. tapirina in Pleuronectid type II group (i.e. mainly crustacean 

feeders) based on the morphology of the alimentary tract and in Pleuronectid 
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type III (i.e. polychaete-mdllusc feeders) by food organisms eaten. 

A. rostratus was classified by Burchmore (1982) as belonging to the 

Pleuronectid type III group. 	Thus, de Groot's (1971) classification, 

which is based on adult fish, is not appropriate for juveniles of 

these two species of flounder as they are polychaete-crustacean feeders, 

depending on locality or season. 	Similarly, juveniles of other species 

of flatfish feed mainly on polychaetes, small crustaceans and occasionally 

molluscs. 	Their diets may change also. -with season, locality or age, 

e.g. plaice (Macer, 1967; Edwards and Steele, 1968; Thijssen et al., 

1974; Kuipers, 1977), flounder (Moore and Moore, 1976; Summers, 1980), 

turbot (Jones, 1973a; dabs (Macer, 1967; Edwards and Steele, 1968), 

English sole (Toole, 1980). 

Juveniles of some species of flatfish (e.g. plaice, dab, flounder) 

consume large quantities of regenerating parts of molluscs and poly-

chaetes (Kuipers, 1973, 1975b;1977; Macer, 1967; Edwards and Steele, 

1968; de Vlas, 1979). About - 36% of the total annual consumption of 

plaice and 12% for flounder in the Dutch Wadden Sea was regenerating 

parts of macrobenthic animals (de Vlas, 1979). 	This constituted a con- 

siderable flow of energy from the macrobenthos to flatfish without a 

concomitant mortality of prey. 	Edwards and Steele (1968) considered 

that this initial feeding on regenerating parts of polychaetes and 

molluscs was important in sustaining the flatfish populations as they 

were numerically much larger at this stage, than later. As R. tapirina 

and A. rostratus did not consume regenerating parts of prey and as they 

occurred in high densities for several months, food supplies may possibly 

have become limiting. 

Partitioning of the food resources of the habitat by other co-existing 

species of flatfish have been observed. 	Juvenile plaice and dab ate 

similar food groups but differences in genera were apparent. Also 

differences in distributions of the two species probably help reduce 

over-exploitation of a common food supply; plaice have a wider distribut-

ion and are more abundant in shallower water than the dab population 

(Macer, 1967; Edwards and Steele, 1968). 	R. tapirina and Peltorhamphus 

latus ate similar food groups but the relative proportions eaten by each 

species varied. Also, P. latus consumed the same quantity of food by 

day as by night whereas R. tapirina ate significantly less at night 

(Roper, 1979). 	Roper considered that these differences in diet between 

the two species may have been due to their feeding in different areas or 

to the way in which they locate their prey. 
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The senses employed in feeding and the feeding activity of some 

species of flatfish appear to vary with locality. For example, juvenile 

plaice are mainly daytime feeders on open beaches (Edwards and Steele, 

1968; Thijssen et al., 1974) but on extensive sandflats where they 

retreat to tidal channels during low tide, a tidal rhythmicity in feed-

ing is observed (Kuipers, 1973, 1975b,1977). 	De Groot (1971) observed 

experimentally that plaice may use visual or chemical stimuli in their 

search for food. 	Similarly, adult R. plebia, R. leporina and Peltor- 

hamphus novaezeelandia are non-visual feeders on inactive benthis organ-

isms in Wellington Harbour, probably due to the high turbidity, but feed 

on active prey in other areas of New Zealand (Livingston, 1981). She 

suggests that, as well as olfactory and visual sense organs, the external 

taste and acoustico-lateralis systems of these flatfish are important 

in feeding. 	As larger R. tapirina and A. rostratus juveniles were feed- 

ing both during the day and at night, which implies various methods of 

prey detection, they may also use different senses for feeding in differ- 

ent localities. 	It also appears that senses other than vision, such 

as olfaction, become more important in feeding with age as recently 

metamorphosed juveniles of both species fed only during the day. 

The numbers of newly-metamorphosed juveniles of R. tapirina and 

A. rostratus in different depths over 27 h implies that both species 

have tidal-related movements, but the depths they occupy apparently 

vary mainly with the time of day. 	Roper (1979) also observed that most 

of the R. tapirina population moved onto the sandflats during high tide, 

both day and night, and that they possessed a pronounced circatidal rhythm 

of activity. This tidal activity rhythm, however, is not related to 

feeding rhythms as newly-metamorphosed juveniles of both R. tapirina and 

A. rostratus were observed to be daytime feeders. 	Activity independent of 

feeding rhythms has been observed in other species of flatfish. Juvenile 

plaice, for example, migrate into the intertidal zone during flood and 

high tide and are concentrated in shallower water at night. 	They feed, 

however, mostly during the day and do not show any evidence for a tidal 

effect on feeding (Gibson, 1973). 	Movements of R. tapirina and A. ros- 

tratus into shallower water at night are also not related to feeding. 

Gibson (1973) and Toole (1980) suggest that the nightly upshore movements 

of plaice and English sole, respectively, are to avoid predators. 

R. tapirina and A. rostratus may move into shallow water at night for 

similar reasons. 
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Abundances of larger juveniles of R. tapirina and A. rostratus 

at site F4 over 24 h are difficult to interpret. The differences in 

times of peak abundances of the two species between stations F4a and 

F4b may have occurred due to unrepresentative sampling or because they 

moved into water shallower than that sampled on the night-time high 

tide at the sheltered station F4b. 	However, at the send-exposed station 

F4b they may not have moved so close into shore due to wave action. 

Both species possibly preferred deeper water during the day. Abundances 

of the two species at different times of the day may have been clarified 

by additional sampling, in particular with high and low tides occurring 

at different times of the day. 

In summary, newly-metamorphosed juveniles of both R. tapirina and 

A. rostratus are daytime feeders and consume the same food organisms. 

They partially partition the food resources of the habitat by consuming 

different relative proportions of dietary constituents. The diets of 

larger 0- and I-group juveniles of the two species at one site over 24 h 

consisted predominantly of amphipods but different proportions of each 

family of amPhipods were eaten by the two species of flounder. A. 1itur-

atus juveniles also ate mainly amphipods but their feeding habits appeared 

to be segregated from the other two species by both time and place of 

feeding. 
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CHAPTER 5  

REPRODUCTIVE BIOLOGY OF RHOMBOSOLEA TAPIRINA  

AND AMMOTRETIS ROSTRAT US  
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5.1 INTRODUCTION  

The occurrence of newly metamorphosed juveniles of Rhombosolea 

tapirina and Ammotretis rostratus in shallow water in most months of 

the year, with highest abundances generally from late winter to early 

spring, implies that both flounders have a prolonged spawning season. 

. However, the patterns of egg maturation and release are not well under-

stood for.R. tapirina and are not known for A. rostratus. The objective 

of the study reported in this Chapter was to examine and compare the 

reproductive strategies of the two species. Gonad maturation, develop-

ment of ova, sex ratios, length at first maturity and fecundity of the 

two species were investigated. 

Aspects of the reproductive biology of R. tapirina including sex 

ratios, length at first maturity and development of gonads and ova were 

examined by Kurth (1957). 	His results are compared with those obtained 

in this study. The reproduction of closely related species of flounder, 

Rhombosolea leporina and Rhombosolea plebia, in New Zealand was investig-

ated by Coleman (1972, 1973, 1974a) and Webb (1973). 

There have been numerous studies on the reproductive biology of 

commercially important species of flatfish in the northern hemisphere. 

It is now generally accepted that recruitment to a fishery depends on the 

parent stock size and modulations in density independent and density 

dependent mortality in the pre-recruit stage (Cushing, 1975). Thus, for 

a commercially important species, a knowledge of reproduction is basic 

to the prediction of recruitment and hence to the assessment and manage-

ment of a fishery. Examples of studies of flatfish reproduction are by 

Simpson (1959) and Bagenal (1966) on plaice, Pleuronectes platessa, 

Jones (1974) on turbot, Scophthalmus maximus, Htun-han (1978a,b) on dab, 

Limanda limanda, Bowering (1976, 1978) on witch flounder, Glytocephalus 

cynoglossus and Morse (1981) on summer flounder, Paralichthys dentatus. 



5.2 METHODS  

5.2.1 Sampling Procedure  

Adult R. tapirina and A. rostratus were sampled irregularly in 1981 

and 1982 from commercial catches taken by spearfishermen in shallow water 

and by Danish seine trawlers in 10-40 m. 	Spearfishing was conducted in 

Blackman Bay, Norfolk Bay and Marion Bay in most months of the year and 

Danish seining in Frederick Henry Bay, Storm Bay and Marion Bay irregularly 

during the winter months (Figure 5.1). 

Total lengths ( -ILO mm), sex and maturity stage of up to 200 specimens 

were recorded at the site of capture or at seafood processing plants. 

Small quantities of flounder were purchased and total weight (±0.1 g), 

ovary weight (±0.01 g), gonad maturity and ova diameters were recorded in 

the laboratory. Maturing or mature ovaries were preserved in modified 

Gilson's fluid (Simpson, 1951) or 5% V/V formalin. 

5.2.2 Maturity Stages of Gonads  

Seven stages of ovarian development and four of testicular development, 

recognized in R. tapirina and A. rostratus by macroscopic examination of 

the gonads, are listed in Table 5.1. 	These stages were discernible only 

in subsampled fish when the gonads were removed and cut open in the 

laboratory. 	Most flounder examined, however, were from commercial catches 

and maturity stages had to be determined on whole fish without exsecting 

the gonads. 	A less-detailed classification of maturity stages gable 

5.2) was developed for field studies. Difficulty was encountered in sep-

arating immature from resting ovaries, and developing from partially 

spent ovaries. 	Stages I and II, and III and VI of Table 5.1 were there- 

fore combined to give Stages A and B, respectively, of Table 5.2. Also, 

as very few running-ripe females were caught, these were grouped with 

mature fish. Similarly, only two stages were readily recognized in male 

fish - running and not running with milt. 

Gonadosomatic indices (G.S.I.) were calculated for all subsampled 

female fish using 

weight of ovaries  GSI 	 x 100 
total fish weight-ovary weight 
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FIGURE 5.1 Map of southeastern Tasmania showing the bays which were 

fished for flounder. 
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TABLE 5.1 Classification of maturity stages of the gonads of R. tapirina and A. rostratus, modified after Macer C1974); 

Maturity Stage 	 Description 

,Ovaries  
Immature 	Ovaries small, translucent, grey-pink in colour; eggs not visible 

II  Resting 	Ovaries shrunken, 5emi.firm, no developing eggs 

III  Developing 	Ovaries larger, firm, 'opaque, yellow or pink; eggs visible and 
developing 

IV 	Mature 	Ovaries enlarged and distended, yellow or orange in colour; opaque 
white eggs exuded under firm pressure 

V 	Running Ripe 	Transparent eggs exuded under gentle pressure 

VI 	Partially spent 	Ovaries still large but flaccid; large blood vessels; may be few 
transparent eggs remaining in the ovary 

VII 	Spent 	Ovaries thin, flabby and bloodshot; frequently few transparent 
eggs present in a state of resorption 
At all stages of development, ovaries of R. tapirina were much larger, 
particularly in width, than those of A. rostratus. 

Testes  

Immature 	Testes small 

II  Developing 	Testes larger, no milt exuded under firm pressure 

III  Mature - Running 	Milt exuded under gentle pressure 
Ripe 

IV 	Spent 	Testes flaccid, may exude little milt on cutting 

At all stages of development, testes of R. tapirina were blackish 
grey and larger than those of A. rostratus which were white in 
colour. 



TABLE 5.2 Maturity stages recognized amongst undissected R..tapirina.and A. rostratus 

Maturity Stage 	 Description 

Ovaries 
A 	Immature - Resting 	Ovaries small, posterior extension approximately half way 

to caudal peduncle 

Developing - Partially 	Ovaries larger, firm, posterior extension approximately 
Spent 	three quarters. way to caudal peduncle 

Mature 	Ovaries enlarged and distended, bulging above body 
musculature, posterior extension almost to caudal peduncle 

Spent 	Ovary thin and flabby, still extends almost to caudal 
peduncle 

Testes  

A 	Immature - Spent - 	No milt exuded under firm pressure 
Resting 

Running Ripe 
	Milt exuded under gentle pressure 
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Mean GSI values were calculated for each month. The duration of the 

spawning season was estimated from the percentage frequency of maturity 

stages of gonads in the monthly samples and from mean monthly maturity 

indices (GSI's). 

5.2.3 Ovarian Egg Diameters  

The diameters of from 200 to 300 eggs were measured from unpreserved_ovaries 

of most subsampled female fish. The ovaries, which were at various stages 

of maturity,were classified using Table 5.1. 	Eggs were .taken randomly 

from each ovary as preliminary investigations demonstrated that mean egg 

diameters did not vary between anterior and posterior regions of the 

. ovary (t-test, P>0.05). 

5.2.4 Sex Ratios 

The ratio of male to female fish of both species from different areas 

were calculated for each month of sampling and tested for significant 

differences from an expected 1:1 ratio using the Chi-square statistic. 

Sex ratios of R. tapirina in each season were compared using the contin-

gency Chi-square test. 

5.2.5 Length at First Maturity 

• The length at first maturity of male and female R. tapirina, separ-

ately, was investigated from the incidence of immature and mature fish 

in 1 cm length intervals and was estimated using probit analysis (Fleming, 

1960; Pitt, 1966). 	This analysis determines the length (L50) at which 

50% of the fish are mature (i.e. the median length). Sexual maturity in 

females was indicated by developing, mature or spent ovaries, (Stages 

B, C and D of Table 5.2), and in males by running-ripe testes (Stage B, 

Table 5.2). 	Only fish caught during the spawning season, i.e. May to 

October, were used in the analysis. As mentioned previously, the separat-

ion of immature from resting ovaries was not always possible. It is 

assumed for the analysis that fish with resting gonads did not occur 

during the spawning season. 	Only fish caught by trawling were investig- 

ated. The Danish seine nets had a cod-end of mesh size of 2.5 - 5.5 cm 

knot to knot, and juveniles, therefore, were included in the catch. Fish 

caught by spearing, however, were selected to be above the legal size 
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limit of 23 am. 	Insufficient numbers of A. rostratus were caught 

during the main months of spawning for probit analysis. 

5.2.6 Fecundity 

Fecundity is defined as the number of ripening eggs in the female 

just prior to spawning. In a serial spawner it is the sum of all ripening 

eggs in all batches during the spawning season (Bagenal, 1978). 

The fecundity of R. tapirina and A. rostratus was estimated only 

from late maturing or mature fish which apparently had not spawned during 

the current spawning season. A volumetric method of estimating fecundity 

was used. Eggs were removed from the preserved ovary, washed and sieved through 

a 1.00 mm sieve, which retained any ovarian tissue, onto a 0.15 mm mesh 

sieve for R. tapirina and a 0.2 mm mesh for A. rostratus. The eggs were 

diluted in 4 2, of water, stirred to ensure uniform distribution and four 

1 m2. aliquots extracted using a pipette. The number of eggs n.15 mm 

diameter for R. tapirina and ?-0.2 mm for A. rostratus in each aliquot 

were counted and the mean number of eggs from the four subsamples was used 

to estimate the fecundity. 	These size ranges of eggs were used as micro- 

scopic examination showed that they contained accumulations of yolk whilst 

smaller eggs did not. The presence of yolk indicated that these eggs were 

developing and they were therefore assumed to be part of the current spawn-

ing season egg stock. 

The consistency of the subsampling procedure was estimated from 

twenty replicate aliquots with replacement. 	This gave a coefficient of 

variation of 10.48%. 

5.3 RESULTS 

As data on adult flounder were obtained irregularly, the monthly 

results from two consecutive years were combined. Although some annual 

variation may occur, pooling the data gives a more complete picture of 

the reproductive cycle over twelve months. 

5.3.1 Maturity Stages of Gonads  

The percentage number of R. tapirina at each maturity stage varied 
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during the year (Figure 5.2). 	Over 50% of female fish caught each 

month from January to April were immature or resting. Maturing/partially 

spent females were most abundant in May; the relative numbers decreased 

in June, increased again in July and then slowly declined to November. 

The percentage of mature females was low from March to May and highest 

from June - October. No mature females were caught in November. The 

percentage of completely spent fish generally increased from April to 

November by which time nearly all fish were spent. 

All R. tapirina males caught in January and February were immature 

or resting. The percentage of running-ripe males increased from March 

to May and from May to October almost all male fish were running ripe. The 

percentage declined in November although the majority were still ripe. 

Mean monthly maturity indices (Figure 5.3), calculated for a small 

sample of female fish, followed a similar monthly pattern to the maturity 

stages of gonads. They were low in January to March, increased in April - 

May and were highest from June to October. The GSI values returned to 

a low level in November. The range of GSI's was highest during June - 

October, indicating non-synchronous maturation of females. 

Stages of maturity of fish caught in different depths of water in 

several months were compared (Figure 5.4). However, the shortage of data 

due to the inconsistency of trawling by commercial fishermen makes it 

impossible to form any firm conclusions. In May the majority of fish 

caught by both spearing in <2 m depth and trawling in 5-10 in depth were 

maturing or partially spent (Stage B). However, the percentage of 

immature/resting females (Stage A) was higher, and mature fish (Stage C) 

lower, in shallow water than in 5-10 in depth. 	In July the majority of 

fish caught by spearing were still at Stage B but the percentage of Stage 

A fish had decreased. 	However, in 5-10 in depth the percentage of Stage 

B fish had decreased and mature and particularly spent fish increased 

relative to those caught in shallow water, or in 5-10 m depth in May. 

In 10-25 m depth in July the majority of fish were mature. In shallow 

water <2 m depth in August the greatest percentage of fish were at Stage 

B or mature whilst in 10-25 m depth the majority of fish were mature. 

By October spent fish were most abundant in both <2 m and 10-25 in depths. 

However, relatively more females were at Stage B and mature in shallow 

water than in 10-25 m depth. Thus, as mature fish were relatively more 
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abundant in deeper water than inshore in each month sampled, except in 

October at the end of the spawning season, it is suggested that spawning 

occurs predominantly in the deeper water. 

Sufficient numbers of A. rostratus for comparison of maturity stages 

were caught in May and July only. 	In May 28% of the females caught were 

at Stage A, 68% were Stage B and only 4% were mature; 79% of the males 

caught were running-ripe. 	By July 36% of females were at Stage B, 58% 

were mature and 3% were spent; 100% of males were running-ripe. Of the 

eight females caught in August, four were mature. 

Few running-ripe females of either species were observed; presumably 

final maturation and spawning occurs quickly. The occurrence of mature 

females was therefore taken as indicative of spawning. R. tapirina thus 

have a prolonged spawning season with most spawnings occurring from June 

to October. A minor number of spawnings also probably occur as early 

as March. The length of the spawning season of A. rostratus could not 

be determined but spawning at least occurs during winter. 

5.3.2 Ovarian Egg Diameters  

The sequence of development of ova recognized in the ovaries of 

R. tapirina during a spawning season is shown in Figure 5.5. The nine 

stages of ova development are classified according to the maturity stage 

of the ovary, as described in Table 5.1. 	As not all fish were at the 

same maturity stage at any one time, the histograms were selected to show 

the representative sequence of events. 	Each histogram is representative 

of from two to four ovaries. 

Immature ovaries (Stage I) contained transparent and yolkless primary 

oocytes of diameter 0.05 - 1.5 mm. During Stage III early maturing ova 

were evident from the additional smaller modes at 0.2 mm and 0.275 mm and 

a few ova of 0.4 mm and 0.5 mm diameter. These developing ova were 

granular and contained accumulations of yolk. 	In Stages IV to VI larger 

ova (generally >0.15 an in diameter) only were measured so that their 

modes were more distinct. 	Primary oocytes, however, were relatively 

abundant. .Mature ovaries (Stage IVa) contained three modes of larger ova 

at 0.275 mm, 0.45 mm and 0.725 mm diameter. These ova were granular and 

yellow or white in colour. The ova in running-ripe ovaries (Stage Va) 
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FIGURE 5.5  Egg diameter frequencies in R. tapirina ovaries 

of maturity stages I-VIi. Maturity stages are 

described in Table 5.1. Primary oocytes were 

not counted in stages IV-VI. 
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were similar to those of Stage IVa except that the most advanced mode 

had increased slightly in size and ranged from 0.675 to 0.925 mm in 

diameter. Also,the larger eggs which ran freely from the ovary were 

transparent and contained oil droplets. These large eggs were fully 

developed as artifically fertilized eggs were of similar appearance and 

ranged in diameter from 0.73 - 0.87 mm (Chapter 6). Stage VI, the par-

tially spent condition, had two modes at 0.25 mm and 0.4 mm. The more 

advanced mode continued to develop and by Stage IVb the two modes at 

0.225 mm and 0.5 mm were completely separated. The second group of 

running-ripe ovaries, Stage Vb, contained two modes at 0.275 mm and 0.8 mm 

diameter; the latter mode contained transparent eggs. Completely spent 

ovaries, Stage VII, contained ova of diameter 0.05 - 0.35 mm and frequently 

a few large eggs which were in a state of degeneration and resorption. 

' Ovaries then reverted to the resting Stage II and ova were of similar 

diameter to those in immature ovaries. 	Presumably ova of 0.15 - 0.35 mm 

diameter were resorbed. 

Fewer A. rostratus were available for examination of ova diameters in 

ovaries of different maturity stages. The sequence of ova development 

is therefore not ai clear. The six stages of ova development which were 

observed are shown in Figure 5.6 and are classified using the maturity 

stages of ovaries listed in Table 5.1. Early maturing ovaries (Stage III) 

contained a major mode of ova at 0.15 mm diameter and a smaller one at 

0.25 mm. 	In late maturing ovaries, ova ranged in diameter from 0.125 mm 

to 0.8 mm but modes at 0.175 mm and 0.675 mm only were apparent. 	Primary 

oocytes were not measured in mature ovaries (Stage IV). Modes were not 

obvious in ova of diameter 0.175 - 0.75 mm in mature ovaries, but an 

advanced mode of 1.0 - 1.125 mm diameter was distinct as it was separated 

from the less-advanced ova. At the running-ripe Stage V the percentage of 

ova in the most advanced mode increased, and many ova were transparent 

and had oil droplets. Artifically fertilized eggs were of similar appear-

ance and diameter 0.93-1.05 mm (Chapter 6) which implies that these larger 

transparent ova were fully developed. Stage VII, fully spent ovaries, 

contained ova of diameter 0.075 - 0.35 mm, mode 0.15 mm, and frequently 

a few large degenerating ova. 	In resting ovaries, Stage II, ova ranged 

in diameter from 0.05 mm to 0.2 mm; ova of diameter 0.225 - 0.35 mm were 

probably resorbed. 
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The egg development sequence of R. tapirina shows that they are 
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multiple spawners (Hickling and Rutenberg, 1936) with probably two, 

but possibly more, batches of eggs spawned every breeding season. The 

pattern of spawning in A. rostratus is not as clear due to an absence 

of multiple modes. They are also apparently serial spawners, possibly 

spawning more than twice each year. 

5.3.3 Sex Ratios  

Male R. tapirina were caught less frequently by spearfishing in 

shallow water than females. Chi-square analysis showed that the sex 

ratios , were significantly different (P<0.05) from the expected 1:1 ratio 

in all months gable 5.3). 	Although spearfishing is more selective for - 

adult female than male flounder because a higher proportion of females 

are above the legal size limit of 23 cm, the differences in abundances 

of the sexes are sufficiently great to imply that they are due to factors 

other than just selective sampling. The percentage of males in the catch 

was higher during January to May and again in November than from June to 

October. 	The sex ratios in four seasons - January to March, April - June, 

July - September and October - November were compared using Chi-square 

analysis.. 	They were significantly different in January - March, and in 

July - September, to all other seasons (x 2  = 22.43, 1 d.f., P<0.001; 

x 2  = 14.51, 1 d.f., P<0.001, respectively), but were not significantly 
different between April - June and October - November (x 2  = 0.04, 1 d.f.). 

Females were also more abundant than males in 5-10 m depth in the two 

months when trawling was conducted at these depths and the sex ratios were 

significantly different. 	By contrast, males were more abundant than 

females and the sex ratios were significantly different in deeper water 

(10-25 m) in May, August and October; few fish were caught in July and 

the sex ratios were not significantly different. 

Very few A. rostratus were caught in shallow water by spearing; more 

were caught in deeper water but the numbers were still low. Generally 

females were more abundant than males; the sex ratios in 5-10 m depth 

were significantly different in the two months sampled but not in 10-25 m 

depth in July. 
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TABLE 5.3  Sex ratios (male:female) of R. tapirina and A. rostratus 
Levels of significance * 0.05<P<0.01, ** 0.001<P<0.01, *** P<0.001 

Jan 	Feb 	Mar 	Apr 	May 	Jun 	.Jul 	Aug. 	.Sept 	Oct 	Nov 	Dec 

R. tapirina 

Spearing 
<2 m depth 	n 

ratio 
x 2  

Trawling 
5-10 m depth n 

ratio 
X 2 

10-25 m depth n 
ratio 

X 2 

A. rostratus 

Spearing 
<2 m depth 	n 

Trawling 
5-10 m depth 	n 

ratio 

10-25 m depth n 
ratio 

18:116 
1:6.4 

71.67*** 

1:2 

18:36 
1:2.0 
6.00* 

0 

6:20 
1:3.3 
7.54** 

0 

10:84 
1:8.4 

58.26*** 

0:1 

6:33 
1:5.5 

18.69*** 

75:242 
1:3.2 

87.98*** 

20:1 
20:1 
17.19*** 

0 

33:76 
1:2.3 

16.96*** 

1:3 

.5:70 
1:14.0 

56.33*** 

0:6 

1:33 
1:33 

29.12*** 

4:79 
1:19.8 

67.77*** 

7:8 
1:1.14 
0.07 

0 

2:15 
1:7.5 
9.94** 

13:20 
1:1.54 

3:97 
1:32.3 

88.36*** 

98:10 
9.8:1 

71.70*** 

0:1 

2:7 
1:3.5 

0:27 
- 

27.00*** 

0 

7:92 
1:13.1 

72.98*** 

74:26 
2.8:1 

23.04*** 

0 

3:2 
1.5:1 

16:126 
1:7.9 
85.21*** 

0:3 

1.49 X 2 



5.3.4 Length at First Maturity  

The median length at which 50% of R. tapirina females were mature 

was 21.86 ± 0.36 cm and for males 19.04 ± 0.75 cm gable 5.4). The 

smallest mature A. rostratus female caught was 20.5 cm and male 22.2 cm. 

5.3.5 Fecundity  

The fecundity of R. tapirina was estimated only from a small number 

of fish. Few fish in the subsamples had advanced ova but had not already 

spawned during the current breeding season.. Fecundity ranged from 820,880 

to 1,969,070 for lengths 24.7 cm to 34.3 am and the fecundity per gram 

body weight ranged from 4343 to 5250. Relative fecundity when expressed 
3 1 as volume of eggs was from 1042 - 1260 mm g.-  . 

The relationship of fecundity and.length.only was examined to give 

an indication of the change in fecundity with size for the small sample 

of fish examined. A linear relationship between fecundity and length was 

apparent in Figure 5.7. This was.expressed.by  the equation 

F = -1053.65 + 85.85L 

where F = fecundity in thousands of eggs and 

L = length (cm). 

The correlation coefficient r = 0.850 between F and L .was significant 

(P<0.001, 12 d.f.). 	Analysis of variance showed that the slope of the 

regression line was significantly different from 0 (F = 31.315, 1 and 

12 d.f., P<0.001). The regression accounted for 72.3% of the variation. 

Fecundity estimates were possible for four A. rostratus only. They 

were 215,320 length 20.5 cm, 437,262 length 25.4 cm, 701,954 length 33.9 cm 

and 973,800 length 34.3 cm. 	The fecundity per grain body weight was from 

1064 to 1810, and fecundity expressed as volume of eggs per gram body weight 

was from 571-972 mm 3 g-1 . 

5.4 DISCUSSION  

Maturity indices of females and maturity stages of. both sexes of 

R. tapirina in different months indicate that they have a prolonged spawn-

ing season which occurs mainly from June to October. This is in agreement 
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TABLE 5.4 	Length at first maturity of R. tapirina 

Total Length 
(cm) 

Females Males 

No. % Mature No. % Mature 

16 2 0 1 0 

17 3 0 3 33.3 

18 1 0 1 0 

19 4 0 3 100 

20 5 25 8 37.5 

21 12 33.3 18 66.7 

22 8 62.5 16 82.4 

23 17 76.5 35 94.3 

24 35 80.0 35 97.1 

25 51 96.1 27 100 

26 52 92.3 35 94.3 

27 49 100 25 100 

28 45 100 23 100 

29 27 100 13 100 

30 19 100 7 100 

31 5 100 8 100 

32 3 100 

33 5 100 1 100 

34 4 100 

35 1 100 

36 2 100 

37 1 100 

L50 21.86 ± 0.36 19.04 ± 0.75 

95% confidence limits 20.84 - 22.55 16.44 - 20.28 

L95 25.50 24.06 

95% confidence limits 24.85 - 26.46 23.09 - 	25.71 
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FIGURE 5.7  The relationship between fecundity and length 
in R. tapirina 
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with the presence of larvae in the plankton from May to November and 

peak recruitment of newly-metamorphosed juveniles inshore during late 

winter to early summer (Chapter 2). 	Kurth (1957) also found from a 

study of egg diameter frequencies in different months that R. tapirina 

spawn during March to October. He suggests that temperature is an 

important factor in determining egg development and duration of the 

spawning season as eggs developed when the temperature was below 13 °C. 

The duration of the spawning season of A. rostratus, however, could 

not be determined because so few fish were caught; they at least spawn 

during winter. However, as they are apparently multiple spawners and 

as newly-metamorphosed juveniles occur inshore during many months of the 

year, they probably also have a prolonged spawning season. 

The sequence of egg development in both R. tapirina and A. rostratus 

indicates that their prolonged spawning seasons are partially caused by 

serial spawning. 	Kurth (1957) observed a similar progressive development 

of the eggs of R. tapirina to that found in the present study but his 

interpretation of the sequence is confusing, probably because he did not 

record Stages VI, IVb and Vb. 

Many other species of flatfish also spawn during winter or spring but 

few have prolonged spawning seasons or are serial spawners. For example, 

in the dab, Limanda limanda, only one batch of eggs develops synchronously 

each year and are spawned intermittently during a short spawning season 

in late winter to early spring (Htun-han, 1978). 	Similarly, plaice in 

the North Sea spawn predominantly during winter (Wimpenny, 1953) and have 

only one group of developing ova (Bagenal, 1966), and starry flounder, 

Platichthys stellatus have a definite., and relatively short spawning season 

in winter (Orcult, 1950). Rhomlosolea plebda in New Zealand have a long 

spawning season during winter and spring but apparently spawn only once 

each year as one group of maturing ova only were recognized in the ovaries 

(Coleman, 1973). 

Serial spawning has been observed in Paralichthys dentatus (Morse, 

1981) and Psettodes erumei (Ramanathan and Natarajan, 1979). These two 

species have at least two modes in the maturing egg diameter frequencies 

and a long spawning season of 5-6 months. Morse suggested from the ratio 

of the number of eggs in the most advanced mode to the total numbers of all 
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developing eggs that approximately six batches of eggs may be shed by 

each female P. dentatus in each season. The egg development sequence 

of these fish, however, was similar to that of R. tapirina except that 

only running-ripe eggs were separated by size from other developing eggs. 

This suggests that P. dentatus spawns two or three times each season 

depending on whether the least advanced group of developing eggs reach 

maturity. The Californian sand dab, Citharichthys sordidus, is probably 

also a multiple spawner as several size groups of ova were recognized in 

mature ovaries, but the spawning season appears to last for only three 

months (Arora, 1951). 

The sex ratios of R. tapirina show that the major populations of 

males and females of this species are segregated in all months of the 

year. 	That these differences are not due to differential catchabilities 

of the sexes is shown by the results of trawling using the same gear in 

different depths; females were most abundant in 5-10 gm depth and males 

in 10-25 in depth. 	Kurth (1957) also found that females dominated the 

catch in shallow water; he caught a maximum of 12.7% males in any one 

sample. The reasons for the differences in the distributions of the 

sexes are not knowri. 	Habitat preferences, including diet may differ 

between the sexes but these have not been examined. 

The location of the spawning grounds of either species of flounder 

has not been determined. 	Kurth (1957) believed that R. tapirina spawn 

in shallow waters of estuaries and tidal rivers, and probably also in 

deeper offshore waters. He found no evidence for spawning migrations as 

abundances of adult R. tapirina inshore did not vary seasonally; this is 

supported by information from commercial fishermen. Kurth also concluded 

from tagging experiments that R. tapirina tend to remain within a restricted 

area. The number of fish recaptured was low and he suggested that high 

tagging mortality may have occurred. 	However, as almost no trawling was 

conducted at that time, tag returns were from spearing or beach-seining 

in shallow water only. 	Some fish may have moved into deeper water where 

they were not available for recapture. 

The differences in the distributions of the sexes observed in this 

study imply that either males move into shallow water, or females into 

deeper water, for spawning. The sex ratios of flounder caught in shallow 

water, however, varied seasonally. The proportion of males, relative to 
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females, caught by spearing was lowest during the months of spawning 

and highest during the resting period. This indicates that males do 

not move inshore for spawning. Also a comparison of maturity stages of 

females caught in different depths in May, July and August showed that 

the highest percentage of mature females in any one month occurred in 

deeper water. 

These results, in conjunction with the generally greater abundance 

of larvae and their small size nearer the mouths than further up estuaries, 

suggest that spawning occurs predominantly in deeper offshore waters. 

As the spawning season is prolonged, there may be regular movements of 

individual females between the inshore region and spawning grounds, 

thus masking an obvious spawning migration. However, as many mature 

females are caught in shallow water, they either do not move far or can 

remain in the mature condition for some time. A minor number of spawn-

ings may also occur in shallow water. 

Insufficient data were collected on A. rostratus to determine seasonal 

migrations or spawning grounds. However, they also possibly spawn in 

deeper water as they were caught more frequently by trawling than spearing 

in the few months that trawling was conducted. Also,a high percentage of 

the trawl catch in July consisted of mature fish. 	Lenanton (1974) class- 

ified A. rostratus as an estuarine-marine species on the basis of its field 

distribution, but observed that it was also capable of breeding within a 

system which had been closed to the sea for several years. 

Many other species of flatfish make seasonal migrations from coastal 

and estuarine waters to offshore spawning grounds. 	For example, Rhom- 

bosolea pleLda and R. leporina in New Zealand migrate to nearby deeper 

water during the spawning season and then back into shallow water after 

spawning (Coleman, 1973). 	The distributions of male and female R. leporina 

during winter and spring showed similarities to those of R. tapirina. 

Although females moved away from the inshore region, they were generally 

more abundant in shallower water than on the spawning grounds, even during 

the spawning season. Males, however, were concentrated on the spawning 

grounds at this time (Coleman, 1974a). 

The majority of male and female R. tapirina were mature before they 

reached the minimum legal size limit of 23 cm. 	Nearly all fish would 
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therefore be capable of spawning before reaching the commercially exploit-

able size. 	Of the few A. rostratus caught, the majority of both males 

and females above the legal size limit of 23 cm were mature. 

Kurth (1957), however, found that 60% of female R. tapdrina were 

mature at 24 cm total length. He caught few males during the spawning 

season but all longer than 19 am were mature. 	Kurth used the criterion 

of ova diameter of 0.35 - 0.8 mm during the spawning season to indicate 

maturity in females. The differences in size at maturity of female 

R. tapirina between this study and that of Kurth (1957) may be due, there-

fore, to the different methods of determining maturity or because the 

size at maturity possibly varies between year classes. 	Significant 

yearly and geographical variations in size and age at maturity have been 

observed in several temperate species of flatfish (Roff, 1982). 	Similarly, 

Morse (1981) found that the size at maturity of Paralichthys dentatus 

changed significantly during a six year study. Thus further work is re-

quired on the variation in size at maturity between year classes of R. tap-

irina, as well as on the total fishing effort in relation to population 

size, before the adequacy of the present size limit regulations in protect-
. 

ing spawning stocks-of R. tapirina can be ascertained. 

Fecundity in many species of fish increases in the same proportion as 

weight orat a power close to the cube of length (Bagenal, 1978). In 

R. tapirina this relationship was linear for the small sample size. Further 

samples are required to test this linear relationship. R. tapirina were 

considerably more fecund than the four A. rostratus examined. They are 

also apparently more fecund than many other species of flatfish including 

the closely related species, R. plelda and R. leporina, in New Zealand 

(Coleman, 1973). 	Jones (1974) and Roff (1982) compared the fecundities 

of ten and twelve species of flatfish, respectively, seven of which were 

common to both studies. They found large variations in fecundity between 

the species and Jones (1974) observed that the relative fecundity i.e. 

number of eggs per gram body weight also varied considerably. The inter-

specific variation, however, was much less when egg volume was taken into 

consideration. 	For example, the mean volume of eggs (mm 3 ) per mean body 

weight (g) of the ten species examined by Jones (1974) ranged from 535 

to 922 meg-1 . Most of these species are thought to spawn only once 

each season. The relative fecundity, in terms of egg volume, estimated 

for A. rostratus is mostly within this range whilst that of R. tapirina 
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is slightly higher. The serial spawners Paralichthys dentatus (Morse, 

1981) and Psettodes erumei (Ramanathan and Natarajan, 1979) also have 

relative fecundities which are mostly within this range. 

The difficulties involved in determining the fecundity of multiple 

spawners has been discussed in some detail by Macer (1974) and Bagenal 

(1978). They both consider that a major problem is how to identify 

ova which are potentially capable of release in the current spawning 

season. In R. tapirina and A. rostratus, as well as in the horse 

mackerel, Trachurus trachurus, studied by Macer (1974), developing and 

resting (i.e. non-developing) ova are not clearly separated by size. 

The presence of yolk in ova is a commonly used criterion of egg develop-

ment and hence spawning in the current season (Bagenal, 1978). This 

criterium, however, may not be appropriate for the two flounders studied 

because completely spent ovaries of both species contained some yolky 

ova which apparently were resorbed. The resorption of developing ova, 

therefore, could result in a substantial difference between fecundity and 

fertility, i.e. number of eggs shed. 	Macer (1974) also found that 

fecundity estimations were complicated by the resorption of ova both before 

and after spawning, although he was referring mainly to the degeneration 

of ova with advanced yolk formation. 

Further work is required to show that additional oocytes are not 

recruited to the yolky stock in ovaries.past Stage III or IVa, i.e. the 

stage at which fecundity is estimated. The proportion of ova which develop 

yolk but do not complete maturation.and are ultimately resorbed also needs 

to be determined. This would indicate whether a more suitable criterium 

of egg development is required, in particular for fecundity and fertility 

to be similar. 

In summary, R. tapirina and A. rostratus apparently have a similar 

reproductive strategy of a prolonged spawning season, serial spawning and 

comparatively high fecundity. They also mature for the first time at 

approximately the same length. As suggested by Morse (1981), this strategy 

tends to maximise reproductive potential and avoid catastrophe. The long 

spawning season reduces larval crowding and increases the chances of at 

least a proportion of eggs and larvae encountering favourable environmental 

conditions. 
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CHAPTER 6  

DEVELOPMENT, GROWTH AND SURVIVAL OF EGGS  

AND .LARVAE OF RHOMBOSOLEA TAPIRINA  

AND AMMOTRETIS ROSTRATUS 



6.1 INTRODUCTION  

During the past three decades considerable research has been 

conducted world-wide into the cultivation of marine fishes, in par-

ticular of commercially important species. 	The hatchery method of 

rearing flatfish eggs and larvae was developed by Shelbourne (1964, 

1975) who successfully reared large numbers of plaice (Pleuronectes 

platessa). 	However, attention recently has centred on rearing more 

valuable species of flatfish such as the turbot (Scophthalmus maximus) 

and the Dover sole (Solea solea). 	The history of the marine hatchery 

movement has been described by Shelbourne (1964) and research on 

marine fish cultivation reviewed by Kinne (1977). 

• In Australia, however, there have been few studies on the cultiv-

ation of marine fishes or the identification of marine fish eggs and 

larvae. 	Rhombosolea tapirina is the only pleuronectid species found 

in Tasmanian waters in which the eggs and larvae have been studied; 

Kurth (1957) described mature, unfertilized ova and Roper (1979) the 

late larval stages caught in plankton tows in New Zealand. 

Surprisingly, the culture of this species was probably first 

attempted early this century when Dannevig hatched and liberated 20 

million flounder larvae into Gunnamatta Bay, N.S.W. in 1906 (Lockyer, 

1915). 	Closely related species in New Zealand, the lemon sole 

(Pelotretis flavilatus) and sand flounder (Rhombosolea plebia) were 

cultured to the first feeding larvae stage by Rapson (1940) and 

Robertson and Raj (1971) respectively. 

In this study, R. tapirina and Ammotretis rostratus were cultured 

for three reasons: 

(1) to provide information on culture methods, and survival 

and growth rates of larvae, which may be used to develop 

the commercial cultivation of flounder; 
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(2) to provide descriptions of the developmental stages 

of eggs and larvae to complete life history studies 

and to assist identification of planktonic stages; 

(3) to provide larvae and juveniles for experiments on 

environmental factors affecting habitat selection 

and habitat partitioning (Chapter 3). 

6.2 METHODS  

6.2.1 Broodstock 

Mature flounder were collected either in Danish seine nets of 

commercial fishing vessels in 5-20 m depth in Frederick Henry Bay and 

Storm Bay or by beach seining in the River Derwent in depths of up to 

1.5 m. 	Beach seining was preferred as mature females were less damaged. 

The broodstock were maintained for up to several months in a 4000 St 

swimming pool with running seawater and aeration. They were fed every 

2-3 days on live polychaetes (Nereis sp.) or chopped Mytilus edulis 

flesh. 

6.2.2 Artificial Fertilization 

Mature sperm were readily obtained by stripping ripe males. 

Eggs were stripped from ovaries which had hydrated and ovulated either 

naturally or after hormonal treatment. Only the latter method pro-

vided consistent quantities of mature eggs. 	Eggs spawned in the 

broodstock pond or stripped from mature females (the ovaries were 

swollen and eggs readily exuded by gentle pressure) could not be fer-

tilized. 

Human chorionic gonadotropin (HCG) was used to induce ovulation 

following methods similar to those of Smigielski (1975a, 1975b). 

2000, 1000 or 500 iu kg-1 were dissolved in 1 mt of sterilized sea-

water and injected intramuscularly in mature and maturing flounder. 

Eggs were artificially fertilized according to the methods of Riley 

and Thacker (1969). 

120 



6.2.3 Larval Rearing 

Eggs and larvae were mainly cultured in 250 L fibreglass cylinders 

which contained either static seawater or flowing seawater entering at 

20 k h
-1 ; water flow was stopped for several hours when food was added. 

Dead eggs and larvae were siphoned off the tank bottom and 

counted every 1-2 days. 	Approximately one-third of the total volume 

of static water tanks was replaced with fresh seawater every second 

day and, when necessary, this was first warmed to room temperature. 

Rearing tanks were aerated continuously from the bottom and illum-

inated by natural daylight plus fluorescent tubes during the working 

day. 	Seawater of salinity 32.6 - 34.5%0 was filtered to 1 pm and 

exposed to sterilizing ultraviolet light; all equipment used was chem-

ically sterilized in a weak sodium hypochlorite solution. Static water 

tanks were kept at either ambient seawater or room temperature. 

Larvae were fed initially on the rotifer Branchionus plicatilis, 

followed by freshly-hatched Artemia salina nauplii. Rotifers were 

concentrated daily from one-quarter of the total volume of the rotifer 

cultures and added to rearing tanks. 	Microalgae, Chlorella sp., 

Monochrysis lutheri and Phaeodactylum tricornutum were added daily to 

the rotifer cultures. The methods used for the cultivation of algae, 

rotifers and Artemia are described in Appendix 6. 

6.2.4 Stages of Development and Growth 

Approximately 50 eggs were scanned at each examination to determine 

the average stage of development. After hatching, up to 70 larvae were 

sampled at increasing time intervals. 	Larvae were measured either dir- 

ectly after anaesthetization in tricaine methanosulfonate solution or 

from silhouette photographs (Neave and Batty, 1982). 	The larval length 

was measured from the tip of the lower mandible to the end of the caudal 

fin. 

Larval development stages are based on those developed by Ryland 

(1966) for plaice,,hoWever in R. tapirina the migration of the left eye 

and flexion of the notochord occur together so Ryland's stages 3 and 4 
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are combined. 

6.3 RESULTS  

6.3.1 Cultivation of Flounder  

(i) Hormonal Induction of Ovulation 

Injections of 500 iu kg -1 HCG and stripping eggs 3-4 days later 

produced fertilizable eggs in both R. tapirina and A. rostratus gable 

6.1). 	Higher dosages were not successful. 	Other trials were con- 

ducted with groups of two maturing R. tapirina females which were in-

jected with 500 iu kg-1 HCG once only and three times 2 days apart, 

or once with 1000 iu kg-1 , but none hydrated and ovulated. 

(ii) Rhombosolea tapirina 

In the 1981 rearing trials, 85% of stripped eggs were fertilized 

and almost 75% of these hatched. 	Approximately 24,000 larvae were 

fed c. 0.6 rotifers m 1  daily daily from day 5-12 but by day 13 all larvae 

were dead, presumably due to an inadequate food supply :  

In 1982 about 85% of stripped eggs were fertilized and incubated 

in three tanks at different densities (Table 6.2). 	From the time of 

first feeding, larvae were reared in tanks 1 and 2 only at a reduced 

density which ensured that adequate food was available to support larval 

growth. Rotifers only were fed to larvae from day 5 to 20 at a mean 

daily concentration of 1.6 rotifers m
-1 it  Between days 21-32 the 

concentration of rotifers was decreased, and Artemia nauplii increased 

to 0.5 - 1 nauplii mk -1 . 	This density of nauplii was maintained until 

after metamorphosis. 	The change in diet was achieved much faster in 

tank 2 than tank 1. 	At ambient seawater temperature (11.1 - 13.8 ° C) 

larvae metamorphosed after approximately 65 days at a mean length of 

8.83 mm; at ambient room temperature from day 5 after hatching (12.7 - 

17.7 °C) metamorphosis occurred between days 44-53 (Table 6.3, Figure 

6.1). 

Survival rates from first-feeding to metamorphosis, determined by 

counting the number of dead larvae, were high in both tanks (Table 6.2). 
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TABLE 6.1 Percentage egg fertilization after treatment with human chorionic gonadotropin (HCG) 

HCG 
(iu.kg -1 ) 

No. Fish 
Treated 

No. Fish 
Ovulated 

Days to 
Stripping 

% Eggs 
Fertilized Comments  

Rhombosolea 
tapirina 

2,000 2 2 4 10 ovaries 
grossly 
swollen 

1,000 2 1 6 0 eggs 
probably 
overripe 

Ammotretis 
rostratis 

500 2 1 4 84 58-70% 
eggs 
hatched 

500 2 2 3 90 75% eggs 
hatched 



TABLE 6.2  Density of eggs and larvae, culture systems used and survival rate to metamorphosis for 
R. tapirina in 1982 

Density 
eggs 2, -1  

Hatching 
Success 
(%) 

No. of Larvae 
from 1st 
Feedinga  

Density 
Laryae 

83 

137 

69 

58 

70 

5,000 

2,500 

16 

10 

Type of System 
Tank 	until 1st 

Feeding 

1 	static water, 
ambient S.W. 
temp. 

2 	running seawater 

3 	running seawater 

Type of System 	Survival Rate 
from 1st 	to Metamorphosis 
Feeding 	(%) 

static water, 	94 
ambient S.W. 
temp. 

static water, 	98 
room temp. 

a Feeding larvae were reared in tanks 1 and 2 only. 

An unknown number of eggs were lost due to technical problems. 



TABLE 6.3  Growth in length and stages of development of R. tapirina larvae at different 
temperatures in 1982 

Tank 1 Ambient Seawater Temperature Tank 2 Ambient Room Temperature 

Days 
from 
hatching 

Sample 
size 

Mean 
length 
(mm) 

S.D. 
Develop- 
mental 
stage a 

Temp- 
erature 

( ° C) 

Days 
from 

hatching 

Sample 
size 

Mean 
length 
(mm) 

S.D. 
Develop- 
mental 
stagea 

Temp- b  
erature 

( ° C) 

0 11 2.00 0.26 la 11,9 0 11 2.00 0.26 la 11.9 
1 31 2.08 0.20 lb 11.7 1 31 2.03 0.20 lb 11.7 
2 21 2.39 0.12 lb' 11.6 2 21 2.39 0.12 lb' 11.6 
3 15 2.54 0.14 lc 11.6 3 15 2.54 0.14 lc 11.6 
4 9 2.70 0.17 lc' 11.5 4 9 2.70 0.17 lc' 11.5 
5 20 2.71 0.13 id 11.4 5 14 2.73 0.14 id 12.7 
8 13 2.67 0.13 id 11.4 8 7 2.73 0.10 2a 15.8 

10 9 2.77 0.19 2a 11.2 10 5 2.90 0.14 2a 15.6 
12 10 2.88 0.18 2a 11.1 12 11 3.09 0.19 2a 15.5 
18 4 3.17 0.28 2a' 11.2 18 11 4.15 0.24 2a' 16.3 
20 18 3.64 0.24 2a' 11.5 20 23 4.50 0.33 2b 15.5 
26 38 4.40 0.50 2b 11.6 26 31 5.39 0.61 3a.4a 1  16.0 
29 5 4.54 0.40 2b 11.9 29 5 5.40 0.71 3b,4b 17.6 
40 68 5.32 0.64 3b,4b 12.5 40 60 7.66 0.55 5 17.1 
44 5 5.99 0.37 3b,4b 12.7 44 7 8.16 0.49 5 17.5 
63 24 8.22 0.83 5 13.3 53 18 10.02 0.84 M 
65 24 8.83 1.61 5-M 13.8 61 50 12.15 0.81 M 17.5 

76 18 14.02 1.25 M 17.2 
83 3 14.15 1.63 M 
88 19 16.74 3.02 M 17.7 

M = metamorphosed 
a = see text for explanation 

= Days 0-4 at ambient seawater temperature 
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FIGURE 6.1  Growth in length of R. tapirina and A. rostratus 
larvae from hatching to post-metamorphosis at different 
temperature regimes 



The greatest mortality (4%) occurred from day 36 to 39 amongst the 

smallest larvae in tank 1; they probably had not accepted the diet of 

Artemia nauplii. About 10% of the larvae were unpigmented except for 

the eyes, but their growth and survival rates seem unaffected. 

The variation in length of larvae was high at metamorphosis in 

tank 1 which contained the greatest density of larvae and least food 

per larvae. A wide range in lengths occurred only after metamorphosis 

in tank 2 when the juveniles were weaned on to a diet of dried food, 

as described below. 	Similarly, the time taken for all larvae to undergo 

metamorphosis in tank 1 was 28 days compared with 7 days in tank 2. 

Attempts were made.to  wean newly-metamorphosed juveniles from 

tank 2 onto a dried food diet of 0.5 mm trout starter crumbles. Three 

weaning trials were conducted: 

(1) abrupt change to dried food, 

(2) frozen and freeze-dried Artemia were fed for 10 days, 

followed by trout crumbles and freeze-dried Artemia 

for 10 days, and then trout crumbles only. During 

this transition period, small quantities of live 

Artemda were added every second day, and 

(3) live Artenda were slowly decreased and dried food of 

trout crumbles and freeze-dried Artemia increased in 

the diet over four weeks. 

All juveniles of trial 1 died and approximately 30% of the juveniles 

in trials 2 and 3 died after 7-10 days on dried food only. 	The remain- 

ing juveniles and all of tank 1 were then transferred to a private fish-

farming hatchery for ongrowing. 

(iii) Ammotretis rostratus 

In 1981 eggs and larvae were reared in static and flowing seawater 

tanks; approximately 75% of fertilized eggs hatched in both tanks. 

Larvae were fed c. 0.8 rotifers.m2
-1 from days 5-7 after hatching when 

most larvae, including unfed controls, died. The mortality was lower 

in the static water tank, presumably due to the rotifer food supply 
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being conserved. 	The few remaining larvae were reared in this tank 

and 65 animals reached metamorphosis. 

In 1982, eggs and larvae were cultured in static water at room 

temperature. 	Eggs and milt were obtained from adults in poor condition; 

about 50% of the eggs were fertilized and SO% of these hatched. 

Although larval survival rates were high (c. 65%) and growth rates 

appeared normal, many larvae developed abnormally. 

Hatching occurred after 93-105 h at ambient seawater temperature 

(12.5 - 12.7 °X) in 1981 and after 61-69 h in 1982 at room temperature 

(16.2 - 17.1 °C). 	Larvae metamorphosed after c. 69 days at a mean 

length of 11.2 mm in 1981 at temperatures of 12.7 - 16.5 °C, and after 

c. 36 days, mean length 10.7 mm in 1982 at 16.0 - 17.4 °C (Table 6.4, 

Figure 6.1). 

6.3.2 Egg and Larval Development of R. tapirina and  
A. rostratus 

The developmental stages at ambient seawater temperature are 

detailed for R. tapirina and summarized for A. rostratus; the lengths 

of larvae at most developmental stages are listed in Tables 6.3 and 

6.4 respectively. 

(i) Rhomlosolea tapirina 

Embryonic Development  

Mature, unfertilized eggs were almost transparent with a brown 

tint and smooth chorion. 	They ranged in diameter 0.75 - 0.99 mm and 

contained 1-7 oil droplets gable 6.5, Figure 6.2.1). 	Most fertilized 

eggs floated at the water surface and dead or dying eggs sank to the 

tank bottom. 

After fertilization, the brown tint vanished, a small uerivitelline . 

space developed and a small depression, probably the micropyle, quickly 

disappeared (Figure 6.2.2). 	After c. 1.5 h the blastodisc formed 

(Figure 6.2.3). 	The first cleavage was completed after 2 - 2.5 h 

(Figures6.2.4, 6.2.5), second by 2.5 - 3 h (Figure 6.2.6), third by 



TABLE 6.4  Growth in length and stages of development of A. rostratus larvae at different 
temperatures 

1981 Ambient Seawater Temperature 1982 Ambient Room Temperature 

Days 
from 
hatching 

Sample 
size 

Mean 	• 
length 
(mm) 

S.D. 
Develop- 
mental 
stagea  

Temp- 
erature 

( °C) 

Days 
from 
hatching 

Sample 
size 

Mean 
length 
(mm) 

S.D. 
Develop- 
mental 
stagea  

Temp-
erature 

( °C) 

0 26 2.32 0.29 la 12.8 0 8 2.01 0.30 la-lb 17.2 
1 12 2.38 0.37 lb 12.8 1 4 2.08 0.26 lb 17.3 
2 9 2.89 0.21 lb' 12.7 2 4 2.39 0.17 lc 17.0 
3 20 2.83 0.18 lc 12.7 4 8 2.43 0.17 id 16.9 
4 6 2.89 0.17 lc' 12.7 6 5 2.98 0.22 2a 16.4 
5 25 2.96 0.23 id 12.7 8 7 3.16 0.19 2a 16.0 
6 6 3.09 0.20 id 12.7 12 4 3.24 0.17 2a ,  17.4 
9 7 3.28 0.31 2a 12.9 15 3 4.68 0.61 2b 17.2 

20 4 3.57 0.36 2a 13.1 20 4 6.45 0.96 3a 17.4 
30 5 3.82 0.43 2a 13.9 26 36 7.72 1.39 3c 17.0 
43 4 4.86 0.44 3a 13.8 36 55 10.72 1.74 5-M 16.1 
46 6 5.75 0.89 3a' 14.3 46 50 12.95 1.65 M 16.7 
57 8 8.76 1.34 3h' 14.4 
69 16 11.21 2.43 5-M 15.3 
90 7 13.86 2.83 M 16.5 

M = metamorphosed 

a = see text for explanation 



TABLE 6.5  Egg diameters and number of oil droplets in eggs of R. tapirina and A. rostratus 

Adults Eggs 

Date of 
capture 

Total 
length 
(cm) 

F/Ua  Sample 
size 

Mean 
diameter 

(mm) 

Range S.D. Mean 
number 

Range 

7-8-80 28.6 U 68 0.80 0.75-0.99 0.06 1.0 1 
23-8-80 37.4 F 79 0.77 0.74-0..87 0.02 1.1 1-2 

Rhombosolea 2-9-81 29.2 F 22 0.75 0.73-0.75 0.07 1.3 1-2 
tapirina 24-8-82 31.5 U 48 0.76 0.70-0.83 0.03 1.4 1-5 

24-8-82 31.5 F 67 0.75 0.73-0.81 0.02 2.9 1-7 

24-7-81 28.2 U 72 1.03 0.90-1.18 0.05 2.4 1-13 
Ammotretis 28-9-81 28.4 F 52 0.99 0.93-1.05 0.03 17.3 6-53 
rostratus 1-11-82 29.3 U 45 0.99 0.94-1.02 0.02 5.8 1-17 

16-10-80 32.9 U 20 1.02 0.80-1.12 0.08 55.0 50-67 

- 

0.14 	0.63-0.35 
- 

Oil Droplets 

Mean diam. 	Range 
largest oil 
droplet (mm) 

	

0.18 	0.17-0.19 

	

0.17 	0.15-0.19 
-  

	

0.15 	0.13-0.17 

	

0.12 	0.10-0.16 

a F = fertilized, U = unfertilized 



FIGURE 6.2  Embryonic development of Rhombosolea tapirina. 

The stages of development in photographs 1-24 

are described in the text. 
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3 - 3.5 h (Figure 6.2.7) and fourth by 4 - 4.5 h (Figure 6.2.8). 

After 5.5 h and fifth cleavage, the blastoderm was 2 cell layers 

in thickness (Figure 6.2.9). 	Further cleavage was difficult to 

follow as the cell boundaries became indistinct (Figure 6.2.10). 

At 6 - 9 h the blastodermal cap formed (Figure 6.2.11); the 

peripheral periblast was visible after 11 - 15 h (Figure 6.2.12) 

and the blastodermal cap flattened out over the yolk during 15 - 20 

h (Figure 6.2.13). 	After 21 - 24 h the germ ring and start of the 

embryonic shield were visible (Figure 6.2.14). 	The blastoderm covered 

over one-half of the yolk, the embryonic shield was larger and neural 

keel was obvious after 25 - 30 h (Figure 6.2.15). 	The blastopore 

closed at 30 - 36 h (Figure 6.2.16); the cephalic region and embryonic 

axis were also developing (Figure 6.2.17). 

At 40 - 45 h the first somites and Kupffer's vesicle were visible 

(Figure 6.2.18). 	Pigmentation had developed on the embryo but not on 

the yolk and 10 - 15 somites were apparent after c. 50 h (Figure 

6.2.19). 	After 55 - 65 h three primary divisions of the brain, optic 

lenses and auditory capsules were visible and the pericardial cavity 

was developing (Figures 6.2.20, 6.2.21). 	The heart was seen beating 

after 72 - 78 h and twitching movements of the embryo, which had dev- 

eloped many more chromatophores, were observed. 	The pectoral fins and 

the finfold at the tip of the curled tail were developing and otoliths 

were visible (Figure 6.2.22). 	Just before hatching, the embryo almost 

surrounded the yolk and movements were more vigorous (Figure 6.2.23). 

Hatching occurred 82 - 93 h after fertilization (Figure 6.2.24). 

Larval Development  

Stage 1 - yolk sac present 

Newly hatched larvae (mean length 1.92 mm, smallest 1.45 mm) 

floated passively at the surface with yolksac uppermost and wriggled 

occasionally. The yolksac measured 0.85 x 0.51 mm, mouth and jaws were 

not visible and about 35 somites were developed (Stage la, Figure 6.3.1). 

One day posthatching the yolksac measured 0.69 x 0.39 mm. 	Two bands 

of dentritic chromatophores on the dorsal finfold above the midgut region 

and half-way along the finfold and one band on the ventral finfold just 
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FIGURE 6.3  Larval development of RhomLosolea tapirina. 

The stages of development in drawings 1-9 

are described in the text. 
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posterior to the second dorsal band were distinct in preflexion larvae 

(Stage lb, Figure 6.3.2). 	After three days most of the yolksac had 

been resorbed and measured 0.47 x 0.26 mm. 	Eyes were light brown, 

pectoral fins were functional and a pair of spines were present in the 

otic region (Stage lc, Figure 6.3.3). 	By day 5 the mouth, jaws, gut 

and anus were functional and feeding had commenced. 	A large loop reach- 

ing to the body wall had developed in the originally straight-tubed gut. 

Pigmentation was heavier and the eyes were black. 	The larvae swam 

more vigorously (Stage id, Figure 6.3.4). 

Stage 2 - yolk resorbed, notochord straight 

Larvae developed in size and the body became relatively deeper; 

the otic spines were more prominent (Stage 2a, Figure 6.3.5). After 

26 - 29 days, approximately 5 caudal rays were developing (Stage 2b, 

Figure 6.3.6). 

Stages 3 and 4 - flexion of notochord and migration of left eye 

The notochord was upturned near the posterior extremity at an 

angle of c. 20 °  after 34 days. The left eye had started migrating 

and was just visible from the right side; the caudal fin margin was 

extended and caudal rays were further developed (Stage 3a, 4a, Figure 

6.3.7). 	The left eye was clearly visible from the right side and the 

notochord was upturned at 45 °  or more after 40 days. 	About 12 caudal 

rays were distinct. 	By day 46 the notochord was further upturned, anal 

and dorsal fin rays had formed completely and pelvic fin rays were vis- 

ible (Stage 3b, 4b, Figure 6.3.8). 	Caudal fins were fully developed 

and the extremity of the notochord was just visible after 50 days. 

Larvae were strongly pigmented on both sides and settling on the bottom. 

Stage 5 - eye on or over edge of head 

About 80% of the larvae had settled on the bottom by day 63, pig-

ment on the blind side was reduced, the otic spines had regressed, the 

pelvic fin was completely formed and larval pectoral fins were replaced 

by adult pectoral buds. Bands of pigment on the ocular side, 5 - 10 

dorsally and 3 - 5 ventrally, extended from the pterygiophore region 

onto the fins. 
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Metamorphosis  

By day 72 c. 50% of larvae had metamorphosed and all by day 85. 

Pigment on the blind side was reduced to isolated punctate or stellate 

chromatophores. 	Fin ray counts were 57 - 65 dorsal, 40 - 46 anal 

and 6 pelvic rays (Figure 6.3.9). 

(ii) Anmotretis rostratus 

Embryonic Development  

Mature, unfertilized eggs were transparent with smooth chorion, 

ranged in diameter 0.9 - 1.18 mm, and contained from one large to 67 

small oil droplets (Table 6.5, Figure 6.4.1). Fertilized eggs developed 

a small perivitelline space and floated at the surface. Two blasto-

meres were visible after 2.5 - 3 h, 4 after 3 - 3.5 h, 8 after 3.5 - 

4 h and 16 after c. 5 h. The blasto-dermal cap had developed by 

8 - 10 h. After 25 - 28 h the germ ring and start of the embryonic 

shield were visible (Figure 6.4.2). The blastoderm covered three-

quarters of the yolk after c. 34 h (Figure 6.4.3). After 40 - 44 h 

the blastopore was closed (Figure 6.4.4) and the embryo had developed 

to the stage of.Figures 6.4.5 and 6.4.6 after 49 - 53 h. The pericardial 

cavity, auditory visicles, somites and divisions of the brain were vis-

ible after 72 h (Figures 6.4.7, 6.4.8). The heart was beating and 

the embryo moved periodically after 80 - 85 h (Figure 6.4.9). Hatch-

ing occurred after 93 - 105 h. 

Larval Development  

Stage 1 - yolksac present 

After hatching, larvae floated passively at the surface, moving 

occasionally. Chromatophores were scattered over the body, yolksac 

and finfolds. After one day, a triangular extension of the finfold 

anterior to the head, which contained a protruberance at the position 

of the developing mouth, was distinct (Figure 6.5.1). The anus was open 

by day 3 and mouth, jaws, gut and pectoral fins were functional by day 

5 when the yolksac had been resorbed, retinal pigment was dark brown 

and-the anterior extension of the finfold had disappeared. 
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FIGURE 6.4  Embryonic development of Ammotretis rostratus. 

The stages of development in photographs 1-9 

are described in the text. 
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FIGURE 6.5 Larval development of Annotretis rostratus. 

The stages of development in drawings 1-6 are 

described in the text. 
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Stage 2 - yolk resorbed, notochord straight 

The pattern of pigmentation shown in Figure 6.5.2 occurred on 

all preflexion larvae until the pattern of Figure 6.5.3 developed. 

At this time, c. day 32, caudal fin rays and the extension of the 

caudal finfold margin were obvious. 

Stage 3 - flexion of notochord 

The notochord was upturned at 20-30 0  angle by day 42 and greater 

than 45 0  by day 52. Caudal rays and the fin margin were further dev-

eloped (Figure 6.5.4). 

Stage 4 - migration of the left eye 

The left eye was migrating by day 56. 	It was visible from the 

right side after c. day 62 when larvae were settled on the bottom with 

caudal, dorsal and anal fins completely formed (Figure 6.5.5). 

Stage 5 - eye on or over edge of head 

By c. day 68, the right pelvic fin was joined to the anal, the 

left pelvic fin was almost complete, larval pectoral buds were lost 

and adult pectoral fin buds were formed. 

Metamorphosis  

Most larvae had metamorphosed by day 75 and all had by day 88. 

The pigment pattern on the ocular side is shown in Figure 6.5.6; it 

was reduced to isolated punctate melanophores on the blind side. Fin 

ray counts were 73 - 82 dorsal, 46 - 54 anal and 7 right pelvic rays. 

6.4 DISCUSSION  

The larvae of both R. tapirina and A. rostratus are small at 

hatching, first-feeding and metamorphosis when compared with other 

species of flatfish (Table 6.6) but it is difficult to compare the times 

taken to reach these stages of development because of the various temp-

erature regimes used. When both species were cultured at ambient 
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TABLE 6.6 Length at, and time to, hatching, yolk sac absorption and metamorphosis for several species of flatfish 

Species 
Days to 

hatching and 
length (mm) 

Days to yolk sac 
absorption from 
hatching and 

Days to metamorphosis 	Rearing 
from hatching and 	Temperature 

length (mm) 	( °C) 

Reference 

length (mm) 

Greenback flounder 	3.4-3.9 
Rhombosolea tapirina 	(2.0) 

Long -snouted flounder 3.9 - 4.4 

5 
(2.71) 

5 

57-85 
(8.8-9.5) 

60-88 

11.1-13.8 

12.5-16.5 

Crawford (this study) 

Crawford (this study) 
Ammotretis rostratus 	(2.32) (2.96) (10.6-11.5) 

Sand flounder 4.75-5 5-5.3 10.1 Robertson & Raj 	(1977) 
Ehombosolea plebia (1.78) (3.0-3.2) 

Lemon sole 7 10-11 C. 110 10.0±1.0 eggs Howell 	(1972) 
Microstomus kitt (5.8) (19.5) 9.3-13.5 larvae 

Dover sole 2.75-6.5 1.75-4.5 21.5-63 19-10 a  Fonds 	(1979) 
Solea solea (3.35) (4.45) (9-10) 

Turbot 5.8-9.8 3.75-8 50-80 14.4-10 eggs a Jones 	(1972, 	1973b) 
Scophthalmus maximus (2.7 - 3.0) (3.6-3.8) (23-30) 15.0-10 K.s. 

larvae 
13.5-18 larvae 

Plaice 14 7 42-56 9-10 eggs Blaxter (1968) 
Pleuronectes platessa (6) (10) 10-12 larvae 

Starry flounder 2.8 4-5 12.5 Orcutt (1950) 
Platichthys stellatus (1.93-2.08) (c.3.5) (>10.5) 

Roundnose flounder 3.13 7 24 approx. 14 Imaoka & Misu (1974) 

Eopsetta grigorjewi (2.9-3.2) (4.8-5.3) (> 7 ) 

Yellowtail flounder 6-7 4-5 54-69 10 Smigielski (1979) 
Limanda ferruginea (2.75) (17 SL) 

a Eggs and larvae were cultured at different temperatures in several experiments 



seawater temperature, which was 1-2 °  warmer for A. rostratus, the 

maximum growth rate was highest for A. rostratus but the size at, and 

time taken to, metamorphosis was less for R. tapirina. 

The growth rates of both species were suppressed for several days 

after first-feeding. 	The larvae possibly took several days to estab- 

lish successful feeding or there were insufficient rotifers of the 

required size range. Rotifers eaten at first-feeding by Black Sea 

turbot (Scophthalmus maeoticus) were much smaller than the average 

size of the rotifer population (Spectorova et al. 1974; Spectorova and 

Doroshev, 1976). 	Laurence (1977) also found that the food concen- 

tration required by first-feeding winter flounder larvae (Pseudopleuro-

nectes americanus) was higher than at later larval stages due to the 

inefficient manner of prey capture. 

The 94 and 98% survival rates for R. tapirina larvae from first-

feeding to metamorphosis in 1982 are high compared with the survival 

rates of other species of flatfish, especially those which are too small 

to feed initially on Artenia nauplii. 	For example, survival rates of 

turbot larvae from first-feeding to metamorphosis have been about 50% 

(Kuhlmann et al., 1981) and 10% (Howell, 1979) on an experimental scale 

and an average of 15.1% (Kingswell et al., 1977) and 3-6% (Jones et al., 

1981) on a pilot commercial scale. 	An average survival rate of 97.5% 

was obtained by Kingswell et al. (1977) on a large scale for Dover sole 

larvae from first-feeding on Artenia nauplii to metamorphosis but wean-

ing on to artificial diets and ongrowing have presented difficulties 

(Jones et al., 1981). Although many attempts have been made to culture 

other species of flatfish, few have been reared to metamorphosis in 

large numbers. 	High mortalities have generally occurred at the time 

of first-feeding because the larvae were unable to establish feeding on 

an exogenous food source(e.g. Robertson and Raj, 1970; Imaoka and Misu, 1974; 

Spectorova et al., 1974; Policansky and Sieswerda, 1979). The culture 

techniques developed and feeding strategies employed in this study con-

tributed to the high survival rates of the flounder larvae. 

It has been well documented that flatfish larvae benefit from 

the daily addition of unicellular algae to larval rearing tanks during 

the rotifer feeding stage (Spectorova and Doroshev, 1976; Howell, 1979; 

Scott and Baynes, 1979). 	However, no flatfish larvae can survive on 
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algae alone; any benefits of algae to larval nutrition must come from 

rotifer digested algae (Scott and Baynes, 1979; Scott and Middleton, 

1979). 	In these experiments, the addition of algae to the larval 

rearing tanks was found to be not necessary. Only adding rotifers 

daily has the advantage that the rearing system is kept as simple as 

possible and accumulation of algal deposits, which enhance bacterial 

growth, do not occur. 

The eggs and larvae of R. tapirina and A. rostratus can be readily 

separated using the following characteristics: egg diameter, oil drop-

let numbers and diameter of largest oil droplet, oil droplet numbers 

in yolksac larvae and the triangular extension of the finfold anterior 

to the head in A. rostratus, formation of a pair of spines in the otic 

region of R. tapirina larvae, pattern of pigmentation on the finfolds 

of preflexion larvae and on the body and fins from flexion to metamorpho-

sis, development of the caudal fin relative to the migration of the left 

eye, dorsal, anal and right pelvic fin ray counts after settling, length 

of larvae at metamorphosis and the formation of a left pelvic fin and 

hooked snout in A. rostratus. 

These descriptions will aid in the identification of flounder eggs 

and larvae caught in plankton samples. 	The descriptions of pigment 

patterns of R. tapirina larvae are similar to those of Roper (1979) 

except that he observed less variation. 

Although these results are preliminary, the high survival rates 

from hatching to metamorphosis indicate that both species could be 

readily cultured commercially using the techniques developed in this 

study. 	However, survival and growth rates during weaning on to dried 

foods and ongrowing need to be examined further before large-scale cul-

turing of these flounder species could be attempted. 
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CHAPTER 7 

GENERAL DISCUSSION 



This study has shown that estuaries, and to a lesser extent 

marine inlets, are important nursery grounds for Rhomlosolea tapirina 

and Annotretis rostratus. A. lituratus juveniles, however, occur only 

on semi-exposed and exposed beaches afterthey have attained a length 

of about 3.5 cm. It has been well documented that estuaries are 

favoured as nursery grounds for many species of fish because they pro-

vide an abundant and suitable food supply, sheltered conditions and 

protection from larger piscivorous predators (e.g. Pollard, 1976; 

Lenanton, 1977; Kilner and . Akroyd, , 1978; Blaber and Blaber, 1980). 

Moreover, Toole (1980) and Rosenburg (1982) suggest that juveniles which 

occur predominantly in very shallow water are generally segregated from 

larger fish, and any intraspecific and interspecific competition is 

consequently reduced. 

There have been numerous studies on the factors affecting the 

distributions of larval and juvenile fish. As concluded by Shrode 

et al. (1982), fish distribution is a complex phenomenon subject to 

control and modification by a multitude of variables. 	Habitat select- 

ion by fishes has, however, been little studied and factors selected 

for have generally been suggested from observed field distributions 

(e.g. Day, 1951; Lenanton, 1977; Weinstein, 1979; Blaber and Blaber, 

1980; Larson, 1980; Riley . et al., 1981). 

A correlation between the distribution of an animal and the 

variation in an environmental parameter, however, only indicates that 

this parameter may be used as a'cue for habitat selection. 	Experimental 

studies determine whether the animal is capable of behaviourally respond-

ing to the factor (Sale, 1969a). Nevertheless, the selection for a 

particular factor in the laboratory does not prove that the factor is 

most important in habitat selection in the natural environment because 

responses to other factors, especially biotic ones (e.g. food availabil-

ity, predators, competition), may override the expression of a particular 

orientating mechanism (Reynolds and Thompson, 1974a). The investigations 

by Sale (1968, 1969a,b) and Reynolds and Thompson, 1974a,b) are amongst 
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the few to examine habitat selection in fishes from both field and 

experimental studies. Juvenile manini, Acanthurus triostegus sand-

vicensis, were observed by Sale (1969b) to select mainly for presence 

of substrate, cover, algal food and a suitable depth of water. 

Reynolds and Thompson (1974a) found that juvenile grunion, Leuresthes 

sardina, responded to gradients of light intensity, temperature, tur-

bulence and dissolved oxygen in the laboratory in a manner which was 

in accordance with their field distributions. The grunion also displayed 

an ontogenetic change in preferred salinity during the larval to the 

juvenile. stage (Reynolds and Thompson, 1974b). 

The present study has shown, from a combination of field and 

laboratory studies, that.R. tapirina and A. rostratus larvae are probably 

dependent on water movements for transport towards nursery grounds, and 

that preferences for shallow water, low salinities and sandy substrates 

are probably important in drawing flounder larvae into estuaries. The 

occurrence of smaller numbers of newly-metamorphosed juveniles in the 

marine inlet at Cremorne suggests, nevertheless, that low salinities 

. are a preferred, but not - essential, requirement of nursery grounds. 

The depth of water and the substrate type are probably more important. 

Once on the nursery grounds, the two species show minor differences 

in distribution which appear to be related to their preferred depths 

and substrate types, and also possibly to the levels of turbulence and 

the swimming abilities of newly-metamorphosed juveniles. The observed 

differences in natural distributions of the two species by depth and by 

degree of penetration of the estuary were in accordance with experi-

mentally-determined substrate preferences and current tolerances. 

Temperature and salinity preferences, of the two species were, however, 

apparently not important. Although they both preferred very low saline 

conditions in the laboratory, they were most abundant, particularly 

A. rostratus, at much higher salinities in the field. This suggests 

that salinity preferences were overridden by a preference for other 

factors. Nevertheless, at site D2b where the salinity fluctuated markedly 

during the tidal cycle, both species were caught in the highest densities. 

Similarly, temperature preferences of the two species appeared to be 

subordinated by other factors. Unfortunately, it is very difficult in 

practise to simultaneously examine preferences for several environmental 

variables, particularly when salinity gradients are involved. 
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The results indicate that R. tapirina and A. rostratus juveniles 

co-exist by partially partitioning the spatial and trophic resources of 

the habitat. The two species were not obviously segregated temporally 

either by seasonal recruitment or diurnal movements and feeding patterns. 

Similarly, other studies of sympatric juvenile flatfish have shown that 

they partition the habitat spatially and trophically (Wacer, 1967; 

Edwards and Steele, 1968; Pearcy, 1978; Pearcy and Hancock, 1978; 

Roper, 1979; Burchmore, 1982), although temporal differences may occur 

also (Macer, 1967; Edwards and Steele, 1968). 

Moyle and Cech (1982), in a general discussion on flatfishes 

consider that co-existing species segregate ecologically by having differ-

ent depth distributions and feeding habits, the latter being reflected 

in the structure of the mouth and the pharyngeal teeth. Adults of 

many sympatric species of flatfish have been observed to partition the 

spatial resources (e.g. Hartley, 1940; Pearcy, 1978; Livingston, 1981; 

Rainer and Munro, 1982) and the trophic resources (e.g. Hartley, 1940; 

Tyler, 1972; Hatanaka et al., 1974; Stickney et al., 1974; Kravitz 

et al., 1976; Pearcy and Hancock, 1978; Livingston, 1981). Schoener 

(1974) reviewed resource partitioning in ecological communities, mainly 

terrestrial, and concluded that spatial dimensions were more important 

than food-related dimensions, which in turn were more important than 

temporal dimensions for segregating species. 	Co-existing species of 

fish have been observed to mainly partition the spatial resources (e.g. 

Werner et al., 1977). 	However, spatial partitioning is often correlated 

with trophic partitioning in fish communities (e.g. Keast, 1970; Chao 

and Musick, 1977; George and Hadley, 1979; Anderson et al., 1981; Prince 

et al., 1982). 

Although juvenile R. tapirina and A. rostratus have very similar 

patterns of habitat utilization, the existence of competition between 

them for space or food cannot be assumed. Competition between species 

generally occurs when a shared resource becomes limited in supply 

(Pianka, 1976). However, competition is difficult to demonstrate in 

natural communities because it is always advantageous for an organism 

to reduce or avoid competition (Pianka, 1976), and because competition 

may only OCCUT sporadically (Wiens, 1977). 	Also, co-existence and 

competition in natural communities are commonly complex and involve 

strong factor interactions (Colwell and Fuentes, 1975). 

147 



Measures of overlap have been commonly used as an index of 

interspecific competition for resources (e.g. Levins, 1968; May and 

MacArthur, 1972). However, overlap does not necessarily imply that 

competition is occurring (Colwell and Futuyma, 1976; Rathcke, 1976; 

Hulbert, 1978; Slobodchikoff and Schulz, 1980). 	In particular, the 

shared resource may be so abundant that it is not limiting to either 

species. 	In fact, it has been proposed by Pianka (1974) that the 

maximal tolerable overlap should be lower in intensively competitive 

situations than in environments with lower demand/supply ratios, i.e. 

extensive overlap may be correlated with reduced competition. Dietary 

overlaps in several co-existing fish species have been found to be highest 

when food resources were abundant and least when food resources were 

scarce (e.g. Keast, 1970; Zaret and Rand, 1971; Cadwallader, 1975). 

Hartley (1948) and Cadwallader (1975) suggested that a major method by 

which co-existing species of fish avoid severe competition for food is 

to change the relative proportions of dietary components. This also 

possibly occurs in R. tapirina and A. rostratus juveniles. 

The availability of food resources, however, was not determined 

in the present study. Several measures have been widely used to compare 

the diets of fishes with the potential availability of food resources in 

the habitat (e.g. Ivlev's (1961) index of electivity and the forage 

ratio (Hess and Rainwater, 1939)). 	In recent years, however, such 

measures have been criticized. 	Measurements of food availability, or 

food selection by predators are often fraught with difficulties (Strauss, 

1979; Wallace, 1981). 	For example, it is often difficult to obtain an 

unbiased sample from the habitat which accurately represents the relative 

abundances of potential prey species to the predator due to the patchy 

distributions of prey species and to the differential availability of 

prey to predator in various microhabitats. Moreover, Moore and Moore 

(1976) found that food selection in the flounder, Platichthys flesus, was 

affected by factors other than availability of food, including hunting 

efficiency of fish, their conditioning for certain foods, the degree of 

concealment of prey and the turbidity and temperature of the water. 

Similarly, Petraitis (1979) and Johnson (1980) considered that the more 

general measures of resource utilization are often not appropriate as 

the comparison of usage to availability of a resource is dependent on 

the subjective evaluation by the investigator of the relative availability 

of the resource to the consumer. 
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Interspecific competition in natural populations has often been 

investigated by comparing the ecology of a species when it occurs allo-

patrically to when it occurs sympatrically. Morphological changes 

(character displacement) and ecological changes (niche shifts) in co-

existing species have been considered to be indicative of interspecific 

competition (e.g. MacArthur, 1972; Schoener, 1974). Many species 

typically converge when they occur in allopatry and diverge when they 

occur together. 	However, such comparative studies often lack a suit- 

able control and it may be impossible to separate the effects of com-

petition from other factors, e.g. the relative availability of habitat 

types or food (Colwell and Fuentes, 1975; Werner and Hall, 1976; 

Connell, 1980; Dunham, 1980). 	Thus, although the diets of R. tapirina 

and A. rostratus juveniles have been examined in areas where they occur 

together, and where they occur separately, it is considered inappropriate 

to make comparisons, especially as both species are apparently oppor-

tunistic species and their diets vary seasonally and between geographical 

areas. 

Other biotic factors which may be important in determining the 

distributions of the two species and could influence habitat partitioning 

and competition, include the effects of predation and the interactions 

between the two species and with other fish species of the inshore 

environment. These factors generally have been examined in natural 

populations of sympatric species by controlled manipulations of densities 

or distributions of the species (see reviews by Colwell and Fuentes, 

1975; Connell, 1975). 	Such experiments, however, would be extremely 

difficult to conduct with the two flounder species studied because of 

their movements up and down the shore with the tide and because of the 

effects of wave action on sandy substrates in the intertidal zone. 

Experimental manipulations of densities of other animals in the 

field have indicated that predators can maintain the populations of 

potential competitors below levels required for competition (e.g. Paine, 

1966, 1974; Connell, 1975; Menge and Sutherland, 1976). As discussed 

in Chapter 2, the decrease in abundance of R. tapirina and A. rostratus 

after the peak recruitment period may be due to predation by larger fish. 

It is possible, therefore, that predation may similarly serve to reduce 

competition between the two species. 
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Controlled manipulations under field conditions also have pro-

vided evidence of interference competition between co-existing species. 

The abundance or distribution of one species has typically changed 

when the density or distribution of its purported competitor was altered. 

This has been observed in sympatric fish species by Low (1971), Sale 

(1974, 1975), Robertson et al. (1976) and Larson (1980). Fish with 

strongly marked territories typically exhibit competitive interactions. 

However, as R. tapirina and A. rostratus juveniles apparently are not 

territorial and were not observed to interact when kept together in 

aquaria, interference competition between them is probably not as likely 

as exploitative competition, i.e. competition for shared resources. 

The maximum densities of juvenile flounder observed on the nursery 

grounds in the present study were high. Combined mortality and emigrat-

ion rates of R. tapirina and A. rostratus juveniles after peak recruit-

ment were also similar to those of other species of flatfish. This 

raises the question of why the adult flounder populations in Tasmania 

are so low in comparison with the size of flatfish stocks overseas, 

for example plaice Pleuronectes platessa. 	Densities of juvenile plaice 

on the nursery grounds are of the same order as those of R. tapirina. 

However, the plaice fishery is one of the largest in Europe. 	There 

are several factors which may be important in determining these 

differences. 

Newly-metamorphosed plaice are spread over a much wider depth 

range, extending from the intertidal zone to 4-6 m below low water mark 

(Steele et al., 1970), than R. tapirina or A. rostratus juveniles which 

occur in 0-1 in depth. Moreover, the topography of the intertidal zone 

of plaice nurseries is quite different. Around the British Isles the 

average tidal height is 4.6 in and 3.5 m at spring and neap tides, res-

pectively, although it may be much higher in some areas. Also, in 

many regions the beaches have shallow gradients and the slope of the 

shore in estuaries may be as low as 1:600 (Perkins, 1974). By contrast, 

in south-eastern Tasmania the tidal height reaches a maximum of 1.6 m 

and 1.0 m at spring and neap tides, respectively, and the gradient of 

the intertidal zone is relatively steep. Thus, although the maximum 

densities of 0-group R. tapirina and plaice are similar, plaice occupy 

a much larger area than R. tapirina because of their wider depth 
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distributions and because the intertidal zone of plaice nurseries is 

more extensive. This large intertidal zone provides an enormous area 

of favourable feeding conditions for juvenile plaice. Moreover, there 

are no major estuarine systems with extensive sandflats in Tasmania 

which are suitable nursery grounds for flounder in comparison with, 

for example, the Wadden Sea for 0-group plaice. This sea has an inter-

tidal zone of about 6000 km 2  and juvenile plaice are thought to be 

abundant throughout (Kuipers, 1977). 	Also, as juvenile flounder are 

concentrated in a smaller, shallower region, predominantly in estuaries, 

they would be more vulnerable to the deleterious activities of man than 

juvenile plaice. 

Similarly, the range of depths occupied by adult plaice, and the 

area of bottom available at those depths, compared with that of flounder 

may influence the size of adult populations. 	Plaice are generally 

caught in depths of up to 70 in although they may be found to 180 in depth 

(Bagenal, 1966). 	Furthermore, the continental shelf (i.e. above 200 in 

depth) is extensive around the British Isles and almost the entire North 

Sea is within the shelf region (Tait, 1968). 	By contrast, R. tapirina 

are found mostly in depths of less than 45 m although they may occur 

to 55 m depth (unpublished data, Tasmanian Fisheries Development 

Authority). The continental shelf around Tasmania is comparatively 

narrow and much of the bottom topography is unsuitable for demersal fish 

species (Olsen, 1965). Moreover, Australian marine waters are some of 

the most nutrient poor regions of the world (Rochford, 1980). 	They are, 

therefore, probably not capable of supporting large stocks of fish. 

The flatfish fishery in New Zealand is also much larger than that 

in Australia; 8803 tonnes of flatfish were landed there in 1980 (Anon, 

1982). This is probably related to the larger area of continental 

shelf and higher productivity of the waters around New Zealand than 

in Australia. Productivity and zooplankton biomass values for much 

of New Zealand are similar to, and in certain areas higher than, those 

from upwelling areas in other parts of the world (Bradford and Roberts, 

1978). 	However, the densities of juvenile flounder found in New 

Zealand by Roper and Jillett (1981) could not be directly compared with 

those observed in the present study because nets of different mesh size 

were used. 

151 



Another factor which may be important in reducing flounder stocks 

is amateur spearfishing. Although the numbers of adults, as well as 

juveniles, taken by this method are not known, they are thought to be 

considerable because all sizes of R. tapirina frequent the intertidal 

zone in all months of the year. 	By contrast, adults of most other 

species of flatfish do not move in so close to shore and therefore are 

inaccessible to spearfishing. 	For example, plaice move into deeper 

water and further from the coast as they increase in size (Wimpenny, 

1953). 

The effects of predation and interspecific competition, in 

particular for food, on the population size of R. tapirina and A. rostratus 

juveniles were not examined. These factors may, however, be important. 

Edwards and Steele (1970) found that food supplies and mortality rates, 

rather than initial numbers of fish, were the controlling factors of 

0-group plaice population size at the end of the summer growth period. 

There was apparently an upper limit to the rate of energy intake by the 

population from available food supply in any given year, so that numbers 

of fish and their average length were determined by variations in mortality. 

They suggested that yearly variations in mortality rate were probably 

due to varying population densities of predators. Density-dependent 

mortality of juvenile plaice due to predation has also been suggested by 

Lockwood (1981). 	Nevertheless, Kuipers (1977) observed that the popul- 

ation numbers of 0-group plaice remained much more constant in the 

Wadden Sea, probably due to a lower rate of predation and because of an 

abundant food supply. Plaice at this stage mainly consume regenerating 

parts of benthic invertebrates. Their food source is therefore renew- 

able. 	R. tapirina and A. rostratus juveniles, however, only feed on 

whole animals. 	Their food supplies may possibly become limiting during 

the peak recruitment period when they occur in high densities over a 

narrow depth range. 

The reproductive strategy of both R. tapirina and A. rostratus 

of an apparently long spawning season, serial spawning and comparatively 

high fecundity contrasts with that of many other species of flatfish, 

including plaice, which have a shorter spawning season, spawn only once 

each season, and have lower fecundities. 	The strategy of the two 

flounder species studied tends to maximize reproductive potential and 

appears to be most suited to the survival of newly-metamorphosed juveniles 
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which have a narrow distributional range in the harsh environment of 

the intertidal zone. 	The chances of at least a proportion of eggs, 

larvae or juveniles finding favourable environmental conditions are 

enhanced and the juveniles are less crowded on the nursery grounds 

as recruitment is spread over several months. 

It has been suggested by several people, including Leggett and 

Carscadden (1978), Moyle and Cech (1982) and Roff (1981) that, although 

each fish species has a reproductive strategy which is most suited to 

the set of fluctuating environmental conditions in which it occurs, 

iteoparity (i.e. repeat spawning) is usually favoured because environ-

ments, and therefore reproductive success, are rarely predictable. 

Thus, most fish adopt a 'bet-hedging' strategy so that all their energy 

reserves are not allocated to one spawning only. 	For example, Leggett 

and Carscadden (1978) observed that in populations of the American shad 

(Alosa sapidissima), the proportion of repeat spawners increased with 

higher environmental variability, particularly temperature which influenced 

the survival of eggs and larvae. Conversely, the relative fecundity 

decreased as a greater amount of energy was allocated to migration than 

to the gonads. Serial spawning in combination with high fecundity may 

be a further adaptation to highly unpredictable environments. It would 

be interesting to examine the reproductive strategies of R. tapirina 

and A. rostratus in areas of lower latitude which are generally considered 

to be more stable, particularly as Burchmore (1982) observed distinct 

year classes of A. rostratus in the warmer waters of Botany Bay, New 

South Wales. 

Another aspect of this study, the cultivation of R. tapirina and 

A. rostratus, has provided descriptions of the eggs and larvae of the 

two species which can be used to identify those caught in the plankton. 

However, until the planktonic eggs of other fish species are described, 

the positive identification of R. tapirina eggs remains difficult. The 

success of the rearing experiments indicates that both species could be 

cultivated commercially. 	Nevertheless, further research is required 

on ongrowing and conversion onto an artificial diet of dried food. 

Research on the environmental conditions promoting maximum 

growth in other fish species has shown that growth rates are generally 

highest at the preferred temperature and salinity regimes. Jobling (1981) 
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reviewed the temperature requirements of several species of fish and 

concluded that the preferred temperature is a good estimate of that 

at which maximum growth occurs. 	Similarly, Deubler and White (1962) 

and Stickney and White (1973) found that the growth rates of larval 

Paralichthys dentalus and P. lethostigna, respectively, were highest 

at the salinities commonly recorded in the areas where they were most 

abundant. Thus, ongrowing of R. tapirina and A. rostratus juveniles 

may be best conducted at their experimentally-determined preferred 

temperatures of 12-15 °C for R. tapirina and 17-19 °C for A. rostratus, 

and salinities of 0-10%0 for both species. 

The rearing experiments therefore suggest that it may be possible 

in the future to supplement the flounder fishery by artificial cultivation 

of the two species. 	However, in the meantime the results of this study 

have emphasised the importance of estuaries, particularly the inter- 

tidal zone, in the life histories of R. tapirina and A. rostratus. 

These areas must be maintained in an ecologically viable condition and 

protected from despoliation if flounder populations are to remain at 

the present level. 
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APPENDIX 1: CHANGES IN WEIGHT AND LENGTH OF JUVENILE FLOUNDER 
DUE TO PRESERVATION IN FORMALIN 

The lengths and weights of 40 R. tapirina and 38 A. rostratus 

were measured when the fish were alive and at 2, 5, 10 and 20 days 

after preservation in 5% V/V formalin. The lengths of live R. tapirina 

ranged from 1.8 to 6.9 cm and weights from 0.056-3.81 g; live A. ros-

tratus were 1.7 to 6.9 cm in length and from 0.033-3.59 g weight. 

- Lengths (1) and weights (w) of fish after preservation in formalin 

for a given time period were expressed as a percentage of the fresh 

lengths (L) and weights (W), respectively, and means were calculated. 

Linear regression equations of preserved length against live length, and 

preserved weight against live weight were computed for each species for 

each period of preservation. The results are shown in the table below. 

Days in 	Mean"100 	S.D. 
Preservative 

Mean 
14
-.100 S.D. Regression Equation 

0 100 

R. tapirina 

100 

2 99.52 ± 	1.34 92.56 	± 4.13 L=1.00k+0.01, W=1.080w+0.006 

5 98.95 ± 	1.81 90.89 	± 5.27 L=1.002+0.04, W=1.072w+0.012 

10 98.33 ± 	2.62 90.83 	± 3.54 L=0.999+0.06, W=1.075w+0.008 

20 97.60 ± 	3.76 88.25 	± 5.08 L=0.989+0.11, W=1.118w+0.012 

A. rostratus 

0 100 100 

2 99.22 ± 	1.56 95.32 	± 4.01 L=1.002+0.07, W=1.051w+0.007 

5 97.91 ± 	1.87 92.11 	± 4.55 L=0.99k+0.12, W=1.083w+0.007 

10 97.45 ± 	2.61 91.89 	± 4.85 L=0.98k+0.18, W=1.074w+0.011 

20 96.56 ± 	3.87 90.90 	± 5.01 L=0.97k+0.21, W=1.092w+0.013 



APPENDIX 2:  Total volume (V) of water filtered in m3  per plankton tow, percentage (P) of plankton sample sorted and number R. tapirina 
larvae (N) in that portion of the sample, at six sites in different months. The number of A. rostratus larvae are shown 
in brackets. 

Date 
Site DPI Site DP2 Site FP3 Site FP4 Site FPS Site FP6 

V P N V P N V P N V P N V P N V 

6 Aug. 1980 88.53 SO 0 102.04 70 1 63.47 40 0 67.58 60 2 103.15 60 1 118.82 20 1 

3 Sept 1980 67.88 100 0 80.36 100 0 73.19 100 1 79.21 100 0 55.43 80 2 83.34 60 2 

1 Oct. 1980 69.85 80 0 67.69 80 2 71.38 100 3 71.83 100 8 76.45 100 1 77.01 30 0 

12 Nov. 1980 63.01 100 1 68.33 100 3 84.75 100 5(1) 70.86 100 0 72.83 100 0 75.67 100 0 

9 Jan. 1981 102.67 100 0 97.11 100 0 70.67 70 0 84.59 70 0 81.75 80 0 91.77 SO 0 

5 Feb. 1981 75.84 100 (1) 56.35 100 2 48.04 100 0 51.72 100 0 54.06 100 0 51.17 100 0 

11 Mar. 1981 32.95 100 0 37.05 100 0 38.05 100 0 43.31 100 0 44.78 100 0 37.42 100 0 

8 Apr. 1981 46.25 90 0 39.32 100 0 41.06 100 0 33.81 100 0 38.35 100 0 32.39 100 0 

5 May 1981 67.5 100 0 64.3 100 0 37.98 100 0 31.10 100 1 38.86 100 1 46.3 100 1 

25 June 1981 13.86 100 0 22.91 100 0 16.64 100 0 13.52 100 0 17.36 100 1 20.56 100 0 

20 July 1981 36.78 100 1 39.75 100 1 35.02 100 3 35.91 100 1 34.18 100 1 28.34 100 0 

31 Aug. 1981 39.11 100 0 36.15 100 1 37.64 100 2 43.88 100 3 43.31 100 3 48.73 100 2 

12 Oct. 1981 73.03 100 2 92.79 100 6 90.38 100 3(2)111.00 SO 1 123.07 100 0 112.84 SO 1 

25 Nov. 1981 107.44 100 0 87.40 100 0 99.51 100 0 132.29 100 0 90.55 100 0 117.48 100 0 
14 Dec. 1981 99.63 100 0 102.39 100 0 92.17 100 0 88.65 100 0 89.37 100 0 99.76 100 0 



APPENDIX 3a:  The area (A) swept by the push-net in m 2  and the number of R. tapirina (Rt) and A. rostratus (Ar) 
juveniles caught at each of three depths per month at site D1 (Nutgrove) 
(no sample taken is indicated by - ). 

Depth 10-, 30 cm 50-70 cm 90-110 cm 

Date A Rt Ar A Rt Ar A Rt Ar 

3 Nov. 1980 345 3 2 345 1 0 345 1 17 

12 Dec. 1980 345 4 0 345 60 39 

14 Jan. 	1981 345 4 1 500 0 3 500 3 3 

12 Feb. 1981 345 7 3 500 2 12 

24 Mar. 1981 255 1 1 255 13 3 500 0 0 

23 Apr. 1981 225 0 0 500 21 41 500 24 38 

26 May 	1981 240 0 1 500 4 0 500 0 1 

19 June 1981 390 2 0 500 15 9 500 9 9 

11 500 12 4 

7 July 1981 210 1 1 500 24 29 500 22 15 

12 Aug. 	1981 202.5 7 0 202.5 30 1 500 111 3 

500 97 2 

23 Sept. 	1981 - - - 500 268 6 500 143 8 

21 Oct. 	1981 279 5 0 500 51 7 500 59 10 

19 Nov. 1981 270 48 2 500 809 22 500 13 7 

7 Dec. 	1981 187.5 6 0 187.5 63 0 500 196 20 

14 Jan. 	1982 262.5 70 3 500 29 32 500 1 8 



APPENDIX 3b:  The area (A) swept by the push-net in m 2  and the 
number of R. tapirina (Rt) and A. rostratus (Ar) 
juveniles caught in each of 2-4 samples per month 
at site D2b (Browns Rivulet) 

Date A Rt Ar Date A Rt Ar 

3 Nov. 1981 180 7 1 26 May 1981 105 1 0 

225 6 3 150 1 1 

450 4 0 150 5 3 

225 11 3 

19 Jun.1981 127.5 2 0 

10 Dec. 	1981 240 53 65 150 0 1 

450 78 8 214.5 2 0 

300 31 95 

225 58 8 7 Jul.1981 172.5 0 4 

133.5 0 4 

14 Jan. 	1981 180 23 22 105 0 0 

165 35 31 

105 3 10 12 Aug.1981 168 68 13 

115.5 65 17 

14 Feb. 	1981 150 3 0 

108 1 1 23 Sep.1981 135 119 1 

125 4 1 165 26 12 

135 29 7 

14 Mar. 	1981 217.5 7 7 

157.5 3 2 21 Oct.1981 117 383 18 

105 50 8 

23 Apr. 1981 187.5 9 9 147 56 9 

363 13 , 9 

19 Nov.1981 150 308 9 

150 68 10 

7 Dec.1981 150 66 2 

127.5 37 15 

14 Jan.1982 129 15 0 

129 14 11 

171 



APPENDIX 3c:  The area (A) swept by the push-net in m2  and the number of R. tapirina (Rt) and A. rostratus (Ar) juveniles caught at each station 
a,b,c,d at 50-70 cm depth, and at station c at 10-30 cm and 90-110 cm depth, each month at site F3 (Pittwater) 
(Depth: 1 = 10-30 cm, 2 = 50-70 cm, 3 = 90-110 cm; no sample taken is indicated by - ). 

Date Depth Station a Station b Station c Station d Date Depth Station a z -Station b Station c Station d 
A Rt Ar A Rt Ar A Rt Ar A Rt Ar A Rt Ar A Rt Ar A Rt Ar A Mt Ar 

5 Nov. 1980 I 135 62 0 4 Aug. 1981 1 180 40 0 

2 500 37 4 2 SOO 7 12 500 26 1 500 30 0 500 12 0 

3 _ _ 3 500 35 11 

3 Dec. 1980 1 300 206 1 4 Sept. 1981 1 138 22 - 0 --  

2 500 102 18 2 500 291 15 500 239 3 500 171 1 500 33 1 

3 - - 3 
_ 

500 420 5 

6 Jan. 1981 1 225 18 0 8 Oct. 1981 1 195 11 2 

2 500 5 17 500 20 3 500 67 10 500 20 2 2 500 31 2 500 141 3 500 164 5 500 164 5 

3 - - 3 500 61 7' 

9 Feb. 1981 1 450 30 1 3 Nov. 1981 1 172.5 27 0 

2 500 3 2 500 20 5 500 19 2 SOO 3 5 2 500 14 7 SOO 14 1 500 23 0 SOO 82 0 

3 _ _ _ 3 500 48 4 

10 Mar. 1981 1 150 2 0 2 Dec. 1981 1 234 IS 0 

2 SOO 0 2 500 8 1 SOO 4 0 500 34 1 2 SOO 0 1 SOO 67 2 SOO 88 0 500 114 0 

3 SOO 33 1 3 500 239 9 

7 Apr. 1981 1 114 1 0 15 Jan. 1982 1 234 0 0 

2 500 0 0 500 9 I SOO 34 0 500 32 0 2 500 146 22 

3 500 4 5 3 500 25 8 

7 May, 1981 1 150 7 0 

2 SOO 1 5 SOO 4 0 SOO 8 1 500 6 0 

3 500 7 3 

5 Jun. 1981 1 147 24 1 

2 500 0 2 500 121 0 500 64 0 500 15 3 

3 500 15 4 

3 Jul. 1981 1 150 7 0 

2 500 0 0 500 220 0 SOO 43 0 SOO 15 0 

3 500 99 0 



• 

APPENDIX 3d:  The area (A) swept by the push-net in m 2  and the number of R. tapirina (Rt), A. rostratus (Ar) 
and A. lituratus (Al) juveniles caught in each sample at stations a,b,c in different months at 
site F4 (Cremorne) 

Date 
Station a Station b Station c 

A Rt 	Ar AI A Rt Ar At A Rt Ar At 

26 Nov. 1980 SOO 47 0 0 

500 52 0 0 

500 14 0 0 

31 Dec. 	1980 500 0 0 4 SOO 49 14 0 495 19 0 0 

120 14 0 0 

27 Jan. 1981 500 0 0 0 500 13 4 0 500 17 0 0 

500 26 0 0 150 6 0 0 

500 12 2 0 

24 Feb. 	1981 SOO 0 0 2 150 1 1 0 200 7 0 0 

500 18 2 0 

500 10 1 0 

22 Apr. 	1981 500 0 0 1 SOO 8 1 0 150 0 0 0 

500 44 1 0 500 1 0 0 

18 Jun. 	1981 500 13 11 0 150 0 0 0 

SOO 12 5 0 

SOO 3 2 0 

247.5 2 0 0 

20 Jul. 	1981 500 0 0 0 500 30 0 0 321 10 0 0 

500 5 2 0 

330 4 0 0 

19 Aug. 	1981 SOO 1 1 1 307.5 2 0 0 258 3 0 0 

SOO 17 1 0 

SOO 121 0 0 

21 Sept. 	1981 225 22 0 0 375 114 0 0 

SOO 33 0 0 

500 8 2 0 

20 Oct. 	1981 345 17 0 0 210 125 0 0 

500 31 2 0 

500 9 4 0 

17 Nov. 	1981 500 0 0 1 337.5 10 0 0 450 104 0 0 

500 32 5 0 

500 56 10 0 

16 Dec. 	1981 240 10 0 0 180 9 0 0 

SOO 25 10 0 

SOO 17 13 0 

28 Jan. 	1982 225 17 0 0 165 8 0 0 

500 8 9 0 

500 2 6 0 

173 



APPENDIX 4a:  The area (A) swept by the beam trawl in m 2  and the number 
of R. tapirina (Rt) and A. rostratus (Ar) juveniles caught 
in each sample per month at site D1 (Nutgrove) 
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Date Site D1 

A Rt Ar 

20 Aug. 1980 1000 2 2 

18 Sept. 1980 1000 4 8 

14 Oct. 	1980 1000 8 18 

It 1068 0 0 

2 Feb. 	1981 1600 0 0 

24 Mar. 1981 1600 0 0 

23 Apr. 1981 1068 1 0 

26 May 1981 1600 0 0 

19 Jun. 	1981 1600 1 1 

7 Jul. 	1981 1600 0 1 

12 Aug. 	1981 1600 0 0 

1, 1068 0 0 

21 Oct. 	1981 1600 0 0 

19 Nov. 	1981 1600 0 0 

It 1068 0 0 

7 Dec. 	1981 1600 1 0 

14 Jan. 	1982 1600 0 0 



APPENDIX 4b:  The area (A) swept by the beam trawl in m 2  and the number 
of R. tapirina (Rt), A. rostratus (Ar) and A. lituratus 
(Al) juveniles caught in each sample per month at site 
D2a (Kingston Beach) 

Date 
Site D2a 

A Rt Ar 

18 Sept. 	1980 1600 2 0 0 

14 Oct. 1980 1600 0 2 0 

3 Nov. 1980 1600 0 1 0 

10 Dec. 	1980 1600 0 4 0 

14 Jan. 1981 1600 0 1 0 

12 Feb. 	1981 1600 0 0 0 

24 Mar. 1981 1068 1 3 0 

23 Apr. 	1981 1600 0 1 0 

1600 42 45 19 

26 May 1981 1600 6 20 6 

19 Jun. 	1981 1600 0 2 1 

1068 0 0 7 

7 Jul. 	1981 1600 0 0 0 

12 Aug. 	1981 1600 0 0 0 

23 Sept. 	1981 1600 0 7 0 

1600 2 5 5 

21 Oct. 	1981 1600 0 1 9 

1600 0 3 4 

19 Nov. 	1981 1600 1 5 9 

1600 0 6 0 

7 Dec. 	1981 1600 0 6 7 

14 Jan. 1982 1600 0 0 0 

1068 0 0 0 
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APPENDIX 4c:  The area (A) swept by the beam trawl in m 2  and the number 
of R. tapirina (Rt) and A. rostratus (Ar) juveniles caught 
in each sample at stations b and c in different months 
at site F3 (Pittwater) 

Date 
Stations b and c 

A Rt Ar 

16 Aug. 1980 1600 7 4 

1 Oct. 	1980 1600 21 1 

1600 34 10 

5 Nov. 	1980 1068 10 5 

1068 2 0 

3 Dec. 	1980 1600 49 2 

1068 62 7 

6 Jan. 1981 1600 6 4 

11 Feb. 	1981 1068 2 1 

1068 2 0 

10 Mar. 1981 1068 47 12 

1600 0 0 

7 Apr. 1981 1068 0 2 

1600 18 0 

7 May 1981 1600 2 0 

11 1068 2 9 

5 Jun. 1981 1600 2 2 

1068 5 1 

3 Jul. 	1981 1600 6 0 

II 1600 1 0 

4 Aug. 	1981 1600 0 0 

8 Oct. 	1981 1600 0 0 

It 1600 0 0 

3 Nov. 1981 1600 12 2 

2 Dec. 	1981 1600 3 1 

1600 0 0 

15 Jan. 1982 1600 2 3 

1600 0 0 
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APPENDIX 4d:  The area (A) swept by the beam trawl in m 2  and the number 
of R. tapirina (Rt), A. rostratus (Ar) and A. lituratus 
(At) juveniles caught in each sample at stations a and 
b+c in different months at site F4 (Cremorne) 
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Date 
Station a Station b+c 

A Rt Ar At A 	Rt Ar At 

28 Aug. 1980 1600 0 0 0 2669 22 16 0 

1600 0 0 0 1600 4 1 0 

23 Sept. 1980 1600 0 1 2 1600 19 0 0 

1600 2 1 1 1600 11 0 0 

29 Oct. 1980 1600 4 2 5 1600 50 1 0 

1, 1600 11 3 5 1600 8 1 0 

26 Nov. 1980 1600 4 0 6 1600 48 2 0 

n 1600 4 6 5 

31 Dec. 1980 1600 13 8 2 1600 13 0 0 

n 1600 0 3 1 1600 32 4 0 

27 Jan. 1981 1600 3 0 0 1600 15 0 0 

p 1600 0 1 0 1600 24 0 0 

24 Feb. 1981 1600 5 2 0 1600 4 0 0 

n 1600 17 7 0 

4 Mar. 1981 1600 12 8 1 1600 24 8 0 

22 Apr. 1981 1600 8 7 1 1068 9 6 0 

I, 1600 3 31 0 

22 May 1981 1600 12 5 1 1600 8 3 0 

II 1600 2 3 2 1600 1 0 0 

18 Jun. 1981 - - - - 640 3 2 0 

20 Jul. 	1981 1068 4 4 0 1600 3 1 0 

n 1068 3 7 1 1600 0 0 0 

19 Aug. 	1981 1600 3 4 4 1600 1 0 0 

tt 1600 9 3 0 

21 Sept. 	1981 1600 2 1 0 1600 11 1 0 

tt 1600 5 6 1 1600 0 0 0 

20 Oct. 1981 1600 6 2 0 1068 6 0 0 

11 1068 9 3 2 1068 3 1 0 

17 Nov. 1981 1600 38 8 4 1600 6 1 0 

tt 1600 19 5 0 

16 Dec. 	1981 1600 1 0 0 1600 5 3 0 

It 1600 11 3 0 

28 Jan. 	1982 1600 7 2 0 1600 1 0 0 

n 1600 12 0 0 1600 0 0 0 



APPENDIX 5: SALINITY GRADIENT APPARATUS 

The salinity gradient apparatus which regularly provided a 

gradient of 0-33%0 across the observational chamber is shown diagram-

atically in Figure 1. Seawater and freshwater flowed into separate 

reservoirs and drained through apertures of varying sizes into 12 

mixing compartments below. Each reservoir contained 11 apertures of 

decreasing size from 8 mm to 3 mm and no aperture at the end, and the 

two reservoirs were arranged so that the apertures decreased in size 

towards opposite ends. Thus, one end of the mixing compartment received 

only freshwater and the volume of freshwater decreased by a consistent 

amount towards the other end whilst the volume of seawater increased. 

To enhance mixing, freshwater flowed down tubing from the apertures 

to the bottom of the mixing compartments. The mixing chambers there-

fore contained water of varying salinities which then flowed over the 

observational chamber and out through an overflow pipe. Mesh of 2 mm 

knot to knot was.placed at either end of the observational chamber to 

retain larvae. 
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Appendix 5 : Fig.l. Salinity gradient machine. 

Scale lcm = 10cm. 
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APPENDIX 6: CULTIVATION OF MICROALGAE, ROTIFERS (BRACHINONVS 
PLICATILIS) AND ARTEMIA SALINA NAUPLII. 

Microalgae, Chlorella sp., Monochrysis lutheri and Phaeodactylum 

tricornutum were cultured as food for rotifers using the methods Of 

Chanley (1978, unpublished) and Guillard (1973). 	Only Phaeo- 

dactylum could be cultured on a semi-continuous basis, the batch method 

being used for the other algae. When possible, rotifers were fed a 

mixture of algal species. 

Attempts to rear rotifers on torulose yeast at various concentrations, 

as described by Fontaine and Revera (1980), were unsuccessful. Subse-

quently, yeast was only added as a supplementary food when algal concen-

trations were low. 

Approximately 4 x 10 6 rotifers were produced daily for up to 6 

weeks using the methods of Theilacker and McMaster (1971) and Howell 

(1973). 	Initially, rotifers were cultured by progressive inoculation 

of dense algal cultures of increasing volume up to 200 I. When the 

density of the 200 2. rotifer cultures reached approximately 50 organisms 

mt-1 , one quarter of the volume was siphoned off on to a 63 pm mesh sieve 

which retained the rotifers. The seawater was replaced with an equal 

volume of dense algae (1-2 x 10 6 cells in2.
-1

). 	As the algae was con- 

sumed faster than it was replaced, it was periodically necessary to 

replace larger volumes of the culture medium with dense algae. 

The rotifers were cultured at 20-25 °C in ultra-violet treated 

seawater of 33-34%, salinity. They were continuously aerated from the 

bottom and illuminated in the centre of the tank. 

Artemia cysts (up to 5 g) were incubated in seawater in 20 t 

glass carboys, aerated from the bottom and illuminated for at least the 

first few hours (Sorgeloos and Persoone, 1975). The temperature was 

maintained at 25-28 °C and the hatched nauplii were siphoned off 28-32 h 

later. Only newly hatched nauplii were fed to flounder larvae. 

In 1981 the outer chorion of Artemia cysts were first removed 

using sodium hypochlorite (Sorgeloos et al., 1977). However, few 
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nauplii hatched in 1982 when a different stock of cysts were treated in 

a similar manner. Large numbers of nauplii were obtained only from 

untreated eggs. 
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