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ABSTRACT 

This thesis consists of a review of ultrapotassic igneous rock 

occurrences and three experimental programs designed to examine the 

petrogenesis of the lamproites. 

A -definition for ultrapotassic rocks is introduced using the 

whole-rock chemical screens K20>3 wt%, MgO>3 wt% and K20/Na20>2. Three 

major end-member groups are recognised; Group I (lamproites) are 

characterised by low CaO, A1203 and Na 2 0, high K 20/A1203 and Mg-number, 

and extremely high incompatible element contents; Group II have low Si0 2  

and high CaO, and lower incompatible elements than group I although they 

have high relatively Sr; Group III rocks occur in orogenic areas and have 

high CaO and A1203, and low Ti0 2 , Nb and Ba typical of island arc rocks. 

-Primary magmas-for all three groups probably originate by partial melting 

of mantle material enriched in incompatible elements. The chemical 

signatures of the groups indicate differences in (i) source composition 

prior to enrichment, (ii) the chemical nature of the enriching agent, and 

(iii) pressure-temperature conditions of melting. 

The liquldus mineralogy of a pristine, primary leucite lamproite from-- 

Gaussberg, Antarctica, was studied at .1 atm with controlled f0 2 , oxygen 

fugacity at the time of crystallisation of the Gaussberg rock is shown by 

ferric value [10OFe 3 /(Fe3 +Fe2 )] of spinel, Fe 203 content of leucite and 

Mg-number of olivine, to have been just below NNO. Application of the spinel 

ferric value calibration to other lamproites indicates that they began to 

crystallise at f0 2  ranging from MW to above NNO. The ferric value of 

spinel is very sensitive to changes in oxygen fugacity, and may prove 

useful as a diamond survivability indicator': diamonds are unlikely to 

survive in the more oxidised lamproite magmas. 

The effect of fluorine, an important constituent of ultrapotassic 

rocks, on phase relationships in the kalsilite-forsterite-quartz system 

was studied at 28kbar. Fluorphiogopite is found to be stable to 300 0C 

higher than hydroxyphlogopite, and the peritectic point PHL+EN+F0+L, which 

can be used to model melting of a mica-harzburgite mantle, lies at an 

equally magnesian composition. Fluorine acts as a melt polymerising agent 

as shown by the expansion of the enstatite phase volume relative to 

forsterite and by FTIR spectroscopic studies. Fluorine forms bonds with 

network modifying cations and removes KA10 2  groups from the 

aluminosilicate network, causing an increase in Si/(Si+Al) in the network. 

However, in the presence of water fluorine will appear to depolymerise 
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melts due to the action of OH released by HF dissolution; the viscosity 

will be lowered by fluorine in either case due to the formation of 

fluoride complexes. 

A model is developed for the origin of lamproitic magmas by partial 

melting of a mica-harzburgite mantle in a reduced environment in the 

presence offluorine. Lamproitestypically carry depleted mantle nodules 

and have H20-and F-rich, but CO 2-poor compositions. Primary lamproite 

magmas appear to range in silica content from around 40 wt% (olivine 

lamproites) to at least 52 wt% (leucite lamproites). In a reduced mantle 

(f02  1W to IW+2 log units) CH4 will be the dominant carbon species in 

fluids, and CO2  will be very rare even in a carbon-rich environment. CH4 

also acts as a depolymeriser, so that production of silicic melts will be 

optimised in a reduced, fluorine-rich mantle. Olivine lainproites may be 

produced by melting of a similar composition at higher pressures. 

Calculations show that oxidation from the proposed reduced conditions at 

source to observed surface oxidation states can be achieved by dissociation 

of only 0.1 wt% H20 driven by diffusive loss of H2. 

Silica-poor rocks of Group II may originate in an oxidised environment 

with abundant CO2  but little H 2 0. Fluorine will maintain a large phase 

field for mica in these conditions so that initial melts will be magnesian 

and strongly silica-undersaturated. 

A technique is developed for liquidus experiments at high pressures 

in the presence of reduced H20>CH4  fluids. Two lamproite compositions were 

studied by this technique to test the hypothesis outlined above. The 

olivine lamproite has olivine as the liquidus phase at all pressures 

studied (up to 40 kbar), but the increasing stability of orthopyroxene+ 

mica with pressure indicates that there may be a OL+OPX+PHL point at the 

liquidus between 45 and 55 kbar. This is consistent with the occurrence of 

diamonds in olivine lamproitës. The leucite lamproite has liquidus fields 

for olivine, mica and orthopyroxene with increasing pressure, but has no 

point where the three coexist. These phase relationships can be 

interpreted to fit the mica-harzburgite melting model (with melting at 20 

kbar) if minor olivine fractionation occurs at high pressures, or possibly if 

the water content of the source differs from that of the experiments. Thus, 

pressure variation may be the principal control of lamproite chemistry. 

Several experiments with variable CH4 /H20 or H20/CO2 fluids enable 

comparison of melting behaviour at varying f02 . At very low f02, melting 

temperatures are increased due to lowered water activity, but mica 

stability is increased due to its higher F/OH. 
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PART I 

THE ULTRAPOTASSIC ROCKS : CHARACTERISTICS, CLASSIFICATION, AND 

CONSTRAINTS FOR PETROGENETIC MODELS 

'A little boy goes into a grocer's shop with a penny 

in his hand and asks: "Could I have a penny's worth 

of mixed sweets?" The grocer takes two sweets and hands 

them to the boy saying: "Here gou have two sweets. You 

can do the mixing yourself." 

Niels Bohr 
quoted by Heisenberg [1958] 

1.1 INTRODUCTION 

The terms ultrapotassic and highly potassic are generally used 

to-describe rocks which have high-contents of K 20 and other incompatible 

elements together with a high K 20/Na 20 ratio, and yet have other features 

such as high Mg-number [lOOMg/(Mg+Fe)], Ni and Cr which are characteristic 

of relatively primitive basaltic magmas. This unusual chemistry leads to 

the frequent occurrence of leucite and mica as phenocryst phases together 

with olivine. 

Much has been written about ultrapotassic rock occurrences with 

relatively little attempt to systematically document and compare them. 

Early workers produced treatises on alkaline petrographic provinces in 

which they developed petrographically-based classifications which led to 

an array of rock names s uchras orendite, wyoiningite [Cross 1897], 

katungite, mafurite [Holmes and Harwood 19321, cedricite and wolgidite 

[Wade and Prider 19401 which have little, if any, applicability to rocks 

outside the type area. This unwieldly nomenclature has led to a tendency 

to lump ultrapotassic rocks into a single group, a situation which has led 

to some confused petrogenetic speculation. A number of recent papers 

[Jaques et al. 1984a; Scott-Smith and Skinner 1984a; Mitchell 1986; 

Bergman 1986] propose simplifications of the nomenclature, but these still 

rely partly or wholly on modal mineralogy. 



A large part of the nomenclature problem is due to the mineralogical 

diversity: the great variability in appearance and abundance of the 

'definitive' minerals results in multiple names for rocks which may be 

very similar chemically. A petrographically-based classification is 

therefore less suitable for ultrapotassic rocks, and indeed other types of 

alkaline rocks, 

 

than-for the more common, less alkaline rockgroups. 

The purpose of this paper is to introduce specific chemical 

parameters to delimit the term ultrapotassic, to review the available data 

and from it suggest a classification scheme which will be useful for 

petrogenetic modelling. 

1.2 RATIONALE FOR CLASSIFICATIONS 

Petrological studies proceed from an empirical data gathering stage 

to petrogenetic modelling, a process in which classification is an 

important intermediate stage. The structuring of the classification is 

important if it is to assist in petrogenetic modelling. Classifications 

used in petrology are of two basic types; partition classifications and 

resemblance classifications [cf. Kdrner 1966]. A partition classification 

attempts to define groups according to rigid rules in the manner of 

mathematical sets. It is the more empirical of the two types and is the 

basis of the petrographic classifications used for naming rocks. The 

applications of partition classifications in petrology tend to be more 

archival than heuristic because of the rigidity of the resultant boundaries. 

They are useful for comparative descriptions but are less useful for 

borderline cases which are essential to discussions of petrogenesis. 

The classification developed here for ultrapotassic rocks is a 

resemblance classification by which rocks are grouped on the basis of 

similarity to standard members and dissimilarity from standard 

non-members. Rocks are therefore treated as transitional between 

end-members rather than being partitioned into small distinct groups. 

This is more suited to the complexity of processes which are involved in 

petrogenesis, the modelling of which is too inexact a science for the 

definite groupings produced by a partition classification. The retention 

of transitional types due to inexact boundaries in a heuristic 

classification is essential because the concepts under investigation in 

petrogenetic modelling are rarely independent or mutually exclusive. The 
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introduction of strict but arbitrary partitions produces artificial 

boundaries which run the risk of being carried over into petrogenetic 

models. The proposition of end-members is not intended to imply uniqueness 

of process, since each end-member will be the result of a complex 

interaction of physical and chemical processes. These must be considered at 

a later stage than classification. However, recognition of end-members 

should help to isolate which conditions are involved in each case. 

A resemblance classification is necessarily more genetic than a 

partition classification in that it requires abstraction of a greater 

number of properties of the rocks. We group them chiefly by major element 

chemical characteristics, but also selectively consider geological setting, 

ultrarnafic nodule content and trace element characteristics. Because of 

this the resemblance classification must be more susceptible to changes, 

either in the data base or in its theroetical grounding, than is a 

petrographic partition classification. It is important to remember in 

using any classification that "... any decision as to which classification 

is best is itself a hypothesis, which subsequent investigations may lead 

us to reject" [Copi 1978, p.4951. 

1.3 ULTR.APOTASSIC ROCK DATA 

Current usage of the terms ultrapotassic and highly potassic 

appears to rest on an assumed mutual understanding amongst petrologists as 

to which rocks are included without a widely used definition. This 

usage is derived from descriptions ofa few classic localities such as the 

Roman region of Italy, the western branch of the East African rift valley, 

the Leucite Hills of Wyoming, and the West Kimberley area of Western 

Australia. In order to review occurrences of ultrapotassic rocks a 

definition must be adopted, and here we introduce limits based on 

whole-rock chemistry. 

Owing to the continuous variation in oxide abundances, chemical 

screens are necessarily arbitrary, but are chosen to approximately 

coincide with general usage. The chemical screens used are: 

[ii K20/Na 2 0 > 2 : Higher values of 3 [Carmichael, Turner and Verhoogen 

19741 and 2.5 [Venturelli and Di Battistini 19801 have been used 

previously, but the present value is chosen to include rocks from 

the Toro Ankole volcanic field of Uganda which are generally 



treated as ultrapotassic. 

[21 K20 > 3 wt% : This avoids confusion with rocks which have a high 

K20/Na2 0 ratio but only low total alkalies, and thus excludes 

virtually all kimberlites. 

[31 MgO > 3 wt% : to restrict attention to mafic as opposed to salic 

rocks. 

In a survey of the literature, 827 analyses of ultrapotassic rocks 

from 82 localities were found using these chemical screens. These are 

summarised in table 1 together with sources of data and ages, where 

available. Table 1 also lists the groupings as defined in the next 

section, and latitutdes and longitudes: location maps for many of these 

localities are given by Bergman [1986]. 

The choice of chemical screens allows inclusion of most major rock 

types generally treated in discussions of ultrapotassic rocks, but also 

includes many which are not. The most notable of these are ultrabasic (eg. 

Pen, Oka) and alkaline lamprophyres (especially minettes), and vaugnerites 

and durbachites which are generally treated as ferromagnesian-rich 

granitic rocks. The presence or absence of particular minerals is not 

used in defining the term ultrapotassic. We do not follow the tendency of 

some petrologists to treat ultrapotassic as being synonymous with 

.leucite-bearing. Leucite is a common mineral in many ultrapotassic rocks 

but is not diagnostic and also occurs in rocks with a K20/Na20 ratio which 

may be barely greater than 1 [Duda and Schmincke 1978; Baker et al. 1964; 

Gupta and Yagi 1980; Holmes and Harwood 19371. 

Table 2 reports available Sr, Nd, Pb and 0 isotope measurements for 

ultrapotassic rocks. Unfortunately, most of these are from samples for 

which major and trace element analyses are not available, so that only an 

approximate treatment of the isotope data is possible. 

1.4 ULTRAPOTASSIC ROCK CLASSIFICATION 

tJltrapotassic rocks defined by the chemical screens noted above are 

an exceptionally heterogeneous group with large variations in most major 

element oxide abundances. Four groups are outlined here of which three are 

apparent end-members on a selection of oxide-oxide variation diagrams, 

and the fourth is merely a convenient transitional group. 
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The three major groups are essentially an extension of the 

classification suggested by Barton [1979] but are separated here purely on 

a chemical basis. Some minerals such as clinopyroxene and leucite have 

distinctive compositions in each group, and some minerals occur 

exclusively in one particular -group. However, mineralogy can-serve only as 

a guide to a chemical classification and is not treated as diagnostic for 

two reasons: (a) heteromorphism is a major problem in alkaline rocks due to 

the large number of potential minerals, many of which do not occur as 

phenocrysts, so that occurrence of a particular mineral may be due only to 

conditions and degree of crystallisation; (b) presence or absence of a 

given mineral is a partition-type delimiter and cannot be transitional, 

and thus must be of secondary importance in our resemblance classification. 

The major groupings are illustrated in chemical variation diagrams 

in figures 1 to 6. The K 20/Si0 2  plot conventionally used to classify 

basaltic rock types is not used as it does not distinguish between the 

.major types of ultra potassic rocks. Figures 1-4 contain diagrams which are 

more useful as group discriminants, -whereas figures 5-6 depict additional 

features of petrological interest. Because of the large number of 

analyses group IV rocks are plotted separately in figures 1 to 6 for 

clarity and are cross-referenced to groups I, II and III by the lines 

serving as approximate group delimiters. These lines are not intended as 

strict boundaries but merely include the majority of analyses in each 

group for comparison with group IV and for ease of reference. The plots in 

figures 1 to 6 emphasise the gradational nature of ultrapotassic rock 

chemistry in that even after removal of a substantial transitional group 

strict boundaries are, in many cases, difficult to draw. 

The major element characteristics of the groups, together with other 

pertinent features, are outlined below. They are discussed In further 

detail in the section on petrogenesis. 	- 

1.4.1 MAJOR ELEMENTS: 

1.4.1.1 Group I 

This group is equivalent to Bartons [1979] Leucite Hills Type and 

Sahamas Orenditic class. The term lamproite [Wade and Prider 1940] was 

originally, and is consistently, applied to rocks of this group. Where used 

later in this paper, lamproites will refer to rocks of Group I. Group I 
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rocks are best distinguished by their low contents of A1203, CaO and Na20 

(figures 1, 3 and 4). They have high K20/A1 203, generally above 0.6, and 

frequently are perpotassic (K20/Al203 > 1) (figure 2). Si02 content is 

variable (36 - 60 wt %), but high K20/Al203 is maintained even in rocks 

richest in silica, The Mg-number is generally higher than in the other 

groups. 	 - 

Group I is best separated from group III by A120 3  content 

(particularly CaO vs A1 203 ; figure 1) and from group II by CaO and S102. 

The incompatible trace elements such as Ba, Rb and Zr, whilst high in all 

ultrapotassic rocks, are most abundant in group I. The best examples are 

from West Kimberley and Gaussberg, and these are preferred to the Leucite 

Hills as standard members because of the relatively low Si02, high CaO 

madupites of the Leucite Hills which could be considered transitional 

between groups I and II. Rocks from other areas such as the northwestern 

Alps, southeastern Spain, Koudiat-el-Anzazza (Algeria) and West Greenland 

have chemical characteristics which are less extreme than the group I 

end-members. 

The chemistry of the lamproites, especially the low A120 3 , leads to 

distinctive mineral compositions such as low Al clinopyroxene, mica and - 

amphibole [Barton 1979; Cundari and Ferguson 1982] and the occurrence of 

rare Al-free accessory minerals such as priderite [(K,Ba)(Ti,Fe) 8016 ]
1 

 

wadeite [Zr 2K4 Si 6018 ] and shcherbackovite [(Na,K)(Ba,K)(Ti,Nb)2Si4O14]. 

For more details of lamproite mineralogy, see Mitchell [1986], Bergman 

[1986] and source references listed in table 1. 

1.4.1.2 Group II 

Members of this group are distinguished chiefly by their 

consistently low S10 2  ( < 46 wt %), and most of the overlap with the 

low-silica olivine lamproites of group I is removed by reference to the 

high CaO of group II (figures 1, 3 and 4). They also have low A1203 

(figure 1) but, due to less extreme [<20,  have lower K20/A1203 (figure 

2). Na 20 is also low and Mg-number is variable but mostly above 60. The 

rocks of this group are commonly referred to as kamafugites [Sahama 1974, 

Gallo et al. 19841 and are equivalent to Bartons Toro-Anko1e Type. The 

Toro Ankole rocks are the most abundant members of this group and will 

serve as the standard members. Other rocks included are the Cupaello and 

San Venanzo occurrences in Italy, plus olivine inelilitites and ultrabasic 
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lamprophyres from a number of areas (table 1). Petrographically, group II 

rocks often contain melilite, perovskite and kalsilite due to the low S10 2  

contents, and groundmass carbonate frequently occurs. 

1.4.1.3 Group III 

This group is equivalent to •Bartons "Roman Province Type", but no 

general rock name like lamproite or kamafugite has been applied. The 

principal major element characteristic of group III is their high A1 203  

content, which leads to low K20/A1 203 (generally less than 0.5; figure 

2) despite K 20 contents which are normally higher than group It rocks. 

The CaO content of the more basic group III rocks Is generally 

intermediate between that of groups I and II, and decreases toward more 

differentiated rocks (figure 3). Mg-number is lower than in the other 

groups, being only rarely above 70 (figure 5), and rocks with extremely 

low silica contents ( < 42 wt %) do not occur, although contents less than 

50 wt % are common. 

For the standard members we take the Roman Province volcanics since 

they form the bulk of the analyses, but there is less variation between 

localities in group III, so that the distinction of a specific end-member 

is not so important here. The Indonesian examples are also typical of 

group III and will be used later in petrogenetic arguments because of 

their simpler tectonic environment. 

The high A1 203  content is the principal factor in determining 

the mineralogy of these rocks: plagioclase is common, as is clinopyroxene 

which contains greater amounts of A1203 than in group I [Barton 1979; 

Cundari and Ferguson 1982]. Leucites characteristically have low Fe 203

contents, but this may be due to the high A1 203  content of the rocks rather 

than reflecting oxygen fugacity, since the Fe 203  content depends on 

KDJ:3part 21. The high A1203 and Sb2 together prevent 

crystallisation of Al-free accessories and silica-undersaturated minerals 

such as kalsilite, melilite, perovskite, priderite and wadeite which are 

characteristic of the other two groups. The rocks from the Alban Hills, 

central Italy, are an exception, frequently containing mnelilite. 

1.4.1.4 Group IV 

As noted above (section 2), the recognition of transitional types is 

a logical consequence of a resemblance classification. The choice of rocks 
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included in group Iv is to some extent arbitrary, since the only criterion. 

is that they have intermediate characteristics. Rocks from one locality 

frequently have a range in composition, and some samples fall close to one 

group end-member. However, other samples from the same locality are 

chemically very different and fall outside the field for the group. 

Rather than separate rocks from one locality. into separate groups, they 

are included in Group IV. Most localities included in group IV do not have 

any samples with characteristics close to end-members of the other groups. 

Group IV rocks are generally transitional between groups I and III 

(figures 1 to 6) rather than between I and II or II and III. This is 

because rocks from end-member localities for groups I and III are 

relatively well separated chemically (figures 1-4) whereas transitional 

members between, for example, groups I and II are from suites which 

contain rocks strongly resembling group end-members, such as the Leucite 

Hills. Many group [V rocks have high Mg-number and Si0 2  less than 55 wt % 

(figures 1 to 5). Figure 6 indicates that many have distinct Na2O vs A12 03  

characteristics which are not purely transitional. 

A large part of group IV is taken up by rocks which are not usually 

considered at all in discussions of ultrapotassic rocks, some of which may 

result from very different petrogenetic processes. These are treated only 

briefly here as the purpose of this paper is to discuss the three very 

different group end-members. 

1.4.2 GEOLOGICAL SETTING 

This section considers the setting of ultrapotassic rocks in terms 

of both tectonics and associated rock types. In broad tectonic terms, 

group I rocks occur either in stable continental areas or in orogenic areas. 

Group II rocks occur dominantly in rift environments, and group III rocks 

occur exclusively in active orogenic zones. 

The standard members of group I occur in stable continental 

areas and normally have no associated non-ultrapotassic rocks, except 

possibly kimberlites in the case of Western Australia [Atkinson et al. 

19841. Other group I rocks occur in orogenic areas and may be associated 

with calc-alkaline or shoshonitic rocks (eg. northwestern Alps, southeastern 

Spain). These non-standard suites are apparently not always directly 

associated with active subduction and the closure of ocean basins (Dal Piaz 
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et al. 1979; Venturelli et al. 1984a,b) since the magmas may be emplaced after 

the cessation of continental collision and subduction. The contrast between 

the stable continental and orogenic rocks is expressed chemically in the 

diagram P205/Ti02 vs T102 (figure 7). Group I rocks from stable 

continental areas have high T10 2  whereas rocks from more recently 

tectonically active areas have lower T10 2  and a greater spread in 

T102 . The orogenic versus continental distinction is further illustrated 

by the group II and III rocks (figure 7b). The rocks from the northwestern 

Alps, southeastern Spain, Algeria and Corsica appear to form a distinct 

province associated with Mediterranean tectonics, and have similar 

T102  characteristics to group III lavas of the Roman province, but with 

slightly higher T1 2 . The Pendennis minette, which also falls into the 

low T102  region, is associated with group IV rocks from Jersey and 

Devonshire with Hercynian tectonics of the English Channel area. The 

dividing line in. figure 7a between non-orogenic and orogenic areas is quite 

sharp at around 2 wt % T10 2 , with rocks from continental North America 

grouped closely at 1.7 to 2.8 wt % T102 . 

The region indicated for group II in figure 7b is dominantly due to 

the Toro Ankole volcanics of the East African rift which form the bulk of 

the analyses. The Toro Ankole volcanics are part of an extensive suite of 

alkaline rocks in the western branch of the rift valley [Pouclet 1980a,b; 

Pouclet et al. 19841. Associated rocks include alkali basalts and 

nephelinites which have progressively higher K20/Na20 and total alkalies 

and lower silica northwards [Pouclet et al. 1984] towards the Toro Ankole 

volcanic field where ultrapotassic rocks occur together with carbonatites 

[Von Knorring and Du Bois 1961; Nixon and Hornung 19731. 

Group II also includes a number of ultrabasic lamprophyres and 

olivine melilitites which plot amongst the Toro Ankole rocks in figure 7b, 

and are also associated with rifts. The Oka, Fen and Aland Islands 

lamprophyres form part of a widespread province of rift-associated rocks 

throughout the North Atlantic region approximately 500 my old [Doig 

19701. The remaining association of group II rocks is between 

olivine melilitites and kimberlites in South Africa [McIver 1981] and on 

the Anabar Shield where the two rock types occur together in the same 

igneous body [Ukhanov 1963]. A kimberlite from the Kimberley area of South 

Africa qualifies as ultrapotassic [Dawson 19721, and has group Ii 
characteristics. Some Arkansas ultrapotassic rocks falling in between 
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groups I and II may be transitional in nature between ultrapotassic rocks 

and kimberlites [Scott-Smith and Skinner 1984b]. 

The scatter amongst group II to high P205/Ti02 values at high T102 is 

due to the Damodar Valley glitnmerites [Gupta et al. 19831 which have 

unusual mica-carbonate-apatite mineralogy and may not represent primary 

mantle-derived liquids. The Italian kamafugites of San Venanzo and 

Cupaello plot in a similar position to Roman region lavas in figure 7b. 

Group III rocks form the alkaline end-member of orogenic island arc 

volcanics in Indonesia and Italy, and also occur behind the Aleutian Arc. 

In Indonesia, where the occurrences are better documented than the Aleutians 

and the tectonic setting is simpler than Italy, they are associated with a 

chemically continuous series with increasing K 2 0 from arc tholeiites, 

through shoshonites to leucitites [Wheller et al. 19861. This series includes 

members which are leucite-bearing but do not meet the chemical definition of 

ultrapotassic rocks used in this paper. Similar leucite-bearing rocks occur 

in other orogenic areas with no ültrapotassic representatives eg. Utsuryo 

Island, Korea [Harunioto 1970; Nelson et al. 1986]. 

1.4.3 ULTRANPIC NODULES 

Ultrapotassic rocks commonly contain sedimentary xenoliths as well 

as high grade metamorphic rocks of presumed lower crustal origin. 

Ultramafic nodules of accidental or cognate origin are rarer, and where 

present are usually subordinate to crustal xenoliths. The ultramaf Ic 

nodule occurrences are summarised in table 3 from which it can be seen 

that nodule mineralogy Is variable, with each ultrapotassic group having 

characteristic types. The most notable feature for ultrapotassic rock 

genesis is the rarity of garnet- and spinel-lherzolites which are common 

in many less potassic alkaline rocks. [Green 1970; Frey and Green 1974; 

Menzies 1983; Harte 19831. 

Nodules from group I rocks are mostly peridotitic, but lherzolitic 

types are subordinate to garnet- and clinopyroxene-poor varieties believed 

to indicate depletion by loss of a basaltic melt component [Green and 

Ringwood 1963, 1967a]. Clinopyroxene- and mica- rich nodules are 

mostly considered to be products of magma crystallisation at high 

pressures. 
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TABLE 3: Ultramafic xenoliths occurrences in ultrapotassic rocks. 

REGION 	'XENOLITH TYPES 	REFERENCES 

Group I: 
West Kimberley 	Dunite > dps-chr-Harzburgite, 	Jaques at al 1984a; Wade & Prider 1940 	- 

Cr-dps, Cr-spa, pyrope xcts 

Gaussberg 	Spn-Lherzolite, cognate cpx-ol-lc, 	Reinisch 1912; Sheraton & Cundari 1980; 
dps-cbr-Harzburgite 	Collerson & McCulloch 1983; Vyalov & Sobolev 1959 

Leucite Hills 	Dunite, mica-ol-Pyroxenite (often 	Carmichael 1967; Barton & van Bergen 1981 
cpx- or mica- rich) 

Prairie Creek 	Mica rich, k-richterite-bearing 	Mitchell & Lewis 1983 
Peridotite 	 - 

West Greenland 	Dunite > Lherzolite, tjebsterite, 	Scott 1981 
Harzburgite 

Southeast Spain 	Dunite, spn-peridotite 	Borley 1967; Venturelli ci al 1984b; Nixon at al 1984 

Group II: 
Western branch, 	Olivine-biotite-pyroxene series' 	Holmes 1937, 1942; Combs 6 Holmes 1945; Holmes & 
East African Rift Bt-Pyroxenite, glimmerite, Dunite, 	Harwood 1932, 1937; Lloyd & Bailey 1975; Lloyd 1981 

with cpx, bt, sph, ilm/T1-mt,prv, 
melanite (occasionally Ne) 

Bergydamalakh 	mica-Peridotite 	Ukhanov 1963 

Beaver Lake 	Spa-Lherzolite > spn-Harzburgite, 	Crikurov et al 1980; Ravich at al 1978 
Wehrlite, rare dunites, (no garnet) 

Fen 	Spa-Lherzolite, Harzburgite, 	Griffin 1973 	- 	- . .• 
carbonatite 

Group III: 
Italian Roman 	Pyroxenite, Bt-Pyroxenite, 01- 	Fornaseri et al 1963; Cundari & LeMaitre 1970; 
Province 	pyroxenite (occasionally carbonate- 	Fornaseri & Turi 1969; Appleton 1972; Giannatti 1982; 

bearing), Bt-gabbro 	Cundari 1982; Belkia et al 1985; 

Group IV: 
Sierra Nevada 	Pyroxenite & Peridotite with 	Van Kooten 1980 

variable amount of phiogopite 

Navajo 	- 	Lherzolite, Vebsterite, rarer 	Roden & Smith 1919; Smith 1979; Ehrenberg 1979, 1982 
eclogite, humite-bearing and 
carbonate-bearing types 

Channel Isles 	Bt-Pyroxenite, glimmerite 	Rock 1984 
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Nodules from group II rocks from the African rift valley have a 

predominance of clinopyroxene and mica (the olivine-bioitite-pyroxefle 

series of Holmes and Harwood 1937). Reaction textures indicate that 

these mineralogies result from replacement of pre-existing minerals, 

which may have been more normal mantle peridotite minerals [Lloyd and 

Bailey 1975]. Orthopyroxene and garrietthave not yet been recorded in 

nodules from the Toro Ankole volcanic field, and a substantial proportion 

of the olivine is frequently also replaced by reactions forming mica and 

clinopyroxene [Lloyd 1981, 19841. Nodules in group II rocks from other 

areas may also have mica-rich assemblages, but also contain olivine-

orthopyroxene-rich types. Many of these host rocks are chemically similar 

to ultrabasic lamprophyres which contain a similar range of nodules [Nixon 

and Boyd 1979; Rock 1986]. 

Ultramafic nodules in group III rocks are documented only from the 

Roman province, specifically the Alban Hills, Roccamonfina and 

Soinma-Vesuvius. They are dominated by clinopyroxene-rich rocks which are. 

generally agreed to be cognate [Cundari 1982; Giannetti 19821, but the 

pressure of crystallisation and degree of crustal interaction are still 

debated [see discussion of Varekamp 1983; Hermes and Cornell 1983]. 

Belkin et al. [1985] have suggested depths of origin up to 13km from 

inclusion barometry. 

Nodule occurrences in group IV rocks are little known except for the 

well-studied Navajo volcanic field rocks. This field is notable for the 

unique occurrence of humite group minerals in the nodules. In most cases, 

the lack of information about nodules may be due to the rocks being poorly 

described, but in others the absence of apparently mantle-derived rocks 

may be significant, eg. the durbachites of Czechoslovakia have none despite 

a wide range of lower crustal xenoliths [Holub 1977]. 

1.4.4 TRACE ELEMENTS 

This compilation includes a standard set of 13 trace elements; Ba, 

Rb, Sr, Zr, Nb, Y, La, Ce, Nd, Sc, V, Ni and Cr. Discussion 

concentrates on the incompatible trace elements because these show 

significant variations in behaviour from the compatible trace elements 

(Sc, V, Ni, Cr) which follow the behaviour of most of the major elements. 

Spidergrams are chosen as the best method of displaying incompatible 

element variations [cf. Thompson et al. 19831; the ranges of these both 
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within and between groups are plotted in figures 8 to 10 using the 

normalising values given by Thompson [1982]. A major difficulty in 

compiling trace element data is the paucity of exhaustive trace element 

studies, so that a compilation even for rocks from one locality frequently 

necessitates combination of analyses from different samples. 

In figures 8 and 9, the ranges for standard group I and group II 

rocks are separated from the ranges for the groups as a whole to 

demonstrate the specific characteristics of some non-standard members. The 

trace element patterns must, in detail, be affected by crystal 

fractionation, but data from the West Kimberley suite indicates that this 

is less than the variations between groups. Discussion of the patterns of 

individual non-standard localities is generally beyond the scope of this 

review, but will be considered where major deviations from group averages 

occur. 

The general pattern of incompatible element abundances for 

ultrapotassic rocks is one of extreme enrichment, which increases towards 

the left of the spidergram, relative to the more abundant less alkaline 

rock types, referenced by MORB In figures 8 to 10. The order of elements 

in figures 8 to 10 is arbitrarily chosen to fit a descending order for MORB 

values from right to left, which is an approximate measure of increasing 

incompatibility. The MORB values plotted are from Sun [1980], but the 

difference between these and other MORB values is insignificant in terms 

of the enrichments seen here. 

Group I rocks show the highest overall abundances, with the West 

Kimberley and Gaussberg rocks (the standard members) generally occupying 

the highest part of the range, particularly for Ba, Rb, K, Nb and La 

(figure 8). At the right hand side of the diagram, Zr and Ti are generally 

higher than in other groups but are variable within group I. Sr and Y are 

relatively depleted: Sr produces a noticeable negative spike in the pattern 

and. is less enriched, having abundances similar to group III rocks. Yttrium, 

however, Is distinctly lower than in other groups, particularly for West 

Kimberley and Gaussberg, and Is frequently also depleted with respect to 

MORB. 	 . 

In the West Kimberley suite, which contains rocks ranging in Si02 

from 36 to 60 wt %, the only notable differences in the spidergrams 
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Figure 8 

Spidergram showing the range in incompatible element abundances for Group 

I with the range for standard members (West Kimberley and Gaussberg) 

indicated by darker shading. The solid line depicts MORB values of Sun 

[1980]. X-axis is sample/chotidrite, using the normalising factors given by 

Thompson [1982]. 
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Figure 9 

Spidergram showing the range for group II with standard members (Toro 

Ankole) in dark shading. Some constrictions in the pattern for Toro Ankole 

probably reflect scarcity of data. The solid line depicts MORB values of 

Sun [1980]. 
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Figure 10 

- 	Spidergram showing the range of incompatible elements in group III rocks. 

Note the negative spikes at Ba, Nb and Ti. The solid line depicts MORB 

values of Sun [1980]. 
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between the low silica olivine laraproites and the higher silica leucite 

lamproites are in K, Nb, Nd, Zr and Ti. For olivine lamproites the K*/Nb* 

ratio is less than 1 (where * = chondrite-normalised), which is a feature 

also seen in Prairie Creek lamproites and most members of group II, all of 

which have low S102  contents. The olivine lamproites also have lower Zr 

and Ti tháñ the leucite lamproites. The rare-earth element -(REE) patterns 

are apparently similar; the patterns produced by Nixon et al. [19841 and 

Jaques et al. [1984a] disagree as to whether the olivine- or leucite-

lamproites are the more LREE-enriched. An approximate series of enrichment 

can be drawn for standard group I rocks as follows 

Ba,Rb > La > K > Ce > Nb > Nd > Zr > Sr,P > Ti > Y 

Non-standard group I rocks typically have less extreme enrichment, 

particularly in elements at the far left of the diagram (figure 8). In 

some localities, particularly southeastern Spain and the northwestern Alps 

(referred to here as Mediterranean-type), they have marked negative spikes 

in the spidergram for Nb, Ti and Ba. This is similar to the pattern seen 

-in group III rocks (figure 10). On most major element diagrams (figures 1 

-
to 6) rocks from these localitites are offset towards Group III -from 

standard group I. These Mediterranean-type features appear to be a 

further indicator of tectonic environment, as they are from orogenic areas 

and also have similar P205/TiO2 vs TiO2 (figure 7) to group III rocks. 

Note that these negative spikes, especially Nb, are not so marked as in 

group III rocks. However, the REE patterns are distinct: both group III 

and standard group I rocks have steep LREE-enriched patterns with a 

uniform slope (apart from the Eu anomaly of group III), whereas the 

Mediterranean-type group I have a curved LREE pattern due to lower La and 

higher Ce and Nd than in West Kimberley and Gaussberg (figure 11). The 

average La/Nd for Spanish lamproites is 0.61 as against 1.67 for West 

Kimberley and Gaussberg. 

It is interesting to note that REE data for the Leucite Hills [Kay 

and Cast 19731 and Priestly Peak [new data: see appendix 2] give slightly 

curved patterns. It has been suggested that the Leucite Hills magmatism 

may be related to a fossil subduction zone [Rowell and Edgar 1983] thus 

belying its apparently non-orogenic setting: this will be discussed 

further in the petrogenesis section. In addition to the negative spikes 

mentioned already, the Mediterranean-type rocks have La, Sr, Zr and Ce 

contents which are within the lower part of, or just below the range for 
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Figure 11 [a] 

Rare earth element diagram of Groups I, II and III standard types. Group 

I in vertical shading; Group II solid; Group III in stipple. 
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Figure 11 [b] 

Rare earth element diagram of Mediterranean type Group I (Southeastern Spain 

& Northwestern Alps) in stipple, and Priestly Peak, Antarctica (see 

Appendix 2) in vertical shading. 

A 



33 

standard group I rocks. Rb, P, K, and Nd are essentially identical, and Y 

tends to be slightly higher. 

The Prairie Creek samples are all S10 2-poor, and they have been 

suggested to be transitional between larnproites and kiinberlites 

[Scott-Smith and Skinner 1984b]. They have a flatter spidergram pattern with 

values in the lower part of, but not below, the rest of the group I rocks. 

This pattern is similar to that seen in Group II rocks, but lacks the 

positive Sr spike (see below). 

The group II spidergram is also split into standard and non-standard 

types (figure 9). The Toro Ankole volcanics make up the bulk of the 

analyses, but very few are complete. The apparent contractions in the 

ranges at Nb, Ce and Y are probably not real since they are the elements 

for which fewest data are available. The group II range generally overlaps 

the lower part of the Group I range, but values for La, P, Zr, Rb and Ce 

are below those for all group I rocks. Strontium is strongly enriched in 

group II which is the opposite pattern to group I where Sr 

characteristically forms a dip in the spidergram. This Sr enrichment is 

expressed in its promotion in the enrichment order for group II; 

Rb > Ba > Sr > Nb > K,La > Ce > Zr > Nd > P,Ti > Y 

The lower part of the group II range, which has depletions In Ba, Nb 

and to a lesser extent Ti, is entirely due to the San Venanzo and Cupaello 

occurrences in Italy. These are Included In group II on major element 

chemistry, but have trace elements more characteristic of Group III or 

Mediterranean-type group I. They are the only group It rocks with K*/Nb* 

> 1. 

Group III trace element patterns have very pronounced depletions in 

Ba, Nb and Ti and are generally less enriched in Incompatible elements 

(figure 10). Ba, Nb, Ti and Zr never attain even the minimum value found 

in West Kimberley and Gaussberg. Sr forms a slight dip in the pattern, but 

this Is less marked than in group I. The Ti depletion is accentuated by 

Y values which are high relative to group I. Patterns for groups II and III 

overlap for most elements but Nb, Ti and Sr are much lower in group III, 

the last of these being due to high Sr in group II. Group II also tend to 

have higher Rb and K, and lower P. The approximate enrichment order is as 

follows; 
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Rb > K > Ba,La > Ce > Sr,Nd,P > Zr > Nb > Y > Ti 

Trace element data for group IV rocks is sparser and extremely 

variable in character. The heterogeneous nature of the group leads to a 

larger range for almost all elements which includes types much less 

enriched in incompatible elements (especially for many mine ttes).. Amongst 

the nodule-bearing localities, the Sierra Nevada rocks have unusual 

patterns with some elements (eg. Zr, Ti, P, Sr) within the range for group 

I, and yet enrichment in LREE is less than in all three major 

ultrapotassic rock groups. Patterns for the Navajo minettes are markedly 

different, with enrichments for most elements similar to group III or 

Mediterranean-type group I. The negative spikes for Ba, Nb and Ti are more 

variable than in these groups; the Ba spike is nearly as large as group 

III, Nb less marked, and Ti is in some cases barely depleted. 

1.4.5 	ISOTOPES 

Studies of a number of isotopic systems for a given ultrapotassic 

.rock are rare; there are no Pb data for group II rocks and only three group 

.1 localities have-been studied thoroughly. As a result, group isotopic 

characteristics are difficult to delineate and those noted here may 

require substantial revision when more data become available. Amongst the 

available data given in table 2, 87Sr/ 86Sr are the most abundant, and 

these are displayed in figure 12. Their relationship to CNd, where 

known, is shown in figure 13. 

Group I rocks show a large variation in 87 Sr/86Sr but all show 

strongly negative cNd.  The extension of the mantle array defined by 

basaltic rocks with positive eNd  is difficult to draw, but there is no 

doubt that lamproites range from values to the left of the array (Leucite 

Hills) to values far to the right. The Gaussberg and West Kimberley rocks 

have distinctive Pb isotopic compositions with low 206Pb/ 204Pb and high 

207pb/ 204Pb which plot to the left of the geochron. For a detailed 

discussion of Pb isotopes in ultrapotassic rocks, the reader is referred 

to the recent paper by Nelson et al. [1986], but it should be noted that 

their discussion includes rocks which are not ultrapotassic as defined 

here. 

The Italian group III rocks show a trend of increasing 87Sr/86Sr 

(figure 12) and decreasing ENd (figure 13) from south to north. The 
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Figure 12 

Sr isotope compositions and ranges for ultrapotassic rock localities. 

The four groups are listed in sequence. Group III is listed In 

geographical order from north to south. 
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Figure 13 

Nd—Sr isotopic variations in ultrapotassic rock groups. Group I in 

vertical shading; Group III in stipple. The solid outlines delineate 

compositions for rocks related to Group II ultrapotassic rocks from the 

Western Rift of Africa. 
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Spanish lamproites form an extension of this trend on figure 13 and also 

on the plot of each Pb isotope ratio against 87 Sr/ 86Sr [Nelson et al. 

19861. The Western Alps rocks so far have only Sr isotopes measured, but 

these have high.. 87 Sr/ 86Sr similar to the northern Italian group III rocks, 

(2rniin IT rocks from the western rift have low 87Sr/ 86Sr ratios, and 

although ENd  are lacking, the related non-ultrapotassic rocks plotted on 

figure 13 indicate that western rift rocks in general may form a similar 

negative correlation of 87 Sr/ 86 5r and ENd.  The San Venanzo and Cupaello 

rocks have similar 87 Sr/ 86Sr to the Italian group III rocks, which is in 

keeping with their trace element characteristics. 

Oxygen isotope measurements are available only for a limited number 

of Group I and Group III samples. In both cases they vary from low values 

close to those accepted as primary mantle values [Taylor et al. 1984] to 

higher values generally believed to Indicate some crustal input. The 

average values for different localitites within groups are quite variable 

.(table 2). 

1.5 PETROGENETIC CONSTRAINTS 

1.5.1 	SCOPE 
Many of the petrogenetic problems posed by the ultrapotassic rocks 

are similar to those of other alkaline rock types such as kimberlites, 

melilitites and non-ultrapotassic lamprophyres. These are principally the 

explanation of extreme incompatible element enrichments and the difficulty 

of deriving the rocks by partial melting of supposedly normal garnet/spinel 

lherzolitic mantle material. Because of these similarities, many models 

proposed for the genesis of ultrapotassic rocks have been generally applied 

to a number of alkaline rock types. As was pointed out in section 1.3, the 

ultrapotassic rocks are separated from other alkaline rocks by arbitrary 

abstraction of chemical attributes. They are, in many respects, part of a 

continuum of alkaline rock types which implies production of these rocks 

by the operation of a corresponding continuum of processes or source 

compositions. Bearing this In mind, much of the discussion which follows 

may find application amongst other groups of alkaline rocks. 

This section includes discussion of the factors which discriminate 

between ultrapotassic and other alkaline rock groups, but concentrates on 



the petrogenetic implications of the differences between ultrapotassic 

rock groups described in section 1.4. Petrogenetic models for specific 

localities must take into account many local factors in addition to the 

broad trends outlined In this paper. We do not consider specific localities 

except where they may be of general importance in petrogenetic models. 

Firstly, we consider previous explanations of the extreme enrichment 

in incompatible elements, high K 20 and K20/Na20 common to all groups, from 

which we conclude that pre-enrichment of the source, generally referred to 

as mantle metasomatism, is the most likely cause. We then explore the 

possible physical and chemical variations of the sources and the extent to 

which the chemical variations between the ultrapotassic groups may be due 

to conditions of melting or conditions during the process of enrichment. 

Models formed on the basis of the available data may be found to be 

inappropriate when further data become available, but from these models we 

can suggest methods of investigation to test the suggestions made. 

1.5.2 PREVIOUS MODELS FOR THE PETROGENESIS OF ULTRAPOTASSIC ROCKS 

Hypotheses previously suggested for the petrogenesis of 

ultrapotassic rocks explain the extreme enrichment in incompatible 

elements by a variety of processes including (I) high degrees of crystal 

fractionation from more normal basaltic melts originating by partial 

melting of garnet peridotite mantle, (ii) assimilation of crustal material 

rich in these incompatible elements, (iii) zone refining operating over a 

large vertical distance In the mantle, and (iv) partial melting of a 

pre-enriched phiogopite-bearing peridotite source. Gupta and Yagi [1980] 

have reviewed petrogenetic models in detail, and so only a brief 

exposition is given here with our reasons for preferring the last option. 

The processes listed above are treated in turn, and discussed further in 

later sections. 

1.5.2.1 	Crystal Fractionation 

This process has been proposed most recently by O'Hara and Yoder 

[1967] who suggested that high pressure fractionation of clinopyroxene and 

garnet from a picrltic magma would not only cause enrichment in 

incompatible elements, but also Increase the K20/Na 20 ratio of the 

residual liquid due to the low K20/Na2 0 of the crystallising phases. The 

picritic magma could be produced by 30-40% melting of garnet lherzolite at 

pressures greater than 30kb, which is more reasonable than earlier models 
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of fractional crystallisation from peridotitic magma which would require 

nearly complete melting of mantle material (see Gupta and Yagi 1980 

p.217-220). However, this model can be criticised on the following 

grounds. (1) Interpretation of isotopic data shows that eclogite nodules 

in kimberlites, which were assumed by O'Hara and Yoder [19671 to be 
. accumulates of the proposed parental picritic magmas, are not genetically 

related to the host kimberlite, but are older, accidental inclusions 

[Allsopp et al. 19691. (ii) Enrichment in incompatible elements to the 

degree seen in many ultrapotassic rocks would require very high degrees of 

crystal fractionation (greater than 95%) and in this case more abundant 

examples of less extreme rock types might be expected to occur, but do not 

[Dawson 1971; Mitchell and Brunfelt 19751. (iii) Such extreme degrees of 

fractionation should also decrease the Mg-number to well below that of 

primary magmas [Green 19711. (iv) Eclogite fractionation from picritic 

liquids may not produce a marked increase in K20/Na20 of the liquid, 

so that residual liquids probably resemble nephelinites [Green and Ringwood 

1967a; Gupta and Yagi 1980,p.193-196; Ferguson and Cundari 1975]. It must be 

.noted here that experimental data on liquidus mineral compositions in 

picrites are limited to 30kb and less. Melts produced by substantial - 

partial melting of garnet peridotites at higher pressures will also be broadly 

picritic [Takahashi and Scarfe 19851, but the compositions of phases which 

may fractionate at these higher pressures are not yet known accurately. 

(v) The production of a variety of ultrapotassic rocks by extreme amounts 

of fractionation from similar parent magmas does not explain the observed 

range of isotope compositions. 

Garnet and clinopyroxene fractionation is thought to occur in 

kimberlites where griquaite nodules result [Nixon and Boyd 1973], but it is 

not considered to be the principal petrogenetic process. 

1.5.2.2 	Involvement of crustal material 

Mixing between materials of mantle and crustal origin was popular in 

early petrogenetic models because it explained the apparently 

contradictory compositional features of ultrapotassic rocks of high 

Mg-number, Ni and Cr contents (mantle charcateristics), and high Rb, Zr 

and Ba (crustal characteristics). The major flaw in these hypotheses 

invoking substantial assimilation eg. of limestone or granite by basalt 

or carbonatite, is their inability to explain more than selected groups of 

elemental variations. For example, the mixture of carbonatite and granite 
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proposed by Holmes [1950] and Higazy [1954] for group II rocks explains high 

abundances of most incompatible elements, but cannot explain high Ni and 

Cr. Hypotheses based on partial data sets are often found lacking when 

more complete data becomes available. Rock [1980] ably demonstrates how, 

by consideration of only rare earth elements, one can give the impression 

of a- good chemical match which may .not.exist given a more complete data set. 

The existence of potassium-rich rocks with very low silica contents 

precludes a general origin by assimilation of silica-rich crustal 

material. 

Reaction between crustal xenoliths and host magma Is obviously 

present in many cases such as the leucitization of granitic xenoliths in 

East Africa [Holmes 1945] and assimilation of carbonates in Italy [Rittman 

19331, but the widespread occurrence of ultrapotassic rocks with similar 

compositions but different xenolith populations argues against assimilation 

as a major factor in petrogenesis. Assimilation hypotheses have also been 

criticised because of the need for superheated parental basic magmas, since 

large amounts of assimilation should cause crystallisation, and thus stop 

the proposed mechanism short of completion. 

1.5.2.3 	Zone refining 

Harris [1957] has advanced the zone refining mechanism as a 

petrological process. He envisaged initial melting of mantle material at 

500-1000 km depth and gradual enrichment of incompatible elements In the 

rising liquid batch In accordance with their degree of Incompatibility, 

measured by the bulk partition coefficient between melt and solid (D 11 ). 

The rate of this enrichment depends on D and the zone length (depth of 

melt zone/ depth of mantle passed through) and should exponentially 

approach a limit where the concentration ratio (liquid/solid) is equal to 

D and the concentration in crystallising phases is equal to the 

concentration in the surrounding mantle. Harris and Middlemost [1969] 

modified the hypothesis for kimberlites by allowing for further enrichment 

by crystal fractionation as the liquid approached subcrátonic areas with 

low heat flow. Late stage enrichment would lead to separation of a 

volatile phase resulting in explosive emplacement. 

The proposition of initial melting at greater than 500 km is the 

weakest part of the zone refining hypothesis. It makes the process 

independent of tectonic environment, so that its application to the 



41 

origins of kimberlites and ultrapotassic rocks which occur in particular 

tectonic environments becomes hard to defend. The products of zone refining 

should be more widespread and be found with equal abundance in oceanic areas 

[Dawson 19801. One could argue that the products of zone refining are 

indeed common in other areas, but are manifested in alkali basalts rather 

than more extreme compositions in areas which do not have a low enough 

heat flow for Harris and Middlemosts [1969] modification of the zone 

refining model to operate. However, this would leave the occurrence of 

group III rocks in island arcs unexplained. Furthermore, if considerable 

fractionation is required to produce ultrapotassic rocks then zone refining 

becomes subordinate to fractionation with respect to the ultrapotassic 

rocks. 

Another major assumption, recognised by Harris in his original 

paper, is that there will be sufficient density contrast between the melt 

and surrounding mantle at 500 km to allow the magma to rise. Recent 

estimates and measurements of silicate liquid densities at very high 

pressures suggest that there may be a density switchover between liquid 

and solids somewhere between 200 and 350 km, below which melt would sink 

rather than rise [Ohtani 1985; Rigden et al. 19851. This may considerably 

limit the depth range over which zone refining could operate, although 

alkali-rich, volatile-charged melts may remain less dense than surrounding 

mantle to greater depths. 

1.5.2.4 	Partial melting of a pre-enriched mantle source 

Following the development of models for the origin of basaltic 

magmas by partial melting of garnet peridotite mantle, trace element 

modelling showed that melts containing very high incompatible element 

contents could only originate by extremely small degrees of melting [<<1%; 

Gast 1968; Sun and Hanson 1975]. The apparent problem of separating such 

small melt fractions could be avoided if the peridotite was pre-enriched 

in incompatible elements by the upward movements of either volatiles [Bailey 

19701 or a small melt fraction [Green 1971]. This enriched migrating fluid 

would be trapped by crystallisation of amphibole [Varne and Graham 1971] 

above depths of about 100 km [Green 1973a]and by mica at greater depths 

[Kushiro et al. 1967; Modreski and Boettcher 19721. The operation of this 

process was supported by a series of papers describing xenoliths bearing 

evidence of enrichment processes and including primary hydrous minerals, 

i.e. minerals stable in the mantle prior to incorporation in the host 
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magma [eg. Dawson and Powell 1969; Erlank and Finger 1970; Varne and 

Graham 1971; Erlank 1973; Frey and Green 1974; Lloyd and Bailey 1975; 

Harte et al. 1975]. 

By this model, ultrapotassic rocks could originate by partial 

melting of mica-bearing peridotite because the higher K/Na value of mica 

favours production of higher K/Na melts. 

More recently, isotopic studies have provided further evidence for 

mantle enrichment events, and a wide range in the age of the enrichment 

events has been inferred. In some rocks, trace element patterns show 

enrichment indicted by high Nd/Sm and Rb/Sr values which are not reflected 

by Nd and Sr isotopic compositions. This indicates that enrichment must 

have occurred more recently than approximately 200 my. Other rocks, 

including the majority of ultrapotassic rocks, have higher 87 Sr/ 86Sr and 

lower 143Nd/ 144 Nd values (figure 13) which indicate older and/or more 

extreme enrichment events, although the precise ages depend on the mixing 

models chosen [McCulloch et al. 1983; Nelson et al. 1986]. 

The amassed chemical, isotopic and petrological data on igneous 

rocks and xenoliths make partial melting models powerful and flexible. 

Indeed, models invoking variations in degree and type of enrichment and 

conditions of partial melting now suffer from a lack of specificity rather 

than a lack of evidence. In the following sections, we shall attempt to 

constrain these parameters as applied to the genesis of ultrapotassic 

rocks. 

1.5.3 THE ORIGIN OF CHEMICAL VARIATIONS IN ULTRAPOTASSIC ROCKS 

1.5.3.1. Primary magmas 

In order for meaningful discussion of the effects of partial melting 

and mantle enrichment processes to be possible, it is necessary to decide 

which compositions represent the primary mantle-derived magmas which are 

least modified by crystal fractionation or crustal contamination. The most 

commonly used criteria for distinguishing primary compositions are that 

they should have Mg-number of around 70 or higher, have high Ni (>500pprn) 

and Cr (>1000ppm) contents and S102 contents not greatly exceeding 50 wt% 

[Green 1970; Frey et al. 1978]. These values are determined by experimental 

data on liquids in equilibrium with peridotite of Mg-number around 90 at 

mantle pressures, and thus assume a peridotite mantle composition. Cr and 
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Ni abundances would fall rapidly if substantial crystal fractionation of 

ferroniagnesian phases (which must be the liquidus phases for liquids in 

equilibrium with mantle mineral assemblages) has occurred. A further 

important criterion is the presence of mantle-derived ultramaf Ic xenoliths 

which would be expected to be eliminated together with phenocryst phases had 

any substantial fractionation occurred. 

The presence of modally metasomatised [Harte 19831 xenoliths in many 

ultrapotassic rocks means that the assumption of an olivine + 

orthopyroxene bearing residue to constrain liquid compositions may be 

Inappropriate. High degrees of mantle enrichment may result in the 

formation of local clinopyroxene + phiogopite + garnet or spinel source 

rocks which have different Mg-numbers, and a different set of accessory 

minerals compared to normal mantle material. Liquids derived from such a 

highly modified mantle may not be constrained by the Mg-number, Ni and Cr 

contents noted above. Liquid compositions will be controlled by the 

mineralogy of the source mantle, but experimental studies of probable 

modified mantle compositions are needed in order to constrain the chemical 

signature of primary melts. Preliminary experiments on a mica 

clinopyroxenite proposed as a group II source by Lloyd et al. [1985] 

indicate that melts from this composition may have Mg-numbers in the low 

sixties. 

Applying these criteria to the ultrapotassic rocks, group I and II 

rocks commonly have mantle derived ultramafic inclusions (table 3). Their 

Mg-numbers are normally high 'and well within the range for primary magmas 

(figure 1). Group I rocks from the West Kimberley area range in Si0 2  

content up to 60 wt%, but low Ni and Cr contents in the most silicic 

indicate that fractionation has occurred [Jaques et al. 1984a]. However, a 

wide range of primary magma compositions amongst lamproites almost 

certainly exists: mantle-derived xenoliths are common In olivine 

lamproites and occur in leucite lamproites with 51 wt % Si02 [Sheraton 

and Cundari 19801. The Mg-numbers of these proposed primary magmas is 70 or 

above, and the MgO content varies from 8 wt% in leucite lamproites to well 

above 20 wt% in olivine lamproites. 

Group II rocks from the western branch of the East African rift 

Include a greater proportion of fractionated rocks, and petrological and 

statistical studies indicate that they are related to a range of primary 



magmas which differ in composition both within and between volcanic fields 

[Pouclet 1980b; Pouclet et al. 1981; Ferguson and Cundari 19751. The related 

more sódic rocks in other parts of the rift are derived from distinct 

primary magmas. 

- - The majority of Group III lavas from Italy are products of 

crystal fractionation making recognition of primary compositions difficult 

and controversial. A number of candidates do have primary Mg-numbers, 

but have relatively low Ni and Cr [Rogers et al. 19851. The clinopyroxene-

rich nodules which are abundant at some localities are thought to 

represent accumulated magmatic material at intermediate to high pressures 

[Cundari 1982; Giannetti 1982]. The presence of ultramafic xenoliths thus 

cannot be used as a criterion for distinguishing primary magmas. Primary 

magmas for Italian group III rocks are considered to be rich in CaO (13-16 

wt%) with relatively low S102  (46-49 wt%) and A1 203 (12-13 wt%) and 

are ultrapotassic, even though K20 contents are considerably higher in the 

more differentiated rocks [Cundari and LeMaitre 1970; Rogers et al. 1985; 

Holm et al. 1982]. Fractionation is dominated by clinopyroxene, as 

demonstrated by-the-trend of decreasing CaO in figure 3 and by its . 

occurrence in cognate nodules, but minor olivine fractionation may also 

occur at an early stage. Indonesian group III rocks include rocks with 

similarly high Mg-numbers but with slightly lower CaO and higher K20 

(5-6 wt%). In both these suites, the distinctively low Ti and Nb are only 

slightly enriched by crystal fractionation. 

The most important result of isolating possible primary magmas is 

that the ultrapotassic group characteristics remain distinct in the 

primary magmas. This means that one group cannot be a fractionation product 

of another, and that the variation between groups must reflect 

characteristics developed at source. These chemical variations could occur 

at any of three stages; (i) prior to mantle enrichment, (ii) during the 

mantle enrichment process, and (iii) during the partial melting process. 

These possibilities will now be considered in turn. 

1.5.3.2. Mantle heterogeneity prior to enrichment 

Chemical variations between non-alkaline basaltic magma types 

indicate that source rocks do not all conform to the plagioclase, spinel 

or garnet lherzolite modelled as primary mantle material [Carter 19701. 

The loss of a substantial fraction of basaltic melt from a primary 
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lherzolite will leave a harzburgitic or dunitic residue enriched in Ni, 

Cr/Al and Mg-number, and depleted in incompatible elements including light 

rare earths (LREE). This process will melt out the garnet and clinopyroxene 

or Al-spinel and clinopyroxene components leading to depletions in Ca, Al 

and Na [Green and Ringwood 1963; Jaques and Green 1979]. These elements 

are crucial to the recognition of depleted sources because they leave a 

chemical signature which may be overprinted but not swamped during later 

enrichment episodes. Cr decreases in the residue during a depletion 

event, but behaves less incompatibly than Al, leading to increased Cr/Al 

in residual spinel [Kurat et al. 1980]. Remelting of depleted mantle leads 

to magmas which have lower Al, Ca and Na and higher Mg-number, Ni and Cr 

than magmas derived from more fertile sources. Examples of such magmas are 

the boninites or high-Mg andesites [Green 1973a;Hickey and Frey 1982]. 

The major element characteristics of group I ultrapotassic rocks 

indicate a depleted source. Group I rocks have low CaO, A1203 (figure 

1) and Na20 (figure 6) and also carry dunite and harzburgite xenoliths 

(table 3). Spinal-bearing lherzolite xenoliths are present, but are 

subordinate to more depleted types. In addition, the Sc depletion seen in-

group I rocks (figure 14) may also indicate depletion since this element is 

partitioned strongly into garnet and clinopyroxene [Irving 19781. 

Group II rocks also have low A1 203  and Na 20 (figure 6) suggesting a 

depleted source, but have high CaO (figure 1). This chemical 

signature has two possible origins: [i] a source depleted by melt loss but 

from which clinopyroxene was not completely eliminated. After later 

enrichment events, small degree partial melts may still be buffered at 

high CaO contents by the presence of clinopyroxene in the source; or 

[ii] depletion followed by later selective introduction of CaO by 

carbonate complexing either during the enriching event or during magma 

genesis. The association of increasing K 2 0 with decreasing Sb2 and 

increasing carbonate in the volcanics of the western rift [Pouclet 1980b] 

may indicate a CO 2-rich enrichment event. The Sr-spike in the incompatible 

element pattern (figure 9) would also be expected in a carbonate-rich 

environment. Due to the extensive mineral reactions accompanying mantle 

metasomatism [Lloyd and Bailey 1975; Lloyd 19811, no petrographic check on 

the presence or degree of previous mantle depletion is possible. 

If process [i] above is the correct one for group II rocks, the 
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degree of partial melting producing the ultrapotassic magmas would have to 

be small, since clinopyroxene must remain as a residual phase. The Toro 

Ankole ultrapotassic rocks define a rough trend with CaO decreasing with 

A1203; the lower CaO samples may be due to slightly higher degrees of 

melting where clinopyroxene has been eliminated. If the mica + 

clinopyroxene-rich metasomatised nodules are correctly interpreted as 

representative of the source of group II, then option [ii] above is the 

more likely because the clinopyroxene-poor lherzolite mantle which would 

be residual from option [i] could not result in clinopyroxene-rich rocks 

unless Ca was also introduced during the K-enriching event. Lloyd et al. 

[1985] melted a representative southwest Ugandan phlogopi.te 

clinopyroxenite nodule composition at 20-30 kbar, and suggested that 

metling of such a composition could give rise to Group II lavas with 

20-30% melting. 

A number of non-standard group II rocks such as some South African 

olivine melilitites (table 1; Mclve r 1981; McIver and Ferguson 1979) have 

high A1 203 , and plot well away from the bulk of group II analyses in 

figure 1 (they are within the Group III field for this diagram). Group II 

sources therefore may vary in their degree of depletion by earlier 

melting episodes. 

Group III rocks show high values of CaO, A1 203  and Na20 (figures 

1,6), so that there is no evidence of a substantial depletion event in their 

source. Rogers et al. [1985] consider that the relatively low MgO, Ni and Cr 

of magnesian leucitites from Italy with respect to expected values in 

primary magmas may indicate an olivine-poor source. 

1.5.3.3 Variation at the mantle enrichment stage 

Chemical variations produced at the mantle enrichment stage can be 

divided into two major types: those due to stability of incompatible 

element rich minerals in which the enriching component is trapped, and the 

nature, composition and origin of the enriching fluid itself. For evidence 

of these, we must look to the incompatible element variations (figures 8 

to 10) and to petrological studies of metasomatised mantle xenoliths. 

1.5.3.3.1 	Stability of incompatible element-rich minerals 

Mica and amphibole, particularly K-richterite, have long been 

recognised as important repositories in the mantle for potassium and the 
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related elements Rb and Ba as well as volatiles [Kushiro and Erlank 1970; 

Dawson 1971; Dawson and Powell 19691. However, the spidergrams for 

ultrapotassic rocks indicate that all incompatible elements are enriched, 

which requires sites for a much greater number of elements than those 

contained in mica and amphibole. This is particularly true for the 

standard members of group I which have the greatest enrichment of elements 

at the left of the diagram (figure 8) and which also have patterns with 

nearly constant slopes. 

Incompatible elements may be held in a variety of phases which have 

been described from metasomatised xenoliths such as crichtonite series 

minerals, wadeite, priderite, rutile, perovskite and ilmenite. The 

crichtonite series minerals are Cr-titanatés which have a variety of 

end-members rich in K, Ba, Ca, Pb, Sr, U and REE [Haggerty 1983; Haggerty 

et al. 1983]. They may occur in association with Nb-Cr-rutile, 

Cr-Mg-ilmenite and Ca-Cr(Nb,Zr)-armalcolite [Haggerty 19831. Of particular 

interest to group I ultrapotassic rocks, crichtonite stability is 

apparently limited to high Cr, Mg and low Fe, Al environments [Haggerty 

19831 and so their stability may be promoted in lamproite source regions.--.- 

The enriching fluid must be rich in Ti and the more incompatible elements, 

bur Cr could be provided by exchange with the wall rocks [Jones et al 

19821. Wadeite and priderite, which occur as groundmass phases in larnproites, 

are also characteristic of Al-poor environments and are stable to at least 

25kbar at mantle solidus temperatures [Arima and Edgar 1980; Dubeau and 

Edgar 19851. 

Whilst these minerals appear to be likely candidates for storage of 

incompatible elements in the upper mantle, their applicability to 

ultrapotassic rock source regions is difficult to judge. The low A120 3 , 

refractory bulk composition which is required for many of them may 

discount their importance in group III regions. The known crichtonite-

bearing mineral parageneses are estimated to have formed at 20-30kb 

pressure [Haggerty 1983; Jones et al. 1982]: experimental stability studies 

are lacking at present but experiments on the associated armalcolites 

suggest that this pressure range may be the high pressure limit [Lindsley 

et al. 1974]. Beyond these pressures, rutile, which can incorporate large 

amounts of Nb and Cr, may be dominant. The presence of diamonds in 

olivine lamproites from West Kimberley demonstrate that at least some 

lamproites originate at considerably greater depths. Mica and amphibole 



stability is greatly increased by fluorine [Holloway and Ford 1975; Part 

31 which is abundant in ultrapotassic rocks, particularly group I [Jaques 
et al. 1984a; Part 41, so that presence of mica well into the diamond 

stability field may reasonably be assumed. 

The above summary demonstrates that the fertility of the mantle, 

as well as pressure and temperature, may exert critical control on the 
stability of minerals containing incompatible elements brought in during 
mantle enrichment events. However, experimental work, coupled with studies 

of metasomatised nodules from lamproites, is needed to ascertain which 

minerals are the most likely storage sites for these incompatible 
elements in ultrapotassic source regions. Variation in the stabilities of 
these minerals may cause a zonation of incompatible elements in the mantle 

by differential abstraction of elements from a passing fluid phase. 
Melting of such a zoned mantle could then produce rocks with specific 

signatures on an incompatible element enriched spidergrani. 

1.5.3.3.2 	The composition and origin of the enriching fluid 
Variations in the chemistry of mantle enrichment events could be 

produced by differences in the composition of the enriching agent itself 

due either to variable solvent composition or to the nature of the solute 

source. Opinions differ as to whether the enriching agent is a small 
fraction of silicate melt [Varne and Graham 1971; Green 19711 or a 
fluid [Bailey 1970; Lloyd and Bailey 1975]. Alternatively, metasomatisni may 
be caused by the release of vapour on freezing of a small, volatile-enriched 

melt fraction (Wyllie 19801. 

Experimental studies indicate that H20-rich fluids carry much more 

solute than CO2-rich fluids [Schneider and Eggler 19841, and that the solute 

is - rich in normative quartz and feldspar, but poor in Ti. No experimental 

data are available for the case of a reduced environment, but CH4-H20 

fluids would probably have a lower solute content since CH4  is unlikely 

to dissolve much material [Taylor 1985]. Thus, it may be that a vapour 
undersaturated melt is the more likely transport medium for the Ti- and 
incompatible-element rich, but not notably Si-rich, material seen in 
metasomatised mantle, and that metasornatism occurs when this freezes and 

releases vapours. The relative stability of minerals which control the 
composition of the C-H-O-F dominated vapour phase when the melt freezes will 
then determine the ability of these vapours to remove the material brought 
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in by the melt [Olafsson and Eggler 1983; Schneider and Eggler 19841. A 

water-rich vapour could remove some of the silica introduced by a melt, 

- leaving a low-silica, incompatible element-rich signature. 

Variations in the composition of the solute source may cause 

• 	different trace'elemeat signatures at a much earlier stage. Models. for the 

origin of the enriching fluid invoke either dehydration of subducted 

material [Ringwood 1974; Wyllie and Sekine 19821 or degassing from an 

unconstrained lower mantle source [Bailey 1970; Wyllie 19801. 

Subduction zone processes are most relevant in the case of Group III 

rocks which are from orogenic areas with subduction active beneath 

ultrapotassic rock localities either at present, in the case of Indonesia, 

or as recently as the Tertiary in the case of Italy. Models for the 

petrogenesis of arc volcanics generally attribute their characteristics to 

involvement of subducted material by dehydration reactions in the subducted 

slab or, at deeper levels, by partial melting of the slab. Various arc 

.suites may result from differing degrees of involvement of subducted 

- . -material in. the mantle wedge above the subduction zone [Ringwood .19.74.;.. 

Green 1980; Gill 19811. 

Of particular interest to ultrapotassic rocks are the low Ti-group 

element contents and high K20, Rb, and LREE. It is important in 

assessing the origin of arc ultrapotassic rock geochemical characteristics 

to separate the characteristics of the enriching component from those 

common to most non-ultrapotassic arc magmas. Wheller et al. [1986] have 

attempted this distinction for rocks from the Sunda-Banda Arc of 

Indonesia. This region is important to the present discussion in that it 

represents the simplest tectonic environment (an entirely oceanic 

subduction setting) containing group III ultrapotassic rocks, and is thus 

the best area in which to isolate the sources of geochemical 

characteristics. Within the Sunda-Banda Arc, increasing K correltes with 

increasing Nb and Ba, but not with Ti, which remains at very low 

abundances in ultrapotassic rocks [Wheller et al. 1986]. This indicates 

that Nb and Ba (together with K) were added to the arc source during an 

enrichment event, and therefore that the strong depletions in Ti, Ba and 

Nb characteristic of group III (figure 10) relative to other ultrapotassic 

rock groups have an origin independent of K-enrichment. This Ti-group 

depletion is a general characteristic of arc volcanics, and must result 
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from similar processes in both ultrapotassic and less alkaline rock types. 

The elevated [(20  contents which must exist in the source to produce 

ultrapotassic magmas by partial melting are generally also attributed to 

dehydration or melting in the subducted slab. It has been argued that 

the most potassic arc magmas may form at greater depth than less alkaline 

magmas due to either [i] H20-rich fluids carrying [(20  in solution 

reacting to form mica in the overlying mantle wedge [Fyfe and McBirney 1975; 

Wyllie and Sekine 1982]; or [ii] the higher stability of mica relative to 

other common hydrous minerals causing concentration of potassium at deeper 

levels of the subducted slab. The latter may be an explanation of the 

proposed'K-h' correlation of 1(20 contents of magmas with depth to the 

Benioff Zone [Hatherton and Dickinson 1967; Ninkovich and Hays 1972]. Models 

using potassium derived from the slab require subducted sediments or 

basaltic oceanic crust altered by reaction with seawater, since the 1(20 

content of unaltered oceanic crust and the underlying oceanic lithosphere 

would be very low. 

• 	In the Lombok-Sumbawa sector-of -the Indonesian arc, the lack -of- -a K-h 

correlation led Foden and Varne [1980] to propose that the high [(20  in 

some lavas was not derived from the slab, but from deeper levels of the 

mantle tapped by major cross-arc fractures or disturbed by the subducted 

slab. Wheller et al. [1986] consider that the weight of evidence is against 

a recently subducted sediment or altered oceanic crust origin for potassium 

in the high K20 volcanics of the Sunda-Banda Arc, and that the K-rich 

component is derived from within the mantle. Their evidence, includes low 

10Be contents, low cS 18 values and no deviation of Nd, Sr and Pb isotope 

compositions towards values typical of sedimentary material. Wheller [19861 

suggested that as arcs mature, enriched areas may form beneath thickened 

crust due to decreased regional heat flow and continuing mantle degassing 

and metasomatism. These enriched areas may be disturbed either concurrently 

or at a later stage by the subducted slab or fluids derived from it giving 

rise to K-rich magmas. 

The low Ti-group characteristics of arc magmas are generally also 

attributed to either dehydration or melting of the subducted slab. 

Dehydration resulting in permeation of Ti-poor, H 20-rich fluids into the 

mantle wedge is unlikely to be the cause of Ti-depletion, since 

corresponding enrichments in Si, Al and incompatible elements, all of 
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which dissolve to a large extent in H 20-rich fluids at mantle pressures 

[Schneider and Eggler 19841 should also be seen. 

Contamination of the mantle wedge by a partial melt of subducted 

material at higher pressures should enrich the mantle in incompatible 

elements. This will include T10 2  unless the partition coefficient for Ti 

between the liquid and a titanium-rich mineral increases with pressure 

causing saturation of the liquid in a titanate mineral at low T102 

contents. The effect of such residual accessory phases may only be very 

noticeable in spidergrams if D t/lq  differs by two orders of magnitude or 

more for element i between the accessory phase and coexisting silicate 

minerals. The effect on the spidergramn will also be more apparent where only 

a restricted range of incompatible elements is readily accepted into the 

mineral. A restricted range is-strong evidence for control by accessory 

phases, since sites in crystal lattices can be expected to be much more 

selective than solubilities in fluids or melts. 

Green and Pearson [1986] found that the wt% T10 2  at which titanate 

saturation occurs is decreased by increasing pressure, S10 2  content, 

oxygen fugacity and alkali content, and by decreasing temperature. Green 

and Pearson [1986] argued that titanate saturation in group III source 

regions is unlikely, but their discussion was limited to the magma 

generation stage and to 30 kbar pressure. Their observations indicate that 

alkali-rich low-degree partial melts at very high pressures (>30 kbar) may 

be T102-saturated, in which case melts either from the subducted slab or 

from deeper levels unrelated to the slab, may be Ti-poor. A plot of 

T1 2  against Nb (figure 15) shows a good correlation as would be expected 

in some titanate minerals. This plot also demonstrates that the negative 

spikes for these elements in the non-standard group II pattern (figure 9) 

is entirely due to rocks from San Venanzo and Cupaello. There is 

insufficient data on phase stabilities and partition coefficients at high 

pressures to evaluate titanate control. For example, Varne [19851 has 

suggested control by perovskite, but perovskites differ greatly in Nb and 

REE content between different rocks due to as yet unknown variations in 

their conditions of origin [Boctor and Meyer 1979; Jones and Wyllie 1984; 

Treiman and Essene 1985]. Perovskite contains very little Ba, so that 

involvement of a barian titanate such as priderite may be required. The 

chemical signatures noted by Wheller et al. [1986] for K-enrichment and 

independent are sources are both depleted in Ti, but differ in Nb and Ba, 
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which may be indicating the involvement of different residual titanate 

phases. 

Models for the origin of Italian group III rocks and also some group 

I rocks generally assume the involvement of subducted material by [i] 

generation of melts from the mantle wedge previously metasomatised by 

fluids from the slab [Dal Piaz et al. 1979; Venturelli et al. 1984a]; or 

[ii) continued release of flui4 or melt from a seismically inactive fossil 

subduction zone [Kuehner 1980; Rowell and Edgar 1983]. There is no evidence 

for currently active subduction beneath the Recent ultrapotassic rocks of 

central Italy [Cundari 1980]. The possibility of 1(20  derived from mantle 

metasomatism not related to subducted material is difficult to assess at 

present for the Italian volcanics because of the time interval between 

subduction and volcanism. The source regions of Italian group III lavas 

are believed to be characterised by 6 8 0 values >6, which is higher than 

most mantle rocks, and may indicate a subducted component [Hawkesworth and 

Vollmer 1979; Ferrara et al. 1985]. Flawkesworth and Vollmer [1979] argue 

• against crustal contamination of the magma during ascent for the Roman 

region, but indicate that this may occur in the Tuscany lavas to the north 

(Group IV). The Nd and Sr isotopic systems are not considered reliable 

indicators of crustal involvement [Hawkesworth and Vollmer 1979]. 

The more unradiogenic Nd and radiogenic Sr compositions of Group I 

rocks relative to other groups can be explained just as readily by a mantle 

enrichment event as by crustal involvement. Crustal models generally suffer 

from a lack of definition of crustal composition, which can be very variable 

(Taylor and McClennan 1985 p.86-88; Collerson and McCulloch 1983]. Ancient 

enrichment events occurring at least as early as the mid Proterozoic 

would be required to produce the isotopic characteristics of lamproites, 

although more extreme enrichment would also assist [McCulloch et al. 1983; 

Nelson et al. 1986]. It is noteworthy that ultrapotassic rocks are 

primarily a Phanerozoic phenomenon, but the only Proterozoic occurrences 

are Group I rocks. 

Discussion of differences between possible primordial fluids is 

limited by the lack of constraints on their origin. In the case of 

primordial fluids derived from the lower mantle [Bailey 1970, 19801 there 

will be a compositional dependence of solute content as discussed earlier. 

The involvement of megalith material [Ringwood 1982] from long-term 
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recycling of subducted material could produce some of the isotopic 

enrichments seen in group I rocks (table 2; Nelson et al. 1986). Chemical 

characteristics would be controlled by similar considerations to material 

in more recent subduction zones, but with time-integrated isotopic 

signatures. 

1.5.3.4 	Variation at the magma generation stage 

Factors affecting the composition of partial melts, other than those 

already discussed, can be split into three groups; the control of residual 

accessory phases, variations in the composition and abundance of volatiles, 

and variations in pressure and temperature of melting. 

1.5.3.4.1 	Accessory phases 

Incompatible element concentrations in magmas may be controlled by 

accessory phases in the source region as discussed above for titanate 

minerals. Green and Pearson [19 861 suggested that titanate saturation is 

unlikely in arc magma source regions due principally to the strong 

.negative correlation of T10 2  saturation level with S102 content of melts. 

Residual titanate control appears more likely at the enrichment stage, 

although the effect of very high pressures is not yet known. 

The lack of substantial positive or negative deviations from a smooth 

slope in the spidergrams (figures 8 and 9) for standard members of groups 

I and II suggests that D t1lq  for incompatible elements in different 

phases are not substantially different. Whilst element control by accessory 

phases is most likely in group III, some detailed characteristics of group I, 

such as the differing K*/Nb* between olivine lamproites and leucite 

lamproites, may be indicating differing accessory phase solubilities. 

1.5.3.4.2 	Volatile components 

It is well documented that addition of 1120 to peridotitic 

compositions promotes stability of less polymerised phases resulting in 

the production of more silica-rich melts at considerably reduced 

temperatures relative to volatile-free systems. This depolymerisation 

occurs by breakage of bridging Si-O bonds resulting in splitting of the 

aluminosilicate network into smaller units [Mysen 1977; Stolper 19821. 

CO2  has the opposite effect of producing silica-poor melts at temperatures 

only slighty lower than in volatile-free conditions. In a mica-bearing 

mantle, the liquidus phase field of phiogopite is reduced at even moderate 
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CO2/(CO2+H2 0) [Wendlandt and Eggler 1980c; Ryabchikov and Green 19781, 

but even in an H20-poor environment it will be promoted by the presence of 

fluorine [Part 31. Recently, an increasing body of evidence, reviewed by 

Arculus [1985] and Taylor [1985], has led to arguments for more reduced 

mantle in which a vapour phase would consist dominantly of CH 4  and H20. 

Taylor [1985] has demonstrated that methane has a slight depolynierising 

effect, so that the degree of silica saturation of the melt produced will 

depend critically on the oxidation state of carbon as well on the C/H ratio. 

In a study of the liquidus chrome-spinels of lainproites, Foley 

[Part 21 suggested that lamproitic magmas may be oxidised appreciably during 

emplacement, originating from a reduced environment at depth. In a 

reduced environment, H20, CH4 and HF would all cause depolymerisation 

[Part 41 which could lead to silica-rich magmas similar to leucite 

lamproites, which are the most silica-rich ultrapotassic rocks which 

unequivocally represent primary mantle derived magmas. 

The association of East African group II rocks with carbonatites 

argues for a CO2-rich eruptive environment which is supported by the 

presence of CO2-rich, H 20-poor volcanic gases [Bailey 1980]. The 

enrichment in CaO and Sr characteristic of this group is explained readily 

by complexing with carbonate. This alone need not mean that the original 

mantle enrichment was also oxidised: Vollmer and Norry [1983] suggested that 

a Pb pseudoisochron age of 400-500 my for Group II rocks of the western rift 

may be due to a mantle enrichment event of that age. Oxidation of the 

mantle source could well have occurred in the intervening period, especially 

since the volcanism is associated with uplift [Bailey 19741, and oxidation 

may occur mostly at shallow depths [Mathez 1984; Part 41. 

However, the metasomatising reactions seen in the nodules indicate 

introduction of Ca to form clinopyroxene [Lloyd 19811, so that the 

characteristic high Ca and Sr may have been introduced at the enrichment 

stage. 

A CO2-rich melting environment is also likely for other group II 

rocks which are mostly ultrabasic lamprophyres and rnelilitites [Rock 1986; 

Brey and Green 19751. 

Group III rocks, and arc rocks in general, are charaterised by a 

greater amount of H 20 than CO2 [Gill 1981]. However, the effects of 
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volatiles on group III trace element characteristics would be 

insignificant compared to those apparently due to residual accessory 

phases. 

	

1.5.3.4.3 	Pressure-temperature variations 

In volatile-bearing systems, temperature of melting of a given source 

rock is essentially a function of the volatile composition. Pressure, 

however, has an appreciable effect on the composition of melts produced. 

Increasing pressure causes expansion of the stability fields of more 

silica-saturated phases such as enstatite relative to forsterite, so that 

melts produced are progressively less silica saturated [Green 1971; 

Kushiro 1972; Wendlandt and Eggler 1980c]. This pressure effect is 

apparently related to liquid structure, and is distinct from any effect 

which pressure and temperature variations may have on the stabilty of mantle 

phases. Foley et al. [Part 41 have suggested that the trend of decreasing 

silica content between primary leucite lamproites and olivine lamproites may 

be due to increasing pressure with largely similar source and volatile 

compositions. This suggestion is supported by liquidus experiments on 

olivine lamproite and leucite lamproite compositions [Part 51. 

This mechanism has more potential for explaining group I standard members 

than other rocks because of their stable continental setting. Group II are 

associated with rift environments in areas of mantle upwelling so that a 

relatively shallow source is likely. Group III primary magmas have very 

similar silica contents (46-49 wt %) so that pressure variation is probably 

not important. 

	

1.5.3.5. 	Some comments on Group IV rocks 

Group IV is defined as a chemically transitional group on the 

basis of major elements, but in terms of petrogenesis these rocks may be 

transitional or quite distinct. Treatment of this group suffers from a 

lack of trace element data, which for many occurrences listed in table 1 

is incomplete or non-existent. Primary magmas are usually difficult to 

define, particularly for those which may originate in the lower crust, but 

good evidence for a primary mantle origin exists for the mantle 

nodule-bearing Navajo and Sierra Nevada rocks. 

The Sierra Nevada incompatible element patterns show weaker REE 

enrichment than all the major ultrapotassic rock groups. Apart from this 
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and the higher Sr, they are generally transitional between groups I and 
III. Van Kooten [19801 suggested they originate by partial melting of a 
mica-peridotite enriched in clinopyroxene by a distinct enrichment. 
episode. This may explain the transitional chemistry and also the 

positive Sr spike, and may also indicate Ca and Sr introduction in a Group 

II-style enrichment episode. The Navajo rocks also contain garnet lherzolite 

xenoliths [Ehrenberg 19821 which may indicate a less depleted source than 
for group I rocks. They have incompatible elements generally intermediate 
between groups I and III with small negative deviations for Ba and Nb, but 
not for Ti. Titanclinohumite-bearing nodules are unique to this area 
[Smith 19791, which may indicate unusual conditions under which 
incompatible element contents of melts may be influenced by a different 
set of accessory minerals to those in most ultrapotassic rock source 
regions. It has been argued that alkaline volcanics and their inclusions 
in the western U.S.A. are related to a fossil shallow level subduction 

zone [Helmstaedt and Schulze 1979; Rowell and Edgar 19831, which may have 
produced unusual mantle mineralogy. The Highwood Mountains rocks further 

north have depletions for Ti and Nb, but not for Ba. 

A number of group IV rocks such as vaugnerites and durbachites 
probably originate by melting of the lower crust. Evidence includes 

association with more common granitic rocks and abundant lower crustal 

nodules [Holub 1977; Sabatier 19801. The origin of these may overlap with 
some minettes: Palm [1958] considered that they may represent mica-rich 

cumulate parts of granitic magmas, and some aiinettes also occur as 
marginal facies to granitic rocks [Guintrand et al. 19631. Rock [19841 has 

reviewed occurrences and petrogenetic models for minettes, many of which 
Invoke melting of, or interaction with, lower crustal material. More work, 

particularly isotopic, is needed to clarify these relationships. 

The minettes are heterogeneous in terms of trace elements, which 
probably indicates considerable crystal accumulation or crustal 
Interaction for some of them. Rock [1984] suggested that the most K-rich and 
mafic minettes may be due to crustal modification of lainproitic/leucititic 

magmas themselves derived from the mantle. Experimental evidence that the 
low Al larnproitic magmas readily gain alumina by reaction [Jaques and Foley 

1985] indicates that this suggestion warrants further investigation. 
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1.6 SUMMARY AND SYNTHESIS 

A chemical definition for ultrapotassic rocks is introduced using 

the whole-rock major element chemical delimiters K 20/Na20 > 2, K20 > 3 wt7. 

and MgO > 3 wt%. A literature survey using this definition amassed more 

than 800 analyses from 82 localities including olivine melilitites, 

ultrabasic and alkaline lainprophyres and K-Mg-rich dioritic rocks as well 

as most of the leucite-rich rocks usually considered in discussions of 

ultrapotassic rocks. These were divided into subgroups using a resemblance 

classification in which standard group members (or end members) are 

chosen, and abstracted qualities of the other rocks are compared to these. 

This has the advantage of by-passing the entrenched and confusing 

mineralogically-based nomenclature, and also allows the recognition of 

transitional features amongst rocks which may otherwise be part of one 

group. 

Three end-member groups are recognised with a fourth transitional 

group including rocks which probably have a variety of origins. The 

groups, together with their chief characteristics, are: 

GROUP I: Lamproites, characterised by low CaO, A1 203  and Na 20 and variable 

S102 . West Kimberley and Gaussberg are chosen as standard members. 

Incompatible elements are most enriched in this group, with no marked 

deviation from a regular spidergram pattern. T10 2  contents are variable, 

but generally distincive for a given locality. This reflects geological 

setting, with higher Ti0 2  in rocks from continental anorogenic areas and 

lower T102  together with variable P205 in rocks from orogenic areas. 

Mantle-derived nodules are dominated by depleted types such as harzburgites 

and dunites, with spinel- or garnet- lherzolites occurring only rarely. 

Isotopic compositions have strongly negative CNd and high 87 SrI86Sr, and 

standard members have distinctive Pb isotopes plotting to the left of the 

geochron [Nelson et al. 1986]. 

GROUP II: The Toro Ankole rocks, frequently referred to as kaniafugites, 

are chosen as standard members. Group II rocks have low S102  and A1203 and 

high CaO. Incompatible elements are less enriched than group I and have a 

positive Sr spike. With the exception of the rocks from San Venanzo and 

Cupaello, which are the only group II rocks emplaced in active orogenic 



areas, K*/Nb* is less than one in common with low silica rocks 

from group I. Nodules in the Toro Ankole rocks are rich in mica and 

clinopyroxene and probably result from mantle metasomatism. Nodules in 

non-standard members include less metasomatised lherzolites. Isotopic data 

for group It are lacking, but related rocks fran East Africa show mild 

enrichment in radiogenic Nd and Sr. The rocks are mostly rift related, 

either in continental or incipient oceanic rift environments. The Italian 

group II rocks appear to be a special case since they have many features in 

common with group III Italian lavas. 

GROUP III: These are distinguished by high A1203 and CaO, and have 

incompatible element patterns with characteristic negative spikes for Ba, 

Nb and Ti. They occur exclusively in orogenic environments and lack 

mantle-derived nodules not related to high-pressure crystallisation of 

magma. Isotopic characteristics are very variable for oxygen, and vary 

from similar to bulk earth to compositions more enriched in 87Sr/86Sr and 

depleted in 143Nd/ 144Nd. 

The classification provides a basis for the discussion of 

petrogenetic models, and the constraints introduced by the data and 

classification are discussed. The processes which lead to group 

characteristics are discussed without attempting specific detailed models 

for individual areas. The compositions of likely primary magmas are outlined, 

including a range of silica contents for lamproites. Petrogenetic models 

invoking partial melting of pre-enriched mantle sources are preferred for 

the explanation of most primary magmas. Previous models involving crustal 

contamination and assimilation, zone refining and high pressure 

crystallisation are discounted as major factors in the generation of 

primary magmas. Processes which may lead to chemical variations seen in 

the ultrapotassic rocks are divided into those predating mantle 

enrichment, the mantle enrichment processes themselves, and variations at 

the time of partial melting to produce magmas. 

Pre-enrichment processes are substantial melting of the mantle 

leaving a refractory source composition depleted in Ca, Al and Na, and 

rich in Mg-number and Cr. Group I rocks are considered to originate from 

a depleted source indicated by their low Al, Na and Ca. Toro Ankole major 

element chemistry may indicate a depleted source subsequently enriched in 

Ca, or a partly depleted source with lowered Al and Na, but from which 
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clinopyroxene was not eliminated. High Ca and Al in Group III probably 

indicates a relatively fertile source. 

Mantle enrichment processes may vary due to the nature, composition 

and origin of the metasomatising agent or the stability of incompatible 

element-rich host phases in the enriched mantle. In a depleted mantle, 

the low Al and high Cr contents should allow stabilisation of rarer 

incompatible element-rich minerals such as priderite, wadeite and members 

of the crichtonite group [Haggerty 19831. This would lead to a greater 

variety of mantle hosts for these elements which could explain the 

smoother spidergrams of group I, and maybe group II, although the degree 

of enrichment may also explain the overall abundances. The F-rich 

chemistry of ultrapotassic rocks. particularly lauiproites, suggests 

stabilisation of mica and possibly amphibole by fluorine [Jaques et al. 

1984a; Part 31. 

Different enrichment chemistries can be expected where the enriching 

agent is a silicate melt, H20-rich or CO2-rich oxidised fluid, or reduced 

H20-CH4-rich fluid. Small silicate melt fractions and H20-rich fluids can 

be expected to introduce the greatest enrichment concentrations, but more 

experimental data is needed on reduced fluids to constrain variations 

introduced at this stage. 

The chemical characteristics of ultrapotassic rocks from orogenic 

areas have been variously attributed to [i] contamination of the overlying 

mantle wedge by fluids derived from the subduction zone; [ii] release of 

fluids or melts from a fossil subduction zone; [liii involvement of 

enrichment components similar to those inferred to occur in continental 

non-orogenic areas, but melted in a high-pressure, low temperature 

environment in the vicinity of the subduction zone. H 2 0-rich fluids 

derived from the subducted slab should be rich in normative quartz and 

feldspar, and poor in T102 . The low Ti-group element contents in orogenic 

ultrapotassic rocks may also be explained by retention of these elements in 

accessory phases residual after melting at very high pressures. However, 

experimental data at very high pressures are needed to investigate this 

possibility. The high K20-may originate from subducted crustal material 

or from mantle metasomatism; isotopic evidence indicates this may vary 

between regions of group III rocks. 

Chemical variations developed during the partial melting event can 
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be caused by residual accessory phases, volatile mixtures and abundances, 

and pressure variations. Many of the chemical variations seen between the 

ultrapotassic rock groups can be explained by combinations of these three. 

factors. Differing stabilities of residual phases which take in a limited 

set of elements plotted in the spidergrams can explain negative spikes in 

the patterns, provided that the partition coefficients (D c•t/lq)  for these 

elements are very large. Residual accessory phase control is the best 

explanation for the low Ti, Ba and Nb contents of group III rocks 'because 

crystal sites are more element-specific than fluids or melts. The 

stabilities and partition coefficients for accessory minerals will be 

related to source chemistry and pressure-temperature conditions, which are 

a function of tectonic setting. More experimental data on distribution 

coefficients for incompatible elements and mineral stabilities is needed 

to develop and constrain such models. 

The existence of a range of silica contents in primary lamproitic 

magmas can be explained by partial melting at variable pressures. 

Production of high silica ( > 51 wt%) leucite lamproite melts would be 

favoured by H20- and HF rich, CO2-poor and maybe reduced (dH4-H20) 

conditions [Jaques et al. 1984a; Part 4]. Melts with similar volatiles under 

greater pressures may lead to olivine larnproites. The association of the 

low silica Toro Ankole rocks with carbonatites suggests a high CO 2  

environment which is also indicated by low H 20 volcanic gases [Bailey 

19801. Complexing with CO 2  at the magmatic stage also explains high 

Ca and Sr characteristic of group II. This need not imply a CO2-rich 

enrichment stage. 

Group IV includes both rocks which are mantle-derived, such as the 

peridotite-bearing Navajo and Sierra Nevada examples, and rocks which 

probably originate in the lower crust. Most members of this group are 

transitional between groups I and III, which may indicate derivation from 

a relatively undepleted source for the mantle-derived ones. Many minettes 

and vaugneritic rocks may represent mica-rich accumulations from 

granodioritic magmas, whereas other minettes may be mantle-derived or 

originate by crustal modification of mantle-derived potassic magmas [Rock 

1984]. 



- 	63 

PART II 

THE OXIDATION STATE OF LANPROITIC MAGMAS 

An experimental study of liquidus phase compositions in the Gaussberg 

Olivine Leucitite with variable oxygen fugacity 

1.1 INTRODUCTION AND RATIONALE 

The ultrapotassic igneous rocks have attracted much attention due to 

their unusual chemistry. Classified on silica content they are ultrabasic 

to intermediate, generally have relatively high Ni, Cr and Mg-number 

characteristic of primitive magmas, and yet have exceptionally high 

alkalis and other incompatible elements normally characteristic of more 

differentiated rock types. The effect of this unusual chemistry is seen in 

the frequent occurrence of phiogopitic mica and leucite as phenocryst 

phases, together with crystallisation of rare minerals such as priderite, 

wadeite, potassic richterite and kalsilite in the groundmass. 

The variety of ultrapotassic rocks apparently derived from the mantle 

must be due to variations in mantle composition and/or conditions of melting. 

Recent studies have shown that it is highly unlikely that ultrapotassic rocks 

can be derived by melting of a garnet or spinel-lherzolite mantle, but that 

some enrichment of the mantle by a component rich in potassium and other 

incompatible elements is a necessary precursor to the genesis of these 

rocks [e.g. Lloyd and Bailey 1975; Edgar et al. 19761. Mixed volatile 

components and oxygen fugacity will play a major role in determining the 

type of melt produced in the mantle. Therefore, as a precursor to 

experimental studies, intrinsic evidence for factors such as volatile 

contents and oxygen fugacity must be sought amongst primitive 

representatives of the ultrapotassic rock groups. 	- 

The Gaussberg volcano consists of olivine leucitites which are 

primitive members of the lamproite group of ultrapotassic rocks (see 

Part 1). The Gaussberg rocks contain chrome spinels as liquidus phases 

which are rich in ferric iron relative to chrome spinels in most basaltic 

rocks. Liquidus chrome spinels in other ultrapotassic rocks have widely 

varying ferric iron contents, and the ferric iron content of leucites also 
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exhibits some variation. Because of these variations, it was decided that 

the initial step in an experimental investigation of lamproite 

petrogenesis should be to determine the f0 2  conditions of crystallisation 

of the phenocryst assemblage, i.e. the conditions at eruption of the 

olivine leucitite melt. This paper reports the results of investigation of 

the liquidus phases as a function of oxygen fugacity at atmospheric 

pressure. 

2.2 GAUSSBERG OLIVINE LEUCITITE 

The Gaussberg olivine leucitite is an ideal subject for experimental 

study of the lamproite rock group. It has all the chemical characteristics 

outlined in Part I for lamproites, including an Mg-number of 70, and is one 

of the most potassic igneous rocks known (K20 = 11.6 wt%). Sheraton and 

Cundari [1980] described a spinel lherzolite included within the 

leucitite, and list mineral compositions from the xenolith. High A1203 

contents of pyroxenes accompanied by low Cr/(Cr+Al) of spinel establish 

the xenolith as a typical medium pressure, high temperature lherzolite 

assemblage (in the range 8-20 kbar). 

The olivine leucitite consists of olivine, leucite and clinopyroxene 

phenocrysts set in a brown glass with quench mica, leucite and 

clinopyroxene [figure 16].  Numerous melt inclusions occur in olivine and 

leucite and have compositions which are not significantly different from 

the analysed whole-rock composition. Thus the rock composition is arguably 

that of a mantle-derived liquid, with the exception of possible volatile 

exchange near the surface. Lessrapidly quenched examples have a matrix of 

mica, clinopyroxene and leucite with minor ilmenite and partly devitrified 

glass. The mineralogy has been described by Sheraton and Cundari [1980] 

and so only additional features are noted here. 

Phenocryst clinopyroxenes occasionally include corroded green saute 

cores which are compared with the typical diopsidic phenocryst 

compositions in table 4. Green saute cores have been reported from all 

three groups of ultrapotassic rocks [Kuehner 1980; Barton and van Bergen 

1981; Holmes and Harwood 1932; Barton et al. 19821 and also from other 

potassic rocks such as shoshonites [Pe-Piper 1984]. Their simultaneous 

occurrence with Mg-rich phenocrysts is not yet adequately explored, but 

Barton et al. [1982] and Pe-Piper [1984] have suggested magma mixing for 
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TABLE 4 
Compositional comparison of green saute cores to pyroxene phenocrysts 

(1-3) with diopside phenocrysts (4-6) from Gaussberg olivine leucitites. 
Mg = lOOMg/(Mg+Fe), FeO = total iron as FeO. Analyses normalised to 100% 
by EDAX microprobe system. 

1 2 3 4 5 6 

S102 52.09 50.94 51.39 54.04 54.69 54.13 

T102 0.29 0.21 -- 1.01 0.74 0.90 

A1203 2.49 1.99 1.79 0.63 0.53 0.56 

Cr203 0.43 -- -- 0.75 0.59 1.12 
MnO 0.23 0.48 0.51 -- -- -- 

FeO 11.32 15.79 15.19 2.80 3.16 2.65 
MgO 12.13 9.59 9.67 17.40 17.83 17.42 

CaO 20.52 20.42 20.91 23.13 22.26 22.96 

Na20 0.49 0.57 0.51 0.24 0.26 0.25 

Mg 65.6 52.6 53.2 91.7 91.0 92.2 

TABLE 5 
Analyses of leucites from Gaussberg olivine leucltite (1-4), Leucite 

Hills (5 - from Küehner et al. 1981) and West Kimberley (6). 1 and 2 are 
early leucite cores; 3 and 4 are typical phenocryst leucites. 

1 	2 	3 	4 	5 	6 
S102 	55.91 	55.69 	56.79 	57.06 	57.71 	55.51 

A1203 	22.79 	22.83 	21.68 	21.37 	19.62 	21.17 
Fe203 	0.27 	0.29 	1.04 	1.30 	2.03 	0.65 
K20 	20.68 	20.66 	20.40 	20.64 	20.77 	20.11 

Total 	99.65 	99.47 	99.91 100.37 100.13 	97.45 

Cations per six oxygens: 
Si 2.027 2.023 2.056 2.062 2.145 2.058 

Al 0.974 0.978 0.925 0.910 0.837 0.925 

Fe 0.007 0.008 0.028 0.035 0.055 0.020 

K 0.956 0.958 0.943 0.951 0.959 0.951 
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TABLE 6 
Analyses of chrome spinel occurring as inclusions in olivine 

phenocrysts. G = Gaussberg olivine leucitite; WK = West Kimberley olivine 
leucitite [=leucite lamproite]; SP = inclusion in olivine from a Spanish 
fortunite [A.J.Cracford, unpublished]; LH = Cr-spinel in Leucite Hills 
wyomingite [Kuehner et al. 19811. Iron cation ratio calculated assuming 
cation total = 3.000 

Cr = 100Cr/(Cr+Al ?  Ferric = 100Fe 3 /(Fe3 +Fe2 ), 
Mg = 100Mg/(Mg+Fe*) 

	

G1 	G2 	G3 
T102 	4.3 	4.7 	4.3 
A1203 	3.8 	3.8 	4.0 
Cr203 	50.4 	49.1 	50.7 
FeO 	28.0 	29.1 	28.4 
MgO 	13.0 	12.8 	12.6 
Total 	99.7 	99.5 100.0 

Cations: 
Ti 	0.107 0.116 0.108 
Al 	0.150 0.151 0.155 
Cr 	1.332 1.290 1.327 
Fe3+ 	0.313 0.326 0.302 
Fe2+ 	0.466 0.482 0.484 
Mg 	0.641 0.634 0.624 

Mg 	57.9 	56.8 	56.3 
Cr 	89.8 	89.5 	89.5 
Ferric 40.2 	40.3 	38.5 

G4 
4.2 
3.7 

50.2 
28.4 
9.8 

99.8 

0.105 
0.146 
1.317 
0.328 
0.459 
0.633 

58.0 
90.0 
41.7 

WK1 
4.6 
2.0 

55.1 
26.1 
10.8 
99.1 

0.119 
0.081 
1.489 
0.291 
0.552 
0.557 

50.2 
94.9 
25.8 

	

WK2 	WK3 

	

4.8 	3.9 

	

2.1 	3.0 

	

55.2 	58.0 

	

26.2 	22.5 

	

12.8 	10.9 
99.5 100.0 

0.124 0.099 
0.085 0.118 
1.482 1.529 
0.186 0.156 
0.557 0.470 
0.566 0.629 

	

50.4 	57.2 

	

94.7 	92.9 

	

25.0 	24.9 

	

SP 	LH 

	

1.3 	0.7 

	

2.1 	6.7 

	

61.7 	44.1, 

	

21.4 	32.8 

	

9.8 	10.8 

	

96.3 	95.1 

0.033 0.018 
0.086 0.271 
1.709 1.195 
0.139 0.498 
0.487 0.443 
0.514 0.552 

	

51.4 	55.5 

	

95.2 	81.5 

	

22.2 	53.0 



the origin of Italian and Greek examples. The high Mg-number, A1203 and 

Na20 contents, and low Ti02 and Cr203 contents of the Gaussberg salites 

preclude them from a genetic relationship with the olivine leucitite 

liquid. 

The olivine leucitite contains two generations of leucite (table 5). 

The first has a low ferric iron content and typically contains numerous 

melt inclusions; these early leucites typically have a rim of well-formed 

leucite crystals, as originally noted by Reinisch [1912]. The later 

leucites are richer in ferric iron and have higher excess silica 

(2.045-2.068 atoms per 6 oxygens as against 2.012-2.038 atoms for the 

first generation). The silica content of the second generation is typical 

of lamproitic leucites, contrasting with the view formed by Sheraton and 

Cundari [1980] from limited data. 

Inclusions of chrome-rich spinels within olivine (P0 89-90) 

apparently indicate quite a high oxidation state at an early stage of 

crystallisation (table 6). The spinels have a ferric value of 38-42, where 

ferric iron is calculated assuming stoichiometry, which suggests an oxygen 

fugacity higher than that of most basaltic compositions. New analyses of 

chrome spinel inclusions in olivine phenocrysts from a West Kimberley 

olivine leucitite and a Spanish fortunite are also presented in table 6. 

2.3 EXPERIMENTAL METHODS 

The starting material for the experiments was a synthetic glass, the 

composition of which is compared to natural Gaussberg rocks in table 7. A 

mixture of oxides, carbonates (for K, Na, Ba, Sr and part Ca) and Ca2P207 

was sintered at 1000 0C prior to addition of fayalite. The mixture was then 

melted at 13200C in an argon atmosphere and quenched to a glass. 

The mix was loaded into iron-doped Pt capsules which were included 

in evacuated silica tubes above a separate Pt capsule containing the 

oxygen buffer. The buffers used were haematite-magnetite [HM], 

manganosite-haussmanite [MnH], nickel-nickel oxide [NNO] and 

magnetite-wustite (MW] (figure 18). Buffers were checked by XRD after each 

run. Experiments were run suspended by a Pt harness in a one inch diameter 

vertical furnace for 2.5 to 5 hours, and were quenched in distilled water. 

Temperatures were checked with a Pt/Pt90Rh 10  thermocouple immediately 
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TABLE 7 
Comparison of synthetic Gaussberg glass with natural compositions. 

[11 Target composition: average of 11 olivine leucitite analyses 
recalculated volatile-free [Sheraton and Cundari 1980]. 

[2] Average microprobe analysis (area scans) of synthetic composition 
prepared for the experiments. FeO = wet chemical determination (analyst 
P.Robinson). Discrepancy in the total is due to minor elements not 
analysed for by microprobe. 

[31 Glassy pillow rim 4870B [Sheraton 19811 used in Fe-doping runs, 
recalculated volatile-free. 

1 2 3 
S102 51.45 52.38 51.19 
T102 3.46 3.67 3.43 
A1203 9.97 9.89 9.98 
Fe203 2.49 3.3 2.45 
FeO 3.82 2.8 3.93 
MgO 8.04 8.02 8.08 
CaO 4.68 4.57 4.81 
Na20 1.67 1.79 1.67 
K20 11.78 11.00 11.77 
P205 1.50 1.52 1.49 
MnO 0.09 
BaO 0.63 
SrO 0.23 1.21 
Zr02 0.14 
Cr203 0.045 
NiO 0.03 

Mg II 70.3 71.2 70.2 
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prior to each run and are accurate to ±1 0 C. 

Hill and Roeder [19741 used alumina sample capsules for low f0 2  runs 

to overcome the problem of Fe-loss to Pt capsules and found only a small 

alumina gain in run products.- A trial near-liquidus run using an alumina 

sample capsule proved unsatisfactory with the Gaussberg composition: the 

glass gained 4-7 wt% alumina, and pleonaste series spinels crystallised. 

Therefore, Pt capsules were used, but an attempt to minimise iron 

loss was made by doping with iron. A preliminary doping run was made for 

each experiment with a mixture of a natural glassy pillow rim (4870B: see 

table 7) and wustite or iron metal powder. Capsules were then cleaned by 

heating in HF for 1-2 days. The doping runs were made with the appropriate 

buffer capsules for 4 hours at 13000C. Doping mixtures found to give best 
results were as follows; 4870B + 3% wustite for HM and MnH, 4870B + 10% 

wustite for NNO and 4870B + 30% Fe for MW. Success of the doping procedure 

was variable as shown by the Mg-number of the glass in runs at 1250 0c and 
above (tables 8 and 9). Some NNO runs lost iron (e.g. runs 117A and 141B) 

and some MW runs (e.g. 137) gained iron from the doped capsules. These 

effects were least in runs where the resulting glass Mg-number is closest 

to the starting mix Mg-number of 71.2 

Microprobe analyses of both natural rocks and experimental products 

were made with a JEOL JXA-50A microprobe with EDAX attachment calibrated 

on pure Cu. 

2.4 EXPERIMENTAL RESULTS 

The experiments formed two groups: the composition noted in table 7 

(with 0.045 wt% Cr203) was used for series I, whereas additional Cr203 to 

a total of 0.20wt% was added for series II in order to bring spinel group 

minerals to the liquidus in quantity and grain size sufficient for 

analysis. 

2.4.1 SERIES I: 

Results for series I experiments are listed in table 8 and 

summarised graphically in figure 17. Series I experiments were run for 2.5 

hours at near-liquidus temperatures, and for 4-4.5 hours at lower 

temperatures to allow growth of larger crystals. Crystals were abundant 



TABLE 8 
Experimental data for Series I runs (0.045wt% Cr203). 

OL = olivine; LC = leucite; CPX - clinopyroxene; SP = chrome spinel. 
Figures in brackets are wt% Fe20 3  for leucite, and Mgffr (total Fe) for 
glass. 
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Run# Duration Buffer T °C 

121 2.5 HM 1270 
119 2.5 HM 1260 
120 2.5 HM 1250 
122C 4.0 HM 1200 
123C 4.5 HM 1150 
117B 2.5 MnH 1270 
118B 2.5 MnH 1260 
116B 2.5 MnH 1250 
122B 4.0 MnH 1200 
123B 4.5 MnH 1150 
117A 2.5 NNO 1270 
118A 2.5 NNO 1260 
116A 2.5 NNO 1250 
122A 4.0 NNO 1200 
123A 4.5 NNO 1150 
137 2.5 MW 1250 
140 2.5 MW 1230 

Run products 

Glass [70.5] 
OL + LC + Glass [69.71 
OL + LC [3.6] + Glass [68.7] 
OL + LC [3.8] + cPx + SF + Glass [66.6] 
OL + LC [3.61 + CPX + SF + Glass 
Glass [71.6] 
OL + LC [3.6] + Glass [69.81 
OL + LC [3.2] + Glass [71.3] 
OL + LC [3.4] + CPX + SF + Glass [67.5] 
OL + LC [2.9] + cPx + SF + Glass [66.1] 
Glass [83.9] 
OL + Glass [79.8] 
OL + LC + Glass [75.1] 
OL + LC [2.11 + CPX + Glass [75.91 
OL + LC [1.5] + cPx + SF + Glass [68.4] 
OL + Glass [61.3] 
OL + LC [0.9] + Glass (65.2] 

TABLE 9 
Experimental data for Series II runs (0.2wt% Cr 203 ). 

Abbreviations as for table 8 except figures in brackets are lOOMg/(Mg+Fe) 
where Fe = Fe2+ for olivine and Fe = total Fe as Fe2+  for glass. 

Run/i Duration Buffer T°C 	Run products 

131C 5 HM 1280 SF + Glass [71.7] 
128B 5 HM 1270 SF + Glass 	[70.7] 
127B 5 HM 1260 SP + OL [98.5] + Glass [71.8] 
126C 5. HM 1250 SP+ OL [97.7] 	+ LC + Glass [71.5] 
131B 5 MnH 1280 SP + Glass 	[72.4] 
128A 5 MnFl 1270 SF + Glass 	[73.1] 
127A 5 MnH 1260 SP + OL [97.7] + LC + Glass [71.7] 
126B 5 MnH 1250 SP + OL [96.1] 	+ LC + Glass [71.8] 
131A 5 NNO 1280 SF + Glass 	[81.3] 
141B 5 NNO 1270 SF + Glass 	[83.5] 
129 5 NNO 1260 SF + OL [95.7] 	+ LC + Glass [80.61 
126A 5 NNO 1250 SP + OL [92.7] 	+ LC + Glass [71.5] 
141A 5 MW 1270 SF + Glass [70.9] 
134 5 MW 1260 SF + OL [90.2] + Glass (68.4] 
135 5 MW 1250 SF + OL [87.8] + Glass [63.6] 
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Summary of results from Series I experiments [Cr 203  = 0.045 wt%] 
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Summary of results from Series II experiments [Cr203  = 0.2 wt%J 

Symbols as in figure 17. 
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but small, so that in many cases mineral+glass overlap analyses were taken 

from which an average glass composition was subtracted to obtain the 

mineral analysis. 

Olivine is a liquidus phase at all oxygen fugacities studied, and 

varied in composition from F098  at HM to F089 at MW. Results were variable 

at NNO and MW due to differing amounts of iron loss/gain to/from the 

capsules. The range of Fo in olivines given above is from runs in which 

iron exchange was minimal. At the higher oxygen fugacities leucite 

stability is enhanced and leucite contains a greater amount of ferric 

iron. Ferric iron contents of leucites were obtained graphically from 

leucite+glass overlap analyses so that some of the microprobe precision is 

lost. The range in Fe 203  contents from 0.9 wt% at MW to 3.6 wt% at HM is 

nevertheless realistic in comparison with natural leucites, and Fe 203  

values are consistent among runs at a given oxygen buffer (table 8). 

Clinopyroxene did not crystallise within 50 0C of the liquidus in 

these experiments but coprecipitates with olivine and leucite below 

12200C. In the natural rock, somewhat ambiguous petrographic criteria 
Indicate that a significant proportion of the clinopyroxene crystallised 

before much of the leucite. By analogy with Barton and Hamilton's [1978] 

experiments on orendite (similar to Gaussberg olivine leucitite), 

clinopyroxene is expected to crystallise before leucite at depths as 

little as 1km. 

The appearance of spinels is strongly dependent on oxygen fugacity 

(figure 16) and spinels did not occur at the liquidus In any series I run. 

This contrasts with the natural rock where spinel occurs as Inclusions in 

olivine phenocrysts. Very small spinels occurred only in runs with a high 

degree of crystallisation, precluding satisfactory analyses. 

2.4.2 SERIES II: 

For series II runs, Cr203 was added as it has been shown previously 

to stabilise spinels to higher temperatures (Hill and Roeder 19741. Only 

near-liquidus temperature runs were repeated to enable spinel compositions 

to be compared with those naturally occurring as inclusions in olivine. 

Results from series II experiments are listed in table 9 and summarised in 

figure 18. Series II experiments were run for 5 hours to enable better 

mineral analyses to be obtained. Spinel occurs alone as the liquidus phase 
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at all oxygen fugacities studied. The liquidus temperature was not 

determined precisely, but few grains were present in the 1280 0C runs 
(especially at NNO) indicating that the liquidus probably lies at around 

1290°C. 

The olivine out curve remains unaffected by the extra Cr 203, and the 

change in the leucite-out curve is insignificant. Clinopyroxene did not 

appear at the temperatures studied. Olivine and glass Mg-numbers are given 

in table 9. Each glass analysis quoted is the average of a minimum of six 

microprobe area scans. 

Leucite crystals frequently occur in aggregates and, in series II 

runs, also commonly contain Cr-free aluminous spinel inclusions. These 

aluminous spinels occur regardless of oxygen fugacity. Similar Cr-free 

Al-spinels in natural leucites are known from lamproites in the West 

Kimberley region. These spinels are described in more detail by Jaques and 

Foley [Appendix 4],  who attribute their formation to exsolution following 

incorporation of Mg and Fe into leucite by a Tschermak substitution. Their 

appearance in series II runs only is interpreted to be a kinetic effect: 

Mg- and Fe-bearing leucites have had time to exsolve spinels given the 

longer run times of series II experiments [Jaques and Foley, Appendix 41. 

The extremely large partition coefficient for Cr between spinel and 

liquid precludes crystallisation of Cr-free spinels from the melt. 

Leucite compositions for series II are not listed because they are 

anomalously high in Mg and Al due to overlaps with the spinels contained 

within them. 

Chrome-spinels occur as numerous but generally small crystals, 

especially at lower oxygen fugacities. Their colour varies from greenish 

brown at MW, through orange to deep red at HM. A single spinel analysis 

for each experiment (table 10) was obtained by linear regression of each 

oxide against silica for numerous spinel-glass overlap analyses of varying 

sizes. Ferric values were calculated assuming stoichiometry, and then 

other ratios involving iron were calculated from these. 

The spinels are comparable to natural spinels from ultrapotassic 

rocks in high Cr and Fe3+  and low Al contents. Increasing oxygen fugacity 

causes an increase in the ferric values of the spinels and an increasing 
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Figure 19 

Ferric value vs. Cr/(Cr+Al) plot for synthetic and natural spinels. 

Bold type are natural spinels from larnproites (•) and group II and III 

ultrapotassic rocks (*). 1 = Leucite Hills [Kuehner et al. 1981]; 

g = Gaussberg (this study); h = Holsteinsborg, West Greenland [Scott 

19811; s = Spanish fortunites [A.J.Crawford, unpublished data]; 

I = Indonesia [Whitford 19751; a = western rift valley.of Africa [Edgar 

and Arima 19811; v = San Venanzo, Italy [Gallo et al. 1984]; w = West 

Kimberley (this study) 



magnesioferrite component. No significant change in Al/(Al+Cr+Fe3+)  ratio 

is seen; the trivalent Substitution is Cr = Fe3+. Titanium shows little 

change in the f0 2  range studied except for a slight increase at the MW 

buffer. At buffers (NNO and MW) where there is a spread of Mg-number due 

to iron loss or gain, analyses of glass and neighbouring phases were 

selected which show the least change in Mg-number from starting mix 

compositions. 

These selected analyses are plotted in figure 19 along with all data 

for HM and Mnl!. Natural spinels from lamproites, mostly occurring as 

inclusions in olivine phenocrysts, are also plotted in figure 19. 

Relative to the natural spinels from Gaussberg, the experimental 

spinels are richer in Cr and Mg, and poorer in total Fe. This discrepancy 

is attributed to the addition of Cr 2 03  in excess of that of the primitive 

Gaussberg melt. The single element partition between spinel and liquid 

(D(sp-lq)) for Cr is much larger than D(sp-lq) for Fe3+,  so that the 

series II experimental studies contain less Fe3+  than they would in a less 

Cr-rich melt. Mg contents of the spinels are therefore correspondingly 

higher due to the f02  control of the F
e3+/Fe 2+ ratio. 

The original çr 2 03  content of the Gaussberg olivine leucitite can be 

estimated as approximately 0.08-0.10 wt%. This estimate is made assuming a 

similar form of relationship in Cr203 (sp) vs. Cr203(lq) to that indicated 

by the data of Maurel and Maurel [1982a] for olivine tholelites. 

The experimental data demonstrates that Fe is a sensitive indicator 

of f02  at crystallisation of the lamproite liquidus phases spinel, leucite 

and olivine. Comparison of natural and experimental spinels (figure 19) 

indicates that natural lamproite spinels began to crystallise at f02 

ranging from values in excess of the NNO buffer to values as low as the MW 

buffer. 

2.5 COMPARISON OF SPINELS BETWEEN BASALTIC AND ULTRAPOTASSIC ROCKS. 

The compositional behaviour of spinel in these ultrapotassic melts 

has some significant differences from that in the more commonly studied 

basaltic compositions. Experimental spinel-liquid KDS indicate a 

preferential partitioning of Fe3+  relative to Al into the spinel, and a 
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high Fe3+/Fe 2+ ratio in the spinel. Spinel compositions in natural 

ultrapotassic rocks are all notably poor in alumina. Groundmass spinels 

may contain greater amounts of Ti and Fe, but never plot far from the 

(MgFe)Cr 204_(MgFe)Fe 2 04  face of the spinel prism. The most Al-rich Cr 

spinels from West Kimberley lamproites (titaniferous, magnesian aluminous 

chromites; Jaques et al. 1984a', p.241) have Cr/(Cr+Al) > 0.8. In contrast, 

basaltic spinels are usually Al-rich and relatively poor in ferric iron, 

and so are restricted to near the (MgFe)Cr204-(MgFe)A1 204 base of the 

spinel prism [Haggerty 19761. 

Maurel and Maurel [1982a,b,c] experimentally studied spinel 

compositions in tholeiites at 1 atm. They formulated the relationship 

(A1 203 ) 5 	= 0.035 (A1203 )2.42 
	

[1] 

[Maurel and Maurel 1982b] from their own data and that of Fisk and Bence 

(19801. This is plotted in figure 20 where it is compared to the 

experimental data for the Gaussberg study (series II). It can be seen that 

the partition coefficient D(sp-lq) for A1203 is significantly lower for 

the ultrapotassic composition. This is not due to the excess Cr203 added 

for the series II runs, since the composition used by Maurel and Maurel 

[1982b] contained 0.25 wt% Cr203. 

The low alumina is a manifestation of the alkali-ferric iron effect 

(Carmichael and Nicholls 19671 whereby addition of K 2 0 to a silicate melt 

causes an increase in the Fe3+/Fe2+  ratio of the liquid. This is thought 

to be due to the charge balancing of tetrahedral Fe3+  by K, which is 

accompanied by depolymerisation of the silicate network [Virgo et al. 

1981; Dickenson and Hess 1981; Mysen et al. 1981, 1982]. Spinels 

crystallising in ultrapotassic liquids will have higher Fe 3 /Fe2  ratios 

than those in tholelitic basalts [Maurel and Maurel 1982c, 1984] which, 

together with the high Cr content, results in lower Al contents. Maurel 

and Maurel [1983] recognised that higher ferric iron contents in the 

liquid would result in higher Fe 3 /Fe 2  and lower A1203  in spinels, but 

did not study the effect of alkalis. The alkali-ferric iron effect is seen 

in the empirical equations of Sack et al. (1980] and Kilinc et al. [1983] 

(see below, equation 2) as large regression constants for the alkali 

oxides in the bulk composition term. Because of this, the simplified 

expression of Maurel and Maurel [1984, equation 61 must be used with care 
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Figure 20 

Al 203 
Comparison of synthetic spinels from this study (0) with the Dsp_l q  

variation described by Maurel and Maurel [1982b] for tholeiitic basalts. 
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for alkaline rocks, since it contains a bulk composition term (after 

- Kilinc et al. 1983) which is generalised for non-alkaline rocks. 

2.6 ELEMENT PARTITIONING 

A number of mineral-liquid and mineral-mineral distribution 

coefficients were calculated from the experimental data, and these are 

listed in table 11. In order to calculate coefficients involving liquid, a 

ferric value for the liquid must be determined. There are currently two 

well documented empirically derived expressions relating the molar ratio 

Fe 203/FeO of the liquid to oxygen fugacity and ,  melt composition [Sack et 

al. 1980; Kilinc et al. 19831. These use the same equation but with 

different regression constants, thus: 

ln (XFe203,XFeO) = a infO2  + b/T + c + 	[2] 
lq 	lq 

where a,b and c are constants, d(i) are constants for individual oxide 

components in the melt, and X = mole fraction. The formulation by Kilinc 

et al. [19821 is slightly different and gives ferric values intermediate 

between these two for the Gaussberg composition. The ferric value 

predicted by these expressions for the Gaussberg composition are plotted 

in figure 21. A limited number of accurate (to within 4%) wet chemical 

determinations for FeO on 1 mg samples of run products are available, and 

these are also plotted in figure 21. 

In calculation of distribution coefficients involving liquid, a 

combination of these methods was used as follows: Kilinc et al. [1983] for 

HM and MnH, Sack et al. [1980] for NNO and the wet chemical values for MW. 

The choice between values from the different equations was made because 

the former incorporated high oxygen fugacity experiments in their data 

base. Sack et al.'s [1980] was made from data restricted almost entirely 

to around the FMQ buffer, which is intermediate in f02  between the NNO and 

MW buffers. The wet chemical analysis was preferred for MW because it was 

determined on a run in which the final Fe content was very similar to that 

in the starting composition, indicating that the Fe-doping procedure had 

worked best in this run. 

The wet chemical values for NNO were not used because the runs 

analysed had lost iron. These results show the effects of modification of 



TABLE 11 
Mineral-mineral and mineral-liquid distribution coefficients 

calculated from the experimental data. 

Distribution Regression Number of 
coefficient Value coefficient points 

KD Fe2+-Mg 0.26 0.991 8 
ol-lq 

KD Fe2+-jMg 4.697 0.986 5 

KD Al-Fe3+ 0.125 0.989 10 
sp-lq 

KD 	2g 1.184 0.962 10 

KD Fe2+-Fe3+ 0.643 0.998 10 

82 
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Figure 21 

Comparison of liquid ferric values predicted by the equations of Sack et 

al. [19801 (----) and Kilinc et al. (1983] (....) to measured wet chemical 

values for run products (I). Solid curve shows values used, in calculation 

of KDS. 
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the external buffer by the capsule/melt reaction 

- 	2FeO+2Pt =2FePt+0 2 	 [31 

Underdoping, i.e.loss of iron to the capsule, forces the equilibrium to 

the-right-and results in ahigher f 0 and higher ferric value. The HM wet - 

chemical analysis supports the use of the Kilinc et al. values for the 

higher f02  buffers. 

Despite the uncertainties discussed above concerning ferric value of 

the liquid, the resulting KD5  have good correlation coefficients and are 

internally consistent: the K Fe2+-Mg  with lowest r can be calculated 
sp-lq 

independently by 

=KD Fe2+-Mg . K Fe2+-Mg = 1.221 	(4] 
sp-lq 	ol-lq 	sp-ol 

which compares favourably with the value of 1.184 obtained by linear 

regression of the spinel + liquid compositional data. 

The 1D Fe2+-Mg value of 0.26 is at the lower end of the range 
ol-lq 

0.25-0.38 found from experimental studies of varying composition [Ford et 

al. 19831. Comparable values are found between olivines and Ti-rich lunar 

basaltic liquids [Longhi et al. 1978; Green et al. 1975]. Tfle airrerence 

between 0.26 and the more typical basaltic KD  of 0.30 (Roeder and Emslie 

19701 is considered to be real. It is too large to be explained by errors 

in measurement of the low levels of FeO, and is unlikely to be caused by a 

systematic underestimation of liquid ferric value by the Sack-Kilinc 

equations, because the wet chemical determination used for MW gives a 

lower ferric value than the calculated value. The high K20 contents of the 

melt would be expected to promote crystallisation of olivine because of 

its depolymerising effect [Kushiro 1975; Fraser 1977], but the reason for 

crystallisation of a more forsteritic olivine in these conditions is 

uncertain. 

KD 	r3+ is estimated at 2.8, based on series I data. Series II 

leucites could not be used because of Al-spinel inclusions. A regression 

was not performed because of the scarcity of data. 
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2.7 APPLICATION TO ULTRAPOTASSIC ROCKS 

Mineral compositions from these experiments clearly indicate that 

the Gaussberg olivine leucitite crystallised at oxygen fugacities less 

than 0.5 log units below that of the NNO buffer. Compositions of natural 

spinels (ferric value), leucite (Fe203  content) and olivine (Mg-number) 

compare well with values interpolated from experimental data. The 

agreement of all these values suggests that re-equilibration of spinels 

included in olivine as suggested by Thy [1983] has not occurred. 

The expression of Sack et al. [1980] noted above (equation 2) can be 

rearranged to give an estimate of the intrinsic oxygen fugacity. Using the 

whole-rock chemical data for Fe203 and FeO, which is considered to be 

realistic in view of the extremely fresh glassy nature of the Gaussberg 

lava, log f02  is calculated at -6.7 at 1280 °C; this is virtually identical 

to the NNO buffer (-6.65 from the equation of Schwab and Kiistner 1981). 

*This agreement emphasises the value of spinel, olivine and leucite as 

calibrated by the experimental data for estimates of oxygen fugacity. The 

use of Sack et al.'s [1980] equation for estimating f0 2  must be limited to 

exceptionally fresh rocks: application to a West Kimberley olivine 

leucitite gave an f0 2  4 log units higher than that deduced from the spinel 

ferric value data. 

The experimental data for spinel ferric value (figure 19) indicate a 

wide range of 1028 for lamproitic magmas. The high f02 indicated for the 

Leucite Hills spinel Is supported by the occurrence of leucites containing 

in excess of 2wt% Fe203  [table 5; Kuehner et al. 1981]. Carmichael and 

Nicholls [1967] estimated that madupite crystallised at an f0 2  well above 

the NNO buffer by using forsterite + enstatite as a thermodynamic proxy 

for phlogopite. Their conclusion is supported by the present data. The 

Spanish and West Kimberley spinels have ferric values close to those of 

experiments at the MW buffer. The Spanish analysis is from an inclusion in 

an olivine phenocryst In a fortunite. The fortunites are the most 

primitive of the Spanish lamproltes and carry lherzolite xenoliths 

[Venturelli et al. 1984b]. Spinels from other Spanish lamproite types have 

lower Mg-number and higher ferric values. 

Chrome spinels are preserved In the Gaussberg olivine leucitite only 



as inclusions in olivine. Whilst some fractionation of spinels is 

indicated by the neccessity of chrome addition to stabilise spinels at the 

liquidus, it is considered likely that a reaction between spinel and melt 

to produce Cr-bearing clinopyroxene, as described by Hill and Roeder 

[1974], has operated at Gaussberg: any spinels not armoured by olivine are 

thus considered to have reacted out. 

Application of the experimental results to ultrapotassic rock groups 

II and [II may be limited because of some significant compositional 

differences. The spinels from these rocks contain greater amounts of A120 3  

(figure 19) reflecting the higher alumina content of these rocks relative 

to lamproites. The calibration for Fe 2 03 content of leucites must be 

restricted in use to rocks with low alumina because Fe3+  incorporation in 

leucite is a function of Fe3+  and Al content of the melt. The 

characteristically high Fe 203 content of leucites from lamproites [Barton 

1979] is as much a function of the low A1 203  of larnproites as an oxidation 

effect. The low Mg-number of group III rocks may hinder application of the 

crystal-liquid KDS  because of the uncertainty about the degree of 

crystallisation which has occurred. Cr-rich spinels are only rarely 

present in group II and III rocks. 

The Gaussberg rocks contain large early-crystallised leucites with 

low Fe203  contents which are rimmed by leucites with the higher Fe203 

typical of leucites in the rest of the rock (table 5). Application of the 

experimental calibration suggests that the low Fe203 cores crystallised at 

f02  below the MW buffer, and that the Gaussberg lava has oxidised during 

emplacement. 

Variations in oxygen fugacity with depth will have an important 

bearing on the presence or absence of diamonds. If the diamonds in West 

Kimberley lamproites have a magmatic origin then diamond-bearing lamproite 

magmas must be reduced at depth. The oxidation state as measured by 

liquidus spinel ferric values may therefore indicate whether or not 

diamonds, if present at depth, are likely to have survived. The effect of 

pressure on spinel composition is uncertain: the low ferric values given 

by West Kimberley and Spanish lamproite spinels may be partly due to 

crystallisation at greater depth than spinels in other lamproites. 

Nevertheless, the spinels from the diarnondiferous West Kimberley region 

give amongst the lowest f02  readings of all lamproites considered on the 
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Figure 22 

Natural lamprolte spinel compositions compared to kimberlite spinels and 

spinels occurring within diamonds. Lamproite spinel field is from liquidus 

minerals as in figure 19 and table 6. Kimberlite spinel data from Sobolev 

[1977], Haggerty [19761 and Mitchell & Clarke [1976]. Data for spinels 

included in, or intergrown with diamonds ( .....) from Meyer & Boyd [1972], 

Prinz et al. [19751, Tsai et al. [1979] and Sobolev [1977]. 



experimental calibration. In the West Kimberley area, diamonds are 

restricted to olivine-rich lamproites with high Cr203 contents [Atkinson et 

al. 1984; Jaques et al. 1984a]. 

Spinel inclusions in diamond [Meyer and Boyd 1972; Tsai et al. 1979; 

Prinz et al. 1975; Sobolev 19771 are chrome-rich, alumina- and ferric 

iron-poor, and plot close to the MgCr204-FeCr 2o4  edge of the spinel prism 
(figure 22). The most oxidised of these inclusions, including a 

spinel-diamond intergrowth believed to indicate coprecipitation [Sobolev 

1977, p.1341, have ferric values comparable with the most Cr-rich and 

reduced of the West Kimberley and Spanish lamproites. The range of spinel 

compositions in the lamprolte group as a whole approaches that of spinel 

inclusions in diamond chiefly by variation in ferric value, or down the 

front face of the spinel prism. Kimberlitic spinels, on the other hand, 

approach the range of diamond inclusions by variation in Cr/(Cr+Al), or 

along the base of the spinel prism [Haggerty 1976,19791. 

It thus appears that the Fe3+  content of spinel may be a useful 

"diamond survival indicator" for application to lamproitic rocks. If 

diamonds existed at depth in lamproites which are now highly oxidised, 

they would be unlikely to survive the oxidation. 

2.8 SUMMARY 

Atmospheric pressure liquidus experiments were conducted on the 

Caussberg olivine leucitite composition to study the effects of oxygen 

fugacity on phase compositions. Results show that olivine is the liquidus 

phase followed by leucite and clinopyroxene. Addition of Cr 2 03  was 

required to crystallise chrome spinel at the liquidus, implying that 

fractionation of chrome spinel has occurred in the natural rock, causing 

some Cr-depletion. The added Cr 2 03  did not affect the stability of 

other phases. Runs with extra Cr 2 03  produced Cr- and Fe3+_rich  spinels 

which are comparable with natural examples once allowance is made for the 

excess Cr2 03 . The ferric value of spinels is a good indicator of oxygen 

fugacity at the time of crystallisation. 

Experimental data for spinels, olivine and leucite show conclusively 

that the bulk of the Gaussberg olivine leucitite phenocrysts began to 

crystallise at oxygen fugacities just below those of the NNO buffer. This 



is in excellent agreement with an estimate from the empirical expression 

derived by Sack et al. [1980] based on the Fe203/FeO contents of the 

fresh, quenched glass. However, an earlier stage of crystallisation at 

lower f02  (below MW) is recorded by rare cores to leucite crystals with 

very low Fe 203  contents. Other lamproites range in f02  at crystallisation 

from well above NNO down to MW. The more reduced examples include the West 

Kimberley leucite lamproites, and their spinels are similar to the most 

oxidised of spinel inclusions found in diamonds. Oxidation during 

emplacement, possibly by H2-10ss from the magma [Sato 19781, may be common 

in lamproitic magmas, and the ferric value of spinels may indicate whether 

or not any diamonds are likely to have survived the oxidation. 

The range of lamproitic spinels approahes that of spinel inclusions 

in diamonds largely by variation in (Fe3+/(Fe3++Fe2+)),  whereas 

kimberlitic spinels approach the field of spinel inclusions in diamond by 

variation in Cr/(Cr+Al). 

A number of mineral-liquid and mineral-mineral distribution 

coefficients have been empirically derived from the experimental data. 

These may be an aid to estimating the conditions of origin of other 

ultrapotassic rocks. 



PART iii 

THE EFFECT OF FLUORINE ON PHASE RELATIONSHIPS IN THE SYSTEM 

KA1S104 - Mg2SIO4 - S102 AT 28 KBAR AND THE SOLUTION MECHANISM 

OF FLUORINE IN SILICATE MELTS 

3.1 INTRODUCTION 

Fluorine has long been recognised as an important constituent of 

late-stage granitic melt-fluid systems where, along with other anionic 

elements, it exerts control on the distribution of economically important 

metals such as Sn. Experimental studies of the effect of HF on silicate 

melt equilibria have been restricted to silica-rich melts, where a large 

depression of the liquidus temperature and expansion of the quartz 

liquidus phase volume relative to feldspar has been found [Wyllie and 

Tuttle 1961; Manning et al. 19801. 

• 	The role of fluorine in basic-melts has been neglected because of 

the generally low content of fluorine in common basaltic rocks; typically 

less than 500ppm [Aoki et al. 1981; Schilling et al. 19801. However, 

fluorine is abundant in potassium-rich mafic rocks such as laniproites, and 

shows a positive correlation with potassium content [Aoki et al. 19811. 

The probable importance of fluorine in lamproite petrogenesis has been 

emphasised recently by Jaques et al. [1984a], who predicted Increased 

stability for fluormica over hydroxymica. 

The system kalsilite-forsterite-quartz [Ks-Fo-Qz] was chosen for 

experimental studies of the fluorine effect on silicate melts because it 

is the potassic analogue of the base of the basalt tetrahedron of Yoder 

and Tilley [1962], and is thus relevant for ultrapotassic rocks. 

This paper reports experimental results and an Investigation of the 

solution mechanism of fluorine - in silicate melts: the implications for 

ultrapotassic rock genesis are discussed In a companion paper [Part 41. 

Experiments were run at 28kbar to enable direct comparison with the 

studies of Gupta and Green [in prep.] on the system Ks-Fo-Qz in volatile-free 

conditions and with H20 and CO2. The rationale behind this choice is 

compatibility with the earlier studies in the system nepheline-forsterite- 
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quartz (Gupta, Green and Taylor 1986; Windom and Boettcher 19811. The 

pressure of 28kb is taken to represent the approximate pressure at the top 

of the low velocity zone defined by the high pressure stability limit of 

pargasitic amphibole [Green and Liebermann 19761. However, there are 

indications that in the presence of fluorine, the stability limit of 

pargasite will be expanded to higher temperatures and pressures [Holloway 

and Ford 19751. 

3.2 EXPERIMENTAL METHODS 

Experiments were run in solid media piston-cylinder apparatus with 

0.5 inch furnace assemblies with talc/pyrex sleeves. A 10% pressure 

correction was used and pressures are accurate to within 0.5kbar. 

Temperatures were measured with a Pt/Pt9 0Rh10  thermocouple within 0.5mm 

above the sample capsule and are accurate to approximately ±10 0C. No 

correction was made for the effect of pressure on emf of the thermocouple. 

Starting materials were synthetic kalsilite, A1 203 , MgO, S102 and 

MgF2 . Kalsilite was - prepared by sintering a mixture of K2CO3,A1203 

and S102  at 750 0C for 10 hours after slowly increasing the temperature 

from 5000C over two days to minimise loss of K20. MgF2 was prepared by 
heating analytical reagent grade MgO in an excess of 50% HF and 

evaporating to dryness. The MgF 2  was then heated at 450 0C for several 

hours to eliminate all traces of H 2 0. Both kalsilite and MgF2 were checked 

for purity by X ray diffraction. All starting materials were stored in a 

desiccator and dried thoroughly before use. 

Fluorine was added as MgF2  -by direct substitution for MgO, i.e. by 

the exchange vector F20... 1 . Most experiments were conducted with 4% F20...1, 

meaning that 4 atom% of the oxygen in the starting composition was replaced 

by fluorine. This is approximately equal to 4 wt% F for the compositions 

used. 

Minerals from Ks-Fo-Qz-F were analysed with a JEOL JXA 50A electron 

microprobe with integrated wavelength (F and Cl) and energy dispersive 

(all other elements) systems with operating conditions of 15kV and 5 x 108  A. 

F and Cl were calibrated on synthetic MgF 2  and natural scapo].ite standards 

respectively. The Ks-Fo-Qz-H20 analyses were made at routine EDAX operating 

conditions (15kv, 7 x 10-10  A). Volatilisation of alkalis from fluormicas 
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at the higher current was checked by reanalysing at 7 x 10 10  A, and found 

to be minimal. Detection limits were approximately 0.20 wt % for fluorine 

and 0.04 wt % for chlorine. 

3.3 RESULTS 

3.3.1 PHASE RELATIONSHIPS: 

Experimental results are listed in table 12. Phases encountered were 

forsterite, enstatite, phiogopite, kalsilite, sanidine and quartz, 

identified optically and by microprobe. Primary phlogopite was not 

difficult to identify: it occurred as large hexagonal plates (RI 1.54: 

Shell and Ivey 1969), usually with easily distinguishable thin feathery 

quench outgrowths. Quench crystals of phlogopite and enstatite occurred in 

the more Mg-rich compositions, but only phlogopite formed quench crystals 

from compositions outside its own primary phase field.. Enstatite crystals 

occurred as stubby laths usually more elongate than olivines, although 

enstatite vs. olivine was always confirmed with the microprobe. Kalsilite, 

sanidine and quartz are reported only where confirmed by microprobe, since 

all these minerals formed lath-shaped crystals with refractive indices 

slightly greater than the glass. Residual MgF 2 , easily recognised by its 

low RI (1.38), was found only in a preinininary 1250 0C run of short 

duration (composition 1 with 10%F20_ 1 ; not listed in table 12). Itwas 

absent from all other runs, which are much closer to liquidus 

temperatures. 

Figure 23 presents the results for 4%F20_ 1  projected onto the Ks-Fo-Qz 

face from the corresponding fluorine end-members KA1S1F8-Mg 2SIF8-SiF4 . It 

is thus a prismatic projection along the F20_1 exchange vector from a 

plane within the prism because of the addition of fluorine by direct 

substitution. It is not a saturation surface projected from the apex of a 

tetrahedron as in the H 20 and CO2 systems, but the differences in 

projection angles are not large enabling reasonable comparisons to be made. 

Phase boundaries were located by optical estimates of relative abundances of 

phases present and, in more Mg-poor compositions, by probe analyses of glasses. 

Glass analyses could not be used in the Mg-rich compositions (1,2,3,4,7) due 

to modification by quench crystal formation. 

In the dry system Ks-Fo-Qz at 28kbar MgO-rich liquids crystallise 

forsterite and enstatite and their compositions move towards a FO+EN+SAN+L 
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TABLE 12 	Experimental run data for Ks-Fo-Qz at 28kb pressure 

Run No. %F Composition Mix Duration Temp[ °C] Phases 
(mins) 

1372 10 Ks44Fo39Qzl7 la 60 1350 Phl,L 
1373 10 Ks44Fo39Qzl7 la 45 1450 Phl,L 
1378 10 Ks44Fo39Qzl7 la 30 1480 01,Phl,2xL 
1380 10 Ks44Fo39Qzl7 la 30 1510 Phl,2xL 
1375 10 Ks44Fo39Qzl7 la 30 1550 L 
1385 4 Ks44Fo39Qzl7 1 30 1480 01,Phl,L 
1387 4 Ks44Fo39Qzl7 1 40 1500 01,Phl,L 
1390 4 Ks44Fo39Qzl7 1 25 1540 01,L 
1391 4 Ksl5Fo5OQz35 2 25 1540 En,L 
1393 4 Ksl5Fo5OQz35 2 40 1480 En,L 
1395 4 Ksl5Fo5OQz35 2 50 1430 En,Phl,L 
1399 4 Ks33Fo45Qz22 3 45 1450 En,Phl,L 
1400 4 Ks33Fo45Qz22 3 55 1480 En,Phl,01,L 
1401 4 Ks33Fo45Qz22 3 50 1510 En,L. 
1404 4 Ksl7Fo63Qz2O 4 40 1530 En,01,L 
1407 4 Ksl7Fo63Qz2O 4 30 1560 En,01,L 
1408 4 Ksl7Fo63Qz2O 4 20 1590 En,L 
1409 4 Ks50Fol5Qz35 5 45 1400 Phl,L 
1412 4 Ks50Fol5Qz35 5 35 1450 Phl,L 
1413 4 Ks50Fol5Qz35 5 30 1480 L 
1419 4 Ks50Fol5Qz35 5 90 1340 Phl,San,L 
1414 4 Ks78Fol5Qz7 6 40 1480 L 

• 	1417 4 Ks78Fol5Qz7 6 45 1420 	- Phl,Ks-,L 
1418 4 Ks78Fol5Qz7 6 60 1380 Phl,Ks,L 

• 	1421 4 Ks78Fol5Qz7 6 40 1450 Phl,L 
1425 4 Ks42Fo25Qz33 7 40 1440 Phl,En,L 
1427 4 Ks42Fo25Qz33 7 30 1470 Phl,En,L 
1438 4 Ks48Fo8 Qz44 8 180 1300 Phl,L 
1441 4 Ks48Fo8 Qz44 8 144 1340 Phl,L 
1449 4 Ks48Fo8 Qz44 8 800 1240 Phl,San,L 
1450 4 Ks48Fo8 Qz44 8 600 1270 Phl,L 
1455 4 Ks39Fol8Qz43 9 200 1350 Phl,Qz,L 
1457 4 Ks39Fol8Qz43 9 150 1410 Phl,L 
1458 4 Ks39Fol8Qz43 9 60 1450 L 
1459 4 Ks39Fol8Qz43 9 345 1290 Phl,Qz,L 
1469 4 Ks36FolOQz54 10 200 1320 Phl,Qz,L 
1473 4 Ks36FolOQz54 10 150 1380 Phl,Qz,L 
1475 4 Ks36FolOQz54 10 180 1410 L 
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Figure 23: Liquidus phase fields at 28kb and 4% F20_1. Numbers mark 

starting compositions as listed in table 13. 	= pure mineral composition. 
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peritectic, and from there to a PHL+SAN+KS+L eutectic in the case of 

silica-undersaturated compositions [figure 241. Both these four-phase 

points lie in the silica-undersaturated region delimited by the 

FO-SAN join. Luth [19671 studied the water-saturated Ks-Fo-Qz system at 

pressures up to 3kbar. In comparison with the water-saturated system at 

- 28kbar, crystallisation paths are similar except for the presence of leucite 

at low pressures. Compositions defined by EN-SAN-PHL crystallise through 

the QZ+PHL+EN+L peritectic at all pressures from 1 to 28kbar. The phiogopite 

phase volume expands greatly with increasing pressure, so that the EN+F0+ 

PHL+L peritectic lies at much more Mg-rich compositions at mantle pressures 

than was estimated by Sekine and Wyllie [1982]. 

The phase diagram for 4%F 20-1  at 28kbar broadly resembles the water-

saturated, fluorine-free system [figure 24] in having a large primary 

phase volume for phlogopite, plus primary phase volumes for the 

same six minerals [En, Fo, Phi, Ks, San and Qzl. However, the fluorine-

bearing system differs in that the fluorphiogopite has a much greater 

thermal stablility (max. 1490-1500 0c) than hydroxyphlogopite [<1200 0C: 

Gupta-and Green in prep.]. This may be attributed to the lackof K-H 

repulsion in fluorphlogopite. This repulsion exists in hydroxyphlogopite due 

to orientation of the 0-H bond directly away from neighbouring octahedral 

cations and towards the interlayer potassium cations [McCauley et al. 19731. 

The EN+PHL phase boundary is not a peritectic reaction despite its extension 

apparently lying outside the join EN-PHL. This is an artifact of the 

projection due to Phl 55  and liquid compositions lying outside the plane of 

projection. As in the H 2 0-saturated system, the intersection of the 

F0+PHL'phase boundary with the extension of the F0-PHL join forms a 

thermal maximum. Liquids with compositions to the silica-rich side of this 

divide will fractionate either through the EN+F0+PHL+L peritectic point or 

across the phlogopite phase field to either the PHL+SAN+QZ or 

PHL+SAN+KS eutectics. Compositions to the silica-poor side of the PHL-F0 

join and its extension will fractionate through the KS+F0+PHL+L peritectic 

point or across the phiogopite phase field towards the KS+SAN+PHL 

eutectic. 

in the fluorine-bearing system the primary phase field of ens tatite 

relative to forsterite is enlarged compared to the volatile-free system, 

so that the EN+F0 phase boundary is in a similar position to that in the 

CO2-saturated system (figure 24). The position of this phase boundary 
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Figure 24: Comparison of data for Ks-Fo-Qz at 28kb with various volatiles. 

elf marks enstatite-forsterite boundary in dry and CO2-present systems 

where there is no phiogopite field. Phase fields for H 20, CO2 and 

volatile-free systems are from Gupta and Green [in prep.] 
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is frequently taken to indicate the degree of polymerisation of the melt 

[Eggler 1974; Kushlro 19751. Expansion of the enstatite phase volume at 

the expense of forsterite with the addition of fluorine thus suggests that 

fluorine causes polymerisation of the melt. 

The peritectic point PHL+EN+FO+L is a simple system analogue for a 

phlogopite harzburgite. The position of this point indicates that partial 

melting of a phlogopite harzburgite in H20-free conditions but in the 

presence of fluorine would produce a silica-undersaturated magma lying to 

the silica-poor side of the forsterite-sanidine join at 1480 0C. In 
contrast, in the water saturated system, the first melt would be in the 

more silica saturated' part of the system delineated by the joins between 

forsterite, enstatite and sanidine at 1160 0C. 

Several experiments were run with composition 1 with 10%F 20_ 1 . Near-

liquidus runs contained a very minor immiscible liquid phase rich in Mg and 

F. The immiscibility may extend above the liquidus, but this could.not be 

ascertained because of the abundance of quench crystals in the above 

liquidus run. With 10%F20_, composition 1 lies just inside the primary 

phase volume of phiogopite, Indicating expansion of the phlogopite phase 

volume with increasing fluorine. However, because of the apparent 

immiscibility which occurs at high fluorine contents, it is unlikely that 

phiogopite will melt congruently at any fluorine content. 

3.3.2. MINERAL COMPOSITIONS: 

Enstatites have alumina contents varying between 0.5 and 1.9 wt % 

(table 13) - but with no strong correlation with temperature or accompanying 

phases. These alumina contents are - mostly greater than those of enstatites 

in water-saturated runs at 28kbar [Gupta and Green in prep.] 

Phiogopites show a large range in composition between the different 

mixes used (table 14). Phlogopites in the more magnesian mixes are closer 

to the ideal K2Mg6Al 2 S16020F4 than those in less magnesian mixes. 

Phiogopites in silica-rich compositions (10,9,8,5) have excess silica 

(>6 cations), less Mg and Al, and have a lower average octahedral 

occupancy. Micas from composition 6 are distinct in having high Al and no 

excess Si. Excess silicon correlates positively with fluorine in approxi-

mately 1:1 proportions. This and other correlations are illustrated In 

figures 25 and 26. Individual substitution mechanisms are difficult to isolate 



TABLE 13: Representative compositions of enstatites from experimental 
products at 28kb and 4%-F20-1-  [analyses normalised to 100%] 

Mix No. 2 2 2 3 3 3 4 
Temp[ °C] 1430 1480 1540 1450 1480 1510 1530 
Coexisting Phi Phi Phl,0l ol 

phases 
S102 59.56 59.64 59.52 58.92 59.27 58.74 59.11 
A1203 0.54 0.70 0.77 1.69 0.99 1.86 1.41 
MgO 39.90 39.66 39.71 39.40 39.73 39.39 39.48 

Si 1.990 1.992 1.989 1.969 1.981 1.964 1.975 
Al 0.021 0.028 0.030 0.066 0.039 0.073 0.056 
Mg 1.987 1.974 1.977 1.962 1.979 1.963 1.966 
Sum 3.999 3.994 3.996 3.998 4.000 4.000 3.997 

Representative compositions of micas in experimental 
products: Mixes 1-10 have 4% F20_ 1 , mix 11 has 
10% F2Q 1  

1 1 3 3 5 5 5 
1480 1500 1480 1450 1340 1400 1450 
ol ol ol,en en san 

43.12 42.87 43.83 44.12 46.37 44.19 45.17 
13.03 13.32 12.72 12.26 11.43 12.05 11.85 
27.59 27.39 26.93 27.44 24.03 26.93 26.42 
10.84 10.68 10.75 10.79 11.33 10.75 11.07 
5.41 5.73 5.76 5.39 6.84 6.09 5.20 

6.030 6.011 6.137 6.156 6.539 6.206 6.318 
2.148 2.200 2.099 2.015 1.900 1.994 1.941 
5.750 5.724 5.618 5.707 5.053 5.636 5.473 
1.934 1.910 1.920 1.919 2.038 1.925 1.961 

15.863 15.844 15.773 15.797 15.529 15.760 15.693 
2.348 2.464 2.606 2.364 3.211 2.611 2.226 

6 6. 7.... 7 7 8 8 
1380 1420 1440 1470 1490 1240 1270 
ks ks en en en san 

41.73 41.39 44.53 44.04 43.40 46.52 45.89 
14.76 15.75 11.82 12.75 12.41 11.55 10.96 
26.41 26.03 26.64 26.77 27.26 24.05 25.39 
11.31 10.90 10.91 10.90 10.89 11.01 10.98 
5.78 5.93 6.10 5.54 6.04 6.88 6.78 

5.880 5.823 6.256 6.153 6.109 6.547 6.472 
2.451 2.613 1.956 2.098 2.058 1.915 1.821 
5.546 5.458 5.577 5.575 5.718 5.045 5.338 
2.034 1.957 1.956 1.944 1.955 1.976 1.975 
15.911 15.849 15.745 15.770 15.840 15.483 15.605 
2.620 2.671 2.721 2.504 2.649 3.123 3.037 

TABLE 14 

Mix No. 
Temp [ °C] 
Coexisting 

phases 
S102 
A1203 
MgO 
[(20 
F 

Si 
Al 
Mg 
K 
Sum 
F 

Mix No. 
Temp[ °C1 
Coexisting 

phases 
S102 
A1203 
MgO 
[(20 
F 

Si 
Al 
Mg 
K 
Sum 
F 



[Table 14 continued] 

Mix No. 8 8 9 9 9 10 
Temp[ °C] 1300 1340 1290 1350 1410 1380 
Coexisting qz qz qz 

phases 
S102 47.33 45.36 48.89 46.95 45.99 47.83 
A1203 11.77 11.54 10.33 10.29 10.45 9.79 
.MgO 23.36 25.57. 23.64 25.21 26.42 25.15 
[(20 11.08 10.97 11.03 10.94 10.94 10.62 
F 6.45 6.56 6.10 6.60 6.20 6.62 

Si 6.617 6.387 6.794 6.594 6.452 6.693 
Al 1.939 1.916 1.693 1.703 1.728 1.615 
Mg 4.869 5.367 4.896 5.278 5.526 5.245 
K 1.976 1.970 1.955 1.960 1.958 1.896 
Sum 15.401 15.640 15.338 15.535 15.663 15.448 
F 2.871 3.046 2.713 2.923 2.842 2.845 

Mix No la la la 
Temp[ °C] 1510 1480 1450 
Coexisting ol ol 
phases 
S102 42.26 43.25 42.46 
A1203 11.45 11.33 11.17 
MgO 26.96 26.32 26.84 
[(20 12.05 11.61 12.37 

7.09 7.49 7.16 

Si 6.104 6.212 6.122 
Al 1.939 1.918 1.899 
Mg 5.778 5.636 5.769 
K 2.210 2.128 2.275 
Sum 16.031 15.962 16.065 
F 3.239 3.429 3.275 
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Figure 25: Compositional variation in phiogopites from 4% F20_1 runs. Ions 

are calculated on 44 cation valencies per formula unit. Cross hairs 

denote analytical uncertainty. 
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Figure 26: 	Plot of total Al vs. octahedral site occupancy for phiogopites 

for fluorine-present experimental runs: Field N = magnesian 

compositions [1,3,71; • = silicic compositions [10,9,8,5]; • = comp.6; 
Other fields marked are U = natural lamproitic micas; H = micas 

from H20-saturated system [ Gupta and Green ma]; G = granitic micas 

[Green 1981]. Fields A, B and C are synthetic intermediate micas of 

Green [1981]. Phl= phlogopite, Eas= eastonite, Phen= phengite, Mus 

muscovite. 
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because of scatter in the data and also compositional dependence of 

substitutions, which is indicated by deviation of data from linearity in 

figure 25 (especially for the Al-rich micas of composition 6). The coupling 

of Si with F requires substitution for 0* as well as Mg and Al to charge 

balance (where 0*  is oxygen on the OH site). Dependence of the F/O*  of mica 

on theF/O of bulk composition is to - be expected, and is indicated by higher 

F contents of micas in the experiments with 10%F 20 1  on composition 1. 

These contain F/(F+O*)  ratios of 0.81-0.86 (bulk composition ratio = 0.182) 

relative to 0.59-0.61 with 4%F 20_ 1  (bulk composition = 0.077). The micas 

in the 10% F 2 0_ 1  runs havean excess of K over the ideal 2 cations per 

formula unit. This excess is significantly greater than analytical 

uncertainty. Excess alkalis have been described previously in Si-rich 

micas from a melilitic rock by Hazen et al [1981], who assigned Na to 

octahedral sites. However, octahedral K is difficult to envisage in view 

of its larger ionic radius (1.331 vs. 0.97 for Na): this problem cannot 

be resolved with the data available here. 

The chemistry of the experimental micas in the fluorine-bearing 

- system -  indicate substitution -with a mica end-member Intermediate -between --

trioctahedral and dioctahedral micas. Where this end-member is present, 

octahedral site occupancies are lower than in pure trioctahedral micas 

(figure 26), which can be attributed to a higher average octahedral cation 

charge (increase in Al and decrease in Mg). In the tetrahedral sites, Si 

Is present in excess of the six cations per formula unit of the pure 

phlogopite end-member (figure 25). The existence of such an Intermediate 

end-member is suggested by the lack of any known micas with between 4.3 and 5 

octahedral cations, which would be expected in the case of solid solution 

between trioctahedral and dioctahedral micas [Seifert and Schreyer 1971; 

Green 19811.. The experimental micas are compared to other known 

intermediate micas in figure 26. Amongst the natural micas, only those from 

ultrapotassic rocks show an excess of Si, a depletion In Al and a decrease 

in octahedral site occupancy similar to the fluormicas in the experiments. 

These include micas from silica-poor melilitic rocks [Velde 1979] which 

may be related to the larnproites [Gallo et al. 1984; Best et al. 1968]. 

Analyses of micas from the water-saturated Ks-Fo-Qz system (Gupta and 

Green in prep.] show less compositional variation than those in the F system. 

Some have excess Si but show no variation in Al (2.3-2.5 cations). Cation 

variation diagrams (figures 26 and 27) show that the substitutions here are 
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much simpler, and that excess Si is achieved by 

2 Mg'11  + Alt'1 = Si 	+ Al' + 11V1 

Mica substitution schemes can thus be expected to change with F/OH ratios 

with more variability occurring in F-rich than OH-rich micas. 

3.4 THE DISSOLUTION MECHANISM OF FLUORINE IN SILICATE MELTS 

As noted earlier, the movement of the FO + EN phase boundary towards 

more silica-undersaturated compositions with the addition of fluorine 

indicates polymerisation of the melt. The position of this phase boundary 

is similar to that in the CO 2  saturated system (figure 24) in which the 

melt is polymerised by complexing of carbonate ions with one or more 

cations [Brey and Green 1975; Eggler and Rosenhauer 1978; Taylor 19851. 

The mechanism of melt polymerisation in the presence of fluorine was 

investigated by infrared spectroscopy. Composition 1 was chosen for 

infrared study because of its proximity to the PHL + EN + OL + L 

peritectic point. Glasses were prepared at 1 atm for infrared studies: 

high pressure experimental products could not be used due to the abundance 

of quench crystals in the above liquidus runs. Even a small amount of 

crystalline material results in sharp, intense peaks in the infrared 

spectra, which mask the broader absorptions of the glasses. The structure 

of glasses and liquids of the same compositipn are known to be similar 

[Seifert et al. 1981; Taylor et al. 1980; Mysen et al. 1982]. 

3.4.1 SPECTROSCOPIC METHODS: 

Spectra were obtained using a DIGILAB FTS-20E Fourier Transform 

interferometric spectrometer In thétegions 4000-400 cm' (mid-infrared) 

and 500-100 cm 	(far-infrared). The use of these regions permits study of 

absorption bands characteristic of vibrations in the aluminosilicate 

network (mid-IR) and those of network modifying cations, especially uni-

and divalent (far-IR). Crystal-free glasses of composition 1 were 

prepared with 0.9 wt%, 0.3 wt% and no fluorine at 1 atm. For mid-IR, 1.5 

to 2 mg of glass were thoroughly dispersed in approximately 200mg [(Br and 

then pressed into a disc. Samples for far-IR (2-3mg) were prepared by 

mixing with nujol and mounting the mixture between two high density 

polyethylene plates. 

Absorption bands in the glasses caused by vibrations involving 
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fluorine atoms were characterised by comparing them with crystalline 

fluoride samples. This approach is justified by the existence of 

short-range order in silicate glasses [reviewed by Bottinga et al. 19811: 

the structural sites remain comparable with crystalline material, but have 

a greater variability in bond angles as shown by NMR studies [Dupree and 

Pettifer 19841 resulting in broad absorption envelopes. The fluorides 

used were A1F3 , MgF 2 , [<F and K2 SIF6. A1F3 1  MgF2 and [<F were obtained as 

fluorides and heated to 450 0C to eliminate H 20, but since [<F is strongly 

hygroscopic (prepared from KF.2H 2 0) not all the H20 could be removed. 

Synthetic cubic hieratite (K 2 S1F6;Palache et al. 1951) was used to 

characterise Si-F bond absorptions in octahedral co-ordination. There are 

no known minerals with tetrahedral Si-F bonds [Allmann 1971]. Hieratite was 

prepared by the reaction 

K2CO3 + Sb2 + 6 HF = [C 2S1F6 + 3 H20 + CO2 

Reactants were mixed thoroughly and placed in a teflon beaker with H20 

added to make the reaction with HF less violent. After reaction the 

mixture was dried to a gel on a hotplate and then at room temperature to 

avoid loss of S1F4  from K2 SiF6 which occurs at above 427 0C. All 
crystalline fluorides were checked by X-ray diffraction and stored in an 

oven at 110 0C until used. 

3.4.2 SPECTROSCOPIC RESULTS 

3.4.2.1 	BASIC MELTS: 

The high frequency region of the mid infrared spectrum 

(1300-800 cm-1 ) contains a broad envelope of absorption bands which are 

assigned to symmetric and asymmetric stretching vibrations of bridging 

(BO) and non-bridging (NBO) Si-0 bonds. In simple binary metal oxide - 

silica glasses with high NBO/Si the bridging and non-bridging Si-0 

vibrations can be resolved into two distinct envelopes [Ferraro and 

Manghnani 19721, but this is not possible in more complex glasses. Lower 

frequency mid-IR absorptions are due to a mixture of Al-0 stretching 

vibrations and rocking (0 motion perpendicular to the Si-O-Si plane) and 

bending (0 motion in the Si-O--Si plane) motions of bridging oxygen bonds 

[Laughlin and Joannopoulos 19771. 

The spectra for the three compositions studied here are given in 

figure 28. These show little difference between 0 and 0.3 wt% F, but more 

difference with greater amounts of fluorine. The broad high frequency 
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envelope shows a shift to higher wavenumbers due to a larger component at 

approximately 1100 cm. This is clearly seen in figure 29, which shows 

difference spectra generated by computer subtraction of the digital 

spectra: these highlight the structural changes resulting from 

substitution of fluorine for oxygen. Difference spectra for (0.9 - 0 wt%F) 

and (0.3 - 0 wt%F) are compared on the same vertical, scale in figure 29. 

The change in the high frequency region is seen to be due to addition of 

at least two absorption bands at approximately 1100 and 1200 cm'', and 

removal of absorption near 950 cm'. Studies of simpler silicate and 

aluminosilicate glasses have demonstrated that a shift to higher 

frequencies may be due to an increase in the degree of polymerisation of 

the silicate anions or an Increase in the Si/(Si+Al) ratio of the silicate 

network [Tarte 1967; Furukawa et al. 1981; White 1975; Seifert et al. 

19821. The new bands in the region 1100-1200 cm' cannot be assigned to 

specific anionic units as vibrations in more polymerised structures will 

be coupled through bridging bonds [Furukawa et al. 19811. The calculated 

IR spectra of Furukawa et al. [19811 for sodium silicate melts predict the 

'occurrence of absorption bands in the 750-800 cm-1  region for (S1 206) 4" 

chains and more polymerised units, but not for less polymerised units. The 

appearance of an absorption band at 780 cm" together with the shift 

to higher wavenumbers in the high frequency envelope for the fluorine-

bearing glasses (figures 28 and 29) suggests that fluorine is causing 

polymerisation of the silicate network. 

The far-IR region contains absorptions due to "cage-like" vibrations 

of cations of larger size and co-ordination number than the mid-IR region 

[Rao and Elliott 1981]. The precise frequencies are dependent on cation 

mass, co-ordination number, bond lérigth and the nature of the network 

attachment and the effective charge of the co-ordinating anion. In 

general, an increase in size or co-ordination number of the cation leads 

to absorption at lower wavenumbers [Tarte 1965, 1967; Rao and Elliott 

1981; Kovach et al. 19751. The far-IR region thus contains Information on 

the bonding characteristics of the network modifying cations (particularly 

K and Mg) in the Ks-Fo-Qz glasses. 

The far-IR difference spectra in figure 30 correspond to the samples 

for which the mid IR difference spectra are given in figure 29. The effect 

of fluorine on the far-IR spectra is pronounced; bonding interactions with 

all network modifying cations are seen, and these are evident even at low 
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Figure 28: Mid infrared spectra of composition 1 glasses (1 atm) with no 

fluorine (A), 0.3 wt% F (B) and 0.9 wt% F (C). 
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fluorine contents where there is no corresponding effect in the mid-IR 

region. The far-IR absorption bands are assigned with reference to the 

simple fluoride mineral samples which have similar co-ordination 

environments to species in the melts. 

The far-IR and mid-IR spectra can be explained by the following 

mechanism of fluorine dissolution. At low fluorine contents, fluorine 

initially forms bonds with network modifying cations without appreciably 

altering the aluminosilicate network. At higher fluorine contents, 

tetrahedral KA1IV02  groups are complexed by fluorine and removed from the 

alurninosilicate network simultaneously polymerising and increasing 

the Si/(Si+Al) ratio of the network, resulting in the shift of the high 

frequency mid-IR absorption envelope to higher wavenumbers. This 

polymerising action of fluorine is in accord with calculations made by 

Tsunawaki et al. [1981] from Raman spectra of fluorine-bearing calcium 

silicate glasses. These authors observed polymerisation in glasses where 

fluorine was added by direct substitution, but not where CaF 2  was added to 

compositions with constant CaO/Si0 2 . The fluorine in these melts lowers 

aCaO by forming Ca2+ - F complexes and raises aS102  in the network. 

In natural silicate melts the solution mechanism will differ in 

detail due to the presence of water, the dominant fluorine species then 

being HF (Munoz and Eugster 1969]. In this case fluorine will behave 

in a similar manner, bonding with network modifiers, but the dissolution 

of HF will result in the release of water which will have a depolymerising 

effect. Examples of possible reactions showing the complexing of fluorine 

with network modifiers are: 

(Mg2sio4) + 2 HF = (MgS103) + (MgF2) + H20 	(5) 

(KAl 1T02 ) + 4 HF = (AlF3) + (KF) + 2 H 20 	(6) 

The effect on the silicate network is clearly seen by 

2 (KAlSi2o6) + 4 HF = (KA]. 1"Si3O8.SiO2) + (KF) + (AlTIF3) + 2 H20 (7) 

Water is known to dissolve in silicate melts both as hydroxyl groups 

and, particularly at higher total water contents, as molecular H20 

[Stolper 19821. The formation of hydroxyl ions depolymerises the melt 

due to breakage of bridging bonds to form two non-bridging bonds. 

It is not certain whether this process is concentrated on Si-O-Si bonds 

[Burnham 1975, 1979a] or on Al-O-Si bonds [de Jong and Brown 1980; Taylor 

19851, but this uncertainty does not have any bearing on the broad 

depolymerising effect discussed here. Evidence for depolymerisation is seen 



111 

in the expansion of the liquidus phase volumes of less polymerised minerals 

such as olivine relative to enstatite [Kushiro 1972; Mysen 19771. The 

polymerising action of fluorine will thus be masked by the depolymerising 

action of the H'20 released by HF dissolution. In the presence of mixed 

H20-HF fluids, the forsterite-enstatite phase boundary in the system 

Ks-Fo-Qz can, be expected to show overall depolyrnerisation. 

3.4.2.2 	SILICIC MELTS: 

The solution mechanism for HF outlined above for basic melts 

contradicts the popular assumption that HF dissolves in granitic melts by 

Si-F bond formation. Consideration of the applicability of the HF solution 

mechanism for silicic melts is therefore necessary. 

Many workers studying silicic melts have assumed that HF dissolves 

by a process analagous to H 20 in that Si-O-Si bridging bonds are broken 

resulting in tetrahedral Si-F bonds and a depolymerised melt [eg. Burnham 

1979b; Bailey 1977; Collins et al. 19821. This is based on the similarity 

of ionic radii of 0 (1.32 R) and F (1.33 ) [Buerger 19481 and the 
assignment of mid infrared absorption bands in alkali- and alkaline earth-

silicate glasses to Si-F bonds [Kumar et al. 1961, 19651. 

However, it has been shown above that the dissolution of HF, at 

least in basic melts, is a two-stage process in which the depolymerisation 

is due to H20 released by HF dissolution, so that the assumption of Si-F 

bond formation as a major process is not justified. Manning [1981] also 

proposed a two-stage dissolution process for HF but with Si-F bonds as the 

intermediate stage occurring prior to hydrolysis: the infrared spectra of 

H20-free, fluorine-bearing glasses lead us to prefer the process 

rperesented by equations 5-7. A process similar to that in basic melts 

causing an increase in Si/(Si+Al) of the network is supported by the 

observed expansion of the quartz phase volume with respect to feldspars 

on addition of fluorine [Wyllie and Tuttle 1961; Kovalenko 1977; Manning 

et al. 19801. 

A number of arguments have been put forward, particularly in the 

Russian literature, that despite an Increase in the proportion of Si-F 

bonds in silicic relative to basic melts, the proportion of Si-F bonds 

will still be very minor [Kogarko and Krigman 1973; Kogarko et al. 1968; 

Kogarko and RyabchIkov 1978; Mitchell 19671. Arguments include the absence 
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of minerals with tetrahedral Si-F bonds, immiscibility between silica-rich 

and alkali-fluoride-rich melts [Kogarko 19671, the predominance of alkali 

fluoride in vapours in equilibrium with silicic melts, and thermodynamic 

calculations. In addition, acid-base theory predicts that reactions will 

proceed in favour of the formation of bonds of maximum and minimum 

polarity [Ramberg 1952; Kogarko 19741. Thus, reactions of the type 

4 MF + S1 2  = SiF4 + 2 M20 	 (8) 

where N = any cation, will favour the left side due to the higher 

electronegativity of F relative to 0 and Si relative to all other common 

cations in silicate melts. 

Attempts in this study to form tetrahedral Si-F bonds in glasses 

for infrared study failed, producing instead crystalline fluorosilicates 

containing octahedral [SiF6] units. Crystallisation of. fluorosilicates is 

common in pressurised experiments on fluorine-bearing compositions [Wyllie 

and Tuttle 1961; Glyuk and Anfilogov 1973; Manning et al. 1980]. The 

assignment of absorption bands to tetrahedral Si-F bonds by Kumar et al. 

[1961, 19651 is considered to be erroneous, as bands due to more 

polymerised silicate units will occur in the regions described by Kumar et 

al. [Ito et al. 1967; Mitchell 1967; Furukawa et al. 19811. Reference to 

the fluorosilicate mineral spectra shows that any Si-F bonds in this region 

would be octahedral, probably due to octahedral [SiFnO6...nJ  units and not 

tetrahedral [SiFnO4...n]  units. 

Mysen and Virgo [19851 reported Raman spectra for glasses on the 

joins S102-A1F3 and S102-NaF, and they suggested that tetrahedral Si-F 

bonds are important, particularly on the S10 2-A1F3  join. However, these 

results are inappropriate for extrapolation to complex natural silicate 

melts as they used fully polymerised S10 2  melts as a starting point for 

fluorine addition. The compositions studied here in the system Ks-Fo-Qz 

contain an array of structural species which form a better analogy for 

natural silicate melts. Also, the addition of fluorine as fluorides is 

less suitable for studying the structural effect of fluorine than is 

direct substitution of fluorine for oxygen, because the effect due to 

fluorine cannot be isolated from the effect due to the accompanying 

cation. Tsunawaki et al. [19811 have demonstrated that addition of fluorine 

as fluoride does not cause polymerisation, whereas addition of the same 

amount of fluorine by direct substitution does. 
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The larger viscosity decrease in silicic melts on fluorine addition 

[Kozakevitch 1954; Kumar et al. 1961] has been used as evidence for melt 

depolymerisation and Si-F bond formation. Dingwell et al. [1985) and 

Dingwell and Mysen [1985] confirmed the large viscosity decrease due to 

fluorine in melts in the system S10 2-Na 20-A1 203 where fluorine was added 

by direct substitution for oxygen. It is important to note that 

polymerisation as used in this paper refers to the aluminosilicate 

network, whereas viscosity reflects the overall stucture of the melt. The 

polymerisation state of the aluminosilicate network, which can be 

represented by the EN+FO phase boundary, is more useful for considering 

the composition of partial melts produced in the mantle because the phase 

volumes of the silicate minerals reflect their relative stabilities as 

residual phases. The viscosity decrease in fluorine-bearing silicate melts 

relative to fluorine-free melts can be attributed to the formation of 

fluoride complexes incorporating cations which form part of the 

aluminosilicate network in fluorine-free melts (equations 5-7). We found 

no evidence in the present study to support the proposal of Dingwell et 

al. [1985] that the decrease in viscosity is due to tetrahedral Si-F bond 

formation. 

3.5 SUMMARY 

Phase relationships in the system kalsilite-forsterite-quartz 

with fluorine added' 'by direct substitution for oxygen were examined at 28 

kbar. A large liquidus field for fluorphlogopite exists with approx. 4 wt% F 

added to the system and the thermal stability of phiogopite is increased 

by 300 0C relative to the water saturated system. Fluorine expands the 
phase volume of enstatite relative to forsterite so that the peritectic 

point PHL+EN+FO+L, a model for melting of a phiogopite harzburgite, lies in 

the silica-undersaturated field. Experimental phiogopites have excess Si 

which correlates with F content and are Al-deficient. The high Si contents 

indicate solid solution with an end member intermediate between tn- and 

di-octahedral micas. 

Glasses with compositions analogous to partial melts from 

phiogopite harzburgite were examined by infrared spectroscopy in the mid-

and far-IR regions. Results show that fluorine polymerises the melt by 

bonding with all the network modifying cations K, Mg and Al. At higher F 

contents, but still less than 1 wt%, tetrahedral KA102  groups are 
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complexed by fluorine and removed from the aluminosilicate network 

- simultaneously polymerising and increasing the Si/(Si+Al) ratio of the 

network. However, when HF rather than F is present, the overall effect 

will be to depolymerise melts due to the effect of OH released by 

dissolution of HF. The presence of abundant Si-F bonds is considered 

unlikely even in silica-rich magmas: the viscosity decrease characteristic 

of fluorine-bearing melts can be attributed to the formation of fluoride 

complexes. 
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PART IV 

- 	THE ROLE OF FLUORINE AND OXYGEN FUGACITY IN THE GENESIS OF 

THE ULTRAPOTASSIC ROCKS 

4.1 INTRODUCTION 

The ultrapotassic rocks are a compositionally heterogeneous group of 

rocks in which volatile species (H20,CO2,F,Cl, s0 2 ) are more abundant than 

in less alkaline rocks. Experimental studies on natural ultrapotassic 

rock compositions [eg. Edgar et al. 1976; Barton and Hamilton 1979, 1982; 

Ryabchikov and Green 1978; Arima and Edgar 1983a,b] and simple systems 

[eg. Wendlandt and Eggler 1980a,b; Gupta and Green in prep.] at high pressures 

have been limited to consideration of the effect of H 2 0 and CO2  on phase 

relationships as a guide to petrogenesis. These studies have emphasised 

the stability of mica under H20-rich conditions, and the different roles 

.of H20 and CO2 in stabilising more depolymerised and polymerised anhydrous 

silicate minerals respectively. 

In this paper we extend the discussion of volatiles to include 

fluorine and methane. The effect of fluorine will be greater in ultrapotassic 

rocks than in other mafic rocks because fluorine correlates positively with 

K content [Aoki et al. 19811. Jaques et al. [1984a] suggested that 

H20+HF-rich volatile mixtures are important in generating lamproite magmas 

and that F would increase the stability of mica. Our studies of the 

fluorine solution mechanism and phase relationships in the system 

kalsilite - forsterite - quartz [Ks-Fo-Qz; Part 31 provide more 

evidence for the role of fluorine in ultrapotassic rock genesis. 

Methane has not been considered important in the past mainly due to 

models for the oxidation state of the upper mantle during magma genesis 

which presuppose stability of carbonates forming oxygen buffer reactions 

with f02  close to that of the FMQ and MW buffers [Eggler 1978; Wyllie 

1978, 19791. However, measurements of intrinsic oxygen fugacity and oxygen 

barometry on megacrysts and xenoliths believed to be derived from the mantle 

[eg. Arculus et al. 1984; Haggerty and Tompkins 19831 indicate that the 

oxidation state of the mantle is likely to be heterogeneous, including 

regions with f02  as low as that of the 1W buffer. The relative importance 
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of reduced and oxidised environments in the mantle within the range noted 

above is currently the subject of much debate [see discussions by 

Ryabchikov et al. 1981, Eggler and Baker 1982, Arculus 1985, Taylor 1985, 

Woermann and Rosenhauer 1985]: we therefore consider variations in oxygen 

fugacity on ultrapotassic rock genesis, and develop a model for the 

production - of lamproites in a F-rich, reduced environment. 

4.2 FLUORINE IN ULTRAPOTASSIC MAGMAS 

Fluorine is most abundant in Group I rocks, ranging up to 0.8 wt%. 

Examples of fluorine contents in lamproitic rocks are 0.20 to 0.54 wt% 

for West Kimberley, Australia [Jaques et al. 1984a], 0.59-0.76 wt% for the 

Leucite Hills, USA [Kuehner et al. 1981; Aoki et al. 19811 and 0.33 wt% for 

Gaussberg, Antarctica [Sheraton and Cundari 1980]. Group II rocks range up 

to 0.28 wt% in the katungites and melilitic rocks of the Toro Ankole 

field [Holmes 1937; Holmes and Harwood 1932; Edgar and Arima 19811 with 

generally lower values in the less potassic rock types to the south. Group 

III rocks contain the lowest amounts of fluorine amongst the ultrapotassic 

rocks, generally less than 02 wt% [Fornaseri et al. 1963; Iddings and 

Morley 1915] although data are sparse for this group. The understanding of 

the behaviour of fluorine in magmatic systems is therefore particularly 

important for elucidating the petrogenesis of the lamproites. 

Fluorine contents in phiogopite phenocrysts/xenocrystS in lamproitic 

rocks are frequently high [see table 151. Natural mica compositions from 

ultrapotassic rocks have been reviewed by Arima and Edgar [1981] and 

Bachinski and Simpson [1984], but their data lacked fluorine contents. 

Foley et al. [Part 31 showed that synthetic micas in the system Ks-Fo-Qz with 

fluorine have more complex compositional variations than micas in the same 

system under water-saturated, fluorine-free conditions, so that natural mica 

compothitions can be expected to vary with F/OH ratios. 

Micas crystallising from melts containing relatively small amounts of 

fluorine, such as ultrapotassic melts, can be expected to have high F/OH 

ratios since micas are very efficient at removing fluorine from a melt 

[Munoz and Eugster 1969]. Ion variation plots of natural micas (figure 31) 

show several broad trends amongst ultrapotassic rocks as a group, but 

these are not necessarily reproduced in rocks from a single area, 

especially where fluorine content is low. Si and F do show a positive 
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TABLE 15 : Fluorine contents of micas from natural lainproites and related 
rocks. 

F wt% F ions Locality & description Sample Ref. 

2.46 1.069 Leucite Hills, wyomingite B 1 * 
2.38 1.029 Leucite Hills, orendite SK36 2 
2.51 1.084 Leucite Hills, orendite SK36 2 
4.11 1.784 Leucite Hills, orendite SK36 2 
2.95 1.279 Leucite Hills, orendite SK36 2 
4.52 1.996 Leucite Hills, wyomingite SK9 2 
4.86 2.214 Leucite Hills, madupite SK23 2 
0.84 0.362 Holsteinsborg, lamproite 5944 3 
0.74 0.319 Holsteinsborg, lamproite 5944 3 
0.24 0.104 Holsteinsborg, lainproite 5944 3 
0.87 0.391 Holsteinsborg, lamproite 	(core) 5622 3,4 
0.88 0.384 Holsteinsborg, lamproite 	(core) 5622 3,4 
nd -- Holsteinsborg, lamproite 	(rim) 5622 3,4 
2.69 1.187 SE Spain, jumillite SF059 5 
1.35 0.598 SE Spain, jumillite SP059 5 
2.07 0.917 SE Spain, jumillite SF059 5 
1.25 0.537 SE Spain, fortunite SF081 5 
0.97 0.419 SE Spain, fortunite SP081 5 
1.52 0.666 SE Spain, fortunite SF081 5 
2.40 1.058 SE Spain, larnproite 2 6 * 
1.4 0.621 Gaussberg, olivine leucitite 4755 7 * 
1.42 0.638 Gaussberg, olivine leucitite (gd) 2780 - 
1.93 0.871 Gaussberg, olivine leucitite (gd) 4882 - 
1.95 0.883 Gaussberg, olivine leucitite (gd) 2780 - 
4.01 1.843 Priestley-Peak, alkali melasyenite 3949C 8 
3.91 1.786 Priestley Peak, alkali melasyenite 3949C 8 
4.07 1.860 Priestley Peak, alkali melasyenite 3949C 8 
5.55 2.589 Prairie Creek,Ark, olivine lamproite PK1/19 9 * 
5.32 2.449 Prairie Creek,Ark, olivine lamproite PK1/19 9 * 
5.74 2.673 Prairie Creek,Ark, olviine lamproite PK1/19 9 * 
5.06 2.343 Utah, melilite peridotite Y127 10 * 
3.76 1.681 Sierra Nevada, high-K basanite MP410 11 * 
2.91 1.314 Sierra Nevada, high-K basanite MP410 11 * 
3.56 1.579 Sierra Nevada, high-K basanite B5 11 * 
3.69 1.701 Sierra Nevada, high-K basanite M74B 11 * 
2.88 1.284 Sierra Nevada, high-K basanite M74B 11 * 

New analyses unless denoted (*). (gd)=groundmass. 
New analyses by JEOL JXA 50A microprobe (wavelength dispersive system) 
with topaz and synthetic MgF2  standards. 

References: [1] Carmichael 1967; [2] Kuehner et al. 1981; [3) Scott 1977; 
[4] Scott 1981; [5] Venturelli et al. 1984; [6] Fuster et al. 1967; [7] 
Sheraton and Cundari 1980; [8] Sheraton and England 1980; 	[9] 
Scott-Smith and Skinner 1984; [101 Velde 1979; [11] Van Kooten 1980. 
Chlorine (detection limit <0.05 wt %) was not detected in any of the 
new analyses 	- 
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Figure 31: Compositional variation in natural ultrapotassic micas from 

Leucite Hills, Gaussberg, Holsteinsborg, Southeastern Spain and 

Priestley Peak (Antarctica). OSO = Octahedral site occupancy. 
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correlation, but the ratio is nearer 1:2 than the 1:1 in the experimental 

micas, indicating more complex substitution relationships. No simple 

correlation of fluorine with any other cation is seen, although this may 

be partly due to scatter between ultrapotassic rock localities. 

The alumina contents of many ultrapotassic rock micas are much lower 

than any of the experimental micas. This is probably a consequence of the 

peralkaline and, in the case of lamproites, often perpotassic, nature of the 

melts. The experiments are restricted to K=Al, whereas K is frequently in 

excess of Al in lamproitic rocks. The dominant Al substitution in the 

natural micas appears to be a Tschermak-type substitution indicated by the 

Si = 2 Al slope and large variation in Al relative to octahedral occupancy 

(figure 31). The low Al-content of natural ultrapotassic rock micas will 

reflect both the low Al content of the melt and the F/OH ratio. For a 

constant K/Al, Si in micas is likely to increase with F towards more 

silica-rich whole-rock compositions. The substitution mechanisms cannot be 

formulated in detail as they are complicated by other cations, particularly 

-Ti and Fe (see discussion by Arima and Edgar 1981), which are not present in 

the Ks-Fo-Qz system. The difference between fluorrnicas and hydroxymicas in 

the system Ks-Fo-Qz indicates that coupled substitutions of specific cations 

with F, 0 and OH on the (OH) site, as discussed by Bohlen et al. [1980], 

are probably important. As an example, the Fe2+_F  avoidance principle 

[Rosenberg and Foit 1977; Sanz and Stone 1979] should cause coupling of F 

with cations other than F e2+. 	- 

The effect of fluorine on the compositions of melts generated in the 

mantle is best represented by the polymerisation state of the 

alumiriosilicate network. The most convenient simple system indicator for 

this in Ks-Fo-Qz is the movement of the forsterite-enstatite phase 

boundary (figure 32) since these two minerals are likely to be major 

components of the mantle residuum. The phase equilibrium and spectroscopic 

data for the Ks-Fo-Qz system [Part 31 indicate that fluorine 

polymerises the aluminosilicate network. However, in most geological 

conditions H 2 0 will be present in excess of fluorine, so that HF will 

be the dominant fluorine species. HF will dissolve by a reaction in 

which the polymerising effect of F is counterbalanced by the depolymerising 

effect of H 20 released by HF dissolution [Part 31. Under these 

conditions the overall effect will be an increase in the liquidus phase 

volume of the most depolymerised phase, resulting in the production of 
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Figure 32: Part of the system Ks-Fo-Qz showing the relative positions of 

the enstatite - forsterite phase boundary in the presence of various 

volatile species discussed in the text. The boundary for CH 4  is 

estimated from its position in the Ne-Fo-Qz system, taken from Gupta et 

al. [in prep.]. The position with HF is uncertain, but can be expected 

to be close to the CH4  position. The data for the water-saturated 

Ks-Fo-Qz system at 3 kbar are taken from Luth [1967]. 
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more silica-rich melts (ol, en, san normative). In the event of H20-poor 

but F-rich conditions, melts generated in the mantle will be silica-

undersaturated (ol, san, lc normative) as modelled by the PHL+EN+FO+L 

peritectic point (figure 32). 

4.3 OXYGEN FUGACITY AND ULTRAPOTASSIC MAGMAS 

Oxygen fugacity will also be an important controlling factor of melt 

polymerisation, particularly affecting the behaviour of carbon. CO2 has 

been found to polymerise silicate melts by forming carbonate complexes 

with network-modifying cations. This causes expansion of the phase volume 

of enstatite relative to that of forsterite (figure 32) so that lower 

silica partial melts result [Brey and Green 1975; Eggler 1974, 1978; 

Ryabchikov and Green 1978]. Experiments investigating the solution of CO 2  

in silicate melts of the same composition at widely differing f02  have 

shown that the amount of carbonate dissolved in the melt, and thus the 

polymerisation, increases with increasing f02  [Brey and Green 1976]. 

At low f02  methane will be the dominant carbon species. Recent 

studies by Taylor [1985] have shown that the solubility of reduced carbon 

in simple system silicate melts is limited to 1000-2000 ppm before 

saturation and crystallisation of graphite occurs. This small amount of 

carbon is probably contained as atomic carbon on cation vacancies and 

defect sites as envisaged by Freund et al. [1980, 1983] for silicate 

minerals. Methane dissolution is accompanied by reduction in the 

stoichiometry of the silicate network (ie. 0/Si < 2) [Taylor 19851. The 

enstatite-forsterite phase boundary in the methane-saturated system Ne-Fo-Qz 

(f02 < 1W buffer) is to the silica-rich side of its position in the 

volatile-free system. Thus, in a very reduced environment with 1120,  CH4  

and HF, depolymerisation will be at a maximum, and melts produced will be 

more silica-rich than those in source regions containing 1120,  CO2 and HF. 

In a reduced C-0-H fluid at mantle pressures (f02 between the iron-wustite 

buffer and 2 log units above 1w) the H20/CH4 ratio will vary greatly with 

f02 , temperature and pressure, but there will always be a significant 

amount of H20 [Taylor 19851. 

Intrinsic f0 2  measurements on mantle derived xenoliths and xenocrysts 

indicate two distinct oxygen fugacities may be prevalent in the upper 

mantle; one reduced near the 1W buffer and the other oxidised near QFM 
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[Arculus and Delano 1981; Arculus et al. 1984]. However, this data is sparse 

at present and these may represent extremes of a continuum of oxygen 

fugacities in the mantle, with the majority of measurements clustering 

around the MW buffer [O'Neill and Wall 1982, Arculus 19851. 

What evidence then, is there of the oxygen fugacity in ultrapotassic 

magma source regions? CO 2  contents are variable between ultrapotassic 

rock groups: Group II rocks are rich in CO21  frequently with carbonates 

present in the groundmass, whereas Group I rocks, in most cases, have very 

low CO2  contents. However, the source regions of CO2-poor rocks need not 

have been poor in carbon if oxygen fugacity was low. 

Foley [Part 21 studied early crystallising chrome-spinels which form 

inclusions In olivine phenocrysts in lamproites, and experimentally 

calibrated the ferric number [10OFe3+/(Fe3++Fe2+)]  of spinel as an oxygen 

fugacity sensor. Spinels from various lamproites show a wide range in 

oxygen fugacities for different lamproitic rocks, and these differences 

are also seen in the Fe 203  content of leucites. There may be a large 

disparity (up to 4 log units) between the f0 2  indicated by the spinel 

(more reduced) and the f02  given by the whole rock analysis by the 

equation 	
inf02= [1fl(x:3/x:? melt 	

+ C + EKjXj)] . 

(9) 

which is rearranged from Kilinc et al [1983]. In equation 9, a,b,c and d 

are constants, X = mole fraction, and Ki  are empirical constants for each 

oxide component i. Ultrapotassic rocks may therefore have experienced 

oxidation during emplacement, and this effect must be allowed for in 

deducing source conditions. 

Diffusion of H 2  out of an ascending magma into the surrounding rock 

has been proposed by Sato [1978] as a possible oxidation mechanism. H 2  can 

originate by dissociation of water represented by the equilibrium 

H20 = H2 + 1/2 02 	 (10) 

which will be driven to the right by diffusive H 2  loss. Arculus and 

Delano (1981] reserved judgement on this model, noting that a spread of 

oxidation states would be expected in resulting melts due to differing 

degrees of H20 dissociation: this is precisely what is seen in the 

lamproite spinels [Part 2]. 
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In considering oxidation during magma ascent, we have to assume an 

oxygen fugacity for the source mantle. In H 20-rich, CO 2-poor conditions 

suggested by analyses of lamproites, the f02  is best represented by the 

CW buffer (carbon-water) which is the locus of points on the carbon 

saturation surface where XH20  is a maximum. This lies roughly midway 

between the 1W and WM buffers at temperatures and pressures likely to 

represent diamond stability in the mantle [Taylor 1985]. There is no 

direct evidence for the oxygen fugacity of lamproite magmas in the mantle: 

it is also possible that melt generation is triggered by the introduction 

of a water-rich volatile phase. This may be more oxidised than CW if not 

constrained by carbon saturation. In this case the survival of diamonds in 

lamproites could be attributed to sluggish diamond breakdown reactions. 

However, for the following discussion we will assume a starting f0 2  

equivalent to the CW buffer in order to assess [a] the oxidation model 

given by reaction (10), and [b] the relevance of reduced fluids to 

lamproite petrogenesis. As shown in the following sections, many of the 

features of lamproites can be explained by a model of a reduced source 

with oxidation during emplacement. Under these conditions diamonds may be - - 

stable in the lamproite source region. This model is limited to the 

lamproites as CO2  may be important for Group II rocks, and the 

applicability of the spinel f02  sensor [Part 2] is limited by 

compositional differences. Whilst this discussion contrasts the extremes of 

oxidation, a continuum between the two is most realistic for application to 

natural magmas. 

4.4 A MODEL FOR THE Fe203/FeO RATIO OF AN ASCENDING LAMPROITIC MAGMA 

The following thermodynamic model estimates the amount of H 20 

dissociation which would be required to cause an increase in Fe203/Fe0 of 

the order inferred from compositions of phenocrysts [Part 2] which 

crystallised during emplacement of a lamproitic magma. 

Whilst non-volatile components of the liquid and solid phases of a 

magma are likely to remain, relatively constant during ascent, those of the 

fluid or vapour phase, particularly H 2 , are likely to be lost more readily 

via diffusion and outgassing. The amount of H2O dissociation which can 

occur must be affected by the magma ascent rate. The survival of mantle-

derived ultramafic nodules and diamonds in some lamproites indicates 
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that eruption times must be relatively short. The approximation used here 

that exchange with the surroundings is limited to hydrogen only is more 

realistic under these conditions because of the fast diffusion rate of 

H2 . The calculation which follows contains much thermodynamic idealisation, 

but it is only intended to give an approximate value for H 20 dissociation. 

It is sufficient to-demonstrate that the resulting wt 7. H20 dissociated 

is not unreasonably high and that this mechanism may be realistic for the 

oxidation of magmas during ascent. 

Mo et al. [1982] have determined the partial molar volumes of FeO and 

Fe015  in silicate liquids as a function of temperature. Since '1FeO  is 

less than '1FeO1.5  and noting the relation 

= vi 	 (11) 
T 

FeO will have the lowest chemical potential (Ii) at high pressures, and 

should be favoured over Fe0 1  in silicate melts at depth. It is assumed 

that V is independent of pressure (ie no compressibility terms). 

A melt containing a variable ratio of Fe0 1  5/FeO is not an oxygen 

buffer but responds to changes in the intensive parameters P, T, f0 2  etc 

[Carmichael and Nicholls 19671. When a magma ascends rapidly from depth two 

extreme forms of behaviour can be considered, i.e. closed system and open 

system behaviour. The model presented here considers a limited open system 

case in which escape of H2 is the only exchange with the surroundings. 

In the closed system case, P0 2  of the system will change because of the 

equilibrium 	 - 

FeO + 202 	FeO15 	 (12) 

so that 

p02 = 21 Fe0 	- 211 FeO 
	(13) 

The closed system case was considered by Mo et al. [1982] from which they 

proposed that the oxygen fugacity in the source regions of basic magmas is 

greater than that at the surface. Calculations from their equations give 

f02  conditions at high pressures several orders of magnitude higher than 

the MW buffer, which are geologically unreasonable. The implied reduction 

during transport to the surface is also the opposite of observed 

crystallisation sequences in spinel and leucite. 
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In the "limited open system " case considered further here, the 

intrinsic f02  of the system is assumed to be maintained (ie. P02 

constant) during ascent due to diffusive H 2  loss via the reaction 

FeO + 1/2 H20 = 	1/2 H2 t + Fe0 1 5 	(14) 

The closed and open system emplacement paths are contrasted in figure 33a. 

A magma originating at depth may have its f02  determined by an 

oxygen buffer reaction in the source region [Ryabchikov et al. 1981, 

Eggler 19831 such as 

6 Fe2S104 + 02 = 	2 Fe304 + 6 FeSI03 

olivine 	spinel 	opx 

or possibly a vapour phase reaction involving graphite (or diamond) plus 

C-0-H-S vapour [Eggler and Baker 1982, Woermann and Rosenhauer 1985]. 

During ascent, however, the magma will not be buffered (unless it contains 

an abundant phenocryst assemblage capable of acting as a buffer; 

Carmichael and Nicholls 1967) and hence the Fe3+/Fe2+  ratio of the melt 

may change. 

---In-our model system FeO-Fe0 1  5-H20 we-consider the case of isothermal 

ascent in which the oxygen potential of the system remains constant. 02 

is gained from the dissociation of H20 in order to maintain p02. 

Differentiating equation (13) with respect to pressure at constant 

temperature we get 

____ = EFe0i.s 	FeO 
0 = 	

T 	L 	a 	- 	3P ] 	
(15) 

Using the standard relation 

ii 	= 11 0  + RTlna. 	 (16) 
1 1  

noting 

_lnaj 

 = 

	

- 	 (17) 

rearranging and integrating over pressure, we get 

0 	 0 

aFO Pbar 	aFO 	1 bar 	V Fe01.5 - V FeO (P-i) 	(18) 1n  ) 	- ln( 	) 	= 	RT aFeO 	aFe0i.s 	- 

but 

ifl(YF0/y'F0) = VF
O - 	FeO - 

RT 	
(P-i) 

(19) 

and similarly for Fe015  (where Y is the activity coefficient of i). 
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Therefore 

	

FeO 	 FeO   . exp 	 ( tFe0i.s - FeO)'T(P_i) I RT  
Fe01.5 	Fe01.s 	

(20) 

1 	 1 
For the calculation XeO  and XFeO15  are known, let XH20 = 0 and 

applying the mass balance constraint 

P 	p 	p 
XFO + XFO 	+ X110 	1 	 (21) 

X 20  can be calculated from equation 21 where 

V 	X 	p 

	

'TFeOi.s - FO) FeO1 	)] . FeO = 
 I exp{ 	RT 	 ) (22a) Fe01.s 

and 

Ix 
 1 

1 + 

I 1 5[ep{(FeOi.s - VFeO)) 	
Xoi5JJ + ] 

	( 22b). 
X 	= 	 - 	 ( Xo 0 	 fl 

RT 

The calculation based on the simple FeO-Fe0 1  5-H20 system may be 

extended to natural compositions assuming an ideal solution of liquid 

	

components so that the activities of FeO, Fe0 1 	and H20 may be 

represented by their mole fractions. In this model H 20 is assumed to act 

as an "inert dilutant" and does not affect Fe01.5 - 7Fe0 of the liquid. 

The assumption of ideal solution of H20 rather than setting activity as a 

function of X 0  [cf. Burnham 1979o;Nicholls 19801 is insignificant 

considering the approximate nature of this calculation, making a difference 

of only 0.01 wt% H20 to the result noted below. The emplacement path 

chosen for a model lamproitic magma (A-'B in figure 33b) is from a relatively 

reduced source. The source condition (A in figure 33b) is at the intersection 

of CW with the diamond-graphite transition boundary [Kennedy and 

Kennedy 1976]. For the end-point (B in figure 33b) the oxidation state at 

near-surface conditions of a melt yielding the glassy olivine leucitite of 

Gaussberg, Antarctica is chosen, since this is a pristine example of a 

lainproitic volcanic rock [Part 21. The Gaussberg composition has a 

median value for primary lamproite magmas for both surface oxidation state 

[Part 21 and for wt% FeO, which is the only compositional parameter of 
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Figure 34: Curve showing the amount of water dissociation required to 

maintain constant oxygen fugacity with depth. Calculation is made from 

variation of partial molar volumes of FeO and Fe 203  with pressure 

in the system FeO-Fe01 5-H2 0. 
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the rock which affects this calculation (total Fe as FeO in Gaussberg = 6% 

compared to a range of 4-8% for primary lamproites; Barton and Hamilton 1978; 

Jaques et al. 1984a; Part 1). This is not intended to imply that the 

Gaussberg magma originated at 52 kbar, indeed it is argued in the next 

section that the more silicic lamproite magmas originate at much shallower 

levels. By the above calculation, 0.09 wt% H20 must dissociate between 

A (52kbar) and the surface to maintain the f0 2  of the system at 1300 0C. 
The form of the curve in figure 34 indicates that the rate of increase of 

Fe015/Fe0 will increase towards the surface, with half of the water 

dissociation occurring in the uppermost 15 kbar. Dissociation of water in 

the order of 0.1 wt % water does not appear unreasonably high, and is 

consistent with the 0.07 wt% calculated by Mathez [1984] for oxidation 

between the iron-wustite and quartz-fayalite-magnetite buffers. This small 

amount of dissociation will be lessened if the near-surface oxidation by 

degassing of carbon species proposed by Mathez [1984] also operates. 

4.5 GENESIS OF ULTRAPOTASSIC ROCKS WITH A RANGE OF SILICA CONTENTS 

The fluorine rich lamproites range in silica content from 40 to 60wt% 

and, whilst accumulation of olivine and crystal fractionation is important 

[Jaques et al. 1984a], a range in primary magma silica contents seems 

likely. West Australian lamproite compositions considered to be primary 

range in silica content from approximately 40 to 52 wt% [Atkinson et al. 

1984; Jaques et al. 1984a]. Primary lamproite magmas from other regions 

may have even higher silica contents: a Leucite Hills orendite with 55 wt% 

silica has been found to crystallise olivine, orthopyroxene, clinopyroxene 

and garnet at its liquidus at 27 kbar, indicating that it may represent a 

primary melt from the mantle [Barton and Hamilton 1982]. 

Experimental work on dry compositions and with mixed H20+CO2 

volatiles indicates that for the more silicic magmas to be primary, the 

H20/CO2 ratio would have to be extremely high because of the polymerising 

effect of CO2  leading to lower silica partial melts. The presence of HF 

will assist the formation of silica-rich melts by the process outlined 

previously, so that the effect of any CO 2  present will be lessened. 

If conditions are sufficiently reduced for CH4  to be important rather than 

CO2 , then this will further assist the production of silica-rich melts. 

Compositions with lower silica contents are represented among 
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Group 1 and Group II ultrapotassic rocks. Referring to the Ks-Fo-Qz system, 

there are two ways by which melting of the model phiogopite harzburgite 

may give rise to silica-undersaturated melts: (i) by increasing CO 2 /H20 1  

demonstrated by movement of the F0+EN phase boundary (figure 32) or (ii) by 

increasing pressure. It has been shown in both Ne-Fo-Qz and Ks-Fo-Qz systems 

that the F0+-EN phase boundary moves to more silica-poor compositions with 

increasing pressure [Kushiro 1968,19801, and that in Mg-poor compositions 

the phase volume of sanidine also expands [Wendlandt and Eggler 1980a]. 

Figure 35 illustrates, from the data of Kushiro [19721 and Gupta and Green 

[in prep.] in the Ne-Fo-Qz system, that this holds for water saturated 

systems. The same source giving rise to silicic leucite lamproites may 

therefore produce more silica-undersaturated melts at higher pressures 

without any difference in volatile composition, i.e. in a CO2-free mantle. 

It is not necessary to appeal to widely differing volatile compositions to 

explain the silica variation in likely primary magmas within a given 

locality, for example, the West Kimberley lamproite suite. A greater depth 

of origin for primary olivine lamproite compositions from West Kimberley 

in a reduced environment is in accord with the occurrence of diamonds being 

commonest in the Mg-rich, Si-póàr lamproites [Atkinson et al. 1984; Jaques 

et al. 1984a1. 

The position of the PHL+EN+F0+L peritectic point will depend 

critically on the stability of phiogopite. Since there can be no 

phiogopite field in fluorine-free conditions with CO 2  as the only 

volatile, the composition of the first melt from a model (phlogopite) 

harzburgite will vary greatly in both Si0 2  content and Ks/Fo ratio with 

H20/(H2 0+CO2). The liquidus phase field for phlogopite is reduced at 

moderate CO 2/(CO2+H2 0) ratios [Ryabchikov and Green 1978; Wendlandt and 

Eggler 1980c; Arima and Edgar 1983a]. The position for PHL+EN+FO+L under 

F1 20-saturated conditions given by Sekine and Wyllie [1982] is considered 

to be erroneous (too low Fo) due to an extensive extrapolation from the low 

pressure data of Luth [1967]. The data of Gupta and Green [in prep.] at 

28 kbar indicate that the phlogópite phase field will be much larger (see 

figure 32). The large difference in the position of the PHL+FO+EN+L 

peritectic point at 3 kbar and 28 kbar (figure 32) indicates that the Ks/Fo 

ratio of melts must be strongly dependent on pressure, but compositions at 

intermediate pressures can only be estimated due to the lack of data. The 

argument put forward above that more silica-rich lamproites may originate at 

shallower depths corresponds to this expected variation in Ks/Fo ratio 
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Figure 35: The effect of pressure on the forsterite-enstatite phase 

boundary in the water-saturated Ne-Fo-Qz system showing shift to more 

silica-undersaturated compositions at higher pressures. Positions taken 

from Kushiro [1972: 17.5 and 20 kbar] and Gupta and Green [in prep.: 28 

kbar ]. 
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with pressure: the Gaussberg olivine leucitite (51 wt% Si0 2 ) has an MgO 

content of 8 wt% and K20 in excess of 11 wt%, whereas typical West 

Kimberley olivine lamproites (40-43 wt% Si0 2 ) have MgO in excess of 20 wt% 

and K20 of 4-5 wt%, and yet both these lamproite types have high Mg-number 

and carry mantle-derived nodules. The addition of fluorine to a mixed 

volatile system will greatly enlarge the phase volume of phlogopite, 

increasing the Fo/Ks ratio and leading to more magnesian melts regardless of 

silica content. 

These arguments for a reduced source may be more applicable in some 

regions of lamproite magmatism than others, because lamproites from 

different localities differ both in their range of probable primary magma 

compositions and in their oxidation state at near-surface conditions as 

measured by spinel phenocryst compositions. The variation in spinel 

phenocryst compositions does not correlate with silica content of the 

rock in different lamproite regions, indicating that the effectiveness of 

oxidation during emplacement may differ greatly. 

4.6 APPLICATION TO OTHER ULTRAPOTASSIC ROCK GROUPS 	 - 

The source region for Group II rocks of the Toro Ankole volcanic 

field was probably poor in H20. This is indicated by low H20 contents of 

volcanic gases in African Rift volcanoes [Bailey 1978,19801, and by the 

occurrence of carbonatites in the Toro Ankole field. The Ks-Fo-Qz analogue 

of a source poor in H 20 and with lower F than Group I rocks (though still 

F-rich relative to most basaltic rocks) would move initial melts to more 

Si-poor, K-rich compositions, possibly giving rise to rocks akin to 

katungite. The oxidation state in the source regions of Western Rift rocks 

is poorly known, though volcanic gases [Bailey 19781 and dissolved methane 

of possible volcanic origin in Lake Kivu to the south of the Virunga field 

(Burke 1963, discussed by Gerlach 1980) may indicate a reduced environment. 

at depth. However, in a reduced environment, carbon saturation should 

occur at low concentrations so that transportation of carbon in the melt 

will be limited: a much greater amount of carbon would dissolve in a melt 

(as carbonate) in a more oxidised environment. A reduced source should 

therefore result in carbon-poor volcanics regardless of the oxidation state 

at the surface, unless emplacement takes place as a melt+fluid system, and 

oxidation of the fluid occurs preferentially. If the source is oxidised, the 

presence of fluorine will maintain a phiogopite phase field so that melts 
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will still have an appreciable MgO content. 

The above discussion covers, in general terms, the effect of mixed 

C-H-O-F volatiles on ultrapotassic rock genesis, but does not address 

differences in source composition, and so cannot hope to explain the origin 

of the entire spectrum of potassic rocks. A number of experimental studies 

on ultrapotassic rocks [Arima and Edgar 1983a,b; Ryabchikov and Green 1978; 

Edgar et al. 1976; Barton and Hamilton 19791 indicate that discussion of a 

phiogopite harzburgite may be inappropriate for some composititons. This 

is backed up by studies of ultramafic xenoliths [Lloyd and Bailey 1975; 

Lloyd 1981] which show that the fluid which supplies K-enrichment to the 

mantle is reacting with the mantle rocks causing progressive elimination 

of orthopyroxene and even olivine in favour of mica and clinopyroxene. 

The observed northward increase in K and decrease in Si of the western 

rift lavas [Pouclet 1980b] may be related to a northward increase in the 

fluid component of the mantle source. Studies of such xenoliths provide 

Insight into the K-enrichment processes, and may provide evidence of the 

nature and oxidation state of volatile mixtures at depth. 

4.7 SUMMARY 

The effects of H 20, CO2, CH and HF on partial melting of a model 

phlogopite harzburgite mantle have been considered with regard to the 

production of ultrapotassic magmas. The arguments developed above from 

evidence in the system Ks-Fo-Qz with added fluorine support the suggestion 

of Jaques et al. [1984a] that fluorine is an important controlling factor in 

lamproite petrogenesis. Fluorine has a polymerising effect in H 20-poor 

conditions, but in the presence of abundant H20 where HF than F is 

dominant, the overall effect is depolymerisation. Methane also dissolves by 

forming (OH)_ groups, and so has a depolymerising effect. 

Group I ultrapotassic rocks (lamproltes) probably originate from 

primary magmas with S10 2  contents ranging from around 40 wt% to at least 

52 wt%. This range can be explained by differing depths of origin from 

a similar source with a similar reduced H20-CH4-HF volatile mixture, 

with more silica-poor melts originating at greater depths. The formation of 

silica-rich initial melts from a model phlogopite harzbugite is assisted 

by the presence of CH4  and HF. Dissociation of less than 0.1 wt% 

H20, driven by H2 loss, Is sufficient to cause oxidation during 
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emplacement to observed oxidation states. Silica-poor ultrapotassic rocks 

could be produced at higher pressures in a reduced environment, or in an 

oxidised environment with high CO 2 /(CO2-s-H 2 0) ratios. Group II (African 

Rift) potassic rocks may originate in H20-poor conditions in which 

fluorine will maintain a large phiogopite phase field, so that initial 

melts will be magnesian and silica-undersaturated. 

The effects of F, C/H ratio and f0 2  on a phiogopite harzburgite 

analogue as a source for ultrapotassic rocks can be tested by high-pressure 

experiments on natural ultrapotassic rock compositions with variations in 

these parameters. Individual areas of ultrapotassic volcanism can then be 

examined in the light of these experimental studies, combined with 

information gathered from the rocks themselves on fluid phase composition, 

oxidation state and pressure-temperature crystallisation path. 



PART V 

- THE GENESIS OF LANPROITIC MAGMAS IN A REDUCED, FLUORINE—RICH MANTLE 

5.1 INTRODUCTION 

Lamproites include a range of compositions which have high 

Mg-number, Ni and Cr contents, and carry mantle-derived ultramafic 

nodules, and thus appear to represent little-modified mantle-derived 

liquids. The term laniproite is used here in the sense of Foley et al. 

[Part 11 as a chemically characterised ultrapotassic rock group with low 

Ca, Al and Na contents. Primary lamproitic magmas range In silica content 

from about 40 wt% to at least 51 wt%, and experimental work on a Leucite 

Hills orendite indicates that 'leucite lamproites as silica-rich as 55 wt% 

could be in equilibrium with an olivine-orthopyroxene-clinopyroxene-

garnet assemblage at mantle pressures [Barton and Hamilton 1982]. 

Petrogenetic models must account for this range of apparently primary 

magma compositions, which may be greater than 10 wt%in a single volcanic 

field, such as the West Kimberley region of Western Australia [Jaques et 

al. 1984a]. 

Previous experimental studies on a variety of alkaline rock 

compositions, including kimberlites and larnproites, have emphasised the 

importance of volatile constituents in their genesis. These have shown 

that a range of S10 2  contents may be attributed to variation in the 

H20/CO2 ratio. Experimental studies of both liquidus phase relationships 

of alkaline rocks and melting of proposed mantle source compositions have 

shown that H20 greatly depresses the melting temperature and promotes 

stability of less polymerised silicate minerals such as olivine relative 

to orthopyroxene in the mantle residue, leading to more silicic melt 

compositions [Kushiro 1972; Green 1973a; Nicholls and Ringwood 1973]. The 

effect of CO2  is limited at pressures less than 20 kbar due to its low 

solubility In silicate melts [Wyllie and Huang 19761, but at higher 

pressures it has the opposite effect to H20 of promoting stability of more 

polymerised silicate phases, leading to lower silica partial melts [Eggler 

1974; Brey and Green 19751. It has been argued from the experimental data 

that low silica compositions such as olivine melilitites and kimberlites 

require the presence of CO2  and carbonates in the source (Green 1976; 

Eggler 1978; Brey'1978; Wyllie 19781. 
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However, most lamproites, both silica-rich and silica-poor, have 

high H20, but very low CO2 contents, so that the H20/CO2 ratio does not 

appear to be the controlling factor of the composition of most lainproite 

suites. A number of studies specifically considering the genesis of 

lamproitic magmas have emphasised the need for high H 20/CO2  in the source - 

(Barton and Hamilton 1978,1982; Jaques et al. 1984a]. This contrasts with 

studies of low-silica ultrapotassic rocks from Uganda (Group II of Part 1) 

which suggest low or intermediate H2 0/CO2  [Ryabchikov and Green 

1978; Edgar et al. 19801. Jaques et al. [1984a] and Venturelli et al. 

[1984] noted the high levels of fluorine in lamproites, and suggested that 

this may be important in their genesis. 

The oxidation state of the mantle has recently been debated widely 

due to apparently conflicting evidence for either oxidised (EMOD/EMOG or 

FMQ) or reduced (1W to IW+2 log units f02)  conditions from a variety of 

sources including intrinsic oxygen fugacity measurements of mantle-derived 

xenoliths and minerals, volcanic gas compositions in both continental and 

submarine environments, internal oxygen buffers of proposed mantle mineral 

assemblages, and studies of inclusions in diamonds [see reviews by 

Woermann and Rosenhauer1985;. Arculus 19851. This presents--the possibility 

that some alkaline rocks may originate in a reduced source where C-0-H 

fluids will consist of CH 4+H20 mixtures rather than H20+CO2 [Holloway 

1981; Taylor 1986a]: a reduced source has been proposed specifically for 

lamproites by Foley et al. [Part 4]. The possibility of a reduced mantle 

source has not been treated in experimental work, which has generally had 

no direct control of f02 , or has buffered f02 indirectly by fH2 

control through noble metal capsules (the "double capsule" method), 

mostly using the hematite-magnetite buffer. 

This paper reports the results of liquidus experiments on two 

lamproite compositions, one silica-rich and one silica-poor. The starting 

compositions include fluorine, and, the experiments were run in reduced 

conditions with a C-0-H fluid in order to assess the hypothesis outlined 

in Part 4 that lamproitic magmas originate by melting of mica-

harzburgite in reduced conditions. 
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5.2 THE REDUCED MANTLE ORIGIN HYPOTHESIS FOR LANPROITES 

Olivine lainproites in Western Australia contain diamonds with a 

mineral inclusions suite indicating that the diamonds are unrelated to the 

host lamproite (L.Jaques, D.Ryan, pers. comm.), and showing that diamonds 

are likely to be stable in the mantle source regions of the laruproites at 

pressures >45 kbar. For a water-bearing mantle, the maximum f0 2  stability 

of diamonds can be modelled by CW (carbon-water), which lies midway 

between 1W and EMOD/EMOG at temperatures and pressures likely to exist in 

the mantle [Taylor and Green 1986a]. Fluid compositions at CW are 

dominated by H 2 0 (85-95 mol%), and CH4/H20 increases with decreasing f02 

towards 1W, where theoretical and experimental studies show that CH4>H 20 

[Taylor 1986a; Appendix III]. 

Foley et al. [Part 41 developed the hypothesis that the range of 

lamproite primary magma compositions can be explained by pressure 

variation in melting of a reduced mica-harzburgite mantle source in the 

f02  range 1W to IW+2 log units due to the effects of the major volatile 

components H 20, CR4  and HF. Methane and HF have similar effects to H20 on 

melt structure due to depolymerisation of the aluminosilicate network by 

OH groups involved in the solution mechanisms of CH 4  and HF [Taylor and 

Green 1986b; Part 31. In a system rich in H 2 0, CH4 and HF with 

no CO2  to cause competing polymerisation reactions, the production of 

silica-rich melts such as leucite lamproites is promoted. The range in 

silica contents of primary lamproite magmas down to those typical of 

olivine lamproites (40-43 wt%) may correspond to increasing pressure, 

which is known to cause generation of melts with lower silica contents 

even in H20-rich conditions [Eggler and Wendlandt 1979; Kushiro 19801. A 

greater depth of origin for olivine lamproites relative to leucite 

lamproites is compatible with the commoner occurrence of diamonds in the 

olivine lamproites. 

In simple system experimental studies, fluorine has been shown to 

increase the stability of mica so that melt compositions saturated in 

phiogopite, olivine and orthopyroxene, and thus with high 1(20  and MgO, may 

exist at higher temperatures and pressures than in water-rich, fluorine-

free conditions [Part 3]. 

The oxygen fugacity of lamproitic magmas at the time of phenocryst 
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crystallisation can be estimated from the compositions of chrome-spinels 

occurring as inclusions in olivine phenocrysts, thereby avoiding any 

weathering effect on measured whole-rock oxidation state. Estimates of f0 2  

by this method range from MW to above NNO for different lamproites Part 

21. The proposition of a reduced source thus requires oxidation during 

magma ascent: some evidence for this is seen in the Gaussberg leucite 

lamproite which has leucites with relict cores lower in Fe20 3  content than 

the main leucite phenocryst population. [Part 2]. Foley et al. [Part 41 

estimated that dissociation of 0.1 wt% H20, driven by diffusive loss of H2 

from the magma, could account for oxidation from f0 2=CW in the magma 

source region to NNO at the surface. This amount of dissociation would be 

lower still if carbon species are involved in the oxidation. 

5.3 EXPERIMENTAL METHODS 

5.3.1 	TECHNIQUES: 

Experiments were performed in a 0.5 inch (1.27cm) piston-cylinder 

apparatus using standard techniques and talc or, more rarely, NaCl 

assemblies. Capsules consisted of a 3mm i.d. Pt or A950Pd 50  outer capsule 

with two graphite inner capsules (2-2.3mm i.d.) containing sample and 

iron-wustite mixture respectively. Equilibrium C-O-H fluids (denoted 

CWI for carbon-water-iron, as they lie between CW and the intersection of 

the carbon saturation surface with the Fe-FeO buffer) were attained by 

interaction between [i] CH4-H20 fluids produced from a solid source of 

A14C3+Al(OFI) 3 , leaving residual. A12031 [ii] distilled 1120  (12% 

of sample weight) added by microsyringe to the sample capsule, and [iii] the 

graphite capsules, which also served to prevent loss of Fe to the noble 

metal outer capsules. Excess carbon is geologically reasonable in reduced 

conditions since the solubility of reduced carbon in silicate melts is 

limited to 1000-2000 p.p.m. [Taylor and Green 1986b]. The added water ensured 

f02  conditions close to CW, and the inclusion of the Fe-FeO mixture 

prevented oxidation beyond CW, but did not buffer oxygen fugacity at F6-FeO 

[Appendix III]. Thus the fluid composition, rather than the f0 2 , was 

controlled with the result that f0 2  was bracketed within a narrow range. 

Fluid compositions lie at the H20-rich end of the region where the 

carbon saturation surface turns towards more methane-rich compositions with 

a large range in XH20 of the fluid over a limited f02  range (figure 36). 

The change in shape of the carbon saturation surface with pressure 
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and temperature means that the uncertainty in f0 2  of these CW1 

experiments is less at low temperatures and high pressures where there is 

a more rapid change in CH4/H 20 with f02. The region of f02  in CWI 

experiments is represented by the shaded region in figure 37, where it is 

compared to the Fe-FeO and EMOD/EMOG buffers. 

Fluid compositions were measured by piercing capsules under vacuum 

and passing quenched fluids directly into a mass spectrometer. Spectra 

were collected and integrated over a 35-55 minute period. Measured fluid 

compositions for 'CWI' experiments were dominated by H20 080 mol%) with 

minor CH4  and a trace of CO2. Details of the experimental and mass 

spectrometry techniques, plus a discussion of equilibration in experimental 

systems with C-O-H fluids, are given in Appendix III. 

Results of several experiments with a variety of fluid compsitions 

are included for comparison of phase assemblages with those at CW1. Runs 

with higher CH4/H20 used the same experimental design except that H20 was 

not added to the sample capsule. Runs with CO 2+H20 fluids had oxidised 

beyond CW due to omission of the second graphite capsule containing the 

Fe-FeO mixture. 

5.3.2 ROCK COMPOSITIONS: 

Table 16 lists starting compositions of olivine lamproite and 

leucite lamproite used in the experiments. The olivine lamproite is a 

likely primary magma composition for the West Kimberley region estimated 

by A.L.Jaques after an extensive study of these rocks. The leucite lainproite 

is from Gaussberg, Antarctica, and is the same composition used in 1 atm. 

experiments under varying f0 2  conditions apart from a higher Cr203 

content believed to be representative of the primary magma [Part 21. The 

Gaussberg composition is similar to many leucite lamproites of the West 

Kimberley region. The compositions used therefore come from the localities 

and composition range used by Foley et al. [Part 11 as standard members of 

the lamproite group. 

The compositions were synthesised from oxides (Ti, Al, Mn, Zr, Cr, 

Ni and part Si and Mg), carbonates (Na, K, Ba, Sr and part Ca), and 

synthetic Ca2P207, Fe2SiO4 and MgF2. Components were mixed thoroughly and 

sintered at 900 0C prior to addition of fayalite to ensure all Fe remained 

as Fe2+  for these reduced experiments. Fluorine was added to the rock 
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Table 16 : Starting compositions of lamproites used in the experiments 
[normalised to 100%] 

Olivine Leucite 
Lamproite Lamproite 

S102 43.78 51.37 
T102 3.86 3.45 
A1203 4.49 9.95 
FeO 8.67 6.05 
MnO 0.17 0.09 
MgO 23.79 8.03 
CaO 5.08 4.67 

-Na20 0.58 1.67 
K20 5.08 11.76 
P205 1.64 1.50 
BaO 1.75 0.63 
SrO 0.15 0.23 
Zr02 0.15 0.14 
Cr203 0.17 0.10 
NiO 0.13 0.03 
F 0.53 0.33 

Normative compositions: 
Qz 	-- 
Or 24.5 54.3 
Ns 1.1 3.3 
Ks 1.5 4.2 
Cpx 11.5 10.7 
Opx 7.2 4.7 
01 40.2 11.3 
tim 7.3 6.6 
Ap 3.9 3.6 
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cOrnpO8ltiOn (as MgF 2  substituted for MgO) rather than to the fluid 

source because it is known to be strongly partitioned into the melt 

phase [Wyllie and Tuttle 1964; Koster van Groos and Wyllie 1968; Ishikawa 

et al. 1980]. No relict MgF 2  was found in any run product, indicating that 

complete solution had occurred. 

5.3.3 MINERAL COMPOSITIONS: 

Minerals were analysed using a JEOL JXA 50A electron microprobe 

fitted with EDAX energy dispersive analyser with operating conditions of 

15kV and 7x10 10A, and calibrated on pure Cu. Fluorine in micas was 

analysed by crystal spectrometer in an integrated wavelength/energy 

dispersive system at 5x10 8A sample current on the same machine using 

lOOsec count time (detection limit 0.15-0.20 wt%) and synthetic sellaite 

standard. 

5.4 EXPERIMENTAL RESULTS 

Results described in the following two sections on olivine lamproite 

arid leucite lamproite are from - CWI experiments with f02  corresponding 

to the region shown in figure 37. For experiments in this series at 

pressures at and above 15 kbar measured fluid compositions had H 20 >> CH4 

> CO2 . Lower pressure runs on leucite lamproite are included despite 

higher CH4/H 20 and CO/CO2 contents since XH20  is predicted to 

decline at lower pressures by the thermodynamic calculations [Taylor 

19861. Figure 38 shows the calculated C-O-H species distributions for CW 

and C-lW separately; the 'CWI' conditions of the experiments lie between 

these limits, but are closer to CW at low pressures (see figure 37). CW1 

fluids at 5 and 10 kbar should .therefore be similar to CW but with higher 

CH4 . Figure 39 illustrates mass spectrometry results for Run 1934 at Skbar 

and 11000C. H20/CH4 was 1.4 In this run, and was measured at 1.7 in Run 
1951 at 5 kbar and 1050 0C. Higher pressure runs typically have H20/CH4 of 
between 6 and 10. Figure 39b is a single mass spectrum at the peak of 

methane release with background N 2  and 02  stripped to reveal the CO peak 

at mass 28, which is about three times the intensity of CO 2  (mass 44 plus 

part 28). In Run 1940 at 10 kbar/1100 0C, CO/CO2 0.3, and at higher 
pressures CO decreases markedly, and CO 2  is also frequently below threshold 

(see figure 55 in Appendix III), although CO 2  level varies within 

the range of - CWI' experiments, with higher values at f02  closer to CW. 
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5.4.1 OLIVINE LAMPROtTE 

Experiments on the olivine lamproite composition were run in the 

pressure range 20-40 kbar, and results are listed in table 17 and 

illustrated on a pressure-temperature grid in figure 40. Olivine is the 

liquidus phase throughout the pressure range studied. It is joined below 

the liquidus by mica at low pressures, but reacts out to an orthopyroxene+ 

mica assemblage 500C below the liquidus at pressures above 30 kbar. At 
20 kbar olivine and mica coexist with liquid for a temperature interval 

greater than 100 0C, below which clinopyroxene, orthopyroxene and magnesian 
ilmenite appear within 50 0C of each other: the order of appearance of 
these three minerals and their reaction relationships are not known. At 

higher pressures, chromian rutile replaces magnesian ilmenite as the 

titanate phase, and has a greater thermal stability. Representative 

analyses of orthopyroxene, rnagnesian ilmenite and chromian rutile are 

given in table 18. 

With reference to melting of mica-harzburgite, there is no evidence 

for such an origin for the olivine lamproite under these experimental 

conditions at the pressures studied. However, the increasing stability of 

mica and orthopyroxene with increasing pressure suggests that these 

minerals may occur at the liquidus at higher pressures, beyond the range 

of the apparatus used. Figure 41a shows a schematic theoretical liquidus 

diagram for a partial melt of a mica harzburgite constructed from 

experimental phase relationships in the system KA1SiO 4  - M92 SiO4 - S102 

with H20 or F [Gupta and Green 1987; Part 31. Consider a partial melt 

produced at pressure b at the peritectic point X (F04-PHL+EN+L) in 

figure 41b. This point is a unique pressure-temperature point at which 

mica, olivine and orthopyroxene occur together at the liquidus. The 

topologies for lower and higher pressures (a and c) are estimated from the 

known pressure effect in this system [Part 41. For pressure a, composition 

X lies in the olivine liquidus phase field (figure 41b) and thus olivine 

will be the liquidus phase (figure 41a). Similarly, orthopyroxene will 

be the liquidus phase at pressure c. 

The occurrence of olivine as the liquidus phase of olivine lamproite 

is therefore consistent with an origin by melting of a mica-harzburgite at 

higher pressures: the 40 kbar data of figure 40 can be represented by 

pressure a In figure 41a. The mica+olivine+orthopyroxene liquldus 

assemblage is Interpreted to lie at between 45 and 55 kbar, which Is 
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Table 17 : 	Experimental run data for Olivine Lamproite at 	CWI 
H20/CH4  is measured ratio in the quenched fluid by mass 
spectrometry. Experiments marked [*] have no quantitative 
measurement of F120/CH4  as they were run during development 
of the fluid measuring technique. CH4  was detected and the 
experiments were run with the same capsule assembly and 
starting materials, and so these are comparable to experiments 
with measured H20/CH4. 

Run Capsule Pressure Temp. Duration H20/ Run products 
[kbar] [ °C] [hr] CH4  

1891 AgPd 40. 1200 2 5 Opx + Mica + L 
1892 AgPd 40 1250 2 * 01 + L 
1885 AgPd 35 1100 3.5 6 Opx + Mica + rut + L 
1888 AgPd 35 1150 2.5 6 Opx + Mica + rut + L 
1679 Pt 35 1200 2 * 01 + L 
1681 Pt 35 1250 2 * L 
1645 Pt 30 1150 2 * 01 + Mica + L 
1906 AgPd 30 1050 10 5 01 + Mica + L 
1677 Pt 30 1250 2 * L 
1791 Pt 30 1200 22 9 01 + L 
1695 Pt 30 1100 2 * 01 + Mica + L 
1653 Pt 25 1150 2 * 01 + Mica + L 
1655 Pt 25 1200 2 * 01 + L 
1676 Pt 25 1250 2 * L 
1659 Pt 20. 1200 2 * Ol.+ L 	. 
1663 Pt 20 1150 2 * 01 + Mica + L 
1670 . Pt 20 1250 2 * L 
1711 Pt 20 1100 2 * 01 + Mica + L 
1835 AgPd 20 1050 10 10 01 + Mica + L 
1846 AgPd 20 	. 1000 20 8 Ol+Mica+Opx+Cpx+Ilm+L 

Table 18 : Representative compositions of magnesian ilmenite, chromian 
rutile and orthopyroxene from olivine lamproite experiments. 

Mineral opx opx rutile rutile urn ilm 
Run 1891 1891 1885 1885 1846 1846 
Press [kb] 40 40 35 35 20 20 
Temp.[ °C] 1200 1200 1100 1100 1000 1000 

S102 57.52 57.50 -- -- 

UO2 -- -- 91.31 91.31 91.29 55.13 55.58 
A1203. 1.61 1.27 1.31 1.46 -- . 
Cr203 -- -- 2.80 2.29 0.84 0.91 
Fe203 -- -- -- -- 3.72 3.28 
FeO 5.83 6.36 1.54 1.46 26.74 27.49 
MgO 34.42 34.19 0.41 0.40 12.52 12.45 
CaO 0.53 0.68 -- -- -- -- 

MnO -- -- -- -- 0.27 0.29 

Mg-number 91.3 90.6 
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consistent with the occurrence of diamonds in olivine lamproites, as the 
graphite-diamond transition boudary lies at 51-52 kbar at 1250-1300 0 C 

[Kennedy and Kennedy 19761. 

5.4.2 LEUCITE LP*MPROITE 

Experiments on the leucite lainproite composition were run between 5 
and 35 kbar, and results are given in table 19 and illustrated in figure 
42. Three individual liquidus minerals appear in this range: olivine, mica 
and orthopyroxene with increasing pressure, but no point with the three 

together at the liquidus is seen. Clinopyroxene occurs in only one 
experiment at 5 kbar/1050 °C; the extrapolation towards latin is only 
approximate as it is based on the experiments of Part 2, which were 
anhydrous. The dotted line marks the approximate leucite-out curve with a 
similar extrapolation using the results of Part 2. Barton and 

Hamilton [1978] discovered that leucite stability is restricted to <0.5 
kbar in a Leucite Hills orendite in water-saturated conditions. The high 

pressure stability limit may be slightly greater under 'CWI' conditions 

as XH2O is slightly lower, and leucite pressure stability is strongly 
dependent on H20 content [Gupta and-Yagi 1980], although the -low f 02 will 	- 

not favour leucite [Part 21. 

Rutile is the only titanate phase occurring in the leucite lamproite 

experiments and is restricted to high pressures in the temperature range 

studied. A large increase in the thermal stability of rutile occurs 
between 30 and 35kbar, which is the same pressure interval as in the 
olivine lainproite. The appearance of rutile in the leucite lamproite is 
not correlated with the disappearance of olivine as in the olivine 
lamproite. However, magnesian ilmenite is the only titanate coexisting 

with olivine in any of the larnproite experiments [cf. Green and Ringwood 
1967, p.8001. Representative analyses of orthopyroxene and rutile are 

listed in table 20. 

Although there is no point at the liquidus where olivine, 
orthopyroxene and mica coexist for the leucite lamproite composition, the 

phase relationships can be interpreted to indicate an origin by melting of 
mica-harzburgite if allowances are made for minor fractional 
crystallisation or conditions of melting. Once again, there should 
theoretically be a unique pressure for a primary magma, at which the three 
mica-harzburgite phases coexist at the liquidus as in figure 41. It is not 
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Figure 42 

Pressure-temperature grid of experimental results on leucite 

iarnproite. 0 = mica; x = olivine; + = orthopyroxene; * = rutile; 

o = clinopyroxene; • = liquid only. Dotted line marks approximate 

position of the leucite-out curve. 



Table 19 : Experimental run data for Leucite Lamproite at CWI 
* = qualitative fluid determination only [see table 171 
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Run Capsule Pressure Temp. Duration 1120/ 
[kbar] [ °C] [hr) CU4  

1866 AgPd 35 1150 3.5 7 
1870 AgPd 35 1100 3.5 * 
1715 Pt 30 1150 2 * 
1716 Pt 30 1100 2 * 
1877 AgPd 30 1200 2.5 6 
1879 AgPd 30 1000 6.5 10 
1738 Pt 25 1100 2 4 
1863 AgPd 25 1150 2.7 8 
1869 AgPd 25 1050 5 7 
1898 AgPd 25 1175 2 5 
1909 AgPd 20 1150 2 9 
1913 AgPd 20 1125 2.5 6 
1731 Pt 20 1100 2 7 
1918 AgPd 15 1100 2 4 
1921 AgPd 15 1125 2 7 
1940 AgPd 10 1100 2 9 
1947 AgPd 10 1125 2 8 
1950 AgPd 10 1150 2 7 
1934 AgPd 5 1100 2 1.4 
1936 AgPd 5 1150 2 * 
1946 AgPd 5 1175 2 2 
1951 AgPd 5 1050 3.5 1.7 

Run products 

Mica + rut + L 
Mica + rut + L 
Mica + L 
Mica + L 
Opx+L 
Mica + rut + L 
Mica + L 
Mica + Opx + L 
Mica + rut + L 
L 
L 
L 
Mica + L 
Mica + L 
L 
Mica + L 
Mica + L 
L 
01 + L 
01 + L - 	- 
L 
01 + Cpx + Mica + L 

Table 20 : Representative analyses of orthopyroxene and rutile from 
leucite lamproite experiments 

Mineral opx opx rutile rutile 
Run 1877 1877 1879 1879 
Press [kb] 35 35 30 30 
Temp [ 0c] 1100 1100 1000 1000 

S102 56.96 56.81 -- -- 
T102 -- 0.31 91.61 91.50 
A1203 1.45 1.41 1.60 1.57 
Cr203 0.52 0.38. 2.59 2.85 
FeO 7.95 8.01 1.17 1.36 
MgO 31.86 31.48 -- -- 
CaO 1.26 1.59 0.15 -- 

Mg-number 87.7 87.5 
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reasonable to propose that the olivine liquidus field remains narrower 

than 25 0C for >10 kbar, which is required for it to fall between the 

points determined. The appearance of mica alone at the liquidus over this 

pressure range can be reconciled with the mica-harzburgite melting model by 

either of the following scenarios: 

The composition is not primary, but has crystallised, and subsequently 

lost, a small amount of olivine at high pressures. This explanation is 

illustrated in figure 43, and requires removal of melt from the source and 

emplacement through some pressure interval (b-->a) without substantial 

cooling. This causes olivine to crystallise from the original composition, 

followed by mica crystallisation and olivine resorption (figure 43b). The 

liquid composition will then leave the PHL+EN+L phase boundary and pass 

onto the mica liquidus surface either by fractional crystallisation of 

olivine or by complete resorption of olivine. The latter is more likely 

the smaller the interval between pressures a and b, since a smaller amount 

of olivine will need to be resorbed. It is not possible to determine 

whether or not olivine fractionation must occur, since this depends on the 

precise direction of movement of the peritectic point with pressure. 

However, if this movement causes virtually no difference in silica 

saturation (i.e. it approximately parallels the SAN-FO join), then olivine 

fractionation becomes necessary. 

The experiments may contain more water than natural melting 

conditions. If the excess of H20 has the effect of expanding the liquidus 

phase volume of phiogopite, then the leucite lamproite may represent a 

primary liquid but will fall in the phiogopite liquidus phase field 

(figure 44) due to inappropriate experimental conditions. 

In either of the above scenarios, the pressure at which multiple 

saturation in mica, orthopyroxene and olivine occurs cannot be much 

greater than 20 kbar as constrained by the kink in the liquidus in figure 

42, and the difference between the true primary and experimental 

compositions is very small or none. 

A major difference between the leucite lamproite and olivine 

lamproite P,T diagrams is the presence of a subliquidus field of mica in 

the leucite lamproite with no coexisting crystalline phases at pressures 

where the liquidus field is olivine, mica or orthopyroxene. This can be 
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An alternative explanation for the mica liquidus phase field 

in figure 42. If the experiments contain more water ("high H20) than the 

original source ("low 1120"), and if the excess water causes expansion of 

the phlogopite phase volume, then the bulk composition (x) will lie in the 

phiogopite liquldus phase field at the pressure of origin. 
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explained with reference to the Ks-Fo-Qz system in figure 45, into which the 

experimentally determined positions for the PHL+FO+EN+L peritectic point 

in water saturated conditions at 3 kbar (Luth 19671 and 28 kbar [Gupta and 

Green 19871 are plotted. The approximate positions for recast normative 

compositions of the ixperimental leucite lamproite and olivine lamproite 

compositions are also plotted, and marked as 20 kbar and 50 kbar 

"water-rich" (i.e. CW1) positions. The positions of the natural rock and 

simple system compositions are not directly comparable since the entire 

analyses of the rock compositions have not been recast (e.g. 10-11% 

normative ilmenite+apatite), but are intended to show the effect of pressure 

on the movement of the peritectic point. Both natural rock and simple system 

compositions show that increasing pressure strongly affects the Mg-content 

of melts at the peritectic point, but does not greatly modify the degree of 

silica saturation for pressures of 20 kbar and above. Taking the positions 

plotted as a guide, and once again considering theoretical melting of 

mica-harzburgite, the occurrence of mica alone or mica + orthopyroxene at 

subliquidus temperatures in the liquidus phase diagram of the resulting melt 

dpends on the orientation of. the phlogopite+enstatite phase boundary with 

respect to the phiogopite-enstatite join. For olivine lamproite [ - 50 kbar 

"water-rich"], the tangent to the PHL+EN boundary cuts the PHL-EN join and 

thus mica and orthopyroxene will both crystallise. In the case of leucite 

lamproite [20 kbar "water-rich"], the tangent cuts the extension of the 

PHL-EN join at point b, indicating peritectic crystallisation of mica and 

dissolution of enstatite (Morse 1980], leading to the appearance of a 

mica+liquid field at subliquidus temperatures. 

The results of these experiments can be taken to support the 

hypothesis of Foley et al. [Part 41 that the two lamproite compositions, 

representing the range of primary lamproite compositions, may be derived 

by melting of mica-harzburgite in reduced conditions with pressure as the 

major control on melt composition. The results suggest a range in 

pressure of 20 kbar for leucite lamproites to 50 kbar or more for olivine 

lamproites. Olivine lamproites with lower normative olivine contents than 

the experimental composition may therefore originate by melting at 

intermediate pressures. 

5.4.3 EXPERIMENTS WITH VARIABLE FLUID COMPOSITIONS 

Several experiments had fluid compositions which deviated from the 

H20-rich 'CWI' conditions, and thus give some indications as to how the 
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Schematic diagram illustrating the difference in subliquldus 

phase assemblages between the two lamproite compositions. Positions for 

the peritectic points Fo+En+Phl+L at 3 kbar and 28 kbar are from the 

experimental results of Luth [19671 and Gupta and Green [1987]. 

Approximate positions for recast normative compositions of leucite 

lamproite and olivine lamproite are shown as "20 kbar" and "50 kbar" 

respectively. The tangent to the En+Phl phase boundary cuts the En-Phl 

join for olivine lamproite (a), indicating crystallisation of both En and 

Phl below the liquidus at the pressure of melting. The tangent for the 

leucite lamproite composition cuts the extension of the En-Phi join, 

explaining the presence of a field of Phl+L at subliquidus temperatures in 

figure 42. 

Fo 
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phase relationships of the lamproites vary with fluid composition. Results 

are listed in table 21 together with 'CWI' results at the same pressure-

temperature conditions for comparison. These experiments include both 

fluids with higher CH 4 /H20 (f02 lower than CW1) and H20+CO2 mixtures in 

which CH4  is absent or present in very low abundances (higher f02)'  In the 

latter case, the CO2/H20 ratio is listed in the fluid composition column 

of table 21, and marked with an asterisk. 

The effect of variable CH4/H 20 on phase relationships follows the 

behaviour expected from variation in XH20. In runs at 20 kbar/1050 0C, an 
increase in CH4/H 20 causes an increase in thermal stability of the 

five-phase mineral assemblage seen at 10000C in H20-rich conditions. At 
higher pressures, the liquidus temperature is seen to be very sensitive to 

CH4/H20 of the fluid: Run 1807, with CH4/H20=0.3 compared to the more 

usual 0.1-0.15 of 'CWI' runs, crystallised olivine at 30 kbar/1300 0C, an 

increase of >50 0C in the liquidus temperature. 

The greatest range in CH4/H 20 of experiments at a single pressure 

and temperature has been obtained for 30 kbar/1200 0C, for which phase 
assemblages are pictured as back-scattered electron images in figure 46. 

The large olivine plus quench mica assemblage pictured in figure 46a is 

typical of the olivine liquidus phase field in olivine lamproite. With an 

increase in CH4/H20 the assemblage changes through olivine+mica+quench 

(figure 46b) to the five phase assemblage seen only at temperatures lower 

by 200 0C in water-rich runs. The high degree of crystallinity and small 
grain size show the C11 4-rich run to be well below the liquidus. In this 

run, mica is still present despite the low H 20 content due to the presence 

of fluorine. The CH4/H20 ratio of Run 1799 (figure 46c) indicated f02IW 

[Appendix III]. 

Partial analyses of micas from the CH 4-rich (1799) and H 20-rich 

(1795) runs are compared in table 22. Fluorine contents are higher in-the 

methane-rich run but are still quite low due to the abundance of fluid 

relative to the fixed fluorine content of the starting composition. The 

correlation of decreasing Al with increasing F is also seen in simple 

system experiments with fluorine and water [Part 3],  and is particularly 

important for melting of mica-bearing mantle to produce lamproites. 

The fluorine-rich micas are perpotassic (K>Al), unlike the fluorine-poor 

micas, suggesting that melting of a fluorine-rich source will give rise 
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Table 21 	: Experimental results indicating variation in phase relationships 
with fluid composition 
OL 	Olivine lamproite; LL = Leucite lamproite 

Run Comp. Pressure Temp. Duration Fluid Run products 
Ekbarl E°c] [hr,min] CH4/H 2 0 

(CO2/1120)" 

1835 OL 20 1050 10 0.1 01 + Mica + L 
1832 OL 20 1050 10 0.42 01 + Mica + L 
1821 OL 20 1050 10 1.8 01+Mica+Opx+Cpx+Ilm+L 

1750 OL 30 1150 24. 1.0 Opx + Mica + L 
1645 OL 30 1150 2 0.2 01 + Mica + L 

1799 OL 30 1200 6 2.7 01+Mica+Opx+Cpx+llm+L 
1795 OL 30 1200 6 0.5 01 + Mica + L 
1791 OL 30 1200 22 0.2 01 + L 
1876 OL 30 1200 2 0.35 01 + Opx + L 

1807 OL 30 1300 3 0.3 01 + L 

1857 LL 20 1150 2 6 	" Mica + Opx + Cpx + L 
1860 LL 20 1150.. 2 0.16(CO2>CH4 ) Mica + Cpx + L 
1909 LL 20 1150 2 0.14(C114>CO 2 ) L 

Table 22 : Partial analyses of micas from experiments at the same 
temperature and pressure but with differing fluid composition. 
[c] = cations per 22 oxygen 

Run 1799 1799 1795 1795 
Press [kb] 30 30 30 30 
Temp [°c] 1200 1200 1200 1200 
C114/}120 [fluid] 2.7 2.7 0.5 0.5 

S102 40.17 40.29 42.18 42.04 
A1203 10.46 10.11 13.10 12.96 
F 1.12 1.22 0.73 0.73 
Mg-number 86.4 87.3 89.0 89.4 

Si 	[c] 5.85 5.81 5.90 5.90 
Al 	[c] 1.80 1.72 2.16 2.14 
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to perpotassic melts. The A1 203-content of orthopyroxenes present 

in the source during melting, or possibly produced by incongruent melting 

of phiogopite, are very low (see tables 18 and 20), but will nevertheless 

serve to enhance the peralkalinity of partial melts. The presence of 

fluorine may therefore be essential to the production of lamproites, many 

of which are perpotassic [Part 11. 

In the leucite lamproite runs with CO2 , comparison of runs 1860 and 

1909 suggests that a small amount of CO 2  may have an enormous influence 

on the appearance of clinopyroxene. Both these runs are H20-rich, but 

differ in having CO 2  or CH4 as the second most abundant fluid component. 

Whilst this effect must be viewed with caution since it is based on only 

one experiment, in the more CO2-rich run (CO2/H20=6; Run 1857) 

clinopyroxene is accompanied by orthopyroxene and mica. The coexistence of 

mica with a CO2-rich fluid in Run 1857 is interpreted to indicate 

buffering of the fluid phase by mica in an analogous manner to CO 2-rich 

fluids in equilibrium with amphibole-peridotite [Wyllie 1977; Eggler 1978; 

Olaf sson and Eggler 19831. This run, and run 1876 with an olivine 

lamproite sample, had no iron-wustite mixture to prevent oxidation, which 

has proceeded beyond CW, supporting the assertion of Woermann and 

Rosenhauer [1985] that graphite+H 2 0 has little buffering capacity. 

However, in Run 1876 mica does not occur and the fluid has much lower 

CO2/H20. This may be due to the lower K20 content of the olivine lamproite 

causing mica to be exhausted before CO2-rich fluid compositions were 

attained. 

5.5 DISCUSSION 

5.5.1 APPLICABILITY OF THE EXPERIMENTS TO LAMPROITE PETROCENESIS 

The model for the origin of lamproites by partial melting of mica-

harzburgite in reduced conditions explains many of the features of 

standard lamproites, including the observed H2 0-rich volatile 

compositions, those aspects of the geochemistry which indicate a 

chemically depleted and re-enriched source [Part 11, and the 

predominance of depleted nodule types [Atkinson et al. 1984; Jaques 

et al. 1984a]. 

When applied to non-standard lamproites, particularly those 

bearing characteristics transitional towards the low-silica Group II 
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ultrapotassic rocks [Part 1], the model is less suitable, and needs 

to take into account factors such as the presence of clinopyroxene, 

garnet or spinel in the source, and the presence of other volatile 

species such as CO2 . Examples of these rocks include the clinopyroxene-

rich madupites which are related to more typical lamproites in the 

Leucite Hills [Kuehner et al. 1981], and the West Greenland lamproites 

which contain considerable CO2  as carbonate [Scott 19791. Primary magmas 

giving rise to these compositions may be derived from melting of a 

clinopyroxene- and mica-rich source, possibly with a mixed CO2-H 20 

volatile phase [Barton and Hamilton 1979]. The experiment' described above 

with high CO 2  shows that CO2 may be very important in stabilising 

clinopyroxene in geochemically depleted compositions, but further studies 

are needed to investigate this link of CO 2  with "madupitic" lamproites. 

Barton and Hamilton [1982] performed melting experiments at high 

pressures on a Leucite Hills orendite with 55 wt% SiO 2  to which no 

volatiles were added, but including minor H20 (1.23 wt%) and CO2 (0.2 

w%) which were present in the rock. They reported the occurrence of 

coexisting olivine, orthopyroxene, clinopyroxene and garnet at the 

liquidus at 27 kbar, and concluded that silica-rich orendites may 

originate by melting of garnet lherzolite at about that pressure. 

Phlogopite appeared >100 0C below the liquidus in the orendite 
experiments, which Barton and Hamilton argued was due to a lower water 

content in the experiments than in the mantle source, believing that the 

high K2 0 content of the rock (11.8 wt%) requires buffering by residual 

phiogopite. This discrepancy in phlogopite stability is unlikely to be due 

to fluorine as a natural rock starting composition was used, although no 

fluorine analysis was given. 

Barton and Hamilton (1982] noted uncertainty in their 

identification of olivine in high pressure runs due to the very small 

crystal size: these were too small for confirmation by microprobe analysis 

in runs above 5 kbar. In the current experiments on the Gaussberg 

composition, olivine did not occur at pressures higher than 5 kbar. 

Acceptance of the high pressure crystals in the orendite experiments as 

primary olivines would cause irreconcilable discrepancies between the 

orendite and Gaussberg experiments: the higher 1120 in the Gaussberg runs 

should promote the stability of olivine, as should the lower silica 

composition (11 % normative olivine versus 2% normative quartz for the 
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orendite). Thus, it may be that the multiphase saturation seen in the 

orendite is in two pyroxenes and garnet, but not olivine. Other 

differences between the experimental results may be largely due to oxygen 

fugacity: f0 2  wasnot controlled in the orendite experiments, but the high 

Fe 203/FeO indicates a high intrinsic oxygen fugacity of the sample which 

may have persisted throughout the runs. 

5.5.2 MELTING OF MANTLE WITH INPUT OF REDUCED FLUIDS 

Taylor and Green [1986a] and Green et al. [1986] suggested that water 

released by the interaction of upwelling CH4-rich volatiles derived from 

the deep mantle with relatively oxidised lithosphere would cause a zone of 

"redox melting". If this process is considered to operate in the source 

regions of ultrapotassic magmas, then the type of melt produced will depend 

on the the manner of fluid input, i.e. episodic or continuous volatile 

addition, and on the initial oxidation state of the mantle into which the 

fluids are introduced. 

[i] Episodic fluid supply: The redox behaviour of mantle interacting with 

reduced fluids can be demonstrated with reference to figure 47. An 

initially oxidised mantle with f02  around MW or FMQ in fluid-saturated 

conditions would lie in the field HPer+V or HCPer+V and would be forced 

towards the carbon saturation surface (csS) by interaction with reduced 
flUids. Fluid compositions would proceed along the CSS towards the left of 

the diagram until melting commenced at B. Fluids at this point are H 20+CO2  

mixtures and so melts are likely to be relatively silica-poor, possibly 

kimberlitic or"madupitic". Fluids introduced as a single pulse will become 

completely assimilated by the oxidised environment so that melting will be 

restricted to CO2-bearing conditions. 

The fields in figure 47 refer to fluid-saturated conditions, in which 

melt must exist in the mantle with compositions towards the top left of 

the diagram. However, if the mantle is fluid-undersaturated, mantle 

compositions very close to the H 20-maximum on the CSS may exist in 

subsolidus conditions prior to addition of the reduced fluids. In this 

case melting will start with H20-rich, CO2-p00r fluids present and the 

initial melt compositions will resemble more typical lamproites. These 

mantle compositions lying close to the H20-maximum are more reduced than 

the compositions in the HPer+V or HCPer+V fields, and could be produced by 

successive episodes of melting of the more oxidised compositions. 
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the solidus (Y-A and X-B)(Green 1973a). 
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[2] Continuous fluid supply: Continuous supply of reduced fluids to an 

oxidised mantle would result initially in production of silica-poor melt 

compositions as descibed above, followed by silica-rich melts as fluid 

compositions pass around the H 20-maximum, and finally production of melts 

in the presence of a fluid phase whose composition is buffered by the 

incoming fluid species. In this case relatively large volumes of 

lamproitic melt may be produced in the reduced, buffered environment. It is 

considered likely that f02  in a reduced mantle below CW will be controlled 

by carbon reactions and thus the supply of C-O-H fluids, because the 

buffering capacity of Fe-bearing minerals will be extremely low due to 

their low Fe3+  contents [Woermann and Rosenhauer 1985; Kadik and Lukanin 

1985a]. Continuous supply of fluids to an initially reduced mantle would 

produce much the same results, except that the initial stage of 

silica-poor melt production would not occur. 

Either of the above models for episodic or continuous supply of 

reduced fluids to a more oxidised mantle produces a dynamic explanation 

for the correlation of lamproitic magmas with geochemically depleted 

mantle. Progressive redox melting produces a geochemically depleted 

residue which could be the source for lamproitic magmas as deduced from 

larnproite chemistry and ultramafic nodule compositions. By this process 

reduction accompanies geochemical depletion, which is compatible with the 

H20-rich volatile compositions of most lamproites. However, the time scale 

for this process must be very large in most cases, since an enrichment 

event introducing incompatible elements must occur between the depletion 

event and melting to produce lamproites, and isotopic studies indicate 

that these enrichment events are generally Proterozoic events In sources 

for Tertiary lamproites [Fraser et al. 1985; Nelson et al. 1986]. If the 

mantle source remains reduced between the early redox melting depletion 

event and melting to produce lamproites, this implies that the enrichment 

event may also occur in a reduced environment, involving reduced melt or 

fluids. 

It is suggested that the occurrence of low-silica madupites 

coexisting with higher silica orendites and wyomingites in the Leucite 

Hills region may be due to melting of a more oxidised pocket of mantle 

material in the presence of CO 2-bearing fluids. It is interesting to note 

that madupites in the Leucite Hills contain rare ferridiopsides as 
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inclusions in clinopyroxene phenocrysts [S.M.Kuehner pers. comm.] indicating 

contact with, or derivation from, extremely oxidised materials, although 

-their relationship with the madupites is uncertain. 

5.5.3 SURVIVAL OF DIAMONDS AND LAMPROITE-KIMBERLITE COMPARISONS 

Inclusions in diamonds in the West Kimberley olivine lamproites show 

that the diamonds are not of magmatic origin, but are accidental 

inclusions in the lamproites. The abundance of diamonds must therefore be 

a function of their survival in the lamproite during ascent. If the model 

for the origin of lamproites in a reduced mantle is correct, diamonds will 

not be out of equilibrium in the source of the olivine lamproites prior to 

or during melting, and will only be removed from equilibrium after ascent 

through the diamond-graphite transition pressure. The kinetics of diamond 

breakdown during emplacment are not well understood, but their survival 

must depend on pressure-temperature paths and oxidation paths which 

prevent attainment of the activation energy for diamond-graphite 

transition. Simple models of the oxidation of reduced magmas during ascent 

suggest that the greater part of the oxidation occurs in the uppermost 15 

kbar, and carbon saturation may persist to 5 kbar or less [Part 4; 

Kadik and Lukanin 1985b]. This oxidation path may lessen the potential 

for diamond breakdown, but this and other factors affecting diamond 

breakdown require further assessment. 

The occurrence of diamonds, although rare, in some leucite 

lainproites in the West Kimberley region indicates that although some 

leucite larnproites may be primary magmas, others must be the products of 

crystal fractionation from olivine lamproites: according to the 

experiments, only olivine lamproites have a deep enough origin to contain 

diamonds. This conclusion is supported by geochemical modelling [Jaques et 

al. 1984a, 19861. 

If the reduced mantle origin-model for lamproites is correct, the 

major difference between lamproites and kimberlites may be in the 

oxidation state of the mantle source. The large amounts of carbonate 

present in many kimberlites, if primary [e.g. Dawson and Hawthorne 1973; 

Mitchell 19791, precludes a reduced source for kimberlites followed by 

oxidation during emplacement because of the low solubility of reduced carbon 

in silicate melts [Taylor and Green 1986b]. However, kimberlites may 
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originate by interaction of oxidised mantle with reduced fluids at high 

pressures as discussed in the preceding section. Alternatively, oxidised 

fluids, possibly from recycled subducted material, may be involved in 

kimberlite genesis. 

The progressive redox melting model may be applicable to the East 

Kimberley region of Western Australia where olivine lamproites and 

kitnberlites occur in close proximity. It is possible that the kimberlites 

are derived from melting of oxidised and more fertile pockets of mantle, 

and the olivine lamproites from more reduced and depleted areas. 
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ULTRAPOTASSIC ROCK DATABASE 

This appendix contains the database used In the review and 

classification of- ultrapotassic rocks (Part I). Analyses include major 

elements in wt%, volatiles where available (wt%), and a standard set of 13 

trace elements (p.p.m.). Source references are coded as shown by the list 

below, and full references are given in the integrated list at the back of 

the thesis together with references cited in the text. 

Number Reference Number Reference 

1 L.-Ruiz and R.-Badiola [1980] 30 Bolivar and Brookins [1979] 

2 Fuster et al. 	[1967] 31 Scott-Smith and Skinner [1984b] 

3 Nixon et al. 	[1980] 32 Atkinson et al. 	[1984] 

4 Borley [1967] 33 Jaques et al. 	[1984a] 

5 Fuster and Pedro [1953] 34 Prider [1982] 

6 VenturellI et al. 	[1984a] 35 Wade and Prider [1940] 

7 Venturelli et al. 	[uapubl.] 36 Prider [1960] 

•8 Hall [1982] 37 Sheraton and Cundari [19801 

9 Velde [1967] 38 Sheraton [1981] 

10 Dal Piaz et al. 	[19791 39 Foley [unpubl. - appendix 21 

11 Venturelli et al. 	(1984b] 40 Sheraton and England [1980] 

12 Vila et al. 	[1974] 41 Mittempergher [1965] 

13 Scott [1977] 42 Sahama [1974] 

14 Scott [1979] 43 Gallo et al. 	[19841 

15 Scott [1981] 44 Holm et al. 	[1982] 

16 Velde 	[1975] 45 Gragnani [1972] 

17 Kuehner et al. 	[1981] 46 Carstens [19621 

18 Schultze and Cross [1912] 47 Griffin and Taylor [1975] 

19 Cross [1897] 48 Kresten and Edelman [1975] 

20 Ogden [1979] 49 Vartialnen et al. 	[1978] 

21 Smithson [1959] 50 Denaeyer et al. 	[1965] 

22 Johnston [1959] 51 Holmes and Hecht [1936] 

23 Barton and Hamilton [1978] 52 Holmes [1937] 

24 Yagi and Matsumoto [1966] 53 Holmes and Harwood [1937] 

25 Barton and van Bergen [19811 54 Combe and Holmes [1945] 

26 Carmichael [1967] 55 HIgazy [19541 

27 Best et al. 	[1968] 56 Holmes [1950] 

28 Merrill et al. 	[1977] 57 Holmes [1942] 

29 Cullers et al. 	[1985] 58 Sahama [1954] 
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Bell and Powell (1969] 100 Savelli [19671 

Mitchell and Bell [1976] 101 Grubb [1965] 

Holmes [1945] 102 Ferrara et al.[1981] 

Holmes and Harwood [1932] 103 Foden [1979] 

Holmes [1952] 104 Foden and Varne [19801 

Holmes [1956] 105 Van Padang [19511 

Edgar and Arima [19811 106 Wheller [1986] 

El-Hinnawi [1965] 107 Perchuk [1965] 

Bailey [1984] 108 Miller [19721 

McIver [19811 109 Cosgrove [1972] 

McIver and Ferguson [19791 110 Lees 	[1974] 

Kranck [1928] 111 Velde [1971a] 

Ukhanov [19631 112 Barberi and Innocenti [19671 

Gupta et al. 	[1983] 113 Wimmenauer [1973] 

He Guan-Zhi [1984] 114 Guintrand et al. 	[1963] 

Brooks et al. 	[19811 115 Van Moort (1966] 

Gold [1970] 116 Velde [1971b] 

Kemp [1891] 117 Sabatier (198 01 

Ravich et al. 	[1978] 118 Holub [1977] 

Grikurov et al. 	[1980] 119 Palivcova et al. 	[1968] 

Poli et al. 	[1984] 120 Kramer [1976] 

van Bergen et al. 	[1983] 121 Nemec [1973] 

Thompson [1977] 122 Nemec [1970] 

Barton et al. 	[1982] 123 Nemec [1974] 

Schneider [19651 124 Stefanova [1966] 

Giammetti and Beccaluva [1968] 125 LaCroix [1926] 

Varekamp [19791 126 Lepvrier and Velde [1976] 

Trigila [1966] 127 Keller [1983] 

Trigila [19691 128 Maksimov and Ugryurnov [1971] 

Rogers et al. 	[1985] 129 Vitterbo and Zanettin [1959] 

Puxeddu [1972] 130 Chao Tsung-pu [1960] 

Cundari and Matthias [1974] 131 Pirsson [1905] 

Amendolagine et al. 	[1962] 132 Iddings and Morley [1915] 

Cundari [19791 133 Daly [1912] 

Fornaseri et al. 	[1963] 134 Knopf [1936] 

Peccerillo et al. 	[1984] 135 Larsen [1941] 

Civetta et al. 	[1981] 136 Schmidt et al. 	[19611 

Angelluci (1974] 137 Nash and Wilkinson (19701 

Appleton [1972] 138 Nash and Wilkinson (1971] 

Appleton [1970] 139 Witkind [1973] 

Arevalo et al. 	[1962] 140 Buie 	[1941] 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

.77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 



141 	Burgess [1941] 

142 	Joplin [1966] 

143 	Nicholls and Carmichael [19671 

144 	Kirchner [1979] 

145 	Johnson (19681 

146 	Johnson [19641 

147 	Roden and Smith [1979] 

148 	Roden (1981] 

149 	Ehrenberg [1982] 

150 	Nicholls [19691 
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151 	Rogers et al. [19821 

152 	Williams [19361 

153 	Roden et al. [1979] 

154 	Van Kooten [1980] 

155 	Dodge and Moore [1981] 

156 	Cundari [1973] 

157 	Langworthy and Black [1978] 

158 	Solomon [1964] 

159 	Sutherland and Corbett [1974] 

160 	De Marco [1958] 

161 	Dawson [1972] 



Group I Page 1 

Locality SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain . 
Rock Jumillite Cancalite Fortunite Verite Fortunite Fortunite Cancalite Cancalite Jumiliite Fortunite 
Reference 1 1 1 1 3 3 3 3 3, 3 

Si02 47.72 SS.OS S6.0S 61.22 S7.90 S4.90 S6.80 S7.40 46.30 S8.20 
T102 1.43 1. 76 l.3S 1.23 1.49 1.40 l.S8 1.62 l.SS l.4S 
Al203 7~72 9.31 11.43. 12.21 10~90 10.30 9.42 9.28 8.S4 12.00 
Fe203 3.01 2 .14 2.23 2.06 S.Sl 5.21 5.23 5.42 7.96 5.01 
FeO 3.40 3.07 3.31 1.96 o.oo o.oo o.oo 0.00 o.oo o.oo 
MnO 0.10 0.08 0.08 0.04 0.06 0.10 0.06 0.08 0.13 0.04 
MgO 16.27 12.18 9.27 4.57 6.59 6.87 12.20 11.50 13 .90 7.67 
Cao 7 .11 3.7S 4.21 2.72 3 .11 6.66 2.80 3.S4 9.~7 2.71 
Na20 1. 71 1.40 . 2.10 1.96 1.30 1.16 0.54 1.09 1.13 1.06 
K20 .4 ~99 8.67 6.14 S.71 7~71 7.22 9.38 9.18 4.30 8.43 
P205 1.68 0.99 0.81 0.77 0.50 0.49 0.67 0.76 1.18 0.71 
H2C>t- 3 .48 1.43 2.91 4.88 2.13 1.94 1.20 0.55 3.15 1.58 
H20- 1.85 1.34 0.84 0.49 0.90 1.21 
C02 0~44 0.07 0.06 0.21 0.38 3.20 0 .1 

Ba 4568 ·o 1164 1343 
Rb 147 597 489 232 
Sr 1499 902 507 596 
Zr 748 776 541 378 920 821 903 857 66 735 
Nb 30 10 31 40 44 28 
y 
La 87 80 91 109 16S 72 
Ce 241 239 262 301 422 216 
Nd 150 138 169 184 239 136 
Sc 17 15 15 15 24 16 
v 100 90 91 92 135 106 
Ni 796 590 428 236 
Cr 668 617 531 395 ..... 

'l 
0) 
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Locality SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spatn SE Spain 

Rock Fortunite Fortunite Jumillite Jumillite Jumillite Jumillite Jumillite Jumillite Jumillite Jumillite 
. Reference 3 3 2 2 2 2 2 2 2 2 

Si02 57.50 56.30 46.43 46.23 48.81 47.03 45.75 51.25 47.07 45.64 
Ti02 1.42 1.44 1.52 . 1.50 1.34 1.32 1.29 1.37 1.32 1.51 
Al203 12.00 11.40 7.20 7.74 8.17 7.20 7. 26 9.10 7.20 8.20 
Fe203 5.09 5.72 2 .97 2.65 3 .46 2.87 2.92 1.45 3.03 3.44 
FeO 3.36 3.09 3.22 3.33 3.02 4.21 3.19 3.83 
MnO 0.04 0.08 0.10 0.14 0~00 0.08 0.15 0.07 0.10 0.12 
MgO .7.66 9.55 16.72 18.04 14 .84 17.37 17.84 15.79 16.88 14.65 
Cao 2.51 2.32 7.45 7.43 7.06 6.77 7 .43 4.25 7.90 8.95 
Na20 1.14 1.00 1.40 1.64 . 1. 71 1.40 1.43 2.20 1.40 1.60 
K20 8.72 8.31 5.20 4.24 5.73 4.70 4. 24 6.40 5.00 3.80 
P205 0.65 0.57 1. 73 2.17 1.39 1.45 1.94 1.16 1. 78 2.04 
H2C* 1.80 2.10 3.10 4.37 3 .46 3.80 4 .19 0.80 2.9p 3.60 
H20- 1.39 1.47 0.74 1.22 0.37 0.52 0.66 
C02 · 0.1 0.90 0.81 0.10 0.60 1.20 0.80 

Ba 
Rb 
Sr 
Zr 689 692 
Nb 26 28 
y 
La ·72 64 
Ce 215 180 
Nd 134 116 
Sc 24 16 
v 103 109 "· t 
Ni 
Cr .•• i . " ' . .1: I;· 

N 
"J 
"J 
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Locality SE Spain SE Spain SE Spain SE Spain 

Rock 
Reference 

Jumillite Jumillite Jumillite Jumillite 

Si02 
Ti02 
Al203 
Fe203 
FeO 
MnO 
MgO 
c.ao 
Na20 
K20 
P205 
H204-
H20-
C02 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v 
Ni 
Cr 

2 

46.96 
1.66 
6.40 
3.90 
2.64 
0.11 

16.80 
7. 77 
1.50 
5.10 
1.90 
3.10 
o. 77 
0.80 

2 

45.53 
1.57 
8.50 
2.93 
4.31 
0.11 

14 .86 
9.06 
1.50 
3.60 
1.82 

' 4 .10 
1.13 
0.60 

2 2 

51.52 50.78 
1.42 1.28 
8.60 9.05 
2.58 2.96 
3.28 3.64 
0.09 0.09 

15.55 14.29 
4.14 5.29 
2.00 1.05 
6.80 7.39 
1.25 1.31 
0.80 2.53 
0.40 
0.80 0.46 

SE Spain . SE Spain SE Spain SE Spain SE Spain SE Spain 

Cancalite Cancalite Cancalite Cancalite Cancalite Cancalite 
2 2 2 2 2 2 

53.39 54.10 55.55 55.15 54.65 55.35 
1.76 1.43 1.52 1.62 1.68 1. 70 

10.83 10.40 9.94 9.62 8.35 9.51 
2 .11 1.93 1.67 1.94 2.04 1.05 
2. 77 3.16 2.87 3.07 3.63 3.23 
0.04 0.15 0.04 0.07 0.08 0.08 

12.79 12.09 11.37 13.09 15.54 12.39 
5.00 5.61 4 .20 4.20 3.22 4.06 
1.49 1.40 1.38 1.18 1.18 1.38 
8.53 8.40 8.76 9.36 8.20 8.72 
0.63 0.90 1.05 1.20 1.18 1.25 
0.68 0.57 0.82 0.48 0.81 0.44 
0.45 



Group I : Page 4 

' Locality SE Spdn SE Spain SE Spain SE Spain SE Spaf n ·sE Spain SE Spain SE Spain SE Spain SE Spain 

Rock Cancalite Cancalite Cancalite Cancalite Cancallte Cancalite Cancalite Cancalite Cancaitte Fortunite 
Reference 2 2 2 2 2 2 2 2 2 2 

Si02 55.00 55.60 55.35 55.90 56.01 55.19 52.80 53.92 53.90 55. 79 
Ti02 1.79 1.68 1.62 1.66 2.03 1.89 1.51 1.70 2.26 1.56 
Al203 8.48 8.35 9.32 8.76 9.23 8.15 9.18 9.94 8.88 10.39 
Fe203 1. 74 1.82 1.68 2.16 2.31 4.04 1.27 0.83 1. 78 1.39 
FeO 3.69 3.39 2.95 2.96 2.87 2.36 3.79 3.81 4.16 4.17 
MnO 0.08 0.07 0.09 0.07 0.07 0.07 0.01 0.09 0.13 0.02 
MgO 13.75 13.23 12.39 12.02 12.03 10.36 12.98 12.49 13.24 .9.98 
Cao 3.69 3.92 3.50 4.06 2.50 2.62 4.14 3.92 3.76 2.00 
Na20 1.18 1. 20 1.80 1. 20 1.42 3.08 1.00 0.80 1.17 4.07 
K20 8.56 8.78 8.60 9.10 8.62 8.52 8.30 8.72 7.56 8.11 
P205 1.12 1.22 1.23 1.20 0.8~ 0.86 1.05 1.05 0.65 0.61 
H2o+ 0.82 1.13 0.63 0.97 0.92 1.67 2.97 1.87 1.23 1.80 
H20- 0.28 1.20 1.01 0.33 
C02 0.59 0.13 0.4 7 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v 
Ni 
Cr 
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Locality SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain 
Barqueros Barqueros Barqueros Puebla 

Rock Fortuhi te Fortuni te Fortunite Fortunite Fortuni'te de Mula Jumilli te 
Reference 2 2 2 2 2 2 2 2 2 4 

Si02 56.68 57.13 57.51 56.25 56.72 55.56 54.70 56.60 53.43 45.53 
Ti02 1.50 1.60 1.24 1.17 1.37 1.38 1.21 1.58 1.21 1.57 
Al203 10.73 10.28 10.57 11.85 11.05 11.60 12.38 12.49 10.87 8.50 
Fe203 2.81 1.90 0.93 . 1.54 2.53 0.72 1.42 o. 77 1.35 2.93 
FeO 4.28 4 .11 4.62 3.74 3.59 4.82 4.09 4.53 2.03 4.31 
MnO 0.01 0.09 0.08 0.01 o.oo 0.12 0.12 0.10 0.06 0.11 
MgO 11.50 9.73 10.12 9. 77 9.91 10.68 9.27 9.47 11.81 14 .86 
Cao 1.41 3.37 3.44 3.22 2.90 3.08 3.64 3.36 3.82 9.06 
Na20 1. 71 2.56 1.54 1.58 1.43 1.48 1.38 1.52 1.38 1.50 
K20 7.62 6.07 7.02 5.94 6.62 6.80 6.50 6.54 6.94 3.60 
P205 0.50 0.82. 0.76 o. 71 0.95 0.41 0.62 0.75 1.57 1.82 
H2o+ 1.00 2.55 2.22 3.44 2. 76 2.44 4.53 1.86 2.08 4.10 
820- 0.15 2.44 1.13 
C02 0.07 0.70 0.6 

Ba 3700 
Rb 
Sr 1900 
Zr 1000 
Nb 
y. 
La 
Ce 
Nd 
Sc 
v 
Ni 
Cr ..... 

O:> 
<::=> 
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Locality SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain 

Rock Jumillite Jumillite Jumillite Jumillite Jumillite Jumillite Jumillite Verite Verite Verite 
Reference 4 4 4 4 4 4 4 5 5 5 

Si02 45.64 51. 25 51.52 47.07 46.96 46.43 47.03 58.08 56.24 61.88 
Ti02 1.51 1.37 1.42 1.66 1.66 1.52 1.32 1.05 1.32 1.43 
Al203 8.20 9.10 8.60 7.20 6.40 7.20 7.20 9.25 10.17 11.34 
Fe203 3.44 1.45 2.58 3.03 3.90 2.97 2.87 2.93 0.84 2.38 
FeO 3.83 4.21 3.28 3.19 2.64 3.36 3.33 1.42 1.96 1.55 
MnO 0.12 0.07 0.09 0.10 0.08 0.10 0.08 .0.00 0.04 0.05. 
MgO 14 .65 15.79 15.55 16.88 16.80 16.72 17.37 2.64 5.31 5.50 
Cao 8.95 4.25 4.14 7.90 7. 77 7 .45 6.77 5.13 6 .4 7 3.92 
Na20 1.60 2.20 2.00 1.40 1.50 1.40 1.40 3. 71 1.86 1.02 
K20 3.80 6.40 6.80 5.00 5.10 5.20 4.70 7.71 7.00 5.57 
P205 2.04 1.16 1.25 1. 78 1.90 1.73 1.45 1.20 1.55 0.88 
H2o+ 3.60 0.80 0.80 2.90 3.10 3.10 3.80 3.24 4.85 2.65 
H20- 0.66 0.37 0.40 0.52 o. 77 0.74 1. 22 0.80 1.50 1.09 
C02 0.8 0.6 0.8 1.2 0.8 0.9 0.1 2.35 0.85 0.26 

Ba 3700 3600 3500 4400 4900 5800 5500 
Rb. 
Sr 2200 1100 1150 1650 1500 1500 1250 
Zr 850 250 600 700 600 700 750 
Nb 
y 
La 
Ce 
Nd 
Sc 
v 
Ni 
Cr ..... 

cc ..... 
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Locality SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain 

Rock Verite Verite 
Reference 5 5 6 6 6 6 6 6 6 6 

Si02 61.15 68.49 58.90 57 .40 57.50 53.40 48.90 57.20 55.80 56.90 
Ti02 1.44 1.30 1.24 . 1.46 1.45 1.44 1.48 1.78 1.52 1.88 
Al203 13.33 10.42 12.30 12.00 11.80 9.88 9 .• 35 8.98 10.00 9.27 
Fe203 4.39 2.62 5.80 5 .as 5.89 6.01 6.71 5.89 5.37 5.69 
FeO 0.96 1.30 
MnO 0.04 0.04 0.07 0.07 0.07 0.07 0.08 0.06 0.07 0.06 
MgO 3 .14 .. 3.60 5.29 9.27 9.15 12.80 15.70 7.99 12.30 11.20 
Cao 1.82 1.88 4.50 2.87 2.93 4.86 5.71 3.66 3 .41 2. 72 
Na20 1.61 1.18 1.48 1.36 1.14 1.90 1.83 1.22 1.18 1.75 
K20 7.75 7.21 7.88 6.84 6.84 6.54 5.10 8.72 8.78 8.75 
P205 1.11 1.05 0.94. 0.75 0.79 0.98 1.53 0.83 0.98 0.88 
H2o+ 2."62 0.62 
H20- 0.49 
C02 0.16 0.07 
L.O.I. 1.50 1.86 2.28 2.05 3.40 3.45 0.28 0.83 

Ba 2075 1615 1450 2450 3140 1965 1695 1980 
Rb 426 496 495 238 153 472 539 503 
Sr 616 528 514 709 1032 772 828 608 
Zr 540 630 620 575 675 800 700 980 
Nb 33 35 34 30 44 39 39 50 
y 28 32 30 26 32 30 28 30 
La 
Ce 
Nd 
Sc 20 14 . 14 15 14 13 14 15 
v 107 100 97 96 102 88 80 96 
Ni 324 379 416 669 724 490 600 540 ...... 

():) 

Cr 794 614 624 827 925 465 816 641 ~ 
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Locality SE Sp~in SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain 

Reference 6 6 6 6 6 6 7 7 7 7 

Si02 57.30 54.60 53.60 57.80 56.80 59.50 55.70 56.70 57.20 56.40 
Ti02 1.94 1. 75 1. 71 1.52 1.52 1.47 0.98 1.59 1.53 1.77 
Al203 9 .60 . 9.52 9.41 12.10 11.80 11.90 12.50 10.30 10.80 9.51 
Fe203 5.54 5.66 5.74 6.36 . 5.89. 5.55 5.47 6.36 5.64 5.25 
FeO 
MnO 0.05 0.07 0.07 0.06 0.07 0.07 0.08 0.07 0.07 0.06 
MgO 7 .45 13.30 14.60 3.24 8.99 8.59 9.21 9.12 8.81 11.60 
Cao 3.65 2.87 2.90 3.54 3.34 2.26 5.27 2.83 2.57 3.29 
Na20 1.57 0.69 0.64 1.66 1.40 1.23 1.43 1.04 1.11 0.80 
K20 8.49 8.86 8.58 8.34 7.18 8.28 6.40 8.12 8.15 8.32 
P205 0.91 0.95 1.13 1.34 0.66 0.56 0.78 0.75 0.79 0.88 
H2o+ --
H20- --
C02 
L.O. I. 3.35 1.60 1.62 4.00 2.28 0.53 

Ba 2800 2050 2040 2590 1350 1610 1880 1550 1695 2120 
Rb 465 541 603 451 523 569 365 644 658 582 
Sr 654 526 558 898 500 426 562 521 484 743 
Zr 1030 680 795 550 705 790 440 560 635 795 
Nb 50 32 39 39 35 37 29 30 35 39 
y 29 24 31 35 35 32 26 28 27 33 
La 
Ce 
Nd --
Sc 14 14 13 14 14 18 15 14 13 
v 87 91 89 115 91 88 106 115 122 94 
Ni 399 657 719 178 363 439 421 410 446 554 ...... 

o:i 

Cr 633 638 679 718 642 550 658 574 637 615 (J.j 

! • 
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Locality SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain SE Spain England Corsica Corsica 
Pendennis Sisco Sisco 

Rock Minette Minette Minette 
Reference 7 7 7 7 7 7 7 8 9 9 

Si02 56.30 56.50 56.50 57.30 55.10 57.60 57.50 50.69 56.23 57.06 
Ti02 1.70 1.89 1.86 1.94 1.82 1.73 1.53 1.58 1.14 1.36 
Al203 9.68 9.80 9.42 9.60 9.88 11. 70 11.40 9.71 12.06 11.07 
Fe203 5.39 5.75 5.23 5.54 5.55 5.93 5.75 3.06 1.91 1.96 
FeO 3.37 2.91 2.99 
MnO 0.06 0.07 0.05 0.05 0.06 0.07 0.08 0.13 0.07 o.oo 
MgO 11.60 10.20 9.52 7 .45 12.40 5.87 9.98 6.07 6.90 6.48 
Cao 3.21 2.78 3.62 3.65 2.83 3.54 2.57 5.28 3.48 4.52 
Na20 0.83 1.88 1.41 1.57 0.71 1.33 1.31 0.47 1.03 . 1.45 
K20 8.37 9.34 8.08 8.49 9.08 8.13 7.75 9.22 10.00 9.60 
P205 0.82 0.76 0.72 0.91 1.12 0.54 0.61 1.73 0.79 0.41 
H2o+ 0.82 1.56 0.81 
H20- 1.58 0.55 
C02 6.91 0.41 2.11 
L.O.I. 

Ba 2095 2030 3055 2800 1900 1545 1200 6306 
Rb 587 537 466 465 556 556 643 
Sr 738 655 730 654 555 405 384 2345 
Zr 760 1010 1010 1030 750 895 750 1984 
Nb 39 51 50 50 37 40 37 45 
y 28 32 31 29 28 31 30 36 
La -- 274 
Ce 616 
Nd 264 
Sc 13 14 14 14 14 14 18 18 
v 89 91 81 87 93 87 94 128 
Ni 549 491 470 399 567 250 455 122 ...... 
Cr 665 612 633 675 399 706 262 co 

~ 
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Locality NW Alps NW Alps NW Alps NW Alps NW Alps Algeria Algeria West West West 
Koudiat Koudiat Greenland Greenland Greenland 

Sample 5611 5612 5616 
Reference 10 ,11 10,11 10 ,11 10 ,11 10 ,11 12 12 13,14 13 13 

Si02 56.00 54 .85 49.33 50.22 56.03 56 .18 . 56.56 38.28 38.29 48.99 
Ti02 1.40 1.50 1.05 1.06 1.24 1.43 1.45 2.24 2.34 3.81 
Al203 8.90 8.87 11. 28 10.76 10.98 12.80 13 .15 5.60 5.73 8.45 
Fe203 2.00 2 .OS 1.63 1.81 2.21 1.80 1. 70 2.33 2.22 2.30 
FeO 3.30 3.76 4.60 5.23 2.65 3.32 2.87 4.83 4.93 3.95 
MnO 0 .11 0.18 0.10 0 .11 0.09 0.08 0.08 0.09 0.09 0.07 
MgO 9.40 9.54 13.61 12.87 9.27 8.83 8.24 15.30 14 .89 6.72 
cao 4.20 4.33 7.65 6.43 4 .11 3.16 3 .42 8.99 8.40 5.60 
Na20 1.90 1. 78 1.60 0.85 1.29 1.61 1. 21 1.60 1.52 1.92 
K20 9.60 9.40 5.94 6.72 9.07 6.56 8.33 6.27 6.44 9.31 
P205 1. 20 1.40 1.10 1.19 1.09 0.30 0.32 0.76 0.83 1.85 
H2o+ 2 .• 99 1.51 3.30 2.75 1.18 
H20- 0.62 0.83 
C02 9.00 9.04 2.74 
L.O.I. 1.60 2.05 2.34 2.46 1. 78 

Ba 1730 1767 2560 
Rb 371 400 245 325 496 144 149 141 
Sr 580 1030 690 625 440 1385 1394 2842 
Zr 730 854 375 450 592 557 557 724 
Nb 40 54 26 28 30 
y 52 68 36 46 47 17 18 25 
La 164 221 206 518 
Ce 357 213 265 258 284 293 642 
Nd 227 140 173 175 
Sc 
v 110 80 125 125 95. 219 228 .. : 309 
Ni 315 364 395 460 396 557 541 19 ...... 

Co 
Cr 586 660 802 839 . 600 755 703 178 en 
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Locality West West . West West West West West West West West 
Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland 

Sample 5620 5621 5622 5622A 5623 5624 5625 5625A 5625B 5628 
Reference 13 13 13,15 13,14 13,14 13 13 13 13 13 

Si02 45.95 47.30 39.29 39.21 41.58 40.63 39.98 40.79 38.23 40.52 
Ti02 3.62 3.88 2.17 2.24 3.46 3.44 2.96 3.23 2.33 3.06 
Al203 8 .19. 8.36 4.90 5.01 7 .11 6.66 6.47 7.07 5.14 6.60 
Fe203 3.52 2.92 1.35 1.49 1. 28 1 1.51 0.88 1.24 0.70 0.96 
FeO 3.31 3. 77 6.25 6.14 6.19 6.38 6.54 6.14 6.68 6.55 
MnO 0.09 0.07 0.10 0.10 0.09 0.11 0 .10 0.11 0.10 0.11 
MgO 8.37 6.81 . 22.55 21.61 12.02 11.32 14.17 11.17 17.27 12.52 
cao 5. 34· 5.64 4.73 5.02 7.40 7.05 6.92 7.34 6.12 7.00 
Na20 1.32 1.91 1.00 1.13 1.59 1.46 1.38 1.54 0.34 1.42 
K20 9.51 9.45 6.16 6.25 7.54 7.93 7. 29 7.76 6.43 7. 71 
P205 2.18 1.75 0.94 0.94 1.60 1.45 1.23 1.32 0.95 1.57 
H2o+ 2 .11 1.42 2.82 3.36 2.25 2.56 2.26 2.47 3.37 2.31 
H20-
C02 3.40 3.67 5.14 5.94 5.33 5.94 6.99 7.33 7.26 6.65 

Ba 7721 6271 3227 2838 6405 4966 5571 5261 3850 4966 
Rb 232 164 168 162 180 173 168 163 153 165 
Sr 3458 2477. 2563 2549 1582 2260 2089 2060 2374 2456 
Zr 1051 1217 490 505 730 861 686 716 546 717 
Nb --
y 30 30 20 19 27 22 25 32 19 25 
La 633 610 262 322 395 459 397 432 341 412 
Ce 770 722 345 384 487 515 475 517 400 478 
Nd 
Sc 
v 378 375 220 236 . 364 350 320 347 259 319 
Ni 94' 50 856 782 . 250 ! 226 392 207 650 291 ...... 

Q:) 

Cr 280 211 756 744 ·: 509 518 546 492 623 547 0) 



I 
' . 
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Locality West West West West West, West West West West West 
Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland 

Rock 5625A 5630 5632 5634 5635 5636 5637 5641 5643 5645 
Reference 13,14 13,14 13,15 13,14 13 13 13,14 13 13,15 13 

I I , I 

Si02 40.22 41.37 42. 75 41.92 42 ~ 3.8 44.16 41.91 42.66 46.48 47.17 
Ti02 3 .11 4.00 3.18 3.15 2~34 3.66 2.65 3.08 3.38 3.62 
Al203 6.47 7.44 8 .4 7 7.01 7.51 7.55 5.94 7.31 7.66 8.21 
Fe203 0.12 1.31 1. 74 2.46 1.54 0.81 0.97 0.70 3.14 0.92 
FeO 7.41 7 .86 5.01 5.27 5.10 6.07 6.93 4.91 4.09 5.99 
MnO 0.09 0.10 0.09 0.10 0.09 0.09 0.10 0.14 0.07 0.07 
MgO 13.44 8.75 12.16 11.17 11.89 11.30 18.95 10.10 10.74 8.08 
cao 7.37 9.69 7.38 6.65 6 .39 5.66 5.22 8.91 5.54 5.30 
Na20 L55 1.14 0.96 1.95 1.80 1.62 1.16 1.18 1.37 1.58 
K20 7.36 6.81 7.99 7.54 7.89 8.42 6.10 7.38 8.14 8.85 
P205 1.39 1.65 0.73 1.31 0.86 1.40 0.88 1.30 1.43 1.24 
H2o+ 2.96 2.84 2.65 2.43 2.34 2.03 2.36 1.22 2.92 1.93 
820-
C02 6.29 4.45 4.96 6.68 7.62 4.29 4.73 8.49 3.05 3.21 

Ba 7002 2764 4224 3149 2909 2073 6379 1607 1524 1385 
Rb 133 180 242 159 159 202 175 154 171 174 
Sr 1940 857 1621 2174 1738 2142 1578 2287 1467 1395 
Zr 759 714 279 844 . 560 953 516 887 1078 1259 
Nb 
y 21 30 16 25 16 28 19 18 24 26 
La 486 390 209 351 208 340 206 302 393 377 
Ce 598 477 287 441 270 455 298 417 478 "463 
Nd 
Sc 
v 3152 407 320 318 222 348 288 261 291 330 
Ni 294 94 378 291 296 259 728 284 332 150 

' 408 657 465 331 286 Cr -536 285 174 393 514 N 

' Ct> 

" 
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Locality West West West West West; West West West West West 
Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland 

Sample 5646 5647 5651 5652 5653 5655 5658 5659 5663 5664 
Reference 13 13 13 13,14 13,14 13 13 13 13' 13,14 

Si02 42.37 42.11 46.51 49.60 40.13 38.73 43.68 39.55 40.03 41.39 
Ti02 2.82 3.15 3.75 4.15 2.88 2.77 3.07 3.05 2.62 2.84 
Al203 6.98 6.95 8.23 8.64 6.59 6.50 8.15 6.41 6.72 6.54 
Fe203 1.27 1.38 1.39 2.21 1.36 2.31 0.81 0.72 3.10 0.98 
FeO 5.38 5.26 5.39 4.75 5.97 5.96 6.30 7.23 4.29 6.09 
MnO 0.09 0.07 0.08 0.07 0.10 0.10 0.10 0.09 0.10 0.09 
MgO 12.32 10.00 8.20 6.32 12.53 13.38 10.39 14 .41 12.32 17.38 
Cao 7.29 7.37 4. 77 4.32 7 .4 7 7.37 6.46 5.45 7.00 5.37 
Na20 1.29 1.70 1.59 1.60 1.54 1.27 1.38 1.66 1.29 1.49 
K20 7.22 7.69 9.40 10.03 7.25 6.38 8.27 7 .11 6.64 7.09 
P205 1.14 1.34 1.25 1.26 1.05 0.89 1.05 1.33 1.06 0.65 
H2o+ 2.89 2.37 1.23 1.12 2.27 3 .14 2.20 3.22 2. 77 3.17 
H20-
C02 6.92 7.40 4.60 2.93 8.81 8.09 6.51 5.58 8.38 7.24 

Ba 2790 2118 4457 2590 3017 3489 2097 2539 4461 2622 
Rb 164 151 192 216 170 140 138 163 139 138 
Sr 2320 2645 2367 2365 1994 1635 2488 1669 1998 1619 
Zr 888 1061 1211 1648 586 531 720 637 722 495 
Nb 
y 22 27 22 19 20 19 25 23 18 16 
La 346 388 366 341 235 217 313 367 266 215 
Ce 413 483 463 423 364 321 412 474 381 312 
Nd 
Sc 
v 267 304 372 359 300 299 299 319 293 253 
Ni 412 294 163 54 342 293 123 293 303 505 
Cr 553 409 198 164 486 519 334 647 469 627 ...... 

Q:) 
Q:) 
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Locality West West West West west West West West West West 
Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland Greenland 

Rock· 5665 5692 5890 5891 5934 5935 5937 5938 59.40 5940 
Reference 13 13,14 13 13 13 13 13 13 13,15 13'14 

' 
Si02 38.37 43.79 43.94 40.79 43!66 42.31 39.38 38.93 38.29 49.06 
Ti02 2.34 2.67 3.25 4.59 2~89 3.07 4.55 3.31 3~31 4.05 
Al203 5.99 7.04 7.71 7.54 7.88 7.93 7.76 7.90 7~29 9.26 
Fe203 0.59 1.35 3.30 2.01 2~88 1.47 2.87 2.35 2.81 1.41 
FeO 6.48 5.73 4.88 6.40 4.74 5.90 5.87 5.04 5.15 5.65 
MnO 0 .10 0.09 0.10 0.10 Ot09 0.09 0.11 0.08 0.12 0.08 
MgO 15.00 15.59 12.02 10.91 12~06 8.48 7.52 8.70 10.01 7.32 
Cao 6.94 5.21 7.16 8.16 6.98 8.71 10.07 10.90 12.24 4.98 
Na20 ·1.36 1.30 1.01 1.56 1.23 1.47 1.38 1.37 l'.16 1.56 
K20 6.25 7.06 7.53 7. 77 L66 7.70 7.45 6. 77 5.67 9.19 
P205 0.80 1.16 1.04 1.19 U18 1.11 1.85 1.46 1.00 1.30 
H2o+ 2.35 3.19 2.19 2.41 2;77 2.17 2.17 2.54 2.91 1.86 
H20-
C02 6.08 2.94 2.18 4.39 4 .11 6.50 4.81 5.87 8.97 1.98 

Ba 3971 6200 4677 4139 4548 3887 4725 4600 5758 3883 
Rb 189 189 245 213 199 179 184 184 152 176 
Sr 1683 2190 1710 1163 1209 1069 1283 872 1052 2419 
Zr 562 789 659 866 493 588 1033 584 561 894 
Nb 
y 16 22 27 25 25 .17 31 22 28 25 
La 228 373 34.0 284 254 322 363 293 367 421 
Ce 286 447 398 365 368 . 409 537 394 439 523 
Nd --
Sc 
v 291 278 342 472 303 332 462 346 362 400 
Ni 549 518 243 131 250 115 82 151 89 
Cr 731 533 357 257 334 258 120 255 351 208 ...... 

Q) 

~ 
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Locality West West West West West .. . West Smoky Smoky Smoky Leucite 
Greenland Greenland Greenland Greenland Greenland Greenland Butte Butte Butte Hills 

Sample 5943 5944 5945 El2 El4 5638 Lamproite Lamproite Lamproite U.S.A • 
Reference 13,15 13 13,14 13 . 13' ~ 13 16 16 16 17 

S102 41.20 43 .41 41.63 39.17 41.34 44.15 52.19 53.53 51.89 51.03 
T102 2.50 3.86 3.11 2.28 3.06 2.34 4.96 5.23 5.17 2.67 
Al203 8.43 7.33 7.70 5.80 7.7~ 6.02 9.04 9.08 9.05 9.81 
Fe203 2.)8 1.37 1.28 2.39 1.56 2.85 5.02 4.39 3.86 3.67 
FeO 3.85 6.16 6.14 4.84 6.06 3.21 3.50 1.02 1.31 0.65 
MnO 0.09 0.09 0.10 0.08 0.10 0.09 0.00 0.08 0.00 0.07 
MgO 12.30 7.26 9.88 15.42 10.33 9.72 7.98 7.78 7.90 7.24 
Cao 9.68 7.89 10.14 8.38 10.93 13.95 4.90 4.43 4.44 5.37 
Na20 1~11 1.88 1.34 1.57 1.35 1.82 1.14 1.93 1.97 1.03 
K20 7.38 8.42 6.89 6.40 6.58 5.78 7.85 7.85 7.63 10.61 

I o.2s P205 0.46 1.25 1.26 0.85 1.18 0.87 . 0 .22 0.22 1. 71 
H2o+ 2.70 2 .01 2.71 2.34 ·6. s8 1.80 0.95 2.69 4.05 2.91 
H20- 0.54 1.72 1.27 
C02 6.90 4.90 ' 7 .10 9.06 7.05 5.56 0.52 

S03 1.00 
F 0.69 
Cl 0.02 

Ba 4075 3166 2738 2240 2778 4277 
Rb 218 187 160 161 161 163 
Sr 642 872 1114 1438 1184 1609 2700 2790 2950 
Zr 346 1181 648 583 593 451 --
Nb 
y 20 14 20 17 16 23 
La 174 242 308 201 210 307 
Ce 256 356 413 253 314 378 
Nd __ :? 

Sc -- ..... 
v 250 396 298 228 274 251 ~ 

C:> 

Ni 286 98 550 157 35 600 415 405 
Cr 399 200 257 752 342 1919 
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Locality Leucite Leucite Leuci te Leuci te Leucite Leuci te Leucite Leucite Leuci te Leuci te 
Hills Hills Hills Hills Hills Hills Hills Hills Hills Hills 
U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 

Reference 17 17 17 17 17 18 19 19 19 19 

Si02 52.98 51.57 54.86 53 .45 43.10 51.07 50.23 53.70 54.08 54 .17 
Ti02 2.55 2.42 2.52 2.14 2.32 2.13 2.27 1.92 2.08 2.67 
A1203 10 .49 10.10 10.80 10.27 8.58 9.93 11.22 11.16 9.49 10.16 
Fe203 2.64 2.85 3.00 3.60 5.34 2.72 3.34 3.10 3.19 3.34 
FeO 1.94 . 1.63 0.96 1.00 0.80 1.19 1.84 1.21 1.03 0.65 
MnO 0.07 0.08 0.05 0.08 0.13 o.oo 0.05 0.04 0.05 0.06 
MgO 7.23 7.78 6.56 9.61 11.60 10.31 7.09 6.44 6.74 6.62 
cao 4.31 5.03 3,57 4.21 10. 71 4.87 5.99 3.46 3.55 4.19 
Na20 1.29 1.31 1.24 1.26 0.93 0.82 1.37 1.67 1.39 1.21 
K20 .. 11.15 11.32 10.70 10.62 8.53 9.92 9.81 11.16 11. 76 11.91 
P205 1.37 1.61 1.32 1.28 2.13 1.53 1.89 1.75 1.35 1.59 
H2o+ 1.15 3.87 4.23 1.72 2.61 . 2. 71 1.01 
H20- 0.93 0.80 . '0. 79 0.52 
C02 0.57 0.48 0.49 
L.O.I. 2.86 2.79 3.24 
S03 0.50 0.33 0.74 0.06 0.29 0.16 
F 0.06 0.71 0.50 0.44 0.49 0.36 
Cl 0.03 0.03 0.03 0.04 0.06 

Ba 5408 6561 4621 3065 4319 10000 5500 5200 5000 
Rb 249 246 259 246 195 
Sr 1840 2179 1652 1674 3196 2000 1700 1750 1600 
Zr 1250 1256 1298 1283 1232 
Nb 58 53 48 45 137 
y 16 17 16 14 27 
.La 
Ce 
Nd ....... 

Sc 
(() 
....... 

v 
Ni 274 267 3·09 428 162 
Cr 417 565 402 565 607 -- ' 



Group I : Page 17 

Locality Leucite Leuci te Leucite Leucite Leucite Leucite Leucite Leucite Leucite Leuci te 
Hills Hills Hills Hills Hills Hills Hills Hills Hills Hills 
U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 

Reference 19 20 20 20 20 20 20 20 21 22 

Si02 42.65 53 .40 53.10 51.20 52.70 55.00 55.80 53.60 42.83 47.54 
Ti02 1.64 2.40 2.40 2.40 2.60 2.60 2.60 2.30 2.39 2.60 
Al203 9.14 10.30 8.90 10.00 9.20 10.30 10.80 10.40 8 .14 11.28 
Fe203 5.13 3.80 4.70 5.40 4. 70 3.90 4.00 4.80 5.89 4.96 
FeO 1.07 0.70 0.96 
MnO 0 .12 0.05 0.06 0.08 0.06 0.05 0.05 0.07 0.14 0.03 
MgO 10.89 6.50 7.70 7.40 10.00 5.60 5.70 6.00 10.83 7.84 
Cao 12.36 4.50 4.20 7.20 4.00 2.50 2.70 4 .10 12 .42 9.31 
Na20 0.90 1. 70 1.40 2.00 1.10 1.20 0.80 1.30 0.54 0.81 
K20 7.99 12.70 12.40 10.50 10.00 12.00 12.00 12.10 6.56 9.08 
P205 1.52 1. 70 1.50 1.90 2.50 . 2.10 2.00 3.00 1.39 o. 72 
H2<* 2.18 0.80 1.80 1.20 1.50 3.10 3.20 1.40 3.00 3.78 
H20- 2.04 
C02 
S03 0.58 
F 0.47 0.60 
Cl 0.03 

Ba 8000 9000 5000 
Rb 
Sr 3000 
Zr 
Nb 
y 

La 
Ce ....... 
Nd (() 

Cl.:> 

Sc 
v 
Ni 
Cr 
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Locality Leucite Leucite Leucite Leuci te Leucite Leucite Leucite Leucite Leucite Northeast 
Hills Hills Hills Hills Hills Hills Hills Hills Hills Utah 
U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S~A. U.S.A. 

Reference 23 24 24 25 26 26 26 26 26 27 

S102 50.20 48.94 52.64 46.50 50 .2.3 55.43 53.07 55.14 43.56 50.46 
Ti02 2.30 1. 76 1. 72 2.30 2.30 2.64 2.41 2.58 2.31 2.12 
Al203 11.39 12.44 13.38 11.50 10.15 9.73 8.96 10.35 7.85 11. 73 
Fe203 4.23 4.28 5.19 5.30 3.65 2.12 3.86 3.27 5.57 3 .11 
FeO 0.57 3.71 1.63 0 .14 . 1.21 1.48 0.91 0.62 0.85 1.84 
MnO 0.07 0.10 0.09 0.09 0.09 0.08 0.08 0.06 0.15 0.09 
MgO 7.23 5.84 4.40 8.06 7.48 6.11 11.17 6 .41 11.03 10.78 
Cao 6.00 4.77 3.16 7.83 6.12 2.69 3.56 3.45 11.89 4.62 
Na20 0.86 2.17 2.22 2.88 1.29 0.94 1.15 1.21 0.74 1.02 
K20 10.19 11.01 11.96 10.40 10.48 12.66 10.72 11. 77 7.19 9.53 
P205 0.47 0.44 1.81 1.81 1.52 1.24 . 1.40 1.50 1.67 
H2o+- 3.54 1.43 1.87 2.34 2.07 1.16 1.23 2.89 1.67 
H20- 0.54 0.44 1.09 0.61 0.40 0.61 2.09 0.21 
C02 
L.O.I. 2.80 
S03 0.44 0.09 0.35 0.46 0 .16 0.40 0.52 
F 0.71 0.53 
Cl 0.05 0.03 

Ba 7200 3200 5700 5500 5800 3000 4700 6000 7400 
Rb 330 290 310 205 
Sr 3200 1800 3600 2800 2300 2300 2200 3500 1100 
Zr 1600 2100 2300 2200 2300 2300 
Nb 
y 25 25 20 25 
La 260 200 130 360 
Ce ...... 
Nd ~ 

<:.-.i 

Sc 
v 
Ni 

__ , 
Cr 
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Locality Northeast Kansas Kansas Kansas Kansas Kansas Kansas Kansas Kansas Arkansas 
Utah Hills Hills Hills Hills Hills Hills Hills Hills Prairie 

U.S.A. Pond Pond Pond Pond Pond Pond Pond Pond Creek 
Reference 27 28 28 28 29 29 29 29 29 30 

Si02 55.73 44.62 45.55 47.34 42.70 41.60 42.70 45.80 49.80 44.32 
Ti02 2.82 2.68 2.85 2.97 1.90 2.20 2.53 2.80 2.95 2.22 
Al203 10.72 5.00 4.96 5.06 4.00 4.40 3.90 4.30 4~50 3.80 
Fe203 3.73 7.68 7.83 7.99 8.20 7.00 5.95 
FeO 0 .95 : 6.82 6.74 6.78 1.15 
MnO 0.08 0.10 0.14 0.16 0.09 0.09 0.09 0.10 0.09 0.11 
MgO 6.96 20.40 18 .65 17.29 22.50 22.50 20.80 18.50 16.70 20.00 
Cao 3.85 3.51 3.67 2.88 3.03 3.70 3.90 2.70 1.55 4.15 
Na20 1.21 0.34 0.49 0.66 o.34 0.31 0 .42 0.58 0.99 o.so 
K20 10.49 4.31 5.18 s. 71 6.33 6.17 6.79 8.40 9.46 3.07 
P205 1.13 0.72 0.78 1.00 

, 

H2o+ 1.14 0.30 
H2<r 0~89 3.62 
C02 8.85 
L.O.I. 10.90 10.20 10.30 8.00 7.40 
s 0.31 0.24 0.10 

Ba 3000 4450 5200 6440 8200 10030 
Rb 227 204 193 217 156 
Sr 500 
Zr 
Nb 
y 

La 16.7 172 184 139 142 157 195 199 
Ce 341 356 . 374 260 262 290 354 396 
Nd 
Sc ·-- 12 14 13 11 12 13 15 13 
v f-.1 -- co 
Ni 870 770 730 ~ 

Cr 1290 1260 1170 2600 1540 1440 1190 1040 
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Locality Prairie Prairie East West West West West West W~st West 
Creek Creek Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley 
U.S.A. U.S.A. Australia Australia Australia Australia Australia Australia Australia Australia 

Reference 30 31 32 32 33 33 33 33 33 33 

Si02 42. 90 38.40 45.00 37 .40 41.52 40.10 42.80 42 .61 40.71 42.43 
Ti02 2.48 2.36 3.32 3.30 2.68 2.64 2.71 3.19 3.31 5. 77 
Al203 3. 7 5 3 .4 7 4.84 3.36 3.54 3.50 3.30 4 .40 4.51 4.44 
Fe203 3.48 .8 .65 3.00 6.93 4~57 3.80 4.90 4.52 4.58 4.94 
FeO 4.25 4.66 1.55 3~90 4.98 3.52 4.26 4.28 2.37 
MnO 0.12 0.13 0.12 0.12 0 ~13 0.14 0 .12 0.14 0.14 0.11 
MgO 27.50 26.31 21.20 25.50 26.90 26.10 24.90 22.33 22.20 19.04 
Cao 4.20 4.60 4.88 4.24 4.38 5.61 4.30 5.21 5.37 4.06 
Na20 0.28 0.73 0.46 0.16 0.36 0 .45 0.51 0.47 0.37 0.63 
K20 4.00 3.07 5.50 3.28 4.10 3.46 4.23 4.03 4.51 5.11 
P205 1.01 0.81 1.58 1.62 0~62 1.17 0.60 0.78 1.48 0.80 
H2o+ 0.54 8.10 3.01 6.73 4.13 3.55 3.74 4.45 4. 74 4.93 
H20- 0.48 0.67 3.72 1.60 1.93 1. 74 1.71 0.95 2.32 
C02 5.00 0.18 0.50 0.55 0.19 0.12 0.10 0.17 0.21 0.70 
s 0.09 0~01 0.07 0.01 0.01 
F 0.20 0.47 0.26 0.54 

Ba 2540 800 4342 10093 8966 6976 10106 18281 3867 
Rb 211 386 556 376 611 486 300 
Sr 1284 600 1250 959 1245 986 1098 1172 1150 
Zr 704 400 200 564 683 603 841 796 1215 
Nb 103 100 60 118 211 113 244 233 130 
y 13 10 10 16 19 17 10 20 12 
La 150 300 185 344 232 237 412 158 
Ce 300 261 415 270 346 673 210 
Nd 
Sc 14 '18 22 17 21 9 "'-' v 27 ' :20 73 83 97 ' 19 142 ~ 

en 
Ni 400 400 lSOO 960 1120 792 1100 673 
Cr 1417 600 300 1250 1396 1703 932 947 528 
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Locality West West West West West West West West West West 
Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley 
Australia Australia Australia Australia Australia Australia Australia Australia Australia Australia 

Reference 33 33 33 33 33 33 33 33 33 33 

Si02 46.04 48.12 50.47 49.26 52.59 49.69 51.84 52.50 52.36 50.31 
Ti02 6.59 8.12 5.67 5.41 5.37 6.92 6.03 6.22 7.01 5. 77 
Al203 6.85 5. 97 7.38 5.41 8.28 8.62 8.33 7 .4 7 8.55 9.12 
Fe203 7.12 5.99 5. 7.2 7.27 5.05 6.75 5.20 5.86 5.79 6.16 
FeO 0.88 1.50 1.62 1.92 1.69 0.88 1.60 1.45 1.58 1.33 
MnO 0.10 0.09 0.09 0.10 0.08 0.09 0.07 0.09 0.08 0.05 
MgO · 10.74 10.74 9.12 8.29 7.28 7.03 6.85 6.84 6.36 6.35 
Cao 3.89 2.80 4.15 2.56 3.53 2.64 3.10 3.97 2.23 2.06 
Na20 0 .45 0.49 0.44 0.45 1.01 0.44 0.65 0.72 0.50 0.17 
K20 9.67 9.56 8.80 7.74 9.72 10 .15 10.06 9.44 10.47 10.56 
P205 1.68 1.05 0.75 0.64 o.~o 1.07 0.69 0.97 0.48. 1.33 
H2o+ 2.20 2.65 2.64 5.29 1. 79 2.06 1. 73 1.46 2.03 2.84 
H20- 0.11 0.42 0 .41 2.97 0.56 0.81 0 •. 86 0.35 0.5,4 1.65 
C02. 0.23 0.25 0.75 0.30 0. 76. 0.23 0.21 0.15 0.36 0.15 
s 0.19 0.08 0.14 
F 0.40 0.32 0.30 

Ba 18993 10337 11253 31446 9810 12209 13939 12463 9322 8155 
Rb 656 667 341 1448 1?9 429 292 319 353 302 
Sr 1620 1990 777 .1070 1176 1070 985 1288 887 1097 
Zr 1651 1914 1225 1238 1057 1428 1164 1296 1302 1321 
Nb 231 250 166 123 101 138 104 140 120 130 
y 13 15 15 20 17 23 15 11 14 11 
La 436 519 245 301 189 317 259 242 269 270 
Ce 619 788 355 382 286 459 361 377 387 415 
Nd 
Sc 18 -- ' N 

v 109 215 204 151 162 169 215 228 216 224 ~ 
0) 

Ni 235 312 235 390 363 407 383 83 259 297 
Cr 440 389 490 317 267 278 205 209 204 297 
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Locality West West West West West West West West West West 
Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley 
A~stralia Australia Australia Australia Australia Australia Australia Australia Australia Australia 

Reference 33 33 33 33 34 35 35 35 35 35 

Si02 59.01 53.61 54.67 58.75 51.39 36.02 45.82 46.56 51.19 52.45 
Ti02 5.68 5.66 5.86 5.64 4.47 5.31 7.34 6.86 4.89 5.85 
Al203 7.02 9 .85 7.90 7.29 8.55 5.32 6.86 6.88 8.53 8.64 
Fe203 6.02 5.66 7.39 6.02 4.75 5.37 6.07 6.94 6.12 5.48 
FeO 1.02 1.22 0.72 0 .87 1.80 0.89 1.98 1.15 1.38 0.94 
MnO 0.08 0.11 0.07 0.07 0.07 0.04 0 .10 0.05 0.06 0.13 
MgO 5.31 4.99 4.86 4.47 6.30 7.79 10.90 10.07 7.15 6 .42 
Cao 2.51 2.13 2.38 2.07 3.15 15.12 4.70 3.36 5.82 2.01 
Na20 0.69 0.67 0.34 0.38 0.25 0.16 0.84 0.21 0.58 0.38 
K20 8.67 11.22 9.10 8.64 7.62 7.25 8.82 9.37 9.02 10.42 
P205 0.65 0. 72 1.18 1.06 0.98 1.15 1.83 1.49 0.79 1.58 
H2o+ 1.42 1 • .53 2.12 1.75 5.31 1.92 0.75 2.48 1.99 1.99 
H20- 0 .62 0.48 1.07 0 .97 2.80 0.90 2.40 1.16 1.;26 2.89 
C02 0.18 0.30 0.35 0.22 <0.05 9.84 0.08 
s 0.13 S03 0.27 0.35 0.11 
F 0.25 0.17 0.22 

Ba 5734 10105 13293 9338 14000 1100 18000 5300 10500 
Rb 260 322 356 333 3100 
Sr 805 1033 1005 1042 1093 1800 2500 
Zr 1220 1215 1267 1278 1132 1600 2100 
Nb 145 129 150 153 
y . 14 18 15 12 32 
La 227 409 263 230 
Ce· 347 552 387 358 
Nd --
Sc ...... 

v 216 282 208 183 ~ -- ""l 

Ni 77 263 342 248 310 
Cr 201 296 356 345 698 
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Locality West West West West West West West West West West 
Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley Kimberley 
Australia Australia Australia Australia Australia Australia Australia Australia Australia Australia 

Reference 35 35 36 36 36 36 36 3 3 3 

Si02 54.09 54 .48 51.98 44.02 51.22 52.37 52.79 52.60 49.30 54.20 
Ti02 4.08 5.57 4.96 6.57 4.00 4.82 5.00 5.34 4.54 6.04 
Al203 11.67 9 .87 7. 97 6.30 10.59 9.86 11.37 7.08 7.05 8.70 
Fe203 4.91 4.89 3.93 5.98 6.91 6.15 5.41 6.59 7.18 7.26 
FeO 2 .14 1.70 1.34 2.01 1.33 1.48 1.83 
MnO 0.03 0.09 0.04 0.06 0."05 0.07 0.07 0.06 0.09 0.07 
MgO 4.76 5.35 9.41 11.98 6.67 5.90 4.84 8.54 12.10 5.38 
Cao 1,. 91 1.89 3.18 4.61 2.34 3.32 2.21 3.83 4.63 2.17 
Na20 0.10 0.88 0.36 0.28 0.07 0.24 0 .45 0.45 0.52 0.19 
K20 12.60 11.06 9.61 6.59 11.90 10.35 11.40 8.28 ,. 7.67 10.70 
P205 0.26 0.40 1.36 1.55 1.33 0.91 1.03 1.19 0. 73 1.71 
H2o+ 2.30 1.36 2.36 3.83 '· 2 .04 1.94 1.49 
H2(}- 0.73 0.89 2.87 3 .421 . 1.04 1.52 1.04 
C02 
L.O.I. -- 5.03 5.39 2.70 
S03 0.10 
F 0.09 

Ba 6500 5300 11000 5200 2700 
Rb 368 204 238 
Sr 1300 1100 1000 1150 
Zr 1202 879 1081 
Nb 179 140 163 
y 13 16 22 
La 
Ce 
Nd, ...... 
Sc 17 16 16 ~ 

co 
v 
Ni 450 650 220 
Cr 1100 2600 650 
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Locality · West West West West West Gauss berg Gaussberg·Gaussberg Gaussberg Gaussberg 
Kimberley Kimberley Kimberley Kimberley Kimberley Antarctica Antarctica 
Australia Australia Australia Australia Austr~lia Antarctica Antarctica Antarctica 

Reference 3 3 3 3 3. 37-39 37-39 37-39 37-39 37-39 

Si02 S9.00 Sl.10 S0.90 S9.30 S2.60 S0.80 S0.20 S0.70 so.so S0.10 
Ti02 4 .17 5.12 5.38 S.44 5.20 3.43 3.36 3.34 3.28 3.34 
Al203 6.26 7.23 7.76 8.21 8.13 9.95 9.79 9.95 10.04 9.92 
Fe203 6 .11 6.78 6.39 6.49 7.12 2.47 2.40 2.32 2. 77 3.12 
FeO 3.76 3.8S 3.84 3.39 3.14 
MnO 0.09 0.08 0.08 o.os 0.09 0.09 0.09 0.09 0.09 0.09 
MgO 6.17 9.2S 9.19 4. 24 7.21 8.09 7.92 8.34 8~19 8.21 
Cao 5.85 4.60 3.94 1.08 3.49 4.78 4.72 4.76 4.84 4.91 
Na20 0.55 0.49 0.85 0.30 1.21 1.78 1.64 1. 70 1.S3 1.17 
K20 7.49 8.94 8.74 10.10 9.68 11.49 11.54 11.54 11.30 10.97 
P20S 0.81 0.61 0.42 0.50 0.46 1.46 1.46 1.44 .. 1.46 1.46 
H2o+ 3.04 4.S3 4.93 3.S8 3.06 1.24 1.03 1.09 1.13 2.72 
H20-

--
. 0.07 0.07 0.06 0.03 0.04 

C02 ·-- 0.09 0.07 0.03 0.02 <0.01 

Ba 4500 7000 8300 3300 9000 5S50 S440 S620 S8SO S970 
Rb 186 170 237 289 193 309 305 311 311 313 
Sr 9SO 830 9SO 750 1100 1870 1890 1830 1860 1940 
Zr 929 1114 1114 1243 1040 903 91S 901 890 893 
Nb 153 131 118 160 125 88 89 88 87 88 
y 17 17 14 17 15 19 19 18 18 18 
La 155 214 207 211 213 215 
Ce 279 348 334 339 341 338 
Nd 93 130 129 131 130 
Sc lS 16 16 18 17 
v 112 108 110 108 107 
Ni 140 500 450 300· 380 223 231 234 243 234 ..... 
Cr 6SO 900 850 800 . 9SO 308 333 . 311 324 338 

(0 
(0 



Group I : Page 25 

Locality Gaussberg Gaussberg Gaussberg Gaussberg Gaussberg Gaussberg Mount Mount Priestly Priestly 
Antarctica Antarctica Antarctica Bayliss Bayliss Peak Peak 

Antarctica Antarctica Antarctica Antarctic Antarctic Antarctic Antarctic 
Reference 37-39 37-39 37-39 37-39 37-39 37-39 39-40 39-40 39-40 39-40 

Si02 51.60 51.60 51.00 51.20 51.50 51.00 52.90 50.30 52.60 . 49. 60 
Ti02 3.47 3.50 3.50 3.44 3.54 3.42 4.45 5.45 3.40 3.27 
Al203 10.00 10.05 9.98 9.42 9.49 9.89 8.92 8.90 8.67 9.10 
Fe203 2.33 2.12 2.48 2.54 2.31 2.15 2.64 2. 72 2.03 2 .45 
FeO 3.84 4.00 3.83 3.86 4.12 3.94 5.30 6.00 4.12 4.06 
MnO 0.08 0.08 0.09 0.09 0.09 0.08 0 .11 0.11 0.09 0.08 
MgO 7.53 7.50 7.81 8.19 7.95 7.76 5.95 5.56 7 .43 8.77 
cao 4.48 4.50 4.81 4.35 4.38 4.37 4.00 5.06 4.97 5.32 
Na20 2.19 1.85 1.55 1.53 1.65 1.53 2.05 1.75 0.73 0.89 
K20 11.50 11.87 11.68 11. 73 12.i6 11.89 9.35 8.90 8.32 9.83 

. P205 1.49 1.48 1.50 1.48 1.53 1.50 1.75 1.85 3 .05 3.28 
H2o+ 0.84 0.65 1.14 1.17 0.92 0.96 0.89 1.06 o. 77 0.84 
H20- 0.05 0.03 0.04 0.06 0.07 0.08 0.31 0.29 0.05 0.06 
C02 0 .13 0.02 0.04 0.03 0.02 0.05 0.25 1.45 0.16 0.02 
S03 0.09 0.10 0.84 0.53 
F 0.28 0.33 0.96 1.03 
Cl 0.01 0.03 0.03 0.02 

Ba 5640 5640 5380 5450 5340 5320 412 1320 15100 9700 
Rb 315 316 307 336 330 313 210 149 252 . 314 
Sr 1740 1760 1840 1710 1720 1720 1780 1260 2910 2590 
Zr 957 972 943 1350 1360 955 1580 1240 1770 1420 
Nb 87 90 93 96 97 87 145 102 59 43 
y 19 19 18 18 19 18 32 37 32 36 
La 212 206 . 204 211 211 204 162 156 172 138 
Ce 335 331 321 343 343 334 276 270 294 268 
Nd 128 127 127 131 134 123 116. 118 133 150 
Sc -- . I:\:) 

v 107 104 107 100 lOi 107 94 133 168 143 c:::. 
c:::. 

Ni 231 249 226 240 223 228 131 128 243 298 
Cr 303 272 315 287 284 288 215 180 274 348 
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Locality San San San Cupaello Cupaello Cupaello Fen Aland Is. Sokli Toro 
Venanzo Venanzo Venanzo Norway Finland Finland Ankole 

Rock Damkjernite 
Reference 41,42 43 44 43 45 41,42 46,47 48 49 50-56 

Si02 40.52 41.00 42.33 42.60 41.74 41.45 39.31 30.40 21.80 35.37 
T102 0.74 0.76 0.76 1.09 1.24 1.20 3.25 2.90 3.50 3.87 
A1203 10 .43 11.30 10.67 7.71 7.36 7.56 15.68 8.60 2.40 6.50 
Fe203 4.66 2.60 2.82 4.90 4.56 4.41 6.38 7.90 7.00 7.23 
FeO 2.92 4.23 4.01 2.64 2. 77 2.96 8.55 6.30 7 .40 5.00 
MnO 0 .11 0.12 0.08 0.11 0.10 0.14 0.21 0.28 0.29 0.24 
MgO 12.65 13.00 13.24 10.60 11.12 11.20 8.21 13.70 17.60 14.08 
Cao 16. 23 14 .80 15.41 14 .10 15.71 15.99 12.50 15.80 13.80 16.79 
Na20 1.11 1.09 0.95 0.39 0.38 0.55 0.35 0.40 1.20 1.32 
K20 7 .41 7.76 7.60 8.45 5.45 5.33 4.93 3.50 3.60 4.09 
P205 0.32 0.33 0.30 1.18 1.10 1.21 0.52 2.10 .. 1.06 0.74 
H2o+ 1.65 2.60 1.90 2.78 
H20- 0.13 0.70 0.50 1.15 
C02 1.20 3.85 17.60 0.09 
L.O. I. . 2. 97 1.32 6.30 3.83 
s 0.20 0.68 0.12 0.35 
F 0.40 0.58 0.16 
Cl 0.01 0.02 

Ba 779 718 3570 880 2900 
. Rb 404 445 432 100 200 
Sr 1591 1729 3987 900 4500 
Zr 330 337 662 345 1200 
Nb 16 19 42 150 
y 36 31 44 
La 81 93 40 
Ce 156 150 

~ 

Nd 94 <::> 
~ 

Sc 23 37 14 21 
v 129 140 70 250 
Ni 136 125 69 350 270 
Cr 832 880 55 900. 
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Locality Toro Toro· Toro Toro Toro Toro Toro Toro Toro Toro 
Ankole Ankole Ankole Ankole Ankole Ankole Ankole Ankole Ankole Ankole 

Ref ere~ce 50,55,56 50,54-57 50,55-57 50,54-56 50,54,55, 50,58 50,57, 50,54,57 50,54,57 50,57,61 
57,58 59,60 

Si02 33.89 33.22 33.52 34.23 39.06 40.65 39.28 37 .OS 40.00 38.62 
Ti02 4 .43 6.08 6.04 4.56 4.36 2.40 4.29 4.09 4.75 4.44 
Al203 8.27 9. 71 8.04 8.02 8 .18 8.44 7.90 7.82 7.68 6.34 
Fe203 7.03 6.68 5.88 6.62 4.61 4.71 4.88 5.11 5.38 4.60 
FeO 5.21 5.30 5.50 5.34 4.98 5.49 5.23 5.23· 4. 77 6.00 
MnO 0.26 0.52 0.15 0.22 0.26 0.16 0.27 0.25 0.15 0.09 
MgO 10.93 12.12 13.54 9.22 17.66 17.06 17.58 14. 76 15.46 20.06 
Cao 16.98 15.64 15.22 16.54 10.40 11.03 11.03 14.28 9.79 10 .45 
Na20 1.42 1.51 1.42 1.20 0.32 0.89 1.05 1.27 0.65 1.27 
K20 3.65 3.54 4.26 3.39 6.98 6.79 4.98 S.39 .. 7. 04 3.66 
P205 0.97 1.12 0.82 0.96 0.61 0.57 0.36 0.76 ·0.42 0.45 
H2o+ 2.08 3.28 2.34 2.80 1.42 1.12 2.36 2.29 1.66 2.52 
820- 1.19 0.80 1.68 1.72 o.so 0.50 0.40 0 .71 0.97 1.08 
C02 3.27 0.42 0.96 4.02 tr' 0.10 0 .14 0.58 .. 0.34 tr 
s 0.14 0.12 0.13 0.12 0.16 0.09 0.18 
F 0.18 0.08 0.14 0.13 0.09 0.12 0.18 0.10 
Cl tr 

Ba 7000 1800 4500 2000 7500 
Rb 240 150 380 220 450 167 
Sr 4000 9500 7500 7000 2004 
Zr llOO 1200 800 850 900 613 
Nb 205 
y --
La 100 30 70 50 80 155 
Ce 328 I:\:) 

Nd c:::::i 
CN 

Sc 22 
v 170 350 210 260 220 
Ni 100 160 180 200 300 
Cr 290 500 1200 650 1300 

-- ··--------- ---
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Locality Toro· Toro Toro Toro Toro Toro Toro Toro Toro Toro 
Ankole Ankole Ankole Ankole Ankole Ankole Ankole Ankole Ankole Ankole 

Reference 50,55,57, 50,61 50,54, 50,54 50,~4 50,54 50,52-56 50,55,56 50,62 50,63 
61,62 59-61 

Si02 40.47 41.36 36.22 35.58 37.28 38.37 35.51 38.94 46.17 38.97 
T102 3.52 3.68 4.76 5.07 4.97 4.54 4.88 3.88 2.24 4.66 
Al203 5.38 5.4 7 8.21 7.97 7.55 8.73 6.83 6 .92 13.03 8.92 
Fe203 4.03 5.04 7.58 7.40 7.13 7.99 9.68 5.27 6. 77 11.93 
FeO 6 .4 7 5.58 4.55 5.23 4.52 3.71 2.70 5.09 2.50 0.99 
MnO 0.23 0.12 0.18 0.19 0.21 0.20 0.22 0.23 0.20 0.33 
MgO 24.84 24.28 9.76 10.25 10.13 9.58 11.67 11.58 3.56 10.46 
Cao 8.06 7.91 13.98 14. 21 13 .91 14. 23 16.00 15.95 8.67 14. 72 
Na20 0.68 0.91 1.28 1.27 1.39 1.20 1.56 1.01 1.29 1.68 
K20 3.46 3.19 7.29 6.21 5.64 5.98 3.30 3.96 4.61 4.36 
P205 0.29 0.09 1.09 1.27 1.03 0.87 1.18 0.91 0.97 0.79 
H2o+ 1.11 1.87 1.55 2.09 1. 74 1.39 3 .11 2.26 6.13 1.24 
H20- 0.57 0.21 1.03 1.44 1.93 1.86 1.31 1.20 3.23 1.22 
C02 0.36 0.38 1.52 0.93 1.65 0.48 1.47 2.12 0.62 
s 0.04 0.31 0.38 0.40 0.26 0.13 0.14 
F 0.10 0.14 0.11 0.15 0.23 0.27 0.13 
Cl 0.01 tr 0.01 tr 

• 
Ba 2000 2800 1700 
Rb 450 156 200 100 
Sr 1800 2531 7500 2500 
Zr 300 605 800 1200 
Nb 205 
y 

La 35 197 30 20 
Ce 404 
Nd 
Sc 25 Cl.:> 

C) 

v 110 320 320 ~ 

Ni 900 230 250 
Cr 1200 700 550 
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Locality Toro Toro Toro Toro Virunga Virunga Virunga Virunga South South 
Ankole Ankole Ankole Ankole Africa Africa 

Reference 50,64 65 66 67 59 59 50,62,53 50,53 68 68 

Si02 40.19 38.05 36.20 35.90 43.37 45.23 39.98 46.59 32.93 33.28 
Ti02 4.75 3.84 4.84 5.49 4.44 4.28 5 .42 3.60 6.51 2.30 
Al203 8.20 7.54 5.63 6.09 10.34 16.33 12.47 15.57 1.06 18.51 
Fe203 5.13 8.41 8.33 5.50 4.02 3.33 7.06 2.51 13.15 8.22 
FeO 7.18 2.80 5.46 6.55 5.54 5.98 6.43 8.81 6.21 8.69 
MnO 0.17 0.21 0.22 0.21 0.17 0.17 o.oo 0.20 0.27 0 .11 
MgO 11.60 13.55 13.82 10.38 11.60 4.28 6.59 4.66 8.82 6.02 
Cao . 12.51 13.90 15.21 14.97 14.16 7.81 11.85 8.58 11.25 12.03 
Na20 1.86 1.31 1. 74 2.74 1.77 3.21 1. 70 2.37 1.52 0.55 
K20 4.08 3.02 4.02 6.98 3.55 7.89 3.80 5.68 3.66 3.02 
P205 0.52 0.95 0.88 1.46 0.58 0.90 0.73 0.74 1.54 
H2o+ 2.14 2.27 2.99 1.31 0 .43 0.05 3.71 0.40 
H20- 0.95 3.00 0.84 0.13 0.12 0.10 
C02 0.21 0.53 0 .10 0.50 0.02 --
L.O.I. 7 .11 6.64 
s 0.06 0.14 
F 0.19 0.27 0.06 
Cl 0.01 0.02 0.02 

Ba 2251 2400 
Rb 114 120 175 242 
Sr 2935 2848 824 1488 
Zr 580 464 276 479 
Nb 241 328 101 198 
y 16 29 
La 270 -·-
Ce 480 
Nd !:\:> 

c::i 

Sc 
c:n 

v 
Ni 253 118 
Cr 799 321 
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Locality South Kola Bergyda- Damodar Damodar Damodar Damodar Boshan Batbjerg Batbjerg 
Africa malakh Valley Valley . Valley Valley China Greenland Greenland 

Rock Turjaite 
Reference· 69 70 71 72 72 72 72 73 74 74 

Si02 37.24 37.31 34.02 32.37 35.29 35.70 34.11 22.49 40.55 44.56 
Ti02 1.35 3.33 5.52 9.32 4.25 5.94 6.56 0.67 1.31 1.02 
Al203 6.63 8.81 5.98 9.84 5.54 5.99 9.08 6.04 6.66 7.00 
Fe203 1.43 8.42 5.47 8.68 11.20 11.22 10.44 4.26 8.41 7.67 
FeO 6.93 2.60 8.48 3.73 6.74 5.44 
MnO 0.28 . 0.19 0.23 0.12 0. 29 0.14 0.15 0.20 0.20 0.22 
MO 13. 58 11.02 20.15 8.09 8.31 10.05 6.10 5.53 11.07 11.93 
cao 11.83 16.23 12.82 8.26 7.18 5.85 11.55 26.86 14 .46 13.58 
Na20 1.33 1.66 1.00 0.13 0.11 0.08 0.21 0.45 0.95 1.92 
K20 3.22 4,46 3.08 7.09 3.42 4.69 4.90 3.4 7 3.90 3.92 
P205 0.63 1.33 0.66 2.93 6.32 2.42 5.18 4.80 2.67 1.17 
82~ 2.17 1.24 0.55 
820- 0 .16 0.10 
C02 9.23 2.36 
L.O.I. 4.46 2.54 11. 78 14. 77 15.61 8.75 21.07 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc ' ; l 

v ... L 21< ·' ', ;-· I ' . ~ . .' ! ' 
l\:> 

Ni C:> 
0) 

Cr 

' i 

' . . 
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Locality Batbjerg Oka N.E.Utah Arkansas Beaver Beaver Boshof 
Greenland Canada Magnet Lake Lake South 

Cove Antarctica Antarctica Africa 
Reference 74 75 27 76,70 77-78 77-78 161 

Si02 45.13 30.37 37.68 36.40 33.97 34.77 36.12 
Ti02 1.12 2.39 0.64 0.42 2.43 2.48 . 1.45 
Al203 7.35 9.20 7.33 12.94 8.96 9.97 4.38 
Fe203 8.74 5.55 3.99 8.27 4.74 3.12 6.80 
FeO 5.27 6.02 5.36 4.59 6.08 7.50 2.68 
MnO 0.19 0.35 0.19 o.oo 0.21 0.23 0.22 
MgO 9.62 10.70 20.61 11.44 14.30 14.40 22.82 
Cao 14. 39 15.31 12.15 14 .46 16.96 17 .03 8.33 
Na20 1.46 1.54 0.71 0.97 l.~l 1.51 0.29 
K20 4.67 3.79 5.33 3.01 3.po 3.12 5.04 
P205 0.60 0.87 0.78 1.04 0.50 0.56 1.46 
H2o+ 0.71 1.96 3.44 2.36 4.89 
H20- 0.36 1.24 1.28 
C02 9.88 ' 3.80 
L.O.I. 7.83 5.89 
F 0.40 0.29 

s 0.02 

Ba 3900 350 
Rb 
Sr 3200 2600 
Zr 225 
Nb 
y 36 
La 110 
Ce 140 
Nd c-,, 

C) 
Sc 13 -- "'3 

v 790 
Ni 130 
Cr 210 
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Locality Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 79 79 80 80 80 80 80 80 80 80 

Si02 60.68 62.05 48.99 49.49 49.57 51.02 51.19 51. 27 51.57 52.27 
Ti02 0.96 0.63 0.73 0.83 0.75 0.80 0.82 0.75 0.79 0.78 
Al203 16.21 16.43 14. 71 16. 77 13.97 16.40 17.29 15.69 17 .42 17.04 
Fe203 2.27 4.65 5.57 4.74 5.78 3.67 3.54 3.40 4.46 3.22 
FeO 1. 75 1.69 2.40 1.47 2.88 3.54 3 .11 2.18 3.18 
MnO 0.07 0.08 0.12 0.11 0.12 0.12 0.12 0.12 0.12 0.12 
MgO 3.46 3.36 7.20 5.54 7.09 5.01 4.98 5.28 4 .• 32 4.64 
Cao 4.03 4 .46 11.06 8.61 10.05 9. 2.2 8.09 8.40 8.59 8.06 
Na20 1.99 1.92 1.00 1.63 1.17 1.84 1.77 1.42 1.94 1.49 
K20 5.36 5.70 4.90 5.70 5.12 5.61 5. 77 5.42 5.85 5.33 
P205 0.27 0.24 0.39 0.38 0.39 0.38 0.40 0.36 0.40 0.39 
H2o+ -- 2.29 2.59 2.46 1.83 1.62 2.29 1.97 2.29 
H20- 0.75 0.54 0.61 0.68 0.30 0.49 0.64 0.35 0.69 
L.O. I. 2.03 0.48 

Ba 743 681 1100 1035 1110 930 960 1055 920 990 
Rb 320 333 302 337 313 378 362 297 373 283 
Sr 593 581 . 995 730 632 760 750 627 795 712 
Zr 206 279 245 230 180 255 210 222 255 205 
Nb 11 15 17 14 13 13 19 12 
y 20 25 '30 17 17 22 20 31 
La 72 73 78 78 81 66 70 71 70 75 
Ce 155 156 139 147 124 129 136 133 122 137 
Nd 69 68 
Sc 16 16 
v 102 112 t ·--

Ni 22 24 
Cr 94 87 

!:\:> 
C) 
c:x:. 
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Locality Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata 
Italy Ialy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 80 80 80 -so 80 80 80 80 80 80 

S102 52.45 52.72 52.82 52.89 53.14 53.29 53.38 53.39 53.42 53.86 
T102 0.77 0.77 0.81 0.78 0.79 0.75 0.77 0.80 0.76 0.69 
Al203 17.24 17 .4 7 16.49 17 .41 17.29 17.37 16.76 17 .11 17.25 15. 29 . 
Fe203 2.82 5.14 3.03 3.87 3.10 2.74 1.80 2.41 3.86 4.96 
FeO 3.30 1.26 3.40 2.52 3.46 3.42 4.40 3.90 2.89 1.29 
MnO 0 .11 0.11 0.12 0.12 0.12 0 .11 0.12 0.12 0 .12 0.12 
MgO 6.14 3.74 6.04 3.47 4. 24 4 .29 5.67 4.85 4.33 5.06 
cao 7.30 8.41 7.79 8.39 7.50 7.41 7.74 7.56 8.14 8.05 
Na20 2.03 1. 71 1.65 1.68 1.67 1.65 1.67 1.71 1.66 1.58 
K20 5.38 5.65 5.28 5.57 5.41 5.33 5.68 5.53 5.34 5.41 
P205 0.35 0.38 0.39 0.34 0.35 0.33 0.37 0.36 0.28 0.36 
H2<* 1. 51 2.33 1.58 2.16 2.05 2.31 1.32 1.50 1.63 3.01 
H20- 0.60 0.60 o_.60 0.64 0.55 0.69 0.32 0.76 0.25 0.49 
C02 

Ba 940 855 960 820 1005 945 935 920 1000 895 
Rb 389 348 356 353 346 313 380 304 340 335 
Sr 825 645 810 615 690 670 712 647 832 640 
Zr 242 225 180 225 220 230 232 185 207 198 
Nb 11 18 9 11 16 20 7 14 14 22 
y 16 34 17 15 31 23 15 19 20 31 
La 71 67 65 65 75 78 74 69 71 71 
Ce 129 129 130 125 129 144 157 124 140 135 
Nd 
Sc 
v 
Ni 

""' Cr C) 
(0 
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Locality Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 80 80 80 80 80 80 80 80 80 80 

S102 54 .88 55.54 55.61 55.68 55.95 56.26 56.49 56.59 57.02 57.20 
T102 0.70 0.83 0.81 0.75 0.82 0.80 0.76 0.72 0.79 0.71 
Al203 15.95 16.37 17.70 17.07 17.52 16.68 16.85 16.65 17'.21 17.14 
Fe203 5 .4 7 2.34 1.05 2.51 2.20 3.80 2.48 4.43 1.82 3.20 
FeO 0.79 4.30 4.50 3.36 3.02 2.05 2.87 1.30 3.75 2.01 
MnO 0.11 0.13 0.11 0.11 0 .11 0.11 0.10 0.11 0.11 0 .10 
MgO 4.51 3.38 4.37 4.05 4.36 4.13 4.96 3.22 3.81 4.20 
Cao .7.86 8 .45 5.76 6 .49 5.67 7.01 5.50 5.54 4.97 5.15 
Na20 1. 73 1.17 2.09 1.96 1.70 1.87 1.96 1. 72 1.80 1.96 
K20 5.28 5.80 5.46 5. 77 5.'63 5.65 5.22 5.87 5.55 5.51 
P205 0.34 0.37 0.31 0.32 0.34 0.31 0.30 0.28 0.29 0.28 
H2o+ 1.64 1.01 1.65 1.89 1.88 0.76 1.80 1. 71 1.88 1.64 
H20- 0.39 0.31 0.58 0.45 0.80 0.57 o. 71 0.50 1.00 0.90 
C02 

Ba 875 935 835 810 875 780 850 825 985 870 
Rb 348 346 337 324 324 356 324 389 318 281 
Sr 695 830 770 600 605 740 610 . 580 487 525 
Zr 207 232 250 230 240 220 222 207 267 230 
Nb 15 14 13 14 13 12 12 15 12 13 
y 16 20 20 14 30 21 21 27 40 30 
La 66 71 69 64 72 90 70 132 78 73 
Ce 134 128 136 129 95 136 137 136 146 140 
Nd 
Sc 
v ..i_ "--
Ni -- ~ ..... 
Cr C::> 

j: 
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Locality Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata Mt.Amiata RadicofaniRadicofani 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 80 80 80 80 80 80 80 80 79 79 

S102 57.63 58.24 58.44 58.72 58.82 59.90 60.81 61.64 52.95 54 .10 
T102 0.72 0.75 o. 78 6.70 0.75 0.70 0.64 0.62 1.28 1.35 
Al203 16.79 17.63 16.94 16.81 16.81 16.59 16~08 16.22 15.45 14 .34 
Fe203 1.36 3.26 3.39 1. 74 3.75 0.89 1.00 1.17 2.58 2.76 
FeO 3.83 2.00 2.16 3.10 1.65 4.03 3.69 3.32 3.85 3.46 
MnO 0.10 0.10 0.10 0.09 0.10 0.09 0.09 0.08 0.10 0.09 
MgO 3.95 3.30 3 .11 3.30 3.44 3.13 3.30 3.35 9.13 9.07 
Cao .. 5. 91 5.30 5.91 5.73 5.21 5.39 5.25 4.53 7.15 6.52 
Na20 2.27 2.18 2.09 2.20 2.14 1. 72 2.01 1.92 1. 71 1.64 
K20 5.62 5.36 5.66 5.68 5.71 5.35 5.62 5.66 4.21 5.43 
P205 0.30 0.30 0.30 0.27 0.28 0.24 0.24 0.23 0.47 0.47 
H2o+ 0.90 1.17 0.86 1.12 0.86 1.45 0.96 0.85 0.45 . 0.65 
H20- 0.62 0.41 0.26 0.54 0.48 0.52 0.30 0.40 0.18 0.20 
C02 --
Ba 835 785 805 785 820 730 730 705 669 
Rb 353 297 418 324 380 362 378 394 264 
Sr 690 560 732 605 775 585 725 630 346 
Zr 240 225 217 250 205 225 195 230 269 
Nb 13 12 11 17 19 15 15 18 
y 24 19 29 18 22 17 15 20 
La 83 82 102 70 88 67 64 70 53 
Ce 134 136 137 127 128 136 132 139 146 
Nd 67 
Sc . 25 
v I -- . 177 
Ni 171 1:'¢ 

585 
N 

Cr N 
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Locality Radicof ani Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini 
Italy Italy Italy Italy . Italy · .Italy Italy Italy Italy Italy 

Reference 79 81 81 44 44 44 82 82 83 83 

S102 54.15 46.85 48.29 47.16 47.55 48.64 46.82 46.34 46.60 49.90 
T102 1.40 3.25 0.95 0.74 0.77 0.78 0.74 0.76 1.00 0.60 
Al203 15.74 15.30 15.67 12.46 14 .15 17.34 16.21 18.06 19.80 18.90 
Fe203 6.68 4.40 3.94 3.60 3.94 4.29 5.54 3.80 4.50 4.05 
FeO 0.40 3.52 3.32 3.89 3.78 3.08 2.34 4.06 3.70 3.40 
MnO 0.09 0.17 0.18 0.11 0.14 0.15 0.15 0.17 0.09 0 .15 
MgO 7.05 3 .42 5.26 9.22 7.09 4.05 5.35 3.38 5.10 3.10 
Cao 7 .• 01 9.23 10.73 15.41 14.01 10.04 11.19 9.66 9.80 8.10 
Na20 1.82 2.97 1.87 0.68 1.06 1.66 1.85 2.40 1.50 1.80 
K20 4.81 9.26 _7. 9 3 4.67 5.8,8 7.46 7.23 8.44 5.00 7.60 
P205 0.40 0.65 0.56 0.22 0.32 0.41 0.46 0.50 0.43 0.48 
H2o+ 0.47 0.81 1.77 
H20- 0.11 ' 
C02 
L.O.I. 1.46 1.48 1.30 2.25 1.32 2.20 1.70 

Ba 668 853 1113. 1368 
Rb 334 356 474 530 
Sr 378 784 1077 1471 
Zr 386 187 284 308 
Nb 12 17 22 
y 23 35 34 
La 52 62 92 108 
Ce 160 112 158 182 
Nd 79 60 83 90 
Sc 25 46 ; 3'2 20 
v °166 225 239 225 !:\:) 

Ni 100 116 80 46 N 
!:\:) 

Cr 479 295 125 96 
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Locality Vulsini Vulsini Vulsini Vulsini Vuls:tni Vulsini Vulsini Vulsini Vulsini Vulsini 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 83 83 84 84 84 84 84 84 84 84 
I 

Si02 48.60 52.10 47.49 50.90 50.58 46.67 49.74 45.62 50.69 4 7 .93 
T102 0.70 0.70 1.09 0.61 0.73 0.14 0.86 0.80 0.13 0.81 
Al203 16.40 17.50 16.82 19.44 17.93 13.21 15.40 13 .43' 18.52 18.60 
Fe203 3.30 3.00 6.44 4.20 4.14 2.98 5.18 6.46 5.27 6.44 
FeO 4.90 3.30 1.06 1.25 3.10 4.93 2.49 2.18 1.90 1.85 
MnO 0.14 0.12 0.13 0.12 0.15 0.15 0.13 0.12 0.17 0.15 
MgO 5.80 5.60 5.09 3.83 3.28 8.72 6.11 7.80 3.84 3.98 
cao ll.60 7.00 9.35 7.88 . 7. 92 13. 75 10.98 . 14 .04 9.15 9.32 
Na20 1.60 2.00 1. 73 2.69 2.22 1.63 1.67 1.72 2.17 2.07 
K20 5.10 4.40 8.44 7.39 8.04 5.57 5.96 4.95 6.25 7.10 
P205 0.42 0.27 0.41 0.27 0.37 0.24 0.34 0.36 0.25 0.32 
H2o+ --
H20-
C02 --
L.O.I. 1.00 3.70 1.55 1.61 1.36 1. 76 1.42 2.06 1.43 1.20 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v !:\:) 

Ni ..... 
C>J 

Cr 
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Locality Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 84 84 84 85 85 85 85 85 85 85 

Si02 46.57 47.85 48.51 49.40 56.20 55.60 46.60 4 7 .so 48.90 47.30 
Ti02 0 .77 0.11 0.76 1.00 1.30 1 .• 30 0.90 0.90 0.80 0.80 
Al203 13.04 12.69 15.41 18.20 17.00 14.00 iS.60 17.80 16.40 16.20 
Fe203 4.66 3.69 4.42 4.50 3.50 4.40 5.70 5.60 6.70 5.90 
FeO 3.22 4.07 3.04 4.00 3.30 2.20 2.50 3.00 1.50. 2.00 
MnO 0.13 0.16 0.12 
MgO 8.01 8.10 8.21 3.30 6. 50 . 7.20 4.40 5.20 s.oo 5.20 
Cao 13.46 14.04 11.89 7.90 4.50 5.30 9.60 10.00 10.90 10.80 
Na20 1. 22 1.53 1.39 3.10 2.00 2.70 2.30 1.60 2.20 2.30 
K20 6.89 5.22 5.15 6.80 4.70 6.60 8.80 6.10 6.40 6.40 
P205 0.40 0.41 0.29 0.40 0.30 0.30 0.50 0.50 0.40 0.30 
H2~ 

H20-
C02 
L.O.I. 1.34 1.81 0.72 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v C\:) 

...... 
Ni ~ 

Cr 
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Locality Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini Vulsini 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 85 86 86 87 87 88 88 88 88 88 

Si02 47.10 53.70 53.80 48.10 47.60 47.12 47 .88 47 .90 47.25 46 .74 
Ti02 0.80 0.95 0.95 0.95 0.92 0.64 0.66 0.68 0.74 0.75 
Al203 18.00 16.50 16.20 15.60 16.10 11.84 12.13 12.55 12.15 12.30 
Fe203 4.90 4.83 4.82 3.92 3.02 3.26 2.78 4.86 3.08 3.30 
FeO 2.80 3.95 4.49 3.31 4.52 4.16 4.51 2.45 4.54 4.59 
MnO 0.13 0.14 0.18 0.21 0.15 0 .14 0.14 0.17 0.19 
MgO 3.20 3.01 3.16 5.24 4.36 12.84 12.20 11.17 9.26 8.96 
cao 7.70 6.38 6.35 10.70 10.10 13.88 14.05 14.37 15.61 15.35 
Na20 3.10 2.16 1.94 1.86 2.80 1.42 1.24 1.42 1.10 0.81 
K20 7.50 5.95 6.27 7.89 8.01 3.29 3.18 3.35 4.49 4.59 
P205 0.30 0.34 0.38 0.56 0.58 0.30 0.29 0.29 0.35 0.34 
H2o+ 
H20- 0.12 0.05 0.01 o·.19 0.22 
C02 
L.O.I. 1.23 1.15 1.76 1.68 0.65 0.51 0.50 0.93 1.08 

Ba 620 561 530 754 738 
Rb 253 242 228 368 396 
Sr 769 724 714 799 791 
Zr 128 122 122 179 182 
Nb 8 5 6 6 7 
y 24 24 24 28 28 
La 40 42 39 52 
Ce 92 87 87 124 
Nd 42 43 42 56 
Sc 
v 186 177 203 218 212 ~ 

N 
Ni 261 224 189 114 109 i:n 

Cr 911 782 750 223 230 



Group III Page 9 

Locality Vulsini Vulsini Vulsini Vulsini Cimini Cimini Cimini Cimini Cimini Cimini 
Italy Italy Italy Italy .Italy Italy Italy Italy Italy Italy 

Ref ere nee 88 88 88 88 79 79 89 89 89 89 

Si02 47.52 47 .10 44.70 48.30 57.43 60.25 60.08 59.50 59.04 58.69 
Ti02 0.87 0.81 0.85 0.80 0.85 0.75 0.82 0.87 0.97 0.94 
Al203 14. 52 15.56 16.71 17.84 15.99 15.80 15.16 15.94 15.23 15.30 
Fe203 4.95 3.16 5.27 3.58 1.22 1.62 2.34 1.29 1.53 1.50 
FeO 3.49 4.58 3.44 3.72 3.6~ 3.16 2.51 3 .11 2 .16 3.12 
MnO 0.14 0.15 0.15 0.15 0.09 0.09 0.11 0.10 0.10 0.12 
MgO 7.38 6.04 5.55 4.84 6.30 4.50 3.00 3.07 3.61 4.37 
Cao 13.15 12.67 13.11 10.39 6.82 5.44 5.59 5.26 6.00 6.65 
Na20 0~96 1.50 1.56 2.43 1.81 2.14 2.29 2.17 1.91 2.08 
K20 5.14 6.54 6.49 6.19 5.01 5.36 5 .92 5.88 5.92 5.76 
P205 0.33 0.45 0.44 0.38 0.31 0.31 0.36 0.31 0.33 0.35 
H2o+ 
H20- 0.05 0.21 0.13 0.28 
C02 .. --
L.O.I. 0.40 1.01 0.94 0.94 0.51 0.59 1.11 1.63 1.34 0.62 

Ba 592 1161 1032 1158 1061 883 
Rb 425 558 436 431 336 353 
Sr 1122 1278 1094 1586 688 613 
Zr 180 308 219 304 366 362 
Nb 6 16 14 23 
y 26 42 37 31 
La 56 77 73 82 94 91 
Ce 127 163 154 169 196 196 
Nd 64 69 71 61 85 82 
Sc 21 18 
v 243 18 245 173 137 117 

~ 

Ni 61 64 42 48 108 59 N 
0) 

Cr 138 22 19 23 302 204 
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Locality Cimini Cimini Cimini Cimini Cimini Cimini Cimini Cimini Cimini Vi co 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 89 89 89 89 }89 89 89 89 89 90 

Si02 58.66 58.56 58.30 57.99 57.95 56.44 54. 78 54.63 52.45 55.00 
Ti02 0.94 0.98 0.90 1.13 0.98 0.93 1.05 1.02 1.16 0.59 
Al203 14 .93 14 .86 14 .63 15.37 15.30 14 .37 14.04 14 .18 14 .19 16.80 
Fe203 2.07 1. 75 1.60 1.65 1.86 2.3,2 1.58 2.66 2.78 2.60 
FeO 2.96 3.31 3~24 3.16 3.15 3.11 3.60 2.93 2 .92 3.00 
MnO 0.12 0.11 0.10 0.10 0.10 0.10 0.13 0.09 0 .13 0.13 
MgO 4.45 4.64 4.38 4.62 4.29 6~34 7.56 7.73 8.48 3.60 
cao 6.25 6.45 6.67 6 .45 6.57 6.73 7.36 6 .45 6.45 6.20 
Na20 1.98 2.00 2.03 2.01 2.06 1.55 1. 79 1.45 1.42 1.50 
K20 5.50 5.79 6.01 5.88 5.96 5.88 6.02 6.12 6.26 8.40 
P205 0.33 0.38 0.41 0.35 0.35 0.31 0.44 0.34 0.27 0.45 
H2o+ 1.48 
H20-
C02 0.12 
L.O.I. 1.06 0.97 1.06 0.95 1.18 1.14 1.08 1.38 2.17 

Ba 2047 
Rb 539 
Sr 1401 
Zr 396 
Nb 
y 
La 
Ce 
Nd 
Sc 
v !:\:> 

Ni ..... 
'J 

Cr 
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Locality Vico Vico Vico Vico Vi co Vico Vico Vico Vico Vico 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 90 90 90 90 90 90 90 90 90 91 

Si02 51.60 53.10 52.60 52.20 51. 70 51.90 51.80 49. 70 49.30 52.20 
Ti02. 0.86 0.70 0.75 0.76 0.82 0.78 0.80 0.90 0.80 1.24 
Al203 15.90 17.90 15.80 16.00 18.00 17.20 17.40 16.40 18.30 17.00 
Fe203 3.30 3.60 2.20 2.40 2.50 3.20 2.20 4.00 3.60 1.67 
FeO 3.90 2.80 4.60 4.50 4.50 3.50 4.80 3.70 3.40 3.98 
MnO 0.13 0.13 0.14 0 .14 0.16 0.14 0.15 0.15 0.15 
MgO 5.10 3.30 5.10 5.10 3.80 3.80 3.60 5.20 3.50 5.56 
Cao 8.30 6.10 8.20 8.50 7.60 7.20 7.00 9.00 8.30 9.31 
Na20 1.10 2.40 1.80 1.80 1.90 1.70 1.80 1.60 1.30 2.22 
K20 7.00 6.60 6.80 6.90 7.30 8.10 8.10 7 .40 8.80 4.82 
P205 0.64 0.48 0.50 0.49 0.53 0.50 0.58 0.57 0.60 0.42 
H2o+ 1.78 2.10 1.28 1.14 1.16 1.10 1.22 0.94 1.56 1.40 
H20-
C02 0.02 0.02 0.16 0.06 0.10 0.08 0.22 
L.O.I. 1.40 

Ba 1983 1165 2020 1975 2077 2208 1765 2342 3659 
Rb 552 584 458 425 430 586 733 435 627 
Sr 1155 1205 1325 1292 1394 1463 1541 1479 2590 
Zr 359 469 373 372 428 391 490 377 551 
Nb 
y 
La 
Ce 

·Nd 
Sc 

, __ 
v 

t __ 

-- !'.\:> 

Ni ...... 
Cl:> 

Cr 
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Locality Vico Vi co Vi co Vi co Vi co Vi co Vi co Vi co Vi co Vi co 
Italy Italy Italy . Italy It~ly Italy Italy Italy Italy Italy 

Reference 91 90 90 90 90 90 90 90 90 90 

Si02 52.40 55.60 54.60 55.00 55.30 52.30 52.30 52.00 51.80 52.10 
Ti02 1.51 0.60 0.62 0.65 oi.63 0.76 0.68 0.67 0.80 0.74 
Al203 14 .90 15.10 18.40 17 .40 17.30 15.40 16.90 16.50 17.10 16.70 
Fe203 3.05 2.20 2.60 2.20 2.00 4.20 2.20 2.30 2.30 2.50 
FeO 3.64 3.50 3.00 3.60 3·.60 2.60 4 .10 3.90 4.80 4.20 
MnO 0.13 0.14 0.12 0.13 0.12 0 .14 0.15 0.15 0.15 
MgO 5.66 3.90 3.20 3.40 3.00 5.20 s.so 5.30 3.70 4.80 
Cao 7.69 6.80 5.60 5.90 5.60 8.60 7.70 7.80 7.20 7.80 
Na20 ·2.09 1.80 2.50 2.20 2.40 1. 70 2.10 2.20 1.80 1.90 
K20 4 .82 8.20 7.00 7.60 7.70 6.70 6.40 6.30 8.40 7.00 
P2os· a.so 0.45. 0.40 0.40 0.48 0.50 0.38 0.73 0.63 0.52 
H2C* 1.24 1.44 1.12 1.04 1.72 1.40 1.26 1.10 1.22 
H20-
C02 0.08 0.12 0.08 0.04 0.06 0.04 0.06 0.07 
L.O.I. 2.02 

Ba 1964 1629 1679 1614 1378 1531 1493 1801 1884 
Rb 571 739 515 509 774 483 416 602 466 
Sr 1346 1225 1147 1145 1267 1090 1096 1525 1277 
Zr. 420 496 477 496 383 396 365 475 388 
Nb 
y 
La 
Ce 
Nd 
Sc 
v 
Ni 

!:\:) 
...... 

Cr ~ 



.. 
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Locality Vico Vico Sabatini Sabatini Sabatini Sabatini Sabatini Sabatini Sabatini Sabatini 
Italy Italy Italy Italy italy Italy Italy Italy Italy Italy 

Reference 90 90 92 92 92 92 92 92 92 92 

Si02 55.10 55.20 48.50 47.90 48.70 47.20 48.10 46.70 47.40 46.70 
Ti02 0.60 0.64 0.89 0.89 0.84 0.79 0.72 0.90 0.79 0.82 
Al203 16.80 17 .40 17.70 16.80 17.40 17.40 14 .30 16.20 13.20 15.60 
Fe203 2.50 2.10 4.60 3.30 6.00 3.50 3.70 3.50 3.70 5.80 
FeO 3.20 3.60 2.50 3.70 1. 70 4.00 4.00 5.20 4.50 2.60 
MnO 0.13 0.13 0.16 0.13 0.13 0.17 0.15 0.16 0.14 0.15 
MgO 3.60 3.20 3.50 5.20 4.90 3.80 7.10 5.80 7.40 5.40 
Cao .6.20 5.80 9.70 10.60 9.60 9.50 11.40 11.40 12.40 11.00 
Na20 1.90 2.30 1. 70 1.30 1.80 1. 70 1.20 0.87 1.10 1.10 
K20 7.90 7.70 7.60 7.00 6.40 8.50 7.20 7.00 7.60 8.00 
P205 0.43 0.44 0.65 0.64 0~63 0.54 0.49 0.66 0.58 0.61 
H2o+ 1.39 1.08 0.86 1.14 0.43 1.10 0.51 0.81 0.40 0. 72 
H20-
C02 0.07 0 .10 0.43 0.15 0.09 0.10 0.09 0.00 0.05 0.08 
S03 0.18 0.18 0.18 0.18 0 .18 0.17 0.19 0.18 

Ba 1880 1647 2060 2020 1540 2100 990 1510 1320 1280 
Rb 616 512 456 450 462 372 456 476 384 669 
Sr 1324 1146 1684 1726 1537 2203 1574 1607 1401 1574 
Zr 437 487 350 373 266 430 271 300 281 302 
Nb 
y 31 32 29 35 29 34 28 35 
La 
Ce 
Nd 
Sc L-
v ~ 

Ni ~ 
CC> 

Cr 118 185 150 101 320 109 230 132 
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Locality Sabatini. Alban Alban Alban Alban Alban Alban Alban Alban Alban 
Italy Hills Hills Hills Hills Hills Hills Hills Hills Hills 

Italy Italy Italy Italy Italy Italy Italy Italy Italy 
Reference 92 93,94 93,94 93,94 93,94 93,94 93,94 93,94 93 93 

Si02 47.70 42.84 45.74 42.36 52.63 43.28 44.67 43.93 47.03 45.84 
Ti02 0.78 1.22 0.92 1.36 0.52 0.55 1.12 1.18 0.88 0.08 
Al203 13 .40 13.79 17.52 15.37 17.57 15.78 14.46 15.17 15.23 18 .41 
Fe203 3.20 4.47 3.90 3.94 2 .47. 6.17 6.04 6.43 5.29 
FeO 4.60 5.02 3.51 6.22 6.36 3.63 3.09 3.94 4.15 9 .45 
MnO 0 .14 0.11 0 .10 0.16 0.08 0.13 0 .16 0.28 0.10 0.91 
MgO 7.30 6.30 3.54 3.98 4 .24 4.07 4.71 4.63 4.56 4.13 
Cao 13.00 9.93 11.60 11.91 11.82 9.67 11. 20 10.25 11.00 10 .65 
Na20 0.82 1.38 1. 73 2.52 2.11 1.64 0.80 1.34 1.30 3 .02 
K20 7.00 6.74 8.83 8.05 7. 77 8.01 7.43 8.61 7.84 7 .41 
P205 0.56 0.70 0.43 0 .49 0.64 0.64 0.82 0.85 0.54 
H2o+ 0.37 4.89 1.06 2.26 1.87 2.11 1.88 1.40 1.62 0.51 
H20- 0.12 0.49 0.47 0.71 1.40 2.68 1.58 0 .4 7 
C02 0.07 2.30 0 .19 1.15 0.76 2.29 0.65 0.85 0.15 
503 0.19 

Ba 1260 
Rb 398 390 540 140 290 330 380 380 
Sr 1321 1290 1450 2300 4600 1680 1090 14'60 
Zr 287 
Nb 
y 29 
La 159 111 194 201 178 143 148 
Ce 352 271 426 435 371 360 340 
Nd 
Sc 14 17 10 10 16 23 ' 21 
v ~ 

~ 

Ni 47 41 33 56 51 51 57 ..... 
Cr 18 19 9 12 16 32 14 
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Locality Alban Alban Alban Alban Alban Alban Alban Alban Alban Alban 
Hills Hills Hills Hills Hills Hills Hills Hills Hills Hills 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 93 93,94 93 93,94 93 93 93,94 93 93,94 93,94 

Si02 45.99 46.10 45.75 48.58 48.36 46.66 48.18 45.54 46 .43 47.37 
Ti02 0.37 1.20 1.11 0.99 1.31 0.36 1.09 0.71 0.96 1.10 
Al203 16.56 14.90 17.06 14.90 15.01 18.20 14 .85 18.69 16.86 20.13 
Fe203 4 .13 4.90 6.12 1.96 3.54 4.32 2.51 4.38 3.02 0.62 
FeO 5.38 3.70 3.20 5.08 5.22 4.93 4.79 2.01 4.55 4.32 
MnO 0.30 0.09 0.12 0.12 0.09 0.08 0 .11 0.17 0.10 
MgO 5.30 4.80 4.00 6.44 4.89 3.13 7.37 4.68 4.44 5.21 
Cao 10.47 10 .so 9.68 1.263 10.32 10.12 11.81 10.44 10 .36 9.86 
Na20 2.18 1.80 2.30 2. 71 2.21 2.20 1.20 2.60 2.53 3 .40 
K20 8.97 8.80 9.35 5.59 8.04 8.65 6.18 7.92 9.05 6.89 
P205 0.56 0.70 0.63 0.53 0.35 0.53 0.48 0.59 0.26 0.34 
H2o+ 0.45 1.50 0.72 0.60 0.85 o. 77 0.88 1.19 0.55 0.60 
H20- 0.60 0.10 0.24 0.29 0 .13' 0.17 0.49 0.75 0.10 
C02 0.30 
S03 0.02 
F 0.09 
Cl 0.01 

Ba 
Rb 550 440 360 400 410 
Sr 1440 1600 1450 2000 2450 
Zr 
Nb 
y 
La 115 93 97 123 125 
Ce 258 211 218 267 267 
Nd --
Sc 18 35 33 18 6 ~ 

~ v ~ 

Ni 46 93 73 39 0 
Cr 16 359 366 30 5 
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Locality Alban Alban Alban Alban Alban Alban Alban Alban Alban Alban 
Hills Hills Hills Hills Hills Hills Hills Hills Hills Hills 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 93,94 93 93 93 93 93 93 93 93 93 

Si02 48.48 48.71 45.82 44.32 43.90 43.02 44.44 44.69 47.03 48.16 
Ti02 0.84 0.82 0.99 0.96 0.96 0.80 0.81 1.03 0.50 0.86 
Al203 17. 72 18.06 16 .42 12.98 15.80 15.76 15.06 14.57 18.82 12.98 
Fe203 4.44 3.80 6.33 6.45 3.65 4.98 . 3.30 5.56 4 .19 2.92 
FeO 2.92 2.93 2 .43 5.06 5.20 4.31 4.67 3.69 4.20 4.55 
MnO 0.17 0.19 0.23 0.20 0.16 0.20 0.15 0.15 0.15 0.16 
MgO 3.54 3.20 4.01 5.63 5 .02 7.20 6.35 5.83 4.00 9.02 
cao 7.72 8.20 10. 70 13.30 12 .43 10 .13 10 .13 11.68 10.39 12.50 
Na20 2.99 2.92 1.50 1. 74 1.82 1.46 2.15 2.37 2.58 1.30 
K20 8.99 8.33 8.31 8.29 8 .41 7.98 8 .11 8.62 6.18 6.54 
P205 0.39 0.39 0.67 0.63 0.60 0.65 0.75 1.16 0 .41 0 .4 3 
H2o+ 1.39 1.35 1.30 0.60 0.71 2.04 1.10 0.60 1.34 0.84 
H2<r 0.57 0.48 0.64 0.01 0.68 1. 73 1.33 0.11 0.46 0.26 
C02 0.20 o. 20 1.17 
S03 0.05 ' 0.02 0.08 0.04 
F 0.07 
Cl 0.03 0.01 0.01 

Ba 
Rb 470 
Sr 2700 
Zr 
Nb 
y 

La 132 
Ce 277 
Nd I:\:> 

. Sc 6 I:\:> 
CN 

v 
Ni 
Cr 5 



Group III Page 17 

Locality Alban Alban Alban Alban Alban Alban Alban Alban Ernici Ernici 
Hills Hills Hills Hills Hills Hills Hills Hills 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy-

Reference 93,94 93,94 93,94 93 93 93,94 93,94 93 95 95 

Si02 47 .26 44.90 46.50 47.20 49.10 43.79 46.52 47.03 45.81 46.46 
Ti02 0.99 0.99 0.98 1.19 1.20 1.02 0.95 0.50 0.86 0.82 
Al203 12.74 15.92 13. 74 17.66 9.49 16.23 16.40 18.82 17.02 16.62 
Fe203 5.95 5. 77 4.95 3.51 3.17 9.30 5.83 4.19 4.53 5.86 
FeO 3.72 3.08 2.87 4.50 4.70 1.14 2.18 4.20 3.32 1. 77 
MnO 0.17 0.17 0.17 0.18 0.18 0.15 0.16 0.15 
MgO 6.46 6.49 7.13 4.20 10.31 4.88 5.04 4.00 5.81 6.04 
Cao 12.66 9.85 11. 73 9.52 14 .48 12.05 11.05 10.39 12.07 10.87 
Na20 1.84 1.68 1.84 2.25 0.95 1.10 1.83 2.58 1.97 2.60 
K20 7.03 8.04 7.02 7.63 5.50 6.46 8.80 6.18 7.24 6.94 
P205 0.53 0.55 0.51 0.58 0.38 0.65 0.53 0 .41 0.44 0.45 
H2o+ 0.83 1.67 l.57 0.72 0.51 2.47 0.66 1.34 
H20- 00.29 1.07 1.32 0.57 0.11 2.27 0.37 0.46 
C02 -- 0.07 0.17 ,, 
L.O.I. 0.76 1.56 
S03 0.04 
F 
Cl 0.07 

Ba 1594 1213 
Rb 365 510 350 460 480 366 421 
Sr 1550 1500 1750 1800 1550 1845 1666 
Zr 218 227 
Nb 13 12 
y 32 
La 104 109 108 125 99 96 93 
Ce 239 250 247 280 232 205 173 ~ 

Nd 91 87 ~ 
<!:>.. 

Sc 34 22 23 20 24 21 24 
v 217 241 
Ni 52 34 47 42 39 63 
Cr 192 24 47 14 78 100 146 
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Locality· Ernici Ernici Ernici Ernici Ernici Ernici Ernici Ernici Ernici Ernici 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 95 95 95 95 95 95 . 95 95 .95 95 

Si02 46.64 .46.67 46.67 46.86 4 7 .03 47.27 47.38 47.39 4 7 .43 46.13 
Ti02 0.82 0.80 0.80 0.79 0~81 0.76 0.77 0.72 0.75 1.00 
Al203 17.62 17.10 17.96 18.14 17.62 17.91 17.89 17.85 18.21 16.92 
Fe203 3 .11 3.85 2.70 3.35 3~44 2.34 4.68 1.76 3'.47 4.28 
FeO 3.47 3.65 3.71 2.91 3.36 4.67 2.52 4.27 3.61 2.64 
MnO 0.14 0.15 0.14 0.14 0.14 0.14 0.14 0.13 0.14 0 .14 
MgO 5.50 6.13 5.50 5.10 6~13 5.40 6.10 6.36 5.07 4.80 
Cao 1.0. 96 11.15 10.66 10 .51 10.62 10.29 10.06 10.53 9.88 9.67 
Na20 2.75 2.55 2.71 2.46 2.58 2.42 2.33 2.51 2.79 2.60 
K20 7.31 6.52 7.88 8.06 6.83 7.32 6.78 7.36 7.34 8.85 
P205 0.47 0.38 0.46 0.54 0~44 0.58 0.42 0.54 0.55 1.14 
H2o+ --
H20-
C02 
L.O.I. 1.21 1.05 0.80 1.14 ' 0.99 0.92 0.94 0.57 0.76 1.83 

Ba 1664 1229 1675 1592 832 913 877 892 945 4057 
Rb 358 413 335 341 339 356 379 335 355 451 
Sr 1864 1655 1909 1932 1523 1538 1491 1412 1554 1815 
Zr 217 207 218 219 228 237 226 218 240 443 
Nb 13 13 12 12 11 11 12 9 12 29 
y 32 31 32 32 3~ 31 3.0 44 
La 98 93 94 80 83 83 83 93 257 
Ce 212 180 204 170 178 183 177 193 398 
Nd 95 84 80 83 62 81 81 82 166 
Sc 22 26 21 24 25 25 27 22 23 
v 220 214 236 228 256 240 215 233 244 242 I:'\!> 

Ni 38 50 47 37 55 52 51 58 52 30 I:'\!> 
c:n 

Cr 87 138 90 66 l34 108 108 151 109 11 
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Locality Ernici Ernici Ernici Ernici Ernici Ernici Ernici Ernici Ernici Ernici 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 96 96 96 96 96 96 96 96 . 96 96 

Si02 46.78 47.23 4 7 ._67 48.07 47.37 48.05 46.96 46.83 4 7 .15 4 7 .88 
Ti02 0.77 0.75 0.77 0.73 0.78 0.74 0.77 0.80 0.78 0.72 
Al203 15.69 15.52 15.90 15.52 15.81 15.69 15.66 15.81 15.79 15.58 
Fe203 1.72 3 .81 2.86 2.63 3.33 1.90 4.62 4.97 5.35 2.15 
FeO s. 45 3.36 4.14 4.07 3.90 4.94 2.52 2.74 2.25 4.83 
MnO 0.14 0.14 0 .14 0.12 0 .14 0.13 0 .14 0.15 0 .14 0.14 
MgO 6.96 6.99 6.34 7.21 6.87 6.98 6.24 6.30 6.28 6.52 
Cao 11.44 11.18 11.39 10.72 11.34 10.91 11.03 11.42 11.03 10 .61 
Na20 2.05 2.18 1.93 1.99 2.26 2.33 2.51 2.22 2 .OS · 1.99 
K20 5.96 6.48 6.90 6 .4 7 6.70 6.51 6.00 6.68 6.61 6.81 
P205 0.43 0.41 0.41 0.41 0.53 0.41 0.49 0.52 0.47 0.41 
H2o+ 
H20-
C02 
L.O.I. 1.91 1.27 1.02 1.17 0.99 0.82 2.20 0.92 1.29 1.18 

. Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v C\:> 

C\:> 
Ni O} 

Cr 
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' Locality Ernie! Ernie! Ernie! Ernici Ernici Ernie! Ernici Ernie! Ernici Ernie! 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 96 96 96 96 96 96 96 96 96 96 
I 

Si02 47.53 47.17 47.86 47.95 4 7 .93 47.86 4 7. 78 47.58 48.02 4 7 .57 
Ti02 0 .77 0.78 0.77 0.73 0.73 0.75 0.74 0.76 0.75 0.77 
Al203 15.47 15.81 16.06 15.50 16.06 15.49 15.93 15.47 15.61 15.69 
Fe203 3.40 3.69 3.48 2.24 2.89 2.99 3.23 3 .45 2.16 3 .43 
FeO 3.74 3.51 3.37 4.81 4.00 4.16 3.93 3.65 4.98 3.61 
MnO 0.14 0 .14 0 .14 0.14 0.13 0.15 0.14 0 .14 0 .14 0.14 
MgO 6.48 5.95 5.85 6.44 5.87 6.57 6.00 6.37 6.36 5.91 
cao '11.44 11.35 10.81 10 .83 10.53 11.16 10.73 11.24 10.79 11.19 
Na20 2.29 2.00 1.93 2.33 1.83 2.16 1.82 2.33 2.30 2.37 
K20 6.80 7.05 6.63 6.58 6.75 7.04 7.03 6.95 6.94 7.17 
P205 0.44 0.50 0.38 0.42 0.43 0.41 0.43 0.41 0.46 0.50 
H2o+ 
H20-
C02 
L. O. I. 1.01 1.07 1.48 1.27 1.43 0.81 1.35 0.96 0.70 0.89 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v t\:J 

t\:J 
Ni "'l 

Cr 
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I 

Locality Ernici Ernici Ernici Ernici Rocca- Rocca- Rocca- Rocca- Ro~ca- Rocca-
Italy Italy Italy Italy morifina monf ina monfina monfina monfina monfina 

Italy Italy Italy Italy Italy Italy 
Reference 96 96 96 96 97 98 98 98 98 98 

Si02 47.99 48.07 4 7. 91 46.95 46 .40 46.61 47 .40 48.93 49.32 48.85 
Ti02 0.73 0.74 0.75 0.95 0.94 1.02 0.97 0.80 0.81 0.84 
Al203 16.31 16.10 16.18 15.02 15.70 16.77 17.58 18.48 18.39 17.94 
Fe203 4.17 2.10 3.79 5.02 5.30 2.63 4.83 1.68 1.56 2.80 
FeO 2.96 4.92 3.02 2.76 3.40 6.00 4.59 5.66 5.67 5.05 
MnO 0.14 0.14 0.14 0.14 0.15 0.15 0.16 0.15 0.14 0.16 
MgO 5.94 6.13 5.63 5.20 6.00 5 .49 4.97 3.93 3.87 4.08 
cao 10.56 10.43 10.67 9.53 11.60 11.35 10.37 8.21 8.28 9.19 
Na20 2.33 2.67 2.22 2.00 1.60 1.47 1.74 2.21 2.29 2.50 
K20 6.86 7.06 7.41 9.00 6.60 5.99 5.40 6.55 6.61 5.97 
P205 0.43 0.45 0.48 1.08 0.58 0.53 0.43 0.36 0.36 0.39 
H2o+ 0.94 
H20-
C02 --
L.O.I. 0.94 0.70 1.05 1.12 1.25 0.44 0.73 0.55 0.97 

Ba 1509 
Rb 497 
Sr 1607 
Zr 285 
Nb 
y so 
La 
Ce 160 
Nd 
Sc 
v t\:> 

Ni t\:> 
cc 

Cr 
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Locality Rocca- Rocca- Somma Somma Somma Somma Somma Somma Somma Somma 
monfina monfina Italy Italy Italy Italy Italy Italy Italy Italy 
Italy Italy 

Reference 98 99 100 100 100 100 100 100 100 100 

Si02 45.84 45.80 49.90 50.30 50.10 48.50 52.10 52.20 50.10 51.20 
Ti02 0.94 0.87 0.99 0.73 0.68 0.87 0.87 0.82 0.92 0.68 
Al203 14.66 16.80 16.10 18.60 16.90 15.80 19.30 19.20 18.50 18.60 
Fe203 4.02 5.25 5.50 2.90 3.10 2.50 2.90 4.50 2.80 4.60 
FeO 4.66 4. 20 3.20 3.90 4.40 5.80 4.50 3.50 4.30 3.30 
MnO 0.16 0.16 0.14 0.12 0 .11 0.11 0.09 0.12 0 .11 0.11 
MgO 6. 72 6.10 5.10 4.90 5.90 6.20 3.30 3.20 4.10 4.70 
Cao 12.41 11.80 10.40 8.90 9.60 11.80 8.10 7.30 8.80 7.30 
Na20 ·· i.56 1. 70 2.10 2.20 2.20 2.00 2.50 2.80 2.40 2.30 
K20 6.85 6.20 5.80 5.60 5.50 5.30 5.80 6.00 6.20 5.50 
P205 0.69 0.57 0.66 0.63 0.65 0.88 0.45 0.54 0.60 0.62 
H2o+ 0.58 0.29 0.39 0.64 0.16 0.70 0.74 0.53 
H20- 0.14 0.45 0.07 0.04 0.28 0.30 0.48 0.41 
C02 
L.O.I. 0.49 0.90 
F 0.08 0.10 0.16 0.08 0.10 0.17 0.06 0.06 
Cl 0.01 0.01 0.03 0.04 0.02 

Ba 1700 1800 1300 1400 1800 2000 2400 1900 
Rb 220 310 230 190 230 210 270 250 
Sr 910 680 610 820 660 800 820 800 
Zr 370 250 220 280 310 300 270 290 
Nb 25 15 10 20 20 30 20 
y 
La 
Ce 
Nd 

C\:) 

Sc C\:) 
(Q 

v --
Ni 
Cr 
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Locality Vesuvius Vesuvius Vesuvius 
I 

Vesuvius Vesuvius Vesuvius Vesuvius Vesuvius Vesuvius Vesuvius 
Italy Italy Italy Italy Italy Italy Italy Italy Italy Italy 

Reference 100 100 100 100 100 100 100 100 100 100 

Si02 48.60 48.50 48.80 47.50 48.10 48.40 46.20 48.40 4 7. 70 48.60 
Ti02 0.72 0.68 0.83 0.72 0.82 0.83 0 .82 0.72 0.83 0.60 

I 

Al203 18.20 18.50 19.70 16.60 16.40 17.90 20.50 18.10 18.80 18.90 
Fe203 1.20 5.10 3.20 3.30 2.90 5.90 6.30 2.80 3.40 3.50 
FeO 6.40 3.20 5.40 4.80 5.80 3.20 2.70 5.10 4.70 5.00 
MrtO 0.13 0.13 . 0 .14 0 .11 0 .14 0.14 0.15 0.12 0.13 0.13 
MgO 4.30 4.20 3.10 5.40 4.80 3.30 3.00 4.30 3.40 3.20 
Cao 10.20 9.80 8.70 11.60 8.30 8.60 7.60 9.00 9.20 8.60 
Na20 2.70 2.80 2.90 2.30 2.40 2.70 3.10 3.10 3.10 2.80 
K20 6.80 6.50 6.70 6.70 7.00 1 .3o· 8.20 6.80 6~50 7.50 
P205 0 .66 . 0.66 0.65 0.79 0.60 0.57 0.60 0.68 0.66 0.50 
H2o+- 0.45 0.65 0.40 0.36 0 .4 7 0.36 0.22 0.32 0~39 0.72 
H20- 0.25 0.15 0.20 0.32 0.23 0.14 0.28 0.20 0.19 0.18 
C02 
F 0.19 0.21 0.16 0.06 0.15 0.12 0.16 0.15 0.14 0.15 
Cl 0.27 0.39 0.57 0.55 0 .16 0.27 0.33 0.73 0.56 0.19 

Ba 1950 2350 2400 2000 2400 2300 2500 1500 2000 2200 
Rb 250 250 240 250 220 300 320 280 260 300 
Sr 810 860 1030 810 840 970 1030 910 960 1000 
Zr 210 290 280 230 250 310 360 300 360 270 
Nb 15 20 10 
y 

La 
Ce 
Nd 

u_ , 
Sc -- ~ 

v c..i 
c:::> 

Ni 
Cr 
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Locality Vesuvius Vesuvius Vesuvius Vesuvius Vesuvius Vesuvius Vesuvius Vesuvius Segamat Segamat 
Italy Italy Italy Itaiy Ita~y Italy Italy Italy Malaysia Malaysia 

Reference 100 100 100 100 100 100 100 100 101 101 

Si02 47.50 47.80 47.50 48.70 48.00 47.80 47.40 48.20 47.74 49.28 
Ti02 0.88 0.80 0.73 0.77 0.68 0.67 0.75 0.78 0.97 0.95 
Al203 18.40 18.40 18.60 18.70 16.40 18.10 17.10 16.50 8.98 15.79 

' Fe203 2.30 2.50 4.10 2.90 3.60 2.70 2.30 5.30 5.56 6.37 
FeO 5.40 6.10 4.30 5.30 4~30 5.10 6.00 2.90 5.48 4.37 
MnO 0.10 0.14 0 .14 . 0.13 0.12 0.12 0.13 0.13 0.18 
MgO 3.70 3.50 3.20 3.90 5.90 4.20 4.40 5.80 10.59 8.56 
Cao 9.10 9.20 9.80 8.40 10. 50 . 9.70 9.40 12.50 11.96 4.70 
Na20 ·2.80 3.00 2.70 3.10 2.40 2.60 2.40 2.40 1.31 2.68 
K20 7.20 7.20 7.60 6.60 6.80 6.50 7.10 5.60 3.78 6.12 
P205 0.68 0.64 0.60 0.68 0.84 0.68 0 .57 0.82 0.44 
H2o+ 0.36 0.90 0.51 0 .41 0~10 0.50 a.so 0.46 2.38 1.64 
H20- 0.16 0.10 0.11 0.21 0.10 0.10 0.20 0.10 0.76 0.59 
C02 
F 0.15 0.29 0.17 0.13 0.13 0.15 0.13 0.12 
Cl 0.19 0.35 0.62 0.48 0.35 0.35 0 .14 0.08 

Ba 2450 2100 2300 2000 1700 3100 2150 1650 
Rb 260 240 340 270 200 260 210 210 
Sr 960 960 980 860 720 850 780 800 
Zr 230 340 370 300 260 260 250 270 
Nb 10 5 10 10 15 5 10 
y 
La 
Ce 

.Nd 
Sc l_ 

v !:\:> 
C>l 

Ni ..... 

Cr 
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Locality Segamat Muri ah Sangenges Sangenges Sangenges Batu Batu Batu Batu Batu 
Malaysia Java Sumbawa. Sumbawa Sumbawa Tara Tara Tara Tara Tara 

Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia 
Reference 101 102 103 103 103,104 105 105 105 106 106 

Si02 49.13 45.47 43.86 45.38 44.71 48.01 4 7 .95 45.38 49.74 47.81 
Ti02 1.05 1.05 1.09 1.05 1.09 0.92 0.87 1.17 0.78 0.92 
Al203 18.30 17.03 11.09 12.79 13 .20 15.23 13.81 18.51 15.68 13.64 
Fe203 4.68 9.95 2.04 1.92 1.96 3.19 3.96 5.96 8.61 9.13 
FeO 4 .42 10.38 9.78 9.99 5.50 4.76 4.24 
MnO 0.17 0.20 0.18 0.18 0.17 0.16 0.18 0.17 0.17 
MgO 4.31 5.61 9.00 8.29 7. 77 7.18 8.21 4.79 6.40 8.19 
Cao 7.15 10. 73 15.16 14 .38 13.88 11. 75 12.19 11. 73 10.28 12.12 
Na20 2.79 2.50 2.03 1.73 2.07 1.97 1.65 1.79 2.24 1.84 
K20 6.26 5.25 4.34 3.81 4.42 5.12 5.03 3.81 4.97 4.76 
P205 1.06 0.81 0.69 0.74 0.84 1.00 0.96 0.78 0.90 
H2o+ 3.00 1.19 1.40 1.75 1.34 0.29 0.48 1.05 0.04 0.01 
H20- 0 .46 0.09 0.15 0.60 0.10 0.10 
C02 

Ba 2830 1057 1159 
Rb 500 191 246 319 206 196 
Sr 1562 753 849 836 940 856 
Zr 187 187 122 139 218 210 
Nb 150 7 4 6 12 20 
y 30 38 20 25 39 29 
La 221 37 76 49 
Ce 282 148 106 
Nd 65 48 
Sc 51 53 49 32 38 
v 277 278 292 
Ni 26 42 35 30 51 79 I:\:) 

Cr 83 200 129 70 194 267 t"1 
I:\:) 

I 



Group III Page 26 

Locality Batu Batu Batu Batu Batu Batu Batu Batu Batu Batu 
Tara Tara Tara Tara Tara Tara Tara Tara Tara Tara 

Inodonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia 
Reference 106 106 106 106 106 106 106 106 106 106 

Si02 47.76 47.71 47.8S 48.08 47.62 47.61 47.70 48.01 47.96 46.S3 
Ti02 0.90 0.89 0.91 0.90 0.89 0.91 0.9S 0.98 0.98 1.16 
Al203 13 .48 13.60 14.07 13 .83 13. 72 14. ls 14 .13 14.79 14.84 16.07 
Fe203 9.12 9.03 9.29 9.lS 9.04 9.3S 9.26 9.21 9.25 9.84 
FeO 
MnO 0.17· 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.17 
MgO 8~38 8.24 7.94 8.28 8.33 7.39 7.S6 7.14 7 .11 6.3S 
Cao 12.24 11.92 11.S2 11.94 11.80 11.83 12.00 11.63 11. 76 11.97 
Na20 1.48 1.91 2.14 2.07 2.12 1.97 1.97 1.98 2.0S 1.80 
K20 4.69 4.60 4.82 4.S3 4.40 4.88 4 .92 4.90 4.86 4 .18 
P20S 0.87 0.87 0.91 0.8S 0.87 0.90 0.87 0 .8S 0.8S 0.82 
H2o+ 0.11 0.14 0.08 0.03 0.19 o.oo 0.00 0.00 0.00 0.38 
H20- 0.07 0.12 0.12 O.lS 0.18 0.14 0.13 0.10 0 .10· 0.39 
C02 

Ba 1128 1038 1167 1049 10S5 1178 1189 1221 127S 1177 
Rb 196 196 199 193 192 207 194 20S 198 215 
Sr 819 809 900 820 810 924 888 896 883 937 
Zr 206 212 216 21S 213 21S 216 210 217 134 
Nb 17 18 20 18 19 14 19 19 20 9 
y 30 29 30 31 29 34 31 30 31 26 
La Sl so S3 S2 S3 62 S7 52 S3 41 
Ce 104 105 104 106 106 134 104 109 106 81 
Nd 48 46 48 so 48 S9 47 48 48 40 
Sc 36 39 3S 38 36 36 36 34 36 3S 
v 276 296 300 287 298 300 311 304 310 338 
Ni 81 85 78 89 86 S7 62 SS S6 32 i:-..:i 
Cr 287 287 240 282 278 198. 208 171 168 98 C"3 

C"3 
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Locality Batu Batu Batu Batu Batu Ba tu · Dezhnev Dezhnev Dezhnev West 
Tara Tara Tara Tara Tara Tara Soviet Soviet Soviet Alaska 

Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Union Union Union 
Reference 106 106 106 106 106 106 107 107 107 108 

Si02 47.14 48. 77 47.92 47.28 48.71 46.83 59.44 58.48 54.23 44.50 
T102 0.93 0.82 0.93 1.14 0.87 1.20 0.65 0.84 1.25 2.00 
Al203 13.76 12.17 14. 56 16.15 14. so 17.74 14.60 16.68 14.35 11.00 
Fe203 9.16 2.40 2.86 2.98 4.09 4.59 1.81 1.57 2.94 4.30 
FeO 5.81 5.82 6.47 5.07 5.37 3.23 2.61 5.25 7.70 
MnO 0.17 0.16 0.16 0.18 0.19 0.20 0.10 0.10 0.07 0.21 
MgO 7.68 9.53 7.18 6.16 5.94 4.32 3.79 3.30 4.10 9.10 
cao 12.05 11.65 11.38 11.85 10.05 10.04 4. 71 4.83 5.78 12.60 
Na20 1.87 1.72 2.01 1.79 1.98 2.03 2.48 2.55 3.58 1.10 
K20 4.5l 5.09 5.12 4.45 6.71 5.35 8.01 8.29 7.66 4.40 
P205 0 .85 0.95 0.79 0.78 0.94 1.04 1.20 
H2o+ 0.24 0.43 0.64 0.22 1.50 
H20- 0.19 0.29 
C02 <0.05 
s o.oo 
F 0.34 
Cl 0.00 

Ba 1072 926 1114 1125 1256 1623 
Rb 192 266 197 215 288 189 
Sr 847 793 870 901 1040 1130 
Zr 212 183 212 128 '312 189 
Nb 18 13 22 10 22 16 
y 30 25 29 26 42 29 
La 51 
Ce . 100 86 99 79 · 171 105 
Nd 47 44 46 39 85 45 ~ 

Sc 42 36 36 37 30 20 CN 
.c.. 

v 307 268 295 327 282 331 
Ni 68 105 56 34 43 23 
Cr 244 461 176 93 120 23 
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Locality West West West West West West 
Alaska Alaska Alaska Alaska Alaska Alaska 

Reference 108 108 108 108 108 108 

Si02 48.90 50.30 51.40 52.20 54 .30 55.80 
Ti02 1.60 1.20 1.20 1.20 0.71 0.96 
Al203 12.10 15.00 12.20 15.20 17.20 15.20 
Fe203 2.60 3.40 6.20 2.80 2.70 2.30 
FeO 5.20 4.00 2.70 4.20 2.40 3.80 
MnO 0.17 0.17 0.17 0 .15 0.15 0.17 
MgO 8.70 5.40 6.40 4.60 3.20 3.20 
Cao 11.20 9.10 10.10 7.50 4.40 6.70 
Na20 0.91 2.40 2.20 2.80 . 3 .so 3.20 
K20 6.10 6.30 5.00 7.30 7.20 7.00 
P205 0.69 0.71 0.86 0.67 o. 71 0.39 
H2o+ 1.40 1.60 1.10 1.20 3.10 1.00 
H20- 0.49 0.24 0.30 0.19 0.68 0.26 
C02 <0.05 <0.05 <0.05 <0.05 0.08 <0.05 
s <0.05 o.oo o.oo o.oo <0.05 o.oo 
F 0.33 0.25 0.20 0.18 0.15 0.20 
Cl o.oo 0.00 0.01 0.00 0.00 o.oo 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd !:\:> 
Sc ~ 

en 
v 
Ni 
Cr 
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Locality Devon Devon Devon Devon Devon Devon Devon Devon Devon Jersey 
Egnland England England England England · England England England England Channel 

Isles 
Reference 109 109 109 109 109 109 109 109 109 110 

Si02 48.93 50.08 47.73 57.33 46.80 49.51 49.22 43.35 46.13 52.84 
Ti02 1. 24 2.03 1.65 2.17 1.95 1.66 1.77 1.59 2.39 1.10 
Al203 13.78 14.82 13.42 14·.42 18.48 17. 71 16.98 14. 55 15.06 12.30 
Fe203 7.05 11.61 8.85 3. 72 13.87 12.23 12.06 12.57 9.30 3.01 
FeO 3.80 
MnO 0.07 0.13 0.13 0.02 0 .15 0.21 0.19 0.13 0.14 
MgO 5~72 3.02 10.71 5.39 3.27 3.64 3.95 4.10 7.79 8.20 
Cao 7,52 3.93 5.52 3.18 0.43 1.93 1.06 7.70 3 .92 7.08 
Na20 1.74 1.23 2.63 2.31 0.26 2.56 2.28 1.12 0.35 1.61 
K20 7. 72 9.49 5.37 8.85 9.24 5.21 7.76 8.14 7.10 6.82 
P205 0.16 0.47 0.33 0.39 0.05 0.05 0.05 0.05 0.80 1.47 
H2o+ 1.82 1.60 2.81 1.13 3.63 3. 71 3. 24 2.56 3.56 1.64 
H20-
C02 4.43 0.42 0.14 0.37 0.07 0.33 0 .16 6.99 0.09 3.91 

Ba 3625 5146 3748 3627 545 559 703 509 4183 6027 
Rb 112 268 417 950 67 54 53 71 598 287 
Sr 2508 1079 978 889 55 107 32 45 786 2034 
Zr 412 872 650 876 151 141 160 127 1645 647 
Nb 8 30 28 31 17 15 16 13 30 21 
y 21 39 42 54 24 26 26 17 75 93 
La 166 97 87 84 25 26 24 16 112 316 
Ce 280 198 160 151 33 40 39 52 245 45 
Nd 116 58 62 59 15 11 130 196 
Sc 19 
v 91 69 79 89 195 250 161 172 167 140 
Ni 162 333 384 300 179 146 220 189 549 414 
Cr 574 !:\:> 

<:N 
0) 

' c 
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Locality Jersey Jersey Jersey Guernsey Tuscany Tuscany Tuscany Tuscany Fenster- St. 
Channel Channel Channel Channel Italy Italy Italy Italy toll en Bresson 
Isles Isles Isles Isles Germany France 

Reference 111 111 111 111 112 112 112 112 113 114 

Si02 4 7 .56 46.97 61. 73 47.91 52.90 56.10 56.60 55.30 50.70 64.30 
Ti02 1. 74 1.00 1.14 1.28 1.45 1.50 1.33 1.80 1. 21 0.80 
Al203 15.04 15.08 13 .33 12.46 . 13 .06 12.61 11.72 11.98 14.08 12.63 
Fe203 2.30 3.34 2.44 5.21 4.76 2.08 3.81 3.42 0.79 1.03 
Fe.O 4.68 6.10 2.58 3.25 2.02 2.78 1.35 2.60 5.21 2.65 
MnO 0.20 0.01 0.07 0.00 0.06 0.08 0.17 0.09 0.09 0.13 
MgO. 8.06 8.95 5.28 12 .46 8.01 7.56 9.12 8.35 6.00 3.36 
cao 6.28 3.81 1.86 5.48 4.28 4.07 4.41 4.28 5.90 2.45 
Na20 2.24 1.28 1.40 0.91 1.34 1.61 1.67 1.25 1.16 2.72 
K20 6.89 7 .42 6.98 6.29 7.23 7.23 7.57 8.11 '5 .84 6.56 
P205 0.28 0.22 0.18 0.14 1.27 . 1.14 0.62 0.62 0.91 0.70 
H2o+. 2.41 3.67 o. 24 2.98 3.82 1.58 
H20- 2.08 0.27 0.61 1.61 0.19 0.34 
C02 0.31 3.25 0.27 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v 
Ni 
Cr 

t\:> 
C>oJ 
""3 
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Locality Dommartin Col-des Schirmeck Albbruck- Pont de Limousin Limousin Limousin Limousin Vaugnerite 
France Croix France Teifenstein Montvert France France France France France 

France Germany France 
Reference 111 111 111 111 llS 116 116 116 116 116 

Si02 64.24 S7.40 42.64 S8.07 SS.SO S7.30 SS.21 S9.36 S4.33 48.SS 
Ti02 1.28 1.S8 1.45 1.06 l.SO 1.15 1.05 1.10 o.oo 0.72 
Al203 14.04 12.6S 10.30 14. 24 13.00 lS.64 14. 77 lS.48 16.00 19.S9 
Fe203 1.66 l.S3 2.71 2.0S 2.00 3.60 1.8S 2.68 4.Sl 2.20 
FeO 2.44 3.S8 S.13 4.42 S.40 2.83 4.77 2.99 3.44 7.15 
MnO 0.01 0.14 0.9S 0.01 O.lS 0.07 0.15 o.os 0.02 o.os 
MgO 4.4S 6.20 11.60 S.80 S.10 S.65 6.99 4.47 s .45 6.74 
Cao 1.07 3.SO 8.98 2.12 3.20 2.93 ·4.96 2.SO S.96 9.38 
Na20 1. 73 2.06 1.37 2.33 o.so 2.10 2.22 1. 79 2.11 1.4S 
K20 6.72 S.86 6.05 4.68 3.SO 5.92 S.02 S.22 5.62 3.19 
P20S 0.82 1.14 0.61 0.79 ' o.oo 0.65 1.15 O.S2 0.03 0.51 
H2o+ 1.4S 3.02 S.S6 3.34 0.22 1.92 2.34 2.76 1.SO 0.7S 
H20- 0.60 0.6S 0.32 0.50 6.00 0.48 0.3S 0.96 0.20 0.23 
C02 O.S8 2.78 0.09 

Ba 
Rb 
Sr 
Zr 
Nb 
y 

La 
Ce 
Nd 
Sc 
v 
Ni 
Cr 

\ 
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Locality Vaugnerite Vaugnerite Vaugnerite Durbach Durbach Durbach Durbach Durbach Durbach Durbach 
France France France Czechos- Czechos- Czechos- Czechos- Czechos- Czechos- Czechos-

lovakia lovakia lovakia lovakia lovakia lovakia lovakia 
Reference 117 117 117 118 118 118 118 118 117,119 119 

S102 46.73 58.35 63.20 59.68 53.95 57.19 63.92 63.12 62.10 58.41 
Ti02 1. 74 1.06 0.80 o. 77 0.84 0.97 0.67 0.83 0.60 0.86 
Al203 17.38 15.70 14.20 13 .25 13.92 13.86 13.37 13 .so 13 .21 13.29 
Fe203 0.90 0.70 0.60 1.08 1. 21 1.82 0.29 0.42 1.45 0.60 
FeO 6.36 4.31 3.70 3. 71 5.70 4.50 3.14 3.13 3.13 4.60 
MnO 0.10 0.06 0.07 0.08 0. ,10 0.08 0.06 0.06 0.08 0.15 
MgO 9.25 3. 71 4.30 6.00 9.94 7.76 4.26 4.32 4.00 6.73 
Cao 8.42 4.73 3.55 2.97 5.P4 3.48 2.88 2.12 2. 77 3.75 
Na20 1.28 2.60 2.30 1.97 l.~9 2 .11 2.46 2.31 2.91 1.98 
K20 4.51 5.31 6.10 7.34 6.73 5.63 6.22 6.79 6.72 6.71 
P205 0.94 0.65 0.60 0 .80' O.p6 0.75 0.51 0.47 0.65 0.97 
H2o+ 1.63 1.10 1.65 o.p 0.73 1.28 1.47 1.64 0.55 
H2<r 0.20 0.22 0.01 0.22 0.04 0.02 0 .42 0.24 
C02 
s 0.01 0.05 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v ~ 

Ni C>J 
c.o 

Cr 
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Locality Durbach Durbach Erzgebirge Erzgebirge Erzgebirge Erzgebirge 
Czechos- Czechos- Erzgebirge Erzgebirge Erzgebirge Erzgebirge 
lovakia lovakia D.D.R. D.D.R. D.D.R. D.D.R. D.D.R. O.D.R. D.D.R. D.D.R. 

Reference 119 119 120 120 120 120 120 120 120 120 

Si02 39.07 56.58 49.80 48.30 52~60 42.10 50.30 53.20 49.00 47.20 
Ti02 1.83 1.19 1.30 1.40 1;:40 1.10 2.80 1.50 1.20 1.30 
Al203 10.98 14.78 15.50 14 .90 12.50 13.40 18.10 13.70 12.80 9.50 
Fe203 1.60 1.08 1. 70 1.50 1.60 2.10 2.50 2.60 1.20 1.90 
FeO 10.23 6.13 3.10 6.80 3.60 5.20 8.40 t3.00 5.90 6.10 
MnO 0.30 0.19 0.11 0.48 0.10 0.37 0.90 0.08 0.16 0.14 
MgO 14.02 6.32 5.20 9.90 7.20 7.70 4.10 8.80 12.70 17.80 
Cao 8.70 4.62 6.70 3.90 5o!O 8.60 1.40 1.40 8.20 7.50 
Na20 0.50 2.09 0.80 2.00 L90 1.60 0.07 0.05 1.60 0.95 
K20 6.60 4.95 6.00 5.00 5no 3.80 4.30 6.50 4.23 4.50 
P205 1.98 1.36 0.76 0 .81 . 0.76 0.83 0.52 0.64 0.76 0.81 
H2o+ 2.97 0.70 2.70 3.40 2~50 2.90 4.70 2.40 0.70 1.00 
H20- 0.40 0.06 0.50 0.40 0~30 0.50 0.30 0.40 0.30 0.30 
C02 7.00 4.60 8.90 0.50 0.10 
F 0.115 0.19 0.475 0.57 0.135 0.185 

Ba 2700 1800 3700 888 90 280 1500 5500 
Rb 200 240 175 170 60 820 300 . 230 
Sr 
Zr 630 340 530 240 40 270 270 330 
Nb 
y 
La 
Ce 
Nd 
Sc --
v 110 170 95 240 100 180 180 

t\:) 

Ni 110 280 155 85 175 260 500 .i::.. 
CC> 

Cr 260 670 330 330 135 370 750 1450 
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Locality Erzgebirge Erzgebirge Erzgebirge Erzgebirge Waldviertel 
Erzgebirge Erzgebirge Erzgebirge Waldviertel Waldviertel 

D.D.R. D.D.R. D.D.R. D.D.R. D.D.R. D.D.R. D.D.R. Austria Austria Austria 
Reference 120 120 120 120 12o 120 120 121 121 121 

Si02 57.50 49.50 52.00 53.10 47.70 50.70 47.80 64.15 59.46 58.78 
Ti02 9.00 1.40 1.30 1.60 1.60 2.10 1.50 1.54 0.97 0.88 
Al203 14.60 13.80 13.30 14 .20 12.00 12.80 11.80 10.69 12.54 14.37 
Fe203 2.40 4.70 o.so 1.00 0.40 1.70 3.60 2.87 2.30 2.35 
FeO 4.10 2.80 5.60 5.80 6.00 4.90 2.90 1.26 1.88 1.87 
MnO 0.14 0.10 0.13 0.10 0.12 0.07 0.21 0.04 
MgO 7.50 8.70 8.20 3.90 10.70 10 .10 9.20 3 .45 5.18 4.89 
cao .4 .so 6.80 6.00 5.60 6.80 5.10 7.80 1.90 4.70 4.54 
Na20 1.50 1.50 1.00 1.00 1.10 0.65 2.00 1.81 2.95 2.61 
K20 3.10 3.40 5.90 5.40 5.20 6.80 4.50 9.68 7.36 7.88 
P205 0.27 0 .12 0.24 1.00 0.98 0.90 1.18 0.86 
H2o+ 1.30 2.40 1.90 2.80 2.00 3.30 2.10 0.88 
H20- 0.30 0.60 0.30 0.50 0.30 1.50 0.70 0.52 
C02 1.00 3.10 3.70 4.80 4.00 
s 0.27 0 .117 0.239 

Ba 400 1650 3450 1550 1310 830 2100 
Rb 360 190 330 30 300 260 200 
Sr 7 
Zr 170 260 700 40 530 900 830 
Nb 
y 
La 
Ce 

_ _; 

Nd 
Sc 
v 75 115 110 70 160 250 ~ 

Ni 60 80 240 95 230 180 ~ 
ho> 

Cr 260 300 690 140 205 540 520 
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Locality Waldviertel Waldviertel Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia 
Waldviertel Czechos- Czechos- Czechos- Czechos- Czechos- Czechos- Czechos-

Austria Austria Austria lovakia lovakia lovakia lovakia lovakia lovakia lovakia. 
Reference 121 121 121 122 122 122 122 122 122 122 

Si02 58.66 58.94 49.68 52.00 51. 76 47.81 61.49 67.25 60.16 58.78 
Ti02 1.28 0.95 1.16 1.46 1. 21 1.65 2 .11 2.19 2.27 0 .• 88 
Al203 12 .11 13.30 9.85 13.28 15.01 13.14 8.30 9.59 9.20 13 .4 7 
Fe203 1.86 1.89 1.38 4 .19 1.73 2.47 3.27 2.75 3.68 2.35 
FeO 1.88 1.85 5.33 5.02 6.21 5.06 1.30 1.34 2.80 1.87 
MnO 0.06 0.10 0.40 0.78 0.11 0.07 0.02 0.03 0.04 
MgO 4.98 3.81 10.57 5.33 6.36 8.40 6.14 3.13 3. 78 4.89 
Cao 5.11 5.79 7.87 6.49 3. 71 8.96 2.56 1.20 3.00 4.54 
Na20 1.96 2.49 1.02 2.88 2.06 1.60 1.80 1.76 2.22 2.61 
K20 8.24 7.02 7.10 6.06 4. 24 3.54 9.50 8.71 9.66 7.88 
P205 1.48 1.34 1.45 0.19 0.39 0.84 1.39 0.36 1.12 0.86 
H2o+ 0.57 2.29 2.55 3.69 3.26 0.97 1.27 0.53 0.88 
H20- 0.20 0.27 0.23 0.32 0.31 0.52 0.30 0.41 0.26 0.52 
C02 2.07 3.46 2.58 0 .15 0.06 0.29 0.06 
·s 0.12 0.06 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v ~ i 

t\:i 
Ni ~ 

t\:i 
Cr 
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Locality Central Central Central Central Central Central· Central Central Central Central 
Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia 

Reference 123 123 123 123 123 123 123 123 123 123 

Si02 64.88 66.73 58.16 62.55 62.86 61.50 60.97 62.94 61.89 54.30 
Ti02 0.79 0.60 1.05 0.86 1.10 0.63 0.66 0.79 0.71 0.64 
Al203 15.27 14 .so 12.57 13.93 14.36 13. 70 13. 78 14.44 15.07 12.74 
Fe203 0.41 0.73 1.66 1.55 0.54 1.48 1.22 0.93 0.28 1.40 
FeO 2.48 2.40 3.55 2.79 3.32 2.92 3.08 3.35 4.30 5.46 
MnO 0.04 0.04 0.09 0.05 0.06 0.07 0.07 0.05 0.09 0.16 
MgO 3.06 3.19 8.26 4.61 3.73 5.38 4.83 5.23 3.45 6.38 
Cao 1.91 2 .42 2.96 3.14 2.75 2 .43 2.69 2.39 2.54 6.38 
Na20 2.00 2.40 2.00 2.50 2.22 2.20 2.21 2.15 2.30 1.56 
K20 6.25 5.65 5.26 6.32 s.ss 6.16 5.72 5.05 4.94 5.04 
P205 0.39 o.so 0.75 0.87 0.54 0.54 0.49 0.56 0.33 0.42 
H2o+ 1.54 1.13 2.31 0.47 2.18 1.86 2.57 1. 75 2.93 3.02 
H20- 0.20 0.26 0.61 0.15 0.15 0.10 0.09 0.36 0.26 0.19 
C02 0.17 0.96 0.16 0.77 0.15 2.05 
s 0.02 0.01 0.07 0.13 0.18 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La· 

Ce 
Nd 
Sc 
v I:\:> 

Ni <I:>. 
c:..i 

Cr 
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Locality Central Central Central Central Bohemia Central Central Central Central Central 
Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia 

Reference 123 123 123 123 123 123 123 123 123 123 

Si02 53.81 55.14 58.20 57.27 58.75 59 .41 57.30 .55.35 60.17 61.59 
Ti02 0.91 1.07 1.16 1.28 1.13 1.10 1.33 1.47 0.95 0.65 
Al203 13.56 13.23 12.88 13.54 12.35 12.63 12.99 12.48 14 ~02 13.16 
Fe203 1.51 0.31 0.27 2.30 1. 73 1. 73 l.51 1.64 2.23 1.55 
FeO 5.00 5.58 5.07 3.67 3.76 3.46 3.95 4.28 2.90 2.87 
MnO 0.09 0.10 0.09 0.08 0.09 0.09 0.10 0.10 0.06 0.05 
MgO 8.52 7.56 6.19 6.00 6.03 5.52 7.02 7.63 5.21 5.60 
Cao 5.16 5.71 4.10 3. 72 3.76 4.00 3.81 5.23 3.94 3.63 
Na20 1.61 1.61 1.91 1.89 1.72 l.82 1.95 1.25 2.17 2.08 
K20 4.87 6.02 6.50 6.66 7.05 6.93 6.00 6.30 6.36 5.20 
P205 0.81 0.83 1.00 0.81 1.16 1.37 0.91 1.07 1.16 0.80 
H2o+ 2.74 1.43 1.32 1. 75 1.30 1.49 1.99 1.95 0.93 2.21 
H20- 0.40 0.23 0.49 0.61 0.35 0.41 0.28 0.37 0.32 0.74 
C02 0.23 0.13 0.06 0.73 
s 0.01 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v 
Ni 

!:\:> 
~ 

Cr 
~ 
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Locality Central Central Central Central Central Central Svidnya Svidnya Svidnya Svidnya 
Bohemia Bohemia Bohemia Bohemia Bohemia Bohemia Bulgaria Bulgaria Bulgaria Bulgaria 

Reference 123 123 123 123 121 121 124 124 124 124 

Si02 57.19 58.68 55.23 56.94 57 .32 59.96 46.38 48.63 . 49.53 50.72 
Ti02 1.08 1.38 1.41 1.44 1.15 1.55 1.65 0.65 0.61 0.49 
Al203 14. 24 12.02 10.81 10.81 12.89 10.61 10.33 11.13 10 .13 13 .11 
Fe203 1.48 2 .41 2.37 2.46 1.47 2.02 2.59 3 .81 4.31 2.71 
FeO 3.66 3.06 2.73 2.48 4.23 2.44 7.88 5.37 5.20 5.76 
MnO 0.08 0.07 0.06 0.07 0.18 0.27 0.26 
MgO 6.03 6.48 7.84 7.52 6.60 6.09 9 .11 8.57 8.18 6.83 
Cao 3.73 3.70 3.97 3.75 4.59 3.33 7.96 8.17 7.13 6.92 
Na20 2.61 1.44 1.01 1.17 1.72 1. 75 1. 72 1.38 1.83 1.93 
K20 5.27 8.03 8.22 8 .4 7 6.58 8.16 7.39 7.50 7.89 8.41 
P205 0.65 1.45 2.38 1.89 ~.06 1.56 2.07 1.99 1. 75 1.43 
H20i- 2.57 1.09 1.89 
H20- 0.23 0.21 2.01 0.34 0.26 0.24 0.12 
C02 0.63 
L.O.I. 1.94 1.87 2.44 0.93 
s 0.09 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v r:-.:i 

Ill.. 
Ni en 
Cr 
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Locality Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya 
Bulgaria Bulgaria Bulga.ria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria 

Reference 124 124 124 124 124 124 124 124 124 124 

Si02 51.29 51.42 51.51 . 51.88 52.75 53.30 53.56 53.88 54.04 54.35 
Ti02 0.51 1.55 1.28 1.36 0.52 1.50 1.40 1.38 1.43 1.35 
Al203 12.08 11. 29 10.97 10.26 12.00 12.00 11.16 10.84 12.51 12.12 
Fe203 2.97 4.13 3.15 6.16 3.59 4 .48 3.97 3.03 3.06 . 4 .19 
FeO 5.30 3.18 4.36 5.11 4.30 6.08 3.05 4.52 5.07 3.92 
MnO 0 .18 0.13 0.14 0.14 0.19 0.09 0.07 0.19 0.13 0.11 
MgO 6.20 7.22 6.91 6.23 .7 .39 6.06 6.32 5.65 5.59 5.60 
Cao 5.97 6.71 6.51 6.24 5.87 4.15 5.88 5. 74' 5.25 5.53 
Na20 2.52 1.83 2.31 2.63 2.33 2.72 2.34 2.66 2.26 2.42 
K20 8.00 7.66 8.66 7.28 8.01 6.52 9.01 9.12 8.29 7.96 
P205 1.54 1.75 1.63 1.10 1.64 0.76 1.77 1.30 0.90 0.77 
H2o+ 0.88 1.73 0.90 1.20 
H20- 0.52 0.28 0.20 0.11 0.20 0.13 0.22 0.39 0.27 0.13 
C02 0.41 
L.O.I. 2.41 2.25 2.06 0.96 1.00 0.99 

Ba 
Rb 
Sr 
Zr 
Nb 
y 

La 
Ce 
Nd 
Sc 
v 
Ni !:\:) 

Cr ~ 
0) 
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Locality Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya Svidnya . Serbia 
Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Yugoslavia 

Reference 124 124 124 124 124 124 124 124 124 125 

Si02 54 .43 54 .80 56.47 57.01 50.80 59.02 60.75 56.13 62.16 47.82 
Ti02 1.13 1.21 1.18 1.40 1.09 0.63 1.00 1.00 1.07 1.44 
Al203 11.16 9.85 11.13 12.40 13 .41 13.57 10.81 9.05 10.12 13 .43 
Fe203 3.83 4.28 3.64 2.02 1.60 4.50 6.27 6.12 . 7.07 4.47 
FeO 3.10 2.48 2.45 6.27 7.10 2.70 2.72 0.70 1.16 3.04 
MnO 0.10 0.14 0.10 0.15 0.23 0.14 0.12 0.11 0 .11 0.12 
MgO 5.80 6.14 5.41 4.10 7.70 3.30 3.29 6.03 3.17 9 .81 
Cao 5.50 5.06 4.43 4.05 8.40 2.30 2.39 4.84 1.31 7.64 
Na20 2.29 2.50 2.68 3.04 1.44 3.12 3.44 3.74 3 .45 2. 77 
K20 8.70 9.00 9.64 6.36 6.42 9.97 8.19 8.64 9.27 5.97 
P205 1.40 1.30 1.05 1.131 .1.30 0.75 0.50 1.80 

, 
o.54 1.46 

H2o+ 0 .81 • 0.85 0.51 1.05 
820- 0.26 0.10 0.15 0.11 o. 20 0.10 0.11 0.24 0.08 0.59 
C02 0.72 
L.O. I. 1.16 2.56 1.17 1.05 0.30 1.08 
Cl 0.07 

Ba 
Rb 
Sr 
Zr 
Nb 
y 

La 
Ce 
Nd 
Sc 
v !:\:> 

~ 

Ni 'l 

Cr 
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Locality Serbia North North North Af yon Afyon Afyon Aldan Aldan Aldan 
Yugoslavia Algeria Algeria Algeria Turkey Turkey Turkey Soviet Soviet Soviet 

(Micromz) (Micromz) (Micromz) Union Union Union 
Reference 125 126 126 126 127 127 127 128 128 128 

Si02 49 .12 54.92 54.35 51.30 53~00 52.25 57.65 43.53 44.00 48.80 
Ti02 1.42 0.93 1.29 1.12 1.44 1.61 1.17 0.65 1.90 0.97 
Al203 12.61 12.52 14 .11 11.50 11.94 10.81 13.73 6 .45 8.76 9.99 
Fe203 2.60 1.67 2.18 2.82 1.58 1.75 3.51 3.10 2.86 5.78 
FeO 4.57 5.17 3.99 4.14 4.63 3.71 1.60 7.17 7.59 1.58 
MnO 0 .15 0.21 0.06 0.08 0 .• 10 0.01 0 .10 0.14 0 .14 0.17 
MgO 9.84 7.56 6.41 10.32 8.67 7.97 5.67 24 .14 15 .11 8.67 
Cao 8.36 7.91 6.45 7.60 5 .• 54 4.80 5.01 7.59 9.27 8.10 
Na20 2.76 1.31 1.97 1.34 1,.92 1.26 1.94 0.54 0.73 2.86 
K20 6.22 6.14 6.98 5.78 5.90 7.30 6.27 3.48 6.33 6.70 
P205 1.24 0.40 0.44 0.51 1.03 0.68 0.56 0.38 2.38 0.67 
H2o+ 0.49 0.99 1.87 2.38 0.60 1.67 1.20 0.13 0.14 0.26 
H20- 0.33 0.24 0.20 1.18 
C02 2.94 5.35 0.11 
L.O.I. 2.10 0.13 1.31 
S03 0.04 0.01 0.80 0.05 
Cl 0.17 

Ba 1688 601 1207 
Rb 189 294 239 
Sr 737 618 783 
Zr 618 827 552 
Nb 
y 
La 
Ce 
Nd 
Sc -- ~ 

~ 

v <Xi 

Ni 270 315 139 
Cr 511 475 268 
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Locality Aldan Aldan Aldan Baltoro Baltoro Tsao-Li Kajan Pie de Pie de Pie de 
Soviet Soviet Soviet Karakorum Karakorum Taiwan Kalimantan Maros Maros Maroa 
Union Union Union Pakistan Pakistan Indonesia Indonesia Indonesia Indonesia 

Reference 128 128 128 129 129 130 125 131 131 132 

Si02 51.61 53.32 51. 73 53.69 47.05 46.82 46.04 52.80 48.05 46.08 
Ti02 0.98 0.99 0.85 1.64 2.26 0.35 2.20 1.00 1.10 1.39 
Al203 14.51 11. 74 . 12.15 11.18 6.90 12.64 12.40 19.99 13.94 20.40 
Fe203 5.27 1.51 5.22 2.16 1.81 3.67 3.54 3.63 2.67 2.12 
FeO 1. 73 1.44 1.86 2.43 3.56 4.72 5.58 3.40 5.98 3.27 
MnO 0.15 0.45 0.15 0.09 0.10 0.18 0.19 
MgO 3. 77 6.28 6.12 6.32 11.53 15.42 12.60 3.20 7.81 6.30 
Cao 6.90 8.82 8.13 5.88 7.95 7.06 8.38 4.22 7.25 8.48 
Na20 3.32 2.69 2 .62 1.82 2.28 1.64 1.62 3.10 2. 72 2.07 
K20 7.20 5.78 5.64 10.13 5.82 4.00 4.87 7.74 6.56 6.72 
P205 0.37 0.95 0 .92 1.32 0.70 1.15 1.19 
H2o+- 0.88 0.37 0.19 2.72 3.55 1.18 1.66 1.70 
H20- 0.06 
C02 1.32 3.54 
L.O.I. 0.52 1.01 1.83 5.08 
S03 0.01 s 0.06 
F 0.09 
Cl 0.10 

Ba 
Rb 
Sr 
Zr 
Nb 
y 

La 
Ce 
Nd ~ 

Sc 
~ 
l:O 

v 
Ni 
Cr 
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Locality Pie de British British Little Bear paw Bearpaw Bearpaw Bearpaw Highwood Highwood 
Maros Columbia Columbia Belt Mts Mts Mts Mts Mts Mts Mts 

Indonesia Canada Canada U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 
Reference 132 133 133 134 134 135 136 136 137,138 137,138 

Si02 43.98 48.33 53.32 47.63 50.00 46.51 50.34 50.38 47.00 46.4 7 
Ti02 2.24 0.81 0.90 2.22 0.73 0.83 0.76 0.58 0.80 0.74 
Al203 12.28 12.56 14 .16 12.01 9.87 11.86 10.32 10.20 12.91 11.50 
Fe203 3.49 1.87 2.15 4. 20 3.46 7.59 3.04 1.90 1.30 0.60 
FeO 7.70 5.26 5.08 4.99 5.01 4.39 5.90 6.28 7.20 7.20 
MnO 0.51 0.13 0.10 0.17 0.22 0.09 0.09 0.15 0.15 
MgO 8.00 9.07 7.90 8.31 11.92 4.73 12.58 14.78 7.75 7.98 
cao 11.19 8.94 7.12 7.28 8.30 7 .41 7.40 7.28 9.70 13.64 
Na20 1.33 1.81 2.39 1.98 2.41 2.39 2.16 2.20 1.85 0.71 
K20 5.06 4.67 4.80 5.40 5 .02 8.71 4.47 4.57 6.45 5.15 
P205 1.81 0.78 0.66 1.08 0.81 0.80 0.78 0.61 .. 0 .91 1.00 
H2o+ 1.61 2.63 1.24 1.83 1.16 2.45 1.85 0.93 1. 74 2 .41 
H20- 0.12 0.97 0.26 0.94 0.17 1.10 0.40 0.39 
C02 2.64 0.74 0.31 0.07 1.01 0.81 
L.O.I. 
s 0.10 S03 0.19 0.02 s 0.06 0.21 
F 0.15 
Cl 0.12 0.08 0.11 

Ba 6410 4730 
Rb 200 165 
Sr 2195 1435 
Zr 190 170 
Nb 15 5 
y 30 25 
La 80 55 
Ce 155 130 !:\:) 

Nd 55 50 c.r.. 
<;;:, 

Sc 
v 
Ni 65 70 
Cr 170 85 
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Locality Highwood Highwood Highwood Highwood Highwood Highwood Highwood Highwood Highwood Highwood 
Mts Mts Mts Mts Mts Mts Mts Mts Mts Mts 

U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 
Reference 137,138 139 139 139 134 135 140 140 141 141 

Si02 49.90 48.30 50.00 49.20 46.04 46.62 49.26 51.94 46.06 48.18 
Ti02 0.81 0.75 1.40 1.30 0.64 0.76 1.11 0.39 0.73 0.55 
Al203 18.02 10.40 13 .20 12.90 12.23 12.48 13 .64 15.78 10.01 11.28 
Fe203 2.92 2.00 4.20 3.90 3.86 4. 78 1.72 4.07 3.17 3.29 
FeO 4.07 7.70 2.90 3.10 4.60 4.44 7.76 3.17 5.61 3.84 
MnO 0.12 0.16 0.08 0.10 0.09 0.12 0.05 
MgO 3 .11 16.00 6.80 6.90 10.38 8.90 8.31 3.48 14.74 12.89 

· cao 5.43 6.80 8.90 9.40 8.97 11.94 8.42 6.04 10.55 9.22 
Na20 3.75 1.40 2.40 2.10 2.42 1.97 1.90 3.44 1.31 1.94 
K20 7.75 3.60 4.90 4.60 5. 77 4.42 5.02 7.69 5 .14 6.57 
P205 0.72 0.65 1.30 1.60 1.14 0.18 0.75 0.59 0.21 0.53 
H2o+ 2.47 1.70 2.20 1.40 2.87 2.83 1. 21 2.17 1.44 1.55 
H20- 0.44 0.31 1.30 1.60 0.32 
C02 0.08 0.43 1.30 
s 0.02 0.05 0.02 S03 0.29 0.05 s 0.03 

Cl 0.08 0.03 

Ba 7540 
Rb 245 
Sr 1800 
Zr 195 
Nb 25 
y 20 
La 65 
Ce 130 
Nd 50 
Sc ~ 

v en ...... 
Ni 20 
Cr 35 



Group IV 

Locality 

Reference 

Si02 
Ti02 
Al203 
Fe203 
FeO 
MnO 
MgO 
Cao 
Na20 
K20 
P205 
H2o+ 
H20-
C02 
L.O. I. 
S03 
Cl 

Ba 
Rb 
Sr 
Zr 
Nb 
y 
La 
Ce 
Nd 
Sc 
v 
Ni 
Cr 
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Highwood 
Mts 

U.S.A. 
141 

51. 75 
0.23 

14. 52 
5.08 
3.58 

4.55 
7.04 
2.93 
7.61 
0.18 
2.25 

Highwood 
Mts 

U.S.A. 
131 

53.47 
1.19 

12 .43 
6.19 
3.73 

3.07 
7.23 
3.40 
7.59 
0.84 

0.40 

0.62 

Highwood Yogo Peak Absaroka 
Mts Montana Wyoming 

U.S.A. U.S.A. U.S.A. 
131 131 131 

46.73 48.98 48.36 
0.78 1.44 0.78 

10.05 12.29 12.42 
3.53 2.88 5.25 
8.20 5. 77 2.48 

9.27 9.19 9.36 
13.22 9.65 8.65 

1.81 2.22 1.46 
3.76 4.96 3.97 
1.51 0.98 1.51 
1.24 0.56 5.54 

--

0.18 

Yellow- Yellow- Black Spanish Spanish 
stone stone Hills Peaks Peaks 
U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 

142 143 144 145 145 

51.62 49.71 46.69 47.90 46.90 
0.78 1.57 1.02 2.00 2.50 

12.56 13.30 10.51 11.40 11.10 
3.39 4.41 4.97 7.70 7.90 
4.61 3.37 2.54 2.60 3.10 
0.16 0.21 0.13 0.09 
7.69 7.96 6.58 6.90 6.30 
7.37 8.03 7.17 9.00 10.60 
2.26 1.49 2.17 2.20 2.10 
5.10 4.81 7.95 4.80 4.50 
0.60 0.66 0.65 1.80 2.10 

0.41 2.00 1.40 
L40 0.37 

3.76 <0.05 <0.05 
--
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Locality Spanish Spanish Spanish Navajo Navajo Navajo Navajo Navajo Navajo Navajo 
Peaks Peaks Peaks U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 
U.S.A. U.S.A. U.S.A. 

Reference 145 145 146 147 147,148 147 147,148 147 147'148 149 

Si02 46.00 45.10 46.70 49.13 48.94 55.46 56.23 58.88 59.50 48.80 
Ti02 1.10 1.80 2.00 2.02 2.03 0.91 1.08 0.87 0.89 2.44 
Al203 11.10 11.40 10.90 10.51 10 .11 10.65 12.14 13 .38 12.93 8.60 
Fe203 4.50 7.50 9.50 3.82 4.47 3.68 4.38 3.77 3.02 3.89 
FeO 1.30 2.40 1.80 4.30 3.60 1.08 1.36 1.17 1.46 3 .85 
MnO 0.28 0 .19. 0 .16 0.12 0.12 0.05 0.08 0.06 0.06 0.16 
MgO 4.10 8.00 6.80. 9.87 10.03 9.17 6.63 4.31 4.90 12.30 
Cao .10.80 9.30 8.60 9.06 8.98 4.34 6.37 6.12 5.30 8.81 
Na20 1.10 1.20 2.10 2.06 1.28 1.42 2.60 2 •. 87 2.53 1.74 
K20 6.60 4.70 4.60 4.86 5.22 6.98 6.76 7.20 7.21 4.72 
P205 0.44 1.60 1.60 0.97 1.08 0.63 0.77 0.74 0.64 1.08 
H2o+ 1.80 2.70 2.80 2.38 2.92 2.09 0.84 0.36 0.54 
H20- 2.90 1.40 2.00 0.38 0.80 2 .71 0.36 0.08 0.60 
C02 7.80 2.00 <0.05 o.oo 0.01 o.oo 0.02 0.06 0.10 
L. O. I. 2 .46 

Ba 
Rb 
Sr 
Zr 
Nb 74 74 26 
y 
La 116 123 109 
Ce 238 243 211 
Nd 99 99 83 
Sc 
v 195 132 100 !:\.:> 

!:Ji 
Ni CN 

Cr 338 176 123 
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Locality Navajo Navajo Navajo Navajo Navajo Navajo Navajo Navajo Navajo Navajo 
U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 

Reference 149 149 150 150 150 151 151 151 151 151 

Si02 58.40 53.20 50.95 52.79 58.00 49.10 48.30 51.00 5.450 56.70 
Ti02 0.93 1.89 1.98 1.93 1.02 2.05 1.84 1.63 1.81 1.20 
Al203 11.90 10. 70 10.09 10.74 11.06 10 .10 10.60 10.60 11.60 12.10 
Fe203 3.93 3 .49 2.64 4.46 3.63 3.99 3.21 3.14 
FeO 4.55 6.30 3.43 3.62 2:. 22 3.10 4. 74 2.55 3.57 2.26 
MnO 0.07 0.09 0.16 0.16 0.14 0.12 0.14 0 .11 0 .11 0.08 
MgO 5.04 8.56 9.60 7.62 6.73 10.77 10 .14 8.14 7.52 6.23· 
Cao 6.12 6.98 8.27 7.73 6.79 8.66 9.99 9 .48 7.09 6.24 
Na20 2.30 1.84 2.42 2.44 2.08 0.80 1.80 1.50 1.90 1.94 
K20 7 .11 5.56 5.27 6.38 6~ 72 5.35 4.57 5.92 6.76 6.93 
P205 0.83 0.86 0.91 o. 77 0.52 0.94 1.04 0.93 0.83 0.72 
H2o+ 1.22 0.88 0.69 2.83 1.97 1.12 0.94 0.71 
H20- 0.65 0.39 0.39 1.47 0.75 1.23 0.62 0.92 
C02 0.11 0 .11 2.17 0.11 0.58 
L. O. I. 1.12 1.90. 
s 0.04 0.01 0.01 
Cl 0.02 0.01 0.02 

Ba 3197 1503 2780 2810 2310 
Rb 246 137 160 190 200 
Sr 1141 1078 1100 1190 890 
Zr 320 410 310 
Nb 30 30 
y 10 20 20 
La 162 96 140 150 90 133 156 179 228 152 
Ce 311 153 240 250 170 266 359 388 331 317 
Nd 100 110 ~ 70 118 148 166 141 137 ~ 

Sc 12 11 16 20 16 17 19 en 
~ 

v 150 270 170 
Ni 163 267 290 270 270 
Cr 153 326 400 300 370 492 552 354 360 439 
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Locality Navajo Navajo Navajo Navajo Navajo Navajo Sullivan Sierra Sierra Sierra 
U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. Butte Nevada Nevada Nevada 

U.S.A. U.S.A. U.S.A. U.S.A. 
Reference 152 152 152 152 152 152 153 154 154 154 

Si02 49.05 51.50 51.60 51.80 55.10 58.75 58.58 51.70 53.50 51.00 
Ti02 1.70 1.85 2.30 1.80 1.55 0.80 0.78 1.80 1.57 1.50 
Al203 10.65 11.55 10.54 11.10 13.85 12.70 14 .4 7 12.70 12.30 11.60 
Fe203 4~80 2.38 3.30 3.55 1.53 1.80 3.70 3~82 4.60 
FeO 3.00 4.72 3.66 3 .42 2.02 2.44 5.21 2.80 2.20 2.80 
MnO 0.08 0.10 0.08 0.08 0.08 0.09 0.13 0.10 0 .16 
MgO 9 .45 7.90 9.30 8.15 6.65 6.40 3.59 5.70 7.36 9.20 
Cao 10.30 9.10 8.70 7.95 7.45 5.50 4.62 6.40 4.65 7.40 
Na20 1.92 2.55 1.87 2.25 2.54 2.22 2.57 2.00 2.16 2.00 
K20 5.00 5.65 5.76 5.97 5.93 6.44 5.15 8.40 8.22 7.00 
P205 0.94 0.96 0.73 0.95 0.82 0.58 0.36 1.50 1.56 1.60 
H2o+ 2.15 1.10 1.30 1.90 1.25 1.15 1.46 1.80 0 .• 26 0.67 
H20- 1.15 0.45 0.90 1.00 1.10 1.10 1.66 0.89 0.26 0.24 
C02 0.20 o.os 0.05 0.05 

Ba 5094 4541 4740 
Rb 640 68 92 
Sr 2375 2005 2475 
Zr 652 803 575 
Nb 
y 105 31 25 
La 43 30 46 
Ce 82 50 91 
Nd 43 25 48 
Sc 15 15 18 
v 
Ni 280 235 185 

~ 

Cr 164 626 353 tn 
tn 
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Locality Sierra Sierra Sierra Sierra Sierra Sierra Sierra Sierra Sierra Sierra 
Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada Nevada 
U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. U.S.A. 

Reference 155 155 155 155 155 155 155 155 155 155 

Si02 45.27 45.69 46.69 55.53 50.73 49.28 51.00 51.70 53.10 53.70 
Ti02 1.85 1. 78 1.72 1.57 2.02 1.52 1.50 1.80 1.90 1.20 
Al203 11.61 11.64 12/00 12.33 13.88 11.30 11.60 12.70 13.00 13.90 
Fe203 2.71 2.65 3.17 3.82 5.27 4.46 4.60 3.70 3.70 5.70 
FeO 6.73 6.45 5.81 2.20 3.54 2.36 2.80 2.80 2.80 1.40 
MnO 0.16 0.15 0.15 0.10 0.12 0.10 0.16 0.13 0.08 0.15 
MgO 12.70 12.38 11.70 7.36 6.39 11.51 9.20 5.70 5.60 6.40 
Cao 8.38 8.24 8 .11 4.65 6.80 8.34 7.40 6.40 5.80 6.80 
Na20 1.88 1.88 2.29 2.16 2.63 2.18 2.00 2.00 1. 70 2.70 
K20 5.34 5.20 5.07 8.22 5.71 5.50 7.00 8.40 7.70 6.00 
P205 1.16 1.10 1.08 1.56 1.23 1.60 1.60 1.50 1.50 1.40 
H2o+ 0.60 0.64 0.43 0.26 0.71 0.64 0.67 1.80 1.40 0.49 
H20- 0 .42 0.28 0~17 0.26 0.21 0.37 0.24 0.89 0.82 0.10 
C02 0.06 0.07 0.09 0.05 0.03 0.03 <0.05 (0.05 0.02 <0.05 

Ba 4200 4550 4350 4435 3650 3700 
Rb 116 113 111 38 280 
Sr 920 960 980 1700 2200 
Zr 510 
Nb 
y 24 33 22 7 51 
La 
Ce 
Nd --
Sc 23 22 20 22 21 
v 265 245 250 . 295 130 
Ni 335 320 300 241 ' 128 t\:> 

Cr 570 550 520 410 410 er, 
0) 



.Group IV Page 22 

Locality New South New South New South New South New South New South New South New South New South New South 
Wales Wales Wales Wales Wales Wales Wales Wales Wales Wales 

Australia Australia Australia Australia Australia Australia Australia Australia Australia Australia 
Reference 156 156 156 156 156 156 156 156 156 156 

Si02 42.94 44.92 46.93 41.91 41.82 45.90 44.97 44.37 43.73 44 .45 
Ti02 5.51 5.12 3.22 5.40 5.46 5.26 4.68 3.74 4.05 4.44 
Al203 8.72 8.84 8.08 7.58 7.54 8.95 8.60 8.22 7.91 8 .4 7 
Fe203 4.98 6.12 5.68 7.07 6.55 5.09 3.02 4.87 5.92 5.45 
FeO 6.31 4.99 1.88 4.24 4.52 5.56 6.67 5.70 4.97 5.85 
MnO · 0.15 0.15 0.12 0.15 0.15 0.13 0.12 0.17 0.17 0.17 
MgO 12.17 9.44 8.54 13.31 13.15 9.71 13.64 14.43 15.16 11.88 
cao 9.30 8.30 8.84 9.09 9.27 7.86 7.89 9.01 8.60 8.57 
Na20 0.74 1.28 1.08 0.92 0.66 1.21 0.88 1.94 1.35 1.82 
K20 5 .14 6.82 4.16 5.44 5.92 7.24 7.09 5.11 5.20 6.34 
P205 0.87 0.91 2.88 1.19 1.34 0.67 0.87 1.02 0.86 1.53 
H2o+ 2.60 1.80 6.14 2.36 2.60 1.32 0.86 0.88 1.40 0.86 
H20-
C02 0.16 0.20 0.26 0.10 

Ba 2950 1500 9616 6800 4950 1350 1100 1420 1390 1440 
Rb 157 212 14 293 355 299 218 112 108 114 
Sr 2100 1680 3039 2190 2200 830 940 1300 1330 1510 
Zr 657 600 988 740 755 700 515 570 635 650 
Nb 
y 

La 
Ce 
Nd 
Sc 
v 
Ni 290 266 108 424 . 367 351 437 425 520 392 !:\:) 

Cr 212 213 58 317' 296 266 330 573 546 367 en 
"'3 
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Locality New South New South New South New South New South New South New South New South New South New South 
Wales Wales Wales Wales Wales Wales Wales Wales Wales Wales 

Australia Australia Australia Australia Australia Australia Australia Australia Australia Australia 
Reference 156 156 156 156 156 156 156 156 156 156 

Si02 45. 77 43.39 44.18 44.75 44.83 47.99 43 .49 43.30 47.30 44.45 
Ti02 4.30 4.07 4 .14 : 3. 71 4.22 3.87 4.35 3.70 3.99 3.93 
Al203 8.60 8.61 8.03 8.49 8.01 8.38 8.81 8.30 11.60 9.34 
Fe203 5.13 3.26 4.44 4.55 5.08 6.48 5.01 5.20 3.46 5.90 
FeO 5.70 7.64 6.64 5.92 5.46 3.70 5.74 5.74 5.28 4.71 
MnO 0.16 0.17 0.17 0.17 0.16 0.14 0.16 0.17 0.15 0.16 
MgO · 10.76 14.58 12.66 13.66 13.53 10.02 12.29 14.50 7.13 10.70 
Cao 8.01 9.36 7 .92 9.06 8.27 6.96 8.96 9.57 9.89 10 .4 7 
Na20 1.79' 1.93 1.69 2.13 1.62 1.55 1.66 1.55 2.43 2.09 
K20 6.97 4.13 6.40 5.40 6.09 7.32 5.29 4.60 6.07 4.71 
P205 1.05 1.08 1.39 1.10 1.28 1.21 1.32 0.80 1.07 1.08 
H2o+ 1.00 0.66 1. 26 0.56 1.06 1.3.8 1. 78 1.60 1.34 1.38 
H20-
C02 0.04 0.08 0.04 0.16 

Ba 750 1150 2260 1100 1700 1000 1500 1900 1420 1390 
Rb . 149 108 109 87 119 162 137 154 192 216 
Sr 1400 1070 1440 1160 1500 1290 1550 1390 1900 1370 
Zr 725 405 635 540 685 720 640 510 570 490 
Nb 
y 
La 
Ce 
Nd . , Sc 
v --
Ni I 275 466 362 567 : 398 448 367 438 102 267 
Cr I ·316 519 378' ., 480 413 394 391 543 189 347 !:'..:> 

en 
Cl:) 
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Locality New South New South Mord or Mordor West West West 
Wales Wales Tasmania Tasmania Tasmania 

Australia Australia Australia Australia Australia Australia Australia 
Reference 156 156 157 157 158 158 159 

Si02 44.70 46.51 42.73 48.12 47 .06 44.81 54.60 
Ti02 3.89 3.40 0.89 1.20 0.90 1.32 0.07 
Al203 8.82 8.68 6.20 12 .11 11.22 11.44 15.20 
Fe203 4.41 4.15 1.87 2.65 3.75 4 .11 6.30 
FeO 6.19 6.08 10.25 8.39 4.61 5.58 6.30 
MnO 0.16 0.15 0.17 0.13 0.20 0.28 
MgO 13.12 12.92 22.44 10.52 12.36 11.80 3.30 
Cao 8.96 8.08 5.94 8.05 7.26 9.16 2.70 
Na20 2.09 2.04 0.56 1.15 0.94 1.02 1.20 
K20 4.63 5.05 3.07 4.31 3.10 3.27 8.20 
P205 1.16 1.10 0.84 1.25 0.48 0.85 
H2o+ 1.72 0.72 3.06 3.21 
H20- 2.26 0.86 
C02 0.85 0.50 1.99 2.10 
L. O. I. 2.37 0.85 
S03 0.39 

Ba 1470 1290 6130 
Rb 111 172 172 240 
Sr 1330 1230 780 1192 
Zr 635 550 95 
Nb 
y 

La 100 
Ce 
Nd 
Sc !:\:> 

v <:n 
<o 

Ni 359 412 570 
Cr 412 483 2550 
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APPENDIX II 

Rare Earth Elements in Antarctic Lamproites 

Rare earth element analyses are given here (in parts per million) 

for rocks from Gaussberg, Mount Bayliss and Priestly Peak. The samples 

are the same as those analysed for major and trace elements by Sheraton 

and Cundari [19801 and Sheraton and England (1980], and are included in 

the ultrapotassic rock database in Appendix I. 

Analyses were taken by XRF from papers prepared by an ion-exchange 

technique modified after Fryer [1977]. BCR-1 and TASGRAN were used as 

standards: values are given by Robinson et al [1986]. 

La 	Ce Nd 	Sm 	Eu 	Gd 	Dy 	Er 	Yb 

Priestly Peak 

.3950 167 358 164 	15.7 3.9 12.9 6.7 12.9 4.5 

3951C 153 •273 - 	 35.5 9.0 27.2 13.2 25.0 11.2 

3949D 151 327 150 	30.8 7.9 24.4 13.0 23.3 12.2 

3949C 163 316 133 	26.6 7.1 21.5 11.1 23.3 9.8 

Mount Bayliss 

11370 144 304 118 19.9 5.5 14.2 10.4 22.7 13.8 

1545 158 314 116 16.5 4.7 12.9 8.7 21.1 14.6 

Gaussberg 

4870A 209 392 130 16.9 4.5 12.7 7.2 16.4 8.4 

4870B 201 368 129 15.0 3.3 9.9 6.9 18.0 12.6 

4872 210 382 131 15.6 3.9 10.6 6.6 13.3 7.7 

4875 216 390 130 16.0 4.6 11.0 6.6 13.7 6.3 

4887 218 379 128 15.5 3.9 10.9 7.0 14.6 9.8 

4888 204 374 127 15.4 3.7 11.3 7.1 15.7 9.4 

4889 205 381 127 15.6 3.9 11.2 6.9 14.1 10.2 

4893A 214 388 131 16.6 4.2 11.2 6.9 14.6 8.9 

4893B 212 394 134 15.3 3.4 10.7 7.1 15.8 10.9 

4894 195 360 123 16.4 4.2 11.7 6.7 15.4 11.3 
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APPENDIX III 

- EXPERIMENTAL TECHNIQUES FOR MELTING STUDIES ON ROCK COMPOSITIONS IN THE 

PRESENCE OF REDUCED C-O-H FLUIDS 

ABSTRACT 

Experimental techniques have been developed for melting experiments on 

rock compositions with controlled CH4-H20 fluids for comparison with H20-

and CO2-bearing experiments. Sample capsules consist of an outer noble 

metal capsule with two inner graphite capsules containing oxygen buffer and 

sample. A solid source for CH 4  and H20 (A14C3 + Al(OH)3) is packed between 

the graphite capsules. Quenched fluid compositions were analysed by passing 

fluids directly from the pierced capsule into a mass spectrometer. The 

ideally preferred technique of fixing f02 and fluid composition at the 

intersection of the 1W buffer and the carbon saturation surface was 

successful in sample-absent fluid test experiments, but proved unreliable 

with sample present. 

A technique is described in which f0 2  is closely bracketed at the 

low f02  end of the XH20-
maximum on the carbon saturation surface where 

fluids consist of H 20 >> CH4 > CO2. This was achieved by addition of H20 

to the sample capsule and inclusion of an 1W buffer to prevent oxidation 

to H20+CO2  fluids. Oxygen fugacity is therefore not fixed, but fluid 

compositions, and thus f0 2 , are monitored by the capsule piercing 

technique. 

The fluid test results at 1W indicate that C114/H 20 in the fluid is a 

stronger function of temperature than predicted by thermodynamic 

calculations. A rapid increase in CH4/H 20 with decreasing temperature 

would cause partial melts ascending through the mantle to freeze or 

experience significant crystal fractionation if f0 2 	1W is maintained. 

A3.1 INTRODUCTION 

The oxidation state of the mantle in source regions of basic magmas 

has recently been debated widely [see reviews by Woermaun and Rosenhauer 

1985; Arculus 19851 with suggested f02  values ranging from those of the 1W 
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buffer (1W) to near quartz-fayalite-magnetite (QFM). An increasing body of 

evidence, principally from intrinsic oxygen fugacity measurements of 

- mantle-derived minerals and rocks [Arculus et al. 19841, the 

identification of primordial methane outgassing at mid-ocean ridges 

[Welhan and Craig 1983; Kim 19831, and studies of fluid inclusions in 

diamonds [Taylor 1986b], favours the interpretation that large areas of 

the upper mantle have oxidation states towards the reduced end of this 

range. This challenges popular models for a more oxidised mantle in which 

C-O-H fluids, if present, would be H20+CO2  mixtures, and would coexist 

with carbonate minerals [Wyllie 1978; Eggler 19781 and probably graphite, 

resulting in control of f02 by the EMOD/EMOG buffer [Eggler and Baker 

19821. C-O-H fluids in the f0 2  range 1W to IW+2 log units would consist of 

H204-CH4  mixtures with minimal CO2. 

Experimental studies of melting of peridotites and of liquidus phase 

assemblages of basic magmas have reflected the prevailing oxidised mantle 

model by considering the effects of adding varying amounts of H20 and CO 2  

compared to volatile-free experiments. These experiments' have generally 

not had oxygen fugacity control, but results.indicate.that H 20and.0O2.............. 

remained the dominant fluid species present. In some cases, indirect f0 2  

-
control by an external HM buffer depending on f H 2  control through a noble 

metal capsule has been used to prevent reduction of CO 2  to graphite: in 

these experiments f02  varied between fairly broad limits (NNO to HM; Brey 

and Green 1977; Ryabchikov and Green 1978]. The analyses of ilmenites 

reported by Green and Sobolev [1975] from a number of experiments on 

peridotite and basanite compositions with added H20, but without f02 

control [Green 1973a,b] show low Fe 203  contents indicative of low f02. It 

appears likely that these "furnace-buffered' experiments [Brey and Green 

19751 had f0 2  close to IW+2 log units, rather than close to MW and NNO as 

suggested at the time. This may be due to the influence of graphite + H 20 

in the assembly (see below for f02  characteristics) on f112 and thus 

indirectly on f0 2 , particularly for experiments with large amounts of 

water in unsealed graphite capsules [Green 1973b]. Ilmenites from 

experiments with known low f02  using the technique described here have 

similar or slightly lower Fe203 contents than those of Green and Sobolev 

[1975) (Part 5). 

This paper reports techniques for experiments in reduced conditions 

with H20+CH4 fluids. Preliminary results using lamproite rock compositions 
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show that f02  conditions can be controlled quite closely by bracketing 

between limits at 1W and CW (see below). Oxygen fugacity and fluid 

compositions are not fixed, but can be monitored by analysis of the fluid 

phase by mass spectrometry. 

A3.2 THEORETICAL C-O-fl FLUID COMPOSITIONS IN A REDUCED MANTLE 

Taylor [1985, 1986a] has calculated C-0-H fluid compositions in 

equilibrium with graphite or diamond using a modified Redlich-Kwong 

equation of state. The assumption that excess carbon may exist in the 

mantle during melting is reasonable as the solubility of reduced carbon 

in silicate melts is limited to 1000-2000 p.p.m. [Taylor and Green 1986b]. 

Calculated fluid compositions can be represented on a plot of f0 2  against 

X [C/(C+H2 ) of the fluid phase; Taylor 1986a], in which fluids in 

equilibrium with carbon are confined to the carbon saturation surface 

(figure 48). Fluids have fixed compositions at the intersection of oxygen 

buffers with the carbon saturation surface, and consist of CH4>1120 

mixtures at C-lW (the intersection of 1W with the carbon saturation 

surface). 

-: 	 About midway between f 02  corresponding to 1W (CH4>H20 fluids) and 

EMOD/EMOG (H20+CO2 fluids), fluid compositions pass through a XH207maxilnum 

at which fluids consist of 85-95 mol% 1120  at >15kbar. The locus of points 

in pressure-temperature space corresponding to maximum 1120  content in the 

fluid phase is referred to here as CW (carbon-water). The oxygen fugacity 

of CW varies with pressure and temperature as shown in figure 49, from 

which it can be seen that f0 2  defined by CW is less certain at high 

pressures and low temperatures due to increased width of the "nose" in the 

carbon saturation surface, e.g. X112 0  is close to the maximum value over >3 

log units f02  at 55 kbar and 1400K (figure 49a), whereas it is more sharply 

defined (1 logunit f02 ) at 30 kbar and 1600K (figure 49b). 

A3.3 EXPERIMENTAL PROCEDURES FOR REDUCED FLUID EXPERIMENTS 

The ideal situation in experiments using reduced C-0-H fluids would 

be to make use of the Invariant nature of fluids during experiments at 

fixed pressure and temperature at the intersection of an oxygen buffer 

with the carbon saturation surface (e.g. c-lw). Two experimental designs 

were considered: [a] C-lW experiments which would have the advantage of 
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Figure 48 

Variation in composition of C-O-H fluids with oxygen fugacity. 

Fluids in equilibrium with solid carbon lie on the carbon saturation 

surface. The region of interest for mantle oxidation states lies between 

1W and EMOD/EMOG. The labels CW, 'CWI' and C-lW denote f0 2  and 

composition of fluids in the techniques described in this paper. 
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Figure 49 	 S 	 - 

The effect of [a] pressure and [b] temperature on the position of 

the carbon saturation surface. Note that fluids are close to XH2O_maxjmum 

over a wider range of f0 2  at higher pressures and lower temperatures. 
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fixed fluid composition, and lie at the reduced end of the spectrum of 

• envisaged mantle oxidation states; and [b] CW experiments, which lack the 

invariant fluid composition and fixed f02, but lie between the f02  of 1W 

and EMOD/EMOG, a region in which there is a lack of suitable metal-oxide 

solid-gas oxygen buffers. A capsule piercing technique was used to 

directly measure fluid compositions by mass spectrometry so that checks 

could be made on the attainment of equilibrium, the correspondence of 

calculated and experimental fluid compositions, and the f0 2  of CW 

experiments. The experiments did not behave as expected, but the results 

of the exploratory experiments described below permitted development of a 

dependable experimental technique for rock liquidus studies which was used 

in a study of olivine lamproite and leucite lamproite compositions 

described elsewhere [Part 51. 

To summarise, three categories of experiments were attempted: 

[1] C-lW experiments without rock sample [fluid test experiments]. These 

permitted a check of fluid equilibration at C-lW and comparison with 

compositions calculated by Taylor [1986a]. Results were very close to 

calculations at 1050 0C, but calculated fluid compositions give' 
systematically higher CH4/H 20 for higher temperatures (1200-1300 0C).. 
[21 C-lW experiments with rock sample. These experiments proved 

unreliable as fluids consisted of H2O in excess of CH4 which is 

inconsistent with both calculations and the fluid test experiments. Fluid 

compositions were not reproducible in different runs at the same pressure 

and temperature. The inconsistencies are believed to arise from kinetic 

problems in attainment of equilibrium between the iron-wustite buffer and 

fluid in the presence of the rock sample. 

[3] CW1-  experiments with rock sample. Fluid composition measurements 

indicate that the f0 2  of these experiments can be controlled within narrow 

limits at the lower end of the X 11 20-maximum where fluids consist of H20 >> 

C114 > CO2. Oxidation to the high f02  side of CW is prevented by the 

presence of an iron-wustite mixture. 	 - 

A3.3.1 	Experimental details 

Experiments were performed in a 0.5 inch [1.27cm] piston-cylinder 

apparatus using techniques similar to those described by Green and 

Ringwood [1967b]. Temperatures were recorded by Pt/Pt90Rh 1 0 thermocouples 

sited within 0.5mm of the sample capsule, and were controlled 
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automatically to within 6 0C of the nominated temperature. No pressure 
correction on emf was applied. No deterioration of Pt thermocouples 

occurred at the temperatures required (<1300 0C), so that experiments up to 

30 hours duration were run at nearly constant current. Experiments were 

carried out using the "piston-in' technique, using assemblies consisting of 

either talc (run with -10% pressure correction; Green et al. 1966) or NaCl 

(no pressure correction). 

A3.3.2 	CAPSULE PIERCING TECHNIQUE FOR MASS SPECTROMETRIC FLUID ANALYSIS 

The capsule piercing device used for fluid analysis is a modified 

Whitey (IISS-1VS6) regulating valve with its stem redesigned as a 

hardened needle tip. (figure 50). The capsule Is inserted into a removable 

cradle with optional metal washers serving as additional confining rings 

for longer capsules (>9mm). The piercer was loaded into the oven of aPYE 

UNICAM 204 Gas Chromatograph connected to the ion-source of a VG-rnicromass 

7070F double-focussing mass spectrometer. The loaded piercer was evacuated 

to 10-6  to io 	torr and heated to 1500C to eliminate adsorbed water from 
the metal surfaces (15-25 minutes). After the sample capsule was pierced, 

the piercer was returned to 150 0C and mass spectra were acquired by 

multiple scans of - 2sec duration over the mass range 10-100. Methane and 

CO2  were released quickly so that in methane-rich runs a needle valve was 

used to regulate flow into the mass spectrometer. Water was released only 

slowly, presumably due to absorption in the graphite inner capsules or 

Internal metal surfaces, so that mass spectra had to be collected for 

35-55 minutes until the H20 level (gauged by the m/z 18 peak - returned --to -

the background levels obtained immediately before piercing (m/z 14>18; 

see figure 51). 

Gas analyses were obtained by integrating over time for mass 17+18 

for H20, 13+15+16 for CH4, and 44 for CO2. Other peaks in the spectra for 

these gases were not included due to [a] overlapping with other background 

gases (e.g. mass 14 in CH 4  and N2), or [b] low levels close to threshold 

leading to discontinuous collection. These were corrected for by 

multiplying by standard factors after integration. Ionisation cross-

section characteristics of the machine were corrected for by reference to 

standard gases (CO2+CO+N2 ; and C114+H2 0 produced from pyrolysis of 

hexacosane, stearic acid and lignoceric acid). An approximate measure of CO 

could be obtained by subtraction on a single spectrum at the peak of CH4 
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and CO2  release assuming a constant 28/32 intensity in the background and 

correcting for CO+ . f ragments derived from CO2. Hydrogen spectra could 

not be collected by the data acquisition system used, but the presence of 

both H2  and H+ fragments was confirmed by oscillograph traces. Minor 

ethane (corrected from mass 27+29+30), the presence of which is predicted 

by the thermodynamic calculations, was seen in CH4-rich experiments. 

A3.3.3 	C-lW FLUID TEST EXPERIMENTS 

All experiments described in this paper used a sealed 3mm i.d. Pt or 

Ag50pd50  capsule containing two inner graphite capsules of 2-2.3mm i.d. 

(figure 53). For C-lW fluid test experiments both buffer and sample capsules 

were filled with 1W buffer (1:1 mix of Fe and FeO). The methane+water fluid 

was generated from a solid source mixture of A1 4 C3  and Al(OH)3 by the 

rapid action of water on A14C3  to produce methane [Wade and Bannister 

19731. Water is released by thermal decomposition of Al(OH)3 In two steps 

at 250 0C and 5500C [Kennedy 19591, thus lessening the risk of capsule 
rupture relative to fluid generation at a single P,T point. The overall 

reaction can be expressed by the equation 	- 

A14 C3  + 2 Al(OH)3 	---> 	3 A1 203 + 3 Cl!4 (+ C 2H6 + H2) 	[1] 

Generation of CH4-rich fluids by this mechanism rather than by 

decomposition of more complex hydrocarbons has the advantages of [ii rapid 

equilibration to CH4-rich fluids for experiments of short duration [Taylor 

1985; Taylor and Green 1986b], and [ii] fluids with different CH 4/H20 

ratios can be generated by addition of the appropriate amount of excess 

Al(OH)3, so that high pressure equilibrium CH4/H20 can be mimicked by 

generated fluids to achieve short equilibration times. For C-lW fluid 

tests, a mixture of A14 C3  + Al(OH)3 which should produce a CH4/H20 ratio 

of 5 was used. All mixtures containing A14C3 were stored under vacuum 

desiccation to.prevent-reac.tiOfl with atmospheric moisture. 

C-lw equilibrium should be achieved at high pressure and temperature 

by reaction of Cl! 4  and H2O from the fluid source with graphite capsules 

and the 1W buffer by the equilibrium 

CH 	 (21 4- 2H2O+C 	 [2] 
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Table 23 lists experimental details and CH4/H20 ratios measured by 

the capsule piercing technique. H 2  and C2H6 were detected in these fluid 

test experiments, but H20 and CH4 are the dominant species (>90niol%), so 

that the CH4/H20 ratio gives a simple and useful indication of fluid 

composition. C2H6  is present in much lower abundances than in the 

experiments of Taylor and Green [1986b] which were at f 0 4 log units 

below 1W. 

Several experiments were conducted at 30 kbar and 1200 0C with 
varying run duration (2 hr 15 min to 25 hr) to test the rate of 

equilibration, precision of the MS technique, and buffering capacity of 

the 1W mixture. The measured CH4/H 20 of 30kbar/12000C experiments ranged 
from 2.2 to 3.1 and showed no systematic trend with time. This indicates 

that equilibrium can be reached with graphite capsules and 1W buffer 

inside 2hr 15mm, and that H2-loss by diffusion out of the capsule is 

insufficient to exhaust the buffer after 25hr. IW'buffers were checked 

after each run both optically and by XRD, and had frequently developed a 

ring of Fe metal, but had iron+wustite still present in each case. 

Although there are insufficient experiments for a meaningful statistical 

analysis of precision, the measurements fall within 0.5 of a 2.6 ratio for 

CH4/H20. 

The rest of the experiments listed in table 23 permit comparison of 

measured CH4/H 20 with thermodynamically calculated values over a pressure-

temperature range relevant to mantle-melting studies. The CH 4 /H20 

measurements are superimposed in figure 52 on a P,T grid contoured in 

CH4/H20 predicted by the thermodynamic calculations of Taylor [1985; 

1986a]. It can be seen that agreement at 1050 0c is extremely good, whereas 
at higher temperatures the calculations predict systematically higher 

CH4/H20 than the measured values. 

The experimental data confirm that CH 4 /}j20 of the fluid Is 

essentially ,, a function of temperature, with pressure having negligible 

effect in the pressure-temperature range of interest. Run 1771 at 

20kbar/1200 0C (CH4/H20=2.6) matches the average for the 30kbar/1200 0C runs 

described above. Agreement between the 1050 0C runs is good despite the 
different assemblies used. This confirms that H2-loss from the capsules is 

not a problem at f02=1W even given the low external fH2 of NaCl sleeves. 

Taylor and Green [1986b] used talc exclusively for their lower f02  runs in 



Table 23 : Experimental run data for fluid test experiments at C-lW 

Run Pressure Temp. Duration Assembly Vapour 
[kbar] [°c] [hr] CH4/H2 0 

1768 30 1200 2.25 Talc 3.5 
1756 30 1200 6.1 Talc 2.2 
1764 30 1200 16 Talc 3 
1767 30 1200 25 Talc 2.2 

1777 20 1050 6.1 Talc 5.2 
1725 20 1150 2 Talc 3.8 
1771 20 1200 7.5 Talc 2.6 
1772 30 1050 7 NaCl 5.5 
1812 30 1300 6 Talc 1.8 
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Comparison of C-lW fluid test CH4 /H2 0 ratios measured by mass 

spectrometer (points) with thermodynamically calculated values of Taylor 

[1986a] (contoured). 
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Figure 53 

Capsule configuration used in most C-lW and 'CWI' experiments. The 

outer capsule is Pt or Ag50Pd50 alloy. Stipple denotes graphite. 
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which H2  was a more prominent component of the fluid phase. 

The results of these fluid tests have important implications for 

melt generation in the mantle at f0 2 iW, and these are discussed in the 

final section. 

A3.3.4 	C-lW EXPERIMENTS WITH SAMPLE 

The rock sample added for these experiments was prepared from 

analytical grade oxides and carbonates, plus synthetic Ca2P207 1  MgF2  and 

Fe 2 SiO4 . All iron was added as fayalite to avoid problems in attaining low 

oxygen fugacities caused by the presence of ferric iron in the sample. 

Components were mixed thoroughly in an agate mortar and sintered at 900 0C 

prior to the addition of fayalite to avoid oxidation of FeO. The 

composition used in these experiments was a high MgO (23wt%), low Si02 

(43wt%) olivine lamproite; full details of the composition are given by 

-in Part 5. The capsule configuration depicted in figure 53 was used in 

these experiments, initially with the same 1:1 1W buffer and A1 4 C3  + 

Al(OH) 3  mixtures as in the C-lW fluid tests experiments. 

Several attempts were made to achieve the equilibrium fluid 

compositions predicted by the thermodynamic calculations and characterised 

by the fluid tests, but these all proved unsuccessful. Measured CH4/H 20, 

using the same capsule piercing technique, was variable but usually 

around 0.2-0.5, i.e.. with a very much lower CH 4  content than the fluid 

tests. Assuming the fluids lie on or near the graphite saturation surface, 

these CH4/H 20 ratios indicate oxygen fugacity well above 1W, but below CW. 

Examination of the 1W buffers showed that they were not exhausted, but 

apparently lack the ability to buffer fluid compositions in this system. 

Charges contained abundant mica and.a significant amount of glass, even at 

1050 0C. Melting in the presence of CH4+H 20 fluids can be expected to be 

largely a function of XH20,  since, the solubility of methane in melts is 

low [Taylor and Green 1986a,b]. In an MgO-rich composition such as olivine 

lamproite in an anhydrous or low-H20 environment, the degree of melting at 

10500C would be very small. Therefore, the presence of a significant 
amount of melt, together with the close agreement of calculations and C-lW 

fluid tests, indicates that the low CH4/H20 measurements are real, and not 

due to either analytical error in the capsule piercing technique or to 

buffering of fluid compositions to high XH20  where the system as a whole 
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is less water-rich. 

It is concluded that C-lW experiments on rock compositions, whilst 

theoretically more attractive in that f0 2  and fluid compositions should 

be fixed, are unreliable, and that this is probably due to kinetic 

interference by the sample in the attainment of equilibrium with the 1W 

buffer. Calculations discounted the possibility of increased f0 2  due to 

excess 02  from [i] trapped 02 in the sample, [ii] assumed oxidation of FeO 

in the sample, and [iii] H 2-10ss by diffusion out of the capsule. 

Further experiments with variation in Fe/FeO of the buffer, the 

amount of 1W buffer (up to 55mg compared to 6-8mg sample), A14C3/Al(OH)3 

of the fluid source, run duration (up to 30hr), and the P,T-path followed 

during heating and compression to run conditions, were performed in an 

attempt to isolate the cause of the disagreement between sample-present 

and sample-absent runs. The runs with larger buffer capacity had buffer. 

present in excess of that-which-would be required to completely reduce the 

fluid and sample, further indicating that the lack of equilibration was due 

to buffer kinetics rather than capacity. 

It is considered likely that some decomposition of the A14C 3  had 

occurred by reaction with atmospheric moisture prior to the experiments, 

although products of decomposition did not register on XRD. The initial 

fluid produced may therefore have had a much lower CH 4 /H2 0 than the 

intended ratio of five. In this case, the initial presence of large 

amounts of H20 may have caused melting of the sample and dissolution 

of much larger amounts of H20 than at the C-lW equilibrium conditions. 

This presents the possibility that fluid-liquid equilibrium interferes 

in C-0-H fluid equilibrium by buffering the concentration of a fluid 

component at a rate-limiting step. This explanation is necessarily 

conjectural, since no data are available on the kinetics or mechanisms at 

such high-pressures. However, experiments at 850900 0C and 10-20kbar of-

20hr duration produced similar low CH4 /}1 20 fluids. Under these conditions 

the fluid composition should be extremely methane-rich (see figure 52) and 

the sample should be subsolidus, so that fluid-liquid interaction slowing 

the attainment of equilibrium can be discounted. unless the lack of 

equilibrium at 850900 0c is simply due to the effect of temperature. C-lW 
fluid tests equilibrated at 1050 0C in less than 6 hours, but reactions may 

slow drastically between 1050 0C and 9000C. 
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The main reason for choosing the carbide source for methane 

generation was the need for rapid equilibration for runs of short duration 

(20 minutes and less) without graphite inner capsules [Taylor 1985; Taylor 

and Green 1986b]. Given the requirement in the present experiments for 

equilibration of the fluid with graphite capsules, this kinetic consideration 

may be unnecessary, and long-chain aliphatic hydrocarbons may be more 

reliable sources. The possibility cannot be ruled out that the equilibration 

problem of C-lW + sample experiments is specific to formation of CR 4  from 

H20-rich fluids, and that if CH4/H20 is initially higher than 

equilibrium values, then equilibrium may be achieved. However, we consider 

it more likely that the iron-wustite buffer is unable to buffer fluid 

compositions in the system described. Consequently, attempts to control 

experiments with reduced fluids must look to either another f0 2  buffer, 

or to monitoring fluid compositions which are only approximately controlled 

in f02. The latter option was chosen in this study by way of graphite-

water [CW] experiments. 

A3.3.5 'CWI' EXPERIMENTS WITH SAMPLE 

The 'CWI' technique described here was used for a liquidus study of 

olivine lamproite and leucite lamproite compositions [Part 51 and 

found to be dependable. 

The XH20-maximum  in fluids on the carbon saturation surface (CW) has 

the advantage of lying in the f02 region of interest for a reduced mantle, 

in which there is a lack of suitable metal-metal oxide solid-gas oxygen 

buffers for the control of f02  in experiments. Measurements of fluid 

composition by the capsule piercing technique enable monitoring of the f02 

of each experiment. 

The first experiments attempting to fix f02  at CW used only one 

graphite inner capsule containing 18mg sample with 12.5wt% H 20 added as 

distilled water to the sample capsule by microsyringe. A carbide-hydroxide 

source was added below the sample capsule to produce a 1:1 CH4/H20 fluid 

to ensure that CW was approached from the low f02  side. However, results 

of these experiments with both olivine lamproite and leucite lamproite 

produced CO2-rich fluids with no CH4, indicating oxidation beyond f02CW. 

The experiment with leucite lamproite (containing >llwt% K20) had CO2/H20 
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=6, and yet contained mica in the sample. This is interpreted to indicate 

- buffering of the fluid phase composition by minerals in the sample in an 

analogous manner to CO2-rich fluids in equilibrium with amphibole-

peridotite [Wyllie 1977; Eggler 1978; Olafssort and Eggler 19831. Two 

methods were considered to overcome this; [i] increasing the amount of 1120 

added to the sample to increase the buffering capacity at CW, and [ii] 

including the 1W buffer capsule to prevent oxidation to CO2-rich 

compositions. The latter was preferred, since adding excessive amounts of 

1120 at high pressures and temperatures would result in high levels of 

solution of sample components in the fluid, effectively changing the 

composition of the experimental charge. 

The second option was found to give satisfactory results and 

bracketed f02  between narrow limits, giving fluid compositions of 

H2 0080m0l%) >> CH4 > CO2 at high pressures. The caspule configuration was 

that of figure 53, and 12.5wt% 1120  was added to the sample capsule to 

ensure high X1120  was achieved. The 1W buffer did not control f02 at 1W as 

described above, but did hold f02  to the lower side of the X1120-maximum, 

- hence the notation CW1 (carbon-water-iron). Fluid compositions therefore 

lie in the region where the carbon saturation surface turns from the 

XH20-maximum towards more methane-rich compositions (i.e. higher 

C/(C+H2 )). Figure 54 gives an indication of the f02 range of these 

experiments with pressure: the uncertainty in f0 2  is less at higher 

pressures where there is a more rapid change in CH 4 /H2 0 with f02. 

Under these conditions, the X1120-maximum is wider, which explains the 

widening of the gap between experimental f02  range and CW with increasing 

pressure in figure 54, because the CW curve represents the middle of the 

wider X1120-maximum (see figure 49a). 

Figure 55 illustrates a typical result from capsule piercing of an 

lamproite run at 'CWI' (run 1921: 15kbar/1125 0C). Water is released more 
gradually than methane after piercing as the system is reheated to 150 0C 
to drive water out of the graphite capsules. The spectra in figures 55b and 

55c are from the peaks of CH 4  and 1120  release respectively. At the peak 

of CH4  release, water release has hardly begun as can be guaged by 

reference to the background mass 28 (N 2 ) and 32 (02)  peaks, which remain 

roughly constant. C2H 6  (mass 25-30) and CO2 (mass 44) are barely above 

threshold in this example. 
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Figure 55 

Intensity vs. time trace [a] and mass spectra at the peaks of CH4  

[b] and H20 [c] release for a typical 'CWI' experiment with leucite 

lamproite sample (15kbar/11250C). Note very low values close to 

threshold, for ethane and CO2 
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Experiments occasionally contained higher CH 4 /H 20 fluids, or had 

CO2>CH4 (with >80 mol%H20) showing that the preferred fluid composition of 

H20>>CH4>CO2  cannot be assumed, and that monitoring of fluid composition 

bycapsule piercing is necessary. Repetitions of these experiments 

generally produced the desired CH4>CO2 fluid at the first attempt. 

A3.4 IMPLICATIONS OF THE C-lW FLUID TESTS FOR MELTING IN THE MANTLE 

The results of the C-lW fluid test experiments have important 

implications for melting of mantle material at fOfIW. The solubility of 

CH4  in silicate melts, and therefore the depression of the liquidus 

temperature due to CH4 , is low [Taylor and Green 1986b], meaning that 

melting in the presence of CH4+H 20 fluid mixtures is essentially a 

function of XH20.  The thermodynamic calculations of Taylor [1985,1986b] 

predict that contours of XH20 and C94/H20 in the fluid will be strongly 

temperature dependent, with pressure important only below 10kbar. The 

results of the fluid test experiments, superimposed on the calculated 

values in figure 52, show that the CH4/H20 contours are even more closely 

spaced than the calculations predict at temperatures above 1050 0C. Since 

increased H 20-content and temperature both promote melting, the degree of 

melting in reduced, carbon-saturated systems will increase much more 

rapidly over a short temperature interval than seen in experimental 

studies with only a single volatile species. The effect of temperature on 

degree of melting or crystallinity will probably be greater in the region 

1000-12500C than at higher temperatures, as the calculations predict closer 

spacing of CH4/H 20 contours at lower temperatures. Therefore, changes in 

temperature may be more important to the crystallisation of melts escaping 

from the mantle source than in the melting interval of peridotite: an 

experiment on olivine lainproite with high CH4/H 20, and thus f02IW 

[Part 51 has five phases plus liquid and a high degree of crystallisation at 

30kbar/1200 0C, implying that the-per idotite solidus lies above 1300 0C. 

However, any melts produced at 1200-1300 0C, presumably at lower pressures 

and having lower MgO and higher S10 2  compositions than olivine lamproite, 

will be much more likely to freeze or experience significant crystal 

fractionation if f02  remains at 1W, than melts at higher f02 where changes 

in CH4/H20 with temperature are less important. A rise in f02 from C-lW 

during ascent of melts or fluids will promote melting at higher levels; 

these processes are considered by Taylor and Green [1986a] and Green et 

al. [1986]. 
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Abstract 

Aluminous spinels (pleonaste-hercynite) occur as tiny (mostly <20 pm) inclusions in leucite 
phenocrysts (and pseudomorphs) in leucite lamproites from the West Kimberley region, West-
ern Australia. These spinels differ markedly from the "co-existing" groundmass titaniferous 
magnesiochromites which, like the other ferromagnesian phases in the rock, are poor in 
alumina. Similar Al-spinel inclusions in leucites were found in experiments at atmospheric 
pressure on another lamproite, the Gaussberg olivine leucitite. Based on mineralogical and 
experimental evidence the formation of the âluminous spinel inclusions in leucite in these 
peralkaline volcanics is attributed to exsolution under conditions of supersaturation from 
non-stoichiometric leucites originally incorporating Mg, Al and Fe" in solid solution. 

Introduction 
Spinels belonging to the MgAl 204—FeAI 204  series are 

uncommon in volcanic rocks; most spinels in basic to in-
termediate magmas show extensive solid solution towards 
(Mg, Fe)Cr 204, Fe304  and, to a lesser extent, Fe 2TiO4  
(e.g., Haggerty, 1976). Aluminous spinels, commonly inter-
grown with silicates or in some cases other oxides (e.g., 
titanomagnetite), are well documented in plutonic and 
metamorphosed igneous rocks where they are inferred to 
result from sub-solidus reactions and re-equilibration, 
and/or oxidation. However, a number of occurrences of 
unusual, essentially Cr-free Al-spinel have been reported 
from basic to ultrabasic alkalic volcanics. Arculus (1978) 
described Fe-pleonaste rimmed by chromite enclosed in 
augite which was in turn enclosed by phenocrystal olivine 
in a basanitoid from Grenada. Fe-pleonaste has also been 
reported from ultrapotassic lavas (lamproites) from Leucite 
Hills (Kuehner et al., 1981) and southeastern Spain (Ventu-
relli et al., 1984). Both Arculus (1978) and Kuehner et al. 
(1981) suggested that the Fe-pleonaste was of xenocrystal 
origin derived from disaggregated granulite or ultramafic 
nodules whereas Venturelli et al. (1984) suggested that the 
tiny Al-spinel inclusions in biotite phenocrysts (xeno-
crysts?) resulted in part from the breakdown of the host 
mica. In addition to these occurrences Mg-rich pleonaste 
rims on groundmass chromite/titanomagnetite have been 
described from several kimberlites (Haggerty, 1975; 
Pasteris, 1983). 

This paper describes the occurrence of aluminous spinel 
inclusions in leucite phenocrysts in lamproites from the 
West Kimberley region of Western Australia observed in  

the course of detailed petrologic and geochemical study of 
the lamproite suite. Although previously unreported, the 
aluminous spinel inclusions are comparatively widespread, 
occurring in a wide range of lamproite types within the 
West Kimberley suite, all of which contain mica, alumina-
deficient pyroxene, and amphibole and, commonly, 
alumina-free alkali-rich accessory phases. A similar oc-
currence of aluminous spinel inclusions in leucite was 
found independently by the second author during experi-
mental studies of another lamproitic rock, the olivine leu-
citite of Gaussberg volcano, Antarctica. 

Mineralogical, petrographic and experimental evidence 
are presented to explain the origin of the aluminous spinels 
in leucite in these ultrapotassic rocks. It is suggested that 
under appropriate conditions similar inclusions might 
occur in strongly leucite-phyric volcanics elsewhere. 

Occurrence 

Natural rocks 
The Miocene leucite lamproites of the Fitzroy area of the 

West Kimberley region of Western Australia have been 
described by Wade and Prider (1940), Prider (1960, 1982), 
Derrick and Gellatly (1972) and, more recently, by Jaques 
et al. (1984). Petrological and geochemical studies indicate 
a continuum from the leucite-rich lamproites described by 
the earlier workers which contain phlogopite, diopside, or 
titanian potassium richterite as the major mafic phases, 
through lamproite with abundant olivine and leucite to the 
newly-discovered olivine lamproites (leucite-poor) some of 
which contain diamond (Atkinson et al., 1984; Jaques et al., 
1984). 
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I ig. I. Photiirogr.ipli of Al-spinel (pleonaste-fernan pleon-
aste) inclusions in ieuciie, glassy leucite lamproite, sample 
71160408, Oscar Plug. Note irregular shape of aggregated leucite 
phenocrysts. Width of field is 0.55 mm. 

The aluminous spinels occur exclusively as small—
mostly less than 20 um, rarely more than 40 pm—
inclusions in aggregated leucite phenocrysts in fine grained 
to glassy, strongly leucite-phyric lamproites. The inclusions 
are more readily recognized in the rare rocks containing 
fresh leucite but can also be distinguished in lamproites 
where the leucite is replaced, generally pseudomorphed, by 
mixtures of K-feldspar, zeolite, chalcedony, opaline silica or 
clay (Prider and Cole, 1942). Fine grained inclusions of Fe 
oxide, particularly hematite are also common inclusions in 
altered leucite. 

The leucite phenocrysts are typically euhedral and, 
where unaltered, weakly birefringent, twinned, and com-
monly contain inclusions of glass arranged in concentric 
zones. Many phenocrysts in the more glassy rocks are 
strongly resorbed and embayed. The leucite phenocrysts 
containing the aluminous spinel inclusions occur as 
amoeboid-shaped to strongly rounded, embayed, coalesced 
aggegates with numerous melt inclusions (Fig. 1). The ag-
gregates range in size up to 5 mm and are irregularly dis-
tributed in the rock, apart from being more common in the 
finer-grained marginal phases of intrusives. No aluminous 
spinels have been observed in single, discrete leucite pheno-
crysts nor in any other phase, all are entirely contained in 
leucite. 

Rock types containing the aluminous spinel inclusions 
include most of the types described by Wade and Prider 
(1940), and Prider (1960, 1982) except for the coarser 
grained lamproites of Rice (formerly Moulamen) Hill and 
Walgidee (formerly Wolgidee) Hills. The majority of the 
rocks containing aluminous spinel inclusions have pheno-
crysts of Al-poor diopside, phlogopite and/or olivine in 
addition to the leucite; potassic richterite is generally re-
stricted to the groundmass. Alumina-free, alkali-rich ac-
cessory minerals (typically priderite, less commonly wa-
deite) are generally present in the groundmass as small 
prisms, and apatite is also invariably present. Most of the 
lamproites also contain a chrome-rich spinel which is pres- 

ent as tiny (<10 pm) inclusions in olivine and as small 
mostly 50 im or less) euhedra in the groundmass. The 
hromian spinels are mostly titaniferous magnesio-
irOmites rich in Cr and Ti (50-65% Cr2 03 , 3-6% Ti0 2 ) 

nd poor in Al but also include titaniferous chromian mag-
netites (see below). Ilmenite is comparatively rare occurring 
in the groundmass of only a few lamproites. 

!. perimenta1 studies 
The olivine leucitites of Gaussberg volcano in Wilhelm 

II Land, eastern Antarctica (Sheraton and Cundari, 1980), 
are closely comparable in composition to the mid-range (in 
terms of silica content) of the West Kimberley lamproites. 
The composition studied in the experiments is typical of 
the suite and is a good candidate for being a primary 
liquid it is a fresh, glass-rich lava with phenocrysts of oh-
vine, leucite and clinopyroxene, and carries mantle-derived 
spinel lherzolite xenoliths. 

Two series of near-liquidus atmospheric pressure experi-
ments have been conducted on the Gaussberg composition 
with controlled oxygen fugacities. Experiments were car-
ried out in a one inch diameter vertical furnace using iron-
doped Pt capsules included in evacuated silica tubes above 
a separate Pt capsule containing the oxygen buffer. The 
buffers used were hematite-magnetite, manganosite-
haussmanite, nickel-nickel oxide, and magnetite-wüstite. 
Details of the composition and experiments are given else-
where (Foley, 1985). The two series of experiments were 
conducted under similar conditions but with slightly differ-
ent starting compositions. The first series involved an 
average Gaussberg composition, whereas the second series 
had additional Cr 2 03  (0.2 wt.% cf. 0.045% in the first 
series) in order to ensure crystallization of chrome-spinel. 
The aluminous spine] inclusions in leucites occurred only 
in the second series runs. Apart from the slight difference in 
Cr 2 0 3  content, the only other difference between the two 
series was run duration. The first series experiments were 
run for 2.5 hours, whereas the second were run for 5 hours 
to allow time for growth of chrome-spinel crystals to a size 
more easily analyzed. Both series of experiments were run 
under varying oxygen fugacity ranging between that con-
trolled by magnetite-wüstite (MW) and the hematite-
magnetite (HM) buffer reactions. 

Aluminous spine] inclusions occurred exclusively in ag-
gregated leucites in the second series runs. Groups of leu-
cites also occurred in the first series runs but did not con-
tain spinels. Although initially difficult to observe owing to 
their transparency in plane polarized light and isotropy 
under crossed polarizers, the spinels were identified in all of 
the second series runs containing leucites. The Al-spinels 
never occurred in direct contact with the glass. 

Analytical method 
Electron probe analyses of the spinels in the natural rocks were 

mostly obtained by wave-length dispersive methods using a Ca-
mebax (CAMECA) Microbeam fully automated EPMA employing an 
accelerating voltage of IS kV, a beam current of 30 nA, a beam 
diameter of less than 1 micron, and full ZAF Corrections. The 
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majority of the leucite analyses were made by energy-dispersive 
probe employing an accelerating voltage of 15 kV. a beam current 
of 3 nA, and a beam diameter of about 1 micron following the 
method of Reed and Ware (1975) and Ware (1980). Under these 
conditions leucite suffered little volatilization. 

Analyses of experimental products were obtained using a JEOL 

JXA 50A microprobe fitted with an EDAX energy-dispersive ana-
lyzer calibrated on Cu. Owing to the small size of many crystals, 
compositions were frequently calculated by subtraction of average 

ass analyses from crystal/glass overlap analyses. Chrome-spinel 
compositions were obtained by linear regression for each oxide 
from several area scans of crystal plus glass overlap of varying 
sizes. 

Compositions of the aluminous spinel inclusions 

West Kimberley lamproites 
The aluminous spinels occur mainly as either irregular 

clusters of discrete euhedra, mostly of green pleonaste. or 
elongate trains and clusters or aggregates of green to 
greenish brown euhedral to subhedral grains of pleonaste-
ferrian pleonaste composition some of which are clustered 
in schlieren-like aggregates of leucite (Fig. 1). In addition 
one lamproite contained very rare coalesced aggregates of 
brownish black subhedra of hercynite included within ag-
gregated leucite phenocrysts (Fig. 2). 

A crude correlation exists between spinel composition 
and crystal form and size. The larger discrete green spinels 
are the most magnesian and are highly aluminous (X AI  > 

0.9 where XAI = Al/(Al + Cr + Fe") and contain only 
minor magnetite in solid solution (Table 1: Fig. 3). The 
greenish brown to brown pleonaste-ferrian pleonaste grains 
are less magnesian, have higher magnetite contents (Fig. 3), 
and are commonly richer in Ti0 2  than the green pleonaste 
grains although compositions overlap. The brownish fer-
nan pleonaste grains have the lowest Mg and highest mag-
netite contents. There is a correlation between Mg and XAI 

(Fig. 3) and to a lesser extent between Mg and XFe3.  The 
brownish black hercynite inclusions of sample 71449A are 
compositionally distinct from the other inclusions being 

ON 

l'otni.rogr.iph of aggregated hereniie iiiL.Iuton 	n 

clustered leucite phenocrysts, olivine-diopside—leucite lamproite, 
sample 71449A. Ellendale No. 7. Width of field is 1.5 mm. 

much richer in Fe (Fig. 3). Like the discrete green pleon-
astes they have very low magnetite contents (X F3 . < 0.1). 

A feature of the spinel inclusions is their uniformly low 
Cr contents (<0.2 11 0, commonly <0.10.0  Cr 20 3 ). These 
contrast sharply with the high Cr contents of the ground-
mass titanium magnesiochromites (Table 1: Fig. 3). Other 
differences between the two generations of spinels are the 
much higher Ti and Mn, much lower Al contents, and 
generally higher Fe' and lower Mg/(Mg + Fe') ratios of 

the groundmass spinels. 

Experimental 
The aluminous spinels in the Gaussberg experiments 

occur as tiny transparent single or, occasionally, grouped 
crystals. They contain negligible Ti0 2  and Cr20 3 , and 

have much higher Mg/(Mg + Fe) ratios than those in the 

West Kimberley rocks. They are also slightly more mag-
nesian than coexisting Cr-rich spinels (Table 2). The Fe 
oxidation state in the spinels corresponds qualitatively to 
the oxygen buffer used, but the variable Fe" /'Fe' indi-

cates that f02  equilibrium was probably not fully reached 

for the Al-spinel inclusions. 

Compositions of the leucites 

Previous studies of leucite have shown that significant 
substitution of monovalent and trivalent cations into 
KAISi 2 06  may occur. End-members of the heavier alkalis 
(e.g., Rb. Cs) can be synthesized (Henderson and Taylor, 
1969), but Na is the only important alkali substitution in 
natural leucites. Fudali (1963) showed that up to 28 wt.% 
NaAlSi 2 O6  may be incorporated in leucite at I kbar P li ,o  
and 800C on the join KAISi 2O6 -NaAlSi,06, but natural 

leucites are not known to incorporate more than 10 wt.% 

NaAISi 206  The Na contents of leucites in lamproitic rocks 
are very low, in accord with their ultrapotassic chemistry. 

Leucites from areas of ultrapotassic volcanism such as 
the Leucite Hills commonly show an excess of silica and 
alkalis over alumina and ferric iron (e.g. Carmichael, 1967; 
Cundari, 1975; Barton, 1979). Experimental studies have 
shown that leucite may incorporate up to 8 wt.'/,, 

KAISi 3 O 8  at I kbar and 800C (Fudali, 1963) and less than 

5 wt.% NaAlSi 3O8  at I atmosphere and 800C (Gupta and 
Edgar. 1975). Ferric iron forms the dominant substitution 
on the smaller Al site: Gupta and Yagi (1980, p. 142-146) 
suggested that solid solution between KAISi 206  and 

KFe 34 Si 206  is limited to less than 6 wt.% KFe 3 Si 2 O6  at 

atmospheric pressure but increases with ,,O2  to 7.7 wt.% 

at 2 kbar 1'H202 
Incorporation of divalent cations is much rarer, although 

leucites of CaO contents in excess of I wt.% have been 
reported from potassic volcanics of the East African rift 
valley (Deer et al.. 1963). Schairer (1948) observed the cou-
pled substitution of Mg into leucite by the mechanism 
MgSi = AlAl, but did not state the extent of this substitu-
tion. The large W site favors cations of large ionic radius, 
and hence the solubility of Mg in leucite can be expected to 
be small, as is typically observed in natural leucites. How- 
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Table 1. Representative microprobe analyses of spinels in West Kimberley leucite lamproites 

Al-spinel inclusions 	 Groundmass 

2 	 3 	 4 	 9 	 6 	 7 	 8 

Si0 2  0.12 0.05 0.06 0.06 0.03 0.05 0.05 0.05 
hO2  0.21 0.24 0.62 0.96 0.38 4.33 4.35 3.95 
A1 203  64.87 63.60 59.62 50.91 57.66 2.16 1.51 1.67 
CrO3  0.23 0.16 n.d. m.d. 0.02 55.20 57.15 58.98 
FeO 13.23 21.86 20.74 28.37 34.02 29.68 27.25 24.21 
MnO 0.05 0.09 0.12 0.19 0.16 0.93 0.31 0.48 
MgO 21.77 14.59 18.88 18.18 7.46 7.15 9.95 10.47 
CaO 0.02 0.02 m.d. m.d. 0.02 m.d. 0.03 n.d. 

Total 100.49 100.61 100.04 98.67 99.75 99.50 99.60 99.81 

Fn 203  3.72 1.82 8.64 17.07 4.67 5.80 5.57 5.35 
FeO 9.88 20.22 12.96 13.01 29.82 24.46 22.24 19.40 

Total 100.86 100.79 100.90 100.38 100.22 100.08 100.16 100.35 

04 

Si 0.003 0.001 0.001 0.002 0.001 0.002 0.002 0.002 

Ti 0.004 0.005 0.012 0.019 0.008 0.114 0.113 0.101 

Al 1.905 1.950 1.812 1.611 1.886 0.089 0.062 0.067 
Cr 0.006 0.003 - - 0.001 1.526 1.563 1.591 
Fe 3-  0.070 0.036 0.167 0.345 0.097 0.153 0.45 3.137 
Fe 2+ 0.206 0.439 0.279 0.292 0.692 0.716 0.644 0.554 
Mn 0.001 0.002 0.003 0.005 0.004 0.027 0.009 0.014 

Mg 0.808 0.564 0.725 0.727 0.308 0.373 0.462 0.533 

Ca 0.001 0.001 - - 0.001 - 0.001 - 

XAI 0.962 0.981 0.915 	0.824 	0.950 0.050 0.035 0.037 

XFe 3 ' 0.035 0.018 0.085 	0.176 	0.049 0.087 0.082 0.076 

XCr 0.005 0.001 - 	 - 	 0.001 0.863 0.883 0.887 

MgIJ 0.797 0.562 0.722 	0.713 	0.308 0.343 0.418 0.490 

Fe determined as FeO; Fe 203  calculated from AB 2 04  stoichiometry 
n.d. = not detected (detction limit 0.02%) 
XAI, etc. = Al/(Al+Cr+Fe ) etc; Mg9  = 14g/(1-1g+Fe 24 ) 

I. Pleonaste, 20 pm inclusion in leucite, 81210125. 
Pleonaste, 20 pm inclusion in leucite, 71160408. 
Pleonaste, 30 pm inclusion in leucite pseudomorph, 68165028. 
Pleonaste, IS pm inclusion in leucite pseudomorph, 68165028. 
Ilercynite, aggregate in leucite, 71449A. 
Titaniterous magrteaiochromite, 10 pm euhedra, 81210125. 
Titaniferous magnesiochromite, 20 pm euhedro, 71160408. 

S. Titaniferous mngnesiochroinite, 40 pm euhedra, 71449A. 

4 

ever, the coupled nature of the substitution leads to re-
lationships more complex than this. For example, Hender-
son (1965) showed that Sr may be favored over Ba in leu-
cites despite its smaller ionic radius. 

West Kimberley lam proites 
Analyses obtained for both inclusion-bearing and 

inclusion-free leucites from the same sample as well as bulk 
analyses of Al-spinel inclusion plus host leucite from the 
West Kimberley lamproites are given in Table 3 and pro-
jected into the system KAlSiO 4-KFe 3 SiO4-SiO 2  (Fig. 4) 
following the method of Carmichael (1967). Both the leu-
cite phenocrysts with Al-spinel inclusions and those with- 

out inclusions are of similar near-stoichiometric compo-
sition (Fig. 4) as previously found for West Kimberley leu-
cites (Carmichael, 1967; Prider, 1982; Jaques et al., 1984). 
In general Fe, Ca and Na contents are low. Leucite cores 
and rims appear to show little difference in composition 
apart from slightly higher Fe at the rim. 

Bulk analyses obtained with a defocussed beam or by 
scanning with a 40 to 50 pm raster of leucite host plus 
Al-spinel inclusion show an excess of Al and Fe over Si and 
alkalies (Table 3). These analyses, which deviate from stoi-
chiometry, also have much higher Fe and Mg contents, 
and appear to exhibit limited solid solution towards 
KFe 3 Si 2 O6  (Fig. 4). Tie lines between the bulk analyses 

-I 
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Fig. 3. Compositions of aluminous spinel inclusions in leucite 
in West Kimberley leucite lamproites contrasted with groundmass 
titanian magnesiochromites in terms of Al/(A1 + Cr + Fe 3+) 

versus Mg/(Mg + Fe'). 

and those of the leucite hosts (excluding spine!) show a 
trend towards the ideal leucite composition. 

Gaussberg experiments 
Compositions of leucites from both series of experiments 

are pertinent here and are listed in Table 4. The second 
series leucites containing Al-spinel inclusions were so small 
that clean (spinel-free) leucite analyses could not be ob- 

Table 2. Compositions of aluminous spinel inclusions in leucite 
[1-4] and coexisting chromian spinels from experiment AT-126 

[5-6] 

1 	2 	3 	4 	5 	6 

Buffer 	 69 	CM 	990 	NNO 	HM 	990 

Tb 2 	 - 	- 	- 	- 	2.27 	2.71 

A1 203 	 66.3 	68.2 	69.6 	69.9 	4.36 	3.78 

Cr203 	 - 	- 	- 	- 	45.6 	59.6 

FeO- 6.9 	4.86 	6.10 	5.84 	26.7 	17.2 

Mg0 	 28.8 	27.0 	24.3 	24.3 	21.1 	16.7 

0-4 

Ti 	 - 	- 	- 	- 	0.053 	0.066 

Al 	 1.918 	1.951 	1.996 	2.001 	0.159 	0.150 

Cr 	 - 	- 	- 	. 	1.120 	1.519 

Fe 	 0.142 	0.099 	0.124 	0.119 	0.692 	0.464 

Ng 	 0 981 	0 975 	0 880 	0 877 	0 975 	0 801 

Total 	 3.041 	3.025 	3.000 	2.999 	2.999 	3.000 

Mg.* 	 0.874 	0.908 	0.876 	0.881 	0.926 	0.751 

* Fe as FeO 
** Mg - Mg/(Mg+Fe)  

Table 3. Representative microprobe analyses of leucite, West 
Kimberley leucite lamproites 

1 2 3 4 5 

S102  55.33 55.56 55.90 49.40 55.98* 

1102 0.17 0.16 0.11 0.35 0.06 

A1 203  21.03 20.85 21.12 25.57 20.86 

Cr203  n.d. n.d. n. d. 0.07 n.d. 

Fe203  1.08 1.11 0.56 3.36* 0.96 

MnO n.d. 0.03 n.d. 0.02 0.02 

MgO 0.46 0.70 0.26 1.83 0.14 

CaO n.d. n.d. s.d. 0.08 0.12 

Na20 0.09 0.02 0.10 0.09 0.09 

K 
2  0 21.25 21.27 21.34 16.91 21.50 

Total 99.41 99.70 99.39 97.66 99.75 

0=6 

Si 2.029 2.031 2.045 1.840 2.046 

Ti 0.005 0.004 0.003 0.010 0.002 

Al 0.909 0.899 0.911 1.122 0.899 

Cr - - - 0.002 - 
Fe 3+ 0.030 0.031 0.015 0.105* 0.026 

Mn - 0.001 - 0.001 0.001 

Mg 0.025 0.038 0.014 0.102 0.008 

Ca - - - 0.003 0.005 

Na 0.006 0.001 0.007 0.007 0.006 

K 0.995 0.992 0.996 0.803 1.002 

Total 3.999 3.997 3.991 3.993 3.994 

Fe determined as FeO, recalculated to Fe 203except for 4; 
* 	Fe as FeO, 	** BaO = 0.04%. 	n.d. = not detected 
(detection limit 0.02%) 

Leucite host to Al-spinel, 81210125 
Leucite host to Al-spinel, 714494 
Leucite host to Al-spinel, 71160408 
Bulk analysis of leucite host plus Inclusions 

(60 urn scan), 71160408 
Leucite phenocryst, 71160408 

tamed; these compositions are thus analogous to the bulk 
scan analyses in the West Kimberley rocks. The first series 
analyses listed in Table 4 are from run AT-116 
(Mn0-Mn 304  buffer) which contains unusually large leu-
cites which permitted direct analysis without the need to 
subtract included glass. Since the first series leucites con-
tain no inclusions, the Mg and Fe reported in the analyses 
are considered to be incorporated in solid solution. Foley 
(1985) has shown that ferric iron contents in leucite in-
crease with increasing oxygen fugacity, in agreement with 
the conclusions of Gupta and Yagi (1980) that increased 

H2O2 promoted solubility of Fe" in leucite. The first 
series experimental leucites have excess Si, indicating that 
Mg (and possibly some Fe) forms a coupled substitution 
MgSi-AIA1 as originally proposed by Schairer (1948). 

The second series leucite plus spinel overlap analyses 
form a range broadly similar to the West Kimberley leu-
cites but displaced towards Si0 2  (Fig. 4), as a consequence 
of excess Si in their structural formulae (Table 4). The 
silica-poor nature of the West Kimberley bulk (spinel plus 
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Fig. 4. Compositions of leucites in the West Kimberley lam-
proites (dots) compared with experimental leucite compositions in 
the system Si0 2-KFe3 SiO47KAlSiO4  (after Carmichael, 1967). 
Squares = first series experiments; crosses = second series experi-
ments; open circles = bulk scans of Al-spinel plus leucite host in 
West Kimberley lamproites. 

leucite host) analyses may be due to the predominance of 
Fe over Mg which causes a trend toward KFe 3 SiO4 . 

Alternatively, it might result from an excessive proportion 
of spinel in the rastered area of the analysis. 

Origin of the Al-spinet inclusions 

Several factors both preclude an origin for the Al-spinel 
inclusions in leucite by direct equilibrium crystallization 
from the host lamproite melt and strongly indicate an 
origin related to the crystallization of the leucite. (1) Al-
spinel inclusions are restricted to leucite, particularly to 
poorly crystallized leucite aggregates. (2) Chrome-rich 
spinel coexists in the groundmass of the lamproite. Crys-
tallization of two coexisting spinels one Al-rich with no Cr 
and the other Cr-rich, from the lamproite is highly unlikely 
since there is complete solid solution between MgAI 2 O4  
and MgCr 2 04  (e.g., Muan et al., 1972). (3) Equilibrium 

Table 4. Representative compositions of leucite from first series 
[1-3] and second series (leucite + spine] overlap) experiments 

[4-6] 

Si02  56.11 56.19 56.34 57.3 57.9 54.7 

A1 203  20.76 20.88 21.04 22.0 21.7 22.7 

FeO- 1.86 1.98 1.87 0.74 0.85 1.83 

MgO 0.81 0.28 0.33 0.58 	. 0.19 0.97 

K 20 222 243 240 19.4 19.4 -  19.8 

Total 99.76 99.76 99.98 100.0 100.0 100.0 

0=6 

Si 2.044 2.049 2.050 2.053 2.074 1.987 

Al 0.891 0.898 0.902 0.931 0.915 0.971 

Fe 0.057 0.060 0.057 0.022 0.025 0.056 

Mg 0.044 0.015 0.018 0.031 0.010 0.052 

K 0.940 0.950 0.946 0.887 0.890 0.920 

Total 3.976 3.972 3.973 3.924 3.914 3.986 

* Fe as FeO 

crystallization of Al-rich spinet containing negligible Cr 
(<0.2 wt.%) from a melt containing more than 250 ppm 
Cr is most unlikely under any conditions in view of the 
very high partition coefficient between chromite and liquid 
(e.g., Irving, 1978; and others). 

Two possible explanations for the origin of the Al-spinel 
inclusions are considered: (I) crystallization during un-
mixing or "exsolution" of non-stoichiometric leucite, (2) 
crystallization from melt included within the leucite pheno-
crysts. 

Evidence in favor of the first explanation includes the 
poorly crystallized, often aggregated, nature of the West 
Kimberley leucite hosts which suggests very rapid crys-
tallization of the leucite as a consequence of super-
saturation of the melt in leucite. Although solid solution 
between leucite and kaliophilite is apparently very limited 
under any conditions (Barton, 1979) and solid solution be-
tween leucite and KFe 3 Si 206  is restricted, the substitu-
tion MgSi-AIAI is known to occur (Schairer, 1948). Forma-
tion of non-stoichiometric leucite would be promoted 
under conditions of supersaturation where crystallization 
would be rapid. 

It is proposed that during crystallization of the leucite to 
a more ordered structure, excess Mg, Al and Fe were ex-
solved and recrystallized as spinel. The incorporation of 
Mg in leucite is proven by the first series of experiments. 
Furthermore, an indication of the kinetics of unmixing can 
be obtained by comparing the first series Mg-bearing leu-
cites with the second series leucites in which unmixing has 
taken place. The first series near-liquidus experiments were 
run for 2.5 hours, whereas the second ran for 5 hours. The 
only other difference between the two series was the Cr 203  
content which could not have caused crystallization of Cr-
free spinels. The experiments provide further indications of 
the conditions under which the natural spinels might have 
formed. The unmixing between 2.5 and 5 hours occurred at 
all oxygen fugacities studied (equivalent to logf02  of -8 to 
-2), demonstrating that 102  has minimal effect. In addition, 
the fact that the experiments were anhydrous shows that 
elevated PHO  is not necessary for incorporation of Mg and 
Fe into leucite. 

The very low Fe" content of Al-spinels in the West 
Kimberley rocks indicates that much of the iron originally 
in the non-stoichiometric leucite was present in the diva-
lent state. This view is supported by the Gaussberg experi-
ments (Foley, 1985) which suggest an initially reducing en-
vironment for many lamproitic magmas. The Gaussberg 
olivine leucitites contain poorly-crystallized, inclusion-filled 
aggregates of leucite similar to the West Kimberley exam-
ples but to date no Al-spinels have been found in these. 
The Gaussberg leucites formed early in the crystallization 
sequence, are poor in Fe", and have low excess Si relative 
to later phenocrystal leucites. 

The second possible explanation for the Al-spinel in-
clusions, crystallization of the spinel from melt included 
within leucite, appears to require local super-saturation of 
the melt in alumina. Experimental support for the oper-
ation of this mechanism was serendipitously provided by 
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an - initial attempt to run the Gaussberg experiments in 
alumina sample capsules. This was attempted in order to 
eliminate the problem of iron loss to noble metal capsules 
because experiments by Hill and Roeder (1974) showed 
that alumina contamination of basaltic samples run in 
alumina capsules was minimal. However, because of the 
alumina-undersaturated nature of the Gaussberg compo-
sition reaction with the capsule was much greater: the melt 
gained appreciable A1 20 3 , and aluminous spinels together 
with leucite crystallized near the liquidus. The spinels are 
remarkably similar to those occurring as inclusions in leu-
cite in second series experiments (Table 5). Alumina addi-
tion to this experiment may be analogous to melt in-
clusions gaining alumina from surrounding leucites or, pos-
sibly, by localized incorporation of Al-rich (pelitic) country 
rock. There is no evidence of widespread assimilation in 
the West Kimberley lamproites but country rock inclusions 
are locally evident. 

Both of the above mechanisms are suggested as viable 
mechanisms for the formation of Al-spinel in leucite. The 
key to operation of the first mechanism, which seems the 
more likely for the bulk of the spinel inclusions, may be the 
degree of supersaturation of the melt in leucite. The experi-
mental method of rapidly heating a mixture of oxides to 
the run conditions means that the melt formed will be 
strongly supersaturated in all phases initially crystallizing. 
In natural rocks a high degree of supersaturation may be 
necessary to initially incorporate appreciable Mg and Fe" 
in leucites, which may account for the apparent rarity of 
these inclusions; supersaturation may have led to the rapid 
crystallization of leucites with numerous melt inclusions. 
Some of the spinels might have crystallized in melt in-
clusions by the second mechanism, or alternatively, the 
melt inclusions may have acted as nucleation sites for spin-
els which then grew by exsolution from the non-
stoichiometric leucites. The large size of the hercynite in-
clusions compared to the enclosing leucites in sample 
71449A suggests local supersaturation in alumina. 

Although solid inclusions are common in leucite (Gupta 
and Yagi, 1980, p.  19) Al-spinel has not, to the best of our 
knowledge, been reported as inclusions from leucites in 
other ultrapotassic suites. The closest analogues appear to 
be the inclusions of magnetite (and augite) in leucite from 

Table 5. Compositions of Al-spinels produced by addition of 
alumina to experiment on Gaussberg leucitite 

1 	2 	3 

Sb 2  0.36 0.38 1.45 

A1 203  69.80 69.58 69.19 

FeO* 9.35 9.36 9.14 

MgO 20.27 20.43 19.58 

Total 99.78 99.75 99.36 

Mg** 0.795 0.795 0.792 

* Fe as FeO 
** Mg = Mg/(Mg+Fa)  

Utsuryo Island, Japan (cited by Gupta and Yagi, 1980, p. 
19) and the occurrence of Fe-pleonaste inclusions in biotite 
of presumed xenocrystal origin in the Spanish lamproites. 
The latter inclusions were attributed by Venturelli et al. 
(1984) to breakdown of biotite due to a near isothermal 
decrease in pressure at constant or increasing f02.  The Fe-
pleonastes and associated salitic pyroxenes in some of the 
Leucite Hills rocks (wyomingites) have been interpreted as 
xenocrysts. Most of the pleonastes are included within 
mica although some occur as large, irregular, discrete 
grains. These probably formed in the upper mantle as a 
result of local metasomatism or by crystallization of pre-
vious unrelated magmas (Barton and van Bergen, 1981; 
Kuehner et al., 1981). 

The Mg-pleonaste rims on groundmass chromite and 
titanomagnetite in the Kao (Haggerty, 1975) and De Beers 
kimberlite (Pasteris, 1983) pipes differ from the pleonastes 
reported here in having significantly lower Al and higher 
Ti, Cr and Fe" contents. Pasteris (1983) suggested that 
the Mg—Al spinel rims in the De Beers kimberlite resulted 
from increased Mg and Al in the magma, probably as a 
consequence of temporary cessation of phlogopite crys-
tallization by reactions such as: 

4KM93AIS13010(OH)2 - 5Mg 2 SiO4  + 2MgA1 204  
phiogopite 	forsterite 	spine! 

+ (2K 20 + 4H 20 + 7Si0 2 ) 

melt 

Such a mechanism is unlikely to have resulted in the for-
mation of the Al-spinel inclusions in leucite since: (1) the 
evolutionary trend of the groundmass spinels is to lower Al 
compositions (titaniferous magnesian aluminous chromite-
titaniferous magnesian chromite—ti tan iferous chromian 
magnetite; Jaques et al., 1984); (2) there is no compelling 
evidence of a cessation or hiatus of phlogopite crys-
tallization in the inclusion-bearing rocks; and (3) the evol-
utionary trend of the groundmass (commonly glassy) com-
positions is to higher K 2 0 and SiO 2  contents which would 
tend to stabilize phlogopite. 

Therefore, with the possible exception of the magnetite 
inclusions in leucite from Utsuryo Island the mechanism 
proposed for the origin of the Al-rich spinel in leucite in the 
West Kimberley lamproites does not appear applicable to 
these other occurrences of Al-rich spinels. However, we 
suggest that under appropriate conditions aluminous spin-
els could form inclusions in leucite in other ultrapotassic 
suites. In the case of the West Kimberley leucite lam-
proites, the textural evidence from the leucites and their 
inclusions indicates rapid, near-surface (sub-volcanic) crys-
tallization from magmas supersaturated in leucite. Low 
pressure fractionation resulted in silica-saturated residual 
liquids. Crystallization of olivine + leucite is restricted to 
less than 1.2 kbar under water-saturated conditions (Luth, 
1967) but under water-undersaturated conditions olivine 
and leucite can coexist up to 4 kbar (Barton and Hamilton, 
1982). 
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