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PREFACE

The purpose of this thesis is to present to the engineering
profession a method of structural analysis which is peculiarly
suited to-the way engineers think, The range and the power of

structural analysis are extended by careful study of the actual

deformations of structures, leading to the forﬁplation of simple
maﬁhematical:modelso The theme throughout this thesis is the
deliberate effort to look for, and to describe characteristic

shapes which define the deformed structure; general statements

are obtained similar to the historically valuable models which
used "plane sections remain plane® or "radial lines remain radiall,
Once an appreciation of the deformations of the structure is gained,

the forces to sustain these deformations are then found easily,

This is one of the oldest approaches of engineering analysis,

and the most powerful methods of analysis of structures have been
along these lines, Men like Galileo, Parent, Navier, Bernoulli,
and Cojdomb developed an appreciation of structural behaviour by
looking for simple geometric characteristics which would describe
the deformed shape 6f the structure., (We may note also that
Kepler's pﬁrely geometric study of the motions of the planets
paved the way for Newton's formulation of his laws), And today,
when one tries to visualize and calculate the deformations of a

bent beam, it is difficult to improve upon the first overall

approximation that plane sections remain plane,

The key to obtaining a éimple mathematical model of a real
problem is to start with a simple ‘physical or laborétory model,
Simple geometrié approximations are then obtéined by fitting an
analytic function to the form of the deformations of the'simple

structure. The functional form is chosen so that the strains,



the stresses, and hence the overall statical equilibrium of the structure
can be evaluated, With this basis on which thoughts can be focussed, the
laboratory and mathematical models can be improved to be a closer
representation of the real problem, This approach reduces the need to
test full~size structures, as the geometric functional form acts as the
geometric scaling factor, When full gize testing is carried out, model
tests are still a valuable means of providing a quick overall picture.
This picture can then be used to determine which important geometric
deformations should be measured. At pregsent, full-size testing, although

expensive, is still necessary as the relationships between the strength

and the size of the material remain unanswered. Nevertheless, improve-
ments in this field can be made; for example R.E. Rowe (Ref, 1) has shown
that concrete mixtures can be scaled to produce the same geometric crack

pattern as would be expected in the full-size structure,

An engineer is frequently using approximate overall characteristics
of a simple model as a basis for obtaining further thoughts on the real
problem, However, the inability to measure quiékly the overall geometric

deformations of a simple model has led to specialized full-size structural

tests, not by engineers, but by research workers. The aim of this thesis
if to show how to use simple experimental studies to obtain simple, ..
mathematical models, and thus fulfil the sentiment expressed by Sir Alfred
Pugsley (Ref, 2) that "Drawing and design office staffs can, and like to,
play a part in the extension of their methods, and if they could do so
directly, not ohly by theoretical but bj simple experiment, would welcome

the opportunity".

The design of a through plate girder bridge is taken as .the main
problem throughout this thesis in order to co-ordinate the whole,
Existing mathematical models and methods of design are based on the
ideas developed after the buckling failure of several through bridges
made with heavy floor beams. Bridges nowadays are being made with
lighter floor beams, and model studies are used in the investigations

for this thesis to indicate characteristic deformations of these lighter



through bridges., An understanding of the problem is obtained from
these model studies, and is used to develop a new mathematical model,

The predictions of this new model are then compared with measurements

taken on a full-size bridge with strain gauge, spirit level, and rule,
and reasonable agreement is obtained., Thig new mathematical model is
then used as the basis for recommendations concerning the design of

through bridges made with light floors.

3 3* K %*

In Chapter One the author presents a case for méasuring geometric
deformationsg as a means.of obtaining a good functional form for the
description of the structural problem, Simple and well known examples
of streféhed; bent, and.twisted bars are chosen in order that the main
features of the method are not lost in the process of mathematical

manipulation,

Chapter Two'begins'wi£h a detalled analysis of the structural
stability of a pin-ended column, This review is used as an introduction
to the use of a cha;acteristic geometric describing shape in the study
of structures 1iablé to buckling instability, Itlis shown that for
many years engineers have recognized thé valués ofusing an infinite
Fourier sine series (derived from the differentié}:”équation
describing the behaviour of the pin-ended column) to describe an
arbitrary deformed shape, This method is-useful when the structural
.behaviour éan be represented by those differential equations for
which sine functions are a solution, However, the existence of other
‘sets of infinite series of buckling modes is not generally exploited
by engineers, In this chapter it is shown how one can recognize

these series by studying the properties of the differential equations

and boundary conditions. The propérties of the series are then used



to generalize the well known plot, first developed by Sir Richard Southwell
(Ref. 3). This generalization provides a link between the initial and final
shape of the structure with the loadings on the structure for a large

range of structures liable to instability. With this sound analytical
basis, reinforced with measurements taken on actual structures, the
Southwell Plot becomes a more valuable experimental and design toole.

The author believes that this generalization is original.

Chapter Three is the first of three chapters which are concerned

with the design of a through bridge. In this chapter the measurements

taken on a simplified light through bridge are outlined, It is found
that the model through bridge is liable to lateral and torsional
instability., A new mathematical model is developed to describe these
lateral and torsional movements, and upper and lower bound solutions

to the first buckling load are found. These loads and the corresponding
buckling modes are shown to be a reasonable approximation to the measured
results. Other original contributions outlined in the chapter include
Southwell Plots on rotations and on strains suitable for use with the

new mathematical model for the bridge, a method for separating the first
buckling mode from the measurements of the total deformed shape, and a

method for finding lower bound solutions in some structural problems.

In Chapter Four the effects of minor additions to the laboratory

and mathematiéal model are investigated. The first effect described is
that resulting from the inclusion of web stiffeners int&ejwdel through
bridge. The inclusion of web stiffeners is shown to change only slightly
the nature of the deformed shape, and to increase by only a small amount
the buckling load., The second effect described is that of loadings

applied at points other than through the centroid of thé I beam. It

is shown that lateral and torsional loadings applied to the bridge can
engtain large deformations. An original extension of an existing ﬁethod,
used previously by engineers to estimate the deformations sustained by

a lateral loading on a pin ended column, is then developed and an estimate

of the effects of these loadings is obtained.



In Chapter Five the author discusses the design of real through

bridges. An examination of existing code recommendations indicates

thed¥ there exists a large difference between these rectmmendations

and the measurements {gken on the light through bridge (outlined in
Chapter Three), To gain a greater apprecimtion of these differences,
five additional model steel bridges are tested in the elastic and

| elasto-plastic ranges of deformation, A good fit to these model.
test resﬁltsris shown to be the mathematical model deveiéped in
Chapter Three and, as a result of the understanding gained from
these model test results, a process for use in the design of
light through bridges is established. This design process is .
then checked by comparing these predictionsbwith measurements
taken on a full-size structure,  In the light of these tests,
design recommendations for light and heavy through bridges are
maie, In Chapter Five the new mathematical model developed in
Chapter Three is congslidated, and the limits of thi; model are
found in relation to existing mathematical models for heavy
through bridges. Also in the chapter a simple approximation
to the buckling load is found, and the concept and use of a
line of first yield using simple patterns of the deformed shape
of the bridge’is presented,
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In Chapter Six ‘the range and the power of the method of

functional form is illustrated by presentation of a description
of torsion, és this problem of torsion arises naturally in the
discussion of the deformations of the twisted and bent through
bridge., It is shown that present methods to describe torsion
depend on analogies (physical and mathematical), and at best
describe sheaf sﬁresses in ﬁerms of the slopé on a thin film
membrane, or in terms of the éolufion of a high order differential

equation,

An effective geometric picture of torsion is obtained by

measuring and describing the movement of a line drawn on the



twisted member, Copdamb (Ref. 4) used this approach and obtained the%
good approximation for a twisted circular bar that "plane sections,
perpendicular to the longitudinal axis of the bar, remain plane",

This approximation is a poor estimate of the deformations of a
rectangular bar, and improving approximations could not be found,
Later analysis of the torsion problem has therefore tended towards

a more rigorous mathematical treatment. Nevertheless, further

consideration of the deformations of the twisted section leads to

the first approximation that for small angles of twist all straight

lines origiﬁally parallel to the sides of the member. remain straight
after the member has been twisted. The behaviour of many twisted
members with open and closed cross sections is investigated by using
this basic approximation, and an original, complete, and simple pidture

of torgion is developed.,
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CHAPTER ONE

MEASURING GEOMETRY TO. OBTAIN SIMPLE MATHEMATICAL MODELS

1ol Introduction

The formulation of any engineering problem is very convehiently
‘thought of as containing amy three phasés, (Refss 5 and'6), These
areg the real problem, the physical models, and the ﬁathematical
models, Thelreal ﬁroblem is initially'a ?ague and undefined notion,
It may be the "investigation, design, ana construction of a bridge";‘

while one of the physical models could be described as the bfidge A

structure itself, or the simplification of it used for structural
design purposes, - The bridge structure may have a certain type and
number of beams, columns and decking, and the physical model is
often further defined and simplified in such a manner as to be

more amenable to description. Any description of the behaviour

of these physical models which depends on logical analysis is called
a méthematical model, In engiheering analysis the mathematical

and physical models are gradually modified and used to formulaté

and describe the real problem and enable a reasonable mathematical

model to be obtained,

All structural analysis is necessariix épproximate, and ﬁé
obtain a mathematical description é functional relationship must
be used to connect some of the variébleso A specific example is
the stress-strain relationshiﬁ used in stfuctural analysis. It
is rarely fruitful for the structural analyst to question the
" nature of the mutual attraction of moleculés or even to‘use the
Newtonian functional description of the problem, that is that there
are mutual forces of attraction between molecules which can be
described approximately as varying in terms‘of the inverse of
the square of the distance between the molecules. For most
structural analysts this description is far too specific and
it is sufficient to try to describe the overall stress and

strain relationship by direct measurement, qombiﬁed with sensible
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interpolation. Fortunately, the functional description of this
relationship for some materials is sufficiently well described by

straight lines over part of the practical range of strains,

Since all structural analysis is approximate, there exists
a variety of ways in which the variables of the probiem can be
considered and manipulated., The method presented in this thesis
1s one in which a pattern is.used to link the important deformations
of the problem, This pattern, obtained from detailed measurement of model
structures is described in terms of an analytic function, or functional
form. With this overall estimate of the deformations, the forces to

sustain the prescribed shape are easily found.

This is one of the oldest approaches of engineering analysis and

the most powerful methods of analysis of structures have been along
these lines. However, the source of the power of the method is not
generally recognized, To showjthat the source lies in the uge of a
functional form or pattern to describe the deformations of the
structure, a few historical egtimates of the deformations of a

bent beam are outlined,

1,2 The Beginnings of Structural Analysis

Structural analysis had its beginnings in the sezgpteenth

. - el R LAt
century when mathematicians and geometricians like Mariotte and
later Leibniz, Varignon and the Bernoulli brothers (Ref. 4) made

appr oximations ﬁith regard to the displacements of bent bars.

Jacob Bernoulli, when trying to calculate the deflections ofa

loaded cantilever took the deflection curve as shown in Fig, 1.1.

Suppose ABFD represents an element of the beam, the axial
length is ds. Bernoulli made the approximation that during
bending the cross section AB rotates with respect to the cross
section FD, about an axis through A, and therefore the elongation
of the fibres between two adjacent cross sections is proportional

to the distance from the axis A,
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Figa 1.,1o Geometric Approximations for a bent beam: Bernoulli,
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Measurement s indicate.that this approximation is reasonable, as
the cross section AB remains reasonably straight, However, we now
know that a better approximation for the line zf zero strain is
obtained by assuming that the cross section rotates about some
point ingide the beam, the position of this point depending on the

particular material and the way it deforms under load, -

Bernoulli's approximations allowed advances in structural
analysis and the calculus was used to further the study, particularly
the Euler column theory., A unified approach was made by Parent and-
later by Navier using the approximations that cross sections remained

plane to describe the bending of plates and bars,

Later mathematicians developed more complicated models to
-describe the beha&iour of structural.elements, but they incorporated
the smallest possible number of geometric approximations regarding
the deformed shape., These developments have led to the mathematical
approach involving stress function solutions, biharmonic solutions

and high order differential equation solutions,

Improved mathematical models(using the mathematical approach)
are obtained when a decrease i1s achieved in the number of
" approximations needed to spgcify the geometrical deformations,
or when further account is taken of the complexity of the
functional dependence of stress and stréin, or when further

account is taken of the complexity boundary or loading conditions,
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The aim of a mathematical approach is then to make minimal assumptions
or guesses of functional dependence, and to develop a complete description
of a defined problem from a system of basic axioms, without the need for

en appreciastion of the deformations of the structure.

The mathematical approach is often useful in obtaining numerical

solutions in particular cases, but because of their inherent generality,

it can be remarked that

(a) often little understanding of geometric deformations, and
load carrying mebﬂanism of the problem is achieved, and

hence methods of strengthening the structure are difficult

to visualize,

(b) a complete mathematical solution must frequently be obtained
before useful information is available,

(¢) allowance for second order geometric deformations is often
not appreciated,

(d) as regards teaching methods, an engineeriﬁg attitude is not
encouraged and a great deal of time is spent on merely

illustrating a routine mathematical calculation,

As a means of overcoming these objections it is useful to look
back in history and to glean a few ideas of how the advances and
gsimplifications in structural analysis have been made., Wren we do
so we often find that these advances in analysis have been achieved
by the use of approximate desariptions of displacements, and as a
result the mathematical complqkity of the problem has been considerably

reduced,

Throughout this thesis it is shown that patterns or characteristics
of the geometrical deformations of structures, (such as displacements and
surface slopes)enable good descriptions for a range of structural problemsa
Anglytical functions are used to describe these geometrical characteristics,
and ffom these functions, strains are defined. Estimates for load
deformation relationships are used ﬁo define stresses and from an
integration of these stress patterns the forces whiéh must be applied

to the structure, to sustain the specified characteristic shape, are founda
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This inverse method has the advantages that the mathematics
remains simple. At each stage of the computation the physical
significance of the geometrical approximations of functional
dependence is obtained very élaaély, giving a deeper insight into
the effects of the geometrical deformations and the assumptions
which have been made about them. This insight gnables a good
appreciation of the structural behaviour to be developed, and'
quick and reliable estimétes of the effects of stiffeﬁing the

structure ¥e—be—mede, or of lightening if it is unnecessarily

strong in some placeg, can be made,

1.3 Using Patterns in the geometric deformations to obtain simple

Mathematical models

13,1 Measuring Devices,

In this chapter the use of geometric information obtained by
moire techniques is discussed, particularly measurements showing the
position of lines of constant displacement in the plane of the model
(Ref, 7) and the position of lines of constant slope on the surface
of the model, (Ref, 8). Later in the thesis these ideas will be
applied to measurements of an overall shape obtained from many

point by point measurementsa

Overall detail of geometric deformations using the moire
technique is a particularly suitable set of measurements for the

“following reasonse.

(a) The measurements are direct measurements of displacements
and deflections, that is geometric deformations. These
changes in the geometry can be related to the deformations
undergone by sets of straight lines drawn on the model,
and hence the change in position of these lines can readily

be visualizede
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Geometrical effects are always separable from other considerations
and a deformed shape can always be drawn without any consideration
as to.how this shape was obtained. Considerable information can

thus be obtained before cbncepts of stress and statical action

are introduced, the reasoning being thug simpler and more
straightforward than that obtained by introducing stresses too
early, Variables of statics (force variables) are frequently

not separable,

(b) Lines of constant slope and lines of constant displacement are

easy to obtain, The patterns suggested by these contour lines
are usually simple, and suggest the nature of the functional
form, As they are direct measurement of deformations they can
then be used to establish a simple mathematical model, The
order of complexity of the model is then determined by the

approximations made of the deformed shape of the structure,

(¢) The shape of the moire fringes (or contours), can be used
to suggest structural behaviour which is common to various
structural models. When the same functional form is a good

fit to different size models, then the functional form is
the scaling functi®n,

(d) The whole outlook is concentrated on the production of
simple descriptions of the load and deformation - behaviour,
and is thus suited to an engineering approach, With this
outlook, simple models, suitable to be incorporated in

codes of experience or practice, are always kept in mind,

In the following sections very simple structural problems
are investigated as a means of showing that the measurements of the
geometrical deformations of displacements and deflecfions can be
used to obtain simple structural models. Theearly problems are
so simple as tobbe trivial in themselves but deliberately chosen
as having solutions so well known that full attention can be

directed to the process of solution unobscured by algebraic
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manipulations involved in the process. It is well known that

the shape of an element of a stretched or bent bar, chosen with sides
parallel to the edges of the undeformed bar, is approximately the same
as the deformed bar., These sitiple problems are described in terms of
a geometric functional form., The simple model for a twisted thin
rectangular strip that specifies that the shape of the element is

the same as that of the deformed bar is then an easy extensiong

103.2 A Simple Model for a Stretched Bar,

A rectangular bar is stretched longitudinally. This problem
is obvious to the structural analyst; however this simple problem.l

is useful to illustrate the basic ideass

Meaﬁurements'of lines of constant displacement (u, v) in
the x, y directions are shown in Fig, 1.2a, and Figa 1.2b, The
method used is the method developed in recent years by Oliver; Jerkins ¢
and Middleton at the University of Tasmania, and cutlined in Ref, 7,
For completeness, the optical arrahgemént used to view the
interférence pattern is shown in Fige 1,3k and the interference
fringes resulting from rotation, strains, and combined rotation
and strain are shown in Figo 1la3be A good analytical description
of the shape of these lines of constant displacement is given by -
the functions

u=y/a

(1.1)
and v=x/b ,

that is, planes originally .perpendicular and parallel to the sides
of the strip remain straight after the strip is stretched, and
hence the shape of a deformed element is similar to the shape of

the deformed bars
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Lines of constant displacement for a Stretched Bar.
16303 A Simple. Model for a Bent Beam,
Measurement of the surface deflections for the thin beam bent
in a manner indicated in Fig. 1.4a8 indicate that the beam has single
curvature in the longitudinal direction, Measurement of the lines
of constant displacement u, v in the x, y directions Fig. l.4a and
l.4b indicate that good epproximations to the displacements are
w = ey Xy (hyperbolic)
5 (1.2)
. and v=b, x (para?olic)
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Lines of constant displacement for‘a bent beam
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Fig. 1.3a Opticﬂl arrangement used to view interference patterns.

59 lines per inch —

(a) ROTATION ALONE

(b) DIFFERENCE IN
PITCH ALONE

(c) COMBINATION
51 Jines : OF ROTATION AND
per inch DIFFERENCE IN PITCH

Fig. 1.3b Interferences fringes resulting from uniform rotation, uniform strain and a combina-
tion of uniform rotation and uniform strain. (Reproduced from ““Stress Analysis
Manual® Experimental Mechanics, Feb. 1967).
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These estimates of u, v are particularly simple and as they

have been e xpressed algebra@&ally they may be said to express the
functional dependence or the functional form of the displacements,
‘€

The strains e'y in the x, y directions respbctively

H

and the shear strain B'xy s consistent with this function form, are

calculated from the approximations for small strain

€x = WWoy
€y = ¥y (1.3)
and Yy = OWoy * vx
and are given by the equations
€ =0 (1.4)
and ¥y (a; + 2b))x,

For the bent beam, the stresses consistent with the

functional form (1.2) are
Te = (B1-¥) ayy
% = (E/13°) e,y (1.5)

Z&y = G(a1 + 2b1)x.

The forces necessary to sustain equilibrium are obtained
by integration of these stress patterns and are given by the

well known équations (using unit width of beam)
/

1d
Axial load: B X(E/l—\)z)a,]y dy = 0
LA
14
Vertical sheari Py = gG(a1 + 2b1)x dy = 0 (1.6)
| Ay
34

Bending Moment : M= g(E/l "Q2)31 Y2 dy
-id



LR, where I

- 10 =

(E/1-3)a, I
4d

gyz dy .

A

]

If no total shear, Py s is applied, the relationship between

constants &, and 2b1 can be found, Then, Py = 0 gives

a = =2b, (1.47)

The equation (1.7),when substituted into the last equation of (1.4),
indicates that with the guesspd functional form and the specification
of no total shear we arrive at the obvious statement that the model

is one for which no shear straing are present.

To sustain this deformed shape, a constant bending moment M

given by the equation

M= (B1-§) 8, I, (1.8)

must be applied to the beam, and the displacements of the section

will be

(W/ET) (1-9)xy
2) x2

~+(M/ET) (13

=]
1l

(1.9)

and v

It can be seen from Fige l.4(a) and equation (1.2) that the |
gspecification defines that plane sections perpendicular to the
longitudinal axis before deformation remain plane and perpendicular
to the longitudinal axis after deformation, and thus the shape of a

small element chosen with sides parallel to the beam deforms in a

similar shape to that of the whole beam (Fig. 1.5), as Bernoﬁili

@ element
\\\\\\////////’——7 ﬁ~‘\\\\\\\\v///€Le complete beam

Fige 1.5 Geometric Approximations for a Bent Beam,

assumed,




10304 A Simple Model for a Twisted Strip,

Measurement of the surface slope of a twisted strip was carried -
out by using the Ligtenbérg moire technique (Ref., 8). This technique
is simple and inexpensive to use, A brief summary of the technique

is given in section 3.2, The measurements indicate that lines of

constant slope in the x, z directions can be de‘scribed approximately
by a series of equally;spaced straight lines, as shéwn in Fig, 1.6.
Thus a good approximétion to this surface shape is obtained by |
examining the form of the vertical deformation w in the direction

of the y axis, and is given by the equations

'DW/?X = ng
(1,10)
and Wz = kz . o
i
R
4
2
-1
w
W3y = uenat
o :
4nd lne diveckion : d:‘i::;‘.
A -4 -, 4 it ‘
‘Fig, 1.6 . Fig, 1.6b

Lines of constant slope on the surface of a twisted strip

Integration of equation (1,10) and choice of axes in the centre of
the strip leads to the specification of the functional form defining

the deflection of the surface as

w =k Xz, (1.11)
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that is an anticlastic surface, with zero values for the curvatures
‘22w/3x2 and azw/azz in directions perpendicular and parallel to
the axes. However, rotétion of axes by 450 to X1 s 24 gives the

deflection as

W= /k(X$ - Z$)

“and the curvatures of }Fwﬂaxi and 3%U§z$ as equal in magnitude

but opposite in sign. As the investigation of the effect of transfofming

the axes is carried out on the model, or with the model deformations in

mind, a better appreciation of the geometrical deformation is obtained,

Measurement of the surface displacements in the xz plane on the

top and bottom surfaces of the strip by the method of Ref. (7) indicates

that both these surfaces are in approximately bure shear but with

opposite sense. A slight inclination of the v lines indicates that

a small amount of longitudinal strain is present, (Fige 1l.7a, 1.7b).

In this first model we take the lines to be straight and parallel, and

thus not consider the shortening of the member,

W

' P |
____—f"/;1}—‘—”"”’/_1{ v 1 1 1 1
— a

) . -

e 14
——’f"———’_- ?
’,4———"——q ) §
/”"””—___,,_—————--z;
. ‘ | LH

l /4—‘:‘. W= tonet

| i o Yo
B ﬁ{g,:?,§a Figo 1.7b

" “Lines of constant displacement on the surface of a twisted stripe
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The functional form suggested by the lines of cpnstant displacement
is
E (1 e"] 2)
vV =CX s

and the only strains on the surface of the strip in the x, z plane are

shear strains Z <y Biven by equation (1,13) that is
X]_FZ =2 . (113)

The approximation that straight lines originally perpendicular
to the wide flat surfaces of the strip through the thickness remain straight,
after deformation, 1ndlcates an element shape as shown in Flg. 1. 8
As all lines parallel and perpendicular to the_s1des of the strip
have again remained strarght after the twistipé, our experiénce.‘
with examples 1.3.2 and 1.3.3 suggests that we try the estimate
that the -shape of the element in Figs 1.8 is similar to the shape._
of the strip.’ This estimate of the shape of the strip specifies the
intérnal displééements° Each plane oricinally perpepdicular or
parallel to the longltudlnal line of the strip warps 1nto an

anticlastic surface, (Figs 1 .9)a

o

tuickness t

waid ﬂ d;

Fige 108 A deformed element . Fige 109, A twisted strip.
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The rotations dgxy and .deyz of one element relative to an
adjacent element or one warped cross section perpendicular and one warped
cross section parallel to the longitudinal éxis, relative to another
warped cross section is found from the element shape in Fig., 1.8, These

rotations are given by
dg?@'=% Z g dz/3t

and d9yz=f"zst/%‘t ’

and the geometric deformations are completely specified,

The only stresses needed to sustain the shape of this deformed
element are shear stresses, which can be specified byT = GY + The
total forces required to sustain the guessed shape are two sets of
twsiting moments Mxy s Myz as shown in Fig, j.10. Integration of

the stress patterns indicates that the magnitudes of these twisting

moments are
M= [ 3 % t] = alt’v/6) (a8, /dz),  (1414)
and M, = [%I‘f—é—d% t] = ¢ [t3l/6) (ag xy/dz) .

These twisting moments are statically equivalent to a balanced
point load system, as the twisting moments per unit. length M xy/b

and MyZ/Z are equal. The applied force F, is given by the equation

- %F:Mxy/b =Myz/£ . (11.15)

4
A
< ¢
L] N .
* \./"L\\-
- —L )
s o —— -
F ‘C’:} / F —
: o~ M
//”
/,/ /(:\j P
-\ 'M’:L
either F system
or M gysten
Fig. 1.10

Forces necessary to sustain the prescribed twisted shape.,
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Thus, we obtain the well known relationship'linking.the end

torque Fb with the twist of any element of the section,

Fb = 6[t°b/3] (a6, /az). n (1.16)

In Chapter Six, this simple model is extended to include
the tapering off effects of shear strains at the corne?s,to |
describe the geometrical deformations of any rectangular bar
that has been twisted, and to include the shorteniﬁgAeffects

of twisted memberse

It can be seén thét‘the exampleé-chosen afe particularly'
simple,'But are basic, 'Examples, using fhe twisfed sfrip as
the basic element, are now considered to illustrate ﬁhe'power
and usefulness_of simplg functional descriptions of the geometric

deformationse

13¢5 A Simple Model for a Twisted Member Built up from Flat

Strips.

Measurement of the surface shape of an angle ‘section
twisted by applying four balanced forces on one leg'of the
angle, indicate that the surfaces deform into shapes which
are approximately anticlastic * o The angle between the legs
in the plane of the cross section is almost preserved. -A simple

model to describe this behaviour can be obtained as followse

¥ For the pufpoées of thié thesis a surfaée is called a simble
anticlastic surface when the principal curvatures are éqﬁél in
magnituae, but 6pposite in sign. The propertiés‘ahd specification
of this particular surface are first introduced iﬁ.T.BoAb The more
general definition of an anticlasfic sturface is one for which the
principal cﬁfvatures are opposite in sign but not necessarily

equal,
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A cut is made in the joining corner as shown in Fig, 1.11, and the
surface éhape measured as before. It is found that each of the sides
still deforms into a simple anticlastic surface, but that the angle

between the legs increases slowly, as the slot length is increased.

The results summarized in Fig. 1.12 indicate that a proportion of
the moment applied on one leg is transferred to the other leg within a
very small region of width, approximately ten times the thickness of the
strip. Away from this region a good approximation is to consider the two

strips as acted upon by separdate sets of forces,the size of the forces

being in direct proportion to the width of the leg. The end torque

twist relationship is thus

Fb =§§[t3b/3] (ag, /az) . (1.17)

143.6 A Simple Model for a Twisted Stiffener in a Twisted I Beam.

Repeating the tests of section 1.3.5 but using an I beam as the

N

built up section,indicates that a similar model can be used, as all

surfaces on the I beam again deform in a manner which can be described
adequately by the simple anticlastic surfaces

When a light transverse stiffener is placed between the flanges,
as shown in Fig., 1.13, and the I beam twisted, it is found that the
I beam again deforms in apprpximately an éhticlastic manner, Measurement
of the surface shape of the stiffener also indicates that the deformed
shape of the stiffener can be described adequately by é gimple
anticlastic surface. The forces required to sustain the estimated
deformed shape of the stiffener indicate that a set of forces B which

may be called a Vlasov bimoment (Ref. 9), must be applied (Figeleldi)a
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Figs 1,15 Forces necessary to sustain both the stiffener and the I beam as

anticlastic surfaces,



Application of the bimoment to the end of an I beam twists the
entire I beam and bends the flanges of the I beam. * When length4£»of
the I beam is short and the width of the flanges b is large)a simple
model describing the behaviour is obtained by application of the bimoment
to an I beam built from three flat strips, and joined only at the corners

of the flange (Fig. lel4)s

Measurement of the surface shape indic;tes that a reasonable
approximation is again the anticlastic surface, with no cross sectional
distortion. The forcss ibcessary to sustain the anticlastic shape are
shown in Fig, 1.15, and are statically equivalent to the bimoment.
Thus, the applied bimoment B and the twist of the I beﬁm can be related

by the equation
= = . .
B=knb = alt’n/3ll (ag Jar) (1a18)
A description of.the effect of the stiffener can be found using
this model, The stiffener slightly reduces the magnitude of the twist,
but the overall cheracteristics of the deformed shape (that is the
shape can still be described in terms of anticlastic surfaces) are

not altered. The end torque twist relationship for the I beam and

stiffener is given by the equation

Fb = GJ/[l—GJSTIFFbAeGJ)] de;y/dz. (1.19)

# This result may appear at first to be surprising. However, when the
twisted member is examined it is seen that the ends of the member warp;
If forces are applied similar in magnitude and direction to the form of
this warping, that is in the form of a Vlasov bimoment, then twisting

of the member is the likely result,.
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104  General Commentse

In the very simple models dihcussed it has been shown that the
determination of scalinglfactors is inherent in the choice of'thel
geometric functional form used to describe the geometrical deformationsa
Thus the problem of scaling, that is of relating the behaviour of the |
small scale model to the behaviour of the full size structure reduces
to the problem of choosing a satisfactory functional form. If, when
a particular model is studied closely, doubt arises as to whether the

geometric deformations measured are a property of that particular size

of model or of that type of structure, the problem can be overcome easily

by £esting several models of different sizes,

The choice of a functional form is especially suitable in any
analysis when linear, quadratic or sinusoidal dependence relationships
can be-established, and whén searching for a describing characteristic
it is important to measure variables which highlight these types of

dependence,

Throughout the history of engineering analysis, functional forms
have often been used to describe characteristic features of similar
problems, For example, empirical rules have long been used in
engineering with considerable success but have usually been restricted
to describing a final state, rather than a form or observable nattern
that is obvious in the early stages of the description of a problem,.
However a notable example in structural analysis of using a functional
form to describe geometric deformations is the "plane sections remain
plane" rule for the bending of beams in metallic or concrete
structures. Again in the case of ultimate strength calculations
for steel and goncrete structures, a functional form for the
structure at "collapse", consisting of straight lines joined by
hinges, is used to describe the deformed displacements, and the
strains, stresses and loads necessary to sustain this deformed

shape are then easily found., A recent use of a functional form
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to describe geometric displacements has been proposed by J.K. Wilkins
(Ref, 10) who uses it as a means of describing and designing for the
behaviour of the concrete or bitumen waterproofing layer on the upstream

face of decked rock fill dams,

Energy methods of structural analysis are another important use
of guessed and measured functibnal forms of the deformations of the
structure. The energy process based on potential energy is merely an
averaging device where certain averages of some of the equations of
statics are satisfied and are used to obtain good estimates of the

variables within the functional form, However, in much modern analysis

the functional form chosen isﬂﬁsually an infihite series of sinusocidal
waves, Unfortunately, in many problems one or two sine waves are not
a good functional description of the deformations, and thus when the
infinite series (with no single term being dominant) is used, an
appreciation of the deformations is often lost within the mathematical

manipulations

3¥* 3#* ¥* 3

Throughout this thesis a deliberate effort is made to look for
and describe characteristic shapes which define the deformed structure.
The method is used first to gain an understanding of the problem of
buckling instability, and a detailed study is made to show that the
existence of characteristic shapes can be used to describe this
problem, The ideas are then used to measure and describe the behaviour
of a real structure, ifr this instance a through plate girder bridge.

In the finpl chapter, the problem of torsion is tackled in the same

manner and simple mathematical models describing torsion are developed.



CHAPTER TWO

AN OUTLINE OF THE INSTABILITY PROBLEM,

2.1 Introduction

The ghestion "Is an engineering structure &s stable under
the action of the applied loads?" is a.question which is easily asked.
Hewerer, to provide a eatisfactery answer, a good appreciation of the
poseible deformations of the structure is necessary, as the stability
of a structure is some measure of how the deformations dethe structure

ingrease as the loading of the structure is increased.

A1l structures deform under the action of loads, and the
actuallforﬁ.of the:deformation is often the important criterion.:
Consider, fer exemple, the determination of the stability of a dam.
The dam is considered uhsatisfactory, or unstable, if the loadings
on the dam ceﬁse ﬁhe dam to 1lift or to overturh. The problem still
remeins of how much to alter the dam design so that”the new shaperis__
stebie, and engineers sometimes design the dam so that rhe joint
between the dam and thebfeundation_is everywhere in compression
over the eompiete rangelef~design loeds. However, this is not
always a satisfactory'eriterion of stability,Aas we find when we
try to estimate the stability of an axially-loaded slender colurnn°
When the column is loaded, pqinfs on the column deform in a direction
approximately perpendicular to the applied load. Qne measure ef the
stability of this structure is by what amount the structure deforms

when the load is increased.

This»chapter‘will be mainly conéernediwirh the problem of
the stability of freme and plate structures. ‘In these cases,
instability may be considered to be the' phenomenon ef the occurrence
of large relative changes in the geometric deformations of the
sﬁructure which can be susfained by small relative changes in the

loads applied to the structure.
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The Chapter is designed to re-inforge and add to the existing work
on structural stability as outlined by Euler (Ref. 4), Southwell (Ref. 3),
Gregory (Ref. 11 and 12), Ariaratnem, (Ref; 13), Crandall (Ref. 14),
Courant and.Hilbert (Ref. 15), and Miklin (Ref. 16). Particular attention
is focussed on the description and measurement of deformed shapes and of
buckling loads and the Southwell Plot, first used by Southwell (Ref. 3)

to estimate the first buckllng load of a pin ended column, is generalized

for a range of mathematical models?' Although the mathematical manipulations
used are-well known by«mathematioians, engineers have not taken advantage
of the power of the methods used, and the euthor claims originality for

this generalization of the Southwell Plot.

As a first etep in the discussion of structufel instability,
the well known and ‘simple model of en axlally loaded column is
con51dered. The descrlptlon of the behaviour of the loaded column is
similar to the gpproach develgpeo by Greggrjy.(Ref° 12) to describe
general bucklingwphenomena in terms-of the simple example of rigid rods
and laferal springs. - Howeoer, the column example has been ehosep to
emphasize thatra continuous‘system can Be thought of.io the same manher
as a discrete system° Often it is easier to evaluate and flnd properties
of the discrete system and then carry these propertles over to the

contlnuumn Hence, the well known column example is outlined thoroughly

and the 1deas obtalned are then used to develop generallzatlons,

2.2 A Simple Model for the Axially Loaded Slender Column

The design of an axially-loaded slender column will be
considered. The first step in this design process is to obtain a
description of the deformations of the'.sy‘stenl° It.ié well known that
forlincreasiﬁg axial loads, larger increments in the,leteralodeflection
of points on the bar arise ffom'the same ineremen£ in axial load, but

this deseriptive form is not sufficient.
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The simplest model chosen is shown in Fig. 2.1, This simple
and well known model consists of two equal uniform rigid straight rods,
joined by a spring which resists the jangle change between the rods.

The rods are compressed by thrusts which remain axial, and the ends

of the rods are considered as pin-ended. This particular model is
such that all geometric deformations can be described by one

parameter, the central deflection of the rods.

Fig. 2.1, Rod and Single Spring Mechanism.

Examine the stability of the system when a small lateral
perturbatioh y of the hinge is applied. The central lateral
deflection y is sufficienf to describe the deformed system,
consistiﬁg of two straight lines and a central hinge. The change
of angle 9-bet@een the two straight lines at the hinge is, for

small values of the lateral deflection

g=1ly/f (2.1)

The forces to sustain the deformed system are then found
easily. Let us specify a linearly elastic rotational spring. The_
load deformation relationship is then a relationship(in_this case
called the spring constant k) between the change of angle at the
hinge and the moment M developed by the hinge. The required

relationship is

M=k@

.
®
=
H

(4x/L)y. | O (2.2)
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The'conditions for the system to be in statical equilibrium can
then be found, as the moment M developed by the spring must be equal to
the moment of the applied axial load P taken about the spring. Thué, we

obtain the mathematical condition for statical equilibrium, namely,

- M-Py=0, ' (203)

and using equation 2.2, we obtain an equation showing the relationship

between the deflection and the load, and

(4~ P)y =0 . | (2.4)

A mathematical solution to equation (2.4) is obtained from
inspection: either y = O, that is the column remains straight, or,

at a buckling load P given by
P = Ak/e ’

the deflection of the hinge is undefined (Fig. 2.2). Nevertheless the

form of the deflected shape is defined and consists of the two straight

~lines with a central hinge (Fig. 2.2). This form is called the buckling

mod@u
load

hinge deflection
is undefined

P= jk/l P —»
deflection of the
hinge is undefinedg

y = 0 but the shape of the
mechanism is defined

deformed shape

cat P = jk/Q

deflection of the hinge

. Fig. 2.2 Behaviour of the Mathematical Model (2.4).

However, the forégoing study is inadequate to describe the behaviour
of the column for no sudden Branch in the load and :deflection behaviour is

ever measured.
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A closer representation of the real problem is obtained by
modifying the physical model shown in Fig. 2.7 to include the

following: binitial crookedness of the column, an increasing number

of hinges, and allowance for second order geometric deformations,
non-linear load deformation relationships and a closer specification
of the loadingsgnd boundary conditions. In the following sections,
methods which include each of these effects in a large range of
mathematical models are examined, and it is shown that a close
representation of the Behaviour of many real structures subject

to instability is obtained.

2.3 initial Crookedhéss in the Mathématical Model

The inclusion of initial crookedness in the mathematical

model is a worthwhile and well known improvement and adds to the
understanding of the real problem. Suppose the initial lateral
deflection of the rods is Yo > and the rods between the spring

remain straight.

The geometrical estimate of the deformations is again
determined by the central lateral deflection. The initial rotation

of the hinge GL , is given by the equation

O, = 4%/0

The load deformation relationship is dependant on the change of

angle between the two straight rods, and is

M

k(g"ég) _ (.5)
(Ak/,'e)(y - yO) o

The condition for the systém to be in staticél equilibrium

is similar to equation (2.3). The moment developed by the spring
is found from equation (2.5), and is equal to the moment of the
applied axial load taken about the spring. For the system to be

in equilibrium the following condition must apply
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(We/f)y -3)) = Py =0, (2.6)

-y

The deflection of the hinge is obtained in terms of the applied load and

initial deflection, and we have

(2.7
y = oy 0-PH) . )
This mathematical model (equation 2.7) indicates a steadily
{

increasing defléction of the hinge for loads ranging from zero to close

to the load given by
P, = 4k/f

This load P' ’ calleq a bpckling load in the previous model, is a gopd
"“describing feature of the two physical models. In Fig. 2.3, a range of
values of initial crookedness is plotted and it is seen that for very
-small initial crookedness values the two mathematical models expressed

by equations (2;4) and (2.7) are similar.

load

P = Lk/{

006 0.5 1.0
Deflection of the Hinge

Fig. 2.3. Equation 2.7, with a range of initial crookedness

values.

The description of the real structural behaviour of the columh
depends on discontinuities in the surface slopes. Improvements in the

description are obtained by increasing the number of hinges.
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2.4 An Increase in the Number of Hinges.

Rodo Two Hinges.

A closer represéntation of the behaviour of the column is
obtained by increasing thg number of hinges. When the number of
hinges and springs is increased by one, &s shown in Fig. 2.4, the
geometrical relat_,ions between the angles9| and 92 and the corresponding

- deflections, y, and y, , (for small lateral deflections) are

O =Gp-plfosod | i O -Gp-gfoul. o

P P

L g -

O 7~ -\ S
NS N/

Fig. 2.4 Rod and Two Springs.

The moments sustained by the linear elastic springs are

M k91 A (2.9)

1
M. = k@

2

and
2 \ 4
The conditions for statical equilibrium are found by considering

the equilibrium of the two rods separately, that is

M, - =0
1- 8 =05 (2.10)

and
M2-Py2—0 p

Combining equations (2.8), (2.9) and (2.10) gives the system of
linear simultaneous equations that must be satisfied if the system

is to remain in statical equilibrium

|
o

(3k/A- P)y1 | - (l.5k/f)YQ (2.11)

and

I
o
“

(-1o5k/8)y,  + (3kA-Py,

that is in matrix notation



™ A [ a :
34 - P ~1.5k/4] 2 K (12)
. -1.5k/ sh-p Lyl = |of o
or simply ) J :
- M " '
A y | = 0 o (2.13)
L -4 - L L

The solution of these two linear simultaneous equations is
given either by the trivial solution that the hinges do not move,
(YI: y"-: O})Or

(/8- P> - (kAP = o (2.14)

that is the determinant of [A] is zero. The two non trivial values of
load which are solutions of equations (2.14) are either P, = 1.5k/{ or .
P = 4.5 k/ﬂf', and the corresponding buckling modes can be determined

from the lateral deflection ratios of the hinges, x = yiand =0

(Fig. 2.5). | "
¢ Afék load ___f,/””4\\\

1.5k . ._—.‘/’,,a—*——---&-\\\- -

: ’ , P = 1,5k/8

Deflection of a hinge

Fig. 2.5 Behaviour of the Mathematical Model 2013,

2.4.2. Initial Crookedness and Two Hinges.

A method to describé the effects of initial crookedness may
now be obtained by use of the buckling modes for the initially straight
structure. When the initial crookedness consists only of initial lateral
crookedness at the hinges, two variables are needed to specify the shape.
A linear combination of the two buckling modes is used to describe this

initial crookedness.

An initial crookedness of the form y = 1.0 , y,0= 0.5, is

expressed as a linear combination of the buckling modes, and
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10 : , 2.1
_ 101 140 | (2.15)
M "“loo [ 2
initial first buckling second buckling
crookedness - mode: gsymmetric - mode :antigymmetric.

The constants a and a_ are found easily by multiplying by the

-0
respectively.

PR [N 0
transpose of the column vectors [Pol and LLO

Ten 1,0 10| [1.0]=8[L0 Lo][10]+ a, L0 1.0] 1.0) (2416)

005 _
1.0 1.0

That is 1.5 =2a, + 0 a,
or a, =+ 0,75,
Similarly, a = 0.25.
The initial shape, in terms of the buckling modes, is therefore

1.0 1.0 1.0

(2.17)
= O¢75 + 0o25
Oq5 ’ lo.O. —lco o

The separation of the initial crookedness info a
combination of the buckling,que components is useful in the
solution of the mathematical model for the initially crooked
structure, ‘as it indicates the way in which the structure

deforms. »
The mathematical model for the initially crooked

structure consisting of thrhe straight rods and two hinge# is
obtained in a manner similar to the one hinge case. The initial

rotations Q° and e\c are linked to the initial deflections

v, and y,_ by equation (2.8). The load deformation relationships
are then
| M, = k(0 -6,,)
- s (2.1
and M, = WD, - vy o :

For the structure to be in statical equilibrium, the moment
resisted by the springs must balance thé.applied moments (equatibn
2.10). On substitution of equation (2.18)Vihto (2.10) we obtain

the equations
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kA - F _1.51{/5}[%1 rk/t | '1"51‘/’5“5'10 (2.19)
~1.5k/p M4 - Phy,) \-skh kB vyl
With values for the initial lateral crookedness of the hinges(y10 and y20)

as 1.0 and 0.5, equation (2,19) becomes

3K/~ P -1.,5k/gr1 . 3/ -1,51{,{1[ 1,0} ) k) ~l.5K/8 1,0]
= 0o 10625
1.5k4, kA -P yj “1.5kA ' 3k -1l 1.0 sk /4 Jo

The right hand side of equation (2.20) is simplified by using the two

solutions of equation (2.12), which are

3k - -1.5k/l][1,0' 1.5k/8 (1.0]
(2,21)

-1.5k/f /4 J[1.0] 1.0

(3K/p- -1,51:/1][ 1.0 = 4.5k/2 [ 1.0
end Ak /€ Jhi.o) -1.0] .

The left hand side of equation (2.21) is simplified by separating the

final shape into a linear combination of the buckling modes, and

v, 1.0] [ 1.0]
=b +b (2.22)
y,|  TlL.0 2110 . - |
Then; from equatizi= (2.20), (R.21) and (2.22) we have the equation
k- P -1.5k&][1.07 - [1.07
b, - 0.75(1.5k/8) +
1.5k 3k -P JL1.0. L 10 (2.23)
3k - P 1.5k [1.0] 0.25(4e5k/f) [140]
b
¢ | skt kg -P [fa.0] -1.0

which simplifies to

b, (1.5k/ - P) 1.0]-' 0.75(15k/4 ) loo]f (2.24)
| 1.0 1.0

b, (4o5x/ - P) [ 1.0 0025(4.5k/4) 100]
"'100] blﬂo .

Equating terms with the same buckling mode, we obtain the values of the
two buckling modes, and

b, 0.75 (1.5k/8)/(1.5k4 = P) (2.25)
and D 0025 (4o5k/A )/ (4.5 - P)

2
From equativns (2.22) and (2.25) the co-ordinates of the hinges of the

final shape are given by the equation showing the magnification of the
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buckling modes of the structures, and

y1] | 0475/ (1~Pl/1.5k) 1.o]+ 0025/(1~PZ/4051<){1»,0]

_ (2426)
y2 190 "'loO M
final deflections first buckling mode second buckling mode
of the hinges co-ordinates of the co—ordinates of the
hinges hinges

The predicted Behayiour is shown in Fig., 2.6, For loads less than
the first buckling load, the deflection always increases with load,
and has the same sign as the first mode initial crookedness. However,
because of its discontinuous nature the buckled shape is still not an

adequate description of the shape of the deflected column, and thus

it is necesgary to increase the number of hinges,

load
=/, 5k/ f ——=
F>
P = 1.5k/f
&
K[ lo

deflection

Fige 2.6 A Graph of Axial Load and hinge deflection, for

the initially crooked column,

2.4.3 A Further increase in the Number of Hinges.

The number of hinges can be increased indefinitely. In
the continuum, the change of angle per unit length along the bar is
approximated by the lateral curvature (dzy/dxz) of the bar, and the
moment rotaﬁional deformation relationship is related by the flexural -

stiffness of the bar, EI. The condition for statical equilibrium of

the initially straight bar is then



El d%/dx> + Py = 0 o (2.27)

The behaviour of the mathematical model (2.27) near the end

of the bar is obtained separately. To be of value these descriptions
should be at the same level of approximation as the differential equation

itself. For the differential equation model of the slender column, the

boundary conditions are ¥

x=0 and L ; y=o. | (2.28)

The solution of the differential equation (2.27) is

y = A sin'x /JP/EI + B cos x{P/EI . (2.29) -

and with the boundary conditions (2.28), particular solutions are obtained.

Use of the boundary condition x = 0, y = O gives B = 0, and the

.boundary condition x =,e s ¥y =0 gives

= A sinb[P/EI - (2.30)
that is either A = O, and the continuous system remains straight, or the

defofmations of the system are sustained by a load given by the .equation

0= ' sin J JP/EI , (2.31)

i.0. P = 0T EI/4° . where n = 0, 1, 2, 3, 4y o o o ,

These discrete values of load are called eigen values, latent rqots,
buckling loads or, as this particular family was found by Euler, Euler
buckling loads. To each buckling load there corresponds & buckling mode
(wﬁich is found by substituting into the equation) and the eigen functions,

latent vectors, or buckling mode are

buckling mode y: sinTx/{ sin 21x/4 , sin3rxd 4, . s e

-]
©

buckling load P: TZEI/£° ,  LFEL/P? N 17/ S

* It should be noted that when the models for finite numbers of hinges are
used, thpse boundary conditions and conditions of statical equilibrium are

, . :
incorporated in one statement, for .example equation.2.12.
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2.4.4 Describing Initial Crookedness in the Continuum.

A description of the effects of an initial crookedness of tﬁe
'continuqus column can be obtained by using ideas obtained from the
systems which had only a finite number of variables. For example,
including the initial crookedness in the mathematical model for the

continuous column, we obtain the differgntial equation
EId2(y- y )/dx® + Py =0. ' (2.32)

Again the aim is to describe the initially crooked shape as
a linear combination of the buckling modes. Southwell (Ref. 3) fi;st

developed this method for the pin ended column, but for completeness

and to outline the method the solution is given below.

The existence of a unique linear expansion for the initial
crookedness y, , is used, that is the initial crookedness is expressed
as an infinite series expansion

[

= i 2,
Vo é{én sin nrx/d (2.33)
m=)
This exapnsion is the well known Fourier Series and the
justification and properties have been investigated by many authors

(see for example Miklin, Ref. 16).

The coefficients a,, are found by multiplying both sides of
equation (2.33) by the m buckling mode, and integrating over the

length of the structure. Then

.z - J/ o '
syo sin mix/f, dx = Z{an -jsin nvx/f sin mw x/f dx (2.34)
(] =y -

As before, the product of two different buckling modes is zero. This
property is called the orthogonal property of the buckling modes and
enables a simplification of equation (2.34). The value of a, is

given by the ratio

¢ ‘ 4 e _
a = fyo sin m'ﬂ'x/,Z dx fsin mwx/l dx o | (2.35)

m
>
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The final shape, y and the initial shape y, are expressed as

linear combinations of the buckling modes,

00
y = fbn sin mx/f (2.36)
m=y
and 0
yO = 2an sin INX/E ° (2037)
M=

Equation (2.32) is simplified using equations (2.36) and (2.37) and
becomes

Eligzbn-an)dz(sin nrrx;/.'(,)/dx2 + P:énbn sinnpx/f =0 (2.38)

Mz |
But as

EI d2(sin nﬂ"x/l,)/dx2 + n 1r2EI/£2 sin nrxf= 0 (2.39)

then
®

124
-énQTQEI/gz(bn ~a )sinmref + PSb sin nrxff= 0. (2.40)
' n= ,

acl

Equating terms with the same buckling modes, we have on simplification

bn = an/(l-P/Pn) s where Pn = n2 W'ZEI/EZ , (R.41)

The final shape, given in terms of an infinite series expansion of the

buckling modes of the initially straight system, is

y = lagf(1-F/B))] sinwx + [a /(1-B/P))] sin 2mxll+ . . . (2.42)

2.5 Comparisons between Experimental Readings and the

Mathematical Model

The mathematical model is now at the stage where comparisons
can be made with experimental measurements. Southwell (Ref. 3) has
presented a reliable method of comparison subject to the restrictions
that the structure remain elastic, and that the value of the first term
ih thé infinite series is far greater than the coﬁbined effects of the
other terms. When these conditions are satisfied, the mathematical model

is given approximately by the finite series
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y = [a1/(1— P/PT] sinw %/, 3 N (2.43)

The mathematical model is easily manipulated into a form from

which the measured results can be compared. The form is

@yha1 ) sinTrx/,Z)l{-’ = G y-a1 )Simrx/lyP1 + (2 sinwx/g) / P (2.44)

that is the mathematical model indicates that a plot of the ratio of the
measured deflection to applied load against the measured deflection is

a straight line. The slope of this line is equal to the reciprocal

of the first bucklingvload, with the intercept on the load axis

determined by the initial crookedness and the first buckling load.

Experimental readings of the load P and of the change in
deflection (y - yo ) at the centre of the column are found to be
approximately hyperbolic. (Fig. 2.7). A horizontal asymptote

to the hyperbola, that is

P = Pt

is found from the reciprocal of the slope of the line of best fit

to the Southwell Plot of the éatio of measured deflections to load
aga%nst measp;ed deflection (Fig. 2.,8). The value of the horizontal
asymptote Pc"+ found by this device is then used as a measure of

Pl , the first buckling load of the structure. The experimental
results do not in general give a linear Southwell Plot, and hence.

a constant value for the horizontal asymptote P,.4+ 1s not obtained,
but often the deviations from a straight line are sufficiently small
to enable a correlation to be made between experimental results and
the mathematical models. A few of these cbrrelations are now outlined.

P, load in .pounds 10[ measured deflection/load x 10°

3000 _assqmetote o the bypevicin Pz Py

r—

= 2800 1b

2000T 5r Pcrit_
P1 = 2800 1b
-
1000 ‘ 5 a, = 0,023 i
| - ] ao/P_lz 0.8 x 10
091 002 Ool : 002
central deflection (in) : measured central deflection (in)
Fig., 2.7 Experimental readings of Fig. 2.8 A Southwell Plot of the
the central deflection of a pin experimental readings,.

ended column,
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2.6 History of the use of the Southwell Plot.

Southwell (Ref.3 ) was the first to observe that & plot of the
load and corresponding mid point deflection of an axially loaded column was
quroximately hyperbolic in the neighﬁourhood of the smallest critical load
of ‘the mathemgtical model of the Euler column. He showed that the approximate
position of the horizontal asymptote to this hyperbola could be obtained by a
suitable tranéformatign, nemely plotting (y - Yo )/P agaiﬁst Y -, where
(y - Yo ) was the measured deflection and P the applied load, and drawing a

line of best fit.

Southwelllused the reciprocal of the slope of the line of Best fit
as a measure of the first critical load of the Euler mathematical model. He
justi?ied this comparison by showing that when an.arbitra;y initial crqokgd—
ness is. included in the maphematical model for the Euler column (as‘dﬁtlined
in-section 204,4) the resulting model is a reasonable description of the

experimental behaviour.

Donnell (Ref. 17) suggested that the Southwell étraight line piot
was a good measure of the first critical load in all cases of buckling,
provided that appreciable second order stresses were not introduced, (such
stresses occur when a developable surface bﬁckles into a non developable
surface) and assumed the validity of the Southwell Plot method iq all cases
where the corresponding differential equations were linear. However, it
is shdéwn in the following sections that to obtain reliable correlations
between experimental results and mathematical models, the mathematical

model must satisfy several other conditions besides linearity.

Dumont and Hill (Ref. 18) tested some aluminium alloy I-section
beams loaded about the major axis by a uniform bending moﬁent. They
féund that the beams were subject to lateéLl instability,and to obtain
-an estimate of the critical bending moment they plotted the ratio of the
measured central rotation to the bending moment against the measured
rotations. The reciprocal of the slope of the line of best fit to
these plots was then approximatéd to the critical bending moment. They

did not justify mathematically'this comparison and later Massey (Ref. 19)
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showed that the reciprocal of the slope of the line of best fit of a
plot of measured rotation to the square of the bending moment
against the measured rotation gave a better-indication of the

squafe of the critical bending moment.

Galletij and Reynolds (Ref. 20) measured the elastic
circumferential strains and internal pgéssures for ring stiffened
'cylindrical shells subject to externél hydrostatic pressure, and
_using‘Southwell's method were able to obtain the horizontal

asymptote to the experimental readings. They weére then able to

compére measured critical buckling loads with buckling loads

~calculated from a variety of mathematical models.

Greogry (Ref. 21 and 22) showed that for structures
bending in their plane and for triangular gtructureé bending
and twisting out of their plane & correlation exists between
the predicted first critical load and the asympfote obtained
from measured axial loads and curvatures by using‘tﬁe transfsrmation
as suggested by Southwell; _Laﬁer; Ariaratnaﬁ (Ref.;lB) justified

mathematically the use of the Southwell Hot of measured

deflections, (and hencé curvatures) and axial loads as a means

of measuring critical loads in framed structures.

Thus, the Southwell Plot method has béen of great benefit
in the study of instability problems as reasonable estimates of
initial crookedness and buckling loads have been obtained for a

range of structures.

The plot has the property that almost any curve similar in
shape to a hyperbola can be linearized to a certain degree and the
fit of the experimental points to a straight linevhas often been
used as a-justification of the mathematical model. This approach
is not rigarous; and in the next section a sét of sufficiency
conditions tb be satisfied by thevmathématical médel.is 6utlined;
These conditions provide é sound basis for comparisons betweénb

" exparimental results and mathematical models.
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2.7.1 Extensions to the Southwell Plot

The idegsloutlinéd in the »revious sections indicate that the
Southwell Plot is a useful device for the comparison‘of some experimental
results and some mathematical models. These ideas are based on the pfoperties

of the differ@nti§l equation

EI d2($? yo)/dx2 +Py=0. (2.45)
Many structures behave in a manner similar to thaﬁ indicated by the experimental
points shown in ﬁig. (2.8), but not all of these structures can be described
adequately by the pne-differential equation and set of boundary éonditions°

A general test is proposed in the foliowing section whereby any mathematical

model, consistiné_pf linear differential equations and boundary conditions
can be examined, to see if a basis exists to compare experimental readings.
After this basis has been established, firm design rules can be made with

confidence.

When the analysis developed by Southwell is examined ciosély, it
is seen that the power of Southwell's analysis lies in the specification
of the arbitrary initial crookedness. Southwell uses the terms 5f an
infinite'Fourier series to define the crookedness, as each of thése
Fourier terms is a solution of the mathematical model for the initially
straight structure. The description of an arbitrary initial crookedness
for a different mhthematical model, as an infinite series, with each term

a solution of this new mathematical model 1s now investigated.

2.7.2 Mathematical conditions sufficient to justify the Southwell
Plot as a method of comparison of mathematical models and

experimental results.

The method proposed by Southwell may be extended only when the
possibility of expressing the initial deformations 4% in terms of the
buckling modes 42r of the particular problem has been investigatéd;

that is, valiflity has been established for the expansicn
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¢o:a1¢1 + a2¢2 + a3¢3 + 5 °aI'¢I'+; ; (2o46)

Expansion (2.46) is valid if the following conditions are

satisfied:
(a) a means exists to‘fihd the constents a, , &, ,‘a;‘ o o
(b) the expansion is unigue, that is the expansion is
linear independent,
(c) there exists an infinite number of solutions #ﬁ’!
and (d) the expansion will converge as 8, is increased.

It is shown in the following section that when the
mathematical model satisfies the well known mathematical conditions

of Rule No. 1, then the conditions_(a) to (d) are satisfied and

hence the validity of the expansion (2.46) is established.

~.Rule No. 1. When the mathematical model for the initially
undeformed structure can be expressed as a linear
: *

differential equation of the form
L) - AN@) =0, - (2.47)

where L(Q ). and N( 4) are both self adjoint and positive
definite differential operators and A\ is a load parameter,

then the expansion #% is valid.

Although the conditions required are readily available elsewhere (Ref. 16)
for completeness an outline is now given of why the differerntial equation
and boundary condition system satisfying Rule No. 1 satisfies the

properties (a) to (d).

' Condition (a) is established when the operators L(4>) and N((‘D)
are self adjoint. One definition of self adjéintness is given in
by Crandall (Ref. 14) and invol&es the behaviour of ﬁwo functions
u, V which satisfy the boundary conditions but do not neceésarily
satisfy the differential equation between the boundary. When the

opérators L(Q) and N(#) are self adjoint, thé expressions:
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¢ £ | {
K[u L(V) _ ‘VL(u)] dz, and i [UN(V)-' VN(U.)] dz are both zero.
(The points a, b define the positions of the boundaries.)

The implications of this condition can be seen when two separstp

sqluti@ns of the differential equation (2.46) are examined, i.e.

L) - N, N(4r) =0 (2.48)

and

L(dg) - A, (b s) (2.49)

I
(@]
°

Multiply (2.48) by ( &, ) and (2.49) by ( q?,,), subtract, and then
integrate between the boundariesj the expressions become

b
{[%L(tfr) -p L)) dz - S[*r"’s N$.) A V4] daz=0 . (2.50)

~

When L(<‘> ), and N(é) are both self adjoint, equation (2.50) can be

¢

- reduced to the equation

" (2.51)
S(Ar"}‘ s) #sN@r) dz = 0 "
i.e. when A, 4: }\s 5 (?s N@r)dz =0 . _ (2.52)

Similarly, the relationship
— 2ﬂ 53

can be established. Equations (2.52) and (2.53) are called the
orthogonality relationships *. These relationships enable a separation

of the variables a, , a,, a For example, to evaluate the constants

3 o
a ,, multiply equation (2.47) on both sides by N(4>r) and integrate.

# A self adjoint differential equation is really another way of stating
that the equation obeys the Maxwell Reciprocal Theorem - that is the cross
product of generalized deformation U, at the point A multiplied by the
generalized force L(UB) at the point B is equal to the cross product of
the generalized deformation {)gfat the point B multiplied by the generalized

force L(Ua) at- the point A. ' This statement may be expressed in the form

Up L(Ua) s UeL(U“) .
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When the self adjoint differential equation describes a
buckling phénomenon, the integral of two cross products over the

whole gtrycture is equal to zero. (See also the Appendix A)

This gives ay &s the ratio

b 4
o nthey [ s,
Similarly, by multiplying by L( QT) and integrating, the

i$ obtained as the ratio

’ﬁ’; L¢r)az/ f ¢, L&) az.

A meéns of ensuring that a, is defined is to specify‘that

constant a v

b
the integrals 54‘9( dz and Sch L( 4>f )dz are never zero. The

o . .
condition is called the positive definite condition.

The iinear independence of the terms of the expansion
(condition b) énsures that the expansion is unique. As an outline
of this condition, assume that the terms of the expansion are not
independent, that is there exists an expansion for zero, for which . .

at least one value of c, is non zero and

C,l ¢1 + 02 +2 + C3¢3 + 6 0 o cr¢'r + o6 6 0 = 0.
Multiply this éxpansion by N(ch, ) and integrate. Use of the
1 : b
orthogonality relatlonshlps then give the integral c . S N(éy.)dz
[
as zero i e. either c, or ( ¢Q 4%- dz is zero. These statements

conflict and hence the uniqueness of the expansion is established.

The existence of an infinity of solutions ¢r of the
équation (2.47) (conditiom c¢)is obtained by examining the properties
of some systems of linear -simultaneous equations. Compare the self
adjoint differential equation system with the linear symmetric

equation system

(4 [ = AN[B [l =0, (2.54)
where [A] s lB} are symmetric real n x n matrices, x is a column
- vector and x‘some load paraméater° The orthogonality relationships

in the linear simultaneous equation case are,{' ]{’ ] [x and
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{ J{ Bl are zero, where Kx;,} and (x are particular solutions

of (2.54). The pos:.tlve definite condition becomes; " J{»A &&xfl\ and
{EL, ]i‘ )i | are always positive. Forvthls system there exists n
solutions, )\f and corresponding [Xr] o In the differential equation
system the number n is expanded to infinity so that finally in the Hilbert

space the linear equations represent the differential equation (Ref. 16).

The absolute and uniform convergence of the expansion
(bond;tion d) is more difficult to‘justify but attempts have been made
to show that these convergence conditions hold in particular cases of

second order Sturm Liouville equations (Ref. 15) and some higher order
| equations (Ref. 14, 15). Hilbert and Schmidt (Ref. 16), have proposed
a general tesfgfor convergence using the.equivalent class of integral
equations. The theorem and some examples relevant to the mathematical
models developed in this thesis are covered in the Appendix B,
However, at this stage it should be noted that certain classes of

integral equations, differential equations and linear simultaneous

equations exhibit similar properties, as the folloWing table indicates:

Linear simultaneous equations Differential equations Integral equations

[ .J.-)‘[B][ ] L$) - AN($) = o ¢ ‘ACK(XI,M«» NgydAa =o

[A.]['J are symmetric, L(® ), N(& ) are self  K(x, s) is a symmetric
) , .
positive definite matrices adjoint positive kernel.
definite differential N(é ) is a self adjoint
opera?ors positive definite

differential operator.

The boundary conditions The boundary conditions The boundary condition;
are included in the » are included in the are included in the kernel,
matrices [A [B self adjoint conditi;ns, and are included in the

and are included in but are separate from equation

the equations [A ][%]— the equation \

x[;a][ x] = o L&) -rN&) =0 4-}&!‘@,/‘)?@) N®de <o
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Linear simultaneous Differential equations Integral equations
" equations .
There exist n There exist a denumerable There exist a denumerable
/
solutions (x,] 3 %T infinity of solutions infinity of solutions
whgre n is the size 4)1», Ae o <§>r ) g

of the square matrices

[+ [=),

Table 2.1
The Hilbert Schmidt theorem states that if the kernéy

K(x, s) exists and is bounded then the convergence of the infinite.

series to any continuous shape is established. However, when

infinite series expansion is differenﬁiated, it appears reasonable

to impose the additional restrictions that the initial shape
~'should have the same boundary conditions as the solutions 45-, to

the highest order of L(¢ ) or N(d ).

The establishment of the properties (& - d) allows the
use of the expansion property, i.e. any continuous shape with
continuous derivatives up to the highesﬁ order of L(&) or
N(¢), can be expanded as a linear combination of the soluﬁions

of equations (2.47), whence

#O = a14>1 + 3.2¢2 + 3.3¢3 *t 6 0 o ar¢r + -0 o o

The facility to examine the effect of an arbitrary
‘initial deformation pattern in terms of a combination of solutions
of the initially undeformed mathematical model hgs thus been
espablishéé when the mathematical model satisfies the conditions
of Rul; No. 1.
Rule No. 2 An adequate description of the effects on the
&athematical model of the initial crookedness is obtained
when phe initial crookedness can Be'included in the

mathematical model in the form-,



..44_..

Lg-¢ ) -V ) =0 . (2.55)

where L(4 ) and N(& ) are again both self adjoint and positive
definite differential operators. General statements concerning
the deformation behaviour can be made, and & plot of (¢ -4, )/x

against (¢‘— &oA) can be used:to find the values of A‘ and a.4’|m

For example: Put &0 =a,d +ad, + %§3 + ..

L and put & =1b 4, +bd, +b, by t oo

The values b, , b, , by . . . are determined in terms of the
constants a, , a, , &, . . . by substituting the expansion for ¢ , and 4o
into the differential equation (2.55). Then L(¢ -¢,) -AN(¢) =0

becomes, on substitution

S <o)l b)) - S0 N0, ) =0 . (2.56)

A1
But L( $x) -\ N( Py ) = 0 as §, and A, have been determined by this

equation and therefore equation (2.56) becomes
= o . ‘ .
Slop = a) M V@) -pS M) =0 o . (2.51)
o) S =) .

Equating term by term in (2.57) gives

b, = ar/[l-n‘( N Nr) ? °
The aifferentiation and equation term by term of this infinite series is
L J

possible if the series remains absolutely convergent at each level of

differentiation, and the initial shape satisfies the boundary conditions

of the.problem.

The final solution § becomes

¢ = agdy/[-0/A a b/ [1-0VA)) + agdy/[1-(MA3) T + o o s

and when

9-14>1/[1““(}/)\1 )] >> 9-2¢2/[l'<>‘/A2)] +33¢/[1"(>/A3) ] t o 0 0
that is, at a point on the structure where 41 is large, and where \ is

close to )‘ s then
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b= ad/[1-04AD] . o o (2.58)

Equation (2.58) can be modified'to emphasize measured values,

and we obtain the generalized Southwell Plot form

(¢ - 314’1)/% = (¢~ am)/M ¥ a-14’,1/>1‘ ° - (2.59)
This . & plot of the ratio of the deformation (§ - a,4, ) to the

load parameter M\ against the deformation (4 - a,d, ) is a straight line.
When the mathematical model.(2.59) is a good fepresentation of the
.wetructgral behaviour, and the firsf buckling mode effects éredominate,
then the measured change in deformation (4 - . ) is approximately
equal to the deformation(@ - al¢;)a The reciprOCal of the elope of

the line of best fit to the plot of the ratio of the measured deformation

(4 - 4, ) to the load parametér ) agdinst the measured deformation
$ - &, (the reciprécal of the slope of the line being denoted by A )

is then a good measure of the - lowest buckliﬁg_parameter Xﬂ .

In the Appendix C a short list of mathematical models is given
for which a Southwéll Plot is a useful device to measure and compare

mathematical mcdel and experimental results. ‘Several other mathematical

models are investigated in this thgsis.

2.8 Second Order Geometric Effects.-

/

In the mathematical models considered so far only the
geometric effects which lead to linear simultaneous or linear
differential eQuations have been included. No mathematicai model
can fully describe real structural behaviour, as there are always
unsatisfied derivatives, and always geometrical approximations.
Thus, the mathematical models in the previous sections describe
characteristics of fﬁe mathematics, rather than the real structural
behaviour. It is worthwhile to examine the effect of large
deformations on the properties of the mathematics by considering
the equilibrium of the structure in the deflected position and

noting the effects on the mathematical models.
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The case of the elastica for the pin-ended column is well
known. The change of angle of the rods at the hinges is linked to the
lateral deformations of the hinées by the equation

A6/ds = d Cslads
where s is measured a}ong the deflected column. For the continuous

structure, this relationship can be manipulated and

do/da = dyfda'/[|+@yldes ] 3"'

Then for the initially straight structure, the conditions to be satisfied

if the structure is to remain in equilibrium is

BT a%/ax® + Py l1+@y/afl Y2 =0 . | (2.60)

This well known non linear differential equation (Ref. 23)
hgs a unique solution for every load. The solutions for the initially
straight structure (the elasticaj and for th initially crooked structure
are plotted in Fig. 2.9. It can be seen from the graphs that large
deformations are required before any marked difference occurs between
this mathematical model and the mathematical model obtained Ey expressing
the equilibrium of the structure in terms of the initial position. In
most mathematical models representing structures made from reasonably
flat plates and_bars, it is unnecessary to include the geometric non-
linearies in the model, provided deflections are small. However,
Judgement must be exercised because, although structures often stiffen as

a result of second order geometric effects, sometimes a weakening takes

place (Ref. 24).

1.5

P/PE loc

b

v 0,2

"]

y /4O

2.9. Loaé.and central deflection of a pin ended column,

i Flg;¢

'fpp:large elastic deflections.
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2.9 Non Linearload Deformation Relationships

2.9.1. Introduction

Most engineering materials exhibit a reasdnably linear

load verseé:dgformation relationship for a small range of
defbrmations. Therefore, reasonable appréximations of the
ngrall‘behaviour are usually obtained by approximating the stress
strain yelatiqnship wiﬁhin the elastic range with a single straight
ling. |

| Outside the linearly elastic range the linear differential
equétibns developed for thé elastic case do ngt'in general;describe
adgquat.ely 1:heE structural beha'vioux.-'as thé behaviour is markedly

dependent on ﬁhe previous deformations.

Various models héve been,prgposed in attempts to define
the position on the lqad—déformation graph that is Chqracterispic
of‘each portién of the structure. For stability studies on
compressed bars or. framed structures the main models proposed for the
initially straight structufe are the tangent modulus and the reduced
mo@ulus model§ (Ref. 25). In the tangent modulus model,_the strain
of each portién of the strﬁcturé is defined, and the slope of the
'stress strain relationship at that particular strain is used.  In
the reduced modulus model, account is taken of the unloading of the

structure,'and the unloading path is assumed to be linearly elastic.

-
It has been shown (Ref. 25) that the tangent modulus

gives an upper bound.estimate of the buckling load of the initially

straight frameQ_ In recent years it hgs also been suggested that the

effects of residual stress can be included easily in the tangent modulus

_model (Ref. 25). As‘the formation of residual stresses is relevant

in this context, it will be discussed before any further mathematical

study is developed.
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2.9.2 The formation of Residusl Stresses.

In the fabrication of structural members, heat is applied in the
rolling and welding processes. As a result of differential expansion and
contraction in the heating and cooling process, residual stresses are

introduced.

For example if in the fabrication of a built up girder the web
and flange are joined by welding, localized heating near the longitudinal
centreline results. The result of this differential expansion is to

\

induce tension in the outside of the flanges. While the outside of the

flanges is in tension, some plastic deformations close to the welding

zone occurs. As the section éools, the material near the weld may éonﬁract
faster than the material on the oustide of the flanges and'comprgssion of
the web flange joint results, while away from thé weld tensile forces are
present. A good summary of measurements taken of residual stress effects

is given in Ref. 26 and 27.

2.9.3 Mathematical Models allowing for Residual Stresses.

The following are the main models that are used to describe the

effects of residual stresses

(a) The effect of residual stress is included as an initial
crookedness . Although this approach may firsp appear irrational,
reasonable design estimates can be made. For example, in Fig. 2.10
the calculations of the Column Research Council are shown (Ref. 25);
a model with no initial crookedness and no residual stress; a model
with initial crookedness and no residual stress, and a model with
initial crookedness and residual stress. The load to first yield
the structure is plotted against the value of the total length
divided by the radius of gyration. A similarly shaped graph
is obtalned in the latter two cases, and a close estimate of
load carryiné‘cgpacity which includes the effects of residual

_ stress may be ogtained by specifying an effective crookedness

(Fig. 2.10 ).
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An effective,crookedneﬁs y obtained directly from measured
test results, is the basis of the well known Perryprbertson
formulae, used in British Standard 449: "The Use of

Structural Steel in Building".

{
1.0 .
° 10,000 psi

ﬁ "o u;uha.( croviedness, [

o} 5 Mo vrestdyal Stvess

] ’P

2 vohed ness, Sb/t -=)‘ooo aXiS

b3 wmo res\dval stress .

% b ““l g,le_ = l/‘m.u.

"'. ( etrees s Chown

z \ t. VALVE 0jovu PL. 5°/¢
x F . _—
X 0= 36,000psi]

& y

«

[A]

M

g

" B PP

: initial
3 crookedness
B} 5 .
&J .

residual stress
50 100 1,50
O.K.

length of member radius of gyration
Fig. 2.10. Effects of initial crookedness, and residual
stress on the load carrying capacity of a

pin ended column (from Ref. 25).

N -
[ &

(b) The effect of residual stresses is minimized byt
preloading and yielding the sfructuren A permanent
deformation results, but the'structUre-exhibits a

larger elastic range (Fig. 2.11).
Lopp

.- yielding occurs,
deformations result

A

oad and reload

permanent set

F*~—4 -central deflection

Fig, 2;11 Preloading the Structure.
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(c) Redent methods include the effect of residual stress by using
an effective section modulus (Ref. 27). A guessed residual

pattern is used, and the buckling load is expressed as

P =y El/4°
- where ET is the tangent modulus of the effective section.

Load : —— . — P = TR/
—

e — P=TELYp”

Pa ——+ —.— no residual stress

—— — — residual stresses
present

central deflection

Fig. 2.12. Using an effective section modulus.

For pin-ended columns, the residual stresses induced in
fabrication tend to reduce the load required to produce first

yield of the structure by up to 10% (Fig. 2.12).

Residual stresses are also important when the life of
the structurg requires consideration. If the residual stresses
complement»the induced stresses, portions of the étructure may
yield under £epeated loadings. Thus, the evaluation‘of the fatigue
of the structure may be an important consideration in the design

of the structurse. ST

2.10. Design of StructuresILisble to Instability

A structure can be designed to allow for instaebility
effects when a satisfactory mathematical description of the structural
deformations under load: is obtained. Briefly, the criteria which have

been used in the past to calculate working locads are:

(a) A safe working load = some fraction of the first buckling

load of the structure.
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(b) A safe working load = some fraction of the load to cause
first yield of the structure.

(¢) A safe working load = some fraction of the load which

causes a limiting deformation of

" the structure.

A safe working load based on some fraction of the first buckling
load of the structure is easy to calculate, provided that reasonable
estimates of the fraction are available. When the structure is
loaded so that the form of the deformation is simple, and the likely

value of the initial deformations can be reliably predicted, then it

- 1is easy to find for any particular structure the suitable fraction to

use in the method (a), by using either method (b) or (c). However,
when loads are applied to the system so that the form of the
deformations is at all .complicated, the use of a fixed fraction,

say, 0.66 or 0.5 is unsatisfactory, as the designer has then né

idea of thé likely deformations that exist for any loading of the
structure. Another disédvantage of method (a) is that the buckling
load of.the structure is usually found by assuming that the structure
always reméins elastic. Thus, the design of the structure must
always be checked to ensure that the structural material‘canvsustain

the predicted elastic stresses.

As a means of overcoming these diéadvantages design methods
Baséd on (b) and (c) are used in this thesis. In both these methods,
the deformed shape of the structure is found, and thus a deeper insight

into the instability problem is obtained.
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CHAPTER THREE

A ‘MATHEMATICAL MODEL FOR A THROUGH BRIDGE.

3.1 Introduction

- An engineering investigation of a real problem is illustrated
in the following three chapters and the design of a through bridge is
considered. This problem arose during the design of a very light
through plate girder bridgé to serve as a connection between ship
and shore at the ferry terminal at Devonport, Tasmania; the
designer wished‘to know the deformations that would be present

when the bridge was loadeds

However, little published work appears to exist on this
subject, and thus the design of the bridge was based on suggestions
contained in Ref. 28, which in turn appear to have arisen from the
investigation and description of the failure of several railway
bridges in Western Europe and Russia in the early twentieth century,
(Refo 4)s These railway bridges had heavy floors, but only light
sides and top chords or flanges, and the failures appeared to
result from the lateral movements of the top members of the

bridge. Thus the mathematical models developed by Jasinski
and Engesser (Ref, 29) and Timoshenko (Ref. 30) are all
éfforts‘to determine'loading conditions‘for which t he top
member of the bridge will be unstable, and, in these models
the top membery of the bridge is isolated and considered as
an axially loaded column with lateral restraints. offered by
thé sides and bottom of the bridge. The load applied to the
bridge is then limited to some fraction of the load at which

the system becomes unstable.

These mathematical modeis have been used :for
many years to design all types of through bridges. These

bridges usually had floors which strongly resisted rotation
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in the plane of the cross section (Fig, 3.1). However, in recent
years, there has béen an increasing use of the cheaper and lighter
through bridges having very light bottom.floors)as used at
Devonport (Fig. 3.2), and as used as a‘pédestrian overpass

(Fig. 3.3). With this increasing tendency to lighten the through
bridge, particularly the floor, it appeared desirable that an
examination should be made of the likely deformations of these

newer types of bridges.

Fig. 3.1. Cross section of a heavy through bridge.

In this Chapter the measurement carried out on the
deformations of a light model thfough bridge is outiined° A
mathematical model to describe these deformations is then
developed, by including the torsional stiffness of the floor
beam restraints in the existing differential equations
déscribing_the lateral stability of single I bé‘ams° The
solution of this new differential equation is then carefully
investigated as an exact matbemétical solutioh does not appear
to exist. Approximate solutions are obtained by using existing
methods of weighting the differential equation and the energy
method is used to find an upper bound to the first buckling
~ load. A method used by Southwell (Ref. 31) to find the
natural frequency of a spinning disc is modified, and it is
shown that good lower bounds to the buckling load, in an
algebraic form, san be obtained. ~This lower bound method
does not appear to have been used previously in structufal'
problems, and the author feels it could be used for maﬁy-
other linear differential equations which consist of mahy

terms.
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Fig. 3.2 A through plate girder bridge ssed as a connection between ship and shore, at
Bell Bay, Tasmania. A similar type of bridge is used for the same purpose at

Devonport, Tasmania.

Fig. 3.3 A light through bridge used as a pedestrian overpass.
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The mathematical solutions of buckling load (upper andllower
bounqs) are then compared with the buékling_loads measured by using
& modified Southwell plot. The modification of the plot involves
plotting the ratio of the measuredAéhange of rotation of the web
éf the I beam to the square of the léad against the measured change

. of rqtatlon of the web of the I beam, or plotting the ratio of the

measqred change in lateral curvature of the centroid of the I beam
to the load against the product of the measured change in curvature
gnd the load. The justification for these plots has been outlined
in genefal terms in ChapterATﬁo,'but the specific examples are
%lso ;ncluded in this chapter. The agthor claims originality

" flor these_plots, and also for the generalization outlined in

QhaptFr Two. The measured and calculated buckling loads are
found to be close, and therefore the mathematical model is

taken to be a good approximation of the structural behaviour.

As a further comparison of the closeness of the
mathemhatical model and»the structural behaviour the predicted
buckl}ng mode and the measured buckling mode are compared.

A technique to separate the first buckling mode from the
mFésuyements of the total deformed shabe is developed, and
it is shown that even for structures with a comparatively
large second mode initial crookedness, good estimates of
tpe first buckling mode can be obthined. The éomparison

of megsured and predicted buckling modes shows that the
métheqatical.model is a good approximation to the structural

behaviour.

3?2 ~ First Laboratory Model of the Real Bridge Structure

The first model bridge (Fig; 3.4) was constructed
from brass strip and brass plate. This material was chosen
as it has a high yield strain and when used in the bridge
structure measurable elastic deformations were ohbthined

bafdre the structure yielded. Two brass I beams, with a
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ratio of depth to thickness of 66 and a ratio of depth to length of 24,
were constructed by milling a groove (,020" x .030") along the flanges,
fitting the brass sheet into the groove and silver soldering the joint.
The floor beams were brazed to the bottom flange of the I beams. The

completed bridge was neither stress relieved nor straightened after

manufacture, but careful measurement was made of the initial rotational

and displacement crookedness.

R ]

length = 48"

4P 2P
width = 9" cross section

Fig. 3.4. Brass Model Bridge Dimensions.

The structure was 1oadea by a system of dead loads applied to
the top flange of the structure. (Fig. 3.5). This system was qhosen
in order to keep the lateral forces low. Care was also taken to keep
the lateral forces from the measuring devices low as it was noticed
that even the forces exerted by dial gauges affected the lateral
deformations, especially when the bridge was loaded. A general
description of the effects of the lateral forces is considered

more fully in Chapter Four.

flange $" x 1/8"

web 2" x 030"

3/16" dia,



e

P  Dead Weights

Fig. 3.5 Mechanism used to Load the Model Bridge.

3.3 Measuring Devices Used to Record Deformations-of the Model Bridge.

Loading of the bridge resulted in elastic deformations similar

to those shown in Fig. 3.6. An intensive measuring program was

carried out to describe these deformations. Techniq-ues"useld included:

Fig. 3.6. Deformations of the Model Bridge.

(1) Point by point measurements using sixteen Huggenberger
mechanical strain gauges. . The lateral and vertical
curvatures of the top and of the bottom flanges of the
I biams and the lateral and vertical‘curvatures of thé

round floor beams were measured.

(ii) Point by point measurements with dial gauges. The
gauges were placed on the top and bottom fléhges'to

megsure lateral and vertical displacements. The
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spring return of theldial gauges was sufficient to induce
measurableideformations, especially at higher loads and
the dial gauges were uséd only as redundant checks on
the doublerintegration of the lateral and vertical curvature

readings.

. Point by point measurements of the rotation of the web using

light rays reflected from small mirrors placed on the web.

Continuous slope measuring devices of the rotation of the
web. | The simblest system consisted of three cameras
arrénged along the bridge, as in Fig. 3.7. The position
#

of a line, reflected from the unldadéd model was
recorded. The bridge wés then loaded ana the new pbsition
of the line recorded. The difference in positien of the
twé lines was then related td the rotation of the bridge.

The Ligtenberg technique (Ref. 8) is a logical extension

of the above method. A number of lines (from 6 to 11 per
inch) were used as a screen and photographs of the grid of
lines, (Fig. 3.8), before and after deformation were taken.
When the %wo photographs are supgrimposed an interference

pattern is produéed° This pattern represents lines of

constant slope.*¥

* Note: A continuous reflective surface along the web was
obtained by glueing an aluminized terylene (coﬁmonly called
Melinex, a product of I,C.I.AoNoZ., or Mylar) to the web,.-‘
with a pressﬁfe sensitive glue, (Kodaflat, a product of
Kodak Austfalia)_.

¥# Note: When a fixed rayfpfrom the photoplane, through the
camera lens on to the screen is examined it-is found that
in the unloaded position the ray comes from £he line 1,

(Fig. 3.7) vhereas in the loadéd‘ppsition the ray comes
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frém line 2.. Thus; the iﬁterseqtion of the lines,
marked by the interference fringe_, represents an
angle change of @ of the model and 26 of the
light ray.. The change of slopeAis then related

to the line spacing d and the distance of the screen

from the model, by the ratio

28 ; d/ag

eI

<]
three ! , A8 L #

» R Yo light ray

A
5“ [4

plan of the bridge

Fig, 37,

Fig. 3.9

a e
\ T —
—ii
a——
o ke A
record
Fig. 3.8
@ obtained from
calibration # f
o P - / ‘ '
e T
/’_”' "/"/ .
- T parabolic
- : o : : .. f mirror 5%-6" dia,
— focal length 25 ins,
/'//" \
/—/ A . - \\ /
k\\\\\ light ™7
.\\ I/"
.
60 lines\]
running .
same way
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—_————- rdtationS'calculated from lateral curvature of the
top and bottom flanges

rotations as measured from the mirror system (Fig. 3.9)
and checked from the line measurement (Fig. 3.7).

MEASURED CHANGES IN ROTATIONS OF THE WEB. (P = 200 1b,)

Fig. 3.10. Measured Deformations of First Model Through Bridge.
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Fig. 3,10. Measured Deformations of First Model Through Bridge.
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Lines of constant slope obtaihed»from measurements of the web
deformations indicate that the web did not distort in the plane of
the cross section of the I beamo The measurable limit, atra central
rotation of 5 x 1Q"2 fadianiwas approximately 0.2 of a fringe, each

. ' -2
fringe spacing representing a change of rotation of 2 x 10 radians.

The sensitivity of the_Ligtenberg technigue was improved by
developing oh a modified system. The large optical system constructed
is shown in Fig. 3.9. Sensitivities’of 2 x 10“3 radians per fringe
with a total renge_of 20 fringes over a model lehgthlof'AS inches
‘were obtaihedo*'As'the model surface was not sufficiently flat to
“éﬁébié’ﬁéééﬁ}éméﬁt*ovér the‘totai length:of the'b;idge, and as the
range of measurement was not sufficient to measure total angle changes,
the bridge was deformed in increments of‘rotation and the final

shape was calculated by addition of these increments.

3.4 Descriptiohs of the Measured Results

Sufficiént fedundant information was obtained from the various
measuring devices to enable a croSs'cheoking of curVatures,
displacements and rotations. 'A detailed Summary'of the initial
shape of the bridgetand the.shepe of.the hrgdge under the action
of the central loading is given in Fig. 3. lO and from these
graphs the follow1ng pattern of the deformed shape of the brldges
cah be seen:

(1) the web remained straight in the plane of the cross section,
(i1)  the ends of the I beam at'the”smpports did not rotate,
(1ii) the rotations and latefal displacements were approximately

. sinusoidal in shape,

(iv) the floor beams rotated and remained integral with the flanges,

* Note: The calibration of the system was earried out by measuring
the‘defofmations‘of a'twisted glass»piete‘( R4 in; i 2L‘ih;);' The
resulting'surfaoe wasranticlestic, and the spacing of the interference
frlnges of lines of constant slope was then compared with the movement

of the corners of the plate, as measured by four dlal gauges.
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(v) the centgbid of the I beam when it moved was displaced
laterally,
(vi) the initial crookedness in rotation and the final

rotation were of similar sign. Both I beams deformed

with approximately equal rotations.

3.5 A Mathematical Model for the Model Bridge.

The measured deformations suggest that the I beams bent
laterall& and twisted, and that a twisting restraint . was offered by

~ the floor beams. A good mathematical model suitable to describe the

- observed deformations is obtginedlby adding the floor beam restraint, |
as if it were continuoq;, to the mathematical model for a single
simply supported I beam free to déform with }ateral and torsional
deformations. |

_ The model for the initially sfraight system including
the»torsiqnal restraint offered by the floor bears is obtained by

modifying expressions obtained by Mitchell (Ref. 32), Timoshenko

(Ref. 30), and O'Connor (Ref. 33); others as summarized by Lee
" (Ref. 34). Thé‘I“béam is bent in the yz plané,'thé plane of
maximum rigidity, and a small lateral deflection and twist is
agsumed.

Suffibient geometric approximations are obtained By
using first order approximations for the rotations i.e. using
the direction cosines to relate the two sets of axes x, y, 2
(unloaded state) and I ED (loaded‘state)° A tabulation -
is given in table 3.1, with gx, gy, ©_ the rotations in the

original axis (Fig. 3.11).
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section‘A-A

Fig. 3,11 Co-ordinate axes.

Table 3.1 Cosine of the ‘angles between the original and final

axes.

The curvatures are then linked by the equations

b = #+ ?5,,92_ o
b, R 4

L A satisfactory model is obte#méd when the load

(3.3)

deformation relationships are referred to the-deformed structure.

The moment curvature relationships.needed are
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My, = EL «ﬁi |
My = EI d),
. %
and . _MJ = Gdydb - C.dzjg}/d’sz + (‘Cog} éy)

where EI} ’EI are vertical and lateral bending rigidities,
are curvatures in the and lanes
f% ) 43 «J“7 5P ’
95 is a rotation in the)? plane,

and C, C1 and Co are St. Venant, warping, and floor stiffness values.*®

For the twisted and bent beam to be in statical equilibrium

under the action of a central point load P, acting at the centroid of the
I beam the following equations of static¢s must be satisfied. (Fig. 3.11).
Bending moment in the

vertical diredttény A Ux = 3P(3-2).

Bending moment in the :
My

]
(@]

lateral direction;
Torque in the axial ' . : _
Mz =-3P(~u, + u).

. . 1

direction;

The equations of statics in the new and old axes are therefore -
My = 4Pl ¢+ Byplewn + 0
My = 330-2)0, - GxiPCug + w)

-3P(30-2)0y - 3P(-u1 + W),

and M:;

Combining the equations (3.1), (3.2), (3.3) and (3.4), we obiain‘the

equations

4) N =(3p(3{-2z) + 9& $P(-u, + u);]/EIF + GZ[%P(%[-ZWZ -0 3Pu, +u)]/EI/,’

o -92[%1»(&-2_2)-% (g +w)l/EL + [P(Hl-2)¢, -8 37(-n, 91 /ELy

and .

¥ ,
[c,6, aa + 0 a8/az - ©,8% fas’ = pH-2) 9, - bRl ).
-l»‘ ) .

® A discussion on thevevaiuation of the St. Venant torsional stiffness
is given in Chapter Six, the warping stiffness in Chépter Four:: and the

floor stiffness in Chapter Five.

(3.2)

s
W

(3.3)

(3.5)
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Then, neglecting in equation (3.5) second order small
terms, in a manner indicated by O'Connor, (Refo 33) we oblaifn
the conditions for the bridge to be in equilibrium, and

¢, = p(f-2)/EL,
Y- EI - E EI, E
b, = +p(l-2)0, | 17/ I,

% 3P L@-z)oz/EI
and
¥ 3 3
— _1lp(l ) - ip(..
_jcoezdz +0d@,/dz - C,a°9 Jdz” = 4P(3{-2)0 _ - 3P(-uy + ),
3
The standard method of solution of these three equations is to

ml»-'

dlfferentlate the last equation of (3.6) with respect to z, and to

substitute this equation into the second last equation of (3.6),
and hénce obtain a single differential equatlon expres51ng the

'unbalanced torque per unit lqngth, at any section z, that is

c1d49/dz4 - ca’ghs? + 0P - (Pz/z,EI;’)(%l_z)?e = 0 for $lezco

and
C‘1d40/dzl’ - 0d%9/az” + C 9 - (P2/4EI7)(%f+z)2e= 0 for O¢ z¢ -+
When_the differential :equation represents the behaviour:of the
I heam structure the boundary conditions to bé satisfied are

2

LI A @ =0, C1d0/dz = 0.

3.6 Exemination of the Properties ofithe Mathematical Model

The first step in the solution of the mathematical model

(3.7) and (3.8) is to check to see if the behav1our of the
differential equation and the associated boundary conditions

is in an Euler manner; that is, to check to see.if for the
initially straight system there exists an'infinite number of
ireal buckling loads and modes. The next step is to see if
reliable means can be foﬁnd to compare the first buckling load
and mode as predicted by the mathematical model and as measured

on the model structure.

(3.6)

(3.7)

(3.8)
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Use of the ideas developed in Chgptér Two. shows that
thése questions are apbwered if the mathematical model (3.7) and
(3»8)‘ satisfies Rules No.1 and No. 2. Rule No. 1 can be checked,

by replacing L(¢) by the operators

¢ ‘ 2
G ¢9/¢54 - Cdfe/d@l-l'éog) /V((f) by (.%g-Z)Q and N by
' PI/AEI.,’ . The self adjoint condition is then checked by

J"_'ntegration by parts, w?-"iCh gives

[i,109-p1ip, 0 25 [Rle, (@hhyat - ol as®) + 0 @) e

i
R4y )
(0 'g/ast) - oG a®) + 0,91 @
i -
i e
= [0.c,(%g/a)) - 1o.c,( 25 Ja
r J 1/ z _é_z
Y [0,0(a8,/az)1 g [0 c(a6 /az)1%

3

L

-8
L N(¢ ¢N(4r dz -‘!0 ($f-2) 29 dz —(0 (Q-z)29 dz

Both these operators are self ad301nt sngect to the boundary
conditions given in equation (3.8),
‘The positive definite quality is also easily checked

by 1ntegrat10n, by parts, and:

fefr )dz = jQ,IC d‘*el/dz‘*) c(a%g I/dzz) +C 9 r]dz

ie o 4°
[9 ¢, (a sI/dz3)] - [(doljdz)C1(d29 r/dz22] + f01(d201/dz2)2dz
e ] 'EL ie
(o C(dOr/dz)] + fC(dOl/dz)z dz 4
i -zt e .
0
2 o
(Coer dz o
i
and
L o
wrN@ ) dz —{9 M-2)? az .
* " e Clearly, both operators are greater then zero for the

defined set of boundary conditions between %2, 0O and O ,- %—E .
Therefore, as indicated by Rule 1, in Chapter Two,there
exists a denumerable infinity of solutions, 9.,. and corresponding

buckling values, )\,. (Fig. 3.12).
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Fig. 3.12 Load and correspénding central rotation
defofmations for the initially straight bridge.

Thus there exists a possibility of Qypressing the buckled

shape as an infinite series, of the form
90 = 3.191 + 3.292 + a393 + o o o argr + o 0 o

where a. is obtained from the orthogonality properties. In the
Appendix (B) it is shown that this expansion is convergent when
the functhnle is continuous and differentiable and satisfies the

boundary conditions of équation (3.8).

When the effect of initial lateral crookedness Uy and
an initial rotational crookedness @ o 1s included in the
mathematical model (3.7), we obtain the equations

B, d*(u-u,)/dz? =20 (3.9)

and

o, (6-8,)as + ¢ a0-9,)/az - ¢,a°0-8,)/as> = $p(uy-u) $P(b-z)aw/dz,
e

The equations (3.9) can be reduced to the single differential equation

C,44(6-6,)/dz% — 0a?(©-po)/as® + C (0-8,)- (PY/UEL,)(b-2}0 =bP (b2 )a uo/dz>
| (3.10)

When the approximation is made that the initial lateral curvature ~

. 3 E
effect, (that is the term 4P(3f-z)d u, /dz ), does not significantly
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alter this equation *, the single equation becomes

C1rd[*(9-=90)/dz4 - Cd2(0-90)/d22 +C (0-6,) - (PZ/AEI,,)(-%(Z—z)Ze =0, (3»}1)

Equation (3.11), satisfies the conditions of Rule No. 2,

as outlined in Chapter Two, and thus the final rotations, © , canube

expressed as an infinite eigen function expansion containing the initial

shape E% « The final shape is

e 2 4
0 =206 /[1-(F/P1)] + a,0,/[1-(P/P))] + o« & (3.12)
whefe the initial shape E% is givemn by the infinite series expansion

99= a'l9| t a'zgx_ + e e

and @ ., P,  are solutions of equation (3.7). The infinite series

expansion is readily approximated by the finite expansion

| ” (3.13)
and a rearrangement of equation (3.12), to examine the measured valuess,
T isc .
(60- 2, 0,)/P% = 6- a0,)/F> + a @ /P |
- a1 1 - - 171 1 1 1 1 ° : (3014)

Equation (3.14) is similar in form to the usual Southwell Plot. However,

the value of the square of the load is plotted, rather than the load

itself. The difference arises because of the nature of the differential
equation (3.7). We can bee from equation (3.7) that the internal change

of torque per unit length, given by the expression
L(¢) = c1d49/dz4 - Cd%/dz® + o »
is proportional to the product of the rotation and the square of the

first critical load, that is

L@) o< P*6.

® The effect of the initial lateral curvature is investigated more fully
in the Appendix D. " It is shown that a reasonable apprdximation is to
use an equivalent initial rotational crookedness and thereby include the

effiect of the initial lateral'curvaturen
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However, from the differential equation for the pin ended column
(2.32), we find that the internal bending moment is proporfional
to the Product of the deflection and.the first critical load,
that is’ |

L(¢) = EI d%y/dz® o P.y.
These differences give rise to different Southwell Plots, and the
analysis presented in.Chapter‘Thm-is desiéned to be a rigorous means
of obtaining the corre;t variaﬁles to use in a Southwell Ploé?¢ﬁrnﬂ)
combination of lateral curvatures are also suitable to use in a
Southwell P}ot as a means of finding the buckling load of .the
bridge. The lateral deflection of the top flange (Fig. 3.13) is

givew by U_=W+3%h6 ' (3.15)

and $f the bottom flange by U, = u-3h&, where u is the lateral

deflection of the centroid, h is depth of the I section beam, and &

is the rotation of the cross section. Differentiating twice and
adding these two expressions gives the curvature of the ‘centroid

and .
y/a® = la*uj/az® + dPuy/as?)

(3.16)
/
f
l/ - i
; Fig. 3.13 Lateral Deflections of the Bridge.
For the initially crokked structure, the measured
lateral curvature of the centreline is given as the sum of the
measured lateral curvatures of the top and bottom flanges, that is
(3017) :

a*(u-uy)/d2® = 3l a¥u- u Jp/ds® + aP(u- u )z,

But, from the first equation in (3.9) the measured lateral curvature
of the centre line is related to the applied load and the rotation

of the I beam, in the form
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1 | ) . i i I L
0 1.0 2.0 3.0 40 5,0
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= }aﬂ
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-~ . =43 _de . 4L
- / 3 av valve . ~
E ‘ j="l/3 R A 'f{@ 6’0)/P-4 j@-go)
W
/
1 1 | | | { 1 1
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' Measured rotation,}ﬂ )~ 90' (radians x 102)
. b

Fig. 3.14 Plots of Measured values of rotation and load,
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Fig. 3.14. Measured values of lateral curvature and load,
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BT, & (u-u,)/dz? = $P(3-2)0 (3.18)
= 3P(f-2) a,0,/(1-F/P,)?) .
- Therefore substituting equation (3.14) into (3.15) and rearranging,
we oh#éigin the equation
(:{%;19)

' : /o o
‘li[d«t(u*w.)f/als‘ o Al woy/dy] / P = P (Ao iay + M’“"%Iﬂ]/ﬁ tabfev/de

which shows that certain combinations of the lateral curvatures can

be used in a Southwell Plot to measure the first buckling load P and
1
the initial rotational crabkedness &0, .

3.7 Comparisons beiween Mathematical Models and
Experimental Results '

3.7.1 Buckling Loads

Examination of the mathematical model (3.7) and (3.8) has
indicated that a satisfactory comparison between experimental results
and the mathematical model is possible by use of modified Southwell Plots.

Modified Southwell Plots of lateral bending strains and
rotations are shown in Fig. 3.14. The author claims originality for
the presentation and justification for these two types of Southwell Plot.

The modified Southwell Plot (Fig. 3.l4a) using measured
rotations, at the points z = 0, z =tL/6 and z =+//3 indicates a
buckling load of approximately 240 1b. The modified Plot using

lateral curvatures (Fig. 3.14b) obtained by separating the vertical
bending strains from the total sirain readings taken at the outside
edges of the flanges and assuming that plane sections in the flanges
remained plane when the I beam deformed,sfso indicates a buckling logd
of approkimately 225 1b.

Fig. 3.14b shows that not all points on the structure
indicate the same buckling load, but that an average value is a gobd
approximation to the buckling load. The particﬁlar average to be used
is obtained from a consideration of the whole aeformed structure. A

plot given by the equation
v

g 4 :
[(6-g)az/e2 = ((9-90)dz/Pc§it : f"o a/Pl, (3.20)
72 e iy
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is useful in emphaéising the geometric deformations éf the struc£ure,
rather than the‘movements of isolated points. It is‘possible to separate
the antisymmetric from the symmetric mode cbmponents by suitable choice
of length over which the integration is performed. An integration of the
rotations over the total length of the bridge, and hence a separation of
the antisymmetric components from the symmetric components is shown in

Fig. 3.14. Again a reasonable straight line is obtained, indicating

a buckling load of 240 1b.
3.7.2 Buckling Modes.

The initial value of the first buckling mode, at the centre of

the bridge, is obtained from the vertical intercept on the graph of

the ratio of the measured rotation to the square of the applied load
against the measured rofation. The:initial vaiﬁe found by this
intercept method was 2.4 x 10-2 radians, which ié higher than the
value obtained by direct measurement of the initial rotational
crookedness (2.0 x 10 radians). This value was obtained by
measuring the initial rbtations byAthe optical means shown in

Fig. 3.7 and also by using a spirit level to define a vertical

line and measuring with feeler gauges the difference in lateral
‘displacement of-the:top and bottom flanges. Part of the difference
can be accounted for by including ﬁhe effect of the‘initial lateral
crookedness, which was neglected in equation (3.10) and in the
subsequent Southwell Plot analysié. In the Appendix D the measured
results of rotation and load are compared wiﬁh the predicted values
of rotation and load using different methods to estimate the initiai
crookedness values. From this graph it.is'clear that, provided a
reasonable equivalent initial crookedness is used, (fof instance a
good choice is that initial crookedness obtained from the Southwell
Plot), then a reasonable description of the relationship between

load and rotation is obtained *.
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#
When the initial lateral crookedness effects are considered, the

analysisipresented by equation 3.10 is still a good estimate of
_the structural behaviour (see Appendix D). The initial lateral
crookedness is found to have an effect similar to the initial
rotational crookedness, and thus an equivalent rotational -
crookedness is_used° The very light through bridges discussed
in this section have an initial rotational crookedness of .02
radians, and an initial lateral crookedness c>f.£/‘1000° The
equivalent initial rotational crookedness is found to be
approximately .025 radians. For bridges with heavier floors
the contribution of the initial latersgl trockedness to the

equivalent rotational crookedness is approximately .0025 radians.

An indication of the first buckling mode is obYained.
by direct measurement of the deformed shape. However, the shape
indicated by these readings changes with load, as the magnitude of
the chkling modes present in the initial and final shape vary.
The following ﬁethod is an attempt to rinse the first buckling mode from
the deformed shape.

The underlying ideas can be obtained.from a ;iudy of

the behaviour of a pin ended column, with a large second mode

crookedness. For the column, the final shape is

y = a1/(1-P/P1) sinTx/L + a2/(1-B/Pp) sin 2Tx/L + o . o o (3.21)

When a, /(1-P/F ) sinT x/f is of the same order as a,/(1-P/P ) sin 21x/} ,
and a,= 8. . .= 0, the deflection is as shown belgwhz v Thus,

a good approximation to the final shape is

y = a1/(1-P/P1) sin¥x/f + by P sin 2t/ L . : (3.22)
Differentiating equation (3.22) to obtain the changes of the shape

with load, we obtain the equation

(3.23)

P
¥

dy/dP = a, sinTxf /B (1-B/P1) + by sin 2T 5, o

F) ) first mode ' P |
P . +

( F=2/0- vr0,)
’)

mode + o
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Fig. 3.15. Measurement of the first buckling mode of curvatures of a pin
ended column, fhe column has a large second mode initial
crookedness,
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Meas,obtained from
optical systems as in
Fig, 3.7 and 3,9, and
checked against point
by point measurements
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Fig, 3,16, Measurement of the first buckling mode in rotation of
the model through bridge,
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- Multiplying the,equatién (3.23) by P, and subtfactiﬁgiéquatidn

(3.22) establishes the proportionality

sinr x4 o€ y/P = dy/fiP o

The plot using measured values of cufvaturé insﬁeéd'pfifhe
total curvature, was ﬁried for the pin ended cglumn,-(Fi:g"o.‘Buﬁ)°
The column had a large second-mode initial croékednesé‘but ﬁhe
final shape resembled the first mdde. The plots of{measured
curvatures are shown in Fig° 5115, which shbws;th&t.ﬁhisﬁplot
gives a closer indication of the firs£ budkliﬁg modgithéﬁﬁdoés -
~a direct recording‘of the‘readings. Tﬁus the method aﬁpeéfs”té be
a reasonable technique. The method, generalized tﬁffind_the :
first buckling mode is: | o
First Buckling ModeC{ﬁkform&tion/Lomg—@hange in‘Défprmation per
unit ioadJ‘ ‘ |

The initial..prookedness readings féf the bridge
structure (Fig. 3,10) indicafe a large antisymmetric'rotatibnal
crookedness, and a plot of rotations was tried?(Fig. 3.16).
A reasonably symmetric buckling mode is indicated;_ The mode
has little rotation atﬂfheAsupports with no ﬁoficéable ”
reverse curvature away-from t:hé supports and is.ap;;ré;xima‘pely

& cosine wave over the total @éngth of therstrﬁcture;”,Theée

observations are compared with those prediéted,by an apprbximaté?nﬂA'

solution of the mathematical model (3.7) and (3,8)‘in ﬁhe following
sectionéo ek

%]
\ -

3.8 Solution of the Mathematical Model of ‘the Model.Bridge.-

3.8.1. Introduction

An exact mathematical solution for the differential

equation (3.7) , that is
c,d*6 /dz* - ca®6/az® + Cp -_(PZ/AEI.,))(%(—Z)ZE’ =0
subject to the boundary conditions . ~=ﬁ%z

z=i%£ ; 8 =0 , C1d20/d22=0

y

(3.22)

(3.26)

(3.26)
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has not been found, so far as the author can discover.

Various approximate methods were tried to gain the maximum possible

information concerning the mathematical model. The methods enabled

(1) an estimate of an upper bound for the first buckling load to

- be obtained by use of a guessed buckling mode,

(i1) an Qstihate of a finite number of buckling loads and modes to
be obtained, by use of the approximation that the continuous
curve is a series of straight lines,

(1ii) an estimate of a lower bound for the first buckling load to be
obtained by use of a weaker mathematical structure than that

indicated by the equation (3.25).

A summary of the methods outlined above is presented in the
following sections, and a reasonable estimate for the first buckling

load and mode is obtained.

3.8.2 Upper Bound Estimates,

Approximate solutions for the differential equation (3.25)
are obtained by using estimates for the deformed shape. Unless the
correct shape has been used, residuals on the right hand side of the
differential equaticn will be obtained, and the value of buckling load
obtained depends on the particuiar methods used to minimize these

residuals.

Consider the approximate * methods of solution for the

mathematical model obtained by neglecting the warping and torsional

stiffness in equation (3.25), that is

o cdean® + (P/uEn)Gl-2)?0 = o. C(3.27)

# AA mathematically exact solution to equation (3.27) subject to the
boundary conaitions (3.26) is the Bessel Function of the first kind,
and of order 4 and =%, (Ref. 30). This solution is

buckling load: P, = 16.94 fﬁi;E/E%

(R-2)F 7, 1.05 [3-2)/3013

]

buckling mode: Eh‘
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When a guessed shapé; given by the equation.

0= a'cos-yrz/_,z

is substituted into the differential equation (3.27), an estimate

of the load P is obtained from the modified equation, in terms

of the residual function R ne‘cessafy to satisfy the.'differential

equation. Then

¢ 4%(a cos1rz/l,)dz2 + (P2/Z.EI;;‘) (%Q-Z)'_2 a coswz/f =R 0

Methods available to minimize this residual, and their effect
on the load P, are elaborated fully by Crandall, (Ref. 14),
and in an excellent review article by Finalyson and Scriuén,

(Ref. 35). For completeness and to introduce further ideas

the methods are outlined again in this thesis.

(a) Collocation

The residual R can be defined at r different points,
where r is the number of undefined variables. A system of r
equations with r unknowns is obtained and a unique solution
for P is found. In this particular case r is equal to one.

A common choice is to set'R equal to zero at the boundaries..

Thus

P2/[.EI..‘ = -Cd?(a coswzl )/dzz/(%l-})2 a cosTz/l .
Now if 2 = 0, P = 2T [ET, o/L7 whereas if

z=%{ , Pis infinite .

Difficulties arise in this method as it is often difficult

to estimate whether the value of the load obtained is higher or .
lower than the exact solution 6f the mathematical model. Also,
the estimation of the best positions to specify the residual
values, and the prbbﬁeﬁ of discontinuities Are usually too

great and this method is not usually used to obtain solutions

for buckling problems.

(3.28)

(3.29)
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(b) Subdomain

The average of.the residual R, over a éubdomainz is defined.
The number of sub domains is made equal to the number of undefined variables,
and a system of equations is obtained. For one variable, the subdomain is
equal to the domain, and the integral;pf the residual over the domain is

set equal to zero., Thus, we have
]

P2/4EI7] = (C d2(a coswz/L) dz g(é-[-z 8 cosTz/l
i e

i.e. P=88EI,,| L»

(c) Galerkin

An investigation of a method which places more emphasis
on the larger deformations than on the smaller values appears reasonable,
Any weighting function can be chosen. However, use of the deformation
itself as the weighting function often leads to good approximationms,

Then choose the sub domain as the complete domain, (in the case of one

variable), and equate the integral of the weighted residual to zero.

We then obtain the equation

. 0
E74EI'I= LC d (a cosn‘z/.e /dz a COSIZ/LdZ/r-% -2)?(a costz/8)%d (3.30)
i.e. it P = 21.8 [E1 C/Z

An alternative slant on this method is to examine the
form of the solution if correct values of @ were used, and to find the
variation in P fof perturbations of the guessed shape. In this form,
it is easier to investigate the convergence 6f the load to the first

critical load. Thuslthe value of the load P , given byh the equation.

P}/4ET, = §c 6%6/dz° g dz/ f H-2)? o2 az - (3.31)
ie

is examined.

It was shown in 3.6 that continuous differential
equation (3.25) and boundary conditions (3.26) is self adjoint and

positive definite system and therefore the ratio for load P can be
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easily modified, by integration by parts, to the Rayleigh Ritz form,

AN

2 _ R4z 1_ 2024,
P%/4ELy &(do/dZ) d/ gje z2)“ g~ a

In the form (3.32), the mathematical model is equivalent
to finding the changes in potential energy as the load moves
downwards, (using the deflections as found by Timoshenko in Ref. 30)

i.e.

0 . R
v =%f (4-2)% 97 (P%/451q) as
Ae '

and the changes in interal energy of the structure as the structure

deforms, i.e.
0

V= %( c(a¥/dz)? dz
dg.
{/
and specifying that for loads:on the system equal to the buckling

load there is no total change in the total energy of the system.

In the Rayleigh Ritz form (Ref. 36), it is_easy to
obtain wkiues::of P. These values are always greater than the
first cfiticai buckling load as is seen in’fthe following

- explanation. (Southwell (Ref. 23)has also proposed a method
similar to the method outlined below. for aiffegential equations

representing framed structures).

TheIdifferentialrequation (3.25) is self adjoint and
positive definite and therefore it is well known that any Shape
can be-expréseed as an infinite series expansion of the buckling
modes of the system, i.e.
= a191 toasf, + a393 toooaB *ooo
The expansion for ' can be differentiated term by term, provided
each of the individual terms satisfies the same boundary conditions

as in 3.26. Then equation (3.32) can be expressed in the form

0 0
af g‘u(d%/dz)2 QZ + ag (%e(dez/dz)2 + o0 e o

P2/4ELf - e
| @byl o v ol [Grs)tdat

:
e de

(3.32)
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3*
when the following orthogonality relationships are used:

o
Sdzor/dz2 9 d

and d

©
i
o

0

(%{'2)291' O d't =0

i

o Qi

k3

Every term of the numerator and denominator is positive (since the
corresponding differential operators are positive definite) and thus
by using a well known property of fractions, the inequality (3.33) is

obtained, that is

Po/UEL, = g(d91/dz)2dz/((%€-z)2 o dz ¢ PP/LEL, . (3.33)
: 4

{ 4

Means of abteinihg- thés minimum value of P from the
Rayleigh Ritz method are’' readily available. One method is to choose
approximating function‘) YZ and several undefined parameters,

g

combination of these parameters, i.e.

O =eP + gf, *e5f + -

and YZ are the approximating functions (in general, not the buckling

TR S-S such that the guessed solution, @ is a linear

modes) and g are the undefined paraméters.

For the value of the first buckling load to be obtained
from the Rayleigh Ritz expression, g  is chosen to give a stationary

value of P, that is the equation

ZP/Z?; =0 s (3.34)

is satisfied. Substituting in the value of P from the Rayleigh Ritz
expression, we have-

AUV /381 = O,

and this statement is equivalent to the statement

2U/dgi - PIV/Pegi = O. (3.35).

*

The orthogonality relationships are determined by the differential

equation. The particular form of these relationships is obtained

in section 2.7.2.
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The formulation of the problem (3.35) is called the

RITZ formulation (Ref. 30), and does not, in general, determine

an upper bound for the first buckling load, but merely a

stationary value. The formulation is equivalent to the Rayleigh
Ritz form and hence can be used to determine an upper bound

only when the differential operators are positive definite (Ref. 35).

The conditions under which the load P found by the

Ritz formulation converges to the first buckling load of the
differential equation are of considerable significance. As
the number of terms g, 1is increased, it is usually found
that for convergence, the'fé must satisfy the same boundary
conditions as are used to establish ‘the self adjoint property
of the differentialegquation: Other methods, notably the
method of Lagrangian multipliers (Ref;-29, and Ref. 35) afe
useful when the iﬁdividualf% 's are not sufficient to describe

the bound¥ry - conditions.

Frazer et al. (Réf. 37) have shown that when the
number of terms of the approximating function is large the
methods of collbcétion and Galerkin are equivalent and both
methods will either determine loads which converge or diverge.*

The convergence of the load P to a buckling load
may be obtained when the corresponding differential operators
representing a continuous struqture are self adjoint, and
positive definite and the approximating functions satisfy
tﬁe same boundary conditions as are used td establish the
self adjoint property. Under these conditions the value of P

for a particular choice of_gi such that imug<= r + 1, cannot

# The possibility of divergence is a real danger in any

numerical procédure, For example, the Lagranian interpolation
formulae; which is based on the collocation method, fails for
the classic case of the polynomial approximation to the function

f(x) = %Aﬁ+ x*) for intervals greater than (0,.3.63).
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be greater than the value of P corresponding to imdg r, else & lower

solution for P would be found with the solution g 0. The value

Tt
of P is bounded below by % and thus the sequence

PL/mmc i "may: L2 3 i

is monotonic decreasing. Thus the value of the load found from the
Ritz method converges to a limit * when the differential equation

is self adjoint and positive definite.

The Ritz method (essentially similar to the Timoshenko

method, (Ref. 30) ) was used to obtain upper bound solutions to the
differential equation (3.25). The corresponding weighted differential

equation (with rotation) is the energy expression

) 4 [

[}
C1 (d29/dz)2dz + C ((dﬁydz)zdz +fCO 92 dz = P2/4EI\ (%e-z)z 92 dz | (3.36)
¢ {e te te
The guessed shape (symmetric) used was based on the measured observations,**

and was chosen as

G = g, cosTz/p + g4 cos rz/p  + g5 cos 5T s/l o

and the following linear simultaneous equations are obtained:

. 2 ) . '
| + amifeet + Ge/ca?r | |G, é-&.&i btk L+4, |12
2 fen 2% ) (3.37)
g+ meed s wtlea |l gl o (PL/MAEre Y it 40 hed ||¥
~ d + . .
2s + 6 catfedt + ol [en 4s R e K

#* This buckling load may not be the lowest, as is seen in this section
where the choice of only antisymmetric  shapes leads to an antisymmetric

mode, which does not correspond to the lowest buckling load.

## The boundary conditions of the individual terms of the guessed shape
satisfies the boundary conditions necessary for the differential equation

(3.25) to be self adjoint.
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These linear simultaneous equations were solved by
hand and by computer. By increasing the number of the cosine
terms (to include cos Zn-z/i and cosqw z/t ) in a few cases
it was found that to obtain value§ of P within 1% there was no
need to include these further cosine terms in the expansion

for & . The results are shown in graph form in Fig. (3.17),

and the buckling mode is shown in Fig. (3.18).

A guessed shape of only antisymmetric. terms,

9= g, cos K2/} + 3, ©0s LTz/l + g6 cos 6mMz/d

was also tried, and the first antisymmetric buckling mode

was found to be approximately twice the first symmetric

buckling load (Fig. 3.17).

. For the model bridge structure, the calculated
buckling load was found to be 263 1b. The following

constants were used * ,

EL, = 120,000 1b in
¢ = 4,000 1b in'
C, - 120,000 1b in*
h = 2,1 1in.
. c, = 26.0 in 14/rad/in

*=
I

48 in

and EI 3,000,000 1b in" (where EI is the moment

I

of inertia in the plane of the major axis).

® Measured and calculated values fér the bridge section constants
were found to be within 5%. The values used are the average of
the measured and calculated values.

The values of the lateral stiffness EIW were obltained

by

(1) direct measurement of E(= 13.5 x 10 1b in ) obthined from
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Fig, 3.18. Functional form values for an approximate weighted
residual solution of equation 3.25.
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the slope of a graph of measured tensile axial load and measured

extension (Fig. 3.19) and a calculated moment of inertia,
(ii) the slope of a graph of measured central lateral loads F

3
and measured céntral lateral deflections A)(Eln =fl/48 A) .

The values of torsional stiffness C were obtained by

(1)~ direct measurement of E and Poisson's ratio (= .26)

and a calculated torsional rigidity,(C =1;E'/;1( H,\)jé 5 RE® D).

(ii) the addition of the measured values of torsional stiffness
values of the web and the two flanges, These values were obtained
from the slope of the graph of two end torques and rotations per
unit length. .Another check was to find the torsional frequency

of each section. A length of the member was suspended vertically

and was loaded with a known mass. Then the natural frequency of

the system is approximately

}U: C/(moment of inertia of mass x length
of suspended section)
(iii)  the slope of a graph of measured end torques and measured

rotations per unit length (obtained by the Ligtenberg technique) .

The value of warping stiffness C, was obtained from the approximation

(Ref. 30)

The value of the floor stiffness G, was obtained fromthe approximation

C, = 2EIFAA a

This approximation assumes that the floor beams are very close to
each other (actually spaced at 8 in. centres over a total length
of 48 in.), and that the initial rotational crookedness for each
I beam is equal (a reasonable estimate for this brnge, as can be

seen from Figure 3.10).
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- The next improvement in the mathematical model is
to consider the effect on the buckling load of a load placed at Xhe
top of the I beam, 1nstead of at the centroid of the I beam, Tﬁe ‘
weighted differential equation expression (3.36) can be altered t&i?
include the extra lowering of the load, as the I beam rotates, and

the new expression is

o ° 4 °
c, j(dza/dz'?)dz + 0 X(do/dz)zdz +gcog 2 dz = /4T, | (M-2)p% dz +Pnp  (3.38)
i w L sy at z=0,

The new buckling load is found by solving a quadratic equation.
The weighted differential equation expression
(3.38) gives an estimate of the buckling load of 245 1b. This

estimate is probably an upper bound (as the 263 1lb. was an upper

bound) to the mathematical model. However no checks can be made, as the
weighted differential equation expression cannot be;exbressed in the
IRayleigh Ritz form, because the corresponding differential equation

is not self adjoint. This non self adjointness arises not because

of changing geometrical terms, as is usually the case with non

self adjoint differential equations, but because the load P is

included in the weighted differential equation in two forms, that
is as P2 and as P, It is difficult to see how a transformation
could be made in order that equation 3.38 might.be expressed in
the self adjoint form. This example illustrates that the calculation
of upper bounds is concerned with the calculation of upper bounds of
the maﬁhématical models and it is difficult to say whef relationship
this value bears to the buckling load (if any) of the real structure,

particularly when the boundary conditions of the real structufe are

not measured.,
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3.8.3 Approximations to the Gontinuousa Differential

Equation,

The continuous curve is approximated by a series of
discrete straight lines in this method. The ordinates of the
straight lines are obfained by saﬁisfying the differential equation
away from the boundaries, and the boundary conditions close t§ the
‘boundarieso The method of central differences was used by the
author (Ref. 38) to obtain a set of linear simultaneous

equations of the form

— - e - - - - -

v j )
‘9!1 . 6“ \ O
@: ) JQ: C
é‘ '. Jpé . 96‘" . o
symmetric n x n matrix 2P - [ »/Q‘cfﬂ . =

that is in matrix rotation

-

o L
d i

¢
¢ i

3 © | - piycer,

i
———t

In the limit, as the number of terms becomes infinitely large,
the linear simultaneous equations (3.29) can be replaced by
the self adjoint differential equatioﬁ (3.25). The symmetric.i
matrixA[é J[E] is similar to the differential operator L({:)o
Similarly the matrix UTGQ"similar to the operatdr N(dﬁ)e

| The first buckling load for the finite difference model was-
found to be 260 1b. This value is close to the value obtained
from the method of weighted residual solution, but it is not
possible to determine whether the value is an upper or lowér

bound to the first buckling load of the differential equation.

Another method, published recently by Taylor and
Ojalvo, (Ref. 39) obtains a numerical solution by dividing
the lengthuﬁ into elements, specifying redundant boundary
conditions at one end, followed by integration along the
length in conformity with (3.25), to find the boundary

conditions at the middle. When the derived conditions in

(3.39)
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jthg middle are consistent with the maﬁhematiqal mbdel, a solution is
obtained. The solution obtained by Taylor is within 1% of the weighted
residuals solution outlined above, for all ratios of floor stiffness to

St. Venant torsional stiffness in the fange
2
0g Col VLR B 50,

3.8,4 Lower Bound Estimates.

These methods are based on the premise that a load lower than
_the first buckling load of the differential equation (3.25) is
obtgined when the first buckling load is found for a structure which

is gverywhere weaker than the structure represented by the differential

equation (3.25). The standard methods have beén developed by Swartz,
(Ref. 40), Temple; (Ref. 41), Collatz, (Rgf. 42 and 43), and Southwell
(Ref. 31), respectively. The most common method is the Swartz-Temple
method (Ref. 44). For the differential equation (3.25), the load P
is expressed as the ratio
P2//ET, = L@)/N(§)
_ (c1d4o/dz4 = ed%/dz” + 0@ )/ (3-2)B.

A guessed functional relationship for 9 is used, and the

parameters C| » C, C, are varied so that they are everywhere weaker
than the original values. The load P is then sandwiched between the limits

TEV NS IS 77 NP TV N N

min

For the method to have significance it should be possible to obtain

the values of C, , C , C,by cutting away portions of the structure. .
However, it is difficult to satisfy this requirement and specify the

values of C‘ » C, and C, 1in analytical terms, hence only numerical

solutions for particular configurations were obtained.
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An extension to this loﬁern%ound method was
tried, using the corresponding integral equation
formulation. ‘In the Appendix B it is shown that'the?
integral equation corresponding to the differential
equation (3.25) and boundary conditions (3.26) is

Ny

12

0 - P2/4EI.,, g K(z, 8)(f-2)° Q(s) ds = o,

where K (z, s) is a symmetric kernel.
The valueiof §74EM . is sandwiched between the maximum

and minimum values of the ratio

At
9// S Z, s) (4f-z) 9 (s) .

1t

This method reduces the boundary problem considerably,

but introduces the additional problem of finding the

kernel. A few simpler problems were examined, but the

complexity of solution for the differential equation

(3.40) led to a search for other methods.

A good esﬁimate of a léwerAbound was‘oﬁtained‘
by using a variation of a method provided by Southwell
(Ref. 31) to find the natural frequency of a rotating
system. This method does not appear to have been used
previously to find buckling loads. However, when applied
in this context it can often lead to valuable loﬁer bound

values. Consider the differentialcequation (3.25), that is

C1d40/dz4 - Cd®g /dz® + co - (Pz/z,EI,) )(30-2)0 = ©

This equation suggests that it might be broken into two parts,
namely
o, dp/ast & (PY/uEL, ) Gl-2)%6= 0

and

- ¢ a%/az® + 09 ~(P/4ELy) (B-2)*P = ©

(3.40)

(3.41)

(3.42)



A lower bound to the first buckling load of the differential equation

(3.25) is then determined by the buckling load solutions BA and Pb af.

equations (3.41) and (3.42), and is defined by the inequality

The establishment_of this inequality is easily obtained by examination
of the equations obtained.by weighting the differential.equations
(3.25), (3.41) and'(3,42) with the rotations, and integrating over the
domain. This approach is similar to that developed by Southwell to
find a lower bound to the natural frequency of vibration of a rotating
system, but for qombleteness the extension of the method to find a o
 lower bound to the buckling load of & structure will be outlined. The
- equation obtained from equation (3.25) is in the Rayleigh Ritz form,

that is

PZ/Z'EIW = [v,(8) + vy(@)1/1(8)

-]
c, ( (d%/dz?)? dz
e

wherev "VA(Q )

©

vg(e) =¢C g (d6/dz)? dz + C°S 62 dz
ie Lp

() = S(-%z-z)zgz dz .
Le

When the exact value of § , corresponding to the solution,’12p
of equation (3.25) is substituted into equation (3.43), 32

is obtained exactly, and

(p)%/uE1, = [, 6)1/2(01) + [Vg(8)]/20y) | (3.44)

However as equation (3.44) is & minimum of two values it is
possible to obtain lower values of V, (8) /T(8) and Vg (8) /T(6)
when each term is considered separately that is, there exiéts

sudh_thap

- ) (3.45)
PE/AE-I,,‘ = [v,(8)1/1(8,) ¢ [V,(8)]/1(8,)
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and -
P/ABTy = [V5(05)]/1(88) ¢ [v5(8))1/2(0,) | (3.46)
The solutions (@, , P,) and (B, , B, ) (see Fig. 3.19) are solutions
of equations (3.41) and (3.42) respectively. From equations (3.41),

(3.42), (3.45) and (3.46) we thennobtaiﬁ the. inequality

2 2, .2
Fp + g By [v,(®) + v5(8)]/1(6)
Load P
- P, [v (8,)+7 )1 /T(8
VA(e)/T(e)
kP=V 9)/T(9
V5(8)/T(8)
N
Pg™ V5(65)/T(65)

Choice of Variables in the Functional Form.

Fig. 3.19. A graphnof Load against particular solutions

of equations (3.45) and (3.46).

The equations (3.41) and (3.42) may be easily solved by replacing
the torsional stiffness and the warping stiffness by weaker values,

of the form

= [(3f-2)/40% ¢, , and C =[ (3f-z /J]2

The equations (3.41) and (3.42) then become

C, d*e/dz* & (P§£2/16EL1)9 =0 : L (3.47)

and
-ca’e /az® - (F /umL - 40 /g Gl = o (3.8)

The exact mathematical solution to equation (3.47) is obtained

by using a cosine shape and the buckling load PA is given by
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the equation
Py = (1681, C/4%) (/D% .

The exact mathematical solution to equation (3.48) is obtained from a

Bessel function solution of the first kind and order 4 and - 4, (Ref. 30)
and the buckling load P 8 is given by the equation

Py = (16.94/£°)° BT, + 16EI colf*

'?

Thus a lower bound solution to equation (3.25) is *

P1)(16.94/€22j EI"C (1 + 0.56 011r?/0112 + 0.55 coﬁz/.Cw?’) . (3.49)

For the_ﬁathematical model of the bridge structure as given by

equation (3.25), a lower bound is found from equation (3.49) and is

P,y 2331b .

This load must be adjusted to allow for the decrease in buckling load
resulting from the placing of the load at the top of the I beam,
instead of the centroid. By making this decrease the same'as is
found by the method of weighted residuals in section 3.8.2, a lower

bound of 215 1lb. is obtained.

* In section 5.4.2 it is shown that the lower.boﬁnd given by equation
3.49 can be simplified, especiall& when the value of thé floor stiffness
Colz/Ctg;is far greater than unity. This loﬁer bound fuﬁcgional form
is then fitted to the upper bound numerical form, and.a good estimate of

the buckling load of (within 5% of the numerical calculation, for values

> 2
of Cod /C Ty 5) is obtained.




- 95 -
3.9 Further Comparisons Between the Mathematical Model and

Experimental Results

The solutions to the mathematical model (3.25) obtained
in sections 3.8.2 and 3.8.4 sandwich the buckling load between

the limits

245 1b.

1 ~N

215 b g P <

The measured buckling load (Fig. 3.14) was approximately 240 1b.

A good approximation to the first buckling mode of rotation
is obtained from section 3.8.2, and this approximation is compared

with the measured results in Fig. 3.16.

The comparison of the measured and predicted buckling loads
and(modesﬂindicates that'the mathematical model‘developed in this
chapter is a reasonable description of the structural behaviour.
of the pafﬁicular model bridge. In the following chapters, the
ideas gaiped from the study of this simple bridge structure are
enlarged, and the design of a real through bridge structure is

discussed.
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CHAPTER FOUR

REFINEMENTS OF THE MATHEMATICAL-MODEL FOR THE THROUGH BRIDGE.

L1 Introduction

In the previous Chapter a method to predict the structural
behaviour of through‘bridgés nade from I beams joined by Light botton
chords was established. This representation of the real bridge, by a
system of I beams with light bottom cross béams can be improved. In
this chapter severai original improvements are made, each improvement
using as a basis sméll perturbations of the deformed shape of the simple

bridge.structure.

The first effect described is the effect of including web
stiffeners in %the I beam structure, while the second effect described
is the effect that lateral loadings, applied at points other than
through the centroid of the I beam, have on the deformations of the

structure.

Le? Web Stiffeners

4Lo2.17 The Design of Web Stiffeners.

Web stiffeners are added to the webs of plate girders as an
economic means.of reducing the total cost of the I beams. The &
stiffeners aré used to increase to the lateral stiffness of a light
web plate, and therefore reduce possible cross sectional distortion
(Fig. 4.1). Considerable investigation by previous workers has led
to a satisfactory arrangement of stiffeners for plate girders,
particularly when the plate girder deforms in the plane .of the

undeformed web. *

#* The mathematical models summarizing théée observationé of the

behaviour of stiffened plates are described by Timoshenkq)
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(Ref. 45) and Gaylord and Gaylord, (Ref. 46). The generally accepted
criterion as to when stiffeners are needed for girders made from
structural grade mild steel , is when the ratio of the depth of the

I bepim-d to thé web thickness t exceeds 60 (Ref. 28). For ratios
greater than»these vaiues, vertical and horizontal stiffeners are
used to limit cross sectional distortions. End or load bearing

stiffeners are added to the plate bridge near points of concentrated

load. These stiffeners are usually designed to resist most of the

vertical loading.

Y

Fig. (4.1) Cross Sectional Deformations.

However, little knowledge exists about the behaviour of stiffeners when
the I beam, and hence the stiffener,-twistso To investigate the
additional effects of twisted stiffeners, a model beidge with

stiffeners was loaded and the deformations measured.
4.2.2 The Effect of Stiffeners on the Deformed Structure.

A model bridge, of dimensions similar to the first brass
model, was built, and stiffeners designed according to rules
recommended in (Ref. 28) were added. This modél bridge was loaded,
and a deformed shape ;Jas measured. The deformed shabe was found to
be very similar to the measured shape of the first brass bridge.
The buckling load, as found from a Southwell Plot of rotations
indicated a first buckling load of 290 1lb., that is an increase
of 20% on the corpesponding load for the bridge without

stiffeners.



- 98 -

A detailed description of the geometric deformations
of the bridge enabled the main deformations of the stiffeners
to be isolated. It was found that the stiffener size was
sufficient to restrain the distortion of the éross'section
of the I beam, but was not sufficient to‘restrain the relative

warping of the top and bottom flanges. The stiffeners assumed

this warping deformation.

4LeR.3 A Mathematical Description of the Effect of

Stififdners.

A close look at the action of warpéd'stiffeners was

taken by breaking down the general problem to simpler specific

problems. One arrangement measured was the deformations of an
I beam with an end stiffener, with a pure twist apgiiedq
Measurement of the surface shape of the stiffeners (Chapter one)
indicated that a reasonable approximation to the deformed

shépe of the stiffener was a simplé anticlastic surface,

(i.e. one with principal curvatures equal in magnitude,  but

opposite in sign).

The forces needed to sustain_the stifféner in the
shape of the gnticlastic surface are a set of four balanced
forces (FigpllolA),, A study of the effect of thése four
balanced forces on the I beams (ChaptervOne) leads to
the first mathematical model. Hdwe%er, thié modél specifies
that all‘longitﬁdihal'lines remain straight;A Td improve
the matﬁématical model it is neéesséry to includé some
bending of the flaﬁges° The improved model is wéll known
and isrgiven by Timoshenko in (Ref. BOs}and 47) but for
completeness the model is outlined égain below, in a

manner consistent with the outlook of this thesis.
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Measurement of the deformed shape of an I beam, with a

heavy end stiffener , Fig. 4.2, indicated that the geometric deformations

are separable into Iiwo distinct portions. These two geometric

deformations may be summariged as follows:

(a)

and (b)

each surface originally:flat de?@rms into an anticlastic
surface, (Fig. 4.3),

each flange bends laterally. (Fig. 4.4), and the
geometrical specification is the lateral defle&tion u is

determined by the rotation of the web 9 s

% (height of web) Q@

1 1.

and u

The forces necessary to sustain these two separate

deformations are

(a)

and (b)

A St. Venant torque, given by the equation
T, = C d6/dz,

where C is the torsional stiffness of the I beam.

Bending moments in each flange, given by'the equation

e z
M = EI; d v/dz ,

where EIT’ is the flexural rigidity of one flange,

z 2
Adhusis the lateral curvature of one flangej

The ppir of bending moments M have no net statical action on the I

beam section, but within the section are a distinct set of forces,

called a Vlasov bimoment B, (Refs 9). The bimoment is then

determined by the product of these two moment couples by the

distance between them, and

B=Mh

35T, h° a%/dz”

c, 4°%6/dz" o

The constant Cl is called the warping ‘stiffness of the I beam.

(4.1)

(4.2)
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3 ;

T T

Fige 4.2

I beam, with built in end, acted upon by an end torque

Fige 4o3

I beam deforming ipto series of anticlastic surfaces

Fige 4o4 } _
Flanges bend laterally: plane sections remaining plane,
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The bimoment is not the only force which must be applied
to the cross section. As the cﬁrvature of the flanges is changing,
shear stréains and hence shear stresses must be applied Lo the |
flanges. To balance the corresponding shear forces V, which are
opposite. in direction on each flange, a torque T, must be

applied, such that

T, = Vh o
2
(4.3)
The shear forces V are found from statical equilibrium of an
element of the flange, and
T, = (dM/dz)h
= ~(EL, d°v/dz>)h
1 ! 2 3,3
= -E1, h° d 9/dz
= - ¢, a%/dz’ (44)
= - dB/dz
The total forces necessary to sustain the deformations (a)
and (b) are therefore a torque T satisfying the equation
T =T, + T, - (4.5)

3
Cd®/dz - C, dg/dz

and the bimoment B, given by the equation

* N
B =¢C d&dz .
4.2.4 Including Stiffeners in the Bridge Model..

The effect that the stiffeners have on the deformations
of the through bridge éhg§_now be found. It has been shown in Chapter
One that when the stiffener defbrms into a simp@# anticlastic surface,
the forces necessary to sustain this deformation can be found. To
a first approximation stiffeners in the through bridge deform into )
anticlasﬁic surfaces fEié‘ 4.5), with principal curvatures equal
in magnitude but opposite in éign, the twist of the éﬁtffeners
being given by the equation defining the warping of the I beam

cross section, that is
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$/tn = do/dz ..

The stiffener effects ¢hn then be mathematically
described by altering the .dii‘ferentialAequation describing
the through bridge (3.7). Between the stiffeners, the
_ differential equation expressing the change of torgque per
- unit distance along the bridge remains unaltered, that is

£ 282

-~ ~

in the region z, (see Fig. 4o5)e

Cri
o at/azk - ¢ sPojaz® + 0.0 - (P/umL,)(Hl-2) 9= 0,

while in the region of the stiffeners a bimoment is applied
to the bridge by the stiffeners.. The differential equation
of the bridge in the region of the stiffeners must be

modified. The bimoment necessary to keep the stiffeners

twisted is found by considering the twist of the
stiffeners, d¢/dk = dB/d) and the torsional stiffness

of the stiffeners, GJ and is given by the equation

STiFF ?

B = —GJSTIFF h d9/dz

The extra torque applied to the I beam is therefore

T, = -dB/dz

3
h d?8/dz% .

= -G gp1pp

The change of this torque per unit distance along the bridge
is included in the differential equation showing the change
of torque per unit distance, in the region of the stifiééners
and we obtain the equation

4 4 ’
C, d 6/dz™ + e —

(for zs = dz € zi\< z; +dz) o

‘The differential equations (4.6), (4.7) are difficult

to solve exactly, and as before the method of weighted

residuals is used to obtain an approximate solution.

h a%8/dz3 - ¢ d%/az? + ¢ I —(P2/1.,EI1)(%L—Z)29=

(4.6)

0,
(4e7) .
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Weighting the residual with rotation @ and integrating over the

total gength of the bridge we obtain the equation

0 ’ai.*‘“' [ 2
3 2 2 2 2]’

‘ &% dp 04y + % 6T, oo e A0/ pdy - gc do/dgody - Pﬁerﬂgge-s)é’“s =0,
s =12, - 3,.-d3 . {e ie (i 8
For a continuous rotation, and first a continapus derivative of
rotation (consistent with the measured results) the.equation (4.8)
can be reduced to the equation
¢ - D] : ©

2 (A 2 2 < =

Gheds)dy  + GI;TFF@W%)I + g c@oldp s - Plasty g (1e-3)0dy=o,

Ly L=1,2 Lo . ' e (49

which is identical to the expression for the Rayiei_gh Ritz formulation;

the stiffener term being given by the equation

b=¢ 4=4
f(m: < g CIgpppp 04/dz d4
L='lz‘;‘=a K. 4’:0 ’
= S} G (ad/dz)?
=,2..
= S % Ggprpy (d9/dz)2
(=42

Thus the approximation for the stiffener action indicates
that the addition of stiffeners increases the St. Venant torsional
stiffness of the cross section. The St. Vénant stiffness is
increased because the stiffeners deform (to resist the warping
of the cross section of the I beam) into a simple anticlastic surfhee

of similar shape to the warping of a rectangular section of the

same outside dimensions as the I beam *,

* Warping is the axial déviatibn from plane sections perpendicular

to a longitudinal axis. The warping deformations of twisted
rectangular bars are described approximately by a simple
anticlastic surface. The general topic of torsion is discussed

in Chapter Six.




Fig. 4.5. Tuwisted T Beai and Stiffener.

A guessed buckliné mode, specified by a series of
continuous cosine waves indicates that the addition of the
stiffener terms in equation (409) incréases the buckling
load of the model_Bridge structure from 245 1b. to
295 1b. (as measured by the moéified Southweil Plot on
rotations outlined in Chapter Three). ‘However, these
individual cosine anés have no sharp éhanges in second derivatives

|
at the points corresponding to- the étiffener locations,
and,therefofe thé convergence of the moéde as fqund by the
method of weighted residuals to the first.buckiing mode

of the structure is not guaranteed. . ®

T

* The representation of a‘discontinuous structural arrangement
by a series of continuous curves is a difficult problem.

The problem is one of determining whether an expansion of
eigen functions (buckling modes) obtainea from a continuous
problem is convergent to a shape which has a finite number

of discontinuities in its derivatives, ' Specific problems

are being considered in present literaturéy(for example

Ref. 48), but much morebdetailed investigétion needs to

be carried out before general statements can be made.
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From observation of the warping of‘the cross section of the
deformed bridge (Fig?.4°6) it is seéhlthat‘étiféeners placed near
the centre of the span contribute little to the torsional stiffness
éf the I beams, while when placed near the ends, where larger
warping deformations are present, a larger increase iﬁ torsional
stiffness is ohitiiﬁﬁgg: However this increase in torsional
stiffness provided by the stiffeners is not great, and it is
usually not worthwhile to include the_stiffener termé when
finding the buckling load of the bridge str;lcture° If it is
felt that the buckling load should be increased significantlxj
it is advisable to consider the economics of making portion
of, or the complete sides of, the bridge into a closed box
section, and thus make full use of the high torsional stiffness-
of a closed séction,[for example see Ref. 49-and subsequent

discussionq.

lines originally !
erpendicular to the
Jlongitudinal axis.

¢)=Wurpm¢f of 4
op flange U

the shigeners <bottom flange U

B

P=2301b, g

Fig. 4.6, Deformed Bridge showing Warping of the

Cross Section.

4.3 Lateral Loadings.

4.3.1. Introductinn

When the model through bridge was loaded, it was noticed that
lateral loadings ppplied to the structure had_an effect on thé
rotation and latéral movements, the effect being large when the
bridge was ilready loaded with vertical loads. Thus, 1t appears
that the lateral and torsional stiffness of the bridge decreases

with applied vertical loading.
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This phenomenon is simiiar>to the behaviour of a
laterally and axially loaded pin ended colum. It is vell
known that the lateral stiffness of the<Eblumn decreases
rapidly as the axial load is increased. When the column
is loaded by é uniform iaterai force system the column
.defdrms‘inﬁo a'éhapétﬁhieh conﬁains a 1arge‘component of the
first‘buékling mode of the.columna These-deformations are
then magnified by the instability effects of the axilal
load, especially Qheﬁ the axial load is close to the
first buckling load. Thus, in ﬁhe design of fréme
systems liable to inétabilitj, partiéular attention
is placed on the effects of lateral loadingé° As a
result, designers-usually limit the loads on the
structure to those vaiues for;which the instability

effects are small.

For some particular structures, however, it .
is possible that the lateral loadings on the structure
do not decrease significantly the lateral stiffness

of the structure{

C§Qsider the approximations that are made in
the design of through bridges. The questions arise:
"Dd the wind forces affect the latéral stiffness of
the bridge?", or "Do tﬁe loadings applied on the
floor system, awéy from the side members; affect the
torsionai'étiffness.of the bridge?" Little knowledge
concerning these probleﬁs exists. The decrease in
stiffness has previously been assumed small, as most
experience has been with very heavy railway through
bridges. However, this does not appear to be the
case with light through bridges, with similar proportions

to the model bridge outlined in Chapter Three.
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In the following sections an original and powerful analysis is
presented to describe the effects on through bridges of laterél_and"
torsional loadings which remain constant in hagniﬁude and direction
as the bridge deforxﬁs° Ip this analysis, the.initial,crookedness of
the bridge and the deformations induced byAth¢ applied loédings are
described in terms of an infinite series expansion of the buckling
modes. Keeping to the general method of attack used throughout this

thesis, the simple problem of the analysis of a4 pin ended column,

under the action of axial and lateral loads is considered first to
introduce the necessary ideas, and these ideas are then extended to

describe the behavi@ur of other structures.

4.3.2 . The Effect of Lateral Loadings on an Axially

Loaded Column.

Consider the behaviour of an Euler strut of length carryiﬁg
an axial load P, anfl having flexural rigidity EI. The inter
relationship between the load deformation relations, the equations
of statical equilibrium, and the geometrical compatibility of

deformations can then be expressed by the differential equation

EI d2y/dx2 + Py =0 o (4.10)

For this differential equation, together with the boundary
conditions x = O and ,Z, y = O, there exists an infinity of eigen
functions (buckling modes)y’b , which are solutions of (4,10)0-
Fortunately in this case the Yy are known precisely, and may be
written as

y, =&, sin nrx/bn
The corresponding eigen values Aq are given by

A = P/EI = n°w¥/Q%

n

(4.11)
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The effect of a lateral force is included in the mathematical

model in a manner similar to that which was used to handle the initial
crookedness, as outlined in Section 2.4.3. The well known lateral
model for an initially crooked column (for example (Ref. 50) ), |
acted upon by a uniform load w becomes

EI dz(y- yo)/dx2 + Py = %WX(£~X) ., A ' (4.12)

.

The shape of the bending moment induced by this load is then expressed.
as an infinite series expansion, in terms of the bﬁckling mode éolution_su

The values of ém in this expansion, are defined such that
; C 4 ; . + - L V- (4" 13>
2y2 + c3y3 © o o Cnyn o o 2 WX(Q X) o

The value of the constant ¢ is obtained by multiblying both

)

sides by the orthogonalizing function for the differential equation,

in this case sin(nfx/f), and integrating between the boundaries, i.e.

¢ ‘ } ‘ '
Scm Vg Ty &x = g%' wx(f-x) ynd_x ° (4.14)
() R A

The orthogonaiizing function is used because the infinite

series expansion é; [ 4 m ym Com A can be simplified,
. w =g 0 .
and. the term c,, found, using the definition of the orthogonal

function, i.e.
. e ' ’ .
} ZML gw de =0 for m not equal to n.
e . '

Then, the value of the constant ¢, 1is given uniquely by the

equation

oI ¢
c = g% wx(f -x) ¥, d%fyi dx .

° -

The mathematical behaviour of a pin ended column, allowing
for both initial crookedness and lateral loading, is obtained by

expressing the final shape y as the infinite series expansion

Yy =byy o+ byy * Ba¥gy * e oo
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Ll
Yo » &nd lateral loading into the equation (4.12) and by is obtained

The value of b is obtained by substitution of the egpansioﬁs for y and

as the ratio

b_=la_+c /(BI7%/g3)] /-(B/Pn)l

n

Using these values of b, in the expansion for the final shape,

y becomes

y= [a1+ c1/P1]/[1— P/P1] sinwx/@ + [a2+c2/P2]/[l-P/P2]sin 2Wx/2+ow'(4.15)

and near the first eigen value of the mathematical model, i.e. for P

close to P, s the final shépe,“y, is closely represented by the first

term in this expression, that is

y = [a, + c/P1/[1-B/P] sinvx/l (4.16)

Thus, in this well known'model1 the lateral load is replaced by
an equivalent first mode initial crookedness, equal to the crodkedness

induced by the lateral loading before the axial load is applied. The

model is reasonably accurate,especially when the loading produces

deformations which contain a large component of the first buckling mode.

For example, the deflections and moments for a unifofm loading
are calculated using only the first term of the infinite series are
compared; in Tabie 4,1; with the solution of the beam column equation
given by:Iimoshenko (Ref. 30). It is seen that a good estimate of the
effect of the lateral léad ié obtainéd° It can also be seen from this
example of the pin ended column, that as the first buckling mode is very
similar to the deflections induced by the lateral loading, the lateral
stiffness of the column decreases with increasing axial loads by the

factor (1-P/B ).
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Jpxial  Deflections " Moments
Load
Fipst term in Exact solution difference difference
idginite series of (4)
4 LA 4 -
0 0.01302¢ L /BT 0.01307w [ /ET 0.4% 3%
4 4 .
0.9p  0.1307w A /BT 0.1307w L /EI - 19

Table 4.1, Compafisons betweenlMathematical Models.

The ideas outlined in the preceding analysis are now

~ extended by‘the author to develop mafhematical models describing
the behaliiour of real through bridge structures. &n equivalent
initial crookedness is found, and a design method is developed

- to allow for the effects of lateral loadings and initial

crookedness.

4o3.3 The effect of lateral loadings on an I beam

liable to lateral and torsional instability°

A reasonable model for the behaviour of a light through
bridge when it deforms according to Fig°'4n7 is given in section 3.5,
Then, when the load.is applied vertically through the centroid of
each I section, a good model for deformed shape of the initially
straight structure ih the region %,Lé z £ 0 is given by the

system of equations.
| 5L, d*u/dz° - 3P(3{-2)0 = 0

3 |
S—COG dy - Cld39/dz3 + C de/ds + (02 du/dz 4P(w; ~u) = 0. (4117)

Fig. 4.7. Through bridge deformations, when the light

bottomchord provides restraint against rotatioﬁ:but
not translation. '
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When these two equations are combined into a single differential equation,
the inter relationship between the load deformation relations, statical

equilibrium #nd geometrical compatibility for the region;%f <z < 0O,

becomes

c,a'8/azt - calo/an” + 09 - (P/UEL)H-2)9= 0, t4.19)
This differential equation, together with the boundary

conditions

z =4fandtl 5 6=0 c,d%/dz® = o (4.19)

has been shown in Section 3.6 to be self adjoint and positive definite,

and thus there exist an infinity of buckling mode solutions 9" and
buckling load values R:. . It was also shown in section 3.6 that any shape
provided it satisfies the boundéry conditions (4.19),can be expressed in

terms of these eigen functions.,

The effect on the mathematical model (4.17) of an applied
lateral moment ML which does not change as the structure deforms,

is to alter the first equation in (4.17) to the equation

(4.20)
EI, d*u/dz” - 4P(30-2)8 = M

1 L

When the moment arises fkom the action of a central lateral load
F and the boundary conditions (4.19) remain unaltered, then the
moment is given by the equations

M= $F(3-2) for 30 ¢z ¢ 0
and

ML - %-F(-%l-bz) for 0g z¢ “'é—l

Thus, for the central point load equation (4.18) in the region & < 3<¢

becomes

c a*8/az* - ca®8/az? + 009':-(132/4EIW)(%Z-z)%a= <FP/4EI,,)(%E-Z)2 . (4.21)
in which the right hand side of the equation (4.19) shows the effect
of the lateral load. The right hand side of the equation (4.21) is a

function of z alone, and this function BFig. 4.8) can be represented
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by the infinite series of eigen function solutions of (4.18).

The constants c, are defined in the region %B«: h<o

value of k

i = REP/ B (1 -ER3) .

i %PFX/K:EI = Bl + oo

3.0

c,m/ch? = .4
i R
1.0 ) ) — 0
ELasTIie  RESTRAINT  Co ei'/c‘lr'
L i 3 A g I " 4
0 50 100 150 200
Fig. 4.8. Values of k for 1aterai loadings as
given by equation 4.23,
by the series *
2
c,0,3l-2)? + ep,f-2)? + o . =(FR/WEL) G-0)° (4.22)

and are found by mutliplying both sides of the expansion
by 9%1 , using the orthogonalizing function (see section
2.7.2), andvintegfating between the boundaries. This gives
cy uniquely, in the form
] 9
_ 1 2 R (1 _\°
¢, = jGn(FP/AEL')(zIZ—Z) dz/ (67 @l-2)” o

e i

* The series (4022)1haé been chosen with a weighting function
(%{mz)m on the left hand side in order that the constants c,and
the final shape are dbtained&tin terms of buckling mode componénts
-only. The weighting function is dependant én the differential
equation. To the author's knavledge the use of a weighting
function in this context has hot been successfully tried

previously in structural engineering.
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when the orthogonality properties are used, that is

0
S GQ-}S ¢, 9, 0,dz = 0 for m not equal to n.
£ v

The final ghape, @ given by

9 = 0L|91 + 0(7.9:. + 0(,39; + -

can be found by substitution of this expansion into equation (4021),

The constants d,, can then be expressed as the ratio

4y = o (4BL)/P7 [1-(B/2))2 ]

n

Near the first critical loads, d|9' dominates and the maximum value of
deG occurs at z = 0, Under these conditions the value d,9' is given
by the equation

d191

I

k FR/P[1-(3/P))? ]

a,/l-(/p)* 1,

(4.23)

where k is a variable depending on the form of the lateral load, and
the values of Cf » G, C, s aﬁ&fﬂg . Values of k are plotted in Fig.
4.8, The effect of a uniférmly distributed load is less than that of
the point load, as the main bending and hence main rotational actioﬁ
occurs near the centre of the beam but a reasonable estimate for the
rotation is obtained by replacing the lateral load by a central point
load equal to two thirds of the value of the total lateral load. The
overall form of the behaviour is evident in Fig. 4.8. For low values
of the elastic floor s%iffﬁesshcaﬂ?./Ciiatefal loadings have a
‘relatively large effect, but as the restraint is increased the relative
effect becomes smaller, but not negligible. Thus, in this type of _
structure the effects of lateral loadings should be considered in the

design of the structure.
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Lo3.4 The Effect of Torsional Loadings on an I beam

wﬁiable to Lateral and Torsional Instability.

When the bridge is loaded at points other than through
the centroid of the I beam, aqrsional loadings are imposed. For
example, when the load is applied to the floor beamsgytémmp, the
sides of the bridge would rotate, and the centroid of the I
beams would move both laterally and vertically even if the
bridge was initially straight. The effects of.a torsional
loading T, applied along the bridge are included in this
section.

The effect of the differential equation (4.17) of a
torsional loading T, 1is to-alter the second equation giving
the conditions of torsional loadings for the bridge to be in
equilibrium, and o

EL,d%w/dz° - $P(30-2)p = 0O

9 T . (4.24)
(b&gdz + Cdo/dz - C, d78/dz +3P($0-2)du/dz ~4P(u, -u) = Ta.
i o
Using these modified equations, equation (4.14)
is aptered to the single differential equation
A S 2 10-2)%= ar,/a
C1d 6/dz™ - Cd"g/dz"~ + Co -(P /@In)(z -2)9= 4z - (4.25)

The form of the applied torsional loadings T,
is given by examining the statical equilibrium of an
element of the bottom chord, as in Fig. 4.9. The
differential equation showing these.effects, for a

point load applied on the chord, is
T 2 _ 1
Elg dy/dx = Ma - 3 Pxa

where EIF is the rigidity in the vertical plane of a
bottom chord, and p is the line load per unit distance.

Integration of this exprgssibn gives the §quation

EIde/dx_z Mxa - & px%» + A

+
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and fitting the boundary conditions

0 at x =3s

dy/dx

/
gives the equation

EI, dy/dx = M(x bs)a- p(x%=s%/16)a .

Denoting the slope at the point A byE% , the end moment slope
relationship per unit distance along the bridge is then given

by the equation
M = 2B, 8 /sa - PS/e

=Co - ps/8 0
When the loading is applied uniformly in a single vertical
line, along the centre of the bridge deck, as in Fig. 4.9
the change in torque per unit lehgth, dTz/dz is obtained

from the equation

dT/dz = ps/8 R

For the bridge loaded with a single vertical load in the

centre of the deck we have the system of equations

dTZ/dz = 0
for $l¢z ¢ dz

de/dz = $P(s/8)/dz

for dz € z <0 ;

and.for the bridge loaded uniformly with a load w per unit

and

area over the bridge deck the change in torque per unit length

is given by the equation ~

dTZ/dz = (ws) (s/8) .

{4.26)
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——— unit distance
) ———— R
. distance between
A l LA floor beams, a
-
r .

7

Fig. 4.9. An element of the bottom chord of the bridge

)
shown in Fig. 4.7, loaded along the centreline

The effect of these torsional loadings is seen by
expressing the change in torque per unit length as the
infinite series expanéion
e 8, (3l-2)% + e 0,3-2)% + ... =dl/dz, (4.27)

and solving for the constant e by substitution of the

n

expansions into equation (4.25). The value of e, is thus

given by the ratiO"

-]

e = ((de/dZ) 9n dz/ ggi (%1_2)2 dz -'_o. , |  (4.28)
e 1e

The final shépeé} s given by the series .

can be found by proceeding in a similar manner to that
outlined ebove and the value of the first mode component
fla at z = 0 is given, for a central line load, by the

ratio

= k(50)(/8) (451)/1(p 1) (1-(3/2 )% )]

o
D
I

1Y 1(2=0)

‘f10/[1-(P/P1)2 1. | (4.29)

Values of k are plotted in Fig. 4.10 for a

central line load, for a uniform load, and for a
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central point load. The central point loaa is the dominant
case, as can be seen from Fig. 4.10 and loadings of this type
are likely to cause a much earlier. first yield of the structure
than other forms of loading. It is also clear from Fig. 4.10

that the torsional loading effect should be considered in the

design of this type of structure.

Valve at &

8,0 = & (B/2)(/8) 4BL/(P,£)*(1~(B/P,)* ) central line load
0F k1(P/ﬁ)(S/IZ)AEI.'/(P1Q)2(le(P/P1)2') uniform load
k,(B/2)(s/8) ‘AEI',/(P1£)2(1—(P/P,‘I)2 ) point load,

ELAsTie Flook STIFFNESs 3 €/ew?
0 L) L 1¢0 ., 150 -, 2G0
Fig. 4.10. Values of for Torsional Loadings as

given by equation 4.29.

4L.3.5. A Method to add ﬁhe Effects of Initial Crookedness;

Lateral loadings, and Torsional Loadings.

A soiution for a combination of the effects of initial
crookedness, lateral loading and torsional loading is achieved
by incorporating all effects into one differential equation, and
solving this mathematical model in a manner similar to that
used in previous cases. The approximate'final shape @ can then
be.expréssed in terms of the first buckling mode components,

the initial crookedness, and the lateral.loéds, in the form

¢ 0= [a1 +dg 1‘10191/[1-=-(P/P1)2 1. o (4.30) .
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where a‘Q‘ is the initial crookedness in the first mode,<;09,
is the equiﬁalent first mode initial crookedness sustained
by the lateral load, and f]oel is the equivalent first mode

initial crookedness sustained by the torsional load.

The equation (4.30) can be used in design provided

it is realized that the expressions for the lateral and
torsional loadings are only approximate. In cases where
the axial load is zero, the predicted deformations obtained
by using one term of the infinite series are likely to
differ from the exact solution of the mathematical model.
However, as the axial load is inéreased,‘the differences
between the two solutions become smaller. Thus, the
equatién (4.30) is a reasonable rep‘resentétion of the
solution of the mathematical model (4.17) with initial
crookedness, lateral loadings and torsional loadings
which remain constant as the structure deforms.

Provided the equivalent initial crookedness resulting
from the lateral and torsional loadings is small and

does not introduce changes in the geometrical terms
of equations (4.17), the mathematical model is a good

representation of the behaviour.of light through bridges.

The foregoing method is used in Chaptef Five
in the design of through bridges which have light bottom
floors. It is shown there that whén initial crookedness
and torsional loading effects (described in terms of an
infinite series of buckling modes) are compared with
measurements taken on a real bridge structure, reasonable

agreement is obtained.
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CHAPTER FIVE

THE DESIGN OF THROUGH BRIDGES.

5.1 Introduction

In this chapter ﬁhe design of through bridges is
discussed; The use of through bridées and present methods
of design are investigated first aﬁd'compared with the
measurements outlined in Chapter Three. Large differences
between the ekisting mathematical models uséd to design
through bridges and the measured fesults'ére shown to
exist, énd, as a résult, further'ﬁodel tests are carried
out to obtain a good appreciation of these differences.
Using the ideas outlined in the previous chapters a new
mathematical model to describe the behavioﬁr_of light through
bridges is propoéed, and an existing bfidge is analygzed by
* this method. This analysis is then compared with |

measurements taken by loading the full size bridge.

5.2 The Use of Through Bridges

Through bridges are often used when headroom is
an important consideration. Thié consideration has
resulted:in thé use of thfough bridges as ralilway overpasses;
present design expefienée, as tabléd in_varioﬁs codes, is

largely concerned with structures of this type.

More recently, the through bridge has been used
as a pedestrian overpass. The,sides of the bridge,

usually of truss coanstruction, are used as the hand/féil,'

and the light floor beams are used to connect the trusses.

The advent of roll on roll off'cargo ships

has resulted in the use of the through bridge as a
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connection between ship and'Shore; This connecting bridge is often
longer,.wider and of lighter floor beam construction than the

railway bridge.

5.3 Current Methods of Design

Most through bridges are designed using ideas summarised .
by the British Standard 153 (1958) "Steel Birder Bridges" (Ref. 51).
These ideas, in‘’turn,are based on the Timqshenko Model, presented in
"Theory of Elastic Stability", (Ref. 30). The top flange of each

of the I beams is isolated and regarded as an axially loaded coiuﬁn-

with lateral restraints provided by the web and floor beams; 'Tﬂisf?A

Timoshenko model will now be outlined for compé[é‘t:_eness°

Consider thé bridge as shown in Fig. 5.1, and assume a
deformed shape as shown in Fig. 5.2. The top flange has deformed
laterally and the I beams have distorted in the plane of the cross
section. The bottom flanges have been completelyArestrained in the

lateral direction.

These estimates of the deformations are used to establish
a mathematical model. The buckling load can be found for the'top
flange as though it wére an Euler pin ended strut. The top flanéé
is éimilar to a column loaded with a ehahging axial lqad and |
restrained elastically in the lateral direction° The buckling
load of the top flange system is used to determine a limiting
stress in this flange. The axial load Rr that needs to be’
applied to the initially sﬁraight‘flange, to sustain thé buckling
mode, is expressed in a form similar to the Euler buckling load;
an effective length L is used to allowlfor the effects of chénging '
' axial loads along the bridge and to allow for the effiects of the

lateral restraints. This load is then given by the equation

~

Po= TEL/
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When the top flange is considered to be laterally.supported by
the floor system and web stiffener arrangement,the effective length,

as found by British Standard 153, (Ref. 51) is given by the formulae

¢
L = 2,5 l El, a5 - (5.1)

where E%_ lateral stiffness of the top flange

distance between frames

a

and S

the virtual lateral displacement of the compression
flange at the frame nearest mid-span of the girder,'
taken as the horizontal deflection of the stiffener
at the pbint of its intersection with the centroid

of the compression flange, under the action of wunit
horizontal force applied at this point to the frame

only.

As an example, consider the through plate girder bridge at the
ferry terminal at Devonport, Tasmania, shown in Fig.553.

The effective length for the ferry-términal bridge as shown
in Fig. 5.3, calculéted from the sbove formulae, is'250 inches, which
is approximétely 4 of the length of thé bridge and the effective length
~divided by radius of gyration, L/r. is 54. For a L/r ratio of 54, .
B;S. 153 recommends a working stress of 16,400 psi for structural
grade mild steel.

Cqﬁparing this stress with the buckling load of the flangegf

S
RT found from the modified Euler condition Rr =1[EI/L‘ , we find that

the load corresponding to a working stress of 16,4001psi is 1/6.4 of the
buckling load. Thus instability effects for the corresponding buckling
deformation are small.

The buckling mode can be either a symmeﬂric lateral deformation
of the top flange 1about the midspan or an anti-symmetrlc deformation,
as the corresponding buckling loads are very close. It ccan be seen
from Fig. 5.2, where the symmetric buckling mode is shown for the

particular ferry terminal bridge, that one quarter of the length,
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Fig. 50,4 Solutions to Timoshenko model for the lateral stability
of an axially loaded column with elastic lateral restraints
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that is L = Z/A, does not represent the distance between points of
contraflexure. The lack of correspondence bedween the effective
length and the distance between points of contraflexure in the
buckling mode occurs because the buckling mode for the restrained
éystém is not the sinusoidal function buckling mode of the pin
ended strut.

A comparison is now made between other codes of practice,
the Timoshenko model in "Theory}of Elastic Staﬁility" and the
British Standard 153. The B.S. 153 expression for the effective

length, equation (5.1) can be modified to

PY:A/“'AEIT - 2.-.5(1/L)4 (5.2)

where (); =a/§
In %}g. 5.4, equation (5.1) is plotted against the Timoshenko
solution and it is seen that the equation (5.1) given in B.S. 153
is an overestimate of the effective length, for low values of_F o
A closer estimate, especially for low values of F», is also shown
in Fig. 5.4, and this expression is ' |
ff/?r“EIT - 2o (/LY. >
When equation (5.3) is used to find the buckling load for
the ferry terminal bridge of Fig. 5.3, it is f§und that the ratio |
of working load, as recommended by B.S. 153,tovbuckling Joad is
1/9.2. |
The recommendatiéqs of the Column Research Council (C.R.C.)(Ref.52)
are based oﬁ Engesser's formulation of the problem (Ref. 29). For
a perfectly straight system the buckling load is increased by the
addition of U frémes of a stiffness sufficient to induce a required
buckling mode. The stiffness of the U frames required, C,uv y 1s
given by the equation
Crag = 14458, [ -
‘where P, is the Euler pin ended column buckling load of a strut of

length equal to the distance a between U frames. The buckling mode
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Fig, 5.5a - Behaviour of the initially straight bridge.
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Fig, 5.5b Behaviour of the model for the initially arooked bridge.



- 126 -

and plot of deflection against load are shown in Fig. 5.5. Approximately
similar expressions are given for the equivalent German Code (Ref. 53),

and the required stiffness is

p— y 505
Creq = 2050 Pa/K; a. R (5.5)

where K, is a ratio of the effective length to paneﬁ length and is

such that

"1.3¢ K, € 3.0 . ' (5.6)

Neither the C.R.C. nor the German CGode is helpful in the
analysis of the ferry-terminal bridge of Fig. 5.3, as the stiffness
of the U frames (i.e. the stiffeners) is insufficient to enforce

the type of mode implied by the two Codes.

The British Standard 153, C.R.C. Code, and German Code
formulae (5.1), (5.4), and (5.5) are all estimates of the U-frame-
stiffness required to obtain a buckling load and corresponding
buckling mode for an initially straighf frame. For the initially
straight frame ioéded to less than the buckling load, no deformations
occur (Fig. 5.5a). However when the initially crooked frame is

loaded, the frame deforms under the action of all loads (Fig. 5.5b).

These deformations result in resisting forces in the flanges and

in the web and floor beams.

The British Standard 153 gives an estimate of the lateral
force developed at the junction of the deformed top flange and the -

deformed U frames. This lateral force F is given by the equation

)

F=1. x 1072 1/[ (Cg/fac - 1.7) 1 | (5.7)
where CE = Euler buckling stress fof the member
and f,. = calculated working stress in the chord,

and the force is taken as acting in a horizontal direction at the top
of the U frame.

An insight into this formula is obtained by examining the
‘expression'(5.7), by choosing a bridge which has an effective length

equal to the panel length. Expression (5.7) can be rearranged into
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the form

F= (!L/25oo)(1 7 fac/CE / 1/40-5/384 LB/EIT) 1==1.7fac/C )

(5.8)

and in this form it can be seen that the design lateral force is ebtained

by allowing for the following conditions

(1) an initial crookedness of a half sine’ wave with &
maximum amplitude of ,E/QSQO,Vbetween each panel
point,

(2) an applied load of 1.7 times the working load,’

(3) the web resisting the deformations, and the

lateral ehear on web being resisted by the U frames.

When the effective length‘ls qu“l to the panel- length

5*, ) is

an alternatlve 51mp11ficat10n for equatlon (547
-3
F = 6-6¥X0" ('rr EL/ )/(cs/g» -1
and when the working stress is one half of the’ buckllng stress the

value of the lateral force is apprboximitely

F = 0.2% B

where P, 1is the Euler pin ended column buckling load of a strut

of length equal to the panel length.

The ¢;R.C. and GermanAcodes.both_indicate a value.of
.lateral force theh is aeproximately 1% P, , that is a value
higher than the value fe}.theAlateral force found in equation :
(5.9). The Amerieen Association of State Highway Officials
"Standard Specifications for Highway Bridges" (Ref. 54)‘and ﬁhe
National Association of Australian'state Road.Aﬁtheritiee
"Highway Bridge Design'Spegificationﬁ;i(Refo,55);'beth

recommend a force of 300 lbs. per linear foot, to be applied

¥ Measurements by Holt (Ref 52) 1ndlcate that thls force is

of the order of O 05% P ,'

(599)
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to the top chord panel point of each truss, (for a truss bridge) but do

not specify the size of the bridge. This force appears to be a

provision to allow for the forces developed as the bridge deforms, and

the value is approximately equal to the German gnd C.R.C. Codes * .
The stresses indﬁced by the force F are added to the strésses

induced by the vertical behding of the I beam sides of the bridge.

_The,maximum-stress usually occurs at the corner of the U frame.

For the ferry terminal bridge of Fig. 5.3 the addition of the

tensile stress in the bottom flange and the tensile bending stress.

at the corner of the U frame is the maximum stress that occurs in
the bottom flange.

From the preceding calculations it appears that the
ferry terminal bridge satisfies the requirements of the codes
of AASHO, CRC., B.S. 153 and the Australian NationalyAssociation

of Australian State Road Authorities. "Highway Bridge Design

Specificatiqn“ 1958. However, these codes do not appear to have
made allowance for a lateral torsional buckling mode. It was

shown in Chapter Three that this type of deformation is pos$ible
for very light through bridges, and thus a close examination of

the overall problem iswwarranted.

A series of model tests, using small mild steel through
plate girder bridges, was carried out. The models were varied

in size and in the structural arrangement, and the overall pattern

#* A comparison of the lateral force provisions of the AASHO and
CRC codes indicates the two are equal when
| AASHO (F = 300 lbs/foot) = CRC (F = 1%P).
Suppose the axial stress in the flange is 15,000 psi, then
(300/12)x (panel length in inches) = (15,000/100) area of flange
in square in.)
i.e. uhen the area (in square inches) of the flange is equal
to the panelglength(in‘inches) divided by six then the CRC and AASHO

codes specify a similar lateral force.
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of deformation was measured. The model tests were used to obtain ideas

and an underspanding,of the problem, iWhen these ideas had been
formglated, thg real ferry Qrnge at Devonport was loaded,
deformations peésured'and tﬁese'measuréd results were compaféd with
the pfedicﬁed vaiuése .Reésonable agreement was obtained, and hence
4an(impfbveg method. of desigﬁ is suggested. This meﬁhod is based on
the likelyﬂform of deformation of the bridge and hehpe‘the model
studies are k_présénted as a means of describing this form of the

deformation.

5.4 Model Studies

5.4.1 Measurements.

Simple mild steel models of plate girder bridges * were

* The dimensions and sectioh constants for these model bridges were
obtained in a manner similar to that used for the brass bridge, in

Chapter Three; The values were:

h = 1.5 ino,.ef: 48 in., flaﬁges 0.5 in x 0.125 in., web 1.5 in x 0.030 in.,
EI,,,A = 74,000 1b in, G, = 83,000 11901;14' , and EI = 1,850 1b in ~. A
graph of load aﬁd<extension for the material used to make the flanges
of the bridges is shown in Figu 5065 dther séction properties of the

bridges are as follows,

N o
~ >~ &
o @A kit =
= a ’ (32
g)o el Q g y P
S 2 S g 1: a =X
& g é @ ) =X >~
o Qo) QF_-: Il‘.
ﬁ &) > A
A 6 in 3EIL, /sa 7400 1b in 3.9 27 270 1b
B 8 in  6EI /sa 7400 1b in® 5.2 29 290 1b
c 8 in 3EI,/se 7400 1b in 3.0 25 250 1b

D 8 in 6EI./sa - 8700 1b in 4.8 28 300 1b.
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Load on one I beam (in 1bs,)

calculated N O —
0| (measureda [T T TT T .
] - - — e — o ——— — ' - Compress top
250 T -yt e ot
S llunge a mdspee.
Y i B
8
0 o ' L -
o o 3
0 - -
8 0.1 redian 0.1 0ol
0, total rotation from vertical o sue v
Fig. 5.8a Figo 5.8b Fige 5.8c Fig. 5.8d

——  measured result
— — - replotted from Southwell Plots,
' using measured crookedness and

measured buckling loadse

Yearvardt, ¢cs Fy5-9d

&

flanges
0a5" x 0,125"

web 1.5" x 0,030"

7 bottom chords " x 3/16" dia, mild steel,
width between I beams, a. , either
length of bridge A8"

Fig. 5.7a Fig. 5.7b - Fig. 5.7¢c Fig, 5.7d
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Fig. 5.7a Fig. 5.7b Fig. 5.7¢ Fig. 5.7d

Shape of the deformed model mild steel bridges, after some yielding of the top flange.

Fig. 5.7a Shape of model bridge ‘A’

Fig. 5.7d Typical Huggenberger me chanical strain

’

after some yielding of the top flange. gauge instrumentation used to measure strains.
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/¥ bale B ﬂ

A

Length

| | W : " , L I

«B 1/64" dia. floor bracing, 3/16" dii, floor. .

Fig, 5.9a Fig. 5.9b  Tig. 5.9¢ Fige 5.9d

N a
Yoo (-

FElastic buckling mode in rotation

Fig. 5.10a Figo 50,10b ~ Fige-5.10c Fig. 5.10d

Shape of the top and bottom flanges after some yielding
of the top flange,
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P/A (pounds/square in) . . . .

cold rolled M.S. steel strip,
+ + ——
60,000
40,000 29 x 10° 1bin,? f
area =0-5'% o as"

20,000

b4 ‘P} A
0

1‘0 . 2.0 300

(extension/length x 10%)
Fig. 5.6 Stress-strain relationship for the Mild Steel

strip used in the flanges of the Model Bridges.

N

tesﬁed, up to and beyond the elasti§ rénge of the material (Figs.
5.78, 5.7b, and 5.7¢ 5.7d and 5.7e). The floor of the bridge was
placed at the bottom flanée and was made from light mild steel round
‘rods. Some of the models had flooré.uhich were not braced against

movements in the lateral direction while others had floor bracing.

These model bridges deformed as indicated in Figs. 5.8a, 5.8b,
5.8c and 5.8d. The cross section of the I beam did not distort to

any measurable extent. While all strains remained elastic, the

deformed mode was as shown in Figs. 5.9a, 5.9b, 5.9¢ and 5.9d.

~ When the outer tip of the top flange yielded the top flange formed

a local hinge, and after some yielding, the deformed shape was similar
to the shape shown in Figs. 5.10a, 5.10b, 5.10c and 5.10d. Further
details concerning the deformed shapes are given in the Appendix E.

Points of interest arising from these model studies are:

(a) There exist at least two different deformed.shapes,
corresponding to the shapes shown in Figs. 5.7a, 5.7b and
5.1@} These deformed shapes are in the same sense és

the initial rotation pattern. The magnitude and direction
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of the angles of rotation of the web determine .the type of

mode which occurs.

(o) While all strains reamin elastic the cross section of the
I beam does not distort. The cross section distorts onLy

when the web-flange joint yields.

(c) The centroids of the I-beams move laterally.

(d) - While all strains remain elastic the rotation of the cross
section of the I beam is approximafely a half sine wave.

(e) After some yieiding of ﬁhe flangesAoccurs, the shape ofAthe
bridge is approximatély describéd by two straight lines for
the top flange, and a half sine wave for the“bOttom flange.
The cross section of the I beams.at the supports remain
vertical. Thus, afte{r- some yieldi.ng"oc'curs the shape is

‘approximatedfﬁby the following ﬁuhctions:

1! .

yoo ) (122/0)

lateral deflection of top flange = 2975h.(9 _
1750 (f,_, Jeoswz/L

lateral deflection of bottom flange

rotation of cross-section of I beam

1750, [ 47—y wemye]

where @ = rotation at the centre of the bridge

I}

h = height of the I beam = - and’
z = distance along the beam, measured from: the midspan of

the bean.

(£) There‘is little increase of load carrying capacity of
the structure beyond ths load that corresponds.to first
yield of ﬁhe tip of the top flange.

These observations are different from the deformstions‘pictured

in Fig.A5°2, corresoondingAto the Timoshenko model for through

bridges, in Ref{ 30. . Aﬁ improved mafhemaﬁiqal model is needed

to describe the new deformations.
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5.4.2 Mathematical Descriptions of the model tests.

The model developed in Chapter Three is sufficient to describe
adequately the observations, * that is for the initially straight I-beam

arrangement,

c1d49/dz4 - cd%9/ds? + co - (P2/4,EI,,)(-§-I-Z‘)29= 0 . ~ (5.10)

- .
[N B VR )

® It is;noticed in Fig.v5.7c and Fig,_5°7d>that the floor beams may provide
considerable lateral restraint to the bottom flange of the I beam.

However; even if the sides are braced by U frames, the centroids of the_
IAbeams-are not rigidly restrained, and the centroid of the section may
thén twist and bend. The model developed in this thesis appgoximates the

effect of lateral restraints on the bottom flanges on the deformations

and buckling loads to ’being small.. This model is suitable when the floor
beams offer some torsional restraint, and offer no appreciable lateral

regtraint to the cehtroid of the I beams.

An alternativé mathematical quel, proposed by Schmidt (Ref. 565
is to find the forces ﬁeéessary_to ensure that deformations as shown in
Fig. 5.11; that is the floor beams provide complete lateral restraint,
but no torsional restraint. As the tor§ional restraint offered by the
flgor beams is completely neglected oply smgll buckling loads are needed
to sustain the deformations (approx. 100 1b. for the model bridges).
Therefore, this model is unsuitable when the floor beams offer any
torsional restraint; but Schmidt has shown it to be useful when the

floor beams offer large lateral restraint to the I beam section and no

appfeciable torsional restraint.

The value of C, , the equivalent torsional restraint per unit
distance offered by the floor system, is found from the initial
crookedness pattern and the stiffness of the floor system. When the
initial roﬁations, and hence final rotations, are as shown in Fig. 5.7¢
the restraint offered by floor beam and adajcent’l beam is given by the

equation

REL, [pe € ¢, s L [po
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where EIF = the rigidity of one cross member of the floor system,

6 width 6f the bridge, -

spacing of the cross members.

m
1

The lower value of C, occurs when the two initial rotations

are equal, and the adjacent I beam is not contributing to fhe value

of C, the_higher value occurs when one rotation is much greater

then the other‘(Figo,SDIZ)o

Similarly, when the rotations are as shown in Fig. 5.12 the

restraint is giveni!by the equation
€ .
3EIF//Ja C0 < 6EIF/,Aa o

‘The critical -central point buckling, P' is obtainéd from
Fig. 5.13. For bridges with a ratio of floor stiffnéss to St.
Venant torsional stiffness greater than 5, that is

¢ L%/cr > 5
a good approximation to thé,bugkling load * is obtained by fitting
the lower-bou:nd functional form (as found in 3.8.4, and putting
\ 1 t ‘
e Col /c1r"77| apd)) c, /CL) to t‘he upper found numerical form,
(as found in 3.8.2). The resulting approximation to the first buckling

load P' is shown in Fig. 5.13, with

P1=5[8fE—I:‘_6:y S (5.11)

# Equation (5.11) gives the buckling load nglue of a single vertical
point load aﬂpiied ip the middle of the bea@n' Cpmparisons between this
mbdel and thaf aeveloped by Tayler (Ref. 39),‘for a upiformly distributed
load of %p,?ber unitbdistance al§ng each I beém{ indicaté‘thgt the _

distributed buckling load on each I beam is approximately

&PL)'. = T5[EL C,
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that is the important variables in determining the buckling load of the

light through bridge are the lateral rigidity of the I beams, the

torsional stiffness of the floor system and the length of the bridge.

P, =5/4[EI C,

from form of the lower %cund 1T
value of x o L ) solution

o c1w2/c£‘ = P, =

200}

0

150

100

50

1 4 N ) 1 | 1 1

50 100 150 200
Elastic floor stiffness C %0

Fig. 5.13. Buckling Load of Mathematical Model (5.10)

The initial crookedness can be included in the mathematical
model, and the final rotations, GL , are given approximately by”the

equation

6=0M1-(/p)%1 ,

where §, is the equivalent first mode initial crookédness, being
determined from the Southwell Plot, or an addition of the measured

initial rotétion and the equivalent initial lateral deformatidn.

These predicted rotations for the model bridges compare
closely with the measured results obtained from the model bridges,
and the two are plotted in Figs. 5.7a, 5.7b, 5.7c and 5. 7d. - Thus

the mathematical model baged on lateral torsional deformatlons of

the I beams and summarized by the equations (5.-11),'5-(5.1‘2) is a

iy
v

reasonable description of through bridge behaviour.

numerical solution by weighted resic

P, =(3.8/2)EL,\C,

lower bound albegraic solution

(5.12)

= VA2 [ELC
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lateral movement of and // , A

rotation of the top

flange DS /

e

no lateral movement of the bottom flange

/

Fig. 5.11. De_fomationsof bridge as described by Schmidt (Ref, 56).

M= 2EL. B/, M<3eT. 0/a M= GEL O/a

torsional restraint offered by the floor ’be'a.ms
= 009 /unit length or along the bridge
- . c - —
c, = §EL}/A3 | o = JElg/4a C, = 2EI/Aa

Figo 5.12., Values of elastic floor étiffne‘ss arising from different
initial crookedness patterns, :
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5.4.3 Lines of First Yield.

The problem still remains of deciding the safe working load of
the bridge. The measured values of rotation (Fig. 5.8) indicate that
a reasonable ultimate load carrying cépacity of the bridge is that load
which will just cause yielding of the outer tip of the top flange.
Working loads can then be chosen as some fraction of this load to cause first
yield. Two methods of predicting the load to first yield the structure

are now outlined.

A measured line of firsﬁ yield, (that ié the‘locus of all points
.with pentral load and central rotation for which yielding of the outer
tip of the top flange first occurs as co-ordinates,)is shown in
Fig. 5.14. Several different initial crookedness values are shown for

the same size model.

Calculated lines of first yield are also shown in Fig.is.lA.
The first line ié obtained by considering the elastic deformations
of the bridge, and using the equivalent initial crookedness as
measured by the Southwell Plot. Then the yield strain oﬁ the outer
tip of the top flange is found by expressing the strain in terms of

the rotation of the I beam.
Thus, the final rotation 9 is given by equation (3.12).

9_= a191/[1--(P/P1)2 I : (5.12)

and the strain, € , in the top flange given in terms of this rotation,

i.e.

m
1

Pateral curvature x ¥ width of top flangg}+¥yertical
curvature x 4 height of the I beami

+ b d2y/dz2 + 4h dzuT/dz2 o

The expression for lateral curvature is obtained by using the second
derivative of the expression for the lateral movement of the top

flange, U; = #hf+ u .
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- top flange »
A\bottom .flange

line of first yield, found using
the guessed mode

line of first yield,

calculated from elastic

buckling mode
\‘3\&\

Sulle. -

» meagured velues
of first yield

Fig, 5.14.

Fig. 5,15 Values ofg in

3.0 4o0

central rotation (x 100 radians)

Comparison of the two methods of finding lines of first yield,

r

lue of " __—
e ,ue of Y G / C8° =0
B ‘e . . ’/
- | g e o2
///“‘ - .
- - // I °4
//.-» P i
2 /~/'/ .
?‘/‘(/@z
CotYCW‘ ,
1 , 1 X L . l

a*8/az* =0 atz= 0,
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The individual components of the lateral curvature of the top flange

are found as follows:

. X |
(a) an approximation for d 6 /dz* is obtained from the expression
for § , and is given by the equation

d2|9/dz2 = d2[g1 cosmz/L + g3 cos 3wzl + .. . ]/dz2 .

Values for this component of curvature, at the centre of the
bridge, are given inthe form of a graph in Fig. 5.15 and values of
are found such. that

a%g/ar® =]

‘9(3:0) .
(v) The curvature along the centre line of the I beam, d w/dz" ,
is obtained from equation (3.8) ie.

EI,'dzu/dzz = $p(3{-2)0 | o

Using these values, the maximum strain :  in the top flange is

given by the equation

€ = Oy + PL/EL) 35+ (PE/4EI) § n.

Therefore,; the maximum measured strain in the top flange éﬁ““w

is found by using the.equation (5.12) to find the meésured.chaﬁge

in central rotation (§ - a@ ) and

€ pons = 181 (B/P1)°0,/(1=(8/P1)* )] [dnj+ PA/4m1, oo + Plb/eEL. .
An alternative, and simpler approach. to find a line of

first yield is as follows:

The line is calculated by using the approximate measured shape as

given in (e), section 5.4.1. The rotation of the web is given by

the equation

- (5.14)
0= 1758, [ 4w - mg - @/t |,

The strain at the tip of the top flange is obtained by estimating

the vertical and lateral bending effects. The corresponding bending
moments are given by the expressions M and MO s respectively. Thus

the strain at the top of the top flange € is
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)
1

Mgt/2EL, + Mh/2EL
[RlOt/sEIq] + P{h/8EI,

It can be seen from Fig. 5.14, that little difference
exists betweén the measured line of first yield and the two
calculated lines of first yield. Howeyer the second method of
calculation, using the shape T3 T ﬁpe bridgb takes up when
yielding occurs as the\descfibiﬁg,shapg, is easier to calculate
and visualize. It is felt that this method alsé gives a closer
description of the structural 5ehaviour when thé.bridge is made

of a deck that has a large lateral stiffness.

5.5 Oomparisons between the Mathematical Model of 5.4 and

existing Mathematical models.

: The préportidns of the model bridges tested were such that
the buckling loéd corresponding.to the Timoshénké model for thfough
bridges, as outiined in "Théory of Elastic Stabilityﬁ, (Ref. 30)
was compamgti&ely large when compared with the measured lateral

torsional Bﬁckling load. It would be exéected that as the
stiffness of the floor beams is increased, the difference betwsen
the buckling load of the Timéshenko model and the buckling load
of the model propdsed in Chapter Three wégld decrease. In.the
following paragraphs a comparison bétwéeh the  Timoshenko model and
the lateral torsiqnal buckling model is presented, and a simple

relationship between the two buckling loads is found.

In any through bridge it is likely that the deformation
sh@wn in Figs. 5.2, 5.7a, 5.7b,5.7c and 5.7d are present. The
mé@nitude-of the component deformations in each mode is
dependent on the type and size of Bridge, fhe applied loading,
ana the initial cfookedness. | | |

The central point loading on each I beam necessary to
provide the buckling load for deformations shown in Fig. 5.2
is found from equation (5.3) and the Euler column buckling

expression.

(5.15)
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Then

av)
|

= (4b/0)Py (5.16) -
(40/8) (FEL/4o0[ET; 85 )

The value of the virtual lateral displacenmrn,s.of the compression
flange nearest midspan of the bridge consists of the contributions
from the movement of the sides of the frames and the floor of the

frames. A good approximation for 8 given in B.S. 155 is
S= (B/3BI, + h° s/2EL)
1 S 2 F

which may be expressed in the form

§= k(hls/281; ) , (5.17)
where h‘ = distance of the centroid of the compression chord

from the -top of the floor beam cross member
EIS' = lateral flexural stiffness of the vertical gide of the bridge
111 = distance of the centroid of the compression chord from the

neutral axis of the fléor beam cross member
A = width of the bridge
EIF = vertical flexural stiffness of the flopr system in the plarie

of bending of the floor
k = a factor dependent on the ratio of the contributions to the

virtual displacement,‘and is given by the ratio of the total
lateral moveﬁént of the tép‘flange of a through bridge
(sustained by a unit horizontal force applied at the top
flange of the bridge) to the magnitude of the lateral
movement of the top flange that results from the deformatioh

of the floor beams.

Equations (5.16) and (5.17) can be simplified. The central
point loading P on each I beam necessary to provide the buckling load

for the deformations as shown in Fig. 5.2 is then given by the equation

B = (/02 Je1y 51, Wa)l/s) 1as2nym)/ 5 (5.18)
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The central point loading on each I beam necessary to provide

the buckling load for deformations shown in Fig. 5.7a is found from

i

equation (5.11). The approximations

EI = 2EI

k| T

and

C

o 2EIF/sa

are used and equation (5.11) simplifies. The central load is then

given by

P= (T)? [o1 By (4/a) (/s) . (5.19)

Thus from equations (5.18) and (5.19) the two buckling
loads are equal when the critical value'of k is given by the
equation

kcritx' 2(hz/h)% (5.20)

When k is less than koﬁk , that is when most of the lateral
defofmation (sustéineq by a unit iateral load applied on the top
flange) results from the deformation of the floor beams, the buckling
load for the mbde shown in Fig. 5;7a is less than the buckling load
for the mode shown in Fig. 5.2; When k is greater than kawt ., that
is when most of the lateral deformation results from the deformation
(sustained by a unit lateral load applied on the top flange) of the

sides of the bridge‘the buckling load for theiﬁode shown in Fig.'5.2
is less than the buckling load for the mode shown in Fig. 5.7a.
Values of k and koﬁt. for various existing.thrbugh bridges are
tébulated_in the Appendix F to show that bridges have been

designed in both regions.

A model bridge was designed so that the two buckling loads
Were équal, that is k = k4. . The resulting deformations contained
both buckling modes. ngever, because the measured;buckling load of
the system wé$ within 10% of  the predicted buckling ioad, it was |
assumed thét there is little interaction between the two types of

- deformation,
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The ferry terminal bridge at Devonport has for the critical
value of 555,42; the actual vglue of k is 1.67. This indicates a
flcor system which is more flexible than the critical value. Therefore
the buckling load correSpopdinglto the mode showh in Fig. 5.7a 1s the
lowest buckling load. The low value of k indicates that for this bridge
it is unncessarry to design agginst a mode of buckling similar to that

mode shown in Fig. 5.2.

In the following section a detailed analysis of the behaviour
of the ferry bridge at Devonport s presented. This analysis is based
on déformations similar to those shown in Fig. 5.7a2 and a design

procedure is indicated.

5.6 Analysis of an Existing Bridge_Structure

For the bridge ferry terminal at Devonport, as shown in Fig. 5.3,

the relevant<constants are

-
il

4 /
61,000 1b in

(1/y) = 2:1,900 1b in®
8 2
C = 4.45 x 10 1b in
10 L X
EIﬂ 3.0 x 10 1b in .
Co= 2EI /pa(as crookedness is in the mode ( S,

- 1.0 x 10° bin

(In this calculation the concrete deck has been assumed not
to restrain thevrotation of the floor. This estimate gives
an underestimate of the buckling load of the structure).
kS
. k3
coL/cT'= 200
13 6
C, = 3.0 x 10 1bin

Qﬂ?&&tz 0.68.

The buckling load, calculated from equation (5.11), is a central
loading on the total bridge structure of 720 tons. The buckling mode

found from Fig. 3.18 is sketched in Fig. 5.16. .
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", I SR i

Fig. 5.16. Rotational buckling mode of the through
bridge at Devonport, Taﬁhania, éaiculated from
the column of equation (5.10). -
The dead weight of the bridge is approximately sixty fons?
It has been pointed out earlier in this Chapter that this uniform
logd is.approximately equivalént to a nen??all_point load of fourty

tons, that is 60/1.5 = /0.

The initial rotational crookedness of both webs of the
bridge consisted of a first buckling mode specified by a central
rotation value of 6 x 1Q-3 radians, together with higher order
buckling modes which repfgsented approximately a further central
rotation value of 3 x 10_3 radians. These estimates were obtained
by noting‘the_difference from the #ertical indicatediby placing an

engineer's spirit level against the web of the bridge *.

# Measurement of four other through bridgéé} each approximately

sixty feet in length, indicated that these values of initial

rotational crookedness are reasonabléi Thé.bridges measured
included a railway bridge, a pedestrian overpass and a larée
truss bridge used for motor traffic. The usual value of the
maximum rotational crookedness of.the web was 10-1 radians.
Means of deciding an economic value of initial crookedness
are investigated in the appendix G. Thefe exists scope for
some valuable work to be done to determine a reasonable
practical value of crookedness at which fabricators could

aim.
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The initial lateral crookedness of the hridge was of the order Qf£/1000,
These readings indicate an equivalent first mode initiml rotational

-3
crookedness of 6.25 x 10  radians. (See Appendix D for further details).

From equation (5.12) the central rotation and applied central load

relationship is of the form

D= a191/[1-( (Ppp + 40)/720% 1 | (5.21)

Where PLL is the total central live load (in tons) applied to the bridge.
A graph showing the relationship between the central rotation and central

live load is shown in Fig. 5.17.

However, the instability deformatioﬂs resulting from loads applied
to the centroid of the I beams are not the only deformations which are
measurable. The brldge is loaded on the deck as shown in Flg° .(5.,18)°
This loading results in deformations approximately similar to the first

buckling mode.

Fig. 5.18. Deformations of the bridge resulting frem 4 method
of loading other thah through the centroid of the I
beam sides. In this case the loading was applied by

driving a loaded fork 1lift truck on to the bridge.
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The deformations induced by this loading can be calculated

in the manner indicated in Chapter Four. This loading introduces

rotations, given by the equation

: 2 ‘ 2
0,0 =k, (B/)(s/8) 1E1y [l D2 (-(/2)?) .
where k, = factor,iﬁ;oh““Chapter Four, depending on the ratio
Co 7 /oT* , and the distribution of loadings. In the

case of a central point load, kiﬁis approximately 13.

When the ferry terminal bridgé constants are specified,

equation (5.22) reduces to the equation

@ =2x107% /(P /7207 1
Equation (5.23) is plotted in Fig. 5.17.

A line of first yield, using the approximate yielded shape
outlined in section 5.4.3, ié also plotted in Fig. 5.17.. The load |
to cause firét yield is obtained as the intercept of this line with
the line formed from the addition of the rotations caused by the

buckling instabilities (iaenrequation 5,21) and the torsional

deformations (i.e. equation 5.23).

5.7 Comparisons between Measured and Predicted Results.

It can bé seen from Fig. 5.17 that the.inétability effects
are not large in the lower range of loads and most of the rotation
of the I beam is caused by the torsional loadings imposed by the
floor system. Howeverzlthe load to first yield the bridge is
considerably affectedﬂby the torsional deformations induced by the
deformed floof; and this effect must be considered if safe and

reasonable load carrying capacity for the bridge is to be determined.

These predicted résults are now compared with measurements
taken on the actual bridge structure. A central load of abproximately
34 tons, applied by driving a loaded fork 1lift truck on to fhe bridge,
resulted in a central rotation increase of L x 10.3 and 3 x 10-3

radians on the two I beams, with no measurable distortion of the

(5.22)

(5.23)
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Fig. 5.17. Plots of loads and central rotation of the I beam sides

of the ferry terminal bridge at Devohport, Tasmania.
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cross section of the I beams. Measurement of rotation changes was
made with a spirit level held against the web. This reading was checked by
a spirit level placed on the flanges.

For the same change in load, strain measurements obtained from

_ -3
- Huggenberger mechanical strain gauges indicated strains of 0.20 x 10

and 0.25 x 10-3 on the edges of the top flange 6f one I beam, énd
0.17 x 10™° and 0.10 x 10 on the other I beam. All readings
were taken at midspan.

The measured results are within 10% of the valueg.
predicted by the mathematical model developed in this chapter.
This mathematical model (based on picturing the deformations of
the structure as it deforms,) is used in the following section to

estimate safe working loads for the bridge.

5.8 Working Loads.

The designer hasa f;hoice in deciding the design criteria
he wishes to specify. Two possible criteria are outlined in

section 2.10 and are

(b) a working load for the material, and

(e) a maximum deformation of the structure.

Coﬁ;ider the working load‘criteria. At a loaa of 120 tons
(Fig. 5.17) the structure begins to yield, and as the model tests
show there is little load increase after first yield, this load is
a good estimate of the maximum load that the structure Eould'carry.
A working load of apéroximately 60 tons i.e. -(120% 2) toﬁs appears
reasonable. At this load the nominal stress in the top flange,

corresponding to vertical bending alone, is 15,000 psi.

At a loading of 60 tons, the central rotation increases
by approximately 1.4 x lO—z.radians from the initial no load
position, and the increase in lateral deflection of the top chord
is approximately 2.0 ins., that is »8/500 from the initial positién.,

These ddﬁprmations at 60 ton load are reasonable, as they do not



=~ 150 =

appear unsightly, and do not interfere with the function of the structure.
Therefore, use of either criteria (b) ‘or (c) in the design of this bridge

structure is satisfactory as both criteria indicate similar working loads.

5.9 Conclusion.
The behaviour of an existing through bridge has been measured and

reasonable mathematical deseriptions suitable for design purposes hive been

developed.

It is recommended that existing code recommendations be modified

in the light of this work. A suggested form is as follows:
DESIGN OF THROUGH BRIDGES.

Through bridges should be designed to resist likely modes of
lateral instability. The type of lateral instaebility is dependent on
the relative values of the stiffnesé of the sides of the bridge and the
stiffness of the floor of the bridge. A through bridge will be called
a light through bridge when the stiffness of the floor is small in
comparison to the stiffness of the sides of the bridge. The predominént

modes of overall deformation then are

—— ) - —m —
4| ‘ !
% <2
1
\
= By
A ,l k<k crit k >k crit

light through bridge heavy through bridge

CALCULATION OF BUCKLING LOADS.

The buckling loads applied through the centroid of each beam
needed to sustain these two types of deformation for fhe initially
straight bridges are
() for light through bridges

central point load | = 5/ EIn Co
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where C, = equivalent floor é£if£ﬁé$§é\’
= 2EI, /Ao |
B, = lateral bending §tiffnass” wf one I beanm
a :.distance between floor beams

)
I

‘length of the bridge

B -
H
It

vertical behding stiffneSs of one floor beam

wn
11

width of the bridge

. distribiited Joad tdpli= (7.40) B, Co

and (b) for heavy through bridges |
central point load P, = (&/4) (T("“EIT / N ’E‘Lr " S )

>

where h = height, at midspan, of the I beam

{

EI

length of the bridge

T ‘lateral stiffness of the top flange, at midspan

o
i

distance between floor beams

o)
.

= value of the vimtual lateral displacement of the

A top flange, under the action of a unit horizontal
force
3 - :
A [z, + K, a/2ET,
k( hoas2er,)

where hz? distance of the compression chord from the centroid

A

of the floor beam cross member
EI, = lateral flexural stiffness of the side of the bridge
s = width of the bridge
k = the ratio of the total lateral movement of the top
flange of a through bridge (sustained by a unit
horizontal force applied at the top of the bridge)
to the magnitude of the lateral movement of ‘the top
-flange»ﬁhat results from the deformatioﬁé éf the -
,floorﬂbeami |
. . 2
Kyt = 2(hp/h),
distributed load (4pl) = _(Sh/L)( n"exr /& e ).
The buckling loads corresponding to modes (a) and (b) are equal

when k = g;“t
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DEFORMATIONS.
(a) 1light through bridges
The value of the rotation of the I beam at midspan, in the plane

of the cross section, be calculated from the equation

0- ‘0-7[| = ((Pu. + By 15/ m\ ]

where PLL = live load applied to one I beam
Py, = half the dead weight of the bridge.

A line of first yield be found by using the forces of the deformed

shape

0= 10, [ &v-me - wrzie ]
where z is measured along the bridge, from midspan. The load corresponding
to first yield be taken as the load carryihg capacity of the bridge.
(b) heavy through bridges.

The deformations of this type of bridgevbe taken as small.

The load carrying capacity be taken»as the buckling load or the

load to cause first yield, which ever is smaller.

LATERAL AND TORSIONAL LOADINGS
(a) 1light through bridges.

Lateral loadings (including wind) and loadings applied to the
deck be considered as affecting the rotational and lateral deformations
of the buckling mode of the briége. A description of their effects is
given in Chapter Four of this thesis.

(b) heavy through bridges.

Lateral loadings and 1oading§f§9glied to the deck be considered as
not affecting the rotational and laté?él‘déformations of the buckling mode
of the bridge. However, the strains induced by these loadings should be
linearly added to the strains induced by the vertical loadings.

(see Appendix H of this thesis)
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FORCES PRESENT AS THE BRIDGES DEFORM.

(a) 1light through bridges.

Floor beams should be designed to resist‘the vertical loading,
together with the forces induced by the torsional deformation of the.
bridge. (The torsional moment at the I beém-floor junction is less
than the moment given by the equation

M=6ET; B[4 = OREIja ),

Web stiffness should be propdrtioned to have greater stiffness
than those used for an I beam with deformations in the plane of the web
§n1y. No allowance should be made for increases in buckling loads as a
result of the stiffness effects.

(b) heavy through bridges.

Vertical mémbers designed to resist the bending of the I beams,
together with the forces induced by the lateral bending of the top flange.
(To aliow for the lateral bending, the vertical members should be
designed to resist, by a cantilever action, a lateral force F equal

to 1% axial load in the top flange).

WORKING LOADS.
(a) 1light through bridges.

Working load = 4 load to cause. first yield (calculated by

considering the deformations of the structure)

(b) heavy through bridge.
Working load = % load to cause first yield, (assuming the
structure does not deform) or

% buckling load, which ever is least.
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CHAPTER SIX

' TORSION

6.1 Introduction

It has been shown in the previous chapters that after a
clear picture of the deformations of the structure is established,

the forces to sustain thesecheformations can be found easily.

Hogever, in the case of twisted membefs with open of closed »
cross section, other than circular or elliptical, no clear
picture of the deformations has been presented. An original
contribution to this subject is now presented to fill this
. gap in our'understandiné of torsion problems. For coherence,

the eafly work mﬁ first summarigzed.

The method is to measure and describe the movement ‘
of a line on the twisted member. Coulomb (Ref. 4) used

this approach and obtained the good approximation for a

twisted circular bar that plane sections perpendicular to.the
longitudinal axis of the Bar remained plane and that radii

in those cross sections remained straight. Later, Navier
used the same assumptions to describe thé geometric
deformations within a bar of noﬁ circular.cross—section

and poor estimates of thé.torsional stiffnéss of the

member were obtginedu Improving estimates of the
deformations within twisted bars of cross—section other

than circular coﬁld'nqt be found, amd a more matheﬁatical:

approach was developed by St. Venant. (Ref. 57).

St. Venant noted that for.a non-circular bar the .
cross section did not remain plané and movemeﬁts,or:warping,
out of the plane perpendicuiar to the lohgitudinal axis,
were present. In the St. Venant approach, this warping

is specified by a warping function,%J , and the equations
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of statical equilibrium for the forces in the longitudinal direction

acting on an element, that is

Vyloe + V) -0

and the boundary conditions that no external forces act on the

lateral surface of the bar, that is

(fax -4 dy/ds = (4 oy +x)dxfds =0
are satisfied. In these equations x, y are the rectangular
coordinates in the plane of the undeformed cross-section and
s defines the arc length along the boundary. These two equations)
(6.1), (6.2) are of the same form as the differential equations
describing the purely membrane effects of a thin membrane and
this analogy has been used, together with associated soap film
measurements, as a means of obtaining & solution to the torsion
problem. However, as happens with analogies,a true picture of

the behaviour of the actual problem is often lost, and a

fundamental understanding of the overall geometrical and

statical action is not obtained.

In this chapter the torsional behaviour of some
structural sections is examined. The overall defofmations
are measured and anian analysis using these measurements
(similar to the approach of Coloumb) is used. With this
approach it is possible to establish a picturé of the
deformations, and as a résult an original, simple and basic

view of the torsion problem is obtained.

6.2.1 First Simple Model

The first step in the inverse approach as outlined
in Chapter One is to load the strip with four balanced forces
and measure the surface shape of the strip. The surfaces are
found to deform (using the Ligtenberg moire techpique,, Ref. 8)
such that lines of constant slope in the x, z directions are

straight to a first approximation, and are related by

(6.1)

(6.2)
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Fig. 6.3a A deformed element.
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kz

bw/bx-

kx,

and _’5vv%z

where w is the displacement parallel to the y axis as shown in
Fig. 6.1. The closeness of these two relationships to the actual
deformations can be seen by placing a straight edge perpendicular

and parallel to the longitudinal axis of the twisted strip. When

the straight edge is placed on the surface of the strip and is
rotated it can be seen that the surface shape ié anticlastic;

that 1s, the principdd curvatures are opposite in signn. An
estimate of the relative magnitudes of these curvatures is

| obtained asAfoilows. #* Choose the axis of réference in the
centre of ﬁhe strip. Integrate equations (6.3), (6.4);‘qriginally
obtained from the form of the moire fringe patterns. The shape

is then given by

w = kx z.

Rotate the reference aXet through forty five degrees to new axes
X, 58, and the surface is then given by
[ ™ ) - ,

.
W= %k(x\ -z,

and thus the two prinicpal curvatures Jw/dx" and 24/ 2 are
equal in magnitude but opposite in sign. The surface described by

the equation (6.6) will be called a simple anticlastic surface.

The internal displacements are the next to be investigated.
Observatiéns of clear rubber models indicate that lines originally
perpendicular to the midplane of the strip feméin straight after
deformation, but that the cross-section defined by these lines

: Qéfpsgabout the mid pihne, as shown in Fig. 6.2.

e,

* The magnitude bf the curvatures can also be obtained directly

from the Ligtenberg pﬁotpgraph34 and a Mohr circle of curvatures.

(6.5)

(6.6)
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Fig. 6.2 Observations and Approximations to the Surface

Deformations of a Twisted Strip.

Plots of Mohr circles of strains, using the estimate for the
surface displacements equation (6.6) and the estimate of straight lines
through the model remaining straight dfter deformation, indicate that a

rectangular element with sides parallel to -the sides of the strip,

deforms in a shearing manner. Various combinations of shearing

deformations can be tried; but. it is found that -only elements with
pure shearing deformations (Fig. 6.3) fit togebhef and define a

continuous surface.*

Thus, the twist of the strip can be obtained from the shape
of the element.. From Fig. 6.3a the twist in the xz plane Ky, is
found from the twist of the sides of the element. Then

K =d9)q/dz =d9yz/d.x = %Js/%’b " “ (6.7)

X2z

# A simple means of performing the three dimensional integration

required to fit the elements together, while still maintaining cohtact
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The half elements are stood upright -with the midplanes resting on a flat surface
representing the initial shape of the bar (Fig. 6.4a). Elements on the face, of width b, are
rotated in the xy plane, relative to adjacent elements having the same z, (Fig. 6.4b), by an
amount df,, = 3y, (dz/}t) , where y is the surface shear strain and ¢ is the thickness
of the plane, each element is then translated in the xz plane (Fig. 6.4b) to make all points
on the face of width b alsmot continuous. Each element is then rotated in the yz plane,
relative to adjacent elements with constant x (Fig. 6.4c), an amount df . = 1y, (dx/%¢),to
remove the steps in the surface. It can be seen from the result of this integration (i.e.
Fig.6.4¢c) that the functional form satisfies the geometric conditions of the simple anti-
clastic surface, with all cross sections parallel to the sides of the strip being warped into
a simple anticlastic surface. Thus the twisted strip itself is the same shape as the element.

Fig. 6.4
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with the problem, is obtained by making several of-these deformed

elements from plaster of parls (Fig. -6.3a and Fig. 603b) and
fitting them together mechanically and is shown in Fig. 6.4.
Hhifithe‘element, representing the element from the
midplane te the top surface of the strip is easily made, as each
surface of ﬁhe element is itself an anticlastic surface umder the
geometric conditions of Fig. 6.3a. The mould is made by twisting
three metal strips of length 4t, width dz(= dx), to form three
sides which are then held at each end and the surface of the fourth

side is sméothed as the plaster of paris dries. (Fig. 6.3b).

i

where J s is the surface shear strain and t is the thickness of the

strip.

" The stresses which will sustain the defommed elements as
shown in Fig. 6.3a ere found_from the streee-strain relationship
T = Gy , and by considering the overall equilibrium of the strip
the forces needed to sustain the specified deformations are found.
The only external forces required are two twisting momente, Fig.6.5,

the magnitudes of which are given by the equations

My = ('r,"S x 3t x %) x (2t/3) x b =(G t3b/6)(d9xy/dz) ’ (6.8)
and ' . o
M= (g x it xd) x (23) xl = (¢ £e) g, /ax)

and the twisting moments per unit length in each case is equal.

This set of twisting moments must be statically equivalent to the

applied force system, with

Mxy/b—MZ/E ‘, i | | (6.9)

and thus the end torque Fb is given by

b GtBb/B (d9xy/dz) ’
‘the well known relatlonshlp for thin rectangular sections.

Fig. 6.5 Forces necessary to sustain the twisted strip.
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In problems of torsion the torque is often applied by a series
of couples at each end, with no twisting moments on the longitudinal

sides of the section. This problem is considered in the next section.

6.2.2 Imprqvements in the Model for the Torsion of a Thin Rectangular
~ : Strip.

When a couple is aéplied at each end of a thin strip, and the
surface geomet;y is measured, the lines of constant slope are again, to
a good first estimate, straight. Measurements of the displécements of
lines on the surface near the edges, indicates that these lines deform

according to Fig. 6.2(d), and Fig. 6.6. -

Fig. 6.6. Deformations of - square elements on the surface of

a twisted strip (see also Fig. 6.2a)

A geometric model of thi§ behaviour is that away from the edges
the deformed elements are the same as in the previous problem, bu£ that
near the eéges the shear strains taper off from appfoximately one half -
thickness of the bar away from the edge and are zero at ﬁhe edge. For-
this geometric model, the relative rotation of each cross section is
similar to that used in the previous problem and thus the geometry is
specified by the relationships de’/dz = %J s/Lt, d% /dz = %5 s/t .
As a means of producing the necessary change of shape of the elements
near the edges, a second set of stresses, as shown in Fig. 6.7 must
be applied, in a manner satisfying statical equilibrium of the elements

in the z direction, that is

b?i,% [ + Dtﬁ/al{j =0 (6.10)
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Fig. 6,7. Deformations of the bar, and the forces

‘necessary to sustain these deformations.

Overall statical‘equilibrium then gives the end torque as

g?f ydxdy - g’tyzxdxdy

and can be simplified (Ref. 57) to

= zgg’txz Y dx d”r. 9 (6.11)

when the integration is performed over the complete cross section,

and- the boundary conditions on shear stress are imposed.

- This second set of stresses does not alter the overall
geometry significantly, as the strains are localized near the
fcorﬁers,_and ﬁhus the simple ahticlastic.surface shape of the
suffaég“geoﬁetry, and the shgpe given by Fig. 6.6 for the
deformed shape through the thickness is sufficient to describe
the geoqétric behaviour. The warped shape of the cross-section

is again close to a simple anticlastic surface (Fig. 6.2a).

A reasonable estimate of the value of the integral

VU, ¥y dx dy 1is obtained from the previous problem and
*y
A

i _ (o +3 Jiz) . (6.12)
b= v, v acar = 6 Pwe) g/ G
The end torque twist relatiohship is again given by

= (G t7v/3) g, ,/dz .
. (6.13)
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This model is now extended to describe the deformations within a

split conduit,’and the torsional stiffness of the conduit is estimated.

6.3 Torsion of a‘Spli.t.Conduit°

:\ means of describing the deformations of the split conduit,
twisted in a manner such that the warping of the cross section is not
restrained, is obtained by choosing an element similar in shape to the

flat strip, but taking into account the curved nature of the surface

(Fog. 6.8). v
: | _L

Section A-A

tade Y|
oo iR |
de(omal tlowm cn\‘T

Fig. 6.8 Shear deformations of a split conduit,

Then, by specifying the deformed shape such that lines originally
perpendicular to .the midplane of the conduit remain straight after
deformation, the shear strains are defined qgaxare given by the

-eqqation

3y = (r-R) dp, /dz , | (6.14)
where Z is the shear strain at any radius r, ’
‘% is the radius of the elehent,
and R is the average radius of the ring.

]

As in the'§¥evious examples, the elements fit together,‘to_a‘firsﬁ
approximation. The stress-strain relationships are then used to define
the stresses, and the edge stresses are introduced in a similar manner
to the previous example. The only forée necessary to sustain the
deformed shape is an end torque and is given approximately by the
expression
R*{E

(2Mrtdr) r (6.15)
R-it

—3
]
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where the referénce point used is the geometric centre'of‘the ring, and
the effect éfmthe éQge stresses is nqglectédA(Fig. 6.9). The equation
(6.15) can be simplified using.equation (6.14) and the load deformation

relationship T = Ga' , and becomes

T=6(2nR t/3) (6,/6) ,  (6.6)

A

once again the well known relationship (Ref. 57),

.reference
point

Fig. 6.9. Refereqce Point, and shear stressesoi

Similar results can be obtained for any thin strip, by specifying
the geometric conditions that the midplanélremains twisted only,
_dyspraigpt lines originally perpendicular to the midplane remain

'fétféigﬁt after deformation, and an element of the same shape as

’the]strip deforms in a condition of shearing étrain.

13

.‘ 6.4 Torsion of Rectangular Bars.

6.4ole _Soiid Rectangular Bars.

This foregoing moaél for the thin strip can be exténded to
describe the behaviour of fectangulér bars éf an& propértipﬁs._
Frém the previouslmodel it was seen thét there were two distinct
strain distributions, only one of which contfibﬁted tq the end
rotation,'as the other was localized at the edggs. However, as
the difference between sidé dimensions of the fectgngular section

degreases,“the.contribﬁtion to the rotation of the both shear strain "
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distributions must be included in order to obtain a model which describes

rectangular bars more generally.

In the”improved model the twist of the section,d@%d'/dz is
determined from the addition of the pwist resulting from the shear strain
distribution in the xz,plane, that is dgxa/dq,to the shear strain
distribution in the y3 plane,that is de;,,/dz (Fig. 6.10). The total

twist is then given by the equation

Aoy [dy = LOyfdy + A0 [dy

43

L —

——

e -

¢9~ thickne se t
Je

Sl A
_— g

t

¢ width b

Fig. 6.10. Shear strains, and resulting retations, for a

rectangular bar. (Also see Fig, 6.12a)

It was also seen from the previous model that a general result

fon any‘bar under torsion that was sustained by two orthogonal stress

dietributions, subject to the boundary conditions that thellateral
surfaces are free from external forces, is that these two distributions
contribute equally to the total torque. Then in the rectangular bar

a slight'overestimate of the torque twist properties can be obtained by

linearizing the two separate stress distributions and superimposing

them. (Fig. 6.11).



- 164 -

oy "

. .. —3r- 1 . “ .
Ié . » f" at the serace . l

B

Sy

Fig. 6.11, Linearization of the Two Stress Distributions.

Under this Simplificapion the torque is given by the equation

~Torque = G t?vbf/_é (dgxz/dz) + Gb5 t)6 (d@;z /dz) (6.17)
nd thus (a6 /éz‘)t'm - (d%‘; faap .  (619)

The rotation of one end relative to the other is defined by
46, /42 = 4§, /a2 (1 + (&/5) )., | (6.19)

with the warped cross-section consisting of two superimposed

. anticlastic surfaces.

- Under these conditions the torque twist relationship at
~the end is

T= 6t°b/3 (40,4 /0L3) /14 /). \ (6.20)

A table of values (Table 6.1) shows that the mathematical model, as
. developed by St. Venant (Ref. 57), and this model, derived from
geometric functional form, agree closely, with the greatest difference

of 15%, at b/t =1.0.
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b/t | 1.0 2.0, 3.0 40~ 5.0 10.0 co

1/3 (1+(t*/b") ) .167 267 .30 314 .32 .33 7,333

St. Venant - 1406 229  .263 281 (291 312 .333

Table 6.1. Comparisons of torsional stiffness between

St. Venant expression and the solution 6.20.

The reason for the difference is seen when an examination is méde
of the specified deformations. The warping of the cross section is taken
as beiﬁg.separable'into two distinet simple anticlastic surfaces (Fig.jéaqz)
correspon@igg‘to the two sets of shear strains. The super-position of
thege'wgrped cross sections then determine a final warped cross section,
asléﬁown in Fig. 6.12. As the ratio of the wilith of the bar to the

thickness of the bar is decreased the surface‘resﬁiting'frOm the super-

position of the two anticlastic surfaces tends towards a plane section.
In tﬁ? limit, when the Qidth of the bar is equal to itS"thicknéss, the
.geéﬁétrip model specifies thaf_plage.sectiqns remain plane. Navier
assumed thatvwhen a square bar was-twisted,_plane sections remained
piahé,fbut he also used a strain distribution which increased linearly
with the.d;stance’from the centroid of the bar. In the model proposed
in this thesis? the strain distributions increase line;rly with the
penpendiculgr distance from one principal axis of bar. Measurements
in@icate that this specification is not a good estimation near the
corners of-the square. Therefore the next step in the successive
imgfovement of.phe model is to use a better estimate of the geometric
functional form to sa%isfy the measured geometry near corners (Fig. 6.6)
and from this new form to recalculate the statical actions. However,

as a reasonable estimate of the behaviour has been obtained, the process

is terminated at this stage.



- 166 -
éﬁ(dvew/%)

/

deformed
element

-4t By [43)

deformed‘
element

3t(d By folg~ dBny/d3)

Ci+ EYB5)

- Fig, 6,12a., Combinations of the orthogonal strain distributions for a rectangular
section width b = 2, thickness t = 1. (A valuable comparison is
obtained by comparing this shape with the actual deformed shape of
a rectangular bar b = 2, t = 0,25, in Fig. 6.2a, and a square bar

in Fig, 6.12b).
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6.4.2 Hollow Rectangular Bars

A simple model describing the behaviour of hollow rectangular
bars is obtained as an extension of the previous model for the solid
_bgru

Measurements of the suffacé shape,indiéate that the Simple
anticlastic‘surfacé; with equal but Qppdsiteuﬁrincipal curvatures,
is again a reasonable approximation. Aléb, lines on théAsurfacelof
the bars deform ;n a manner which is similar to the solid réctangular
bar of the same external dimensioné° A good first model is obtained
by approximating the form of the deformations of the héllow bar as

being similar to the deformations Qf.the solid bar.

Then, the twist and shear strains are’iinked,.és before, by

the equations

ag, /a2 = Bys/tt
(6.21)
\
dg' xy/dz = 3Ys/tb o
and deend/dz = dg xy/dz + d%/dz .
\_;_____ e
|- |
\ 1
! \ thickness t
= §\§t::f j~~n\m
//
T d
, e
.\k
‘ o T ength

't';.'\.'\l /\;
//// i .

Fig. 6.13 Twisting Deformations of a Hollow Rectangular Bar.

The forces necessary tQ sustain. the deformed ‘shape aré easily fo%nd
For the hollow thin section of thiékness I, (L/t is small) the shear
stresses necessary to sustain the shapes shown in Fig. 6.13 are
approximately constant. Therefore, the total forque is found fr?m

the contributions of the two shear distributions and
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T=(7 @)t + (7,Tt) b. (6.22)

When we assume that the two contributions to ﬁhe torque are equal (as
was the case with the solid rectangular bar), then the two shear
stresses't‘Aénd<T& are eqﬁa%, Substituting the load deformation
félationship‘% = G Y into equation (6.21) we then obtain the

relationship between the two contributions to the total end rotation

d0,.4 /dz, and

t(dﬁ&y/dz)

dggnd/dz

b(dpxs/dz)

(1 + t/‘?)(d%q/dZ) o

(6.23)

The total torque is then

T =27 Ibt
= G Tbt" (d0,,/dz)
- g/ 22
and from equatioﬁ (6.23)
TGOt (d8,,/dz) /(14 /) . (6.24)

This approximation is close to measured results, and is identical with
the usual approximation obtained by using a shear flow analysis (Ref. 57).
The advantage of the foregoing method is that it provides a visual picture

of the deformations.

6.5 Large Torsion of Sections: All stresses elastic.

6.5.1 Introduction
A further understanding of the géometric deformations of a twisted
strip is obtained by examining the deformed member when large twists are

applied.

When = large twists are applied to an open cross section member,

and the ends of the member are unrestrained against warping, the member
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shortens and the lgngitudinal fibres that were straight before the
member was twisted, distort into helices. An axis common to these
helices can be found, and this axis has been defined'by Ashwell

(qu. 58) as the distortionla'xis.

The properties of this axis can be seen by examining the

behiaviour of a circular section.

é95,2 The Circular Section.

The shortening effeét was first observed in 1807 by Thomas
Young (Ref. 57), who noted that when circular bars were twisted, the
applied torque was balanced mainly by shear stresses, but that an -
additidnﬁl resistance to torque, proportional to the cube of the

- angle of twist, was furnished by thé longitﬁdinal stresses in the

fibres, ﬁhiih were assumed to bend into helices.

X33

!

-x

Fig. 6.14. Twisting Deformations of a Circular Bar.

The geometric mechanism is seen in Fig. 6.14. Plane sections,
originally perpendicular to the longitudinai axiS'OOﬁ;are assumed to
re@ain plane, while the cfoss.gections rotate relative to_each'other.

The axis 00' is assumed to remain straight, but allowed to shorten.
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The longitudinal strains, measured relative to this axis 00' are giveh“i

by the equation
: . \
€, - €, = é (rdo/dy) - LegroLe/dp + -+ (6.25)

where (o& and €, are the longitudinal'strains at 0, and at z
respectively. When the value of (4 d¢/dz) is small, a good approximatibn

for equation (6.25) is
' 2
61 = €Oo( = ‘; @ 0{/9/”[_5) .

The stresses at any distance from 00' are found from equation
(6.25) and the stress strain relationship, f=E¢ , where E is Young's
quulus} In this formulation, the-resistapce tolateral contraction
is assumed'to be small. This approximation is reasonable when the

. cross section is open or closed and hollow. For a solid section the

differential lateral contractions have a more pronounced effect, but

»this effect is not considered in_this thesis.

Integration of the required stressvpaﬁtern determines -the
forces necessary to sustain the'deformed shape. As no resultant

axial force is applied, the constant Q»' is given by the equation

€

oot

= $(a8/az)® 1/a (6.26)

where IP is the polarvsecond moment of area and A is the area of the

bar. The total torque resisted by the section is given by the equation

T = GJ(d§/dz) + %(da/dz)zi B(r? - T/a)r A sinf - (6.29)

and simplifies to

T = GJ(dg/dz) + %(de/dz)B E (HP - I%/A) ” (6.29)

when HP = (r4 dA
A

and SinF= r d8/dz o
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6.5.3 Sections Built up from Flat Strips.

Buckley (Ref. 59) extended the above .analysis to describe the
behaviour of»flat étrips. Weber (Ref. 60) added a further extension
for the description of doubly symmetric sections. 1BBth authors take

the cent:@idal axié as axis of reference and this line is assumed to

remain stra;ight{

AHowever, for singly symmetric sections the best choice of
~an axis of reference is more difficult.‘fweber (Ref. 60), |
Cullimsfe (Ref. 61), Ashwell (Réf.‘62), ahd Gregory,(Ref. 63 gﬁd'ééb
havefproPOSed various models.A Tpe§§ models are;examiged using an

equal sided'gngle section aslan‘éxamplé;“;.

Weber‘assumed théb there'existed_éﬁe.l;ﬁgitudinal line which
remained straight, relative to the deformeg ﬁeﬁbérﬂ (Fig. 6.15).
When the line§ AS, A'S, BS, B'S', are taken és_femaining straight,
the lopgitudinal strains_qén be found. Denoting tﬁélco—ordinates
of the line WW' by x, y, the'longitudihai strains,?mégsured felative
to the iine*WW' are-éiven by - |

.62 - EWW‘ = a(ﬁo"g/d% -); (6 30)

where r is the perpendicular distance from the line WW' to the .

point z on the section. ' » S : A‘ O
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In the Weber model, the position of the straight line WW' is
moved until a point is found for which no bending momehts and axial

force need be applied to the section to sustain the deformed shape.

Cullimore (Ref. 61) used the equation (6.30), and the co-

ordinates x, y were moved until a potential energy integral was

minimised. This minimization can be shown to be equivalent to
satisfying the corresponding equations of statics (Ref. 65). The
equations of statics satisfied by Cullimore are the conditions of

zero bending moments.

Ashwell (Ref. 62) observed the behaviour of a twisted strip

arranged as a cantilever, and noticed that points on the free end

oflthe cantilever moved laterally and vertically. Measurements were
made of these deflections, and described in terms of the longitudinal
fibres twisting into a helices with a common axis. Ashwell considered
much larger displacements than previous authors andxshowed that the
magnitude of the twist and the ratio of the bending stiffness to
torsiqnal stiffness affect the position_of the distortion axis.
Ashwell arrives at this conclusion after carrying out an analysis
which uses as reference axis the deformed centroidal axis. The
position of the straight distortion axis is then determined as a

calculated distance from the centroidal axis.

Gregory (Ref. 63 and 64) concluded that longitudinal lines
must bend relative to each other when the section is twisted; The
axis of reference was taken at the corner of the legs, (Fig,.6.15),
and, to allow for the bending of the longitudinal lines, the longitudinal

strains were specified by the equation

€ - €, = 5% dB/d=>" + A, (6.31)

p]

where d is a constant to be determined. The constants 6;4 and d were
again determined from the overall statical condition that neither axial

forces nor bending moments were applied.
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Gregory wrongly criticizes Weber, Cullimcre, and Ashwell
for not includlng this bending strain in their mathematical models.
_He did not realize that the bending of a member could be combined

‘w1th tw1st about some assumed axis to produce tw1st (w1thout

berding) about a different axis. Gregory was mistaken, and the
results obtained by Weber, Cullimore, Ashwell and Gregory are all
identical, as can be seen by the following example, (also Ref. 66

and 67) .

Consider the angle, (Fig. 6. 15) w1th ‘the axis 00! defining

B T S

the distortion axis. The longitudinal strains at the points z, s

with the axis 00' as reference are

0 ' . ‘ *
j éz - & = é ('1' 0(«9/6(76) ) (6.32)
. ’ o 2
and €gy =€, T & (% OLG/”L%). ,
(6.33)
The difference between the strain-at point z, and the
strain at point s, is obtained from the difference of equations
(6.32), (6.33) and the use of the cosine rule in triangle osz.
Then
. . ) . " 2 ] . 1. .
€ - € = FORAOMD - vrmado/dy (6.34)

Equation (6.34) is similar ‘to Equaticn-(6.31),when the
constant d is evaluated, and Gregory's method therefore gives

similar results to those obtained by Weber.
6.5.4 The Axis of Distortion and the Shear Centre

‘The axis of distortion is defined by Ashwell (Ref. 58)
as the axis which co-incides with the longitudinal fibre, inside
or outside the section, which does not distort into a helix, but
remains -straight when the bar is twisted. This axis should ncﬁ
be confused with the axis of displacement (as defined by Ashwell)
or.the. shear centre axis. . The.axis.of displacement of a prismatic_

elastic cantilever, built in at a support at one end and twisted
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.by a torque at the other, is the axis about which the cross sections of
the Qantileyer rotate in their planes relatively to the support;

while the shear centre axis of a prismatic elastic cantilever, built in
at a support at one end and bent by a load at the other, is the axis

through which the load must be applied in order that the cross sections

do not rotate.

As has been shown previously, the axis of distortion for a twisted
section{_with warping of the cross section completely unrestrained, is

found by considering the effect of non linear geometric deformations.

However;the axis of displacement and the shear centre axis are
based on essentially linear ideas. Therefore the existence of a reciprocity
is possible. A reciprocity does exist when the linear terms dominate, and
is»outlined by the well known Maxwell Reciprocél Theorem (Biezeno and
Grammel Ref. 44), i.e._if the cantilever is loaded through the shear
centre the cross section does not rotate or if the cantilever is twisted
there exists an axis about which the cross sections of the cantilever
rotate in their pianesrelative to the support (i.e. does not move).

This reciprocity has been the subject of investigations for many authors
including Duncan, Ellis, and Scrutton (Ref. 68), Lockwook Taylor (Ref.69),
Hoff (Ref. 70) and Ashwell (Ref. 58). It is not proposed to detail their
work, but a short tabulation of the similérities which give rise to the

reciprocity is given to oﬁtline the basic ideas. *

* It would appear that ﬁhere exists a linear differential equation which
describes the behaviour of an open section which is twisted and bent.

. This differential equation, and associated boundary conditions is
possibly self adjoint,_aé the reciprocity is only another way of showing
this condition. At present however, the nature of this differential

equation appears illusive.
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Clearly no_twisted section satisfies either thé conditions of
completely gnrestrained warping (i.e..giving rise to an axis of
.‘disto;tion)_or of cpmplete restraint of warping at one end (i.e. giving
rise to an axis of displqcement). Thus, when any section is twisted,

it will depend on the re_latifre magnitudes of the non linear geometric
deformations and the manner in which the warping changes, as to the
way in which the section deforms. Similarly, when any section is bent,
the non linear geometric deformations will,deterﬁine the way in which
the seqtionvdeforms. Consider the behaviour of an angle section and

a channel section, both arranged as built in éantilevers,

The twisted angle member deforms so that lines perpendicular’
to the lomgitudinal axis remain straight. Hence, as only one plane
is defined by these two lines, little primary warping exists;
(theré is a small amount of warping across the thickness of the leg).
Therefore, the angle member arrénged as & built in cantilever, and
twisted, deforms so that non-linear shortenings are important and
an axis of distortion is soon defined. This axis is not in the same
position as the shear centre as the linearity has been lost, and therefore
reciprocity does not hold. )

The twisted channel section deforms with a large primary
warping. When arranged as a built in cantilever the resistance of
this warping by the sﬁbport gives rise to comparatively larée warping
stresses, compared to the stresses arising fromithe longitudinal
shortening stresses. Therefore the channe] section deforms so that
an axis of displacement is defined. Since the linear twisting
deformations are dominant, then the reciprocal theorem is a good

estimate of the behaviour, and hence the shear centre is in the

same position as the axis of displacement.

From the tabulation it is seen that the shear centre and
the axis of distortion are section properties. However, the nature
of the warping restraint is important .} in determining the relative

importance of the linear and non linear terms. The general influence
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of boundary conditions, and of warping réstraints intrdduced’along,the
member, is at present unanswered. ngever, when Qarping réétraints

are introduced along the‘member, the shear centre and axis of distortion
move. . For example, when £he length of thé split of a split conduit is
gradually decreased (by welding adjacent sides of the split together)
the axis of distortion and shear centre both move towards the centroid
of the section; when the spiit is covered in, and a closed hollow
circular section is obtained, the centroid coincides with the shear

centre and the axis of distortion°

6.6 Large Torsion of Sections, with Plastic stresses.

6.6.1 Introduction
The previous section illustrates that the distortion axis

is an important sectional property for twisted members.

To find the position of the distortion axis for a large
range of sections, the author has found that it is unneceésary
to solve algebraically the conditions of no axial load and no
applied bending moment, as a‘b&rticular symmetry about the

distortion axis can be used.

’ Coﬁsider aiain the angle sectiony. The longitudinal
stresses resulting from the longitudinal stfain pattern have
no stress resultants. éy taking moments about each leg in tﬁrn,
it is seen that the resultant moments on each leg must bé Zero.
For zero resultant Eomeﬂt on each leg, there must exist points af
no longitudinal stréss nor strain. These,points of_longitudinal
strain are on a circle, df radius R, as found from equation (6.32)
by equating €, to zero, and the radius is then given by the.

equation | | |
- 6. 3¢
R =J2€ . /(d8/dz) .. (6.35)

By the particular s&mmefry of the angle section, these points of
zero longitudinal strain must be equally spaced about the

perpendicular bisectors of the leg, and hence the position of the
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distortion axis is at the junction of the two perpendicular biéectors
of the legs of the angle. Similarly for the equal sided channel, the
distortion axis is at the junction of the perpendicular bisectors of

the sides.

The approach developed above is useful to describe the

behaviour of an open cross seétion member once the material yields.

© The yieldihg is an interaction between the longitudinal strains
and the St. Venant torsional shear strainsol Certain approximations are
madé in order to obtain a quiék and reasonable formulation of the problem.
The approximation is made that the stress strain relationéhip of combined
compression and shear is similar to the stress strain relationship in
combined tension_and shear. The approximation is also made that under
conditions of full plasticity the average of the longutidinal stresses
across the thickness of the section is constant, in all parts of the

member and is independant of the longitudinal or shearing strains. *

* The.following comment was contributed by the Reviewer of the author's
paper "The Axis of Distortion, accepted for publication by the International
Journal of Mechanical Sciences."

"The yielding is due>to both the longitudinal stresses f, and the
St. Venant - type shear stresses g. Let a small increment 6f twist produce,
at a point in the member, increments of longitudinal strain §€, and shear
strairlsz » Then, by assuming all stresses zero expect f, and g, it can

be deduced from the Tresca yield condition and the levy-Mises flow rule, that

f: = S84
where Y, 1is the shear stress to produce'yield. As the twist increases into
the range of plastic behaviour, it can be expected that the strains
(which are proportional to the square of the twist) will greatly exceed the
strains (which are proportional to the twist). Thus, except close to the

positions of zero €5 ,

¢, » oY
et . "Fz ~ R CVP

where the sign is the same as the local sign of &; .

and hence




Fig 6.16 Twisted angle sections. The position of the axis of distortion is indicated by the white string.

Fig. 6.18¢c.Other twisted sections, showing the position of the axis of plastic distortion.




- 180 -

Further, the geometric apprOxiEations,made are-that .the value of
the longitudindl shortening of .the member (€, ) .and the warping of the
member measured. relative to the. plane perpendicular to the distortion

axis (rde /dz) are small when, compared with unity. .

. Erom;egperimgntal observatidns, it appears that over a large
range:of fwist,_longitﬁdinal lineé draﬁﬂ on.tﬁe surface of open cross
section meébers deform.infb helices; In Fig. (6 16), for'example
the permanent twist deformation of an alumlnlum angle sectlon is
shc?wn°

When the existénce of a distortion-axis isﬂppgtulatedb
the points of zero str.a}in must be equally spaced about the
perpendiculér bisé@tors of the legs of the angle as this stétement
is cpnsistént with a gistribution of longitudinal stresses
satisfying the éonditions.of zero bending moment and zero axial
force, (Fig. 6‘.1":7)° Thewpositions:of'the‘points of no longitudinal
straig are shown in Fig. 6.17 for the assumed plastic stress

,_distributiono

b . a elastic
b elastic plastic

a _ ¢ plastic

i
!
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of zero longitudinal ptraln

= e

longitudinal strains - longitudinal stresses

Fig; 6.17. Longitudinal strains. and Stresses, for a Tw1sted
angle section.
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The mathematical model outlined above indicates that the
axis of distortion remains in the same position relative to the section
for all values of twist through the elastic range and until full

~plasticity is developed° However, for very large angles of twist,
it is found from measurement that the value of the angle between the
legs_oflthe angle member is not constant. Nevertheless, the axis of
distortion for the new shape is at the junction of the_perpendicular
bisectors of the sides, as can be seen in Fig. 6&2 ~where the white

string indicates the measured positions of the axis of distortion.

When the position of the axis of distortion can be

found from the symmetry of the longitudinal strains, the position

of this axis remains constant, as the section is twisted. The
sections safisfying this condition include the equal-sided channel,

the I section,~a sector of a circle section, and the Z section. For
other sections, the position of the axis of distortion as determined
when all strains are elastic differs from the position of the axis of
distortion déterﬁined when full plasticity is assumed. To the author's

knowledge, the estimation of the position of a fully plastic distortion'

axis has not previously been established.

6.6.2 The Axis of Distortion of the Channel Section,

height 2a, flange width b.

Ashwell (Ref. 62) gives the position of the axis of
distortion as in Fig. 6.18a and the particular case of a = b = 1.0
is considered. The position of thé axis of distortion under conditions
of full plastici@y is found by noting first the form of the longitudinal
strains. The idealized plateau type plastic longitudinal stress systém
mentioned prévioﬁsly and based on the pattern of the longitudinal étrain
system is used, but the exact positions of the points of_zero stress are

not specified.

When the statical conditions of no bending moments, and

no axial force are satisfied, that is when
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Ui
Y,

f& d A ,
A

L(;'x-clA = 0,

an 3_”“* = 0, /

(6.36)

and

the co—ordinates of these points of zero longitudinal stress, and hence
strain can be found. If a plausible distribution has been established
the points of zero longitudinal strain lie on a circle. The locus of
the centre of this circle is a straight line, and this line will be
called the axis of_plastic distortion, to distinguish it from the axis

of distortion which is derived from considerations of elasticity.

For the channel section, with a = b = 1, the position
of the axis of distortion.axis (elastiq) is at a distance of 0.8 form
the vertical side. The form of the strain distribution (Fig. 6.18a)
indicates an approximate stress distribution and the equations (6.36)
are used to find the points of zero stress. The points of zero

longitudinal strain and hence the position of the axis of plastic

diétortién is then determined. For this channel section the position
of the aiis of plastic distortion is at a distance 0.707 from the
vertical side. Thus there exists a longitudinal line, defined in
terms of the section properties, which remains straight after the

section has been twisted into the fully-plastic range.(Fig, 6.18¢c).

. 6.6.3 The Axis of Distortion of the T-section, flange 2a,

stem b.

. From Ashwell's table, (Ref. 62) for a T-section with
a = 0.5, b = 1.0 the position of the axis of distortion is at a
distance 0.35 along the stem (Fig. 6.18b), while the position of the

axis of plastic distortion is at a distance 0.264 along the stem. (gee also Fig, 6.18c

Other sections examined included unequal sided channel
and Z sections, and all confirmed the existence of a plastic distortion

axis. The co-ordinates of the position of this axis were calculated
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from the mathematical model developed in -~ ' 6.6.2 and were compared
with results obtained from experimental dbservationsz (Fj,_g° 6&80).

The difference between the position of the calculated and the

experimental axis of plastic distortion was small.

6.7 Torsion of Sections, with Applied Constraints.

~The position of the axis of distortion for all

asymmetric sections changes with the applications of axial loads
and bending moments.as may be seen easily when the effects of an
axial load P, and bending moments M, and M?’ are included in the

elastic mathematical model. In analytical terms, the co-ordinates

of the position of the axis of distortion are found when the

following equations are satisfied:

~—

EG(r d8/dz)? -€_.) a4 =P
R 5T z eth o (6.37)
B(3(r 40/dz)? -€,,,) x dh= M_

E(3(r d8/dz)% ~€...) y dA= M

and wwt) Y o

;———\ »\/\

The general behaviour of the asymmetric section, under

the combined action of twist and applied forces, can be seen when

the. particular example of the angle section is considered.

Assume that the axis of distortion is at the
perpendicular bisectors of the two legs, Fig. 6.19a. Then, the
longitudinal strain and hence longitudinal stress system satisfying
equations (6.37) is maintained by a zero axial force and zero

bending moment system.

When we assume a different posiﬁion for the axis
of distortion, axial forces and bending moments consistent with equations
(6.37) must be applied. Assume that the position of the axis of
distortion is half way between the position of the centroidal axis
and the position of the axis, of distortion'for no applied axial

force and bending moment. A trial and error solution is satisfactory
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Fig. 6,19. Positions of the distortion axis.corresponding to
’ different elastic longitudinal stress distributions.
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to find the forces required to maintain the deformed shape. One
possible solution is shown sketched in Fig. 6.19b on the leg No. 1,

and is given by the eguations

M =P=0
X

and 4 2
My 0,014 Eb™t(de/dz) o

~ Thus, the axis Qf distortion will remain straight, and in the
 specified position, when the bending moment My is applied. The
moment must be applied to the CrossAsectioh of the angle at the
ends, aﬁd a constant iﬁténsity (per unit length) ﬁoment must be
apglied through the distortion axis in a direction which rofates.

wiﬁh the cross section. The above solution is not the only

combination of forces which will sustain the specified déformatiéns,
and there exists a range of solutions for the behding,moments ané
axial forces. Another sélution, sketched in Fig. 6.19b on leg Nd. 2,
is given by the equations

MX =My =0
and P = 0,075 E b°t(d6/dz)? .
The axial force (a tension force) must be applied through the
distortion axis, in a manner which does not restric¢t the warping

of the cross section.

Assume another position for the axis of distortion, closer
to the centroidal axis. (Fig. 6.19c¢c). The two extreme solutions

are

i MX :P =0
M, = 0,021 E ot (a6/dz)? (leg No. 1
and
MX = My =0
P = 0.23 E b°4(a9/dz)? . 1og 1o 2

A pattern in the results for the particular combination -
of twist and applied axial loads is obtained from Fig. 6.20, where
the ratio of the axial load to the square of ihe angle of twist is

plotted against different positions of the axis of distortion.



- 187 -

In the limitingAcase,_as the twist is decreased and the axial tension
force is increased the axis of distortion converges to the centroidal
axis. Under these conditions, a uﬂfform finite axial tension stress
sygtem is needed to sustain the distortion axis close to the centroidal
axis. This result. is consistent with the definition of the centroidal
axis, and is as would be expected. However, the establishment of the

rate of movement is to the author's knowledge, original.

003

P/ e 13 dos/dzy
C'o

0.0l

distance of the axis of
LAY distortion from the

0 hn U2 centroidal axis

L

Fig. 6.20. A Graph of axial force, tEQand twist, showing the
position of the axis of distortion for an angle

section.

The longitudinal strains, sustained by an applied axial

tension * force affect the torsional stiffness of the section.

* It is possible to assume positions of the axis of distortion for which

it is necessary to apply compressive axial forces. However, these compressive
axial forces are likely to introduce buckling deformga‘c_,ions° Tests carried
out at the University of Tasmania with angle sections indicate that when a
combination of compressive axial force and no twist are applied, the initial
crookedness of the anéle member is sufficient to induce buckling deformations,
(Ref. 72). For short thin angle members, the line of shear centres appears
to be the only line which remains reasonably straight. Hence the analysis
developed above is iimited to describing the effecfs of tensile axial fofces,
The overall effect of combined compressive axial forces aﬁd twist is a field

in which further investigation is needed.
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For very small angles of twist and large axial loads, it is convenient
to choose the centroidal axis as the axis of reference and neglect the
shortening effect of the twist. The approximate effect of the axial
load on the torsional stiffness'of the.sectidn is then easily found.

Biot (Ref. 71) has shown that, under these conditions, the torque

carrying capacity is given by the équation

T = (GJ + PI/A) (d6/dz) (6.38)
where’P/A is the applied axial tension, and I, is the polar

second moment of area taken about the centroid. This-expréssion '

does not allow for the bending of the centroidal axis.

H?weyer, using the co-ordinates of the distortion axis

for the partiqular combinations of axial load and twist, e may
evaluate the torsional stiffness, and ‘allow for the bending of

the centroidal axis, and theéhbrtnening'effectso

The - applied tbrqge is baldnced by:two. effects; the
St; Venant shearing Stressqs and the inclined longitudinal stresses.
The St. Venant stresses hagé beén discussed in Section 6.2, while
the magnitude of the longiéhdim‘ill stresses (in_clined at an angle
to the distortion axis) isjéiveﬁ by equation (6.37). Then, the

torque is given by the .equation

T = GJ(d9/dz) + SEL%(r d¢/dz)? + €1 TAAsinp (6.39)
N .
and using equation (6.37) to find the axial shortening,

equation (6.39) becomes

= Ga(a0/ae) + [Bli(r ao/an)? » /A-b(1y/0) @9/ T 0k st (6,40
A ' | »

When the approximétion is made that _sin/?’= rd®/dz, equation

(6.40) simplifies, and the torsional stiffness is

T = (GJ + PIP/A)(dO/dZ) + '21‘(d9/dZ)3 E[H - I§/A] . : (641)
_ ' . P :
where Hp = grA a 9 and is taken about the axis of
‘ A ,

digbortion. determined from the particular axial tension loading.
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6.8 A Functional Destription of Torsion.

It has been shown in sections 6.1 to 6.5 that the deformations
df a member subject to small twisﬁ can be described by a simple functional .
form. With small twists, d4nd with the warping of the ends of the member
unrestrained, a reasonable functional form is "all straight lines originally

:parallel to the sides of the strip (that is lines across the width, through

the thickness, and along thé length of the strip) remain straight after the

member has been twisted."

In sections 6.6 and 6.7 it has been shown that the deformations of
a membey subject to large twists, axial tensile forces, and particular
beﬂding moment combinations éan also be described by a simple functional
form. In this case the approximation is "all straight lines originally
parallel to the sides of ﬁhe cross section, (that is lines acrosa.ithe

width and through the thicknéss) and one longitudinal line (either inside

or outside of the section) rémain straight after the section has been

subject to large torsion".

6.9 General Comments.

The”pr§b1em of the torsional behaviour of elastic rectangular
bars has thus been solved by the inverse approach, i.e. by first
establishing experimentally a simple geometric model of the behaviour,
then by using the load deformation relationships to obtain stresses, and
fimm1ly by using these stress resultants to examine equilibrium. The
discrebancies in equilibrium are then used to‘estimate the'next simple
geometric model and an iterative cycle is established. The power of
this method is that only the important effects are considered at each
level, and a model of the behaviour of the structure or member is
developed as the step by step solution proceeds. This method is thus
suitable for teaching ﬁhe engineering approach to the solﬁtion of a
difficult problém, i.e. by estimating in aﬂ ordered manner the
important effecés, understanding the significant simplification at
each stage, and knowing what is.the next step in the improvement of

the solution.



CONCLUSION

Characteristic geometric describing shapes, or functional forms,

have been used throughout this thesis to approximate and predict

structural behaviour. The ideas involved were first introduced in
Chapter One, and the well known examples of stretched, bent, and
twisted bars were discussed., In the remaining chapters these basic

ideas were used in a variety of structural contextss

In Chapter Two; a description of structural stability in

terms of characteristic describing shapes, that is buckling modes,
was advanced, This description was sufficient to justify the use
of a generalized Southwell Plot to estimate buckling loads dnd

buckling modes for a range of structural beha’piour°

. Next, in Chapter Three, Four and Five the design of a through
plate girder bridge was outlined in terms of the patterns of geometric
behaviour observed in simple model tests. A mathematical model to
déscribe the lateral and torsional instability deformations exhibited
by these model tests was developed, and solutions were found. With
this deformation behaviour in mind, the current methods used to design
through bridges were outlined and it was shown that these existing
methods are suitable for the design of through bridges which have
very heavy floors. In these designs the lateral deformations of
the top flange of the bridge are considered and the web and floor is .

assumed to resist the lateral movement of the top flange.

However, these methods were shown to provide an unsatisfactory
description of the behaviour of through bridges which have very light
floors., In theée cases the lateral and torsional deformations of the
entire side of the bridge becomes the dominant defofmation.- The floor

then provides torsional resistance against these movements., Measurement




of the behaviour of a loaded full-size through bridge, which had a light
floor, was then described, It was shown that these measurements are
described reasonably well by the mathematical model developed in this
thesis. The experience gained from the entire study was then summarized

into the form of a recommendation for the design of through bridges,

Finally, in the concluding chapter, a geometric description of

torsion was developed. This description was based on measurement,
and subsequent approximation and simplification, and the twisting
behaviour of a large range of sections was described in terms of

anticlastic surfaces, helices and straight lines,
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APPENDIX A

A closer look at the self adjoint property.

For the differential equation
BI d4y/ax® + Pay/x = 0

the self adjoint form is

¢
& .
iEIgd4y1/dx4 J, ax = (EI d4y2/dx4 ¥y ax
ad * A
an ¢

1

k T
2 2 2 2
i?ﬁ y1/dx Y5 dx iP d y2/dx ¥ dx .
Using the boundary conditions x = a, b y =0, SET df#/d,‘} '=a>

and simplifying, as in equations 2.52 and 2.53, we obtain the

orthogonality relations
(a

‘ S(EI _d2y1/dx2) d‘°“:>r2/<1x2 = 0,
o 4 Q

moment curvature

4

and KP(dy,l/dx dyz/dz) = 0.
(3 R ‘

~ vertical deflection

load
The property of self adjointness is useful because it allows a
separation of variables. Separating variables is not strange
in engineering solutions, as the aim in analysis is always to
reduce the number of variables that must be considered at any

one time.

Thus, in the theqryiof'elaSticity, we use

4

| %
- 53})( CZ-JH, N 'taﬁi

)

§

dilation - deviator energy is separable along
: these paths.
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and these ideas are carried'over to ylelding problems, or in the analysis

of frames (Ref.gp -)

Vh = U A
Pull in either u, or u, direction - energy separable along these
and structure moves in the same ' paths
direction

Typical problems which are not necessarily self adjoint include:

2}—____—-.,~_~‘ | ' follower systems which depend

on the previous path,

systems which depend on the

_,/\0 -— . previous deformations, for

example when yielding occurs,

and some systems where ‘the

‘zp applied force does not act
- ? . ' - | on the centroid of the section,
P P | (for example the lateral

torsional buckling of an T beam
considered in Chapter Three

exhibits this property).

Means to handle non self adjoint:terms are gradually appearing in.
the 1iterature (Refs. 73 - 79). Probably a great future field of study
lies in the further investigation -of non self adjoint system;, as one of
the big problems in structurallanalysis is the adequate description of
yielding aﬁd the ideas outlined in this thesis furnish a method for

attaching the problem.

The general problem could be simplified to a simple system with
two rigid links and a hinge, with a variable but defined moment and

change of slope properties.
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noment

— ] ' -
P rigid rigid P

hinge

change of angle

" The shape of the initially crooked system for each loading can be
defined in terms of the previous shapes. The method of determining
these shapes is then dependant on a choice of orthogonal functions

which apply in the range of deformation over which the previous shape

is defined.
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APPENDIX B

Convergence of an infinite Fourier Series Expansion.

The establishment of the convergence of the infinite series

expansion _ ‘ A o0
' 47 - nzél an‘¢n
where . K ;.’ P ;
a, = %N@n) dz Y 4>n1\'1(47n)dz, or (?L(Qn)dz/gbnl'(fn) dz

-~ [

and c} is a solution of the differential 'equation L) —)\N({D) =0

requires some elegant mathematics.

The differentisdl equation-approach'separates the boundary

conditions from the conditions inside the boundaries. When checking
for convergence it is easier to examine a reformulation of the
" mathematical statements in terms of one equation.  Thus, the

differential equation

L($) ~ AN($) = O,

with associated boundary conditions is transformed into the

Fredholm integral equation

b .
$ - 2Kz, ) ds) W) as = o
where a, b define the domain.

K(z,A) is a symmetric (as the differential equation is self

adjoint) kernel and z, A are points within the domain.

The convergence properties of eigen functions is examined by
exploring the properties of integral equations . The classic
theorem which arises from the study of integral equations is the

‘Hilbert-Schmidt theorem (Miklin,4Ref, 16, p. 79) and states:

"Hilbert-Schmidt theorem: Let A.,X,)x, e ¢ o o o DE

the eigen values of a symmetric kernel K(x,s ), and 4|,.4%, 43...
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be the corresponding eigen functions. Let h(x) be a function, the square
of which is absolutely integrable in (a, b). If f [3(x, )]s

®
is bounded, then the function

L
f£=Kn= gmx, s) h (x) ds

may be expanded as a uniformly and absolutely convergent Fourier series
with respect to the orthonormal system 4% , that is
o]
fx) = 2 £ (bn(x) where f = (f, 4>n)
w=)|
The coefficients of f are related to the coefficients of h by the

equation

fa = /My
Thus, it is necessary to find the kernel, K(x,s ), (called the Green's
Function) to establish convergence. The kernel is found by finding the

deformations needed to sustain a unit force at the point s. An integration

of the total force applied then determines the total deformation.

Consider again the pin-ended column,

EI d%y/dx® + Py = 0

with boundary conditions y = 0, x = 0 and x =.2 . To construct this well

known Green's Function, apply a unit discontinuity in bending moment at

a point s, while satisfying the load deformation relationship for the

member.
Then 2 /3x° = at all point t x =A
en EI 4 y/dx = 0 all points except X
AR y='a1x+b,.] D¢ x €s
as X * b2 sg X s4C.

Satisfying the boundary conditions leads to the equations

/

g a, X 0<x ¢ s
y=§

a, (f-x) sexsd .
Satisfying the continuity of deflections at x =$ , gives the equation
a, & = az(l-s) o
Satisfying the condition that a unit moment is applied across the

gap at x =s gives the equation
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AR
SEIdy/dx das =1 , a8 3> 0
Y
~  EI dy/dx] = EI dy/dx +1
Sayg s-4¢
* = - +
s, EI a1 EIa2 1
L. a, ta, = 1/EI .

The two equations in a4 and a, are then used to determine the deflection
of the column when a unit moment is applied at -the point x =s , and

the deflection y is
y=0x 8) =cxlf-s)/EI  0¢ x¢ s

s(l-x)/81 se.x s A

A statical consideration of the external moments applied to the section,

give the actual moment at each point § , and
M=PY(S) °

Thus, the total deflection of the column is found by summing the

effects of deflections caused by these applied moments, and

L
y = g Py (s) G(x, s) ds.
& .

Clearly the real kernel G(x, s) is bounded and thus from the Hilbert-
Schmidt theorem the expansions of eigen functions of the differential

equation for the pin ended column are absoiutely convergent.

Proceeding in a manner similar to that outlined above it 1is
-possible to examine some of the mathematical models for the fhrough

bridge.
The differential equation

C a%6/dz° + (P2/4EI,,’)(—§—€-Z)29 = o,

with boundary conditions & = 0% z =§f$¢ has the same kernel as the

pin ended column. Then
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Y

9 = olaso) (P¥/4m1y) 40120 (9 4o + | lise) (6/2310) ()% (o) 3

W | o
where  G(z, s) =(z{-s)/C 0¢ z¢ s
L(Z-z-)/c S8z s,’.f)

The differential equation
¢ 4%6/az” - ¢ g +(P2/4EI,,')(%Q—Z)2 = 0
with boundary conditions @ = 0, z =ﬂ§e, may be shown to have a kernel

G(z, s) =(n(sinh n s - cosh n s tanh nd) sinh nz/Co tanh nd 0 ¢ zg s

n(sinh n 2z - cosh n z tanh nf)sinh ns/Co tanhnl s ¢z ¢ £

where n2 = Cd/c‘

The differential eqﬁation
c,a%/az* - a%9/az” + 0 O - (Pz/l,EI,,’)(%Q-z)’?O = 0

‘may be shown to have a similar kernel, but with n defined by the
equation‘
Cn®=C +C n* .
‘o 1

\

These kernels, G(z, s), are real, and bounded, and thus by the
Hilbert-Schmidt theorem the expansions of infinite series eigen

functions corresponding to solutions of the corresponding differential

equations are absolutely convergent.
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Mathematical Models for which a Southwell Plot is a useful device to measure buckling loads and modes.

Typical structure differéential equation

of undeformed
structure

differential equation
of initially deformed
structure

frames

EI oﬁt‘f/o(x" + szg/d-,} =0 3 d.q(fgg)/p(x”' + szg/diho

f in plane Arsriacemnf?

Ret 13

BT dy/dt +  Poyfdn=o

EI”“@‘Zo)/d’t‘ + Pp(}/dxz =0
T= 676/¢

T= 6J6-0)4L

T ovt of Plane drsflncmuf*

Res 11

Curqu(cur.
Plate

Er‘d/szf"‘ +Tdpldr - 4 ]-f

N, Ny #CWD_ =0

(G- dor/ds" + vdl-bo>fds -G-4] +
Ny v4/0

=0

Reg 30

boundary conditions

@ 7(:0)83 ?=0)EIA}/de=O

b x=o, L, SET &lg [dx =0,
Z(ET L% /dx> - PAgiixy0

(® x=0, ¥/ ; Mag= ‘Mﬁc, Meo=" Hea
Mo-wents)

VMBA = - Mea
1:\-3 ==Tpac = T—BA »
C+m;w—,>
%2 =0, 4 ; Map= Mac, Mg = Hce,
Haga = Mca

Tae = Tac , Tgp = The =0

Southwell Plot variables

¢ N

j/) ”LZ/"’% dﬁa/dzl 5 P.

-L61-

47) d/edr, d}/d’} s Ny



2 ¥l -
[D L/ dnt +Eg,w/¢1] + [D A - wor fAdrt +EQ W -wo) | %=0, 1 " w7 D Aw/dz* =0 Wy dwfdn , dwfdnr ¢ Ny
Ntv{flw [Ax* =0

.
cYlmd] N,_AMT/A#=0
S

Ret 0

C ws Ay swmTr/e w > (g o)) swrmrsa
x 2 . 2 4 2 .
-1} (Werayt - Adtiag=+ o] - [KE-fr(ay* - AL Golly 180 - xeo, £ ; wro, duftxteddufdg=o W, dwidx, dufda t Ny
CNe£ =0 ¢ N)‘ f =0 ,
€lat plate Re¢ 3o . g
’ [
S, 2
_G___:"___.LV) [c, d,we/alg," - caLLO/dﬁz]-r [C, PACR-BY/ A Cd%‘@o)/ﬂ(}{l*’ (@ 3= % 1L B=0 , ¢, d’ofdy*=0 o, de/dy desds*, M
M ¥ M Ty = 1, _
B Q e [ MO =0 te) %—__t‘(ie}9=0) 0(9/4%=0
beam liable 4o \o&eva\dv\v‘
torsional tnstab ity Reg 30
9 : 2
(e dordyt - cdoag [+ [a d* &0 3" - cdle-oo/ms’]+ 320,¢ 5 B=0, c d'o/z =0 o, dedy , depy> P
P (wd'bdz:+ doidz]=o P [ wd'e/As® + dofdz]=
l?cmm lin ble to (atewd Re¢ 56

Anstabd, ) "bo tom
M\7¢ vestyained .
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APPENDIX D

The Effect of an Initial Lateral Curvature in Equation 3.9.

The effect of the lateral initial crookedness can be included
in the mathematical model for the initially deformed structure by
using the ideas as outlined in Chapter Four and only a brief summary

of the analysis is given. The mathematical model is

oydh (0-6,)/as - 0a20-8,)/as® + 0 0-0,) ~ (F¥/451y) (bh-2)% P(0-2) /iy’

The. right hand side of this equation is then expressed as an infinite

series expansion of the form

k0, (3l2)? 4 k292(%ffZ;L2”i;!;;g...;p.;. = LPC4L-3) dis /g,

The value of kr is found using the orthogonality relationship

[~ .
g 0.0 (Gf-2)°dz =0 R e O T
r s
and thus the value of k| is. given by the equation

0 °
k, = {%P(-é-e-z) d2u0/dz2 91 dz/ g(%;.e-z)z@‘lz dz c

4 . Je

»

Assuming that the initial lateral crookedness is of the form

u, = a sin 7x/f

o]

we obtain the value of k1. This value is approximately a constant

for all values of C, C and C and
ky= 6.1 Pao/f o

The solution of the equation is then obtained by using the infinite

series expansions

9

m191 + m292 + .'o e o @
and

&

o

a191 + 3292 + o 0 00

and is of the form

6 =la, +(25 EI Pao/f P12)]91/Lié(P/P1)2 T+...
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Again using the first term of the expression, we have
0= la, + 25 BT Pa /f3F}1 6. /10-(/P))% )
As the Southwell Plot is usually taken over a small range of
loads, close to P = ﬁ ) the top line of this expansion will be approximately
constant in this range. Thus, the initial lateral curvature can be considered
as being approximately equivalent to an initial rotational effect.

For full size 1light through bridge Co£2/6m2=; 100

then from Chapter Five the value of the buckling load P ‘is approximately

P, = (100/42) /EI,,I c

Thus the lateral deflection term is approximately

25 EI P a /(100[EL,C) P,£
= 0,25 [EL,7C(2/2, ) (ag/t)

Making further approximations; namely

L, = 2 (b74/12) E

¢ =2 (t7b/3) B/2(1 +7)
b/t = 15

P/P,= 0.8

a, = 1/1000

then -3
radians,.

0.25(ELy/C (F/Py) (ao/l) = 2.4 x 10

For a full size bridge, the equivalent initial rotational crookedness

. -3 N —z
is of the order of (a + 2.4 x 10 )9, . For the average bridge a,= 10 -mdns

-3
and thus the equivalent rotational crookedness is approximately 1.24 x 10
radians.
2
For the model bridge 0022/012 = 3 . and P1 = (30/4 )'EI,7 C,

the equivalent rotational crookedness is thus approximately <$qe ﬁé Dﬂ),

[a, + (25 EI P ao/,z3 Pf') 16, = [0.02 + 0,005] 8,

0,025 91 )
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APPENDIX E
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APPENDIX F

Typical through bridge dimensions.

Location

Type _ 2;/5 f/a h/E k ontg
Brooker single lane 60/15 60/15 5/60 10 2.5
Highway railway bridge;
plate girder
Brooker pedestrian foot 60/6 60/6 4/ 60 1.2 3.0
- Highway bridge; truss
Devonport ferry terminal =~ 86/15 86/5.3 5/86 1.67 2.42
bridge; plate
girder
Hobart ferry terminal 81/15 81/5 5/81 4 2.5
bridge;
plate girder
Westerway  road bridge; 36/20 36/6 7/36 2.15 2.15
truss

,K = length, s = width, h = height, (in feet) of the bridges.

TABLE 1, Comparison of values of k for

different types of through bridges.
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APPENDIX G.

An Economic Value for the Initial Rotational Crookedness.

The first mode initial crookedness for the ferry bridge was of the
~2 -2
order of0.6 x 10 radians, with a maximum value of 10 radians. These
figures, in comparison with figures obtained from similar structures

appears a reasonable average.

For this particular bridge it is possible to determine the benefit
gained by increasing the rotational straightness, in the fabrication
stage.

k3

A decrease in first mode rotation fromd.6 x 1d~ radians to

-1
0.3 x 10 radians increases the load carrying capacity by 10%.

Fig. G1.)
Lonp
1 . | A
ot 1whaof P
=4S of ¥ :
/ Ling el firp ‘/ch imibial covered ness Adhion ol Hee
; icnsls
I’l
WL e,
o 17" radiang
Fig, GR,

Fig, Gl, Load deformation relations for varying crookedness values,

If this increase in load carrying capacity results in a corresponding
decrease in steel area of the flanges, the resulting steel saved is 10%

of the weight of the flanges.

Another possible means to obtain higher working loads is to
deliberately make the bridge crooked in a manner which is opposite
to the deformations induced by the loads. Thus, if the bridge is
made as in Fig. G2 higher working loads for the frame lateral

deformation can be achieved. (Fig. G1).

Then, if the value of steel saved is greater than the cost of
fabrication of the girder with controlled rotational straightness,

it is economically worthwhile to produce the improved girder.
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APPENDIX H.
The Effect of Lateral Loads on the Heavy Through Bridge.

Thié model describes the extreme type of deformation leading to
instability which is characteristic of thfough bridges with rigid
decks; that is a model describing a structuré which is most
unlikely to move bodily. in the lateral direction. In this model the

top flange moves more than the rest of the structure, (Fig. H1) and

hence conditions describing ‘the lateral stability'of the top flange

are considered.

—

Fig. H1. Deformations of a throﬁgh bridge, when thekbottom

chords provide restraint against rotation, and

prevent translation.

For the bridge uniformly loaded along the bottom flanges,
and for the origin taken at the end, the force P, at z in the
top flange, in a single beam is given by the equation

: : 2
PThz-%w,ez—%-wz ? , (H1)

where w is the uniform load for each I beam .per unit length

of the bridge. This relationship is shown in Fig. HZ2.
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Fig. H2. An element of the bottom chord, web and flange for the

bridge shown in Fig. H1.

When the flahge is slightly disturbed from its initially straight
position the equations of statical equilibrium are obtained by examining

the shear per unit length acting on an element, as shown (Fig. H3), and

we obtain the differential equation

d2(EIT aPx/dz?)/dz° + d(Pp(dx/dz)/az + fx = © (H2)
and if the flexural rigidity is constant along the length, equation (H2)

simplifies to the differential equation

EI, d*x/dz% + px + (w/2h)dlz({-2)dx/dz] /dz = 0 (H3)

When the boundary conditions

z =0 andf ; x=0, EI.rdzx,/dz2 - 0

are specified, a mathematical system which has an infinity of eigen

funection solutions X. sand corresponding eigen values w, is specified

(see Chapter Two).

e fdy T~ / ~
PT

i
dMfds

+.--~\‘-~_4z__“_‘\;\;‘§‘§ﬁ
Fig. H3. An element of the top flange for the bridge shown in
Fig. H1. ' .

d@* d«”/d%)/ﬂ(%
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A solution of the differential equation (H3) and associated

boundary conditiins is‘obtained by Timoshenko, Ref. 2, who uses
an energy method. The final shape, x, is expressed in a Fourier
sine'series, i.e.”

o

X = a sinxz/f + a.a Sin 3wz + o o o
for the symmetric mode, and

X = a, sin 2xz/8 + a; sin 412/ + o . .
for the antisymmetric mode. The values for_ajf a3 s a5 , are shown

in Fig. H4 and values for w1/, w jue shown in Fig, H5;

The lowest buckling losd is obtained from fig. H5, and it/is

seen that sometimes this mode is symmetric and sometimes antisymmetric.

However, the difference in buckling loads, corresponding to these two

different modes is small.
2.2.6 Lateral loading effects on equation (H3).

The effect of a distributed lateral shear force, h(z) applied

to the top flange, is to alter the differential equation (H3) to the
differential equation

EITd‘*x/dz‘* .o W/2n)alz(-z)dx/dz] /dz = hiz) (52)

where h(z) is a function of the applied loading.

This model is solved by replacing the loading by the series
c1d[z(g—z)dx1/dz]/dz + cad[z(ﬁ—z)dxz/dz]/dz + 40 o= h(®

The value of c, is obtained as the ratio
. -y

L

e = an h(z)dz/s d[z(e—é)dx“/dz]/dz x, dz
14 [

when both sidesrof.the series are multiplied by the function x

and.£he equation is integrated between thé‘ééundaries;‘ The final |

solution

X:b1x1 + b.x + b,x t 6 0o 0

72 .33

is obtained by substitution of the values of c,x,into equation (H4).
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Value of a : ‘51:::::>\—+‘1C§S;f£:1 +-Z:)kj£\7£3 .
Q) s T3fe a3 303/¢ Ag s 53/l
5 L - |
first buckling mode =
ﬂ;swz"ﬂ/&
| 4,_——~f"’”——’——_‘—‘——”j;ﬂwnak
0 : 1 —M ! {
25 50 - 75 100 125 150
Elastic restraint &4/-‘( Ip
5
4;%3“&/&'
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Fig, H4. First buckling mode components for a solution of equation H

Buckling constant L/

lowest buckling load
~ = ~-- buckling load for a symmetric mode

——- ——. buckling load for an antisymmetric mod

I 3 1 1

0 25 50 75 100 125 ' 150

Elastic restraint ﬁﬁl*/ 1-|—Z*EIT

Fig. H5. Values of (L/£) to use in Py =n2EIT/(L)2 for

a solution of equation H3,
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When a lateral point load F is applied to the.top flange at a -
point in the middle of the bridge, and the vertical loading applied
to‘the bridge is increased until it is close ﬁo the buckling load
of the bridge, the final shape of the top flange x is given

approximately by the first term in the infinite series, that is

x= k X, (7/28) (w /2h /(l-w/w o (H5)

Values of k are plotted in Fig. H6 for a range of values of elastic

restraintﬁf 4/f4EIT o

value of k ', dx = ﬁ\([:/az)/(w;/a&)
20r H AR/ A (e- )/A
F/ds, _ E\—/;-lc«(}( 3)12'/45. %
1.0T
Ve | 1 ]
o 25 . 50 75

ElastiC'restraint@ﬁQ/WA EI,

Fig. H6. Values off& for lateral loading as given by

equation H5.

Examination of other forms of loading, indicate that of all
the likely forms of lateral loading that might be applied to the
bridge the central lateral point loading induces the maximum first
mode deformation. However, it is seen from Fig. H6 that these
deformations quickly diminish as the lateral restraint is increased.
Therefore, even when large vertical loads are applied to the bridge,
it is unnecessary to allow for any decrease in the lateral stiffness

of the top flange.

Because the first buckling mode is not a good representation
of the deformations induced by the lateral loadings, a large number

of terms in the infinite series are required to specify accurately
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the final deformations. It is easier therefore to use existing methods
of superposition to find the final deformed shape of the bridge, i.e.
find the deformations induced by the lateral loadings using usual bending

theory, and add linearly these deformations to the buckling deformations.
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APPENDIX J.

area of the section
spacing of the floor beams

components of thein buckling mode

[.K] ,[.B]= nxn matrices

bimoment
width of strip, leg width of an angle section

8t Venant torsional stiffness

equivalent torsional resiraint provided by the floor beams

warping stiffness

values of C, , C° along a beam

modulus of elasticity, Young's modulus
flexural stiffness of a pin ended column
flexural lateral stiffness of an I beam
flexural vertical stiffness of a floor system
flexural lateral stiffness of the top chord of an I beam -
force

longitudinal stress at the point z

shear modulus

constants

lateral shear force

fourth moment of area, taken about the Weber centre
depth of I-section beam

polar second moment of area taken about the centroid

polar second moment of area taken about the Weber. centre

. force

= kernel

the ratio of the total lateral movement of the top flange
of a through bridge. (sustained by a 1gteral force applied
at the top flange of the bridge) to the magnituae of the
lateral movement of the top f}ange that results from the

deformation of the floor beanms
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g = length of column section, strip
L = effective length of the top flange of the I beam

L($),N@)= differential operators

M = moment

M*HJ%3 = twisting moments in the xy and yz planes

P = 1load applied to a single I beam, column

P,, B, = eigen values

R, = Euler buckling load of a colﬁmn of length a

P = the axial force in the top flange of the I beam at z
Povit = first critical load as measured by a Southwell Plot
p = 1line loading

dp = shear stress to produce yield

r, R = radii

r,, r,, r = distance measurements

s = arc length aiong a boundary

S = width of bridge

Te = torsional loading

T = ‘torque

t = +thickness of the strip

u = lateral deflection of the centroid of the beam
u, Vv = movements in the xy plane

W = vertical movement in the 2z direction

W = uniform loading

W, W, = eigen values

X . = the lateral movement of the top flange

x,, X, ' = gtgen Punctions

[x] = column vector
X)y) Z
= systems of axes
Xy Nz,
y = final deformed shape
Vis» Yo = eigen functions
Yo = initial crookedness in y

angles

X
H
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the lateral shear force restraint per unit displacement
provided by the web and bottom chords of the through bridge

(EI - EIW)/EI, taken as 1.0 for the problems examined in

I

this thesis

longitudinal strain at the point 2
longitudinal strain a ﬁhe point OI
direct strains in the x, y directions
shear strain in the xy plane

shear strain on the surface of a strip

direct stresses in the x,.y directions
shear stress in the xz, xy, yz planes
rotations in the xy and yz planes
rotation of the beam

eigen functions

loading constant

eigen values

deformation

initial deformation
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