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PREFACE 

The purpose of this thesis is to present to the engineering 

profession a method of structural analysis which is peculiarly 

suited to the way engineers think. •The range and the power of 

structural analysis are extended by careful study of the actual 

deformations of structures, leading to the formLulation of simple 

mathematical models. The theme throughout this thesis is the 

deliberate effort to look for, and to describe characteristic 

shapes which define the deformed structure; general statements 

are obtained similar to the historically valuable models which 

used "plane sections remain plane" or "radial lines remain radial". 

Once an appreciation of the deformations of the structure is gained, 

the forces to sustain these deformations are then found easily. 

This is one of the oldest approaches of engineering analysis, 

and the most powerful methods of analysis of structures have been 

along these lines, Men like Galileo, Parent, Navier, Bernoulli, 

and Ooidoimb developed an appreciation of structural behaviour by 

looking for simple geometric characteristics which would describe 

the deformed shape of the structure. (We may note also that 

Kepler's purely geometric study of the motions of the planets 

paved the way for Newton's formulation of his laws). And today p  

when one tries to visualize and calculate the deformations of a 

bent beam, it is difficult to improve upon the first overall 

approximation that plane sections remain plane. 

The key to obtaining a simple mathematical model of a real 

problem is to start with a simple physical or laboratory model. 

Simple geometric approximations are then obtained by fitting an 

analytic function to the form of the deformations of the simple 

structure. The functional form is chosen so that the strains, 



the stresses, and hence the overall statical equilibrium of the structure 

can be evaluated. With this basis on which thoughts can be focussed, the 

laboratory and mathematical models can be improved to be a closer 

representation of the real problem. This approach reduces the need to 

test full—size structures, as the geometric functional form acts as the 

geometric scaling factor. When full size testing is carried out, model 

tests are still a valuable means of providing a quick overall picture. 

This picture can then be used to determine which important geometric 

deformations should be measured. At present, full—size testing, although 

expensive, is still necessary as the relationships between the strength 

and the size of the material remain unanswered. Nevertheless, improve- 

ments in this field can be made; for example R.E. Rowe (Ref. 1) has shown 

that concrete mixtures can be scaled to produce the same geometric crack 

pattern as would be expected in the full—size structure. 

An engineer is frequently using approximate overall characteristics 

of a simple model as a basis for obtaining further thoughts on the real 

problem. However, the inability to measure quickly the overall geometric 

deformations of a simple model has led to specialized full—size structural 

tests, not by engineers, but by research workers. The aim of this thesis 

if to show how to use simple experimental studies to obtain simple,,. 

mathematical models, and thus fulfil the sentiment expressed by Sir Alfred 

Pugsley (Ref. 2) that "Drawing and design office staffs can, and like to, 

play a part in the extension of their methods, and if they could do so 

directly, not only by theoretical but 1:y simple experiment, would welcome 

the opportunity". 

The design of a through plate girder bridge is taken as the main 

problem throughout this thesis in order to co—ordinate the whole. 

Existing mathematical models and methods of design are based on the 

ideas developed after the buckling failure of several through bridges 

made with heavy floor beams. Bridges nowadays are being made with 

lighter floor beams, and model studies are used in the investigations 

for this thesis to indicate characteristic deformations of these lighter 



through bridges. An understanding of the problem is obtained from 

these model studies, and is used to develop a new mathematical model. 

The predictions of this new model are then compared with measurements 

taken on a full—size bridge with strain gauge, spirit level, and rule, 

and reasonable agreement is obtained. This new mathematical model is 

then used as the basis for recommendations concerning the design of 

through bridges made with light floors. 

In Chapter One the author presents a case for measuring geometric 

deformations as a means of obtaining a good functional form for the 

description of the structural problem. Simple and well known examples 

of stretched, bent, and twisted bars are chosen in order that the main 

features of the method are not lost in the process of mathematical 

manipulation. 

Chapter Two begins with a detailed analysis of the structural 

stability of a pin-ended column. This review is used as an introduction 

to the use of a characteristic geometric describing shape in the study 

of structures liable to buckling instability. It is shown that for 

many years engineers have recognized the values °fusing an infinite 

Fourier sine series (derived from the different: equation 

describing the behaviour of the pin-ended column) to describe an 

arbitrary deformed shape. This method is useful when the structural 

behaviour can be represented by those differential equations for 

which sine functions are a solution. However, the existence of other 

sets of infinite series of buckling modes is not generally exploited 

by engineers. In this chapter it iq shown how one can recognize 

these series by studying the properties of the differential equations 

and boundary conditions. The properties of the series are then used 



to generalize the well known plot, first developed by Sir Richard Southwell 

(Ref. 3)0 This generalization provides a link between the initial and final 

shape of the structure with the loadings on the structure for a large 

range of structures liable to instability. With this sound analytical 

basis, reinforced with measurements taken on actual structures, the 

Southwell Plot becomes a more valuable experimental and design tool. 

The author believes that this generalization is original. 

Chapter Three  is the first of three chapters which are concerned 

with the design of a through bridge. In this chapter the measurements 

taken on a simplified light through bridge are outlined. It is found 

that the model through bridge is liable to lateral and torsional 

instability. A new mathematical model is developed to describe these 

lateral and torsional movements, and upper and lower bound solutions 

to the first buckling load are found. These loads and the corresponding 

buckling modes are shown to be a reasonable approximation to the measured 

results. Other original contributions outlined in the chapter include 

Southwell Plots on rotations and on strains suitable for use with the 

new mathematical model for the bridge, a method for separating the first 

buckling mode from the measurements of the total deformed shape, and a 

method for finding lower bound solutions in some structural problems. 

In Chapter Four  the effects of minor additions to the laboratory 

and mathematical model are investigated. The first effect described is 

that resulting from the inclusion of web stiffeners inthelnodel through 

bridge. The inclusion of web stiffeners is shown to change only slightly 

the nature of the deformed shape, and to increase by only a small amount 

the buckling load. The second effect described is that of loadings 

applied at points other than through the centroid of the I beam. It 

is shown that lateral and torsional loadings applied to the bridge can 

stain large deformations. An original extension of an existing method, 

used previously by engineers to estimate the deformations sustained by 

a lateral loading on a pin ended column, is then developed and an estimate 

of the effects of these loadings is obtained. 



In Chapter Five the author discusses the design of real through 

bridges. An examination of existing code recommendations indicates 

that there exists a large difference between these recbmmendations 

and the measurements I,aken on the light through bridge (outlined in 

Chapter Three). To gain a greater appreciation of these differences, 

five additional model steel bridges are tested in the elastic and 

elasto-plastic ranges of deformation. A good fit to these model 

test results is shown to be the mathematical model developed in 

Chapter Three and, as a result of the understanding gained from 

these model test results a process for use in the design of 

light through bridges is established. This design process is 

then checked by comparing these predictions with measurements 

taken on a full-size structure. In the light of these tests, 

design recommendations for light and heavy through bridges are 

In Chapter Five the new mathematical model developed in 

Chapter Three is consolidated, and the limits of this model are 

found in relation to existing mathematical models for heavy 

through bridges. Also in the chapter a simple approximation 

to the buckling load is found, and the concept and use of a 

line of first yield using simple patterns of the deformed shape 

of the bridge is presented. 

In Chapter Six  the range and the power of the method of 

functional form is illustrated by presentation of a description 

of torsion, as this problem of torsion arises naturally in the 

discussion of the deformations of the twisted and bent through 

bridge. It is shown that present methods to describe torsion 

depend on analogies (physical and mathematical), and at best 

describe shear stresses in terms of the slope on a thin film 

membrane, or in terms of the solution of a high order differential 

equation. 

An effective geometric picture of torsion is obtained by 

measuring and describing the movement of a line drawn on the 



twisted member. Coidamb (Ref. 4) used this approach and obtained the 

good approximation for a twisted circular bar that "plane sections, 

perpendicular to the longitudinal axis of the bar, remain plane". 

This approximation is a poor estimate of the deformations of a 

rectangular bar, and improving approximations could not be found. 

Later analysis of the torsion problem has therefore tended towards 

a more rigorous mathematiCal treatment. Nevertheless, further 

consideration of the deformations of the twisted section leads to 

the first approximation that for small angles of twist all straight 

lines originally parallel to the sides of the member remain straight 

after the member has been twisted. The behaviour of many twisted 

members with open and closed cross sections is investigated by using 

this basic approximation, and an original, complete, and simple pidture 

of torsion is developed. 

The research presented in this thesis is part of a continuing 
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of Professor A.R. Oliver in the Civil Engineering Department, at the 

University of Tasmania, Australia. The author has been involved in this 
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CHAPTER ONE 

MEASURING GEOMETRY TO OBTAIN SIMPLE MATHEMATICAL MODELS 

101 	Introduction 

The formulation of any engineering problem is very conveniently 

thought of as containing accy three phases, (Refs. 5 and 6), These 

ares the real problem, the physical models, and the mathematical 

models. The real problem is initially a vague and undefined notion. 

It May be the "investigation, design, and construction of a bridge", 

while one of the physical models could be described as the bridge 

structure itself )  or the simplification of it used for structural 

design purposes. The bridge structure may have a certain type and 

number of beams, columns and decking, and the physical model is 

often further defined and simplified in such a manner as to be 

more amenable to description. Any description of the behaviour 

of these physical models which depends on logical analysis is called 

a mathematical model. In engineering analysis the mathematical 

and physical models are gradually modified and used to formulate 

and describe the real problem and enable a reasonable mathematical 

model to be obtained. 

All structural analysis is necessarily approximate, and to 

obtain a mathematical description a functional relationship must 

be used to connect some of the variables. A specific example is 

the stress-strain relationship used in structural analysis. It 

is rarely fruith4 for the structural analyst to question the 

nature of the mutual attraction of molecules or even to use the 

Newtonian functional description of the problem, that is that there 

are mutual forces of attraction between molecules which can be 

described approximately as varying in terms of the inverse of 

the square of th4 distance between the molecules. For most 

structural analysts this description is far too specific and 

it is sufficient to try to describe the overall stress and 

strain relationship by direct measurement, combined with sensible 



interpolation. Fortunately, the functional description of this 

relationship for some materials is sufficiently well described by 

straight lines over part of the practical range of strains. 

Since all structural analysis is approximate, there exists 

a variety of ways in which the variables of the problem can be 

considered and manipulated. The method presented in this thesis 

is one in which a pattern is_used to link the important deformations 

of the problem. This pattern, obtained from detailed measurement of model 

structures is described in terms of an analytic function, or functional 

form. With this overall estimate of the deformations, the forces to 

sustain the prescribed shape are easily found. 

This is one of the oldest approaches of engineering analysis and 

the most powerful methods of analysis of structures have been along 

these lines. However, the source of the power of the method is not 

generally recognized. To show that the source lies in the use of a 

functional form or pattern to describe the deformations of the 

structure, a few historical estimates of the deformations of a 

bent beam are outlined. 

1.2 The Beginnings of Structural Analysis 

Structural analysis had its beginnings in the seventeenth 

century when mathematicians and geometricians like Mariotte and 

later Leibniz, Varignon and the Bernoulli brothers (Ref. 4) made 

approximations with regard to the displacements of bent bars. 

Jacob Bernoulli, when trying to calculate the deflections ofa 

loaded cantilever took the deflection curve as shown in Fig. 1.1. 

Suppose ABFD represents an element of the beam, the axial 

length is ds. Bernoulli made the approximation that during 

bending the cross section AB rotates with respect to the cross 

section FD, about an axis through A, and therefore the elongation 

of the fibres between two adjacent cross sections is proportional 

to the distance from the axis A. 



Fig. 1.1. Geometric Approximations for a bent beam: Bernoulli. 

Measurements indicate that this approximation is reasonable, as 

the cross section AB remains reasonably straight. However, we now 

know that a better approximation for the line of zero strain is 

obtained by assuming that the cross section rotates about some 

point inside the beam, the position of this point depending on the 

particular material and the way it deforms under load. 

Bernoulli's approximations allowed advances in structural 

analysis and the calculus was used to further the study, particularly 

the Euler column theory. A unified approach was made by Parent and 

later by Navier using the approximations that cross sections remained 

plane to describe the bending of plates and bars. 

Later mathematicians developed more complicated models to 

describe the behaviour of structural elements, but they incorporated 

the smallest possible number of geometric approximations regarding 

the deformed shape. These developments have led to the mathematical 

approach involving stress function solutions, biharmonic solutions 

and high order differential equation solutions. 

Improved mathematical models(using the mathematical approach) 

are obtained when a decrease is achieved in the number of 

approximations needed to specify the geometrical deformations, 

or when further account is taken of the complexity of the 

functional dependence of stress and strain, or when further 

account is taken of the complexity boundary or loading conditions. 



The aim of a mathematical approach is then to make minimal assumptions 

or guesses of functional dependence, and to develop a complete description 

of a defined problem from a system of basic axioms, without the need for 

an appreciation of the deformations of the structure. 

The mathematical approach is often useful in obtaining numerical 

solutions in particular cases, but because of their inherent generality, 

it can be remarked that 

(a) often little understanding of geometric deformations, and 

load carrying meelanism of the problem is achieved, and 

hence methods of strengthening the structure are difficult 

to visualize, 

(b) a complete mathematical solution must frequently be obtained 

before useful information is available, 

(c) allowance for second order geometric deformations is often 

not appreciated, 

(d) as regards teaching methods )  an engineering attitude is not 

encouraged and a great deal of time is spent on merely 

illustrating a routine mathematical calculation. 

As a means of overcoming these objections it is useful to look 

back in history and to glean a few ideas of how the advances and 

simplifications in structural analysis have been made. When we do 

so we often find that these advances in analysis have been achieved 

by the use of approximate descriptions of displacements, and as a 

result the mathematical complexity of the problem has been considerably 

reduced. 

Throughout this thesis it is shown that patterns or characteristics 

of the geometrical deformations of structures, (such as displacements and 

surface slopes)enable good descriptions for a range of structural problems. 

Analytical functions are used to describe these geometrical characteristics, 

and from these functions, strains are defined. Estimates for load 

deformation relationships are used to define stresses and from an 

integration of these stress patterns the forces which must be applied 

to the structure, to sustain the specified characteristic shape, are found. 



This inverse method has the advantages that the mathematics 

remains simple. At each stage of the computation the physical 

significance of the geometrical approximations of functional 

dependence is obtained very clearly, giving a deeper insight into 

the effects of the geometrical deformations and the assumptions 

which have been made about them. This insight Tiables a good 

appreciation of the structural behaviour to be developed, and 

quick and reliable estimates of the effects of stiffening the 

structure 4e-ee-mErde., or of lightening if it is unnecessarily 

strong in some places, can be made. 

1.3 Using Patterns in the geometric deformations to obtain simple 

Mathematical models  

1.3.1 Measuring Devices. 

In this chapter the use of geometric information obtained by 

moire techniques is discussed, particularly measurements showing the 

position of lines of constant displacement in the plane of the model 

(Ref. 7) and the position of lines of constant slope on the surface 

of the model, (Ref. 8). Later in the thesis these ideas will be 

applied to measurements of an overall shape obtained from many 

point by point measurements. 

Overall detail of geometric deformations using the moire 

technique is a particularly suitable set of measurements for the 

- following reasons. 

(a) The measurements are direct measurements of displacements 

and deflections, that is geometric deformations. These 

changes in the geometry can be related to the deformations 

undergone by sets of straight lines drawn on the model, 

and hence the change in position of these lines can readily 

be visualized. 



Geometrical effects are always separable from other considerations 

and a deformed shape can always be drawn without any consideration 

as to how this shape was obtained. Considerable information can 

thus be obtained before concepts of stress and statical action 

are introduced, the reasoning being thus simpler and more 

straightforward than that obtained by introducing stresses too 

early. Variables of statics (force variables) are frequently 

not separable. 

(b) Lines of constant slope and lines of constant displacement are 

easy to obtain. The patterns suggested by these contour lines 

are usually simple, and suggest the nature of the functional 

form. As they are direct measurement of deformations they can 

then be used to establish a simple mathematical model. The 

order of complexity of the model is then determined by the 

approximations made of the deformed shape of the structure. 

(c) The shape of the moire fringes (or contours), can be used 

to suggest structural behaviour which is common to various 

structural models. When the same functional form is a good 

fit to different size models, then the functional form is 

the scaling function. 

(d) The whole outlook is concentrated on the production of 

simple descriptions of the load and deformation behaviour, 

and is thus suited to an engineering approach. With this 

outlook, simple models, suitable to be incorporated in 

codes of experience or practice, are always kept in mind. 

In the following sections very simple structural problems 

are investigated as a means of showing that the measurements of the 

geometrical deformations of displacements and deflections can be 

used to obtain simple structural models. Theearly problems are 

so simple as to be trivial in themselves but deliberately chosen 

as having solutions so well known that full attention can be 

directed to the process of solution unobscured by algebraic 
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manipulations involved in the process. It is well known that 

the shape of an element of a stretched or bent bar, chosen with sides 

parallel to the edges Of the undeformed bar, is approximately the same 

as the deformed bar. These siiple problems are described in terms of 

a geometric functional form. The simple model for a twisted thin 

rectangular strip that specifies that the shape of the element is 

the same as that of the deformed bar is then an easy extension. 

1.3.2 A Simple Model for a Stretched Bar. 

A rectangular bar is stretched longitudinally. This problem 

is obvious to the structural analyst; however this simple problem 

is useful to illustrate the basic ideas* 

Measurements of lines of constant displacement (u 2  v) in 

the x2  y directions are shown in Fig. 1.2a, and Fig. 1.2b 3  The 

method used is the method developed in recent years -by Oliver, Jenkins L 

and Middleton at the University of Tasmania, and Outlined in Ref. 7. 

For completeness, the optical arrangement used to view the 

interference pattern is shown in Fig. 1 03iland the interference 

fringes resulting from rotation 9  strains, and combined rotation 

and strain are shown in Fig. 1.3b. A good analytical description 

of the shape of these lines of constant displacement is given by 

the functions 

u = y/a 

and 
	v = x/b 2 

that is, planes originally perpendicular and parallel to the sides 

of the strip remain straight after the strip is stretched, and 

hence the shape of a deformed element is similar to the shape of 

the deformed bar. 



Fig. 1.2a Fig. 1.2b 
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Lines of constant displacement for a bent beam 

Fig. 1.4a Irs1:1-,t1  

Lines of constant displacement for a Stretched Bar. 

1.3.3 A Simple Model for a Bent Beam. 

Measurement of the surface deflections for the thin beam bent 

in a manner indicated in Fig. 1.4a indicate that the beam has single 

curvature in the longitudinal direction. Measurement of the lines 

of constant displacement u, v in the x, y directions Fig. 1.4a and 

1.4b indicate that good approximations to the displacements are 

U = a1 x5r (hyperbolic) 

and 
	

v = b1 x2 (parabolic). 
	(1.2) 

tk 
	3.1  	14,11, 	 - 



collimator field 
lens 	lens slit light 

source 

model reteren ce 

screen 
Fig. 1.3a Optical arrangement used to view interference patterns. 

59 lines per inch 

	 (a) ROTATION ALONE 

	 (b) DIFFERENCE IN 
PITCH ALONE 

	  (c) COMBINATION 
	  OF ROTATION AND 
	 DIFFERENCE IN PITCH 51 lines 

per inch 

Fig. 1.36 Interferences fringes resulting from uniform rotation, uniform strain and a combina-
tion of uniform rotation and uniform strain. (Reproduced from "Stress Analysis 
Manual" Experimental Mechanics, Feb. 1967). 
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These estimates of U, v are particuldrly simple and as they 

have been expressed algebragially they may be said to express the 

functional dependence or the functional form of the displacements. 

(- 
The strains E  e 	in the x, y directions respectively 

x3  y 

and the shear strain )( 	consistent with this function form, are u xy 
calculated from the approximations for small strain 

e x = /ru/6 x  

= 

and 
	= -ou,Aoy + -av/ax p 

(1 .3) 

and are given by the equations 

ex = ay 

e 	= 0 	 (1.4) 

and 
	

oxy  = (al  + 2b1)x, 

For the bent beam, the stresses consistent with the 

functional form (1.2) are 

= (E/1- 2 ) al y 

0**1  = (E/1-12 ) al y 
	( 1. 5 ) 

'try.  = G(al  + 2b1  )x • 

The forces necessary to sustain equilibrium are obtained 

by integration of these stress patterns and are given by the 

well known equations (using unit width of beam) 

Axial load: 

Vertical shear: 

Bending Moment: 

Px  = 	(E/1-i2 )a1 y dy = 0 
.41 

Py  = 	+ 2b1 )x dy = 0 

M = c(E/l -i2 )a1  y2  dy 

(1.6) 



the complete beam 
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where 

= (E/1- 2)a1  I 1  

I = y2  dy. 

-4.ot 

If no total shear, P 	is applied, the relationship between 

constants a1 and 2b1 can be found. Then, P = 0 gives 

al  = -2b1 • 
	(1 7) 

The equation (1.7),when substituted into the last equation of (1.4) )  

indicates that with the guessed functional form and the specification 

of no total shear we arrive at the obvious statement that the model 

is one for which no shear strains are present. 

To sustain this deformed shape, a constant bending moment M 

given by the equation 

M = (E/1 4) al  I y  (1.8) 

must be applied to the beam, and the displacements of the section 

will be 

u = (M/EI) (1 - 2 )XY 

and 	v  = -4(M/EI)(1-)2 ) x2  
(1 .9) 

It can be seen from Fig. 1.4(A) and equation (1.2) that the 

specification defines that plane sections perpendicular to the 

longitudinal axis before deformation remain plane and perpendicular 

to the longitudinal axis after deformation, and thus the shape of a 

small element chosen with sides parallel to the beam deforms in a 

similar shape to that of the whole beam (Fig. 1.5), as Bernoulli 

assumed. 

Fig. 1.5. Geometric Approximations for a Bent Beam. 
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Fig. 1.6b 

1.3.4 A Simple Model for a Twisted Strip. 

Measurement of the surface slope of a -twisted strip was carried • 

out by using the Ligtenberg moire technique (Ref. 8). This technique 

is simple and inexpensive to use. A brief summary of the technique 

is given in section 3.2. The measurements indicate that lines of 

constant slope in the x, z directions can be delcribed approximately 

by a series of equally spaced straight lines, as shown in Fig. 1.6.. 

Thus a good approximation to this surface shape is obtained by 

examining the form of .the vertical deformation w in the direction 

of the y axis, and is given by the equations 

"bw/ax = kz, 

and 	1!Jhz = kz 

Fig. 1.6a 

—1 

kria,=u-mk 
1101:41 hoe cliteotwet 

Lines of constant slope on the surface of a twisted strip 

Integration of equation (1.10) and choice of axes in the centre of 

the strip leads to the specification of the functional form defining 

the deflection of the surface as 

w = k xz, 
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, that is an anticlastic surface, with zero values for the curvatures 

iw/bx2  and 212w/z2  in directions perpendicular and parallel to 

the axes. However, rotation of axes by 45 0  to xl 1  z i  gives the 

deflection as 

/k(4 — 

and the curvatures of "w/a4 and iw/az 21  as equal in magnitude 

but opposite in sign. As the investigation of the effect of transforming 

the axes is carried out on the mddel, or with the model deformations in 

mind, a better appreciation of the geometrical deformation is obtained. 

Measurement of the surface displacements in the x z  plane on the 

top and bottom surfaces of the strip by the method of Ref. (7) indicates 

that both these surfaces are in approximately pure shear but with 

opposite sense. A slight inclination of the v lines indicates that 

a small amount of longitudinal strain is present, (Fig. 1.7a, 1.7b). 

In this first model we take the lines to be straight and parallel, and 

thus not consider the shortening of the member. 

Fig. 1.7a 	 Fig. 1.7b 

Lines of constant displacement on the surface of a twisted strip. 



/ 

LIBRARY 

— 13 — 

The functional form suggested by the lines of constant displacement 

is 

U = CZ 

V = CX 

and the only strains on the surface of the strip in the x, z plane are 

shear strains )1 	given by equation (1.13) that is 
u xz 

(1.13) 

The approximation that, straight lines .originally perpendicular 

to the wide flat surface p of the strip through the thickness remain straight s  

after deformation, indicates an element shape as shown in Fig. 1.$. 

As all lines parallel and perpendicular to the sides of the strip 

have again remained straight after the twisting, our experience 

with examples 1.3.2 and 1.3.3 suggests that we try the estimate 

that the shapeof the element in Fig. 1.8 is similar to the shape 

of the strip ..' This estimate of the shape of the strip specifies the 

internal displacements. Each plane originally perpendicular or 

parallel to the longitudinal line of the strip warps into an 

anticlastic surface, (Fig. 1.9). 

Fig, 1.8. A deformed element 
	

Fig 1.9. .A twisted strip. 



F = Mxy/b = Myz/ 0  (1.15) 

either F system 

or M system 
Fig. 1.10 
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The rotations da and d0 of one element relative to an 
xy 	yz 

adjacent element or one warped cross section perpendicular and one warped 

cross section parallel to the longitudinal axis, relative to another 

warped cross section is found from the element shape in Fig. 1.8. These 

rotations are given by 

d9 xy 	8  dz/it $ 

and 	dg yz  =11 s  dx/it ) 

and the geometric deformations are completely specified. 

The only stresses needed to sustain the shape of this deformed 

element are shear stresses, which can be specified bylr = G W •  The 

total forces required to sustain the guessed shape are two sets of 

twsiting moments M , M as shown in Fig. 1.10. Integration of 
NY 	Yz 

the stress patterns indicates that the magnitudes of these twisting 

moments are 

M xy = [*b -t -25  t] 	G[t3b/6](d9,y/dz), 	( 1 .14) 

and 	Myz  = 	t] 	= G [t3i/63 (dOxy/dz) . 

These twisting moments are statically equivalent to a balanced 

point load system, as the twisting moments per unit: length Mxy/b 

and Myz  dare equal. The applied force F, is given by the equation 

Forces necessary to sustain the prescribed twisted shape. 
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Thus ., we obtain the well known relationship linking the end 

torque Fb with the twist of any element of the section, 

Fb = [t3b/31 (d9v/dz). 	(1 016) 

In Chapter Six, this simple model is extended to include 

the tapering off effects of shear strains at the corners,to 

describe the geometrical deformations of any rectangular bar 

that has been twisted )  and to include the shortening effects 

of twisted membersa 

It can be seen that the examples chosen are particularly 

simple, but are basic. Examples, using the twisted strip as 

the basic element )  are now considered to illustrate the power 

and usefulness of simplg functional descriptions of the geometric 

deformations. 

1030,5 	A Simple Model for a Twisted Member Built up . from Flat 

Strips. 

Measurement of the' surface shape of an angle section 

twisted by applying four balanced forces on one leg of the 

angle, indicate that the surfaces deform into shapes which 

are approximately anticlastic *. 	The angle between the legs 

in the plane of the cross section is almost preserved. .A simple 

model to describe this behaviour can be obtained as follows. 

* For the purposes of this thesis a surface is called a simple 

anticlastic surface when the principal curvatures are equal in 

magnitude, but opposite in sign. The properties and specification 

of this particular surface are first introduced in 1.3.40 The more 

general definition of an anticlastic surface is one for which the 

principal curvatures are opposite in sign but not necessarily 

equal. 
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A cut is made in the joining corner as shown in Fig. 1.11, and the 

surface shape measured as before. It is found that each of the sides 

still deforms into a simple anticlastic surface, but that the angle 

between the legs increases slowly, as the slot length is increased. 

The results summarized in Fig. 1.12 indicate that a proportion of 

the moment applied on one leg is transferred to the other leg within a 

very small region of width, approximately ten times the thickness of the 

strip. Away from this region a good approximation is to consider the two 

strips as acted upon by separate sets of forces,the size of the forces 

being in direct proportion to the width of the leg. The end torque 

twist relationship is thus 

Fb 4500] (delv/dz) • 	(1.17) 

1.3.6 A Simple Model for a Twisted Stiffener in a Twisted I Beam. 

Repeating the tests of section 1.3.5 but using an I beam as the 

built up section,indicates that a similar model can be used, as all 

surfaces on the I beam again deform in a manner which can be described 

adequately by the simple anticlastic surface. 

When a light transverse stiffener is placed between the flanges, 

as shown in Fig. 1.13, and the I beam twisted, it is found that the 

I beam again deforms in approximately an Snticlastic manner. Measurement 

of the surface shape of the stiffener also indicates that the deformed 

shape of the stiffener can be described adequately by a simple 

anticlastic surface. The forces required to sustain the estimated 

deformed shape of the stiffener indicate that a set of forces B which 

may be called a Vlasov bimoment (Ref. 9), must be applied (Fig.1.14). 
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•ow le.ok  O. •„,embe, 

Fig. 1011 Forces Applied to the 
angle section.  

Fig. 112, Plot of twist and slit length 

light end stiffener 

Fig. 1.13. Forces applied to I beam - stiffener arrangement 

	 f 	 
ES= KAI, 

Fig..1.14 Forces necessary to sustain the stiffener as an anticlasti.c surface 

Fig. 1.15 Forces necessary to sustain both the stiffener and the I beam as 

anticlastic surfaces, 
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Application of the bimoment to the end of an I beam twists the 

entire I beam and bends the flanges of the I'beam. * When length t of 
the I beam is short and the width of the flanges b is largei a simple 

model describing the behaviour is obtained by application of the bimoment 

to an I beam built from three flat strips, and joined only at the corners 

Of the flange (Fig. 1.14). 

Measurement of the surface shape indicates that a reasonable 

approximation is again the anticlastic surface, with no cross sectional 

distortion. The forces 111cessary to sustain the anticlastic shape are 

shown in Fig. 1.15, and are statically equivalent to the bimoment. 

Thus, the applied bimoment B and the twist of the I beam can be related 

by the equation 

B K h b = G[t 3b/3] ,e (deridz) . 	(1.18) 

A description of the effect of the stiffener can be found using 

this model. The stiffener slightly reduces the magnitude of the twist, 

but the overall characteristics of the deformed shape (that is the 

shape can still be described in terms of anticlastic surfaces) are 

not altered. The end torque twist relationship for the I beam and 

stiffener is given by the equation 

Fb = GJ/[1—t.jSTIFF° GJ)] d9,/dz. -  
(1.19) 

* This result may appear at first to be surprising. However, when the 

twisted member is examined it is seen that the ends of the member warp. 

If forces are applied similar in magnitude and direction to the form of 

this warping, that is in the form of a Vlasov bimoment, then twisting 

of the member is the likely result. 
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1.4 General Comments. 

In the very simple models discussed it has been shown that the 

determination of scaling factors is inherent in the choice of the 

geometric functional form used to describe the geometrical deformations. 

Thus the problem of scaling, that is of relating the behaviour of the 

small scale model to the behaviour of the full size structure reduces 

to the problem of choosing a satisfactory functional form. If, when 

a particular model is studied closely, doubt arises as to whether the 

geometric deformations measured are a property of that particular size 

of model or of that type of structure, the problem can be overcome easily 

by testing several models of different sizes. 

The choice of a functional form is especially suitable in any 

analysis when linear, quadratic or sinusoidal dependence relationships 

can be established, and when searching for a describing characteristic 

it is important to measure variables which highlight these types of 

dependence. 

Throughout the history of engineering analysis, functional forms 

have often been used to describe characteristic features of similar 

problems. For example, empirical rules have long been used in 

engineering with considerable success but have usually been restricted 

to describing a final state, rather than a form or observable 7lattern 

that is obvious in the early stages of the description of a problem. 

However a notable example in structural analysis of using a functional 

form to describe geometric deformations is the "plane sections remain 

plane" rule for the bending of beams in metallic or concrete 

structures. Again in the case of ultimate strength calculations 

for steel and concrete structures, a functional form for the 

structure at "collapse", consisting of straight lines joined by 

hinges, is used to describe the deformed displacements, and the 

strains, stresses and loads necessary to sustain this deformed 

shape are then easily found. A recent use of a functional form 
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to describe geometric displacements has been proposed by J.K. Wilkins 

(Ref. 10) who uses it as a means of describing and designing for the 

behaviour of the concrete or bitumen waterproofing layer on the upstream 

face of decked rock fill dams. 

Energy methods of structural analysis are another important use 

of guessed and measured functional forms of the deformations of the 

structure. The energy process based on potential energy is merely an 

averaging device where certain averages of some of the equations of 

statics are satisfied and are used to obtain good estimates of the 

variables within the functional form. However, in much modern analysis 

the functional form chosen is usually an infinite series of sinusoidal 

waves. Unfortunately, in many problems one or two sine waves are not 

a good functional description of the deformations, and thus when the 

infinite series (with no single term being dominant) is used, an 

appreciation of the deformations is often lost within the mathematical 

manipulation. 

* 

Throughout this thesis a deliberate effort is made to look for 

and describe characteristic shapes which define the deformed structure. 

The method is used first to gain an understanding of the problem of 

buckling instability, and a detailed study is made to show that the 

existence of characteristic shapes can be used to describe this 

problem. The ideas are then used to measure and describe the behaviour 

of a real structure, in this instance a through plate girder bridge. 

In the final chapter, the problem of torsion is tackled in the same 

manner and simple mathematical models describing torsion are developed. 
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CHAPTER TWO 

AN OUTLINE OF THE INSTABILITY PROBLEM. 

2.1 Introduction  

The cabestion "Is an engineering structure Is stable under 

the action of the applied loads?" is a question which is easily asked. 

However, to provide a satisfactory answer, a good appreciation of the 

possible deformations of the structure is necessary, as the stability 

of a structure is some measure of how the deformations of the structure 

increase as the loading of the structure is increased. 

All structures deform under the action of loads, and the 

actual form of the deformation is often the important criterion. 

Consider, for example, the determination of the stability of a dam. 

The dam is considered unsatisfactory, or unstable, if the loadings 

on the dam cause the dam to lift or to overturh. The problem still 

remains of how much to alter the dam design so that the new shape is 

stable, and engineers sometimes design the dam so that the joint 

between the dam and the foundation is everywhere in compression 

over the complete range of design loads. However, this is not 

always a satisfactory criterion of stability, as we find when we 

try to estimate the stability of an axially-loaded slender column. 

When the column is loaded, points on the column deform in a direction 

approximately perpendicular to the applied load. One measure of the 

stability of this structure is by what amount the structure deforms 

when the load is increased. 

This Chapter will be mainly concerned with the problem of 

the stability of fritme and plate structures. In these cases, 

instability may be considered to be the phenomenon of the occurrence 

of large relative changes in the geometric deformations of the 

structure which can be sustained by small relative changes in the 

loads applied to the structure. 
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The Chapter is designed to re-inforce and add to the existing work 

on structural stability as outlined by Euler (Ref, 4), Southwell (Ref. 3), 

Gregory (Ref. 11 and 12) Ariaratnam, (Ref. 13), Crandall (Ref. 1 4), 

Courant and Hilbert (Ref. 15), and Miklin (Ref. 16). Particular attention 

is focussed on the description and measurement of deformed shapes and of 

buckling loads and the Southwell Plot, first used by Southwell (Ref. 3) 

to estimate the first buckling load of a pin ended column, is generalized 

for a range of mathematical models. Although the mathematical manipulations 

used are well known by mathematicians, engineers have not taken advantage . 

of the power of the methods used, and the author claims originality for 

this generalization of the Southwell Plot. 

As a first step in the discussion of structural instability, 

the well known and simple model of an axially loaded column is 

considered. The description of the behaviour of the loaded column is 

similar to the approach developed by Gregory (Ref. 12) •to describe 

general buckling phenomena in terms of the simple example of rigid rods 

and lateral eprings. However, the column example has been chosen to 

emphasize that a continuous system can be thought of in the same manner 

as a discrete system. Often it is easier to evaluate and find, properties 

of the discrete system and then carry these properties over to the 

continuum. Hence, the well known column example is outlined thoroughly 

and the ideas obtained are then used to develop generalizations. 

2.2 A Simple Model for the Axially Loaded Slender Column 

The design of an axially-loaded slender column will be 

considered. The first step in this design process is to obtain a 

description of the deformations of the system. It is well known that 

for increasing axial loads, larger increments in the lateral deflection 

of points on the bar arise from the same increment in axial load, but 

this descriptive form is not sufficient. 
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The simplest model chosen is shown in Fig. 2.1. This simple 

and well known model consists of two equal uniform rigid straight rods, 

joined by a spring which resists the jangle change between the rods. 

The rods are compressed by thrusts which remain axial, and the ends 

of the rods are considered as pin-ended. This particular model is 

such that all geometric deformations can be described by one 

parameter, the central deflection of the rods. 

Fig. 2.1. Rod and Single Spring Mechanism. 

Examine the stability of the system when a small lateral 

perturbation y of the hinge is applied. The central lateral 

deflection y is sufficient to describe the deformed system, 

consisting of two straight lines and a central hinge. The change 

of angle 9 between the two straight lines at the hinge is, for 

small values of the lateral deflection 

0 = 4y/i 
	

(2.1) 

The forces to sustain the deformed system are then found 

easily. Let us specify a linearly elastic rotational spring. The 

load deformation relationship is then a relationship(in this case 

called the spring constant k) between the change of angle at the 

hinge and the moment M developed by the hinge. The required 

relationship is 

M = k 

i.e. 	M = (4k/t)Y. (2.2) 



hinge deflection 
is undefined 

d P= 414 
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The conditions for the system to be in statical equilibrium can 

then be found, as the moment M developed by the spring must be equal to 

the moment of the applied axial load P taken about the spring. Thus a  we 

obtain the mathematical condition for statical equilibrium, namely, 

M - py = 0, 	 (20) 

and using equation 2.2 1  we obtain an equation showing the relationship 

between the deflection and the load, and 

(44,  F)y = 0 . 	 (2.4) 

A mathematical solution to equation (2.4) is obtained from 

inspection: either y = 0, that is the column remains straight, or, 

at a buckling load P given by 

P = 41cte 

the deflection of the hinge is undefined (Fig. 2.2). Nevertheless the 

form of the deflected shape is defined and consists of the two straight 

lines with a central hinge (Fig. 2.2). This form is called the buckling 

mode. 

load 

— 4k/g 
deflection of the 
hinge is undefined, 

y = 0 but the shape of the 
mechanism is defined 

deflection of the hinge 

deformed shape 
• at P = 414 

Fig, 2.2 Behaviour of the Mathematical.Model 

However, the foregoing study is inadequate to describe the behaviour 

of the column for no sudden Ui-anch in the load . and deflection behaviour is 

ever measured. 
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A closer representation of the real problem is obtained by 

modifying the physical model shown in Fig. 2.1 to include the 

following: initial crookedness of the column', an increasing number 

0? hinges, and allowance for second order geometric deformations, 

non-linear load deformation relationships and a closer specification 

of the loading and boundary conditions. In the following sections, 

methods which include each of these effects in a large range of 

mathematical models are examined, and it is shown that a close 

representation of the behaviour of many real structures subject 

to instability is obtained. 

2.3 Initial Crookedness in the Mathematical Model 

The inclusion of initial crookedness in the mathematical 

model is a worthwhile and well known improvement and adds to the 

understanding of the real problem. Suppose the initial lateral 

deflection of the rods is yo  , and the rods between the spring 

remain straight. 

The geometrical estimate of the deformations is again 

determined by the central lateral deflection. The initial rotation 

of the hinge Goe  , is given by the equation 

90  = 

 

4  wv,1 
The load deformation relationship is dependant on the change of 

angle between the two straight rods, and is 

(2.5) 

= (414)(Y - Yo) * 

The condition for the system to be in statical equilibrium 

is similar to equation (2.3). The moment developed by the spring 

is found from equation (2.5), and is equal to the moment of the 

applied axial load taken about the spring. For the system to be 

in equilibrium the following condition must apply 



y = 0.025 
° 0.05 

001 
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('4 /2)(y y0 ) 	P Y = 
(2.6) 

The deflection of the hinge is obtained in terms of the applied load and 

initial deflection, and we have 

(2.7) 
= Yo/(1— Pir4k) 0 

This mathematical model (equation 2.7) indicates a steadily 

increasing deflection of the hinge for loads ranging from zero to close 

to the load given by 

P1 = 414 a 

This load P
1 
 , called a buckling load in the previous model, is a good 

describing feature of the two physical models. In Fig. 2.3, a range of 

values of initial crookedness is plotted and it is seen that for very 

small initial crookedness values the two mathematical models expressed 

by equations (2.4) and (2.7) are similar. 

load 

P = 414 

CO 	0.5 	1.0 

Deflection of the Hinge 
Fig. 2.3. Equation 2.7, with a range of initial crookedness 

values. 

The description of the real structural behaviour of the column 

depends on discontinuities in the surface slopes. Improvements in the 

description are obtained by increasing the number of hinges. 



= (_/o.4 	and CZ  t2  1'40 -  C.Le 

and 	
(-1.5k/t)y1  

that is in matrix notation 

+ (3k4 -1) )y2 	o 9 
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2.4 An Increase in the Number of Hinges. 

2.4.1 Two Hinges. 

A closer representation of the behaviour of the column is 

obtained by increasing the number of hinges. When the number of 

hinges and springs is increased by one, as shown in Fig. 2.4, the 

geometrical relations between the angles 9 and 9 and the corresponding 
2 

deflections, y i  and yz 1  (for small lateral deflections) are 

(2. 8) 

Fig. 2.4 Rod and Two Springs. 

The moments sustained by the linear elastic springs are 

and 
M
2 
= kg2 

The conditions for statical equilibrium are found by considering 

the equilibrium of the two rods separately, that is 

M1 - PY1 = ° 9  
and 

M2 — PY2 = 	* 

Combining equations (2.8), (2.9) and (2.10) gives the system of 

linear simultaneous equations that must be satisfied if the system 

is to remain in statical equilibrium 

(3k/2— P)yi 	— (105k/Cy2  = 0 	
(2.11) 

(2.9) 

(2.10) 



load 

or simply 
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.314- P  -1.5k/yi 	

° 

	

[1.51Ve 	3kAt-P  = 

	

A 	][y = 

The solution of these two linear simultaneous equations is 

given either by the trivial solution that the hinges do not move, 

(y1 = yt = 0,)or 

(34- p) 2  (105k/e) 2  = 0 9 
	 (2.14) 

that is the determinant of [A] is zero. The two non trivial values of 

load which are solutions of equations (2.14) are either P, = 1.5ka or 

Pi = 4.5 kLe , and the corresponding buckling modes can be determined 

from the lateral deflection ratios of the hinges, = ;and = - 

(Fig. 2.5). 

P = 1.5k/  

Deflection of a hinge 

Fig. 2.5 Behaviour of the Mathematical Model 2.13. 

2.4.2. Initial Crookedness and Two Hinges. 

A method to describe the effects of initial crookedness may 

now be obtained by use of the buckling modes for the initially straight 

structure. When the initial crookedness consists only of initial lateral 

crookedness at the hinges, two variables are needed to specify the shape. 

A linear combination of the two buckling modes is used to describe this 

initial crookedness. 

An initial crookedness of the form yip= 1.0 , 49 = 0.5 is 

expressed as a linear combination of the buckling modes, and 

,Aitgasn't 

Loom' 
tts'm 014  



1 .0 [1.0 I { 1 .01 
0.5 	

a1 1.0 
a2 

—1.0 

(2.15) 
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initial 	first buckling 	second buckling 
crookedness 	mode: symmetric 	mode:antisymmetric. 

The constants a and a are found easily by multiplying by the 
1 	2 

transpose of the column vectors 
 

ii-o  
t. 01 and 1-0 respectively. 

Then 	[1 00 	1 001 	1.0 = a l  [00 1061 100 + a2t.]:80 100  ,„ .6 	2.16) 

0.5 	1.0 
That is 1.5 = 2a, + 0 a l  

or 	a = + 0.75. 

Similarly, a l.= 0.25. 

The initial shape, in terms of the buckling modes, is therefore 

 

1.01  1.0  1.01 

 

0.5  11.0]  -1.0 
=  0075  + 0.251 

 
(2.17) 

The separation of the initial crookedness into a 

combination of the buckling mode components is useful in the 

solution of the mathematical model for the initially crooked 

structure, as it indicates the way in which the structure 

deforms. 
The mathematical model for the initially crooked 

structure consisting of thrbe straight rods and two hingeA ie 

obtained in a manner similar to the one hinge case. The initial 

rotations 9 	and 0 are linked to the initial deflections go 	to  

and yzo  by equation (2.8). The load deformation relationships 

are then 

141 = 1091 —ai d 

= (44)(Y1  — Y10 ) 

	(2.18) 

and 
	

M2 = (414)(Y2 — Y20 )  ° 

For the structure to be in statical equilibrium, the moment 

resisted by the springs must balance the applied moments (equation 

2.10). On substitution of equation (2.18) into (2.10) we obtain 

the equations 

a 
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310,- P 	-1.5k/ZIyf - 3k/j. 	14 -1 ° 5  Y11 

314 - y2 1 	-1.5ka 	1a 3, 20 	. 

( 2 019 ) 

With values for the initial lateral crookedness of the hinge s(y lo  and y20 ) 

as 100 and 0.5,, equation (2.19) becomes 

	

P -1.51y1 	[34 	-1.511.0] 	-1.5k/11.01 
= 0.75  +0.25 

1.54  -P y2 	-1 0 54 - 	1.0 	31cLi 	1.0 

The right hand side of equation (2.20) is simplified by using the two 

solutions of equation (2.12), which are 

[- 

34 . -1.5k/1 [1.0 1 = 1.5k/t L.0] 

-1.5ka 	3ka. ' 1.0] 	1.0 

[3kte. 	-1.5k11.0] = 4.5k/e 
and 	

{1 .0 

The left hand side of equation (2.21) is simplified by separating the 

final shape into a linear combination of the buckling modes, and 

1. Y2 	
1 [

1.0
1 + b2 

[ Y11 
= b 1.0 

	

[-1.0 

 1.0 

Then; from err..-a".1 ,  (2.20), (2.21) and (2.22) we have the equation 

+ 
[1.0 

1.0 

[1.0 I 

VW* 

_1.5kze  3ka -100 

b
1  

[ 3kAt- P 	-1.5k1[1.0

1.0 

 

..1.5k/€  34-p 

 

_ P 	-1.511.0] 
[

34  4 

b2  • -1.5k/2 	314 -P 

which simplifies to 

P) 1 

] 

1.0 

l.01. 
1 .0 

0,75(1.5k/2) 

0. 25(4.54) 

0.75(1.5ka) 

(2.21) 

(2.22) 

(2.23) 

(2024) 

b2 (4.5k/I- p) 

{

1.01 0.25(4.5k4 ) 1.0 

-1.0i 61.01, 
Equating terms with the same buckling mode, we obtain the values of the•

two buckling modes, and 

1 	=0.75 (1.5k/e)/(1.54-P) 	(2.25) 

and 	b2  = 0025 (4.5k4)/(4.54- P). 

From equaLins (2.22) and (2.25) the co-ordinates of the hinges of the 

final shape are given by the equation showing the magnification of the 
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buckling modes of the structures, and 

0075/(1-Pi/105k) 1.0 + 0.25/(1-14/4.5k) 1.0 
(2.26) 

Y2 	 1.0 	-1.0 • 

final deflections 	first buckling mode 	second buckling mode 
of the hinges 	co-ordinates of the 	co-ordinates of the 

hinges 	hinges 

The predicted behaviour is shown in Fig. 2.6. For loads less than 

the first buckling load, the deflection always increases with load, 

and has the same sign as the first mode initial crookedness. However, 

because of its discontinuous nature the buckled shape is still not an 

adequate description of the shape of the deflected column, and thus 

it is necessary to increase the number of hinges ) 

deflection 

Fig. 2.6. A Graph of Axial Load and hinge deflection, for 

the initially crooked column. 

2.4.3 A Farther, increase in the Number of Hinges. 

The number of hinges can be increased indefinitely. In 

the continuum, the change of angle per unit length along the bar is 

approximated by the lateral curvature (d2y/dx2 ) of the bar, and the 

moment rotational deformation relationship is related by the flexural 

stiffness of the bar, EI. The condition for statical equilibrium of 

the initially straight bar is then 
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El d2y/dx2 + P y = 0 . 	 (2027) 

The behaviour of the mathematical model (2.27) near the end 

of the bar is obtained separately. To be of value these descriptions 

should be at the same level of approximation as the differential equation 

itself. For the differential equation model of the slender column, the 

boundary conditions are * 

	

x = 0 and 	y = O. 	(2.28) 

The solution of the differential equation (2.27) is 

y = A sin- x /177ET +. B cos 4177EY 
	

(2.29) 

and with the boundary conditions (2.28), particular solutions are obtained. 

Use of the boundary condition x = 0, y = 0 gives B = 0, and the 

.boundary condition x 	, y= 0 .gives 

0 = A singl—P7E 9 
	

(2.30) 

that is either A = 0, and the continuous system remains straight, or the 

deformations of the system are sustained by a load given by the equation 

	

0 = sin /1771 	 (2.31) 

i .e.  p = n27 2E142 . 	where n = 0, 1, 2, 3, 4, . 0 . 

These discrete values of load are called eigen values, latent rqots, 

buckling loads or, as this particular family was found by Euler, Euler 

buckling loads. To each buckling load there corresponds a buckling mode 

(which is found by substituting into the equation) and the eigen functions, 

latent vectors, or buckling mode are 

buckling mode y: sinTrx/e 	sin 21iv2 	sin 31* )V.e 

buckling load P: 72Eviz 2 9 	41PEI/t2 	9-11EIX,e2 	9 o 	o 

* It should be noted that when the models for finite numbers of hinges are 

used, these boundary conditions and Conditions of statical equilibrium are 

incorporated in one statement, for _example equation 2.12, 
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2.4.4 Describing Initial Crookedness in the Continuum.. 

A description of the effects of an initial crookedness of the 

continuous column can be obtained by using ideas obtained from the 

systems which had only a finite number of variables. For example, 

including the initial crookedness in the mathematical model for the 

continuous column, we obtain the differential equation 

EId2(y— yo )/dx2  + P y = O. 	 (2.32) 

Again the aim is to describe the initially crooked shape as 

a linear combination of the buckling modes. Southwell (Ref. 3) first 

developed this method for the pin ended column, but for completeness 

and to outline the method the solution is given below. 

The existence of a unique linear expansion for the initial 

crookedness yo  , is used, that is the initial crookedness is expressed 

as an infinite series expansion 

ao 

	

yo = n sin nrx/t 
	 (2.33) 

,A=1 
This exapnsion is the well known Fourier Series and the 

justification and properties have been investigated by many authors 

(see for eianTle Miklin, Ref. 16). 

The coefficients a w  are found by multiplying both sides of 

equation (2.33) by the Ta buckling mode, and integrating over the 

length of the structure. Then 

t 	 60 f 

1Y
o 

sin mlix/t dx = Ian isin nWX/e sin mir x4 dx . 	(2.34) 
0 	rk 7 1 	0 
As before, the product of two different buckling modes is zero. This 

property is called the orthogonal property of the buckling modes and 

enables a simplification of equation (2.34). The value of a is 

given by the ratio 

am  = ify sin miTxa dx 	fn 	dx o 
(2. 3 5) 
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The final shape, y and the initial shape ya are expressed as 

linear combinations of the buckling modes, 

00 

	

y =
n sin n7x/e 
	

(2.36) 
n'■=1 

and 00 
Yo = 	an sin niTx/e 

	
e 	 (2.37) 

Equation (2.32) is simplified using equations (2.36) and (2.37) and 

becomes 
00 	 co 

EI(bn-an)d2 (sin nwx4)/dx2  + Pbn  sin nrx/e = 0 

But as 

El d2 ( sin nirpa)/dx2 	+ n2  ir2EI/t 2  sin nr)(49e = 0 

then 

22 (bn  an)sin nr4 + Pbn  sin mile= 0. 
N=I  117-1 

(2. 38) 

(2.39) 

(2.40) 

Equating terms with the same buckling modes, we have on simplification 

bn  = an/(1-P/Pn ) 9 where Pn  = n2  ir2EI/i2 
	

(2.41) 

The final shape, given in terms of an infinite series expansion of the 

buckling modes of the initially straight system, is 

y = [a1 )(1-P/P1 )] sinvrx/t + [an/(1-P/P2 )] sin 2Incje+ 

2.5 Comparisons between Experimental  Readings  and the 

(2.42) 

 

Mathematical Model 

  

    

The mathematical model is now at the stage where comparisons 

can be made with experimental measurements. Southwell (Ref. 3) has 

presented a reliable method of comparison subject to the restrictions 

that the structure remain elastic, and that the value of the first term 

in the infinite series is far greater than the cothbined effects of the 

other terms. When these conditions are satisfied, the mathematical model 

is given approximately by the finite series 



P, load in .pounds 

45511% pfo+e 	iine, in./Levi:wick p= 

o oa4 

• 	
4-1 

3000 

2000 

1000 
P 
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P
crit= 2800 lb 

P1  = 2800 lb 

ao = 0.023 
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y 	[8.1 /(1- P/Pi ] sinlrx/e 
	

(2.43) 

The mathematical model is easily manipulated into a form from 

which the measured results can be compared. The form is 

(y-a1 )sin/x/.94 =ey-al)sinTrx46#1 +(al  sinnx/WP/ 	9 	 (2.44) 

that is the mathematical model indicates that a plot of the ratio of the 

measured deflection to applied load against the measured deflection is 

a straight line. The slope of this line is equal to the reciprocal 

of the first buckling load, with the intercept on the load axis 

determined by the initial crookedness and the first buckling load. 

Experimental readings of the load P and of the change in 

deflection (y - yo  ) at the centre of the column are found to be 

approximately hyperbolic. (Fig. 2.7). A horizontal asymptote 

to the hyperbola, that is 

P = P Olt 

is found from the reciprocal of the slope of the line of best fit 

to the Southwell Plot of the ratio of measured deflections to load 

against measured deflection (Fig. 2.8). The value of the horizontal 

asymptote Poo. 	found by this device is then used as a measure of 

P I ' the first buckling load of the structure. The experimental 

results do not in general give a linear Southwell Plot, and hence 

a constant value for the horizontal asymptote P unt is not obtained, 

but often the deviations from a straight line are sufficiently small 

to enable a correlation to be made between experimental results and 

the mathematical models. A few of these .clOrrelations are now outlined. 

10 measured deflection/load x 10 5  

0.1 
central deflection (in) 

Fig. 2.7 Experimental readings of 
the central deflection of a pin 
ended column. 

0.1 	0.2 
measured central deflection (in) 

Fig. 2.8 A Southwell Plot of the 
experimental readings. 
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2.6 	History of the use of the Southwell Plot. 

Southwell (Ref. 3 ) was the first to observe that a plot of the 

load and corresponding mid point deflection of an axially loaded column was 

approximately hyperbolic in the neighbourhood of the smallest critical load 

of the mathematical model of the Euler column. He showed that the approximate 

position of the horizontal asymptote to this hyperbola could be obtained by a 

suitable transformation, namely plotting (y - yo  )/P against y - y o  where 

(3r 3r0  ) was the measured deflection and P the applied load, and drawing a 

line of best fit. 

Southwell used the reciprocal of the slope of the line of best fit 

as a Measure of the first critical load of the Euler mathematical model, He 

justified this comparison by showing that when an arbitrary initial crooked-

ness is included in the mathematical model for the Euler column as clAlined 

in section 2.4.4) the resulting model is a reasonable description of the 

experimental behaviour. 

Donnell (Ref. 17) suggested that the Southwell Straight line plot 

was a good measure of the first critical load in all cases of budkling, 

provided that appreciable second order stresses were not introduced, (such 

stresses occur when a developable surface buckles into a non developable 

surface) and assumed the validity of the Southwell Plot method in all cases 

where the corresponding differential equations were linear. However, it 

is sh6wn in the following sections that to obtain reliable correlations 

between experimental results and mathematical models, the mathematical 

model must satisfy several other conditions besides linearity. 

Dumont and Hill (Ref. 18) tested some aluminium alloy 1-section 

beams loaded about the major axis by a uniform bending moment. They 

found that the beams were subject to latek instability,and to obtain 

an estimate of the critical bending moment they plotted the ratio of the 

measured central rotation to the bending moment against the measured 

rotations. The reciprocal of the slope of the line of best fit to 

these plots was then approximated to the critical bending moment. They 

did not justify mathematically this comparison and later Massey (Ref. 19) 
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showed that the reciprocal of the slope of the line of best fit of a 

plot of measured rotation to the square of the bending moment 

against the measured rotation gave a better indication of the 

square of the critical bending moment. 

Galletly and Reynolds (Ref. 20) measured the elastic 

circymferential strains and internal pressures for ring stiffened 

cylindrical shells subject to external hydrostatic pressure, and 

using Southwell's method were able to obtain the horizontal 

asymptote to the experimental readings. They were then able to 

compare measured critical buckling loads with buckling loads 

calculated from a variety of mathematical models. 

Greogry (Ref. 21 and 22) showed that for structures 

bending in their plane and for triangular structure e bending 

and twisting out of their plane a correlation exists between 

the predicted first critical load and the asymptote obtained 

from measured axial loads and curvatures by using the transformation 

as suggested by Southwell. Later, Ariaratnam (Ref. 13) justified 

mathematically the use of the Southwell Hot of measured 

deflections, (and hence curvatures) and axial loads as a means 

of measuring critical loads in framed structures. 

Thus, the Southwell Plot method has been of great benefit 

in the study of instability problems as reasonable estimates of 

initial crookedness and buckling loads have been obtained for a 

range of structures. 

The plot has the property that almost any curve similar in 

shape to a hyperbola can be linearized to a certain degree and the 

fit of the experimental points to a straight line has often been 

used as a justification of the mathematical model. This approach 

is not rigorous, and in the next section a set of sufficiency 

conditions to be satisfied by the mathematical model is outlined. 

These conditions provide a sound basis for comparisons between 

experimental results and mathematical models. 
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2.7.1 Extensions to the Southweil Plot 

The ideas outlined in the orevious sections indicate that the 

Southwell Plot is a useful device for the comparison of some experimental 

results and some mathematical models. These ideas are based on the properties 
--„ 

of the differential equation 

El d2 (yi. y0 )/dx2  + P y.=  0. 
	(2.45) 

Many structures behave in a manner similar to that indicated by the experimental 

points shown in Fig. (2.8), but not all of these structures can be described 

adequately by the cne differential equation and set of boundary Conditions. 

A general test is proposed in the following section whereby any mathematical 

model, consistiniof linear differential equations and boundary conditions 

can be examine, see if a basis exists to compare experimental readings. 

After this basis has been established, firm design rules can be made with 

confidence. 

Wien the analysis developed by Southwell is examined closely, it 

is seen that the power of Southwell's analysis lies in the specification 

of the arbitrary initial crookedness. Southwell uses the terms of an 

infinite Fourier series to define the crookedness, as each of these 

Fourier terms is a solution of the mathematical model for the initially 

straight structure. The description of an arbitrary initial crookedness 

for a different m4thematical model, as an infinite series, with each term 

a solution of this new mathematical model is now investigated. 

2.7.2 Mathematical conditions sufficient to justify the Southwell 

Plot as a method of comparison of mathematical models and 

experimental results. 

The method proposed by Southwell may be extended only when the 

possibility of expressing the initial deformations to  in terms of the 

buckling modes 44. of the particular problem has been investigatbd; 

that is, valitiity has been established for the expansicn 
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= a142  1 + a2 	a33 * . a4) 	a 	(2.46) r r 

Expansion (2.46) is valid if the following conditions are 

satisfied: 

(a) a means exists to find the constants a l  , 	a s 

(b) the expansion is unique, that is the expansion is 

linear independent, 

(c) there exists an infinite number of solutions el, ' 

and 
	

(d) the expansion will converge as a, 	increased. 

It is shown in the following section that when the 

mathematical model satisfies the well known mathematical conditions 

of Rule No. 1, then the conditions (a) to (d) are satisfied and 

hence the validity of the expansion (2G46) is established. 

Rule No. 10 When the mathematical model for the initially 

undeformed structure can be expressed as a linear 

differential equation of the form 

L(4)) - A N(+) = 	9 	 (2.47) 

where L(e)? ) and N(4) are both self adjoint and positive 

definite differential operators and X is a load parameter, 

then the expansion 00 is valid. 

Although the conditions required are readily available elsewhere (Ref. 16) 

for comple:teness an outline is now given of why the differential equation 

and boundary condition system satisfying Rule No. 1 satisfies the 

properties (a) to (d). 

Condition (a) is established when the operators L(11)) and N(4) 

are self adjoint. One definition of self adjointness is given in 

by Crandall (Ref. 14) and involves the behaviour of two functions 

u, v which satisfy the boundary conditions but do not necessarily 

satisfy the differential equation between the boundary. When the 

operators L(4) and N(4) are self adjoint, the expressions 



i [u L(v) - vL(u)] dz, 
and ir 

LUN(V)— vN(u)] 
dz  are both zero. 

4 
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(The points a, b define the positions of the boundaries.) 

The implications of this condition can be seen when two separate 

so4tions of the differential equation (2.46) are examined, i.e. 

L(r) 	Xr N(cF  r) = 0 
	

(2. 48) 

and 	
L(44) - Xs  N(i) s) = 0 	0 	(2.49) 

Multiply (2.48) by ( 	) and (2.49) by ( i r ), subtract, and then 

integrate between the boundaries; the expressions become 
4 

f'POtr) -k.1(+8)] dz 14146 N(+r ) 	N(+)] dz = 0 . (2.50) 

When L(1), and N() are both self adjoint, equation (2.50) can be 

• reduced to the equation 

 

r  4 s ) 	N(ti) r ) dz = 0 
	 (2051) 

k 	

tr 
when 	)\s 	(405  N(tr )dz = 0 	 (2.52) 

Similarly, the relationship 

L() dz = 0 ,  (2.53) 

can be established. Equations (2.52) and (2.53) are called the 

orthogonality relationships *. These relationships enable a separation 

	

of the variables a, , 	a l  . For example, to evaluate the constants 

a ir , multiply equation (2.47) On both sides by N(4r) and integrate. 

* A self adjoint differential equation is really another way of stating 

that the equation obeys the Maxwell Reciprocal Theorem - that is the cross 

product of generalized deformation U A  at the point A multiplied by the 

generalized force L(U ) at the point B is equal to the cross product of 

the generalized deformation Viet the point B multiplied by the generalized 

force L(U ) at the point A. This statement may be expressed in the form A 

uA  L(U6 	Lie L (VA  
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When the self adjoint differential equation describes a 

buckling phenomenon, the integral of two cross products over the 

whole Structure is equal to zero. (See also the Appendix A), 

This gives afis the ratio 

lot 	er 
ar  = a) t o  N(ttr )dz/ 	N(tr)dz 

8imi1ar1y, by multiplying by L f ) and integrating, the 

constant a i obtained as the ratio sr 
4- 	4- 

a ;--. ri)r 	o 1.:(4)r)dz/ 	I +r 1:(4'r) dz. 

A meins of ensuring that a,r  is defined is to specify that 
6 	& 

the integrals 	(171., N(tr )dz and 	4,, L(+, )dz are never zero. The 
0, 

condition is cilled the positive definite condition,, 

l'he linear independence of the terms of the expansion 

(condition b) ensures that the expansion is unique. As an outline 

of this condition, assume that the terms of the expansion are not 

independent s  that is there exists an expansion for zero, for which 

at least one value of c i. is non zero and 

c1 '1 	
c
2 +2 4. c3+3 + ° ° ° cr+r + * ° * = 0  ° $ 

Multiply this expansion by N(4r  ) and integrate. Use of the 6 
orthogonality relationships then give the integral Cr  S 41.N(4y.)(1Z 

b 

as zero i e, either c 	or 	N(4f. )dz is zero. These statements 

conflict and hence the uniqueness of the expansion is established. 

The existence of an infinity of solutions 4).r. of the 

equation (2.47) (condition c)is obtained by examining the properties 

of some systems of linear simultaneous equations. Compare the self 

adjoint differential equation system with the linear symmetric 

equation system 

[A) [x] - X [B3 [ x] =0 9 	 (2.54) 

where [A], }3] are symmetric real n x n matrices, x is a column 

vector and X some load parameter. The orthogonality relationships 

in the linear simultaneous equation case are; f .x.r lt_ A 1 [X s ] and 
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X 	3  are zero, where c .1.1 and ..)c 4) are particular Solutions 

of (2.54). The positive definite condition becomes; 	-Ax,..1 and 

B Ix 	are always positive. For this system there exists n 

solutions, Xi. and corresponding [x,r] . In the differential equation 

system the number n is expanded to infinity so that finally in the Hilbert 

space the linear equation S represent the differential equation (Ref. 16). 

The absolute and uniform convergence of the expansion 

(cpndition d) is more difficult to justify but attempts have been made 

to show that these convergence conditions hold in particular cases of 

second order Sturm Liouville equations (Ref. 15) and some higher order 

equations (Ref. 14, 15). Hilbert and Schmidt (Ref. 16), have proposed 

a general test for convergence using the equivalent class of integral 

equations. The theorem and some examples relevant to the mathematical 

models developed in this thesis are covered in the Appendix B. 

However, at this stage it should be noted that certain classes of 

integral equations, differential equations and linear simultaneous 

equations exhibit similar properties, as the following table indicates: 

Linear simultaneous equations Differential equations 	Integral equations 

f t, 
[A ][x -4131[x]= o 	L(4 ) - X N(+ ) = o 	- 	1<(x, p) 40) NW ado = 

LA1 [HI are symmetric, 	L(4) ), N(4 ) are self 	K(x, s) is a symmetric 

positive definite matrices 	adjoint positive 	kernel. 

definite differential 	N(4)) is a self adjoint 

operators 	positive definite 

differential operator. 

The boundary conditions 

are included in the 

matrices LA ], [31 
and are included in 

the equations LA 1[;]- 
X[B ][ x = 0 

The boundary conditions The boundary conditions 

are included in the 	are included in the kernel, 

self adjoint conditions, and are included in the 

but are separate from 	equation 

the equation 
6 

L(4) - N(4) ) = o 	- A L K&I A) 	WO a 	=0 
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Linear simultaneous 
	

Differential equations 	Integral equations 
equations 

There exist n 	There exist a denumerable There exist a denumerable 

solutions V_xr] , XI_ infinity of solutions ' 	infinity of solutions 

where n is the size 

of the square matrices 

4r, x c 	CVf  

 

Table 2.1 

The Hilbert Schmidt theorem states that if the kerneli 

K(x, s) exists and is bounded then the convergence of the infinite. 

series to any continuous shape is established. However, when 

, infinite series expansion is differentiated, it appears reasonable 

to impose the additional restrictions that the initial shape 

should have the same boundary conditions as the solutions +r  , to 

the highest order of L(t ) or N(4). 

The establishment of the properties (a - d) allows the 

use of the expansion property, i.e. any continuous shape with 

continuous derivatives up to the highest order of L(+) or 

N4), can be expanded as a linear combination of the solutions 

of equations (2.47), whence 

o = a1 + 1 + a2  +2 +a3+3 + • 	a r+ r 
	0 0 0 

The facility to examine.the effect of an arbitrary 

initial deformation pattern in terms of a combination of solutions 

of the initially undeformed mathematical model has thus been 

established when the mathematical model satisfies the conditions 

of Rule No. 1. 

Rule No, 2 An adequate description of the effects on the 

Mathematical model of the initial crookedness is obtained 

when the initial crookedness can be included in the 

mathematical model in the form, 



L(47— 4 0 )— N(c1) ) = o 	 (2.55) 

where L(4) and y(4) are again both self adjoint and positive 

definite differential operators. General statements concerning 

the deformation behaviour can be made, and a plot of (4 -40„ )/x 

against (4) - 40  ) can be used , to find the values of A t  and a,41 

For example: Put 4,„ = a,4)1  + ac. 1  + 43 	. 
and put d? = b 1 4 1  + bt 4 1  + bON + . 

The values b i 1  bt  b l 	. . are determined in terms of the 

constants a l  , a t  , a 3 	. by substituting the expansion for 4 1  and 40 
into the differential equation (2.55). Then L(4) - 4)„) 	N(4) = 0 

becomes, on substitution 

(br ` ar )L  (4r )  "* A ibr N( r ) =o 	(2.56) 

But L( +/-) -Xr N( cPy- ) = 0 as 4T  and )%.,- have been determined by this 

equation and therefore equation (2.56) becomes 

00 	oo 

5(br  - ar ) Xr  N(efr) -;(*r  10+r ) = 0 	(2.57) 

1-6=1 

Equating term by term in (2.57) gives .  

br  = a/[1-()'/ r) 10 

The differentiation and equation term by term of this infinite series is 
p. 

possible if the series remains absolutely convergent at each level of 

differentiation, and the initial shape satisfies the bouhdary conditions 

of the problem. 

The final solution 4) becomes 

= a i 4i /[1-(01 )) 	a2+2/[ 1-(?'/A2)] 	a343/[1-()/A3) 

and when . 

a1 ck1 /[1- (X/A1 )b) a2+2/[1-(X/A2 )] + 8.3+3/[1--(X/A3 ) 

that is, at a point on the structure where +, is large, and where X is 

close to X '  then 
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(2. 58) 

Equation (2.58) can be modified to emphasize measured values, 

and we obtain the generalized Southwell Plot form 

(t 	al 41)1 )/A 	(4)  - alt )d41 	al+.114 1, ° 	(2.59) 

This .  . a plot of the ratio of the deformation 	- a t ) to the 

load parameter X against the deformation (i. - a 11  ) is a straight line. 

When the mathematical model (2.59) is a .good representation of the 

structural behaviour, and the first buckling mode effects predominate, 

then the measured change in deformation (4:  - 	) is approximately 

equal to the deformation(4 - a 1 4 0) . The reciprocal of the slope of 

the line of best fit to the plot of the ratio of the measured deformation 

- 4h, ) to the load parameter X against the measured deformation 

4- k,(the reciprbcal of the slope of the line being denoted by 

is then a good measure of the lowest buckling parameter A d  . 

In the APpendix C a short list of mathematical models is given 

for which a Southwell Plot is a useful device to measure and compare 

mathematical model and experimental results. Several other mathematical 

models are investigated in this thpsis. 

2.8 	Second Order Geometric Effects. 

In the mathematical models considered so far only the 

geometric effects which lead to linear simultaneous or linear 

differential equations have been included. No mathematical model 

can fully describe real structural behaviour, as there are always 

unsatisfied derivatives, and always geometrical approximations. 

Thus, the mathematical models in the previous sections describe 

characteristics of the mathematics, rather than the real structural 

behaviour. It is worthwhile to examine the effect of large 

deformations on the properties of the mathematics by considering 

the equilibrium of the structure in the deflected position and 

noting the effects on the mathematical models. 
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The case of the elastica for the pin-ended column is well 

known. The change of angle of the rods at the hinges is linked to the 

lateral deformations of the hinges by the equation 

ct 0/6/4 	(.61rietlatA 

where s is measured along the deflected column. For the continuous 

structure, this relationship can be manipulattd and 

al61/414 = ctly/de [ + etymot] 361 
Then for the initially straight structure, the conditions to be satisfied 

if the structure is to remain in equilibrium is 

.21 3/2 	n  v EI fL2y/dx2  + Py [1+ (dy/d4 ] 	= 	a (2.60) 

This well known non linear differential equation (Ref. 23) 

has a unique solution for every load. The solutions for the initially 

straight structure (the elastica) and for the initially crooked structure 

are plotted in Fig. 2.9. It can be seen from the graphs that large 

deformations are required before any marked difference occurs between 

this mathematical model and the mathematical model obtained by expressing 

the equilibrium of the structur6 in terms of the initial position. In 

most mathematical models representing structures made from reasonably 

flat plates and bars, it is unnecessary to include the geometric non-

linearies in the model, provided deflections are small. However, 

judgement must be exercised because, although structures often stiffen as 

a result of second order geometric effects, sometimes a weakening takes 

place (Ref. 24). 

0.4 
Y 

Fig,2.9. Load. and central deflection of a pin ended column, 

for large elastic deflections 
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2.9 Non Linear Load Deformation Relationships 

2.9.1. Introduction 

Most engineering materials exhibit a reasonably linear 

load verses deformation relationship for a small range of 

defOrmations. Therefore, reasonable approximations of the 

overall behaviour are usually obtained by approximating the stress 

strain relationship within the elastic range with a single straight 

line. 

Outside the linearly elastic range the linear differential 

equations developed for the elastic case do not in general describe 

adequately the structural behaviour as the behaviour is markedly 

dependent on the previous deformations. 

Various models hive been proposed in attempts to define 

the position on the load-deformation graph that is characteristic 

of each portion of the structure. For stability studies on 

compressed bars or framed structures the main models proposed for the 

initially straight structure are the tangent modulus and the reduced 

modulus models (Ref. 25). In the tangent modulus model, the strain 

of each portion of the structure is defined, and the slope of the 

stress strain relationship at that particular strain is used. In 

the reduced modulus model, account is taken of the unloading of the 

structure, and the unloading path is assumed to be linearly elastic. 

It has been shown (Ref. 25) that the tangent modulus 

gives an upper bound estimate of the buckling load of the initially 

straight frame. In recent years it has also been suggested that the 

effects of residual stress can be included easily in the tangent modulus 

model (Ref. 25). As the formation of residual stresses is relevant 

in this context, it will be discussed before any further mathematical 

study is developed. 



2.9.2 The formation of Residual Stresses. 

In the fabrication of structural members, heat is applied in the 

rolling and welding processes. As a result of differential expansiOn and 

contraction in the heating and cooling process, residual stresses are 

introduced. 

For example,if in the fabrication of a built up girder the web 

and flange are joined by welding, localized heating near the longitudinal 

centreline results. The result of this differential expansion is to 

induce tension in the outside of the flanges. While the outside of the 

flanges is in tension, some plastic deformations close to the welding 

zone occurs. As the section cools, the material near the weld may contract 

faster than the material on the oustide of the flanges arid compression of 

the web flange joint results, while away from the weld tensile forces are 

present. A good summary pf measurements taken of residual stress effects 

is given in Ref. 26 and 27. 

2.9.3 Mathematical Models allowing for Residual Stresses. 

The following are the main models that are used to describe the 

effects of residual stresses 

(a) The effect of residual stress is included as an initial 

crookedness . Although this approach may first appear irrational, 

reasonable design estimates can be made. •For example, in Fig. 2.10 

the calculations of the Column Research Council are shown (Ref. 25); 

a model with no initial crookedness and no residual stress, a model 

with initial crookedness and no residual stress, and a model with 

initial crookedness and residual stress. The load to first yield 

the structure is plotted against the value of the total length 

divided by the radius of gyration. A similarly shaped graph 

is obtained in the latter two cases, and a close estimate of 

load carrying capacity which includes the effects of residual 

, stress may be obtained by specifying an effective crookedness 

(Fig. 2.10 ). 
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An effective ,crookedness I  obtained directly from measured 

test results, is the basis of the well known Perry-Robertson 

formulae, used in British Standard 449: "The Use of 

Structural Steel in Building". 

length of member radius of gyration 

Fig. 2.10. Effects of initial crookedness, and residual 

stress on the load carrying capacity of a 

pin ended column (from Ref. 25). 

(b) The effect of residual stresses is minimized by 

preloading and yielding the structure. A permanent 

deformation results, but the structure exhibits a 

larger elastic range (Fig. 2.11). 

LOAD 

yielding occurs, 
deformations result 

oad and reload 

permanent set 

central deflection 

Fig. 2.11 Preloading the Structure. 
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(c) Recient methods include the effect of residual stress by using 

an effective section modulus (Ref. 27). A guessed residual 

_pattern is used and the buckling load is expressed as 

central deflection 

Fig. 2.12. Using an effective section modulus. 

For pin-ended columns, the residual stresses induced in 

fabrication tend to reduce the load required to produce first 

yield of the structure by up to 10% (Fig. 2.12). 

Residual stresses are also important when the life of 

the structure requires consideration. If the residual stresses 

complement the induced stresses portions of the structure may 

yield under repeated loadings. Thus, the evaluation of the fatigue 

of the structure may be an important consideration in the design 

of the structure. 

2.10. Design of StructuresLiable to Instability 

A structure can be designed to allow for instability 

effects when . a satisfactory mathematical description of the structural 

deformations under loath, is obtained. Briefly, the criteria which have 

been used in the past to calculate working loads are: 

(a) A safe working load = some fraction of the first buckling 

load of the structure. 
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(b) A safe working load = some fraction of the load to cause 

first yield of the structure. 

(c) A safe working load = some fraction of the load which 

causes a limiting deformation of 

the structure. 

A safe working load based on some fraction of the first buckling 

load of the structure is easy to calculate, provided that reasonable 

estimates of the fraction are available. When the structure is 

loaded so that the form of the deformation is simple, and the likely 

value of the initial deformations can be reliably predicted, then it 

is easy to find for any particular structure the suitable fraction to 

use in the method (a), by using either method (b) or (c). However, 

when loads are applied to the system so that the form of the 

deformations is at all complicated, the use of a fixed fraction, 

say, 0.66 or 0.5 is unsatisfactory, as the designer has then no 

idea of the likely deformations that exist for any loading of the 

structure. Another disadvantage of method (a) is that the buckling 

load of the structure is usually found by assuming that the structure 

always remains elastic. Thus, the design of the structure must 

always be checked to ensure that the structural material can sustain 

the predicted elastic stresses. 

As a means of overcoming these disadvantages design methods 

based on (b) and (c) are used in this thesis. In both these methods, 

the deformed shape of the structure is found, and thus a deeper insight 

into the instability problem is obtained. 
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CHAPTER THREE 

ANATHEMATICAL MODEL FOR A THROUGH BRIDGE. 

3.1 	Introduction 

' An engineering investigation of a real problem is illustrated 

in the following three chapters and the design of a through bridge is 

considered. This problem arose during the design of a very light 

through plate girder bridge to serve as a connection between ship 

and shore at the ferry terminal at Devonport, Tasmania; the 

designer wished to know the deformations that would be present 

when the bridge was loaded. 

However, little published work appears to exist on this 

subject, and thus the design of the bridge was based on suggestions 

contained in Ref. 28, which in turn appear to have arisen from the 

investigation and description of the failure of several railway 

bridges in Western Europe and Russia in the early twentieth century. 

(Ref. 4). These railway bridges had heavy floors, but only light 

sides and top chords or flanges, and the failures appeared to 

result from the lateral movements of the top members of the 

bridge. Thus the mathematical models developed by Jasinski 

and Engesser (Ref. 29) and Timoshenko (Ref. 30) are all 

efforts to determine loading conditions for whichthe top 

member of the bridge will be unstable and, in these models 

the top members of the bridge is isolated and considered as 

an axially loaded column with lateral restraints offered by 

the sides and bottom of the bridge. The load applied to the 

bridge is then limited to some fraction of the load at which 

the system becomes unstable. 

These mathematical models have been used:for 

many years to design all types of through bridges. These 

bridges usually had floors which strongly resisted rotation 
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in the plane of the cross section (Fig. 3.1). However, in recent 

years, there has been an increasing use of the cheaper and lighter 

through bridges having very light bottom floors,as used at 

Devonport (Fig. 3.2), and as used as aTedestrian overpass 

(Fig. 303). With this increasing tendency to lighten the through 

bridge, particularly the floor, it appeared desirable that an 

examination should be made of the likely deformations of these 

newer types of bridges. 

Fig. 3.1. Cross section of a heavy through bridge. 

In this Chapter the measurement carried out on the 

deformations of a light model through bridge is outlined. A 

mathematical model to describe these deformations is then 

developed, by including the torsional stiffness of the floor 

beam restraints in the existing differential equations 

describing the lateral stability of single I beams. The 

solution of this new differential equation is then carefully 

investigated as an exact mathematical solution does not appear 

to exist. Approximate solutions are obtained by using existing 

methods of weighting the differential equation ) and the energy 

method is used to find an upper bound to the first buckling 

load. A method used by Southwell (Ref. 31) to find the 

natural frequency of a spinning disc is modified, and it is 

shown that good lower bounds to the buckling load, in an 

algebraic form, eat be obtained. This lower bound method 

does not appear to have been used previously in structural 

problems, and the author feels it cbuld be used for mariy. 

other linear differential equations which consist of many 

terms. 



Fig. 3.2 A through plate girder bridge used  as a  connection between ship and  shore,  at 
Bell Bay, Tasmania. A similar type of bridge is used for the same purpose at 

Devonport, Tasmania. 

Fig. 3.3 A light through bridge used as a pedestrian overpass. 
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The mathematical solutions of buckling load (upper and lower 

bounds) are then compared with the buckling loads measured by using 

a modified Southwell plot. The modification of the plot involves 

plotting the ratio of the measured change of rotation of the web 

of the I beam to the square of the load against the measured change 

of rotation of the web of the I beam, or plotting the ratio of the 

measured change in lateral curvature of the centroid of the I beam 

to the load against the _product of the measured change in curvature 

4nd the load. The justification for these plots has been outlined 

in general terms in Chapter Two,. but the specific examples are 

also included in this chapter. The author claims originality 

for -Olese plots, and also for the generalization outlined in 

Chaptrr Two. The measured and calculated buckling loads are 

found to be close, and therefore the matheMatical model is 

taken to be a,good approximation of the structural behaviour. 

As a further comparison of the closeness of the 

mathetaatical model and the structural behaviour the predicted 

buckling mode and the measured buckling mode are compared. 

A technique to separate the first buckling mode from the 

measurements of the total deformed shape is developed, and 

it is shown that even for structures with a comparatively 

large second mode initial crookedness, good estimates of 

the first buckling mode can be obkained. The comparison 

of measured and predicted buckling modes shows that the 

mathematical model is a good approximation to the structural 

behaviour. 

3 9 2 	First Laboratory Model of the Real Bridge Structure  

The first model bridge (Fig. 3.4) was constructed 

from brass strip and brass plate. This material was chosen 

as it has a high yield strain and when used in the bridge 

structure measurable elastic deformations were ob4ined 

befbre the structure yielded. Two brass I beams, with a 



length = 48" 

IP 

width = 9" 

Fig. 3.4, Brass Model Bridge Dimensions. 

flange  x 1/8" 

web 2" x .030" 

3/16" dia. 

cross section 
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ratio of depth to thickness of 66 and a ratio of depth to length of 24, 

were constructed by milling a groove (.020" x 0030") along the flanges, 

fitting the brass sheet into the groove and silver soldering the joint. 

The floor beams were brazed to the bottom flange of the I beams. The 

completed bridge was neither stress relieved nor straightened after 

manufacture, but careful measurement was made of the initial rotational 

and displacement crookedness. 

The structure was loaded by a system of dead loads applied to 

the top flange of the structure. (Fig. 3.5). This system was chosen 

in order to keep the lateral forces low. Care was also taken to keep 

the lateral forces from the measuring devices low as it was noticed 

that even the ,forces exerted by dial gauges affected the lateral 

deformations, especially when the bridge was loaded. A general 

description of the effects of the lateral forces is considered 

more fully in Chapter Four. 



/ p Dead Weights 
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Fig. 3.5 Mechanism used to Load the Model Bridge. 

3.3 Measuring Devices Used to Record Deformations of the Model Bridge. 

Loading of the bridge resulted in elastic deformations similar 

to those shown in Fig. 3.6. An intensive measuring program was 

carried out to describe these deformations. Techniques used included: 

Fig. 3.6. Defoimations of the Model Bridge. 

(i) Point by point measurements using sixteen Huggenberger 

mechanical strain gauges. The lateral and vertical 

curvatures of the top And of the bottom flanges of the 

I bitams and the lateral and vertical curvatures of the 

round floor beams were measured. 

(ii) Point by point measurements with dial gauges. The 

gauges were placed on the top and bottom flanges to 

meOure lateral and vertical displacements. The 
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spring retarn of the dial gauges was sufficient to induce 

measurable deformations, especially at higher loads and 

the dial gauges were used only as redundant checks on 

the double integration of the lateral and vertical curvature 

readings. 

a 

(iii) 	Point by point measurements of the rotation of the web using 

light rays reflected from small mirrors placed on the web. 

(i v) 
	

Continuous slope measuring devices of the rotation of the 

web. 	Tbe simplest system consisted of three cameras 

arranged along .the bridge, as in Fig. 3.7. The position 

of a line, reflected 	from the unloaded model was 

recorded. The bridge was then loaded and the new position 

of the line recorded. The difference in position of the 

two lines was then related to the rotation of the bridge. 

The Ligtenberg technique (Ref. 8) is a logical extension 

of the above method. A number of lines (from 6 to 11 per 

inch) were used as a screen and photographs of the grid of 

lines, (Fig. 3.8), before and after deformation were taken. 

When the WO photographs are superimposed an interference 

pattern is produced. This pattern represents lines of 

constant slope.** 

* Note: A continuous reflective surface along the web was 

obtained by glueing an aluminized terylene (commonly called 

Melinex, a product of I.C.I.A.N.Z., or Mylar) to the web, 

with a pressure sensitive glue, (Kodaflat, a product of 

Kodak Australia). 

** Note: When a fixed rayfofrom the photoplane, through the 

camera lens on to the screen is examined it is found that 

in the unloaded position the ray comes from the line 1, 

(Fig. 3.7) whereas in the loaded position the ray comes 
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from line 2. Thus, the intersegtion of the lines, 

marked by the interference fringe, represents an 

angle change of 9 of the model and 20 of the 

light ray.. The change of slope is then related 

to the line spacing d and the distance of the screen 

from the model, by the ratio 

= d/a. 
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Fig. 3.10. Measured Deformations of First Model Through Bridge. 
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Lines of constant slope obtained from measurements of the web 

deformations indicate that the web did not distort in the plane of 

the crqss section of the I beam. The measurable limit, af a central 

rotation of 5 x 10-2  radian was approximately 0.2 of a fringe, each 

fringe spacing representing a change of rotation of 2 x 10
-2 

radians. 

The sensitivity of the Ligtenberg technique was improved by 

developing oh a modified system. The la'rge optical system constructed 
3 

is shown in Fig. 3090 Sensitivities of 2 x 10 radians per fringe 

with a total range of 20 fringes over a model length of 48 inches 

were obtained.
* 
 As the  model surface was not sufficiently flat to 

enable measurement over the total length of the bridge, and as the 

range of measurement was not sufficient to measure total angle changes, 

the bridge was deformed in increments of rotation and the final 

shape was calculated by addition of these increments. 

3.4  Descriptions of the Measured Results 

Sufficient redundant information was obtained from the various 

measuring devices to enable a cross checking of curvatures, 

displacements and rotations. A detailed summary of the initial 

shape of the bridge and the shape of the bridge under the action 

of the central loading is given in Fig. 3.10, and from these 

graphs the following pattern of the deformed shape of the bridges 

cat be seen: 

(i) the web remained straight in the plane of the cross section, 

(ii) the ends of the I beam at the supports did not rotate, 

(iii) the rotations and lateral displacements were approximately 

sinusoidal in shape, 

(iv) the floor beams rotated and remained integral with the flanges, 

* Note: The calibration of the system was carried out by measuring 

the deformations of a twisted glass plate 	24 in. x 24 in.). The 

resulting surface was anticlastic, and the spacing of the interference 

fringes of lines of constant slope was then compared with the movement 

of the corners of the plate, as measured by four dial gauges. 
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(v) the centv'oid of the I beam when it moved was displaced 

laterally, 

(vi) the initial crookedness in rotation and the final 

rotation were of similar sign. Both I beams deformed 

with approximately equal rotations. 

3.5 	A Mathematical Model for the Model Bridge. 

The measured deformations suggest that the I beams bent 

lateral4 and twisted, and that a twisting restraint.was offered by 

the floor beams. A good mathematical model suitable to describe the 

observed deformations is obtained by adding the floor beam restraint, 

as if it were continuous, to the mathematical model for a single 

simply supported I beam free to deform with lateral and torsional 

deformations. 

The model for the initially straight system including 

the torsional restraint offered by the floor beans is obtained by 

modifying expressions obtained by Mitchell (Ref. 32),.Timoshenko 

(Ref. 30), and O'Cnnor (Ref. 33); others as summarized by Lee 

' (Ref. 214). The I beam is bent in the yz plane, the plane of 

maximum rigidity, and Ei small lateral defleCtion and twist is 

assumed. 

Sufficient geometric approximations are obtained by 

using first order approximations for the rotations i.e. using 

the direction cosines to relate the two sets of axes x, y, z 

(unloaded state) and t , 	0 (loaded state). A tabulation 

is given in table 3.1, with 9, 9 '  9 the rotations in the 
x 	y z 

original axis (Fig. 3.11). 
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Fig. 3.11 Co-ordinate axes. 
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Table 3.1 Cosine .  of the a.h.glea between the original and final 

axes, 

The curvatures are then linked by the equations 

P Y 

= 	9 z 
19z, 01  

(3.3) 

A satisfactory model is obta4715d when the load 

deformation relationships are referred to the deformed structure. 

The moment curvature relationships,needed are . 
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Mt  = EI1  

= EI1  411  
1 

= Cdy41 - c1035 	t Co 9 	) 

where EI 
1 
 EI

7 
 are vertical and lateral bending rigidities, 

19) 	is a rotation in the)7 plane, 

and C, Cl and C o  are St. Venant, warping, and floor stiffness values.* 

and 

are curvatures in thej7 andU planes, 

(3.2) 

For the twisted and bent beam to be in statical equilibrium.: 

under the action of a central point load F, acting at the centroid of the 

I beam, the following equations of statics must be satisfied. (Fig. 3.11). 

Bending moment in the 

vertical diredtiOn;. 	Mx = 

Bending moment in the 
My = 0 

. lateral direction; 	
(3.3) 

Torque in the axial 

direction; 
	Mz

1 
+ u). 

The equations of statics in the new and old axes are therefore 

M = IP(4z) 	9.3riP(.-111 + ) 2 	:2 

= 	ad-P(-  ul + u) 

and 	M5  =-.-t-p(a-)6sy 	u). 

Combining the equations (3,1), (3.2), .(3.3) and (3.4), we obtain the 

 

(3.4) 

equations 

4) x  40(ii-z) + 9y  iP(-111  + u)1/EIt  + 9J-iP(it-z)ck -0)p(u1  +u)]/EI1 

15y= —gz 4la(ie—z)-6..p-P(—ul  u)1/5 	[*p(itz)t, 	iP(—u1 1-141/EI 7  
and . 

- 1C00z  dz + C d9a/dz P1 d30ydz3  = 4P(ile-z)e z  - *P(-111 412). 

( 3 . 5 ) 

 

* A discussion on the evaluation of the St. Venant torsional stiffness 

is given in Chapte .e .  Six, the warping stiffness in Chapter Four: and the 

floor stiffness in Chapter Five. 
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Then, neglecting in equation (3.5) second order small 

terms, in a manner indicated by O'Connor, (Ref. 33) we obttiin 

the conditions for the bridge to be in equilibrium, and 

=i-Pcii—zwEi 

and 

-5C0 9 zdz + CdtVdz C 1 d39 z/dz3  = 4P(14-z.)9 z  iP(-11 1  + u), 
le 

The standard method of solution of these three equations is to 

differentiate the last equation of (3.6) with respect to z, and to 

substitute this equation into the second last equation of (3.6), 

and hence obtain a single differential equation expressing the 

unbalanced torque per unit longth, at any section z )  that is 

1)y.  = i14e...Z)t) z  (Ell  - EI7  )/EI1  

(4-z)9z/EI n  

(3.6) 

C 1 d40/dz4  Cd2q6z2  + C00 — (P2/4EL7 )(14—z) ,20 = 0 for 4/4z.1 0 

(3.7) 

 

and 

   

 

C1 d419/dz4  Cd20Vdz 2  + ccp - (P2/4EI7)(ii+z) 20= 0 for 13 z 

When the differential.equation represents the behaviour:of'the 

I beam structure the boundary conditions to be satisfied are 

  

  

2 - 	2 
z _ L ; 9 = o , c do/az =00 

1 

 

(3.8) 

 

3.6 	Examination of the Properties of the Mathematical Model 

  

D 

The first step in the solution of the mathematical model 

(3.7) and (3.8) is to check to see if the behaviour of the 

differential equation and the associated boundary conditions 

is in an Euler manner; that is, to check to see if for the 

initially straight system there exists an infinite number of 

real buckling loads and modes. The next step is to see if 

reliable means can be found to compare the first buckling load 

and mode as predicted by the mathematical model and as measured 

on the model structure. 
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Use of the ideas developed in Chapter Two .shows that 

these questions are aptwered if the mathematical model (3.7) and 

(3.8) satisfies Rules No.1 and No. 2. Rule No. 1 can be checked, 

by replacing 4) by the operators 

4 	 2 

CI sit OPI/5 4  - cee/dpcoe 10) by (e-z)O and )■ by 

P., /4EI.1 	The self adjoint condition is then checked by 

ietegration by parts, ich gives 

141.1, (t)-1)sLOPI„)] az*C1 (d44ydz4) - C(d200.s/dz2 ) + CO]  dz - 

te 4 

KL :1 1 (d44/dz4) C(d2k/dz2 ) + Codk] dz 

tt 

- [0 C1  (d391dz3)P.-t- [OsC (d4r/dz301  r 	4 	1 .te 
and 	[OrC(dOs/dz)]2` + [0 C(der/dz)] -1-1  
.tt 	 s 	

—it 	2 

1[+,y(4)s ) - 05N(cfr )]dz - 19 (-d-z)2 9 s  dz -(e (i-P-z)4 Pr  dz -te  r 
Both these operators are self adjoint sAje sct to the boundary 

conditions given in equation (3.8). 

•The positive definite quality is also easily checked 

by integrationby parts, and 
0- 

ifirL(fr )dz = ft0-01 (d4 0 1./dz4) 	C(d2 0 1 /dz2) + C 0 ldz o r 
a 	ti t °  

= [or  c 1  (do1 /dz3 )1 ° 	(a0r/dz)c1  (a2 9 ilaz2 )] + 1 c(d2Orbiz2 ) 2dz 1 

	

2V 	te  0 
[611,C(der/dz)] * 	+ . IC(01./dz) 2  dz 

1-2t 	-le 

tt 
and 

45 

N(+ ) dz .ir h 2 (ilf_z) 2 dz  
r r 	wr 

a 
0  Clearly, both operators are greater then zero for the 

defined set of boundary conditions between ime, 0 and 0 

Therefore, as indicated by Rule 1, in Chapter Two,there 

exists a denumerable infinity of solutions, e r. and corresponding 

buckling values, ■ ),. (Fig. 3.12). 
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Deformation 

Fig. 3.12 Load and corresponding central rotation 

deformations for the initially straight bridge. 

Thus there exists a possibility of 44pressing the buckled 

shape as an infinite series, of the form 

0 = a
1
9

1  + a2 9 2 + a30 3 3 -  3 + 
0 . . a 9 	+ 

r r 
0 0 0 

where ar is obtained from the orthogonality properties. In the 

Appendix (B) it is shown that this expansion is convergent when 

the function 6? is continuous and differentiable and satisfies the 

boundary conditions of equation (3.B). 

When the effect of initial lateral crookedness u o  and 

an initial rotational crookedness 0 0  is included in the 

mathematical model (3.7), we obtain the equations 

El, ce(uu0 )/dz2  .iP(4—z)e) 	(309) 

and 

1C0 (8-00 )dz + C d(9-O)/dz - C 1 d3 09-90 )/dz3  = -0(111-u) *P(02-z)dujdz. 

The equations (3.9) can be reduced to the single differential equation 

e
1- d4 09 -9ydz4  ce(9_90)/d-z2  +- Go (9-90  )- (P2/4I) (it° ill? (g-z)et211,0 ‘/dz2; 

(3.10) 
When the approximation is made that the initial lateral curvature 

effect, (that is the term iF(i-t-z)d u, /dz t ), does not significantly 
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alter this equation *, the single equation becomes 

c1 d4 (7-00 )/dz4  cd2(0-Vdz2  + c0 099d (P2/4EI1 )(4-z)99 = o. 	(3.11) 

Equation (3.11), satisfies the conditions of Rule No. 2, 

as outlined in Chapter Two, and thus the final rotations, 9 , canAbe 

expressed as an infinite eigen function expansion containing the initial 

shape Q . The final shape is 

O = a11  /[1-(P/P1 l l + a2 g 2/[1-(P/P2 ) 2] + 0 0 0 	(3.12) 

where the initial shape 90  is givenn by the infinite series expansion 

61= 	a.,•• ct, _ 	4 	• 	• . . 

and 0 r , Pr 	are solutions of equation (307)0 The infinite series 

expansion is readily approximated by the finite expansion 

9  z al e l /[1-(P/P1 )2]  

and a rearrangement of equation (3.12), to examine the measured values;, 

is 

(9- 	9 )/P2  = (0- ale i  )/P 	a1  9 1 /P12  

Equation (3.14) is similar in form to the usual Southwell Plot. However, 

the value of the square of the load is plotted, rather than the load 

itself. The difference arises because of the nature of the differential 

equation (3.7). We can bee from equation (3.7) that the internal change 

of torque per unit length, given by the expression 

L(01)) = C1 d40/dz4 	Cd20/dz2  + 000 

is proportional to the product of the rotation and the square of the•

first critical load, that is 

(40) oC 

(3.13) 

(3.14) 

The effect of the initial lateral curvature is investigated more fully 

in the Appendix D. ' It is shown that a reasonable approximation is to 

use an equivalent initial rotational crookedness and thereby include the 

effect of the initial lateral curvature. 
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However )  from the differential equation for the pin ended coumn 

(2.32), we find that the internal bending moment is proportional 

to the product of the deflection and the first critical load, 

that is 

L() = E/ d2ild z2  oG Ply  

These differences give rise to different Southwell Plots, and the 

analysis presented in Chapter Two is designed to be a rigorous means 
(frpp&ova ft) 

of obtaining the correct variables to use in a Southwell Plot. A 

combination of lateral curvatures are also suitable to use in a 

Southwell Plot as a means of finding the buckling load of the 

bridge. The lateral deflection of the top flange (Fig. 3.13) is 

givbs by UT. = U + he 

and WI the bottom flange by Ua  = u-' *he, where u is the lateral 

deflection of the centroid, h is depth of the I section beam, and 6 

is the rotation of the cross section. Differentiating twice and 

adding these two expressions gives the curvature of the centroid 

and 
d3x/dz2  = igd2u57/dz + d2uB/dz2] 

VT 

Fig. 3.13 Lateral Deflections of the Bridge. 

For the initially crOked structure, the measured 

lateral curvature of the centreline is given as the sum of the 

measured lateral curvatures of the top and bottom flanges, that is 

d2(u_u0 )/dz2 = 	uo )Tzdz2 	d2 (u— uo )Wdz2]. 

But, from the first equation in (3.9) the measured lateral curvature 

of the centre line is related to the applied load and the rotation 

of the I beam, in the form 

(3.15) 

(3.16) 

(3.17) 
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of the centroidl(E1  +6

2 
 +E +6

4 
 )/b 

3  

(d) 

Fig. 3.14. Measured values of lateral curvature and load. 
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EI d2 (u—uo )/dz2  = ipcit_z)e 
4A-Kie—z) -a1 0 1 /(1—P/P1 ) 2 ) 

Therefore substituting equation (3.14) into (3.15) and rearranging, 

we oh4gin the equation 

(3.18) 

(31-19) 
r zi  ov - wo,./elst + 	ao,/ AA/ p 	P [44,-t40 1  idlt a4- 0,1111/FIL  Al A 4-e-13'14 EL 

which shows that certain combinations Of the lateral curvatures can 

be used in a Southwell Plot to measure the first buckling load P and 
1 

the initial rotational crahkedness l a l e, . 

3.7 	Comparisons bedumen Mathematical Models and 
Experimental Results 

3.7.1 Buckling Loads 

Examination of the mathematical model (3.7) and (3.8) has 

indicated that a satisfactory comparison between experimental results 

and the mathematical model is possible by use of modified Southwell Plots. 

Modified Southwell Plots of lateral bending strains and 

rotations are shown in Fig. 3.14. The author claims originality for 

the presentation and justification for these two types of Southwell Plot. 

The modified Southwell Plot (Fig. 3014a) using measured 

rotations, at the points z = 0, z =-1-1/6 and z = -4/3 indicates a 

buckling load of approximately 240 lb. The modified Plot using 

lateral curvatures (Fig. 3014b) obtained by separating the vertical 

bending strains ffom the total strain readings taken at the outside 

edges of the flanges and assuming that plane sections in the flanges 

remained plane when the I beam deformed,aiso indicates a buckling load 

of approximately 225 lb. 

Fig. 3014b shows that not all points on the structure 

indicate the same buckling load but that an average value is a good 

approximation to the buckling load. The particular average to be used 

is obtained from a consideration of the whole deformed structure. A 

plot given by the equation 
Ir  1 

1-(0-60dz/P2  = r(p--9 0 )dz/P 2i  + rpo  dz/P:.it  crt 
lx 

(3.20) 
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is useful in emphasising the geometric deformations of the structure, 

rather than the movements of isolated points. It is possible to separate 

the antisymmetric from the symmetric mode components by suitable choice 

of length over which the integration is performed. An integration of the 

rotations over the total length of the bridge, and hence a separation of 

the antisymmetric components from the symmetric components is shown in 

Fig. 3.14. Again a reasonable straight line is obtained, indicating 

a buckling load of 240 lb. 

3.7.2 Buckling Modes. 

The initial value of the first buckling mode at the centre of 

the bridge, is obtained from the vertical intercept on the graph of 

the ratio of the measured rotation to the square of the applied load 

against the measured rotation. The initial value found by this 

- 2 
intercept method was 2.4 x 10 	radians, which is higher than the 

value obtained by direct measurement of the initial rotational, 
.z 

crookedness (2.0 x 10 radians). This value was obtained by 

measuring the initial rbtations by the optical means shown in 

Fig. 3.7 and also by using a spirit level to define a vertical 

line and measuring with feeler gauges the difference in lateral 

displacement of the top and bottom flanges. Part of the difference 

can be accounted for by including the effect of the initial lateral 

crdokedness, which was neglected in equation (3.10) and in the 

subsequent Southwell Plot analysis. In the Appendix D the measured 

results of rotation and load are compared with the predicted values 

of rotation and load using different methods to estimate the initial 

crookedness values. From this graph it is clear that, provided a 

reasonable equivalent initial crookedness is used, (for instance a 

good choice is that initial crookedness obtained from the Southwell 

Plot), then a reasonable description of the relationship between 

load and rotation is obtained *. 



dy/dP = a1  sinir x,/f A' (1-p/1 ) 2 + b1  sin 21r x,/,e 	2 	 p 
	4 (3.23) 

first mode 

5 

••■■•■■ 
••■••• 

second 
mode 	, 1-  
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When the initial lateral crookedness effects are considered, the 

analysis presented by equation 3.10 is still a good estimate of 

the structural behaviour (see Appendix D). The initial lateral 

crookedness is found to have an effect similar to the initial 

rotational crookedness, and thus an equivalent rotational 

crookedness is used. The very light through bridges discussed 

in this section have an initial rotational crookedness of .02 

radians, and an initial lateral crookedness ofi/1000. The 

equivalent initial rotational crookedness is found to be 

approximately .025 radians. For bridges with heavier floors 

the contribution of the initial lateral trodkedness to the 

equivalent rotational crookedness is approximately .0025 radians. 

An indication of the first buckling mode is obtained 

by direct measurement of the deformed shape. However, the shape 

indicated by these readings changes with load, as the magnitude of 

the buckling modes present in the initial and final shape vary. 

The following method is an attempt to rinse the first buckling mode from 

the deformed shape. 

The underlying ideas can.be  obtained -from a study of 

the behaviour of a pin ended column, with a large second mode 

crookedness. For the column, the final shape is 

y = ai/(1-P/P1) sinT x,/t + a2/(1-P/P2) sin 271-  )(a + aaaa 
	(3.21) 

When a/  /(1-PA ) sin7r x/f is of the same order as a 2 /(1-P/Pa  ) sin 2Ix/e , 

and a3 = a4 . 	= 0, the deflection is as shown bellawi, 	Thus, 

a good approximation to the final shape is 

y = a1/(1-P/P1) 	+ 101 P sin 2Tx/2 
	

(3.22) 

Differentiating equation (3.22) to obtain the changes of the shape 

with load, we obtain the equation 
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FT) 

Asti, p 

fiRtGiiT STEEL 

470 Ub 

Approximate initial shape in deflection 

Approximate first lateral curvature 
Buckling Mode 

Fig. 3.15. Measurement of the first buckling mode of curvatures of a pin 
ended column, The column has a large second mode initial 
crookedness. 
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Meas.obtained from 
optical systems as in 
Fig. 3.7 and 309, and 
checked against point 
by point measurements 

d(mode)/dP 

- Mode/P 

	 190-180 
613  Irtie 4 G ; t'r:1 

. ;•,4 •*1.) 

180-160 

160-140 

140-120  

120-100 

Rotation of side No. 1, first brass bridge 

a4 	 4461 

Approximate first buckling mode in rotation. 

Fig. 3.16'. Measurement of the first buckling mode in rotation of 
the model through bridge. 



Multiplying the.equation (3.23) by F, and subttacting-equation 

(3.22) establishes the proportionality 

sinlrilt 0( y/P 	dy/dP 

The plot using measured values of curvature instead of'the 

total curvature, was tried for the pin ended colupin 	3.15). 

The column had a large second.Mode initial crookedness but the 

final shape resembled the first mdde. The plots of measured 

curvatures are shown in Fig. 3115, which shows that thia.plot 

gives a closer indication of the first buckling mode:then does 

a direct recording of the readings. Thus the method appears tobe 

a reasonable technique. The method, generalized to find the 

first buckling mode is: 

First Buckling Mode 04Deformation/LoacHhange in Deformation per 

unit load] 

The initial crookedness readings for the bridge 

structure (Fig. 3.10) indicate a large antisymmetric rotational 

crookedness, and a plot of rotations was tried (Fig. 3.16). 

A reasonably symmetric buckling mode is indicated. The mode 

has little rotation at the supports with no noticeable 

reverse curvature away from the supports and is approximately 

a cosine wave over the total iaingth of the structure. These 

observations are compared with those predicted by an approximate. 

_ablution of the mathematical model (3.7) and (3.8) in the following 

sections. 

3.8  Solution of the Mathematical Model of the Model Btidge. 

3.8.1. Introduction 

An exact mathematical solution for the differential 

equation (3.7) , that is 

c1 d4 0/dz4  - Cd20/dz2  4 C89 —(P2/4Eyet—z 20 = 0 

subject to the boundary conditions 

( 3. 24) 

(3.26) 
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has not been found, so far as the author can discover. 

Various approximate methods were tried to gain the maximum possible 

information concerning the mathematical model. The methods enabled 

(1) 
	

an estimate of an upper bound for the first buckling load to 

be obtained by use of a guessed buckling mode, 

(ii) an estimate of a finite number of buckling loads and modes to 

be obtained, by use of the approximation that the continuous 

curve is a series of straight line, 

(iii) an estimate of a lower bound for the first buckling load to be 

obtained by use of a weaker mathematical structure than that 

indicated by the equation (3.25). 

A summary of the methods outlined above is presented in the 

following sections, and a reasonable estimate for the first buckling 

load and mode is obtained. 

3.8.2 Upper Bound Estimates. 

Approximate solutions for the differential equation (3.25) 

are obtained by using estimates for the deformed shape. Unless the 

correct shape has been used, residuals on the right hand side of the 

differential equation will be obtained, and the value of buckling load 

obtained depends on the particular methods used to minimize these 

residuals. 

Consider the approximate * methods of solution for the 

mathematical model obtained by neglecting the warping and torsional 

stiffness in equation (3.25), that is 

Ta*dz2 	( P2/4Ey(-0-z ) 20 . 0. 	 (3.27) 

* A mathematically exact solution to equation (3.27) subject to the 

boundary conditions (3.26) is the Bessel Function of the first kind, 

and of order and (Ref. 30). This solution is 

buckling load: P1  = 16.94 /1174 2,  

buckling mode: 611 = (if-z)* Ji  1005  
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When a guessed shape, given by the equation 

0= a coslrz/t 

is substituted into the differential equation (3.27) an estimate 

of the load P is obtained from the modified equation, in terms 

of the residual function R necessary to satisfy the differential 

equation. Then 

C d2 (a cosrz/t)dz2  + (P2/4EI1)(4—z) a cos/z/t =:R • 	(3.28) 

Methods available to minimize this residual, and their effect 

on the load P I  are elaborated fully by Crandall, (Ref. 14), 

and in an excellent review article by Finalyson and ScriAzen, 

(Ref. 35). For completeneas and to introduce further ideas 

the methods are outlined again in this thesis. 

(a)  Collocation 

The residual R can be defined at r different points, 

where r is the number of undefined variables. A system of r 

equations with r unknowns is obtained and a unique solution 

for P is found. In this particular case r is equal to one. 

A common choice is to setR equal to zero at the boundaries. 

Thus 

P2/4EII = —Cd?(a costrzA)/dz 2/4142  a cosIra 0 
	(3. 29) 

Now if z = 0, P = 2 07171-744 2 	whereas if 

z = 	, P is infinite . 

Difficulties arise in this method as it is often difficult 

to estimate whether the value of the load obtained is higher or 

lower than the exact solution of the mathematical model. Also, 

the estimation of the best positions to specify the residual 

values, and the proNem of discontinuities are usually too 

great and this method is not usually used to obtain solutions 

for buckling problems. 



.0 
= cC d2P/dz2  9 d)/'  ç(it-z) 2  02 dz 

"le is examined. te' 

(3.31) 
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(b) Subdomain 

The average of the residual R, over a subdomain, is defined. 

The number of sub domains is made equal to the number of undefined variables, 

and a system of equations is obtained. For one variable, the subdomain is 

equal to the domain, and the integral of the residual over the domain is 

set equal to zero. Thus, we have 
0 

P2/4EI
) 

= C d2  (a cosTz4 )dzy .c(ii-z ) 2  a cos ir z/t 
Lt 	ie 

i.e. 	P = 8086/EI1 C//2, 

(c) Galerkin 

An investigation of a method which places more emphasis 

on the larger deformations than on the smaller values appears reasonable. 

Any weighting function can be chosen. However, use of the deformation 

itself as the weighting function often leads to good approximations. 

Then choose the sub domain as the complete domain, (in the case of one 

variable), and equate the integral of the weighted residual to zero. 

We then obtain the equation 

0 

frli/4EI.= IC e (a coalTz/e)/dz2  a coslizAdV11(*1-z)2(a  costz4) 2dz 
1  itp  te i.e. 	= 21.8 117://e 

(3.30 ) 

An alternative slant on this method is to examine the 

form of the solution if correct values of e were used, and to find the 
variation in P for perturbations of the guessed shape. In this form, 

it is easier to investigate the convergence of the load to the first 

critical load. Thus the value of the load P , gtvtn bjrh the equation 

It was shown in 3.6 that continuous diffierential 

equation (3.25) and boundary conditions (3.26) is self adjoint and 

positive definite system and therefore the ratio for load P can be 
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easily modified, by integration by parts, to the Rayleigh Ritz form, 

P2/4E11  = rc(d9/dz)2dzi ç(*t—z)2 2 dz  

te 	/ te 

In the form (3.32) the mathematical model is equivalent 

to finding the changes in potential energy as the load moves 

downwards,(using the deflections as found by Timoshenko in Ref. 30) 

i.e. 

0 
U = 	(if—z) 2 9 2 (P2/4E1 1  ) dz 

and the changes in interal energy of the structure as the structure 

deforms, i.e. 

V = 	C(0/dz) 2  dz 

and specifying that for loads on the system equal to the buckling 

load there is no total change in the total energy of.the system. 

In the Rayleigh Ritz form (Ref. 36), it is easy to 

obtain idilaesof P. These values are always greater than the 

first critical buckling load as is seen in - the following 

explanation. (Southwell (Ref. 23)has also proposed a method 

similar to the method outlined below for differential equations 

representing framed structures). 

The differential equation (3.25) is self adjoint and 

positive definite and therefore it is well known that any shape 

can be expreseed as an infinite series expansion of the buckling 

modes of the system, i.e. 

.9=a 10 + a2e2 + a
3
9
3 

+ 1 	 r r 
The expansion for can be differentiated term by term provided 

each of the individual terms satisfies the same boundary conditions 

as in 3.26. Then equation (3.32) can be expressed in the form 
.0  . 	o 

a2 	(de1  /dz)
2 dz + a 22  c (d02/dz) 2  + 0 . 0   1 

-  te  . 	•  ie  
P
2 
/ay 0  ,0 

14 c (141) 2 et, dz + a  (3t-i}..),20:44. t 0 

1e  ie 

(3032) 
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when the following orthogonality relationships are used: 

S d20 r/d22  O 5 
d. = 0 

and 	it 
0 1 (-4—z) 2  O r  e s  etz = 0 

ite 

Every term of the numerator and denominator is positive (since the 

corresponding differential operators are positive definite) and thus 

by using a well known property of fractions, the inequality (333) is 

obtained, that is 

0 (itz) 2 A 2 dz  p2/4E1  P2/4EI — c(cle iclz) 2dzi — 	1 	 ' se 	te 

Means of dbtaihihg -  thl's minimum value of P from the 

Rayleigh Ritz method are'readily available. One method is to choose 

approximating function , te. and several undefined parameters,' 

g 	1 g. 1 g
3 
 . 0 0 such that the guessed solution, 9 is a linear a  

combination of these parameters, i.e. 

= gl IP 1 	g2 1P2 	g3 	° 
and 	are the approximating functions (in general, not the buckling 

modes) and g e  are the undefined parameters. 

For the value of the first buckling load to be obtained 

from the Rayleigh Ritz expression, gz is chosen to give a stationary 

value of P, that is the equation 

° 
is satisfied. Substituting in the value of P from the Rayleigh Ritz 

expression, we have 

= Op 

and this statement is equivalent to the statement 

gi 	P )V/ gi = 0. 

The orthogonality relationships are determined by the differential 

equation. The particular form of these relationships is obtained 

in section 2.7.2. 

(3.33) 

(3.34) 

(3.35). 
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The formulation of the problem (335) is called the 

RITZ formulation (Ref. 30), and does not, in general, determine 

an upper bound for the first buckling load, but merely a 

stationary value. The formulation is equivalent to the Rayleigh 

Ritz form and hence can be used to determine an upper bound 

only when the differential operators are positive definite (Ref. 35)0 

The conditions under which the load P found by the 

Ritz formulation converges to the first buckling load of the 

differential equation are of considerable significance. As 

the number of terms g e  is increased, it is usually found 

that for convergence, the `Ft:  must satisfy the same boundary 

conditions as are used to establish the self adjoint property 

of the differentialelquationo Other methods, notably the 

method of Lagrangian multipliers (Ref. 29, and Ref. 35) are 

useful when the individual 	's are not sufficient to describe 

the boundtiry -  conditions. 

Frazer et al. (Ref. 37) have shown that when the 

number of terms of the approximating function is large the 

methods of collbcation and Galerkin are equivalent and both 

methods will either determine loads which converge or diverge.* 

The convergence of the load P to a buckling load 

may be obtained when the corresponding differential operators 

representing a continuous structure are self adjoint, and 

positive definite and the approximating functions satisfy 

the same boundary conditions as are used to establish the 

self adjoint property. Under these conditions the value of P 

for a particular choice of g e  such that i 	= r + 1 cannot 

* The possibility of divergence is a real danger in any 
numerical procedure. For example, the Lagranian interpolation 

formulae, thich is based on the collocation method, fails for 

the classic case of the polynomial approximation to the function 

f(x) = 1A+ x2) for intervals greater than (0, 3.63). 
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be greater than the value of P cbrresponding to i 	= r, else a lower 
Ma% 

solution for P would be found with the solution g 	= 0. The value 

of P is bounded below by Pi  and thus the sequence 

'max 
	

lignav r 1 ) 21  3  — 

is monotonic decreasing. Thus the value of the load found from the 

Ritz method converges to a limit * when the differential equation 

is self adjoint and positive definite. 

The Ritz method (essentially similar to the Timoshenko 

method, (Ref. 30) ) was used to obtain upper bound solutions to the 

differential equation (3.25). The corresponding weighted differential 

equation (with rotation) is the energy expression 

0 	 0 	 0 	 0 

C  
1 

c(d20/dZ ) 2dz + C (0/dz) 2dz + C 
0  9

2  dz = P2/4EI, (ie-z)2 02 dz • (336) 
1 

te 	it 	it. 	te 

The guessed shape (symmetric) used was based on the measured observations,** 

and was chosen as 

9 = g1  cos ir z/e + g3  cos 31We 	g5  cos 51r z/t 

and the following linear simultaneous equations are obtained: 
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* This buckling load may not be the lowest, as is seen in this section 

where the choice of only antisymmetric shapes leads to an antisymmetric 

mode, which does not correspond to the lowest buckling load. 

** The boundary conditions of the individual terms of the guessed shape 

satisfies the boundary conditions necessary for the differential equation 

(3.25) to be self adjoint. 
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These linear simultaneous equations were solved by 

hand and by computer. By increasing the number of the cosine 

terms (to include cos 7,ir 0 and cos/7 z/i ) in a few cases 

it was found that to obtain valuec of P within 1% there was no 

need to include these further cosine terms in the expansion 

for 	. The results are shown in graph form in Fig. (3.17), 

and the buckling mode is shown in Fig. (3.18). 

A guessed shape of only antisymmetric.terms, 

0 = g2  cos 21rz/i + .2,.4  cos 41rz/e + g6  cos 61T e, 

was also tried, and the first antisymmetric buckling mode 

was found to be approximately twice the first symmetric 

buckling load (Fig. 3.17). 

For the model bridge structure, the calculated 

buckling load was found to be 263 lb. The following 

constants were used 41-  

EI 	= 120,000 lb in 

= 4,000 lb in 

C I 	= 120,000 lb in*  

= 	2.1 in. 

Co 	= 26.0 in lb/rad/in 

= 48 in 

and 
	

El 	= 3,000,000 lb in (where El is the moment 

of inertia in the plane of the major axis). 

* Measured and calculated values for the bridge section constants 

were found to be within 5%. The values used are the average of 

the measured and calculated values. 

The values of the lateral stiffness EIere obtained 

by 

(i) direct measurement of E(= 13.5 x 10 lb int ) obttined from 
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as a solution of equation 3.25. 
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Fig. 3.18. Functional form values for an approximate weighted 
residual solution of equation 3.25. 
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the slope of a graph of measured tensile axial load and measured 

extension (Fig. 3.19) and a calculated moment of inertia, 

(ii) 	tile slope of a graph of measured central lateral loads F 

3 
and measured central lateral deflections A (EI

1 
 =F&48  A). 
1 

The values of torsional stiffness C were obtained by 

(i) direct measurement of E and Poisson's ratio (= .26) 

and a calculated torsional rigidiW0 =1 ..EF4E 	), 

(ii) the addition of the measured values of torsional stiffness 

values of the web and the two flanges, These values were obtained 

from the slope of the graph of two end torques and rotations per 

unit length. Another check was to find the torsional frequency 

of each section. A length of the member was suspended vertically 

and was loaded with a known mass. Then the natural frequency of 

the system is approximately 

y = C/(moment of inertia of mass x length 

of suspended section) 

(iii) the slope of a graph of measured end torques and measured 

rotations per unit length (obtained by the Ligtenberg technique) . 

The value of warping stiffness C I  was obtained from the approximation 

(Ref. 30) 
2 

2 — 
— EI1  h. 

The value of the floor stiffness C o  was obtained fromthe approximation 

Co = 2EIF /4 a . 

This approximation assumes that the floor beams are very close to 

each other (actually spaced at 8 in, centres over a total length 

of 48 in.), and that the initial rotational crookedness for each 

I beam is equal (a reasonable estimate for this bridge, as can be 

seen from Figure 3.10). 
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The next improvement in the mathematical model is 

to consider the effect on the buckling load of a load placed at.the 

top of the I beam, instead of at the centroid of the I beam. The 

weighted differential equation expression (3.36) can be altered to 

include the extra lowering of the load,) as the I beam rotates, and 

the new expression is 

C .i(d219/dz2 )dz + C (do/dz) 2dz + Co0 2  dz = P2/I1 
 (-U —z) 2  9 2  dz +iPh9 (3.38) 1  

it 	te 	Le 
The new buckling load is found by solving a quadratic equation. 

The weighted differential equation expression 

(3.38) gives an estimate of the buckling load of 245 lb. This 

estimate is probably an upper bound (as the 263 lb0 was an upper 

bound) to the mathematical model. However no checks can be made, as the 

weighted differential equation expression cannot be_expreased in the 

Rayleigh Ritz form, because the corresponding differential equation 

is not self adjoint. This non self adjointness arises not because 

of changing geometrical terms, as is usually the case with non 

self adjoint differential equations, but because the load P is 

included in the weighted differential equation in two forms, that 

is as P and as P. It is difficult to see how a transformation 

could be made in order that equation 3.38 might be expressed in 

the self adjoint form. This example illustrates that the calculation 

of upper bounds is concerned with the calculation of upper bounds of 

the mathematical models and it is difficult to say what ,  relationship 

this value bears to the buckling load (if any) of the real structure, 

particularly when the boundary conditions of the real structure are 

not measured0 

at z=0. 
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3.8.3 Approximations to the ContinuoUaz,._Differential 

Equation. 

The continuous curve is approximated by a series of 

discrete straight lines in this method. The ordinates of the 

straight lines are obtained by satisfying the differential equation 

away from the boundaries, and the boundary conditions close to the 

boundaries. The method of central differences was used by the 

author (Ref. 38) to obtain a set of linear simultaneous 

equations of the form 

0 

CI 

(3.39) 

that is in matrix notation 

•■•., 

15 	„:,-) ...
, — Rejvc.. ET TV- 1 -t-:  

, 	, 	- ,1 ; , 	1 	■ 	■ 
-- 	 - - 	— 

In the limit, as the number of terms becomes infinitely large, 

the linear simultaneous equations (3.29) can be replaced by 

the self adjoint differential equation (3.25). The symmetric 

matrix M[E] is similar to the differential operator L( f). 

Similarly the matrix [T6] similar to the operator NW. 

The first buckling load for the finite difference model was 

found to be 260 lb. This value is close to the value obtained 

from the method of weighted residual solution, but it is not 

possible to determine whether the value is an upper or lower 

bound to the first buckling load of the differential equation. 

Another method, published recently by Taylor and 

Ojalvo, (Ref. 39) obtains a numerical solution by dividing 

the length, into elements, specifying redundant boundary 

conditions at one end, followed by integration along the 

length in conformity with (3.25), to find the boundary 

conditions at the middle. When the derived conditions in 
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the middle are consistent with the mathematical model, a solution is 

obtained. The solution obtained by Taylor is within 1% of the weighted 

residuals solution outlined above, for all ratios of floor stiffness to 

St. Venant torsional stiffness in the range 

0 c 0 2 /C 7 1 ,4. 50 , 

3.8,4 Lower Bound Estimates. 

These methods are based on the premise that a load lower than 

the first buckling load of the differential equation (3.25) is 

obtained when the first buckling load is found for a structure which 

is averywhere weaker than the structure represented by the differential 

equation (3.25). The standard methods have bean developed by Swartz, 

(Ref. 40), Temple (Ref. 41), Collatz, (Ref. 42 and 43), and Southwell 

(Ref. 31), respectively. The most common method is the Swartz-Temple 

method (Ref. 44). For the differential equation (3.25), the load P 

is xpressed as the ratio 

P2/4E1 1  = L(14))/N() 

d49/dz4  = Cd219/dz2  + Cg)/(it-z)O. 

A guessed functional relationship for 9 is used, and the 
parameters C i ) C C are varied so that they are everywhere weaker 

than the original values. The load P is then sandwiched between the limits 

L()/N(4) l min  ‘ P1/4EI1  4 LO)/N(4)  

For the method to have significance it should be possible to obtain 

the values of C i 1  C , Co by cutting away portions of the structure. 

However, it is difficult to satisfy this requirement and specify the 

values of C C and C in analytical terms, hence only numerical 

solutions for particular configurations were obtained. 
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An extension to this lowermbound method was 

tried, using the corresponding integral equation 

formulation. In the Appendix B it is shown that thei 

integral equation corresponding to the differential 

equation (3.25) and boundary conditions (3.26) is 

-it 

9 - P2/4E11  c K(z, s)(ie-z) 2 (9(s) ds = 0 
	

( 3.4o ) 

where K (z, s) is a Symmetric kernel, 

The value iof 15/4a1  is sandwiched between the maximum 

and minimum values of the ratio 

c k(z, s)(ie —z) 2 9 (s) ds . 
le 

This method reduces the boundary problem considerably, 

but introduces the additional problem of finding the 

kernel. A few simpler problems were examined, but the 

complexity of solution for the differential equation 

(3.40) led to a search for other methods. 

A good estimate of a lower bound was obtained 

by using a variation of a method provided by Southwell 

(Ref. 31) to find the natural frequency of a rotating 

system. This method does not appear to have been used 

previously to find buckling loads. However, when applied 

in this context it can often lead to valuable lower bound 

values. Consider the differentialE equation (3.25) )  that is 

C1 d49/dz4  Cd29 /dz2  Coe - (P2/ 4E1,1 )(*e-z) 20 = o 

This equation suggests that'it might be broken into two parts, 

namely 

C1  d40/dz4 
	

(11/4Ei 1  ) ( 1-z) 2 
 = 0 
	 (3.41) 

and 

- c d20/dz2  CO -(1,12/4E17 )(-a -z) 2 9 = o 
( 3 . 42) 
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A lower bound to the first buckling load of the differential equation 

(3.25) is then determined by the buckling load solutions Poi  and P8  qf 

equations (3.41) and (3.42), and is defined by the inequality 

P2 >/ P
2 + P2 1 	A 

The establishment of this inequality is easily obtained by examination 

of the equations obtained by weighting the differential equations 

(3025), (3.41) and (3.42) with the rotations, and integrating over the 

domain. This approach is similar to that developed by Southwell to 

find a lower bound to the natural frequency of vibration of a rotating 

system, but for completeness the extension of the method to find a 

lower bound to the buckling load of a structure will be outlined. The 

equation obtained from equation (3.25) is in the Rayleigh Ritz form, 

that is 

P2/4E1,1  = [VA(9) + VB(9) ]/T( 9) 

. where 	VA( 9 ) = 	(d 2  so/2)2 dz 	az 
te 

VB(9 ) = C 	(d9/dz) 2  dz + Co
2 dz 

it 

T( 9 ) 	= 	(ii-z) 2  9 2  dz 
te 

When the exact value of 9 , corresponding to the solution, 

of equation (3.25) is substituted into equation (3.43)) e 

is obtained exactly, and 

( P1 )2/4Ell = EvA (91 )3 /T (9 1 ) 	[vB 091) ] /T(91) 

However as equation (3044) is a minimum of two values it is 

possible to obtain lower values of VA (9) /T(9) and Vs  (6) /T(19) 

when each term is considered separately that is, there exists 

sudh . that 

(3.44) 

P2/4E• 	= [ITA (9A)]/T(6) ‘ EllA ( 9l)1/T(01) A 

(3.45) 



2 	2 	2 P +P tP A 	B 	1 Ev
A
(e)  v

B
(9)]/T(e) 

)+v(9 1  )]/T(91 ) 

v
A
(OVT(9) 

VB (6)/T(9) 

PB= VB (9B )/T(8B )  

PPA  =VA (OA)/T(9A) 
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and 

2 
PB/4EI1 = [VB (9B )]/T(013) [VB (01 )]/T(91 ) 

The solutions (OA , PA ) and (Os 1  P8 ) (see Fig. 3.19) are solutions 

of equations (3.41) and (3.42) respectively. From equations (3.4 1)) 

(3.42)) (3045) and (3.46) we then,obtain the inequality 

(3.46) 

Choice of Variables in the Functional Form. 

Fig. 3.19. A graphnof Load against particular solutions 

of equations (3.45) and (3.46). 

The equations (3.41) and (3.42) may be easily solved by replacing 

the torsional stiffness and the warping stiffness by weaker values, 

of the form 

C = [(4-z)/1C 2  C 9 and C =[ettz)/4 2  C 
oo 	0 	1 0 	2 	2 	1 

The equations (3.41) and (3.42) then become 

C1  d49/dz4 	(P2A ,t2/16E11 ) 	= 0 
	

(3.47) 

and 

-Cd29 /dz2 
	

- (Pg /4E11  - 400/12 )(ii-z) 2 0 = 0 	(3.48) 

The exact mathematical solution to equation (3.47) is obtained 

by using a cosine shape and the buckling load 	is given by 
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the equation 

P2 = (16EI c1 /4;
2 ) Or/C 4  . A 

The exact mathematical solution to equation (3.48) is obtained from a 

Bessel function solution of the first kind and order and— 	(Ref. 30) 

and the buckling load Pe  is given by the equation 

A2 	 g P2 = (16.94/Z: )
2 EI C + 16E1 C 4. 

2 
B 	 o • 

Thus a lower bound solution to equation (3.25) is * 

Pi ) (16.944 2 )) 	El10 (1 + 0.56 C1 lr/CL2  + 0.55 c0 ,1 2/c7r 2 )  0  (3.49) 

For the mathematical model of the bridge structure as given by 

equation (3.25), a lower bound is found from equation (3.49) and is 

P1 ) 233 lb .. 

This load must be adjusted to allow for the decrease in buckling load 

resulting from the placing of the load at the top of the I beam, 

instead of the centroid. By making this decrease the same as is 

found by the method of weighted residuals in section 3.8.2, a lower 

bound of 215 lb. is obtained. 

In section 5.4.2 it is shown that the lower bound given by equation 

3.49 can be simplified, especially when the value of the floor stiffness 
A 1  

00 1, /cll. is far greater than unity. This lower bound functional form 

is then fitted to the upper bound numerical form, and .a good estimate of 

the buckling load of (within 5% of the numerical calculation, for values 
.2- 	1 

of C o t /0 Tr 5 ) is obtained. 
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3.9 	Further Comparisons Between the Mathematical Model and 

Experimental Results 

The solutions to the mathematical model (3.25) obtained 

in sections 3.8.2 and 3.8.4 sandwich the buckling load between 

the limits 

215 	lb 4.  P1 	245 lb. 

The measured buckling load (Fig. 3.14) was approximately 240 lb. 

A good approximation to the first buckling mode of rotation 

is obtained from section 3.8.2, and this approximation is compared 

with the measured results in Fig. 3.16. 

The comparison of the measured and predicted buckling loads 

and modes indicates that the mathematical model developed in this 

chapter is a reasonable description of the structural behaviour 

of the particular model bridge. In the following chapters, the 

ideas gained from the study of this simple bridge structure are 

enlarged, and the design of a real through bridge structure is 

discussed. 
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CHAPTER FOUR 

REFINEMENTS OF THE MATHEMATICAL MODEL FOR THE THROUGH BRIDGE. 

4.1 	Introduction 

In the previous Chapter a method to predict the structural 

behaviour of through bridges made from I beams joined by light bottom 

chords was established. This representation of the real bridge, by a 

system of I beams with light bottom cross beams can be improved. In 

this chapter several original improvements are made, each improvement 

using as a basis small perturbations of the deformed shape of the simple 

bridge structure. 

The first effect described is the effect of including web 

stiffeners in the I beam structure, while the second effect described 

is the effect that lateral loadings, applied at points other than 

through the centroid of the I beam, have on the deformations of the 

structure. 

4.2 	Web Stiffeners 

4.2.1 The Design of Web Stiffeners. 

Web stiffeners are added to the webs of plate girders as an 

economic means of reducing the total cost of the I beams. The 

stiffeners are used to increase to the lateral stiffness of a light 

web plate, and therefore reduce possible cross sectional distortion 

(Fig. 4.1). Considerable investigation by previous workers has led 

to a satisfactory arrangement of stiffeners for plate girders, 

particularly when the plate girder deforms in the plane of the 

undeformed web. * 

* The mathematical models summarizing these observations of the 

behaviour of stiffened plates are described by Timoshenko., 
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(Ref. 45) and Gaylord and Gaylord, (Ref. 46). The generally accepted 

criterion as to when stiffeners are needed for girders made from 

structural grade mild steel , is when the ratio of the depth of the 

I bend to the web thickness t exceeds 60 (Ref. 28). For ratios 

greater than these values, vertical and horizontal stiffeners are 

used to limit cross sectional distortions. End or load bearing 

stiffeners are added to the plate bridge near points of concentrated 

load. These stiffeners are usually designed to resist most of the 

vertical loading. 

%awl 

  

    

    

E"*N. 

  

  

  

Fig. (4.1) Cross Sectional Deformations. 

However, little knowledge exists about the behaviour of stiffeners when 

the I beam, and hence the stiffener, twists. To investigate the 

additional effects of twisted stiffeners, a model bridge with 

stiffeners was loaded and the deformations measured. 

4.2.2 The Effect of Stiffeners on the Deformed Structure. 

A model bridge, of dimensions similar to the first brass 

model, was built, and stiffeners designed according to rules 

recommended in (Ref. 28) were added. This model bridge was loaded, 

and a deformed shape was measured. The deformed shabe was found to 

be very similar to the measured shape of the first brass bridge. 

The buckling load, as found from a Southwell Plot of rotations 

indicated a first buckling load of 290 lb., that is an increase 

of 20% on the corresponding load for the bridge without 

stiffeners. 
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A detailed description of the geometric deformations 

of the bridge enabled the main deformations of the stiffeners 

to be isolated. It was found that the stiffener size was 

sufficient to restrain the distortion of the cross section 

of the I beam, but was not sufficient to restrain the relative 

warping of the top and bottom flanges. The stiffeners assumed 

this warping deformation° 

4.2.3. A Mathematical Description of .the Effect of 

StifIriners. 

A close look at the action of warped stiffeners was 

taken by breaking down the general problem to simpler specific 

problems. One arrangement measured was the deformations of an 

I beam with an end stiffener, with a pure twist applied. 

Measurement of the surface shape of the stiffeners (Chapter one) 

indicated that a reasonable approximation to the deformed 

shape of the stiffener was a simple anticlastic surface, 

(i.e0 one with principal curvatures equal in magnitude but 

opposite in sign). 

The forces needed to sustain the stiffener in the 

shape of the anticlastic surface are a set of four balanced 

fo;"ces (Fig. 1.14). A study of the effect of these four 

balanced forces on the I beams (Chapter One) leads to 

the first mathematical model. However, this model specifies 

that all longitudinal lines remain straight. To improve 

the mathematical model it is necessary to include some 

bending of the flanges. The improved model is well known 

and is given by Timoshenko in (Ref. 30and 47) but for 

completeness the model is outlined again below, in a 

manner consistent with the outlook of this thesis. 
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Measurement of the deformed shape of an I beam, with a 

heavy end stiffener , Fig. 4.2, indicated that the geometric deformations 

are separable into :(t,wo distinct portions. These two geometric 

deformations may be summarized as follows: 

(a) 	each surface originally flat deffrms into an anticlastic 

surface, (Fig. 4.3), 

and (b) 	each flange bends laterally. (Fig. 4.4), and the 

geometrical specification is the lateral defleition u is 

determined by the rotation of the web 9, 

and u =j (height of web) 9 

= h9. 

The forces necessary to sustain these two separate 

deformations are 

(a) 	A St. Venant torque, given by the equation 

T = 6 Wdz, 

where C is the torsional stiffness of the I beam. 

and (b) Bending moments in each flange, given by the equation 

M = EI T  d u/dz , 

where EI T is the flexural rigidity of one flange, 

4411ris the lateral curvature of one flanges 

The ppir of bending moments M have no net statical action on the I 

beam section, but within the section are a distinct set of forces, 

called a Vlasov bimoment B, (W'. 9). The bimoment is then 

determined by the product of these two moment couples by the 

distance between them, and 

B = M h 

=EIT h
2 d29/dz2 

= C
1 

d20/dz2 

The constant C is called the warping Stiffness of the I beam. 

(4.1) 

( 4.2 ) 
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Fig. 4.2 	. 

I beam, with built in end, acted upon by an end torque 

Fig. 4.3 

I beam deforming into series of anticlastic surfaces 

Fig. 4.4 

Flanges bend laterally: plane sections remaining plane. 
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The bimoment is not the only force which must be apklied 

to the cross section. As the curvature of the flanges is changing, 

shear strains and hence shear stresses must be applied to the 

flanges. To balance the corresponding shear forces V, which are 

opposite in direction on each flange, a torque Tz  must be 

applied, such that 

T= Vh 
(4. 3) 

The shear forces V are found from statical equilibrium of an 

element of the flange, and 

T z  = (dM/dz)h 

= —(EIT  d3u/dz3 )h 

= 	h2  d30/dz3  

= - C d39/dz3  
1 

= - dB/dz 

The total forces necessary to sustain the deformations (a) 

and (b) are therefore a torque T satisfying the equation 

T = T 1  + T2 

= CdWidz -  C I CIV2 

and the bimoment B, given by the equation 

B = C i de/dz%  

(4.4) 

(4.5) 

4.2.4 Including Stiffeners in the Bridge Model. 

The effect that the stiffeners have on the deformations 

of the through bridge &ann. now be found. It has been shown in Chapter 

One that when the stiffener deforms into a simgb anticlastic surface, 

the forces necessary to sustain this deformation can be found. To 

a first approximation stiffeners in the through bridge deform into 

anticlastic surfaces (Zi‘g, 405), with principal curvatures equal 

in magnitude but opposite in sign, the twist of the S4tffeners 

being given by the equation defining the warping of the I beam 

cross section, that is 
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= d 0/d z 

The stiffener effects bfan then be mathematically 

described by altering the differential equation describing 

the through bridge (3.7). Between the stiffeners, the 

differential equation expressing the change of torque per 

unit distance along the bridge remains unaltered, that is 

in the region z. 	z, 	(see Fig. 405)0 Lti 

C 1 d49/dz4  C d20/dz2  + CO (P2/4EI1 )(ii—z) 2 0 = 0 , 	(4.6) 

while in the region of the stiffeners a bimoment is applied 

to the bridge by the stiffeners. The differential equation 

of the bridge in the region of the stiffeners must be 

modified. The bimoment necessary to keep the stiffeners 

twisted is found by considering the twist of the 

stiffeners, del)/c4, 	cte/d3) and the torsional stiffness 

of the stiffeners, GJ 
5ThrF 

and is given by the equation 

B = -GJsTIFF h d94/dz 

The extra torque applied to the I beam is therefore 

T
3 
= -dB/dz 

= -GJSTIFF h d29/dz2 
 

ca 

The change of this torque per unit distance along the bridge 

is included in the differential equation showing the change 

of torque per unit distance, in the region of the stif6ners 

and we obtaih the equation 

h d 	AP 30/dz3  - C 	/dz2  + CO -(P2/4EI )( 1e-z) 29= 0, 1 C d40/dz4 + GJSTIFF 	 2 
(4.7) 

(for :z. 	dz 	z. ‘ z. + dz) 1 1 

The differential equations (4.6), (4.7) are difficult 

to solve exactly, and as before the method of weighted 

residuals is used to obtain an approximate solution. 
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Weighting the residual with rotation 0 and integrating over the 

total tength of the bridge we obtain the equation 

0 
cc, 449ge 904 + 	9143,3  Odi 	c ce9/0{s? 	— P1/40:1 	=0 

0 	 2. 1  

t.=1,2. • 
ze 	 te 

For a continuous rotation, and first a continopus derivative of 

rotation (consistent with the measured results) the equation (4.8) 

can be reduced to the equation 

0 	 . 	 . c ci(,,eqdiqa 	+ 	
Q-,,,,,*/44,01 , c c (4/d4 — 1-2/4-Er, cie-33•901%-07 

, 	 , 
a  L.tz 

which. is identical to the expression for the Rayleigh Ritz formulation; ' 

the stiffener term being given by the equation 

.4.4 

 

44 cTd4, = 	.f,,-- 	c 	GJSTIFF dWdz d4 
V- 1 1 2-. 	 "2.. 	4 . ‘, 

. 	: i GjSTIFF (dfdz)
2 

GjSTIFF (d6Vdz) 
2 

Thus the approximation for the stiffener action indicates 

that the addition of stiffeners increases the St. Venant torsional 

stiffness of the cross section. The St. Venant stiffness is 

increased because the stiffeners deform (to resist the warping 

of the cross section of the I beam) into a simple anticlastic surVase 

of similar shape to the warping of a rectangular section of the 

same outside dimensions as the I beam *. 

* Warping is the axial deviation from plane sections perpendicular 

to a longitudinal axis. The warping deformations of twisted 

rectangular bars are described approximately by a simple 

anticlastic surface. The general topic of torsion is discussed 

in Chapter Six. 
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\ 0= i4.4/41 ,  

Fig° 4050 Twisted I Beak and Stiffener. 

A guessed buckling mode, specified by a series of 

continuous cosine waves indicates that the addition of the 

stiffener terms in equation (4.9) increases the buckling 

load of the model bridge structure from 245 lb. to 

295 lb. (as measured by the modified Southwell Plot on 

• rotations outlined in Chapter Three). However, these 

individual cosine waves have no sharp changes in second derivatives 
. 	! 

at the points corresponding to the stiffener locations, 

and therefore the convergence of the mode as found by the 

method of weighted residuals to the first buckling mode 

of the structure is not guaranteed. * 

* The representation of a discontinuous structural arrangement 

by a series of continuous curves is a difficult problem. 

The problem is one of determining whether an expansion of 

eigen functions (buckling modes) obtained from a continuous 

problem is convergent to a shape which has a finite number 

of discontinuities in its derivatives. Specific problems 

are being considered in present literature (for example 

Ref. 48), but much more detailed investigation needs to 

be carried out before general statements can be made. 
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From observation of the warping of the cross section of the 

deformed bridge (Fig. 4.6) it is seen that stifdeners placed near 

the centre of the span contribute little to the torsional stiffness 

of the I beams, while when placed near the ends, where larger 

warping deformations are present, a larger increase in torsional 

stiffness is 

   

However this increase in torsional • •  Md Zt: 

 

   

stiffness provided by the stiffeners is not great, and it is 

usually not worthwhile to include the stiffener terms when 

finding the buckling load of the bridge structure. If it is 

felt that the buckling load should be increased significantly)  

it is advisable to consider the economics of making portion 

of, or the complete sides of, the bridge into a closed box 

section, and thus make full use of the high torsional stiffness 

of a closed section,Ror example see Ref. 49 and subsequent 

discussiorq 

1), 

-s 

lines originally 
erpendicular to the 

longitudinal axis. 

p flange UT  
bottom flange UB 

Fig. 4.6. Deformed Bridge showing Warping of the 

Cross Section. 

4.3 Lateral Loadings. 

4.3.1. Introductinli 

When the model through bridge was loaded, it was noticed that 

lateral loadings ppplied to the structure had an effect on the 

rotation and lateral movements, the effect being large when the 

bridge was already loaded with vertical loads. Thus, it appears 

that the lateral and torsional stiffness of the bridge decreases 

with applied vertical loading. 



— 106 — 

This phenomenon is similar to tfle behaviour of a 

laterally and axially loaded pin ended column. It is well 

known that the lateral stiffness of the 01umn decreases 

rapidly as the axial load is increased. When the column 

is loaded by a uniform lateral force system the column 

deforms into a shape which contains a large component of the 

first buckling mode of the column, These deformations are 

then magnified by the instability effects of the axial 

load, especially when the axial load is close to the 

first buckling load. Thus, in the design of frame 

systems liable to instability, particular attention 

is placed on the effects of lateral loadings. As a 

result, designers usually limit the loads on the 

structure to those values for, which the instability 

effects are small. 

For some particular structures, however, it 

is possible that the lateral loadings on the structure 

do not decrease significantly the lateral stiffness 

of the structure.. 

Onsider the approximations that are made in 

the design of through bridges. The questions arise: 

"Do the wind forces affect the lateral stiffness of 

the bridge?", or "Do the loadings applied on the 

floor system, away from the side members, affect the 

torsional stiffness of the bridge?" Little knowledge 

concerning these problems exists. The decrease in 

stiffness has previously been assumed small, as most 

experience has been with very heavy railway through 

bridges. However, this does not appear to be the 

case with light through bridges, with similar proportions 

to the model bridge outlined in Chapter Three. 
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In the following sections an original and powerful analysis is 

presented to describe the effects on through bridges of lateral and • 

torsional loadings which remain constant in magnitude and direction 

as the bridge deforms. In this analysis, the initial crookedness of 

the bridge and the deformations induced by th(p applied loadings are 

described in terms of an infinite series expansion of the buckling 

modes. Keeping to the general method of attack used throughout this 

thesis, the simple problem of the analysis of a pin ended column, 

under the action of axial and lateral loads is considered first to 

introduce the necessary ideas, and these ideas are then extended to 

describe the beiaaviour of other structures. 

4.3. 2  . The Effect of Lateral Loading a on an Axially 

Loaded Column. 

Consider the behaviour of an Euler strut of length carrying 

an axial load P, an having flexural rigidity El. The inter 

relationship between the load deformation relations, the equations 

of statical equilibrium, and the geometrical compatibility of 

deformations can then be expressed by the differential equation 

EI d2y/dx2 + Py0 . 
 (4.10) 

For this differential equation, together with the boundary 

conditions x = 0 and I, y = 01  there exists an infinity of eigen 
Pinctions (buckling modes)4,  , which are solutions of (4.10). 

Fortunately in this case the y 	known precisely, and may be 

written as 

yn 
= an  sin n 

The corresponding eigen values A l  are given by 

= P/EI = n2 72/12.  
(4. 11 ) 
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The effect of a lateral force is included in the mathematical 

model in a manner similar to that which was used to handle the initial 

crookedness, as outlined in Section 2.4.3. The well known lateral 

model for an initially crooked column (for example (Ref. 50) ), 

acted upon by a uniform load w becomes 

El d2(y- y0 )/dx2  + Py 	wx(i-x) 
	

( 4. 1 2 ) 

The shape of the bending moment induced by this load is then expressed 

as an infinite series expansion, in terms of the buckling mode olutions. 

The values of c , in this expansion, are defined such that 

c
1
y

1 
+ c

2
y
2 

+ c
3
y
3 

+ 0.cy 	0 0 = 	wx(e-x) 	(4 ' 13)  
n n 

The value of the constant c 	is obtained by multiplying both 

sides by the orthogonalizing function for the differential equation, 

in this case sin(nWx/t), and integrating between the boundaries j o e 0 

,r cm ym yn clx = 	wx(e-x) yndx 
	

(4.14) 

The orthogonalizing function is used because the infinite 
ex) 	e 

series expansion 	f 	Cetx- 	can be simplified, 
'wet 	0 

and the term c 	using the definition of the orthogonal 

function, i.e. 

(1 -4. 	0 	 for m not equal to n. 

Then, the value of the constant c 	given uniquely by the 

equation 

cn = 	wx(e-x) y dy c y2  dx n 	n 
0 

The mathematical behaviour of a pin ended column, allowing 

for both initial crookedness and lateral loading, is obtained by 

expressing the final shape y as the infinite series expansion 

y = bi yi  + b2y2  + b
3
y
3 
 0 0 0 0 
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The value of b 	is obtained by substitution of the expansions for y and 

y o  , and lateral loading into the equation (4.12) and b., 1 	is obtained 

as the ratio 

bn  = [an  + cn/(EIT242)1 /[1-(P/Pn,)I 	• 

Using these values of b 	in the expansion for the final shape, 

y becomes 

y= [al + c 1 /P1 ]/[1- P/P1 ] sinirx/e + [a2+c2/P2]/[1-P/P2]sin 21ç/.e+,. (4.15) 

and near the first eigen value of the mathematical model, i.e. for P 

close to P i 	, the final shape, y, is closely represented by the first 

term in this expression, that is 

y = [9. 1  + c i /P1 1/[1-P/Pi] sin Tile 	0 	 (4.16) 

Thus, in this well known model, the lateral load is replaced by 

an equivalent first mode initial crookedness, equal to the crookedness 

induced by the lateral loading before the axial load is applied. The 

model is reasonably accurate,especially when the loading produces 

deformations which contain a large component of the first buckling mode. 

For example, the deflections and moments for a uniform loading 

are calculated using only the first term of the infinite series are 

compared, in Table 4.1, with the solution of the beam column equation 

given by gimoshenko (Ref. 30). It is seen that a good estimate of the 

effect of the lateral load is obtained. It can also be seen from this 

example of the pin ended column, that as the first buckling mode is very 

similar to the deflections induced by the lateral loading, the lateral 

stiffness of the column decreases with increasing axial loads by the 

factor (1 -P/Pi 	). 
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4xial 	Deflections 	Moments 
Load 

Fist term In Exact _solution 	difference 	difference 
ilLinite series of (4) 

0 

009P 

0.01 	2, 302V 	/EI I 
,4 

0.1307w ), /EI 

44 
00 oi3o7w 	/EI 

,4 
L 0.1307w 	/EI 

0.4% 3% 

1% 

Table 4.1. Comparisons between Mathematical Models. 

The ideas outlined in the preceding analysis are now 

extended by the author to develop mathematical models describing 

the behaViour of real through bridge structures. An equivalent 

initial crookedness is found, and a design method is developed 

to allow for the effects of lateral loadings and initial 

crookedness. 

4.3.3 The effect of lateral loadings on an I beam 

liable to lateral and torsional instability. 

•A reasonable model for the behaviour of a light through 

bridge when it deforms according to Fig. 407 is given in section 3.5. 

Then, when the load is applied vertically through the centroid of 

each I section, a good model for deformed shape of the initially 

straight structure i4 the region 	z. 	0 is given by the 

system of equations 
d2u/dz2  iP(ie-z)e = 0 

y-Ccp414 	C d3e/dz3  + C dB/dz 4 -WI-1-z) du/dz P(u 	0, (4.17) 

Fig. 4.7. Through bridge deformations, when the light 

bottomchord provides restraint against rotation-,:but 
not translation. 



— 111 — 

When these two equations are combined into a single differential equation, 

the inter relationship between the load deformation relations, statical 

equilibrium and geometrical compatibility for the region if 4 z < 0, 
becomes 

01 d4e/dz4  0d20/dz2  coo - (P2/4E41 )(ke-z ) 2 9 = 0 
	 4018) 

This differential equation, together with the boundary 

conditions 

z = andit ; 9 = 0 , 01 d29/dz2  = 0 	(4.19) 

has been shown in Section 3.6 to be self adjoint and positive definite, 

and thus there exist an infinity of buckling mode solutions a n  and 

buckling load values P 	It was also shown in section 3.6 that any shape 

provided it satisfies the boundary conditions (4019)„can be expressed in 

terms of these eigen functions. 

The effect on the mathematical model (4.17) of an applied 

lateral moment M which does not change as the structure deforms, 

is to alter the first equation in (4.17) to the equation 

EI 1 
 d

2u/dz2 - iP(0—z)0 = ML 
	 (4.20) 

When the moment arises ftwq the action of a central lateral load 

F and the boundary conditions (4.19) remain unaltered, then the 

moment is given by the equations 

and 

ML  2 F  2  

M, -19-F440) 

for 	z ‘ 0 

for 0 4 z 4 41.. 

Thus, for the central point load equation (4.18) in the region if 4 <0 

becomes 

cr d49/d z4  Cd20/dz2  + Gi)-(F2/4EI1)(it-z)i?= (FP/4EI1)(ie-z) 2  . 	(4.21) 

in which the right hand side of the equation (4.19) shows the effect 

of the lateral load. The right hand side of the equation (4.21) is a 

function of z alone, and this function 9I1hig0 4.8) can be represented 
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by the infinite series of eigen function solutions of (4.18). 

The constants c t  are defined in the region it 4'4.0 

3.0 

2.0 

1 .0 

50 
	

100 
	

150 
	

200 

Fig. L.8. Values of k for lateral loadings as 

given by equation 4.23. 

by the series * 

c101(711-z)2 + c 3 93 (ie-z) 2  + 0 0 =(FP/4EI1)(*0-z) 2 	2 

	(4.22) 

and are found by mutliplying both sides of the expansion 

by ieln  , using the orthogonalizing function (see section 

2.7.2), and integrating between the boundaries. This gives 

c, uniquely, in the form 
0 

en = 	On(FP/4E1.7 )(364-z) 2d/ 0 2, (-a-z) 2  dz 

te 	it 

* The series (4.22) has been chosen with a weighting function 

(it -  z) on the left hand side in order that the constants c and 

the final shape are dbtaineddtin terms of buckling mode components 

• only. The weighting function is dependant on the differential 

equation. To the author's knowledge the use of a weighting 

function in this context has hpt been successfully tried 

previously in structural engineering. 
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when the orthogonality properties are used, that is 

0 

eit-163 C,ax  em dz = 0 for m not equal to n. 
The final shape, 9 given by 

01,1  et + 0(x 02 + 1.,4 	- 

can be found by substitution of this expansion into equation (4.21). 

The constants d 	can then be expressed as the ratio 

= c (4E'
1 
 )/p2  [i—(p/P1 ) 2  ] 0 n 	" 1 

Near the first critical loads, d i e, dominates and the maximum value of 

d i  0% occurs at z = O. Under these conditions the value d 1 01  is given 

by the equation 

d1 0 1 = k FP/P2 [1—(P/P1 ) 2  ] 1 
= d1041—(P/P1 ) 2  ] 

(4. 23) 

where k is a variable depending on the form of the lateral load, and 

the values of C I  , C, Co  , and 1 . Values of k are plotted in Fig. 

4.8. The effect of a unifthrmly distributed load is less than that of 

the point load, as the main bending and hence main rotational action 

occurs near the centre of the beam but a reasonable estimate for the 

rotation is obtained by replacing the lateral load by a central point 

load equal to two thirds of the value of the total lateral load. The 

overall form of the behaviour is evident in Fig. 4.8. For low values 
Az 	2. 

of the elastic floor stiffness,C 0 X,  /Cllateral loadings have a 

relatively large effect, but as the restraint is increased the relative 

effect becomes smaller, but not negligible. Thus, in this type of 

structure the effects of lateral loadings should be considered in the 

design of the structure. 



—114.— 

40304 The Effect of Torsional Loadings on an I beam 

Liable to Lateral and Torsional Instability. 

When the bridge is loaded at points other than through 

the centroid of the I beam, ttorsional loadings are imposed. For 

example, when the load is applied to the floor beamyyttaR, the 

sides of the bridge would rotate, and the centroid of the I 

beams would move both laterally and vertically even if the 

bridge was initially straight. The effects of a torsional 

loading T z  applied along the bridge are included in this 

section. 

The effect of the differential equation (4.17) of a 

torsional loading T z  is to alter the second equation giving 

the conditions of torsional loadings for the bridge to be in 

equilibrium, and 

EI,,,d2u/dz2  - -0(4-z)9 = 0 
1r 	1 
fCj9dz + Cdedz C 1  d39/dz3  +P(-z)du/d 4P(u 	= Tz. 

te 
Using these modified equations, equation (4.10) 

is Wered to the single differential equation 

C
1  d

40/dz4  - Cd29/dz 2 1_,(p2/4EI )1 )(if-z ) 20= dTx/dz 

The form of the applied torsional loadings T z  

is given by examining the statical equilibrium of an 

element of the bottom chord, as in Fig. 4090 The 

differential equation showing these.effects, for a 

point load applied on the chord, is 

EIF dty/dx2  = Ma - j2-• PXOL 

where EIF is the rigidity in the vertical plane of a 

bottom chord, and p is the line load per unit distance. 

Integration of this expression gives the 4guation 

EIFdy/dx = Mxa,- px
2
o. + A 

(4.24) 

(4.25) 
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and fitting the boundary conditions 

dy/dx = 0 at x = 

gives the equation 

EIF dy/dx = M(x 4s)a— p(4i7s2/16)a 

Denoting the slope at the point A by0 14  , the end moment slope 

relationship per unit distance along the bridge is then given 

by the equation 

M = 2E'F 0 /sa ps/B 

= C09 — ps/8 

When the loading is applied uniformly in a single vertical 

line, along the centre of the bridge deck, as in Fig. 409 

the change in torque per unit length, dTz/dz is obtained 

from the equation 

dT/dz = ps/8 	0 

For the bridge loaded with a single vertical load in the 

centre of the deck we have the system of equations 

dT z/dz = 0 

and 
	• 	for iric z ‘ dz , 

dT z/dz =fP(s/8)/dz 

for dz z 0 
and,for the bridge loaded uniformly with a load w per unit 

area over the bridge deck the change in torque per unit length 

is given by the equation 	r- 

dT z/dz = (ws) (s/8) 

( 4.26) 



— 116 ...".... 

-....- . , 	
.,„— ---...- 

.--- .. ... 
	' 

G. T. - •- 

1 

	

_____--.1 	, „:„0-,.....„74  

\ 

	

\ 	•, --..-.;:— ' 
11\  9  ;-1.- 	•-• 

/ 	MI 

,.....,_._.,..._,/ ........_ ----_:------ ....,--.. 
unit distance 

Fig. 4.9. An element of the bottom chord of the bridge 

shown in Fig. 4.7, loaded along the centreline 

The effect of these torsional loadings is seen by 

expressing the change in torque per unit length as the 

infinite series expansion 

e 1 	1 2  
+ e

3  = dTz/dz (4.27) 

and solving for the constant e by substitution of the 

expansions into equation (4.25). The value of e 	is thus 1.1 

given by the ratio 
0 	 0 

en= 
c(dTz/dz) 9nc 2 

di on  (*t-z) 2  dz 
a 4 	tt 

The final shape 0 , given by the series 

(4.28) 

=
1  

f 	
1 

+ f
2 
9 2 + 0 0 0 

can be found by proceeding in a similar manner to that 

outlined .above and the value of the first mode component 

f 1 6 at z = 0 is given, for a central line load, by the 

ratio 

f1 f9 1(z=0) = k(4)( s/8) (4EI/[(4 2 (1—(p/p 1 ) 2  ) ] 

= f1 
	

—(P/P1) 2  ] 

	
(4.29) 

Values of k are plotted in Fig. 4.10 for a 

central line load, for a uniform load, and for a 

distance between 
floor beams, a 



k1(P/1)(s/12)4EI1/(P1 g)2(1_(p/2
71. r ) ) uniform load 

k2 (P/e)(s/8) 4E)/(P1 e r ) ) point load. 

ElAvrte FLooR SIIFFNE4A. to etkm) 
100 	• 	10 	2Q0 5 
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central point load. The central point load is the dominant 

case, as can be seen from Fig. 4.10 and loadings of this type 

are likely to cause a much earlier,first yield of the structure 

than other forms of loading. It is also clear from Fig. 4.10 

that the torsional loading effect should be considered in the 

design of this type of structure. 

= k1(u)(s/8) 4E1)  /(Ple) 2 (1 -03/P1) 2 
 ) central line load 

Fig. 4.10. Values of for Torsional Loadings as 

given by equation 4.29. 

4.3.5. A Method to add the Effects of Initial Crookedness, 

Lateral loadings, and Torsional Loadings. 

A solution for a combination of the effects of initial 

crookedness lateral loading and torsional loading is achieved 

by incorporating all effects into one differential equation, and . 

solving this mathematical model in a manner similar to that 

used in previous cases. The approximate 'final shape 0 can then 
be expressed in terms of the first buckling mode components, 

the initial crookedness, and the lateral loads, in the form 

• 	9 	[al + d10 	1'10]  ei/[1-(P/P-1)2 ]. 
	 ( 4. 30) 



-118— 

where a i 9, is the initial crookedness in the first mode, dA 

is the equivalent first mode initial crookedness sustained 

by the lateral load and 1' 10 9 1  is the equivalent first mode 

initial crookedness sustained by the torsional load. 

The equation (4.30) can be used in design provided 

it is realized that the expressions for the lateral and 

torsional loadings are only approximate. In cases where 

the axial load is zero, the predicted deformations obtained 

by using one term of the infinite series are likely to 

differ from the exact solution of the mathematical model. 

However, as the axial load is increased, the differences 

between the two solutions become smaller. Thus, the 

equation (4.30) is a reasonable representation of the 

solution of the mathematical model (4.17) with initial 

crookedness, lateral loadings and torsional loadings 

which remain constant as the structure deforms. 

Provided the equivalent initial crookedness resulting 

from the lateral and torsional loadings is small and 

does not introduce changes in the geometrical terms 

of equations (4.17), the mathematical model is a good 

representation of the behaviour of light through bridges. 

The foregoing method is used in Chapter Five 

in the design of through bridges which have light bottom 

floors. It is shown there that when initial crookedness 

and torsional loading effects (described in terms of an 

infinite series of buckling modes) are compared with 

measurements taken on a real bridge structure, reasonable 

agreement is obtained. 
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CHAPTER FIVE 

THE DESIGN OF THROUGH BRIDGES. 

	

5.1 	Introduction 

In this chapter the design of through bridges is 

discussed. The use of through bridges and present methods 

of design are investigated first and compared with the 

measurements outlined in Chapter Three. Large differences 

between the existing mathematical models used to design 

through bridges and the measured results are shown to 

exist, and, as a result, further model tests are carried 

out to obtain a good appreciation of these differences. 

Using the ideas outlined in the previous chapters a new 

mathematical model to describe the behaviour of light through 

bridges is proposed, and an existing bridge is analyzed by 

this method. This analysis is then compared with 

measurements taken by loading the full size bridge. 

	

5.2 	The Use of Through Bridges  

Through bridges are often used when headroom is 

an important consideration. This consideration has 

resulted in the use of through bridges as railway overpasses; 

present design experience, as tabled in various codes, is 

largely concerned with structures of this type. 

More recently, the through bridge has been used 

as a pedestrian overpass. The sides of the bridge, 

4/  

usually of truss construction, are used as the hand /tail, . 

and the light floor beams are used to connect the trusses. 

The advent of roll on roll off cargo ships 

has resulted in the use of the through bridge as a 
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connection between ship and Chore. This connecting bridge is often 

longer, wider and of lighter floor beam construction than the 

railway bridge. 

5.3 	Current Methods of Design 

Most through bridges are designed using ideas summarised 

by the British Standard 153 (1958) "Steel Birder Bridges" (Ref. 51). 

These ideas, in ,turn,are based on the Timoshenko Model, presented in 

"Theory of Elastic Stability", (Ref. 30). The top flange of each 

of the I beams is isolated and regarded as an axially loaded column 

with lateral restraints provided by the web and floor beams. This 

Timoshenko model will now be outlined for compfitenesse 

Consider the bridge as shown in Fig. 5.1, and assume a 

deformed shape as shown in Fig. 5.2. The top flange has deformed 

laterally and the I beams have distorted in the plane of the cross 

section. The bottom flanges have been completely restrained in the 

lateral direction. 

These estimates of the deformations are used to establish 

a mathematical model. The buckling load can be found for the top 

flange as though it were an Euler pin ended strut. The top flange 

is similar to a column loaded with a changing axial load and 

restrained elastically in the lateral direction. The buckling 

load of the top flange system is used to determine a limiting 

stress in this flange. The axial load PT  that needs to be 

applied to the initially straight flange, to sustain the buckling 

mode, is expressed in a form similar to the Euler buckling load; 

an effective length L is used to allow for the effects of changing 

axial loads along the bridge and to allow for the effects of the 

lateral restraints. This load is then given by the equation 



_ 

assumed late 
• deflections 
of the 
bottom flan 

Fig. 5.2 Assumed deformations for 
the Timoshenko model for 
through bridges 

lateral 
deflections k  
x of the top 
flange 
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Fig. 5.1 Typical railway through 
bridge  

plan 

length f 
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When the top flange is considered to be laterally supported by 

the floor system and web stiffener arrangement,the effective length, 

as found by British Standard 153, (Ref. 51) is given by the formulae 

L = 2.5 1-1E176:75  (5.1) 

where ET 	= lateral stiffness of the top flange 

a 	= distance between frames 

and 
	

= the virtual lateral displacement of the compression 

flange at the frame nearest mid-span of the girder, 

taken as the horizontal deflection of the stiffener 

at the point of its intersection with the centroid 

of the compression flange, under the action of unit 

horizontal force applied at this point to the frame 

only. 

As an example, consider the through plate girder bridge at the 

ferry terminal at Devonport, Tasmania, shown in Fig.5. 

The effective length for the ferry-terminal bridge as shown 

in Fig. 5,3, calculated from the above formulae, is 250 inches, which 

is approximately of the length of the bridge and the effective length 

divided by radius of gyration, lir. is 54. For a L/r ratio of 54/ 

B.S. 153 recommends a working stress of 16,400 psi for structural 

grade mild steel. 

COnparing this stress with the buckling load of the flanga4 

P found from the modified Euler condition Pr  =7LEI/L 	we find that 

the load corresponding to a working stress of 16,400 psi is 1/6.4 of the 

buckling load. Thus instability effects for the corresponding buckling 

deformation are small. 

The buckling mode can be either a symmetric lateral deformation 

of the top flange about the midspan or an anti-symmetric deformation, 

as the corresponding buckling loads are very close. It ccan be seen 

• from Fig. 5.2, where the symmetric buckling mode is shown for the 

particular ferry terminal bridge, that one quarter of the length, 
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Fig. 5.3 Cross section of the ferry terminal bridge at Devonport,' 
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Fig. 5.4 Solutions to Timoshenko model for the lateral stability 
of an axially loaded column with elastic lateral restraints 
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that is L = .1/4, does not represent the distance between points of 

contraflexure. The lack of correspondence between the effective 

length and the distance between points of contraflexure in the 

buckling mode occurs because the buckling mode for the restrained 

system is not the sinusoidal function buckling mode of the pin 

ended strut. 

A comparison is now made between other codes of practice, 

the Timoshenko model in "Theory of Elastic Stability" and the 

British Standard 153. The B.S. 153 expression for the effective 

length, equation (5.1) can be modified to 

t, 2,4/T4.T 2.5(44 )4 

where  

In Fj.g. 5.4, equation (5.1) is plotted against the Timoshenko 

solution and it is seen that the equation (5.1) given in B.S. 153 

is an overestimate of the effective length, for low values of 

A closer estimate, especially for low values of (5 , is also shown 

in Fig. 5.4, and this expression is 

4 1314/Tr 4 EI1  = 2 . 0 	. 

(5.2 ) 

(5.3) 

When equation (5.3) is used to find the buckling load for 

the ferry terminal bridge of Fig. 5.3, it is found that the ratio 

of working load, as recommended by B.S. 153,to buckling load is 

1/9.2. 

The recommendations of the Column Research Council (C.R.C.)(Ref.52) 

are based on Engesser's formulation of the problem (Ref. 29). For 

a perfectly straight system the buckling load is increased by the 

addition of U frames of a stiffness sufficient to induce a required 

buckling mode. The stiffness of the U frames required, C lut, , is 

given by the equation 

creq  = 	/a- 
	 (5.4) 

where P 	the Euler pin ended column buckling load of a strut of 

length equal to the distance a between U frames. The buckling mode 
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panel spacing 

lateral 
deflection of the op flange 
of the through bridge for the 
CRC model. 

Pa = 	EI/L2  

Fig. 5.5a Behaviour of the initially straight bridge. 

Fig. 5 05b Behaviour of the model for the initially grooked bridge. 
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and plot of deflection against load are shown in Fig. 5.5. Approximately 

similar expressions are given for the equivalent German Code (Ref. 53), 

and the required stiffness is 

C
req = 2.50 Fa Ii /l  m. 

(5.5) 

where K ft  is a ratio of the effective length to paneit length and is 

such that 

1.3 
	

3.0 . 	 (5.6) 

Neither the C.R.C. nor the German Code is helpful in the 

analysis of the ferry-terminal bridge of Fig. 5.3, as the stiffness 

of the U frames (i.e. the stiffeners) is insufficient to enforce 

the type of mode implied by the two Codes. 

The British Standard 153, C.R.C. Code, and German Code 

formulae (5.1), (5.4), and (5.5) are all estimates of the U-frame- 

stiffness required to obtain a buckling load and corresponding 

buckling mode for an initially straight frame. For the initially 

straight frame loaded to less than the buckling load, no deformations 

occur (Fig. 5.5a). However when the initially crooked frame is 

loaded, the frame deforms under the action of all loads (Fig. 5.5b). 

These deformations result in resisting forces in the flanges and 

in the web and floor beams. 

The British Standard 153 gives an estimate of the lateral 

force developed at the junction of the deformed top flange and the 

deformed U frames. This lateral force F is given by the equation 

F = 1.4 x 1O 	(CE/fac - 1.7) 	2 

where C = Euler buckling stress for the member 

and f 	calculated working stress in the chord, 

and the force is taken as acting in a horizontal direction at the top 

of the U frame. 

An insight into this formula is obtained by examining the 

expression (5.7), by choosing a bridge which has an effective length 

equal to the panel length. Expression (5.7) can be rearranged into 

(5 .'7) 
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the form 	. 

F:=.(V2500)(1.7 faq/CEA/4075/384)(0/EI T ) (1-1.07fac/CE ) ,)  (50$) 

and in this form it can be seen that the design lateral force is obtained 

by allowing for the following conditions 

(1) an initial crookedness of a half sine wave with a 

maximum amplitude of 112500 1  between each panel 

point, 

(2) an applied load of 1.7 times the working load, 

(3) the web resisting the deformations, and the 

lateral shear on web being resisted by the U frames. 

When the effective lengthlis eq17 .1 ,  to the panel - length, 

an alternative simplification fbr equation (t7)"is 

F = 640/,WITTI.EIT/LI)Aau/e0.6.  

and when the 'workingstreSs . is one half of thd buckiiiig, stress the 

value of the lateral force is apprbximitely 

(5.9) 
F = 002% px, 

where P is the Euler pin ended column buckling load of a strut 

of length equal to the panel length. 

The C.R.C. and German codes both indicate a value of 

lateral force which is approximately 1% P 	that is a value 

higher than the value Toi..the lateral force found in equation 

(5.9). The American Association of State Highway Officials 

"Standard Specifications for Highway Bridges" (Ref. 54) and the 

National Association of Australian State Road Authorities 

"Highway Bridge Design Specification", (Ref. 55), both 

recommend a force of 300 lbs. per linear foot, to be applied 

* Measurements by Holt (Ref. 52) indicate that this force is 

of the order of 0.05% P, 
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to the top chord panel point of each truss, (for a truss bridge) but do 

not specify the size of the bridge. This force appears to be a 

provision to allow for the forces developed as the bridge deforms, and 

the value is approximately equal to the German and C.R.C. Codes * 

The stresses induced by the force F are added to the stresses 

induced by the vertical bending of the I beam sides of the bridge. 

The maximum stress usually occurs at the corner of the U frame. 

For the ferry terminal bridge of Fig. 5.3 the addition of the 

tensile stress in the bottom flange and the tensile bending stress 

at the corner of the U frame is the maximum stress that occurs in 

the bottom flange. 

From the preceding calculations it appears that the 

ferry terminal bridge satisfies the requirements of the codes 

of AASHO, CRC., B.S. 153 and the Australian National Association 

of Australian State Road Authorities. "Highway Bridge Design 

Specification" 1958. However, these codes do not appear to have 

made allowance for a lateral torsional buckling mode. It was 

shown in Chapter Three that this type of deformation is poskible 

for very light through bridges, and thus a close examination of 

the overall problem is warranted. 

A series of model tests, using small mild steel through 

plate girder bridges, was carried out. The models were varied 

in size and in the structural arrangement, and the overall pattern 

* A comparison of the lateral force provisions of the AASHO and 

CRC codes indicates the two are equal when 

AASHO (F = 300 lbs/foot) = CRC (F = 1%P). 

Suppose the axial stress in the flange is 15,000 psi, then 

(300/12)s (panel length in inches) = (15,000/100)x(area of flange 

in square in.) 

i.e. when the area (in square inches) of the flange is equal 

to the panelklength(in inches) divided by six then the CRC and AASHO 

codes specify a similar lateral force. 
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of deformation was measured. The model tests were used to obtain ideas 

and an understanding of the problem When these ideas had been 

formulated, the real ferry bridge at Devohport was loaded, 
• • 

deformations measured and these measured results were compared with 

the predicted values. Reasonable agreement was obtained, and 'hence 

an improved method of design is suggested. This method is based on 

the likely ,  fort of deformation of the bridge and hence the model 

studies are prdsented as a means of describing this form of the 

deformation. 

5.4 	Model Studies  

5- 4.1 Measurements. 

Simple mild steel models of plate glirder bridges * were 

* The dimensions and section constants for these model bridges were 

obtained in a manner similar to that used for the brass bridge, in 

Chapter Three. The values were: 

h = 1.5 in., 	= 48 in., flanges 0.5 in x 0.125 in., web 1.5 in x 0.030 in., 

4- E11  = 74,000 lb in, C I = 83,000 lboin , and EI p  = 1,850 lb in 16 . A 

graph of load and extension for the material used to make the flanges 

of the bridges is shown in Fig. 5.6. Other section properties of the 

bridges are as follows, 

6 in 3E1F /sa 7400 lb in 	309 27 270 lb 

8 in 6E1F  /sa 7400 lb in' 	502 29 290 lb 

8 in 3EIF /sa 7400 lb in 	300 25 250 lb 

8 in 6EI F /sa 8700 lb in, 	4.8 28 300 lb. 

. . 
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Load on one I beam (in lbs.) 

etotal rotation from vertical of ftio 

Fig. 5.8a 	Fig. 5.8b Fig 5.8c 	Fig. 5.8d 

measured result 

replotted from Southwell Plots, 

using measured crookedness and 

measured buckling loads. 

T.?  

tel  

flanges 
0.5" x 0.125" 

web 1.5" x 00030" 

7 bottom chords 9" x 3/16" dia 0  mild steel,. 
width between I beams, a" either 
6" or 8" 
length of bridge 48" 

Fig. 5.7a 	Fig. 5.7b Fig, 5.7c 	Fig. 5.7d 
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A 

Fig. 5.7a 	 Fig. 5.76 
	 Fig. 5.7c 	 Fig. 5.7d 

Shape of the deformed model mild steel bridges, after some yielding of the top flange. 

Fig. 5.7a Shape of model bridge 'A', 	 Fig. 5.7d Typical Huggenberger me chanical strain 

after some yielding of the top flange. 	 gauge instrumentation used to measure strains. 
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1/64" dia. floor bracing. 3/16" di floor. 

I  

Fig. 5.9c 	Fig. 5.9d 'Fig. 5.9a . 	Fig. 5.9b 
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Elastic buckling mode in rotation 

1 

ToP 

"It . 

Fig. 5.10a 	Fig. 5 0 10b 
	

Fig. 5.10c 
	

Fig. 5.10d 

Shape of bne top and bottom flanges after some V  yielding 
of the top flange. 
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60,000 

40,000 

20,000 

P/A (pounds/square in). 

cold rolled M.S. steel strip. 

. 
29 x 106  lbin.

2  

urea = 0.5 ` Ix 0. 11,6" 

P, 

1.0 	2.0 	3.0 
(extension/length x 10 3 ) 

Fig. 5.6 Stress-strain relationship for the Mild Steel 

strip used in the flanges of the Model Bridges. 

tested, up to and beyond the elastic range of the material (Figs. 

5.7a, 5.7b, and 5.70 15.7d and 5.7e). The floor of the bridge was 

placed at the bottom flange and was made from light mild steel round 

rods. Some of the models had floors which were not braced against 

movements in the lateral direction while others had floor bracing. 

These model bridges deformed as indicated in Figs. 5.8a, 5.8b, 

5.8c and 5.8d. The cross section of the I beam did not distort to 

any measurable extent. While all strains remained elastic, the 

deformed mode was as shown in Figs. 5.9a, 5.9b, 5.9c and 5.9d. 

When the outer tip of the top flange yielded the top flange formed 

a local hinge, and after some yielding, the deformed shape was similar 

to the shape shown in Figs. 5.10a, 5.10b, 5.10c and 5.10d. Further 

details concerning the deformed shapes are given in the Appendix E. 

Points of interest arising from these model studies are: 

(a) 	There exist at least two different deformed shapes, 

corresponding to the shapes shown in Figs. 5.7a, 5.2b and 

5.1?) These deformed shapes are in the same sense as 

the initial rotation pattern. The magnitude and direction 
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of the angles of rotation of the web determine the type of 

mode which occurs. 

(b) While all strains reamin elastic the cross section of the 

I beam does not distort. The cross section distorts only 

when the web-flange joint yields. 

(c) The centroids of the I-beams move laterally. 

(d) While all strains remain elastic the rotation of the cross 

section of the I beam is approximately a half sine wave. 

(e) After some yielding of the flanges occurs, the shape of the 

bridge is approximately described by two straight lines for 

the top flange, and a half sine wave for the bottom flange. 

The cross section of the I beams at the supports remain 

vertical. Thus, after some yielding occurs the shape is 

approximatad by the following functions: 

lateral deflection of top flange = 2075h (0
/ 	

) (l-2z/fl 
7' 0  

lateral deflection of bottom flange = 1075h 
(6)1.0 

)coslrza 

rotation of cross-section of I beam = 107514, 0 	 Wang] 
where 	= rotation at the centre of the bridge 

h = height of the I beam, 	and 

z = distance along the beam, measured from 'the fonspan of 

the beam. 

(f) There is little increase of load carrying capacity of 

the structure beyond the load that corresponds to first 

yield of the tip of the top flange. 

These observations are different from the deformations pictured 

in Fig. 5.2, corresponding to the Timoshenko model for through 

bridges, in Ref. 30. An improved mathematical model is needed 

to describe the new deformations. 
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5.4.2 Mathematical Descriptions of the model tests. 

The model developed in Chapter Three is sufficient to describe 

adequately the observations, * that is for the initially straight I-beam 

arrangement 

C1 d460/dz4  Cd29/dz2  + Cd9 - (P2/4EI1 )(it- ) 2 0= 0 
	

(5.10) 

* It is noticed in Fig. 5.7c and Fig. 5.7d that the floor beams may provide 

considerable lateral restraint to the bottom flange of the I beam. 

However, even if the sides are braced by U frames, the centroids of the 

I beams ere not rigidly restrained, and the centroid of the section may 

then twist and bend. The model developed in this thesis approximates the 

effect of lateral restraints on the bottom flanges on the deformations 

and buckling loads to being small. This model is suitable when the floor 

beams offer some torsional restraint, and offer no appreciable lateral 

restraint to the centroid of the I beams. 

An alternative mathematical model, proposed by Schmidt (Ref. 56) 

is to find the forces necessary to ensure that deformations as shown in 

Fig. 5.11; that is the floor beams provide complete lateral restraint, 

but no torsional restraint. As the torsional restraint offered by the 

fl9or beams is completely neglected only small buckling loads are needed 

to sustain the deformations (approx. 100 lb. for the model bridges). 

Therefore, this model is unsuitable when the floor beams offer any 

torsional restraint; but Schmidt has shown it to be useful when the 

floor beams offer large lateral restraint to the I beam section and no 

appreciable torsional restraint. 

The value of Cp  , the equivalent torsional restraint per unit 

distance offered by the floor system, is found from the initial 

crookedness pattern and the stiffness of the floor system. When the 

initial rotations, and hence final rotations, are as shown in Fig. 5.7t 

the restraint offered by floor beam and adajcent I beam is given by the 

equation 

(2Eir toa- 	SEIF  /Aa-- 
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where EI
F 

= the rigidity of one cross member of the floor system, 

6 	= width of the bridge,' 

a 	= Spacing of the cross members. 

The lower value of C o  occurs when the two initial rotations 

are equal and the adjacent I beam is not contributing to the value 

of C o  ; the higher value occurs when one rotation is much greater 

then the other (Fig. 5.12). 

Similarly, when the rotations are as shown in Fig. 5.12 the 

restraint is given by the equation 

3EI/A a 	Co  6EIVA a 

The critical central point buckling, P I  is obtained from 

Fig. 5.13. For bridges with a ratio of floor stiffness to St. 

Venant torsional stiffness greater than 5, that is 

co  2/cir2 7  5  

a good approximation to the buckling load * is obtained by fitting 

the lower bound functional form (as found in 3.8.4, and putting 

ht 
' Co L /C1T y7I and' C 1 11 	to the upper found numerical form, 

(as found in 3.8.2). The resulting approximation to the first buckling 

load P 1  is shown in Fig. 5.13, with 

P1  = 5A fir:17: 2 	 (5.11) 

* Equation (5.11) gives the buckling load vtitlue of a single vertical 

point load aliplied in the middle of the beam. Comparisons between this 

model and that developed by Taylor (Ref. 39), for a uniformly distributed 

1  7 load of -0/ per unit distance along each I beam indicate that the 

distributed buckling load on each I beam is approximately 

PL)1 7.5jff;re  
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that is the important variables in determining the buckling load of the 

light through bridge are the lateral rigidity of the I beams, the 

torsional stiffness of the floor system and the length of the bridge. 

070-  P1  =5/  
from form of the lower 2ound 

200 value of ,,solution 	0  
Cle/Cr = .4;Pi  = 0 -Ica 

.2 
0 

numerical solution by weighted resid 

P1  =(3.8/WEITE0  

100 

50 

50 	100 	150 
	

200 

Elastic floor stiffness C t 2/0"e 

Fig. 5.13. Buckling Load of Mathematical Model (5.10) 

The initial crookedness can be included in the mathematical 

model, and the final rotations, 0 10  , are given approximately bythe 

equation 

&= 9 0/[1-(P/P1 ) 2  ) , 

where 0„ is the equivalent first mode initial crookedness being 

determined from the Southwell Plot, or an addi'bion of the measured 

initial rotation and the equivalent initial lateral deformation. 

These predicted rotations for the model bridges compare 

closely with the measured results obtained from the model bridges, 

and the two are plotted in Figs. 5.7a 5.7b, 5.7c and 5.7d. Thus 

the mathematical model based on lateral torsional deformations of 

the I beams and summarized by the equations (5.11), (5.12) iS'a 

reasonable description of through bridge behaviour. 

150 	 lower bound albegraic solution 

(5.12) 
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lateral movement of and 
rotation of the to 
flange 

no lateral movement of the bottom flange 

_Lp 

Fig. 5.11. Deformations of bridge as described by Schmidt (Ref. 56). 

Mr Aar  VA 3 EIF 	M = 6 E rF e/A 
torsional restraint offered by the floor beams 

= C E)/unit length or along the bridge 

C
o 
= E Aa 	Co  = 3EI 11/4a 

	Co  = 2E1 1,45a 

Fig. 5.12. Values of elastic floor stiffness arising from different 
initial crookedness patterns. 
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5.4.3 Lines of First Yield. 

The problem still remains of deciding the safe working load of 

the bridge. The measured values of rotation (Fig. 5.8) indicate that 

a reasonable ultimate load carrying capacity of the bridge is that load 

which will just cause yielding of the outer tip of the top flange. 

Working loads can then be chosen as some fraction of this load to cause first 

yield. Two methods of predicting the load to first yield the structure 

are now outlined. 

A measured line of first yield, (that is the locus of all points 

with central load and central rotation for which yielding of the outer 

tip of the top flange first occurs as co-ordinates,)is shown in 

Fig. 5.14. Several different initial crookedness values are shown for 

the same size model. 

Calculated lines of first yield are also shown in Fig. 5.14. 

The first line is obtained by considering the elastic deformations 

of the bridge, and using the equivalent initial crookedness as 

measured by the Southwell Plot. Then the yield strain on the outer 

tip of the top flange is found by expressing the strain in terms of 

the rotation of the I beam. 

Thus the final rotation is given by equation (3.12). 

9  = 8191/11-(P/P1)2 I 

and the strain,E , in the top flange given in terms of this rotation, 

i.e. 

=.ateral curvature x * width of top flange1+1:vertica1 

curvature x height of the I beam.] 

= 	b d2y/dz2  + 	d2u,r/dz2  0  

The expression for lateral curvature is obtained by using the second 

derivative of the expression for the lateral movement of the top 

flange, 	UT  = 1119+ u . 2 

(5.12) 



top flange 

--- bottom flange 

5.0 	6.0 100 	2.0 	3.0 	4.0 

central rotation (x 10
!• 

radians) 

laad(16) 

line of first yield, found using 
the guessed mode 

=.002 

&/005 
7 

line of first yield, 
calculated from elastic 
buckling... mode 

-------- __------- 
x measured values 
of list yield 

30d" 

zocr 

40 

100 

value of .X 

 

c  .0.2/ 	= 0  
--7- 	/ 

4(r/t) 2  
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co  e/ ce 
10 	20 	30 

Fig. 5.15 Values of in d261/41z 2  = 	at z = 0. 
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Fig., 5.14. Comparison of the two methods of finding lines of first yield, 
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The individual components of the lateral curvature of the top flange 

are found as follows: 

(a) 
2. 

an approximation for d 0 /ft% is obtained from the expression 

for 0 , and is given by the equation 

	

d29/dz2  = d2 [g1  cosITO + g3 	cos 31m/P, + 	. Vdz2  

Values for this component of curvature at the centre of the 

bridge, are given inthe form of a graph in Fig. 5.15 and values of 

are found such that 

d29/dz2  =e1 (r0)  

(b) The curvature along the centre 	line of the I beam, d u/dz 

is obtained from equation (3.6) ie. 

	

EI d2u/dz2  = 	—z)9 0 
1 

	

Using these values, the maximum strain 	in the top flange is 

given by the equation 

	

clax = e(ihi 	14/4EI1 ) kb + (PR/4EI)  h. 

Therefore the maximum measured strain in the top flange 

Is found by using the equation (5.12) to find the measured change 

in central rotation (0 - a 1 	) and 

meas = [a1(P/P1)261/(1— (P/P0
2  )i [iti+ Pi/4EI,Ab + 144/8EI, 

An alternative, and simpler approach to find a line of 

first yield is as follows: 

The line is calculated by using the approximate measured shape as 

given in (e), section 5.4.1. The rotation of the web is given by 

the equation 

6= 1.75  [  irpe  c°7 9/ 4/  

The strain at the tip of the top flange is obtained by estimating 

the vertical and lateral bending effects. The corresponding bending 

moments are given by the expressions M and MO , respectively. Thus 

the strain at the top of the top flanges is 

(5.14) 
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6 . m9t/2EI)  + Mh/2EI 

= [Ph-Way + Peh/SEI. 	 (5.15) 

It can be seen from Fig. 5.14, that little difference 

exists between the measured line of first yield and the two 

calculated lines of first yield. lowever he second method of 

calculation, using the shape tAt the bridge takes up when 

yielding occurs as the describing shape, is easier to calculate 

and visualize. It is felt that this mpthod als6 gives a closer 

description of the structural behaviour when the bridge is made 

of a deck that has a large lateral stiffness. 

505 	Qomparisons between the Mathematical Model of 504 and  

existing Mathematical models. 

The prOportions of the model bridges tested were such that 

the buckling load corresponding to the Timoshenko model for through 

bridges, as outlined in "Thebry of Elastic Stability", (Ref. 30) 

was comparatiYely large when compared with the measured lateral 

torsional buckling load. It would be expected that as the 

stiffness of the floor beams is increased, the difference between 

the buckling load of the Timoshenko model and the buckling load 

of the model proposed in Chapter Three would decrease. In the 

following paragraphs a comparison between the Timoshenko model and 

the lateral torsional buckling model is presented, and a simple 

relationship between the two buckling loads is found. 

In any through bridge it is likely that the deformation 

shown in Figs. 5.2, 5.7a, 5.7b,5.7c and 5.7d are present. The 

, 
magnitude of the component deformations in each mode is 

dependent on the type and size of bridge, the applied loading, 

and the initial crookedness. 

The central point loading on each I beam necessary to 

provide the buckling load for deformations shown in Fig. 5.2 

is found from equation (5.3) and the Euler column buckling 

expression. 
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Then 

P = (4h/g)PT 	 (5.16) 

= (414)(1hIT/4001EITa ) 	2 

The value of the virtual lateral displacement of the compression 

flange nearest midspan of the bridge consists of the contributions 

from the movement of the sides of the frames and the floor of the 

frames. A good approximation for S given in B.S. 153 is 

= (101 /3EIs  + h s/2EIF) 

which may be expressed in the form 

S= k(h22/2EIF  ) 	 (5.17) 

where h 1  = distance of the centroid of the compression chord 

from the top of the floor beam cross member 

EI 	= lateral flexural stiffness of the vertical side of the bridge 

= distance of the centroid of the compression chord from the 

neutral axis of the floor beam cross member 

= width of the bridge 

EI 	= vertical flexural stiffness of the flopr system in the plane 

of bending of the floor 

= a factor dependent on the ratio of the contributions to the 

virtual displacement, and is given by the ratio of the total 

lateral movement of the top flange of a through bridge 

(sustained by a unit horizontal force applded at the top 

flange of the bridge) to the magnitude of the lateral 

movement of the top flange that results from the deformation 

of the floor beams. 

Equations (5.16) and (5.17) can be simplified. The central 

point loading P on each I beam necessary to provide the buckling load 

for the deformations as shown in Fig. 5.2 is then given by the equation 

P = (T/1) 2  //EIT  EIF  (11/a)(1/s) 1042(h2/h)/dri 	(5.18) 
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The central point loading on each I beam necessary to provide 

the buckling load for deformations shown in Fig. 5.7a. is found from 

equation (5.11). The approximations 

El ,?  = 2EIT  
and 

C
o  

= 2EIF/sa 

are used and equation (5.11) simplifies. The central load is then 

given by 

P = (TrA) 2 FIEIT  EIF  (i/a) (i/5) 

Thus from equations (5.18) and (5.19) the two buckling 

loads are equal when the critical value of k is given by the 

equation 
2 k

crit ?G 
2(13.2./h) , 

When k is less than Ic or* , that is when most of the lateral 

deformation (sustained by a unit lateral load applied on the top 

flange) results from the deformation of the floor beams, the buckling 

load for the mode shown in Fig. 5.7a is less than the buckling load 

for the mode shown in Fig. 5.2 When k is greater than k 	that 

is when most of the lateral deformation results from the deformation 

(sustained by a unit lateral load applied on the top flange) of the 

sides of the bridge the buckling load for the mode shown in Fig. 5.2 

is less than the buckling load for the mode shown in Fig. 5.7a. 

Values of k and k c44,t, for various existing thrpugh bridges are 

tabulated in the Appendix F to show that bridges have been 

designed in both regions. 

A model bridge was designed so that the two buckling loads 

were equal, that is k = k i4b . The resulting deformations contained 

both buckling modes. However, because the measured buckling load of 

the system wa# within 10% of the predicted buckling load it was 

assumed that there is little interaction between the two types of 

. deformation. 

(5. 19 ) 

(5.20) 
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The ferry terminal bridge at Devonport has for the critical 

value of kx2.42; the actual value of k is 1.67. This indicates a 
ot* 

floor system which is more flexible than the critical value. Therefore 

the buckling load corresponding to the mode shown in Fig. 5.7a is the 

lowest buckling load. The low value of k indicates that for this bridge 

it is unncessarry to design against a mode of buckling similar to that 

mode shown in Fig. 5.2. 

In the following section a detailed analysis of the behaviour 

of the ferry bridge at Devonport is presented. This analysis is based 

on deformations similar to those shown in Fig. 5.7a and a design 

procedure is indicated. 

5.6  Analysis of an Existing Bridge Structure  

For the bridge ferry terminal at Devonport, as shown in Fig. 503, 

the relevant constants are 

I = 61,000 lb in 
 

(I/y) = Z=1,900 lb in 
2 

C = 4.45 x 108  lb in 
10 

E11 = 3.0 x 10 lb in 

Co = 2E1 4.UOCEis crookedness is in the mode 

= 1.0 x 10
s 
(bin 

(In this calculation the concrete deck has been assumed not 

to restrain the rotation of the floor. This estimate gives 

an underestimate of the buckling load of the structure). 

C o 	= 2 00 
13 	6 

C 1  = 3.0 X 10 lb in 

CillYcit = 0.68. 

The buckling load, calculated from equation (5.11), is a central 

loading on the total bridge structure of 720 tons. The buckling mode 

found from Fig. 3.18 is sketched in Fig. 5.16. 
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Fig. 5.16. Rotational buckling mode of the through 

bridge at Devonport, TaAlania, calculated from 
the 'column of equation (5.10). 

The dead weight of the bridge is approximately sixty tons ?  

It has been pointed out earlier in this Chapter that this uniform 

load is approximately equivalent to a central point load of fourty 

tons, that is 60/1.5 = 40. 

The initial rotational crookedness of both webs of the 

bridge consisted of a first buckling mode specified by a central 

- 5 
rotation value of 6 x 10 radians, together with higher order 

buckling modes which represented approximately a further central 

-3 
rotation value of 3 x 10 	radians. These estimates were obtained 

by noting the difference from the vertical indicated by placing an 

engineer's spirit level against the web of the bridge *. 

* Measurement of four other through bridges each approximately 

sixty feet in length indicated that these values Of initial 

rotational crookedness are reasonable. The bridges measured 

included a railway bridge, a pedestrian overpass and a large 

truss bridge used for motor traffic. The usual value of the 
-t 

maximum rotational crookedness of the web was 10 radians. 

Means of deciding an economic value of initial crookedness 

are investigated in the 'appendix G. There exists scope for 

some valuable work to be done to determine a reasonable 

practical value of crookedness at which fabricators could 

aim. 



-146- 

The initial lateral crookedness of the bridge was of the order of P1000, 

These readings indicate an equivalent first mode initial rotational 

-3 
crookedness of 6.25 x 10 radians. (See Appendix D for further details). 

From equation (5.12) the central rotation and applied central load 

relationship is of the form 

9  = a1 9 1 /[1—(  (PLL 40)1720) 2  ] 2 
	

( 5.21) 

Where P
LL 

is the total central live load (in tons) applied to the bridge. 

A graph showing the relationship between the central rotation and central 

live load is shown in Fig. 5.17. 

However, the instability deformations resulting from loads applied 

to the centroid of the I beams are not the only deformations which are 

measurable. The bridge is loaded on the deck as shown in Fig. (5.18). 

This loading results in deformations approximately similar to the first 

buckling mode. 

Fig. 5.18. Deformations of the bridge resulting from A method 

of loading other thah through the centroid of the I 

beam sides. In this case the loading was applied by 

driving a loaded fork lift truck on to the bridge. 
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The deformations induced by this loading can be calculated 

in the manner indicated in Chapter Four. This loading introduces 

rotations, given by the equation 

.p1  Oa.°  = kl  (Pt/Xs/8) 4EII/Pit)2 
(1„(p/)2 ) 

 

where k 2  = factor, from Chapter Four, depending on the ratio 

C o  t /C1C1  , and the distribution of loadings. In the 

case of a central point load, k is approximately 13. 

When the ferry terminal bridge constants are specified, 

equation (5.22) reduces to the equation 

= 2 x 10-4 PLL/[1  (P L/720) 2  1. 

Equation (5.23) is plotted in Fig. 5.17. 

A line of first yield, using the approximate yielded shape 

outlined in section 5.4.3, is also plotted in Fig. 5.17. The load 

to cause first yield is obtained as the intercept of this line with 

the line formed from the addition of the rotations caused by the 

buckling instabilities (i.e. equation 5.21) and the torsional 

deformations (i.e. equation 5.23)0 

5.7 	Comparisons between Measured  and Predicted Results. 

It can be seen from Fig. 5.17 that the instability effects 

are not large in the lower range of loads and most of the rotation 

of the I beam is caused by the torsional loadings imposed by the 

floor system. However, the load to first yield the bridge is 

considerably affected by the torsional deformations induced by the 

deformed floor, and this effect must be considered if safe and 

reasonable load carrying capacity for the bridge is, to be determined. 

These predicted results are now compared with measurements 

taken on the actual bridge structure. A central load of approximately 

34 tons, applied by driving a loaded fork lift truck on to the bridge, 
-3 	-s 

resulted in a central rotation increase of 4 x 10 and 3 x 10 

radians on the two I beams, with no measurable distortion of the 

(5.22) 

(5.23) 
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total live load (tons) 

Euler buckling load 

600 

5 00 

400 

300 

4) r 0041 - (P/Pu.4)1 1 

predicted rotations from torsional loadings 

calculated load-
rotation relation 
(12(0,s4-q..) 

100f 
calculated line of 

*BS153 working load suggested working first yield 
range 

measured results 

1.0 	2.0 
	

3.0 	4.0 
	

5.0 

central rotation radians x 10
2 ) 

200 

0 	 

dead 
load 	 

Fig, 5.17. Plots of loads and central rotation of the I beam sides 

of the ferry terminal bridge at Devonport, Tasmania. 
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cross section of the I beams. Measurement of rotation changes was 

made with a spirit level held against the web. This reading was checked by 

a spirit level placed on the flanges. 

For the same change in load, strain measurements obtained from 

- s 
Huggenberger mechanical strain gauges indicated strains of 0.20 x 10 

-3 
and 0.25 x 10 on the edges of the top flange of one I beam, and 

-3 	-S 
0.17 x 10 and 0.10 x 10 	on the other. I beam. All readings 

were taken at midspan. 

The measured results are within 10% of the values. 

predicted by the mathematical model developed in this chapter. 

This mathematical model (based on picturing the deformations of 

the structure as it deforms,) is used in the following section to 

estimate safe working loads for the bridge. 

5.8 	Working Loads. 

The designer hasa 0-mice in deciding the design criteria 

he wishes to specify. Two possible criteria are outlined in 

section 2.10 and are 

(b) a working load for the material, and 

(c) a maximum deformation of the structure. 

CtirAider the working load criteria. At a load of 120 tons 

(Fig. 5.17) the structure begins to yield, and as the model tests 

show there is little load increase after first yield, this load is 

a good estimate of the maximum load that the structure could carry. 

A working load of approximately 60 tons i.e. (120+ 2) tons appears 

reasonable. At this load the nominal stress in the top flange, 

corresponding to vertical bending alone, is 15,000 psi. 

At a loading of 60 tons, the central rotation increases 
-a 

by approximately 1.4 x 10 radians from the initial no load 

position, and the increase in lateral deflection of the top chord 

is approximately 2.0 ins., that is t/500 from the initial position. 

These ddfOrmations at 60 ton load are reasonable, as they do not 
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appear unsightly, and do not interfere with the function of the structure. 

Therefore, use of either criteria (b) or (c) in the design of this bridge 

structure is satisfactory as both criteria indicate similar working loads. 

5.9 Conclusion. 

The behaviour of an existing through bridge has been measured and 

reasonable mathematical descriptions suitable for design purposes have been 

developed. 

It is recommended that existing code recommendations be modified 

in the light of this work. A suggested form is as follows: 

DESIGN OF THROUGH BRIDGES. 

Through bridges should be designed to resist likely modes of 

lateral instability. The type of lateral instability is dependent on 

the relative values of the stiffness of the sides of the bridge and the 

stiffness of the floor of the bridge. A through bridge will be called 

a light through bridge when the stiffness of the floor is small in 

comparison to the stiffness of the sides of the bridge. The predominant 

modes of overall deformation then are 

k < k crit 	k 	crit 

light through bridge 
	heavy through bridge 

CALCULATION OF BUCKLING LOADS. 

The buckling loads applied through the centroid of each beam 

needed to sustain these two types of deformation for the initially 

straight bridges are 

(a) for light through bridges 

central point load Pi  = 5//3 Co  
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where C 0  = equivalent floor 6tiffneM; 

=2EIF //3o., 

ET. = lateral bending ttiffnesS -  le one I beam 

a = distance between floot beams 

= length of the bridge 

EIF = vertical bending stiffness of one floor beam 

= width of the bridge 

distributed .jlia.cl4k = e7.511 	Co 

and (b) for heavy through bridges 

central point load PI  x: 	/41..  

where h = height, at midspan, of the I beam 

= length of the bridge 

= lateral stiffness of the top
.  flange, at.midspan 

= distance between floor beams 

1; = value of the vir$tal lateral displacement of the 

top flange, under the action of a unit horizontal 

force 

3 
+ 4.#2.1  A/2 EI F  

= k( 4v‘.‘"t/ 2-Eip) 

where h l= distance of the compression chord from the centroid 

of the floor beam cross member 

EIs = lateral flexural stiffness of the side of the bridge 

s = width of the bridge 

k = the ratio of the total lateral movement of the top 

flange of a through bridge (sustained by a unit 

horizontal force applied at the top of the bridge) 

to the magnitude of the lateral movement of the top 

flange that results from the deformations of the 

floor beam. 

k vfik = 2(ht/h), 

distributed load 	) = (Ma) ( ear  / 4 .1--  Erra..S ) • 
The buckling loads corresponding to modes (a) and (b) are equal 

when k = 144a 
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DEFORMATIONS. 

(a) light through bridges 

The value of the rotation of the I beam at midspan, in the plane 

of the cross section, be calculated from the equation 

10-7[ - ((P„ Poi, I 6.) Pin 

where P 	= live load applied to one I beam 

PDL = half the dead weight of the bridge. 

A line of first_yield be found by using the forces of the deformed 

shqpe 

= 1 ,7g 	[ 	- 7 5 /e - (Arorve 

where z is measured along the bridge, from midspan. The load corresponding 

to first yield be taken as the load carrying capacity of the bridge. 

(b) heavy through bridges. 

The deformations of this type of bridge be taken as small. 

The load carrying capacity be taken as the buckling load or the 

load to cause first yield, which ever is smaller. 

LATERAL AND TORSIONAL LOADINGS 

(a) light through bridges. 

Lateral loadings (including wind) and loadings applied to the 

deck be considered as affecting the rotational and lateral deformations 

of the buckling mode of the bridge. A description of their effects is 

given in Chapter Four of this thesis. 

(b) heavy through bridges. 

Lateral loadings and loadings.applied to the deck be considered as 

not affecting the rotational and lateral deformations of the buckling mode 

of the bridge. However, the strains induced by these loadings should be 

linearly added to the strains induced by the vertical loadings. 

(see Appendix H of this thesis) . 
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FORCES PRESENT AS THE BRIDGES DEFORM. 

(a) light through bridges. 

Floor beams should be designed to resist the vertical loading, 

together with the forces induced by the torsional deformation of the 

bridge. (The torsional moment at the I beam-floor junction is less 

than the moment given by the equation 

ty‘ 4Eiv, 01/6 	0.2 Etp /A ) 

Web stiffness should be proportioned to have greater stiffness 

than those used' for an I beam with deformations in the plane of the web 

only. No allowance should be made for increases in buckling loads as a 

result of the stiffness effects. 

(b) heavy through bridges. 

Vertical members designed to resist the bending of the I beams, 

together with the forces induced by the lateral bending of the top flange. 

(To allow for the lateral bending, the vertical members should be 

designed to resist, by a cantilever action, a lateral force F equal 

to 1% axial load in the top flange). 

WORKING LOADS. 

(a) light through bridges. 

Working load = load to cause. first yield (calculated by 

considering the deformations of the structure) 

(b) heavy through bridge. 

Working load = load to cause first yield; (assuming the 

structure does not deform) or 

buckling load, which ever is least. 
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CHAPTER SIX 

' TORSION 

6.1 	Introduction 

It has been shown in the previous chapters that after a 

clear picture of the deformations of the structure is established, 

the forces to sustain theserdeformations can be found easily. 

However, in the case of twisted members with open or closed 

cross section, other than circular or elliptical, no clear 

picture of the deformations has been presented. An original 

contribution to this subject is now presented to fill this 

. gap in our understanding of torsion problems. For coherence, 

the early work 4 first summarized. 

The method is to measure and describe the movement 

of a line on the twisted member. Coulomb (Ref. 4) used 

this approach and obtained the good approximation for a 

twisted circular bar that plane sections perpendicular to the 

longitudinal axis of the bar remained plane and that radii 

in those cross sections remained straight. Later, Navier 

used the same assumptions to describe the geometric 

deformations within a bar of non circular cross-section 

and poor estimates of the torsional stiffness of the 

member were obtained. Improving estimates of the 

deformations within twisted bars of cross-section other 

than circular could not be found, anl a more mathematical 

approach was developed by St. Venant. (Ref. 57). 

St. Venant noted that for a non-circular bar the 

cross section did not remain plane and movements,or warping, 

out of the plane perpendicular to the longitudinal axis, 

were present. In the St. Venant approach, this warping 

is specified by a warping function, I) , and the equations 
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of statical equilibrium for the forces in the longitudinal direction 

acting on an element, that is 

0 (P 	 f31 1  = 0, 

and the boundary conditions that no external forces act on the 

lateral surface of the bar, that is 

Co iph 	) /44 - bco + 	- 0 

are satisfied. In these equations x, y are the rectangular 

coordinates in the plane of the undeformed cross-section and 

s defines the arc length along the boundary. These two equations )  

(6.1), (6.2) are of the same form as the differential equations 

describing the purely membrane effects of a thin membrane and 

this analogy has been used, together with associated soap film 

measurements, as a means of obtaining a solution to the torsion 

problem. However, as happens with analogies,a true picture of 

the behaviour of the actual problem is often lost, and a 

fundamental understanding of the overall geometrical and 

statical action is not obtained. 

In this chapter the torsional behaviour of some 

structural sections is examined. The overall deformations 

are measured and an an analysis using these measurements 

(similar to the approach of Coloumb) is used. With this 

approach it is possible to establish a picture of the 

deformations, and as a re'pult an original, simple and basic 

view of the torsion problem is obtained. 

6.2.1 	First Simple Model 

The first step in the inverse approach as outlined 

in Chapter One is to load the strip with four balanced forces 

and measure the surface shape of the strip. The surfaces are 

found to deform (using the Ligtenberg moire technique ) , Ref. 8) 

such that lines of constant slope in the x, z directions are 

straight to a first approximation, and are related by 

(6.1) 

(6. 2) 
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Fig. 6.1 Lines  of constant slope on the surface of a twisted strip. 
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Fig. 6.3b The mould, made from twisted strips, 

used in the manufacture of half deformed elements 1.4 
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Fig. 6.3a A deformed element. 
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71w/Dx=kz 	 (6.3) 

and 	w/a z = kx, 	 ( 6 . 4) 

where w is the displacement parallel to the y axis as shown in 

Fig. 6.1. The closeness of these two relationships to the actual 

deformations can be seen by placing a straight edge perpendicular 

and parallel to the longitudinal axis of the twisted strip. When 

the straight edge is placed on the surface of the strip and is 

rotated it can be seen that the surface shape is anticlastic; 

that is, the principal curvatures are opposite in sign. An 

estimate of the relative magnitudes of these curvatures is 

obtained as follows. * Choose the axis of reference in the 

centre of the strip. Integrate equations (6.3), (6.4), originally 

obtained from the form of the moire fringe patterns. The shape 

is then given by 

= kx z. 

Rotate the reference axe i through forty five degrees to new axes 

x ' z and the surface is then given by 

2 
W = *k (x - z ) 

(6.5) 

(6.6) 

t , 
and thus the two prinicpal curvatures -ow/ -6xii" and -Ow/Z z;'" are 

equal in magnitude but opposite in sign. The surface described by 

the equation (6.6) will be called a simple anticlastic surface. 

The internal displacements are the next to be investigated. 

Observations of clear rubber models indicate that lines originally 

perpendicular to the midplane of the strip remain straight after 

deformation, but that the cross-section defined by these lines 
_ 

warp's about the mid plane, as shown in Fig. 6.2. 

The magnitude Of the curvatures can also be obtained directly 

from the Ligtenbei-g photographs, and a Mohr circle of curvatures. 
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Measured Sarface deforMations 	First approximation to the 

surface deformations 

Fig. 6.2 Observations and Approximations to the Surface 

Deformations of a Twisted Strip. 

Plots of Mohr circles of strains, using the estimate for the 

surface displacements equation (6.6) and the estimate of straight lines 

through the model remaining straight after deformation -, indicate that a 

rectangular element with sides parallel to the sides of the strip, 

deforms in a shearing manner0 Various combinations of shearing 

deformations can -be . triedi-but.it - is -found that ...onlyelements with 

pure shearing deformations (Fig. 6.3) fit together and define - a 

continuous surface.* 

Thus, the twist of the strip can be obtained from the shape 

of the element, • From Fig..6.3a the twist in the xz plane K, 91, is 

found fromthe twist of the sides of the element. Then 

K =d 
xz = dO 	= 	1,  

Yw 
(6.7) 

* A simple means of performing the three dimensional integration 

required to fit the elements together, while still - maintaining contact 
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The half elements are stood upright 'with the midplanes resting on a flat surface 
representing the initial shape of the bar (Fig. 6.4a). Elements on the face, of width b, are 
rotated in the xy plane, relative to adjacent elements having the same z, (Fig. 6.4b), by an 
amount dO xy =Ys  (dillt) , where y s  is the surface shear strain and t is the thickness 
of the plane, each element is then translated in the xz plane (Fig. 6.4b) to make all points 
on the face of width b alsmot continuous. Each element is then rotated in the yz plane, 
relative to adjacent elements with constant x (Fig. 6.4c), an amount dO z  = ys  (dx/f t),to 
remove the steps in the surface. It can be seen from the result of ti;is integration (i.e. 
Fig.6.4c) that the functional form satisfies the geometric conditions of the simple anti-
elastic surface, with all cross sections parallel to the sides of the strip being warped into 
a simple anticlastic surface. Thus the twisted strip itself is the same shape as the element. 

Fig. 6.4 
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with the problem, is obtained by making several of-these deformed 

elements from plaster of paris (Fig. 6.3a and Fig. 6.3b) and 

fitting them together mechanically and is shown in Fig. 6 .4. 

Hialf the element, representing the element from the 

midplane to the top surface of the strip is easily made, as each 

surface of the element is itself an anticlastic surface under the 

geometric conditions of Fig. 603a. The mould is made by twisting 

three metal strips of length it, width d (= dx), to form three 

sides which are then held at each end and the surface of the fourth 

side is smoothed as the plaster of paris dries. (Fig. 6.3h). 

where 	s is the surface shear strain and t is the thickness of the 

strip. 

The stresses which will sustain the deformed elements as 

shown in Fig. 6.3a are found from the stress-strain relationship 

T= G , and by considering the overall equilibrium of the strip 

the forces needed to sustain the specified deformations are found. 

The only external forces required are two twisting moments, Fig.6.5, 

the magnitudes of which are given by the equations 

M = ('es x it xi-) x (2t/3) x b =(G t3b/6)(dOxy/dZ) 2  (6.8) 

and 

M 	(tz  x 	x*) x (2t/3) x = (G t31/6)(d9yiax) 
and the twisting moments per unit length in each case is equal. 

This set of twisting moments must be statically equivalent to the 

applied force system, with 

Mxy/b = Myz/V= 	 (6.9) 

and thus the end torque Fb is given by 

Fb 	= Gt3b/3 (diaxy/dZ)  2 

-the well knowti relationship for thin rectangular sections. 

Fig. 6.5 Forces necessary to sustain the twisted strip. 
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In problems of torsion the torque is often applied by a series 

of couples at each end, with no twisting moments on the longitudinal 

sides of the section. This problem is considered in the next section. 

6.2.2 Improvements in the Model for the Torsion of a Thin Rectangular 
Strip. 

When a couple is applied at each end of a thin strip, and the 

surface geometry is measured, the •lines of constant slope are again, to 

a good first estimate, straight. Measurements of the displacements of 

lines on the surface near the edges )  indicates that these lines deform 

according to Fig. 6.2(a) and Fig. 6.6. 

Fig. 6.6. Deformations of square elements on the surface of 

a twisted strip (see also Fig. 6.2a) 

A geometric model of this behaviour is that away from the edges 

the deformed elements are the same as in the previous problem, but that 

near the edges the shear strains taper off from approximately one half 

thickness of the bar away from the edge and are zero at the edge. For 

this geometric model, the relative rotation of each cross section is 

similar to that used in the previous problem and thus the geometry is 

specified by the relationships dekl /dz =*?fs/it, dert /dz = 	s/--t 

As a means of producing the necessary change of shape of the elements 

near the edges, a second set of stresses, as shown in Fig. 6.7 must 

be -applied, in a manner satisfying statical equilibrium of the elements 

in the z direction, that is 

3 tti, / ax, (6.10) 
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Oa* 

Fig. 6.7. Deformations of the bar, and the forces 

necessary to sustain these deformations. 

Overall statical equilibrium then gives the end torque as 

T 	Txz  y dx dy 	yz x dx dy 

and can be simplified (Ref. 57) to 

T = 2 it. dx dtr, 	
( 6.11) 

when the integration is performed over the complete cross section, 

and the boundary conditions on shear stress are imposed. 

This second set of stresses does not alter the overall 

geometry significantly, as the strains are localized near the 

corners, and thus the simple anticlastic surface shape of the 

surface geometry, and the shape given by Fig. 6.6 for the 

deformed shape through the thickness is sufficient to describe 

the geometric behaviour. The warped shape of the cross-section 

is again close to a simple anticlastic surface (Fig. 602a). 

A reasonable estimate of the value of the integral 

•c j TR, y dx dy is obtained from the previous problem and 

iT = F.IT3a  y dx dy = (G t3b/6) (dexy/dz) 	(6.12) 

The end torque twist relationship is again given by 

T = (G t3b/3) dkz/dz 
(6.13) 



This model is now extended to describe the deformations within a 

split conduit, and the torsional stiffness of the conduit is estimated. 

6.3 	Torsion of a Split Conduit. 

A means of describing the deformations of the split conduit, 

twisted in a manner such that the warping of the cross section is not 

restrained, is obtained by choosing an element similar in shape to the 

flat strip, but taking into account the curved nature of the surface 

(Fig. M. 
j k6  

0,1 
Section A—A 

4444,m4 
stamok 

itectorrhot 46*. tat 

Fig. 6.8 Shear deformations of a split conduit* 

Then, by specifying the deformed shape such that lines originally 

perpendicular to the midplane of the conduit remain straight after 

deformation, the shear strains are defined a are given by the 

• eql4ation 

= (r - R) d9xy/dz 2 	(6.14) 

where is the shear strain at any radius r, 

r is the radius of the element, 

and 	R is the average radius of the ring. 

As in the previous examples, the elements fit together, to a first 

approximation. The stress-strain relationships are then used to define 

the stresses, and the edge stresses are introduced in a similar manner 

to the previous example. The only forte necessary to sustain the 

deformed shape is an end torque and is given approximately by the 

expression 

kkki 

T= 	(artdr) r 
	 (6.15) 

11-ib 
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where the reference point used is the geometric centre of the ring, and 

the effect of the edge stresses is neFlected (Fig. 6.9). The equation 

(6.15) can be simplified using equation (6.14) and the load deformation 

relationship T = G , and becomes 

= G(27r R t3/3) (dkl /dz)  (6.16)  . 

once again the well known relationship (Ref. 57), 

Fig. 6.9. Reference Point, and shear stresses. 

Similar results can be obtained for any thin strip, by specifying 

the geometric conditions that the midplane remains twisted only, 

straight lines originally perpendicular to the midplane remain 

.straight after deformation, and an element of the same shape as 

the strip deforms in a condition of shearing strain. 

6.4  Torsion of Rectangular Bars. 

6.4.1. Solid Rectangular Bars. 

This foregoing model for the thin strip can be extended to 

describe the behaviour of rectangular bars of any proportions. 

From the previous model it was seen that there were two distinct 

strain distributions, only one of which contributed to the end 

rotation, as the other was localized at the edges. However, as 

the difference between side dimensions of the rectangular section 

decreases, the contribUtion to the rotation of the both shear strain 
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distributions must be included in order to obtain a model Which describes 

rectangular bars more generally. 

In the improved model the twist of the section dO es4 /dz is 

determined from the addition of the twist resulting from the shear strain 

distribution in the xz plane, that is de /dzto the' shear strain 

distribution in the yz plane,that is de °  /dz (Fig. 6.10). The total 

twist is then given by the equation 

(1,0,414 = d,9,61143 + ote;idli  

 

width b 

Fig. 6.10. Shear strains, and resulting rotations, for a 

rectangular bar. (Also see Fig. 6012&) 

It was also seen from the previous model that a general result 

for any bar under torsion that was sustained by two orthogonal stress 

distributions, subject to the boundary conditions that the lateral 

surfaces are free from external forces, is that these two distributions 

contribute equally to the total torque. Then in the rectangular bar 

a slight overestimate of_the torque twist properties can be obtained by 

linearizing the two separate stress distributions and superimposing 

them. (Fig. 6.11). 
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Fig. 6.11. Linearization of the Two Stress Distributions. 

Under this simplification the torque is given by the equation 

Torque = G ii /6 (dydz) + Gb t/6 (d 9 /az) 	( 6. 17 ) 

and thus (d OR3  /dz)t 	= (d0 /d z )b). 
	

(6.18) 

The rotation of one end relative to the other is defined by 

dee4,4 /dz = dydz (1 + (tt/b1 ) ), , 	(6.19) 

with the warped ci.oss-section consisting of two superimposed 

anticlastic surfaces. 

Under these conditions the torque twist relationship at 

the end is 

T = Gt
3
b/3  /di ) / ( 1 + (tIAL ) ) . 
 

(6.20) 

A table of values (Table 6.1) shows that the mathematical model, as 

developed by St. Venant (Ref. 57), and this model derived from 

geometric functional form, agree closely, with the greatest difference 

of 15%, at b/t =1.0. 
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b/t 	1.0 	200 	3.0 	4.0 	5.0 	10.0 

1/3 (li(t'/101- ) ) 	.167 	.267 	.30 	.314 	.32 	.33 	.333 

St. Venant 	.1406 	.229 	.263 	.281 	.291 	.312 	.333 

Table 6.1. Comparisons of torsional stiffness between 

St. Venant expression and the solution 6.20. 

The reason for the difference is seen when an examination is made 

of the specified deformations. The warping of the cross section is taken 

as being separable into two distinct simple anticlastic surfaces (Fig. 6.12) 

corresponding to the two sets of shear strains. The super-position of 

these warped cross sections then determine a final warped cross section, 

as shown in Fig. 6.12. As the ratio of the width of the bar to the 

thickness of the bar is decreased the surface resulting from the super- 

position of the two anticlastic surfaces tends towards a plane section. 

In the limit, when the width of the bar is equal to its thickness, the 

geometric model specifies that plane sections remain plane. Navier 

assumed that when a square bar was twisted, plane sections remained 

plane but he also used a strain distribution which increased linearly 

with the distance from the centroid of the bar. In the model proposed 

in this thesis, the strain distributions increase linearly with the 

perpendicular distance from one principal axis of bar. Measurements 

indicate that this specification is not a good estimation near the 

corners of the square. Therefore the next step in the successive 

improvement of the model is to use a better estimate of the geometric 

functional form to satisfy the measured geometry near corners (Fig. 6.6) 

and from this new form to recalculate the statical actions. However, 

as a reasonable estimate of the behaviour has been obtained, the process 

is terminated at this stage. 
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deformed 
element 

---AtL 0 ,91 fdi) 

deformed 
element 

Cct9xiilet-3 -  49,4/d; ) 

Fig. 6012a0 Combinations of the orthogonal strain distributions for a rectangular 
section width b = 2, thickness t = 10 (A valuable comparison is 
obtained by comparing this shape with the actual deformed shape of 
a rectangular bar b =2, t = 0.25, in Fig. 602a, and a square bar 
in Fig. 6012b). 
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Fig. 6.12b. Superposition of the shear 
distributions for a square 
bar. 
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6.4.2 Hollow Rectangular Bars 

A simple model describing the behaviour of hollow rectangular 

bars is obtained as an extension of the previous model for the solid 

bar. 

Measurements of the surface shape indicate that the simple 

anticlastic surface, with equal but opposite siorincipal curvatures, 

is again a reasonable approximation. Also, lines on the surface of 

the bars deform in a manner which is similar to the solid rectangular 

bar of the same external dimensions. A good first model is obtained 

by approximating the form of the deformations of the hallow bar as 

being similar to the deformations of the solid bar. 

Then, the twist and shear strains are linked, as before, by 

the equations 

d9Wdz 

d91  

 

„ 
tls/t-b ,  

(6.21) 

and 
	

d°end/dz  = 	dz + dWdz 

Fig. 6.13 Twisting Deformations of a Hollow Rectangular Bar. 

The forces necessary to sustain the deformed shape are easily found 

For the hollow thin section of thickness X, (IA is small) the shear 

stresses necessary to sustain the shapes shown in Fig. 6.13 are 

approximately constant. Therefore, the total torque is found from 

the contributions of the two shear distributions and 
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T = ("ri  Mb) t + ('mt) b. 	(6.22) 

When we assume that the two contributions to the torque are equal (as 

was the case with the solid rectangular bar), then the two shear 

stresses ft i  and ;are eqUal. Substituting the load deformation 

relationship 't = GI( into equation (6.21) we then obtain the 

relationship between the two contributions to the total end rotation 

/dz, and 

t(dexy/dz) = b(d9 dz) 	

(6.23) 

deend/dz 	= (1 + t/b)(d9v/dz) 

The total torque is then 

T = 2' Tbt 

= G Mbt (d61.,/dz) 

and from equation (6.23) 

T = G Tbt:L  (dkolidz) /(1 + t/b) . 	(6.24) 

This approximation is close to measured results, and is identical with 

the usual approximation obtained by using a shear flow analysis (Ref. 57). 

The advantage of the foregoing method is that it provides a visual picture 

of the deformations. 

6.5 	Large Torsion of Sections: All stresses elastic. 

6.5.1 Introduction 

A further understanding of the geometric deformations of a twisted 

strip is obtained by examining the deformed member when large twists are 

applied. 

When large twists are applied to an open cross section member, 

and the ends of the member are unrestrained against warping, the member 
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shortens and the longitudinal fibres that were straight before the 

member was twisted distort into helices. An axis common to these 

helices can be found, and this axis has been defined by Ashwell 

(Ref. 58) as the distortion axis. 

The properties of this axis can be seen by examining the 

behaviour of a circUlar section. 

6 9 502 The Circular Section. 

The shortening effect was first observed in 1807 by Thomas 

Young (Ref. 57), who noted that when circular bars were twisted, the 

applied torque was balanced mainly by shear stresses, but that an 

additional resistance to torque, proportional to the cube of the 

angle of twist, was furnished by the longitudinal stresses in the 

fibres, whith were assumed to bend into helices. 

Fig. 6.14. Twisting Deformations of a Circular Bar. 

The geometric mechanism is seen in Fig. 6.14. Plane sections, 

originally perpendicular to the longitudinal axis 00'are assumed to 

remain plane, while the cross sections rotate relative to each other. 

The axis 00' is assumed to remain straight, but allowed to shorten. 



—171— 

The longitudinal strains, measured relative to this axis 00' are given - ' 

by the equation 

Z c 0 

7. 
= 	Crot9/oC16) — 	069/64)4  + 	(6.25) 

where Ebo l and 6 1  are the longitudinal strains at 0, and at z 

respectively. When the value of (1- 0/dz) is small, a good approximation 

for equation (6.25) is 

Ex — Coo( 
	 ottvot-6)2. 

Ite stresses at any distance from 00' are found from equation 

(6.25) and the stress strain relationship, f . = E 	, where E is Young's 

modulus. In this formulation, the resistance tolaiteral contraction 

is assumed to be small. This approximation is reasonable when the 

cross section is open or closed and hollow. For a solid section the 

differential lateral contractions have a more pronounced effect, but 

this effect is not considered in this thesis. 

Integration of the required stress pattern determines the 

forces necessary to sustain the deformed shape. As no resultant 

axial force is applied, the constant E;,.: is given by the equation 

C  00 = 	de/dZ 	 2 
 (6.26) 

where I p  is the polar second moment of area and A is the area of the 

bar. The total torque resisted by the section is given by the equation 

T = GJ(ddYclz) + 11-(Wdz) 2  E(r2 	p/a)r dA sin(' 
	 (6.28) 

and simplifies to 

T = GJ(d61/dz) +*(dIrdz) 3  E (Hp  — II2D/A) 	(6.29) 

when Hp = (r4 dA 
A 

and sinf= r dit/dz 



point z on the section. 

Fig. 6.15, Twisting Deformations of an Angle Section. 
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6.5.3 Sectiorls Built up from Flat Strips. 

Buckley (Ref. 59) extended the above analysis to describe the 

behaviour of flat strips. Weber (Ref. 60) added a further extension 

for the description of doubly
, 
simmetric sections. Bixth authors take 

the centrDidal axis as axis of reference and this line is assumed to 

remain straight. 

However, for singly symmetric sections the best choice of 

an axis of reference is more difficult. Weber (Ref. 60), 

CullimOre (Ref. 61), Ashwell (Ref. '62), and Gregory. (Ref. 63 and 64) 
/ 

have proposedvarious models. These Model are : examined using an 

equal sided angle section as an example 

. Weber assumed that there existed one longitudinal line which 

remained straight, relative to the deformed member, (Fig. 6.15). 

When the lines AS, A'S, BS, B'S', are taken as remaining straight, 

the longitudinal strains can be found. Denoting the co-ordinates 

of the line WW' by x, y, the longitudinal strains measured relative 

to the line WW' are given by 

1. 

= - (-cgot e/dli 
(6.30) 

where rw is the perpendicular distance from the line WW' to the 
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In the Weber model, the position of the straight line WW' is 

moved until a point is found for which no bending moments and axial 

force need be applied to the section to sustain the deformed shape. 

Cullimore (Ref. 61) used the equation (6.30), and the co-

ordinates x, y were moved until a potential energy integral was 

minimised. This minimization can be shown to be equivalent to 

satisfying the corresponding equations of statics (Ref. 65). The 

equations of statics satisfied by Cullimore are the conditions of 

zero bending moments. 

Ashwell (Ref. 62) observed the behaviour of a twisted strip 

arranged as a cantilever, and noticed that points on the free end 

of the cantilever moved laterally and vertically. Measurements were 

made of these deflections, and described in terms of the longitudinal 

fibres twisting into a helices with a common axis. Ashwell considered 

much larger displacements than previous authors and showed that the 

magnitude of the twist and the ratio of the bending stiffness to 

torsional stiffness affect the position of the distortion axis. 

Ashwell arrives at this conclusion after carrying out an analysis 

which uses as reference axis the deformed centroidal axis. The 

position of the straight distortion axis is then determined as a 

calculated distance from the centroidal axis. 

Gregory (Ref. 63 and 64) concluded that longitudinal lines 

must bend relative to each other when the section is twisted. The 

axis of reference was taken at the corner of the legs, (Fig. 6.15), 

and, to allow for the bending of the longitudinal lines, the longitudinal 

strains were specified by the equation 

1 	ct&ict.o z 	6t.1 z  
3 z  

(6.31) 

where d is a constant to be determined. The constants s„, and d were 

again determined from the overall statical condition that neither axial 

forces nor bending moments were applied. 
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Gregory wrongly criticizes Weber, Cullimore, and Ashwell 

for not including this bending strain in their mathematical models. 

He ,did not realize that the bending of a member could be combined 

with twist about some assumed axis to produce twist (without 

bending) about a different axis. Gregory was mistaken, and the 

results obtained by Weber, Cullimore, Ashwell and Gregory are all 

identical, as can be seen by the following example, (also Ref. 66 

aria 67). 

Consider the angle, (Fig. 6.15) wilt the axis 00' defining 

the distortion axis. The longitudinal strains at the points z, s 

with the axis 00' as reference are 

 

d,19 at02.  

erA cte AL01. 
(6,32) 

and 655 1  — Eoci l  

(6.33) 

The difference between the strain at point z, and the 

strain at point s, is obtained from the difference of equations 

(6.32), (6.33) and the use of the cosine rule in triangle osz. 

Then 

Ez  
, 

tr, OtOldi) 
1; /I; 147)  (49M13- . ( 6.34) 

Equation (6.34) is similar to Equation (6.31),when the 

constant d is evaluated, and Gregory's method therefore gives 

similar results to those obtained by Weber. 

6.5.4 The Axis of Distortion and the Shear Centre 

The axis of distortion is defined by Ashwell (Ref. 58) 

as the axis which co-incides with the longitudinal fibre, inside 

or outside the section, which does not distort into a helix, but 

remains straight when the bar is twisted. This axis should not 

be confused with the axis of displacement (as defined by Ashwell) 

or the. shear. centre axis.. The_axis_of displacement of a prismatic 

elastic cantilever, built in at a support at one end and twisted 
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by a torque at the other, is the axis about which the cross sections of 

the cantilever rotate in their planes relatively to the support; 

while the shear centre axis of a prismatic elastic cantilever, built in 

at a support at one end and bent by a load at the other, is the axis 

through which the load must be applied in order that the cross sections 

do not rotate. 

As has been shown previously, the axis of distortion for a twisted 

section with warping of the cross section completely unrestrained, is 

found by considering the effect of non linear geometric deformations. 

However,the axis of displacement and the shear centre axis are 

based on essentially linear ideas. Therefore the existence of a reciprocity 

is possible. A reciprocity does exist when the linear terms dominate, and 

is outlined by the well known Maxwell Reciprocal Theorem (Biezeno and 

Grammel Ref. 44), i.e0 if the cantilever is loaded through the shear 

centre the cross section does not rotate or if the cantilever is twisted 

there exists an axis about which the cross sections of the cantilever 

rotate in their planesrelative to the support (i.e. does not move). 

This reciprocity has been the subject of investigations for many authors 

including Duncan, Ellis, and Scrutton (Ref. 68), Lockwook Taylor (Ref.69), 

Hoff (Ref. 70) and Ashwell (Ref. 58). It is not proposed to detail their 

work, but a short tabulation of the similarities which give rise to the 

reciprocity is given to outline the basic ideas. * 

* It would appear that there exists a linear differential equation which 

describes the behaviour of an open section which is twisted and bent. 

This differential equation, and associated boundary conditions is 

possibly self adjoint, as the reciprocity is only another way of showing 

this condition. At present however, the nature of this differential 

equation appears illusive. 
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Shear strains, and hence stresses 
calculated by assuming that plane 
sections originally perpendicular 
to the longitudinal axis remain 

plane.' 

Warping and hence longitudinal 
stresses calculated by 
assuming lines originally 
perpendicular to longitudinal 
axis remain straight. 

For a channel 

Assume a point exists such that 
when loaded through the point, 
the section goes straight down. 

Assume a point exists which 
does not move. Draw the 
relative warping between 
the ends. 

 

change of warping 
per unit length 

/ 2 oc 

curv#ure 

cc e d29/dz2 

     

rotating about A , Point of zero 
movement moved 
from A to E 

4 
N . =421=(d29/dz- )1 sds + e(d2e/dz2 )I 

4 
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Clearly no twisted section satisfies either the conditions of 

completely unrestrained warping (i.e. giving rise to an axis of 

distortion) or of complete restraint of warping at one end (i.e. giving 

rise to an axis of displacement). Thus, when any section is twisted, 

it will dd.Pend on the relative magnitudes of the non linear geometric 

deformations and the manner in which the warping changes, as to the 

way in which the section deforms. Similarly, when any section is bent, 

the non linear geometric deformations will, determine the way in which 

the section deforms. Consider the behaviour Of an angle section and 

a channel section, both arranged as built in aantilevers. 

The twisted angle Member deforms so that lines perpendicular 

. to the lomgitudinal axis remain straight. Hence, as only one plane 

is defined by these two lines, little primary warping exists; 

(there is a small amount of warping across the thickness of the leg). 

Therefore, the angle member arranged as &built in cantilever, and 

twisted, deforms so that non-linear shortenings are important and 

an axis of distortion is soon defined. This axis is not in the same 

position as the shear centre as the linearity has been lost, and therefore 

reciprocity does not hold. 

The twisted channel section deforms with a large primary 

warping. When arranged as a built in cantilever the resistance of 

this warping by the stipport gives rise to comparatively large warping 

stresses, compared to the stresses arising fromi,the longitudinal 

shortening stresses. Therefore the channel section deforms so that 

an axis of displacement is defined. Since the linear twisting 

deformations are dominant, then the reciprocal theorem is a good 

estimate of the behaviour, and hence the shear centre is in the 

same popition as the axis of displacement. 

From the tabulation it is seen tha -4 the shear centre and 

the axis of distortion are section properties. However, the nature 

of the warping restraint is important' ' in determining the relative 

importance of the linear and non linear terms. The general influence 
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of boundary conditions, and of warping restraints introduced along the 

member, is at present unanswered. However, when warping restraints 

are introduced along the member, the shear centre and axis of distortion 

move. For example, when the length of the split of a split conduit is 

gradually decreased (by welding adjacent sides of the split together) 

the axis of distortion and shear centre both move towards the centroid 

of the section; when the split is covered in, and a closed hollow 

circular section is obtained the centroid coincides with the shear 

centre and the axis of distortion. 

6.6 	Large Torsion of Sections, with Plastic stresses. 

6.6.1 Introduction 

The previous section illustrates that the distortion axis 

is an important sectional property for twisted members. 

To find the position of the distortion axis for a large 

range of sections, the author has found that it is unnecessary 

to solve algebraically the conditions of no axial load and no 

applied bending moment, as a 4rticular symmetry about the 

distortion axis can be used. 

Consider slain the angle section. The longitudinal 

stresses resulting from the longitudinal strain pattern have 

no stress resultants0 by taking moments about each leg in turn, 

it is seen that the resaltant moments on each leg must be zero. 

For zero resultant inoment on each leg, there must exist points of 

no longitudinal stress hor strain. These points of longitudinal 

strain are on a circle, of radius R, as found from equation (6.32) 

by equating Ez  to zero, and the radius is then given by the 

equation 

R =1E-6 t  /(0/dz) 
	 (6.35) 

By the particular sYtmetry of the angle section, these points of 

zero longitudinal strain must be equally spaced about the 

perpendicular bisectors of the leg, and hence the position of the 
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distortion axis is at the junction of the two perpendicular bisectors 

of the legs of the angle. Similarly for the equal sided channel, the 

distortion axis is at the junction of the perpendicular bisectors of 

the sides. 

The approach developed above is useful to describe the 

behaviour of an open cross se6tion member once the material yields. 

' The yielding is an interaction between the longitudinal strains 

and the St. Venant torsional shear strains. Certain approximations are 

made in order to obtain a quick and reasonable formulation of the problem. 

The approximation is made that the stress strain relationship of combined 

compression and shear is similar to the stress strain relationship in 

combined tension and shear. The approximation is also made that under 

conditions of full plasticity the average of the longutidinal stresses 

across the thickness of the section is constant, in all parts of the 

member and is independant of the longitudinal or shearing strains. * 

* The following comment was contributed by the Reviewer of the author's 

paper "The Axis of Distortion, accepted for publication by the International 

Journal of Mechanical Sciences." 

"The yielding is due to both the longitudinal stresses 4 and the 

St. Venant - type shear stresses g. Let a small increment of twist produce, 

at a point in the member, increments of longitudinal strain g'6. and shear 

strain 	. Then, by assuming all stresses zero expect f .z  and qr, it can 

be deduced from the Tresca yield condition and the Levy4lises flow rule, that 

= 22_111.f5_1_ 

q s6z-z- 	14. Ce 
where 014, is the shear stress to produce yield. As the twist increases into 

the range of plastic behaviour, it can be expected that the strains 

(which are proportional to the square of the twist) will greatly exceed the 

strains 	(which are proportional to the twist). Thus, except close to the 

positions of zero Ez 	, 

5  2r 
and hence 	

Pcvp 
where the sign is the same as the local sign of 	". 





a elastic 

b elastic plastic 

c plastic 

. locus of points 
of zero longitudinal strain 

longitudinal stresses longitudinal strains 
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Further, the geometric approximations made are that the value of 

the longitudinal shortening of the member (C oo' ).and the warping of the 

member measured relative to the plane perpendicular to the distortion 

axis (rd() /dz) are small when,cOmamd with unity. 

#i'om experimental observations, it appears that over a lrge 

range of twist., longitudinal lines drawn on the surface of open cross 

section members deform into helices. In Fig0(6016), for example 

the permanant twist deformation of an aluminium angle section is 

shown. 

When the existence of a distortion axis is_ppitulated,, 

the points of zero strain must be.equally'spaced about the 

perpendicular bis4tors of the legs of the angle as this statement 

is consistent 4th a distribution of longitudinal stresses 

satisfying the Conditions.of zero-bending moment and zero axial 

force (Fig. 6017)0 The_positions , of the points of no longitudinal 

strain are shown in Fig. 6.17 for the assumed plastic stress 

, distribution0 

Fig, 6.17. Longitudinal strains. and Stresses, for a Twisted 
angle section. 
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The mathematical model outlined above indicates that the 

axis of distortion remains in the same position relative to the section 

for all values of twist through the elastic range and until full 

plasticity is developed. However, for very large angles of twist, 

it is found from measurement that the value of the angle between the 

legs of the angle member is not constant. Nevertheless, the axis of 

distortion for the new shape is at the junction of the perpendicular 

bisectors of the sides, as can be seen in Fig. 62.6 where the white 

string indicates the measured positions of the axis of distortion. 

When the position of the axis of distortion can be 

found from the symmetry of the longitudinal strains, the position 

of this axis remains constant, as the section is twisted. The 

sections satisfying this condition include the equal-sided channel, 

the I section a sector of a circle section, and the Z section. For 

other sections, the position of the axis of distortion as determined 

when all strains are elastic differs from the position of the axis of 

distortion determined when full plasticity is assumed. To the author's 

knowledge, the estimation of the position of a fully plastic distortion 

axis has not previously been established. 

6.6.2 The Axis of Distortion of the Channel Section, 

height 2a, flange width b. 

Ashwell (Ref. 62) gives the position of the axis of 

distortion as in Fig. 6.18a and the particular case of a = b = 1.0 

is considered. The position of the axis of distortion under conditions 

of full plasticity is found by noting first the form of the longitudinal 

strains. The idealized plateau type plastic longitudinal stress system 

mentioned previously and based on the pattern of the longitudinal strain 

system is used, but the exact positions of the points of zero stress are 

not specified. 

When the statical conditions of no bending moments, and 

no axial force are satisfied, that is when 
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Fig. 6.18a. 
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distribution 	distribution 

Fig. 6.18b. 
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and 

(6.36) 

the co-ordinates of these points of zero longitudinal stress, and hence 

strain can be found. If a plausible distribution has been established 

the points of zero longitudinal strain lie on a circle. The locus of 

the centre of this circle is a straight line, and thet.s line will be 

called the axis of plastic distortion, to distinguish it from the axis 

of distortion which is derived from considerations of elaeticity. 

For the channel section, with a = b = 1, the position 

of the axis of distortion axis (elastic) is at a distance of 0.8 form 

the vertical side. The form of the strain distribution (Fig. 6.18a) 

indicates an approximate stress distribution and the equations (6.36) 

are used to find the points of zero stress. The points of zero 

longitudinal strain and hence the position of the axis of plastic 

distortion is then determined. For this channel section the position 

of the axis of plastic distortion is at a distance 0.707 from the 

vertical side. Thus there exists a longitudinal line, defined in 

terms of the section properties, which remains straight after the 

section has been twisted into the fully-plastic range. (Fig. 6.18c) 0  

6.6.3 The 	Avis of Distortion of the T-section, flange 2a, 

stem b. 

. From Ashwell's table, (Ref. 62) for a T-section with 

a = 0.5, b = 1.0 the position of the axis of distortion is at a 

distance 0.35 along the stem (Fig. 6.18b), while the position of the 

axis of plastic distortion is at a distance 0.264 along the stem. 

Other sections examined included unequal sided channel 

and Z sections, and all confirmed the existence of a plastic distortion 

axis. The co-ordinates of the position of this Axis were calculated 

(see also Fig. 6.18c 
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from the mathematical model developed in 	, 6.6.2 and were compared 

with results obtained from experimental observations)  (Fig. 6a8c). 

The difference between the position Of the calculated and the 

experimental axis of plastic distortion was small. 

6.7 Torsion of Sections  withIpplied Constraints. 

The position of the axis of distortion for all 

asymmetric sections changes with the applications of axial loads 

and bending moments.as may be seen easily when the effects of an 

axial load P, and bending moments M x  and M r  are included in the 

elastic mathematical model. In analytical terms, the co-ordinates 

of the position of the axis of distortion are found when the 

following equations are satisfied: 

(E(i(r de/dz) 2  "%no ) dA = P 

r E(J2--(r d9/dz) 2 -eww ,) x dA= M 
A 

(6.37) 

and 	filE4(r d9/dz) 2  -Eww2 ) y dA= M Y 

The general behaviour of the asymmetric section, under 

the combined action of twist and applied forces can be seen when 

the particular example of the angle section is considered. 

Assume that the axis of distortion is at the 

perpendicular bisectors of the two legs, Fig. 6019a. Then, the 

longitudinal strain and hence longitudinal stress system satisfying 

equations (6.37) is maintained by a zero axial force and zero•

bending moment system. 

When we assume a different position for the axis 

of distortion, axial forces and bending moments consistent with equations 

(6.37) must be applied. Assume that the position of the axis of 

distortion is half way between the position of the centroidal axis 

and the position of the axis, of distortion for no applied axial 

force and bending moment. A trial and error solution is satisfactory 
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Fig. 6.19. Positions of the distortion axis corresponding to 
different elastic longitudinal stress distributions. 
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to find the forces required to maintain the deformed shape. One 

possible solution is shown sketched in Fig. 6.19b on the leg No. 1, 

and is given by the equations 

M
x 

= P = 0 

and 	
= 0.014 Eb4t(d9/dz) 2  

Thus the axis of distortion will remain straight, and in the 

specified position, when the bending moment My is applied. The 

moment must be applied to the cross section of the angle at the 

ends, and a constant intensity (per unit length) moment must be 

applied through the distortion axis in a direction which rotates 

with the cross section. The above solution is not the only 

combination of forces which will sustain the specified deformations, 

and there exists a range of solutions for the bending moments and 

axial forces. Another solution, sketched in Fig. 6.19b on leg No. 2, 

is given by the equations 

M = My = 0 x 

P = 0.075 E b3t(ded/dz) 2  0 and 

The axial force (a tension force) must be applied through the 

distortion axis, in a manner which does not restriat the warping 

of the cross section. 

Assume another position for the axis df distortion, closer 

to the centroidal axis. (Fig. 6.19c). The two extreme solutions 

are 	M = P = 0 X 	,••• 

My = 0.021 
E b4t(dWdz) 2 

and 

Mx = My = 0 

- P = 0.23 E b3t(d6Vdz) 2 

A pattern in the results for the particular combination 

of twist and applied axial loads is obtained from Fig. 6.0, where 

the ratio of the axial load to the squalLe of the angle of twist is 

plotted against different positions of the axis of distortion. 

(leg No. 1 

(leg No. 2 
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In the limiting case, as the twist is decreased and the axial tension 

force is increased the axis of distortion converges to the centroidal 

axis. Under these conditions, a urifform finite axial tension stress 

system is needed to sustain the distortion axis close to the centroidal 

axis. This result is consistent with the definition of the centroidal 

axis, and is as would be expected. However, the establishment of the 

rate of movement isto the author's knowledge, original. 

0 

distance of the axis of 
A distortion from the 

4.1a 	centroidal axis 

Fig. 6.20. A Graph of axial force, 	and twist, showing the 

position of the axis of distortion for an angle 

section. 

The longitudinal strains, sustained by an applied axial 

tension * force affect the torsional stiffness of the section. 

* It is possible to assume positions of the axis of distortion for which 

it is necessary to apply compressive axial forces. However, these compressive 

axial forces are likely to introduce buckling deformations. Tests carried 

out at the University of Tasmania with angle sections indicate that when a 

combination of compressive axial force and no twist are applied, the initial 

crookedness of the angle member is sufficient to induce buckling deformations. 

(Ref. 72). For short thin angle members, the line of shear centres appears 

to be the only line which remains reasonably straight. Hence the analysis 

developed above is limited to describing the effects of tensile axial forces. 

The overall effect of combined compressive axial forces and twist is a field 

in which further investigation is needed. 
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For very small angles of twist and large axial loads, it is convenient 

to choose the centroidal axis as the axis of reference and neglect the 

shortening effect of the twist. The approximate effect of the axial 

load on the torsional stiffness of the section is then easily found. 

Biot (Ref. 71) has shown that, under these conditions, the torque 

carrying capacity is given by the equation 

T = (GJ + PI e/A) (d6Vds) 
	

(6.38) 

where P/A is the applied axial tension, and I p  is the polar 

second moment of area taken about the centroid. This expression 

does not allow for the bending of the centroidal axis. 

However, using the co-ordinates of the distortion axis 

for the partikplar combinations of axial load and twist, we may 

evaluate the torsional stiffness, and allow for the bending of 

the centroidal axis, and the shortening effects. 

The applied tOrque is balanced by:two effects; the 

St. Venant shearing stresses and the inclined longitudinal stresses. 

The St. Venant stresses have been discussed in Section 6.2, while 

the magnitude of the longiiudintill stresses (inclined at an angle 

to the distortion axis) is given by equation (6.37). Then, the 

torque is given by the equation 

T = GJ(dP/dz) + .cE[i(r dO/dz) 2  + 6 	r dA sin& ool A 
and using equation (6.37) to find the axial shortening, 

equation (6.39) becomes 

(6.39) 

T = GJ(dgidiz) + cE[i(r dO/dz) 2  P/EA4(Ip/A)(dq/dz) 2]r dA sirr 0(6.40) 
A 

When the approximation is made that sin/3= rde/dz, equation 

(6.40) simplifies, and the torsional stiffness is 

T = (GJ + PIp/A)(d9/dz) +11-(Wdz) 3  E[H 	I/1] 2 
. 	P 

where H = ir4 dA 
A 	

2 	and is taken about the axis of 

distortion determined from the particular axial tension loading. 

(6.41) 
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6.8 	A Functional Desbription of Torsion. 

It has been shown in sections 6.1 to 6.5 that the deformations 

of a member subject to small twist can be described by a simple functional 

form. With small twists, and with the warping of the ends of the member 

unrestrained, a reasonable functional form is "all straight lines originally 

parallel to the sides of the strip (that is lines across the width, through 

the thickness, and along the length of the strip) remain straight after the 

member has been twisted." 

In sections 6.6 and 6.7 it has been shown that the deformations of 

a member subject to large twists, axial tensile forces, and particular 

bending moment combinations can also be described by a simple functional 

form. In this case the apprOximation is "all straight lines originally 

parallel to the sides of the cross section, (that is lines acrose,Ithe 

width and through the thickness) and one longitudinal line (either inside 

or outside of the section) remain straight after the section has been 

subject to large torsion". 

6.9 	General Comments. 

The problem of the torsional behaviour of elastic rectangular 

bars has thus been solved by the inverse approach, i.e. by first 

establishing experimentally a simple geometric model of the behaviour, 

then by using the load deformation relationships to obtain stresses, and 

finally by using these stress resultants to examine equilibrium. The 

discrepancies in equilibrium are then used to estimate the next simple 

geometric model and an iterative cycle is established. The power of 

this method is that only the important effects are considered at each 

level, and a model of the behaviour of the structure or member is 

developed as the step by step solution proceeds. This method is thus 

suitable for teaching the engineering approach to the solution of a 

difficult problem, i.e. by estimating in an ordered manner the 

important affects, understanding the signifieant simplification at 

each stage, and knoming.what is.the.next step in the improvement of 

the solution. 



CONCLUSION 

Characteristic geometric describing shapes, or functional forms, 

have been used throughout this thesis to approximate and predict 

structural behaviour. The ideas involved were first introduced in 

Chapter One, and the well known examples of stretched bent, and 

twisted bars were discussed. In the remaining chapters these basic 

ideas were used in a variety of structural contexts. 

In Chapter Two, a description of structural stability in 

terms of characteristic describing shapes, that is buckling modes, 

was advanced. This description was sufficient to justify the use 

of a generalized Southwell Plot to estimate buckling loads and 

buckling modes for a range of structural behaviour. 

Next, in Chapter Three, Four and Five the design of a through 

plate girder bridge was outlined in terms of the patterna of geometric 

behaviour observed in simple model tests. A mathematical model to 

describe the lateral and torsional instability deformations exhibited 

by these model tests was developed, and solutions were found. With 

this deformation behaviour in mind the current methods used to design 

through bridges were outlined and it was shown that these existing 

methods are suitable for the design of through bridges which have 

very heavy floors. In these designs the lateral deformations of 

the top flange of the bridge are considered and the web and floor is , 

assumed to resist the lateral movement of the top flange.. 

However, these methods were shown to provide an unsatisfactory 

description of the behaviour of through bridges which have very light 

floors. In these cases the lateral and torsional deformations of the 

entire side of the bridge becomes the dominant deformation. The floor 

then provides torsional resistance against these movements. Measurement 



of the behaviour of a loaded full—size through bridge, which had a light 

floor, was then described. It was shown that these measurements are 

described reasonably well by the mathematical model developed in this 

thesis. The experience gained from the entire study was then summarized 

into the form of a recommendation for the design of through bridges* 

Finally, in the concluding chapter, a geometric description of 

torsion was developed. This description was based on measurement, 

and subsequent approximation and simplification, and the twisting 

behaviour of a large range of sections was described in terms of 

anticlastic surfaces, helices and straight lines. 
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APPENDIX A 

A closer look at the self adjoint property. 

For the differential equation 

El d4y/dx2 4.  p d2y/c/x2 = 0  
Y 

the self adjoint for is 
t t 

	

/d 4 	dx 	= 	EI d4y2/dx4  yl  dx 
.t.r

I(1,d4
Y1 x Y2 

a and 
k  k c Pd2y,/dx2  y2  dx 	= IP d2y2/dx2  yl  dx 0 
a 	i 	 A 

Using the boundary conditions x = a, b y = 0, EI 446,e m e, , 

and simplifying, as in equatipns 2.52 and 2.53, we obtain the 

orthogonality relations 
c 

. (E, d2y1/dx2) d2y  c a 	t 	

2/dx2  = 0, 

t 
moment 	curvature 

P(dy,/dx dy2/dz) = 0. 
It 	I 

load 

The property of self adjointness is useful because it allows a 

separation of variables. Separating variables is not strange 

in engineering solutions, as the aim in analysis is always to 

reduce the number of variables that must be considered at any 

one time. 

and 

vertical deflection 

Thus, in the thevy of elasticity, we use 

4 

46-■ 

NII■IIIIONIVIIIIMMIZINOV1110.1■■•■■■• 

ret 

dilation deviator energy is separable alorig 
these paths. 
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and these ideas are carried over to yielding problems, or in the analysis 

of frames (Ref.80 ) 

Pull in either u l  or u 2  direction - 

and structure moves in the same 

direction 

energy separable along these 

paths 

Typical problems which are not necessarily self adjoint include: 

•••• 

follower systems which depend 

on the previous path, 

systems which depend on the 

previous deformations, for 

example when yielding occurs, 

and some systems where the 

applied force does not act 

on the centroid of the section, 

(for example the lateral 

torsional buckling of an I beam 

considered in Chapter Three 

exhibits this property). 

Means to handle non self adjoint.terms are gradually appearing in, 

the literature (Refs. 73 - 79). Probably a great future field of study 

lies in the further investigation of non self adjoint systems, as one of 

the big problems in structural analysis is the adequate description of 

yielding and the ideas outlined in this thesis furnish a method for 

attaching the problem. 

The general problem could be simplified to a simple system with 

two rigid links and a hinge, with a variable but defined moment and 

change of slope properties. 

tp  
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mombrit 

      

      

F' 	rigid hinge rigid  
change of angle 

The shape of the initially crooked system for each loading can be 

defined in terms of the previous shapes. The method of determining 

these shapes is then dependant on a choice of orthogonal functions 

which apply in the range of deformation over which the previous shape 

is defined. 
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APPENDIX B 

Convergence of an infinite Fourier Series Expansion. 

The establishment of the convergence of the infinite series 

expansion c1/4) 

---- n=1 an tPn 

where 
 

= cl7 N(1) n ) dil (P nN(4,n )dz, 	or c 4)L(4) n )dz/(4)nL(tn ) dz 

and f is a solution of the differential equation 1(+) -AN() = 0 

requires some elegant mathematics. 

The differential equation approach separates the boundary 

conditions from the conditions inside the boundaries. When checking 

for convergence it is easier to examine a reformulation of the 

mathematical statements in terms of one equation. 	Thus, the 

differential equation 

L(4)) - 	= 0, 

with associated boundary conditions is transformed into the 

Fredholm integral equation 

— N(i,K(z, s)lb(s) N(0) ds = 0 
where 	a, b define the domain. 

K(z,,43) is a symmetric (as the differential equation is self 

adjoint) kernel and z i  A are points within the domain. 

The convergence properties of eigen functions is examined by 

exploring the properties of integral equations . The classic 

theorem which arises from the study of integral equations is the 

Hilbert-Schmidt theorem (Miklin, Ref. 16 p. 79) and states: 

"Hilbert-Schmidt theorem: Let 1.„).z ,X s 	. . be 

the eigen values of a symmetric kernel g(x,A), and 4„ 
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be the corresponding eigen functions. Let h(x) be a function, the square 

/ of which is absolutely integrable in (a, b). If 	2 oc y  s)Ids 

is bounded, then the function 
k 

f = Kh = 	s) h (x) ds 

may be expanded as a uniformly and absolutely convergent Fourier series 

with respect to the orthonormal system 	, that is 

y0 

f(x) = 	fn  ki(x) where fn  = (f i7n ) 

The coefficients of f are related to the coefficients of h by the 

equation 

fn = hn4  n 

Thus, it is necessary to find the kernel, K(x, 	), (called the Green's 

Function) to establish convergence. The kernel is found by finding the 

deformations needed to sustain a unit force at the point s. An integration 

of the total force applied then determines the total deformation. 

Consider again the pin-ended column, 

EId2y/dx2 +Py 0 

with boundary conditions y = 0, x = 0 and x =de . To construct this well 

known Green's Function, apply a unit discontinuity in bending moment at 

a point s, while satisfying the load deformation relationship for the 

member. 

Then El d2y/dx2  = 0 	at all points except x =A 

y ç a1  x + bl 
	Otx Ss 

a2 x + 
b2 
	ss x 

Satisfying the boundary conditions leads to the equations 

)  at  x 	04x t s 

Y = 
a2 (t-x) 	

s.fx s 

Satisfying the continuity of deflections at x =5 , gives the equation 

al s = a2 ( -s) 

Satisfying the condition that a unit moment is applied across the 

gap at x =s gives the equation 



EI a1 
 

• 

dy/dx1  = El dy/dx]  + 1 

	

54ts 	s- is 

= -EIa2 

	

a1  +a2 	= 1/El 

+1 
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skkS 

El d2y/dx2  d$  y as fl-r- 0 

t- 

The two equations in a l  and a 2  are then used to determine the deflection 

of the column when a unit moment is applied at the point x =5 , and 

the deflection y is 

y = G(x y 	SVEI 	0 < x 	S 

A statical consideration of the external moments applied to the section, 

give the actual moment at each point 6 

M = P y(s) 

Thus, the total deflection of the column is found by summing the 

effects of deflections caused by these applied moments, and 

y =  Py (s) G(x, s) ds. 
6 

Clearly the real kernel G(x, s) is bounded and thus from the Hilbert-

Schmidt theorem the expansions of eigen functions of the differential 

equation for the pin ended column are absolutely convergent. 

Proceeding in a manner similar to that outlined above it is 

possible td examine some of the mathematical models for the through 

bridge. 

The differential equation 

C d26Vdz2  + (P2/4EI1 )(i/-z) 2e = 0, 

with boundary conditions 9 = 0; z =Alf has the same kernel as the 

pin ended column. Then 
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-Le 0 

9 = G(z,$)(p4EI1 )(-h-e—z) 2 0 	(s) ds + 	G(z,$) (P2/4EI1 )(4+z) 20 (s) ds , 

where 	G(z, s) = (z(e-s)/C 
	

Ot zt s 

) 

The differential equation 

C d261/dz2  Cop +(P2/4ET(ii-z) 2  = 0 

with boundary conditions 9 = o, z =tig )  may be shown to have a kernel 

i 

G(z, s) = n(sinh n s - cosh n s tanh TAsinh nz/Co  tanh n/ 0 t zg s 

n(sinh n z - cosh n z tanh ni)sinh ns/C o tanh nt s t z t t 

where n2 = 

The differential equation 

C1 d40Vdz4  - C d2151/dz2  + Coe - (P2/4E1,1)(4 -z)e = 0 

may be shown to have a similar kernel, but with n defined by the 

equation 

c 	= c 	c 0 , 

These kernels, G(z, s), are real, and bounded, and thus by the 

Hilbert-Schmidt theorem the expansions of infinite series eigen 

functions corresponding to solutions of the corresponding differential 

equations are absolutely convergent. 
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APPENDIX C 

Mathematical Models for which a Southwell Plot is a useful device to measure buckling loads and modes0 

Typical structure differential equation 	differential equation 
Of undeformed 	of initially deformed 
structure 	structure 

boundary conditions 	Southwell Plot variables 
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APPENDIX D 

The Effect of an Initial Lateral Curvature in Equation 3.9,. 

The effect of the lateral initial crookedness can be included 

in the mathematical model for the initially deformed structure by 

using the ideas as outlined in Chapter Four and only a brief summary 

of the analysis is given. The mathematical model is 

1
d4  (9-00 )/dz4  - Cd2 (9-130 )/dz2  + 00 09-60 - (P!/4EI1)(4-z) 20 413 (a-z)46/4 1  

The right hand side of this equation is then expressed as an infinite 

series expansion of the form 

k 1  0 ( 4-z) 2  + k22 2 
(Li- 	+ ..5„ 	gitoit., 

2   

The value of kr is found using the orthogonality relationship 

i°  
er O s  (a-z) 2  dz = 0 	

,,7 

te 
and thus the value of k is given by the equation 

0 

k1  = ( 	d2uo/dz2  9dz/ c(a-,z) 2 44 dz 

if 	ie 
Assuming that the initial lateral crookedness is of the form 

uo ao sin Tx/X 

weobtainthevalueof kl . This value is approximately a constant 

for all values of C, C and C and 

k1 --4 6.1 Pao/j/3  

The solution of the equation is then obtained by using the infinite 

series expansions 

9 = m1 1  + m2 0 2 4- • a a a 

and 

a 

o 
= a 	0 0 0 '0 

and is of the form 

9 =[ al  +(25 El Pa0/2? q)]901 (P/P1 ) 2  I + 0. 
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Again using the first term of the expression, we have 

9 = C a. + 25 El Pao/P EI] 9 1  / 	p p ) 2  0  

As the Southwell Plot is usually taken over a small range of 

loads, close to P = P 	the top line of this expansion will be approximately 

constant in this range. Thus, the initial lateral curvature can be considered 

as being approximately equivalent to an initial rotational effect. 

For full size light through bridge 	Coloe/Clevz, 100 

then from Chapter Five the value of the buckling load P is approximately 

P1  = (1042 ) /-77-7 

Thus the lateral deflection term is approximately 

25 El P a0/(100[FITC) Pie 

= 0025/E7(P/P 1 )(a04) 

Making further approximations; namely 

EI. = 2 (b3t/12) E 
7 

C = 2 (A/3) E/2(1 +3) 

b/t = 15 

P/P1 = 0.8  

ao = 1/1000 

0.25/i7C (P/P 1 ) (ao/e) = 2.4 x 10  

For a full size bridge, the equivalent initial rotational crookedness 

-3 	 -X 
is of the order of (al + 2.4 x 10 	)91  . For the average bridge a l = 1O  .tit 

-5 
and thus the equivalent rotational crookedness is approximately 1.24 x 10 

radians. 

For the model bridge 	C f2/CT?  = 3 
 

and P1  = (30/1 2 )liati7;  

the equivalent rotational crookedness is thus approximately (See N DI), 

[al  + (25 El P a0/23  P2 )  = [0.02 + 0.005] 9 1 1  1 

= 0.025 	. 

then 
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APPENDIX F 

Typical through bridge dimensions. 

60/15 60/15 5/60 10 2.5 

60/6 60/6 4/60 1.2 3.0 

86/15 86/5.3 5/86 1.67 2.42 

81/15 81/5 5/81 4 2.5 

36/20 36/6 7/36 2.15 2.15 

truss 

= length, s = width, h = height, (in feet) of the bridges. 

TABLE 1, Comparison of values of k for 

different types of through bridges. 

Location 	Type 	I /s 	2 /a 	h/i 	k 	ki:Pik 

Brooker 	single lane 

Highway 	railway bridge; 

plate girder 

Booker 	pedestrian foot 

Highway 	bridge; truss 

Devonport ferry terminal 

bridge; plate 

girder 

Hobart 	ferry terminal 

bridge; 

plate girder 

Westerway road bridge; 
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APPENDIX G. 

An Economic Value for the Initial Rotational Crookedness. 

The first mode initial crookedness for the ferry bridge was of the 

order of 006 x 10 radians, with a maximum value of 10 radians. These 

figures, in comparison with figures obtained from similar structures 

appears a reasonable average. 

For this particular bridge it is possible to determine the benefit 

gained by increasing the rotational straightness, in the fabrication 

stage. 

—1 

A decrease in first mode rotation from0.6 x 10 radians to 

0.3 x 10 radians increases the load carrying capacity by 10%. 

(Fig. G1.) 

Lam> 

At 	 wess 	4, C.A  

40444 

I LI% 	p 
of, 

LIne 04kwA ? 'C' 

}  

•7 	D  

Fig. G2. 

Fig. Gl. Load deformation relations for varying crookednesS values. 

If this increase in load carrying capacity results in a corresponding 

decrease in steel area of the flanges, the resulting steel saved is 10% 

of the weight of the flanges. 

Another possible means to obtain higher working loads is to 

deliberately make the bridge crooked in a manner which is opposite 

to the deformations induced by the loads. Thus, if the bridge is 

made as in Fig. G2 higher working loads for the frame lateral 

deformation can be achieved. (Fig. G1). 

Then, if the value of steel saved is greater than the cost of 

fabrication of the girder with controlled rotational straightness, 

it is economically worthwhile to produce the improved girder. 
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APPENDIX H. 

The Effect of Lateral Loads on the Heavy Through Bridge. 

This model describes the extreme type of deformation leading to 

instability which is characteristic of through bridges with rigid 

decks; that is a model describing a structure which is most 

unlikely to move bodily in the lateral direction. In this model the 

top flange moves more than the rest of the structure, (Fig. H1) and 

1 hence conditions describing the lateral stability of the top flange 

are considered. 

Fig. Hl. Deformations of a through bridge, when the bottom 

chords provide restraint against rotation, and 

prevent translation. 

For the bridge uniformly loaded along the bottom flanges, 

and for the origin taken at the end, the force Pr  at z in the 

top flange, in a single beam is given by the equation 

wz2  y 

where w is the uniform load for each I beam per unit length 

of the bridge. This relationship is shown in Fig. H2. 
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Fig. 112. An element of the bottom chord, web and flange for the 

bridge shown in Fig. H1. 

When the flange is slightly disturbed from its initially straight 

position the equations of statical equilibrium are obtained by examining 

the shear per unit length acting on an element, as shown (Fig H3), and 

we obtain the differential equation 

	

d2 (EI
T 

d2x/dz2 )/dz2  + d(PT
(d)Vdz)/dz + (Sx = 0 	(112) 

and if the flexural rigidity is constant along the length, equation (112) 

simplifies to the differential equation 

	

EIT  d4x/dz4  +ex + (w/2h)d[z(e—z)dx/dz1/dz = 0 
	

(H3) 

When the boundary conditions 

z = 0 and/ ; x = 0, EI1 d2x/dz2  — 0 

are specified, a mathematical system which has an infinity of eigen 

function solutions x m  ,and corresponding eigen values w, is specified 

(see Chapter Two). 

id(PrVa3 	 

PT 
atIdl 

Jr_ V 

clti141)/4 

.1.01( Fo#11, 

Fig. 113. An element of the top flange for the bridge shown in 
Fig. Hl. 
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A solution of the differential equation (113) and associated 

boundary conditiins is obtained by Timoshenko, Ref. 2, who uses 

an energy method. The final shape, x, is expressed in a Fourier 

sine series, i.e. 

x = a1 sinirz/e 4- a sin 3Trz/e + 

for the symmetric mode, and 

x = a2 sin 2/m/0 + a4 
sin 4/z/t + 

for the antisymmetric mode. The values for a r  a 3  , a 5  , are shown 

in Fig. 114 and values for w 1, , w 2are shown in Fig. 115. 

The lowest buckling load is obtained from fig. H5, and it/is 

seen that sometimes this mode is symmetric and sometimes antisymmetric. 

However, the difference in buckling loads, corresponding to these two 

different modes is small. 

2.2.6 Lateral loading effects on equation (113). 

The effect of a distributed lateral shear force, h(z) applied 

to the top flange, is to alter the differential equation (H3) to the 

differential equation 

EITd4x/dz4  + x 
	

04/2h)d[z ( i-z)dx/dzl/dz = h(z) 	 (H4) 

where h(z) is a function of the applied loading. 

•  This model is solved by replacing the loading by the series 

c1 d[z(f—z)dx1 /dz]/dz + ca d[z(f—z)dx2/dzWdz + •= h(F) 

The value of c„, is obtained as the ratio 
t 

6 = ixn  h(z)dz/ d[z(t—z)dx.n/dzVaz xn dz 

when both sides of the series are multiplied by the function x 

and the equation is integrated between the boundaries. The final 

solution 
x = b1 x1 + b2x2  + b3x3  + 

is obtained by substitution of the values of c.,,x„,into equation (114). 
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Value of a 
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5 
43 944,37110 

10 

Fig. H4. First buckling mode components for a solution of equation H 

IBuckling constant L/e 0.6 lowest buckling load 

-- buckling load for a symmetric mode 

. buckling load for an antisymmetric mod ,  

0.4 

0;2 • 

0 
	

25 	50 	75 	100 	125 	150 

Elastic restraint 131 4/7r4EIT 

Fig. H5. Values of (14) to use in PT  =11hIl(L) 2  for 
a solution o'f equation H3. 
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When a lateral point load F is applied to the top flange at a 

point in the middle of the bridge, and the vertical loading applied 

to the bridge is increased until it is close to the buckling load 

of the bridge, the final shape of the top flange x is given 

approximately by the first term in the infinite series, that is 

)ck x1(F/4(w1/2h)/(1—w/w1) 	(H5) 

Values of k are plotted in Fig. H6 for a range of values of elastic 

restraintO4A4EIT  

25 • 	50 	/5 
Elastic restraint(4/1/4  EIT  

Fig. H6. Values of for lateral loading as given by 

equation H5. 

Examination of other forms of loading, indicate that of all 

the likely forms of lateral loading that might be applied to the 

bridge the central lateral point loading induces the maximum first 

mode deformation. However, it is seen from Fig. H6 that these 

deformations quickly diminish as the lateral restraint is increased. 

Therefore, even when large vertical loads are applied to the bridge, 

it is unnecessary to allow for any decrease in the lateral stiffness 

of the top flange. 

Because the first buckling mode is not a good representation 

of the deformations induced by the lateral loadings, a large number 

of terms in the infinite series are required to specify accurately 

2.0 

1.0 

0 
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the final deformations. It is easier therefore to use existing methods 

of superposition to find the final deformed shape of the bridge, i.e0 

find the deformations induced by the lateral loadings using usual bending 

theory, and add linearly these deformations to the buckling deformations. 
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APPENDIX J. 

Notation. 

A 	= area of the section 

a 	= spacing of the floor beams 

components of then buckling mode 

[ 	n x n matrices 

= bimoment 

= width of strip, leg width of an angle section 

= St Venant tbi-sional stiffness 

Co 	= equivalent torsional restraint provided by the floor beams 

C I 	= warping stiffness 

Clo ,C00 	= values of C. , C o  along a beam 

= modulus of elasticity, Young's modulus 

El 	= flexural stiffness of a pin ended column 

EI 	= flexural lateral stiffness of an I beam 

EI F 	= flexural vertical stiffness of a floor system 

EL,. 	= flexural lateral stiffness of the top chord of an I beam 

= force 

fz 	= longitudinal stress at the point z 

= shear modulus 

g. , g t  = constants 

(74 	= lateral shear force 

= fourth moment of area, taken about the Weber centre 

= depth of I-section beam 

Ic 	= polar second moment of area taken about the centroid 

= polar second moment of area taken about the Weber centre 

= force 

K(x, s) = kernel 

= the ratio of the total lateral movement of the top flange 

of a through bridge. (sustained by a lateral force applied 

at the top flange of the bridge) to the magnitude of the 

lateral movement of the top flange that results from the 

deformation of the floor beams 
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= length of column section, strip • 

= effective length of the top flange of the I beam 

differential operators 

= moment 

M„1 ,M0  = twisting moments in the xy and yz planes 

= load applied to a single I beam, column 

Pi  , Pt 	= eigen values 

= Euler buckling load of a column of length a 

Pr 	= the axial force in the top flange of the I beam at z 

13.4 	= first critical load as measured by a Southwell Plot 

= line loading 

qP 	= shear stress to produce yield 

r, R 	= radii 

rs  rz 
 = distance measurements 

= arc length along a boundary 

= width of bridge 

T, 	= torsional loading 

= torque 

= thickness of the strip 

= lateral deflection of the centroid of the beam 

u, v 	= movements in the xy plane 

= vertical movement in the z direction 

= uniform loading 

1 ,  14 	= eigen values 2 

= the lateral movement of the top flange 

x i , x, 	401x.functions 

[11 	= column vector 

x ) y) z 
= systems of axes 

x i , yoz  

= final deformed shape 

eigen functions 

= initial crookedness in y 

(& 	= angles 



- 214 - 

= the lateral shear force restraint per unit displacement 

provided by the web and bottom chords of the through bridge 

= (El - EII )/EI, taken as 1.0 for the problems examined in 

this thesis 

= longitudinal strain at the point z 

Eod 
	= longitudinal strain a the point 0 

= direct strains in the x, y directions 

= shear , strain in the xy plane 

= shear strain on the surface of a strip 

= direct stresses in the x, y directions 

(if 	= shear stress in the xz, xy, yz planes 

6? 	= rotations in the xy and yz planes 
'V WS 

= rotatiori of the beam 

= eigen functions 

= loading constant 

= eigen values 

= deformation 

= initial deformation et'o 
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