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Abstract 

A fundamental goal in ecology is to identify the appropriate scales at which to 
observe trends in ecosystem behavior. Researchers often rely on intuition to 
choose a sampling scale, which if too large or too small potentially obscures the 
real system trends. A characteristic length scale (CLS) is a natural scale of a 
system at which the underlying deterministic dynamics are most clearly observed 
over stochasticity. The overarching aim of this research was to develop, examine 
and apply a robust technique to detect CLSs of real ecological systems. 

In this thesis, I first compared the robustness of two CLS methods, both of which 
account for complex oscillatory dynamics of ecological systems using attractor 
reconstruction from long time series of data. I applied these techniques to estimate 
CLSs of spatial multispecies systems of varying complexity, showing that for 
more complex models, the prediction r2  metricof Pascual and Levin (1999) is a 
robust method. I then used an alternative method of CLS estimation, based on 
prediction r2  but where repetition in space is largely substituted for repetition in 
time in attractor reconstruction, to determine the CLS of a natural marine fouling 
system. The new technique, requiring only a short temporal sequence of as few as 
three highly resolved spatial maps, enabled unambiguous length scales to be 
estimated for this system. Importantly, the estimated CLS was similarly based on 
analysis of several species representing a spectrum of phyla and life history 
patterns, indicating the adequacy of this method for objectively determining 
optimal scales of observation for real systems. Moreover, the CLS estimates of 
this system remained surprisingly consistent despite changes in time intervals 
between the spatial maps, changes in the number of maps used in the temporal 
sequence, and varying start dates of map sequences. 

When the field results were compared to those derived from a spatially explicit 
individual-based model of a similar marine community nearby, the average CLSs 
of the two communities were strikingly similar (— 0.35 m), suggesting that 
dynamical trends of like systems may be best observed on similar scales. 

I also considered whether the approach could be extended to identify trends based 
on the dynamics of interactions among habitat types as opposed to interactions 
among species groups. Analysis of maps produced from remote sensing data at 
the habitat level successfully revealed unambiguous characteristic length scales of 
a coral reef. Habitats distinct in their species assemblages, abundances and 
morphologies provided similar length scales (— 300 m), suggesting that the 
system-level CLS detected is independent of the habitat type used for its 
estimation. 

Different species within the same system indicated dissimilar CLSs in some 
spatial model communities where species were only weakly connected, either due 
to the topology of network interactions or through spatial isolation as a result of 
spatial self-organization and patchiness. I finally evaluated the sensitivity of CLS 
estimates to varying levels of species connectivity and found that when species 
were weakly connected in terms of their network topology, the estimates of scale 
were likely to be dissimilar. 
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The results contained within this thesis illustrate that the new method developed 
to detect natural scales of complex systems (1) can be applied to natural 
dynamical systems with a reasonable quantity of data, (2) is robust to changes in 
parameters that should not affect the scale of observation (e.g. initial 
configuration of the landscape), but (3) is sensitive to variations that would likely 
affect the spatial scale at which trends can be observed (e.g. connectivity). 
Species or habitat level data can be used to estimate CLSs, which will be critical 
for choosing the scale at which to sample real ecosystems to distinguish trends 
from random variation. Characteristic length scales can now be implemented to 
objectively guide the choice of observation scale, and I expect that in the future, 
they will become a part of every assiduous ecologist's toolbox. 
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General Introduction 1 

Chapter 1 

General Introduction 

1.1 Determining appropriate scales to observe ecological systems 

One of the fundamental challenges in ecology is to determine the 

dynamical processes underlying observed patterns (Levin 1992). The greatest 

difficulty confronting this objective is that any pattern detected, and ultimately the 

understanding of underlying dynamical processes, depends on the spatial scale at 

which observations are made (Wiens 1989, Levin 1992, Schneider 1994, Levin 

2000). The challenge, which is becoming increasingly significant as new work 

brings the scale-dependence of fundamental functional relationships into clearer 

focus (Crawley and Harral 2001, Chase and Leibold 2002, Chalcrafi et al. 2004), 

is to identify appropriate scales of observation for ecological investigation (Levin 

1992). In determining the scales for examining an ecosystem's dynamics, a 

crucial question to ask is whether ecological systems have natural or 

"characteristic" scales at which observations provide unambiguous information 

about the dynamic, while minimizing noise in the signal measured. If so, then the 

capacity to objectively identify these optimum scales of observation will be 

important in the monitoring of an ecosystem to detect meaningful changes in its 

state (Rand 1994, Bishop et al. 2002). 

Characteristic length scales (CLSs) are, in theory, intrinsic to the system, 

and are the scales at which the stochastic signal is minimized and the 

deterministic, or ecologically meaningful, signal is maximized. The underlying 

tenet is that if the scale used to sample an ecosystem is too small, observations are 

swamped by noise due to strong correlations among individual samples (Durrett 

and Levin 2000, Wilson and Keeling 2000). If the sampling scale is too large, the 



General Introduction 2 

nontrivial dynamics will be averaged out because distant parts of the landscape 

begin to act independently (Keeling et al. 1997, Pascual and Levin 1999, Wilson 

and Keeling 2000). The CLS is an intermediate scale which most clearly reflects 

the underlying deterministic signal (Pascual and Levin 1999, Wilson and Keeling 

2000; for illustration, see Figure 1.1). Use of this natural scale as the size of 

sampling units (e.g. for monitoring the abundance of a particular harvested 

organism) will enable detection of the true system trends. 

The idea that these intrinsic scales exist for ecological systems has a long 

history, and several methods have been proposed to estimate these scales (e.g. 

Grieg-Smith 1952, Kershaw 1957, Carlile et al. 1989, De Roos et al. 1991, 

Schneider 1994, Rand and Wilson 1995). Each of these approaches employs some 

form of variance spectrum, expressing a measure of variance among observations 

as a function of the size of the 'window' of observation. In early vegetation 

studies, scientists sought the inherent spatial scale of a landscape, or the 

intermediate scale that best described the processes driving the distribution of 

species (Greig-Smith 1952, Carlile et al. 1989). However, most approaches 

assumed that ecological systems are stationary in space and time, that fluctuations 

are random around a stationary global average (e.g. Rand and Wilson 1995), or 

that any dynamical behaviors are linear (see Turner et al. 1991). 

These kinds of approaches fail to take into account the complex dynamical 

nature of ecological systems in space and time, which is characterized by 

nonlinear oscillatory behaviors (e.g. Hastings et al. 1993, Ellner and Turchin 

1995, Sole and Bascompte 1995, Little et al. 1996, Pascual and Ellner 2000). 

More recent approaches have suggested that characteristic length scales (CLSs) 

are detectable in spatial models of oscillating systems, such as predator-prey or 
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Figure 1.1. Representative temporal trajectories of the density of a single species in 
a 3-species model system (see Chapter 2) determined by observing the system at 
three different window sizes on a 500 x 500 landscape. Observations are made (A) 
through a small window (5 x 5 cells), (B) through an intermediate sized window 
similar to the CLS of this system (30 x 30 cells), and (C) at the size of the 
landscape. Observing the system through a small window emphasizes noise in the 
signal, while averaging over larger windows decreases the amplitude of the 
trajectory. The trajectory at the intermediate window size best illustrates the smooth 
yet oscillatory dynamics of the system. It is this feature of change in the 
characteristics of the signal with window size that CLS methods attempt to quantify 
(Pascual and Levin 1999). 

host-parasite systems (Rand and Wilson 1995, Keeling et al. 1997, Pascual and 

Levin 1999). In particular, the techniques of Keeling et al. (1997) and Pascual and 

Levin (1999) to identify CLSs are exceptional in that they accommodate both the 

complex nonlinear oscillations and non-uniform patterns in spatial variance that 
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are pervasive in real ecosystems. The crucial development of these new 

approaches is the application of attractor reconstruction (Takens 1981) and 

prediction algorithms (Kaplan and Glass 1995) from nonlinear time series 

analysis to characterize dynamics at particular scales of observation. In general, 

the method allows the phase space of the ecosystem to be built from time delay 

coordinates of a single variable, which acts as a surrogate for the unobserved 

variables of the system. The trajectories in phase space are then used to construct 

a model of algorithms, which predict the trajectories in n-dimensional space some 

time ahead (Kaplan and Glass 1995, Abarbanel 1996). This procedure is 

described in detail in Appendix A. 

Using long time series of the density of a single species, the attractor is 

reconstructed for each scale, generating a variance spectrum from the prediction 

errors, plotted across the scales of observation. The region of plateau in prediction 

error dictates the CLS of the system, an estimate or range of scale within which 

the deterministic dynamics can most clearly be observed. From this range, the 

most appropriate scales at which to sample a system can be inferred. Implicit in 

the original techniques is the assumption that measurement of a single variable in 

the system over time can be used to illustrate the dynamics of the whole. For 

example, in a predator-prey system, the prey (or resource) density can be 

measured to illustrate the deterministic signal of the entire system (Rand and 

Wilson 1995). This assumption implies that the system-level CLS can be 

estimated by observations taken on a single species, and arises from the 

mathematics of attractor reconstruction (Takens, 1981; Kaplan and Glass, 1995; 

Little et al., 1996). This method is summarized in Appendix A, as it is 

fundamental to the approaches proposed by Keeling et al. (1997) and Pascual and 
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Levin (1999) to estimate CLSs. 

1.2 Methods of estimating CLSs in oscillating systems 

Both Keeling et al. (1997) and Pascual and Levin (1999) use attractor 

reconstruction to identify the spatial scale that best distinguishes the deterministic 

dynamic, or trend, from noise. Keeling et al. (1997) extended the approach of 

Rand and Wilson (1995), by using attractor reconstruction in a method they called 

fluctuation analysis, which models and then calculates deviations around the 

underlying deterministic behavior within the system. The variance measure used 

by Keeling et al. (1997), termed error X, is calculated as: 

error X = LVE,[(XIL  — ) 2 ] 

where the density of a particular species X in a window of side length L is 

L L 
X = -1,1E. and E1 (X L̀ )= ir is the probability of observing a particular 

L i=1  

species X. The predicted value of XL  is I L̀  , as determined by the nonlinear time 

series analysis. Where the variance measure (error X) plateaus with increasing 

window size is the length scale where correlations have decayed and values at 

different sites behave like independent random variables. Keeling et al. (1997) 

used the plot of error X against L not only to estimate the CLS, but also to 

identify scales of aggregation. 

Pascual and Levin (1999) developed a 'determinism test', which uses 

methods of nonlinear time series analysis, similar to those of Keeling et al. 

(1997), to reconstruct the system attractor, but they focus on how the prediction 

error of the trajectories changes with scale. They obtain a statistic called 

prediction r2 , similar to the r2  in linear regression, for each window size where: 
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E1  [(X' ki. ) 2  1 
prediction r2  =1 

Var(X ii.  ) 

The scale where the r2  (or degree of determinism) is maximized is the CLS of the 

system. This measure is likely to indicate a CLS smaller than that identified by 

error X because maximum predictability may occur at a smaller scale than the 

onset of independence (Pascual and Levin 1999). 

While the techniques of both Keeling et al. (1997) and Pascual and Levin 

(1999) show promise because of their capacity to accommodate complex 

oscillatory dynamics, they have thus far been applied only to simple model 

systems. Moreover, they require unrealistically long time series so that their 

application to most real ecosystems is impractical. Thus, while the theory of 

natural length scales has mathematical merit, more effort is necessary if it is to 

emerge as a tool that is practical for applied ecologists. Objective estimation of 

the optimal scales at which to sample a real ecosystem to detect trends is highly 

attractive to both ecologists and managers of natural resources, since sampling at 

inappropriate scales can lead to potential bias and/or misinterpretation of variation 

occurring at unstudied scales (Denny et al. 2004). Accordingly, the fundamental 

goal of this thesis is to develop, test and apply a modified method of CLS 

estimation that can provide an objective means to identify the natural scales of 

real ecological systems. 

1.3 This thesis 

With the goal of developing a technique to identify CLSs in real 

ecosystems, I first assess the robustness of the approaches of Keeling et al. (1997) 

and Pascual and Levin (1999) so that we can be confident in applying the 
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techniques to dynamical systems more complex than the simple models 

investigated to date (Chapter 2). I examine the capacity of the two techniques to 

identify unambiguous length scales for model systems spanning a spectrum of 

complexity, and determine the sensitivity of CLS estimates to (1) the initial 

spatial arrangement of individuals in a system, (2) parameter choices in attractor 

reconstruction (i.e., T, de, and k) and (3) the choice of species used in attractor 

reconstruction. If these techniques are to be usefully applied to real systems, then 

they should be robust to the spatial arrangement of individuals on the first 

landscape of a time series, and to subjective choices of parameters used in 

attractor reconstruction. Sensitivity to the choice of the single species from the 

system that is studied is assessed to test the underlying assumption that 

information from a single species can be used to identify the CLSs of the entire 

system. If each species provides the same length scale, then the theory that the 

CLS is a system-level measure is supported. 

I then use a modified technique of attractor reconstruction, which obviates the 

need for long time series, to determine the CLSs of a natural marine fouling 

community (Chapter 3). By largely substituting repetition in space for repetition 

in time, CLSs can be estimated with a series of as few as three highly resolved 

landscape maps through time, rather than requiring tens of thousands of time steps 

(Habeeb et al. 2005, Appendix B). I compare the CLSs indicated by 10 different 

species groups representing several phyla and a range of life histories to test the 

implicit assumption that dynamical information of a single species, irrespective of 

its life history characteristics, within a multi-species system can be used to 

estimate the unmeasured whole-system dynamic. To assess whether CLS 

estimates are sensitive to particular site-specific characteristics, I compare the 
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results based on field data to those derived from a spatially explicit individual-

based model of a similar, nearby fouling community (Dunstan and Johnson 2005). 

Given the novelty of the CLS metric, in Chapter 3, I also attempt to place the 

measure in a broader ecological context by comparing it to other, more 

established and better-understood ecological scaling measures. The intent is to 

illuminate what, if anything, the CLS might reveal about the broader ecological 

properties of a system. I chose conceptually simple spatial scales for comparison, 

namely the region of asymptote in species-area curves (Conner and McCoy 1979) 

and, with reference to patterns of species abundance, scales at which troughs and 

peaks are evident in the relationship between variance-to-mean ratios and size of 

the sampling unit. Interestingly, the spatial scale of the asymptote in species-area 

curves was initially proposed as the appropriate scale of observation of 

communities, with a motivation to capture most species in each sampling unit 

(Greig-Smith 1964). Variance-to-mean ratio spectra have been used to describe 

patterns of scale dependent aggregation in species distributions (Pielou 1977). 

In the fourth chapter, I assess the sensitivity of the real fouling community 

CLS estimates to arbitrary choices of the nature of the sampling regime by 

varying the number of time steps in the time series (3, 4, or 5), the interval 

between observations (3 month, 6 month, or 9 month), and the start date of the 

time series (month 0, month 3, or month 6). If the CLS is, in fact, an inherent 

characteristic of an ecosystem (Carlile et al. 1989, Wilson and Keeling 2000), and 

providing that the attractor describing the system dynamic is stationary, then if 

this concept is to be applied usefully to real ecological systems, the CLS should 

not be sensitive to the particular protocol by which a system is sampled. Using 

spatially detailed maps of the fouling community collected over 18 months, I 
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assess the robustness of the estimates to changes in varying combinations of these 

factors. 

Because a great deal of monitoring real ecosystems is based on the 

dynamics of habitats rather than single species (e.g. McNeill 1994, Mumby et al. 

2001, Rouget 2003), an important question is whether natural length scales are 

evident at the level of habitat types. The question is germane to several agendas in 

applied ecology, including reserve design and management zoning based on high-

resolution habitat mapping that requires a measure of the appropriate scale at 

which to sample the habitat maps (Loehle and Wein 1994, Ward et al. 1999, 

Mumby et al. 2001). In Chapter 5, I apply the new length scale technique to 

remote sensing data collected at the habitat rather than species level, to extend the 

application of characteristic length scales to data based on interactions among 

habitat types. If CLSs can be determined at this level, sampling at the CLSs will 

optimize detection of critical ecological trends when monitoring changes in 

abundances of habitats or species assemblages, which is now becoming more 

prevalent than individual species monitoring (Peterson and Estes 2001). Using 

spatial maps of benthic habitats within a Caribbean coral reef over 21 years, I 

attempt to determine the system-level CLS based on the dynamics of three 

distinctly different coral reef habitats. The two broad aims of this component of 

the work are to ascertain (1) whether unambiguous length scales are evident from 

dynamics at this scale of biological organization, and (2) whether the different 

habitat types indicate similar CLSs. 

In Chapter 6, I attempt to determine if the CLSs indicated by distinct 

species are influenced by the connectivity between those species. According to 

the mathematical theory, the system-level CLS can be determined by any species 
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within the system, provided that all species follow the same system dynamic, or 

attractor (Takens 1981). However, occasionally a species will provide an outlying 

CLS estimate (Chapter 3). Thus in this chapter, I attempt to determine if weak 

species connectivity, due to network topology, interaction strength, or spatial 

proximity and patchiness, leads to dissimilar CLS estimates between the 

constituent species of a system. Six species spatial model systems are run with 

varying levels of connectivity, in terms of both network topology and interaction 

strength. In each system, two groups of spatially connected species form and 

CLSs are compared between the two groups as connectivity changes, to evaluate 

the hypothesis that weak connectedness between species produces dissimilar CLS 

estimates. If the CLS is strongly influenced by species connectivity, then it may 

be potentially used as an indicator of relative connectivity between species within 

a system. 

In concluding (Chapter 7), the combined results of this thesis are 

considered, and the utility of estimating the natural length scales of real ecological 

systems is assessed. 

This thesis *  provides the first investigation of identifying natural length 

scales of real ecological systems. Careful analysis of issues of robustness and 

sensitivity is an essential step in the application of any useful theory. The results 

affirm that characteristic length scales do exist for natural systems, that they can 

be detected using reasonable data sets, and that their potential for application in 

ecology, whether for management or basic research, is significant. 

* Readers should note that the chapters contained in this thesis are written for submission as stand-

alone manuscripts and therefore some repetition in their introductions is unavoidable. 
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Chapter 2 

Characteristic Length Scales of Ecological Systems: Robustness of 

Estimates 

(Ecological Monographs 75(4): 467-487, November 2005. See Appendix C) 

2.1 Abstract 

The scale used to view an ecosystem largely influences the patterns, and 

therefore the underlying processes that are detected. A key issue in ecology is 

identifying the appropriate scale(s) at which to observe ecosystem trends, namely 

the system's deterministic dynamic. The characteristic length scale (CLS) is the 

inherent or natural scale(s) of the system, at which the underlying deterministic 

dynamics can be best observed with minimal noise. Here, we compare the 

robustness of two recently developed methods to estimate CLSs. Both approaches 

use attractor reconstruction to account for the complex oscillatory dynamics of 

ecological systems, but they have been applied only to simple model systems. We 

used the Compete@ software to model spatial multispecies systems of varying 

complexity, and applied these techniques to estimate CLSs in each system. We 

examined sensitivity of the CLS estimates to the choice of species and initial 

spatial conditions, across the range of model complexity. Robustness to changes 

in parameters used in attractor reconstruction, such as the time delay and 

embedding dimension, was also assessed. Both methods of CLS estimation were 

robust for the simplest model system, but as model complexity increased, the 

Pascual & Levin (1999) measure was more robust than that of Keeling et al. 

(1997) to changes in reconstruction parameters and initial conditions. Both 
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methods were sensitive to the choice of species used in the analysis of complex 

model systems. The connectivity of species appears to influence the CLS found, 

with closely connected species producing more similar CLSs than loosely 

connected species. In this sense, connectivity is determined both by the topology 

of the interaction network and spatial organization in the system. Notably, more 

complex systems that show spatial self-organization can yield multiple CLSs, 

with larger length scales indicating emergent dynamics resulting from interactions 

at the patch level. Overall, the approach of Pascual & Levin (1999) appears to be 

potentially useful for estimating system-level CLSs, but its greatest limitation is a 

requirement for long time series. We suggest that application of this technique, or 

some modification of it, can provide improved objectivity to important decisions 

about scaling in ecology. 

2.2 Introduction 

One of the fundamental challenges in ecology is to determine the dynamical 

processes underlying observed patterns (Levin 1992, Chave et al. 2002). 

However, the patterns detected depend upon the scale at which the system is 

viewed (Wiens 1989). The principle of spatial scale permeates ecology, with 

patterns of species interactions, coexistence, and exclusion varying from local to 

regional to global scales (Wiens 1989, Levin et al. 1997, Levin 2000, Bishop et al. 

2002). Many scales of interest likely exist for a given application, and the 

challenge for scientists is to properly identify the most relevant scales for 

investigation (Levin 1992). In determining appropriate scales for examining an 

ecosystem's dynamics, a crucial question is whether natural or "characteristic" 

scales exist. If they do, then they may provide appropriate scales to observe 
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system behavior, retaining essential information about the dynamic without 

excessive noise. In addition to indicating optimal scales for monitoring dynamical 

change in ecosystem structure, characteristic scales may be helpful in defining 

minimum sizes for ecosystem conservation reserves and management units in 

harvested systems (Rand 1994, Rand and Wilson 1995, Wilson and Keeling 

2000). Here, we address techniques designed to detect the characteristic scales of 

ecological systems. 

Early studies of vegetation dynamics sought to identify the inherent 

'intermediate' scale of a landscape that best reflected the underlying processes 

driving the heterogeneous distribution of species into patches (Greig-Smith 1952, 

Kershaw 1957, Carlile et al. 1989). Methods used in these studies (summarized in 

Turner et al. 1991) usually involved the development of variance spectra by 

sampling a landscape through "windows" of different sizes, either by combining 

small windows into larger windows (zooming) or by incrementally increasing the 

distance between windows of a given size (lagging, Schneider 1994). These early 

studies explicitly assumed that the system was both linear and uniform in space 

(Turner et al. 1991). Uniformity in time was assumed implicitly, as variance 

spectra were derived from the spatial pattern assessed on a single occasion. These 

approaches therefore ignored the spatially and temporally dynamical nature of 

ecological systems. However, recent spatio-temporal models of ecological 

systems suggest the prevalence of nonlinear dynamics in nature (e.g. Ellner and 

Turchin 1995, Little et al. 1996, Pascual and Ellner 2000). Nonlinear population 

dynamics caused by density-dependent and other processes can lead to chaos 

and/or other oscillatory patterns, such as frequency-locking or quasiperiodicity 

(Turchin and Taylor 1992, Pascual and Ellner 2000), in both deterministic and 
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stochastic systems (May 1976, Ellner and Turchin 1995). For these and other 

reasons, previous approaches to identifying 'intermediate' spatial scales are 

inadequate for ecological application. Contemporary ecology is in need of a more 

comprehensive approach to detect the "characteristic length scale" (CLS) of a 

system while accounting for the presence of chaotic, or other oscillatory dynamics 

(Hastings et al. 1993, Sole and Bascompte 1995, Little et al. 1996, Pascual et al. 

2001). 

Keeling et al. (1997) and Pascual and Levin (1999) proposed techniques 

that detect CLSs in spatial models of simple 2-species systems that oscillate, such 

as predator-prey or host-parasite systems (Rand and Wilson 1995, Keeling et al. 

1997, Pascual and Levin 1999, Wilson and Keeling 2000). These techniques 

identify CLSs by distinguishing structural change driven by deterministic 

properties of the system from demographic noise, based on the prediction method 

of attractor reconstruction. The underlying tenet is that if the scale used to sample 

an ecosystem is too small, observations are clouded by noise due to strong 

correlations among individual samples (Durrett and Levin 2000, Wilson and 

Keeling 2000). If the sampling scale is too large, the non-trivial dynamics will be 

averaged out because distant parts of the landscape begin to act independently 

(Keeling et al. 1997, Pascual and Levin 1999, Wilson and Keeling 2000). An 

intermediate scale, the CLS, is the ideal scale at which to sample a complex 

natural ecosystem to maximize the underlying deterministic signal (Wilson and 

Keeling 2000; see Fig 1.1 for illustration). 

While promising, the techniques of Keeling et al. (1997) and Pascual and 

Levin (1999) have been applied only to a small number of very simple oscillatory 

model systems. To estimate the CLSs of natural ecological systems, the methods 
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must produce robust estimates of CLSs for highly complex systems. Ideally, a 

robust measure would produce similar estimates of CLSs for different states of 

the same system as, for example, might arise from observing the system over 

different time periods, or from dissimilar spatial arrangement of recruits on an 

initial landscape. Thus, our aims are: 1) to determine whether the techniques of 

Keeling et al. (1997) and Pascual and Levin (1999) indicate unambiguous length 

scales for systems of a range of complexity; 2) to assess the sensitivity of CLS 

estimates to changes in the initial spatial arrangements of individuals; 3) to 

distinguish whether an ecological system has a single CLS, or several CLSs 

which depend on the identity of the species investigated; and 4) to analyze the 

robustness of both methods of CLS estimation to parameter choices in attractor 

reconstruction (Ellner 1989, Turchin and Taylor 1992). Using spatial models of 

increasing complexity, we compare the two approaches with respect to each aim. 

2.3 Methods to determine CLSs of dynamic oscillating systems 

Both the methods of Keeling et al. (1997) and Pascual and Levin (1999) 

employ the technique of sampling windows of increasing size across a landscape 

and measuring the temporal variance in abundance or density as a function of 

window size (L). Assuming there is a deterministic system underlying the 

dynamics, observations of a single variable in the system over time is used as a 

proxy to illustrate the dynamics of the whole system. For example, in a predator-

prey system, the prey (or resource) density can be measured to illustrate the 

deterministic signal of the system (Rand and Wilson 1995). Both Keeling et al. 

(1997) and Pascual and Levin (1999) use the attractor reconstruction method of 

prediction from nonlinear time series analysis (Takens 1981, Kaplan and Glass 
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1995, Little et al. 1996; Appendix A). In summary, the phase space of the 

ecosystem dynamic is built from time delay coordinates of a single species, which 

act as surrogates for the unobserved variables of the system (Casdagli 1989, 

Abarbanel 1996, Kantz and Schreiber 1997). The trajectories in phase space are 

then used to construct the finite-dimensional attractor in a manner that preserves 

the topological properties of the original state space (Farmer 1982, Sugihara et al. 

1990, Kaplan and Glass 1995, Abarbanel 1996). 

While both methods use attractor reconstruction to estimate CLSs, the 

approaches differ in their measures of prediction error. Keeling et al. (1997) use 

fluctuation analysis to extend an earlier approach (Rand and Wilson 1995) to 

more complex ecosystems. Keeling et al. (1997) apply the attractor prediction 

methods to calculate deviations around the underlying deterministic behavior and 

then to plot error variance (termed 'error X') as a function of window size. For 

sufficiently large windows, the relative variance initially increases at a rate 

proportional to window size, and then plateaus. The window size at which 

variance reaches the plateau, or its first major point of inflection where very little 

increase in error is observed with an increase in scale, is the length scale where 

correlations have decayed and values at different sites behave like independent 

random variables. This scale, where the windows become statistically 

independent and the full spatial dynamics of the system can be observed, is 

identified as the CLS. 

Pascual and Levin's (1999) method is a variant of the approach of Keeling 

et al. (1997) and aims to extract the scale where the determinism to noise ratio is 

maximized. This scale can be smaller than that required for the onset of 

independence defined by Keeling et al. (1997), as this CLS is the minimum 
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window size where the dynamics of the system can be accurately predicted 

(Pascual and Levin 1999). At each window size, the degree of determinism is 

evaluated from the prediction accuracy of the algorithm derived from attractor 

reconstruction. Pascual and Levin (1999) then examine how the prediction error 

of the trajectories changes with spatial scale (Kaplan and Glass 1995). They 

obtain a statistic (termed the prediction r2, or degree of determinism) for each 

window size and the scale that emerges with maximum determinism is the CLS of 

the system. Thus, this scale occurs where the prediction r2  first attains a plateau 

with respect to window size. 

2.3.1 Models 

Models of varying complexity were developed using the Compete@ 

software (Johnson and Seinen 2002), which is a probabilistic individual-based 

system to model spatial competition between sessile colonial organisms. The 

models follow the fates of competing individuals in a 2-dimensional landscape, 

and can demonstrate complex behaviors indicating nonlinear dynamics and spatial 

self-organization (Bascompte and Sole 1995, Johnson 1997, Johnson and Seinen 

2002). Any network topology among S-species is possible, including intransitive 

loops (e.g., where Si > S2, S2> S3, S3 > S i;  with S,> Sy  indicating that species x 

outcompetes and displaces species y), which arise in benthic marine systems 

(Johnson and Seinen 2002). We used models with intransitivities in their network 

topology because they enable persistence stability (sensu Johnson and Mann 

1988) of the system without the need for elaborate model closures and forcing 

functions. We update the system synchronously, and use periodic (torodial) 

boundary conditions. 
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Five model systems were implemented (in order of complexity of spatial 

pattern): symmetric networks of 3 species, 6 species (two different network 

topologies), and 12 species, and a model of the dynamics of the benthos of a coral 

reef (Fig 2.1). The 3-species system is the simplest intransitive loop as described 

above, i.e., a circular network with binary interaction outcomes, so that each 

interaction has one winner and one loser (Fig 2.1a). The first 6-species system 

(denoted 6(1)) involves a network in which each species overgrows one other 

species, in a similar structure to the 3-species loop (S1 > S2, S2 > S3,...,S6 > Si), 

with all other interactions as standoffs. This system forms a self-organized pattern 

of incipient spirals (Fig 2.1b). The second, more complex, 6-species system 

(denoted 6(2)) involves a symmetrical network in which each species overgrows 

and is overgrown by two species (Si > (S2, S3), S2 > (S3, S4),-,S6 > (SI, S2)), 

again with all other interactions as standoffs. In this system, the species spatially 

organize into two distinct groups of 3 species, and, if the model is run for 

sufficient time, either group may eventually dominate, depending on the 

landscape dimensions (Fig 2.1c). The 12-species system has a network structure 

of (S i> (S2, S3, S4), S2 > (S3, S4, S5),...,S12 > (Si, S2, S3)) and organizes into three 

groups of four species, any of which may begin to dominate, depending on 

landscape size and the number of generations (Fig 2.1d). In all four models the 

growth rates of all species are identical. For simplicity, there was no disturbance 

or mortality, and no recruitment of propagules to unoccupied sites. For the 6(2) 

and 12 species models, two scales of self-organization are emergent: that of the 

colony and that of the patch, which is a distinctive group of colonies of several 

species. 

The coral reef model is based on parameters describing the recruitment, 
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mortality, neighbor-specific growth rates, and outcomes of interactions between 

13 benthic phsyiognomic groups (Fig 2.1e). Parameters were estimated from 

observation of a natural reef assemblage on the Great Barrier Reef over 3 years. 

a) 	 b) 
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Figure 2.1. Examples of the  500  x 500 
landscape at generation  10,000  of the (a) 
3-species system, (b) 6-species system 
with each species overgrowing 1 other, 
(c) 6-species system with each species 
overgrowing 2 others, (d) 12-species 
system, and (e) coral reef system. Each 
color represents a different species. The 
different models represent a range of 
complexity of spatial self-organizing. 
Note that some models self-organize at 
several spatial scales. 
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The model accurately predicts the global community structure of the reef from 

local processes (C. Johnson, in prep) and, in this context, is the model that most 

closely simulates a natural system. 

2.3.2 Attractor reconstruction using nonlinear time series analysis 

We ran all five model systems for 10,000 generations on landscapes of 500 

x 500 cells, and sampled landscapes from generation 201 to 10,000 (the first 200 

time steps are ignored while the system self-structures). For each generation, we 

sampled different window sizes L (5 to 495 in steps of 5) within the 500 x 500 

landscape. We determined the density of each species for each window size L x L, 

generating a separate time series for each L. For a selected species, the attractor 

of the system in d dimensional space was estimated for each time series. Using 

the Takens (1981) theorem for attractor reconstruction, we construct from the 

original time series x(t) time series vectors of dimension de, 

X (t ,) = {x(t ,), x(t + r), x(t + 2r),..., x(t + (d — 1)r)) 

where X(t) is the observable state variable at discrete time (4), t is the time delay, 

and de  is the embedding dimension. These points are then assumed to 

approximate the reconstructed attractor. 

The time delay (T) is some multiple of the sampling time, describing how 

lagged in time the coordinates of the attractor will be (Abarbanel 1996). Here, 

was chosen using the first minimum point in the time delayed mutual information 

(MI; see Abarbanel 1996, Kantz and Schreiber 1997, Nichols and Nichols 2001). 
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This technique measures the amount of information shared between two 

measurements a and b. When the amount of information learned from a about b is 

at a minimum, the two time points are taken to be sufficiently independent 

(Abarbanel 1996). Of several possible techniques, we considered MI as the 

preferred approach to determine the time delay because it takes into account 

nonlinear dynamical correlations (Liebert and Schuster 1989). The alternative 

method for choosing the delay with an autocorrelation function was used by 

Pascual and Levin (1999), but has been criticized for being based on linear 

statistics (Nichols and Nichols 2001). 

The embedding dimension (de) is the minimum dimension in phase space 

needed to capture the system dynamics (Farmer 1982). To estimate de, we used 

the false nearest neighbors approach (Kantz and Schreiber 1997). Each point on 

the attractor has some nearest neighbor in Euclidean space. False projections 

occur when the attractor is embedded in too few dimensions, and therefore is 

folded. The embedding dimension required to unfold the attractor is estimated to 

be where the number of false nearest neighbors drops below the level of noise and 

each point's nearest neighbors remain the same when the embedding dimension is 

increased (Liebert et al. 1991, Nichols and Nichols 2001). 

Once T and de  are chosen, the prediction of the attractor must be made. 

Nearby points on the attractor are followed to determine their location after some 

t time steps (Sugihara et al. 1990). To predict x(ti+ T) from x(ti), a list of all the 

states of x previously visited is searched for those closest to x(ti). If the time series 

is long enough, then some past states will be close to the present and the 

prediction will be close to the true state of the system (Kantz and Schreiber 1997). 

Some number of points (k) around the point we are trying to predict is used for 
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the prediction. These points, or nearest neighbors, are chosen based on their 

proximity, and then are averaged to determine the prediction in phase space 

(Kantz and Schreiber 1997). Our approach was to choose a fixed number of k 

nearest neighbors (neighborhoods of fixed mass) and then weight the average of 

the neighbors by inverse distance (Schreiber 1995). The predicted value of each 

point is then the average of the observed values of its k nearest neighbors, and the 

average is weighted by inverse distance so that neighbors further away contribute 

less (Casdagli 1989). 

2.3.3 Determining the robustness of CLS estimates 

To be robust measures, both prediction r2  (Pascual and Levin 1999) and 

error X (Keeling et al. 1997) should indicate no dependence on window size when 

there is no deterministic signal in the dynamics of the system, and no oscillatory 

or self-organizing behavior. In such systems, the spatial and temporal patterns are 

completely random. This result has been shown in Appendix B. 

To determine whether interpretable length scales can be obtained for 

systems of a range of complexity, we derived both the Keeling et al. (1997) and 

Pascual and Levin (1999) CLS estimates for each of the five models. Several 

aspects of robustness were considered: 1) capacity to identify similar length scales 

for different runs of the same system, 2) capacity to identify similar length scales 

from different species in the same system, and 3) for any one model run, 

sensitivity of the CLS estimate to different choices of parameters required for 

attractor reconstruction, namely T, de, and k 



Robustness of Characteristic Length Scale Estimates 23 

2.3.3.1 Robustness to initial conditions 

Each model was begun with a random spatial arrangement of 'recruits' 

(10% total cover) on the initial landscape, with identical amounts of each species. 

For each model system, we assessed the variability of the CLS estimated from the 

dynamics of a given species over 100 runs of the model, each with a different 

initial random configuration. 

2.3.3.2 Robustness to choice of species  

A system's attractor is built with observations on a single species. In theory, 

the choice of species to reconstruct the entire system's attractor is arbitrary, as 

every species reflects the same underlying attractor (Abarbanel 1996). Previously, 

CLSs have been generated from only a single species within the system, 

implicitly assuming that all species will indicate the same CLS (Rand and Wilson 

1995, Keeling et al. 1997, Pascual and Levin 1999). We tested this assumption by 

determining the CLS of each model system using different species in the system. 

2.3.3.3 Robustness to parameters of attractor reconstruction 

The estimated CLS will depend in part on the accuracy of the attractor 

reconstruction, which itself depends on appropriate choices of the reconstruction 

parameters (T, de, and k) (Buzug and Pfister 1992, Kantz and Schreiber 1997). No 

single unambiguous value exists for any of these parameters for a particular 

reconstruction, and indeed different techniques commonly yield different 

estimates (Buzug and Pfister 1992, Schreiber 1995, Kantz and Schreiber 1997, 

Schreiber 1999). Thus, we examined the sensitivity of the estimated CLS to a 
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range of sensible potential choices of these parameters. 

(i) Time delay (t) 

From a mathematical perspective, the choice of delay is arbitrary because 

the data set is assumed to be infinitely precise (Kantz and Schreiber 1997). 

However, for a finite set of data, the choice of t dictates the quality of the 

reconstructed trajectory (Liebert and Schuster 1989). If t is too small, the 

coordinates x(ti) and x(ti  + t) will be almost identical, offering redundant 

information about the state space. Alternatively, if t is too large, the coordinates 

will be almost uncorrelated and therefore their connection to one another is no 

different from random (Abarbanel 1996). The goal is to determine the delay 

where coordinates are independent while preserving their dynamical relationship 

(Nichols and Nichols 2001). However, because identifying the first minimum 

point from the plot of MI vs t is somewhat subjective, we assessed the robustness 

of CLS estimates for a variety of choices of t that might be considered reasonable 

using the MI approach. 

(ii) Embedding dimension (de) 

If an attractor is projected in too few dimensions, the observed orbits will 

overlap themselves and distinct segments on the attractor become confused 

(Abarbanel 1996). The appropriate d, allows the attractor to be sufficiently 

unfolded in space such that this overlap no longer occurs. Over-embedding 

(embedding in too many dimensions) requires larger numbers of coordinates, and 

may enhance the possibility for noise in the dimensions of the embedded space 

where no dynamics are operating (Kennel et al. 1992). The d, is chosen as the 

smallest dimension required to sufficiently unfold the attractor, and is indicated as 
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the first minimum of the false nearest neighbors versus dimension curve. We 

assessed the robustness of a CLS for a range of embedding dimensions around the 

value suggested by the false nearest neighbor method. 

(iii) Number of nearest neighbors (k) 

The number of nearest neighbors (k) is a tunable parameter that influences 

the quality of the prediction. If too few neighbors are picked, then important non-

random information may be missed. If too many are picked, the points may be 

widely spread in space, decreasing the accuracy of the prediction (Kantz and 

Schreiber 1997). We assessed the sensitivity of CLS estimates over a range of 

reasonable choices of k. 

2.3.4 Estimating the CLSs 

In calculating the CLSs, abundances of the selected species were scaled by 

window area to convert each time series of absolute counts to a time series of 

species density. Attractor reconstruction was undertaken as described above for 

particular choices of t, de, and k (k= 10 unless otherwise specified). A small 

amount of noise (measurement error with a given standard deviation) was added 

to the density values, because, with the discrete nature of the cellular models, a 

point can be identical to its nearest neighbor, producing a zero in the denominator 

of the inverse distance weighting. The measures of Keeling et al. (1997) and 

Pascual and Levin (1999) were computed, and error X and prediction r2  spectra 

were plotted respectively. The CLS was estimated as the approximate window 

size, L, at which the spectrum reached a plateau, or where the slope exhibited an 

abrupt shallowing. Ninety-five percent confidence intervals were calculated from 

the mean curve of 100 independent runs of each model. 
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2.4 Results 

For each model system, the CLS determined using the two methods is 

compared. We indicate the length scale determined using the method of Keeling 

et al. (1997) as CLSk, while that of Pascual and Levin (1999) as CLS p . 

2.4.1 Robustness of CLS estimates to initial conditions 

Using the simplest model system (3 species), the two methods produced 

curves of the expected shape with both error X and prediction r2  increasing to a 

plateau as a function of window length, therefore demonstrating a single length 

scale (Fig 2.2a). As expected, CLSk (ca. 60 cells) was slightly larger than CLS p  

(ca. 40 cells; Pascual and Levin 1999), demonstrating the difference between the 

two methods. There was little variation between runs with different initial 

conditions. However, with increasing complexity of the model system, CLSk 

became more difficult to determine and confidence intervals around the error X 

spectrum broadened (Fig 2.2). The error X curves for the 6(1) and 12-species 

systems were not the expected positive asymptotic shape, and were not readily 

interpretable (Fig 2.2b, d). Similarly, based on error X, no length scale could be 

determined for the coral reef model because the curve deviated dramatically from 

the expected shape with no inflection or plateau (Fig 2.2e). Conversely, CLS p  was 

not highly sensitive to changes in initial conditions for any of the models, and 

produced an interpretable curve for the full range of models we examined (Fig 

2.2). 
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Figure 2.2. Average values (solid lines) of error X (Keeling et al. 1997) and 
prediction r2  (Pascual and Levin 1999) and the 95% confidence intervals (dotted 
lines) for a single species, calculated from a Monte Carlo of 100 independent runs 
for (a) 3-species model, (b) 6(1)-species model, (c) 6(2)-species model, (d) 12- 
species model, and (e) coral reef model. CLS estimates are indicated by arrows 
where curves were interpretable. 
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2.4.2 Robustness of CLS estimates to choice of species 

Estimates of CLSk and CLS p  in the 3-species (Fig 2.3) and 6(1) model 

systems were not dependent on species identity. In contrast, curves for the more 

complex model systems were often highly sensitive to the choice of species (Figs 

2.4 — 2.6). CLSk depended heavily on the species used in the attractor 

reconstruction for all three complex model systems. For example, in the 12- 

species system, CLSk ranged from 50 cells for one species to 250 cells for another 

(Fig 2.5a). For error X, species in the same self-organized patch demonstrated 

similar curves (Figs 2.4a, 2.5a,c). However, not only were error X curves 

dissimilar for species from different patches in the same run (compare Figs 2.4a, 

2.5a,c), but the overall shape of the curve, and therefore the CLSk indicated, 

changed markedly among runs for the same species. For example, one species in 

the 12-species system had a CLSk of approximately 80 cells in one run (Fig 2.5a), 

but 300 cells in another (Fig 2.5c). The error X curves from the coral reef model 

displayed little variation from run to run (Fig 2.6a versus 2.6c), but were sensitive 

to species, with only some interpretable spectra. It should be noted, however, that 

when error X curves were interpretable (e.g., see arrow in Fig 2.6a), CLSk was 

larger than the corresponding CLS p, as expected. 

As model complexity increased, prediction r2  curves generally separated 

into groups that corresponded to species within the same spatially self-organized 

patch, but CLS p  of the different groups of species were more similar than 

indicated by the Keeling et al. (1997) method (e.g., Fig 2.4). In the two most 

complex systems, CLS p  was more sensitive to species, with the estimate differing 

by up to 40 cells between groups (Figs 2.5b,d). For the 6(2) and 12-species 
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systems, the curves of prediction r2  for a given species demonstrated multiple 

peaks (Figs 2.4b, 2.5b), indicating the presence of more than one length scale. 

Figure 2.3. CLS curves for 
each species of the 3-species 
model system for the 
measures of (a) Keeling et al. 
(1997) and (b) Pascual and 
Levin (1999) methods. Data 
are for a single run of the 
model. Arrows indicate the 
CLS estimates. 

Figure 2.4. CLS curves for 
each species of the 6(2)-species 
model system for (a) Keeling et 
al. (1997) and (b) Pascual and 
Levin (1999) methods. Species 
spatially self-organize into two 
groups of three, which is 
reflected as two groups of 
curves on the graphs. Data are 
for a single run of the model. 
Potential CLS estimates are 
indicated by arrows where 
curves were interpretable. 
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Figure 2.5. CLS curves for 6 species of the 12-species model system shown from 
two separate runs. For run 1: (a) Keeling et al. (1997) and (b) Pascual and Levin 
(1999) methods and run 2: (c) Keeling et al. (1997) and (d) Pascual and Levin 
(1999). Species organize into 3 groups of 4 on the landscape, and species in the 
same patch on the landscape show similar CLS curves. Primary CLS estimates 
are indicated by arrows where curves were interpretable. Multiple peaks in the 
curves (b) may be evidence of multiple length scales. 

2.4.3 Robustness to choices of time delay in attractor reconstruction 

Changes in time delay of the 3-species system shifted the CLS curves on the 

y-axis, but did not change the magnitude of the CLS estimate for either method 

(Fig 2.7). Similarly, time delay had little effect on estimates of the CLS 

interpreted from curves of the 6(1) and 6(2)-species systems. In the two most 

complex model systems, CLSk was notably less robust, with the shape of the 

curve changing with delay. For the coral reef model in particular, the error X 

curves were ambiguous at best, and varied with the delays (Fig 2.8a). Conversely, 

CLS p  was robust to changes in delay in all of the model systems (Fig 2.7b — 2.8b). 
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Figure 2.6. CLS curves for 6 species groups of the coral reef model 
system shown from two separate runs. For run 1: (a) Keeling et al. (1997) 
and (b) Pascual and Levin (1999) methods and run 2: (c) Keeling et al. 
(1997) and (d) Pascual and Levin (1999). CLS estimates are indicated by 
arrows where curves were interpretable. 

2.4.4 Robustness to choices of embedding dimension in attractor reconstruction 

Changes in embedding dimension of the 3-species and 6(2)-species systems 

shifted the curves on the y-axis, but had no effect on estimates of CLSk or CLS p . 

In the 6(1)-species system, the error X curve shifted from an inverted shape to the 

expected shape with the increase of dimension from 3 to 7 (Fig 2.9a), while CLS p  

was robust to changes in dimension (Fig 2.9b). In the 12-species system, the 

shape of the error X curve remained robust to increasing dimension, but 

interpreting the curves was difficult (Fig 2.10a). For the coral reef system, CLSk 
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Figure 2.8. Robustness of 
CLS curves constructed 
from the dominant species 
group of the coral reef 
model system as a 
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reconstruction from 20 to 
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Figure 2.7. Robustness of 
CLS curves constructed 
from one species of the 3- 
species system as a function 
of time delay. Different 
lines denote the delays 
(shown to the right of each 
curve) used in attractor 
reconstruction with methods 
of (a) Keeling et al. (1997) 
and (b) Pascual and Levin 
(1999). * denotes the delay 
indicated using the mutual 
information method. 
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became interpretable only with overly large embedding dimension (Fig 2.11a). In 

both of these more complex systems, the estimates of CLS p  were reasonably 

robust to changing dimension (Figs 2.10b, 2.11b). 

Figure 2.9. Robustness of 
CLS embedding dimension 
for the 6(1)-species system 
with the methods of (a) 
Keeling et al. (1997) and 
(b) Pascual and Levin 
(1999). * denotes the 
dimension indicated using 
the false nearest neighbors 
method. 

Figure 2.10. Robustness of 
CLS embedding dimension 
(shown to the right of the 
curves) for the 12-species 
system with the methods of 
(a) Keeling et al. (1997) and 
(b) Pascual and Levin 
(1999). * denotes the 
dimension indicated using 
the false nearest neighbors 
method. 
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2.4.5 Robustness to choices of k nearest neighbors in attractor reconstruction 

The number of k nearest neighbors used in reconstruction of the attractor of 

the 3-species system had no effect on estimates of CLSk or CLS p. However, with 

the more complex systems, the error X curves shifted from an inverted shape with 

low numbers of neighbors to a curve of the expected shape with excessively high 

numbers of neighbors (for example, Fig 2.12a). CLS p  for the same systems was 

robust to varying numbers of neighbors in attractor reconstruction (Fig 2.12b). 

Figure 2.11. Robustness of 
CLS embedding dimension 
(shown to the right of the 
curves) for the coral reef 
model system with the 
methods of (a) Keeling et 
al. (1997) and (b) Pascual 
and Levin (1999). * 
denotes the dimension 
indicated using the false 
nearest neighbors method. 
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2.5 Discussion 

2.5.1 General 

The issue of spatial scale is a central theme in ecology (Levin 1992, Levin 

et al. 1997, Tyre et al. 1997, Levin 2000, Wilson and Keeling 2000, Molofsky et 

al. 2002). While investigators have acknowledged the need to address questions at 
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Figure 2.12. Robustness 
of CLS curves for one 
species of the 6(1)- 
species model system 
shown for the (a) 
Keeling et al. (1997) 
and (b) Pascual and 
Levin (1999) methods 
to increasing numbers 
of k nearest neighbors 
from 1 to 3 to 5, and 
then from 10 to 50 in 
increments of 10. 

specific and appropriate scales (Carlile et al. 1989, Wiens 1989, De Roos et al. 

1991), how this "appropriate scale" is identified has often been ambiguous. 

Recent application of methods from nonlinear time series analysis has refined a 

crucial aspect of the study of scale in ecology, allowing a shift in focus from 

observing mean behaviors to extracting the deterministic signal from dynamical 

systems (Rand and Wilson 1995, Keeling et al. 1997, Pascual and Levin 1999). 

Towards an ultimate goal of estimating CLSs of natural systems, here we evaluate 

the robustness of recent methods used to estimate CLSs. 

Both the methods of Keeling et al. (1997) and Pascual and Levin (1999) 

maintained high robustness and low sensitivity to parameter choices in the 

simplest model systems. CLSk was consistently larger than CLS p, indicating the 

need for larger windows to detect the overall spatial dynamic. However, as the 

complexity of the model systems increased, the error X curves of Keeling et al. 
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(1997) became more difficult to interpret. With increasing model complexity, 

error X and therefore CLSk, were increasingly sensitive to changes in initial 

conditions, to the species of focus, and to values of parameters used in attractor 

reconstruction. Error X curves for the 6(1)-species, 12-species and coral reef 

model systems deviated from the expected shape so that interpretations were 

ambiguous, clouding any attempt to assess robustness (Fig 2.8a). 

The behavior of the error X curves for the 6(1)-species system was of 

particular interest. With low embedding dimension, the curve was the inversion of 

the expected shape (Fig 2.9). However, when the dimension was increased to 6 

and above, the curve changed to the expected shape, with a decreasing positive 

slope leading to a plateau (Fig 2.9). Similarly, the shape of the error X curve 

inverted from negative to positive slope between 10 and 20 k nearest neighbors 

(Fig 2.12). The meaning of these inversions is unclear. However, because the 

inflection points of the curves remain consistent whether their slopes increase or 

decrease, they may be tentatively regarded as the system's CLS. 

In contrast, the Pascual and Levin (1999) method provided an interpretable 

measure of the CLS with increasing model complexity. Prediction r2  of all model 

systems maintained an unambiguous shape with changes in attractor 

reconstruction parameters, and with varying initial conditions. Thus, evaluation of 

prediction r2  using the approach of Pascual and Levin (1999) appears to be the 

more robust means of estimating CLSs of complex ecological systems. 

The reason for the ambiguity and, in some cases, failure (Fig 2.8a) of CLSk 

is unclear. Error X may be more susceptible to random noise than prediction r2 . 

Alternatively, error X may be simply more sensitive to a system's complexity 

than prediction r2 . This raises the question of how much data would be required 
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for reliable CLS estimates to be obtained using the error X measure. Further 

research may demonstrate that the sensitivity of error X reveals useful spatial 

information for other applications, such as identifying features of the spatial 

pattern, but we conclude that it is inadequate for estimating CLSs of complex 

systems. 

2.5.2 Do different species indicate different length scales? 

Estimates of CLSp  showed dependence on the species used in attractor 

reconstruction in the more complex models. Differences among species were 

most notable in systems that were strongly spatially self-organizing, but these 

differences were not related to abundances. In the 12-species model, the curves 

for the species form three distinct groups, each with a different CLS p  (Fig 2.5). 

While all species in this model are topologically equivalent with respect to 

network structure, the system spatially self-organizes into 3 distinct patch types, 

each with 4 species. Because species within patches are more likely to interact 

with each other than with species from other patches, actual connectivity is higher 

among species within patches than it is among species between patches, despite 

topological symmetry in the interaction network. 

Not surprisingly, highly connected species with tightly coupled dynamics 

(i.e., within patches) indicate similar length scales, while species whose dynamics 

are more wealdy linked (because they are spatially separated in different patches) 

can manifest dissimilar length scales, even though they have identical 'life 

history' types. In our model examples (with the exception of the coral reef 

system), differential connectivity among species arises through spatial self-

organizing. We anticipate that other factors which influence species' connectivity, 
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such as the topology of food webs in which some groups of species are tightly 

coupled trophically while others manifest low connectivity (O'Neill et al. 1986, 

Johnson et al. 1995), will have a similar effect. Because the approach is based on 

reconstruction of deterministic dynamics, species that are poorly linked 

dynamically can indicate different length scales for their different behaviors. 

Thus, the spatially separated and therefore loosely connected species in the 12- 

species model produce different estimates of CLS p  (Fig 2.5), while the highly 

(and equivalently) connected species in the 3 and 6(1)-species models produce 

almost identical estimates of CLS p  (Fig 2.3). In the coral reef model, different 

species provide similar but slightly different CLS p  estimates (Fig 2.6). Despite 

notable differences among species in their recruitment, growth, and mortality, 

marked differences in CLS p  among species in this model do not arise because 

species do not self-organize into distinct patches. The system is maximally 

connected with each species competing with all others for space (Johnson and 

Seinen 2002). However, the species are not equally connected because they have 

different interaction strengths and neighbor specific growth rates, which may be 

the reason for the divergence of one species in particular (Fig 2.6b). Because CLS 

estimates reflect the strength of dynamical connectivity among species, we predict 

that for complex real systems, different species or functional groups which are 

loosely connected may indicate dissimilar length scales (see Chapter 6). 

2.5.3 Multiple length scales and spatial pattern 

For complex model systems, the technique of Pascual and Levin (1999) 

may detect several different length scales within the system. For example, the 

prediction r2  curve of a single group in the 6(2)-system (Fig 2.4b) displays several 
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critical points, which we interpret as multiple length scales. The smallest length 

scale, at approximately 60 cells (the first peak in the curve), remains consistent 

among runs. This 'primary scale' is the scale at which the local dynamic is best 

predicted, and it reflects the scale of interaction between colonies of different 

species within patches. Scales larger than the primary scale likely reflect the 

system's emergent dynamics resulting from the interactions between spatially 

distinct patches of species, which vary between runs. Note that while any single 

run often demonstrates several length scales, the average prediction r2  curve for a 

given species in the 6(2)-species model indicated only a single CLS, likely due to 

variations in its shape between runs (Fig 2.2c). The widening of the 95% 

confidence intervals around the average curve suggests that the second peaks are 

absorbed as noise (Fig 2.2c). We suggest that the secondary peaks that we 

interpret to indicate larger length scales are more variable (e.g., Fig 2.5b versus 

2.5d) than the primary CLS because the higher level emergent dynamics of the 

system are unpredictable, with the shapes and sizes of patches changing between 

runs. Thus, for any one species, we might expect two CLSs reflecting: 

1.) interactions within patches, influenced by individual species 

abundances, colony size, and the nature of local interactions between 

species within patches. We expect this CLS to be larger than the mean 

colony size but smaller than the patch size. For example, for the 6(2)- 

system on a 500 x 500 landscape, the size of individual colonies is 

approximately 20 x 20 cells, while the size of the patches of 3 species is 

about 200 x 200 cells. The primary CLS p  of this system is 

approximately 60 cells (Fig 2.4b). 

2.) the emergent dynamics among patches. This CLS is larger than the 
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mean patch size. In the 6(2)-system, the scales larger than the primary 

CLSp  are greater than 200 cells (Fig 2.4b). 

2.5.4 Do CLSs have a future in ecology? 

While research of the robustness of methods to define CLSs is an important 

step towards their application to natural systems, several conceptual and other 

theoretical questions arise. Does a system have a single length scale or are there 

many? Our results indicate that different species can display dissimilar CLSs if 

their dynamics are weakly linked, and that the same species may also display 

several length scales if its abundance is determined by both local interactions and 

emergent behavior at larger scales. This reflects that in natural systems (and, by 

inference, complex model systems) some species interactions will function on 

different scales (Levin 2000, Bishop et al. 2002). Teasing apart the factors that 

underpin different length scales in dynamic ecological systems will improve the 

potential for application of this technique to real ecosystems. Regardless, the use 

of nonlinear analysis to determine the length scale or scales of a system will allow 

more objective scaling decisions to be made. 

That a single species may demonstrate several length scales has important 

implications for the application of these techniques to applied scaling issues in 

ecology. For our model systems, where more than one length scale was indicated 

by the prediction r2  spectra, the smallest or primary length scale was 

unambiguous and consistent between replicate runs. This is the optimum scale at 

which behaviors, as a result of local deterministic dynamics can be observed, and 

would be a useful scale for monitoring particular components such as key 

indicator species. The larger length scales were elusive, indicative of the variable 
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manifestation of higher-level emergent behaviors among runs (Bascompte and 

Sole 1995). When CLSs larger than the primary CLS were apparent for a given 

system, the magnitudes fell within a consistent range between runs. These larger 

CLSs may prove to be useful towards objectively defining minimum sizes for 

conservation areas and management units in harvested systems. 

While the robustness of the Pascual and Levin (1999) approach indicates it is 

promising in assessing characteristic length scales in natural systems, the analysis 

requires spatially resolved data over long time series (thousands of generations), 

which are difficult, if not impossible, to obtain for natural ecological systems. The 

imperative is to modify this method to reduce data requirements while 

maintaining the integrity of the estimate. With new developments of the Pascual 

and Levin (1999) approach that require much smaller quantities of data (Trebilco 

honours thesis 2002, Habeeb et al. 2005 (see Appendix C)), estimating CLSs of 

natural ecological systems now appears feasible. Our next focus will be to assess 

what CLSs inform us about natural systems, and to evaluate their utility in 

providing objective estimates for scaling issues in applied ecology. 
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Chapter 3 

Natural scales of real ecosystems: Choosing optimal spatial scales for 

observation 

3.1 Abstract 

Choosing an appropriate spatial scale to observe an ecosystem is a universal 

challenge for ecologists, largely because the scale used to view the system 

strongly influences the patterns and processes that are observed. Characteristic 

length scales (CLSs) are the scales at which the non-trivial deterministic signal of 

a system's temporal dynamic can be best observed, while taking into account 

stochastic demographic fluctuations and inherent nonlinear behaviors in the 

system dynamic. However, thus far, CLSs have been identified only for model 

systems. Here, for the first time, we apply a modified technique to detect CLSs of 

a natural system. This new technique requires much less information of the 

temporal dynamics than does the original approach used on model systems. We 

created a short time series of three digital maps, each three months apart, for a 

marine fouling community in Tasmania, Australia, and analyzed these maps for 

the CLSs. The new technique provided length scales for ten different species 

groups, indicating the adequacy of this method for objectively determining 

optimal scales of observation. For nine out of the ten species groups, the primary 

CLS was 0.30 — 0.40 m. Species from several phyla with dissimilar life histories 

provided remarkably similar length scales, confirming the system-level nature of 

the estimate. To assess whether CLS estimates are sensitive to particular site- 
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specific characteristics, we compared these field-based results to those derived 

from a spatially explicit individual-based model of a similar, nearby fouling 

community. The average CLS of the model community was strikingly similar 

(0.35 — 0.45 m) to that of the natural community, suggesting that dynamical 

trends of like systems may be best observed on similar scales. Secondary length 

scales, larger than the initial CLS and indicative of higher-level emergent 

properties of the system, were indicated by several species in the natural system 

but not in the model system. These scales reflect the more complex emergent 

dynamics of the system and so are less likely to be identified than the primary 

length scales. This new technique may allow definition of optimal scales of 

observation not only in ecological experiments, but also in monitoring studies for 

conservation, natural resource management, and environmental impact 

assessment. 

3.2 Introduction 

Choosing an appropriate spatial scale of observation is a universal challenge 

for ecologists. Indeed, the spatial scale at which a system should be measured has 

long been identified as a "central problem in ecology" (Levin 1992). Measures of 

landscape diversity and pattern, for example, were highly sensitive to the size of 

sampling units, even when the variation in scale was much less than an order of 

magnitude (Turner et al 1989, Qi and Wu 1996). How, then, should the sampling 

scale be chosen? Most researchers assign the sampling scale intuitively, often 

depending on how the species or community in question is perceived, or the 

sampling scale is set largely by logistic constraints (Levin 1992, Denny et al. 

2004). However, if the sampling scale is inappropriate for the ecological system 
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being studied, the observed variability may be misleading (Wiens 1989). The 

effect of the chosen spatial scale on patterns and processes observed is now well 

documented (e.g., Levin 1992 and references therein, Bissonette 1997, Chave and 

Levin 2003), so that a widespread dilemma is how to choose objectively a 

sampling scale or 'window size' that best detects biologically meaningful trends 

while minimizing noise (Wiens 1989, Carlile et al. 1989, Tyre et al. 1997, 

Keeling et al. 1997, Wilson and Keeling 2000). Thus, a key goal in ecology is to 

objectively determine optimal scales of observation while accounting for the 

complexities of nonlinear dynamics and spatial variability (Keeling et al. 1997, 

Pascual and Levin 1999, Wilson and Keeling 2000, Lundquist and Sommerfeld 

2002, Petrovskii et al. 2003). The issue of observational scale is relevant to levels 

of biological organization from populations of particular species to the dynamics 

of entire ecosystems (Pascual and Levin 1999). 

Recent studies have shown that simple models of ecological systems that 

exhibit demographic stochasticity and inherent nonlinear behaviors demonstrate a 

natural spatial scale at which the non-trivial deterministic signal of the system's 

temporal dynamic can be best observed (Pascual and Levin 1999). This spatial 

scale is termed the natural or characteristic length scale (CLS) of the system. An 

estimate of the characteristic length scale is derived from the nonlinear time series 

technique of attractor reconstruction (Takens 1981) applied to highly spatially 

resolved density data for a single species in the system. Thus, this system-level 

measure of scale is obtained by reconstructing the dynamic of the entire system in 

phase space based on information of the dynamics at the species level. In theory, 

at the CLS, deterministic information is maximized with respect to stochastic 

fluctuations (Rand and Wilson 1995), thereby providing an estimate of the 
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optimal scale at which to observe the ecosystem. 

Characteristic length scales based on the method used in Pascual and Levin 

(1999) have been shown to be robust to parameters chosen in attractor 

reconstruction, to the complexity of the model system used to simulate the data 

and, in most cases, to the species in the model chosen for the time series analysis 

(Chapter 2, Habeeb et al. 2005). This level of robustness indicates the potential 

for this kind of metric to be a widely useful tool in ecology. However, studies of 

characteristic length scales have until now been theoretical, based only on data 

generated from models (Rand and Wilson 1995, Keeling et al. 1997, Pascual and 

Levin 1999, Petrovskii et al. 2003, Habeeb et al. 2005). Hence, the technique 

generally relies on extremely long time series data (from models) unlikely to be 

available for any natural system (Marcos-Nikolaus et al. 2002). Habeeb et al. 

(2005) modified Pascual and Levin's (1999) method to derive CLSs from very 

short time series of highly spatially resolved 'maps' of species abundances (see 

Appendix C). Their approach uses both temporal and spatial information (as in 

Bascompte and Sole 1995), and largely substitutes replication in space for 

replication in time. This drastic reduction in data requirements enables 

examination of real ecosystems for CLSs. 

Here we apply the modified CLS technique to a natural system for the first 

time, examining whether interpretable CLSs can be derived from observations of 

a marine subtidal epibenthic community. If natural systems display interpretable 

CLSs, then application of the technique should help to objectively determine 

optimal scales of observation not only for ecological experiments, but also for 

monitoring studies for conservation, natural resource management, and 

environmental impact assessment (Lewis et al. 1996, Pressey and Logan 1998, 
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Schwartz 1999). Taker's' (1981) theory of attractor reconstruction suggests that 

the dynamical information of a single species within a multi-species system 

should act as a substitute for the unmeasured whole-system dynamic, therefore in 

this context, implying that each species will reflect the same CLS. 

However, ecologists might intuitively expect that different species with distinct 

behaviors and life history strategies may operate on different spatial scales. 

Therefore, we also compare the CLS indicated by 10 different species 

representing several phyla and a range of life histories. 

To assess whether CLS estimates are sensitive to particular site-specific 

characteristics, we compare the results based on field data to those derived from a 

spatially explicit individual-based model of a similar fouling community (Dunstan 

and Johnson 2005). The model generates landscapes based on empirically 

determined parameters measured from a similar fouling community developed on 

a jetty wall, also on the east coast of Tasmania. Notably, the model accurately 

predicts the structure and dynamics of the real community (Dunstan and Johnson 

2005). We determine the CLSs of 13 species within this model community and 

compare these estimates to those from the real community we studied. 

Given the novelty of the CLS metric, we also attempt to place the measure in 

a broader ecological context by comparing it to other more established and better 

understood ecological scaling measures. This comparison should also help to 

illuminate what, if anything, the CLS might reveal about the broader ecological 

properties of a system. We chose conceptually simple spatial scales for 

comparison, namely the region of asymptote in species-area curves (Conner and 

McCoy 1979) and, with reference to patterns of species abundance, scales at 

which troughs and peaks are evident in the relationship between variance-to-mean 
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ratios and size of the sampling unit. Interestingly, the spatial scale of the 

asymptote in species-area curves was initially proposed as the appropriate scale of 

observation of communities, with a motivation to capture most species in each 

sampling unit (Greig-Smith 1964). Variance-to-mean ratio spectra have been used 

to describe patterns of scale dependent aggregation in species distributions 

(Pielou 1977). 

3.3 Methods 

3.3.1 Estimating the CLS 

Because sufficiently detailed spatial data are rarely available in a long time 

series, Habeeb et al. (2005) modified the original nonlinear time series technique 

as outlined by Pascual and Levin (1999) to enable its application to real 

ecosystems (Appendix C). By largely substituting space for time, CLSs can be 

estimated with a series of as few as three highly resolved landscapes through 

time, rather than requiring tens of thousands of time steps (Habeeb et al. 2005). 

This modified technique is based on the original 'prediction r2 ' variance spectrum 

proposed by Pascual and Levin (1999), but the method of attractor reconstruction 

uses observations of short time series at many points in space rather than a single 

long time series. We used this modified method to evaluate whether a natural 

characteristic length scale emerges from a real system. 

3.3.2 The empirical system 

We chose a marine fouling community as the study system because it 

supports a wide diversity of species/phyla, it has relatively rapid dynamics, and it 

is spatially tractable in two dimensions (Dunstan and Johnson 2005). 

Furthermore, it is a suitable 'model' where the whole system can be captured 
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accurately on a relatively small areal extent (Dunstan and Johnson 2004, 2005). A 

3,0 m x 3.3 m permanent quadrat was established at 7— 10 m depth on a vertical 

rock wall at the entrance to Cathedral Cave in Waterfall Bay, Tasmania, Australia 

(43°3'43S, 147°57'1E). This dolerite wall has low topographic complexity, and 

virtually complete cover, predominantly of sessile invertebrates but with some 

algae. The wall supported 140 species, but we selected for analysis ten distinct 

species/functional groups, representing a diversity of abundances and life 

histories (Fig 3.1). The species groups included five species of sponges 

(specimens lodged with the Tasmanian Museum; K430, K431, K432, K433), one 

group of arborescent bryozoans, an ascidian, a cnidarian, and two groups of algae 

(Table 3.1), with an overall average colony size of 390 mm2  ± 10 mm2 . The 

permanent quadrat was partitioned into a grid of ninety 0.33 m x 0.33 m squares. 

Digital photographs were taken of each square at three-month intervals, and 

digital maps with a resolution of 10 mm pixels were created of the entire wall at 

each point in time. Because a three-month interval was adequate to detect change 

in this community (21% decrease in average colony size after the first three 

months), we produced maps for three consecutive three-month time steps. Each 

map consisted of a grid of 83,904 pixels, and the presence and absence of the ten 

species groups was examined by hand for every pixel. The resulting matrices 

(November 2002, February 2003, and May 2003) were used to reconstruct the 

system's attractor. Separate reconstructions were undertaken for each species, 

from which variance spectra were generated (Pascual and Levin 1999, Habeeb et 

al. 2005) to determine length scales. To describe the ten species in context of the 

entire community, their rank was identified on a rank abundance curve generated 

with all 140 species. 
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3.3.3 A model community 

The individual-based spatial model developed by Dunstan and Johnson 

(2005) was used to generate data similar to those collected on the Cathedral Cave 

wall. One hundred Monte Carlo iterations were run (using 600 x 600 landscapes) 

Species Identifications 

Sycon sp. 

Calthropellidae 
sp. 

Geodiidae sp. 

Clionidae sp. 

Microcionidae 
sp. 

Arborescent bryozoans 
(Comucopina grandis 

and Orthoscuticella 
ventricosa) 

Didemnum sp. 

Parazoanthus sp. 

Crustose coralline 
red algae 

Foliose red algae 

Figure 3.1. Example photos of the ten species found within the Cathedral 
Cave fouling community and selected for use to estimate length scales of 
the system. Most sponge species were only taxonomically identified to the 
family level, as these particular species are unnamed, but species could 
nonetheless be unambiguously identified from the high-resolution 
photographs taken of the wall. 



Natural scales of real ecosystems 50 

for 5000 time steps, where each time step represented one day. This model was 

used to simulate the dynamics of a shallow water fouling community developed 

on a jetty wall ca. 30 km to the north of Cathedral Cave. The model closely 

captures the community structure of the jetty fouling community at 3900 time 

steps, representing the age of the jetty (Dunstan and Johnson 2005). Thus, we 

analyzed community assemblages at three time steps, approximately one year 

apart, that closely replicate the natural system (times 3510, 3870, and 4230). 

While the Cathedral Cave system changed more rapidly, a one-year interval was 

necessary to capture adequate change in this particular system. The three frames 

were sampled for each of 13 species representing a range of abundances and life 

histories comprising seven sponges, three bryozoans, two ascidians and one 

cnidarian (Table 3.2). 

3.3.4 Species -area curves and variance -to-mean spectra 

A species-area curve was constructed from a detailed map of all species 

present on the cave wall in May 2003. The number of species present in randomly 

placed 'quadrats' of different sizes was counted, and the region of asymptote 

identified from the resultant species-area curve. One hundred such curves were 

generated, and the mean of these curves was presented as the species-area curve. 

The abundance of each of the ten selected species was determined in 100 

randomly selected 'quadrats' of varying size from 0.05 to 0.50 m in length (i.e., 

0.0025 — 0.25 m2  in area), and the variance-to-mean ratio was plotted against the 

linear scale (4area) of the quadrat. 
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3.4 Results 

3.4.1 Estimating CLSs of a real fouling community 

CLSs were estimated by visual inspection of prediction r2  variance spectra 

determined for each target species on the cave wall (Fig 3.2). Every species 

analyzed provided prediction r2  spectra from which length scales could be 

determined, though the spectrum for species 10 was somewhat ambiguous. Nine 

of the ten species demonstrated primary length scales within the range of 0.20 - 

0.45 m (Table 3.1), while the CLS estimated for Didemnum sp. was larger at 0.60 

- 0.70 m. 

0.0 	0.5 	1.0 	1.5 	0.0 	0.5 	1.0 	1.5 

Window length L (m) 

Figure 3.2. Prediction r2  as a function of window length L for the ten species examined on the 
wall of Cathedral Cave. Solid arrows indicate approximate CLSs for each species, while open 
arrows indicate likely secondary CLSs. Numbers 1 - 10 refer to species: (1) Sycon sp., (2) 
Calthropellidae sp., (3) Geodiidae sp., (4) Clionidae sp., (5) Microcionidae sp., (6) Arborescent 
bryozoans Cornucopina grandis and Orthoscuticella ventricosa, (7) Didemnum sp., (8) 
Parazoanthus sp., (9) non-geniculate Crustose coralline red algae, (10) Foliose red algae. 
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The average CLS range was approximately 0.30 — 0.40 m. For some 

spectra secondary length scales were indicated by a second peak and subsequent 

plateau of prediction r2  (Fig 3.2, open arrows). These secondary CLSs averaged 

1.1 — 1.2 m, or almost 3 times the average primary CLS (Table 3.1). 

Approximately 140 species were identified within the Cathedral Cave 

fouling community. The rank abundance plot from map of the wall in May 2003 

(Fig 3.3) indicates that nine of the ten species selected were among the top 15 

most abundant species on the wall, with five of these achieving 1 — 3% cover, and 

the other five attaining 3 — 10% cover. One selected species of sponge (Clionidae 

sp.) was relatively rare (with a rank of 77 out of 140), covering < 1% of the 

available area. 

Taxonomic Identification Primary Secondary 
group CLS range CLS range 

(m) (m) 
Sponges Sycon sp. 0.20-0.30 0.95-1.05 

Calthropellidae sp. 0.30-0.40 1.15-1.25 

Geodiidae sp. 0.30-0.40 0.95-1.05 

Clionidae sp. 0.25-0.35 

Microcionidae sp. 0.25-0.35 1.35-1.45 

Bryozoans Arborescent bryozoans 0.35-0.45 
(Comucopina grandis and 
Orthoscuticella ventricosa) 

Ascidians Didemnum sp. 0.60-0.70 

Cnidarians Parazoanthus sp. 0.25-0.35 

Algae Crustose coralline red algae 0.25-0.35 1.20-1.30 

Foliose red algae 0.20-0.30 1.05-1.15 

Mean 0.30-0.40 1.10-1.20 

Table 3.1. Estimates of the system CLS based on analysis of ten different 
species groups of the fouling community at Cathedral cave. Secondary 
CLSs are included where applicable. 
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Mean % cover 
Species 	Identification 	(Nov 2002-May2003) 

1 	Sycon sp. 	 2.0 
2 	Calthropellidae sp. 	3.7 
3 	Geodiidae sp. 	 1.6 
4 	Clionidae sp. 	 0.90 
5 	Microcionidae sp. 	 1.7 
6 	Arborescent bryozoans 	9.2 

(Comucopina grandis and 
Orthoscuticella ventricosa) 

7 Didemnum sp. 	 6.1 
8 	Parazoanthus sp. 	6.7 
9 	Crustose coralline red algae 2.1 
10 Foliose red algae 	 4.4 

Figure 3.3. Rank abundance of all species found in the Cathedral Cave fouling 
community. Numbers to the right of the curve denote the ten species groups 
(identified by star symbols) chosen for CLS estimation, and correspond to the 
species identifications in the table. The table indicates mean percentage cover 
of the selected 10 species in the study area over three seasons (n = 3). 

3.4.2 Estimating CLSs of a model fouling community 

Mean prediction r2  curves from 100 runs of the spatial model were plotted 

for each species, bounded by 95% confidence intervals (Fig 3.4). CLSs were 

estimated from the curves where possible (Table 3.2). For 12 of the 13 species in 

the model, prediction r2  rapidly increased with scale before reaching a plateau. 

Though some curves demonstrated gradual plateaus that were challenging to 

interpret (e.g. Fig 3.4 K), the CLSs estimated for each species consistently ranged 
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Window length L (m) 

Figure 3.4. Prediction r2  as a function of window length L for the 13 
species of the model fouling community. Solid lines indicate mean curves 
of 100 Monte Carlo runs, and dashed lines indicate the 95% confidence 
intervals. Letters A - M refer to species: (A) Halichondriidae spl, (B) 
Halichondriidae sp2, (C) Halichondriidae sp3, (D) Microcionidae sp., (E) 
Leucetiidae spl, (F) Leucetiidae sp2, (G) Phloeodictyidae sp., (H) 
Watersipora torquata, (I) Celleporaria sp., (J) Parasmittina sp., (K) 
Didemnum sp., (L) Botrylloides leachi, (M) Cognactis australis. 
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from 0.25 m to 0.70 m. The mean prediction r2  curve for Halichondriidae spl. 

reached a plateau early and demonstrated exceptionally wide confidence intervals. 

These attributes precluded the determination of an accurate estimate of scale for 

this species. The average CLS range of all 13 species from the model was 

approximately 0.35 — 0.45 m. The CLS range for Didemnum sp., indicated as z 

0.60 — 0.70 m for the cave wall fouling community, was estimated at 0.55 — 0.65 

m in the model community. 

Taxonomic 	Identification 	 Primary CLS 
group 	 range (m) 

Sponges 	Halichondriidae sp1 	0.10-0.20? 
Halichondriidae sp2 	0.25-0.35 

Halichondriidae sp3 	0.35-0.45 

Microcionidae sp. 	 0.45-0.55 

Leucetiidae sp1 	 0.40-0.50 

Leucetiidae sp2 	 0.35-0.45 

Phloeodictyidae sp. 	0.45-0.55 

Bryozoans 	Watersipora torquata 	0.40-0.50 

Celleporaria sp. 	0.60-0.70 

Parasmittina sp. 	0.45-0.55 

Ascidians 	Didemnum sp. 	 0.55-0.65 

Bottylloides leachi 	0.25-0.35 

Cnidarians 	Corynactis australis 	0.25-0.35 

Mean O. 35-0.45 

Table 3.2. CLS estimates obtained from analysis of 13 species groups of the 
model fouling community. (?) indicates species where interpretation of the 
prediction r2  spectrum is ambiguous. Secondary CLSs are included where 
applicable. 
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3.4.3 Comparison of CLS with other scales 

The mean species-area curve for the fouling community was calculated 

from 100 curve estimates, with means and standard errors plotted (Fig 3.5). The 

average curve began to flatten at 8 m2 , indicating a length scale of 2.8 m. In 

contrast, the average CLS for the fouling community occurred at an area of 

approximately 0.12 m2  (i.e., CLS 0.35 m), which captures only 35 (or 25%) of 

the total species present within the community (Fig 3.5 inset). 

Figure 3.5. Species-area curve for the Cathedral Cave fouling community. 
The curve shows the mean of 100 curves generated from placing square 
sampling areas (ranging 0.9 — 8.1 m 2) randomly on the landscape, (bars 
indicate standard error). (Inset) Enlarged section of the species-area curve, 
with the mean CLS estimate indicated (0.35 m x 0.35 m in area). Sampling 
at the scale of the CLS, on average only 35 out of 140 species detected on 
the wall will be captured. 
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The abundance of each species within windows of increasing size was 

identified and the variance-to-mean ratio for 100 samples positioned randomly on 

the rock wall was calculated and plotted against window length (Fig 3.6). Curves 

attain their maxima approximately at the CLS (ca. 0.35 m). 

0 	0.1 	0.2 	0.3 
	

0.4 
	

0.5 
Window length (m) 

Figure 3.6. Log of the variance-to-mean ratio of abundance of the ten 
target species groups at Cathedral Cave plotted as a function of window 
length. Mean abundances of the species groups were recorded for 100 
randomly positioned windows of each size. 
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3.5 Discussion 

3.5.1 Length scales of a natural system 

This study marks the first attempt to apply nonlinear time series analysis 

to detect the characteristic length scales of a natural ecological system. 

Determining the characteristic length scale of a system using this approach 

objectively indicates the scale of observation where the deterministic dynamics of 

the system are maximized with respect to stochastic fluctuations. Thus, using 

sampling units at this scale yields the most ecologically meaningful information 

about the trends of the system. 

Our results indicate that the technique of substituting spatial replication 

for temporal replication in attractor reconstruction (Habeeb et al. 2005) yields 

interpretable prediction r2  spectra for most species, and thus length scales, for a 

natural system. Using this short time series method, we successfully determined 

the length scale of the system from each of the 10 species (or species groups) on a 

rock wall fouling community. The method provided interpretable spectra for 9 out 

of 10 target species with only a fraction of the data that are required for the 

original technique (Pascual and Levin 1999). One species provided a slightly 

ambiguous curve (species 10, Fig 3.2), but when analyzed in association with 

other species' curves, the small change in prediction r2  at the scale of 

approximately 0.25 m could be interpreted as its CLS. 

Highly resolved photographs from only three time steps were sufficient to 

provide estimates of the CLS, which for this system was of the order of 0.30 — 

0.40 m. Notably, a relatively rare species (a clionid sponge) indicated similar 

length scales to the most abundant species in this system (e.g. foliose red algae 

and Sycon sp., Fig 3.3). Thus, the deterministic dynamics of the system would be 
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most evident using a quadrat size of ca. 0.35 x 0.35 m z,  0.12 m2 . Sampling the 

system with smaller quadrats would potentially result in data inundated with 

noise, while sampling with larger units would provide data with dampened 

oscillations, unlikely to capture the intrinsic dynamic of the system (Pascual et al. 

2001). When monitoring system trends is the goal, the optimal sampling scale 

defined by the CLS should be used for the aggregation of data. 

Curves of some species indicated the presence of a secondary length scale 

as a second peak in the prediction r2  spectrum (Fig 3.2, open arrows, Table 3.1). 

Secondary length scales, larger than the primary or smallest length scale, have 

previously been detected in model systems, and are interpreted as the scales of 

emergent dynamics reflecting interactions at the patch level within the system 

(Habeeb et al. 2005). Although the likelihood of identifying the scale(s) of higher-

level emergent dynamics is greater when using the long time series method of 

attractor reconstruction (Habeeb et al. 2005), 60% of the species (most species of 

sponge and both algal groups) displayed these larger scales. Secondary CLSs 

ranged from ca. 1.0— 1.4 m, with an average length of ca. 1.1 — 1.2 m (z ,  1.3 m2  in 

area). Most second peaks were 3 —4 times the scales of the first peaks. When 

detectable, these secondary CLSs may be useful indicators of the dynamics at the 

patch level. The only sponge which did not indicate a secondary CLS was the 

clionid. This particular sponge was relatively rare on the cave wall (Fig 3.3), 

thereby providing little opportunity for patch level emergent dynamics. 

It is not sensible to discuss whether primary or secondary length scales are 

more 'valid,' useful, or reliable. They indicate different things, namely the scales 

at which local and emergent dynamics are best observed. Because patch level 

emergent phenomena are more variable and less predictable than local dynamics, 
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secondary length scales may not always be evident. The capacity to detect the 

scales of the patch level emergent dynamics is significant, since it provides a 

more complete picture of spatial complexity, such as that manifest as spatial self-

organizing (Johnson 1997). 

3.5.2 Comparison of the CLS with other scaling measures 

Because the length scale is such a new measure, it is useful to compare it 

to other important scales that capture essential information about structure and 

dynamics of ecosystems, such as the scale of asymptote of a species-area curve, 

and the scales of change in variance-to-mean ratios of species' abundances. If the 

community at Cathedral Cave is sampled at the optimal quadrat size as estimated 

by CLSs, on average approximately 25% of the entire species complement on the 

wall will be captured in a single sampling unit (Fig 3.5). The area where all 

species are captured (ca. <3 m in length) is considerably larger than that 

indicated by the CLS (ca. 0.35 m in length) in this case. The optimal scale at 

which to observe the community dynamics of this system is approximately 100 

fold smaller in area than the scale at which most species in the system are 

captured. If this relationship holds true for all systems, it would impact the 

sampling scales of empirical experiments conducted to assess functional 

relationships within ecosystems, as results obtained are often scale-dependent 

(Weitz and Rothman 2003). 

For example, sampling units of experiments addressing the 'diversity-

stability debate' (McCann 2000) should be determined carefully, because our 

results indicate that the experiments observing a system's stability would need to 

be carried out on a much smaller spatial scale (almost 100 fold smaller in area) 

than the scale necessary to detect the entire suite of species present in the 
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community. Indeed, extrapolating results from microcosm experiments testing 

multitrophic stability to ecosystem scale diversity, for example, may be 

ambitious, and a particular CLS may not be appropriate for such cross-scale 

phenomena. Instead, investigations that actually link mechanistic, small-scale 

phenomena to higher-scale stabilizing processes will likely be necessary. 

Even with high replication of sampling units taken at the CLS, it is 

unlikely that all species in this particular system would be detected, suggesting 

that "complete" knowledge of the system is not required for detecting trends. 

Interestingly, sampling at an area dictated by the average secondary length scale 

(ca. 1.3 m2) would capture approximately 100 (out of 140) species within this 

system. Even at length scales indicating higher-level emergent dynamics, not all 

species would be captured. 

The colonies living on this particular cave wall are relatively small 

(average colony area 390 mm 2  ± 10 mm2), with a maximum colony area (0.04 m 2) 

still well below the area estimated by the CLS (0.12 m 2). The optimal scale to 

observe the trends of this densely packed fouling community is thus between the 

maximum colony area and the scale needed to detect the majority of the species 

present (8.0 m 2) as determined by the species-area curve. Further research on 

different systems is necessary to elucidate the relationship between colony size, 

species packing density (or richness), and the CLS, but we would expect that non-

sessile communities will prove to have larger CLSs due to increased colony sizes, 

larger inhabited areas, and decreased species packing densities. Indeed, models of 

predator-prey systems have shown that as mobility of organisms within a 

community increases, the magnitude of the characteristic length scale also 

increases (De Roos et al. 1991). 
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The variance-to-mean ratio is the basis of several indices to describe the 

intensity of spatial patterns of aggregation (Pielou 1977). For the Cathedral Cave 

community, the variance-to-mean ratio was > 1 for all species across all window 

sizes, suggesting clumped distributions. As window length increased from 0.05 m 

to 0.50 m, the ratio approached its maximum for all species, with most species 

reaching a plateau at, or slightly smaller than, the CLS (approximately 0.35 m, 

Fig 3.6). Thus, though the variance-to-mean ratio is an entirely linear prediction 

and prediction r2  is highly nonlinear, the CLS may be related to that scale where 

the change in variance-to-mean of species abundances reaches a maximum. For 

the large sample size of 100, the mean density of each species is relatively stable, 

thus the variance-to-mean ratio reflects predominantly the variance in the species' 

densities. The variances plateau at scales similar to the average CLS of the 

system, suggesting that the CLS approximates the average scale of aggregation in 

this system. A similar finding, that the CLS estimation technique could be used 

for identifying the spatial scale of aggregation, has been explored on simple 

model systems previously (Keeling et al. 1997). Whether this relationship 

between the two metrics holds true for other more complex systems is unknown, 

but is an interesting focus for further evaluation. 

3.5.3 Dependence of CLS on species characteristics 

The characteristic length scale is, in theory, independent of the species used 

for attractor reconstruction, and indeed we found that nine out of ten species, 

covering a range of distinct life histories, indicated similar CLSs. For example, 

while the clionid sponge is distinct from the other species in that it is rare (Fig 

3.3) and grows slowly to a very large colony size with low mortality, it indicated 
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a similar primary CLS to other species. Furthermore, species within the different 

taxonomic groups of sponges, bryozoans, cnidarians, and algae all indicated 

similar length scales. Thus, the system-level CLS seems largely independent of 

life history characteristics or taxonomy when the species dynamics are linked, as 

predicted by theory. In this system, species are strongly connected because they 

all compete for space, which is the limiting resource. 

While most CLS estimates ranged from 0.20 — 0.45 m, Didemnum sp. was 

the exception, with an estimate considerably larger (0.60 — 0.70 m). This may 

reflect a species dynamic strongly independent of the system dynamic. The 

degree of connectedness between species likely influences the solidarity of their 

CLS estimates; thus, we hypothesize that the outlying CLS estimate of Didemnum 

may reflect its lack of connectedness to the other species in the community 

(Habeeb et al. 2005). Notably, Didemnum sp. is a particularly rapid colonizer with 

a rapid turnover rate, and forms many small patches of colonies able to quickly 

overgrow other species (Habeeb, personal observation; Oren and Benayahu 

1998). It is arguably less influenced by the availability of unoccupied space than 

other species. 

While our evidence suggests that most species indicate a similar length 

scale at the system level, it is clear that exceptions may arise, as in the example of 

Didemnum. Our recommendation is to validate the system-level CLS based on 

estimates obtained from several species. 

3.5.4 Length scales of a model fouling community 

If estimates of length scales are to be useful in facilitating objective 

decisions about scales of observing real systems, then the estimates should not be 
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location specific for the same kind of system. Comparing results for the real 

fouling community we examined with those from a model based on a similar 

community in a different location (Dunstan and Johnson 2005) allowed us to 

verify the CLS estimates and further explore the utility of CLS estimates to 

ecologists. Prediction r2  curves for the 13 species derived from the spatial model 

increased and then reached a plateau, as expected, and yielded CLSs in the 

average range of 0.35 —0.45 m, which overlapped with the average range of the 

real fouling community (0.30 — 0.40 m). The similarity of CLS estimates for the 

model and real fouling communities suggests that the results can be generalized 

across fouling communities despite that the most abundant species in these two 

communities are distinctly different (Tables 3.1 and 3.2). Thus, when sampling 

these kinds of temperate marine fouling communities, a length scale of ca. 0.35 — 

0.45 m (i.e. using sampling units of area 0.12 — 0.16 m 2) is likely to be optimal in 

distinguishing real trends from noise. 

While ten of thirteen species indicated length scales in the range of 0.35 — 

0.45 m, some species within the model provided larger CLSs, with the bryozoan 

Celleporaria sp. and the ascidian Didemnum sp. at the top of the range. It is 

interesting that Didemnum sp. also indicated the largest CLS estimate for the cave 

wall system. Again, because some species like Didemnum sp. may deviate from 

the majority, examining several species is important for accurate detection of the 

system CLS. Notably, no secondary CLSs were detected for the model fouling 

community, possibly indicating that the model system is not strongly self-

structuring, i.e. demonstrates weak patch level emergent dynamics. 
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3.5.5 Conclusion 

An appropriate choice of sampling scale is critical to accurately detect 

trends in ecological systems. While the CLS is not a precise measure, it provides 

an objective estimate upon which to base sampling designs. Without this, we 

arbitrarily or intuitively design experiments and potentially miss crucial 

information due to the scale dependence of many ecological patterns and 

processes. This work marks the first attempt to estimate the CLS of a natural 

ecosystem, and the method proved successful. The CLS of the cave wall system 

was detectable, and similar to that indicated for a similar model community. We 

are now confident that meaningful natural length scales can be estimated for more 

complex real ecological systems, and we anticipate that as the technique becomes 

more widely used, the relationship between the CLS and other more established 

ecological scaling phenomena will become apparent. 
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Chapter 4 

Characteristic length scale estimates: Robustness to the sampling 

regime 

4.1 Abstract 

Choosing the appropriate scales at which to observe an ecosystem is an 

important decision because the pattern that is detected will likely depend on the 

scale of observation. Researchers often rely on intuition to decide the sampling 

scale, but if their scale is too large or too small, they potentially miss the real 

system trends, which may lead to mistakes in management. For this reason, an 

objective approach to identifying the optimal scale at which to observe an 

ecological system is appealing. Sampling at this 'characteristic length scale' 

(CLS) maximizes the potential to detect the deterministic dynamics of an 

ecological system. A technique to estimate CLSs of complex dynamical systems 

has recently been developed and tested on a natural system, but has not yet been 

rigorously assessed for sensitivity to several choices about the nature of the data 

used to derive the estimate. The approach is based on a short temporal sequence 

of spatial maps of the landscape, but whether the CLS estimate is influenced by 

the time interval between maps and the number of successive maps has yet to be 

studied. Here, we assessed the robustness of the CLS estimate of a real marine 

fouling community to different time intervals between the maps, to changes in the 

number of maps used, and to varying start dates of map sequences. The CLS 

estimate for this system remained consistently around 0.30 — 0.40 m for most 

species despite changes in these choices, and despite that species represented a 
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diversity of taxa and life histories. The high level of robustness of this estimate 

suggests that the CLS is a suitable replacement for scientists' intuition as a tool to 

select appropriate scales of observation of an ecosystem. Use of this new 

approach to objectively determine optimal scales of observation should instill 

confidence that sampling programs will most effectively indicate deterministic 

trends against a background of system noise. 

4.2 Introduction 

The scale at which a system is viewed largely influences perceptions of 

that system's dynamic (Wiens 1989, Levin 1992). Thus, choosing the appropriate 

scale to best detect ecosystem trends is an important step in any task designed to 

monitor ecosystem dynamics. Currently, scientists and managers rely largely on 

their intuition and experience to determine scales of observation. However, 

subjective choices of sampling scale may lead to potential bias and/or 

misinterpretation of variability (Denny et al. 2004), while observations of the 

same system taken at different scales may provide dissimilar or even 

contradictory findings (Allen et al. 1984, Wiens 1989, Castilla 2000, Hill and 

Hamer 2004, Chalcraft et al. 2004). Not surprisingly then, determining an 

appropriate sampling scale is of utmost importance to managers of natural 

resources (Stalmans et al. 2001, Nicholson and Jennings 2004). 

While more than one natural scale likely exists for complex real systems, 

resource managers often must choose a scale at which to sample their system. At 

this scale, the determinism to noise ratio should be maximized such that the 

dynamical trends can most clearly be observed. Sampling at smaller scales is 

likely to only capture noise within the system, while sampling at scales that are 
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too large is not only likely to be expensive but may render trends undetectable 

because independent system dynamics will overlap and may be averaged out (Fig 

1.1; Pascual and Levin 1999, Pascual et al. 2001). It can be argued that 

appropriate management practice will be best informed by the clearest possible 

detection of system trends, which in turn requires an objective means to determine 

the optimal scale of observation to reflect those trends. 

The characteristic length scale (CLS) is that optimal scale which 

maximizes the ratio of determinism to noise (Keeling et al. 1997, Pascual and 

Levin 1999). For fluctuating systems with complex nonlinear dynamics, this scale 

is estimated by reconstructing the system's attractor in phase space (Takens 

1981). The approach is unique in that it accommodates complex nonlinear 

behaviors and, because it is based on the dynamical attractor which captures all 

possible states of the system, it yields a system-level scale that is, in theory, 

independent of the species being sampled. Based on a modification of this 

approach, Habeeb et al. (2005) showed recently that meaningful CLSs of natural 

ecological systems can be detected, and that variation in the estimate based on 

observations of dissimilar taxa is very low, supporting the notion that the estimate 

provides ecosystem-level information. 

The minimum data requirement to estimate a system's CLS is three 

spatially resolved maps, consecutive through time (Habeeb et al. 2005). However, 

if the idea of CLSs is to be usefully applied in ecology, then the CLS should not 

be too sensitive to arbitrary choices of the time interval between maps or the 

number of maps. In this paper, we examine the sensitivity of a system's CLS to 

the frequency of sampling (time interval), the number of maps used to reconstruct 

the attractor (time steps), and the date that sampling is started. The aim is to 
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assess the robustness of the technique developed recently by Habeeb et al. (2005) 

for estimating the CLSs of real ecosystems. Our results show that CLSs are 

consistent across a range of choices about the sampling regime, further promoting 

the utility of CLSs as useful metrics for ecologists and ecosystem managers. 

4.3 Methods 

4.3.1 CLS estimates 

We studied a marine fouling community at the entrance to Cathedral Cave 

(43°3'43S, 147°57'1E) on the southeast coast of Tasmania, Australia. The 

vertical rock wall entrance to the cave is entirely covered by an assemblage of 

sessile invertebrates and some algae, totaling approximately 140 species, which 

compete for space on the dolerite substratum. A 3.0 m x 3.3 m permanent quadrat 

established at 7 - 10 m depth on the rock wall was photographed initially in 

November 2002, and every 3 months thereafter for 18 months (note: no sample 

could be taken at 15 months due to inclement weather). High-resolution digital 

maps (10 mm pixels) were created for each time step. Each of these six maps 

consisted of grids of 83,904 pixels, and each map was analyzed manually for ten 

target species groups, chosen to represent a range of phyla, life history traits and 

abundances. The species groups included: five species of sponges (four unnamed 

specimens lodged with the Tasmanian Museum; K430, K431, K432, K433), one 

group of arborescent bryozoans, one ascidian, one cnidarian, and two groups of 

algae (Table 1). The digital maps so created provided a short time series of spatial 

landscapes from which the CLS(s) could be estimated (Habeeb et al. 2005, 

Chapter 3). The primary CLS was determined as the plateau, or point of first 

major inflection in the spectrum of prediction r2  versus scale (Pascual and Levin 
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Species 
	

Identification 
	

Taxonomic 
number 
	 group  

1 	Sycon sp. 	 Sponge 

2 	Calthropellidae sp. (K431) 	Sponge 

3 	Geodiidae sp. (K433) 	 Sponge 

4 	Clionidae sp. (K430) 	 Sponge 

5 	Microcionidae sp. (K432) 	 Sponge 

6 	Arborescent bryozoans 	 Bryozoan 

(Comucopina grandis and 

Orthoscuticella ventricosa) 

7 	Didemnum sp. 	 Ascidian 

8 	Parazoanthus sp. 	 Cnidarian 

9 	Crustose coralline red algae 	Algae 

10 	Foliose red algae 	 Algae 

Table 4.1. Identification and taxonomic groupings of the ten selected species 
from the Cathedral Cave rock wall. Species numbers reflect identification 
codes used in the figures and text throughout. Corresponding Tasmanian 
Museum specimen numbers are indicated in parenthesis by species whose 
precise identities were unknown. 

1999, Habeeb et al. 2005). Secondary CLSs were identified as subsequent peaks 

in the spectrum (Habeeb et al. 2005). In some cases, there may be uncertainty as 

to the location of the asymptotes or inflections in the prediction r2  spectrum (see 

Fig. 3.2, sp 10). Hence, multiple species within the system should be evaluated so 

that any ambiguity can be resolved. Previous results (for the fouling community, 

Chapter 3) have shown that 80-90% of species will indicate similar CLSs. 

We have already shown that the spatial time series we obtained from the 

rock wall at Cathedral Cave yielded prediction r2  spectra from which CLSs could 

be interpreted, and that most of the dissimilar species yielded similar CLSs 
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(Chapter 3). Here, we examined the sensitivity of CLS estimates to arbitrary 

choices of the nature of the spatial series by varying the number of time steps in 

the time series (3, 4, or 5), the interval between time steps (3 month, 6 month, or 9 

month), and the start date (i.e. initial configuration) of the landscape (month 0, 

month 3, or month 6). The CLS was evaluated for all possible combinations of 

these parameters using the short time series technique (Habeeb et al. 2005). 

4.3.2 Species' life history differences  

Simple metrics were calculated to summarize some features of the 

dynamics of the ten 'target' species from which we are able to infer 

(dis)similarities in life history strategies. The change in the total area that a 

species occupies is one indicator of its dynamics through time, but this measure 

will not accurately reflect colony turnover between time steps. Thus, species were 

assessed for changes in both their abundance (percentage cover), and absolute and 

relative turnover rates between time steps. Absolute turnover (t) of species s from 

time x to time y is defined as 

ts,xy= (Ms, xy gs, xy) 

2 

where ms ,xy  is mortality, or the number of pixels occupied by species s at time x 

but not at time y; and gs ,xy  is growth, or the number of pixels occupied by species 

s at time y that were not occupied by s at time x. Relative turnover, or percentage 

turnover (%t) between times x and y is defined as 

(Ms, xy gs, xy) 
%ts, xy = 	x100 

2Six 

where six  is the initial abundance of species s at time x. 
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4.4 Results 

4.4.1 CLS estimates 

Prediction r2  spectra were produced for each species for all possible 

combinations of numbers of time steps, intervals between time steps, and start 

dates. Particular combinations are indicated with reference to the month (0 — 18) 

of sampling. For example, spectra derived from landscape maps taken 3 months 

apart, with month 0 as the start date, and with 3, 4, and 5 time steps are indicated 

as times 0-3-6, 0-3-6-9, and 0-3-6-9-12 respectively (see Fig 4.1, first row). For 

brevity, we only present the prediction r2  spectra of four species groups, which 

encompass the species showing the greatest variability among spectra (the 

Calthropellid sponge, Fig 4.1A), the species with the most consistent spectra (the 

Clionid sponge, Fig 4.1B), and two other average representative species 

(bryozoans, Fig 4.1C; Parazoanthus sp. Fig 4.1D). Prediction r2  spectra of the 

other species are given in Appendix D. Characteristic length scales were 

estimated visually as the point (or region) of the first plateau of the prediction r2  

spectrum, where the slope exhibited an abrupt shallowing (Table 4.1; Pascual and 

Levin 1999, Habeeb et al. 2005). 

For most species, the primary CLS estimated remained between 0.30 m 

and 0.40 m regardless of the manner in which the system was sampled (Figs 4.1, 

4.2). Changing the time intervals between consecutive landscapes from 3 to 6 to 9 

months had little effect on the CLSs indicated by most species. Similarly, 

changing the number of landscapes in the time series, and the starting 

configuration of those landscapes had little effect on the CLS. However, for the 

calthropellid and geodid sponge species (species 2 and 3), both the number of 
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time steps and the start date affected the CLS indicated, with estimates ranging 

between 0.25 and 0.60 m, depending on parameters of the sampling (summarized 

in Fig 4.2). Most of this fluctuation occurred when sampling intervals were 3 

months apart (Fig 4.2). The CLS indicated by the calthropellid sponge, which was 

the species showing most variation in the estimate, increased to approximately 0.6 

m when the 0-3-6-9 and 3-6-9 month samples were used in the reconstruction. 

The estimate indicated by the geodid sponge increased to approximately 0.45 m 

using the 0-3-6 month sample, and to 0.6 m using the 3-6-9 month sample. For 

these two sponge species, increasing the time intervals between spatial maps 

increased the consistency in estimates indicated. Increasing the intervals between 

maps from 3 months to 6 and 9 months resulted in more consistent estimates 

(calthropellid, 0.2 — 0.3 m; geodid, 0.25 m; Fig 4.2), which were similar to 

estimates indicated by the other species. 

We also examined the effect of unequal time intervals between successive 

landscapes (for example, 0-3-6-12 months) for reconstruction of the attractor, but 

found very little effect on the CLS estimated (Fig 4.3). 

4.4.2 Dynamics and life histories of target species 

In theory, any species in a given system can be used in attractor 

reconstruction to indicate the characteristic length scale of the system (Takens 

1981). However, since some ecologists suggest intuitively that species with 

strikingly different dynamics and life histories might yield dissimilar scales, we 

compared the CLS estimates indicated by different species. We used the 
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time interval between samples (months) 

Figure 4.2. Summary of variability in CLS estimates determined from species 
1 to 10, for the various combinations of sampling pattern we examined. Filled 
circles indicate 3-month intervals between time steps, with varying start dates 
sand numbers of landscapes in the time series (corresponding to the top 6 plots 
of each species in Fig 4.1); open circles indicate 6-month intervals, and filled 
squares indicate 9-month intervals. Species identifications are given in Table 
4.1. 

dynamics of the ten species representing five phyla, to infer their life history 

strategies, which we then compared with the CLS estimates indicated. The 

species for which CLS estimates showed sensitivity to changes in the sampling 
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regime could then be assessed for particular differences in life history strategies, 

which might explain the variability in the CLS estimates they produced. 

0 	.80 	160 
	

0 	.80 	160 
	

0 	.80 	1.60 

scale (m) 

Figure 4.3. Spectra of prediction r2  versus scale for the estimation of 
characteristic length scales, using the short time series method of Habeeb et 
al. 2005. Upper graphs are based on an evenly spaced sequence (0-3-6-9 
months) and lower graphs on an unevenly spaced sequence (0-3-6-9 
months), for three species within the Cathedral cave fouling community 
(Table 4.1). Arrows indicate approximate CLS estimates. 

The range of space-time dynamics represented by the ten species groups is 

summarized by both the change in cover and the amount of turnover of the 

species experienced between two time steps. Variation in the characteristics of 

these dynamics reflects a range of life history strategies, as illustrated by the 

absolute (Fig 4.4A) and relative (Fig 4.4B) changes in area of each species on the 

cave wall versus turnover between two 12-month intervals (0- 12 month and 6 - 

18 month; Fig 4.4). Turnover indicates mortality in one position that is replaced 
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Figure 4.4. (A) Net change in area versus absolute turnover between two 12-month 
intervals (0-12 month, and 6-18 month) for each species. The horizontal dashed line 
indicates the space where growth and mortality are equal. Above the upper dashed line is 
the space where no mortality occurs, and below the lower dashed line is the space where 
no growth occurs. Species vary across a range of space-time dynamics, with more k-
selected species close to the horizontal line and to the left of the graph with low turnover, 
and more r-selected species further from the horizontal line, but to the right of the graph, 
with high turnover. (B) Relative change in area versus relative turnover between two 12- 
month intervals (0-12 month, and 6-18 month) for each species. The dashed line 
indicates the space where growth and mortality are equal. Some target species 
demonstrated over 50% turnover in 12 months, while turnover in other species was less 
than 20% over the same period. Changes in the pattern from above (A) reflect the 
influence of colony size on the relationship. Species identifications are as in Table 4.1. 

by new growth elsewhere on a spatial landscape. Species with low absolute 

turnover and a small change in the area occupied represent the more k-selected 

species, which are relatively long-lived and stable through time. Species with high 
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absolute turnover and a large (positive or negative) change in area reflect 

dynamics at the r-selected end of the life history spectrum, with relatively high 

rates of mortalities, colonization, and usually, growth. The dynamics of the target 

species on the cave wall vary across a continuum of these two strategies (Fig 

4.4A). Some of our target species demonstrated in excess of 50% turnover in 12 

months, while turnover in other species was less than 20% over the same period 

(Fig 4.4B). Comparing this relative measure of turnover with the absolute 

measure elucidates that the net change in area is related to body size for some 

species (Fig 4.4B). For example, microcionid sponges (species 5) indicated high 

relative turnover (— 44%) but low absolute turnover, which reveals that they form 

small colonies which quickly compensate for mortality by further growth. 

Conversely, arborescent bryozoans (species 6), which form large rapidly changing 

colonies, exhibited the highest absolute turnover, but average relative turnover. 

Investigating both relative and absolute measures is necessary for a 

comprehensive picture of the different species' dynamics. Notably, the ten species 

observed are generally highly dynamic, with an average relative turnover rate of 

approximately 35% of a colony in 12 months. 

Species can be separated arbitrarily into four groups of life history types 

when variance in total cover as a function of absolute turnover is plotted for the 

three-month intervals (0 — 3 month, 3 —6 month, 6 — 9 month, and 9— 12 month; 

linear relationship of variance to the mean, y = 0.69x — 45.85, R2  = 0.865; Fig 

4.5). Species such as Sycon sp. and nongeniculate coralline red algae (species 1 

and 9), with low turnover and high variance in total cover over the three-month 

intervals, appear to grow and recede seasonally. Arborescent bryozoans (species 

6) are outliers with high absolute turnover but low variance in total cover between 
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three-month periods, indicating rapid formation of new colonies balanced by 

rapid mortality (Fig 4.5). Species in the group nearest the origin grow slowly and 

maintain a relatively constant total cover (Fig 4.5). 
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Figure 4.5. The variance of log transformed total cover between all 3-month 
intervals (n=4; 0-3 month, 3-6 month, 6-9 month, and 9-12 month) versus 
absolute turnover for each of the ten species. Species numbers are indicated 
above the points, and correspond to the identifications in Table 4.1. Species can 
be separated arbitrarily into four groups of distinct space-time dynamics, 
identified by circles, which reflect dissimilar life history strategies. 

4.5 Discussion 

4.5.1 Robustness of CLSs to arbitrary choices in sampling regimes 

A CLS is, in theory, an inherent characteristic of an ecosystem (Carlile et al. 

1989, Wilson and Keeling 2000). If this is true, and providing that the attractor 
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describing the system dynamic is stationary, then in principle, the CLS should not 

be sensitive to the particular protocol by which a system is sampled. If techniques 

to estimate CLSs are robust to arbitrary choices in the sampling regime, then 

determining CLSs should provide objective estimates of the optimum scales to 

best observe the deterministic trends in a system, which is of critical importance 

to inform scientists and managers of changes in natural systems and their 

resources. 

We are encouraged that the estimate of CLS is largely consistent, at 

approximately 0.30 — 0.40 m for this system, across a range of dissimilar species 

(Fig 4.2; see also Chapter 3), and across dissimilar patterns of sampling the 

system. For most species, changing the time interval between successive spatial 

maps from 3 months to 9 months had very little effect on the CLS estimate (Fig 

4.1B, 4.1C, 4.1D). Similarly, commencing the sampling in different seasons 

(November [month 0] versus May [month 6]) had little effect on the CLS 

estimates (Fig 1). 

Importantly, the CLS indicated by most species was not overly sensitive to 

large differences in the quantity of data used to derive the estimate, i.e. by 

changing the number of maps in the time sequence from 3 to 4 or 5 (Fig 4.1). 

Systems that show little change with successively higher embeddings are low-

dimensional and are considered 'nearly deterministic,' while a stochastic system 

has infinite dimensions (Wilson and Keeling 2000). This robustness to the change 

in number of time steps therefore not only reflects robustness of the CLS 

estimate, but also indicates low-dimensionality of the attractor. This level of 

robustness of the CLS estimate suggests the approach to be an adequate and 

objective means of choosing the appropriate scale of observation of an ecosystem. 
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Two of the ten species sampled showed some sensitivity to the time 

interval between successive spatial landscapes. Spectra derived from calthropellid 

(Fig 4.1A) and geodiid (Appendix D Fig B) sponges varied among start dates and 

different lengths of the time series when samples were taken at 3-month intervals 

(Fig 4.1A, top 6 plots; Fig 4.2, closed circles). However, when the interval was 

increased to 6 or 9 months, the variation in CLS estimates indicated by these 

sponges declined and the length scale became more similar to that indicated by 

the other species (Fig 4.1B, bottom 4 plots; Fig 4.2, open circles and squares). 

These two sponge families are thought to be k-strategists, with broadcast 

spawning (R.Van Soest, personal communication) and are likely to demonstrate 

strong seasonal patterns in growth, as occurs in other temperate sponge species 

(Duckworth and Battershill 2001, Tanaka 2002). If seasonality affects the 

dynamics of these species, the 3-month time intervals may be too short for robust 

estimation of the CLS. What, then, is the most appropriate time interval to use 

between the maps? In general, we would suggest that practitioners consider the 

turnover of species in the system to choose a time interval that allows at least 

some 20%) but not complete (100%) turnover. In most cases, the CLS estimate 

will be robust to variations within this time range. 

Interestingly, secondary length scales were detectable for the calthropellid 

sponges (Fig 4.1A, open arrows), reflecting the patch level emergent dynamics of 

this species (Chapter 3). For this species, these higher-level emergent dynamics 

are most apparent at a scale near 1.3 m in length, and this scale also seems robust 

to the changes in the sampling regime. Secondary length scales were apparent for 

few other species (Fig 4.1 and Appendix D), indicating that the patch level 

emergent dynamics were often obscured in the time steps sampled. This result 
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concurs with previous results from model systems that emergent dynamics 

resulting from interactions at the patch level are more difficult to detect from 

spatial pattern than from time series (Habeeb et al. 2005); therefore, these larger 

length scales may prove unpredictable when using the short time series method. 

4.5.2 Life histories 

The different species we studied demonstrate a broad range of spatio-

temporal dynamics, reflecting a diverse spectrum of life history strategies. No free 

space was visible on the wall at any time in the study, signifying that competition 

for space is a key process underpinning the dynamics of the > 140 species. The 

ten chosen species groups represent life history characteristics ranging from 

small, rapidly growing, high-turnover species to slowly growing massive species 

(Fig 4.5). Overall, this system is highly dynamic with, on average, an absolute 

turnover of 23.4 m in any three-month period (Fig 4.5). The large variation in life 

history inferred from the space-time dynamics (Fig 4.4), however, has no 

recognizable effect on the CLS estimates obtained from analysis of the different 

species. The calthropellid and geodiid sponges (species 2 and 3), which show 

more sensitivity to the time interval of sampling than the other species, do not 

manifest dynamics that separate them distinctly from the spectrum of life histories 

indicated by the other species we examined (Fig 4.4). 

Similarly, the life history groupings based on the variance of total cover as a 

function of turnover (Fig 4.5) have no apparent relationship to the variations in 

estimated CLSs obtained from analyses of the calthropellid and geodiid sponges. 

Species with dissimilar life history strategies offer the same approximate CLS, as 

the theory predicts for a system of connected species (Takens 1981, Habeeb et al. 
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2005). Moreover, the two sponge species (species 2 and 3) that showed some 

sensitivity to the time interval sampled, do not group together. This lack of 

relationship provides further evidence for the use of the CLS as an ecosystem-

level measure. While our ten target species may perform functionally different 

roles within the ecosystem and have distinctly different patch sizes and/or life 

history traits, it is encouraging that variations in the CLS estimate among species 

were small and unlikely to affect decisions about the optimal scale at which to 

observe the system. 

4.5.3 Conclusion 

The emergence of robust techniques to estimate characteristic length 

scale(s) provides a valuable tool to objectively ascertain optimal scales of 

sampling for identifying dynamical trends in real ecosystems. Results from this 

paper and our previous work (Habeeb et al. 2005 & Chapter 3) collectively 

suggest that the short time series technique for estimating CLSs is valid, robust to 

arbitrary choices in sampling, and suitable for implementation. Only three 

sequential highly resolved spatial maps of a single species are necessary to 

estimate the CLS, and our results suggest that the CLS is not sensitive to the 

choice of the start date in sampling. The time interval should be long enough to 

capture some but not complete turnover within the system, but will not 

significantly affect the CLS estimated by most species. As this technique requires 

a relatively low level of initial assessment, determining optimal sampling scales 

should be achievable for a majority of ecosystems. 
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Chapter 5 

Estimating natural scales of a coral reef using habitat level data 

5.1 Abstract 

A new technique to estimate the characteristic length scales (CLSs) of real 

ecological systems provides a means to identify the optimal scale(s) of 

observation to best detect the underlying dynamical trends of systems. 

Application of the technique to natural systems has focused on identifying 

appropriate scales to measure the dynamics of species as descriptors of ecosystem 

variability. However, monitoring of ecosystems is often based not on assessing 

single species, but on species assemblages, functional groups or habitats types. 

We examined whether the concept of CLSs based on dynamic interactions among 

species could be extended to determine scales based on interactions among habitat 

types. A time series of three spatial maps of benthic habitats on a Caribbean coral 

reef over 21 years was constructed from aerial photographs, Compact Airborne 

Spectrographic Imager (CAST) images and IKONOS satellite images, providing 

the short time sequence of maps required for this technique. We estimated the 

CLS of the system based on the dynamics of three distinctly different habitat 

types, namely dense stands of seagrass, sparse stands of seagrass and Montastrea 

patch reefs. Despite notable differences in the areal extent of and relative change 

in these habitats over the 21-year observation period, analyses based on each 

habitat type indicated a similar CLS of approximately 300 m. We interpret the 

consistency of CLSs among habitats to indicate that the dynamics of the three 

habitat types are strongly linked, and suggest that this may be the result of 

hurricanes as a strong external forcing impacting all habitat types. The results are 
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encouraging, and indicate that the CLS techniques can be used to identify the 

appropriate scale at which to monitor ecosystem trends on the basis of the 

dynamics of only one of a disparate suite of habitat types. 

5.2 Introduction 

The focus of ecosystem monitoring has shifted in recent years from spatial 

information based on individual level detail to that based on details of dynamics 

at a habitat level. This shift has been driven by the emergence of automated 

technologies such as remote sensing, which provide a means of discerning 

patterns in ecological systems with continuous data over larger areas than has 

previously been practical with ground-based field work (Roughgarden et al. 1991, 

Green et al. 1996). Detailed classification of habitat types using remotely sensed 

imagery has enabled high-resolution landscape mapping, which is playing an 

increasingly important role in assessment of biodiversity, reserve design, and 

management zoning (Loehle and Wein 1994, Green et al. 1996, Ward et al. 1999, 

Mumby et al. 2001, Stevens 2002). However, the natural scale at which to analyze 

the maps is ambiguous; what is the optimum scale to distinguish critical 

ecological trends from noise (Habeeb et al. 2005)? A technique for objectively 

defining an appropriate scale of sampling habitat maps is necessary for detecting 

signals in the varying abundances of the habitat types through time (Rouget 

2003). 

Identifying the level of detail or scale needed to detect the mechanisms 

that generate patterns has long been an important goal in ecology (Carlile et al. 

1989, Wiens 1989, Levin 1992), one that is becoming increasingly pertinent as 

the scale-dependence of fundamental ecological relationships is established 
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(Crawley and Harral 2001, Chase and Leibold 2002, Chalcraft et al. 2004). The 

characteristic length scale (CLS) has emerged as a new tool to estimate 

objectively the optimal scales of observation to detect underlying dynamical 

trends in the behavior of real ecological systems, even when dynamics show 

complex nonlinear oscillatory behaviors (Habeeb et al. 2005, Chapters 3 & 4). 

Sampling a system at its characteristic length scales maximizes the potential to 

observe the true deterministic nature of the system least influenced by stochastic 

variability. Based on nonlinear time series analysis, the estimation of these 

ecosystem-level length scales requires only a short time series of highly resolved 

spatial maps. The estimates are largely robust to arbitrary choices about sampling 

patterns such as the time interval between maps (Chapter 4), and to the choice of 

species to be monitored, with species across several phyla indicating similar 

scales (Habeeb et al. 2005 & Chapter 3). 

Thus far, characteristic length scales have been detected for a variety of 

models (De Roos et al. 1991, Keeling et al. 1997, Pascual and Levin 1999, Wilson 

and Keeling 2000, Habeeb et al. 2005) and most recently, for a real marine system 

(Chapter 3), but their estimation has always been based on the dynamics of 

component species. Here we examine, for the first time, whether larger natural 

length scales are manifest that reflect spatial dynamics among habitat types, as 

opposed to among species. If such scales exist, then their detection could be 

extremely valuable when monitoring of community or ecosystem change is based 

on changes in the extent and/or location of habitats. Monitoring habitat dynamics 

with landscape maps derived from increasingly available remote sensing 

techniques can be useful because habitats are often good proxies for more finely 

resolved information that is difficult to collect (Mumby et al. 2001, Rouget 2003). 
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Here, we use data from remote sensing to search for characteristic length scales at 

the habitat level. 

Using spatial maps of benthic habitats within a Caribbean coral reef over 

21 years, we attempt to determine the CLSs of coral reef habitats. While only one 

habitat type is necessary to estimate length scales, we classify the spatial maps of 

three different lagoonal habitats to determine whether they provide similar 

estimates, if any, of the CLSs for the reef ecosystem. If they exist, these scales 

will be useful only if disparate habitat types indicate similar scales (Habeeb et al. 

2005). 

In substituting habitat data into the nonlinear time series method of 

Habeeb et al. 2005, the underlying assumption is that the attractor of the system 

can be reconstructed from a short time series of habitat level information. This 

assumption is reasonable if changes in the habitats reflect the deterministic 

dynamics of the system (Ward et al. 1999). 

5.3 Methods 

5.3.1 Data requirements 

To estimate CLSs, at least three consecutive maps of the same area are 

required. The time intervals between these maps can vary, but should be long 

enough to allow between 20% and 80% turnover in the species or habitats 

sampled (Chapter 4). On a coral reef where massive coral colony sizes may 

exceed 3 m2  (Meesters et al. 2001), intervals need to be of the order of years to 

decades rather than months, to allow large-scale habitat change (Lewis 2002, 

Pandolfi 2002). For each map, the data need to be spatially contiguous, with no 

breaks in the landscape as, for example, might arise with cloud cover. Finally, to 
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rebuild the attractor with the short time series method, the data must have high 

spatial resolution relative to the entire landscape mapped. 

5.3.2 High-resolution maps from the Turks and Caicos, West Indies 

The study site chosen was a shallow reef ecosystem near Cockburn Harbour 

within the Turks and Caicos Islands, West Indies (Fig 5.1), whose reefs have been 

mapped intensively (Mumby et al. 1998a and b, Mumby and Edwards 2002). An 

aerial photograph from 1980 (2 m resolution), a Compact Airborne 

Spectrographic Imager (CAST) image from 1995 (1 m resolution) and an 

IKONOS satellite image from 2001 (4 m resolution), all of the same area, 

provided the short time sequence of spatial maps necessary for CLS estimation. 

Figure 5.1. Map of the Turks and Caicos Islands, West Indies. The inset 
shows the study area on the southern side of South Caicos Island. 
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The benthic habitats captured in these images comprised reef-building corals, 

gorgonian communities, seagrass beds, and algal dominated substrate within a 

depth range of 3 —25 m. Three maps, each with an area of approximately 1.4 lun 2  

were constructed (Fig 5.2), based on the classification system of Mumby and 

Harborne (1999). Standard image processing was achieved through the ERDAS 

image software. Images were geometrically corrected and co-registered, and 

supervised classification, which was directed by field surveys of 60 sites within 

the harbor, was applied to spectral bands. 

South 
Caicos 

Figure 5.2. Digitized maps of the benthic habitats at Cockburn Harbour (South 
Caicos) taken from (a) 1980 aerial photography (b) 1995 CASI imagery, and (c) 
2001 IKONOS imagery. Dark green regions indicate areas of dense seagrass, light 
green regions indicate areas of sparse seagrass, red regions indicate Montastrea 
patch reef, blue indicates deep ocean and unclassifiable reef habitats, and black 
regions indicate landmasses, which are named for reference in (a). Each map has 
an end resolution of 4 m pixels. 

Because of their different pixel sizes, the images were re-scaled to the 

lowest resolution of 4 m pixels by taking means. This provided a conservative 
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estimate of resolution, which accounted for most of the error in the rectification of 

high-resolution airborne imagery (errors of 3 m). 

Three distinct habitats were examined in Cockburn Harbour. The first, 

aggregated colonies of the massive coral Montastraea annularis (senso stricto), 

bridge the zone between the main, hard-bottom forereef and the softer-sediment 

lagoon habitats in the harbor (which included the other 2 habitat types). The 

Montastraea zone straddles the main inlet to the harbor and attracts many fish 

because of its high structural complexity (the diameter of individual colonies 

often exceeds 1.5 m and is the result of decades to centuries of growth). The 

second and third habitat types, dense and sparse seagrass beds, are found within 

hundreds of meters of the Montastraea zone and are dominated by two seagrass 

species; Thalassia testudinum and Syringodium fileforme (see Mumby et al. 

1997). The standing crop of the dense beds ranges from 51-230 g rr1 -2  with a mean 

species composition of 72% Thalassia and 28% Syringodium. The low-density 

beds typically have 80% Thalassia, 20% Syringodium and a lower standing crop 

of 1-50 g ni2 . These two seagrass habitat types have been shown to be distinct, 

harboring different assemblages of species (Mumby et al. 1997). 

5.3.3 Estimating the CLSs of reef habitats 

The short time series technique (Habeeb et al. 2005) was employed, using 

the sequence of three maps created for the lagoon habitats to reconstruct the 

attractor and generate variance spectra for each habitat type (n = 3). Primary 

CLSs were estimated as the first plateau of the prediction r2  versus scale 

spectrum, and secondary CLSs were detected where subsequent peaks in 

prediction r2  were evident. 
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5.4 Results 

5.4.1 Habitat level CLSs of a coral reef ecosystem 

Prediction r2  versus scale spectra were produced from analysis of each 

habitat type, and primary and secondary CLSs were determined by visual 

inspection (Fig 5.3). Each habitat type displayed a spectrum of the expected 

shape, with prediction r2  sharply increasing to a plateau as the scale of 

observation increased. The CLS was interpreted as the scale beyond which the 

slope shallows, or virtually no increase in prediction occurs. Primary CLSs 

estimated by all three habitats were similar at approximately 300 m. Secondary 

CLSs, indicative of patch level emergent dynamics (Habeeb et al. 2005 & Chapter 

3), were evident when either type of seagrass habitat was used to reconstruct the 

attractor, with both habitats indicating a secondary length scale at approximately 

600 m. 

5.5 Discussion 

5.5.1 CLS estimation using habitat level data 

The choice of sampling scales in ecology is critical for clear detection of 

ecosystem trends. Results can be clouded by noise if the sampling scale is too 

small, and signals averaged out if the scale is too large (Pascual and Levin 1999, 

Wilson and Keeling 2000). The characteristic length scale is a quantitative tool 

that offers an objective estimate of the sampling scales, which best identify the 

nontrivial trends in an ecological system. Here, we establish that CLSs can be 

estimated using data collected at the habitat level. This result demonstrates the 

versatility and potential applicability of this new estimate for use in ecosystem 
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Figure 5.3. Spectra of 
prediction r2  as a function of 
scale determined using the short 
time series method of attractor 
reconstruction, based on 
abundances of (a) dense 
seagrass, (b) sparse seagass, 
and (c) Montastrea patch reef. 
Filled arrows indicate the 
approximate primary CLS, and 
open arrows indicate secondary 
CLSs. 
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scale (m) 

monitoring that employs remote sensing to map systems at the habitat level. Once 

landscape maps are acquired for a system, the scale at which to analyze those 

maps must be chosen. Thus, establishing a guide to defining the appropriate 

scales of observation at which the deterministic dynamics of habitat change are 

most clearly in focus is a significant advance in ecology. The choice of scale at 

which to analyze habitat maps can now be guided by the CLS of the system. 



Natural scales of a coral reef 94 

Furthermore, if shortages in funding prevent the comprehensive sampling of a 

region, knowing the optimal size of sampling units for detecting trends in habitat 

abundances as determined with the CLS technique will be valuable (Pressy and 

Logan 1998, Rouget 2003). 

All three habitats provided interpretable spectra of prediction r2  versus 

sampling scale (Fig 5.3), and these spectra yielded similar length scale estimates 

(ca. 300 m). This similarity occurred despite vastly dissimilar aeral coverages and 

habitat dynamics over the 21-year observation period (Fig 5.2). Thus, it appears 

that habitat change is indicative of the underlying dynamics of the system over the 

time scale assessed. The analysis indicates that sampling landscape maps of this 

reef at a scale of ca. 300 x 300 m (0.09 km2  in area) will yield data reflecting the 

biologically significant dynamics of the system at the habitat level. These results 

clearly demonstrate that natural scales can be estimated using spatial information 

not only based on species abundances, but also based on habitat abundances, 

which will be useful for monitoring the dynamics of habitat level change. 

5.5.2 Similarity of the habitat estimates 

Given that the 3 habitat types studied here are comprised of taxonomically 

and functionally distinct species, manifest large differences in absolute cover, and 

change distinctly in relative spatial extent and arrangement (Fig 5.2), it is 

encouraging that all habitats indicated a similar primary CLS at 300 m. This 

result suggests that the 3 habitat types are components of a connected dynamic on 

this landscape, thereby allowing estimation of the system-level length scale. We 

suggest that at least part of this connected dynamic reflects that the habitats are 

subject to similar disturbance regimes. Five tropical storms or hurricanes were 
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recorded in the study region during the 21 years of investigation 

(http://hurricane.csc.noaa.gov/hurricanes/viewer.htm) . Hurricanes are major 

sources of disturbance to corals (Done 1992, Bythell et al. 2000) and may 

physically remove moderate-sized massive corals such as Montastraea (Massel 

and Done 1993). Likewise, recent work on comparable seagrass beds from 

elsewhere in the Caribbean illuminates the role of hurricanes in seagrass 

dynamics. For example, hurricanes may facilitate the spread of Syringodium by 

increasing seed dispersal (Kendall et al. 2004) and freeing space for growth of all 

habitat types (Fourqurean and Rutten 2004). The consistency of CLSs among 

habitats suggests that hurricanes may bring about similar deterministic dynamics 

for strikingly different habitats when these habitats occur in close proximity. 

5.5.3 Secondary characteristic length scales 

Spectra of both dense and sparse seagrass habitats indicated secondary 

CLSs at approximately 600 m, twice the primary CLS (Fig 5.3). Conversely, the 

spectrum for the Montastrea reef patches reached a plateau after the primary CLS 

and remained constant with increasing scale, indicating that detection of the 

secondary CLS is dependent on the habitat studied. This secondary scale likely 

reflects the large-scale loss and subsequent return of seagrass beds over the 21- 

year time period (Fig 5.2), dynamics that were not evident for the more consistent 

Montastrea patch reef. Secondary length scales may not be useful as sampling 

scales for monitoring due to their unpredictable nature and their apparent 

dependence on the habitat sampled, but when evident, these secondary CLSs are 

consistent in magnitude and likely indicate the more patch level emergent 

phenomena occurring within the system (Habeeb et al. 2005). 
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5.5.4 Importance of estimating CLSs at a habitat level 

Natural scales may be determined for reefs and Other ecosystems 

worldwide using this method in combination with increasingly available archives 

of satellite images (e.g. for coral reef satellite images: 

http://seawifs.gsfc.nasa.govicgi/landsat.p1),  providing for the first time an 

objective means of scale determination by which to sample habitat maps for real 

trends. Such large-scale implementation of the method may enable the use of 

CLSs not only as observational scales, but also as baselines in themselves to 

detect dynamic shifts in ecosystems. If CLSs are calculated regularly for a given 

system, then a change in the length scale from one time to the next is likely to 

indicate a shift in the attractor (Habeeb et al. 2005), warranting further 

investigation into the cause of such a fundamental shift. 

In addition to providing the optimal scales of sampling landscape maps for 

detecting trends, CLSs estimated according to habitat changes within a system 

might be compared in themselves to potentially identify functionally linked areas 

and watersheds for management. Within a single system, those habitats that 

provide similar CLSs are likely governed by similar processes, whereas habitats 

with distinctly different CLSs are unlikely to be linked dynamically, either by 

'internal' patterns of interaction or by external forcing such as disturbance. 

Similarly, comparing habitat level CLSs between regions may also be beneficial. 

Similar habitat types in different regions that indicate vastly different CLSs may 

reveal fundamental differences in the dynamic processes influencing the two 

systems, such as anthropogenic effects in one region that do not occur in the 

other. Using the CLS as an index in and of itself for these and other comparisons 
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may provide valuable clues about the underlying dynamical behaviors of the 

complex systems being monitored. 

5.5.5 Conclusions 

We have demonstrated that natural length scales can be estimated using data 

taken at the habitat level rather than at the species level. Distinct, but spatially 

connected habitats provided similar length scales, reflecting the ecosystem nature 

of the estimate and the functional linkage of the habitats. This development 

provides new possibilities for large-scale use of this quantitative estimate in 

ecology, as ecosystem monitoring is often based on assessment of suites of 

species or habitat types rather than on individual species, and as data requirements 

are more easily met with long-term sequences of remote sensing imagery than 

with local, field-based data. Estimating the characteristic length scale of a 

landscape, whether terrestrial or marine, will enable sampling at appropriate 

scales for detecting dynamical ecosystem trends. 
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Chapter 6 

Influence of species connectivity on characteristic length scale 

estimates 

6.1 Abstract 

The choice of scale at which to observe an ecological system is critical. 

Recently, quantitative methods for choosing optimal sampling scales have been 

developed, with the underlying theory that observations of only a single species in 

the system are necessary for estimation of the system-level characteristic length 

scales (CLSs). However, in spatial model communities where the species are 

poorly connected either due to the nature of the network topology or to the spatial 

self-structuring which results in species rarely interacting, different species can 

indicate dissimilar length scales. Here we examine the role of poor connectivity in 

producing dissimilar CLS estimates between the constituent species of a system. 

We define connectivity in terms of the network topology and the interaction 

strengths. In a simple spatial model of six interacting species, a highly connected 

system is one in which all species interact with the same strength and at the same 

rate, and weak connection between two groups occurs when their interactions, 

such as overgrowth in a competition model, are infrequent, weak or non-existent. 

We use spatial models of varying connectivity to generate long time series for 

each species within the system, and then estimate CLSs. We demonstrate that for 

a simple model system, when species groups are weakly connected in their 

network interactions, the CLS estimated can depend on the species used to 

reconstruct the attractor. Models of loosely connected species groups were more 

likely to provide CLSs that were distinct between the groups, while CLSs 
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estimated from strongly connected groups were always clearly similar. Thus, 

when utilizing the new CLS method on a system where species connectivity is 

particularly low, different length scales may be indicated by the species, thereby 

necessitating determination of CLSs with several representative species. This 

result may prove beneficial, however, in that CLSs may potentially be useful as 

qualitative indicators of poorly connected species within an ecological system. 

6.2 Introduction 

Characteristic length scales (CLSs) are, according to theory, inherent 

properties of dynamical systems and are not features of the individual component 

'agents' that comprise a dynamical system (Takens 1981). In the context of 

ecological systems, this means that the length scale of a particular system should 

be independent of the species that is observed to calculate the length scale 

(Habeeb et al. 2005). The implicit assumption underpinning this notion is that all 

of the component agents of a dynamical system are well connected, either directly 

or indirectly. While this may be the case for many physical systems, it is unlikely 

to be true for complex ecological systems in which the dynamics of some species 

are likely to be strongly linked to some subset of species in the system but not to 

others (e.g. Dunne et al. 2002). This raises the possibility that the CLS of an 

ecological system estimated from one particular species x would be similar to that 

estimated from the dynamics of other species in the system with which it was well 

connected, but dissimilar to that calculated from species whose dynamics are 

largely independent of species x. 

The results of a recent study to determine the length scale a natural marine 

fouling community growing on a subtidal rock wall lend support to this notion 
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(Chapter 3). It was found that most species, representing a diverse spectrum of 

life histories, indicated very similar system-level length scales (0.20-0.45 m, 

average ca. 0.35 m), while a single species indicated a CLS considerably larger 

(0.60— 0.70 m). Results of Chapter 3 suggested that the divergent CLS estimate 

of this single species may reflect its lack of connectedness to the other species 

that were analyzed in the community, arguing that this species may be less 

influenced by the availability of unoccupied space than others (Habeeb et al. in 

review). 

There are several ways to define connectivity among species in ecological 

systems, ranging from interaction coefficients that define per capita effects of one 

species on the growth and reproduction of another, to the landscape ecology 

concept which combines the effects of landscape structure and species' behaviors 

to define movement rates among habitats (Tischendorf and Fahrig 2000). Here we 

are concerned with the likelihood and outcome of direct interactions between each 

pair of species competing for space on a landscape (Anderson and Jensen 2005). 

We, therefore, define connectivity by (1) the network topology describing where 

interspecific interactions exist, (2) the strength of interactions, and (3) the 

likelihood of species' co-occurrences in space as defined by their relative 

abundance and patterns of spatial organization on the landscape. 

We use simple spatial models of six interacting species, and examine 

whether there is any relationship between connectivity among species and the 

magnitude of the length scales they indicate for the same system. If there is, then 

comparison of system-level length scales estimated from the dynamics of 

different species may provide a proxy for connectivity among species. In this 

context, a highly connected system is one in which all species show strong 
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interactions with all others and at the maximum possible rate. A weak connection 

between two species occurs when their interaction is infrequent and weak. We 

estimate CLSs based on the original method of Pascual and Levin (1999), which 

is robust to varying model complexity (Chapter 2, Habeeb et al. 2005). 

6.3 Methods 

6.3.1 Spatial models 

Models of varying connectivity, defining the number and strength of direct 

and indirect interspecific interactions in the system (e.g. Johnson and Seinen 

2002) were developed using the Compete@ software (available at 

http://www.zoo.utas.edu.au/CJPblist/PubListCJohnson2.htm#compete  ). This 

probabilistic individual-based system models spatial competition between sessile 

colonial organisms, follows the fate of competing individuals in a 2-dimensional 

landscape, and demonstrates complex behaviors indicating nonlinear dynamics 

and spatial self-organization (Johnson 1997, Johnson and Seinen 2002). We 

studied two model systems with different network topologies describing 

interactions among 6 species (Fig 6.1). Both systems spatially self-organize to 

form two distinct groups of 3 species on the landscape. In the first, less connected 

system (denoted 1:1), each species overgrows one species within its group, and 

one species from the other self-organized group (thus S1 > (S2, S5), S2>  (S3, S6), 

..., 

 

S6> (S4, S i); with Sx  > Sy  indicating that species x outcompetes and displaces 

species y, and where SI,S2,S3 and S4,S5,S6 form the two spatially distinct groups). 

In the second, more connected system (denoted 1:3), each species overgrows one 

species within its group, and all three species from the opposite group (thus Si > 

(S2, S4, Ss, S6), S2> (S3, S4, S5, S6), • • S6> (S4, Si, S2, S3)). Thus, in this model 
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The 1:1 model system 

The 1:3 model system 

Figure 6.1. Interactive networks for the 1:1 and 1:3 model systems, and 
representative landscapes from each model system (generation 10,000). 
Species are denoted by numbers, and boxes indicate the distinct groups 
that are formed. Species within each group are equivalent. Dark-lined 
arrows indicate interaction between two species within the same 
spatially self-organizing group, and dotted arrows indicate interaction 
between two species within different groups. Arrowheads indicate the 
direction of overgrowth. Note that in the 1:1 model system, all dotted 
arrows indicate overgrowth in only a single direction, while in the 1:3 
model system, all dotted arrows have double-headed arrows, indicating 
overgrowth in both directions. 
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system, each species in one group can overgrow, and be overgrown by, all species 

in the other. Within these qualitative network structures, connectivity was further 

varied by changing the rates and probabilities of overgrowth between species both 

within and between groups. In both models, ties (or mutual overgrowth) were 

randomly split. 

All model systems were run for 10,000 time steps on landscapes of 300 x 

300 cells, and landscapes were sampled from times 201 to 10,000 (the first 200 

time steps were ignored while the system self-structured). Each model was begun 

with a random spatial arrangement of 'recruits' (10% total cover) on the initial 

landscape. The system updates synchronously, and uses periodic (toroidal) 

boundary conditions. 

6.3.2 Levels of connectivity 

The two network topologies define two 6-species systems with different 

degrees of connectivity among species (Fig 6.1). Within each of these systems 

connectivity among species was varied by changing the strengths of non-zero 

interactions. Probabilities (or rates) of overgrowth of species in one spatially self-

organized group by those in the other were increased from 0.2 to 0.4 to 0.8, 

reflecting an increase in the groups' connectedness to each other. In addition, 

probabilities of overgrowth among species within each spatially self-organized 

group were either set to be identical in the two groups (both groups at 0.8) or set 

to be different between the two groups, with species in one group overgrowing 

each other with a probability of 0.8, and in the other at either 0.4 or 0.2. The net 

effect of species in one group overgrowing each other at the same rate that species 

in the other group overgrow each other is that both groups of species form 

'spirals' that rotate at the same rate. We predict that similar within group 
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Factors (# of levels) 	 Levels 

1. Network topology (2) 
	

1:1, 1:3 

2. Between groups overgrowth rates (3) 
	

0.2, 0.4, 0.8 

3. Within groups overgrowth rates (3) 

	

	
Same (0.8-0.8), Different 

(0.8-0.4, 0.8-0.2) 

Table 6.1. The factors, and levels within each factor, used to vary 
connectivity between model runs. Overgrowth rates are given as 
probabilities. See text for an explanation of the 1:1 and 1:3 network 
topologies. System-level CLSs were determined from the dynamics of every 
species for all 18 possible combinations of the 3 factors. 

overgrowth rates provide more highly connected groups than dissimilar rates, as 

the rates dictate the rotation of the patches through the landscape. When groups 

spiral at the same rate, we predict that they are more likely to encounter those 

species (from the other group) with which they interact. 

Eighteen scenarios of varying connectivity among species in the 6-species 

systems were evaluated for CLS estimates (Table 6.1). In the context of this 

paper, the most connected system is the 1:3 system with each species 

overgrowing within and between groups at a probability of 0.8, and the least 

connected system occurs in the 1:1 model with between groups overgrowing 20% 

of the time, and within the groups overgrowing at different probabilities of 0.8- 

0.2. Note that there are several aspects that define the realized connectivity among 

species, namely the network topology and interaction strengths, as just described, 

but also the nature of spatial self-organizing, which cannot be controlled directly. 

Spatial structure is important because it can determine the likelihood that two 
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species are in spatial proximity and are able to interact at all. 

6.3.3 The 1:1 model stability 

The space-time trajectories of the 1:1 model system indicated a shifting 

attractor, often with one group overgrowing the other to extinction after 20,000 

time steps. As in previous chapters we have shown that species following 

nonstationary attractors often indicate different CLSs, and in fact that CLS 

estimates might be used to identify shifting attractors, this became a confounding 

factor. Thus, we stabilized the model by adding low levels of recruitment 

(probability of influx = 0.05, <2 pixels of recruits of each species for each time 

step) and disturbance (probability of 0.0001 with an area of 25 pixels), so that we 

could unambiguously attribute any differences in CLS estimates to differences in 

connectivity. The stabilized model was then run with the previously described 

interaction strengths to assess the change in CLS due to changes in connectivity. 

Additionally, within group rates of 0.2-0.2 were assessed to determine if the 

similar rotation rates of the spirals formed would produce similar CLSs even 

when connectivities were weak. 

6.3.4 CLS estimates 

Time series for each species within the model were generated and analyzed 

for length scale with the original long time series method of attractor 

reconstruction, which is the method most appropriate for use with model output 

(Habeeb et al. 2005, Pascual and Levin 1999). Attractor reconstruction parameters 

were chosen as per Habeeb et al. (2005). If CLS estimates reflect connectivities 

among species in the system, then we expect that strongly connected species in a 
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system will yield more similar CLSs than those estimated from the dynamics of 

weakly connected species. 

6.4 Results 

Prediction r2  spectra were produced from the space-time dynamics of each 

species within each model scenario (Fig 6.1), and the resulting CLSs compared. 

All species within spatially self-organized groups indicated similar CLSs in all of 

the models examined. Species from different self-organized groups within the 1:3 

system, where each species overgrew all species within the opposite group, 

consistently indicated more similar length scales than those within the 1:1 system, 

where species overgrew only one species within the opposite group. Notably, 

groups of species in the 1:1 system formed more distinct self-organized patches 

than groups in the 1:3 system. Little variation in the size of self-organized patches 

was evident with changes in interaction strength for the 1:3 model. Patch sizes in 

the 1:1 model system varied, but changes were not systematic with the changes in 

within group probabilities, and may simply reflect the between run variation. 

6.4.1 The 1:1 system 

When species in one self-organized group overgrew only a single species 

from the other group, prediction r2  spectra produced by models of all levels of 

connectivity separated into two distinguishable sets of curves that corresponded to 

the self-organized patches, reflecting that with this network structure, the 

technique is sensitive to the formation of two groups of species (Fig 6.2). In some 

instances these curves, though separated, did not indicate different CLSs (e.g., Fig 

6.2, within = 0.8-0.8 and between = 0.8), but in most cases the CLS estimates 
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The 1:1 model system 

Between group overgrowth rate 

0.8 
	 0.4 
	

0.2 

-0.4 
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Figure 6.2. Prediction r2  spectra for the 1:1 model system, with 
varying within group probabilities (down) and between group 
probabilities of overgrowth (across). Arrows indicate the CLSs 
estimated for each run. In this system, each species in a group 
overgrows 1 species within its own group and 1 species within the 
other group. Note that models self-organize at several spatial scales. 
All model runs used random initial configurations of recruits covering 
10% of the 300 x 300 landscape at time step zero. 

were different between the two groups. 

0.9 - 

0.8 - 

0.7 - 

No significant effect of varying the between-group overgrowth rates was 
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evident. When the between-group overgrowth was 0.4, CLS estimates between 

the two groups were most dissimilar, with one set of curves indicating a CLS of 

approximately 30 cells and the other set indicating a CLS of 150 cells (with 

overgrowth rates of species within both groups at 0.8, Fig 6.2). When the between 

group rates were increased to 0.8, CLSs between the groups remained dissimilar 

rather than converging (Fig 6.2). 

As expected, some effect of changing from similar to dissimilar within 

group overgrowth rates was observed. When the two groups were connected by a 

0.8 probability of overgrowth, for example, and the within group probabilities 

were identical, CLSs for both groups were similar at approximately 30 cells. 

CLSs then separated to 30 cells versus 70 cells when they were dissimilar at 0.8- 

0.4, and 0.8-0.2 (Fig 6.2). Such was also the case when between groups overgrew 

at 0.2 (Fig 6.2). However, the results were different when between groups 

overgrew at 0.4 (Fig 6.2). Dissimilarity between the two groups' CLS estimates 

could not be conclusively attributed to varying the within group overgrowth rates, 

as when the between groups overgrew at 0.4, CLS estimates of the two groups 

were very different both when within groups were most similar and when they 

were least similar (Fig 6.2). 

6.4.2 The 1:3 system 

When the groups were linked more closely in the network topology, i.e., 

each species overgrowing all species in the other group, CLS estimates were 

identical for both groups, regardless of the between and within group interaction 

strengths (Fig 6.3). In most cases, prediction r2  spectra overlapped and curves of 

the two groups were visually indistinguishable. In two cases, when the between 
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The 1:3 model system 

Between group overgrowth rate 
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Figure 3. Prediction r2  spectra for the 1:1 model system, with varying 
within group probabilities (down) and between group probabilities of 
overgrowth (across). Arrows indicate the CLSs estimated for each run. 
In this system, each species in a group overgrows 1 species within its 
own group and all 3 species within the other group. Note that models 
self-organize at several spatial scales. All model runs used random 
initial configurations of recruits covering 10% of the 300 x 300 
landscape at time step zero. 

groups overgrew each other at 0.2 and 0.4 and within groups interacted at the 

same rates, the curves separated for the two groups, but the CLS estimates 
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remained identical (Fig 6.3). 

6.4.3 The 1:1 system stabilized 

When the attractor of the 1:1 model system was stabilized with low levels 

of recruitment and disturbance, the prediction r2  spectra remained similar to those 

from the unstable system (Figs 6.2 & 6.4). Estimates between the two spatially 

self-organizing groups were always dissimilar (Fig 6.4) when the within group 

overgrowth rates were different between the two spatially self-organized groups 

(0.8-0.2, for example), but were more likely to converge when rates were similar 

(0.8-0.8, for example). When within group connectivity was lowered to 0.2 for 

both groups, estimates of CLS remained identical for the two groups (Fig 6.4, 

bottom row). Again, we found that between group overgrowth rates had little 

effect on the CLSs. 

6.5 Discussion 

Implicit in the theory of attractor reconstruction (Takens 1981) is that any 

species can be used to reconstruct the attractor, and therefore that any species in a 

system will indicate the same CLS, irrespective of its life history parameters. This 

theory assumes that all species in a system are connected. However, we have 

shown that different species can indicate dissimilar length scales. For a simple 

model system, when species groups are weakly connected in their network 

interactions, the CLS estimate can depend on the species used to reconstruct the 

attractor. In models where species self-organize into discrete groups where there 

are weak connections among species between groups, and where the different 

groups have dissimilar dynamics, then species in the different groups indicated 
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The 1:1 model system stabilized 
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Figure 4. Prediction r2  spectra for the stabilized 1:1 model system, 
with varying within group probabilities (down) and between group 
probabilities of overgrowth (across). To stabilize the nonstationary 
attractor, low levels of recruitment and disturbance were added to the 
model. Arrows indicate the CLSs estimated for each run. Note that 
only the 0.8-0.8 and 0.8-0.2 within group probabilities are shown, as 
before, with the additional 0.2-0.2 interaction inserted. All model runs 
used random initial configurations of recruits covering 10% of the 300 
x 300 landscape at time step zero. 

dissimilar length scales. In contrast, CLSs estimated from species that are strongly 

connected were always similar. As predicted, in the most connected system (our 

1:3 system with each species overgrowing within and between groups at a 



Length scales and connectivity 112 

probability of 0.8) all species provided similar CLS estimates, while in the least 

connected system (1:1 model with between groups overgrowing at 0.2, and within 

groups overgrowing at different probabilities of 0.8-0.2) the CLSs depended on 

the identity of the group from which the species for analysis was selected. This 

result provides preliminary evidence that different 'sub communities' in a system 

that have dissimilar dynamics may require different scales of observation to 

optimally define those dynamics. 

There are several definitions of connectivity, and one of the simplest is 

characterized by the network topology and its interaction strengths (Anderson and 

Jensen 2005). Here, network topology had a greater influence on the length scales 

estimated by species groups than did interaction strengths. Different spatially self-

organized species groups that are highly connected in terms of the number of 

links between the groups indicate similar CLSs, while species from groups linked 

by only a single connection between each species are more likely to indicate 

dissimilar length scales. When the interaction strengths within the 1:3 model 

network were varied, all species indicated similar CLSs, implying that species do 

not need strong associations to indicate similar scales. The presence of such 

frequent interactions between species groups holds the groups on the same 

dynamical attractor, therefore only a single CLS is indicated. 

Previous results have shown that when systems are nonstationary with one 

group overgrowing the other to eventual exclusion, the CLSs indicated by the 

groups are disparate (Chapter 2, Habeeb et al. 2005). Such instability, or 

nonstationarity, can influence the connectivity between species groups (Haydon 

2000), thus, it was necessary to stabilize the 1:1 model system with very low 

levels of disturbance and recruitment. In the 1:1 network, prediction r2  spectra 
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separated and species from the two different groups indicated dissimilar CLSs 

when the within group overgrowth rates were different. This is likely due to both 

the interaction strengths, and the spatial self-organization of this loosely 

connected system. Species within patches were more likely to interact with each 

other than with species from the other patches simply because of their spatial 

proximities. When the two distinct groups rotated at similar rates, as dictated by 

similar within group overgrowth rates, either at high levels of 0.8-0.8 or at low 

levels of 0.2-0.2, CLS estimates were similar across all species. This result 

suggests that the similarity of the rotation rates of the spirals more strongly affects 

the CLS estimates than does the strength or magnitude of those rates. The 

influence that spatial self-organization has on the CLS estimate might in the 

future be differentiated from the other aspects of connectivity (topology and 

interaction strengths) by comparing results based on species from spatially 

explicit models to those from mean field models, using identical network 

topologies and interaction strengths. 

This research provides preliminary evidence that connectivity can 

influence the CLSs estimated by different species within a system. Is the CLS, 

then, a system-level measure? While only a single run of each model was 

evaluated, broad patterns were evident. In systems where species are connected 

and interacting on the landscape, the CLS will remain similar for all species and 

can be treated as a system-level measure. Indeed, the CLS has been established as 

a measure robust to distinctly different species used to reconstruct the attractor 

(Chapter 3, Habeeb et al. in review). However, CLSs are not always independent 

of the species used in their estimation, and these results indicate that low 

connectivity within the network topology and in spatial proximity due to self- 
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organization may contribute to disparity in estimates between species. When 

connectivity is extremely poor, different CLSs will likely arise due to divergence 

of the 'system' components, i.e., when the sub-communities begin to act as 

different systems. Thus, the CLS is indeed a system-level measure, but caution 

must be applied when estimating length scales of systems with potentially 

divergent dynamics. Such systems will likely need to be observed on different 

spatial scales. 

In addition to using characteristic length scales to uncover the 

deterministic dynamics of a system (Pascual and Levin 1999), this research opens 

the possibility of using CLSs as a proxy for connectivity. Though the prediction r2  

curves may separate when connectivity changes (e.g., Fig 3, within = 0.8-0.8 and 

between = 0.4), CLSs estimated by different species remain similar until species 

connectivity is particularly weak (e.g., Fig 2, within = 0.8-0.8 and between = 0.4 

but for the less connected system). This result demonstrates that the CLS is 

robust to slight variation in connectivity, and therefore may provide an indicator 

of the extremely disconnected species within a system, i.e., the species that show 

disparate CLSs. Such species might be following a trajectory different from that 

of the system of interest. In practice, CLSs might be estimated for a system using 

data from all species, and any species providing dissimilar estimates can be 

flagged as the weakly connected species. Using CLS estimates as such indicators 

might also enable assessment of habitat connectivity (Shumaker 1996) and 

identification of weakly connected habitats by comparing the CLSs estimated by 

different habitats (Chapter 5). This preliminary research, although limited in 

scope, provides an initial framework for exploring the relationship between the 

system-level measure of spatial scale and species connectivity, and extrapolations 
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of this work to identify the wealdy connected agents, whether species or habitats, 

within the system may be further explored in the future. 
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Chapter 7 

General Discussion 

7.1 The spatial scale of sampling 

All scientific observations must be made at some spatial scale, and the 

selection of this scale usually requires little justification. For decades researchers 

have attempted to uncover the optimal scale at which to make observations of 

system dynamics (Greig-Smith 1964, Carlile et al. 1989, Turner et al. 1991, Rand 

and Wilson 1995), but few methods have been appropriate for application to the 

complexity of real ecological systems. Though systematic methods for defining 

spatial scales have long been recommended (Wiens 1989), and an increasing 

awareness of scale dependence has highlighted the importance of the choice of 

scale (Levin 1992, Crawley and Harral 2001, Rietkerk et al. 2002), sampling and 

monitoring scales continue to be defined intuitively, leading to potential bias and 

misunderstanding of variability within the system (Denny et al. 2004). 

Not only does changing the scale of aggregation reflect a tradeoff between 

detail and statistical predictability as we move from observing individual 

variation to collections of behaviors that can be generalized (Levin 1992), but 

ultimately, the patterns and the mechanisms generating and maintaining those 

patterns that we detect depend on the scale at which the system is viewed (e.g., 

Chase and Leibold 2002). The same question addressed at different scales can 

provide different results (Qi and Wu 1996, Wu et al. 2002, Hill and Hamer 2004), 

which then have to be teased apart; thus, the choice of scale is critical. Even the 

most sophisticated statistics cannot mitigate noisy results based on data collected 

at an inappropriate spatial scale, and conflicting results based on data collected at 
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multiple scales are not only expensive to acquire but difficult to interpret, as the 

scale dependence of the variables renders indistinguishable the real underlying 

trends from the variability due to noise. 

A more refined and objective approach to choosing the spatial scale is 

obviously necessary. Are there appropriate, natural scales of observation for a 

given system, such that trends can most likely be detected? Natural scales do 

exist; they are defined by the domain of attraction, or space through which a 

system rotates in time, and this research has focused on establishing and 

evaluating a technique to estimate those natural or characteristic spatial scales of 

ecosystems. Building on a method initiated by Rand and Wilson (1995), and then 

advanced by Keeling et al. (1997) and Pascual and Levin (1999), we have 

investigated a robust method that, requiring only a minimal amount of spatially 

resolved data through time, can be used to estimate the optimal sampling scales of 

natural ecological systems. These characteristic scales define the most appropriate 

scales at which densities of individuals can be averaged to sample maximum 

determinism (Pascual and Levin 1999). 

7.2 Attributes of characteristic length scale estimates 

7.2.1 Nonlinear and system-level 

The various attributes of these natural scale estimates promote their 

widespread implementation in ecology. Characteristic length scales (CLSs) are 

derived with methods from nonlinear time series analysis, thereby becoming the 

first measures of the optimal sampling scale which take into account the 

nonlinear, dynamical, if not chaotic complexity of natural systems. CLSs are 

system-level measures and therefore can be estimated from the dynamics of a 
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single species within the system. Indeed, for the system studied here, species from 

a range of phyla including Rhodophyta, Cnidaria, and Porifera provided similar 

estimates of scale (Chapter 3), confirming that measurement of only a single 

species' dynamic is adequate for the determination of sampling scale for a whole 

system, given that the dynamics of these species competing for space are 

interdependent (Chapter 6). It is important to note, however, that if the species 

under investigation provides a spectrum that is even slightly ambiguous, other 

species from the system should be evaluated to confirm the CLS estimates. 

7.2.2 Tractable data requirements 

Using the new method based on short time series where replication is 

through space rather than through time, CLSs can be estimated from a set of 

spatially resolved maps collected over only three consecutive time steps. The 

modification of the method allows use of only a small fraction of the data 

required for the original method of Pascual and Levin (1999), which was 

developed for model systems from which time series of thousands of time steps 

were readily obtained. The data requirements are now suitable for application to 

natural systems. 

7.2.3 Robust to arbitrary parameter changes 

CLS estimates have been shown to be robust to arbitrary choices of 

parameters used in attractor reconstruction (Chapter 2) and the form of sampling 

regimes (Chapter 4). Importantly, CLS estimates are not sensitive to these 

arbitrary choices, but they are sensitive to weak connectivity among species, and 

to shifting attractors. Both properties are highly desirable. Robustness of the 

estimate is essential for its implementation; sensitivity to slight parameter or 
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sampling regime changes would significantly decrease its value as a tool for 

ecologists. 

7.2.4 Estimated with both species and habitat level data 

Another attribute that makes CLSs attractive is that in addition to their 

successful estimation at the local level of quadrats with species level data, 

characteristic length scales have been successfully estimated at the broader 

landscape scale, using habitat level data mapped from remotely sensed images 

(Chapter 5). A CLS was detectable for a coral reef lagoon using highly resolved 

habitat level data. Very distinct habitat types differing in morphology, abundance, 

and their component species indicated identical estimates of the CLS, reinforcing 

the conclusion that CLSs are properties intrinsic to the system observed. With a 

widening availability of remotely sensed imagery, applications for use of the 

estimate with habitat level data range from determination of the scale at which to 

monitor for ecosystem based management (Lewis et al. 1996), to using the CLS 

as an index in itself as a baseline for detecting long-term change. 

7.2.5 Ability to ident6 weakly connected species 

Finally, the CLS shows sensitivity to poorly connected species within the 

system, a factor that many ecologists might expect to alter the appropriate scale of 

observation of the system dynamic. Sub-communities that are only wealdy 

connected to each other and which differ in the properties of their dynamics tend 

to indicate dissimilar CLS estimates. This suggests that the system-level nature of 

the CLS, i.e., that the same length scale will be defined by all species within the 

system, relies upon species with interlinked and therefore correlated dynamics. 

Using models with varying levels of connectivity between two spatially self- 
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organized groups of species we found that only when different species groups 

show dissimilar dynamics and are weakly connected do they indicate different 

CLSs (Chapter 6), a result which may eventually prove extremely valuable for 

using CLSs as indicators of poor species connectivity. 

7.3 CLS implementation 

Assessment of the reliability, usability, and flexibility of this estimate was 

necessary to establish it as a quantitative measure, and its performance now 

provides confidence that it is ready for application to other natural ecosystems. 

Characteristic length scales have been evaluated for various systems, both model 

and real, and we have established their potential as valuable tools for ecologists 

seeking to identify dynamical trends above stochastic variability. Estimating the 

natural scales of the study system at the commencement of monitoring will best 

facilitate observation of the dynamical trends that every investigator seeks to 

detect in a timely manner. 

Almost two decades ago, Wiens (1989) recommended that rather than 

asking how results vary as a function of scale, we consider scaling as a primary 

focus of research. This goal has now been achieved and Wiens' request for 

"nonarbitrary, operational ways of defining and detecting scales" has, in part, 

been realized. There is now a tractable method that can objectively guide the 

scaling of ecological studies towards detecting the dynamical trends that underlie 

the variability seen in nature, and no longer will the scale of observation need to 

be defined intuitively. 
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7.4 The future of CLSs: possibilities and limitations 

What is the future of characteristic length scales? As rates of collecting 

remotely sensed and other kinds of digital data increase, the technique for 

estimating the natural scales of a study system should become a part of every 

ecologist's toolbox. In the future, length scales will likely be determined for 

systems of all descriptions, from terrestrial to marine and pelagic to benthic, and 

for both one- and two-dimensional sampling data. However, this technique will 

not replace familiarization with the study system, which is essential regardless, 

nor will it offer a precise magic number that dictates the scale of the study. 

Instead the CLS will serve as a quantitative guide, to assist ecologists with the 

task of choosing the spatial scale of observation, above which the fluctuations 

average out, and below which noise dominates. It is encouraging that scientists 

have in the past sampled subtidal marine fouling communities at scales (area = 

approximately 0.1 m2, e.g., Dunstan and Johnson 2004) similar to the optimal 

sampling scale estimated for a fouling community with this new CLS method 

(0.35 m in length). 

Intuition can be a valuable tool, and if it is used in combination with this 

objective measure of sampling scale, studies will be more likely to detect the 

biologically driven variability in the system. Because the CLS method does not 

define the size of the landscape, nor the spatial resolution required for its 

estimation, an intuitive feel for the scale of the system will still be required to 

implement the technique. The size of the landscape mapped must be larger than 

the CLS of the system. If the landscape size used in the short time series method 

is too small or the resolution is too low, then the prediction r2  spectra will be 

uninterpretable. Similarly, an appropriate time scale over which the three maps 
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are spaced must be defined based on an understanding of the change or turnover 

in the system. Small variations in the length of intervals will not affect the 

estimate (Chapter 4), but the choice of months versus years lies with the 

investigator, until a technique to determine characteristic time scales is developed 

at some future date. The decay of the autocorrelation function may be a candidate 

for normalizing the time interval between the maps, but the relationship between 

this function and the CLS needs further investigation before it can be 

implemented. 

Originally, we mused whether CLSs might be useful in the design and 

planning of reserves for conservation. We now know that the local CLSs 

estimated are too small to be of use in reserve design, but will instead assist in 

scaling the monitoring of the reserves. Managers seek the optimal scale for 

monitoring trends in systems (Stalmans et al. 2001, Nicholson and Jennings 

2004), and this method will be able to guide their efforts towards the most 

appropriate sampling scale, such that trends will be detected efficiently and 

effectively. 

Relative to other scaling measures such as the area at which all species in 

the system can be observed, the primary CLS appears to be small in magnitude. 

Only a fraction of the diversity of the system is captured in the optimal sampling 

scale estimated for the fouling community system studied here (Chapter 3). An 

avenue of future research will be to look at other scaling phenomena in more 

detail to clarify the place of the CLS relative to other measures. 

Multiple natural scales are likely to occur for real dynamical systems. The 

method used in the work presented here is able to detect at least two scales, the 

smallest of which defines the scale for observation of trends in the local system 
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dynamic, and the second, which we have termed the secondary length scale, 

indicates the scale at which the patch level emergent dynamic appears. These 

secondary scales are less predictable, more dependent on the species used to 

reconstruct the attractor, and arise from the collective behavior of the smaller 

scale processes. Such patch level emergent dynamics may manifest as spatial self-

organization, for example (Bascompte and Sole 1995, Johnson 1997). Though we 

now have the ability to measure this scale, which is an accomplishment in itself, 

its use is a question that needs to be explored further. 

Environmental stochasticity in the form of physical disturbances may 

affect CLSs detected, on occasions when disturbance changes the system's pattern 

formation. In the coral reef model evaluated in Chapter 2, mortality experienced 

by the colonies included that caused by environmental disturbance (Johnson 

1997). However, the CLS was not influenced by the level of mortality because the 

spatial pattern driven by the dynamic of the system was maintained. Large-scale 

environmental disturbances such as hurricanes may even contribute to 

connectivity, driving the similarity in CLSs estimated for different species 

(Chapter 5). A direction of future studies may be to further investigate the role of 

environmental, as opposed to demographic, stochasticity on CLSs estimated for 

natural systems. 

Finally, because of the method of graphical analysis used to visually 

estimate natural length scales, researchers should note that the scale is an estimate 

and not an absolute value. Where curves are difficult to interpret, or error in the 

prediction r2  metric is difficult to distinguish from a region of inflection, multiple 

species should be evaluated for verification of the scale estimate. When 

comparing CLSs of systems evaluated by different researchers, care must be 
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taken to assure that similar, consistent criteria were used for choosing the region 

of plateau in the curve. 

7.5 Conclusion 

The results contained within this thesis are exciting, and potentially relevant 

to a wide spectrum of scientists with a management focus. This research likely 

marks the introduction of what will become an accepted systematic means of 

defining the sampling scale of observation. 



Literature Cited 125 

Literature Cited 

Abarbanel, H. 1996. Analysis of Observed Chaotic Data. Springer-Verlag, New 

York. 

Allen, T. F. H., D. A. Sadowsky, and N. Woodhead. 1984. Data transformation as 

a scaling operation in ordination of plankton. Vegetatio 56:147-160. 

Anderson, P. E., and H. J. Jensen. 2005. Network properties, species abundance 

and evolution in a model of evolutionary ecology. Journal of Theoretical 

Biology 232:551-558. 

Bascompte, J., and R. V. Sole. 1995. Rethinking complexity: modelling 

spatiotemporal dynamics in ecology. Trends in Ecology and Evolution 

10:361-366. 

Bishop, M. J., A. J. Underwood, and P. Archambault. 2002. Sewage and 

environmental impacts on rocky shores: necessity of identifying relevant 

spatial scales. Marine Ecology Progress Series 236:121-128. 

Bissonette, J. A. 1997. Scale-sensitive ecological properties: Historical context, 

current meaning. Pages 3-31 in J. A. Bissonette, editor. Wildlife and 

Landscape Ecology: Effects of Pattern and Scale. Springer-Verlad, New 

York. 

Buzug, T., and G. Pfister. 1992. Comparison of aalgorithms calculating optimal 

embedding parameters for delay time coordinates. Physica D 58:127-137. 

Bythell, J. C., Z. M. Hillis-Starr, and C. S. Rogers. 2000. Local variability but 

landscape stability in coral reef communities following repeated hurricane 

impacts. Marine Ecology Progress Series 204:93-100. 

Carlile, D., J. Skalski, J. Batker, J. Thomas, and V. Cullinan. 1989. Determination 

of ecological scale. Landscape Ecology 2:203-213. 



Literature Cited 126 

Casdagli, M. 1989. Nonlinear prediction of chaotic time series. Physica D 35:335- 

356. 

Castilla, J. C. 2000. Roles of experimental marine ecology in coastal management 

and conservation. Journal of Experimental Marine Biology and Ecology 

250:3-21. 

Chalcraft, D. R., J. W. Williams, M. D. Smith, and M. R. Willig. 2004. Scale 

dependence in the species-richness-productivity relationship: The role of 

species turnover. Ecology 85:2701-2708. 

Chase, J. M., and M. A. Leibold. 2002. Spatial scale dictates the productivity-

biodiversity relationship. Nature 416:427-430. 

Chave, J., H. Muller-Landau, and S. Levin. 2002. Comparing classical 

community models: Theoretical consequences for patterns of diversity. 

American Naturalist 159:1-23. 

Connor, E. F., and E. D. McCoy. 1979. The statistics and biology of the species-

area relationship. American Naturalist 113:791-833. 

Crawley, M. J., and J. E. Harral. 2001. Scale dependence in plant biodiversity. 

Science 291:864-868. 

De Roos, A., E. McCauley, and W. Wilson. 1991. Mobility versus density-

limited predator-prey dynamics on different spatial scales. Proceedings of 

the Royal Society of London B 246:117-122. 

Denny, M. W., B. Helmuth, G. H. Leonard, C. D. G. Harley, L. J. H. Hunt, and E. 

K. Nelson. 2004. Quantifying scale in ecology: Lessons from a wave-swept 

shore. Ecological Monographs 74:513-532. 

Done, T. J. 1992. Effects of tropical cyclone waves on ecological and 

geomorphological structures on the Great Barrier Reef. Continental Shelf 



Literature Cited 127 

Research 12:859-872. 

Duckworth, A. R., and C. N. Battershill. 2001. Population dynamics and chemical 

ecology of New Zealand demospongiae Latrunculia sp nov and 

Polymastia croceus (Poecilosclerida: Latrunculiidae: Polyrnastiidae). New 

Zealand Journal of Marine and Freshwater Research 35:935-949. 

Dunne, J. A., R. J. Williams, and N. D. Martinez. 2002. Food-web structure and 

network theory: The role of connectance and size. Proceedings of the 

National Academy of Science 99:12917-12922. 

Dunstan, P. K., and C. R. Johnson. 2004. Invasion rates increase with species 

richness in a marine epibenthic community by two mechanisms. 

Oecologia 138:285-292. 

Dunstan, P. K., and C. R. Johnson. 2005. Predicting global dynamics from local 

interactions: individual-based models predict complex features of marine 

epibenthic communities. Ecological Modelling, in press. 

Durrett, R., and S. Levin. 2000. Lessons on pattern formation from planet 

WATOR. Journal of Theoretical Biology 205:201-214. 

Ellner, S. 1989. Inferring the causes of population fluctuations. in C. Castillo-

Chavez, S. A. Levin, and C. A. Shoemaker, editors. Mathematical 

approaches to problems in resource management and epidemiology. Lecture 

Notes in Biomathematics. Springer-Verlag, Berlin, Germany. 

Ellner, S., and P. Turchin. 1995. Chaos in a noisy world: new methods and 

evidence from time-series analysis. American Naturalist 145:343-375. 

Farmer, J. 1982. Chaotic attractors of an infinite-dimensional dynamical system. 

Physica D 4:366-393. 

Fourqurean, J. W., and L. M. Rutten. 2004. The impact of hurricane Georges on 



Literature Cited 128 

soft-bottom, back reef communities: site- and species-specific effects in 

South Florida seagrass beds. Bulletin of Marine Science 75:239-257. 

Fraser, A. M., and H. L. Swinney. 1986. Independent coordinates for strange 

attractors from mutual information. Physical Review A 33:1134-1140. 

Green, E. P., P. J. Mumby, A. J. Edwards, and C. D. Clark. 1996. A review of 

remote sensing for the assessment and management of tropical coastal 

resources. Coastal Management 24:1-40. 

Greig-Smith, P. 1952. The use of random and contiguous quadrats in the study of 

the structure of plant communities. Annals of Botany 16:293-316. 

Greig-Smith, P. 1964. Quantitative plant ecology, 2nd edition. Butterworths, 

London. 

Habeeb, R. L., J. Trebilco, C. R. Johnson, and S. Wotherspoon. 2005. 

Determining natural scales of ecological systems. Ecological Monographs 

75:467-487. 

Hastings, A., C. L. Hom, S. Ellner, P. Turchin, and H. C. J. Godfray. 1993. Chaos 

in ecology: Is mother nature a strange attractor? Annual Review of Ecology 

and Systematics 24:1-33. 

Haydon, D. T. 2000. Maximally stable model ecosystems can be highly 

connected. Ecology 81:2631-2636. 

Hill, J. K., and K. C. Hamer. 2004. Determining impacts of habitat modification 

on diversity of tropical forest fauna: the importance of spatial scale. Journal 

of Applied Ecology 41:744-754. 

Johnson, C. R. 1997. Self-organising in spatial competition systems. Pages 245- 

263 in N. Klomp, and I. Lunt, editors. Frontiers in ecology: Building the 

links. Elsevier, Oxford. 



Literature Cited 129 

Johnson, C. R., D. Klumpp, F. J., and R. Bradbury. 1995. Carbon flux on coral 

reefs: effects of large shifts in community structure. Marine Ecology 

Progress Series 126:123-143. 

Johnson, C. R., and K.H. Mann. 1988. Diversity, patterns of adaptation, and 

stability of Nova Scotian kelp beds. Ecological Monographs 58:129-154. 

Johnson, C. R., and I. SeMen. 2002. Selection for restraint in competitive ability 

in spatial competition systems. Proceedings of the Royal Society of London 

B 269:655-663. 

Kantz, H., and T. Schreiber. 1997. Nonlinear Time Series Analysis. Cambridge 

University Press, Cambridge. 

Kaplan, D., and L. Glass. 1995. Understanding Nonlinear Dynamics. Springer-

Verlag, New York. 

Keeling, M., I. Mezic, R. Hendry, J. Mcglade, and D. Rand. 1997. Characteristic 

length scales of spatial models in ecology via fluctuation analysis. 

Philisophical Transactions of the Royal Society of London B 352:1589- 

1601. 

Kendall, M. S., T. Baftista, and Z. Hillis-Starr. 2004. Long term expansion of a 

deep Syringodium filiforme meadow in St. Croix, US Virgin Islands: the 

potential role of hurricanes in the dispersal of seeds. Aquatic Botany 78:15- 

25. 

Kennel, M. B., R. Brown, and H. D. I. Abarbanel. 1994. Determining embedding 

dimension for phase-space reconstruction using a geometrical construction. 

in E. Ott, T. Sauer, and J. A. Yorke, editors. Coping with Chaos. John 

Wiley & Sons, Inc., New York. 

Kershaw, K. A. 1957. The use of cover and frequency in the detection of pattern 



Literature Cited 130 

in plant communities. Ecology 38:291-299. 

Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:1943- 

1967. 

Levin, S. A. 2000. Multiple scales and the maintenance of biodiversity. 

Ecosystems 3:498-506. 

Levin, S. A., B. Grenfell, A. Hastings, and A. S. Perelson. 1997. Mathematical 

and computational challenges in population biology and ecosystems 

science. Science 275:334-343. 

Lewis, C. A., N. P. Lester, A. D. Bradshaw, J. E. Fitzgibbon, K. Fuller, L. 

Hakanson, and C. Richards. 1996. Considerations of scale in habitat 

conservation and restoration. Canadian Journal of Fisheries and Aquatic 

Sciences 53:440-445. 

Lewis, J. B. 2002. Evidence from aerial photography of structural loss of coral 

reefs at Barbados, West Indies. Coral Reefs 21:49-56. 

Liebert, W., K. Pawelzik, and H. Schuster. 1991. Optimal embeddings of chaotic 

attractors from topological considerations. Europhysics Letters 14:521-526. 

Liebert, W., and H. Schuster. 1989. Proper choice of the time delay for the 

analysis of chaotic time series. Physics Letters A 142:107-111. 

Little, S., S. Ellner, M. Pascual, M. Neubert, D. Kaplan, T. Sauer, H. Caswell, and 

A. Solow. 1996. Detecting nonlinear dynamics in spatio-temporal systems, 

examples from ecological models. Physica D 96:321-333. 

Loehle, C., and G. Wein. 1994. Landscape habitat diversity: a multiscale 

information theory approach. Ecological Modelling 73:311-329. 

Lundquist, J. E., and R. A. Sommerfeld. 2002. Use of fourier transforms to define 

landscape scales of analysis for disturbances: a case study of thinned and 



Literature Cited 131 

unthinned forest stands. Landscape Ecology 17:445-454. 

Marcos-Nikolaus, P., J. M. Martin-Gonzalez, and R. V. Sole. 2002. Spatial 

forecasting: Detecting determinism from single snapshots. International 

Journal of Bifurcation and Chaos 12:369-376. 

Masse!, S. R., and T. J. Done. 1993. Effects of cyclone waves on massive coral 

assemblages on the Great Barrier Reef: Meteorology, hydrodynamics and 

demography. Coral Reefs 12:153-166. 

May, R. M. 1976. Simple mathematical models with very complicated dynamics. 

Nature 261:459-467. 

McCann, K. S. 2000. The diversity-stability debate. Nature 405:228-233. 

McNeill, S. E. 1994. The selection and design of marine protected areas: 

Australia as a case study. Biodiversity and Conservation 3:586-605. 

Meesters, E. H., M. Hilterman, E. Kardinaal, M. Keetman, M. de Vries, and R. P. 

M. Bak. 2001. Colony size-frequency distributions of scleractinian coral 

populations: spatial and interspecific variation. Marine Ecology Progress 

Series 209:43-54. 

Mumby, P. J., A. J. Edwards, E. P. Green, C. W. Anderson, A. C. Ellis, and C. D. 

Clark. 1997. A visual assessment technique for estimating seagrass standing 

crop. Aquatic Conservation Marine and Freshwater Ecosystems 7:239-251. 

Mumby, P. J., E. P. Green, C. D. Clark, and A. J. Edwards. 1998a. Digital 

analysis of multispectral airborne imagery of coral reefs. Coral Reefs 17:59- 

69. 

Mumby, P. J., C. D. Clark, E. P. Green, and A. J. Edwards. 1998b. Benefits of 

water column correction and contextual editing for mapping coral reefs. 

International Journal of Remote Sensing 19:203-210. 



Literature Cited 132 

Mumby, P. J., and A. R. Harborne. 1999. Development of a systematic 

classification scheme of marine habitats to facilitate regional management 

and mapping of Caribbean coral reefs. Biological Conservation 88:155-163. 

Mumby, P. J., J. R. M. Chisholm, C. D. Clark, J. D. Hedley, and J. Jaubert. 2001. 

A bird's-eye view of the health of coral reefs. Nature 413:36-36. 

Mumby, P. J., and A. J. Edwards. 2002. Mapping marine environments with 

IKONOS imagery: enhanced spatial resolution can deliver greater thematic 

accuracy. Remote Sensing of Environment 82:248-257. 

Molofsky, J., J. Bever, J. Antonovics, and T. Newmaan. 2002. Negative 

frequency dependence and the importance of spatial scale. Ecology 83:21- 

27. 

Nichols, J. M., and J. D. Nichols. 2001. Attractor reconstruction for non-linear 

systems: a methodological note. Mathematical Biosciences 171:21-32. 

Nicholson, M. D., and S. Jennings. 2004. Testing candidate indicators to support 

ecosystem-based management: the power of monitoring surveys to detect 

temporal trends in fish community metrics. ICES Journal of Marine 

Science 61:35-42. 

O'Neill, R. V., D. L. DeAngelis, J. B. Waide, and T. F. H. Allen. 1986. A 

Hierarchical Concept of Ecosystems. Princeton University Press, Princeton, 

NJ. 

Oren, U., and Y. Benayahu. 1998. Didemnid ascidians: Rapid colonizers of 

artificial reefs in Eilat (Red Sea). Bulletin of Marine Science 63:199-206. 

Palumbi, S. R. 2001. The ecology of marine protected areas. Pages 509-530 in M. 

D. Bertness, S. D. Gaines, and M. E. Hay, editors. Marine Community 

Ecology. Sinauer Associates, Inc., Sunderland, Massachusetts. 



Literature Cited 133 

Pandolfi, J. M. 2002. Coral community dynamics at multiple scales. Coral 

Reefs 21:13-23. 

Pascual, M., and S. A. Levin. 1999. From individuals to population densities: 

searching for the intermediate scale of nontrivial determinism. Ecology 

80:2225-2236. 

Pascual, M., and S. Ellner. 2000. Linking ecological patterns to environmental 

forcing via nonlinear time series models. Ecology 81:2767-2780. 

Pascual, M., P. Mazzega, and S. A.Levin. 2001. Oscillatory dynamics and spatial 

scale: the role of noise and unresolved pattern. Ecology 82:2357-2369. 

Peterson, C. H., and J. A. Estes. 2001. Conservation and management of marine 

communities. Pages 469-507 in M. D. Bertness, S. D. Gaines, and M. E. 

Hay, editors. Marine Community Ecology. Sinauer Associates, Inc., 

Sunderland, Massachusetts. 

Petrovskii, S., L. Bai-Lian, and H. Malchow. 2003. Quantification of the spatial 

aspect of chaotic dynamics in biological and chemical systems. Bulletin of 

Mathematical Biology 65:425-446. 

Pielou, E. C. 1977. Mathematical Ecology, 2nd edition. John Wiley & Sons, New 

York. 

Pressey, R. L., and V. S. Logan. 1998. Size of selection units for future reserves 

and its influence on actual vs targeted representation of features: a case 

study in western New South Wales. Biological Conservation 85:305-319. 

Qi, Y., and J. Wu. 1996. Effects of changing spatial resolution on the results of 

landscape pattern analysis using spatial autocorrelation indicies. Landscape 

Ecology 11:39-49. 



Literature Cited 134 

Rand, D. 1994. Measuring and characterizing spatial patterns, dynamics and 

chaos in spatially extended dynamical systems and ecologies. Philisophical 

Transactions of the Royal Society of London A 348:497-514. 

Rand, D., and H. Wilson. 1995. Using spatio-temporal chaos and intermediate-

scale determinism to quantify spatially extended ecosystems. Proceedings 

of the Royal Society of London B 259:111-117. 

Rouget, M. 2003. Measuring conservation value at fine and broad scales: 

implications for a diverse and fragmented region, the Agulhas Plain. 

Biological Conservation 112:217-232. 

Roughgarden, J., S. W. Running, and P. A. Matson. 1991. What does remote 

sensing do for ecology? Ecology 72:1918-1922. 

Schneider, D. C. 1994. Quantitative Ecology: Spatial and Temporal Scaling. 

Academic Press, San Diego. 

Schreiber, T. 1995. Efficient neighbor searching in nonlinear time series analysis. 

International Journal of Bifurcation and Chaos 5:349-358. 

Schreiber, T. 1999. Interdisciplinary application of nonlinear time series methods. 

Physics Reports 308:2-64. 

Schumaker, N. H. 1996. Using landscape indices to predict habitat connectivity. 

Ecology 77:1210-1225. 

Schwartz, M. W. 1999. Choosing the appropriate scale of reserves for 

conservation. Annual Review of Ecology and Systematics 30:83-108. 

Sole, R. V., and J. Bascompte. 1995. Measuring chaos from spatial information. 

Journal of Theoretical Biology 175:139-147. 

Stalmans, M., K. Balkwill, E. T. F. Witkowski, and K. H. Rogers. 2001. A 

landscape ecological approach to address scaling problems in conservation 



Literature Cited 135 

management and monitoring. Environmental Management 28:389-401. 

Stevens, T. 2002. Rigor and representativeness in marine protected area design. 

Coastal Management 30:237-248. 

Sugihara, G., B. Grenfell, and R. M. May. 1990. Distinguishing error from chaos 

in ecological time series. Philisophical Transactions of the Royal Society of 

London B 330:235-251. 

Takens, F. 1981. Detecting strange attractors in turbulence. Pages 366-381 in D. 

Rand and L. Young, editors. Dynamical systems and turbulence, Warwick 

1980. Lecture Notes in Mathematics. Springer-Verlag, New York. 

Tanaka, K. 2002. Growth dynamics and mortality of the intertidal encrusting 

sponge Halichondria okadai (Demospongiae, Halichondrida). Marine 

Biology 140:383-389. 

Tischendorf, L., and L. Fahrig. 2000. On the usage and measurement of landscape 

connectivity. OIKOS 90:7-19. 

Tong, H. 1990. Non-linear Time Series Analysis. Oxford University Press, 

Oxford, UK. 

Turchin, P., and A. D. Taylor. 1992. Complex dynamics in ecological time series. 

Ecology 73:289-305. 

Turner, M. G., R. V. O'Neill, R. H. Gardner, and B. T. Milne. 1989. Effects of 

changing spatial scale on the analysis of landscape pattern. Landscape 

Ecology 3:153-162. 

Turner, S., R. V. O'Neill, W. Conley, M. Conley, and H. Humphries. 1991. 

Pattern and scale: Statistics for landscape ecology. Pages 17-47 in S. J. 

Turner and R. H. Gardner, editors. Quantitative Methods in Landscape 

Ecology. Springer Verlag, New York. 



Literature Cited 136 

Tyre, A., H. Possingham, and C. Bull. 1997. Characteristic scales in ecology: fact, 

fiction or futility. Pages 233-243 in N. a. L. Klomp, I., editor. Frontiers in 

Ecology. Elsevier Science Ltd, New York. 

Ward, T. J., M. A. Vanderklift, A. 0. Nicholls, and R. A. Kenchington. 1999. 

Selecting marine reserves using habitats and species assemblages as 

surrogates for biological diversity. Ecological Applications 9:691-698. 

Weitz, J. S., and D. H. Rothman. 2003. Scale-dependence of resource-biodiversity 

relationships. Journal of Theoretical Biology 225:205-214. 

Wiens, J. 1989. Spatial scaling in ecology. Functional Ecology 3:385-397. 

Wilson, H. B., and M. J. Keeling. 2000. Spatial scales and low dimensional 

deterministic dynamics. Pages 209-226 in U. Diecicmann, R. Law, and J. A. 

J. Metz, editors. The geometry of ecological interactions: Simplifying 

spatial complexity. Cambridge University Press, Cambridge. 



Appendix A 137 

Appendix A 

A ttractor reconstruction 

Takens (1981) showed that the general shape of a multi-species system 

dynamic (the attractor) can be reconstructed in n-dimensional phase space using 

time series data from a single observed variable X,. A reconstructed attractor is 

qualitatively similar to the real state space attractor that could be obtained by 

measuring all variables in the system. While there are several approaches to 

attractor reconstruction (Abarbanel 1996, Kantz and Schreiber 1997) the method 

used here, and in previous CLS estimation techniques, is time-delay embedding. 

Using the Takens (1981) theorem for attractor reconstruction, vectors of 

dimension de  are constructed from the original time series x(t), 

X (t ,) = {x(t ,), x(t + r), x(t + 	x(t + (d — 1)r)} 

where X(4) is the observable state variable at discrete time (4), t is the 

time delay, and de  is the embedding dimension. These points are then assumed to 

approximate the reconstructed attractor. For example, for the time series X1, X2, 

X3,. . . , X10, the reconstructed attractor with t = 3 and de  = 2 has points (X1, X4), 

(X2 , X5), (X3, X6),. . . , (X7, X10) in a 2 -dimensional phase space. 

The time delay (t) is some multiple of the sampling time, describing how 

lagged in time the coordinates of the attractor will be (Abarbanel 1996). Pascual 

and Levin (1999) select as the value for which the autocorrelation function first 

crosses zero. Autocorrelation measures correlations between coordinates at 

different values of t, and the point at which this function crosses zero indicates 

the time delay at which coordinates are independent but still dynamically linked. 
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However, Tong (1990) criticized use of this linear measure for a nonlinear 

analysis, and for this reason Abarbanel (1996), Kantz and Schreiber (1997) and 

Nichols and Nichols (2001) favor the use of Fraser and Swinney's (1986) mutual 

information function, a nonlinear equivalent of autocorrelation, to determine an 

optimal value for T. Thus, in this research, t was chosen using the first minimum 

point in the time delayed mutual information curve (Fraser and Swinney 1986, 

Abarbanel 1996, Kantz and Schreiber 1997, Nichols and Nichols 2001). This 

technique measures the amount of information shared between two measurements 

a and b. When the amount of information learned from a about b is at a minimum, 

the two time points are taken to be sufficiently independent (Abarbanel 1996). 

The embedding dimension (de) is the minimum dimension in phase space 

needed to capture the system dynamics (Farmer 1982). To estimate de, the 

standard false nearest neighbors method is used (Kantz and Schreiber 1997), 

where the dimension is chosen when the percentage of false nearest neighbors 

falls within some small threshold of zero (Kennel et al. 1992). Each point on the 

attractor has some nearest neighbor in Euclidean space. False projections occur 

when the attractor is embedded in too few dimensions, and therefore is folded. 

The embedding dimension required to unfold the attractor is estimated to be 

where the number of false nearest neighbors drops below the level of noise and 

each point's nearest neighbors remain the same when the embedding dimension is 

increased (Liebert et al. 1991, Nichols and Nichols 2001). 

Once T and de  are chosen, prediction of the attractor must be made. Nearby 

points on the attractor are followed to determine their location after some t time 

steps (Sugihara et al. 1990). To predict x(ti+ t) from x(ti), a list of all the states of 

x previously visited is searched for those closest to x(ti). If the time series is long 
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enough, then some past states will be close to the present and the prediction will 

be close to the true state of the system (Kantz and Schreiber 1997). Some set of 

points (k) around the point trying to be predicted is used for the prediction. These 

points, or nearest neighbors, are chosen based on their proximity, and then are 

averaged to determine the prediction in phase space (Kaplan and Glass 1995, 

Kantz and Schreiber 1997). In this thesis, the approach was to choose a fixed 

number of k nearest neighbors (neighborhoods of fixed mass) and then weight the 

average of the neighbors by inverse distance (Schreiber 1995). The predicted 

value of each point is then the average of the observed values of its k nearest 

neighbors, and the average is weighted by inverse distance so that neighbors 

further away contribute less (Casdagli 1989). 

The algorithm based on k-nearest neighbors (Kaplan and Glass 1995) is used to 

obtain a set of predicted values it, from the reconstructed attractor. The value of 

X, after a lag of h time steps is Xt+ii . Predicted values of X,+h  are obtained by 

taking the weighted average of the trajectories of the k points closest to X, in 

reconstructed phase space. Predictions are made for each point on the attractor, 

with h set equal to the time delay (r). 
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The null case: no spatial pattern 

The following proof shows that for a system with no spatial pattern, the 

expected values of prediction r2  (Pascual and Levin 1999) and error X (Keeling et 

al. 1997) are constant across all window sizes. This theoretical result has been 

confirmed by analyzing a time series of randomly simulated landscapes. 

Proof 

Consider a time series of landscapes, L'u  , which are composed of 

independent, discrete valued pixels. The data series for a window of side length / 

is given by N Bin(1 2  ,g) with E(N) =1 2  g and Var(1V) = 1 2  741 - r) 

The binomial distribution is used in preference to the normal distribution 

because the binomial gives discrete valued data and so provides a null case 

comparable with individual-based spatially explicit models containing species 

X1 – X,. The value g can be thought of as the probability of observing a 

particular species X . The density of X in a window of side length / is 

I 	I 
X; = 1 7114. = NY2  and E ,(X;)= g and 

/ 

Var(X;)= —1 Var(N`) 
1 4  

= -I /
2
741 –g) 

/ 4  

1 i=1 J= 1 

(Al) 

Because the landscapes L , are independent, the X; are also independent. Thus, 

the k-nearest neighbors method averages k independent values of X; to 
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determine X,. 

k 

Therefore Et a>;)= E;(X;)=Ir and Var(I;) = Var—IX: 1  
k 

1 g(1—g) 
= 

k
2k 

1 2  

941— it) 
kl 2  (A2) 

I; and X; are independent, so using (Al) and (A2) 

g 1 , ) 	 ( 	12 ) 1 	k i ) Var(X; — 	(1—g g1—g 	gl—g k+ 

Since E,(X:—I;)= 0 then Var(X; 	) = E,[(X; 	E,(X; — yk:) 2 ] 

= E,[(X; — )2]—E,(X; _;)2 

=E1 [(X:—I;) 2 ] 	 (A4) 

Together (A3) and (A4) give Eg [(X; — yk;) 2 ]=( 711112 	1 )  which is used 

to predict values of the CLS statistics: 

for error X (Keeling et al. 1997): 

error X = /VE,[(X; — Is ;) 2 ] 

(A3) 

= constant 

for prediction ? (Pascual and Levin 1999): 
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I  
prediction r2  =1 

E,RX; — ;) 2 ]  
Var(X;) 

= constant 

Expected values of prediction r2  and error X for the null case were validated using 

a series of landscapes with z = 0.3 and k =10 . Expected values for prediction r2  

1 	 
(i.e., — —

1 = —0.1 ) and error X (i.e., g(1— 	
k±1  

it) 	=1/ 0.21x1.1 = 0.48) were 
k 	 k 

produced in our simulations (results not shown). 
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Abstract. A key issue in ecology is to identify the appropriate scale(s) at which to 
observe trends in ecosystem behavior. The characteristic length scale (CLS) is a natural 
scale of a system at which the underlying deterministic dynamics are most clearly observed. 
Any approach to estimating CLSs of a natural system must be able to accommodate complex 
nonlinear dynamics and must have realistic requirements for data. Here, we compare the 
robustness ortwo methods to estimate CLSs of dynamical systems, both of which use 
attractor reconstruction to account for the complex oscillatory dynamics of ecological 
systems. We apply these techniques to estimate CLSs of spatial multispecies systems of 
varying complexity, and show that both methods are robust for the simplest system, but 
as model complexity increases, the Pascual and Levin metric is more robust than that of 
Keeling et al. Both methods demonstrate some sensitivity to the choice of species used in 
the analysis, with closely connected species producing more similar CLSs than loosely 
connected species. In this context, connectivity is determined both by the topology of the 
interaction network. and spatial organization in the system. Notably, systems showing com-
plex spatial self-organization can yield multiple CLSs, with larger length scales indicating 
the emergent dynamics of interactions between patches. While the prediction r2  metric of 
Pascual and Levin is suitable to estimate CLSs of complex systems, their method is not 
suitable to apply to most real ecosystems because of the requirement of long time series 
for attractor reconstruction. .We offer two alternatives, both based on prediction r2 , but 
where repetition in space is largely (the "short time series" method) or wholly (the "sliding 
window" method) substituted for repetition in time in attractor reconstruction. Both meth-
ods, and in particular the short time series based on only three or four sequential observations 
of a system, are robust in detecting the primary length scale of complex systems. We 
conclude that the modified techniques are suitable for application to natural systems. Thus 
they offer, for the first time, an opportunity to estimate natural scales of real ecosystems, 
providing objectivity in important decisions about scaling in ecology. 

Key words: attrqctor reconstruction; characteristic length scale; community dynamics; ecosystem; 
nonlinear dynamics; spatial and temporal dynamics; spatial scale; spatiotemporal models. 

I NTRODUCTION 

A fundamental goal in ecology is to determine the 
dynamical processes underlying observed patterns. The 
single greatest difficulty confronting this important ob-
jective is that any pattern detected, and ultimately the 
understanding of the underlying dynamical processes, 
depends on the spatial scale at which we make our 
observations (Wiens 1989, Levin 1992, 2000, Schnei-
der 1994). The challenge is to identify the appropriate 
scales of observation for ecological investigation (Lev-
in 1992). Are there natural or "characteristic" scales 
of ecological systems that are optimal for observing a 
system's behavior that provide unambiguous infor-
mation about the dynamic, and which minimize noise 
in the signal measured? If so, then the capacity to iden-
tify these scales may be useful to applied ecology, par- 

• Manuscript received 9 September 2004; revised 22 February 
2005; accepted 25 February 2005; final version received 5 April 
2005. Corresponding Editor A. M. Ellison. 

3  Corresponding author. E-mail: craig.johnson@utas.edu.au  

ticularly to monitor and detect meaningful change in 
ecosystem state (Rand 1994, Bishop et al. 2002). - 

The search for a means to identify natural or "char-
acteristic" length scales (hereafter CLSs) in ecological 
systems stems back at least to the 1950s (Grieg-Smith 
1952, Kershaw 1957), but several more recent attempts 
have also addressed the problem (e.g., Carlile et al. 
1989; De Roos et al. 1991, Schneider 1994). Most ap-
proaches have assumed either that ecological systems 
are stationary in space and time, that fluctuations are 
random around a stationary global average (e.g., Rand 
and Wilson 1995), or that any trends detected are linear 
(see Turner et al. 1991). These kinds of approaches fail 
to take into account the dynamical nature of ecological 
systems in space and time, which is arguably charac-
terized by nonlinear oscillatory behaviors (e.g., Has-
tings et al. 1993, Ellner and Turchin 1995, Sole and 
Bascompte 1995, Little et al. 1996, Pascual and Ellner 
2000). 

In contrast, the relatively recent techniques of Keel-
ing et al. (1997) and Pascual and Levin (1999) to iden- 

467 
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tify CLSs are exceptional in that they both accom-
modate the complex nonlinear oscillations and non-
uniform patterns in spatial variance that are pervasive 
in real ecosystems. The crucial development of these 
new approaches is the application of attractor recon-
struction (Takens 1981) and prediction algorithms 
(Kaplan and Glass 1995) from nonlinear time series 
analysis to characterize dynamics at particular scales 
of observation. Takens (1981) shows that the attractor 
describing the dynamics of an entire system can be 
estimated from the time series of any one species. Both 
the Keeling et al. (1997) and Pascual and Levin (1999) 
techniques seek to identify the spatial scale that best 
distinguishes the deterministic dynamic, or trend, in a 
system from noise. The underlying tenet is that if the 
scale used to sample an ecosystem is too small, ob-
servations are swamped by noise due to strong corre-
lations among individual samples (Durrett and Levin 
2000, Wilson and Keeling 2000). If the sampling scale 
is too large, the nontrivial dynamics will be averaged 
out because distant parts of the landscape begin to act 
independently (Keeling et al. 1997, Pascual and Levin 
1999, Wilson and Keeling 2000). The CLS is an in-
termediate scale which most clearly reflects the un-
derlying deterministic signal (Pascual and Levin 1999, 
Wilson and Keeling 2000; for illustration, see Appen-
dix A). 

While the techniques of both Keeling et al. (1997) 
and Pascual and Levin (1999) show promise, thus far 
they have only been applied to simple model systems. 
Furthermore, these techniques require unrealistically 
long time series so that their application to most real 
ecosystems is impractical. Thus, if the goal of devel-
oping a technique to identify CLSs in real ecosystems 
is to be realized, there are two critical steps. First, these 
techniques must be able to indicate unambiguous 
length scales for dynamical systems more complex than 
those investigated to date. Second, the technique of 
attractor reconstruction needs to be modified to obviate 
the need for long time series. 

These challenges define the two broad aims of our 
research: to assess the robustness of the approaches of 
Keeling et al. (1997) and Pascual and Levin (1999) so 
that we can be confident in applying the techniques to 
complex ecological systems, and to develop a method 
of attractor reconstruction that does not require an un-
realistically long time series. We assess robustness by 
examining the capacity of the two techniques to iden-
tify unambiguous length scales for model systems 
spanning a spectrum of complexity, and by determining 
the sensitivity of CLS estimates to (I) the initial spatial 
arrangement of individuals in a system, (2) the choice 
of species used in attractor reconstruction, and (3) pa- -  
rameter choices in attractor reconstruction. We then 
develop two alternative methods which rely wholly or 
partially on substituting space for time in attractor re-
construction. One approach is based on using short time 
series obtained from multiple locations in space, while  

in the other we slide "windows of observation" 
through space at a single point in time, entirely sub-
stituting repetition in space for repetition in time. 

METHODS 

Our overall approach was first to determine whether 
the metrics of Keeling et al. (1997) 'and Pascual and 
Levin (1999) indicate Unambiguous length scales for 
systems of varying complexity across a range of spe-
cies and choices of parameters for attractor reconstruc-
tion. We then derived two alternative approaches to 
estimate CLSs based on the most robust metric ,  (i.e., 
that of Pascual and Levin 1999), where we substitute 
space for time to remove the need for long time series. 
Finally, we compared the estimates of CLSs derived 
using our two new methods with that of the original 
approach based on long time series. 

Existing methods for estimating CLSs 
of dynamic oscillating systems 

Both the methods of Keeling et al. (1997) and Pas-
cual and Levin (1999) are based on a sequence of time 
series, each sampled at a different spatial scale. The 
time series for scale 1 is constructed by marking an 1 
X I window on the landscape and. recordingthe abun-
dance or density of a single species over time as the 
system evolves. Nonlinear time series methods are used 
to make predictions for the time series, and the accu-
racy of these predictions is estimated. This process is 
repeated for a range of scales and prediction accuracy 
is-compared across all scales. 

Both Keeling et al. (1997) and Pascual and Levin 
(1999) use attractor reconstruction from nonlinear time 
series analysis as the means of prediction (Takens 1981, 
Kaplan and Glass 1995, Little et al. 1996). Assuming 
there is a deterministic system underlying the dynam-
ics, observations of a single variable in the system over 
time are used as a proxy from which to predict the 
dynamics of the whole.system. For example, in a pred-
ator-prey system, prey (or resource) density can be 
measured and used to predict the deterministic signal 
of the entire system (Rand and Wilson 1995). The 
strengths in using attractor reconstruction for predic-
tion of ecological systems are that there are no as-
sumptions of steady state, and that complex fluctua-
tions can be accommodated. A more detailed descrip-
tion of the method of attractor reconstruction is given 
in Appendix B, while more comprehensive treatments 
can be found in several introductory texts on nonlinear 
dynamics and attractor reconstruction (Kaplan and 
Glass 1995, Abarbanel 1996). In summary, the phase 
space of the ecosystem dynamic is built from time delay 
coordinates of a single species, which act as surrogates 
for the unobserved variables of the system (Casdagli 
1989, Abarbanel 1996, Kantz and Schreiber 1997). The 
trajectories in phase space are then used to reconstruct 
a set that is topologically equivalent to the attractor of 
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the full system (Farmer 1982, Sugihara et al. 1990, 
Kaplan and Glass 1995). 

While both approaches for CLS estimation use at-
tractor reconstruction as their basis, they differ in their 
measures of prediction error. Keeling et al. (1997) ap-
ply attractor prediction to calculate deviations around 
the underlying deterministic behavior and then to plot 
error variance (termed "error X") as a function of win-
dow size, producing a variance spectrum. For suffi-
ciently large windows, the relative variance initially 
increases at a rate proportional to window size, and 
then plateaus. The window size at which error X reaches 
the asymptote is the length scale where correlations 
have decayed and values at different sites behave like 
independent random variables. This scale, where the 
windows become statistically independent, is identified 
as the CLS. It defines the "window size" in which the 
full spatial dynamics of the system can be observed. 

Pascual and Levin's (1999) method is a variant of 
the approach of Keeling et al. (1997) and alms to extract 
the scale where the ratio of determinism to noise is 
maximized. This CLS will usually be slightly smaller 
than that required for the onset of independence defined 
by Keeling et al. (1997), because it is the minimum 
window size where the dynamics of the system can be 
accurately predicted (Pascual and Levin 1999). At each 
window size, the degree of determinism is evaluated 
from the prediction accuracy of the algorithm derived 
from attractor reconstruction. Pascual and Levin (1999) 
then examine how the prediction error of the trajec-
tories changes with spatial scale (Kaplan and Glass 
1995):They plot a statistic termed the prediction 7-2  (or 
degree of determinism) for each window size to pro-
duce a variance spectrum similar to that of error X. The 
scale where the prediction 1-2  spectrum first attains an 
asymptote with respect to window size identifies the 
scale of maximum determinism, or the CLS of the sys-
tem. 

By definition, sampling at a scale smaller than the 
CIS is suboptimal, and as window size increases to-
wards the CLS, prediction accuracy should increase 
substantially. Sampling at scales larger than the CLS 
offers comparatively little gain in accuracy. Thus, the 
CLS is estimated as the scale or window size at which 
prediction accuracy plateaus. 

Spatial models 
Models of varying complexity, in terms of species 

richness, the network topology defining the number of 
direct and indirect interspecific interactions in the sys-
tem (Johnson and Seinen 2002), and spatial pattern, 
were developed using the COMPETE software (see Sup-
plement), which is a probabilistic individual-based sys-
tem to model spatial competition between sessile co-
lonial organisms. The models follow the fate of com-
peting individuals in a two-dimensional landscape, and 
can demonstrate complex behaviors indicating nonlin-
ear dynamics and spatial self-organization (Johnson  

1997, Johnson and Seinen 2002). Any network topol-
ogy among S species is possible, including intransitive 
loops (e.g., where S, > S2, S2 > S3, S3 > S1 ; with S., > 
S, indicating that species x outcompetes and displaces 
species y), which arise commonly in benthic marine 
systems (Johnson and Seinen 2002). We used models 
with intransitivities in their network topology because 
they enable persistence stability (sensu Johnson and 
Mann 1988) of the system without the need for efab-
orate model closures and forcing functions. We update 
the system synchronously, and use periodic (toroidal) 
boundary conditions. 

Four model systems were implemented (in order of 
complexity of spatial pattern): symmetric networks of 
three, six, and 12 species, and a model of the dynamics 
of the benthos of a coral reef (Fig. 1). The three-species 
system is the simplest intransitive loop as described 
above; i.e., a circular network with binary interaction 
outcomes, so that each interaction has one unambig-
uous winner and one loser (Fig. IA). The six-species 
system involves a symmetrical network in which each 
species overgrows and is overgrown by two species (S, 
> (S2, SO, S2 > (S3, S4), • • • ,S6 > (S11 Si)), with all 
other interactions as standoffs. In this system, the spe-
cies spatially organize into two distinct groups of three 
species and, if the model is run for sufficient time, 
either group may eventually dominate (Fig. I B). The 
12-species system has a network structure of (S, > (S2. 
S3 , S4), S2 > (S3, 54, S3), 	,S12 > (Si, S2, S3)) -  and 
organizes into three groups of four species, any of 
which may begin to dominate, as the emergent dynamic 
unfolds (Fig. IC). In all three models the growth rates 
of all species are identical. For simplicity, there was 
no disturbance or mortality, and no recruitment of prop-

• agules to unoccupied sites. In the six- and 12-species 
models, two scales of self-organization are emergent: 
that of the colony and that of the patch, which is a 
distinctive group of colonies of several species. While 
the identity of species in particular patches is consis-
tent, there is oscillation in the areal dominance of 
patches over long time series (1000x time steps). Patch 
dominance varies depending on the initial random con-
figuration of "recruits" at time step zero and on sto-
chasticity in execution of the rules of local interactions. 
This dominance arises as a result of finite landscape 
size, and becomes less obvious with very large land-
scapes (i.e., larger than ,--500 x 500 cells). Colonies 
tend to become more aggregated over long time series, 
resulting in larger multispecies patches. 

The coral reef model is more complex than the other 
three because (i) parts of colonies or whole colonies 
may die with subsequent recruitment to unoccupied 
space, and (ii) competitive outcomes are not binary so 
that for all pairwise interactions among species S., and 
Sy , the probability of S, > Sy  and 5). > 5, is nonzero. 
There are 12 physiognomic life forms in the model 
(Fig. ID). Neighbor-specific growth rates, interaction 
outcomes, and mortality and recruitment rates have 
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been parameterized from direct observations of com-
munities on the Great Barrier Reef. The emergent com-
munity composition is very similar to that of real reefs 
after an appropriate period without a major disturbance 
event (notably, similar results are also evident from 
models of temperate marine benthic systems; see Dun-
stan and Johnson 2005). In this context, the coral reef 
model most closely simulates a natural system. We se-
lected three physiognomic groups for analysis in our 
exploration of altemative methods to identify CLSs: 
(i) turf and coralline algae, (ii) corymbose and digitate 
Acroporidae (acroporid corals), and (iii) Faviidae (fa-
viid corals). Acroporid and faviid corals occupy less 
cover than the turf and coralline algae, with faviids 
occurring in the smallest patches: 

Determining the robustness of existing techniques 
to estimate CLS 

We considered several properties in assessing the 
robustness of prediction r2  (Pascual and Levin 1999) 
and error X (Keeling et al. 1997) spectra derived from 
long time series. First, by definition, neither measure 
should show any dependence on window size when 
spatial and temporal patterns are random, i.e., in the 
absence of any deterministic signal or oscillatory be-
havior. We show.  that this result holds true (Appendix 
C). 

The other aspects of robustness considered are (1) 
the capacity to indicate an unambiguous length scale 
for spatial models of a range of complexity, (2) the 
capacity to identify similar length scales for different 
runs of the same system, (3) the capacity to identify 
similar length scales from different species in the same 
system, and (4) for any one model run, sensitivity of 
the CLS estimate to different arbitrary choices of pa-
rameters required for attractor reconstruction, namely 
T (time delay), d, (embedding dimension), and k (num-
ber of nearest neighbors; see Appendix B for details). 

The overall approach was to run all four model sys-
tems for 10 000 time steps on landscapes of 500 x 500 
cells, sampling landscapes from times 201 to 10 000 
(the first 200 time steps are ignored while the system 
self-structures). Each model was begun with a random 
spatial arrangement of "recruits" (10% total cover) on 
the initial landscape, with identical amounts of each 
species. We sampled different window sizes 1 (1 = 5 
to 495 in steps of 5) within the 500 X 500 landscape, 
and observed those windows through time. At each 
time step there was a single window of each size. The 
density of each species for each window size I x I was 
determined, generating a separate time series for each 
1. For a selected species, the attractor of the system in 
d dimensional space was estimated for each time series 
(see Appendix B). For each model run, we derived 
estimates of CLSs using methods of both Keeling et 
al. (1997) and Pascual and Levin (1999). 

In calculating the CLSs, abundances of the selected 
species were scaled by window area to convert each  

time series of absolute counts to a time series of den-
sity. Attractor reconstruction was undertaken as de-
scribed in Appendix B for particular choices of 7, 4, 

and k (k = 10 unless otherwise specified). The CLS 
was estimated as the window size, /, at which the error 
X or prediction r2  spectrum reached an asymptote. Mon-
te Carlos of 100 independent runs of each model were 
used to calculate mean error X and prediction r2  spectra 
with 95% confidence intervals. It should be noted that 
while we are interested in the sensitivity and robustness 
of both measures, prediction 12  will yield a slightly 
smaller length scale than error X for the reasons out-
lined earlier, so we are not concerned with whether the 
two techniques provide similar absolute estimates of 
length scales: 

Robustness to model complexity.—Because predic- 
tion r2  and error X have thus far been calculated only 
for simple spatial model systems, it is necessary to as-
certain whether the techniques produce meaningful re-
sults for more complex systems. Variance spectra of 
prediction r2  and error X were produced for the three-, 
six-, and 12-species models, and for the coral reef model. 
Spectra from the two methods were compared for each 
of the four models. 

Robustness to initial conditions.—For each model 
system, we assessed the variability Of the CLS esti-
mated from the dynamics of a given species over 100 
runs of the model, each with a different initial random 
configuration. 

Robustness to choice of species.—A system's at- 
tractor is built with observations on a single species. 
In theory, the choice of species to reconstruct the entire 
system's attractor is arbitrary, as every species reflects 
the same underlying attractor (Abarbanel 1996). Pre-
viously, CLSs have been generated from only a single 
species within the system, implicitly assuming that all 
species will indicate the same CLS (Keeling et al. 1997, 
Pascual and Levin 1999). We tested this assumption 
for each model by comparing the CLSs estimated from 
different species in the same system. 

Robustness to parameters of attractor reconstruc- 
tion.—The estimated CLS will depend in part on the 
accuracy of the attractor reconstruction, which itself 
depends on appropriate choices of the reconstruction 
parameters (T, d, and k, see "Appendix B; Buzug and 
Pfister 1992, Kantz and Schreiber 1997). No single 
unambiguous value exists for any of these parameters 
for a particular reconstruction, and indeed different 
techniques to estimate these parameters commonly 
yield dissimilar values (Buzug and Pfister 1992, Schrei-
ber 1995, 1999, Kantz and Schreiber 1997). Thus, we 
examined the sensitivity of the estimated CLS to a 
range of reasonable potential choices of these param-
eters, as indicated below. 

I. Time delay (T).—From a mathematical perspec-
tive, the choice of delay is arbitrary because the data 
set is assumed to be infinitely long (Kantz and Schrei-
ber 1997). However, for a finite set of data, the choice 
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FIG. I. Examples of 500 X 500 landscapes at time step 10 000 of the four model systems used to generate data: (A) 

three-species system, (B) six-species system, (C) 12-species system, and (D) coral reef system with 12 physiognomic groups. 
Each color represents a different species or group. Groups selected for analysis from the coral reef system are the dominant 
turf and coralline algae (light blue), digitate and corymbose Acroporidae (red patches), and Faviidae (dark gray patches). 
The different models represent a range of complexity of structure, dynamics, and spatial self-organizing. Note that some 
models self-organize at several spatial scales. All model runs used random initial configurations of recruits covering 10% of 
the landscape at time step zero. 

of T dictates the quality of the reconstructed trajectory 
(Liebert and Schuster 1989). If T is too small, the co-
ordinates x(r) and x(t, + T) will be almost identical, 
offering redundant information about the state space. 
Alternatively, if T is too large, the coordinates will be 
almost uncorrelated and their connection to one another 
is effectively random (Abarbanel 1996). The goal is to 
determine the delay where coordinates are independent 
while preserving their dynamical relationship (Nichols 
and Nichols 2001). We chose T as the first minimum 
point of the mutual information (MI) function (Ap-
pendix B). However, because identifying the first min-
imum point from the plot of MI vs. T requires subjective 
interpretation, we assessed the robustness of CLS es-
timates for a variety of choices of r that might be con-
sidered reasonable using the MI approach. 

2. Embedding dimension (d,).—If an attractor is pro-
jected in too few dimensions, the observed orbits will 
overlap and distinct segments on the attractor become 
confused (Abarbanel 1996). The appropriate d allows the 
attractor to be sufficiently unfolded in space such that this 
overlap no longer occurs. Over-embedding (embedding 
in too many dimensions) requires larger numbers of co-
ordinates, and increases the likelihood of noise in the 
dimensions of the embedded space where no dynamics 
are operating (Kennel et al. 1994). The c4 is chosen as 
the smallest dimension required to sufficiently unfold the 
attractor, and is indicated as the first minimum of the false 
nearest neighbors vs. dimension curve (see Appendix B). 
We assessed the robustness of CLS estimates over a range 
of embedding dimensions around the value suggested by 
the false nearest neighbor method. 
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3. Number of nearest neighbors (k).—The number 
of nearest neighbors (k) used in the prediction is a 
tunable parameter that influences the quality of the pre-
diction (see Appendix B). If too few neighbors are 
picked, then important nonrandom information may be 
missed. If too many are picked, the points may be wide-
ly spread in space, decreasing the accuracy.of the pre-
diction (Kantz and Schreiber 1997). We assessed the 
sensitivity of CLS estimates over a range of reasonable 
choices of k. 

A) STS 
a r 
1 

Alternative methods of CLS detection not dependent 
on long time series 

To address the problem of unrealistic data require-
ments of the existing approaches based on analysis of 
long time series, we derive two alternative methods 
which we term the "short time •series" and "sliding 
window" approaches. Both new methods use predic-
tion r2  (because this metric proved most robust), and 
substitute repetition in space for repetition in time. In 
the "short time series" method, time series are ob-
tained over only three to four time steps, but at many 
locations in space. In the "sliding window" method, 
space is wholly substituted for time by sliding a win-
dow of observation across space at a single point in 
time. The logic underpinning these developments is 
that distant locations in space within the same dynam-
ical system are likely to be at different points on the 
system's attractor. If so, then sampling sequentially in 
space should produce a reconstruction sufficient to re-
place long time series sampling. Substituting space for 
time has been successful in other contexts (see, for 
example, Allain and Cloitre 1991, Marcos-Nikolaus et 
al. 2002). 

Short time series analysis.—In this approach, short 
time series from multiple locations in space are em-
bedded to reconstruct a system's attractor piece-wise. 
Our data are from landscapes consisting of a large but 
finite array of contiguous cells where each cell can be 
occupied by a single species. We position windows so 
that they overlap spatially, with successive windows 
displaced by the width of a single cell, either horizon-
tally or vertically (Fig. 2A). A short time series is ob-
tained for each window. Thus, the short time series 
approach samples the whole landscape at every time 
step over a short time. The embedding parameters T 

and d, for attractor reconstruction are not determined 
in the same way as for long time series analysis. In 
principle, any value of T should suffice for an embed-
ding (Takens 1981), but in practice some delays are 
more effective (Kantz and Schreiber 1997). Here, we 
use a time delay of one and we ensure that the spacing 
between landscapes allows the system to evolve from 
one time step to the next. The number of embedding 
dimensions d is the number of time steps sampled 
minus one, as the final time step provides a data set 
against which the accuracy of predictions is assessed. 

.14 

tz 

3 3 3 

Fm. 2. Diagrams of (A) the short time series (STS) and 
(B) sliding window (SW) methods of attractor reconstruction. 
The large square represents an entire landscape that is pix-
elated at some resolution such that each pixel is occupied by 
a single species. The small squares represent windows of 
observation on the landscape. (A) The short time series ap-
proach uses a temporal sequence of only three or four con-
secutive time steps (e.g., r, — t3). At each time step we sample 
over the entire landscape, with successive windows separated 
by a single pixel, horizontally or vertically. In this particular 
representation, there are three time steps r, t 2, and 13 , and 
three data series at positions a, 0, and v. Three short time 
series are generated, and the system's attractor is reconstruct-
ed piecewise using the delayed coordinates. (B) In the sliding 
window approach, multiple short data series are generated 
for a single time step t, by sliding windows horizontally 
across the landscape. The vertical position of each series dif-
fers by one pixel, so the entire landscape is sampled. The 
sequence in each data series as the window of observation 
slides across the landscape is indicated as 1, 2, 3, 4.... In 
this example, two data series are shown at positions a 
and fi. 

Embeddings for different values of d are evaluated in 
the results. 

A modified prediction algorithm is required for at-
tractors reconstructed from short time series. When us-
ing long time series, changing the window size does 
not change the number of points used to predict the 
attractor, because replication occurs through time. 
However, in short time series embeddings where rep-
lication is partially spatial, larger windows will gen- 
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erate fewer points in the reconstructed attractor than 
smaller windows, which could bias prediction accu-
racy. Thus, predictions for the short time series are 
based on a random sample of 1000 windows, which 
compensates for the discrepancy between small and 
large windows. Random samples are also used for k 
nearest neighbor predictions in the sliding window ap-
proach described below. 

Sliding window analysis.--The sliding window sam-
pling method also uses multiple short data series to 
reconstruct an attractor in sections, but there is no tem-
poral component. A single landscape is sampled by 
sliding windows of observation cell by cell (or pixel 
by pixel) horizontally across the landscape, in a manner 
similar to the "gliding-box" described by Allain and 
Cloitre (1991) and Plotnick et al. (1996). Each data 
series begins one cell lower than the previous series 
so that the whole landscape is sampled (Fig. 2B). At-
tractor reconstruction from a spatial series assumes that 
spatial data capture the general shape of the system's 
dynamics in a similar way to a time series. The as-
sumption is reasonable if distant parts of the landscape 
are out of phase, that is, if they are on different parts 
of the system's attractor. Because of the large model 
landscapes used in the current study, this assumption 
is met for all analyses. 

There are two sensible options in selecting the spatial 
delay, 7, in the sliding window attractor reconstruction. 
One approach is to use the same delay for every win-
dow size, as for the time series embeddings. However, 
for spatial sampling the units of embedding delay are. 
cells (or pixels) rather than time steps. Thus, a potential 
problem with using delays of a fixed number of cells 
is that successive embedding dimensions will have a 
greater overlap for large window sizes than for small 
window sizes, which could bias CLS estimates. An 
alternative is to use delays set as some proportion of 
the linear dimensions of the window, T = a X window 
length, provided that this proportion is some whole 
number of cells. We evaluated fixed and proportional 
delays by assessing their performance for the "null 
case," that is, landscapes composed of independent, 
discrete valued pixels (results of comparison are pre-
sented in Appendix D). The results indicated that pro-
portional delays were more appropriate, and so we 
adopted proportional delays in our sliding window 
analyses. 

RESULTS 

Robustness of existing techniques 
based on long time series 

For each model system, we compare spectra based 
on error X and prediction r2. Length scales determined 
using error X (after Keeling et al. 1997) are designated 
as CLS k, while those based on prediction r2  spectra 
(after Pascual and Levin 1999) are designated as CLSp. 

Robustness of CLS estimates to initial conditions 

For the simplest model system (three species), spec-
tra of both error X and prediction r2  were of the ex-
pected shape, increasing to an asymptote as a function 
of window length, and demonstrating a single length 
scale (Fig. 3A). As expected, CLS, (50-60 cells) was 
slightly larger than CLS (30-40 cells; Pascual and 
Levin 1999). There was little variation between runs 
with different initial conditions. However, with increas-
ing complexity of the model system, CLS k  became 
more difficult to determine and confidence intervals 
around the error X spectrum broadened considerably 
(Fig. 3B, C, D). The error X spectrum for the 12-species 
system was not the expected positive asymptotic shape, 
and was not readily interpretable (Fig. 3C). Similarly, 
based on error K. no length scale could be determined 
for the coral reef model because the curve deviated 
dramatically from the expected shape with no inflection 
or asymptote (Fig. 3D). This was true of individual 
spectra as well as the mean spectrum depicted in Fig. 
3D. Conversely, CLS„ was not highly sensitive to 
changes in initial conditions for any of the models, and 
produced an interpretable curve for the full range of 
models we examined (Fig. 3). 

Robustness of CLS estimates to choice of species 

Estimates of CLS k  and CLS, in the three-species 
model system were not dependent on species identity. 
All three species are ecologically equivalent in the sys-
tem (Johnson and Seinen 2000), and displayed curves 
identical to those in Fig. 3A. In contrast, curves for 
the more complex model systems were often highly 
sensitive to the choice of species (for example, Figs. 
4 and 5). CLS, depended heavily on the species used 
in the attractor reconstruction for all three complex 
model systems. For example, in the I2-species system, 
CLS, ranged from 50-60 cells for one species to 240— 
250 cells for another (Fig. 5A). For spectra based on 
error X, species in the same self-organized patch dem-
onstrated similar curves (Figs. 4A, 5A, C). However, 
not only were error X spectra dissimilar for species 
from different patches in the same run (Figs. 4A, 5A, 
C), but the overall shape of the curve, and therefore 
the CLS k  indicated, changed markedly among runs for 
the same species. For example, one species in the 12- 
species system had a CLS k  of approximately 80-90 
cells in one run (Fig. 5A), but 290-300 cells in another 
(Fig. 5C). The error X spectra from the coral reef model 
displayed little variation from run to run, but only spec-
tra for some species were interpretable (not shown). 

As model complexity increased, prediction r'spectra 
also usually separated into groups that corresponded to 
species within the same spatially self-organized patch. 
However, CLS p  estimates of the different groups of 
species were more similar than indicated by spectra 
based onerror X (e.g., Fig. 4A vs. 4B). In the two most 
complex systems, CLS,, was more sensitive to species, 
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Fin. 3. Average spectra (solid lines) based on error X (Keeling et al. 1997) and prediction r2  (Pascual and Levin 1999) 
and the 95% confidence intervals (dotted lines) for a selected species, calculated from a Monte Carlo of 100 independent 
runs for the (A) three-species model, (B) six-species model, (C) I2-species model, and (D) coral reef model. For the three-, 
six-, and I2-species models, the CLS was determined for a randomly selected species. The CLS for the coral reef model is 
based on the spatially dominant group, comprising turf and coralline algae. Estimated CLSs are indicated by arrows where 
curves are interpretable. 

with the scale of the first asymptote differing by up to 
50 cells between species groups (Fig. 5B, D). For the 
six- and I2-species systems, the curves of prediction 
r2  for a given species sometimes demonstrated multiple 
peaks (Figs. 4B, 5B), indicating the potential for more 
than one length scale in a single system. 

Robustness to choices of time delay in attractor re-
construction.—Changes in time delay of the three-spe-
cies system shifted the CLS curves on the y-axis, but 
did not change the magnitude of the CLS estimate for 
either method (Fig. 6A, B). Similarly, time delay had 
little effect on estimates of the CLS interpreted from 
curves of the six-species system. However, in the two 
most complex model systems, CLS k  was notably less 
robust, with the shape of the curve changing with delay. 
For the coral reef model in particular, the error X curves 
were ambiguous at best, and varied with the delays 
(Fig. 6C). Conversely, CLS, was robust to changes in  

delay in all four model systems we examined (e.g.. Fig. 
6D). 

Robustness to choices of embedding dimension in 
auractor reconstruction.—Changes in the embedding 
dimension of the three-species and six-species systems 
shifted the curves on the y-axis, but had no effect on 
estimates of CLS k  or CLS p  In the 12-species system, 
the shape of the error X curve remained robust to in-
creasing dimension, but interpreting the curves to de-
fine the CLS was difficult (Fig. 7A). For the coral reef 
system, the error X spectra indicated an interpretable 
CLS k  only with an overly large embedding dimension 
(Fig. 7C). For both of these more complex systems, the 
estimates of CLS, were reasonably robust to changing 
dimension (Fig. 7B, D). 

Robustness to choices of k nearest neighbors in at-
tractor reconstruction.—The number of k nearest 
neighbors used to reconstruct the attractor of the three- 
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FIG. 4. Variance spectra for each species of the six-spe-
cies model system based on (A) error X and (B) prediction 

In this system, species spatially self-organize into two 
groups of three (Fig. IS), which is reflected as two groups 
of curves on the graphs. Data shown are for a single run of 
the model. Solid arrows indicate estimated CLSs where 
curves are interpretable, while open arrows with question 
marks indicate ambiguous CLSs where interpretation is un-
clear. Note the potential of multiple CLSs, i.e., length scales 
larger than the primary (smallest) CLS. 

species system had no effect on estimates of CLS k  or 
' CLS p.  However, with the more complex systems, the 
shape of the error X spectra shifted from an inverted 
shape with low numbers of neighbors to a curve of the 
expected shape with excessively high numbers of 
neighbors (Fig. 8A). In contrast, spectra based on pre-
diction r2  for the same system were robust to varying 
numbers of neighbors in attractor reconstruction, and 
indicated a consistent length scale (Fig. 8B). 

Alternative methods of CLS detection 

Our results indicate clearly that the prediction r2  
measure (Pascual and Levin 1999) is robust in provid-
ing an unambiguous estimate of CL.S„ across a range 
of model complexities, initial conditions, choice of spe-
cies, and choice of parameters in attractor reconstruc-
tion. Because of this robustness we chose to use pre-
diction F.' in our alternative methods, which differ from 
the original approach of Pascual and Levin (1999) only 
in their approach to attractor reconstruction. We refer 
to the original method of CLS estimation based on 
prediction r2  (Pascual and Levin 1999) as a "long time  

series" method, which distinguishes it from the new 
methods we derive based on very short time series (the 
"short time series" method) and on a single spatially 
resolved landscape (the "sliding window" method). 

Short time series analysis.—Our important overall 
result is that prediction r2  spectra derived from attractor 
reconstruction based on the "short time series" method 
indicated unambiguous length scales for all four mod-
els we examined (Figs. 9B, C, IOC, 11B, 12D). More-
over, for any one model, the smallest CLS (i.e., primary 
CLS) indicated from spectra produced using both long 
and short time series were similar (Table 1). It is also 
encouraging that CLS estimates from prediction r2  
curves derived using the short time series approach are 
robust to the number of embedding dimensions used 
for attractor reconstruction (Fig. 9B, C). While results 
are presented for embeddings of only two and three 
dimensions for the three-species system, analyses using 
larger numbers of embedding dimensions (eight, nine, 
or 10 dimensions) also indicated similar CLSs (not 
shown). CLS estimates for the six- and 12-species sys-
tems and for the model coral reef system were also 
robust to the number of embedding dimensions, and 
spectra were consistent when the length of the time 
step was varied (results not presented). 

Prediction r2  curves were consistent between model 
runs for the three-, six- and 12-species systems indi-
cating CLSs of 20-40 cells for the three-species sys-
tem, 30-50 cells for the six-species system and 40-60 
cells for the 12-species system (Figs. 9B, C, 10C, and 
11B respectively). The CLS for turf and coralline algae 
in the coral reef model was clearly defined between 20 
and 40 cells (Fig. I 2D) but spectra derived from cor-
ymbose and digitate acroporid and faviid corals were 
more variable and not readily interpretable (Fig. 12E, 
F). Changing the length of the time step or changing 
the number of time steps used in the analysis did not 
affect variability in results among different runs for 
these coral groups which occur at relatively low cover. 

Two notable differences between CL-Ss estimated us-
ing the long time series and short time series methods 
arose. First, prediction r2  curves developed from the 
long time series analyses were not consistent between 
species, while prediction r2  curves from short time se-
ries analyses were (for example, cf. Fig. 10A, C). Sec-
ond, curves of species using long time series often 
indicate several peaks, suggesting the possibility of 
multiple length scales (for example, Fig. 4B), while 
only a single CLS is usually evident in spectra from 
the short time series. Both approaches yield a similar 
primary CLS, which is the smallest length scale and is 
indicative of local dynamics among species. We inter-
pret additional larger length scales to indicate emergent 
dynamics. 

A characteristic of the six-species system on small 
, landscapes (-200 X 200 cells) is that over many time 

steps and without disturbance, the system's attractor is 
nonstationary. A shifting attractor is evidenced by a 
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FIG. 5. Variance spectra for six species of the 12 -species model system shown from two separate runs. For run 1, spectra 
are based on (A) error X and (B) prediction r2, and for run 2, spectra are given for (C) en -or X and (D) prediction r2. Species 
organize into three groups of four on the landscape, and species in the same patch on the landscape show similar CLS curves. 
Solid arrows indicate estimated CLSs where Curves are interpretable, while open arrows with question marks indicate 
ambiguous CLSs where interpretation is unclear. For clarity, we have identified only the primary length scales for each group 
of species; however, multiple peaks in the curves (B) may be evidence of multiple length scales. 

particular patch type expanding to eventually dominate 
the landscape (e.g., Fig. 13A, B), and/or coalescence 
of many small patches of a particular type into a single 
large patch of that type. The identity of the dominant 
patch type and the rapidity with which it realizes dom-
inance, or the rate at which small patches of a particular 
type coalesce to form large patches, may vary from 
one run of the model to the next. In the example in 
Fig. 13, the community composition of the 6-species 
system changed gradually over 5000 time steps, so that 
one patch type became more abundant at the expense 
of the other (cf. Fig. I3A, B). Interestingly, using short 
time series analyses, this shift was reflected as a change 
in the shape of spectra, and therefore as a change in 
the CLS estimates derived at the beginning and at the 
end of the run (compare Fig. 13C, D). This kind of 
nonstationary behavior in the six-species system can 
be eliminated and the system made stationary by in-
troducing a low level of disturbance, and allowing open 
recruitment of all species to disturbed areas with equal 
probability. As was the case for the short time series 
analysis (not shown), the long time series analysis of 
a stationary six-species time series produced almost 
identical prediction r2  curves and CLS estimates for all 
six species (Fig. 13F). This is quite different from the 
non-stationary case where the spectra and CLS esti-
mates for the two groups of three species based on 

analysis of long time series were distinctly different 
(Fig. 13E). Unlike the six- and 12-species systems, the 
coral reef model is essentially stationary (after a self-
structuring period of -200 time steps) and so vari-
ability in CLS estimates between runs was minimal. 

Sliding window analysis.—The most obvious differ-
ence between the prediction r2  spectra produced by this 
method and those derived using the short and long time 
series approaches is that the spectrum is inverted rel-
ative to the shapes based on short and long time series 
analysis. Thus, the spectra yield interpretable estimates 
of length scales as the first minimum in the curve. 
Likely reasons for the inversion are addressed in Dis-
cussion. 

In determining parameters for this method of attrac-
tor reconstruction, we have shown that delays propor-
tional to the window size are more appropriate than are 
fixed delays (Appendix D). However, the question of 
how to select a suitable proportional delay arises. For 
all four model systems, the first minimum on curves 
of scaled mutual information vs. T was at T = 0.8 X 

window length, suggesting that this is the most appro-
priate embedding delay for attractor reconstruction. 
However, sliding window analyses for the three-species 
system indicated that CLS estimates were sensitive to 
the choice of proportional delay (cf. Fig. 9D, E). Es-
timated CLS ranges increased from 20-30 cells to 50- 
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FIG. 6. The effect of choice of time delay (r) on spectra constructed from one species of the three-species system (A 
and B) and the dominant species group (filamentous turf and coralline algae) of the coral reef system (C and D). In (A) and 
(B), the time delays are shown to the right of the relevant spectrum based on (A) error X and (B) prediction 1.1. A dagger 
(t) denotes the delay indicated from the mutual information method. In (C) and (D), different lines denote spectra calculated 
from delays between 20 and 200 (in steps of 20) based on (C) error X and (D) prediction r2. Arrows indicate the estimated 
CLSs of these spectra. 

60 cells when the delay changed from T = 0.8 x win-
dow length to T = 0.2 x window length, respectively. 
Despite this sensitivity, the most easily interpretable 
curve was provided by using the delay indicated by the 
scaled mutual information (here T = 0.8 X window 
length; Fig. 9E). Moreover, using this delay indicated 
a CLS virtually identical .to that based on analysis of 
a long time series from the same system (cf. Fig. 9A, 
E). 

Indeed, CLSs estimated with = 0.8 x window 
length using the sliding window method corresponded 
to those estimated from analyses of long time series 
for all four model systems. CLS estimates for the six-
and 12-species systems were between 30-40 cells and 
20-30 cells respectively (Figs. 10D, I IC). All physi-
ognomic groups in the coral reef model indicated a 
similar CLS range of 20-40 cells (Fig. 12G—I). How-
ever, just as was the case for the 3-species system, CLS 
estimates for the more complex systems were also sen-
sitive to the proportional delay chosen. Notably, for a 
given value of T, the prediction r2  spectra were gen-
erally consistent between model runs and across spe-
cies within a system. 

Comparison of CLS estimates derived by all methods 

For each of the four model systems that we analyzed, 
the three different techniques yielded similar estimates  

of the smallest CLS (Table 1). CLS ranges for the six-
and 12-species systems were alike across all the dif-
ferent methods, and were consistently larger than those 
for the 3-species system. Our short time series and 
sliding window approaches provided more precise CLS 
estimates for the six- and 12-species system than did 
the long time series method. However, prediction r2  
spectra produced using long time series analysis more 
often suggested multiple CLSs for a given species with-
in the six- and 12-species systems than did the alter-

. native analyses (Table I). 

DISCUSSION 

The issue of spatial scale is a central theme in ecol-
ogy. The scale at which a system is observed affects 
relationships between pattern and process, and between 
space, time, and organizational complexity (Levin 
1992, 2000, Levin et al. 1997, Tilman and Kareiva 
1997, Tyre et al. 1997, Dieckmann et al. 2000, Wilson 
and Keeling 2000, Molofsky et al. 2002). While in-
vestigators have acknowledged the need to address eco-
logical questions at appropriate scales (Carlile et al. 
1989, Wiens 1989, De Roos et al. 1991), how these 
"appropriate scales" are identified is often ambiguous. 
The application of methods from nonlinear time series 
analysis (Rand and Wilson 1995, Keeling et al. 1997, 
Pascual and Levin 1999) has refined a crucial aspect 
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FIG. 7. The effect of choice of embedding dimension (d.) for a single species in the I2-species system (A and B), and 
for the dominant species group (filamentous turf and coralline algae) of the coral reef system (C and D). Different lines 
denote particular embedding dimensions (shown to the right of curves) used in attractor reconstruction based on (A and C) 
error X and (B and D) prediction r2 . A dagger (t)  denotes the dimension indicated using the false nearest neighbors method. 
Solid arrows indicate estimated CLSs where curves are interpretable, while open arrows with question marks indicate 
ambiguous CLSs where.interpretation is unclear. 

of the study of scale in ecology, allowing a shift in 
focus from observing mean behaviors to extracting the 
deterministic signal from dynamical systems. Towards 
the ultimate goal of estimating CLSs of natural sys-
tems, here we evaluated the robustness of these rela-
tively recent methods, and then developed modifica-
tions to reduce the data requirements necessary to es-
timate CLSs. We first discuss the robustness of the 
original long time series methods, and then evaluate 
the general behaviors of our alternative methods in 
detecting the smallest or primary length scale of spatial 
systems. We examine the interpretation of multiple 
length scales, as indicated by different species groups 
or by a single species in the system, and finally, we 
comment briefly on the possible future of CLSs in ecol-
ogy. 

Robustness of estimates 
Both the methods of Keeling et al. (1997) and Pas-

cual and Levin (1999) maintained high robustness and 
low sensitivity to parameter choices in the simplest 
model system. As expected (Pascual and Levin 1999), 
CLS k  was consistently larger than CLS p, reflecting the 
need for larger "windows of observation" to observe 
the full spatial dynamic than to accurately predict 
trends in dynamics. However, as the complexity of the 
model systems increased, the error X spectra of Keeling 
et al. (1997) became more difficult to interpret, and  

spectra for the I2-species and coral reef model systems 
were not interpretable (Fig. 3C, D). Also, with increas-
ing model complexity, error X spectra, and therefore 
estimates of CLS k, were increasingly sensitive to 
changes in initial conditions, to the species on which 
the analysis focused, and to values of parameters used 
in attractor reconstruction. The reason for the ambi-
guity and, in some cases, failure (Fig. 6C) of error X 
spectra to indicate a CLS is unclear. Error X may be 
more susceptible to random noise than prediction r 2  or, 
alternatively, may be more sensitive to a system's com-
plexity and particular dynamics than is prediction ra. 
However, even if the observed sensitivity of these spec-
tra are accurate reflections of subtle features of a par-
ticular dynamic, this level of sensitivity is not helpful 
towards the overall objective, which is to identify the 
CLS of a system irrespective of the particular state of 
that system over a finite period of observation. Further 
research may demonstrate that the sensitivity of error 
X reveals useful information about a system, such as 
identifying features of spatial pattern. However, while 
this may be useful for other applications, it is unsuitable 
for estimating CLSs of complex systems. 

In contrast, the Pascual and Levin (1999) method 
provided interpretable spectra and thus clearer esti-
mates of the CLS with increasing model complexity. 
The prediction r2  spectra from all model systems were 
consistently interpretable and the CLS estimates of a 



2.2 — 
A 

„ 
30 

0.95 — c 

1 
0.90 — 

o_ 

1.5 — 

0.9 — 	 A ./A 	•-• 

r 

0.2 	• 
1.00 — 3.5 

Appendix C — Habeeb et al. 2005 156 

November 2005 
	

NATURAL SCALES OF ECOLOGICAL SYSTEMS 	 479 

0 	100 	200 	300 	400 	500 

Window length / 

FIG. 8. The effect of increasing numbers of k nearest 
neighbors (k is given to the right of the curves) for the dom-
inant species group (filamentous turf and coralline algae) of 
the coral reef model system, based on (A) error X and (B) 
prediction r2. A dagger (t) denotes the k chosen for use in 
all other model runs. The solid arrow indicates the estimated 
CLS. 

particular system were not sensitive to changes in pa-
rameters for attractor reconstruction, or to varying ini-
tial conditions. Thus, prediction ta spectra using the 
approach of Pascual and Levin (1999) appears to be a 
robust means of estimating CLSs of complex ecological 
systems. We suggest that this metric is likely to be 
useful and reliable in estimating CLSs of natural eco-
systems. 

Estimating CLSs: alternative methods 
without long time series 

While Pascual and Levin's (1999) approach to de-
tecting CLSs accommodates oscillatory behavior in dy-
namic systems and proves reasonably robust over a 
range of complexities of model ecosystems, the tech-
nique requires long time series of data which are not 
attainable for most natural systems. Our two alternative 
approaches have considerable potential for overcoming 
this problem in estimating the CLSs of real ecosystems. 
These methods detect primary CLSs similar to those 
determined with the original long time series method 
(Table 1), but require a maximum of only three to four 
spatially resolved landscapes instead of thousands. 

For the remainder of the discussion, reference to 
CLSs estimated from the long time series method refers  

to those derived using the original method of Pascual 
and Levin (1999). 

CLSs from short time series.—The short time series 
method uses variability through time as the basis to 
derive CLS estimates, but employs a unique approach 
of sampling over the entire landscape at every time 
step. This generates sufficient data points for nonlinear 
time series analysis, but removes the requirement for 
a long series of sequential observations. The under-
lying motivation of this work is to develop robust tech-
niques for application to real ecosystems, and the re-
quirement of only three or four sampling occasions is 
realistic for many applications in ecology. Results for 
the three-species model indicate that the technique gen-
erates sensible CLS estimates and is robust to the num-
ber of time steps considered. Our more general inves-
tigations of the three-, six - and 12-species and coral 
reef models also indicate that CLS estimates are robust 
to both the length of the time step and to the number 
of time steps sampled (detailed results not provided 
here). 

Another advantage of using information from only 
a small number of time steps is that ecological systems 
are likely to be essentially stationary in time over the 
sampling period, whereas the same may not be true of 
a system's attractor over a longer time period. Fur-
thermore, the short time series approach can be used 
to detect temporal nonstationarity as a change in the 
CLS over time (e.g.. Fig. 13C, D). Unlike simpler mea-
sures such as changes in species' abundances (which 
occur without any shift in the attractor of a.system), a 
change in the CLS through time indicated from short 
time series analysis reflects a shift in the underlying 
dynamics (i.e., the attractor). Note that, in the six-spe-
cies system for which we demonstrated the shift in the 
attractor using this approach, the network interaction 
topology remained constant over time. Thus, the short 
time series approach could potentially be used to detect 
fundamental change in natural systems, where a shift-
ing attractor is reflected as a changing CLS. Applied 
examples of shifting attractors may include systems 
affected by pollutants or impacted by foreign species. 

Similar to the assumption of temporal stationarity 
that underpins the long time series method, is the as-

' sumption of spatial stationarity which applies to our 
short time series method. This assumption, that species 
sampled on different parts of the spatial landscape are 
on the same attractor, cannot be tested by simply ex-
amining whether community composition is similar in 
all areas of space. Different points on the same attractor 
can, of course, reflect states of vastly dissimilar com-
munity structure, for example as arises in simple stable 
limit cycles. However, in the same way that we detected 
potential temporal non-stationarity in the attractor by 
determining the CLS at two different points in time 
using the short time series method, so could one de-
termine the CLS at two regions in space. If the CLSs 
are different in different regions of the landscape, then 
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FIG. 9. Prediction r,  as a function of window length / for the three-species system derived using the three methods. 
Curves for the three species in the model are shown as different lines. Solid arrows indicate estimated CLSs where curves 
are interpretable. (A) Long time series analysis of 10 000 time steps with time delay T = 9 and embedding dimension ck = 
6; the first 200 time steps are discarded in the analysis. (B and C) Short time series analysis with T = 1: (B) spectra derived 
from analysis of three consecutive time steps (498-500; d, = 2); (C) spectra derived from analysis of four consecutive time 
steps (497-500; d = 3). (D and E) Analysis using sliding windows: (D) e = 0.2 x window length I, d, = 5; (E) T = 0.8 
X window length 1, d, = 5. Parameter choices were based on mutual information and false nearest neighbors techniques. 
For all analyses, landscape size is 500 x 500 cells, and the number of nearest neighbors k = 10. Key to abbreviations: LTS, 
long time series analysis; STS, short time series analysis; SW, sliding window analysis. 

the attractor cannot be assumed to be spatially station-
ary across that space. Nevertheless, given the relatively 
small magnitude of the CLSs and that it is not necessary 
to sample over large spatial areas to estimate them, we 
expect that the assumption should hold true provided 
that a landscape is not sampled across strong environ-
mental gradients or environmental discontinuities like-
ly to realize dissimilar community dynamics. 

CLSs could not be identified consistently for the ac-
roporid and faviid corals in the coral reef model based 
on analysis of short time series. Changing the number 
of time steps and/or the length of time steps used for 
attractor reconstruction did not significantly change the 
shape of the curves. Since both of these coral groups  

occur at relatively low densities in this system, the 
dynamic signal for these groups over short time series 
may be inadequate for attractor reconstruction and for 
the determinism test. 

CLSs from sliding windows.—Our sliding window 
method derives CLS estimates from spatial data ob-
tained at a single sampling occasion, using spatial sam-
pling similar to that of others (Allain and Cloitre 1991, 
Plotnick et al. 1996, Marcos-Nikolaus et al. 2002). The 
approach replaces temporal variability with spatial var-
iability in reconstructing the system's attractor, but this 
introduces several complications. In particular, it is 
clear that "delays" of a fixed number of cells (or pix-
els) are inappropriate for this method. Consideration 
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FIG. 10. Prediction r2  as a function of window length I for the six-species system derived using the three methods. Curves 
for the six species in the model are shown as different lines. Solid arrows indicate estimated CLSs where curves are 
interpretable, while open arrows with question marks indicate ambiguous CLSs where interpretation is unclear. (A and B) 
Long time series analysis of two independent model runs with different initial random configurations of recruits with T = 
12, d, = 6. The analyzed time series contains 10 000 time steps, with the first 200 time steps discarded. (C) Short time series 
analysis with T = 1. This analysis is based on three consecutive time steps (498-500; el, = 2). (D) Sliding window analysis 
of the landscape with T = 0.8 X window length I, and d, = 5. Parameter choices were based on mutual information and 
false nearest neighbors techniques. For all analyses, landscape size is 500 X 500 cells and k = 10. Key to abbreviations: 
LTS, long time series analysis: STS, short time series analysis; SW, sliding window analysis. 

of prediction r2  spectra produced from landscapes of 
independent random pixels (i.e., the null case of no 
spatial pattern) suggests that delays that are propor-
tional to window size are most appropriate. Propor-
tional delays ensure that the overlap of coordinates is 
constant for all window sizes (see Appendix D). 

For all four model systems, when a delay of 0.8 X 
window length / was used (i.e., the delay suggested by 
the scaled mutual information plot), we obtained CLSs 
similar to those estimated from the long time series 
analyses. For sliding window analysis, the CLS was 
taken as the point of increase of the (inverted) predic-
tion r2  curve. The inverted shape of prediction r2  curves 
using this approach indicates that prediction is good at 
very 'small spatial scales, but then declines with in-
creasing window size. The CLS is the point where pre-
diction r2  then begins to improve again, thereafter in-
creasing with window size. This relationship can be 
explained in terms of spatial patterns that arise on the 
model landscapes. At small scales of observation below 
the size of individual colonies, prediction is good be-
cause there is a high likelihood that successive win-
dows in any one "sliding series" will be the same 
species. At slightly larger scales prediction will be  

poorer, because more than one species will occur in 
sampling windows but the scale of observation will be 
insufficient to capture the community dynamic among 
colonies. As window size continues to increase, a point 
is reached where the spatial pattern becomes more pre-
dictable, reflecting the deterministic dynamic among 
colonies (Johnson 1997, Johnson and Seinen 2002). At 
this point there is a rise in prediction r2, indicating the 
CLS. 

There are some constraints to the general application 
of the sliding window technique. Although the ap-
proach dramatically reduces data requirements com-
pared with the original method based on long time 
series, the amount of spatial data necessary for the 
method can be large. Depending on the magnitude of 
the delay, the maximum possible window size for slid-
ing window analysis may be much smaller than the 
landscape size. It is therefore necessary to select a land-
scape size that ensures that the maximum possible win-
dow size is larger than the anticipated CLS. Because 
replication occurs in space, landscapes must generally 
be larger than those used in the long time series method, 
where replication occurs by sampling through time. 
Similarly, landscapes must also be large when using 
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Fin. 11. Prediction r2  as a function of window length /for 
the 12-species system derived using the three methods. Curves 
for the 12 species in the model are shown as different lines. 
Solid arrows indicate estimated CLSs. (A) Long time series 
analysis with 7 = 12 and €1, = 6. The analyzed time series 
contains 10 000 time steps, with the first 200 time steps dis-
carded. (B) Short time series analysis with r = I. This analysis 
is based on three consecutive time steps (498-500; d = 2). 
(C) Sliding window analysis of the landscape with 7 = 0.8 X 
window length I. d, = 6. Parameter choices were based on 
mutual information and false nearest neighbors techniques. For 
all analyses, landscape size is 500 X 500 cells and k = 10. 
Key to abbreviations: LTS, long time series analysis; STS, short 
time series analysis; SW, sliding window analysis. - 

the short time series method. Thus, when applying 
these spatial techniques to natural systems, some prior 
understanding of the general scales of dynamical pro-
cesses is required to ensure that the maximum sampling 
scale is large enough to include its CLSs. A second 

consideration is that, while the shape of the prediction 
r2  curve in the null case of no spatial pattern is ac-
ceptable to allow interpretation of CLSs where they do 
arise, we cannot verify mathematically that this is the 
expected shape (Appendix C). The reason for sensitiv-
ity of CLS estimates to the value selected for the pro-
portional delay is also unclear. However, despite these 
caveats, the important finding is that using the pro-
portional delay indicated by the minimum mutual in-
formation produces a clearly interpretable prediction r 2  
spectrum which indicates a CLS similar to that esti-
mated from analysis of a long time series of the same 
system (Table 1). 

Multiple length scales 
While different scales will undoubtedly exist that 

reflect other properties of ecosystems, here we sought 
the natural scales at which to optimally observe a sys-
tem's dynamics. It was not surprising that we detected 
multiple scales in the more spatially complex systems. 
Several length scales were detected in the complex 
model systems, either because different species groups 
indicated different CLSs or a single species indicated 
multiple CLSs. The mechanisms underpinning these 
two phenomena are different. Different species in the 
same system can indicate different scales when the con-
nectivity between groups of species in patches is low. 
The prediction r2  spectrum of a single species can also 
display-several length scales, but with the larger scales 
indicative of that species' emergent dynarifics. We dis-
cuss each scenario. 

Multiple length scales indicated by different spe-
cies.—In theory, any species in a system can be ob-
served to indicate the length scale of that system, ir-
respective. of its life history or dynamical behavior. 
However, biologists might intuitively suggest that spe-
cies with dissimilar life history parameters could be 
expected to yield dissimilar length scales for the same 
system. Indeed, our results for the more complex mod-
els suggest that estimates of CLS, show some depen-
dence on the species used for attractor reconstruction. 
Analyses based on both short and long time series could 
indicate different scales for different species, but the 
phenomenon arose more readily in analyses based on 
long time series. 

In long time series analyses, scale differences among 
species occurred in systems that were strongly spatially 
self-organizing at several spatial scales, as in the six-
and 12-species systems. Notably, these differences 
were not related to abundances. For example, in the 
12-species model the curves for the species form three 
distinct groups, each with a different estimate of CLS p  
(Fig. 5). While all species in this model are topologi-
cally equivalent with respect to network structure (each 
is able to overgrow three others in a symmetrical net-
work), the system spatially self-organizes into three 
distinct patch types, with each patch type containing 
four species. Because species within patches are more 
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FIG. 12. Prediction r2  as a function of window length / derived using the three methods applied to cover of three 
physiognomic groups in the coral reef system: (A, D, G) turf and coralline algae, (B, E. H) corymbose and digitate Acroporidae, 
and (C, F, I) Faviidae. Curves for three model runs with different initial random configurations of recruits are represented 
as different lines. Solid arrows indicate estimated CLSs where curves are interpretable, while open arrows with question 
marks indicate ambiguous CLSs where interpretation is unclear. (A, B. C) Long time series analysis with (A) 7 = 100, d, 
= 5; (B) 7 = 75, d, = 6; and (C) 7 = 100, d, = 6. The analyzed time series contains 10 000 time steps, with the first 200 
time steps discarded. Landscape size is 300 x 300 cells. (D, E, F) Short time series analyses with 7 = 1. These analyses 
are based on four consecutive time steps (498-500; d, = 3). (G, H, I) Sliding window analysis of the landscape with T = 
0.8 X window length 1. For (G) d. = 5, and for (H and I) d, = 6. Parameter choices were based on mutual information and 
false nearest neighbors techniques. For D—I, landscape size is 500 x 500 cells. For all analyses. k = 10. 

TABLE I. Summary of CLS (Pascual and Levin 1999) estimates from long time series (LTS), short time series (STS) and 
sliding window (SW) analyses for the three-species, six-species, 12-species, and coral reef systems. 

Scale 
System 	Analysis 20 	40 	60 	80 	100 	120 	140 	160 	180 	200 

Three species 	LTS 
STS 
SW 

Six speciest LTS 
STS 
SW 

12 species LTS 
STS 
SW 

Coral LTS 
STS 
SW 

   

   

   

   

   

_ 

t CLS ranges indicated are for the nonstationary case. 
t CLS range estimated using short time series analysis is taken for turf and coralline algae only. 
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likely to interact with each other than with species from 
other patches given their spatial proximity, the realized 
connectivity on a spatially organized landscape is high-
er among species within patches than it is among spe-
cies between patches. This occurs even though, in this 
example, the interaction network defines that each spe-
cies interacts equivalently with others both inside and 
outside a patch type. 

Not surprisingly, highly connected species with 
tightly coupled dynamics (i.e., species within patches) 
indicate similar length scales, while species whose dy-
namics are more weakly linked (because they are spa-
tially separated in different patches). can manifest dis-
similar length scales, even though they have identical 
"life history" attributes. In our systems where different 
length scales arise for different species, differential 
connectivity among species arises through spatial self-
organizing. We anticipate that other factors which in-
fluence the connectivity among species, such as the 
topology of food webs in which some groups of species 
are tightly coupled trophically while others are poorly 
connected (e.g., O'Neill et al. 1986, Johnson et al. 
1995), will have a similar effect. Because the approach 
is based on reconstruction of deterministic dynamics, 
it should not be surprising that species that are weakly 
linked dynamically can indicate different length scales 
for their different behaviors. Conversely, species that 
are highly connected in a system, as in our three-species 
model, all indicate very similar estimates of CLS p. 

In the coral reef model, the different physiognomic 
groups provide similar CLS, estimates despite notable 
differences among groups in their life history param-
eters such as rates of recruitment, growth, and mor-
tality. Marked differences in CLS p  estimates among 
"species" (in reality, guilds) in this model do not arise 
because they do not self-organize into distinct patches. 
In one sense, this system is maximally connected in 
that each species competes with all others for space 
and there are no standoffs (Johnson and Seinen 2002). 
However, the species are not identically connected be-
cause they have different interaction strengths and 
neighbor-specific growth rates. 

In short time series analyses using both the six- and 
I2-species models, the spectra of species from different 
patches also separated, revealing different length scales 
among species. With this method, the different CLSs 
likely reflect the connectivity of spatial patches cap-
tured in the set of three to four landscapes that are used 
to reconstruct the attractor. However, in general, spectra 
produced from long time series tended to more clearly 
differentiate among weakly connected species. 

In summary, because CLS estimates reflect the 
strength of dynamical connectivity among species, we 
predict that for complex real systems different species 
or functional groups that are loosely connected, either 
as a result of spatial separation or weak direct inter-
actions, may indicate dissimilar length scales. This will  

arise whether the long time series method or the short 
time series method is used. 

Multiple length scales indicated by a single spe-
cies.—For complex model systems, analyses based on 
long time series from a single species may detect sev-
eral different length scales, reflecting the different dy-
namics within the system. For example, the prediction 
r2  spectrum of a single group in the six-species system 
sometimes displays several critical points (Fig. 4B), 
which we interpret as multiple length scales. The small-
est length scale (the first peak in the curve) is consistent 
among runs, and is also consistently indicated by our 
alternative short time series and sliding window meth-
ods. This "primary scale" is the scale at which the 
local dynamic is best predicted, and it reflects the scale 
of interaction between colonies of different species 
within patches. Thus, for any one species, we expect 
at least one CLS, which is influenced by colony size, 
to reflect the nature of local interactions between spe-
cies within patches. In the models we examined in 
which both distinct colonies and clearly differentiated 
groups of colonies (i.e., patches) formed, the primary 
CLS is larger than the mean colony size but smaller 
than the patch size. In real ecological systems, we 
might expect the primary CLS to indicate the most 
appropriate scale for monitoring system dynamics, and 
therefore the scale that most efficiently identifies mean-
ingful trends in species abundances. 

Scales larger than the primary scale likely reflect the 
system's emergent dynamics, which may include the 
emergence of and interactions among patches, and non-
stationary attractors. Because emergent dynamics are 
highly variable among runs (e.g., the size and shape of 
patches vary), length scales larger than the primary 
scale tend to be more variable among runs (e.g., Fig. 
5B, D). Thus, while any single run may demonstrate 
several length scales, the average of several prediction 
ta curves for a given species is likely to indicate only 
a single CLS (e.g., Fig. 38). The widening of the 95% 
confidence intervals around the average curve reflects 
that the variable secondary peaks are absorbed as noise 
(Fig. 3B). 

While the short time series method occasionally 
identified secondary CLSs, it is clear that for analyses 
based on a single species, the short time series and 
sliding window methods are less likely to identify ad-
ditional CLSs larger than the primary CLS than is the 
method based on long time series. This result may in-
dicate that emergent dynamics are more difficult to 
detect from spatial pattern than from time series. When 
using the short time series or sliding window method, 
if it is important to detect secondary length scales re-
flecting emergent dynamics, it may be • necessary to 
sample many windows that collectively cover areas 
much larger than the primary length scale to more com-
prehensively sample the attractor. The tradeoff in this 
approach is that, as the distance over which a landscape 
is sampled increases, more care is likely to be required 
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FIG. 13. Comparison of prediction r2  spectra derived from short and long time series approaches for the six-species 
system. Arrows identify estimated CLSs. In (C) and (D), short time series analysis uses time steps from the start  (A)  and 
end (B) of a 5000-time step time series. These analyses are based on four consecutive time steps (d. = 3) with T =  I:  (C) 
time steps 201-204; (D) time steps 4997-5000. Divergence in species abundances by the end of the time series is reflected 
in the two distinct groupings of prediction /2  curves in (D). (E and F) Long time series analysis for a nonstationary  and  a 
stationary system, respectively (see Results: Short time series analysis for explanation). The analyzed time series in  (E)  and 
(F) contains 5000 data points, sampled at each time step. For (E), T = 12. d. = 6; for (F), T = 19, d. = 6. Parameter choices 
were based on mutual information and false nearest neighbors techniques. For all analyses, landscape size is 200  x  200 
cells, and k = 10. 

to ensure that all samples are represented by the same 
attractor. 

Do CLSs have a future in ecology? 

Both the short time series and sliding window tech-
niques we describe offer workable alternatives to the 
existing approach based on analyses of long time series 
(Pascual and Levin 1999) for estimating the primary 
CLS of dynamical systems. The distinct advantage of  

these new approaches is that their data requirements 
can be met for natural ecosystems. This is an important 
step towards the goal of estimating CLSs of real  eco-
systems. Of our two alternatives, the short time  series 
method seems to be the most robust and interpretable, 
combining both temporal and spatial data to reconstruct 
the attractor. 

Several questions arise with regards to the applica-
tion of the new CLS methods to natural ecosystems. 
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Do these new methods unambiguously identify the pri-
mary CLS of the system? We have shown that the short 
time series method and sliding windows method can 
be used to readily detect primary CLSs virtually iden-
tical to those identified by the original long time series 
method, in some cases with less ambiguity (Table 1). 

Another important issue is whether a system has only 
a single length scale at which it is optimal to observe 
dynamics, as suggested by the current theory, or wheth-
er there can be many. Most ecologists would argue that 
any ecological system is likely to manifest several 
length scales (Levin 2000, Bishop et al. 2002), and it 
is therefore important for the techniques to have the 
potential to identify them. Using the long time series 
method, different length scales are indicated by dif-
ferent species within the same system if their dynamics 
are weakly linked (e.g., Figs. 4B, 5B, D). Using our 
new method based on a short series of three to four 
time steps, species in different patches with weakly 
coupled dynamics also indicate different CLSs in the 
six- (Fig. 13D) and 12-species (not shown) model sys-
tems. Thus, when applied to a natural system in which 
subcomponents are weakly linked, this technique 
should have the . ability to indicate that the partially 
decoupled dynamics among subsets of weakly linked 
species are best observed at different spatial scales. 
Similarly, these approaches to estimating length scales 
can identify secondary scales that indicate emergent 
dynamics. Finally, we note that detection of natural 
scales for optimal observation of ecosystem dynamics 

• does not preclude that there may be other natural scales 
that reveal other ecologically meaningful properties of 
real ecosystems. 

Our overall conclusion is that the development of 
new techniques that can be realistically applied in ecol-
ogy to produce prediction r2  spectra for complex os-
cillating dynamical systems is useful progress towards 
objectively defining appropriate scales for observing 
natural ecological systems. The next challenge is to use 
the modified techniques to assess what CLSs inform 
us about natural systems, and to evaluate their utility 
in providing objective estimates for scaling issues in 
applied ecology. 
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APPENDIX A 
A figure showing species' trajectories using different sized windows of observation is available in ESA's Electronic Data 

Archive: Ecological Archives M075-018-A l. 

APPENDIX B 
A discussion of attractor reconstruction using nonlinear time series analysis is available in ESA's Electronic Data Archive: 

Ecological Archives M075-018-A2. 

APPENDIX C 
A discussion of prediction r4  and error X in the null case of no spatial pattern is available in ESA's Electronic Data Archive: 

Ecological Archives M075-018-A3. 

APPENDIX D 
A discussion of the evaluation of fixed and proportional delays is available in ESA's Electronic Data Archive: Ecological 

Archives M075-018-A4. 

SUPPLEMENT 
The COMPETE software (a menu-driven individual-based spatial modeling program) and user manual are available in ESA's 

Electronic Data Archive: Ecological Archives M075-018-S1. 
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Appendix E 

Evaluation of fixed and proportional delays 

Landscapes composed of independent, discrete valued pixels provide a 

null case for evaluating fixed and proportional delays. We can generate data series 

for windows of side length / using the binomial distribution N — Bin (12, it), which 

gives independent discrete valued data and so provides a null case comparable 

with our individual-based spatially explicit models of n-species systems. The 

value It can be thought of as the probability of observing a particular species, so 

that TC = 0.33 is the randomized equivalent of a 3-species system. Since, by 

definition, the determinism to noise ratio does not change with window size / in 

our null model, we should not expect a typical increasing asymptotic in the 

prediction r2  spectrum, or indeed any interpretable prediction r2  curve. Note, 

however, that we do not expect a constant slope in the prediction r 2  spectrum for 

the null model generated using the sliding window approach (Fig Dl), unlike the 

situation for the long time series method (see Appendix B). 

It is clear that using a fixed embedding delay in the sliding window 

analysis is inappropriate because it yields an interpretable prediction r2  spectrum 

in the null case for which no CLS exists (Fig D1). The shape of the prediction r 2  

curve in our example with 'T = 10 suggests a CLS of approximately 60 cells where 

none can exist (Fig D1, A). Qualitatively similar results were obtained from other 

integer values of (1 	10). Thus, using a fixed delay for sliding window 

attractor reconstruction would confound CLS estimation. By comparison, trends 

in prediction r2  curves are reduced in the null case when T is proportional to 

window length (t = 0.8 x window length /) and, most importantly, the prediction 

r2 spectrum does not indicate a CLS (Fig D1, B). The trend that is evident arises 
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- 
because the overlap of successive spatial series introduces correlations in k- 

nearest neighbor predictions (see Appendix B). Thus, proportional delays are 

preferable to fixed delays for sliding window embeddings because the resultant 

prediction r2  spectra do not indicate CLSs in the null case. 
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Figure Dl. Prediction r2  as a function of window length 1 for sliding window 
analysis using a 3-species null model of independent, discrete valued pixels. 
In simulated frames, the probability of observing pixels with a particular 
discrete value is TC= 0.33. In (A) = 10 (fixed delay), while in (B) t= 0.8 x 
window length 1 (proportional delay). For both analyses dE = 5, k = 10. 
Landscape size is 700 x 700 pixels. Solid lines indicate average curves for 
100 replications and dotted lines indicate 95% confidence intervals. Note that 
the fixed delay yields an interpretable prediction r 2  curve which is misleading 
because no CLS exists in the null case. Although the spectrum for the 
proportional delay is not flat, it does not indicate an interpretable CLS, which 
is desirable for the null case, and the r2  values are very low. 


