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ABSTRACT 

The problem under investigation in this study is teachers' lack of competence to teach for 

conceptual understanding of mathematics. It was assumed in this study that pre-service 

teachers of mathematics go through their teacher education and training with certain 

insufficiencies in their mathematical understandings and that these insufficiencies will 

eventually affect the way they teach. The aim of this study, therefore, was to identify what 

these insufficiencies might be by examining mathematical knowledge that secondary pre-

service mathematics teachers bring with them to teacher education programs. The nature of 

these mathematical knowledge insufficiencies and how these insufficiencies would affect a 

person's competence to teach were of primary interest. 

To explore these knowledge insufficiencies, a multiple-case study design was used. The 

nineteen cases (secondary mathematics pre-service teachers) from four universities at two 

Australian states were selected according to their mathematical backgrounds. It was 

expected that the pre-service teacher participants (university graduates) who majored in 

mathematics or in other science related areas would show less evidence of knowledge 

insufficiencies than pre-service teachers who majored in other areas (e.g. economics). 

Furthermore, it was expected that the participants with mathematics major backgrounds 

would show more confidence to teach for conceptual understanding of mathematics than 

participants with mathematics minor backgrounds. 

The data collection instrument was a set of three mathematical stimulus items representing 

trigonometry, logarithm, and statistics. All three items were designed to elicit responses 

associated with the respondent's knowledge of the mathematics. Written and verbal 

responses to these items were collected in one-to-one interviews. Skemp's (1978) model 

of mathematical understanding was the instrument for data analysis. 

The results of this qualitative analysis indicated four types of mathematical knowledge 

deficiencies. In addition, the pre-service teachers' existing mathematical knowledge was 

highly representative of instrumental understanding of mathematics. These mathematical 

knowledge insufficiencies were suggested to be the outcomes of learning mathematical 

content which lacked in essential knowledge aspects, rather than outcomes of rote learning. 

Furthermore, these insufficiencies tended to reduce the pre-service teachers' confidence and 

likewise their potential to teach for conceptual understanding of mathematics. 
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CHAPTER ONE 

INTRODUCTION 

This thesis is based on a study about the types of mathematical knowledge 

prospective secondary teachers bring with them to pre-service 

mathematics teacher education programs. The documentation of this 

study includes an outline of relevant research findings and views on 

mathematical knowledge and the influence of this knowledge on 

mathematical understanding and competency in the teaching of 

mathematics. Highlighted in these research findings is a persistent 

problem concerning teachers' lack of competence in the teaching of 

mathematics. This lack of teacher competence in mathematics appears to 

have close connections with teachers' mathematical understanding (or 

subject-matter knowledge). Although teachers are expected to acquire 

this understanding from undertaking mathematics teacher education 

programs, research findings showed that teachers' pre-tertiary learning of 

mathematics had far more influence on the way teachers teach 

mathematics (e.g. Ball, 1990). These findings raise several important 

questions concerning the types of mathematical knowledge that teachers 

have acquired prior to teacher education. Two of these questions are 

explored further in the study reported in this thesis: (1) what types of 

mathematical knowledge secondary pre-service teachers of mathematics 

bring with them to teacher education, and (2) what influence these types 

of knowledge might have on their teaching of mathematics. 
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1.1 	Mathematics as a form of knowledge 

In addressing a meeting of the National Council of Teachers of 

Mathematics about the importance of mathematics in modern life, George 

B. Olds (1928) found it fitting to focus upon the 'power and beauty of 

mathematics' (p.196). About six decades later the importance of 

mathematics has had little change, as described in the following quotation. 

Mathematics has been called 'the queen of the sciences' for its 
intrinsic beauty and because it has mothered a host of other sciences. 
Traditionally, its branches have been arithmetic, algebra, geometry, 
trigonometry, statistics and logic. It forms the base of many practical 
sciences such as physics, chemistry, geology and meteorology. It 
provides the foundation for cultural arts such as music, art and 
architecture. It is rapidly being adopted as a basic tool by the social 
sciences and humanities - for studies of population, political trends 
and economic theories (National Science and Technology Centre, 
N.S.T.C., 1989, p. ii). 

Mathematics has provided the tools and methods which have been largely 

responsible for the extraordinary advances in the other sciences (Mitchell, 

1933). As a form of knowledge, mathematics plays an important part in 

an individual's formal education because: 

its understanding forms the base for learning other mathematically 

dependent disciplines (Department of Employment, Education and 

Training, D.E.E.T., 1989; Australian Education Council, A.E.C., 

1991; Leitzel, 1991; McNamara, 1991; De Corte, 1995); 

it contributes to the development and enhancement of skills in the 

use and appreciation of technology (N.S.T.C., 1989; A.E.C., 1991), 

and 

- 	it provides the individual with a sense of power and achievement 

(Skemp, 1986, 1989; Ball, 1990; Leitzel, 1991; Greenwood, 1993). 
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Mathematical knowledge is also an essential requirement for competency 

in the workforce, and in everyday life (e.g. Dungan & Thurlow, 1989; 

A.E.C., 1991; D.E.E.T., 1989, 1992). 

1.2 	Mathematical understanding in teaching 

In most societies it is commonly accepted that knowledge about 

mathematics is imparted and transferred to individuals through the act of 

teaching. It is this act of teaching, through organised instruction, that is 

essential to the recipient of mathematical knowledge (e.g. Olds, 1928; 

Skemp, 1986; Ball, 1991; Leder, 1992; De Corte, 1995). In order for 

individuals to be educated in mathematics and to achieve their goals, good 

teachers of mathematics are of vital importance. Teachers of mathematics 

also have to have knowledge and understanding about mathematics to 

provide adequate mathematical teaching. Teachers have the 'power to 

effect change' (Eisenhart, Borko, Underhill, Brown, Jones & Agard, 1993, 

p39) and 'are the key figures in changing the ways in which mathematics 

is taught and learned in schools' (National Council of Teachers of 

Mathematics, NCTM, 1991, p.2). Prior to becoming teachers of 

mathematics, these individuals must be educated sufficiently in 

mathematics so that they can have the necessary ability to competently 

transfer knowledge and skills of mathematics to learners (e.g. Kramer, 

1933; Shulman, 1987; D.E.E.T., 1992; Berliner, 1994). 

Competency in mathematics appears to be an essential attribute required 

by mathematics teachers. It has been suggested that teacher competence 

in mathematics involves more than a sound knowledge in mathematics 

(Skemp, 1986; Leitzel, 1991). It involves two essential components: (i) 
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knowledge and understanding of mathematics, and (ii) the capacity to 

communicate or transfer mathematics in a given context (D.E.E.T., 

1992). These two components are referred to respectively by several 

researchers, (e.g. Berliner, Stein, Sabers, Clarridge, Cushing, & Pinnegar, 

1988; Ball, 1991; Even, 1993; Berliner, 1994), as teacher subject matter 

(mathematics) knowledge and pedagogical knowledge. However, it is 

suggested that for mathematics, pedagogical knowledge is dependent on 

the teacher's knowledge of mathematics (Ball, 1990; Ball & McDiarmid, 

1990; Leinhardt, Putnam, Stein, & Baxter, 1991). The interrelationship 

between these two components is exemplified in the view of a competent 

mathematics teacher as one whose performance is underpinned not only 

by skill but also by knowledge and understanding of mathematics 

(D.E.E.T., 1992). 

It is argued in this thesis that, if pedagogical knowledge is dependent on 

mathematical knowledge and is important to competent teaching, then 

teachers of mathematics would need to acquire a substantial level of 

mathematical knowledge prior to entering the workforce (D.E.E.T., 1992; 

Eisenhart et al., 1993). Therefore, it is the mathematical knowledge of 

prospective teachers of mathematics that is the focus of the study reported 

in this thesis. 

1.3 	The problem under investigation - teachers' lack of 
mathematical understanding 

The problem under investigation in this study is teachers' lack of mathematical 

understanding. Studies of both pre-service and inservice mathematics teachers 

have shown that a large proportion of teachers lack understanding in 
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mathematics and that this has affected their teaching of mathematics as well as 

classroom management and organisation (Skemp, 1986, 1989; Shulman, 1987; 

Leinhardt, 1989; Ball, 1990; Leder, 1991; Leinhardt et al., 1991; McNamara, 

1991; Eisenhart etal., 1993; Even, 1993; Wilson, 1994). 

Two possible contributing factors to the problem have been identified 

from the research literature: (1) a current assumption in secondary 

mathematics teacher education programs that a tertiary mathematics 

qualification denotes essential pre-requisite knowledge has been acquired, 

and (2) teachers' prior learning of mathematics is insufficient. These 

factors are described below. 

(1 ) 	A current assumption in secondary mathematics 
teacher education programs 

In a recent nationwide Discipline Review of Teacher Education in 

Mathematics and Science (D.E.E.T., 1987, p.27) it was reported that, 

although teachers may have acquired 'abstract' or higher level mathematics 

from their tertiary education, they lack the ability to transfer or communicate 

such mathematics to their students. This report tends to suggest that gaining 

a tertiary education, although it provides the individual with higher 

mathematical learning, is not a guarantee that essential knowledge 

components have been acquired by the prospective teachers of mathematics. 

However, the current assumption being promoted in teacher education 

programs, particularly in secondary programs, is that, prospective teachers, 

including prospective mathematics teachers, have acquired the essential and 

necessary subject-matter knowledge and skills from their pre-tertiary and 

tertiary schooling, and that, when provided with teacher education programs 
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in their prospective fields, they should become competent teachers (D.E.E.T., 

1989, 1992; Leitzel, 1991; McNamara, 1991). This assumption is 

particularly noticeable in secondary mathematics teacher education 

programs where the entrant is required to have completed certain 

mathematics courses or a degree in mathematics or in other science and 

technology areas. As such the entrant is accepted into the teacher education 

program as having the essential mathematical pre-requisites. On the other 

hand, researchers have found that this requirement may actually have 

negative effects on mathematical competence in that prospective teachers 

with such mathematical backgrounds find it difficult to adjust their 

mathematical thinking in order for them to apply their acquired 

mathematical knowledge to teaching situations (e.g. Ball, 1990; Wilson, 

1994; Gates, 1995a). 

(2) 	Teachers' prior learning of mathematics is insufficient 

There could be numerous reasons as to why teachers lack competence in 

mathematics. One likely reason could be that, before undertaking teacher 

education, teachers did not acquire the appropriate prior knowledge from 

their pre-tertiary (or college) education. For example, results of a survey 

conducted in Western Australia showed an increasing number of potential 

mathematics teachers with inadequate mathematical backgrounds entering 

teacher education in that state (Western Australian Office of Higher 

Education, 1992). 

In addition, Ball (1990) found that how teachers learned and how they 

were taught at pre-tertiary level, had far more influence on their 

mathematical development than the learning achieved from secondary 
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teacher education programs. Such findings tend to indicate that teacher 

education programs may not be providing prospective teachers with the 

necessary mathematical knowledge for competent teaching. In addition, 

these findings tend to suggest that teachers may go through their training 

with certain misunderstandings, misconceptions, or gaps in their 

mathematical knowledge, and that these will eventually affect the way they 

teach. 

1.4 A contributing factor to a solution - a competent teacher educator 
of mathematics 

It is suggested that those who implement the secondary teacher education 

pre-service programs play a vital role in preparing prospective 

mathematics teachers to become competent teachers of mathematics (Ball, 

1990; Even, 1993). In addition, Skemp (1986) maintains that a necessary 

factor in a prospective mathematics teacher's environment is 

mathematicians or mathematics teacher educators who can competently 

assist the prospective teachers with the process of mathematical knowledge 

reconstruction and assimilation. This argument is supported by research 

findings, for example, Leder's (1991) studies of lecturers acting as 

mathematics students. Leder (1991) found that 'adapting and responding 

to students' individual ideas require teachers [mathematics teacher 

educators] who are confident in their own mathematical knowledge and 

who themselves have a good grasp of mathematical concepts and ideas' 

(P.7). 

In summarising to this point, two main issues relating to lack of 

mathematical competence by secondary teachers have emerged. One is 
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associated with prospective teachers' inadequate prior knowledge of 

mathematics. The other is related to the ineffectiveness of teacher 

education programs in providing prospective teachers with environments 

that can facilitate the reconstruction of mathematical concepts needed for 

mathematical understanding. These are two separate issues but are linked 

by a common element, namely, the lack of appropriate assistance for 

prospective teachers (see Figure 1.1). Therefore, appropriate assistance is 

required as a means to ensure that prospective teachers would gain the 

essential mathematical knowledge needed to form the basis for competent 

teaching at the secondary school level. 

Figure 1.1: Illustrating the lack of appropriate assistance 

1.5 	Significance and assumptions of the current study 

It appears from the discussion in Section (1.4) that the mathematics 

teacher educator is partly responsible for providing the assistance needed 

by pre-service mathematics teachers in reconstructing their existing 

mathematical knowledge (Skemp, 1986; Leder, 1991). Although the 

teacher educator may have the mathematical competence and confidence 

to provide pre-service teachers with such help, a major concern is that 
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little is known about the inter-relationship between mathematical content 

knowledge and pedagogical knowledge of secondary mathematics 

teachers (Even, 1993, p.95). This concern is associated with the shortage 

of available data on the quality of existing mathematical knowledge of 

secondary pre-service teachers - or mathematical knowledge pre-service 

teachers bring with them to teacher education (Ball, 1990; Ball & 

McDiarmid, 1990). Ball and McDiarmid (1990) indicated that there has 

been more research on mathematical knowledge and understanding 

relating to elementary (early-childhood and primary school levels) pre-

service teachers than for secondary pre-service teachers. In an endeavour 

to provide some of this much needed data, this study was designed to 

explore mathematical knowledge of secondary pre-service teachers of 

mathematics. 

Furthermore, to provide secondary pre-service teachers with appropriate 

assistance (Figure 1.1), it would be of value for the teacher educator to 

know more about the types of deficiencies associated with lack of 

mathematical understanding and the potential of such deficiencies to 

influence a pre-service teacher's competence in teaching mathematics. 

This issue is the underlying purpose for this study of pre-service teachers' 

mathematical knowledge, that is, to identify types of mathematical 

knowledge deficiencies and their influence on mathematical 

understanding and competence. 

In search for more clarification and elaboration on what has already been 

documented in the literature regarding teacher competence in 

mathematics, the study reported here was specifically designed to explore 

the following assumptions: 

Chapter 1/ Page 9 



(1) That secondary pre-service teachers of mathematics go through their 

teacher education and training with certain deficiencies in their 

mathematical understandings and that these will eventually affect the way 

they teach. 

(2) That mathematical understanding is dependent on the sufficiencies of 

procedural and conceptual types of mathematical knowledge. Lack of or 

a deficiency in either procedural and/or conceptual knowledge could 

suggest a deficiency in mathematical understanding (Hiebert & Lefevre, 

1986; Eisenhart et al., 1993). 

(3) That pre-service teachers who majored in mathematics or other 

science related areas (e.g. chemistry, physics, and computer science) 

would show less evidence of mathematical knowledge deficiencies than 

pre-service teachers who majored in other areas (e.g. economics and 

physical education). Furthermore, pre-service teachers with relational 

understanding (Skemp, 1978) of mathematics would demonstrate more 

confidence to teach mathematics than pre-service teachers with 

instrumental understanding (Skemp, 1978). 

Having stated the research assumptions, the conceptualisation that 

provides the theoretical structure of this study is discussed next. 

1.6 	The conceptual framework of the study 

The conceptual framework for this study takes into account both the 

social constructivist's perspective and the schema theorist's perspective 

(Derry, 1996; also Reynolds, Sinatra, & Jetton, 1996, for a comprehensive 

comparison of the views on knowledge). From a social constructivist's 

view, learners construct knowledge from their experiences and 
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interactions with others in learning environments such as schools and 

other social contexts (Reynolds et al., 1996). In this view, schools do 

make a difference with respect to cognitive development, in the sense that 

'the acquisition and growth of the cognitive skills and processes 

underlying intellectual performances are, to a large degree, the result of 

learning and teaching in schools' (De Corte, 1995, p.37). From a schema 

theorist's view, this cognitive development occurs in the mind in the form 

of schemata or 'packets of knowledge' (Reynolds et al., 1996, p.97; 

Derry, 1996). The term 'schema' was defined as 'a general term 

connoting virtually any memory structure' (Derry, 1996, p.167). 

However, the schema theorists still acknowledge the importance of 

experiences in providing the raw material from which the mind forms 

schemata. Knowledge, in schema theory, is fluid and dynamic and it is 

created out of the interaction between incoming sense perceptions and the 

inherent capabilities of the mind (Derry, 1996; Reynolds et al., 1996). 

In this framework, a mathematics pre-service teacher's existing 

mathematical knowledge is defined for this thesis as mathematical 

knowledge the pre-service teacher brings with him or her to the 

mathematics teacher education program. This existing mathematical 

knowledge is assumed to have been acquired by the individual from his 

or her formal schooling, particularly from the mathematics taught at 

school. This domain-specific knowledge would also include 

mathematical knowledge gained from university studies in mathematics. 

Furthermore, it is assumed that this mathematical knowledge was gained 

from the individual's own constructions or one's interpretations of 

experiences from incoming sense perceptions with the help of his or her 
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prior knowledge (Alexander, Schallert & Hare 1991; Deny, 1996, p.172). 

This conceptualisation of mental processes suggests that a pre-service 

teacher's existing mathematical knowledge is closely inter-related with 

how the knowledge was acquired (Skemp, 1986; Ball, 1990; De Corte, 

1995). 

The conceptual framework of this study was developed from the 

perspective of a pre-service teacher as an active learner or participant in a 

learning environment. Based on this framework, a pre-service teacher's 

recorded (verbal or written) interpretations of a mathematical situation 

would provide data or evidence on the quality of his or her existing 

mathematical knowledge. In theory, these data should also contain 

aspects of how mathematical knowledge was acquired (e.g. by rote 

memorisation) and indicators about how pre-service teachers might teach 

mathematics. 

Since these data are embedded in theoretical structures associated with the 

selected framework, their interpretation and evaluation require a model 

of data analysis that encapsulates the theoretical underpinnings of this 

study. After a substantial review of the literature on how knowledge (or a 

learned outcome) is assessed (e.g. Biggs & Collis, 1982), particularly for 

mathematical knowledge, the Skemp (1978) model of mathematical 

understanding was chosen as the appropriate model for data analysis in 

this study. Skemp's (1978) model is described in detail in Chapter 3. 

How this framework was incorporated into the design of the study is the 

focus of discussion in the next section, Section (1.7). 
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1.7 	Study design 

The conceptual framework outlined above in Section (1.6) indicates that a 

pre-service teacher's prior or existing mathematical knowledge is the 

product of cognitive processes which involve both learning experiences 

and the inherent capabilities of the mind (e.g. Deny, 1996). In order to 

inquire into this existing mathematical knowledge, a multiple-case study 

(Yin, 1994) or collective case study (Stake, 1994) design was used. The 

selection of the cases (or pre-service teachers) follows the 'replication 

logic' rather than the 'sampling logic' technique (Yin, 1994, p.45). That 

is, the set of selected cases is not viewed as a sample which is 

representative of the larger population. Rather, a set of cases is selected 

because it is believed that understanding these cases would lead to better 

understanding of a still larger collection of cases (Stake, 1994; Yin, 

1994). This design also addresses the issues of validity and reliability 

through the use of the replication logic for case selection, and by the 

adoption of certain strategies for data collection and data analysis. These 

strategies are briefly described next. 

In order to collect relevant data from each case, one-to-one interviews 

were conducted between the participant and the researcher/interviewer. A 

semi-structured interviewing approach was used in which the participant 

was required to respond to questions incorporated into mathematical 

stimulus items. The written responses and verbal responses recorded on 

audio tapes from these interviews provided the data for analysis. 
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The data analysis procedures involve identification of patterns of 

knowledge consistencies and inconsistencies displayed in the data. This 

identification procedure requires a set of base-line patterns for 

comparison and evaluation purposes. It is for such purposes that 

Skemp's (1978) model of mathematical understanding became 

indispensable to this study, especially in the formation of predicted 

response patterns for a base-line (Yin, 1994, p.106). Detailed 

descriptions of these patterns are presented in Chapters 3 and 4. However, 

for the purpose of the discussion in this section a brief description of 

Skemp's (1978) model is presented here. 

Skemp (1978, 1979, 1982, 1986) argued that there are three kinds of 

mathematical understanding generated in schools (or in formal education 

institutions): instrumental, relational, and symbolic. These three kinds 

are in a hierarchy with symbolic at the highest level. Although all three 

kinds are characterised and distinguishable by knowledge types, there are 

basically only two kinds of learning goals in mathematics: instrumental 

and relational. Skemp (1979, 1982) claimed that the learning goal for 

symbolic understanding is based on schemata (or knowledge structures) 

for relational understanding. Furthermore, Skemp (1979) suggested that 

across these three kinds of mathematical understanding are two modes of 

cognitive functioning; namely, intuitive and reflective. This model is 

summarised in the matrix presented in Figure 1.2. 
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Figure 1.2: 	Predicted response patterns 

Three Kinds of Mathematical Understanding 

Modes 	of 	Cognitive 
Functioning 

Instrumental 	(I) 
Understanding 

Relational 	(R) 
Understanding 

Symbolic 	(S) 
Understanding 

Intuitive (Int) (mt. I) (mt. R) (mt. S) 
Reflective (Ref) (Ref, I) (Ref, R) (Ref, S) 

Each cell of the matrix in Figure 1.2 represents a predicted response 

pattern, for example, (Int, I), (Int, R), and (Int, S) are response patterns 

associated with intuitive cognitive functioning. These six predicted 

response patterns were formed and validated for each of the three 

stimulus items (detailed in Chapter 4). These predicted patterns form the 

base-line of patterns for the analysis procedures. That is, each 

participant's responses were examined for knowledge characteristics that 

may match with those of the predicted patterns. This comparison and 

matching process or 'pattern-matching logic' is a recommended method 

for analysing data associated with multiple-case study designs (Yin, 1994, 

p.106; Taylor & Bogdan, 1998). 

It was expected that the result from the analysis of these response patterns 

would provide an insight into the pre-service teachers' existing 

mathematical knowledge bases. More particularly, this result would 

provide indicators of the types of mathematical knowledge deficiencies 

and the effects of such types on knowledge pertaining to teaching or 

pedagogical knowledge. This expectation is the premise for the research 

questions described in the next section, Section (1.8). 
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1.8 	Research questions 

The two research questions investigated in this study of secondary pre-

service teachers' existing mathematical knowledge are: 

kno ygle clg e 
1. What types of procedural and conceptual mathematical 	i /exist n pre-

4110 
service teachers' knowledge bases? 

2. What possible influence could any identified deficiencies in types 

of mathematical knowledge have on the teaching of mathematics? 

In order to form a theoretical base on which to explore these questions, it 

is important to define what are essential types of mathematical knowledge 

that constitute mathematical understanding and competence in teaching 

mathematics. This would include how these essential types of 

mathematical knowledge might be acquired, and what other types of 

mathematical knowledge might influence the achievement of 

mathematical understanding. This information is the focus of the 

discussion in Chapter 2. The content of the chapters in this document is 

summarised next. 

1.9 	Summary of the chapters 

To explore further how mathematical knowledge is linked to teacher 

competence in mathematics and how such has been previously defined, a 

review of relevant literature is reported in Chapter 2. Also examined in 

Chapter 2 are the relevant studies associated with what constitutes 
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knowledge sufficiencies in mathematics. This information provides a 

comparative framework to assist in examining knowledge deficiencies. 

In Chapter 3, a method for analysing response-data on mathematical 

knowledge is described. The design of the study and the development as 

well as validation of mathematical stimulus items for data collection are 

described in Chapter 4. This is followed by the analysis of the study data 

on secondary pre-service teachers' existing mathematical knowledge in 

Chapter 5. The discussion of this analysis is presented in Chapter 6. 

Finally, in Chapter 7 is the conclusion as well as implications arising from 

the study and recommendations for further research. 
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CHAPTER TWO 

ESSENTIAL 

MATHEMATICAL KNOWLEDGE IN 

MATHEMATICAL UNDERSTANDING 

Introduction 

It was suggested in Chapter 1 that teachers' knowledge of mathematics 

influenced the way they teach. Despite their formal teacher education 

and classroom teaching experience, research findings indicate that a high 

proportion of mathematics teachers lack conceptual understanding of the 

mathematics they teach to their pupils (e.g. Leinhardt, 1989; Ball, 1990, 

1991; Eisenhart etal., 1993). 

It was suggested in Chapter 1 (Section 1.3) that teachers' lack of 

conceptual understanding of mathematics may be the result of inadequate 

learning of mathematics prior to teacher education. Also in Section (1.3), 

it was suggested that teachers' pre-tertiary mathematical learning had far 

more influence on their mathematical development than learning from 

teacher education programs (Ball, 1990). Such findings tend to indicate 

that a possible reason for mathematics teachers' lack of understanding 

may be, that mathematics teachers go through teacher education and 

training with certain knowledge deficiencies in their mathematical 

understandings and that these will eventually affect the teacher's 

competence in teaching mathematics. 
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It was also suggested in Chapter 1 (Section 1.2) that teacher competence 

in mathematics involves both content knowledge of mathematics and 

pedagogical knowledge, and that pedagogical knowledge is dependent on 

mathematical knowledge. Hence, the focus of this literature review is on 

essential forms of mathematical knowledge that teachers need in order to 

gain mathematical understanding for teaching mathematics. 

In order to explore what might be considered as mathematical knowledge 

deficiencies, how they were acquired, and how they might affect a 

person's competence to teach mathematics, the relevant literature on 

mathematical knowledge and understanding is examined in this chapter. 

This examination is discussed with particular emphasis on the following 

aspects: (i) identifying types of mathematical knowledge that are essential 

to mathematical understanding for teaching, (ii) defining mathematical 

competence in relation to the teaching of mathematics, (iii) defining rote 

knowledge as a form of mathematical knowledge, and (iv) identifying an 

aspect relating to the preparation of pre-service secondary mathematics 

teachers that needs further research. 

2.1 	 Mathematical knowledge involved in 
mathematical understanding 

To begin the examination of the types of mathematical knowledge 

involved in mathematical understanding, it is worthwhile to consider the 

question, what is knowledge? According to Gagne (1962, p.356), 

knowledge, by definition, 'is that inferred capability ... the individual 

possesses at any given stage in learning'. Ebel (1972) and Bruner 
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(1959), for example, would strongly suggest that this 'inferred capability' 

must be the outcome of thinking and not merely a collection of learned 

information. Ebel (1972, p.5) argued that 'knowledge is not 

synonymous with information'. Rather it is constructed out of 

information by thinking and it is an integrated structure of relationships. 

Knowledge, as suggested above, seems to be concerned with mental 

representations or cognitive processes as well as being a vital element in 

the formation of understanding. Contents of this mental representation 

include concepts and procedures which are closely interrelated and often 

interdependent (Anderson, 1980, 1981; Skemp, 1986; Gick & Holyoak, 

1987; Alexander et al., 1991). As such, it must pre-exist as prior 

knowledge or schema in order for it to have a major influence on 

meaningful reception, integration and retention of new concepts 

(Anderson, Spiro & Montague 1977; Anderson, 1982; Hiebert & Lefevre, 

1986; Skemp, 1986; Kulm, 1994; Derry, 1996). Although this 

perspective of knowledge represents only one of several approaches for 

viewing knowledge acquisition (Reynolds, et al., 1996), it does however 

provide a theoretical framework in which cognition or mental structures 

can be viewed. 

It seems that prior knowledge is an important construct to consider in 

order to gain an understanding of mathematical knowledge. According 

to Alexander et al. (1991, p.324), a person's prior knowledge is 

composed of two general forms of knowledge that interact, namely 

conceptual knowledge and metacognitive knowledge. Conceptual 

knowledge involves content knowledge, discourse knowledge and their 

respective subcategories. That is, domain and discipline knowledge are 
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subcategories of content knowledge whilst syntactic, text-structure, 

rhetorical knowledge are subcategories of discourse knowledge. The 

overlap or link between content and discourse knowledge was suggested 

as word knowledge. Word knowledge according to Alexander et al. 

(1991, p.327) has two parts; the 'label' part which relates to discourse 

knowledge and the 'concept' part that relates to content knowledge. 

Metacognitive knowledge, on the other hand, involves knowledge of self, 

task, strategy, and knowledge of plans and goals. Furthermore, these 

authors suggested that in order for an individual to undertake a task 

within a particular situation, these two forms (conceptual and 

metacognitive) of knowledge need to be activated and used by way of a 

knowledge inteiface. This knowledge interface is 'the point of contact 

between the learner's prior knowledge and other human processes' or a 

bridge between prior knowledge and external conditions (Alexander et 

al., 1991, p.330). Derry (1996, p.168) refers to a similar form of 

knowledge interface as a 'cognitive field' schema. Figure 2.1 is a 

diagrammatic illustration of the general conceptual framework of prior 

knowledge suggested by Alexander et al. (1991). 
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GENERAL 
CONCEPTUAL KNOWLEDGE 

Content knowledge: 
- domain knowledge 
- disciWine knowledge 

word knowledge 
- Discourse knov7ledge 

- syntactic knowledge 
- text-structure knowledge: 
-rhetorical knowledge 	1 

GENERAL 
MEPACOGNMVE KNOWLEDGE 

Self knowledge 
Task knowledge 
Knowledge of plans and goals 
-strategic knowledge 

ill...,.P 

KNOWLEDGE INTERFACE / 

Figure 2.1 	A general framework of prior knowledge 
(Adapted from Alexander et al. (1991, p.324)) 

Legend: 

I word knowledge  I - represents the link between Content and Discourse knowledge 
1---11,  represents interactions between knowledge forms 

Applying the above general description of knowledge to mathematics 

suggests that in the acquisition of mathematical knowledge (or domain 

knowledge), there is: 

(1) an initial stage - the collection of learned information about 

mathematics - (e.g. Ebel, 1972; Goodwin & Klausmeier, 1975; 

Skemp, 1986, 1989; Alexander et al., 1991; Derry, 1996), 

(2) an intermediate stage - the formation of knowledge and 

relationships about mathematics - (e.g. Ebel, 1972; Skemp, 1986; 

Gick & Holyoak, 1987; Derry, 1996), and 

(3) an extended stage - the growth of knowledge in mathematics - 

(e.g. Ebel, 1972; Skemp, 1979, 1986; Hiebert & Lefevre, 1986; 

Derry, 1996). 
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An individual who enters a pre-service teacher education program would 

have been through these stages in the different levels of formal schooling 

- primary, secondary and tertiary. However, it appears that it is possible, 

at any school level, for an individual to acquire conceptual types of 

mathematical knowledge - the underlying knowledge factors in gaining 

understanding and achieving competence in mathematics (Skemp, 1986, 

1989). For example, Leinhardt (1988) describes a competent primary 

school student of mathematics as one who can perform 'actions 

associated with tasks in the area quickly, accurately, flexibly, and 

inventively under several types of processing constraints, and he or she 

can explain what was done with reference to broad general principles and 

demonstrations' (p. 120). This description also seemed to apply to 

secondary and tertiary level students, for instance, Pask (cited in Entwistle 

& Ramsden, 1983) argued that such performances are demonstrations of 

a student's understanding of what has been learned, that is, 'when the 

student can explain the topic by reconstructing it, and can also 

demonstrate that understanding by applying the principles learned to an 

entirely new situation' (p.25). 

However, in order to have mathematical understanding, it is said that an 

individual's existing mathematical knowledge base should consist of 

procedural and conceptual types of mathematical knowledge (e.g. 

Carpenter, 1986; Davis, 1986; Hiebert & Lefevre, 1986; Silver, 1986; 

Gick & Holyoak, 1987; Eisenhart et al., 1993). The relationship between 

these two types was suggested to be a necessary element in mathematical 

understanding (Hiebert & Lefevre, 1986; Eisenhart et al., 1993; Pine & 

Kieren, 1994). Ball (1990) has defined this relationship as substantive 

understanding of mathematics. 
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Part A A general framework of 
prior knowledge - Figure 2.1 

Cienerat 
Conceptual 
Knowledge 

41--111. 

[Knowledge  M  
etacognitive 

Knowledge  

   

 

V (nowledge 
Interface 

Part B A 'zoom -lens' view of 
prior knowledge with 
a focus on knowledge 
aspects pertaining to 
the mathematics domain. 

Content 
knowledge 

point 
Discourse 
knowledge 1 

Part C The 'enlargement' of the 
focal point 

Mathematics 
Domain 

In an endeavour to form a theoretical basis for examining how procedural 

and conceptual mathematical knowledge may interact and generate 

mathematical understanding, a zoom - lens view of the framework for prior 

knowledge (Figure 2.1) is used for this purpose. The flowchart presented 

in Figure 2.2 is an attempt to pinpoint where procedural and conceptual 

knowledge specific to the mathematics domain might be situated in 

relation to the general framework of knowledge presented in Figure 2.1. 

Figure 2.2 	Focusing on procedural and conceptual mathematical 
knowledge 

Legend: 
- represents moves to arrive at the focal point 

In Figure 2.2 above, it is assumed that both procedural and conceptual 

mathematical knowledge are components of the general form of conceptual 
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Conceptual 
mathematical 
knowledge 

Procedural 
mathematical 
knowledge 
AO 

EXTERNAL 
ENVIRONMENT 

knowledge (Figure 2.1) since both types are required for mathematical 

understanding (e.g. Hiebert & Lefevre, 1986). This is represented by an 

arrow from the conceptual knowledge frame in part A to another frame in 

part B of Figure 2.2. To take a closer view of these components, a zoom - lens 

view, for example, of prior knowledge with a focus on procedural and 

conceptual knowledge aspects associated with the mathematics domain is 

illustrated in part B of Figure 2.2. It is further assumed that all the 

functional properties such as interactions between conceptual knowledge and 

metacognitive knowledge as well as connections to the knowledge interface 

of the general framework of prior knowledge (Alexander et al., 1991) are 

retained and inherent in the 'enlargement' view of the focal point. This view 

is further enlarged and illustrated diagrammatically in Figure 2.3 and forms 

the basis for discussing the relevant literature on mathematical 

understanding. 

Figure 2.3: The relationship between procedural and conceptual 
mathematical knowledge in mathematical understanding 

EXISTING MATHEMATICAL KNOWLEDGE 

Legend: 
- represents interconnections between procedural and conceptual knowledge 
- represents transformation of procedural aspects of knowledge to conceptual aspects 
- represents translation and transmission of incoming sense perceptions of external 
situations. 
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The two types of mathematical knowledge associated with mathematical 

understanding illustrated in Figure 2.3 above are discussed further in the 

following section. 

2.2 	Conceptual and procedural mathematical knowledge 

Conceptual knowledge of mathematics was suggested to be an essential 

type of knowledge in mathematical understanding. According to Hiebert 

and Lefevre (1986, p.4), 'growth in conceptual knowledge, the state of 

knowledge when new mathematical information is connected 

appropriately to existing knowledge' is mathematical understanding. 

Skemp (1978, 1986, 1989) defined this growth in mathematical 

knowledge as relational understanding. The type of mathematical 

understanding which is the product of 'knowing both what to do and 

why' (Skemp, 1978, p.9). 

Conceptual mathematical knowledge or relational understanding (Skemp, 

1978, 1979, 1982, 1986, 1989) refers to knowledge of the underlying 

structures of mathematics. These are the relationships and 

interconnections (illustrated by a bold line 	in Figure 2.3) of ideas 

that explain and give meaning to mathematical procedures (Hiebert & 

Lefevre, 1986; Eisenhart et al., 1993; de Jong & Ferguson-Hessler, 1996). 

It is knowledge which is generally not taught specifically but is associated 

with the laws, axioms and theory of mathematics, for example, 

commutative, associative, distributive, and is derived from the students' 

learning experiences (Skemp, 1986; Leinhardt, 1988; De Corte, 1995; 

Derry, 1996; de Jong & Ferguson-Hessler, 1996). Conceptual 

mathematical knowledge is also understanding in the form of 
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representations, knowledge organisation of sets of propositions, sets of 

, pattern recognition or a mixture of these (Gagne, 1985). Gagne's 

(1985) characterisation of conceptual knowledge seems to have 

similarities to the functional aspects of a 'mental model schema' 

described by Derry (1996, p.168) as a schema which is responsible for 

the 'process of constructing, testing, and adjusting a mental representation 

of a complex problem or situation'. Briefly, the goal of mental 

representations seems to be the construction of an understanding of a 

phenomenon (Gagne, 1985; Derry, 1996). 

Procedural knowledge of mathematics, on the other hand, contains both 

knowledge of format and syntax of the symbol representation system, and 

knowledge of rules and algorithms, some of which are symbolic, that can 

be used to complete mathematical tasks (Eisenhart et al., 1993; de Jong & 

Ferguson-Hessler, 1996). It is computational knowledge which is 

primarily numerical or symbolic and is derived from learning sets of 

procedures (Leinhardt, 1988; de Jong & Ferguson-Hessler, 1996). 

According to Gagne (1985), procedural knowledge involves computation 

skills, for example, addition and subtraction. It is knowledge of how to 

do things. It is more dynamic in that, when activated, the result is not 

simple recall but a transformation of information (illustrated by a dotted 

line - — in Figure 2.3). It is accurate and quicker to access than other 

forms of knowledge. Gagne added that procedural knowledge is used to 

operate on information to transform it into observable knowledge 

(illustrated in Figure 2.3 by broken lines 

Gagne's (1985) description of procedural knowledge appears to include 

knowledge types that Alexander et al. (1991) have classified as part of a 
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knowledge interface, particularly the types which are involved in 'the 

instantiation of conceptual knowledge' (Alexander et al., 1991, p.330). The 

instantiation of conceptual knowledge, according to Alexander et al. (1991, 

p.331), occurs 'from the dynamic interaction of existing knowledge 

structures built on prior experiences with available information from on-

going experiences'. In addition, it was suggested that through instantiation, 

individuals particularise the abstract representations, or understandings. 

In schema theory, a similar kind of instantiation process is referred to as the 

'cognitive field schema' (Derry, 1996, p.168). According to Derry (1996), 

the functions of the cognitive field schema are to 'mediate between 

experience and learning ... to determine what interpretations and 

understandings of experience are probable ... [and] also determines which 

previously existing memory objects and object systems can be modified or 

updated by an instructional experience' (p.168). It could be suggested from 

these processings that 'memory object' type schemata which are the 'basic 

component of stored human knowledge', appropriately describes procedural 

mathematical knowledge (Derry, 1996, p.167). 

The functions of memory object schemata appear similar to those associated 

with procedural type knowledge described above by Gagne (1985) and 

Alexander et al. (1991). That is, memory object schemata allow individuals 

to recognise and classify patterns in the external world so that they can 

respond with appropriate mental or physical actions (Derry, 1996). In 

relation to mathematics, memory objects appear to be complex and 

structured and incorporate many types of knowledge including visual cue, 

set relations, mapping and planning procedures, and procedures for 

constructing numerical expressions (Marshall, 1995; Derry, 1996). Such 
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memory objects are said to be in a hierarchical structure in which there are 

lower order schemata or intuitive schema, an integrated schema and higher 

order type schemata or the object family schema (Derry, 1996, p. 167). 

Using this hierarchical conceptualisation of memory object schemata as 

procedural mathematical knowledge, it could be suggested that these are 

types of knowledge involved in the initial and the intermediate stages of 

mathematical knowledge acquisition suggested earlier in Section (2.1). For 

example, the intuitive schema type is said to be relatively unproblematic and 

'originates as minimal abstractions of common events' (diSessa, 1993, p105; 

Derry, 1996). Such minimal abstractions could represent a 'collection of 

information' required in the initial stage. The integrated schema type is said 

to be more structured than the intuitive types and appears to function as a 

link-mechanism for the various types of intuitive schemata. This link-

mechanism could relate to the processes involved in the 'formation of 

knowledge' in the second stage. 

It is proposed from this schema theory, that part of the functions of 

procedural knowledge as a link-mechanism is to (i) link memory objects in a 

memory storage (Gagne, 1985; diSessa, 1993; Derry, 1996); (ii) respond to 

incoming sense perceptions (Alexander et al., 1991; Derry, 1996), and (iii) 

assist in the formation of new knowledge or memory object schemata 

(Hiebert & Lefevre, 1986; Deny, 1996). New knowledge could be formed 

by a process within the link-mechanism which recognises and classifies 

appropriate intuitive schemata and organises these into a single memory 

object or by integrating intuitive schemata with other memory objects 

already in the memory storage (Derry, 1996). This conceptualisation of 

procedural knowledge as a link-mechanism also seems to apply to higher 
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order type of memory object schemata or object-family schema suggested by 

Derry (1996). Derry (1996, p.167) characterises this object-family schema • 

as 'loosely organised collections of ideas that tend to work together in 

certain types of situations'. Derry further suggests that these types 'activate 

one another and in some ways behave as single memory objects' (Derry, 

1996, p.168). Such schema activities or behaviours could appropriately be 

inter-related and inter-connected by a knowledge link-mechanism proposed 

here to be mental functionings associated with procedural knowledge. 

These knowledge interactions seem to appropriately describe those suggested 

in Figure 2.3 as interconnections between procedural and conceptual types 

of mathematical knowledge. These interactions include the transformation 

of procedural knowledge aspects into conceptual types and the translation 

and transmission of incoming sense perceptions from external situations. 

Since these knowledge interactions are part of procedural knowledge, hence 

the perceived 'overlap' of procedural mathematical knowledge onto 

mathematical knowledge interface as presented in Figure 2.3. Although 

Figure 2.3 depicts these mental processes in mathematical understanding in a 

simplistic way, it has, however, provided a conceptual structure upon which 

relevant literature can be evaluated and discussed. 

In summarising to this point, it seems that procedural type mathematical 

knowledge is indeed complex and dynamic. Its functions of transformation, 

translation and transmission of knowledge suggests that it is the power-house 

for the mind for mathematical understanding. Mathematical understanding 

or the relationship between conceptual and procedural types of mathematical 

knowledge, seems to depend on the mental functions associated with 

procedural knowledge types. Although conceptual types of knowledge are 
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considered important for giving meaning to procedural types of knowledge 

(e.g. Eisenhart et al., 1993; de Jong & Ferguson-Hessler, 1996), it seems that 

part of this meaningful process is also partly generated by procedural types, 

for example, higher order mental object schemata (Derry, 1996), and in 

some cases procedural types can provide meaningful interactions or 

'particularise the abstract representations, or understandings' (Alexander et 

al., 1991, p. 331). Mathematical understanding, therefore, is a dynamic and 

complex relationship between conceptual types and procedural types of 

mathematical knowledge. 

The purpose of this literature review so far was to identify types of 

knowledge involved in mathematical understanding. Having examined this, 

it is important to synthesise these various aspects about mathematical 

knowledge types and characteristics into a model for the purpose of 

analysing responses to a mathematical stimulus. This model is presented in 

Figure 2.4 (next page). Using the same 'zoom-lens' idea for a close up view 

as with prior knowledge in Figure 2.2, the model in Figure 2.4 is a 'close-

up' view of the mental processes involved in mathematical understanding 

(illustrated in Figure 2.3). Therefore, the tentative modelling of a response 

production of mathematical knowledge (Figure 2.4) is an attempt to illustrate 

diagrammatically the mental processesings, or procedural knowledge, 

involved in the production of an observable response. These were the 

processes, illustrated in Figure 2.3, of interconnections, transformation, 

translation and transmission of incoming sense perceptions from external 

situations. As in Figure 2.3, the three main components of this model are the 

external environment, knowledge interface, and the mathematics domain 

which is composed of a 'procedural math domain' and a 'conceptual math 

domain'. 
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Figure 2.4: 	Modelling a response production of mathematical 
knowledge 
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Legend: 
■••■■11101 - input process route 

"•••b - need 'more' meaning from CONCEPTUAL DOMAIN 
-b- - - - -, - need 'more' meaning from PROCEDURAL DOMAIN 

1 	- output (or response) route 
Note: 
The terms 'Explain' and 'Elaborate' are used here to refer to translation and transmission of mental 
processings by the Knowledge interface in relation to 'output' or 'response'. It is assumed that output 
processings from 'CONCEPT MEANING' are more likely to be in elaborated form than those from 
'EASY ACCESS MEANING', hence the use of the term 'Elaborate' for this process route. However, the 
term 'Explain' is used here to indicate a single 'outlet' for a response and the final processes of 
translation and transformation prior to transfer into observable responses such as verbal and written 
outcomes. 
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The production of an observable mathematical response, suggested by the 

modelling of a response production of mathematical knowledge (Figure 

2.4), involves the inter-connection and inter-relationship of the functions 

of the three components, namely external environment, knowledge 

interface, and the mathematics domain. The following are the proposed 

sequence of events that might occur in a response production: 

(1) The incoming sense perceptions from a stimulus cue in the 

external environment are first processed at the knowledge interface. This 

initial processing, denoted as 'check meaning', would involve the 

'instantiation of conceptual knowledge' or a dynamic interaction of 

existing knowledge structures built on prior experiences with available 

information from on-going experiences (Alexander et al., 1991, p.331). 

(2) As a result of 'check meaning', the mathematics domain is 

activated at the procedural math domain. It is proposed that certain 

stimulus cues such as 'to read' would activate 'easy access meaning' and 

other cues such as 'to explain' or 'to clarify' would require 'more' 

meaning or meaning associated with concepts, denoted as 'concept 

meaning'. 

(3) At the mathematics domain, it is proposed that the procedural 

math domain is the first 'port of call' and the main link mechanism for 

the mental processings involved in producing a response of mathematical 

knowledge. However, the conceptual math domain is also involved in the 

reconstruction, justification, and testing processes. The processes 

involving the conceptual math domain or 'concept meaning' would be 

the most desirable for producing 'mathematical understanding'. 

(4) As a result of processings at the mathematics domain, it is 

proposed that an observable response is processed at the knowledge 

interface in either (a) as an outcome from 'easy access meaning' or (b) as 
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an outcome from 'concept meaning'. The single outlet point, denoted as 

'explain', marks the final processings of translation and transformation 

prior to transfer into observable outcomes (e.g. verbal and written). 

For the purpose of describing the production of an observable response, 

four types of productions are proposed: simple, relatively simple, 

relatively complex, and complex. Each production type is dependent on 

the stimulus cue and the process routes needed for an observable 

response. Examples of each type of production is presented in Figure 2.5 

below. 

Figure 2.5 	Examples of response production pathways 

Legend: — Direct Response Route, 	 Need 'more' CONCEPT MEANING 

It is implied by these four examples of response production pathways that 

knowledge processings and, hence, the observable outcomes are significantly 

influenced by the stimulus cues. For example, a stimulus cue 'to read' may 

only activate easily accessible knowledge from the 'procedural domain', 

hence a simple or a more straightforward processing route to an observable 
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response is produced (e.g. pathway 1). On the other hand, stimulus cues 

such as `to explain', `to clarify', and `to elaborate' may activate concept 

meanings in the `conceptual domain' first, via the 'procedural domain' in 

search for more meaning, prior to an observable response (e.g. pathways 2 

& 3). Such cues would also activate a complex processing route in which the 

processes of 'reconstruction', 'justification', and 'testing', as well as the 

process of `elaborate' at the knowledge interface domain are required prior 

to an observable response (e.g. pathway 4). Many more production 

pathways can be generated, particularly if `reconstruction' and `testing' 

process routes are required as illustrated by the production of a complex 

response (pathway 4). However, for observable responses which are 

demonstrations of mathematical understanding, it is proposed, and highly 	" 

desirable, that at least a relatively simple production (as illustrated by 

pathway 2) is produced. This modelling of response production of 

mathematical knowledge forms the conceptual framework for the design of 

the data collection instrument and the basis for the data collection 

procedures for this study (Chapter 4). 

Nevertheless, in relation to prospective mathematics teachers, it has been 

suggested that their existing mathematical knowledge bases should be 

composed of essential aspects of conceptual and procedural types of 

mathematical knowledge (Hiebert & Lefevre, 1986). For example, a 

prospective mathematics teacher's mathematical knowledge base should be: 

broad, sufficient, with in depth conceptualisation of mathematical content 

(Skemp, 1989; Ball, 1990; Leinhardt et al., 1991; Eisenhart et aL, 1993); 

explicit and involves thinking and making relationships (Ball, 1991; 

Eisenhart et al., 1993), as well as having understanding based on modern and 

current conceptions of mathematics (Even, 1993). Having such knowledge 
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bases would promote the production of relatively complex and complex types 

of observable responses (Figure 2.5). 

In relation to mathematical competence, Hiebert and Lefevre (1986) 

suggested that 'students are not fully competent in mathematics if either kind 

of knowledge [procedural and conceptual] is deficient or if they both have 

been acquired but remain separate entities' (p.9). It appears that these two 

types of mathematical knowledge are not only essential to mathematical 

understanding but are also necessary for the achievement of competence in 

mathematics. This competence is discussed further in the next section. 

2.3 	Mathematical competence 

It was suggested in Section (2.2) that mathematical competence is closely 

connected with mathematical understanding and it is therefore not static. 

Rather it represents growth in relation to a specific domain (mathematics) 

and comprises evidence of a knowledge base that is increasingly coherent, 

principled, useful, and goal oriented (Glaser, 1991). This evidence can be 

described in terms of an individual's ability to demonstrate what he or she 

understands of mathematics. 

Such a demonstration of understanding usually involves a certain quality of 

knowledge the individual has about mathematics. In addition to this quality 

of knowledge, competence also appears to relate to how the individual has 

internalised this knowledge. McAshan (1979), a proponent of this view, also 

emphasised the importance of understanding to distinguish this notion of 

competence from behaviours which are based on rote memorisation. He 

maintained that a competent person is one whose achievements have 
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'become part of his or her being to the extent he or she can satisfactorily 

perform particular cognitive, affective and psychomotor behaviours' 

(McAshan, 1979, p. 45). 

Having mathematical competency is defined here as the observable outcome 

or performance by an individual to demonstrate what he or she understands 

about a topic in mathematics. This competence is based on mathematical 

understanding and it is characterised by the achievement of specified criteria 

at a satisfactory standard (McAshan, 1979; Leinhardt, 1988). Another 

shared characteristic of competence is that the quality of knowledge, 

understanding and skills are content and context specific. This characteristic 

of competence has been referred to by Biggs and Collis (1991) as largely 

accountable for by the acquisition of a well structured knowledge base that 

bears directly on the task at hand. In teaching, this knowledge base 

contributes to and 'plays a significant role in grounding professionalism' 

(Donmoyer, 1996, p.98). 

In mathematics teaching, Shulman (1986) argued that a teacher's knowledge 

pertaining to competence involves: subject-matter (mathematics) content 

knowledge, pedagogical content knowledge, and curriculum content 

knowledge. However, pedagogical knowledge and curriculum knowledge in 

mathematics are dependent on the teacher's subject-matter (mathematics) 

knowledge (Ball & McDiarmid, 1990; Leinhardt etal., 1991; Grouws & 

Schultz, 1996). This dependency is seen by the way in which pedagogical 

knowledge is defined. For example, pedagogical content knowledge is 

content knowledge that is useful for teaching (Grouws & Schultz, 1996). As 

such, Ball and McDiarmid (1990, p.437) have argued that "the myriad tasks 
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of teaching, such as selecting worthwhile learning activities, ... , all depend on 

the teachers' understanding" of the subject-matter they teach. 

Pedagogical knowledge of mathematics is used here to mean mathematical 

competence in teaching or the teacher's ability to teach mathematics. That 

is, the ability: to explain; relate mathematical ideas and procedures; present 

the mathematics content appropriately and in multiple ways; interpret and 

appraise students; challenge incorrect notions; flexibly respond to student's 

questions; extend, as well as formalise intuitive mathematical understanding 

(e.g. Shulman, 1987; Berliner et al., 1988; Ball, 1990, 1991). Also, the 

ability to attend simultaneously to the mathematical content and to students' 

reasoning and understanding of mathematics (Leinhardt et al., 1991), and to 

teach for conceptual understanding of mathematics (Eisenhart et al., 1993). 

These abilities are representations of cognitive processes of organisation and 

integration of knowledge from a well structured mathematical knowledge 

base (Gagne, 1985; Skemp, 1986; Biggs & Collis, 1991). Hence the 

importance of focusing on mathematical knowledge in an endeavour to gain 

a measure of a pre-service teacher's potential to achieve competence in 

teaching mathematics. 

In summarising this section, it is suggested that in order for a prospective 

teacher to have the competence to teach mathematics at the secondary school 

level, it is important that he or she must acquire conceptual understanding of 

the various areas (e.g. measurement, space, function, and statistics) of 

mathematics and that such understanding is founded on a well structured 

mathematical knowledge base. In addition, a prospective teacher should 

have the ability to transform and transfer this knowledge (D.E.E.T., 1992), 
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and the capacity to internalise this knowledge such that it becomes part of his 

or her being (Ebel, 1972; McAshan, 1979). 

The discussion in this section tends to suggest that, when essential 

mathematical knowledge aspects associated with the understanding of 

mathematics are lacking, the learner is unlikely to display competent learned 

outcomes. It is assumed that such learned outcomes are influenced by an 

insufficient mathematical knowledge base. It was suggested earlier by 

Hiebert and Lefevre (1986) that if either procedural or conceptual 

mathematical knowledge is deficient then this could lead to a lack of 

mathematical understanding. However, there is another type of mathematical 

knowledge which appears to have a significant affect on a student's 

understanding of mathematics. This knowledge is the focus of the following 

discussion. 

2.4 	Rote knowledge and mathematical competency 

In the previous sections, procedural and conceptual mathematical knowledge 

were described as two types of knowledge in a mathematical knowledge base. 

These two types were claimed to be essential in mathematical competency 

(Hiebert & Lefevre, 1986). One other seemingly important type of 

knowledge which is commonly associated with mathematics achievement, is 

knowledge acquired from rote learning. Rote learning concerns the 

replication or rote memorisation of an external stimulus pattern rather than 

learning towards an autonomous conceptual understanding (Buxton, 1978; 

McAshan, 1979; Silver, 1986; Skemp, 1986; von Glasersfeld, 1991). The type 

of knowledge acquired from such learning is distinguished from procedural 

and conceptual mathematical knowledge in this thesis by the use of the term 
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'rote', and hereafter is referred to as rote knowledge. What is rote knowledge 

and where does it fit into the two type topology of mathematical competency 

described in the previous discussion? An attempt to address these two 

questions is the aim of this section. 

Traditionally, knowledge acquired from school learning was measured by the 

amount of reproduced facts and figures that were learned through 

memorisation strategies such as recital and continuous practice (Biggs & 

Moore, 1993; Husen & Postlethwaite, 1994). Although understanding the 

learned materials was not necessary with this repetitive type of learning, such 

learning strategies were, and are currently, considered essential and beneficial 

in developing mathematical knowledge and skills (Brownell, 1956; Tobin, 

1986), particularly in the early years of schooling (Reys, Suydam, & 

Lindquist, 1992). Such methods were also reported to be effective in 

producing successful outcomes in other areas of learning such as spelling and 

reading (Moyle, 1972). However, from a cognitivist's perspective such rote 

learned outcomes are behavioural or habitual responses rather than knowledge 

produced from learning, since they argue that learning is self-determined and 

is actively constructed by the learners themselves and not by their teachers 

(Ebel, 1972; Skemp, 1986; Biggs & Moore, 1993; De Corte, 1995; Derry, 

1996; Reynolds et al., 1996). In more recent studies, learned outcomes from 

such learning methods are considered as metacognitive knowledge and skills. 

For example, according to De Corte (1995), `metacognitive knowledge 

includes knowing about the strengths as well as the weakness and limits of 

one's cognitive capacities, for example, being aware of the limits of short term 

memory and knowing that our memory is fallible but that one can use aids 

(e.g. mnemonics) for retaining certain information' (p.38). However, Rakow 

(1992) and Gadanidis (1994) would still argue that mathematical knowledge 
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acquired by memory alone without understanding or thought, that is by rote, 

is the direct opposite of meaningful learning as in Ausubel's (1968) theory of 

learning. 

Furthermore, cultural factors may influence the use of rote learning as a 

strategy. For example, Kember and Gow (1991) suggested from their study 

of Asian students' reproductive approaches to learning that such may be 

more a function of teaching practices than an innate tendency. In another 

study, Asian students gained higher achievements and displayed a more in 

depth approach to learning tasks than their Australian counterparts (Marton, 

Dall'Alba & Tse, 1993). This study tends to contradict the notion that rote 

learning produces limited understanding. According to the Culture Action 

learning theory, learning occurs 'through shared symbolism (e.g. language) 

and other practices of a social group' (Walker, 1987, p.12). If such is the 

case, then what these findings could indicate, is that, Asian teachers may be 

teaching rote learning strategies as part of a cultural practice. 

Two main issues seem to emerge from the above discussion concerning rote 

type knowledge from rote learning. One appears to relate to teaching 

strategies or external influences of teacher instructional methods (e.g. 

memorisation and repetitive strategies) on the learner's approach to learning 

(e.g. Brownell, 1956; Kember & Gow, 1991). The other issue concerns the 

cognitive processing or self-regulated and self-determined learning by the 

individual in pursuit of understanding (e.g. De Corte, 1995). This pursuit 

for understanding may involve metacognitive knowledge and other efforts 

by the learner. For example, Biggs and Moore (1993, p. 21) argued that 

efforts by the learner to gain understanding should not be considered as rote 

learning but 'a means towards acquiring understood and usable knowledge'. 
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To further clarify the difference between usable rote knowledge (Biggs & 

Moore, 1993) and habitual learned outcomes in mathematics, consider, for 

instance, Skemp's (1978, p.9) idea of 'instrumental understanding' or 

learning mathematical algorithms and 'rules without reasons'. According to 

Skemp (1978), instrumental understanding describes the kind of knowledge 

acquired by a learner who was dependent on external guidance (e.g. teachers 

and textbooks) for learning a new set of given information. An example of 

instrumental understanding is the rote memorisation of a mathematical 

formula (e.g. negative times a negative is equal to a positive) without 

understanding why the formula works (Gates, 1995a). Although such form 

of understanding may just be a collection of learned information rather than 

knowledge (Ebel, 1972), Brownell (1956) argued that there is a proper place 

for this habitual learning. 

According to Brownell (1956, p.136), the proper time to provide repetitive 

or habitual learning 'to assure real mastery of skills, real competence in 

computing accurately, quickly, and confidently', is after the learner has 

achieved understanding of the learned material. Goodwin and Klausmeier 

(1975, p.242) also expressed a similar view by suggesting that memorising 

bits of knowledge might seem pointless but 'without either having the 

knowledge or being able to obtain it when needed, the individual has nothing 

to apply or to evaluate'. Could this kind of knowledge be the same as that 

referred to earlier as a lower order schema or intuitive schema (Derry, 1996) 

or a minimal abstraction of common events (diSessa, 1993)? A possible 

answer to this question is deferred until Chapter 6. 
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However, to answer the questions posed earlier about what is rote knowledge, 

it seems that mathematical learned outcomes which are the result of rote 

learning (or a collection of learned information) are considered as 

behavioural or habitual responses and may not promote or facilitate the kind 

of understanding being defined in this thesis as mathematical understanding 

(Section 2.2). However, there is a possibility that with special attention by 

the individual learner, this type of mathematical knowledge (rote knowledge) 

may be transformed into usable knowledge or into an essential type of 

procedural knowledge (Hiebert & Lefevre, 1986; Eisenhart et al., 1993), for 

example, an intuitive schema type (Derry, 1996). 

For the purpose of the study reported in this thesis, rote knowledge 

pertaining to mathematics is referred to as 'usable knowledge' in the same 

manner that Biggs and Moore (1993, P.  21) defined it, or 'factual 

knowledge' (Goodwin & Klausmeier, 1975, p.242) to provide stepping-

stones for acquiring other knowledge of mathematics. For example, rote 

memorisation of a formula (e.g. the formula : x =
—b±Vb2 — 4ac 

2a 
	 ) could 

provide a basis for the student to revisit the learning of quadratic functions 

(y = ax2  + bx + c) and to explore how the formula is related to solving 

quadratics in other areas (e.g. trigonometry). 

Having identified and described the types of knowledge associated with 

mathematical competence, it is important to consider next how prospective 

mathematics teachers could be assured of gaining mathematical competence 

prior to teacher employment. 
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2.5 	Mathematical knowledge versus mathematical environment 

The discussions in previous sections provided some insights into 

procedural, conceptual, and rote mathematical knowledge and the 

importance of these types of knowledge to mathematical understanding 

and competence in teaching mathematics. These insights have raised two 

key questions with respect to prospective teacher's background knowledge 

of mathematics: (i) At what point are the student-teachers expected to 

acquire these knowledge types? Is it prior to enrolling in teacher education 

programs or during teacher education? and (ii) What influence would these 

knowledge types have on the student-teachers' conceptual understanding of 

mathematics? The former question is considered first. 

At what point are the student-teachers expected to acquire conceptual, 

procedural and rote mathematical knowledge? To address this question, it is 

worthwhile to consider the period when the student-teachers enter a pre-service 

teacher education program. The secondary mathematics pre-service teacher 

education period in Australia, often only one year duration in a traditional 

B.Sc Dip. Ed model, is a transition stage for the prospective teachers from 

being students to becoming classroom teachers (a role reversal). Whilst 

before, as students, the prospective teachers were learning and studying to 

meet their own goals, now they have to also consider how to adjust, integrate 

and reconstruct their prior learning into teachable knowledge in order to 

include the goals of others - namely the students they intend to teach. 

At this transition stage the main source of knowledge about mathematics and 

teaching is the individual's own knowledge from prior learning experiences. 

This knowledge source includes learning from the 12 years of pre-university 
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studies and two or three years of university studies (Ball & McDiarmid, 

1990). The prospective teachers' perceptions of what they believe to be 

important knowledge and ways of teaching mathematics have also been 

developed and shaped by their earlier learning experiences (McDiarmid & 

Ball, 1989). 

What influence would this prior knowledge have on the student-teachers' 

conceptual understanding of mathematics? Several researchers found that 

the quality of the student-teachers' prior mathematical knowledge is 

fundamental to its reconstruction into teachable (pedagogical content) 

knowledge (Shulman, 1987; Skemp, 1986, 1989; Ball, 1990; Ball & 

McDiarmid, 1990; Even, 1993; Wilson, 1994; Gates, 1995a, 1995b). 

However, researchers (e.g. Ball, 1990; Even, 1993; Gates, 1995a) also found 

that prospective teachers of secondary level mathematics enter teacher 

education with inadequate mathematical knowledge, particularly the 

conceptual type of mathematical knowledge. In order to provide prospective 

teachers with the necessary knowledge and skills, Even (1993) suggested that 

they 'need to have environments that foster powerful constructions of 

mathematical concepts' (p.113). 

Powerful constructions, however, require relational understanding (Skemp, 

1978, 1986) or relational thinking (Van Hiele, 1986) and substantial 

knowledge of mathematics (Ball, 1990). In addition to substantial 

knowledge of mathematics, students' beliefs and approaches to learning can 

also influence the way they acquire and construct knowledge (Entwistle & 

Ramsden, 1983; Marton, 1988; Schmeck, 1988; De Corte, 1995). For 

example, Entwistle and Ramsden's (1983) studies of university students 

showed that poor background knowledge (especially of concepts in science 
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and mathematics) was associated with surface (as opposed to deep) 

approaches of learning. So although appropriate teacher education 

environments are provided, the prospective teachers may lack even the basic 

concrete knowledge for them to appreciate the learning they received. 

Being unappreciative of the learning one receives is not an uncommon 

behaviour from students of mathematics (Skemp, 1986; De Corte, 1995). 

Skemp (1986, p.30) has attributed such behaviours by learners of mathematics 

to the 'abstractness and generality' of mathematics. He suggested that this 

behaviour is particularly common among students who are required to learn 

higher-order concepts (as in the case of prospective mathematics teachers), 

whilst the necessary lower-order concepts needed for mathematical 

understanding are lacking. One way for students to gain the required lower-

order concepts to enable the achievement of higher-order ones, is by having 

the assistance of competent mathematics educators (or mathematicians), in 

conjunction with one's own reflective intelligence (Ebel, 1972; Skemp, 1986; 

Gates, 1995a, 1995b). 

Other researchers (e.g. Ball, 1990; Leder, 1991; Eisenhart et al. 1993; 

Fennema, 1996) have also acknowledged the importance of a mathematics 

educator in facilitating students' learning of mathematical concepts. This also 

applies to mathematics teacher educators since they are the key persons in the 

preparation of mathematics teachers for secondary schools. Teacher 

educators can provide appropriate environments and opportunities for 

student-teachers to construct and reconstruct their mathematical knowledge in 

readiness for teaching. 
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From the above discussion it appears that in order to provide prospective 

teachers with appropriate mathematical environments, the mathematics 

teacher-educator must take into consideration two essential factors: (i) the 

student-teachers' differences in background or prior knowledge, and (ii) the 

differences in learning approaches the student-teachers have and will use in 

acquiring knowledge. In addition, the possibility that learning approaches and 

knowledge acquisition may be influenced by the person's gender needs 

consideration. This possibility of gender influence is discussed in the next 

section. 

2.6 	Mathematical knowledge and gender 

It was suggested in Section (2.5) above that mathematics teacher educators, in 

providing appropriate environments for student-teachers, would need to 

consider the differences in prior knowledge and learning approaches student-

teachers will bring with them to mathematics teacher education programs. An 

important question associated with student-teachers' differences is: Does 

gender have an affect on student-teachers' acquisition of mathematical 

knowledge pertaining to mathematical teacher competence? In an endeavour 

to find some answers to this question, the relevant literature on gender 

associated with mathematics is examined in this section. 

A comprehensive summary of previous research findings on gender in 

mathematics education by Hanna, Kiindiger and Larouche (1990, p.86) 

indicated that gender differences first appear at adolescence and that 'boys are 

significantly superior to girls in both their mathematical performances and 

their attitudes towards mathematics'. 
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To clarify what this 'mathematical performance' might involve, Fennema 

(1993, video) suggests that the overt participation in learning activities, which 

teachers, educators and researchers observe, is only part of the mental 

processing that an individual brings to learning the activity. Other factors 

such as confidence and interest in the activity all affect the quality of a 

person's participation. Fennema and Peterson (cited in Fennema & Leder, 

1993) argued that in order for individuals to show that they are developing 

their abilities to work independently in high-cognitive-level activities they 

must demonstrate autonomous learning behaviours. Autonomous learning 

behaviours were defined by Fennema and Peterson (Fennema & Leder, 

1993) as the active and willing participation by an individual in mathematical 

tasks that require knowledge and independent thinking. It is claimed that 

autonomous learning behaviours appropriately model 'the processes 

through which individuals construct their own knowledge' (Fennema & 

Leder, 1993, p.7). Using this modelling, a 'mathematical performance' 

could be viewed as an observable outcome of mental processing of 

knowledge involving conceptual or relational understanding of mathematics 

(Skemp, 1978). 

Recent research findings by Fennema and Carpenter (1998) suggest that 

gender differences in mathematical performances may occur as early as 

grade 3 level, rather than at adolescence as previously thought (Hanna et al., 

1990). However, the observed gender differences in these findings were not 

associated with the children's ability to solve problems, rather with how the 

children approached the solving of problems. It was reported that 'girls 

tended to use concrete solution strategies like modeling and counting, and 

boys tended to use more abstract solution strategies that reflected conceptual 
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understanding' (Fennema & Carpenter, 1998, p.4). These 'abstract solution 

strategies' were described as 'invented algorithms [which] usually are 

generated by children, either individually or [as] interactions with other 

students' and were contrasted to 'standard algorithms, which generally are 

learned by automatizing a series of specified procedures' (Fennema & 

Carpenter, 1998, p.6). 

In response to Fennema and Carpenter's (1998) findings, Sowder (1998) 

showed concern for the lesser degree of conceptual understanding in 

mathematics that females achieve in earlier years, and suggested that this may 

lead to learning difficulties and lack of self-confidence in later years. 

However, Sowder's (1998, p.12) deepest concern was that teachers, in trying 

to assist females to learn and to gain self-confidence in mathematics, may 

decide to use 'a more traditional style of teaching, where emphasis is placed 

on rote learning of rules, [this] may tend to better equalise the advantages of 

the girls and the boys'. She added that, 'both sexes will then be 

disadvantaged' (p.12). 

Sowder's concerns highlight the importance of having competent 

mathematics teachers who ensure that children are learning in a collaborative 

and non-competitive environment in which active cognitive mathematical 

thinking is promoted (Burton, 1993, video). Further support for minimising 

gender differences in mathematical performance by students comes from 

data generated by Fennema's (1996) professional development program - 

Cognitively Guided Instruction (CGI) -for elementary teachers. Fennema 

(1996) reported, that when the teachers make instructional decisions based 

on their mathematical knowledge and understanding of children's thinking, 

overall, gender differences in mathematical performances by the children 
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were not found. However, Rhine's (1998) review of teacher professional 

development programs, including the CGI program, in the United States, 

particularly the Integrating Mathematics Assessment project, indicated that 

the same models which help teachers to teach children in the lower grades to 

achieve understanding of mathematics, may be difficult to implement for the 

upper grades 'as content in higher grades becomes more complex' (p. 29). 

Nevertheless, due to the limited research specifically addressing gender and 

mathematics in the area of teacher education, particularly from the 

'cognitive science' perspective, it is not possible to confirm that gender has 

an affect on student-teachers' acquisition of mathematical knowledge 

pertaining to mathematical teacher competence. This shortage of research is 

acknowledged by Fennema (1996) in the following quotation: 

'Cognitive science research ... [provides] insights into teachers' 
behaviours, knowledge, and beliefs, although little has been done 
relating to teacher's cognitions about gender. Such studies may lead 
to deeper understanding of gender differences in mathematics ... and 
how it influences daily decisions about mathematics. Unfortunately, 
there are not many studies related to gender that have been done using 
this perspective [the cognitive science perspective]' . (Fennema, 1996, 
p.17). 

One could surmise from the small quantity of research evidence available, 

that because knowledge acquisition, particularly at the tertiary level, is so 

much interwoven with students' career goals, interests, and beliefs, a more 

accurate measure of any gender differences in student-teachers' existing 

mathematical knowledge could be achieved by focusing specifically on the 

types of procedural and conceptual mathematical knowledge they acquired 

from prior learning. 

From the above discussion, there appears to be two distinct types of teaching 

approaches which could minimise gender differences in mathematics: (1) 
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the use of traditional style teaching where more emphasis is placed on rote 

learning rules (Sowder, 1998), and (2) the types of teaching which are based 

on teachers' knowledge and understanding of students' thinking (Fennema, 

1996). 

In relation to the preparation and education of pre-service mathematics 

teachers, it appears that the second teaching approach stated above is 

applicable to mathematics teacher educators. Particularly, for mathematics 

teacher educators to have research-based knowledge and understanding of 

the mathematics that student-teachers bring with them to teacher education 

(Rhine, 1998). Having information about what student-teachers know of 

mathematics would assist the mathematics teacher educators in providing 

appropriate learning environments for pre-service teachers. Fennema 

(1993), however, would argue that such appropriate environments should 

foster autonomous learning of higher-order mathematics by the pre-service 

teachers, particularly the prospective female teachers. 

From a cognitive science perspective, the possibility of conflict between a 

student-teacher who approaches learning instrumentally and a teacher-

educator (or lecturer) who teaches relationally or visa versa is high (Skemp, 

1978). Such conflicts are inevitable because of the current thinking in 

teacher education to equip prospective teachers with conceptual 

understanding of mathematics and to encourage them to teach for relational 

understanding (e.g. Ball & McDiarmid, 1990; Lietzel, 1991; Eisenhart et al., 

1993; Gates, 1995a). 
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2.7 	Extending previous research 

The conflict stated above between the mathematics teacher-educator and the 

student-teachers raises the question: Should prospective teachers be forced 

to change the way they learn or acquire knowledge? According to Entwistle 

and Ramsden (1983), 'we [educators] should not try to change a student's 

learning style, except ... when it is creating serious difficulties for the student' 

(p.206). However, the authors added that tertiary students (including 

prospective teachers) would benefit from guided assistance, by lecturers, 

towards becoming aware of their characteristic style and from showing them 

how they may most effectively capitalise on their intellectual strengths. 

For pre-service teachers of secondary mathematics, Ball (1990, p.465) has 

highlighted the 'need to know much more than we currently do about how 

[secondary prospective] teachers can be helped to transform and increase 

their understanding of mathematics'. One way, she suggested, is by 

'working with what they bring [to teacher education] and helping them 

move toward the kinds of mathematical understanding needed in order to 

teach mathematics well'. Ball's (1990) suggestion stems from her findings 

which indicated the low levels of mathematical understanding among the 

secondary pre-service teachers she observed. 

The question then is not who is to change, the student-teacher or the teacher-

educator, but how prospective teachers could be helped, by the teacher-

educator, to adjust and to integrate new information from teacher education 

courses so that it becomes part of their own knowledge base. 
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To facilitate a mathematics teacher-educator in working and helping pre-

service teachers toward mathematical competence, a more refined 

characterisation of the possible mathematical knowledge deficiencies 

acquired by prospective mathematics teachers would be valuable in 

determining the best or most suitable method of assistance. 

Therefore, the study reported here was organised to find out more about 

mathematical knowledge deficiencies that secondary pre-service teachers 

bring with them to teacher education. 

2.8 	Summary 

The purpose of this chapter was to examine the relevant literature on 

mathematical knowledge in an endeavour to identify the types of 

knowledge that are essential to mathematical understanding and 

competence in relation to teaching. This examination was necessary in 

order to provide a conceptual framework of knowledge in which 

mathematical knowledge deficiencies could be explored and analysed. 

Conceptual and procedural mathematical knowledge were identified as 

essential knowledge types required for mathematical understanding and 

that the close relationship or interconnections between these two types is 

necessary for both mathematical understanding and competence. In 

short, mathematical competence, or the individual's ability to demonstrate 

proficiency and accuracy in mathematical understanding, is dependent on 

one having a well structured mathematical knowledge base. Furthermore, 

the ability to transform and to transfer mathematical knowledge to 
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teachable knowledge (or pedagogical knowledge) was defined as 

mathematical teacher competence. 

Mathematical knowledge acquired from the rote memorisation of rules 

and algorithms was defined as rote mathematical knowledge. As such it 

was assumed that this type of knowledge is internalised by the learner as 

isolated bits of information with little or no linkages to conceptual forms 

of knowledge. It was suggested that without these essential linkages rote 

knowledge may not facilitate understanding unless the learner can, with 

special attention, transform it into a usable type of knowledge. This type 

of knowledge is different from the procedural type of mathematical 

knowledge - knowledge of rules and algorithms for computations and for 

completion of mathematical tasks - in that procedural knowledge is 

closely linked to conceptual types of knowledge. 

Notwithstanding the aspects of knowledge required for competence by 

the prospective teachers, other variables (e.g. learning approaches and 

gender) have been highlighted as factors having the potential to influence 

the prospective teacher's learning for mathematical teaching competence. 

For example, gender could affect teaching practices. Such gender affect, 

however, could be minimised by having teacher educators who can 

integrate their knowledge and understanding of student-teachers' 

thinking into their teaching instructions and strategies. 

From the reviewed literature, there was evidence of a shortage of research 

on the mathematical understanding of pre-service teachers of secondary 

mathematics. Also there was indication of the need for mathematics 

teacher educators to learn more about how pre-service teachers of 
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secondary mathematics can be helped to transform knowledge 

insufficiencies and increase their mathematical understanding. To extend 

the previous research on the education of secondary mathematics 

teachers, two research questions were addressed. 

The two research questions investigated in this study of secondary pre-

service teachers' existing mathematical knowledge were: 

1. What types of procedural and conceptual mathematical knowledge 

exist in pre-service teachers' knowledge bases? 

2. What possible influences could any identified deficiencies in 

procedural and conceptual types have on the teaching of 

mathematics? 

However, before describing the methods and procedures by which these 

questions were explored, it is important to consider the theoretical 

perspective selected as a relevant model for examining and evaluating 

mathematical knowledge for the study reported in this thesis. In order to 

show how the selected model incorporates the views on mathematical 

understanding discussed in this chapter, a brief outline is provided below. 

In Sections (2.1) and (2.2) of this chapter, it was argued that an 

individual's mathematical understanding is dependent on the 

interrelationship of two types of mathematical knowledge, procedural and 

conceptual. This interrelationship is illustrated in Figure 2.3. 

Mathematical competence was suggested to be the observed outcome of 

the sufficiencies of both types of mathematical knowledge. In addition, it 

was suggested in Section (2.4) that rote knowledge, or mathematical 

knowledge acquired by rote memorisation strategies, may also exist in the 
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individual's knowledge base but as such it may not facilitate mathematical 

understanding. 

The selected model, Skemp's (1978) model of mathematical 

understanding, for data analysis in this study is a representation of 

different kinds of mathematical understanding involving rote, procedural, 

and conceptual types of mathematical knowledge. These kinds of 

mathematical understandings are interpreted in terms of how the 

knowledge was acquired by the individual. For example, mathematical 

knowledge acquired by rote memorisation (e.g. Brownell, 1956; Goodwin 

& Klausmeier, 1975) leads to a particular kind of mathematical 

understanding as compared to mathematical knowledge that was 

generated by the individual's self pursuit (e.g. von Glasersfeld, 1991; 

Biggs & Moore, 1993). An examination of this model is the purpose of 

the next chapter, Chapter 3. 
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CHAPTER THREE 

A MODEL FOR ANALYSING 

MATHEMATICAL KNOWLEDGE 

Introduction 

Mathematical knowledge was described in Chapter 2 as the underlying 

structure for mathematical understanding and the basis for mathematical 

competence in the teaching of mathematics. It was suggested that there are 

two types of mathematical knowledge, procedural and conceptual, both of 

which are essential to mathematical understanding. 

Procedural mathematical knowledge is knowledge about the rules, 

procedures, and the symbolisation associated with mathematical concepts. 

Also, it is knowledge of how to do computations quickly and accurately. 

Conceptual mathematical knowledge, on the other hand, is knowledge of the 

underlying principles of mathematical concepts. It is knowledge that gives 

meaning to a mathematical procedure and provides the essential linkages 

from a concept(s) to sets of procedures. 

Although both types of mathematical knowledge are essential to 

mathematical understanding, it was suggested however, in Chapter 2, that 

conceptual knowledge is fundamental to the growth of mathematical 

understanding (e.g. Skemp, 1978; Hiebert & Lefevre, 1986; Eisenhart et al., 

1993; Piere & Kieren, 1994). For prospective teachers of mathematics, 
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growth in understanding is important to their professional development and 

competence to teach mathematics. 

To gain a measure of this growth in mathematical understanding requires 

evaluation tools; tools that can appropriately describe and distinguish 

between knowledge that pertains to mathematical understanding and 

knowledge pertaining to rote knowledge (described in Chapter 2, Section 

2.4). The main purpose of this chapter, Chapter 3, is to describe the model 

selected as the appropriate 'evaluation tool' for the study data reported in 

this thesis. 

3.1 	Skemp's model of mathematical understanding 

The theoretical perspective selected for the data analysis task is Skemp's 

(1978) model of mathematical understanding. Skemp's (1978) suggestion 

of the two kinds of mathematical understanding, instrumental and relational, 

has already been mentioned in Chapter 2. Relational understanding was 

stated in relation to growth in conceptual mathematical knowledge and 

instrumental understanding in association with rote knowledge (Chapter 2, 

Section 2.4). Skemp (1978) argued that both kinds of mathematical 

understanding are generated by mathematics learning and teaching in 

schools. This theoretical perspective is important to the study reported here 

because it provides a basis for examining existing mathematical knowledge 

that prospective teachers bring with them to mathematics teacher education. 

Instrumental mathematical understanding was defined as the product of the 

rote memorisation of procedures or algorithms, rules, theorems, and their 
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specific applications (Skemp, 1978; Olive, 1991). In addition, instrumental 

understanding is externally driven, usually by the teachers, textbooks, 

calculators, and computers. This definition reasonably describes the type of 

knowledge that was defined in Section (2.4) as rote knowledge. It was also 

suggested, in Section (2.4), that this kind of knowledge could be an essential 

form of procedural knowledge and with special attention by the learner, rote 

knowledge could be transformed into usable knowledge. 

Relational mathematical understanding, on the other hand, was defined by 

Skemp (1978) as the result of a learner's own constructions of a 

mathematical situation. The building up of one's own knowledge about a 

given area of mathematics becomes an intrinsically satisfying goal in itself 

(Skemp, 1978, p.14). As such, the more complete the learners' schema in an 

aspect of mathematics, the greater their feelings of confidence in their own 

ability to find new ways of dealing with mathematical situations without 

external help (Skemp, 1989; Ball, 1990; Fennema & Leder, 1993; Fennema, 

1996). Relational understanding is suggested in this thesis to consist of the 

two essential mathematical knowledge components described in Chapter 2, 

Section (2.2); namely procedural and conceptual. 

The Skemp model was used successfully, in conjunction with the SOLO 

(Structure of Observed Learning Outcomes) taxonomy (Biggs & Collis, 

1982) and the Van Hiele (1986) levels of thinking, by Olive (1991) to 

analyse students' mathematical understanding of geometry and their ability 

to work with Logo programming. Olive (1991) investigated the effects of a 

computer programming software, Logo, on high school students' learning 

and understanding of geometry. To achieve this purpose, he needed 

instruments to analyse three aspects of his study: (i) the complexity of 
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students' responses to the Logo program (the SOLO taxonomy was used 

here), (ii) the quality of students' understanding of the mathematics involved 

(the Skemp model was used here), and (iii) general problem-solving 

approaches in geometry (the Van Hiele model was used here). 

In this study, however, the focus is on the quality of mathematical knowledge 

assumed to be the result of the learning and teaching an individual received 

from formal schooling. More specifically, this study is concerned with the 

types of knowledge which are associated with mathematical understanding 

and are necessary for competence in teaching mathematics. To achieve this 

focus, Skemp's model of mathematical understanding was selected as the 

appropriate method for the analysis in this study because it makes no claims 

as to when (or time period) the knowledge was acquired or to a 

developmental stage (or modes in the case of SOLO). Rather, it links the 

way an individual understands mathematics to how that person has learned or 

assimilated the learning of mathematics from his or her schooling (Skemp, 

1986, 1989). 

The use of the Skemp model in the analysis of student-teachers' 

mathematical knowledge pertaining to mathematical understanding would 

provide important information relating to competent teaching of 

mathematics. This model of mathematical understanding provides two 

essential aspects for the analysis in this study: (i) how to determine the 

quality of mathematical knowledge in relation to mathematical 

understanding, and (ii) identifying the types of mathematical understanding 

that would facilitate and enhance competence in teaching mathematics. 
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3.2 	Illustrating the Skemp model 

Richard Skemp has illustrated his two kinds of mathematical understanding, 

instrumental and relational, in several of his publications (1978, 1979, 1982, 

1986, 1989) by using a variety of mathematical examples. In one of 

Skemp's (1978) earliest publications he used the rule for the area of a 

triangle as an example to demonstrate instrumental learning versus relational 

learning. Skemp suggested that it is certainly easier for students to learn 

that: 

area of the triangle = —

1

base x height 
2 

than to learn why this is so. However, this instrumental learning would mean 

more bits to learn; that is, the students must learn separate rules for 

rectangles, parallelograms, trapeziums, and circles. Relational understanding 

consists partly in seeing the areas of all of these shapes in relation to the area 

of a rectangle. In other words, it is still desirable for the learner to know the 

separate rules (ie. procedural knowledge); but knowing also how they are 

inter-related (ie. conceptual knowledge) enables one to remember them as 

parts of a connected whole. 

To further demonstrate how instrumental understanding usually involves a 

multiplicity of rules rather than fewer principles of more general application, 

another of Skemp's (1978, p.11) earlier examples is used here as an 

illustration: 

'If the teacher asks a question that does not fit the rule, of course they 
[students] will get it wrong. ... While teaching area, he [the teacher] 
became suspicious that the children did not really understand what they 
were doing. So he asked them: 

What is the area of a field 20cms by 15 yards? 
The reply was: 300 square centimetres. 
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He asked: Why not 300 square yards? 
Answer: Because area is always in square centimetres.' (p.11) 

Skemp (1978) suggested that to prevent the error response, as above, 'the 

students need another rule (or, of course, relational understanding), that both 

dimensions must be in the same unit' (p.11). 

Relational understanding, on the other hand, seems to represent a network of 

concepts which are based on conceptual structures referred to by Skemp 

(1986, p.37) as 'schema'. The notion of a mathematical 'schema' is based 

on the assumption that higher-order concepts of mathematics are the result 

of many abstractions which have been derived from earlier or initial 

abstractions (Skemp, 1986, p.34). This implies that Skemp's (1979) 

proposed model of mathematical intelligence takes into account the 

hierarchy of mathematical concepts similar to the schema hierarchy 

proposed by Derry (1996) in Section (2.2) of Chapter 2. 

Derry's (1996) notion of a 'schema' is based on a cognitive schema theory. 

Similar to Skemp's perspective, she also suggested that lower order or initial 

schemata are necessary as building blocks for the formation of higher order 

concepts. These higher order concepts involve memory object schemata and 

mental model schemata (Derry, 1996, p.167). A justifiable consideration of 

the schema theory for this study is the assumption that repeated learning of a 

situation would result in the formation of a schema. For example, according 

to Derry (1996): 

'If similar kinds of problems and situations are often repeated for the 
student, organisation will gradually emerge because memory objects [or 
schemata for higher order concepts] that often work together to perform 
similar classes of tasks tend to acquire stability as a group and activate 
one another' (p.170, italics emphasis added). 
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However, under similar learning conditions, contrary outcomes may occur 

whereby schemata representing misconceptions can also be formed into 

stable patterns by repeated experiences. This assumption appears to take 

into account Skemp's (1978) idea that a student's mathematical 

understanding is generated by the mathematics learning and teaching he or 

she receives in schools, including universities. This schema theory is 

important to the evaluation of mathematical understanding of prospective 

mathematics teachers for two reasons: (1) it suggests that mathematical 

concepts are formed in succession (some sequentially) and contribute to the 

formation of yet others - therefore each mathematical concept is part of a 

hierarchy, and (2) that prospective teachers' conceptual understanding of 

mathematics must at least be relational understanding. 

In this model, Skemp suggested a third type of mathematical understanding 

- formal or logical understanding (Skemp, 1979, p.45). Formal 

understanding is the ability to connect mathematical symbolism and notation 

with relevant mathematical ideas and to combine these ideas into chains of 

logical reasoning. However, this third type of mathematical understanding 

(formal understanding) was later referred to by Skemp (1982) as symbolic 

understanding to distinguish this from that of other researchers (e.g. Buxton, 

1978) who used the same term formal to refer to a similar type of 

understanding. Skemp (1982, p.61) suggested that 'symbolic 

understanding is a mutual assimilation between a symbol system and a 

conceptual structure, dominated by the conceptual structure (italics in 

original)'. The function of symbols is for manipulating and communicating 

mathematical concepts, and these are the true operands in relational 

mathematics (Skemp, 1979). However, for symbols to be understood 
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relationally, they must be linked appropriately to their conceptual structures, 

and be interpreted in terms of the relationships within the structures. 

Symbolic understanding of mathematics was suggested as the expected 

outcome for university students of mathematics, including pre-service 

teachers of secondary mathematics (Skemp, 1979, p.49). 

Skemp (1982) defines a symbol system as a set of symbols corresponding to 

a set of concepts. For example, the symbols `cos' and `(2x)' taken 

separately refer to two kinds of mathematical-concepts. When they are 

written as `cos(2x)' they specify an operand (the angle size of 2x) and an 

operation (finding the cosine value of the angle). The expression `cos(2x)', 

therefore, represents a mutual assimilation of two schemata: the symbol 

system, and the structure of mathematical concepts. 

Skemp's (1979) three different kinds of mathematical understanding, 

instrumental, relational, and symbolic are related to different kinds of 

learning goals. However, these goals were suggested to be based on the 

schemata for instrumental and relational understanding. That is, there is no 

separate learning goal for the symbolic type of understanding because it is 

based on the schema for relational understanding. Skemp (1979, p.47) 

suggested that logical (symbolic) understanding 'is closely related to the 

difference between being convinced oneself, for which relational 

understanding is sufficient, and being able to convince other people'. An 

example is `the construction of chains of logical reasoning to produce what 

we call demonstrations or proofs' (Skemp, 1979, p.47). 

In addition to the three types of mathematical understanding, Skemp (1979, 

p.48) added two modes of `mental functioning': intuitive mode and 
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reflective mode. In Figure 3.1 below, these two modes are presented in 

relation to two goal director systems that Skemp (1979, p.44) has referred to 

as delta -one and delta - two. According to Skemp (1979), the 'job of delta-

one is to direct physical actions, of many kinds. The job of delta-two is 

goal-directed mental activity, also of many kinds, including learning, but 

not only learning ... [but also] the construction and testing ... within delta-

one' (p.44). 

Figure 3.1: 	Skemp's two modes of mental activity 
(Adapted from Skemp (1979, p.44)) 

fl EXTERNAL 	INTUITIVE 	REFLECTIVE 
, ENVIRONMENT I 	 DELTA 4-- 

The intuitive mode refers to spontaneous processes within a goal directed 

system directly operating on the physical environment - this activity is 

represented in Figure 3.1 by the double-headed arrow 1--P . This goal-

directed system is referred to as 'delta-one' by Skemp (1979, p.44). 

Skemp has likened delta-one to a sensori-motor system. The 'delta-two' is 

another director system with its operands not in the outside environment, 

but in delta-one. This activity is represented in Figure 3.1 by the single-

headed arrow 4—  . The function of delta-two is to optimise the 

functioning of delta-one (or the sensori-motor system). Therefore, in the 

intuitive mode, delta-two takes part either not at all, or not consciously. 

This activity is represented in Figure 3.1 by the segmented arrow 	. 

The reflective mode, on the other hand, is referred to as conscious activity 

by delta-two on delta-one. 
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A summary of how these modes of mental activity are inter-related with the 

three kinds of mathematical understanding is provided below in Table 3.1. 

However, these two mental modes do not relate to different kinds of 

understanding but, rather, they occur in combination with all three 

understandings as illustrated by the rows of Table 3.1. Also in Table 3.1, the 

descriptions of the types of responses for each mode in relation to the three 

kinds of mathematical understanding are presented in the cells. 

Table 3.1: Skemp's model of mathematical understanding 

(Adapted from Skemp (1979, p.48)) 

MODES OF 
MENTAL 

ACTIVITY 

Instrumental 
Understanding 

An 	individual 	uses: 

- Relational 
Understanding 

An 	individual 	uses: _ 

Logical 	(formal) 
Symbolic 	Understanding 

An 	individual 	uses: 
meaning or significance logical progression of steps 

Intuitive rules without or structure of a problem for a proof giving evidence of 
reasons without explicit reliance 

on tested techniques of 
analysis and proof 

an awareness that something 
is 'true' or 'false' 

`full mathematical rigour'. 
an assortment of extensive mathematical Expected evidence of 

Reflective rules to achieve a schemata to relate and mathematical understanding 
correct answer verify procedures from college level and 

university students, including 
pre-service teachers of 
mathematics (Skemp, 1979, 
p.49). 

The above modelling of the 'modes of mental activity' (delta -one and delta-

two) by Skemp (1979) has close similarity to the model for 'mathematical 

understanding' presented in Chapter 2, Figure 2.3. That is, the functioning 

of delta -one appears to describe what other researchers (e.g. Anderson, 

1981; Gagne, 1985) have referred to as the function of procedural 
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knowledge or knowledge interface (Alexander et al., 1991; Derry, 1996). 

Procedural knowledge is knowledge of how to do computations. It is 

dynamic in that, when activated, the result is not simple recall but a 

transformation of information (Gagne, 1985; Alexander et al., 1991; Derry, 

1996). In addition, procedural knowledge is used to operate on information 

to transform it into observable knowledge (Gagne, 1985, Alexander et al., 

1991; Derry, 1996). 

Similarly, delta-two seems to appropriately describe the function of 

conceptual mathematical knowledge in mathematical understanding. That is, 

conceptual knowledge is knowledge of relationships and interconnections of 

ideas that explain and give meaning to mathematical procedures (Hiebert & 

Lefevre, 1986; Eisenhart et al., 1993; de Jong & Ferguson-Hessler, 1996). 

However, what appears to distinguish Skemp's (1979) theory of 

mathematical understanding from theories by other researchers (e.g. 

Anderson, 1981; Gagne, 1985; Hiebert & Lefevre, 1986; Eisenhart et al., 

1993) is the three separate `pathways' (instrumental, relational, and symbolic 

mathematical understanding) in achieving a mathematical understanding. It 

is the criteria for determining procedural and conceptual mathematical 

knowledge by which these three pathways have been established which are 

very important to the analysis of mathematical knowledge in this study. An 

attempt to highlight the criteria by which procedural and conceptual 

mathematical knowledge are connected to Skemp's (1979) mode of mental 

activity (intuitive and reflective) is the purpose of Figure 3.2 (next page). 
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Procedural knowledge for symbolic understanding is defined as knowledge of a logical 
progression of steps for a proof giving evidence of an awareness that something 
is 'true' or 'false'. Conceptual knowlsaig is knowledge giving evidence of 'full 
mathematical rigour'. The interaction ( 4— ,  ) between delta -one and delta - two is based on the 
mutual assimilation between a symbol system and a conceptual structure, 
dominated by the conceptual structures (ie. knowledge of 'what it is', 'how it is' and 
'why it is'). 

PATHWAY 3: SYMBOLIC UNDERSTANDING 

PROCEDURAL  

DELTA ONE 
'ENVIRONMENT 

EXTERNAL 

CONCEPTUAL 

4— 

PATHWAY 1: INSTRUMENTAL UNDERSTANDING 
PSEUDO 

PROCEDURAL 

I—EXTERNAL 
ENVIRONMENT 	

4 	 DELTA ONE 	- - 
(IrsiTUITIVL) i 	- - 

Pseudo-procedural knowledge for instrumental understanding is defined as knowledge of rules 
without reasons. Pseudo -conceptual knowledge is defined for this pathway as an 
assortment of rules to achieve a correct answer. The interaction (4-- ) between delta-one 
and delta-two is suggested to be based on active recall of specific rules and algorithms 
(ie. knowledge of 'what it is' and 'how it is'), rather than on giving meaning to mathematical 
procedures (knowledge of 'what it is', 'how it is' and 'why it is'). 

PSEUDO 
CONCEPTUAL 

PATHWAY 2: RELATIONAL UNDERSTANDING 

PROCEDURAL 

EXTERNAL 
ENVIRONMENT 	

DELTA ONE ) 

Procedural knowledge for rela ional understanding is defined as knowledge of rules; meaning, 
significance, or structure of a problem without explicit reliance on tested 
techniques of analysis and proof. Conceptual knowledge is knowledge of extensive 
mathematical schema to relate and verify procedures. The interaction (. 0.2) between 
delta -one and delta - two is based on the interconnections of ideas that explain and give 
meaning to mathematical procedures (ie. knowledge of 'what it is', 'how it is' and 
'why it is'). 

CONCEPTUAL 

Figure 3.2: The three pathways in mathematical understanding 
(based on Skemp's (1979) model of mathematical understanding) 
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The three kinds of mathematical understandings in Skemp's (1979) model 

are presented in Figure 3.2 above by separate pathways. The criteria for 

'procedural' and `conceptual' knowledge are also described in relation to 

each pathway. 

An important point to emphasise here about the three pathways as presented 

in Figure 3.2, especially the pathway for instrumental understanding, is that 

the type of conceptual knowledge involved in each kind of understanding is 

dependent on, and influenced by, the type of procedural knowledge 

acquired by the individual. For example, in the instrumental understanding 

pathway, knowledge is said to be acquired by rote memorisation of rules and 

procedures. It is therefore assumed, that the types of procedural knowledge 

aspects which form the basis for delta -one, upon which delta-two operates, 

are rules and algorithms without connectors to knowledge aspects of 

'meaning'. These rules and algorithms may (or may not) have connectors 

to other rules and algorithms. Such unpredictability with the nature of 

procedural types of knowledge would also affect the quality of the 

associated conceptual aspects of knowledge. In order to distinguish these 

kinds of conceptual knowledge aspects from others, the term 'pseudo' is 

used for such knowledge aspects, in particularly those associated with 

instrumental understanding (see Figure 3.2). 

Pseudo-conceptual knowledge, the type associated with instrumental 

understanding, is defined for this study as an accumulation of sets of rules 

and algorithms, most of which are individual bits of memorised information. 

In other words, a measure of conceptual type knowledge in instrumental 

understanding is determined by the amount (or quantity) of knowledge of 
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rules, rather than the quality of this knowledge. The term pseudo-

conceptual is used in this thesis to distinguish the instrumental 

understanding types of conceptual knowledge from the types associated with 

relational and symbolic mathematical understanding, which is defined in 

this thesis as 'knowledge of the underlying structures of mathematics that 

explain and give meaning to mathematical procedures' (Chapter 2, Section 

2.2). 

The delineation of Skemp's (1979) model in this chapter has highlighted 

important aspects of this model for the analysis of mathematical knowledge. 

For the purpose of this study, a pre-service teacher of mathematics with the 

capacity to become competent in teaching mathematics should demonstrate 

that he or she has acquired mathematical knowledge pertaining to relational 

and especially symbolic understanding. 

3.3 	Summary 

The Skemp model of mathematical understanding involving instrumental, 

relational and symbolic understanding, forms the theoretical basis for the 

analysis of mathematical knowledge addressed in this study. This model is 

particularly suitable for the examination of student-teachers' mathematical 

knowledge because of its basic assumption that mathematical understanding 

is a product of mathematical learning and teaching from school. 

In addition, Skemp's (1979) recognition of the hierarchical formation of 

mathematical concepts, leading to a symbol system of mathematical 

understanding, provides this analysis with a valuable framework for 

categorising response data associated with prior mathematical learning. 
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This framework,also provides a basis for examining the student-teachers' 

mathematical competence. 

Also for this analysis, knowing how the mathematics was learned or 

acquired (e.g. rote memorisation or self-determined) would add to the 

measure of quality and would provide further information on the 

respondent's potential to teach mathematics for conceptual understanding. 

Having described the theoretical perspective selected to form the basis for 

the 'evaluation tool', the focus of the next chapter, Chapter 4, is on how 

this evaluation tool is used and incorporated into the design of the study 

for exploring the research questions stated in Chapter 2. 
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CHAPTER FOUR 

RESEARCH METHODOLOGY 

Introduction 

The importance of mathematics teachers having a well structured 

mathematical knowledge base was discussed in Chapter 2. It was suggested 

that the teachers' mathematical knowledge base should consist of procedural 

and conceptual mathematical knowledge. Competent mathematical 

performance was assumed to be dependent on the quality of this knowledge 

base, particularly conceptual knowledge, and on the individual's ability to 

transform and transfer this knowledge to competent performance. 

Rote knowledge pertaining to mathematics was also described in Chapter 2, 

Section (2.4) as another type of mathematical knowledge with characteristics 

of procedural mathematical knowledge. Rote knowledge is distinguished 

from procedural mathematical knowledge in that rote memorisation is the 

approach for acquiring the knowledge. Rote memorisation of rules and 

procedures was classified by Skemp (1978) as instrumental understanding of 

mathematics. Skemp's model of mathematical understanding was described 

in Chapter 3 as an appropriate method for the data analysis in this study. 

This chapter is organised into two main parts: Part one contains the design 

of the study, and part two is a detailed account of the procedures involved in 

developing the data collection instrument and the validation of this 

instrument. 
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4.1 	PART ONE: STUDY DESIGN 

The purpose of this section is to provide a description of the methods and 

procedures involved in the design of the study. This design is described 

in eight sections. The research assumptions and the research questions to 

be addressed in the design are stated in section one. The rationale of the 

study's design is described in section two. The theoretical framework for 

selecting case studies is the focus of discussion in section three. This is 

followed in section four by descriptions of how the cases were to be 

selected. The procedures for ensuring the validity and reliability of the 

study data are described in section five. Further discussion on these 

procedures, particularly on a set of prescribed 'interview cues' for 

interview data collection, is the purpose of section six. The interview 

method for data collection is the focus of discussion in section seven. 

Finally, the description of the procedures for data analysis is the focus of 

section eight. 

4.1.1 	Assumptions and research questions 

This design addressed two research questions based on the following 

assumptions: 

(1) Mathematical understanding is dependent on the sufficiencies of 

procedural and conceptual types of mathematical knowledge. Lack of 

or a deficiency in either procedural and/or conceptual knowledge 

types would suggest a deficiency in mathematical understanding 

(Hiebert & Lefevre, 1986; Eisenhart et al., 1993). 
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(2) Pre-service mathematics teachers go through their teacher education 

and training with certain deficiencies in their mathematical 

understandings and that these deficiencies will eventually affect the 

way they teach. 

(3) Pre-service mathematics teachers who majored in mathematics or other 

science related areas (e.g. chemistry and computer science) would 

show less evidence of mathematical knowledge deficiencies than pre-

service teachers who majored in other areas (e.g. economics and 

physical education). Furthermore, pre-service teachers with relational 

understanding of mathematics would demonstrate more confidence to 

teach mathematics than pre-service teachers with instrumental 

understanding. 

The two research questions addressed in this study of pre-service teachers' 

existing mathematical knowledge bases were: 

1. What types of procedural and conceptual mathematical knowledge 

exist in pre-service teachers' knowledge bases? 

2. What possible influences could any identified deficiencies in types of 

procedural and conceptual mathematical knowledge have on the 

teaching of mathematics? 

4.1.2 	Rationale of the design 

The main focus of this study is on mathematical knowledge. Mathematical 

knowledge, however, is incorporeal and becomes observable by means of 

responses (written or verbal) to a stimulus. As such, a study of the quality 

of a person's knowledge should involve systematic procedures to ensure 

that collected data provide representative evidence of this knowledge (Yin, 
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1994; Taylor & Bogdan, 1998). However, because of the incorporeal 

nature of knowledge and even with the most stringent methods for data 

collection, the most one could and can expect to obtain is an insight into 

the quality of knowledge being investigated (Denzin & Lincoln, 1994; 

Stake, 1994; Yin, 1994; Taylor & Bogdan, 1998). According to Stake 

(1994) and Yin (1994), an appropriate study method for gaining insights 

into knowledge is a case study approach. 

Therefore, the design of this study is based on a multiple case study (Yin, 

1994) or collective case study (Stake, 1994) design in which each case (or a 

pre-service teacher) is selected by following the 'replication logic' rather 

than the 'sampling logic' procedure (Yin, 1994, p.45). Sampling logic 

implies that a set of cases is a representative sample of a larger population. 

Replication logic, on the other hand, is based on the assumption that a 

selected case or a set of cases would provide relevant and valuable 

information that would lead to better understanding about a still larger 

collection of cases (Stake, 1994; Yin, 1994). According to Yin (1994, 

p.45), replication logic is analogous to procedures used in multiple 

experiments in which the same results are predicted for each of the cases 

involved. To apply this replication logic to multiple case studies requires 

that 'each case must be carefully selected so that it either: (a) predicts 

similar results (a literal replication) or (b) produces contrasting results but 

for predictable reasons (a theoretical replication)' (Yin, 1994, p.46). How 

these criteria (a) and (b) for case selection were addressed in relation to the 

theoretical assumptions of this study and with respect to mathematical 

knowledge (or the object of study) is the focus of the discussion in the next 

section. 
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4.1.3 	Theoretical framework for case selection 

For the purpose of the discussion in this section, the conceptual 

framework discussed in Section (1.6) of Chapter 1 and elaborated on in 

Sections (2.1) and (2.2) of Chapter 2 provides the theoretical structure for 

selecting cases for this study. This theoretical framework is illustrated in 

Figure 2.3 and Figure 2.4 of Chapter 2. 

In Chapter 2, Sections (2.1) and (2.2), mathematical knowledge was 

viewed as a subcategory of content knowledge, namely domain 

knowledge. Content knowledge is illustrated in Figure 2.1 (Chapter 2) 

as belonging to a broader category of conceptual knowledge 

(Alexander et al., 1991). In addition, mathematical knowledge is said to 

consist of rote, procedural, and conceptual types of knowledge; and that 

mathematical understanding is the result of a close relationship between 

procedural and conceptual knowledge types. This relationship between 

procedural and conceptual knowledge is illustrated in Figures 2.3 and 

2.4. Based on this conceptualisation of knowledge, the target area from 

which 'specimens' (or evidence) of mathematical understanding can be 

collected would be the domain (mathematics) knowledge (Alexander et 

al., 1991). 

A 'specimen' is defined here as the evidence or information about 

mathematical knowledge collected from a case (or a pre-service teacher). 

A collection of these specimens from a set of cases would together 

provide a broader perspective or insight into the nature of mathematical 

knowledge. In relation to replication logic procedures, each case in the 
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collection is selected such that the 'specimens' would either: (a) produce 

similarly predictable results about mathematical knowledge (a literal 

replication) or (b) produce contrasting results about mathematical 

knowledge but for predictable reasons (a theoretical replication). How 

these procedures were applied to the selection of cases for this study is the 

purpose of the next section. 

4.1.4 	Selection of cases 

The theoretical framework described above in Section (4.1.3) provides a 

structure for the selection of cases for the study. Another important 

consideration for the selection of the cases concerns the theoretical 

assumptions of the study, particularly the following assumption: 

Pre-service mathematics teachers who majored in mathematics or 

other science related areas (e.g. chemistry and computer science) 

would show less evidence of mathematical knowledge deficiencies 

than pre-service teachers who majored in other areas (e.g. 

economics and physical education). 

To distinguish between these two categories of pre-service teachers, the 

former category is referred to as 'maths major' cases and the latter category 

as 'maths minor' cases. 

In order to comply with the replication logic procedures for case selection, 

each case (or set of cases) was selected to satisfy both the 'similarity' 

criterion (a literal replication) and the 'contrast' criterion (a theoretical 

replication). Accordingly, the first set of cases ('maths major' cases) were 

selected so that each case would contribute to a collection of 'specimens' 

having similar mathematical knowledge types, hence a literal replication. 
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For a theoretical replication or contrasting results to the 'maths major' 

cases, a second set of cases ('maths minor' cases) were selected from a 

different university site to the first set of cases. Each specimen from the 

'maths minor' cases had been predicted to show evidence of similar 

knowledge types. Thus, both sets of cases ('maths major' and 'maths 

minor') provide similarity within their respective sets and contrast between 

sets. 

These replication procedures for 'similarity' and 'contrasting' of cases 

also provided a structure for testing and ensuring the validity and reliability 

of the study results. The three tests for validity and reliability (external 

validity, construct validity, and reliability) that were suggested to be 

applicable to case study designs (Yin, 1994; Taylor & Bogdan, 1998) are 

discussed in the context of this study in the next section, Section (4.1.5). 

4.1.5 	Ensuring validity and reliability 

The sets of multiple cases, 'maths major' and 'maths minor' described 

above in Section (4.1.4) were selected from four universities at two of the 

Australian states. For the purpose of the discussion in this section, the two 

Australian states are referred to as State A and State B. In addition, the first 

set ('maths major') and the second set ('maths minor') of selected 

multiple cases from State A are referred to as Set Al and Set A2 

respectively. Similarly, the selected multiple cases from State B are referred 

to as Set B1 ('maths major') and Set B2 ('maths minor') (see Table 4.1, 

next page). 
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External Validity: 

External validity is concerned with establishing a domain in which a 

study's findings can be generalised (Grimm & Wozniak, 1990; Yin, 1994). 

In establishing such domain for this study, the same replication procedures 

for selecting the multiple cases in State A were applied to cases in another 

Australian state, State B. These case selections are illustrated in Table 4.1 

below. 

Table 4.1 	Case selection 

Set Al Cases Set A2 Cases 
State A First set of cases in A Second set of cases in A 

Background: maths major Background: maths minor 
Set B1 Cases Set B2 Cases 

State B First set of cases in B Second set of cases in B 
Background: maths major Background: 	maths minor 

Reliability: 

Another important design criterion for the study is the assurance that 

collected data are reliable specimens and 'errors and biases' are minimised 

(Yin, 1994, p.36). Minimising such errors and biases in a study is the goal 

of reliability. Yin (1994, p.36) suggested that for case study designs, 

reliability is achievable by clearly `document[ing] the procedures followed 

in earlier cases' so as to allow a repeat of the same study in later cases or by 

someone else. This criterion was addressed in this study by having a set of 

prescribed 'interview cues' specifically designed for the purpose of 

collecting data in the interview sessions. These 'interview cues' are 

described in detail in the subsequent section (Section 4.1.6), but it suffices 

to briefly list the four stages here. These are: (1) silent reading; (2) writing 
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down responses; (3) explaining written responses, and (4) clarifying and 

elaborating on written and verbal responses. 

Construct validity: 

The 'interview cues' listed above also provided an avenue for addressing 

'construct validity'. According to Yin (1994, p.34), showing construct 

validity for case study designs is a challenge for the novice researcher. 

However, he suggested three 'tactics' that one could employ, one of which 

is data triangulation or the collection of data from different sources to 

provide support for 'convergent lines of inquiry' (Yin, 1994, p.34; Taylor 

& Bogdan, 1998) similar to a test of convergence in quantitative study 

designs (Grimm & Wozniak, 1990). In theory, convergence implies that 

the different sources of data (assuming that they are related to the 

construct) would provide the same or similar measures to the construct 

being studied. In relation to this study, the construct of focus is existing 

mathematical knowledge and related sources might be (a) the individual's 

mathematics results on a written test, (b) data from an interview on the 

individual's beliefs about the mathematics involved in the test, and (c) data 

from observations of the individual's attempts to solve a mathematical 

problem. Accordingly if these different, but assumably related, sources of 

data show 'convergent lines of inquiry', then there is support for construct 

validity. However, implicit in such a selection of data sources are the 

variables or factors concerning the differences in time and place whereby 

the formation of a 'convergence' may well be attributable to either one or 

both of these factors, or by some other factors (Berg, 1989; Taylor & 

Bogdan, 1998). In other words, triangulation procedures are not a 

guarantee for construct validity (Taylor & Bogdan, 1998). According to 

Patton (1987, p.61), 'triangulation is seldom a straightforward process' and 
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sometimes different data sources provide inconsistent results. In an attempt 

to avoid such inconsistent results, a more controlled data collection 

approach was used. The main feature of this controlled approach is the 

prescribed set of 'interview cues' which were followed for each participant 

when presenting the stimulus items to them at the interview sessions. 

In addition to the set of 'interview cues', the triangulation method was 

adopted in the selection of stimulus items. Trigonometry, logarithm, and 

statistics were the three chosen mathematical areas from which the stimulus 

items were selected. The criteria and procedures for selection and 

descriptions of these items are detailed in part two of this chapter. The next 

section, however, is the description of the 'interview cues', Section (4.1.6). 

4.1.6 	Four interview cues 

In Chapter 2, Section (2.2), a conceptual framework for modelling a 

response production of mathematical knowledge is described and illustrated 

in Figure 2.4. It is suggested from this modelling that specific knowledge 

productions are provoked by the use of certain stimulus cues. This 

framework forms the theoretical structure for the set of four prescribed 

'interview cues' described here. These 'interview cues' were used in 

conjunction with the set of stimulus items in the interview sessions. This 

selected interview method is discussed in the next section. However, the 

aim of this section is to outline the sequence of procedures and the purpose 

of these 'interview cues'. These procedures involve four key stages which 

were followed for each case in a one-to-one interview between the 

participant and the researcher/interviewer. 
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The four stages: reading, writing, verbalising, and elaborating, were 

designed in an attempt to ensure consistency in the collection of 

'specimens' and to minimise errors and biases during the interview sessions 

(Section 4.1.5). Since the target point for the collection of the 'specimens' 

is the participant's existing mathematical knowledge (Section 4.1.3), 

emphasis was placed on stimulating the participant's attention to focus on, 

and interact with, the content of the stimulus items. Although the content 

of the stimulus items would have an influence on the kind of responses 

exhibited by the participant, it was assumed that with appropriate external 

cues from the interviewer that the likelihood of activating relevant 

knowledge would be greatly increased. This assumption was based on a 

model of a 'response production of mathematical knowledge' illustrated in 

Figure 2.4 and Figure 2.5 in Chapter 2. 

It was proposed from this model that a stimulus cue such as 'to read' may 

not necessarily activate a 'complex' response production in which both 

procedural and conceptual knowledge types are involved (Figure 2.5). 

Rather, 'to read' would most likely activate a 'simple' response production 

involving mainly procedural types of knowledge. On the other hand, 

stimulus cues such as 'to explain', 'to clarify', and 'to elaborate' would 

increase the likelihood of activating both procedural and conceptual 

knowledge types. As a result of this conceptualisation of response 

production of mathematical knowledge, four stages for eliciting responses 

were developed. These stages are elaborated on as follow: 

(1) The silent reading stage: 

In this initial stage, the participant was presented with a mathematical 

stimulus item and was requested to read (without writing) the contents 

Chapter 4/ Page 82 



of the stimulus item and begin to formulate mental strategies for 

giving an answer. It was assumed that having the participant focus on 

formulating mental strategies would increase the likelihood of a 

'complex' response production (Figure 2.5). For example, focused 

reading may promote the formulation of a plan of action or 'strategic 

knowledge' in which the sequence of solution responses to a given 

situation is laid down (e.g. knowing how to organise and interpret 

given information, and to structure that information in a diagram) (de 

Jong & Ferguson-Hessler, 1996, p.107). In addition, reading may 

also allow the participant to use strategic knowledge to make 

'connections', for example, to comprehend, contextualise, and to 

assimilate the cues from the stimulus items with his or her existing 

mathematical knowledge (Hiebert & Lefevre, 1986). There was no set 

time limit for reading, the participant was simply requested to indicate 

to the researcher his or her readiness to continue to the next stage. 

(2) The writing stage: 

During this stage the participant was requested to write down his or her 

responses (or answers) to the stimulus questions, assuming that such 

were the results of knowledge productions from stage one. These 

written responses constitute a 'specimen' or actual data of the study. 

It was assumed that this specimen contains evidence of the 

participant's existing mathematical knowledge. The next two stages, 

stages three and four, are important in order to provide an opportunity 

for the participant to explain, to clarify and to elaborate further on the 

actual data. These final two stages are also important for reliability 

and validity of the study results (Section 4.1.5). 
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(3) The verbalising stage: 

In an attempt to validate the written or actual data as well as to 

increase the likelihood of 'complex' response productions, the 

participant was requested to explain to the researcher his or her written 

attempts (actual data). This verbalisation was recorded on audio 

tapes. During this process the participant was at liberty to modify or 

add to his or her written records if so desired. This stage was also 

important in an attempt to overcome the phenomenon of inert 

knowledge. That is, although the knowledge is available and can even 

be recalled on request, the individual does not spontaneously apply the 

knowledge in situations where it is relevant for a solution, particularly, 

new situations (De Corte, 1995; Renkl, Mandl, & Gruber, 1996). 

The role of the researcher during this period is to be an active listener 

and to make written notes of any issues (or points) that require further 

elaboration and clarification. These notes are necessary in the next 

validation stage, stage 4. 

(4) The elaboration and clarification of responses stage: 

This final stage was essential to assure the validity and reliability of the 

actual data and to provide further opportunity for the participant to 

produce a 'complex' type response. To begin this exchange, the 

researcher asks the participant: Is there anything else (or more) you 

would like to say about ... (referring to the stimulus item)? Following 

any responses to this question, the researcher goes through the list of 

points or notes recorded from the previous stage and ask the 

participant to provide an elaboration, a clarification, or a confirmation 
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of the actual data. All exchanges were recorded on audio tape. 

Finally, in order to provide the opportunity for further addition, 

deletion or modification to recorded statements, the participant was 

offered a replay of his or her recorded responses at the end of each 

recorded exchange. 

In summary, the four stages of eliciting responses and collecting 

'specimens' on pre-service teachers' existing mathematical knowledge are: 

1. Reading - formulating mental strategies. 

2. Writing - providing the actual data (written data) 

3. Explaining - validating the actual data (verbal data) 

4. Elaborating - further validation of the actual data (verbal data). 

The interview method for administering the above four stages is described in 

the next section. 

4.1.7 	Semi-structured interview method 

The interview method for collecting the data is referred to here as a semi-

structured method or a 'focused method of interviewing' (Good, 1972, 

p.244; Berg, 1989; Merton, Fiske, & Kendall, 1990; Oppenheim, 1992). 

A semi-structured interview method is appropriate for the purposes of this 

study, particularly for administering the four response stages described 

above in Section (4.1.6). Open-ended interview methods where the 

persons are allowed 'to talk about other features of their lives relevant to 

their feelings' in relation to the topic in question (Phelan, Yu & Davidson, 

1994, p.420) were considered inappropriate for the design of this study in 
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which a person's feelings were regarded as metacognitive knowledge 

rather than conceptual knowledge (Alexander et al., 1991). 

In addition, using an open-ended interview approach as a method for 

collecting data in case study designs may not be uniformly successful 

because the respondents can differ in ability, motivation, and in 

understanding the interview content (Kahn & Cannell, 1978; Berg, 1989; 

Oppenheim, 1992; Yin, 1994). However, several researchers (e.g. Kahn & 

Cannell, 1978; Merton, Fiske, & Kendall, 1990; Oppenheim, 1992; Yin, 

1994) suggested that the interviewer can provide uniformity by giving 

assistance to the respondents, for instance, in recall and understanding by 

providing situations appropriate to the need. For example, the interviewer 

could provide a diagram or a probing question instead of a verbal 

explanation. Such methods are important in order for the interviewer and 

the respondents to have a common frame of reference and a common 

conceptual language as well as providing adequate opportunity for the 

respondents to express what they know about the content. In relation to 

this study, adequate opportunities for the respondents were provided by 

incorporating the 'four interview cues' (Section 4.1.6) into the interview 

proceedings. 

The semi-structured interviewing method has been used successfully for the 

purpose of selection and assessment, as for example in interviews 

conducted with applicants for jobs or with students applying for admission 

to universities (Kahn & Cannell, 1978; Tutton, 1994). Semi-structured 

interviews have been used to collect data on communication skills, cognitive 

style, beliefs and perception, and understanding of mathematical content 

(Tutton, 1994; Forgasz & Leder, 1996). These examples of applications of 
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the semi-structured interviewing method lend support to its potential as a 

suitable means for collecting data for the study reported in this thesis. 

There appears to be two essential elements associated with the proper use 

of semi-structured interviewing methods in research: (i) a set of interview 

questions based on criteria related to the goals of the research, and (ii) 

that the interviewer be well conversant with the research aims (Kahn & 

Cannell, 1978; Berg, 1989; Merton, Fiske, & Kendall, 1990; Tutton, 1994; 

Yin, 1994). The first of these two elements was satisfied by the use of 

three stimulus items and the incorporation of the 'interview cues' 

(Section 4.1.6) into the structure of the interview procedures. The second 

element was also satisfied by having the researcher as the interviewer. 

So far, the discussion in this first part of the chapter has focused on the 

procedures for the selection of cases and the collection of the data. The 

procedures by which the data were analysed constitute the final 

component of the study's design. This then is the focus of the discussion 

in the next section. 

4.1.8 	Data analysis procedures 

The main procedure for data analysis is pattern-matching (Yin, 1994; Taylor 

& Bogdan, 1998). Skemp's (1978) model of mathematical understanding 

(described in Chapter 3) provided the theoretical basis for the formation of 

predicted response patterns needed for a base-line. Skemp's (1978) model 

produced six possible response patterns. These response possibilities were 

illustrated in Figure 1.2, Chapter 1 and were also described in terms of 

procedural and conceptual mathematical knowledge types in Chapter 3, 
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Figure 3.2. Skemp's modelling of mathematical response patterns was 

complemented by the model of a 'response production of mathematical 

knowledge' described in Chapter 2 (Figures 2.4, 2.5, Section 2.2). How 

these response patterns were formed in relation to the stimulus items for the 

study are discussed in the next part of this chapter, part two. 

4.2 	PART TWO: DEVELOPMENT, DESCRIPTION, AND 

VALIDATION OF STIMULUS ITEMS 

The second part of this chapter is organised into the following: (1) the 

development and description of selected mathematical stimulus items which 

form the main instrument for the collection of the data, (2) the validation 

of these mathematical stimulus items, and (3) the formulation of predicted 

response patterns for data analysis by using the procedures and methods 

discussed in Section (4.1.7) of part one. 

4.2.1 	The development and description of the 
mathematical stimulus items 

The four key questions addressed in this section are as follow: 

(i) What kind of stimulus items would appropriately address the two 

research questions (Section 4.1.1) of this study? 

(ii) Which mathematical areas should provide appropriate triangulation 

of items as well as satisfying question (i)? 

(iii) Where would be the appropriate site (e.g. high school, college, or 

university) for obtaining such items? 

(iv) How would these items be obtained? 

These questions are addressed in the subsequent discussions. 
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(i) What kind of stimulus items would appropriately address the two 
research questions (Section 4.1.1) of this study? 

The two research questions of this study are concerned with the 

examination of mathematical understanding acquired by pre-service 

teachers of mathematics. More specifically, the examination of 

knowledge types pertaining to understanding. For mathematical 

understanding, these knowledge types were identified in Chapter 2 as 

procedural and conceptual. The result of a dynamic and complex 

relationship between these two types is mathematical understanding 

(Section 2.2, Chapter 2). Therefore, with respect to question (i), the kind 

of stimulus items needed are those which can appropriately make 

interaction with a person's knowledge interface so that an interconnection 

and interaction of procedural and conceptual knowledge types can occur 

(Alexander et al., 1991; Derry, 1996). In other words, the kind of 

stimulus items needed are ones which can act as a probing mechanism 

into a person's mathematical understanding. Such a mechanism could be 

in a form of error responses to a mathematical situation. Brownell (1956, 

p.133) suggested the use of 'error' as an appropriate probing mechanism 

for determining what type of knowledge has been acquired by a learner. 

Gagne (1985) and Derry (1996), for example, also suggested that 

exposure to irrelevant attributes of stimulus data facilitates cognitive 

processing of knowledge. This idea is similar to the notion of negative 

feedback in the information-processing learning theory, that is, negative 

stimulus causes active cognitive processes to connect the cues to prior 

knowledge in order to maintain homeostatic equilibrium (Swenson, 1980; 
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Derry, 1996; Reynolds et al., 1996). A positive stimulus, on the other 

hand, would produce an amplifying effect similar to positive 

reinforcements. 

In addition, the mathematical content of the stimulus items should reflect 

higher level mathematics (e.g. college or university) to coincide with the 

secondary pre-service teachers expected mathematical abilities. That is, the 

content should be such that it requires symbolic type understanding. The 

type of understanding defined in Chapter 3 as 'a mutual assimilation 

between a symbol system and a conceptual structure, [but] dominated by the 

conceptual structure' (Skemp, 1982, p.61). 

Based on the above discussions, two important criteria were adopted for 

selecting stimulus items: (1) that the stimulus item must contain irrelevant 

attributes, error responses or misconceptions in mathematics, and (2) the 

mathematical content should be based on symbolic type understanding. 

Examples of such contents are the 'notions of a function, of limits and 

infinity, and of the process of mathematical proof' (Tall, 1992, p.495). 

The next step in the selection of the items was to determine which areas 

(e.g. geometry and algebra) of mathematics would provide appropriate 

triangulation of symbolic type knowledge. The approach taken to address 

this decision is the topic of the next discussion. 
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(ii) Which mathematical areas should provide appropriate 
triangulation of items as well as satisfying question (i)? 

Traditionally, mathematics is made up of several branches: arithmetic, 

algebra, geometry, trigonometry, statistics and logic (National Science and 

Technology Centre, N.S.T.C., 1989). However, the selected items would 

only be a sample to represent some of these branches. Thus, findings 

from this study that are based on these items should be viewed as 

representative in nature rather than definitive. 

Based on the notion of data triangulation (Patton, 1987; Yin, 1994; 

Taylor & Bogdan, 1998), three mathematical items were considered 

sufficient. In order to gain an understanding of the types of irrelevant 

attributes, error responses, or misconceptions in mathematics that 

mathematics students might have, the relevant literature concerning 

students' misconceptions or difficulties in understanding of mathematics, 

particularly of college or university level mathematics was reviewed. 

From this review the function concept (Grouws, 1992; Tall, 1992; Even, 

1993; Coady & Pegg, 1994; Wilson, 1994; Alters, 1996), and statistics and 

probability (Green, 1983; Grouws, 1992; Shaughnessy, 1993) were areas 

identified to involve symbolic understanding as well as causing 

understanding difficulties for students. 

Knowledge of mathematical functions was suggested to be closely related 

to knowledge representations of algebraic algorithms, syntax of symbols 

and format (Even, 1993; Coady & Pegg, 1994; Wilson, 1994; Gates, 

1995b). However, it seems that a common misconception of the function 

concept involves misrepresentation of the concept as algebraic 
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formulations (Tall, 1992; Coady & Pegg, 1994) and as graphical 

representations (Tall, 1992; Alters, 1996). Such misconceptions could be 

attributed to 'difficulties ... with the variety of different representations 

[of the function concept] (graph, arrow diagram, formula, table, verbal 

description, and so on) and the relationships between them' (Tall, 1992, 

p. 500). Tall (1992) added that in 'emphasising the many 

representations of the function concept - formula, graph, ... - the central 

idea of function as a process is often overlooked' (p.501). Even's 

(1993) findings from her study of prospective mathematics teachers' 

concept of function also indicated difficulties by these prospective 

teachers in understanding the many representations of the function 

concept. Alters (1996) study of undergraduate physics students' 

understanding of logarithmic graphing also indicated the difficulty these 

students had in distinguishing between the concept of logarithm and the 

graphical representation. The misconceptions relating to the function 

concept appear to be associated with the way the students were taught to 

learn it as either (a) a process (e.g. a relationship between two variables) 

or (b) an object (e.g. the graph of a relationship) (Tall, 1992, p.501). 

Since mathematical functions are associated with many representations 

such as a formula or a graph and variable relationship as well as 

representations of topic -matter as in logarithm, it seems appropriate to 

choose this as an area (representative of symbolic understanding) for the 

selection of the stimulus items. Therefore, two mathematical topics were 

chosen from which items would be selected to represent mathematical 

functions. Logarithm was chosen as one of the topics because it is a 

required learning for college and university students of mathematics and 

other science and technology areas (Alters, 1996). Logarithmic functions 
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involve representations of algebraic formulae and variable relationships 

between exponentials and linear mathematical expressions (Tall, 1992; 

Alters, 1996). To supplement these mathematical representations, 

trigonometry was chosen as the second topic from which items can be 

selected. 

Statistics as a branch of mathematics has at times been viewed in the same 

way as physics and chemistry or as a practical science (N.S.T.C., 1989). 

Statistics appeared to require specific mathematical knowledge. For 

example, learning to calculate the standard deviation for a set of scores is a 

specific form of mathematical knowledge belonging to statistics. 

Nevertheless, according to Shaughnessy (1993, p.244), much of students' 

misconceptions about statistics and probability are embedded in their 

'established beliefs about chance' long before they are taught any 

probability or statistics, and that such 'probabilistic beliefs and conceptions 

are difficult to change'. However, many of the statistical formulae and 

algorithms are based on the four arithmetic operations of addition, 

subtraction, multiplication, and division. For example, addition and 

division are all that is involved with the arithmetic mean. Also, knowledge 

associated with graphical representations in statistics are related to 

representations of the function concept (e.g. the line graph or linear 

function). It could be suggested that some of the students' difficulties in 

understanding statistics may relate to the fact that many statistical words o 
represent concepts and not objects (Green, 1983; Miller, 1993). Such 

words as mean, median, standard deviation, and variance describe 

concepts and have no unique, unambiguous representations in the real 

world (Miller, 1993; Shaughnessy, 1993). To complement and triangulate 
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the two stimulus items from the mathematical function topics of logarithm 

and trigonometry, a third item was chosen from statistics. 

It is assumed that items representing logarithm, trigonometry, and statistics 

would provide a triangulation of data sources on mathematical knowledge. 

These three items (logarithm, trigonometry, and statistics) were chosen so as 

to explore the existence of a 'mutual assimilation of two schemata' 

(Skemp, 1982, p.60): the symbol system associated with algebraic 

algorithms (these are representative of procedural knowledge), and the 

conceptual structures related to statistics, trigonometry and logarithm (these 

are representative of conceptual knowledge). 

This 'mutual assimilation of two schemata' is a common feature of 

trigonometry, logarithm, and statistics. One of the features relates to 

specific rules (or laws) that govern the algorithms (procedural knowledge) 

for computation. Another common feature is the requirement of particular 

conventions for each type, for example, sin(2+x) is not sin multiplied by 

(2+x), similarly log(4+x) is not the same as log4+logx, and Exy is not 

equal to ExEy. Also, the symbols are often used as the embodiment of 

both the concept and the procedures involved. For example, y=sin(2+x) is 

a curve described by a relationship of its domain, the set of values 

generated by (2+x), and its range (the set of y values). In statistics, the 

symbol a or s is often used to represent the standard deviation and its 

computation, Ai  
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One of the key assumptions underlying the triangulation of these three 

stimulus items is that they represent specific types of mathematics and the 

understanding of each one is dependent on conceptual knowledge of 

particular mathematical rules (or theorems) and procedures. The close 

similarity between these specific rules and procedures to the more general 

forms is of interest for the purpose of this study. For example, the 

distributive law, a(b+c) = ab + ac, is inappropriate for log(4+x), and yet, a 

mathematics student with little understanding of logarithm may attempt to 

use this law to give an expansion: log(4+x) = log4 + logx. How this kind 

of error (deficiency in knowledge) has been acquired, is the question that is 

of interest here. 

According to Skemp (1978), the learner with a response log(4+x) = log4 + 

logx, could have acquired this form of knowledge by the rote memorisation 

of rules and procedures and by a dependency on external guidance (e.g. 

the teachers, textbooks, and calculators). Mathematical understanding 

related to this kind of learning approach was defined by Skemp (1978) as 

instrumental understanding. In order for respondents to demonstrate 

symbolic understanding of items representing trigonometry, logarithm and 

statistics, Skemp (1982) suggested that they would need to show evidence 

of their abilities to manipulate and appropriately link the symbols to 

conceptual structures, and interpret these symbols in terms of their 

relationships within the structures. 

In an attempt to distinguish procedural and conceptual types of 

mathematical knowledge pertaining to relational and symbolic 

understanding from those types relating to instrumental understanding 

(Chapter 3), items from trigonometry, logarithm, and statistics were 
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chosen as stimuli for this purpose. How these items were obtained is the 

topic of the next discussion, item sampling. 

Sampling of the items 

(iii) Where would be the appropriate site (e.g. high school, college, or 
university) for obtaining such items? 

It was suggested in the previous discussion (for question (i)) that the 

mathematical content of the stimulus items should reflect higher level 

mathematics which requires symbolic type understanding (e.g. college or 

university) to coincide with the secondary pre-service teachers expected 

mathematical abilities. According to Tall (1992, p.495), 'a major focus in 

mathematical education at the higher levels is not only to initiate the learner 

into the complete world of the professional mathematician in terms of the 

rigour required, but also to provide the experience on which the concepts 

are founded'. He added that 'traditionally this has been done through a 

gentle introduction to the mathematical concepts and the process of 

mathematical proof in school before progressing to present mathematics in 

a more formally organised and logical framework at college and 

university' (Tall, 1992, p.495). If this statement is generalised to the 

Australian education setting, then the appropriate sites for sampling the 

items that would coincide with the pre-service teachers' abilities would be 

college (or the last two years of studies prior to university) and university. 

Furthermore, it was assumed that all the pre-service teachers will have 

completed college level mathematics prior to university studies. College 

level mathematics is the link between secondary school mathematics and 

university mathematics. 
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(iv) How would these items be obtained? 

An important criterion associated with the sampling of items for the data 

collection instrument is item validity. It was suggested by McAshan (1979) 

and Griffin and Nix (1991) that for a criterion-referenced evaluation to be 

valid, the instrument for collecting data must reflect a direct link between 

what is assessed and the instructional intent or curriculum. This suggests 

that the stimulus items (or instrument of collecting data) should have a 

direct link to the mathematics curriculum implemented at college or 

university settings. This direct link can be achieved appropriately by a 

classroom teacher or lecturer who has the experience and knowledge of the 

curriculum and the assessment intention required in order to evaluate the 

students learned outcomes (House, 1980; McInerney & McInerney, 1994). 

With such consideration, each of the three stimulus items was developed 

and used as a test item, followed by an analysis by either a college teacher 

or a university lecturer. 

In order to satisfy the item selection criteria, as described above, sub-studies 

for sampling the items involving teachers and their students (study sample) 

were conducted at two educational settings - college and university. The 

statistic item was sampled within the college setting and the trigonometric 

and logarithmic items were sampled within the university setting. In the 

sampling of the items at each setting, the participating teachers followed 

three stages: (1) At the completion of teaching the course, an assessment 

instrument for examining students' mathematical understanding was 

constructed as in the normal events of assessing students' learning 

achievements. (2) Students were presented with the assessment instrument 

under testing or examination conditions. (3) Students' performances were 
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analysed. As part of the analysis stage, teachers were to identify an item 

which elicited common misconceptions or understanding difficulties from 

students. In addition, the teachers were asked to provide a description of 

the probable causes or reasons for the observed misconceptions by 

students. 

It is acknowledged that time, place, and standard of curricula 

implementation were variables associated with the selection of items from 

two different educational settings. Nevertheless, these variables are present 

with every cohort of students entering secondary teacher education 

programs. It is accepted that mathematical curricula at these settings are 

closely linked and many concepts such as trigonometric and logarithmic 

functions and statistics are common learning areas. 

A description of the stimulus items is provided next. These descriptions are 

organised in three parts: (1) a brief introduction about the participants and 

the development of the items, (2) the description of the students' 

misconceptions in relation to the item, and (3) a brief description of the 

potential items. 

The first of these to be described is the statistic item. 

Statistical variance 

The statistic item was sampled within the college setting. Two secondary 

mathematics teachers and their 60 students from levels (or year) 11 and 12 

agreed to participate in the item sampling. The 60 students had just 

completed a unit in statistics, and as part of their continuous assessment 
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they were given a test on statistics. One of the questions in the unit test 

which was of particular interest for the purpose of this investigation related 

to the statistical variance. The question was designed to test the students' 

understanding of the definition of variance as well as their ability to recall 

the appropriate formulae. The students had been taught the concept of 

variance as the average of squared deviations from the mean. They had 

also been taught two methods for calculating the variance. The first 

method involved setting up tables of computed values corresponding to the 

formula: 	. The second method involved greater use of the 

calculator and it required the use of the equivalence formula for the 

Ex2 -2 variance, which is: 	x . 

The following statistics question was identified as a potential stimulus item: 

Ten items were measured and four results were produced: 

10 	 ( 10 	2 

1. / Xi  = 40 	2. 	yxi ) =1600 
10 	 9 

3. I xi? = 194 	4. I 	(xi — 1)2  = 24 
i=1 	 i=1 

Use these results to find the mean, i, and variance, s2 , 
for the 10 items. 
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The evaluation of the 60 college students' responses to the above test item 

showed them to be highly in favour (86%) of the 4th result, 

9 

E(xi 	24. 
i=1 

This was indicated by their solutions of 2.4 and 2.7 for the variance. The 

4th result was a distraction cue that the teachers used to determine whether 

the students have learned the second method for the computation of the 

variance. Although these solutions of 2.4 and 2.7 reflected a common 

misconception, they also provided a positive indicator, to the teachers, that 

the respondents did have knowledge of what a variance is. That is, the 

response of 2.4 was obtained by ignoring the summation to 9 and the 

result of 24 was divided by 10, the number of items. The response of 2.7 

was obtained from dividing the result of 24 by 9. When marking this test 

item, teachers gave part marks if students produced either of these 

solutions. 

The remaining 14% of the students presented the correct solution of 3.4. 

This solution was produced by students who recalled the alternative formula, 

y,x2 _2 
X , and were able to substitute the given information to compute the 

correct value, that is S
2  = 194/10 - 42  = 19.4 - 16 = 3.4. 

To find out how teaching is related to these college students' learning, eight 

students (6 from the respondents with answers of 2.4 and 2.7, and two from 

those who gave the correct answer of 3.4) who were willing to elaborate on 

their answers were interviewed in a group setting, as there was limited 

opportunity to take the students individually away from their normal classes. 
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Students were asked to respond to three main questions: (1) What is your 

understanding of the variance? (2) How confident are you in answering a 

statistical question in the final exam? (3) Why is it important for you to 

learn statistics? Students did not want their responses to be recorded on tape, 

but were willing to write their responses on paiier first, prior to the group 

discussion (interview). 

The group's response to question (1) reflected the work they did in class, for 

example, recognising that the summation notation means adding; to find the 

variance, first find the mean and then the deviations from the mean. The 

group seemed to have no doubt as to why each deviation from the mean is 

squared, to avoid a sum of zero. When asked what is a variance? The 

response was, S2  and that it is much easier to use the calculator to compute 

the variance than to compute and set up values in a table form. 

The responses to question (2) were mainly in the form: at this stage, very 

little, but hopefully I can pick it up again later during study week. When 

asked to explain the reason for their lack of confidence, they suggested that 

statistics has lots more formulas to remember than the other topics in 

mathematics and that it is best to learn these afresh just before the exam. 

Why is it important for you to learn.  statistics (question 3)? The following 

responses indicated why (or if) statistics was important to the group. 

Because it's part of the maths course I'm doing. I guess so that I can 

say I learned statistics. I don't really know, may be because I'll be 

examined on it later. It's important because it increases my knowledge 
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of maths. Statistics is different from other maths so learning about it 

increases my knowledge of maths. 

The above responses are by no means a generalisation of the learning for the 

60 college students involved. However, the responses do provide an insight 

into the types of knowledge that could be generated by such an item. Based 

on the above responses by the eight students, it appears that rote knowledge 

of statistics was the dominant form of knowledge acquired by these students. 

From the above evaluation, the following stimulus item was formed: 

The Statistical Variance item 
A class of year 11/12 students was asked to find the 
variance using the information given below: 

Ten items were measured and four results were provided: 
10 	 10 	2  

1. 	x1 = 40 	2. 	/ xi ) = 1600 

10 	 9 

3. x=194 	4.   

The class produced 3 different values for the variance, S 2 : 
i) 	2.4 	 (ii) 	3.4 	(iii) 	2.7 

Which variance is the correct one? Please explain. 

The items for trigonometry and logarithm are described next. 

Trigonometric and logarithmic functions 

The following two questions were part of an end of semester examination 

paper for first year university students who had enrolled in a Science degree 

program. The mathematics course associated with the examination paper 
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covered topics in introductory calculus, trigonometry, and logarithm. These 

two questions were identified as potential stimulus items: 

Trig. 	Evaluate for x, cos(2x+1) = 0 and provide the graph for 
y  = cos(2x+1). 

Log. 	Simplify and evaluate for x, 
1og 10 (2x+1) = 1og 10(x-1). Justify your answer. 

A group of 28 first year university students sat the exam and their responses 

to the above questions were analysed. Because these responses were given in 

an examination situation, confidentiality of the students' identification did 

not allow the opportunity for student interviews. 

The group's responses to the trigonometric item showed that 44% made the 

following type of response when evaluating for x in cos(2x+1) = 0: 

cos(2x + 1) = 0 
cos2x + cosl = 0 
cos2x = -cosl 

2x = -1 
x = -1/2 

There could be several explanations for these university students' 

responses but two possibilities are described below: 

(1) These students assumed that cos was a variable and that the brackets 

stand for the multiplication operation. Their attempts to graph 

cos2x and cos/ rather than cos(2x+1) tend to suggest an inability to 

disassociate algebraic techniques from conceptual knowledge of 

special functions such as trigonometric functions. 
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(2) The students lacked understanding of the trigonometric rule: 

cos(A+B) = cosAcosB-sinAsinB 

or [cos(2x+1) = cos2x cosl - sin2x sinl]. 

For example, it was common for students who recalled the rule 

correctly to suggest that sin 1 = 0 or cos 1 = 1, leading to cos2x = 0 

and x = /c/4 as their final responses. This type of final outcome 

appeared to relate to a misconception between the cosine and sine 

functions as well as degrees and radians, rather than an inability 

relating to algebraic procedures. In fact, respondents who used the 

trigonometric rule correctly often failed to complete their 

computations. However, they were more likely to provide a correct 

graph for y = cos(2x+1). The response data by students who recalled 

the rule correctly seemed to present another type of misconception 

relating to the stimulus item. This tends to suggest that explanation 

(1) might be the probable reason for the above learned outcome. 

For the logarithmic question, 61% of the respondents presented the 

following type of logic: 

log(2x+1) = log(x-1) 
log2x + log! = logx - log! 	(log1=0) 
log2x - logx = 0, 	 (log io x = 0) 

Several of this group did not make the connection between logarithms and 

exponents, as made in the last two lines. These respondents performed the 

first three rows as algebraic simplification. To 'evaluate for x' they factorised 

as follows: 
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log2x - logx = 0 
	

log2x - logx = 0 
log(2x - x) = 0 
	

logx (2-1) = 0 
x = 0/log = 	 logx = 0 

In justifying their solutions, all 28 students correctly stated that there was 

no real solution. However, the 61% group's justification was that their 

solution for x, logx, or by substitution which produced log 1 or log(-1), was 

zero. For example, those who responded with x=1, justified their 'no 

solution' by substituting 1 for x into log(2x+1) = log(x-1). This was 

simplified to log3 = log0 and then to log3 = 0. The students' use of 

phrases such as, "you can't have the log of a number equal to zero", "log3 

cannot equal zero it's undefined", and "a solution doesn't exist", further 

indicated the difficulty they had in disassociating algebraic techniques 

from conceptual understanding of special functions. 

From the actual exam questions and the common misconceptions by these 

28 first year university students, the following were considered potential 

stimulus items. 

The 	trigonometric item The logarithmic item 
Evaluate for x, 	cos(2x+1) = 

A student responded: 

cos(2x + 1) = 0 
cos2x + cosl = 0 
cos2x = -cos 1 
2x = -1 
... x = -1/2 

Ql. 	Is 	the 	student's 	response 
correct? 

Q2. Please explain why you 
answered yes/no to Ql. 

0 Simplify and evaluate 	for x, 
1og 10 (2x+1) 	= 	1og 10 (x-1) 

A student responded: 

log(2x+1) = log(x-1) 
log2x + log! = logx - log! 	(log1=0) 
log2x - logx = 0, 	(1°gI0x  = 0)  
x = 10° 

.-. 	x = 1 

Ql. 	Is 	the 	student's 	response 
correct? 

Q2. Please explain why you 
answered yes/no 	to Ql. 
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Having selected the three potential stimulus items the next step was to 

determine their face validity as an instrument for collecting data on 

mathematical knowledge of secondary pre-service teachers of mathematics. 

This step is described in the following sections. 

4.2.2 	Validating the selected stimulus items 

This section is a description of the study conducted for the validation of the 

selected stimulus items. This study involved a group of 18 experienced 

secondary mathematics teachers. These teachers were presented with the 

three stimulus items in a one-to-one interview situation, with interviews 

recorded on cassette tapes. The teachers were from 6 colleges (2 private and 

4 public). The group had experience in teaching secondary mathematics 

ranging from 5 to 30 years, most with 10 to 25 years experience. Other 

information collected about the teachers were their mathematics 

qualifications and the mathematics courses taught - including the units they 

were currently teaching (see Table 4.2, next page). 

The decision to use a sample of experienced mathematics teachers for the 

validation study was twofold. The main reason was to have the items 

validated by a group of experts in the field (House, 1980) and to find out 

whether the items are representative of the types of mathematical 

knowledge taught in secondary schools. Also, it was important that the 

item-format be checked by experienced mathematics teachers for 

appropriateness, particularly the use of 'student error response' as a means 

for eliciting mathematical knowledge. 

Chapter 4/ Page 106 



Table 4.2: 	Data on experienced mathematics teachers' 
background 

No. of 
teaching 
years 

Degree 
other than 

Dip.Ed 

Maths 
currently teaching 

. 
Maths taught 

18 B.Sc, M.Ed Stage 3, GenM All college levels. 
30 B.Ed Computing All high school levels 
6 BEd 

(Maths major) 
GenM, AppM Part-time teaching 

15 B.Ed 
(Maths major) 

AppM All high school levels 

20 B.Sc GenM, AppM All high school levels 
13 B.Sc GenM, AppM All college levels. 
12 B.Sc GenM, AppM All college levels + 

physics 
3 M.Sc High Sch yr 8, 9, 10 

+ Science 
27 B.Sc AppM , All college levels. 
9 B.Ed GenM, AppM Part-time teaching 
16 B.Sc Stage 1,2; Physics Top college level 

maths + physics 
18 B.Sc Stage 2,3; GenM , All college levels. 
30 B.Sc AppM All college levels. 
15 M.Ed AppM Lower college levels. 
11 B.Sc 

(Maths major) 
AppM All college levels. 

19 B.Sc 
(Biology) 

AppM, GenM Lower college levels. 

10 B.Sc AppM No data 
11 B.Sc Stage 2,3 All college levels. 

Both the General Mathematics (GenM) and the Applied Mathematics (AppM) are college level 
mathematics units. General Mathematics covers a wide range of mathematical topics including algebra, 
trigonometry, finance, and statistics. Applied Mathematics (AppM) covers similar areas in greater 
depth as well as an introduction to calculus. As its name implies, AppM provides students with 
knowledge of the application of the mathematics. For example, in the algebraic modelling component, 
logarithm is treated as a method for linearising exponential functions, and trigonometry as a system of 
formulae for solving real-life situations involving the computation of angles, distances, and time. The 
statistics component covers data organisation (eg. distribution tables, graphs), random variables, 
sampling, measures of central tendency, measures of spread (including standard deviation and 
variance), and probability. 

The Mathematics Stage 1, 2, and 3 are also college level mathematics units. The Stage 1 mathematics 
is taken in year 11 as a pre-requisite for Stage 2 and Stage 3 mathematics in year 12. These 3 
mathematics units are compulsory pre-requisite courses for entry into a mathematics degree program at 
most Australian universities. Prospective teachers of secondary school mathematics are assumed to 
have satisfactorily completed these units of mathematics during their pre-university education. 
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The second factor in selecting a sample of experienced mathematics 

teachers was to gather data on mathematical knowledge that are related to 

experiences of learning and teaching mathematics. It is assumed here that 

teachers acquire knowledge (or learn) about the mathematics they teach 

as part of their lesson planning and preparation experience. In other 

words, a teacher's growth in mathematical knowledge, for a particular 

mathematics, is influenced by his or her experiences in teaching that 

particular mathematics. The data from interviewing these teachers were 

examined in an attempt to collect information on mathematical 

knowledge associated with teaching. In addition, these interviews 

provided data for a 'test-run' analysis of data using Skemp's model. 

In addition to the validation of the items, the method of collecting the data 

(described in Section 4.1.6) by interview was put to trial. At the start of the 

interview, the participants were told that the purpose of the interview was to 

test items as to their potential in collecting data on knowledge about 

mathematics from pre-service teachers of mathematics. They were then 

asked, first of all, to read the content of each item prior to giving an 

explanation, in written form, of their responses based on their teaching 

experiences. After this initial attempt the participants were then interviewed 

to elaborate on their written responses and also to comment on the format 

of the items and as to whether the items were adequate to provoke thinking 

and to elicit the kinds of responses the items were designed for. 

The interviews with these 18 experienced mathematics teachers provided 

valuable information on how to improve the stimulus items as a data 

collection instrument for the main study. For example, it was found that 
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the one-to-one interviewing situation provided opportunity for the 

participants to elaborate, clarify, and reflect upon their responses. These 

responses were more in depth and spontaneous than written responses. 

Also, the interview data showed that the teaching of the topics, particularly 

the logarithmic and the statistic items, was closely related to the teachers' 

own perception of important knowledge for students to learn. For 

example, several teachers responded to the logarithmic item in a similar 

manner as the following: 

This student doesn't understand logarithm at all and he needs to be shown 

the basics first. That is, by using the calculator and inputing different values 

to check out the log laws. E.g. log9 = log3 + log3 is logab = loga + logb 

and so on. It is really important that students should have good calculator 

skills, it saves them a lot of valuable time that they can then spend on other 

important topics. ( categorised in Appendix A as 'instrumental') 

In addition, it was observed that if teachers have not had the opportunity to 

teach a particular unit of mathematics, then their responses tended to reflect 

a lack of knowledge about the mathematics. The statistic item in particular 

received the majority of these types of responses. Typical responses 

indicating this lack of knowledge were, for example: 

I can't answer this because I have not taught the statistics topic yet, that is 
coming up next term, (categorised in Appendix A as 'instrumental') 

or 
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This type of statistics was not part of the courses when I was at teachers' 

college and I have only taught the basic statistics like finding the mean, 

mode and median, and drawing frequency tables and graphs. 

From the outcomes of the 18 experienced mathematics teachers' 

interviews, two issues were observed to be relevant in examining student-

teachers' knowledge of mathematics: (1) the teacher's perception of 

what is to be important learning for stUdents, and (2) the teacher's 

teaching experience of the topic. 

These findings seem to support the aims of the second research question 

and were therefore incorporated into the initial set of stimulus items with 

the addition of stimulus questions (2) and (3) to each item. This final set 

of three stimulus items is presented in the next section. 

4.2.2.1 	The stimulus items 

The set of three stimulus items is presented in Figure 4.1 (next page). In 

each stimulus item, there are three stimulus questions denoted as SQ1, 

SQ2, and SQ3. There are two essential components of the stimulus items 

which correspond to SQ1, SQ2, and SQ3. The first component concerns 

the stimulus question 1 (SQ1) and it was designed for addressing the first 

research question. The second component concerns the stimulus 

questions 2 and 3 (SQ2, SQ3) and it was designed for addressing the 

second research question. 

Chapter 4/ Page 110 



(1) The trigonometric item: 

Evaluate for x, Cos(2x+1) = 0 

A student responded: 

Cos(2x + I) = 0 
Cos2x + Cos 1 = 0 
Cos2x = -Cosi 
2x = -1 

x = -112 

If you were the teacher: 

SQL Would you accept the student's response 
as being correct? 

SQ2. What do you consider important about the 
learning of trigonometry that you must 
teach your students? 

SQ3. How would you approach the teaching of 
trigonometry? Please explain and give 
an example of your teaching method. 

(2) The logarithmic item: 

Simplify and evaluate for x, 
1og 10 (2x+1) = log io(x- 1) 

A student responded: 

log(2x+1) = log(x-1) 
log2x + logl = logx - logl, 	(log1=0) 
log2x - logx = 0, 	(log ,ox = 0) 

0 
x = 10 

x = 1 

If you were the teacher: 

SQl. Would you accept the student's response 
as being correct? 

SQ2. What do you consider important about 
the learning of logarithm that you must 
teach your students? 

SQ3. How would you teach logarithm? Please 
explain and give an example of your 
teaching method. 

(3) The statistic item: 
A class of year 11/12 students was asked to find the variance using the 
information given below: 

Ten items were measured 
10 

I. Ex, 40 

io 
3. / x= 194 

and four results were produced: 
2 ( 10 

2. 	I xi) =1600 
i=1 

9 

4.  
i= 1 
	

i=I 

The class produced 3 different values for the variance, S 2 : 
(i) 2.4 	(ii) 3.4 	(iii) 2.7 

If you were the teacher: 

SQL Which variance would you accept as the correct answer? 
SQ2. What do you consider important in the learning of statistical variance that your students 

must learn? 
5Q3. How would you approach the teaching of variance? Please explain and give an 

example of your teaching method. 

Figure 4.1 
	

The three mathematical stimulus items. 
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The purpose of the first component of the stimulus items was to elicit 

responses which are representative of procedural and conceptual types of 

mathematical knowledge. The three selected mathematical concepts 

(trigonometry, logarithm, and statistics) for the items were represented by 

the following mathematical expressions. 

1) cos (2x+1) = 0, 

2) log(2x+1) = log(x-1), and 

—2 3) S2  = 	= 	x 
n 	n 

Each mathematical expression is the focal point for the cued-data 

contained within the stimulus item. Each expression represents 'a mutual 

assimilation between a symbol system and a conceptual structure' (Skemp 

1982, p.61). The function of the symbols is for manipulating and 

communicating the mathematical concepts. For example, in the first 

expression, cos(2x+1), `cos' specifies the operation (finding the cosine 

value of the angle) and `2x+1' specifies the operand (the angle size of 

2x+1). Similarly in the second expression, log(2x+1), `log' specifies the 

operation (finding the logarithmic value of a non-negative expression) 

and `2x+1' specifies the operand (the value of the non-negative 

expression). For the third expression, `1,` specifies the operation 

(finding the sum of a system of values) and 
(x — .i2 )

specifies the 
n 

operand (a system of values). Each stimulus item, therefore, requires 

symbolic type understanding, an understanding that is `dominated by 

conceptual structures' (Skemp, 1982, p.61). 
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However, it is quite possible for these three stimulus items to also elicit 

responses dominated by procedural structures. For example, to evaluate 

for x in log(2x+1) = log(x-1), the respondent could proceed as follows: 

Cancel 'log' from both sides of the equal sign because it is a common 
factor. That leaves (2x+1) = (x-1). Solving for x, the result is x = -2. 
Checking that this value of x is appropriate for the equation, substitute 
x=-2 into log(2x+1) = log(x-1). The result is, log(-3) = log(-3). Since 
both sides of the 'equal sign' are the same, the value of x=-2 is 
correct. [Response-data from the experienced teachers' interview data] 

Although the above response satisfies the request to find the value for x, the 

respondent's manipulation of the symbols did not communicate his or her 

knowledge of the mathematical concept in question, namely logarithm. 

According to Skemp (1982), the symbols must be linked appropriately to 

their conceptual structures and be interpreted in terms of the relationships 

within the structures in order for a response-data to be classified as 

representative of symbolic understanding. 

The purpose of the second component (SQ2 and SQ3) of the stimulus 

items was to elicit responses which are representative of knowledge 

pertaining to pedagogical content knowledge. It was suggested in 

Chapter 2, Section (2.3) that teachers' competence to teach mathematics 

(or pedagogical knowledge) is dependent on their understanding of the 

mathematics they teach. Pedagogical knowledge, however, also seems to 

involve informed decision-making by teachers about 'worthwhile 

learning activities' for students and how to present the mathematics 

content appropriately to students (Ball & McDiarmid, 1990, p.437). 
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Similar forms of decision-making by teachers were suggested to reduce 

gender differences in mathematics (Fennema, 1996; Rhine, 1998). In 

order to examine how procedural based (or conceptual based) 

mathematical understanding would influence a pre-service teacher's 

decisions concerning teaching, SQ2 and SQ3 were incorporated into the 

design of the three mathematical stimulus items as cues for eliciting 

response data. 

The description of how the data from this validation study were organised 

and analysed using the Skemp model is the purpose of the next section. 

4.2.3 	Analysis of data from the validation study using 
Skemp's model 

In Chapter 3, Skemp's model of mathematical understanding was described 

as the chosen analysis method for the main study. This method involves 

the formation of predicted response patterns as base-line patterns for 

comparison and evaluation of responses (Section 4.1.6), Therefore, the 

main aim in this section is to analyse the interview data from the 18 

experienced mathematics teachers and examine these data in terms of 

Skemp's model in an attempt to form predicted response patterns. 

This section is organised in three parts: (1) a description of the initial 

categorisation procedures and the formation of six predicted response 

patterns, (2) a detailed description of the response patterns under four 

categories, and (3) a summary of this analysis. 
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(1) Initial categorisation of responses 

For each of the three stimulus items, the responses were initially 

categorised according to how a respondent had approached the teaching 

of the particular mathematics and in relation to Skemp's three kinds of 

mathematical understanding: instrumental, relational, and symbolic. An 

example of each categorisation for the instrumental, relational, and 

symbolic understanding are presented in the following: 

A response classified as indicating instrumental type understanding was 

one where rote memorisation of rules appeared to be the main 

teaching/learning approach used. For example, the following response 

was classified as instrumental: 

The learning of this [referring to the logarithmic item] is usually best 

done by them [students] being thoroughly acquainted first with the log 
laws and how to apply them. Otherwise they will have difficulty in doing 
a question of this kind ... the efficient way of learning these [log laws] and 

many of the rules in maths is by memorising them, I reckon. 

A response indicating an interlinking of knowledge aspects relating to the 

learning of the particular mathematics was categorised as relational. An 

example of this type is: 

My experience in teaching logs seemed to vary according to the students I 
have. E.g. last year I had a group who needed a lot of specific guidance 
as to what key information they need to know or bring forward in order to 
successfully solve a problem. So when I taught them logs, as an algebraic 
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model, I had to do a lot of back-tracking to graphing skills, the work on 

indices they've done sometime before ... it was no use assuming that they 

know the indices work well. My group this year is so different ... when I 

introduced the idea of logs using graphs and comparing them to 

exponential graphs, they didn't give me the thumbs down! So its either 

because I've learned from my last year's experience how to introduce logs 

or my group now has a better lot of kids. 

A response showing evidence of a justification for the given mathematical 

situation was classified as belonging to symbolic understanding. The 

following is an example: 

I'd start with explaining that log(a + b) * loga + logb 

but loga + logb = log(ab) and loga-logb = log(a/b). 

Then log(2x+I) = log(x-1) 

log(2x+1) - log(x-1) = 0 -> can use loga-logb = log(a/b) here 

log[(2x+1)/(x-1)] = 0 	-> the inverse log mx = 0 -> x=100  that the 

student correctly stated is used here. 

(2x+1)/(x-1) = 100 	-> 100=1, the student stated this correctly too. 

2x+I = x-I 	 -> if x-1# 0; 

x = -2. 

However, logx is only valid for x ..,?. 0, so x = -2 needs checking whether it 

provides a valid solution. Substituting -2 into log(2x+1) = log(-3), this is 

undefined. Therefore x = -2 does not provide a valid solution. That is, 

log(2x+1) = log(x-1) has no real solution. I suspect the outcome of log(-3) 

when checking would not alert the student who does not understand the 

concept of log functions. 

This initial categorisation provided three main sets of response data: (1) 

instrumental type knowledge, (2) relational type knowledge, and (3) 

symbolic type knowledge. In order to formulate the predicted response 

patterns suggested in Section (4.1.8), each set of responses was examined in 
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terms of intuitive and reflective modes of thinking (or procedural and 

conceptual types of knowledge). A classification technique that was found 

valuable during this examination process was categorising responses 

according to four response criteria (or categories) based on evidence of 

what the respondent had indicated that he or she can or cannot do. This 

technique was based on the model of a response production of 

mathematical knowledge illustrated in Figures 2.4 and 2.5 (Chapter 2) in 

which four types of mathematical response productions were suggested. 

These were: simple, relatively simple, relatively complex, and complex 

(Figure 2.5). To avoid confusion between a suggested mental process (an 

unobservable response production) and an actual response (observable 

response), the suggested four mathematical response productions are 

referred to as category (1), category (2), category (3), and category (4) 

respectively. The following are descriptions of knowledge involved in each 

classification: 

Category (1). Little or no recall of knowledge about the mathematics 
presented. 

Category (2). Can recognise rules, theorems, symbols, or a system of 
procedures or methods. 

Category (3). Can carry out computations by applying a rule or a set of 
procedures. 

Category (4). Can demonstrate as in (2) and (3) as well as providing a 

justification or reason for a given result. 

These four response categories are included in Figure 4.2 (next page) in 

relation to Skemp's model. These categories, however, do not necessarily 

correspond to Skemp's (1979) modes of mental functioning (as in 

Chapter 3, Table 3.1). Particularly, the response-data indicating evidence 

of 'little or no recall of appropriate knowledge' as in category (1). 

Chapter 4/ Page 117 



However, category (4) type responses seemed to appropriately describe 

Skemp's third form of mathematical understanding, namely symbolic. 

These four classification criteria are therefore the author's own 

interpretation of the types of responses associated with Skemp's 

categories in Chapter 3, Table 3.1. Figure 4.2 illustrates how category 

(2), category (3), and category (4) data are linked to Skemp's (1979) 

three kinds of mathematical understanding. However, category (1) is 

included in Figure 4.2 as a separate kind of response pattern, at the top, 

because the response classification does not appear to directly belong to 

any of Skemp's three types of mathematical understanding. Thus, seven 

kinds of response patterns are predicted. In addition, the italics response 

data in Figure 4.2 are actual teacher responses (interview data from the 18 

experienced teachers). 

Figure 4.2: 	An adaptation to Skemp's model of mathematical 
understanding 

Category (1) 	The individual - 
Cannot recall appropriate rules or procedures. 
E.g. I cannot remember because its a while since I learned this. 
E.g. 1 remember doing ... but I didn't really understand it well at the time. 

Category 	(2) Category 	(3) 
Skemp's (Intuitive) (Reflective) 
model Pseudo-Procedural 	knowledge Pseudo-Conceptual 	knowledge 

The individual - The individual - 
Recognised a rule, theorem, 
symbols, etc. 

Can do computations by applying a 
rule or a set of procedures. 

Instrumental E.g. log(axb) = loga + logb E.g. When asked to evaluate 
Understanding Recognised a given situation by its log(2x+1)=Iog(x-1) 

appearance only, 
E.g. When given 

would immediately remove the 'log' 
from both sides of the equal sign (=) 

(1) Cos (2x+1) = 0 and proceed to solve for x as follows: 
(2) Cos2x + Cosl = 0, 

would ponder over the given situation for 
some time and then suggest, it appears 
wrong but I cannot explain why. 

2x+1 = x-1 
2x-x = -1-1,  
therefore x = -2. 

.... Figure 4.2 continues over to the next page ... 
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Skemp's 
model 

Category 	(2) 
(Intuitive) 

Relational-Procedural 
knowledge 

The individual - 

Category 	(3) 
(Reflective) 

Relational-Conceptual 
knowledge 

The individual - 
Recognised a system of related Can do computations by applying 
procedures or methods for a given appropriate theorems and a system of related 

Relational situation. procedures. 
Understanding E.g. When asked to evaluate 

E.g. When given log(2x+ 1 )=Iog(x- 1) 
(1) Cos(2x+ I) = 0 would begin by recalling logarithmic laws: 
(2) Cos2x + Cos l = 0, 

would immediately suggest that 
logA-logB = logA/B, if logB * 0 
log(2x+ I) - log(x- 1) = 0 

line (2) is not appropriate because log[2x+1/(x- I)I = 0. 
(2x+ 1) represents the angle Recalled another rule or the inverse form: 
measure. log 10A = x --> A = 10x 

0 	o 
2x+1/(x-1) = 10-> where 10 =1 

-> and x-I *0 
' 2x+ I = x-1 	therefore, x = -2. 

Skemp's 
model 

Category 	(4) 
(Intuitive 	- 	Procedural 

knowledge) 
The individual - 

Category 	(4) 
(Reflective 	- 	Conceptual 

knowledge) 
The individual - 

Symbolic 
Understanding 

Provided a justification for a given 
result using a logical progression of 
steps giving evidence of an awareness 
that something is 'true' or 'false'. 

E.g. Follow on from the Relational 
Understanding 	category 	(2) 
above: 
(1) Cos(2x+1) = 0 
(2) Cos2x + Cosl = 0 

a justification might be: 

The first mistake is 
cos(2x+1) * cos2x + cosl. 
The correct solution for cos(2x+ I) = 0 

is: 
(I). Find values of cos0 = 0, 0 = 7r12, 
3r/2, . 
(2). Solve for x, (2x+1) = 0 = 
(2n-I )ira, where n = integer, 
2x = (2n-1)7t/2 - I 
... x = (2n-1 )7r/4 - 1/2 

Provided a justification for a given result 
based on prior learning/teaching 
experiences. This background knowledge 
is demonstrated by providing reasons 
consistent with the situation. 

E.g. 	Follow on from Relational 
Understanding category 	(3)'s 
computation of x =-2, the next step might 
be: 

Must check that this value of x = -2 is a valid 
solution, log(-3) = log(-3). Although this is 
a true equation, for logarithm it is invalid 
because a logarithm of a negative number is 
undefined in the field of real numbers. 
Therefore, x=-2 is not a valid solution and 
this equation has no real solution. 
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(2) Description of the response patterns under four categories 

For consistency and clarity in this section, all statements in italics are actual 

response data. Also, the categorisation of a response into instrumental and 

relational understanding are indicated, in brackets, by INST and RELAT 

respectively. For symbolic understanding, or category (4), the response 

data are indicated as either belonging to the intuitive or reflective mode of 

functioning (Skemp, 1979). In addition, the term cued-data refers to the 

content of the stimulus item, particularly the content with respect to the 

'student's response'. 

The analysis of the response data from the sample of experienced 

secondary mathematics teachers is discussed under the four response 

categories as follow. 

Category (1) response-data 

Responses showing non-attempts because of lack of knowledge about the 

mathematics in question were classified as category (1). It was observed in 

these data (responses from experienced secondary mathematics teachers), 

that the main reason given for the teachers' lack of knowledge was their 

lack of teaching opportunity (or experience) in the area. For example: 

a) 	I can't do this question [referring to the statistic item] because I 

don't really have much knowledge in this area. I did not do this 
type of statistics in high school or at teachers' college and I 

haven't taught it. [INST] 
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b) I can't remember, I haven't taught much statistics. [INST] 

c) Sorry, I can't answer this question, this is my first year teaching 
Mathematics Applied and I haven't covered statistics yet. Also it has 
been a long time since I've done statistics. [INST] 

d) I can't remember [referring to the trigonometric item], but I don't 

think the student [referring to the cued-data] is correct. [INST] 

The categorisation of the above responses as instrumental [INS'!'] 

understanding was based on the assumption that the notion of 'cannot 

remember' implies that there was, in the past, knowledge (or information) 

about statistics or trigonometry but the essential knowledge schema for these 

mathematics was not well established. Also, the failure to make recall of 

relevant knowledge, due to lack of teaching opportunity, seemed to suggest a 

dependency by these teachers to gain knowledge from external means (e.g. 

other teachers, textbooks, syllabus outline) or incentives (e.g. promotion to 

senior positions). The dependency on external guidance was suggested by 

Skemp (1978) to be the main cause of instrumental understanding because it 

is like la] person [teacher] with a set of fixed plans [syllabus outline, 

textbooks], [who] can find his way from a certain set of starting points to a 

certain set of goals [in teaching]' (Skemp, 1978, p.14). According to 

Skemp (1978), the fixed plan tells teachers (or students) what to do at each 

choice point but this does not give them an awareness of the overall 

relationship between successive stages, and the final goal. 

In addition to the 'lack of knowledge' type responses are those which 

appear to reflect a category (2) type response (knowledge recognition), but 
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showed evidence of incomplete (or false and incorrect) attempts. For 

example: 

a) The student is incorrect [referring to the given cued-data] because 
log(2x+1) log2x + log). Correction: log(2x+1) = log2x(logl) 
[incorrect recall]. Similarly log(x-1) = logx/logl [incorrect recall]. 
The respondent could recognise that certain rules are necessary, 
however, the attempt was incorrect. This type of response was 
categorised as instrumental [INST] understanding because it seemed to 
be dependent on the recall of memorised rules. 

b) None of the given values [referring to the statistic item] are correct, 

because you need E(x— 1)2,  but n=9 is given, not n=10. [INST] 

c) The formula that 1 have been using recently [referring to the statistic 

item] is not obvious from the data given. So at first glance, I'll say 
there is not enough information given. [INST] 

d) Actually, we only need to find the standard deviation and then square 
that. But 1 can't remember the formula in order to answer the 

question. [INST] 

Response (b) is false because one of the given values in the cued-data was 

correct, however, the respondent's dependency on a 'fixed plan' or a 

particular formula appears to be the cause of this partial response. 

Response (c) also illustrates a dependency on a 'fixed plan' and like the 

respondent for response (b), this respondent could not proceed any further. 

In response (d), there is evidence to suggest that the respondent has 

knowledge about the particular mathematics (statistical variance) but in 
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another form (standard deviation and then square), and like (b) and (c), 

no further action was taken because the specific formula was not available. 

In summarising the analysis to this point, the lack of opportunity (or 

experience) to teach the particular mathematics (e.g. statistics) appeared to 

contribute to the teachers' lack of knowledge about the mathematics 

represented by the stimulus items. Another factor that appeared to be 

associated with category (1) types of mathematical knowledge is teacher 

dependency on external guidance and knowledge of specific (or fixed) 

formulae. For example, textbooks could be classified as an external 

medium to provide teachers with formulae, set procedures and algorithms 

in computation, and the types of work to give to their students. The type of 

mathematical knowledge displayed in category (1) seemed to be associated 

with instrumental understanding of the mathematical concepts represented 

by the three stimulus items. 

Category (2) response-data 

This classification was based on the criteria that the response-data would 

contain evidence of relevant knowledge associated with rules, theorems, 

symbols, and systems of related procedures for the given cued-data. 

However, this type of response is limited to the extent that the respondent 

can recognise only a single relevant knowledge aspect to a given situation. 

Consider for example the following response to the cued-data in the 

logarithmic item: 
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Given cued-data: 	log(2x+1) = log(x-1) 

log2x + log! = logx - log 1 
A category (2) response: log(A+B) = logA + logB is not correct 

because this is not log(AxB). 

This response-data indicated evidence that the respondent recognised a 

correct rule (a single relevant knowledge) associated with logarithmic 

computation of the given situation. That is, log(AxB) = logA + logB. 

Further examples of category (2) type responses and their categorisation 

into instrumental [INST] and relational [RELAT] understanding of 

mathematics are as follow: 

a) The student used incorrect log theorem because when x=1, log(3) 
log(0). By using the calculator the teacher can show the student that 
log(9+1) log9 + logl. [INST] 

b) The student is incorrect because log(2x+1) log2x + logl, but I can't 
explain the rest of what the student has done. I need more time to 
think about this because the teaching of logs in Maths Applied 
[mathematics unit currently teaching] takes a different approach ... I 
mean ... its on application more. [INST] 

c) Initially, I would have said 2.7 because —
24 

= 2.7 [referring to the 
9 

given cued-data in the statistic item where n=10 and result (4) was 
9 

— .Y)2  = 24]. But quickly referring to the formula in the 
i=1 

textbook [the interview was conducted in the respondent's office where 

access to textbooks was possible at a hand's length], it is 3.4. There 
are too many formulas for students to commit to memory. In statistics 
where some formulas are rarely required these are best to be obtained 
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from other sources, e.g. textbooks, calculators, when called for, like 

the variance it is available on the calculator. [INST] 

d) 	The student is incorrect in treating the problem [referring to the 
trigonometric item] as a simple algebraic expression because 

cos(2x+ I) # cos2x + cosi, (2x+1) is an angle. The student needs 

more practice in evaluating simpler forms, e.g. sinx = 0, cosx = 1, first 

... [and] knowing how to use the calculator for trig functions is an 

essential skill to develop before moving on to this form [referring to 
cos(2x+ 1)=0] . [RELAT] 

Responses (a), (b) and (c) were classified as instrumental because of the 

following reasons. In response (a), there was an indication that knowledge 

of formulae and theorems was important. However, this knowledge was not 

evident but rather the use of an algebraic procedure to demonstrate that the 

given cued-data was incorrect. The calculator was also mentioned as a 

method for teaching logarithm. Response (b) illustrated that the 

respondent had knowledge of logarithmic laws but was unable to explain 

the 'student error' due to differences in teaching approach. Response (c) 

tends to indicate that formulae which are seldom used, such as those in 

statistics, are perhaps not taught to students as usable knowledge but as 

external cues (or stimuli) for memory recall. In response (d), there was an 

indication of relational understanding of trigonometry. The respondent 

identified the possible cause for the 'student error' in relation to other 

forms of mathematics (simple algebraic expression), and stated the 

student's error (cos(2x+1) cos2x + cosl, because (2x+1) is an angle), 

and also suggested steps for the student to achieve this knowledge more 

accurately (... need more practice in evaluating simpler forms). 
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Category (3) response-data 

This classification was based on the criteria that the response-data would 

contain evidence of more than one relevant knowledge aspect associated with 

the rules, theorems, symbols and systems of related procedures for the given 

cued-data. In addition, there was evidence of computational knowledge. 

To illustrate this classification, a response to cued-data in the 

trigonometric item is given below: 

Given cued-data: cos(2x+1) = 0 
cos2x + cosl = 0 

A category (3) response: 

(i) cos(A + B) # cosA + cosB, because 'cos' is a function not 
some algebraic quantity. 

(ii) cos900  # 0 
2x + 1 = 900  
2x = 89 

x = 44.50  

(iii) Or apply the Trig, formula which I've forgotten, something like 
cos(ir + n) = 0? (INST) 

The respondent's computation in part (ii) was consistent with the statement 

that 'cos' is a function (or a symbol denoting a trigonometric function) and 

not an algebraic quantity (or expression). That is, (2x+1) was recognised as 

the 'angle measure', this was confirmed by the procedures showing the 

cosine of 90 degrees has a value of zero. The computation for the value of x 

concluded with x = 44.5Q Although this value was incorrect, this was 

accepted by the respondent as valid. The closure in part (iii) had no real link 

to the previous operations and even though the trigonometric formula was 

referred to, there was indication (I've forgotten) of incomplete knowledge. 
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The above response was categorised as instrumental (1NST) understanding 

since the computational knowledge demonstrated in part (ii) appears to be 

based on rote memorisation of algorithms for trigonometric situations. 

Part (iii) tends to confirm the connection of these algorithms to rote 

learned rules and formulae rather than to knowledge relating to the concept 

of functions as stated in part (i). 

Further examples of response-data classified as belonging to category (3) 

are described below. 

Given cued-data: Simplify and evaluate for x, log 10(2x+1) = log1o(x-1) 

A category (3) response-data is as follows: 
log in base 10 is common on both sides, 
so log(2x+1) = log(x-1) can be simplified to 
2x+ 1=x-1 
x = -2. [INST] 

The above response represents the most common type of response to the 

logarithmic item from among the group of experienced mathematics 

teachers. This type of response showed evidence that the respondent had 

focused on the key 'statement' at the top of the stimulus item (Simplify and 

evaluate for x, log 1o(2x+1) = log 10(x-1). The computation that followed 

was a demonstration (based on computational knowledge) of how to achieve 

the goal (Simplify and evaluate for x). The rest of the cued-data (the 

student's error response) was ignored and the conclusion was limited to the 

value of x, (x = -2). 

A similar approach of focusing on the key 'statement' in the stimulus 

item followed by correct computations was also commonly used by the 
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teachers in responding to the trigonometric and the statistic items. This 

was particularly true for instrumental type responses. 

For relational type responses, linkages between the key 'statement' and some 

sections of the given cued-data were evident. For example, the following is 

the key 'statement' at the top of the trigonometric stimulus item: Evaluate 

for x, cos(2x+1) = 0 

A category (3) response: 

The first mistake is cos(2x+1) cos2x + cosl. 
The correct solution for cos(2x+1) = 0 is: 

(I). Find values of cos0 = 0, 0 = ff12, 37r12, 
(2). Solve for x, (2x+1) = 0 = (2n-1)7r/2, where n = integer 
2x = (2n-1)2T/2 - 1 

x = (2n-1)r/4 - 1/2 [RELAT] 

A category (3) response to the statistic item is described next. The 

underlying statement in the statistic stimulus item was: 

Explain how to obtain the correct value of the variance for the given data, 

n=10. 

A category (3) response: 

I prefer to have students use the formula: 
x2 I X2 -2 S 2 = 	 or s2 = 

The mean is 4, so s2  = 19.4 - 16 = 3.4. Incidentally, although I 
would always mention the idea of variance, our teaching [this 

teacher was a Head teacher of mathematics] centres entirely on 

standard deviation. [RELAT] 
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The categorisation of category (3) type response-data into instrumental 

understanding was based on evidence that the computational structure was 

centred around a system of algebraic manipulation without reference to the 

theorems or laws underlying the particular mathematics. The response to the 

logarithmic item, described above, is an example of instrumental 

understanding. 

The categorisation into relational understanding, on the other hand, was 

based on evidence of attempts by the respondent to make use of relevant 

formulae, algorithms, and procedures closely related to the fundamental 

theorems or laws of the particular mathematics. The above responses for the 

trigonometric and the statistic stimulus items are examples of relational 

understanding. 

Category (4) (Symbolic understanding) 

The classification into this knowledge category describes a system of 

knowledge outcomes that give evidence (or justification) to a complex inter-

relationship of various mathematical knowledge forms at the cognitive 

domain. In this evaluation, the classification of a response-data as belonging 

to category (4) or symbolic understanding was based on several criteria: 

(a) the response-data had evidence that the respondent has conceptual 
knowledge of the symbolisation structures relating to the underlying 
principles of the particular mathematics being represented in the 
stimulus items, 

(b) evidence that most or all of the cued-data (student error) was considered 
in context, 
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(c) evidence of attempts to provide corrective measures for the 'student 
error' and suggestions of possible learning difficulties related to the 
acquisition of the particular mathematical knowledge. 

An example from each of the logarithmic, trigonometric, and the statistic 

stimulus items are presented below. 

A category (4) response-data for the logarithmic item: 

The student has recalled the log law incorrectly and treated log(2x+1) = 
log(x-1) not as belonging to a 'log' function, but has considered the 'log' as 
a variable. The best way to help the student learn his/her mistake is point out 
the errors and appraise the correct attempts. So my explanation to the 
student would be: 
I'd start with explaining that log(a + b) loga + logb 
but loga + logb = log(ab) and loga-logb = log(a/b). Then 
log(2x+1) = log(x-1) 
log(2x+1) - log(x-1) = 0 	-> can use loga-logb = log(alb) here 
logl(2x+1)/(x-1)] = 0 	-> the inverse log lox.° --> x=100  that the 

student correctly stated is used here. 
(2x+1)/(x-1) = 100 	-> 100=1, the student stated this correctly too. 
2x+I = x-1 	 -> if x-I# o 
x = -2. 
However, logx is only valid for x 0, so x = -2 needs checking as to whether 
it provides a valid solution. Substituting -2 into log(2x+1) = log(-3), this is 
undefined. Therefore x = -2 does not provide a valid solution. That is, 
log(2x+1) = log(x-1) has no real solution. I suspect the outcome of log(-3) 
when checking would not alert the student who does not understand the 

concept of log functions. [REFLECTIVE MODE] 

Next, a category (4) response is presented for the trigonometric item. 
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The student's response is incorrect and it could be suggested that the 
reason for the error is related to the following: 

1. If the student was introduced to trig-formulae and was confused or 
did not understand how to use them then this response could be the 
result of that. 
le. cos(2x+1) = cos2x + cosl was the attempt to expand LHS 
according to cos(A+B) = cosAcosB - sinAsinB. Although this 
method could be used, it thus however, requires a sound knowledge 
of the associated trig-formulae. 

2. The student may not have an understanding of trig functions at all 
and just treated 'cos' as a variable or an unknown. But this would 
be an extremely unlikely response for a university student of 
mathematics. 

3. The student may have forgotten the basic trig-values, e.g. 
cos0=1, cosr/2=0, cosir=-1, cos37r/2=0, cos27r=1. The given 
cos(2x+I)=0 can be solved by knowing and recalling these values: 
E.g. cose2=cos37r/2=cos(2n-1)7r/2 = 0, where n = 1,2,3, ... , 
therefore cos(2x+1) = cos(2n-1)r/2. 

The next step of equating the angles, (2x+I) = (2n-1)7r/2, is most 
probably where students get the belief that 'cos' can be treated as a 
variable. 

Solving for x: 2x = (2n-1)7r/2 - 1 
x = (2n-1)7r/4 - 1/2, n = I, 2, 3, .... , 
However, weaker students may not use radian form. E.g. they 
would tend to solve cos(2x+1) = 0 by equating (2x+1) to 900, 
cos 900  = 0, --> 2x+1 = 90 ( often ignored the degree symbol) 
concluding that x = 44.5. [REFLECTIVE MODE] 
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A category (4) response-data for the statistic item: 

The 3 answers for the given information are all possible and each can be 
connected to the idea of a variance but with some degree of correctness. 

1. If the student considers the formula which indicates that 
(deviations) 
	  then 1,(x i  — .X) 2  = 24, is the obvious 

i=i 
choice and 24/10 = 2.4 is the solution. The mistake here is related 
to carelessness of not checking the data. 

2. If the student considers the formula in the same way as above and 
recognises the significance of the summation notation, then 24/9 = 
2.7. The error here is a one degree of freedom and for some cases 
this is justified. 

3. The solution for the given information is 3.4 or the (ii) alternative. 
The focus of this question was on the use of the preferred formula 
for the variance. 

194 
ie. s2  = 	

2 
2 	= 	- 16 = 3.4 

10 
Students are encouraged to know both forms but this fits the 
calculator functions and is my preferred method of showing 
students how to find a variance value. [REFLECTIVE MODE] 

In summarising the descriptions for classifying response-data into category 

(4), it was observed, as illustrated in the above examples, that the response-

data which met the specified criteria appear to be representative of what 

Skemp (1979) described as the reflective mode of functioning in 

mathematics. However, it could be suggested from this analysis that an 

intuitive mode of representation would reflect evidence of knowledge based 

on procedures and manipulation of symbols to show that something is 'true' 
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or 'false'. As such, responses displaying intuitive mode representation for 

symbolic understanding were classified as category (3), see Table 4.3 (next 

page). 

An example of this type is illustrated below: 

The student seemed to be using a complicated method [implication that 
the respondent has alternative methods of showing a proof] to compute x, 
and didn't recognise that log o  can be cancelled because it's a common 
factor. So log 10(2x+1) = 1og 10(x-1) is 2x+1=x-1, therefore x = -2. 

This value is correct in so far as it relates to equations, [implication that 
the respondent may have conceptual knowledge of logarithm but decided 
to focus on justifying why the 'student response' was incorrect] 
e.g. substituting x = -2 into log(2x+I) = log(x-1) gives log(-3) on both 
sides of the equal sign. But the student's answer of x = I is not correct, ie. 
log3 logO. [INTUITIVE MODE] 

This then completes the analysis of the 18 teachers' interview data. The use 

of Skemp's model to classify the data into instrumental, relational, and 

symbolic understanding greatly facilitated this analysis of mathematical 

knowledge. The model enabled an analysis of responses which were the 

product of rote memorisation and distinguishes them from those which were 

the product of the individual's own constructions. Even with response-data 

based on experienced teachers' knowledge, the use of this model seemed to 

appropriately describe the quality of mathematical knowledge associated 

with teacher mathematical competence. 
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(3) Summary of the analysis of mathematics teachers' interview data 

A summary of this analysis and the frequency distribution of the 

classifications into the four response categories for each of the three 

stimulus items, abbreviated as LOG, TRIG, and STAT, is presented in Table 

4.3 below. Category (1) data are presented at the upper section of Table 

4.3 and categories (2), (3) and (4) data are presented at the lower section of 

Table 4.3 in relation to Skemp's three types of mathematical 

understanding. In addition to this frequency distribution, the 'category' of 

each teacher's response-data and the classification of the responses into 

Skemp's types of mathematical understanding are presented in Table Al of 

Appendix A. 

Table 4.3: 	Summary of the analysis of interview data from 
mathematics teachers 

Category 
(1) 

TRIG LOG STAT TOTAL 
2 2 8 12 

Skemp's 	model of mathematical understandinfi 
Symbolic 

Understanding 
TOTAL 

Category 
Instrumental 
Understanding 

Relational 
Understanding 

LOG TRIG STAT DOG TRIG STAT LOG TRIG STAT 
(2) 

Intuitive 
5 5 2 12 

(3) 
Reflective 

5 4 4 - 2 1 3 I I 21 

(4) 
Reflective 

3 4 2 9 

Total 10 9 6 2 1 6 5 3 42 

The results of this analysis have provided an insight into the types of 

mathematical knowledge associated with the teaching of logarithm, 

trigonometry and statistics at the secondary school level. The frequency 

distribution of knowledge descriptors presented in Table 4.3 indicated a 
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strong tendency in favour of instrumental understanding. This result could 

be the function of several factors (e.g. teacher attitude, teaching method 

and lack of professional development) which this study was not designed to 

determine. 

However, the high frequency of instrumental type response-data could be 

associated with the kind of mathematics the teachers were currently teaching 

at the time. For example, as presented in Table Al (Appendix A), 

instrumental type responses were mostly from teachers who were teaching 

the Applied Mathematics (AppM), Applied Mathematics and General 

Mathematics (GenM), or High School mathematics. Applied Mathematics 

and General Mathematics are units for years 11 and 12 (college) students. 

These two courses are particularly for students who have little intention of 

pursuing rigorous studies in mathematics but wish to gain a background 

knowledge of college mathematics. 

The teachers' instrumental approach may also be an indicator of the 

mathematical abilities of the students they taught. That is, if the teachers 

were teaching a particular group of students who favoured the less rigorous 

approach to learning mathematics, then this might influence the teachers' 

responses to the three stimulus items. For example, when one of the teachers 

was asked about the role of the calculator in teaching logarithm, 

trigonometry and statistics, the teacher responded: ... these kids get confused 

with the nitty-gritty of mathematics ... the calculator provides an avenue for 

teaching these kids log and trig formulas and particularly the standard 

deviation ... they need immediate feedback and success to keep them on task, 

so sound calculator skills is a must in learning these topics. 
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Another outcome from this analysis that is worthy of consideration is the 

22% (12/57) of the response-data classified as category (1) type knowledge. 

Although this is a small percentage of all the responses, it is important to 

note that about a half (44%=8/18) of the teachers had at least one response 

classified as category (1), particularly for the statistic stimulus item (Table 

Al in Appendix A). An example of a typical category (1) response was, I 

can't answer this question because I haven't taught this topic yet. This type 

of response seemed to suggest a close relation between what the teachers 

teach and their knowledge of the particular mathematics. 

However, the act of teaching alone did not seem to facilitate these teachers in 

gaining relational or symbolic forms of understanding. For instance, the 

topics of logarithm, trigonometry and statistics were integral components of 

the General and Applied Mathematics units (taught by 72% of the 

respondents), and yet teachers' responses to the set of three stimulus items 

(representing logarithm, trigonometry and statistics) were mostly of 

instrumental understanding (68%, category (1) included). This outcome 

might well be an indication of the teachers' unfamiliarity with the 

mathematics being represented in the three stimulus items. However, this 

might only be true of the trigonometric item where the given equation was 

cos(2x+1)=0 rather than the more familiar form (cos2x = 0) being taught in 

the Applied Mathematics unit. 

The teachers' perceptions of their students' mathematical ability could also 

indirectly affect their understanding of the mathematics they teach. In other 

words, if the teacher, for example, perceives his or her understanding of the 

mathematics to be inadequate for teaching the students, then this inadequacy 
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may influence the teacher to want to explore new ideas and to gain more 

knowledge about the mathematics to be taught. However, to gain relational 

or symbolic understanding, the teacher's involvement should be more than 

studying the syllabus, obtaining appropriate textbooks and other 

recommended resource materials, and more than studying the text material 

for procedures and sequencing of the content matter. Rather, the teacher's 

involvement should show evidence of his or her ability to manipulate and 

appropriately integrate new conceptual mathematical structures (or symbolic 

type understanding), and interpret these structures in terms of their 

relationships with one's prior mathematical knowledge (Skemp, 1982). 

In summarising the analysis of the teachers' interview data, three key issues 

were observed. The first one relates to the 'evaluation tool'. The Skemp 

model provided an effective means of analysing the quality of mathematical 

understanding represented by the response-data as well as identifying how 

the knowledge may have been acquired. 

The second observation concerns the strong evidence of instrumental type 

understanding in the interview data. This outcome might be related to the 

kinds of mathematics in the courses the teachers were currently teaching at 

the time. However, this instrumental outcome appears not to be due to the 

types of mathematics represented by the three stimulus items. Rather, it 

seemed that the teachers' understanding of the particular mathematics was 

influenced by what they perceived to be appropriate learning for the students 

they were teaching at the time. 

The third issue relates to the teachers' growth in mathematical (relational) 

understanding. It could be suggested, from the outcomes of this analysis, 
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that teachers do not see the value in exploring and studying new ideas about 

the mathematics they teach, if the courses they teach do not challenge their 

mathematical understanding. 

The above outcomes provide valuable links between teaching and 

mathematical understanding that could be applied to the education of pre-

service mathematics teachers. For example, the skill of presenting 

mathematics to a class of students does not appear to be a critical factor in 

teaching, rather it is having an understanding of the mathematics being 

taught. That is, an understanding which is generated by the individual's 

pursuit to know substantially more about the mathematics he or she teaches, 

rather than the understanding based on mathematics textbooks and other 

curriculum resource materials (e.g. the syllabus). This mathematical 

understanding is the underlying issue being explored in the study reported 

in the next chapter, Chapter 5. 
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CHAPTER FIVE 

ANALYSIS OF PRE-SERVICE 

TEACHERS' MATHEMATICAL KNOWLEDGE 

Introduction 

The purpose of this chapter is to report on the analysis of the data from the 

study of secondary pre-service teachers' existing mathematical knowledge. 

This study addressed three main assumptions: 

(1) Mathematical understanding is dependent on the sufficiencies of 

procedural and conceptual types of mathematical knowledge. Lack 

of or a deficiency in either procedural and/or conceptual 

knowledge types would suggest a deficiency in mathematical 

understanding. 

(2) Pre-service mathematics teachers go through their teacher education 

and training with certain deficiencies in their mathematical 

understandings and that these deficiencies will eventually affect the 

way they teach. 

(3) Pre-service mathematics teachers who majored in mathematics or other 

science related areas (e.g. chemistry and computer science) would 

show less evidence of mathematical knowledge deficiencies than pre-

service teachers who majored in other areas (e.g. economics and 

physical education). Furthermore, pre-service teachers with relational 

understanding of mathematics would demonstrate more confidence to 

teach mathematics than pre-service teachers with instrumental 

understanding. 
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These assumptions led to the following two research questions: 

1. What types of procedural and conceptual mathematical knowledge 

exist in pre-service teachers' knowledge bases? 

2. What possible influences could any identified deficiencies in types of 

procedural and conceptual mathematical knowledge have on the 

teaching of mathematics? 

In order to address these two research questions, a multiple case study design 

was employed. The study's design was detailed in the first part of the 

previous chapter, Chapter 4, in which the procedures for selecting the cases 

and for data collection were described in Sections (4.1.4 and 4.1.5) and 

Sections (4.1.6 and 4.1.7) respectively. 

In this chapter, the data collection procedures and the analysis of these data 

are reported in three parts. The first part is the description of the selected 

multiple cases, the collected data, as well as definitions of the terms used in 

the analysis. The second part is the reporting of the analysis of the data. 

The third and final part is a summary of the analysis in view of the two 

research questions. 

5.1 	PART ONE: SELECTED CASES, COLLECTED DATA, 

and DEFINITIONS 

5.1.1 	Selected cases - pre-service mathematics teachers 

The replication procedures applicable for selection of multiple cases in case 

study designs were used for selection of the pre-service teachers. These 

procedures were detailed in Section (4.1.4) and presented in Table 4.1 in 

Chapter 4. For convenience, Table 4.1 is reproduced here as follows: 
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Set Al Cases Set A2 Cases 
State A First set of cases in A Second set of cases in A 

Background: maths major Background: 	maths 	minor 
Set B1 	Cases Set B2 Cases 

State B First set of cases in B Second set of cases in B 
Background: maths major Background: 	maths 	minor 

The State of Tasmania was selected as State A. A prospective mathematics 

teacher may enter the secondary mathematics pre-service teacher education 

programs at the university of Tasmania in either one of the following 

pathways: 

(1) Enrolment in a one year Diploma of Education (Dip Ed) program 

following the completion of a B.Sc degree, or equivalent, with a 

major in mathematics or in other sciences and technology areas. 

For example, engineering, physics, chemistry and computer science. 

(2) Enrolment in a four year Bachelor of Education (B.Ed) program 

and completing the compulsory mathematics units concurrently 

with the education units. 

Pathway (1) was offered to graduate students at the university's southern 

campus. The first set of multiple cases were selected from the nine students 

who were currently enrolled in pathway (1) at the time. However, only five 

of these nine students accepted the offer to participate in the study. This set 

of five participants (four males and one female) corresponds to Set Al in 

Table 4.1 above. 

Pathway (2) was offered to undergraduate students at the university's 

northern campus. The target students were those currently enrolled in their 

third or fourth year of studies. It is important to mention at this point that 

because it was compulsory for undergraduate students who follow pathway 

(2) to do the core mathematics units of the B.Sc program, they were referred 
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to by the university as 'mathematics majors' or credited likewise. As such, it 

was recommended for students undertaking this pathway to have had 

completed the appropriate pre-requisite mathematics (mathematics stage 2 

and stage 3) courses at the college level. However, this was only a 

recommendation and not all enrollees follow this advice. Therefore, to meet 

the 'maths minor' criterion of this study's design, it was those students 

without the appropriate mathematics background who were invited to 

participate. Twelve such students were identified and only five (three males 

and two females) were willing to participate in the study. Three of these 

participants were third year and two were fourth year students. This second 

set of cases corresponds to Set A2 in Table 4.1 above. 

For external validity of the study results, replication procedures for the 

selection of cases were repeated at the state of Western Australia, State B. 

Two (B1 and B2) of the four universities in State B that were involved in 

this study offered prospective secondary mathematics teachers the 

following three pathways: 

(1) Enrolment in a one year Diploma of Education (Dip Ed) 

program following the completion of a B.Sc degree, or 

equivalent, with a major in mathematics or in other sciences and 

technology areas. For example, engineering, physics, chemistry 

and computer science. 

(2) Enrolment in a four year Bachelor of Education (B.Ed) 

program and completing the compulsory mathematics units 

concurrently with the education units. 
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( 3 ) 	Enrolment in a one year Dip Ed program following the 

completion of an undergraduate degree with a minor in 

mathematics. For example, B. Economics with the completion of 

at least 2 mathematics units at university level. 

University B1 offered both pathways (1) and (2) to prospective secondary 

mathematics teachers. However, to meet the criterion of 'maths major' for 

this study's design only those students enrolled in pathway (1) were targeted 

for selection. Nine such students were identified and only six agreed to be 

participants (four males and two females) in the study. This set of six 

participants corresponds to Set B1 in Table 4.1 above. 

University B2 offered all three pathways to prospective secondary 

mathematics teachers. In order to meet the criterion of 'maths minor' for 

this study's design only those students enrolled in pathways (2) and (3) were 

targeted for selection. However, due to students' involvement in school 

experience during the designated data collection period, only three of the 

targeted students were available to participate in the study. All three agreed 

to be participants (three females) and were enrollees of pathway (3). This set 

of participants corresponds to Set B2 in Table 4.1 above. 

The summary of the selected sets of pre-service teachers for the study is 

presented in Table 5.1 on the next page. 
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Table 5.1: 	Distribution of cases - pre-service mathematics teachers 

PLACE 
Diploma 	of 
Education 

Maths major 

Diploma 	of 
Education 

Maths minor 

Bachelor 	of 
Education 

Maths minor 
TOTAL 

TASMANIA 5 
(4 males, 
1 female) 

5 
(3 males, 

2 females) 

10 
(7males, 

3 	females) 

WESTERN 
AUSTRALIA 

6 
(4 males, 
2 females) 

3 

(3 females) 

- 
9 

(4 	males, 
5 	females) 

TOTAL 11 3 5 19 

A description of the procedures for collecting the data from the selected 

participants is provided in the following section. 

5.1.2 	Collected data 

The collection of the data from the participants in the study was according to 

the procedures detailed in Sections (4.1.6) and (4.1.7) of Chapter 4. Also 

detailed in the second part of Chapter 4 were the procedures for the 

development and validation of the three mathematical stimulus items used in 

the process of data collection. For the purpose of the discussion in this 

section, Figure 4.1 containing these three stimulus items is reproduced on the 

next page. 

The collected data were organised according to the three stimulus questions 

within each of the stimulus items (Figure 4.1). These stimulus questions are 

defined here as: stimulus question / (or SQ1), stimulus question 2 (or SQ2), 

and stimulus question 3 (or 5Q3). The purpose of SQ1, SQ2, and 5Q3 was to 

promote the production of 'complex' type responses (Figure 2.5, Chapter 
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(1) The trigonometric item: 

Evaluate for x, Cos(2x+1) = 0 

A student responded: 

Cos(2x + 1) = 0 
Cos2x + Cosl = 0 
Cos2x = -Cosl 
2x = -1 
... x = -1/2 

If you were the teacher: 

SQl. Would you accept the student's response as 
being correct? 

SQ2. What do you consider important about the 
learning of trigonometry that you must teach 
your students? 

SQ3. How would you approach the teaching of 
trigonometry? Please explain and give an 
example of your teaching method. 

(2) The logarithmic item: 

Simplify and evaluate for x, 
log, 0 (2x+1) = 1og 10 (x-1) 

A student responded: 

log(2x+1) = log(x-1) 
log2x + logl = logx - logl, 	(log1=0) 
log2x - logx =0, 	 (log iox = 0) 

o 
x = 10 
:. x = 1 

If you were the teacher: 

SQL Would you accept the student's response as 
being correct? 

SQ2. What do you consider important about the 
learning of logarithm that you must teach 
your students? 

SQ3. How would you teach logarithm? Please 
explain and give an example of your 
teaching method. 

2) at the initial stage of the data collection procedures; the 'silent reading' 

stage (Section 4.1.6, Chapter 4). In addition, SQL 5Q2, and SQ3 were 

designed and sequenced in this way for data organisational purposes in 

preparation for the data analysis procedures. The responses to SQ1 were 

organised for addressing the first research question: What types of 

procedural and conceptual mathematical knowledge exist in pre -service 

teachers' knowledge bases? The response data for SQ2 and SQ3 were 

organised for addressing the second research question: What possible 

influences could any identified deficiencies in the types of procedural and 

conceptual mathematical knowledge have on the teaching of mathematics? 

Figure 4.1: 	The three mathematical stimulus items 

... Figure 4.1 continues over to the next page ... 
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(3) The statistic item: 
A class of year 11/12 students was asked to find the variance using the 
information given below: 

Ten items were measured and four results were produced: 
10 	 ( 10 	2 

1. 1 Xi  = 40 	2. 	yx ;) = 1600 

10 	 9 

3. Exi2 = 194 	4. 	/(Xi  — 1) 2  = 24 
i=1 	 1=1 

The class produced 3 different values for the variance, S 2 : 
(i) 2.4 	(ii) 3.4 	(iii) 2.7 

If you were the teacher: 

SQL Which variance would you accept as the correct answer? 
SQ2. What do you consider important in the learning of statistical variance that your students must learn? 
SQ3. How would you approach the teaching of variance? Please explain and give an example of your 

teaching method. 

Another important sequence of organisational procedures in preparation for 

the analysis of the data are the procedures which were implemented in an 

attempt to minimise biases during the analysis of the response data. The type 

of bias that may occur, for instance, when a prior expectation by the 

researcher could influence his or her perceptions and the analysis of the 

particular data (Berg, 1989). Hence, in an endeavour to minimise biases, the 

following procedures were implemented for each of the cases studied. 

a) Shortly (e.g. no more than a day) after the interview session, audio 

taped responses were transcribed and added to written responses. 

These responses are referred to as 'raw data'. 

b) The personal information form was labelled with an identification code 

(ID code) and removed from the 'raw data' to be filed with the other 

participants' forms in a sealed envelope. Another envelope was 
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simultaneously labelled with this same ID code and the corresponding 

raw data were placed inside it ready for the next process. 

c) Each ID code was written onto a small piece of paper and placed in a 

container. This procedure would allow a random selection of the 

envelopes during the analysis stage of the data. 

d) At the analysis stage, an ID code is selected from the container and 

matched to its corresponding envelope which contains the 'raw data' 

to be analysed. The sequence in which the response data had been 

randomly selected for analysis is retained and used in the reporting 

of the analysed data (presented in Figure B1 and Table B2 of 

Appendix B). 

In Chapter 3, Figure 3.2, the 'predicted response patterns' based on Skemp's 

model were described. The seven response patterns which formed the base-

line of patterns for the data analysis of the main study were described in 

Chapter 4, Section (4.2.2) and presented in Figure 4.2. At this point, it is 

essential prior to the reporting of the analysis to provide definitions of the 

various terms involved in determining the particular response patterns. The 

definitions of these terms are provided in the next section, Section (5.1.3). 

5.1.3 	Definitions of terms in the analysis 

In Chapter 4, Figure 4.2, seven possibilities of response patterns that could be 

evident in the response data were described. The aim in this section is to 

define the key terms used in determining and differentiating between these 

seven patterns. The key terms concerning mathematical understanding are 
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defined here in relation to Skemp's (1978, 1979, 1982) three kinds of 

mathematical understanding. 

Instrumental understanding is understanding based on active recall of rules 

and algorithms associated with rote memorisation learning. 

- Pseudo -procedural knowledge is knowledge of rules without reasons. 

- Pseudo -conceptual knowledge is knowledge of assorted rules to achieve a 

correct answer. (Chapter 3, Figure 3.2) 

Relational understanding is understanding based on the interconnection of 

ideas that explain and give meaning to mathematical procedures. 

Relational-procedural knowledge is knowledge of rules; meaning, 

significance, or structure of a problem without explicit reliance on a tested 

technique of analysis and proof. 

- Relational -conceptual knowledge is knowledge of extensive mathematical 

structures (schemata) to relate and verify procedures. 

(Chapter 3, Figure 3.2) 

Symbolic understanding is understanding based on the assimilation between 

a symbol system and a conceptual structure, dominated by a conceptual 

structure. 

Symbolic -procedural knowledge is knowledge of a logical progression of 

steps for a proof giving evidence of an awareness that something is 'true' 

or 'false'. 

Symbolic -conceptual knowledge is knowledge giving evidence of 'full 

mathematical rigour'. (Chapter 3, Figure 3.2) 
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The response data were also categorised according to evidence of what the 

respondent had indicated that he or she can and cannot do. The following 

are the four response categories: 

Category (/). 	Little or no recall of knowledge about the mathematics 
presented. 

Category (2). 	Can recognise rules, theorems, symbols, or a system of 
procedures or methods. 

Category (3). 	Can carry out computations by applying a rule or a set of 
procedures. 

Category (4). 	Can demonstrate as in (2) and (3) as well as providing a 
justification or reason for a given result. Category (4) is 
representative of responses belonging to symbolic 
understanding. 

Two other terms used throughout the report and need defining are cued-

data, and response -data. 

Cued-data are the stimulus cues within the stimulus items. 

Response -data are analysed responses. Analysed responses are actual or raw 

data which have been through the processes of classification, examination, 

and analysis. 

Having stated the study's assumptions and research questions; described the 

selected cases as well as the collected data and stimulus items involved, and 

defined the terms for determining the response patterns in the analysis, the 

next part of this chapter, part 2, contains the analysis of the data. 
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5.2 	PART TWO: 	ANALYSIS OF THE DATA 

The analysis of the data is reported in three stages corresponding to the three 

phases of the analysis: 

(1) In the first phase, the responses to SQ1 are analysed for the purpose of 

addressing the first research question: What types of procedural and 

conceptual mathematical knowledge exist in pre -service teachers' 

knowledge bases? The responses to SQ2 and SQ3 are also referred to as 

and when appropriate to provide further support and clarification of 

meaning to particular response patterns. The reporting of this phase is 

organised under the four response categories. This same organisational 

approach was used in Section (4.2.3) of Chapter 4 for reporting on the 

analysis of experienced teachers' interview data. 

(2) The second phase involved the analysis of responses to SQ2 and SQ3 

for the purpose of addressing the second research question: What 

possible influences could any identified deficiencies in types of 

procedural and conceptual mathematical knowledge have on the 

teaching of mathematics? Reference to the analysis in phase one is 

made, as and when appropriate, to provide further support and 

clarification of response data in phase two. The analysis in this phase is 

reported in terms of the three stimulus items. These items are referred 

to as TRIG for the trigonometric item, LOG for the logarithmic item, 

and STAT for the statistic item. 

(3) The third and final phase draws upon the results from phase one and 

phase two. The aim of this analysis is to address both research questions 
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in view of any similarities and/or contrasts of knowledge types displayed 

in the response-data from the 'maths major' (Set Al and Set BI) 

groups and the 'maths minor' (Set A2 and Set B2) groups. In this 

phase, summarised results from phase one and phase two for each case 

are examined in order to determine 'similarities' within the four sets of 

multiple cases and 'contrasts' between these four sets (Chapter 4, 

Section 4.1.4). Reporting is organised under the criteria of similarity 

and contrast in knowledge types. 

The first report is on phase one of the analysis. 

5.2.1 	Phase one of the analysis 

The data to be examined in this phase of the analysis are responses to the 

three questions in the stimulus items, in particular SQL These questions are 

reviewed below: 

Stimulus question 1 (SQ1): If you were the teacher: Would you accept the 
student's response as being correct? 

This question was intended to direct the respondent's attention to the main 

stimulus cued-data, namely the student's error response. The aim of this 

error response was to provoke cognitive processing of knowledge (Brownell, 

1958; Gagne, 1985; Derry, 1996). It was assumed that responses to this 

question would provide data (or knowledge representation) about the 

respondent's knowledge on the particular mathematics in focus. Responses 

to SQ1 formed the primary source of data for examining the quality of these 

pre-service teachers' existing mathematical knowledge. 
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Stimulus question 2 (SQ2): What do you consider important about the 

learning of (logarithm, trigonometry, or the statistical variance) that you 

must teach your students? and 

Stimulus question 3 (5Q3): How would you teach (logarithm, trigonometry, 

or the statistical variance)? Please explain and give an example of your 

teaching method. 

The responses to SQ2 and SQ3 were treated as complementary data to those 

of SQL Responses to SQ2 were important in order to observe any links 

between what the pre-service teachers know about the mathematics (SQ1) - 

mathematical knowledge - and what they perceived to be important 

mathematical learning for students (SQ2) - pedagogical knowledge. 

Responses to SQ3 were also for exploring the pre-service teachers' 

pedagogical content knowledge and any links with mathematical knowledge 

(SQ1). The procedures for analysing the responses to SQ1, SQ2, and SQ3 

are described next. 

For each of the cases studied, the analysis of response data was according to 

the following two procedures: 

1. 	The evaluation and classification of responses to SQ1 into three main 

sets corresponding to the three kinds of mathematical understanding: 

instrumental, relational and symbolic (Skemp, 1978, 1979). This 

classification process was applied to response data for each of the three 

stimulus items (TRIG, LOG, and STAT). 
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2. 	The response data were examined in terms of procedural and 

conceptual types of knowledge. This examination also involved the 

categorisation of responses based on evidence of what the respondent 

had indicated that he or she can or cannot do: 

Category (1). Little or no recall of knowledge about the mathematics 
presented. 

Category (2). Can recognise rules, theorems, symbols, or a system of 
procedures or methods. 

Category (3). Can carry out computations by applying a rule or a set of 
procedures. 

Category (4). Can demonstrate as in (2) and (3) as well as providing a 
justification or reason for a given result. 

These response-data are presented in Figure B1 and Table B2 of Appendix B. 

Table B2 summarises the data presented in Figure Bl. A frequency 

distribution of the analysed data is presented in terms of the above response 

categories and with respect to the three stimulus items in Table 5.2 below. 

Table 5.2: 	Frequency distribution of SQ1 response-data for 
the three stimulus items 

Category TRIG LOG STAT Total 
1 5 6 14 25(44%) 
2 10 8 3 21 (37%) 
3 4 5 2 11 	(19%) 

Total 19 19 19 57 (100%) 

The distribution of the analysed data presented in Table 5.2 showed 44% of 

the response-data were classified as category (1), 37% as category (2) and 

19% as category (3), and there was no data for category (4). 
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The reporting of the first phase of the data analysis is with respect to the four 

response categories. However, it is appropriate at this stage to provide the 

reader with more details of how the response-data are reported in this thesis. 

To distinguish female from male participants, females will be denoted by Fl, 

F2, F3, , F8 and males by Ml, M2, M3, ,M11. In an endeavour to 

illustrate the classification of responses into each category, selected examples 

of response-data from the respective categories are presented. To provide 

further clarification about the selected response-data, the author's 

descriptions and summaries of the types of knowledge involved are inserted 

as appropriate, inside square-brackets [ ]. The first classification of responses 

to be described is the 44% of response-data classified as category (1). 

5.2.1.1 	Category (1) response-data 

It was found in the analysis of the experienced teachers' interview data that 

response-data classified as belonging to category (1) were more likely to 

represent evidence of instrumental understanding. 

A category (1) classification is a measure which indicates that there was 

sufficient evidence to show that the individual was unable to provide the 

appropriate mathematical knowledge associated with the stimulus items. This 

inability or uncertainty appeared to relate to several factors such as lack of 

memory recall (Lmr), lack of knowledge (Lk) about the topic, and lack of 

understanding (Lu). In some cases these factors seemed to be interrelated, 

for example: 
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i) This is hard because I don't even remember [Lmr] what logarithm is about 

[Lk]. 

ii) I can't remember [Lmr]. I know that there are log-laws but I can't 

recall what they are [Lu]. 

iii)I don't know [Lk], 1 can't remember [Lmr]. I haven't understood 

statistics well [Lu] at Uni and I can't remember [Lmr] the variance 

formula. 

Respondents with category (1) knowledge classifications for SQ1, also 

provided similar uncertainties in their responses to 5Q2 and 5Q3, represented 

respectively as (2) Important learning and (3) Teaching approach. For 

instance, the responses associated with (i), (ii), and (iii) above are as follow: 

i) (1) This is hard because I don't even remember [Lmr] what logarithm is 

about [Lk]. 

(2) Important learning: Students to learn how to go from log(2x+1) to 

log2x + log]. 

(3) Teaching approach: Start with log-laws. That's because it's the way 

I usually work, ie. find a rule and follow that. 

The above responses were from participant F4, a 'maths minor' from State B. 

The respondent's uncertainty appears to relate to lack of knowledge and 

misconception about logarithmic functions (this is hard because I don't even 

remember what logarithm is about). This is exemplified by the respondent's 

inappropriate suggestion of important learning for students: students to learn 

how to go from log(2x+1) to log2x + log]. Clear evidence of instrumental 

type understanding was present in the response to 5Q3: Start with log-laws. 

That's because it's the way I usually work, ie. find a rule and follow that. 

Chapter 5/ Page 155 



ii) (1) I can't remember [Lmr]. I know that there are log-laws but I can't 
recall what they are [Lu]. 

(2) Important learning: 1 don't know. 1 would have to study up 
logarithm myself first. 

(3) Teaching approach: Log laws and how to apply them. Try to help 
students understand the difference of logs from algebra. 

The above responses were from participant F7, a 'maths major' from State B. 

The uncertainty in this case seems to relate to gaps in the respondent's 

knowledge about logarithmic functions: I don't know. 1 would have to study 

up logarithm myself first. For the teaching of logarithm, it seems that it may 

be limited to logarithmic laws and algebraic algorithms for computations: Try 

to help students understand the difference of logs from algebra. 

iii) 	(1) 1 don't know [Lk], 1 can't remember [Lmr]. I haven't understood statistics 

well [Lu] at Uni and 1 can't remember [Lmr] the variance formula. 

(2) Important learning: What a variance is. What it tells us about the 
data. How to calculate the value. 

(3) Teaching approach: Find the sample mean and other values from 
the data. Derive the variance using the formula. 

The above responses were from participant M7, a 'maths major' from State B. 

The lack of conceptual understanding of what statistics is about appears to be 

the cause for the uncertainty in this case: 1 don't know, I can't remember. I 

haven't understood statistics well at Uni and 1 can't remember the variance 

formula. However, the respondent seemed to be aware of what is required for 

a better understanding of the cued-data: What a variance is. What it tells us 

about the data. How to calculate the value. This also seems to summarise 

how this respondent perceives important learning for understanding a 
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concept: What it [the concept] is. What it tells us .... How to calculate the 

value. With respect to teaching, it appears that it is safer when one does not 

have a sound understanding to stay close to familiar and related areas of the 

particular mathematics, in this case statistics. For example, find the sample 

mean and other values from the data [and then] derive the variance using the 

formula. 

The above response-data from State B participants (a 'maths minor' and two 

'maths major') indicated evidence of uncertainties or lack of confidence in 

one's own understanding or existing mathematical knowledge. These 

uncertainties seem to relate to lack of knowledge, gaps in knowledge, 

misconception, and lack of conceptual understanding of mathematics. Such 

uncertainties were also evident in responses by participants from State A. 

The following are examples of both 'maths minor' and 'maths major' cases 

from State A. 

Participant Fl is a 'maths minor' from State A. These are her responses to 

the LOG item: 

(1) I've forgotten [lack of memory recall]. I don't know [lack of 

knowledge] how to do this myself so I can't really say whether 

[uncertainty] the student is right or wrong. I would need to look up a 

textbook [dependency on external aid] to remind [insufficient prior 

learning] myself again. 

Participant MI is a 'maths minor' from State A. These are his responses to 

the STAT item: 
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(1) I'm not sure [uncertainty in relation to the cued-data given for the 
variance]. I know it has something to do with statistics, but I'm not 
sure whether it's the mean something or rather [uncertainty due to 
insufficient knowledge]. 

Participant M8 is a 'maths major' from State A. These are his responses to 

the TRIG item: 

(1) The student is treating this as algebra, and there seems to be a 
misunderstanding between the cos and its angle [fragments of 
knowledge about trigonometry]. But I can't remember how to do this 
now or explain why this is so [uncertainty due to insufficient 
knowledge]. 

The above response-data from F1, MI, and M8 tend to indicate that lack of 

confidence in one's own understanding is related to knowledge 

insufficiencies. These insufficiencies or gaps in knowledge seem to have 

close association with the respondent's dependency on external aids. For 

example, F1's uncertainty about her knowledge (I can't really say whether 

the student is right or wrong) was to be compensated by knowledge from a 

textbook (I would need to look up a textbook to remind myself again). 

Dependency on external aids in order to facilitate one's knowledge of 

mathematics appears to be a deliberate decision by the individuals and 

considered by some as an acceptable approach in learning mathematics. 

F3's responses to the LOG item is an example of this deliberate decision to 

rely on external aids. 

Participant F3 is a 'maths minor' from State B. These are her responses to 

the LOG item: 
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(1) I have no recall of what logarithm is [lack of knowledge], and I'm lost 

[uncertainty] without my calculator [strong dependency on external 
aid]. Because I've always relied on the calculator [existing knowledge 
is equated to calculator skills] for working out logarithm or 

trigonometry formulas. 

The above response-data from participant F3 tend to suggest that her lack of 

knowledge and understanding about logarithm is related to a deliberate 

decision by her to rely on external assistance, namely the calculator, when 

learning mathematics. This dependency on external assistance was also 

strongly reflected in participant F3's responses to the STAT item. F3's 

responses to SQ2 and SQ3 are also included to demonstrate that her 

understanding of mathematics is rooted in her approaches to learning. 

(1) [An attempt was made to recall isolated aspects relating to statistics, e.g. 

data collection, graphing, and finding the mean, mode and median. 
But F3 could not provide an appropriate response for the given cued-
data because a calculator and the formula were not provided.] 

(2) Important learning: To focus on all statistics rather than just variance. 

(3) Teaching approach: I rote-learn a lot of my maths [evidence of rote 
memorisation]. So I'll have to learn on-the-job how to teach this 

[lacks confidence in her own knowledge, dependency on external 

guide] and adhere closely to the syllabus [set guidelines]. 

Participant F3's above response-data indicated lack of essential knowledge 

and understanding about the mathematics represented by the STAT item. 

This lack of essential knowledge appeared to be closely linked to the 

respondent's rote learning of formulae and calculator procedures. 

Furthermore, it was noted that participant F3 had to repeat the compulsory 
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mathematics unit required for completion of an Economics undergraduate 

degree. However, success was achieved a year later by using rote learning 

strategies. Participant F3 explained rote learning as getting to know your 

lecturers, memorise the formulae, and attempt all the tutorial exercises and 

available past examination papers. Participant F3 also referred to rote 

learning as a trap many students and teachers fall into because it gives 

immediate results and as such many like myself find it difficult to give up 

using it. Participant F3 continues: Also, the present system of education, 

particularly at university where the aim is to pass rather than to understand 

what you were taught, encourages rote learning. 

Rote learning might also result in acquiring specific types of knowledge 

which are difficult to integrate with the person's existing knowledge. 

Consider, for example, F4's responses to the STAT item and Mrs responses 

to the TRIG item. 

Participant F4 is a 'maths minor' from State B. These are her responses to 

the STAT item which tend to indicate that 'standard deviation' was rote 

learned as a specific type knowledge. 

(1) I have no idea of [lack of knowledge] what a variance is. I recall 

doing standard deviation but I can't tell you what it is either [little or 
no association of the 'standard deviation' to its original source, 

variance]. 

Participant MI is a 'maths minor' from State A. These are his responses to 

the TRIG item. 
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(1) I'm not really familiar with these [cued-data in the TRIG item] to know 

how to do them myself I have to consult a textbook [dependency on 
external aid] to refresh my memory [lack of memory recall is linked to 

unfamiliar knowledge]. 

In a similar way to F4, MI's existing knowledge of trigonometry appears to 

compose of specific knowledge types which are unrelated to the types 

represented in the TRIG item. MI's unfamiliarity with the cued-data in the 

TRIG item, however, also appears to relate to a dependency on external aids 

as sources of knowledge. 

In summarising to this point, it seems that lack of confidence in one's own 

understanding or existing mathematical knowledge base could be attributed 

to lack of conceptual understanding or misconceptions, and gaps in 

knowledge. In order to compensate for their insufficiencies in mathematical 

understanding, it appears that student-teachers relied upon external aids or 

textbooks and calculators as sources of mathematical knowledge. However, 

constructive use of such sources for knowledge should not inhibit the mental 

processing or formation of knowledge. Rather, these external sources should 

facilitate mental processings (De Corte, 1995). Rote memorisation of 

specific mathematical terms and formulae (e.g. standard deviation) also 

appears to be another contributing factor to the insufficiencies in 

mathematical understanding. It could be suggested from these participants' 

response-data that their inability to provide appropriate mathematical 

knowledge has strong links with the way they had acquired their prior 

knowledge of mathematics (Skemp, 1978; Anderson, 1981, 1982; Marton, 

1988; Biggs & Moore, 1993; Derry, 1996). For example, the acquisition of 

mathematical knowledge by rote learning methods (Section 2.4, Chapter 2). 
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Category (1) type response data as described above represented 44% (25/57) 

of all the response-data for the three stimulus items (Table 5.2). This high 

frequency tends to indicate that the respondents' uncertainty about the cued-

data within the stimulus items may involve several types of knowledge 

deficiencies. Further analysis of category (1) response-data, in an endeavour 

to determine what these deficiencies might be, revealed four possible types 

(all of which are interrelated) of knowledge insufficiencies. These were 

tentatively identified as: (i) undeveloped, (ii) unproductive, (iii) unrelated or 

unfamiliar, and (iv) unprocessed. 

Undeveloped knowledge is defined as deficiencies of essential knowledge 

elements needed for understanding. The individual is aware of this 

inadequacy and acknowledges such by indicating a desire for further 

learning. The following responses were indicators of undeveloped 

knowledge: 

• I really don't know because I have not done much learning in this area. 
1 need to do a lot of reading and make sure I understand statistics first. 

• 1 don't know. 1 would have to study up logarithm myself first. 
• 1 don't know much about statistics without doing more study on it myself. 

Unproductive knowledge is related to knowledge (or information) from 

resource materials (e.g. calculators and textbooks). These materials are 

relied on as the source of mathematical knowledge and without them being 

available the individual would have difficulty completing the task. The 

following responses were indicators of unproductive knowledge: 
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• I have no recall of what logarithm is, and I'm lost without my 

calculator. Because I've always relied on the calculator for working 

out logarithm or trigonometry formulas. 

• I don't know much about statistics ... I know the basics like the mean, 

mode, median, bar graphs etc. ... If I need more clarification I will 

refer to a good statistics textbook. 

• I've forgotten [referring to the given cued-data in the LOG item]. I 

don't know how to do this myself... I would need to look up a textbook 

to remind myself again. 

Unrelated or unfamiliar knowledge is related to unproductive knowledge in 

that the individual may find it necessary to consult a textbook or make 

further enquiries in order to continue with the task. In addition, this type of 

insufficiency is linked to prior learning of different terminologies and 

algorithms to what the individual has been presented with at the interview. 

The following responses were indicators of unrelated or unfamiliar 

knowledge: 

• I'm not really familiar with these [referring to the given cued-data in 

the TRIG item] to know how to do them myself I have to consult a 

textbook to refresh my memory. 

• I have no idea of what a variance is. I recall doing standard deviation' 

but I can't tell you what it is either. 

• I don't know [referring to the given cued-data in the STAT item] 

because I need to do more study for me to answer this question. For 

this kind of knowledge I've always relied on textbooks rather than try 

and commit it to memory. 
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Unprocessed knowledge is associated with knowledge of fixed rules, 

formulae or algorithms having little or no conceptual bases. The following 

responses were indicators of unprocessed knowledge: 

' 

I can't do this [referring to the given cued-data in the STAT item] 
because a calculator and the formula are not provided. I rote learn a 
lot of my mathematics. 
It is important for students to learn log-rules and ways of manipulating 
the rules ... because unless the students learn the laws well, they won't 
know what to do. [The participant made this comment after providing 
a response to the LOG item with incorrect recall of the logarithmic law 

for division]. 
When teaching logarithm, I'd start with the log-laws. That's because 
it's the way I usually work, ie. find a rule and follow that. 

The four types of mathematical knowledge deficiencies suggested above 

appear to have instrumental understanding (Skemp, 1978) as their common 

base. This form of understanding appears to limit an individual's ability to 

the recall of formulae and algorithms, and places a dependency on the 

availability of external resources (e.g. textbooks and calculators). Having 

these knowledge deficiencies, as discussed above, also seem to influence how 

the individual might teach mathematics. This influence is explored further in 

the second phase of the analysis. However, it seems appropriate at this stage 

to provide some examples of category (1) response-data to illustrate the 

'crippling' effect that instrumental type understanding could have on the 

teaching of mathematics. Each of the response-data below gives a glimpse of 

how these pre-service teachers might teach statistics and trigonometry. 

Chapter 5/ Page 164 



Participant F5 is a 'maths major' from State B. These are her responses to 
the STAT item. F5's response-data provide an example of undeveloped 

knowledge. 

(1) I know that 'sigma square' [the symbol is the concept] is the variance 

and the square-root of it is the standard deviation. But, looking at this 

[cued-data] I can't recall the formula. I don't really know or have an 
understanding of what a variance is. I just know it as 'sigma square'. 
[no understanding, just knowledge of the symbol] 

(2) Important learning: Students to learn the actual concept of the 
formulae. It is important that students learn this first and then the 
formula and how to use it. 

(3) Teaching approach: I don't really know, I guess I will have to 

follow the syllabus. 

Participant F5's lack of conceptual knowledge about the variance could be 

considered as an undeveloped knowledge type. That is, knowledge about the 

variance was acquired, but the essential knowledge elements needed for it to 

be linked to conceptual knowledge, have not been developed adequately. 

F5's desire to develop this knowledge is reflected in the response-data for 

5Q2 (stimulus question 2). However, having a desire to learn is not enough 

in teaching, rather this should be coupled with guided and expert assistance 

(Skemp, 1986; Ball, 1990; Leder, 1993). F5's response to SQ3 (stimulus 

question 3) is a request for assistance and if this is not forth coming then, I 

guess I [she] will have to follow the syllabus. 

Participant F6 is a 'maths minor' from State A. These are her responses to 

the STAT item. F6's response-data provide an example of unprocessed 

knowledge. 
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(1) I think its (x - .7)2 , [recall of symbols connected to the formula] the 
sum of these divided by n. So the correct variance is 2.4, but it's really 
only a guess. I didn't really enjoy statistics. 

(2) Important learning: An understanding of formulas and what to use 
them for. E.g. the variance formula and how and where to use it. 

(3) Teaching approach: To teach variance I'll introduce standard 
deviation first. But if the syllabus indicates the variance first then I'll 
do that (ie. just follow whatever is in the syllabus). 

Participant F6's uncertainties ...its really only a guess ... seemed to relate to 

prior learning experiences, ... I didn't really enjoy statistics ... However, F6's 

knowledge about the variance formulae is rather advanced compared to that 

E(x —37) 2  
displayed by F5. That is, F6 can recall that the formula, 	 , is 

related to the variance but F6 cannot provide a reason why, it's a guess. This 

type of knowledge was classified as unprocessed knowledge because it 

represents learning of 'fixed rules' without reasons. F6's response-data for 

SQ2 indicated instrumental type understanding. The response-data for SQ3 

demonstrate the negative effect of instrumental understanding on F6's 

confidence to teach mathematics. Instrumental understanding seems to 

remove from the individual the initiative or the 'power' to develop his or her 

understanding (Greenwood, 1993; Gates, 1995a), instead ... just follow 

whatever is in the syllabus. 

Participant F2 is a 'maths minor' from State B. These are her responses to 

the TRIG item. F2's response-data provide an example of unrelated or 

• unfamiliar knowledge. 
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(1) [A cosine graph, y=cosx, was correctly sketched, but F2 was unable to 

relate it to find the x-values for cos(2x+1). Hence, incorrect values 

were given, but F2 accepted them as being correct.] 
(2) Important learning: Graphing of trig-functions and how to use the 

unit-circle. 

(3) Teaching approach: Start with graphing the trig-functions and then 

teach the use of trig-ratios in the calculations of heights and distances. 

Participant F2's responses were classified as an unrelated knowledge type. 

That is, F2 has knowledge of trigonometry but this is not at the same level or 

standard as the type F2 was presented with. F2 also appears to have learned a 

fixed strategy (ie. graphing) to deal with trigonometric situations. This 

learned strategy may well influence the way F2 will teach trigonometry. 

This completes the analysis of data classified as category (1). The 37% of 

response-data (Table 5.2) classified as category (2) are examined next. 

5.2.1.2 	Category (2) response-data 

Category (2) classification is based on evidence of knowledge recognition of 

rules, algorithms, or systems of procedures. References may be made about 

computational knowledge but no calculation of values is evident. 

In the analysis of experienced teachers' interview data, category (2) type 

knowledge showed evidence of both instrumental and relational 

understanding or transitional types of knowledge. However, the analysis of 

the data from the pre-service teachers seems to indicate this transitional 

knowledge to be mostly of the instrumental kind, in particular, the links with 

category (1) type knowledge. 
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Consider, for example, the following responses by participant F6 to the LOG 

item. Participant F6 is a 'maths minor' from State A. Her responses to the 

LOG item also provide an example of pseudo-procedural knowledge and of 

links to unprocessed knowledge (category (1)). 

(1) log(2x+I) # log2x + logl. log[(2x+1)/(x-1) .1 = 0 because of 
the rule: log(a/b) = loga - logb [pseudo-procedural 
knowledge]. But I don't really know the reason for this 
[unprocessed knowledge]. And I don't know what to do next. 
[F6 has knowledge of logarithmic laws but lacks relational-
conceptual knowledge which gives meaning to the laws and 
facilitates computational knowledge.] 

F6's response-data for SQ2 and SQ3 are provided here to show further 

evidence of links to category (1) type knowledge. 

(2) Important learning: Students to understand log-laws and how to use 
them. Because that's the problem here, the student didn't understand 
logarithm. 	[Indication that F6 knows the importance of 
understanding the concept in order for competent performance] 

(3) Teaching approach: I don't know really. I need to do more 
study and see what is required in the syllabus. [Indication of 
insufficient existing knowledge and the need for further self-
learning. However, there is also an indication that following the 
set guidelines or syllabus would be a safer option to take if the 
appropriate assistance is not available.] 

Another example of transitional type knowledge is participant Ft's 

response-data for the STAT item. Fl is a 'maths minor' from State A. Her 

response-data provide an example of relational-procedural knowledge with 

Chapter 5/ Page 168 



links to category (1) unprocessed and undeveloped knowledge types. F1's 

response-data for SQ2 and SQ3 are included to provide further evidence of 

links between knowledge types. 

(1) The variance is the sum of the deviations from the mean, then divided 
by (n-1) because it is a sample. So it's 2.4 but the sigma is 1 to 9, but 
there are 10 items [recognising from the cued-data a relevant aspect 
about the variance, ie. 1(x — i"- )2  = 24, and linking this to her 

existing knowledge - relational-procedural knowledge]. Now I'm 
confused and I don't know much about the variance to be able to 
explain why [uncertainty due to lack of conceptual knowledge]. 

Fl appears to have learned a 'fixed' formula and an algorithm (or 

unprocessed knowledge) for calculating the statistical variance and that this 

knowledge is still in an undeveloped form ... I don't know much about the 

variance. Although Fl seems to have relational-procedural knowledge, the 

link of this knowledge to unprocessed and undeveloped knowledge 

(category 1 knowledge) appears to cause interruption of transmission to 

relational -conceptual knowledge... I don't know much about the variance to 

be able to explain why; hence, her inability to provide a reasonable 

explanation. The links to unprocessed and undeveloped knowledge rather 

than to relational-conceptual knowledge are also reflected in F1's response-

data for SQ2 and SQ3. 

(2) Important learning: Understanding what the formula is all about. 
[Consistent with (1)] 

(3) Teaching approach: I only know what I've been taught [existing 

knowledge is linked to prior learning]. So I will start by emphasising 
the formula for the variance to derive the standard deviation [teach the 

same way as taught]. Then provide problems using the standard 
deviation and make sure the students understand [doing a lot of 
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exercises or 'problems' is assumed to provide understanding]. Also 
emphasise the correct use of calculators. 

Both response-data by F6 and Fl showed evidence of relevant aspects of 

knowledge relating to the cued-data as well as evidence of lack of 

appropriate knowledge about the mathematics. The response-data for SQ2 

and SQ3 (stimulus questions 2 and 3) provided further data as to how the 

participants have acquired the knowledge and how this knowledge might be 

transformed to teachable knowledge. 

There was evidence in F6's response-data that indicated the required 

knowledge could have been acquired through individual pursuit (... I 

need to do more study ...) rather than externally generated by the 

teacher as in the case of Fl (... I only know what I've been taught ....). 

F6 also recognised the importance of learning rules for understanding 

in order to know how to apply them appropriately. FI, on the other 

hand, seems to emphasise the learning of a formula. In order to 

achieve this, Fl suggested the doing of practice exercises and the 

correct use of the calculator. 

These response-data also showed elements of knowledge deficiencies (as in 

category 1) that tended to interfere with further knowledge production. 

For example, the response-data by Fl could be viewed as undeveloped 

knowledge (...I'm confused and I don't know much about the variance to 

be able to explain why) and that by F6 as unprocessed mathematical 

knowledge (...log[(2x+1)/(x-I)] = 0 because of the rule: log(a/b) = loga - 

logb. But I don't really know the reason for this. And I don't know what to 

do next). 
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In summary, the response-data by F6 and Fl are representative of 81% 

(46/57) of the data classified as category (1)-(44%) and category (2)-(37%) 

type knowledge (Table 5.2). The knowledge insufficiencies associated with 

category (2) type knowledge tended to be connected with deficiencies of 

conceptual knowledge (as in relational understanding) relating to formulae 

and algorithms for computations. That is, category (2) type knowledge is 

mainly pseudo-procedural knowledge and relational-procedural knowledge 

of mathematics. 

Participants who were aware of their insufficiencies tended to demonstrate 

this by their responses to SQ2 in which considerable emphasis was placed on 

the importance of understanding mathematical concepts underlying the 

formulae or rules. The link between the insufficiencies in the respondents' 

existing knowledge and prior learning experiences was more noticeable in 

response-data for SQ3. For example, the respondents' uncertainties about 

their depth of knowledge would either persuade them to: (i) teach according 

to the way they have been taught (refer to response-data from participant F1) 

or alternatively, (ii) study the topic further and follow the guidelines in the 

syllabus (refer to response-data from participant F6). 

So far, a large proportion (81%) of the analysed response-data have been 

accounted for by classifications in category (1) and category (2). The 

remaining 19% of response-data classified as category (3), see Table 5.2, 

page 153, are examined in the next section. 
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5.2.1.3 Category (3) response-data 

Response-data classified under category (3) showed evidence of the 

respondents' ability to recall formulae, algorithms, or systems of procedures 

with links to computational knowledge. This computational knowledge may 

indicate relevant relational-conceptual knowledge, relational-procedural 

knowledge, or both. However, the category (3) classification of these data 

showed 14% (8/57) as belonging to instrumental understanding and 5% 

(3/57) as relational understanding. It is important, therefore, to consider 

some of the response-data from this 14% to demonstrate how or by what 

evidence they were classified as pseudo-conceptual knowledge, the type 

ascribed as belonging to instrumental understanding. The first of these 

response-data to be reported on are those for the LOG item. 

There were five response-data for the LOG item classified as category (3). 

Two of the five response-data were classified as belonging to relational 

understanding. In the three remaining response-data, there were evidence of 

the same computational procedures for SQ1 as in the following response-

data from participant M7. M7 is a 'maths major' from State B. 

(1 ) log jo(2x+1) = log 10(x-1), have both expressions on the one side and 

equal them to zero. [recognised an algorithm] 
That is, log jo(2x+1) - log 10(x-1) = 0. I could use the log-law for 

division: log A/B = log A - log B, [identified a rule] 
but it is easier to cancel the 'log 10 ' because this is common to both. 

[return to the algorithm recognised earlier] 
Therefore, (2x+1) - (x-1) = 0 and x = -2. [correct computation] 

But x is given as equal to 1. I can check that x = -2 is the correct value 
by substituting it into log jo(2x+1) = log 10(x-1) => log(-4+1) = log (-3) 
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[no indication of links to the concept of logarithm]. Both sides of the 
equation are the same, therefore, x = -2 is the correct value. That .  is, the 
student's response is unacceptable. 

These response-data were classified as having evidence of pseudo-conceptual 

knowledge because they are a collection of relevant steps for computation in 

order to achieve an answer (Figure 3.2, Chapter 3). In addition, there was 

little evidence of knowledge associated with the function concept, namely 

logarithm (Tall, 1992; Alters, 1996). 

The response-data for the TRIG item indicated similar computational 

procedures for SQ1 as the following response-data from M5. Participant M5 

is a 'maths major' from State B. 

(1) Cos(2x+1) = 0, that is, cosine of what angle is equal to zero. 
[recognised the correct symbolisation for the trigonometric concept] 
That is, (2x+1) = 900  or 7r/2, but r/2 is correct because (2x+1) is 
assumed to be radians rather than degrees. [specific knowledge for 
computation] Therefore, cos 7r/2 = 0, or (2x+1) = 7r/2. 
Answer: x = 7r/4 - 112. [a single solution] 

1 don't think this student understands trigonometry because (2x+1) 
is the angle and you cannot expand cos(2x+1) to cos2x + cosl. 
[repeat of earlier statement] 

These response-data were classified as pseudo-conceptual knowledge 

because, although references were made about the mathematical concept 

involved (Cos(2x+1) = 0, that is, cosine of what angle is equal to zero ... 

(2x+1) is the angle and you cannot expand cos(2x+1) to cos2x + cosi), 

these are knowledge representations of algebraic algorithms, syntax of 

symbols and format rather than knowledge of the function concept (Tall, 
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1992; Even, 1993). In addition, the single solution (Answer: x = r/4 - 112) 

did not reflect the essential aspect (periodic function) of the concept 

trigonometry (Tall, 1992). 

Participant M4's response-data below provide an example of pseudo-

conceptual type knowledge for the STAT item. 

(1) 
	

S 2 

	X2  

A  = 194/10 - 42 
= 3.4 [Recalled the formula 

correctly, computed and identified the correct answer of 3.4]. The 
variance or S2  (i.e standard deviation squared) is the sum of the 
squared-scores divided by n, the number of scores, take away the 
mean-squared. 1 know this is right because the other two values, 
2.4 and 2.7, are not solutions using this formula. I found with 
learning statistics that, knowing the correct formula and how to use 
it is all that's required. 

Although M4 recalled the formula correctly and provided the correct 

solution, his explanation for the concept variance was a description of the 

formula in terms of the symbols involved and in relation to computation. 

That is, the term variance was perceived as an object (or formula) rather than 

a representation of a concept (Green, 1983; Miller, 1993; Shaughnessy, 

1993). M4's pseudo-conceptual knowledge of statistics appears to explain 

why he concluded that, knowing the correct formula and how to use it is all 

that's required in learning statistics. 

The category (3) classifications described above were based on knowledge 

about prescribed procedures for computations and the application of 

appropriate rules or formulae. Although these responses showed evidence of 
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correct computations with correct solutions, there was little (or no) evidence 

of 'a mutual assimilation between a symbol system and a conceptual 

structure' or symbolic understanding (Skemp, 1982, p.61). This lack of 

evidence, particularly of conceptual structures, might be attributable to a 

misconception of the 'function concept' (e.g. Tall, 1992; Even, 1993). Tall 

(1992, p.500) suggested that students' misconceptions of the function 

concept could be attributed to difficulties with the variety of different 

representations (e.g. graph, formula, table, and so on) and the relationships 

between them (Section 4.2.1.2, Chapter 4). From the analysis of these pre-

service teachers' mathematical knowledge, it could be suggested that the pre-

service teachers' knowledge was a product of learning formulae and other 

algebraic representations of concepts, rather than a product of symbolic 

understanding or 'a mutual assimilation between a symbol system and a 

conceptual structure' (Skemp, 1982, p.61; Green, 1983; Tall, 1992; Even, 

1993; Shaughnessy, 1993). 

5.2.1.4 Category (4) (Symbolic understanding) 

There were no response-data that satisfied the criteria for category (4), 

symbolic type understanding. Category (4) type response-data would 

provide evidence of the individual's ability to examine most or all of the 

given cued-data and integrate these with his or her own knowledge. In 

addition, the response-data would show evidence that the 'whole' stimulus 

item has been considered and evaluated in context and that attempts were 

made to reconcile the inconsistencies or conflicts associated with the cued-

data in the context of important learning and teaching strategies. 

Furthermore, such attempts would be orderly and provide relevant aspects of 

conceptual knowledge. 
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This completes the first phase of the analysis of the data from these pre-

service teachers of secondary mathematics who agreed to participate in the 

study. The summary of this analysis is presented in Tables 5.3, 5.4, and 5.5. 

Table 5.3: 	 Response-data classified as Category (1) 

Knowledge 
Deficiencies 

TRIG LOG STAT Total 

Undeveloped ,, :4 	F7 
M8 

MI 
M8 

F5 11 	(19%) 

Unproductive 
P3 I1 2(4%) 

Unrelated F2 F4 F4.  ._,..._ 

4(7%) 

Unprocessed 
M8 F4 F3 

M7 
F7 

8 (14%) 

Total 5 6 14 25 
'25157=44%) 

Legend: 480  - ind . cates 'maths minor' from State A 
- ind . cates 'maths minor' from State B 

In Table 5.3, the distribution of response-data classified as category (1) are 

presented according to four types of knowledge deficiencies. The 

undeveloped (11/25) and unprocessed (8/25) knowledge were the most 

common kinds of knowledge deficiencies observed. An undeveloped type 

of knowledge was defined as knowledge having a deficiency of essential 

elements that are needed in the formation of relational-conceptual types of 

knowledge. Another characteristic of this type of deficiency was the 

respondents' awareness that they need to do further studies in order for them 

to gain a better understanding of the mathematics. The STAT and the LOG 

items elicited undeveloped knowledge type responses with a high proportion 

of such responses for the STAT item. 
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An unprocessed type of knowledge was defined as knowledge having a 

deficiency of relational-conceptual type knowledge that gives meaning to 

knowledge of formulae and algorithms. This form of mathematical 

knowledge deficiency appears to inhibit further cognitive processing, 

resulting in an inability by the respondent to provide a reason for the actual 

recall. The STAT item also seems to attract more of this type of response. 

An unproductive type of knowledge was defined as one having a deficiency 

induced by the dependency of the individual on external resource materials 

as a source of mathematical knowledge. The lack of a relevant response was 

often associated with the absence of an external aid to facilitate memory 

recall. For example, the reliance on a textbook for a formula or the reliance 

on a calculator for formulae and computation. Hence, the respondent will 

not continue with the mathematical task if these external aids are not 

immediately available. This form of knowledge deficiency seems to be 

closely related to unprocessed type knowledge in that it inhibits further 

cognitive processing. Only participant F3 explicitly demonstrated this form 

of deficiency for the TRIG and LOG items. 

An unrelated type of knowledge was defined as knowledge having a 

deficiency of relevant knowledge which is representatively similar to what the 

respondent has been presented with. Unrelated knowledge could be 

considered as an undeveloped type of knowledge in that a possible reason 

for the respondent's unfamiliarity with a given cued-data may be his or her 

lack of essential knowledge about the mathematics. The TRIG item elicited 

the most of this type of response. 
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TRIG Total STAT LOG 

2 9 8 TOTAL 

INSTRUMENTAL UNDERSTANDING 

Category (2) 

PSEUDO- 
PROCEDURAL (19%) 

Category (3) 
PSEUDO- 

CONCEPTUAL 
M5 M6 M7 
M10 

M4 

P2 

8 
(14%) M5 

M6 M7 
19 

(33%) 

In summarising the analysis to this point, it is assumed that the participants' 

lack of essential knowledge elements (undeveloped knowledge) and their 

dependency on 'fixed' knowledge of formulae and algorithms (unprocessed 

knowledge) were based on their instrumental understanding of the 

mathematics represented by the TRIG, LOG, and STAT items. 

The distribution of response-data classified as category (2) and category (3) 

showing instrumental understanding and relational understanding are 

presented in Table 5.4 and Table 5.5 respectively. 

Table 5.4: 	Response-data classified as Category (2) and Category (3) 
showing Instrumental Understanding 

Legend: 410 - indicates 'maths minor' from State A 

1,11 - indicates 'maths minor' from State B 

Table 5.5: 	Response-data classified as Category (2) and Category (3) 
showing Relational Understanding 

RELATIONAL UNDERSTANDING 
TRIG LOG STAT Total 

Category 	(2) 
RELATIONAL F5 F7 F8 F5 F8 M9 F8 M5 10 
PROCEDURAL M9 M1 1 (18%) 
Category 	(3) 

RELATIONAL M10 M9 3 
CONCEPTUAL M11 (5%) 

TOTAL 5 5 3 1 3 
(23%) 
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In the category (2) classification representing procedural types of 

knowledge, 19% (11/57) of the response-data were classified as instrumental 

understanding (Table 5.4) and 18% (10/57) as relational understanding 

(Table 5.5). In the category (3) classification representing conceptual types 

of knowledge, 14% (8/57) of the response-data were classified as 

instrumental understanding (Table 5.4) and 5% (3/57) as relational 

understanding (Table 5.5). However, the 14% of pseudo-conceptual 

knowledge in Table 5.4 is, by definition (Section 5.1.3), procedural type 

knowledge. The overall result in this study showed 51% (or 

19%+18%+14%) of the response-data had evidence of procedural 

mathematical knowledge, 5% conceptual mathematical knowledge, and 44% 

category (1) type knowledge. 

Therefore, in addition to category (1) type knowledge, procedural 

mathematical knowledge was the other most common (51%) type of 

mathematical knowledge observed in this study (Tables 5.4 and 5.5). In 

order to gain a further understanding of the nature of this procedural 

knowledge, it is worthwhile to recall the classification criteria for category (2) 

and category (3) type data. That is, responses showing evidence of 

knowledge recognition of formulae, algorithms, or systems of procedures 

were classified as category (2) procedural knowledge. The responses 

showing evidence of knowledge of computation involving appropriate rules 

and formulae, set algorithms, and procedures were classified as category (3) 

knowledge pertaining to conceptual knowledge. 

Procedural mathematical knowledge on its own, without essential knowledge 

linkages to conceptual mathematical knowledge (as in relational 
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understanding), was observed to generate uncertainties or gaps in knowledge. 

This may explain the high proportion (14%) of category (3) type response-

data associated with instrumental understanding as compared with relational 

understanding (5%). 

Continuing the description of the summarised data in Tables 5.3, 5.4 and 5.5, 

it is observed that gender differences were negligible for category (1) (Table 

5.3) and category (2) (Tables 5.4 and 5.5). However, for category (3), all of 

the response-data (19%) were from male participants, which indicates from 

these results that there was a gender difference with respect to conceptual 

types of mathematical knowledge. The dominance of category (3) type 

responses by males, however, was indicative of instrumental type 

understanding rather than of the preferred relational mathematical 

understanding. 

In summary, the purpose of the first phase of the data analysis was to address 

the first research question: What types of procedural and conceptual 

mathematical knowledge exist in the pre-service teachers' mathematical 

knowledge bases? The results of this analysis of pre-service teachers' 

mathematical knowledge of trigonometry, logarithm, and statistics, indicated 

that the predominant types of knowledge were of the procedural types 

associated with instrumental understanding of mathematics. The 51% of 

response-data with procedural type mathematical knowledge and the 44% of 

response-data in category (1) contained evidence of mathematical knowledge 

deficiencies, particularly the response-data in category (1). These knowledge 

deficiencies appear to be present regardless of the mathematical backgrounds 

(e.g. maths major, maths minor) the pre-service teachers had gained from 

their university undergraduate studies. However, the pre-service teachers with 
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'maths minor' backgrounds from both State A (F1, F6, Ml, M2, and M3) and 

State B (F2, F3, and F4) seemed more likely to show evidence of knowledge 

deficiencies for all the three stimulus items as indicated in category (1) (Table 

5.3), than participants with 'maths major' backgrounds (Tables 5.4 and 5.5). 

With respect to the stimulus items, the responses-data for the STAT item 

showed 56% (14/25) of category (1) type knowledge whilst the response-data 

for the TRIG and LOG items showed 84% (27/32) of procedural type 

knowledge. These results are discussed further in Chapter 6. 

This completes the analysis of the data addressing the first research question. 

The second phase of the analysis is the examination of responses to the stimulus 

questions 2 and 3 (SQ2 and SQ3) in an endeavour to address the second research 

question: What possible outcomes could any identified deficiencies in types of 

procedural and conceptual mathematical knowledge have on the teaching of 

mathematics? This analysis is described in the next section, Section (5.2.2). 

5.2.2 	 Phase two of the analysis 

The report in this section is on the analyses of responses to SQ2 and SQ3. 

Some of the response-data for SQ2 and SQ3 were examined in the context of 

response-data for SQ1 reported in Section (5.2.1) above. 

In order to provide a context for examining the response-data associated with 

SQ2 and SQ3, some of the earlier discussions are briefly revisited here. In 

Chapter 2, Section (2.3), it was suggested that, in theory, teachers' 

competence to teach mathematics (or pedagogical knowledge) is dependent 

on their understanding of the mathematics they teach. However, in practice, 

teachers' pedagogical knowledge seems to be also influenced by factors such 
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as knowledge about the students' thinking (e.g. Fennema, 1996; Fennema & 

Carpenter, 1998; Rhine, 1998) and teachers' own goals and beliefs about 

teaching (e.g. Ball, 1990; Eisenhart et al., 1993; Alexander, 1995). Another 

factor is that found in the analysis of experienced teachers' interview data 

(Section 4.2.2, Chapter 4). It was found that the teachers' perceptions of 

what is important learning for their students tended to influence the teachers' 

teaching of mathematics. However, for pre-service teachers of mathematics, 

this pedagogical knowledge is likely to be rooted in their prior learning 

experiences, and in their goals and beliefs about mathematics teaching (e.g. 

Ball, 1990; Alexander, 1995; De Corte, 1995). Therefore, in this study of 

pre-service teachers' mathematical understanding, it was important to explore 

the links between mathematical knowledge and knowledge pertaining to 

pedagogical knowledge. The data for this exploration were the participants' 

responses to SQ2 and 5Q3. 

The response-data for SQ2 were the participants' perceptions of what are 

'important mathematical learning for students'. The response-data for SQ3 

were the participants' perceptions of appropriate 'teaching approaches' for 

teaching the mathematics. 

In an endeavour to identify any relevant links between mathematical and 

pedagogical knowledge from the pre-service teachers' response-data for SQ2 

and SQ3, and how these responses are related to response-data for SQ1, 

(summarised in Tables 5.3 to 5.5), the response-data for 5Q2 and SQ3 are 

examined in terms of the three stimulus item, TRIG, LOG, and STAT. The 

responses for the TRIG item are examined first. 
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5.2.2.1 	Response-data for the TRIG item 

The response-data for SQ2, important learning in trigonometry for students, 

appear to reflect two learning perspectives. These perspectives seem to relate 

to two forms of representations for the function concept, namely formula and 

graph (Tall, 1992; Even, 1993). Furthermore, these learning perspectives seem 

to reflect the same kinds of misconceptions about the function concept that 

were observed in the response-data for SQ1, particularly with category (3) data 

(Section, 5.2.1). For example, the misconception that learning trig-ratios ... 

and their applications to real-life situations, or trig-functions and their graphs 

are equivalent to understanding the function concept, trigonometry. 

In this analysis, one of the perspectives appears to be based on the importance 

of learning 'abstract rules and formulae' (abstract) and the other on 'visual 

representations of formulae' (visual). Underlying both these perspectives is 

the learning of trigonometric formulae and the applications of these formulae. 

For example, in the 'abstract' perspective, participants F5, M4, M6, M7 and 

M8 considered the learning by students of trig-ratios or an understanding of 

sine, cosine and tan ratios, and their applications to real-life situations to be 

important. Similarly, participants Ml, M2 and M3 considered the 

understanding of the trig-formulae and trig-functions for the calculation of 

angles as important learning in trigonometry by students of mathematics. 

An interesting result of this analysis is that the 'visual representation of formulae' 

perspective is favoured more by the female participants while male participants 

tended to prefer the 'abstract rules and formulae' perspective. For example, the 

response-data by seven (out of eight) female participants (F1, F2, F3, F4, F6, F7 

and F8) and three (out of eleven) male participants (M9, M10 and M11) 
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indicated the graphing of the trig-functions and the use of the unit-circle as 

important learning in trigonometry. These responses are summarised below: 

It is important for students: 
(F1) To understand trig-functions and their graphical representations. 
(F2) To learn graphing of trig-functions and knowing how to use the unit-circle. 
(F3) To understand how to graph the trig-functions. 
(F4) To understand unit-circles because all trigonometry stems from this. 
(F6) To understand trig-functions and their graphs. Because graphs 

distinguish trigonometry from other functions. 
(F7) To have knowledge of trig-graphs and the use of the unit-circle. 
(F8) To understand the relationships between what is sine, cosine, and tan. 

Know how to use the unit-circle and do graphs. 
(M9) To be able to draw graphs of the trig-functions. 
(M 10) To have an understanding of what sine, cosine, and tan functions are 

in relation to the unit-circle and their graphs. 
(M 1 1 ) To understand the unit-circle diagram and the related graphs. 

These response-data are summarised in Table 5.6 in relation to the categories 

of response-data for SQl. This table format is adopted for presenting the 

summaries to SQ2 for the LOG and STAT items as well. 

Table 5.6: 	Summary of SQ2 response-data for the TRIG item 

What is important learnine for students? 
PRE-SERVICE 

TEACHERS' 
PERSPECTIVE TRIG 

Category (1) Category (2) Category (3) 

ABSTRACT 

MI 	M8 

F5R 

M2I M31 M41 M51 M61 M71 

VISUAL F2 F3 F4 Fl 1 F61 F7R F8R 

M9R MI IR MI01 

Legend: 
Subscript R indicates response-data classified as Relational understanding. 
Subscript I indicates response-data classified as Instrumental understanding. 
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In relation to the types of mathematical understanding (Tables 5.4 and 5.5) 

associated with the pre-service teachers' pedagogical related knowledge (SQ2 

response-data), the 47% (9/19 including category (1) response-data) who 

considered the learning of 'abstract rules and formulae' to be important 

seemed more likely to have instrumental understanding of mathematics than 

those who considered the 'visual representation of formulae' to be important 

learning for students (see Table 5.6 above). For those placing importance on 

'visual representation of formulae', 32% (6/19) were classified as having 

instrumental understanding (including category (1) responses) and 21% (4/19) 

as having relational understanding (Table 5.6). 

The summary of SQ3 response-data for the TRIG item is presented in Table 5.7 

below. 

Table 5.7: 	Summary of SQ3 response -data for the TRIG item 

Aporonriate teaching strate ies 
PRE-SERVICE 

TEACHERS' 
PERSPECTIVE TRIG 

ABSTRACT 
1. Introduce trig-ratios using right-angled triangles. 
2. Solve right-angled triangles using trig-ratios. 
3. Teach trig-rules and applications. 

Suggested by participants: F5 MI M2 M3 M4 M5 M6 M7 and M8. 

VISUAL 

, 

/. Discuss why the need to learn trig-functions. 
2. Teach unit-circle and graphing of trig-functions. 
3. Introduce trig-ratios and right-angled triangles. 
4. Teach trig-rules in relation to trig-ratios and trig-graphs, and teach 
how to apply trig-rules to real-life situations. 

Suggested by participants: Fl F2 F3 F4 F6 F7 F8 M9 M 10 and M I I .  

The response-data for SQ3 or appropriate teaching approaches (Table 5.7), 

appear to indicate strategies which support the response-data for SQ2. For 
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example, the most common teaching approaches associated with the learning 

of 'abstract rules and formulae' were similar to that suggested by participant 

M4 (maths major, State B): Start with the basics of trigonometry (ie. trig-

ratios) and then build onto those, and participant M7 (maths major, State B): 

Use triangles to derive trig-ratios, then use trig-ratios to solve triangles, and 

then the trig-rules and their application. On the other hand, teaching 

approaches associated with 'visual representation of formulae' tended to be 

based, for example, initially on the teaching of graphing skills and 

knowledge of the unit-circle. The following are examples of response-data 

displaying this 'visual' perspective: 

Participant Fl (maths minor, State A): I will start with a discussion on why we 

need to learn trig-functions, and then move on to graphing the trig-functions, 

and then introduce trig-ratios in relation to the angles of triangles. 

Participant F3 (maths minor, State B): Teach calculator skills first and then 

the unit-circle and graphing, followed by memorising exact trig-values. 

Participant F8 (maths major, State A): Revise earlier work related to trig. eg . 

graphing skills, pythagorus rule and right-triangles. Introduce the unit-

circle and how it is used in relation to trig-functions before teaching the trig-

rules and how to apply them. 

Participant M9 (maths major, State A): I'll start with graphing, but the 

syllabus will give a good guide as to the most appropriate teaching 

sequence to follow in relation to the students' ability levels. 

To summarise the analysis of responses for the TRIG item, there appears to 

be some indication of gender difference in relation to the respondents' 

pedagogical content knowledge of trigonometry. That is, the majority of 

male participants, except participants M9, M10 and M11, seem to consider 
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the learning of 'abstract rules and formulae' to be important for 

trigonometry (Table 5.6). On the other hand, the female participants (all 

except F5) appear to have considered the learning of trigonometry based on 

'visual representation of formulae' as being important for students. 

However, this pedagogical knowledge appears to be based on mathematical 

knowledge which is predominantly procedural in nature. 

An important observation which may assist in the interpretation of the 

response-data for the LOG and the STAT items, concerns the three male 

participants M9, M10 and M11. These three participants and the female 

participants responded to the TRIG item in a similar manner. It is of interest 

to also note that participants M9, M10 and M1 1 (all 'maths majors' from 

State A) were the only ones of the selected cases in the study who majored in 

computer science. Becker (1990) found from her studies of university 

graduates in mathematics and computer science that: 

'The computer science majors definitely had a different view of 
mathematics from that of mathematics majors. These students 
generally did not like the abstract nature of the subject, and the 
emphasis on proving theorems from a certain set of assumptions. 
What they liked was the usefulness of the subject, how it could be 
applied to solve problems. Problem-solving was definitely the most 
important feature of computer science to these students.' (italics 
added, p. 123) 

Using Becker's (1990) findings, it could be assumed that participants M9, 

M10 and Ml! would tend to base their pedagogical decisions on what they 

perceive to be the important use of mathematics in solving problems. 

Adopting this perception, 'usefulness of the mathematics in solving 

problems', as a descriptor of the kinds of thinking which appear to have 

been generated by SQ2 and SQ3, the responses by participants M9, M10 and 
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Mll are used as a 'gauge' in an attempt to accurately measure and describe 

the response-data for the LOG and the STAT items. 

Furthermore, it was observed that M9, M10 and Ml! were the only participants 

with responses satisfying the criteria of conceptual types of knowledge 

associated with relational understanding for the LOG and the STAT items 

(Table 5.5, page 178). The response-data for the LOG item are examined next. 

5.2.2.2 	Response-data for the LOG item 

The summary of SQ2 response-data for the LOG item is presented in Table 5.8 

in relation to the 'abstract' and 'visual' perspectives identified for the TRIG 

item in Section (5.2.2.1) above. 

Table 5.8: 	Summary of SQ2 response-data for the LOG item 

What is important learning for students? 
PRE-SERVICE 
TEACHERS' 

PERSPECTIVE LOG 
Category 	(1) Category 	(2) Category 	(3) 

ABSTRACT Ml 	M8 
F61 F51 F8R  

M21 M31 M41 M9R M51 M61 M71 MlOR 
MlIR 

VISUAL Fl F21 

DON'T KNOW F3 	F4 	F7 

Legend: 
Subscript R indicates response-data classified as Relational understanding. 
Subscript I indicates response-data classified as Instrumental understanding. 

The response-data by participants M9, M10 and M11 for SQ2 of the LOG 

item are summarised as follows: 
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Participant M9: It is important for students to understand the log laws and 

their relation to indices. 

Participant M10: It is important for students to gain a good grounding and 

understanding of the log laws. 

Participant M11: It is important for students to understand the relationship of 

logs to exponentials, and to have the knowledge that log functions are for 

specific applications, in the same way trig-rules are specifically for solving 

problems related to measurement of lengths and angles. 

Using the above responses as a 'gauge' or a measure of thinking based on the 

'usefulness of logarithms in problem solving', it seems that an understanding 

of the logarithmic laws and the relationship of these laws to exponential 

functions are useful and essential learning in solving problems related to 

logarithm. 

It was observed that the response-data by participants F5, F6, F8, Ml, M2, 

M3, M4, M5, M6, M7 and M8 also indicated the same or similar content to 

the response-data by participants M9, M10 and Ml! (see Table 5.8). For 

example, it is important for students to learn the relationships between 

indices and logarithmic laws and how to use and apply the laws to solve 

problems (participant F8, 'maths major', State A). It is important for 

students to memorise the log rules thoroughly to make it easier for them to 

learn and use these rules in solving problems (participant M6, 'maths major', 

State B), and for students to learn the log laws and to understand that 

logarithm is for linearising exponential equations (participant M5, 'maths 

major', State B). These response-data tend to reflect the importance of 

learning 'abstract rules and formulae' (Section 5.2.2.1 above). 
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The 'visual representation of formulae' perspective was evident in the 

response-data by female participants Fl and F2 (Table 5.8). For example, 

participant Fl (maths minor, State A) suggested that graphing is important 

to learning functions, that is, seeing what a log-graph looks like compared to 

other graphs like quadratic graphs is important at the initial stage when 

introducing students to logs. Similarly, participant F2 (maths minor, State B) 

suggested that it is important for students to learn the different graphs as well 

as the use of graphs to represent the relationship between logarithm and 

exponential functions. 

However, not all of the participants had sufficient confidence in their own 

understanding of logarithm for them to suggest what could be important 

learning for students. Three female participants: F3 (maths minor, State B), 

F4 (maths minor, State B) and F7 (maths major, State B), responded to SQ2 

with 'I don't know' responses (Table 5.8). These respondents also showed, 

by their responses to SQ1 (category (1), Table 5.3), that they lack essential 

knowledge in this area. 

In relation to the two perspectives identified for the TRIG item, the response-

data for the LOG item tended to reflect the learning of 'abstract rules and 

formulae' more so than the 'visual representation of formulae' (Table 5.8). 

The high proportion (14/19=74%) of the respondents (mostly males, 11/14) 

showing (see Table 5.8, page 188) a preference for the learning of 'abstract 

rules and formulae' in logarithm may be an indication that logarithm is 

perceived more as a specific set of algebraic rules or laws which are useful 

for specific applications (participant M11), particularly in relation to indices 
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or exponents (participants F8, M9, M 11), for example, linearising 

exponential equations (participant M5). 

However, in a similar way to the response-data for the TRIG item, these 

response-data also showed evidence of misconceptions associated with the 

function concept, namely logarithm. For example, the equating of 

representations such as graphs to the concept (Tall, 1992). This is illustrated 

in the response-data, for example, by participant F2: graphing 

(representation) is important to learning functions (concept), that is, seeing 

what a log-graph looks like compared to other graphs like quadratic graphs 

is important at the initial stage when introducing students to logs. Another 

misconception is equating the concept to a specific operation (e.g. 

participant M5's response-data: students to understand that the logarithm 

(concept) is for linearising (operation) exponential equations) or the concept 

to an object (e.g. participant MI l's response-data: students to have the 

knowledge that log functions (concept) are for specific applications, in the 

same way trig-rules (objects) are specifically for solving problems related to 

measurement of lengths and angles). 

The summary of SQ3 response-data for the LOG item is presented in Table 5.9 

(next page). 
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Table 5.9: 	Summary of SQ3 response-data for the LOG item 

Appropriate  teachin strate ies 
PRE-SERVICE 

TEACHERS' 
PERSPECTIVE LOG 

ABSTRACT 

I. Introduce log-laws in relation to indice-laws. 
2.Solve algebraic problems using log-laws. 
3.Application of log-laws by doing lots of type-examples and written exercises. 
Suggested by participants: F5 F6 F8 MI M2 M3 M4 MS M6 M7 M8 M9 MIO and MI I 

VISUAL 

I. Discuss real-life situations in which logarithms are used. 
2. Compare log-graphs to other graphs, e.g. quadratics. 
3. Teach log-laws and show relations to indice-laws. 
9. Application of log-laws to word problems. 

5. Solve complex algebraic problems of the form Yx  using log-laws. 
Suggested by participants: Fl and F2. 

DON'T KNOW 
_ 

1.Teach calculator skills. 
2. Solve algebraic logarithmic problems using log-laws. 
3. Do lots of written exercises. 
Suggested by participants: F3 F4 and F7 

The teaching approaches associated with the perception of logarithm as a 

'useful set of laws' for specific applications, appear to focus on strategies 

relating to teaching students how to use and apply the log - laws to solve 

algebraic problems (participant M9) and for students to do lots of type-

examples and written exercises (participant M10). Such approaches tend to 

promote the rote learning of rules and teacher reliance on external sources 

(e.g. textbooks and calculators). The following are further examples of 

teaching approaches associated with the 'abstract' perspective (Table 5.8). 

Participant F8 (maths major, State A): I would start with indices and log-
laws and make sure students understand the difference between distributive 
law and log-laws. 
Participant F5 (maths major, State B): I'll teach log laws because that is how 
I learn logs and make sure students do lots of problems, including word 
problems. 
Participant M8 (maths major, State A): First, I'll teach the log- laws and 
make sure students understand their relation to the indice - laws. 
Participant M6 (maths major, State B): I would emphasise the importance of 
log rules for students to remember and for students to do lots of examples. 
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Participant M1 (maths minor, State A): I would emphasise the log-laws 
because unless the students learn the laws well, they won't know what to do. 

These response-data indicate a dominance of teaching logarithm as abstract 

rules and formulae. Even with a 'visual' perspective (e.g. participant F2: 

First, discuss how logarithmic functions are used to solve real-life problems, 

then compare graphs of x = log b  y and y = ), the teaching of logarithmic 

laws and their application in solving algebraic problems still seemed to 

dominate (participant F2 continues: Teach the log-laws and how to apply 

them and how to use log-laws to solve complex functions of the form y x )• 

Although the female participants (F3, F4 and F7) with '!don't know' 

response-data for 5Q2 lacked essential knowledge in logarithm (category (1), 

Table 5.3), the teaching approaches they suggested were similar to 

strategies suggested by respondents with an 'abstract' view of learning 

logarithm (Table 5.9). For example, teaching students how to use the 

calculator (F3), how to apply the log-laws to solve algebraic problems (F4, 

F7), and for students to do lots of written exercises (F7). These response-data 

tend to suggest that the act of teaching could still be performed without 

sound knowledge of the topic so long as the relevant resource materials, such 

as calculators and textbooks with formulae and exercises, are available. 

It could be suggested from these response-data for 5Q3 that there is a 

tendency for the pre-service teachers to rely on resource materials for 

teaching. Such a reliance on external sources may be more a reflection of 

how the pre-service teachers were taught logarithm in secondary school, 

rather than indicators of pedagogical knowledge based only on the 

individual's mathematical understanding. For example, participant F3's 
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response-data for the LOG item indicated her lack of understanding of 

logarithm (category (1) type knowledge), yet she confidently suggested that 

[she] / will teach logarithm using the calculator because that is how [she] 

was taught. Participant F4, indicated a similar confidence in teaching 

logarithm based on previous learning experiences: I'll start [teaching] with 

log laws, that's because it's the way I usually work (i.e. find a rule and 

follow that). These types of response-data could be attributed to the pre-

service teachers' lack of classroom teaching experience. 

Nevertheless, it is a concern to observe that pre-service teachers are basing 

their confidence on 'thin and rule-based understanding' of mathematics, 

rather than on substantive mathematical understanding (Ball 1990, p.464). 

Ball (1990) argued that mathematics teachers with confidence based on 'thin 

and rule-based understanding, can pose a threat to student learning if 

teachers confidently proclaim wrong ideas or portray mathematics in 

misleading ways' (p.464). 

In relation to the links between the respondents' mathematical understanding 

and their pedagogical knowledge of logarithm, it seems that procedural 

knowledge associated with instrumental and relational understanding is the 

major source of knowledge contributing to the respondents' decisions about 

what is important learning and what is appropriate teaching. 

In summarising the response-data for the LOG item, it appears that 

'abstract logarithmic rules and formulae' were considered by most pre-

service teachers to be the more important type of knowledge students 

should acquire for learning how to solve problems involving logarithm. 

The participants appear to have been influenced by their lack of teaching 

Chapter 5/ Page 194 



experience and lack of relevant knowledge of logarithm to the extent that 

they base their suggestions of appropriate teaching approaches on how they 

themselves were taught logarithm. 

However, having to reflect on how logarithm was learned and taught in high 

school tends to suggest that university mathematics did not adequately 

provide the pre-service teachers with the type of understanding which 

promotes confidence in teaching. This kind of result is a concern. 

According to Ball (1990), the 'view they [pre-service teachers] do hold is 

likely to shape not only the way in which they teach mathematics once they 

begin teaching but also the way in which they approach, learning to teach 

mathematics' (p.463). 

With respect to gender differences in teaching, there was an indication that 

female respondents tended more so to consider the 'visual representation of 

logarithmic formulae' as important learning for students, and were more 

likely to show lack of essential knowledge about logarithm than male 

participants. 

5.2.2.3 Response-data for the STAT item 

The summary of SQ2 response-data for the STAT item is presented in 

Table 5.10 (next page). 
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Table 5.10: 	Summary of SQ2 response-data for the STAT item 

What is important learning for students? 
PRE-SERVICE 

TEACHERS' 
PERSPECTIVE STAT 

Category 	(1) Category 	(2) Category 	(3) 

ABSTRACT F3 F5 F6 F7 
M3 M7 

Fli F8R 

M5R M41 M9R 

VISUAL 

DON'T KNOW F2 	F4 
M l M2 M6 M8 MIO 

Ml!  
Legend: 
Subscript R indicates response-data classified as Relational understanding. 
Subscript I indicates response-data classified as Instrumental understanding. 

The response-data by participants M9, M10 and M11 for the STAT item 

were also examined for descriptors on the 'usefulness of statistics in problem 

solving'. However, it was found that only participant M9's responses could 

provide some helpful guidance. The following are the responses to SQ2 and 

SQ3 by participants M9, M10 and M11. 

Participant M9: It is important for students to have an understanding of the 

different forms of the variance formula and the skills involved 

in using and applying the formulae (the response to SQ2). 

[It is worthwhile to note that M9 was the only participant who 

provided a response (to SQ1) categorised as conceptual 

knowledge associated with relational understanding for the 

STAT item]. However, M9's response to SQ3 did not show 

the same confidence as in the above responses: Again 

[referring to previous responses for the TRIG item], it's 

important to get guidance from the syllabus for the 

appropriate teaching sequence to follow. 
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Participant M10: I don't know, I guess knowledge of what a variance is (the 

response to SQ2). Participant MIO's lack of knowledge 

about the variance was also reflected in his response to SQI 

(Table 5.3). This lack of knowledge also seems to have 

influenced M10's response to SQ3: Statistics is not my 

strength, so for teaching, I'll just stick to the syllabus. 

Participant M11: I'm not really sure (the response to SQ2). This response 

was similar to M 11's response to SQl: I don't really know, I 

know the mean and the deviation from the mean is squared, 

but that's about it. The response to SQ3 by MI I also reflects 

the same insufficiency of knowledge: 1 need to learn and do 

more studies in this area before teaching it. 

Participant M9's responses, learning different forms of the ... formula ... and 

applying the formulae, seem to reflect the importance of learning 'abstract 

rules and formulae'. However, the teaching approach for statistics suggested 

by M9 is relatively the same as that suggested by Mb, and there is also a 

likelihood of the same strategy of following the syllabus guidelines by 

participant M11. 

For the STAT item, it appears that either the respondents had knowledge of 

the statistical variance or they did not know enough about the variance 

formula for them to provide a suggestion of what is important learning for 

students and how they intend to teach it (Table 5.10). It is worthwhile to 

note that a similar result for the STAT item was also observed in the interview 

data from the 18 experienced mathematics teachers. The analysis of these 

interview data is reported in Section (4.2.2) of Chapter 4. However, the 

teachers' lack of knowledge about 'variance' was related to their lack of 
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opportunities in teaching (e.g. I can't answer this because I have not taught 

the statistics topic yet, that is coming up next term) as well as lack of specific 

knowledge (e.g. this type of statistics was not part of the course when I was at 

teachers' college and I have only taught the basic statistics like finding the 

mean, mode, and median, and drawing frequency tables and graphs). 

The respondents who appear to have some knowledge of the statistical 

variance tended to suggest that what is important learning for students is: 

Understanding what the variance is and it's use in data analysis (participants 

F5, F8, M5 and M7). Understanding the variance formula, and how to use 

and apply it, or knowing which variance formula to apply in solving 

problems (participants F1, F6, M3, M4 and M9). Applications of the formula 

to real-life situations. Focus on all statistics including the mean and 

standard deviation (participants F3 and F7). The learning of 'abstract rules 

and formulae' and the appropriate applications of these formulae were 

considered important by 58% (11/19) of the participants (Table 5.10). 

The other 42% (8/19) of the participants (F2, F4, Ml, M2, M6, M8, M10 and 

Ml!) showed insufficient knowledge of the statistical variance concept. 

This was indicated by the participants' uncertain responses (e.g. I'm not 

sure) about what learning is important for students, or by their lack of 

knowledge (e.g. I don't know) about statistics for them to give an appropriate 

response (Table 5.10). 

It could be suggested from these response-data that the understanding 

difficulties the pre-service teachers had with statistics, and in particular with 

the 'variance', are related to the fact that many statistical terms such as the 

variance represent concepts and not objects (Green, 1983; Miller, 1993; 
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Shaughnessy, 1993). For example, the response-data by participants F1, F6, 

M3, M4 and M9 (understanding the variance, and how to use and apply it, 

or knowing which variance formula to apply in solving problems) show 

evidence of misunderstanding the concept (variance) as an object (variance 

formula). This misconception is further exemplified by responses such as 

'students to understand applications of the formula (object) to real-life 

situations. Focus on all statistics (concept) including the mean and standard 

deviation. 

The summary of SQ3 response-data for the STAT item is presented in 

Table 5.11 below. 

Table 5.11: 	Summary of SQ3 response-data for the STAT item 

Appropriate  teachin strate ies 
PRE-SERVICE 

TEACHERS' 
PERSPECTIVE STAT 

ABSTRACT 
I. Introduce statistics using real-life situations. 
2. Teach the mean and variance formulae. 
3. Application of the variance formulae to solve problems. 
4. Interpret results. 
Suggested by participants: Fl F7 F8 M4 M5 and M7. 

VISUAL 

DON'T KNOW 

The pre-service teacher: 
I. Needs to do further studies and to understand statistics first. 
2. Find a good textbook. 
3. Learn on-the-job. 
4. Follow the syllabus. 
Suggested by participants: F2 F3 F4 F5 F6 MI M2 M3 M6 M8 M9 
M10 and MII. 

An important observation with respect to teaching (5Q3 response-data) is 

participant M9's response-data for the STAT item. It was observed that 

although M9's response-data for SQ1 and SQ2 indicated evidence of 

conceptual understanding of the statistical variance, his response-data for 
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SQ3 showed evidence (follow the syllabus) suggesting a lack of confidence 

in teaching this topic (Table 5.11). This observation tends to contradict the 

assumption that an individual with relational mathematical understanding 

would demonstrate more confidence to teach mathematics than an individual 

with instrumental understanding (Section 4.1.1). 

This lack of confidence to suggest an appropriate teaching approach for the 

variance was also expressed in the response-data for SQ3 by participants (F2, 

F4, MI, M2, M6, M8, M10 and M11) who claimed that they are 'not sure' or 

'don't know' much about the variance formula. Evidence of this lack of 

confidence to teach statistics was reflected in responses such as: I need to do 

further studies and to understand statistics first; find a good textbook on 

statistics; learn on-the-job, and follow the syllabus (Table 5.11). 

It could be suggested from these response-data that the lack of confidence to 

teach statistics may be related to the pre-service teachers' lack of teaching 

opportunities and lack of relevant knowledge specifically associated with the 

STAT item (a similar result was shown for experienced teachers in Section 

4.2.2, Chapter 4). In addition, it seems that in teaching, although having 

relational understanding (e.g. participant M9) would enable the individuals 

to decide what is important learning for students, having little or no teaching 

experience tends to encourage the individuals to draw on their past 

experiences of how they were taught mathematics in high school or teachers' 

college (Section 4.2.2, Chapter 4). However, Ball (1990, p.464) would argue 

that this lack of confidence to teach would not necessarily be increased by 

having teaching experience, rather the 'increases in their [pre-service 

teachers] substantive understanding [and] changes in their ideas or feelings 
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about mathematics' would ensure the kinds of confidence expected of 

competent mathematics teachers. 

Nevertheless, the teaching approaches suggested by participants Fl, F7, F8, 

M4, M5 and M7 seem to follow a sequential pattern: (a) introduce statistics 

using real-life situations such as collecting and organising information 

about population and economic growths, (b) teach the mean and then the 

variance formula and how it is used, and (c) provide knowledge of how to 

interpret results (Table 5.11). 

Furthermore, the response-data for SQ3 of the STAT item tended to indicate 

that any observed differences in mathematical understanding between a pre-

service teacher (e.g. F2, F4, Ml, M2, M6, M8, M10 and M11) who has 

knowledge deficiencies (as in category (1), Table 5.3) and a pre-service 

teacher with relational understanding (M9) of mathematics, (relational 

understanding as in category (3), Table 5.5), are likely to be equalised once 

the pre-service teachers begin their teaching career. That is, regardless of 

background, they will need to do further studies and to understand statistics 

first; find a good textbook on statistics; learn on-the-job, and follow the 

syllabus. 

To summarise the analysis of the response-data for the STAT item, it could 

be suggested that knowledge of the formula (object) is not sufficient for 

competent learning of the statistical variance (concept). Rather, important 

learning aspects, for example, a conceptual understanding of what a variance 

(concept) is and how it is used in data analysis (or its function) appear to be 

needed. The pre-service teachers' pedagogical knowledge appears to be 

mainly 'external knowledge' or knowledge from a good textbook or from 
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the syllabus, and by learning on - the -job (Table 5.11). This external 

knowledge could contribute to the high proportion (13/19=68%) of 

respondents who were not confident to suggest a teaching strategy. However, 

the pre-service teachers' lack of confidence could be attributed to their lack 

of teaching experience. Nevertheless, the concern is that this lack of 

confidence in teaching may also be attributed to the pre-service teachers' 

abstract and rule-based perspective of learning mathematics, which may not 

have `afford[ed] them substantial advantage in articulating and connecting 

underlying concepts, principles, and meanings' (Ball 1990, p.463). 

Differences due to gender were not evident in the response-data for the 

STAT item. 

Summary of the second phase of data analyses 

As an overall summary of the analyses of response data for SQ2 and SQ3, 

the tables of summaries (Tables 5.6, 5.8, 5.10) for SQ2 corresponding to 

the TRIG, LOG, and STAT items are combined in Figure 5.1. Similarly, 

the tables of summaries (Tables 5.7, 5.9, 5.11) for SQ3 corresponding to 

the three stimulus items are combined in Figure 5.2. These two Figures, 

5.1 and 5.2, are presented in the following pages. These analyses 

indicated that there are differences in the respondents' knowledge 

pertaining to teaching (or pedagogical knowledge) not only within, but also 

across the three stimulus items (TRIG, LOG and STAT). In the subsequent 

discussions these differences are summarised in relation to knowledge 

insufficiencies identified in this phase and in the first phase of the data 

analysis (Section 5.2.1). 
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Figure 5.1: 	Summary of SQ2 response-data for the TRIG, 
LOG, and STAT items 

What  is important learning for students? 
PRE-SERVICE 

TEACHERS' 
PERSPECTIVE 

TRIG 

Category (1) Category (2) Category (3) 

ABSTRACT 
Ml 	M8 

F5R 

M21 M31 M41 M51 M61 M71 

VISUAL F2 F3 F4 Fl 1 	F61 F7 R 
F8R 

M9R M 1 1 12 

M101 

PRE-SERVICE 
TEACHERS' 

PERSPECTIVE 
LOG 

Category 	(1) Category 	(2) , Category 	(3) 

ABSTRACT M1 	M8 

F61 F51 F8R  

M21 M31 M41 M9R M5I M6I M7I M 1 OR 
MIIR 

VISUAL F l F21 
DON'T KNOW F3 F4 F7 

PRE-SERVICE 
TEACHERS' 

PERSPECTIVE 
STAT 

Category (1) Category (2) Category (3) 

ABSTRACT 
F3 F5 F6 F7 

M3 M7 

Fl! 	F8R 

M5R M41 M9R 

VISUAL 

DON'T KNOW F2 	F4 

M l M2 M6 M8 
MIO MII 

Legend: 
Subscript R indicates response-data classified as Relational understanding. 
Subscript I indicates response-data classified as Instrumental understanding. 
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Figure 5.2: 	Summary of SQ3 response-data for the TRIG, 
LOG, and STAT items 

Approuriate teachin2 strate ies 
PRE-SERVICE 
TEACHERS 

PERSPECTIVE 
TRIG 

ABSTRACT 

I. Introduce trig-ratios using right-angled triangles. 
2. Solve right-angled triangles using trig-ratios. 
3. Teach trig-rules and applications. 

Suggested by participants: F5 MI M2 M3 M4 M5 M6 M7 and M8. 

VISUAL 

1. Discuss why the need to learn trig-functions. 
2. Teach unit-circle and graphing of trig-functions. 
3. Introduce trig-ratios and right-angled triangles. 
4. Teach trig-rules in relation to trig-ratios and trig-graphs, and teach how to apply trig-
rules to real-life situations. 

Suggested by participants: Fl F2 F3 F4 F6 F7 F8 M9 M 10 and MI I .  

PRE-SERVICE 
TEACHERS' 

PERSPECTIVE 
LOG 

ABSTRACT 

I. Introduce log-laws in relation to indice-laws. 
2. Solve algebraic problems using log-laws. 
3. Application of log-laws by doing lots of type-examples and written exercises. 

Suggested by participants: F5 F6 F8 Ml M2 M3 M4 M5 M6 M7 M8 M9 M10 and MI1 

VISUAL 

I. Discuss real-life situations in which logarithms are used. 
2. Compare log-graphs to other graphs, e.g. quadratics. 
3. Teach log-laws and show relations to indice-laws. 
4. Application of log-laws to word problems. 
5. Solve complex algebraic problems of the form Yx using log-laws. 

Suggested by participants: Fl and F2. 

DON'T KNOW 

1. Teach calculator skills. 
2. Solve algebraic logarithmic problems using log-laws. 
3. Do lots of written exercises. 

Suggested by participants: F3 F4 and F7 

PRE-SERVICE 
TEACHERS' 

PERSPECTIVE 
STAT 

ABSTRACT 

I. Introduce statistics using real-life situations. 
2. Teach the mean and variance formulae. 
3. Application of the variance formulae to solve problems. 
4. Interpret results. 

Suggested by participants: Fl F7 F8 M4 M5 and M7. 

VISUAL 

DON'T KNOW 

The pre-service teacher: 
I. Needs to do further studies and to understand statistics first. 
2. Find a good textbook 
3. Learn on-the-job. 
4. Follow the syllabus. 

Suggested by participants: F2 F3 F4 F5 F6 M1 M2 M3 M6 M8 M9 MIO and Ml!. 
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The observed differences within items are considered first: 

For the TRIG item (Figure 5.1), the observed difference concerns the 

predominance of females showing a preference for the 'visual' perspective 

and the predominance of males indicating a preference for the 'abstract' 

perspective. The frequency distribution of the response-data according to 

knowledge categories (1, 2, and 3) provided little indication to suggest that 

this gender difference in teaching perspectives was related to an influence of 

procedural and conceptual types of knowledge (Tables 5.2, 5.3, 5.4). 

However, it could be suggested from the results in Figure 5.2 that the males 

would be more likely to teach trigonometry using algebraic representations 

than the females. Nevertheless, underlying these perspectives ('abstract' and 

`visual'), is an understanding of trigonometry based on knowledge of 

formulae and graphical representations (objects) for specific applications 

rather than conceptual knowledge of trigonometry. 

For the LOG item (Figure 5.1), the observed difference is the high 

proportion (14/19=74%) of participants indicating their preference for the 

'abstract' perspective. This difference appears to be an outcome that is 

related to procedural mathematical knowledge. For example, all of the 

participants, except F2, with response-data classified as categories (2) and 

category (3) indicated a preference for the 'abstract' perspective. Gender 

differences in teaching perspectives were observed. That is, males tended to 

prefer the 'abstract' perspective whilst the females tended to prefer the 'visual' 

perspective and were more likely to show lack of confidence in suggesting 

what is important learning for students. However, the understanding of 

logarithm as a concept was not evident from the response-data. Rather, as 

with trigonometry, logarithm was perceived as an object (e.g. log-laws) for 

Chapter 5/ Page 205 



solving specific mathematical problems (e.g. linearising exponential 

equations). 

Another observed difference with the response-data for the LOG item 

concerns the teaching strategies, particularly the strategies corresponding to 

the 'don't know' perspective (Figure 5.2). These strategies were suggested by 

participants F3, F4 and F7 who indicated (Figure 5.1) their insufficient 

knowledge of logarithm to the extent that they were unable to suggest what 

could be important learning for students. However, insufficiency of 

knowledge did not appear to inhibit these participants to suggest what they 

perceived as appropriate teaching strategies. However, such strategies tended 

to reflect 'thin and rule-based understanding' (Ball, 1990, p.465) that these 

participants had demonstrated in their response-data for SQ1 (Tables 5.3, 

5.4, 5.5). 

For the STAT item (Figure 5.1), the observed difference is the contrast in the 

participants' perspective about the statistical variance. That is, the 

participants would either say 'don't know' or suggest that the 'abstract 

learning of formulae' is important in learning statistics. This difference 

appears to relate to three factors: (1) The lack of specific knowledge about 

statistics. This is indicated by the majority of 'don't know' responses 

classified as category (1) response-data (Figure 5.1). (2) A misconception of 

'variance' as an object (variance formula) rather than a concept. This 

misconception would result in 'abstract' response-data and category (1) type 

data. (3) A perception that knowledge of variance is 'external knowledge' 

contained in, for example, textbooks and calculators rather than a mental 

knowledge or schema (Skemp, 1979, 1982; Derry, 1996). 
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Another observed difference with the response-data for the STAT item 

concerns the teaching strategies associated with the 'don't know' perspective 

(Figure 5.3). That is, it appears that one (e.g. participant M9) could have 

relational understanding of the variance formulae and could suggest what is 

important learning for students, but may not have the confidence to suggest 

how the topic could be taught, except to follow the syllabus (or external 

knowledge). On the other hand, one (e.g. participant M2) may have 

insufficient knowledge about the variance and be unsure of what is important 

learning for students, while at the same time, he or she may show confidence 

in teaching by relying on a good textbook because this sort of topic is too 

much to commit to memory, ... and of course I would need to follow the 

syllabus (participant M2). These observations tend to imply that for these 

pre-service teachers, good teaching of mathematics is afforded by having 

information on how to follow the syllabus, and how and where to find 

relevant resource materials. 

Observed differences across the three items are considered next. 

The main difference observed across the three items is the progressive shift 

from the 'visual' perspective with the TRIG item to the 'abstract' perspective 

with the LOG and the STAT items. There could be several factors which 

influenced the participants' decisions to respond to the items differently. 

According to Ball (1990), based on her studies of prospective secondary 

mathematics teachers, "teacher candidates' knowledge, ways of thinking, 

beliefs, and feelings, jointly affected their responses ... [also] their 

approaches to figuring out problems were shaped by their self-confidence, 

[and] their repertoire of strategies" (p.461). The following discussion, 
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therefore, is an attempt to describe what might be the factors contributing to 

this difference. 

It is suggested that the mathematics represented by each item may be one 

contributing factor. Another factor might be related to the participants' 

beliefs of what is important mathematics in learning and teaching. 

The mathematics represented by the TRIG item involves the periodic nature 

of trigonometric functions. Although this periodic nature was presented to 

the participants in an algebraic form, it was possible for the individuals to use 

their understanding involving knowledge of trigonometric ratios and rules in 

relation to the unit-circle and trigonometric graphs. In addition, the TRIG 

item represented aspects of measurement and spatial knowledge of the sine, 

cosine, and tangent ratios in relation to the unit-circle and the sides of a 

right-angled triangle. The responses by the pre-service teachers to SQ2 and 

SQ3 indicated many of these knowledge aspects; the most common aspect 

was the trigonometric ratios. It could be suggested from the responses to 

SQ2 and SQ3 that females prefer the 'visual' aspect (or representations) of 

mathematics and that males prefer the 'algebraic or abstract' nature of 

mathematics. 

The mathematics represented by the LOG item involves knowledge of 

specific formulae or laws, algorithms, and computational skills. Although 

these laws could be represented graphically, it seems that not all the 

participants, except Fl and F2, may have been familiar with or learned to 

illustrate logarithmic functions diagrammatically. From the response-data 

for SQ2 and SQ3, it could be suggested that most of the participants, 

regardless of gender, were only familiar with the algebraic formulation and 
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computations involving the logarithmic laws. This algebraic knowledge of 

logarithm appears to have contributed to the shift from 'visual' to the 

'abstract' perspective for the LOG item. It could also be suggested from 

these results that these pre-service teachers will most likely teach logarithm 

using algebraic formulation (see Figure 5.2, page 204). 

The mathematics represented by the STAT item also involves knowledge of a 

particular concept, statistical variance. However, it appears that the pre-

service teachers had little knowledge of what the variance is, and that they 

perceived the statistical variance formula to constitute a system of symbols 

and procedures that are not essential to the general understanding of 

mathematics. For example, this sort of topic is too much to commit to 

memory, so I've always relied on textbooks rather than try and commit it to 

memory (participant M2). 

In addition, it seems that a large proportion of the participants have had little 

study in statistics, including the variance. For example, I really don't know 

because I have not done much learning in this area (participant F2). An 

important observation from the analysis of the response-data for the SQ1 of 

the STAT item (category (1) in Table 5.3) which seems to relate to these data 

is that, undeveloped and unprocessed knowledge deficiencies were observed 

to occur most frequently with the STAT item (Section 5.2.1). That is, there 

is a deficiency of essential knowledge elements due to lack of learning 

(undeveloped knowledge) and a deficiency of conceptual knowledge which 

gives meaning to formulae (unprocessed knowledge) that may have 

contributed to the outcomes summarised in Figures 5.1 and 5.2. 
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Furthermore, it is proposed that the 'abstract' perspective the participants 

preferred for the STAT item, may be a reflection of their 'beliefs' on what is 

important learning in statistics, rather than an indication of their 

mathematical understanding about statistics. For example, participant F5's 

responses to SQ1 indicated that she knows the symbols, ( I know that 'sigma 

squared' is the variance and the square-root of it is the standard deviation. 

But, looking at this [cued-data] I can't recall the formula), but lacks the 

necessary understanding of these symbols for her to decide what is 

appropriate learning to teach students (I don't really know or have an 

understanding of what a variance is. I just know it as 'sigma squared). 

However, when asked what is important learning to teach students, participant 

F5 replied: The actual concept of the formulae students have to learn. When 

asked about a teaching strategy, F5 replied: I don't really know, I guess I 

will have to follow the syllabus. It could be suggested from the responses to 

SQ2 and SQ3 for the STAT item that the 'abstract' classification is based on 

the pre-service teachers' beliefs about what might be important for students 

when learning the statistics formulae. 

In summary, the aim of this second phase of the data analysis was to 

address the second research question: What possible influences could any 

identified deficiencies in types of procedural and conceptual 

mathematical knowledge have on the teaching of mathematics? From the 

results of these analyses, it appears that deficiencies in conceptual 

knowledge of mathematics can influence: (i) student-teachers' 

dependency on mathematical knowledge obtained from external sources 

(e.g. textbooks, calculators, and syllabi), and (ii) student-teachers to make 

pedagogical decisions based on what they believed to be important, rather 

than on their symbolic understanding (Skemp, 1982) or substantive 
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understanding (Ball, 1990) of mathematics. In addition, a gender 

difference in teaching perspectives appears to be associated with a 

deficiency in conceptual knowledge. For example, females tended to 

prefer teaching using the 'visual' perspective whilst males tended to 

prefer teaching using the 'abstract' perspective. 

This completes the second phase of the analysis. The following section is 

the report on the third phase of the analysis. 

5.2.3 	Phase three of the analysis 

This phase of the analysis draws on the results from phase one and phase 

two. The aim of this phase of the analysis is to address both research 

questions in view of any 'similarities' and/or 'contrasts' of knowledge 

types displayed in the response-data from 'maths major' participants (Set 

Al and Set B1) and 'maths minor' participants (Set A2 and Set B2). To 

achieve this aim, the results for the individual cases from the analysis in the 

first phase are tabulated into their respective groups in Figure 5.3 (next 

page). For consistency with the description of the cases in Chapter 4 

(Table 4.1), the summarised response-data from each of the cases are 

presented in Figure 5.3 in their respective groups, namely Set Al, Set Bl, 

Set A2, and Set B2. 
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Figure 5.3: 	Summary of the data analysis for each case studied 
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5.2.3.1 	Similarities of knowledge types 

In Figure 5.3 above, all the participants in Set Al (maths majors from State A), 

except M8, responded to the TRIG and LOG items with mainly procedural 

type knowledge. Participant M8's response-data for all three stimulus items 

were classified as category (1) type knowledge. Although M8 was able to 

recognise the 'errors' represented in the stimulus items, his knowledge seemed 

rather fragmented. For example, M8's responses to the TRIG item indicated 

that he did have knowledge of trigonometry: The student is treating this as 

algebra, and there seems to be a misunderstanding between the cos and its 

angle (interpreted the symbols correctly). However, his knowledge of 

trigonometry was limited (But I can't remember how to do this now or to 

explain why this is so). For the LOG item, although M8 was able to identify 

an 'error' (The student fails to check the final answer to see that log(3) # 

log(0)) and attempted to give a correction (1og 10100 =2, ie. 102  = 100), he was 

unable to proceed further (Sorry, I can't remember). M8's responses to the 

STAT item were simply, Sorry, but I can't remember any of this. The other 

cases in Set Al, except F8 and M9, also indicated category (1) type knowledge 

for the STAT item. 

The response-data for the participants in Set B1 (maths majors from State B) 

indicated mostly pseudo-conceptual knowledge which is, by definition 

(Section 5.1.3), procedural type knowledge for the TRIG, LOG, and STAT 

items (Figure 5.3). Although F7 was able to provide a category (2) type 

response-data for the TRIG item, she was not able to do the same for the LOG 

item (e.g. 1 can't remember, 1 know that there are log-laws but 1 can't 
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remember what they are). All the participants, except M4 and M5, indicated 

category (1) type knowledge for the STAT item. 

The response-data for the participants in Set A2 (maths minors from State A) 

indicated little differences between these cases (Figure 5.3). That is, the 

pseudo-procedural type knowledge was dominant for all the cases, except 

M1 with category (1) type response-data for all the three items. However, 

category (1) type knowledge was more evident with response-data for the 

STAT item. Both pseudo-procedural knowledge and category (1) type 

knowledge are rule-based knowledge associated with instrumental 

understanding, these are the types of knowledge referred to in Section (2.4) 

of Chapter 2 as rote knowledge. 

The response-data for the three participants in Set B2 (maths minors from 

State B) indicated category (1) type knowledge as the dominant type, 

particularly for the STAT item. Although F2's response-data had evidence 

of category (2) type knowledge for the LOG item, these were pseudo-

procedural type knowledge (or rote knowledge). However, F2's response-

data for the TRIG and STAT items were classified as category (1), similar to 

the other two participants. 

In summarising the results in this section in relation to the first research 

question, it appears that the dominant types of knowledge that exists in these 

pre-service teachers' mathematical knowledge bases were procedural 

knowledge and category (1) type knowledge (or rote knowledge). These 

results are consistent with those observed in the first phase of the analysis 

(Section 5.2.1). However, procedural knowledge pertaining to relational 

understanding was observed more in the response-data from Set Al (maths 
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major from State A) than Set B1 (maths major from State B). Group Set 

B l's response-data, on the other hand, appear to show more evidence of 

procedural knowledge (the 'pseudo' type) classified as belonging to 

instrumental understanding. Nevertheless, both groups' procedural type 

mathematical knowledge is not indicative of these participants' mathematical 

backgrounds (majors in mathematics, physics, chemistry, engineering, and 

computer science). 

Pseudo-procedural knowledge was also the dominant type of knowledge 

observed in the response-data for the Set A2 group (maths minors from State 

A). Category (1) type knowledge, on the other hand, was observed as the 

dominant type in the response-data by the participants in Set B2 (maths 

minors from State B). However, the underlying knowledge structures (or 

schemata) for both these knowledge types, category (1) and pseudo-

procedural knowledge, are those based on rote knowledge (Section 2.4, 

Chapter 2) or instrumental mathematical understanding (Section 5.2.1). 

With respect to the second research question in relation to teaching 

knowledge (pedagogical knowledge), both Set Al and Set B1 groups' 

response-data for SQ2 and SQ3 (Section 5.2.2) indicated similar results 

(Figure 5.1 and 5.2). That is, both groups indicated the importance for 

mathematics students to learn 'abstract rules and formulae'. Although 

there were some observed differences with the groups' response-data for 

the TRIG and STAT items (e.g. for the TRIG item, group Set Al tended to 

prefer the 'visual' perspective and group Set B1 the 'abstract' perspective), 

the fact that both the 'abstract' and 'visual' perspectives were based on 

knowledge of formulae (or objects) rather than knowledge of concepts 

suggests that there were minimal conceptual structures on which 
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pedagogical practices could be built (Section 5.2.2). For the 'maths 

minor' (Set A2 and Set B2) groups' teaching knowledge (pedagogical 

knowledge), both groups' response-data for SQ2 and SQ3 indicated very 

similar results based on rote knowledge or 'thin and rule-based knowledge' 

(Ball, 1990). 

Another similarity was in relation to the STAT item in which the main type 

of knowledge appears to be category (1). Although M4 and M9 (both 

'maths majors') indicated category (3) type knowledge for the STAT item 

(Table 5.5), their response-data for SQ2 and SQ3 showed a similar lack of 

confidence in their understanding to those with 'maths minor' 

backgrounds. 

Figure 5.4 (next page) summarises the data presented in Figure 5.3. In 

Figure 5.4, the knowledge types displayed in the response-data are 

illustrated in association with each stimulus item (TRIG, LOG, and STAT). 

In addition, the response-data from each participant is represented by a 

'rectangular shape'. For example, in relation to the TRIG item, each of 

the five rectangles associated with Set Al group represents a participant's 

response-data in this group. Likewise, each of the three rectangles 

associated with Set B2 group represents a participant's response-data in 

this group. 
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5.2.3.2 	Contrasts of knowledge types 

From Figure 5.4 above, there appears to be more similarities than there are 

contrasts of knowledge types. For example, the similarities of knowledge 

types in the response-data with respect to the participants' mathematical 

backgrounds; referred to as 'maths major' and 'maths minor'. The 'maths 

major' participants seemed to have similar knowledge types, namely 

procedural mathematical knowledge (Figure 5.4). On the other hand, the 

'maths minor' participants tended to show more evidence of rote type 

knowledge, particularly Set B2 (Figure 5.4). 

However, the more obvious contrasting results are associated with the three 

stimulus items. For example, there is a noticeable difference of results for 

the TRIG and LOG items with respect to Set Al (maths major) and Set B2 

(maths minor) groups (Figure 5.4). In addition, the STAT item has elicited 

more category (1) type knowledge than the TRIG and LOG items. Both the 
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TRIG and the LOG items, on the other hand, tended to elicit procedural type 

knowledge. These results tend to suggest that there might be different 

knowledge structures (or schemata) for trigonometry, logarithm, and 

statistics. Also, that these schemata may not interlink but exist as separate 

'memory objects' (Derry, 1996). It could be suggested that 'contrasts' 

between these schemata types are based on the 'demands' placed upon them 

during knowledge production (Figures 2.4, 2.5, Chapter 2) or the amount of 

repeated usage in meeting the individual's goal (Alexander, 1995; Derry, 

1996). Based on such an approach, it could be suggested that because the 

participants had less need for statistics, minimal demand was placed on the 

'statistics schema'; hence the majority of category (1) type knowledge for 

the STAT item. 

In summarising this section, it appears that this notion of 'separate schema' 

for each mathematical area is feasible in theory and it could explain the 

contrast of knowledge types displayed in the response-data by groups Set Al 

and Set B2 and the contrast of knowledge types observed between the 

function items (TRIG and LOG) and the statistic item (STAT). However, for 

pre-service teachers of mathematics, it appears essential that one of their 

goals should be to identify areas of weakness and to increase the 'demands' 

on these mathematical schemata in their pursuit to become competent 

teachers of mathematics. 

This completes the analysis of the data of this study of secondary pre-service 

mathematics teachers' existing mathematical knowledge pertaining to 

trigonometry, logarithm, and statistics. A summary of the analyses in terms of 

the two research questions is presented in the following section, Section (5.3). 
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5.3 	PART THREE: SUMMARY OF THE DATA ANALYSIS 

The analysis of the data, particularly in the first phase, was for the examination 

of responses by nineteen secondary pre-service mathematics teachers to three 

mathematical stimulus items (TRIG, LOG, and STAT). These responses were 

assumed to be representative of the pre-service teachers' mathematical thought 

processes based on their existing mathematical knowledge bases. Therefore, it 

was assumed that the outcome of this analysis would appropriately address the 

first research question: What types of procedural and conceptual 

mathematical knowledge exist in pre-service teachers' knowledge bases? 

These outcomes are outlined below. 

I. 	The 44% of the response-data for the three mathematical stimulus 

items showed evidence of mathematical knowledge deficiencies. These 

knowledge deficiencies were identified as: 

a) Undeveloped knowledge or a deficiency of knowledge elements 

that are essential in the formation of conceptual types of knowledge. 

b) Unprocessed knowledge or a deficiency of conceptual type 

knowledge that gives meaning to knowledge of formulae and algorithm. 

c) Unproductive knowledge or a deficiency induced by the 

dependency of the individual on external resource materials (external 

knowledge) as a source of mathematical knowledge. 

d) Unrelated knowledge or a deficiency of relevant knowledge which 

is similar to what the respondent was presented with. 

It was observed that undeveloped knowledge and unprocessed 

knowledge were the most common types of knowledge deficiencies. 
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2. The other 56% of the response-data were representative of the 

instrumental and relational types of mathematical understanding. Of 

this 56%, 51% was representative of procedural type knowledge and 

5% of conceptual type knowledge. 

3. It was observed that procedural type knowledge on its own, without 

essential links to conceptual knowledge, generated uncertainties and 

gaps in knowledge, particularly procedural knowledge associated with 

instrumental understanding. Therefore, the 51% of procedural type 

knowledge also contained elements of knowledge deficiencies, 

particularly the 33% that was classified as characteristic of instrumental 

understanding. In addition, although 23% of the response-data were 

characteristic of relational mathematical understanding, there was little 

evidence of these, except for the 5% in category (3), displaying 

relevant links to conceptual knowledge. 

4. The lack of knowledge pertaining to symbolic understanding (or 'a 

mutual assimilation between a symbol system and a conceptual structure, 

[but] dominated by the conceptual structure' (Skemp, 1982, p.61)) was 

observed to relate to misconceptions of the function concept. The 

concepts trigonometry and logarithm were treated and understood as 

objects (or formulae, rules, ratios, laws, and graphs) rather than concepts. 

Similarly, the statistics or variance concept was also understood as an 

object or a system of symbols such as 'sigma squared'. The lack of 

symbolic understanding also seems to be associated with a dependency 

on 'external knowledge' or knowledge from textbooks and calculators, 

particularly in the case of statistics. 
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In addressing the first research question, the outcomes of the first phase of 

the analysis tended to indicate that instrumental understanding was the 

dominant form of understanding by the pre-service teachers. In addition, the 

pre-service teachers' existing mathematical knowledge associated with the 

mathematics represented by the TRIG, LOG, and STAT items was largely 

based on procedural knowledge and possibly rote knowledge of formulae 

and algorithms. 

The second phase of the analysis was particularly for the examination of 

responses by the pre-service teachers to two questions (SQ2 and SQ3) which 

focused on the thought processes involved in making pedagogical decisions. 

The two stimulus questions were concerned with what is important 

mathematics that students must learn (SQ2), and which strategies would be 

appropriate for teaching the mathematics (5Q3). It was assumed that these 

pedagogical decisions were dependent on, and influenced by, the pre-service 

teachers' existing mathematical knowledge and understanding (outcomes 

relating to SQ1). As such the outcomes from these decisions will provide 

data that would appropriately address the second research question: What 

possible influences could any identified deficiencies in types of procedural 

and conceptual mathematical knowledge have on the teaching of 

mathematics? These outcomes are summarised below. 

I. 	There was evidence of a gender difference in teaching perspectives 

with respect to trigonometry. The female participants tended to favour 

the teaching of trigonometry to students using visualisation strategies 

(e.g. graphs of trigonometric functions, unit-circle, right-angled 

triangles and trigonometric ratios). The male participants, on the other 

hand, tended to favour the teaching of trigonometry to students using 
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'abstract' rules and formulae. A similar gender difference in teaching 

perspectives was evident with responses concerning the teaching of 

logarithm. However, with respect to statistics where there was a large 

proportion (14/19) of the response-data showing evidence of category 

(1) type knowledge deficiencies, there was no observable gender 

difference in teaching perspectives. 

2. The affects of knowledge deficiencies identified as undeveloped, 

unprocessed, unproductive, and unrelated on pedagogical decisions 

appear to be more pronounced with statistics than with trigonometry 

and logarithm. The undeveloped and unprocessed types of knowledge 

deficiencies were observed more frequently with the STAT item and 

appeared to relate to the participants' lack of prior learning in statistics 

(Green, 1983; Shaughnessy, 1993). Having knowledge deficiencies 

also seemed to influence the pre-service teachers to make pedagogical 

decisions which are based on their beliefs of how important and 

relevant the mathematics is to future achievements. It was observed 

that, as a consequence of having knowledge deficiencies, the pre-

service teachers' confidence to teach for conceptual understanding is 

reduced while, at the same time, their dependency on rule-based 

teaching strategies, on 'external knowledge' (e.g. textbook 

knowledge) and on prescribed teaching strategies (e.g. the syllabus, 

learn on-the-job) increases. 

3. The dominance of procedural knowledge and instrumental type 

understanding seemed to influence and promote pedagogical decisions 

which embraced mathematical learning of algorithms and algebraic 

formulae. Although the conceptual understanding of these abstract 
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formulations were considered important by the pre-service teachers, 

their suggested teaching strategies indicated they lacked confidence in 

their own understandings to suggest methods which promote 

conceptual mathematical learning by students. Such lack of 

confidence appeared to relate to the pre-service teachers' past 

experiences, particularly their high school experiences, of how they 

were taught mathematics as meaningless sets of algebraic procedures, 

and sets of symbols and formulae. 

4, 	Conceptual knowledge pertaining to relational understanding of 

mathematics was observed in only a few of the cases. However, the 

pedagogical decisions associated with these cases showed little or no 

difference to decisions suggested by pre-service teachers with 

deficiencies or gaps in their knowledge of mathematics. 

In addressing the second research question, it could be suggested from these 

outcomes that deficiencies of essential procedural and conceptual types of 

mathematical knowledge reduce confidence and likewise the potential of a 

secondary pre-service mathematics teacher to teach students for conceptual 

understanding of mathematics. In addition, having knowledge deficiencies 

would tend to influence pre-service teachers to depend on their past 

experiences of rule-based teaching strategies and on 'external' resource 

materials (e.g. textbooks, calculators, syllabus) as appropriate 'models' of 

teaching. Furthermore, it could be suggested from these results that 

mathematics teachers with teacher-confidence based on misconceptions or 

insufficiencies of mathematical knowledge and on the availability of resource 

materials are more likely to generate similar learning outcomes (knowledge 

deficiencies) from their students of mathematics. 
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The purpose of the third and final phase of the data analysis was to address 

both research questions in relation to the individuals' mathematical 

backgrounds ('maths major' and 'maths minor'). As such, the results for 

each of the nineteen cases were examined within and between groups. The 

following were similarities and contrasts in knowledge types observed within 

and between the four (A2, B!, A2, B2) groups. 

I. 	Similarities of knowledge types observed within groups: 

(i) Participants in Set Al tended to display relational-procedural 

knowledge, particularly for the TRIG and LOG items. 

(ii) Participants in Set B1 tended to display more pseudo-conceptual 

(or instrumental) knowledge than relational-procedural knowledge, 

particularly for the TRIG and LOG items. 

(iii) Participants in Set A2 tended to display more pseudo-procedural 

than category (1) knowledge for the TRIG and LOG items. 

(iv) Participants in Set B2 tended to display category (1) knowledge for 

all the three stimulus items. 

2. 	Similarities of knowledge types observed between groups: 

(i) Participants with 'maths major' backgrounds (Al and B1) tended to 

display more procedural mathematical knowledge than category (1) 

type knowledge for the TRIG and LOG items. 

(ii) Participants with 'maths minor' backgrounds (A2 and B2) tended to 

display rote knowledge for all the three stimulus items, particularly 

the participants in Set B2. 

(iii) Participants in Set A2 displayed similar procedural ('pseudo') type 

knowledge to participants in Set B1, particularly for the TRIG and 

LOG items. 
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3. 	Similarities of knowledge types in relation to the three stimulus items. 

(i) The STAT item appeared to elicit category (1) type knowledge from 

the participants in all the four groups. 

(ii) The TRIG and LOG items appeared to elicit procedural type 

knowledge from the participants, particularly those in Set Al, Set Bl, 

and Set A2. 

4. Contrasts of knowledge types were observed only for, 'between 

group' results and not for, 'within group' results. 

(i) Group Set Al (maths majors) tended to display more procedural 

type knowledge than Set B2 (maths minor), particularly in relation 

to the TRIG and LOG items. 

5. Contrasts of knowledge types observed between the three items. 

(i) The results for the STAT item indicated more category (1) type 

knowledge than the results for the TRIG and LOG items. 

In relation to teaching knowledge (pedagogical knowledge) associated with 

trigonometry, logarithm, and statistics, the results indicated little difference 

between the four groups. That is, all participants tended to display 

pedagogical knowledge based on 'external knowledge' from textbooks, 

calculators, and syllabi. 

The similarities and contrasts in the types of mathematical knowledge evident 

in this final phase of the analysis of the response-data, give further support to 

the outcomes in phase one and phase two. In relation to the first research 

question, the pre-service teachers with 'maths major' (Set Al and Set B1) 
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backgrounds tended to show more evidence of procedural mathematical 

knowledge than those with 'maths minor' (Set A2 and Set B2) backgrounds. 

However, the response-data for group Set A2 (maths minor), third and fourth 

year pre-service teachers in the B.Ed program, indicated relatively similar 

knowledge types (i.e. instrumental types) to those of Set B1 (maths major). 

The category (1) type knowledge was observed more with response-data for 

statistics (14/19) than with logarithm (6/19) or trigonometry (5/19). It was 

suggested in Section (5.2.3) that the high level of category (1) and procedural 

types of knowledge observed in the data could be the result of a greater 

reliance on 'external knowledge' by the pre-service teachers. As a 

consequence of this 'external knowledge', less demand was placed on the 

mathematical schemata associated with trigonometry, logarithm, and in 

particular statistics. 

In relation to the second research question, it could be suggested from these 

results that, unless the individual makes it his or her 'goal' to place 'rigorous 

demands' on the production of mathematical knowledge structures (or 

schemata), then the likelihood of a dependency on 'external knowledge' 

would increase. For the pre-service teachers of mathematics, it is highly 

recommended that their goals in teaching are that of identifying their areas of 

weakness and increasing the 'rigorous demand' on these mathematical 

schemata, particularly if they are to develop a sound foundation of conceptual 

structures upon which pedagogical knowledge could be established. 

These results and findings from the analysis of the data are discussed further 

in relation to the research questions and assumptions of this study in the next 

chapter, Chapter 6. 
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CHAPTER SIX 

DISCUSSION 

Introduction 

In chapter 5, the mathematical knowledge that the nineteen secondary pre-

service mathematics teachers brought with them to mathematics teacher 

education programs was examined in order to provide some answers to two 

research questions. The main focus of this chapter, therefore, is to address 

these two questions in relation to the outcomes of the previous analyses. 

6.1 	Addressing the first research question 

1. 	What types of procedural and conceptual mathematical knowledge 

exist in pre-service teachers' knowledge bases? 

In order to address appropriately the above question, it is worthwhile to 

restate the assumptions which formed the basis of this question. These were: 

(1) Pre-service mathematics teachers who majored in mathematics or 

other science related areas have acquired the necessary mathematical 

knowledge pre-requisites from their pre-tertiary and university studies in 

mathematics. 

(2) Mathematical understanding is dependent on the sufficiencies of 

procedural and conceptual types of mathematical knowledge. Lack of or a 

deficiency in either procedural or conceptual mathematical knowledge 
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types would suggest a deficiency in mathematical understanding (Hiebert 

& Lefevre, 1986; Eisenhart et al., 1993). Therefore, it was expected in this 

study, that pre-service teachers with qualifications in mathematics or in 

other science related areas would provide stronger indicators of conceptual 

types of mathematical knowledge than those with qualifications in other 

areas (e.g. economics). 

However, although the majority (11/19) of the study participants were 

university graduates with study majors in mathematics and other science 

related areas, the quality of the observed mathematical knowledge was not 

indicative of the mathematics rigour that is associated with university level 

mathematics. Instead, as a reflection of the quality of the mathematical 

knowledge examined in this study, 44% of the response-data displayed 

deficiencies in both procedural and conceptual types of mathematical 

knowledge. In addition, the quality of knowledge was mostly procedural in 

form (51%) and highly representative of 'instrumental mathematical 

understanding' (Skemp, 1978, 1979, 1982, 1986). 

Hence, the quality of observed mathematical knowledge in this study does 

not support the expectation that pre-service teachers who majored in 

mathematics would provide stronger indicators of conceptual types of 

mathematical knowledge. 

It could be suggested from the above results that most of the participants did 

not have sufficient conceptual knowledge of the mathematics related to the 

TRIG, LOG, and STAT items. Although 56% of the response-data tended to 

fit the evaluation criteria of Skemp's (1979) model of mathematical 

understanding, a high proportion (44%) that was classified as category (1) 
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response-data did not fit this criteria, and needed further clarification. 

Although other studies have found that lack of conceptual mathematical 

understanding contributes to learning difficulties and incompetent teaching 

of mathematics (e.g. Skemp, 1986; Hiebert & Lefevre, 1986; Ball, 1990; 

Tall, 1992; Eisenhart et al., 1993; Even, 1993; Greenwood, 1993; Wilson, 

1994; Gates, 1995a, 1995b), these studies have not explicitly identified the 

nature of these mathematical knowledge insufficiencies and the effects on 

pre-service teachers' potential to teach for conceptual understanding of 

mathematics. Therefore, the following discussion, for the remainder of this 

section, is an attempt to provide a clarification for the category (1) data. 

In the analysis of category (1) response-data in Chapter 5 (Section 5.2.1), 

four types of mathematical knowledge deficiencies were tentatively 

identified. These knowledge deficiencies were described as undeveloped 

knowledge, unproductive knowledge, unrelated/unfamiliar knowledge, and 

unprocessed knowledge. These descriptions of knowledge deficiencies 

evolved from an attempt to rationalise why a high percentage (44%) of the 

response-data to seemingly very familiar mathematics (represented by the 

TRIG, LOG, STAT items) showed evidence of lack of knowledge - This is 

hard because I don't even remember what logarithm is about; I don't know, 

I can't remember, I haven't understood statistics well at Uni ...; I have no 

recall of what logarithm is...; I've forgotten, I don't know how to do this 

myself so I can't really say whether the student is right or wrong, I would 

need to look up a textbook One could argue that these responses are 

outcomes related to the recency of when the learning of the mathematics 

represented in the stimulus items took place or to how meaningful such 

learning was to these individuals. 
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Such an argument is feasible in the light of the fact that individuals have certain 

learning goals, and a choice in the type of information and how they learn or 

commit this information to memory (Ball, 1990; Alexander, 1995; De Corte, 

1995). However, it was expected that university graduates in mathematics, 

assumed to be above average achievers in mathematics, would retain evidence of 

the mathematical schemata relating to the mathematics represented in the TRIG, 

LOG, and STAT items, unless such schemata were not developed at all (Skemp, 

1982; Alexander et al., 1991; diSessa, 1993; Derry, 1996). 

Given that the response-data in category (1) were representative of 

participants from both Australian states and also from four universities, tends 

to suggest that it is not a localised affect, rather, there could be other 

underlying factors than recency and meaningfulness of learning. Three 

possible factors are considered below. 

1. Deficiencies in lower-order mathematical concepts 

One possible factor associated with undeveloped type knowledge (Section 

5.2.1), relates to deficiencies of essential 'primary abstraction' or lower-order 

concepts which, according to Skemp (1986, p.24), diSessa (1993) and Derry 

(1996), are required for achieving the understanding of higher-order 

mathematical concepts. In other words, the participants may have been 

required, as part of their prior learning of mathematics, to learn higher-order 

concepts (connected with the TRIG, LOG, and STAT items) without having 

an understanding of the primary abstractions of these concepts. For 

example, the summing of a group of scores to find their mean (or average) is 

an earlier abstraction of the concept variance - average of squared deviations 
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from the mean. In the light of the schema theory (Skemp, 1986; diSessa, 

1993; Derry, 1996; Reynolds et al., 1996), a deficiency of essential earlier 

abstractions or lower-order concepts in statistics might be the reason why 

74% of the participants could not even make a recall of what a variance is, 

but openly acknowledged their lack of knowledge and understanding in this 

area (Section 5.2.1). However, some of the participants have referred to the 

way they were taught to rote learn the formulae in statistics as a reason for 

their lack of knowledge about the variance. 

Failing to achieve lower-order concepts prior to learning higher-order 

concepts may contribute to lower retention of prior learning and could 

explain some of the deficiencies observed in the response-data (Section 

5.2.1). However, the rote learning of formulae also emerges as a 

contributing factor to lower retention and deficiencies in prior knowledge. 

2. Rote learning rules without reasons 

Rote learning of rules without reasons is another factor known to influence 

deficiencies in mathematical understanding (Skemp, 1986, p.111; 

Greenwood, 1993; De Corte, 1995; Gates, 1995a). According to Skemp 

(1986), to teach students to learn mathematics using rules without reasons, 

'would be equivalent to destruction of these schemata - the mental equivalent 

of bodily injury' (p.111). This suggests that, the insufficiency of knowledge 

indicated in category (1) response-data might not be a lack of learning 

ability in trigonometry, logarithm, and statistics by these individuals. Rather, 

it is likely that the prior knowledge relating to trigonometry, logarithm and 

statistics was the result of learning a series of meaningless rules which, when 

assimilated into one's schema, retards knowledge growth (Skemp, 1986; 
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Rakow, 1992; Biggs & Moore, 1993; Greenwood, 1993; Gadanidis, 1994; 

Gates, I995a). 

3. Rote learning is unavoidable 

In addition, this study tends to show that learning rules without reasons (or 

rote learning) is an unavoidable learning approach in mathematics, 

particularly at the university level. The following category (1) response-data 

from participant F3 on rote learning is given here as an example: Rote 

learning is getting to know your lecturers, memorise the formulae, and 

attempt all the tutorial exercises and available past examination papers. 

Rote learning is a trap many students and teachers fall into because it gives 

immediate results and as such many like myself find it difficult to give up 

using it. Participant F3 continues: Also, the present system of education, 

particularly at university where the aim is to pass rather than to understand 

what you were taught, encourages rote learning. This kind of response 

tends to suggest that there were other factors (e.g. the goal to pass written 

examinations) which may have deterred the pre-service teachers from 

learning mathematics for conceptual or relational understanding. 

Taking into consideration the above three factors: (1) deficiencies in lower-

order concepts, (2) rote learning rules without reasons, and (3) unavoidable 

rote learning of mathematics, it could be suggested that the knowledge 

deficiencies observed (in relation to the TRIG, LOG, and STAT items) in 

category (1) response-data were the outcomes of rote learning, hence rote 

knowledge (Section 2.4, Chapter 2). This perspective also tends to provide 

an explanation for the high proportion of response-data classified as 

instrumental understanding of mathematics, this type of mathematical 
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understanding was suggested to be based on knowledge from rote learning 

(Skemp, 1978). This also suggests that the proportion (33%) of procedural 

and conceptual knowledge associated with instrumental mathematical 

understanding could well be the result of rote learning. These results tend to 

imply that rote knowledge is the dominant type of mathematical knowledge 

that the pre-service teachers brought with them to mathematics teacher 

education programs. 

Should this outcome, dominance of rote knowledge, be the result of 

`unavoidable' rote learning by the pre-service teachers because of the need 

to pass written examinations, then an important next step in this investigation 

of mathematical knowledge is to find out more about the role of rote 

knowledge in mathematical competence and its relationship to procedural 

and conceptual mathematical knowledge. The following discussion, 

therefore, is an attempt to re-examine category (1) and category (2) 

response-data in order to provide an alternative explanation to the views 

expressed above and to determine the value, if any, of rote knowledge to 

mathematical understanding. 

6.2 	An alternative view of rote knowledge in mathematics 

The alternative view argued here, is that the act of rote memorisation (or rote 

learning) may not be the cause of deficiencies in mathematical knowledge. 

Rather, that the mathematical content being rote memorised by the 

individual was deficient of essential knowledge elements. This view is 

analogous to 'food consumption' in that it is not the `act of eating' which 

could cause a deficiency in one's dietary requirements. Rather, it is the 
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'content' of the diet one indulges and consumes that can cause the 

deficiency. This perspective could be considered as an extension of 

Skemp's (1986, p.111) argument against having students to learn 

mathematical rules without reasons. That is, it is argued here that if students 

were presented with mathematical contents of abstract rules and formulae (or 

representations of concepts) and they perceived little or no real reason or 

purpose for learning these rules apart from that of being examinable 

material and for passing the course, then the rote memorisation of 

mathematical rules becomes 'unavoidable' (participant F3). 

Under such systems of learning mathematics, it is not surprising that the pre-

service teachers will bring with them to teacher education mostly, if not all, 

rote knowledge of mathematics. Other researchers in the field (e.g. Ball, 

1990; Eisenhart et al., 1993; Even, 1993; Wilson, 1994; Gates, 1995a) also 

indicated similar findings from their studies. It is important therefore, from 

the point of view of educating mathematics teachers, to consider closely how 

the pre-service teachers could be assisted with the reconstruction and 

transformation of rote knowledge they acquired into usable or teachable 

mathematical knowledge (Section 2.4, Chapter 2). An attempt to explore 

further this issue by considering the relationship of rote knowledge to 

procedural and conceptual knowledge is the focus of the following argument. 

1. Rote knowledge as a source of supply for procedural knowledge 

It was suggested in Chapter 2, Section (2.1) that mathematical knowledge is 

acquired in three stages, such that growth in conceptual and procedural 

knowledge (stage 3) is dependent upon the collection and formation of prior 

knowledge (stages 1 and 2). This growth is mathematical understanding, 
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which is important to mathematical teacher competence. Also in Chapter 2, 

Section (2.4), it was argued that rote knowledge (or factual knowledge) is a 

usable form of mathematical knowledge in providing links to other 

knowledges. 

It is argued here that the observed insufficiency of conceptual knowledge, in 

this study, results from deficiencies in essential knowledge links which are 

required to connect new mathematical information to existing mathematical 

knowledge. When this 'connection' takes place, mathematical 

understanding occurs (Hiebert & Lefevre, 1986). The appropriate 

connection of new knowledge to existing knowledge was suggested in 

Chapter 2, Section (2.2) to be a function of procedural knowledge. 

Procedural knowledge is also required in the transformation of information 

to observable knowledge (Gagne, 1985; Alexander et al., 1991; Derry, 

1996). This implies that procedural knowledge is essential in knowledge 

production (Chapter 2, Figure 2.4) and a vital medium in the acquisition of 

conceptual knowledge (Chapter 2, Section 2.1). These functions are 

important to the acquisition of mathematical understanding. 

However, it is proposed, based on the results of this study, that procedural 

knowledge alone is not sufficient in order to effectively activate the mental 

processes involved in knowledge acquisition (Section 5.2.1). These are the 

mental processes of: (1) transformation of information into knowledge, (2) 

connection of new knowledge appropriately to existing knowledge, and (3) 

translation and transfer of knowledge aspects to observable outcomes 

(Gagne, 1985; Alexander et al., 1991; Derry 1996). It is argued here, that to 

effectively activate these processes, procedural knowledge requires a storage 
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mechanism or a source of supply to draw on. This source of supply can be 

appropriately produced by rote knowledge. 

2. Rote knowledge is necessary at the initial stage of knowledge 

acquisition 

At the initial stage of mathematical knowledge acquisition, rote knowledge is 

suggested to be present in the form of information (Ebel, 1972) or as factual 

knowledge (Goodwin & Klausmeier, 1975) or an intuitive schema (diSessa, 

1993; Derry, 1996). This stage is important in developing a repertory of 

information as a source of supply for procedural knowledge. Rote 

memorisation or repetitive learning is one of the learning strategies 

associated with the acquisition of rote knowledge (Section 2.4, Chapter 2). 

Although these types of learning strategies and their outcomes (e.g. rote 

knowledge) were found by some researchers to inhibit conceptual 

understanding (e.g. Skemp, 1978; Rakow, 1992; Greenwood, 1993; 

Gadanidis, 1994; Gates, 1995a), others have found value in rote 

memorisation strategies (Brownell, 1956; Goodwin & Klausmeier, 1975; De 

Corte, 1995; Derry, 1996), while others observed learners with high 

achievements and understanding of mathematics using rote memorisation as 

a method for acquiring knowledge (Marton, Dall'Alba & Tse, 1993). 

Nevertheless, it is argued here, that without a supply of information or factual 

knowledge at the initial stage, procedural knowledge cannot be activated 

effectively to transform information into new knowledge. As Goodwin and 

Klausmeier (1975, p.242) maintained, 'without either having the knowledge 

[acquired by rote] or being able to obtain it [from a source of supply] when 

needed, the individual has nothing to apply or to evaluate'. 
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3. Rote knowledge as a source of knowledge links 

Information (or intuitive schema) acquired by rote learning methods in the 

initial stage of knowledge acquisition, is a necessary source for the second 

stage of knowledge acquisition. This second stage is the formation of 

knowledge and relationships to other knowledge types (Section 2.1). It is 

proposed that when a respondent considers a mathematical cued-data (e.g. 

logarithm in LOG item) and provides the following response: I can't 

remember. I know that there are log-laws but I can't recall what they are 

(from category (1) response-data), it implies that the information about log-

laws was acquired or rote learned (I know that there are log-laws), and it is in 

storage or memory. However, the 'knowledge links' required to activate 

procedural knowledge to transform the information (log-laws) into new 

knowledge and for the transfer into observable knowledge were not present 

(I can't remember). It is suggested from this example, that it is not just the 

lack of (or absence of) information (or intuitive schema) that restricts the 

functioning of procedural knowledge, but also that essential links (or 

knowledge links) to existing knowledge are deficient. 

A 'knowledge link' is defined here as information which contains an 
element(s) of knowledge; such knowledge, however, is already in 
existence in the individual's knowledge base. • 

More specifically, a deficiency in essential 'knowledge links' would suggest 

that the types of mathematical information (or content) being rote 

memorised by the individual contained little or no correlation with 

knowledge previously acquired or with prior knowledge. 
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It is argued that, the importance of rote knowledge as a source of supply in 

support of procedural knowledge is not in terms of quantity (the amount of 

facts) or how it was acquired (rote learned), but in terms of its quality (the 

type of facts). This quality is defined as the types of 'knowledge links' 

which are representative of knowledge already in existence in the 

individual's mathematical knowledge base. For example, the symbol, 	is 

often learned by students as the 'square-root sign', and also, that -4 = 2. If 

they were then given 4 2  and asked to evaluate and simplify, the likely 

answer, if they have not learned that .Nrtl= 4 2 , will be, I don't know. The / 

don't know response is the indicator that this information (4 2 ) is not 

representative of the knowledge already in memory. The point here is that, 

when students learned about 'square-roots', an essential 'knowledge link' 

(.j, where x stands for any number) was lacking. In other words, the 

information (-Fx ) that was rote memorised is deficient or the essential 

knowledge link (x 2 ) required for procedural knowledge to operate on 4 2  

was not part of the initial rote memorisation of the 'square-root sign'. 

It is suggested that to activate the mental functionings of procedural 

knowledge, essential 'knowledge links' are required for the efficient 

processes of transformation and connection of newly acquired information 

to existing knowledge. Using this perspective, a function of rote knowledge 

is to maximise the functioning of procedural knowledge by providing a 

source of supply of 'knowledge links'. This function is required, 
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particularly, at the stage of transformation of acquired information into 

knowledge aspects, namely stage 2 (Section 2.1). 

Based on this view of rote knowledge, it is suggested that the use of rote 

memorisation strategies by an individual may not cause a lack of conceptual 

knowledge as was suggested in Chapter 2 (Section 2.4). Rather, the 

mathematical content rote memorised was deficient of essential 'knowledge 

links' to existing procedural type knowledge. That is, rote memorisation of 

mathematical content containing 'knowledge links', or essential knowledge 

aspects, would enhance existing knowledge and effectively maximise 

processing of procedural knowledge, which in turn, facilitates the acquisition 

of conceptual knowledge (Deny, 1996). This theory of rote knowledge may 

explain why the Asian students, observed by Marton et al. (1993) to have 

used rote learning strategies to learn mathematics, gained higher 

achievements and more in-depth understanding of mathematics than their 

Australian counterparts. 

As an example to demonstrate how deficiencies of 'knowledge links' in rote 

knowledge could retard the functioning of procedural knowledge, consider 

the response-data by participant F5: 

Participant F5 (maths major from State B): Response-data for the STAT 

item. [Example of category (1) - undeveloped knowledge] 

(1 ) I know that 'sigma squared' [the symbol is the concept] is the variance 
and the square-root of it is the standard deviation. But, looking at 

this [cued-data] I can't recall the formula. I don't really know or have 
an understanding of what a variance is. I just know it as 'sigma 

squared'. [no understanding, just knowledge of the symbol] 
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It is suggested that participant F5 had acquired information about the 

concept, variance, by rote memorising the symbols for the variance and the 

standard deviation formulae (I know that 'sigma squared' is the variance 

and the square-root of it is the standard deviation). However, the essential 

'knowledge links' to existing knowledge were absent when this information 

was acquired (/ just know it as 'sigma squared). As such, 'sigma squared' 

remains a deficient type of rote knowledge because there were no 

appropriate links to activate procedural knowledge processing. In other 

words, 'sigma squared' (rote knowledge) could not be transformed into new 

knowledge (I don't really know or have an understanding of what a variance 

is) or to be translated to observable outcomes (But, looking at this [cued-

data] I can't recall the formula). 

Having suggested the importance of rote knowledge to the acquisition of 

mathematical knowledge, and as an 'alternative' explanation to category (1) 

response-data, it is worthwhile at this stage to reconsider the four types of 

knowledge deficiencies, tentatively identified from category (1) response-

data, in relation to rote knowledge. 

Undeveloped knowledge was described in Chapter 5 (Section 5.2.1) as 

knowledge having a deficiency of knowledge elements that are required in 

the formation of conceptual knowledge. This type of deficiency was 

identified more with responses to the STAT item. The statistics involved, 

namely the value of the variance, is a single numerical figure. However, the 

understanding of this 'value' lies in the computations or in the manipulation 

of symbols associated with the formula (or the algebraic representation of 

the concept variance). 
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The symbolisation of the variance formula involves several symbols (e.g. a2 , 

1, 1r), each of which may signify both an operation and the order of that 

operation. It is suggested that undeveloped knowledge was the result of rote 

memorisation of the variance formula without appropriate 'knowledge links' 

for the symbols and their computational aspects to existing procedural 

knowledge. For instance, 1,(x — 1) 2  signifies that each 'deviation from the 

mean', (x — 1), is 'squared' followed by the computation of the 'sum'. 

Without the appropriate 'knowledge links', the end result is knowledge 

deficiency as illustrated by participant F5's knowledge of the variance as 

'sigma squared'. That is, the information (rote knowledge) cannot be 

developed into new or usable knowledge or be used for activating procedural 

knowledge. 

Unproductive knowledge, on the other hand, was described in Section (5.2.1) 

as internalised knowledge cues of external stimuli which the individual can 

use to facilitate memory recall. Calculators and textbooks are examples of 

external stimuli to assist with accessing, what is believed to be, appropriate 

knowledge for a given situation. Unproductive information was 

demonstrated in responses such as a calculator contains many formulae in its 

memory and it can do computations much quicker than I can, so why try to 

commit these formulae to memory, or, there are many excellent textbooks 

containing information on mathematics now available to students and 

teachers, so if I need to know any formula I just look for it in a textbook. 

This type of information does not require 'knowledge links' or elements in 

the existing knowledge base because its operant does not appear to be on 

internal mental functioning but on the external environment. Therefore, 
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this type of information will contribute little to the production of 

mathematical knowledge (Figure 2.4, Chapter 2). However, some of the 

symbolisation of formulae and algorithms associated with unproductive 

information may be retained in memory by the individual as specific forms 

or 'unrelated/unfamiliar' information. 

Unrelated/unfamiliar knowledge is similar to unproductive information in 

that, it also relies on external stimuli. However, the external stimuli are 

internalised as specific knowledge elements of symbols, rules, algorithms and 

mathematical terms. As such, accessibility of internalised 

unrelated/unfamiliar information (rote knowledge) is highly dependent on 

an 'exact match' with the external cues in order to activate procedural 

knowledge processing to transform this type of information into new or 

usable knowledge. 

The specific knowledge elements associated with unrelated/unfamiliar 

knowledge deficiencies could be similar to what Bastick (1993) has defined 

as context cues. Context cues are implicit and not directly transferable into 

new learning contexts, and as such, students 'cannot independently initiate 

them for themselves or use them outside the classroom' (Bastick, 1993, p.87). 

Unprocessed knowledge was described in Section (5.2.1) as knowledge 

elements internalised by the individual as 'fixed' symbols, rules, and 

algorithms without links to knowledge pertaining to understanding. 

However, unprocessed knowledge of rules and algorithms appears to be a 

deficiency associated with procedural knowledge rather than that of rote 

knowledge. It is proposed that unprocessed knowledge is a type of 

procedural knowledge which is deficient of appropriate linkages to existing 
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knowledge in the domain of conceptual knowledge. This deficiency, which 

was identified as the respondent's inability to explain the why of rules and 

formulae, is suggested to be a 'breakdown' in procedural knowledge 

interaction with conceptual knowledge. This proposal is based on the model 

of a response production of mathematical knowledge suggested in Chapter 2, 

Section (2.2) and illustrated in Figure 2.4. The interaction between 

procedural and conceptual knowledge was illustrated in Figure 2.4 by a 

`two-way flow' between EASY ACCESS MEANING (procedural domain) and 

CONCEPT MEANING (conceptual domain). As an example to illustrate this 

'breakdown', consider the response-data from category (2), representative of 

procedural knowledge, by participant F6 below: 

Participant F6 (maths major from State A): Response-data for the LOG item. 

(I) log(2x+1) = log2x + logl. log[(2x+1)/(x-1)] = 0 because of the rule: 
log(a/b) = logo - logb [procedural knowledge]. But I don't really 
know the reason for this [unprocessed knowledge]. And 1 don't know 

what to do next. [F6 has procedural knowledge of logarithmic laws 
but lacks conceptual knowledge which gives meaning to the laws and 

facilitates computational knowledge.] 

Participant F6 is assumed to have learned a rule (log[(2x+1)/(x-1)] = 0 . 

because of the rule: log(a/b) = loga - logb), and when this rule was learned it 

contained elements of procedural knowledge that were already part of F6's 

prior or existing knowledge. These elements are suggested to be knowledge 

that participant F6 might have in memory from prior learning involving 

'indices' (e.g. 'division links with subtraction' and 'multiplication links with 

addition'). Having these procedural elements present in the existing 

knowledge base made it possible for the connection of the 'given cued-data' 

Chapter 6/ Page 243 



to existing rules and the immediate transfer to the observed outcomes 

(log(2x+ I ) # log2x + log]). However, in order for this procedural 

knowledge (or unprocessed knowledge: the rule: log(a/b) = logo - logb) to 

be connected appropriately to conceptual knowledge, it seems that a vital 

'knowledge link' has not yet formed (But I don't really know the reason for 

this). This knowledge link (the `two-way' flow in Figure 2.4) or knowledge 

of why and how a rule works is fundamental to the achievement of 

mathematical understanding. It is suggested that without the knowledge of 

why and how a rule works, procedural knowledge cannot be activated to 

translate and transfer conceptual knowledge to observable outcomes, 

resulting in outcomes such as, And I don't know what to do next. 

In summary, the knowledge deficiencies tentatively identified in category (1) 

response-data appear to reflect deficiencies associated with rote knowledge, 

with the exception of 'unprocessed knowledge'. Unprocessed knowledge 

represents a deficiency of 'knowledge links' assumed to be necessary for the 

interconnection and interaction between procedural and conceptual types of 

mathematical knowledge (Figure 2.4, Chapter 2). 

Although this alternative view of rote knowledge needs further exploration, it 

does, however, provide an insight into howrote knowledge could be 

transformed into a source of usable knowledge for relational understanding 

of mathematics. The success of this transformation (a function associated 

with procedural knowledge) is dependent on both the kinds of mathematics 

rote learned and the existence of appropriate prior knowledge in the 

individual's mathematical knowledge base. The main function of rote 

knowledge in the process of mathematical knowledge acquisition, is to 

maximise the mental processing of procedural knowledge which in turn 
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interacts with conceptual knowledge, resulting in mathematical 

understanding. In this way, rote knowledge is an essential factor in achieving 

relational understanding of mathematics. 

It could be suggested from this alternative view of rote knowledge that the 

insufficiencies in conceptual understanding of the mathematics observed in 

this study, is more a reflection of the low quality of mathematics that was 

taught to the pre-service teachers, rather than of the pre-service teachers 

having used rote memorisation strategies. 

This study of pre-service teachers' existing mathematical knowledge also 

highlighted the fact that many other factors, including the individual's goal 

for acquiring knowledge, are involved in knowledge acquisition (Alexander, 

1995; De Corte, 1995; Derry, 1996). Although this factor (learning goal) 

was not specifically examined in this study, it was, however, an important 

contributing element to consider when making inferences from the study 

outcomes. The individuals' choices to select which mathematics to learn and 

how to learn in order to accommodate their learning goals may have a 

compounding affect on the instrumental understanding of mathematics 

observed in this study. For example, an 'unproductive' form of knowledge 

deficiency appears to be associated with a deliberate decision by the 

individual to keep certain information or knowledge as 'external source 

items' (e.g. calculators and textbooks) rather than committing this 

information to memory. Also, it is suggested that the deficiency related to 

'unprocessed knowledge' may have been induced by the individual's 

learning goal. That is, if the goal for mathematical knowledge acquisition 

was for passing an examination, then it is likely that conceptual knowledge 

may be suppressed or considered by the individual as unnecessary. 
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Another factor that seemed to relate to the individual's goal and could have 

an influence on the individual's existing mathematical knowledge, is the 

initial career pathway chosen by the individual. This study did not have a 

sufficiently large sample to provide the data to explore this issue, but there 

were indicators suggesting that the pre-service teachers' initial goal for 

studying mathematics was not for a career in teaching, but rather for a career 

in other areas such as Engineering, Commerce and Computer programming. 

The affects of this change in career pathways on the pre-service teachers' 

potential to study mathematics for teaching needs further investigation. 

Further discussion of these knowledge outcomes in relation to teaching is the 

topic of the next section. 

	

6.3 	Addressing the second research question 

	

2. 	What possible influences could the identified deficiencies in the 

types of procedural and conceptual mathematical knowledge have 

on the teaching of mathematics? 

The results of the analysis of the pre-service teachers' mathematical 

knowledge bases indicated more existing rote and procedural knowledge 

than conceptual knowledge. The potential effects of these knowledge types 

(or lack of conceptual knowledge) on teaching is the question that is 

addressed in this section. The research assumptions which formed the basis 

for this question were: 

Chapter 6/ Page 246 



(1) Pre-service mathematics teachers with relational understanding of 

mathematics would demonstrate more confidence to teach mathematics than 

pre-service teachers with instrumental understanding. 

(2) Pre-service mathematics teachers go through their teacher 

education and training with certain deficiencies in their mathematical 

understandings and that these deficiencies will eventually affect the way they 

teach. 

With respect to the first assumption, the response-data (responses to stimulus 

questions 2 and 3 (SQ2, SQ3)) examined in relation to the teaching of 

mathematics showed evidence of the pre-service teachers' lack of confidence 

and uncertainties in teaching the mathematics (represented in the TRIG, 

LOG, and STAT items) regardless of their mathematical background 

(Section 5.2.2; Section 5.2.3). Although 5% of the response-data displayed 

relational type knowledge (Section 5.2.1), the analysis in Section (5.2.2) and 

Section (5.2.3) did not show any evidence in support of assumption (1). 

Rather, it appears that the deficiencies in the respondents' conceptual 

knowledge, (i) would create for them uncertainty and lack of confidence in 

their own understanding. This lack of confidence, (ii) encourages a 

dependency on "something" which may provide misleading information 

when seeking more understanding in mathematics, and (iii) promotes 

replicative teaching or teaching the same way as being taught. The following 

response-data are examples showing evidence of these three factors as 

consequences of having rote knowledge. 
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Rote knowledge of mathematics: 

(i) creates uncertainty and lack of confidence in the respondents' 

understanding. For example, I don't really know [referring to the STAT 

item], I guess I will have to follow the syllabus; To teach variance I'll 

introduce standard deviation first. But if the syllabus indicates the variance 

first then I'll do that (ie. just follow whatever is in the syllabus); Hopefully I 

don't have to teach a .  year 11 and 12 class [referring to the STAT item]; I 

will teach whatever and however it's required in the syllabus; Probably start 

with graphs [referring to the LOG item]. But I'll just follow the syllabus. 

Usually there are textbooks available for teachers and students to use. 

(ii) encourages a dependency on 'something' (syllabus, textbooks or 

resource materials) rather than on 'someone' (mathematician or 

mathematics educator) when essential knowledge for teaching was lacking. 

For example, I don't know. I need to do more research and see what is 

required in the syllabus; I don't really know, I guess I will have to follow the 

syllabus; If I need more clarification I will refer to a good statistic textbook; 

I will teach whatever and however it's required in the syllabus. 

(iii) promotes replicative teaching or teaching the same way as one was 

taught. For example, Start [teaching logarithm] with log-laws. That's 

because it's the way I usually work. That is, find a rule and follow that; I'd 

teach [logarithm] using calculators because that is how I was taught; I only 

know what I've been taught. So I will start by emphasising the formula for 

the variance to derive the standard deviation. Then provide problems 

[practice work exercises] ... to make sure students understand. Also 

emphasise the correct use of the calculator. 
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Procedural knowledge on its own without links to conceptual knowledge was 

suggested in Chapter 2, Section (2.3) as a deficiency associated with 

mathematical competence. The predominance of this type of knowledge in 

category (2) and category (3) suggests that it may be connected with the pre-

service teachers' visual' and 'abstract' perceptions of concepts. A gender 

difference in pedagogical knowledge associated with the 'visual' and 

'abstract' perspectives was observed. For example, the respondents with 

category (3) type responses were all males. The main criterion for the 

classification of responses into category (3) was based on evidence showing 

the individual's ability to do computations. It could be suggested that the 

males' abilities to do computations may have influenced them to decide on 

using strategies involving algebraic procedures and formulae (or abstract 

rules and formulae) as appropriate methods for teaching students 

trigonometry and logarithms. 

On the other hand, the classification into category (2) was based on evidence 

showing the individual's ability to recognise appropriate mathematical 

aspects or 'distinguishable features' relating to the stimulus item. The 

ability to recognise or to identify and differentiate one mathematical aspect 

from another by using 'distinguishable features' such as graphical 

representations was observed more in response-data from the females, 

particularly with the TRIG item, than in response-data from males. For 

example, participant F6's responses on student learning of trigonometry, / 

believe it is important for students to understand trig-functions and their 

graphs. Because graphs distinguish trigonometry from other functions. 
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The gender differences in teaching approaches observed in this study have 

some similarities to the findings of a study on primary school children's 

abilities to solve mathematical problems (Fennema & Carpenter, 1998). 

Fennema and Carpenter (1998) found that girls tended to approach the 

solving of mathematical problems using concrete or visual modeling while 

the boys tended to use abstract methods. 

However, it appears that with mathematical situations such as statistics in 

which rote knowledge is the dominant source and basis for making 

pedagogical decisions by both females and males, gender difference in 

teaching is negligible. This observation tends to reaffirm Sowder's (1998, 

p.13) fear of mathematics teachers using 'traditional style of teaching, where 

emphasis is placed on rote learning of rules', in that, she believes this 

traditional teaching style would 'tend to better equalise the [differing] 

advantages of the girls and the boys'. 

Although the study involving the 18 experienced mathematics teachers was 

mainly for trialing and testing the data-collection instrument (Section 4.2.3, 

Chapter 4), two important observations that relate to the teaching of 

• mathematics at the secondary school level are worthy of mentioning here. 

First, it was observed that the mathematics course, teachers currently and 

frequently teach, seemed to have a considerable influence on the teachers' 

understanding of the mathematics they teach. Second, it was suggested, as an 

outcome of this item validation study, that the sampled teachers tend to 

perceive the act of teaching as an important factor for their growth in 

mathematical understanding, rather than to gain this growth from 

understanding the mathematics they teach. 
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The second assumption is now addressed: Pre-service mathematics teachers 

go through their teacher education and training with certain deficiencies in 

their mathematical understandings and that these deficiencies will eventually 

affect the way they teach. It could be suggested from the results and 

findings of this study that the deficiencies in mathematical understanding, 

namely rote knowledge and procedural knowledge, would reduce the 

potential of the pre-service teachers to gain conceptual understanding of 

mathematics from studies in teacher education programs. Therefore, if the 

pre-service teachers' mathematical understanding is deficient, then the 

conceptual knowledge structures upon which their pedagogical knowledge is 

based, would also be deficient. Hence, the pre-service teachers' rote 

knowledge and procedural knowledge of mathematics would eventually 

reduce their confidence to teach students for conceptual understanding of 

mathematics. 

An important question now is: what can the pre-service teachers with such 

insufficiencies in mathematical knowledge do in order to gain relational or 

conceptual understanding of mathematics? 

It has been suggested by Skemp (1986) that acquiring an understanding of 

higher-order mathematical concepts (relational understanding) is a difficult 

process because, 

Mathematics cannot be learnt directly from the everyday environment, 
but only indirectly from other mathematicians, in conjunction with 
one's own reflective intelligence. (Skemp, 1986, p.30, italics added) 

Therefore, it is argued here, in the light of the present findings, that pre-service 

teachers of mathematics need mathematics teacher educators that have the 
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mathematical competence to guide them through their reconstruction of 

'instrumental' mathematical understanding. Competent teacher educators can 

help pre-service teachers in: (i) identifying their areas of weaknesses or 

'injuries' (or deficiencies of knowledge links) caused by past teaching, and (ii) 

repairing and perhaps developing 'primary abstractions' of some of the 

concepts (Skemp, 1986, p.111). 

Such assistance should provide confidence and encourage the pre-service 

teachers to seek help from "someone" ( mathematician or mathematics 

educator), when they know they have a deficiency of essential mathematical 

knowledge, rather than placing a reliance on "something" ( syllabus, 

textbooks or resource materials). 

In summary, the outcomes of the study of secondary pre-service 

mathematics teachers' existing mathematical knowledge indicated that these 

pre-service teachers brought with them to teacher education mainly 

procedural and rote knowledge of mathematics. The successful completion 

of studies in mathematics during high school and university years seemed to 

have provided these pre-service teachers with more instrumental 

understanding of mathematics than relational understanding. 

It was suggested that instrumental understanding of mathematics may be an 

unavoidable result of studying mathematics, particularly at the university 

level, because certain study requirements (e.g. completion of study within a 

set time and to pass examinations) do not always appear to facilitate the 

achievement of relational understanding of mathematics. Assuming that this 

might be the case (unavoidable rote learning of mathematics) for most of the 

pre-service teachers who participated in this study, an alternative 
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interpretation of the outcomes of the study was proposed. This alternative 

view focused on rote knowledge and how this type of mathematical 

knowledge could be transformed and reconstructed into 'usable' and 

teachable knowledge. It was suggested that learning mathematical content 

containing essential knowledge linkages to knowledge already in existence in 

the individual's knowledge base is an appropriate method for transforming 

rote knowledge into usable mathematical knowledge. 

In addition, the deficiencies in conceptual mathematical knowledge appeared 

to reduce teacher-confidence and likewise the potential of the pre-service 

teachers to teach for conceptual understanding of mathematics. In order to 

assist the pre-service teachers in their reconstruction of rote knowledge and 

to gain confidence in their own mathematical understanding, it was suggested 

that competent mathematics teacher educators are important to ensure that 

pre-service teachers receive the appropriate mathematical environment that 

promotes reconstruction of knowledge. 

The purpose of this chapter, Chapter 6, was to discuss the outcomes of the 

study in terms of the research assumptions and the research questions. 

Having achieved this, it is important to review the significant points of this 

study of secondary mathematics pre-service teachers to draw out conclusions 

following from the data analyses and discussions and to suggest areas for 

further research. This then is the purpose of the next chapter, Chapter 7. 
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CHAPTER SEVEN 

CONCLUSION 

7.1 	Review 

This study arose from the concern that while mathematics teacher education 

is providing essential skills and knowledge for the development of teacher 

mathematical competence, there was evidence of teachers lacking 

competence in teaching mathematics. This lack of teacher mathematical 

competence could be related to certain insufficiencies in mathematical 

knowledge that teachers had prior to teacher employment. 

Two types of mathematical knowledge were identified in the reviewed 

literature as contributing to mathematical competence, namely procedural 

and conceptual knowledge. Both of these knowledge types were suggested 

as necessary and essential components of mathematical competence, with the 

latter being especially desirable for teachers' mathematical competence. 

Rote knowledge, the outcome of rote learning, was described as another type 

of mathematical knowledge. This type of knowledge may not promote 

mathematical understanding. However, it was suggested that it might be 

possible, with special attention by the learner, to transform rote knowledge 

(or factual knowledge) into usable knowledge. 

Competency to teach mathematics was suggested to involve the interaction 

between mathematical knowledge and pedagogical knowledge. Although 
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this interaction has not been fully investigated and understood, recent studies 

indicated that pedagogy is directly influenced and shaped by mathematical 

knowledge. 

This study focused on the types of mathematical knowledge elements 

associated with knowledge insufficiencies in an endeavour to determine how 

these insufficiencies may influence mathematical competence with respect to 

teaching. In order to explore what these knowledge insufficiencies might be, 

19 secondary pre-service mathematics teachers' existing mathematical 

knowledge was investigated. A multiple-case study design was used in which 

the selection of the 19 cases was by replication procedures. The 19 

participants were selected from four universities in two Australian states. 

These cases were selected according to the participants mathematical 

background and the teacher education program they enrolled in (Diploma 

of Education 'maths major', Diploma of Education 'maths minor', and 

Bachelor of Education in secondary mathematics 'maths minor'). 

In addition to 19 pre-service mathematics teachers, a sample of 18 

experienced secondary mathematics teachers participated in the study for 

validating the stimulus items. These experienced teachers were from a 

number of colleges, both state and private, in one of the states where some of 

the pre-service teacher participants were selected. The item validation study 

was conducted to explore the validity of the data collection instrument and to 

examine a model for analysing data on mathematical knowledge. The 

outcomes of the analysis of data from the item validation study provided 

useful information for the improvement of the data collection instrument 

and data organisation procedures. 
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A set of three mathematical stimulus items constituted the data collection 

instrument. The sampling of the stimulus items was conducted at two 

educational settings, namely a college and a university. The original source 

of these stimulus items was from assessment instruments constructed by 

mathematics teachers for the evaluation of their students' learning in 

trigonometry, logarithm, or statistics. Common misconceptions and 

misunderstandings associated with learning the mathematical concepts 

represented in the 'original' assessment items were incorporated as cued-

data in the stimulus items. 

Responses to the stimulus items were collected by semi-structured interviews. 

It is acknowledged that the mathematics represented by these items 

represents a very small area of mathematical knowledge a pre-service teacher 

of mathematics would have acquired from schooling and tertiary education. 

As such, the responses generated by these stimulus items and the study 

results should be viewed as representative rather than definitive in nature. 

The model of mathematical understanding by Skemp (1979) was used to 

analyse the response-data for both the item validation study and the main 

study. The response-data were examined according to Skemp's (1979) 

three types of mathematical understanding, namely instrumental, relational, 

and symbolic. To assist classification of the response-data into these three 

types of mathematical understanding, four response categories were used. 

Category (1) represented responses showing evidence of knowledge 

deficiencies. Category (2) and category (3) represented responses with 

evidence of knowledge types belonging to instrumental and relational 
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understanding, whilst the category (4) type response-data were representative 

of symbolic understanding. 

The overall result from the analysis of the study data indicated a high 

proportion (44%) of responses in category (1). Although 56% of responses 

were classified as category (2) and category (3) type data and were 

representative of instrumental and relational understanding, these responses 

were mostly of procedural types of mathematical knowledge (51%). There 

were no responses which were representative of symbolic understanding. 

The majority of the knowledge outcomes, therefore, represent deficiencies in 

conceptual mathematical knowledge. Conceptual knowledge is essential in 

relational or substantive understanding of mathematics (Skemp, 1978; Ball, 

1990). Furthermore, it was observed that mathematical knowledge 

deficiencies can reduce teacher confidence and the potential of a pre-service 

teacher to teach for conceptual understanding of mathematics. 

A gender difference in mathematical knowledge was observed in relation to 

category (3) type data with more males indicating computational knowledge 

of trigonometry, logarithm and statistics than females. In addition, males 

were more likely to use algebraic procedures and formulation in teaching 

students trigonometry and logarithm than females. The females, on the 

other hand, tended to use graphical representation at the initial stage of 

teaching trigonometry and logarithm or prior to the teaching of algebraic 

procedures and formulae. However, with respect to statistics, the gender 

differences in mathematical knowledge and teaching approaches were 

'equalised', particularly in relation to teaching strategies. 
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7.2 	Conclusion 

In conclusion, the mathematical knowledge pertaining to trigonometry, 

logarithm, and statistics, that the secondary pre-service mathematics teachers 

brought with them to teacher education programs, was limited to 

mathematical knowledge based on rote knowledge and procedural 

knowledge of mathematics. It was argued that these types of knowledge 

were representative of mathematical knowledge deficiencies. It was also 

argued that the deficiencies of lower-order mathematical concepts is one 

likely cause for the deficiencies of higher-order mathematical concepts. 

Another likely cause of these deficiencies in mathematical knowledge, 

concerns the deficits in essential elements of procedural knowledge. It was 

argued in Chapter 6 (Section 6.2) that rote learning mathematics (or the use 

of rote memorisation strategies) may not be the cause of conceptual 

knowledge insufficiencies, but rather, it is caused by the deficiencies of 

essential knowledge aspects in the content of the mathematics rote learned. 

In addition, it was suggested that rote knowledge is an essential factor in the 

acquisition of mathematical understanding. However, the individual's goal 

in learning and one's freedom to be selective of information to commit to 

memory, appear to influence the potential of rote knowledge as a usable type 

of knowledge. 

Furthermore, the existence of knowledge deficiencies in the pre-service 

teachers' existing mathematical knowledge bases was observed to generate 

lack of confidence and reduce the pre-service teachers' potential to teach for 

conceptual understanding of mathematics. It was suggested that, one of the 

ways for increasing this potential is to increase the development of higher- 
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order mathematical schemata. It was also suggested that the formation, or 

lack thereof, of higher-order schemata is dependent on the individual's goal 

in learning. That is, if one's goal is to acquire in-depth understanding of the 

mathematics (e.g. statistics), then this places greater demands upon the 

mental processes involved with the 'statistics schema'. Such demands would 

facilitate the processes of integration and assimilation of the lower-order 

schemata to higher-order schemata. If this is the case, then it is essential for 

pre-service teachers to endeavour to identify areas of mathematical weakness 

and increase demand on these mathematical schemata in their pursuit to 

become competent teachers of mathematics. 

The gender differences in teaching approaches observed in this study were 

interlinked with the pre-service teachers prior learning experiences, 

particularly with experiences of how they were taught the mathematics. 

Although females were more likely to teach using 'visual' representations 

and males to teach using 'abstract formulations', these differences were not 

present when essential conceptual knowledge was lacking. Furthermore, it 

was observed that having conceptual knowledge which is associated with 

computational knowledge (e.g. category (3) relational knowledge) was not 

sufficient to engender confidence to teach for conceptual understanding of 

mathematics. In addition, any differences in how females and males 

acquired mathematical knowledge and differences in how they would teach 

this knowledge were `equalised' if pre-service teachers did not have the 

confidence in their own understanding of mathematics. The result of this 

lack of confidence, regardless of gender, is the teacher's dependency on 

'unproductive' external knowledge or knowledge 'kept' in textbooks and 

calculators or computer memories. 
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In addition, the outcomes of this study did not support the assumption that 

the pre-service teachers of secondary mathematics had gained the necessary 

pre-requisites (conceptual mathematical knowledge) by completing a 

university degree in mathematics. Likewise, there was little evidence of 

relational understanding to support the assumption that pre-service teachers 

with relational understanding would demonstrate more confidence to teach 

mathematics than those with instrumental understanding. Rather, there was 

evidence to support the assumption that pre-service teachers go through 

teacher education with insufficiencies in their understanding of mathematics. 

These insufficiencies were exemplified by the pre-service teachers' lack of 

confidence in their own understanding, misconceptions, and gaps in their 

knowledge. Such evidence would suggest that if the pre-service teachers do 

not receive appropriate help, then the insufficiencies they had would 

eventually affect their competence in teaching mathematics. 

This study has provided empirical evidence showing that pre-service teachers 

of mathematics should be provided, at the mathematics teacher education 

level, with opportunities to (i) examine and evaluate their mathematical 

knowledge, and (ii) reconstruct and transform the insufficiencies of their 

existing knowledge to teachable mathematical knowledge, prior to 

employment as classroom teachers. This process of self-examination and 

self-evaluation by the pre-service teachers should involve the assistance of a 

competent mathematics teacher educator in order to ensure that essential 

mathematical knowledge has been acquired. 
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7.3 	Implications of the study 

The results discussed in Chapter 6 highlighted some of the influences of 

mathematical knowledge deficiencies on a pre-service teacher's mathematical 

competence. It was suggested that the observed knowledge insufficiencies 

associated with rote knowledge of mathematics may relate more to the 

quality of the mathematical content acquired by the pre-service teachers, 

rather than how the content was learned, for example, by rote memorisation. 

That is, the pre-service teachers' lack of essential conceptual knowledge is 

more akin to the kinds of mathematics they acquired, than to their 

mathematical abilities and methods they used to acquire the mathematics. 

An important implication of these results to mathematics teacher educators, 

the author being one of them, is not to assume that pre-service teachers of 

secondary mathematics have acquired from their prior learning the necessary 

mathematical knowledge pre-requisites needed for transformation or 

reconstruction into teachable mathematical knowledge. Instead, mathematics 

teacher educators should acknowledge that pre-service mathematics teachers 

will bring to teacher education mostly rote knowledge of mathematics. As 

such, it is essential that pre-service mathematics teachers should be provided 

with learning environments that would allow them to examine their 

knowledge and for them to identify deficiencies or gaps in their prior 

knowledge. Furthermore, the pre-service teachers should be presented with 

mathematical contents that promote the enhancement, readaptation and 

reconstruction of existing knowledge, which includes rote knowledge, into 

usable and teachable knowledge prior to teacher employment. It is vitally 

important for the pre-service teachers to achieve this knowledge prior to 

employment because, as indicated from the outcomes of the study with the 
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18 experienced teachers, there is little assurance that the experience gained 

from teaching mathematics would provide the necessary conceptual 

understanding and confidence needed to teach secondary level mathematics. 

It was also observed in this study that, the pre-service teachers' decisions to 

consult a textbook or the syllabus, when they don't know how to teach a 

topic, were mostly associated with rote knowledge and instrumental 

understanding. This kind of decision has several important implications 

concerning a pre-service teacher's potential to become an effective and a 

competent classroom teacher: 

(1) It implies that pre-service teachers perceive the teaching of mathematics 

as more to do with the availability of appropriate resource materials than to 

understand the content of these materials. 

(2) It implies that the pre-service teachers had not reached the stage of 

'readiness' to move into a goal (or role) reversal situation, for example, from 

a mathematics student for physics, chemistry, economics, or engineering to a 

secondary mathematics student-teacher. 

(3) It implies that the mathematics teacher educators, when instructing pre-

service teachers, may have over-emphasised the benefits of teacher resource 

materials (or a reliance on 'something' rather than on 'someone') and not 

placed enough emphasis on how to gain a conceptual understanding of the 

mathematics to be taught. 

(4) It implies a 'vicious circle' in the understanding and teaching of 

mathematics. The teaching of mathematics to students by a teacher whose 

understanding is based on instrumental mathematical understanding would 

result in the students also acquiring instrumental understanding of mathematics. 
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The four aspects stated above further suggest the importance that, 

mathematics teacher educators provide the secondary pre-service teachers 

with appropriate assistance prior to teacher employment. Once employed, 

the new teachers should be encouraged to continue examining and re-

assessing their respective situations with the help of other competent 

mathematics colleagues. 

Furthermore, although the focus of this study was on secondary pre-service 

teachers' mathematical knowledge, the results also have important 

implications for the education of primary pre-service teachers. This study 

showed that these pre-service mathematics teachers with `maths major' and 

'maths minor' backgrounds had insufficiencies in their conceptual 

understanding of mathematics. It is implied by this finding that 

prospective teachers of primary school mathematics, with little or no 

tertiary level mathematics, would inevitably go through pre-service teacher 

education with even less conceptual mathematical understanding. As a 

consequence, the teaching of important lower-order mathematical concepts 

or intuitive schemata at primary school levels would most likely be based 

on rote knowledge and instrumental understanding of mathematics. The 

result of this teaching would be the continuation of the 'vicious circle' of 

learning and teaching for instrumental understanding of mathematics. This 

'cycle' must be broken. From the results of this study, it could be 

suggested that the appropriate `break' point is at the teacher education 

level. This implies that competent mathematics teacher-educators are 

needed to ensure that prospective teachers, for all school levels of 

mathematics, gain effective reconstruction of mathematical knowledge. 
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In addition, it was demonstrated in Chapter 6, Section (6.2) that the four 

types (or descriptors) of mathematical knowledge deficiencies, identified 

from the analysis of the present data, provided a meaningful evaluation of 

the quality of rote knowledge. An important implication for research 

involving mathematical understanding is the potential use of these 

'descriptors' for qualitative analysis of mathematical knowledge. 

7.4 	Limitations and recommendations for further research 

One of the inherent limitations of the study is related to the mathematical 

stimulus items chosen as the data collection instrument. These items were 

based on logarithm, trigonometry, and statistics, but other mathematical 

areas might be considered for investigation in follow-up research. 

Another limitation of the study is the adoption of a single method for 

qualitative analysis, the model of mathematical understanding (Skemp, 

1978). Although this model was valuable in classifying mathematical 

knowledge on teaching and according to the individual's mathematical 

understanding, there may well be other methods that might be considered 

in follow-up studies, for example, a triangulation of methods of analysis. 

This study was an extension of previous research (e.g. Ball, 1990; Eisenhart et 

al., 1993; Even, 1993) on how prospective teachers could be helped to 

transform their knowledge insufficiencies and to increase their understanding 

of mathematics. This extension focussed on a more refined characterisation 

of mathematical knowledge deficiencies prospective teachers brought with 

them to pre-service teacher education programs (Chapter 2, Section 2.7). 

Such characterisation of knowledge deficiencies is of value to teacher- 
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educators for planning programs which would help prospective teachers in 

reconstructing their knowledge insufficiencies (Chapter 1, Section 1.4). This 

study has highlighted four characteristics of knowledge deficiencies in 

mathematics. These deficiencies were associated with rote knowledge 

(outcome of rote learning) and appear to have the potential to undermine the 

basic structure of mathematical understanding upon which mathematical 

teacher competence (pedagogical knowledge) is established. However, these 

findings (knowledge deficiencies) are limited to knowledge structures (or 

schemata) associated with trigonometry, logarithm, and statistics. As a follow-

up study, it is recommended that there be further investigation of secondary 

pre-service teachers' mathematical knowledge insufficiencies taking into 

consideration other mathematical areas. 

In addition, it was suggested, as an approach for transforming deficiencies 

in mathematical knowledge to 'usable knowledge', that prospective 

teachers, with assistance from teacher-educators, need to identify their areas 

of weakness and endeavour to gain conceptual understanding of these areas 

by learning mathematical contents which contain essential 'knowledge 

links' (Chapter 6, Section 6.2). An additional follow-up study would be to 

explore approaches, other than the one suggested here, for transforming 

knowledge such as rote knowledge into usable and teachable mathematical 

knowledge. 

Furthermore, several of the participants in this research did not study 

university mathematics with the goal to enter a mathematics pre-service 

teacher education program. It was suggested that not having the initial goal 

to study mathematics for the purpose of becoming a teacher may have a 

bearing on the pre-service teachers' existing mathematical knowledge. 
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Information on the affect of a change of career goal in favour of teaching 

would also be valuable to teacher-educators in their planning and 

developing of mathematics curriculum for pre-service teacher education 

programs. As such, another recommended follow-up study would be to 

investigate how a change of career pathway in favour of teaching 

mathematics would influence a pre-service teacher's ability to acquire the 

competency to teach mathematics. 

Information from such studies would greatly assist our understanding of 

how teacher mathematical competence promotes quality in the teaching 

of mathematics. 
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APPENDIX A 

Table Al: Summary of experienced mathematics teachers' interview data 

No. 	of 
teaching 

years 

Degree 
other 	than 

Dip.Ed 

Maths 
currently 
teaching 

LOG 

/ 
Category: 

1,2,3,4 
Skemp 

TRIG 
Category: 

1,2,34/ 
Skemp 

STAT 
Category: 

1,2,34/ 
Skemp 

Maths 
taught 

18 B.Sc, MEd Stage 3 
GenM 

4 
Symbolic 

(Reflective) 

4 
Symbolic 

(Reflective) 

4 
Symbolic 

(Reflective) 

All college 
levels. 

30 B.Ed Computing 4 
Symbolic 

(Reflective) 

3 
Relational 

3 
Relational 

All high school 
levels 

6 BEd 
(Maths major) 

GenM 
AppM 

4 
Symbolic 
(Intuitive) 

4 
Symbolic 
(Intuitive) 

I 
Instrumental 

Part-time 
teaching 

15 BEd 
(Maths major) 

AppM 3 
Instrumental 

2 
Instrumental 

1 
Instrumental 

All high school 
levels 

20 B.Sc 

_ 

GenM 
AppM 

3 
Instrumental 

3 
Relational 

3 
Instrumental 

All high school 
levels 

13 B.Sc GenM 

AppM 

2 
Instrumental 

4 
Symbolic 
(Intuitive) 

3 
Instrumental 

All college 
levels. 

12 B.Sc GenM 

AppM 

2 
Instrumental 

4 
Symbolic 

(Intuitive) 

3 
Instrumental 

All college 
levels+physics 

3 M.Sc High Sch 
Instru3mental Instru3mental Instrumental ental 

- 	yr 8 9 10 
+ Science 

27 B.Sc AppM 2 
Instrumental 

3 
Instrumental 

4 
Symbolic 
(Intuitive) 

All college 
levels. 

9 B.Ed 
_ 

GenM 
AppM 

2 
Instrumental 

2 
Instrumental 

1 
Instrumental 

Part-time 
teaching 

16 B.Sc Stage 1,2 
Physics 

4 
Symbolic 

(Reflective) 

4 
Symbolic 
(Intuitive) 

. 	2 
Instrumental 

Top college 
level maths + 

physics 

18 B.Sc Stage 2,3 
GenM 

4 
Symbolic 
(Intuitive) 

2 
Instrumental 

I 
Instrumental 

All college 
levels. 

30 B.Sc AppM 2 
Instrumental 

2 
Instrumental 

2 
Instrumental 

All college 
levels. 

15 M.Ed AppM 3 
Instrumental 

1 
Instrumental 

1 
Instrumental 

Lower college 
levels. 

11 B.Sc 
(Maths major) 

AppM 3 
Instrumental 

3 
Instrumental 

4 
Symbolic 
(Intuitive) 

All college 
levels. 

19 B.Sc 
(Biology) 

AppM 
GenM 

i 
Instrumental 

I 
Instrumental 

1 
Instrumental 

Lower college 
levels. 

10 B.Sc AppM 1 
Instrumental 

2 
Instrumental 

I 
Instrumental 

No data 

11 B.Sc Stage 2,3 4 
Symbolic 
(Intuitive) 

3 
Instrumental 

3 
Instrumental 

All college 
levels. 

Legend: 

GenM: 	General Mathematics 	Stage 1,2,3: 	Mathematics Stage 1,2,3 
AppM: 	Applied Mathematics 	High Sch: 	High School Mathematics 
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APPENDIX B 

Figure Bl: 	Summarised interview response-data from the nineteen 
pre-service mathematics teachers 

FEMALE 1: A2 TRIG-Category (2) Instrument LOG - Category (1) STAT-Category (2) Instrument 
The variance is the sum of the 
deviations from the mean, then 
divided by (n-I) because it is a 
sample. So it's 2.4 but the sigma is 
1 to 9, but there are 10 items. Now 
I'm confused and I don't know 
much about the variance to be 
able to explain why. 

B.Ed 
maths/sci 

(Final Year) 

Identified student error: Students 
have confused trig with algebra by 
considering 'cos' as a variable and 
used the distributive law. 
ie. cos(2x+1)*cos2x + cos I 

I've forgotten. I don't know how to 
do this myself so I can't really say 
whether the student is right or 
wrong. I would need to look up a 
textbook to remind myself again. 

Important 
learning 

To understand the concept of trig- 
functions and their graphical 
representations. 

To understand graphing, ie. seeing 
what a log-graph looks like, 

Understanding what the formula is 
all about. 

Teaching 
approach 

Teach students to understand: 
I. Why they need to learn trig- 
functions. 
2. Graphs of trig-functions. 
3. Trig-ratios in relation to right- 
angled triangles, 

Probably start with graphs. 
But I'll just follow the syllabus. 
Usually there are textbooks 
available for teachers and students 
to use. 

I only know what I've been taught, 
so I will start: 
I. I will emphasise the formula for 
the variance to derive the standard 
deviation. 2. Give problems using 
the standard deviation & make 
sure the students understand. Also 
emphasise the correct use of 
calculators. 

FEMALE 2:132 TRIG - Category (1) LOG-Category (2) Instrument STAT - Category (1) 

BA 
Italian major & 

maths minor 

Sketched a cosine graph (y=cosx) 
correctly but was unable to make 
corrections (ie. the errors were 
accepted). 

Identified student error and gave a 
correction using the log-law: 
log(alb) = toga -logb. Solving for 
x, x=-2. However, she accepted 
log(-3) as a valid solution when it 
is not valid. 

Responses were mostly irrelevant 
Eg. 'Variance is to do with 
measuring whatever, like length & 
volume.' 

Important 
learning 

Graphing of trig-functions and how 
to use the unit-circle, 

To learn the different graphs as 
well as the use of graphs to 
represent the relationship between 
logx and yx  functions. 

I really don't know because I have 
not done much learning in this 
area. 

Teaching 
approach 

I . Graphing. 
2. Use trig-ratios to calculate 
measure of heights and distances. 

I. Discuss how log functions are 
used to solve real-life problems, 
compare graphs of log bY = X and 

Y=bx. 
2. Log laws and how to apply them. 
3. The use of logx to solve complex 

functions of the form yr. 

I need to a lot of reading and make 
sure I understand statistics first. 

FEMALE 3: B2 TRIG - Category (1) LOG - Category (1) STAT - Category (1) 

B.Econ 
maths minor 

Irrelevant responses based on 
learning experiences in 
geography, ie. after rain, the silt in 
the drains forms a sine-curve, 

I have no recall of what logarithm 
is, and I'm lost without my 
calculator. Because I've always 
relied on the calculator for 
working out logarithm or 
trigonometry formulas. 

Can recall isolated relevant 
aspects relating to statistics as a 
whole. But could not provide a 
conclusion because a calculator 
and the formula were not 
provided. 

Important 
learning 

Must understand how to graph the 
trig-functions, 

I don't know, but logs are used a 
lot in Engineering. 

7a focus on all statistics rather than 
just variance. 

Teaching 
approach 

1. Teach calculator skills. 
2. Unit-circles and graphing. 
3. Memorising exact trig-values, 

I'd teach using the calculator 
because that is how I was taught. 

I rote-learn a lot of my maths. So 
I'll have to learn on-the-job how to 
teach and stick closely to the 
syllabus. 
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FEMALE 4: B2 TRIG - Category (1) LOG - Category (1) STAT - Category (1) 
BA 

Japanese 
language 

maths minor 

I can't remember and I can't 
explain to you why. 

This is hard because I don't even 
remember what logarithm is about. 

I have no idea of what a variance 
is. I recall doing std deviation but / 
can't tell you what it is either. 

Important 
learning 

Unit-circle because every trig 
stems from this. 

Learn how to go from log(2x+ 1) to 
log2x + logl. 
[Response is illogical] 

I don't know because I haven't 
covered much statistics including 
variance. 

Teaching 
approach 

1. Unit-circle. 
2. Trig-ratios 

Start with log laws. That's because 
it's the way I usually work. ie. Find 
a rule and follow that. 

Hopefully I don't have to teach a 
year 11 and 12 class. 

FEMALE 5: B1 TRIG-Category (2) Relation LOG-Category (2) Relation STAT - Category (1) 

B.Sc 
Chem major 

Identified student error: 
Cos(2x+I ) # cos2x + cosl 
because 
cos(A+B) # cosA + cosB. 

[No solution was provided] 

Identified student error & provided 
a correction by using the log-law: 
log(a/b) = loga -logb. [Cancelled 
log' from both sides of =, then 
solved for x, resulting in x=-2. And 
accepted log(-3) as a valid solution 
when it is not.] 

I know that 'sigma squared' is the 
variance and the square-root of it 
is the standard deviation. But 
looking at this, I can't recall the 
formula. I don't really know or 
have an understanding of what a 
variance is. I just know it as 'sigma 
squared'. 

Important 
learning 

Understanding trig-ratios. Need to understand the laws and 
how to apply them. 

To learn the actual concept of the 
formulae, students need to learn 
the concept first and then the 
formula and how to use it. 

Teaching 
approach 

I was taught trig-rules and that 
using the rules was [brought] 
understanding. But that is not so 
and! would never teach kids that 
way. 

1. Log laws ( that's howl learn 
logs) 
2. Problems, including word 
problems. 

I don't really know, I guess I will 
have to follow the syllabus. 

FEMALE 6: A2 TRIG-Category (2) Instrument LOG-Category (2) Instrument STAT - Category (1) 

B.Ed 
maths/sci 

(3rd Year) 

Identified student error: 
cos(2x+1) # cos2x + cos 1 , 
because (2x+1) is an angle. There 
is a trig-rule to solve this but I 
can't recall what it is now, 

[Did not provide a solution.] 

Identified student error: 
log(2x+1) # log2x + logl . 
Provided a correction by using 
log(2x+1)/(x-1) = 0 because of the 
rule: log(a/b) = loga-logb. But I 
don't really know the reason for 
this. And! don't know what to do 
next. 

/ think its (x - X)2  the sum of 
these divided by n. So the correct 
variance is 2.4, but it's really only 
a guess. I didn't really enjoy 
statistics. 

Important 
learning 

Students to understand trig- 
functions and their graphs. 
Because graphs distinguish 
trigonometry from other functions. 

Students to understand the log-laws 
& how to use them. Because that's 
the problem here, the student 
didn't understand logs, 

An understanding of formulas and 
what to use them for. Eg. the 
variance formula and how and 
where to use it. 

Teaching 
approach 

1. Trig-graphs. 
2. Trig-ratios and their relation to 
right-angled triangles, 
3. Trig-rules & formulas. 

I don't know really. I need to do 
more study and see what is 
required in the syllabus. 

To teach variance I'll introduce 
standard deviation first. But if the 
syllabus indicates the variance first 
then I'd do that. That is, just follow 
whatever is in the syllabus. 

FEMALE 7: B1 TRIG - Category (2) Relation LOG - Cate. ory (1) STAT - Category,  (1) 

B.Sc 
maths major 

Identified student error: 
cos(2x+ I ) # cos2x + cosl, 
because (2x+I) is a whole 
number. [Did not provide a 
solution.] 

I can't remember. I know that 
there are log-laws but 1 can't 
remember what they are, 

[Attempted to consider formula 
and concept but had difficulty in 
expressing how the formula 
relates to her understanding.] 

Important 
learning 

Knowledge of trig-graphs and the 
use of the unit-circle, 

I don't know. I would have to study 
up logarithm myself first. 

Deviations from the mean and how 
variance is applied to real-life. 

Teaching 
approach 

1. Graphing the trig-functions. 
2. Trig-ratios and angles of 
triangles. 3. Use of the calculator. 

1. Log laws and how to apply them. 
2. Try to help students understand 
the difference of logs from algebra. 

I. Application using a practical 
example. 2. The use of the formula 
and introduce the bell-shape 
[normal curve] idea. 

FEMALE 8: Al TRIG - Category (2) Relation LOG - Category (2) Relation STAT - Category (2) Relation 

Master's 
Chem Eng 

maths major 

Identified the student error and 
provided a correction: 
cos(A+B). 0 implies A+B=tr/2 
but you can't do 
cos(A+B)= cosA + cosB= 0 

Identified the student error as: 
Student had a memory lapse of the 
simple application of log laws and 
indices. And treated it as a typical 
expansion 4(x+I) =4x + 4. 
It is wrong because x = I, 
log(3) * log (0). 

The variance formula is the 
average of the deviations from the 
mean. The standard deviation is 
the square of the variance. By 
inspection, I'd say 2.4 is the 
correct answer. 

Important 
Learning 

Knowledge of trig-graphs, trig- 
ratios and how to apply this 
knowledge in solving problems. 

The relationship between indices 
and logarithm: 
a" x a' = ce" 
log(axb) = loga + logb 

To understand how to use the 
variance formula in solving 
problems, particularly real life 
application. 
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Teaching 
approach 

I. Revise earlier work related to 
trig. Eg. graphing skills, 
pythagorus rule and right- 
triangles. 2. Introduce the unit- 
circle and how it is used in relation 
to trig-functions. 3. Trig-rules, 

Start with indices and log-laws and 
make sure students understand the 
difference between distributive law 
and log-laws. 

Introduce the idea of variance by 
using real-life situations that 
students can relate to. 
Teach the mean and deviations 
from the mean and how these are 
connected to the formula. Then 
apply the formula. 

MALE 1: A2 TRIG - Category (1) LOG - Caterry (1) STAT - Category (I) 

B.Ed 
maths/sci 

(3rd Year) 

I'm not really familiar with these to 
know how to do them myself I 
have to consult a textbook to 
refresh my memory. 

Accepted an incorrect form of the 
log law: logalogb = log(a-b) and! 
know this is right. Eg. log(x-1) 
=logx/logl, (ie. log! =0). logx/O. 
And anything divided by zero is 
infinity. Therefore, the student's 
answer of x=1 is definitely 
incorrect. [illogical & erroneous 
response] 

I'm not sure. !know it has 
something to do with statistics, but 
I'm not sure whether it's the mean 
something or rather. 

Important 
learning 

Students to learn trig-rules Students to learn log-rules and 
ways of manipulating the rules ie. 
algorithms. 

I don't know much about statistics 
without doing more research on it 
myself I know the basics like the 
mean, mode, median, bar graphs 
etc. Beyond that I'm not confident. 

Teaching 
approach 

Emphasise the use of trig-rules in 
order for students to know how to 
calculate trig-values, 

Emphasise the log-laws because 
unless the students learn the laws 
well, they won't know what to do. 

I will teach whatever and however 
it's required in the syllabus. If! 
need more clarification I will refer 
to a good statistics textbook 

MALE 2: A2 TRIG-Category (2) Instrument LOG-Category (2) Instrument STAT - Category (1) 

B.Ed 
maths/sci 

(3rd Year) 

Identified student error: 
Cos(2x+ I ) * cos2x + cos I 
because (2x+1) is an angle. 

[No solution was provided] 

Irrelevant cues were attended to 
initially and then by trial-and-error 
and by using log(2x+ 1 )/(x-I) = 0 
and then 2x+1=x-1, x=-2. By 
substitution noted that x=-2 is the 
correct value. But accepted log(-3) 
as a valid solution when it is not. 

[Can recallisa• ated relevant 
aspects relating to the statistical 
variance, but could not provide a 
conclusion because the formula 
was not provided.] 

Important 
learning  

The understanding that trig- 
functions are for calculations of 
angles. That is what the student did 
wrong, was to treat the angle 
(2x+ I) as an algebraic term. 

Students need to learn the log laws 
& how to apply the laws to 
different problems. Because a 
knowledge of log is required for 
university calculus. 

I don't know because 1 think 1 
need to do more studies for me to 
answer this question. For this kind 
of knowledge I've always relied on 
textbooks rather than try and 
commit it to memory. 

Teaching 
approach 

I. Right-angled triangle and trig- 
ratios, 
2. Trig-rules and formulas. 

I. Develop a good understanding 
of the log laws in relation to 
indices. 2. Make sure the log-laws 
are applied correctly, ie. do lots of 
practice exercises. 

This sort of topic is too much to 
commit to memory, so I would rely 
on a good textbook and of course! 
would need to follow the syllabus. 

MALE 3: A2 TRIG-Category (2) Instrument LOG-Category (3) Instrument , STAT - Category (1) 

B.Ed 
maths/sci 

(Final Year) 

Identified student error: 
Cos(2x+ I ) * cos2x + cos! 
because (2x+1) is an angle. 

[No solution was provided] 

By trial-&-error and using 
algebraic method: log(2x+1)/(x- l ) 
= 0 and then 2x+1=x-1, x=-2. 
Concluding that the student lacks 
understanding of logs and got 
mixed up with other algebraic 
methods along the way. 

Attempted to recall the formula 
but had difficulty in expressing how 
the given formula relates to his 
own understanding. 

Important 
learning 

Understanding the trig-formulas 
and functions 

Understanding the concept of what 
logarithm is about. ie  what a power 
of a number has to be in order to 
make it into another number. 

Students to understand why they 
need to use certain statistics 
formulas such as variance. 

Teaching 
approach 

I. Trig-ratios and right-angled 
triangles. 
2. Students to learn how to 
differentiate trig-functions from 
algebraic expressions. 

1. Start with log-laws 
2. Do lots of examples, eg. 
log 100=2 lo 
3. I need to do further study to 
extend from here. 

I would need to do further study in 
order to have a clear 
understanding of what to teach. 
Then just follow the syllabus. 

MALE 4: B1 TRIG-Category (2) Instrument LOG-Category (2) Instrument 
Identified student error: 
log(2x+ I) * log2x + log I 
By trial-&-error and using 
algebraic method: 
2x+1=x-1, x=-2. 
Using substitution concluded that 
log(-3) = log(-3). 

STAT-Category (3) Instrument 
Recalled the formula correctly and 
identified the correct answer (3.4). 
However, why 2.4 & 2.7 were 
incorrect was discounted as being 
unnecessary. Concluding that 
'knowing the correct formula & how 
to use it are what's required'. 

B.Sc 
Chem major 

Identified student error: 
cos(2x+1) * cos2x + cosi. 

[Did not provide a solution.] 

Important 
learning 

Trig-ratios are crucial to learning 
of trigonometry. 

What logarithm means. How to manipulate the many 
formulas. 

Teaching 
approach 

I. Start from the basics or the roots 
of trigonometry (ie. trig-ratios) and 
then build onto those.  

I. Introduce log-laws and then 
inverse relationship of logx and yx. 
2. Students to learn the rules. 

I. Activities based on real-life, 
2. Calculate Variance using the 
formula.  
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MALE 5: BI TRIG-Category (3) Instrument LOG-Category (3) Instrument STAT - Category (2) Relation 

B.Sc 
maths major 

Identified student error: 
cos(2x+ I) *coax + cosl 
Explained the reason for the error. 

Because (2x+1) is an angle. 
Showed correction: (2x+1) = rt/2 and 
provided a solution, x= tr/4 - la. 

Identified student error: 
log(2x+ I)* log2x + log I 
Provided a solution: log(2x+ I) = 
log(x-l) using algebraic method: 
2x+1=x-1, x=-2. Accepted log(- 
3) as a valid solution when it is not. 

Recalled the std.deviation as the 
linearising of the data. The 
variance is the 'average of 
deviations'. But! can't remember 
the proper formula. 
[No solution was provided.] 

Important 
learning 

Trig-ratios and how to use 
trigonometry in real-life situations, 

Log laws and understanding that 
logarithm is for linearising 
exponent equations. 

The meaning of what a variance is. 
How significant it is in analysis. 

Teaching 
approach 

I. Activities based on real-life 
situations. 2. Learn formulae to 
calculate angles. 

I. How to apply the log laws, 
2. How to simplify non-linear 
relations. 3. Conclusions about the 
use of logs. 

I. Discuss how data varies from a 
centre. 2. Show how to use the 
Variance formula. 3. Interpret 
results. 

MALE 6: B1 TRIG-Category (3) Instrument LOG-Category (3) Instrument STAT - Category (1) 

B.Sc 
Engineer 

Identified student error: 
cos(2x+ I ) * cos2x + cosl 
Provided a solution: cos(2x+1) = 0 
by letting (2x+1) = rc/2 then x= 
rr/4-1/2. 

Identified student error. 
log(2x+1) * log2x + log I 
Provided a solution: log(2x+1) = 
log(x-1) using algebraic method: 
2x+/ =x-1, x=-2. 
[Accepted log(-3) as a valid 
solution when it is not.] 

/studied statistics 17Yrs ago and I 
can only recall doing 
'std.deviation'. As a guess, 2.4 is 
the variance. 

Important 
learning 

Clear understanding of trig-rules. Rules should be learned 
thoroughly to make it easier to 
memorise them. 

I'm not sure because I haven't 
covered this topic recently. 

Teaching 
approach 

Emphasise the rules and how to 
use the formulae correctly. 

Emphasise the log rules for 
students to remember and do lots 
of examples. 

I don't know because I last did 
statistics 17yrs ago. 

MALE 7: B1 TRIG-Category (3) Instrument LOG- Category (3) Instrument STAT - Category (1) 

B.Sc 
maths & physic: 

major 

Identified student error: 
cos(2x+1) * cos2x + cosl 
Provided a solution: cos(2x+1) = 0 
by letting (2x+1) = tr./2 then x= 
n/4-1/2. 

Identified student error: 
log(2x+ I) * log2x + log I Showed 
knowledge of log laws': logA/B= 
logA-logB. Gave a solution by 
removing log' from both sides and 
solved for x, x=-2. 	Accepted log(-3 
as a valid solution when it is not. 

I don't know, I can't remember, I 
haven't understood statistics well at 
Uni and! can't remember the 
formula. 

Important 
learning 

An understanding of sine, cosine 
and tan as ratios. And how these 
functions represent lengths. 

How logarithm is related to 
exponents. How to use the log 
laws, 

What variance is. What it tells us 
about the data. How to calculate 
the value. 

Teaching 
approach 

1. Use triangles to derive trig- 
ratios. 2. Use trig-ratios to solve 
triangles, 
3. Trig-rules and how to apply 
them. 

I. Relationship of logarithm to 
exponentials. 2. Understand the 
log laws and how to use them in 
solving problems. 

1. Find the sample mean and other 
values from the data. 2. Derive 
the variance using the formula. 

MALE 8: Al TRIG - Category (1) LOG - Category (1) STAT - Category (1) 

B.Sc 
Electronic 
Engineer 

The student is treating this as algebra, 
and there seems to be a 
misunderstanding between the cos and 
its angle. But I can't remember how tc 
do this now or to explain why this is so. 

Identified student error: Student fails 
to check final answer to see that 
log(3)*log(0). 
Attempted to give a correction: 
log 10100 = 2, ie. 102  = 100 
but couldn't proceed any further. 

Sorry, but I can't remember 
any of this. 

Important 
learning 

Knowledge of trig-ratios and their 
relation to right triangles, 

Knowledge about the concept of 
logarithm, 

All about statistics not just the 
variance. 

Teaching 
approach 

1 would follow the syllabus to make 
sure that I teach the right topics at 
the appropriate levels. 

Teach the log-laws and make sure 
students understand their relation 

_ 	to the indice-laws. 

Similar to trigonometry, I would 
follow the syllabus to make sure 
I'm on the right track 
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MALE 9: Al TRIG - Category (2)- Relation LOG - Category (2)-Relation STAT - Category (3) Relation 

B.Sc 
Computer 
Science 

Identified student error and 
provided an explanation: 
(2x+1) is the angle so cos(2x+1) * 
cos2x + cosl. This could be 
demonstrated by the use of graphs 
to show that y=cos(2x+1) is not the 
same as y = cos2x + cosl . 

Identified student error: Student 
didn't understand log laws and how 
to apply them. 
Provide a solution: 
Log is of base 10, log 10(2x+ I). 
Also by applying logs one should 
realise that 2x+1 = x-I. Then solve 
for x, ie. x = -2. 

If 2",fx - meanY then 24/10=2.4. 
But the I is to 9 not to 10. If 1 is 
to 9 then 24/9=2.7. So it can't 
be 2.4 or 2.7. There is another 
formulator the variance: 
S2  =1,xl/n - (mean)2  and by 
substitution 194/10 - 42  = 3.4 
So S2  = 3.4 is the correct value. 

Important 
learning 

Being able [the ability] to graph 
the trig-functions, 

The understanding of log laws and 
their relation to indices. 

Students to have an understanding 
of the different forms of the 
variance fonnula and the skills 
involved in using and applying the 
formulae. 

Teaching 
approach 

The syllabus will be a good guide as 
to what is appropriate to teach to the 
students. 

Introduce the log-laws and show 
how to apply them to solve 
algebraic problems. 

Again, it's important to get guidance 
from the syllabus for the appropriate 
teaching sequence to follow. 

MALE 10: Al TRIG-Category (3) Instrument LOG - Category (3) Relation STAT - Category (1) 

B.Sc 
Computer 
Science 

Identified student error: Student has 
ignored the function (cos) and 
treated 'cos' as a pronumeral and 
then used the distributive law. 
Provided a correction: 
The question is to find the value of x 
in relation to cos(of an angle). That 
is, cos(2x+1)=0 [Draw a unit circle 
and label the angles] So 2x+1 = Ira 
3e2, ... , etc. Solve for x. 

Identified student error: Incorrect 
use of log laws. Eg. 
log(2x+I)olog2x +log I because 
logAB = logA + logB. 
Using the fact that log,,, is on both 
sides of the equal sign (=), 
(cancelled log] then 2x+ I =x-I 
where (x >0). But x= -2. 
Since x < 0, there is no solution. 

I'd say 2.4 because 24110 =2.4, but 
that can't be because the 'sum' is to 
9 not 10. If that is the case then 
52  = 24/9 = 2.7. 

Important 
learning 

An understanding of what sine, 
cosine and tan functions are in 
relation to the unit-circle and their 
graphs. 

Students to gain a good grounding 
and understanding of the log-laws, 

I don't know, I guess knowledge of 
what a variance is. 

Teaching 
approach 

Introduce trig-functions using unit- 
circle and make sure students 
understand the use of trig 
functions. 

Introduce log-laws and give lots of 
practice exercises. 

Statistics is not my strength, so for 
teaching, I'll just stick to the 
syllabus. 

MALE 11: Al TRIG - Category (2) Relation LOG - Category (3) Relation STAT - Category (1) 

B.Sc 
Computer 
Science 

Identified student error: 
By substituting -0.5 into cos(2x+1) 
= cos(0) and cos(0)= I not 0. 
Provided a correction: Cos(2x+I) 
= 0 implies the angle (2x+1) is 
either ir./2 or 3tt/2 [draws the unit 
circle]. This confirms that x # -0.5. 

Identified student error: Student has 
considered 'log' as a variable or 
recalled rules incorrectly. Provided 
a correction: 'log' is a function 
relating to some 'operation'. Eg. 
logAB = logA + logB and log 10X = a 
implies 10 = X. However, finding x 
in log(2x+1)=Iog(x-1) is easier by 
using algebra, ie. 2x+1 = x-1. Solve 
for x and x = -2. 1 was taught that for 
a valid solution of logs x>0. [He 
couldn't explain why x has to be >O. 
but just remembers it that way] 

1 really don't know. I know the 
mean is 4, and the deviation from 
the mean is squared, but that's 
about it. 

Important 
learning 

To understand the unit-circle 
diagram and the related trig- 
graphs. 

To understand the relationship of 
logs to exponentials, and to have 
the knowledge that log functions are 
for specific applications, in the 
same way trig-rules are specifically 
for solving problems related to 
measurement of lengths and angles. 

I'm not really sure. 

Teaching 
approach 

Start with the unit-circle and trig- 
graphs and then teach the trig- 
ratios, 

Start by making sure students 
understand the relation between 
indices and log-laws. Then move on 
to show how to apply these laws to 

_ real-life situations. 

1 need to learn and do more 
studies in this area before teaching 
it. 
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Table B2: 	Summary of the analysed data presented in Figure B1 

PARTICIPANT 
GROUP 

DEGREE/ 
MAJOR 

TRIG 
Category:1,2,3,4 

Skemp's 	Model 

LOG 
Category:1,2,3,4 

Skemp's 	Model 

STAT 
Category:1,2,3,4 

Skemp's 	Model 
Female 1 

A2 B.Ed (Maths) 
(final year) 

Category 2 
Pseudo-Procedural 

Category 1 Category 2 
Pseudo-Procedural 

Female 2 
B2 B.A Dip.Ed 

(Maths Minor) 
Category 1 Category 2 

Pseudo-Procedural 
Category 1 

Female 3 
B2 B. EconDip.Ed 

(Maths Minor) 
Category 1 Category 1 Category 1 

Female 4 
B2 B.A Dip.Ed 

(Maths Minor) 
Category 1 Category 1 Category 1 

Female 5 
B1 B.Sc (Chem) 

Dip.Ed 
Category 2 

Rel-Procedural 
Category 2 

Rel-Procedural 
Category 1 

Female 6 
A2 B.Ed (Maths) 

(3'd  year) 
Category 2 

Pseudo-Procedural 
Category 2 

Pseudo-Procedural 
Category 1 

Female 7 
- B1 B.Sc (Maths) 

Dip.Ed 
Category 2 

Rel-Procedural 
Category 1 Category 1 

Female 8 

Al 
• 

B.Sc Dip.Ed 
(Maths-Hons) 
M. Chem Engi 

Category 2 
Rel-Procedural 

Category 2 
Rel-Procedural 

Category 2 
Rel-Procedural 

Male I 
A2 B.Ed (Maths) 

(3'd  year) 
Category 1 Category 1 Category 1 

Male 2 
A2 B.Ed (Maths) 

(3'd  year) 
Category 2 

Pseudo-Procedural 
Category 2 

Pseudo-Procedural 
Category 1 

Male 3 
A2 BEd (Maths) 

(final year) 
Category 2 

Pseudo-Procedural 
Category 2 

Pseudo-Procedural 
Category 1 

Male 4 
BI B.Sc (Chem) 

Dip.Ed 
Category 2 

Pseudo-Procedural 
Category 2 

Pseudo-Procedural 
Category 3 

Pseudo-Conceptual 
Male 5 

B1 B.Sc (Maths) 
Dip.Ed 

Category 3 
Pseudo-Conceptual 

Category 3 
Pseudo-Conceptual 

Category 2 
Rel-Procedural 

Male 6 
B! B. Sc Dip.Ed 

(Engineer) 
Category 3 

Pseudo-Conceptual 
Category 3 

Pseudo-Conceptual 
Category 1 

Male 7 
B1 B.Sc Dip.Ed 

(Maths/Physic) 
Category 3 

Pseudo-Conceptual 
Category 3 

Pseudo-Conceptual 
Category 1 

Male 8 
Al B.Sc Dip.Ed 

(Engineer) 
Category 1 Category 1 Category 1 

Male 9 
Al B.Sc Dip.Ed 

(Computer Sc) 
Category 2 

Rel-Procedural 
Category 2 

Rel-Procedural 
Category 3 
Relational 

Male 10 
Al B.Sc Dip.Ed 

(Computer Sc) 
Category 3 

Pseudo-Conceptual 
Category 3 

Rel-Conceptual 
Category 1 

Male 11 
Al B.Sc Dip.Ed 

(Computer Sc) 
Category 2 

Rd-Procedural 
Category 3 

Rel-Conceptual 
Category 1 

Legend: 
Rel-Procedural - Relational Procedural Knowledge, 	Rd-Conceptual - Relational Conceptual Knowledge 

Pseudo-Procedural - Instrumental Procedural Knowledge, Pseudo-Conceptual - Instrumental Conceptual Knowledge 
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