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Abstract 

The internal environment of the central nervous system (CNS) is protected from its 
surrounding milieu by barriers, which selectively facilitate and restrict the entry of 
molecules in and out of the CNS. These barriers form early during development, 
however, their selectivity in the developing brain appears to be different from those that 
protect the adult brain. The reasons for the differences in the CNS barriers between 
young and adult animals are still unclear. The experiments in this thesis were performed 
in order to obtain morphological and physiological explanations for the changes in the 
transfer of lipid insoluble molecules into the CNS that occur during development. 
Quantitative studies with radioactive markers in parallel with experiments using a tracer 
that could be visualised were conducted in an attempt to correlate physiological uptake 
with the structural studies. A marsupial species, the grey short-tailed South-American 
opossum (Monodelphis domestica), was used in all experiments since it is born at an 
early stage of brain development, and thus is a more accessible model than any 
eutherian animal during a similar developmental period. The transfer of lipid insoluble 
molecules has previously not been studied at such early stages of brain development. 
All experiments were carried out in accordance with NHMRC guidelines and with the 
approval of the University of Tasmania Ethics Committee. Lipid insoluble radioactive 
markers were injected into opossum pups and blood, cerebrospinal fluid (CSF) and 
brain samples were collected to assess initial rate of uptake and steady-state 
CSF/plasma and brain/plasma ratios. These experiments showed that the steady-state 
ratios for small lipid insoluble molecules were high in early development compared to 
the adult and that they decreased during development due to a reduction in CNS barrier 
permeability with age. Possible routes by which lipid insoluble molecules enter the 
brain were investigated using a 3000 molecular weight biotin-dextran and visualising it 
under the light and electron microscope. This tracer allowed localisation of a small inert 
lipid insoluble molecule at the blood-CNS interfaces. Quantitative measurements of 
CSF uptake showed that the dextran penetrates across the brain barriers to an extent 
similar to other small lipid insoluble molecules and thus validates the dextran as a 
suitable tracer. Under the electron microscope, it appeared that cells of the blood-CSF 
interface at birth already exhibited tight-junctions, which are the fundamental structures 
of the brain barriers. These junctions seemed to impede the intercellular movement of 
the biotin-dextran. Uptake into cells at the blood-CSF interface and lack of extracellular 
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biotin-dextran in the brain suggest that in the immature brain the route of penetration 

from blood to brain may be predominantly via the CSF rather than directly across the 

cerebral vessels of the developing brain. 
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BUI 

- 	

Brain uptake index 
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- 	

Central nervous system 
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- 	
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Chapter 1: General Introduction 

This thesis starts with a general introduction to the field in Chapter 1. Chapter 2 

describes experimental procedures that were common to a majority of the studies. 

Chapter 3 describes and evaluates the animal model that was used in the experiments of 

this thesis. Chapter 4 presents quantitative uptake studies of several small lipid 

insoluble molecules from the blood into the brain and CSF. Chapter 5 presents 

experiments with a small lipid insoluble dextran that was visualised in the brain under 

the light and electron microscope and Chapter 6 is a general discussion of all the results 

obtained. Part of the work in this thesis has been presented in Saunders et al. (1999c), 

Dziegielewska et al. (2001) and Ek et al. (2001). Copies of these publications are found 

in the back of this thesis. 

Brief historical background 

The earliest experiments that led to the concept of a barrier mechanism between blood 

and brain were made around the turn of the 19 th  century (Ehrlich, 1885; Lewandowslcy, 

1900 as cited by Habgood, 1990; Goldmann, 1909). These experiments involved small 

molecules that could easily be visualised eg. potassium ferrocyanide or dyes (such as 

trypan blue) that, after systemic injection, coloured almost the whole body but left the 

CNS unstained. On the other hand, when the dyes where injected directly into the brain 

the neural tissue became widely stained (Goldmann, 1913). These experiments also 

demonstrate the caution that has to be taken when interpreting the results of tracer 

experiments. Many of the dyes that were used in these early experiments were later 

found to bind to plasma proteins (Tschirgi, 1950), thus while in the plasma most of the 

dyes probably existed as dye-protein complexes. However, when injected directly into 

the CSF the dyes possibly existed as free dye to a much larger extent due to the low 

protein concentration in CSF. At the same time it was also noted that bile and sodium 

ferrocyanide, which had little effect when delivered vascularly, could have dramatic 

effects when delivered directly into the CNS (Biedl and Kraus, 1898; Lewandowsky, 
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Chapter 1: General Introduction 

1900 as cited by Habgood, 1990). Goldmann and Lewandowsky interpreted these 

experiments as an existence of barrier systems that restricted the entry of these dyes 

between the blood and the brain, and Lewandowsky coined the term "bluthirnschranke" 

(blood-brain barrier); however, at that time this concept was not widely accepted. Basic 

dyes did have the ability to stain central nervous tissue whilst acidic dyes did not stain 

the brain after systemic administration. This lead to the incorrect assumption that it was 

the affinity for neural tissue, and not its capacity to reach the brain, which explained the 

dyes ability to stain the CNS (Ehrlich, 1887; King, 1939 as cited by Habgood, 1990). 

The most obvious sites for a CNS barrier were the brain blood vessels, which could 

have properties denying the entry of dyes into the brain. During this time, however, 

using light microscopy, it was not possible to find any difference between the capillaries 

in the CNS and those of other parts of the body (Goldmann, 1913; Broman, 1941). It 

was not until the introduction of electron microscopy in the 1960's, revealing 

specialised ultrastructural properties in the brain capillaries, that a physical barrier to 

blood solutes was identified (Reese and Karnovsky, 1967; Brightman and Reese, 1969) 

(see below for more details about these experiments). 

Ehrlich (1904) noted that in general the dyes staining the brain also stained adipose 

tissue. This was probably the first indication that lipid solubility plays a role in the 

ability of blood solutes to reach brain tissue. The use of lipid soluble narcotics, which 

had a rapid central action, supported this hypothesis (Krogh, 1946). When better 

analytical techniques, such as radioisotopes were introduced, the use of basic dyes could 

be abandoned and the range of compounds used in experiments increased. This also 

meant that it was possible to measure tracer levels of solutes in a quantitative way. With 

the use of these new techniques Davson (1955) published a series of comprehensive 

studies with a number of small molecules, electrolytes and non-electrolytes, and 

confirmed that lipid-solubility was a main determinant of penetration from blood to 

brain. These studies also showed that charged molecules such as cations and anions 
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Chapter 1: General Introduction 

penetrated from blood into the brain very slowly. 

The earliest experiments investigating possible barriers in the developing animal were 

carried out in the 1920's (Wislocki, 1920; Behnsen, 1927; Stern and Peyrot, 1927 as 

cited by MoIlgard and Saunders, 1986; Penta, 1932 as cited by Mollgard and Saunders, 

1986). These studies used similar dyes and small markers that were used in the early 

experiments demonstrating barrier mechanisms in the adult animal (see above). Nearly 

all these studies showed that these markers penetrated into the developing brain in 

contrast to the lack of staining in the adult brain. These studies therefore lead to the 

misconception that the barriers were poorly developed until late in development. 

However, as was pointed out by MoIlgard and Saunders (1986), these early experiments 

indicating barrier immaturity injected huge amounts of dye that probably affected the 

integrity of the fetal and embryonic barrier mechanisms. As became clear later (see 

references below) and is also shown in the experiments presented in this thesis, the 

developing brain is indeed protected by barriers that are present very early in 

development. 

Current concept of the brain barriers 

The term blood-brain barrier (BBB) is widely used as a collective term describing 

several barrier mechanisms in the CNS. However, scientists working in the field use the 

more exact definition of this term to define the restriction to the passage of molecules 

from the lumen of blood vessels inside the brain to the surrounding brain tissue (see 

Figure 1.1). In this thesis the term brain barriers  will be used as a collective term for all 

barrier mechanisms regulating the penetration of blood solutes into the brain. The 

current concept of the brain barriers includes multiple systems that control the internal 

environment of the brain, both by restricting and by facilitating the entry of solutes 

(Saunders and Dziegielewska, 1997). These systems include outward transporting 
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Chapter 1: General Introduction 

systems, such as the P-glycoprotein and multi-drug resistant protein, which exclude 

molecules by active transport out of the endothelium (Borst and Schinkel, 1998). These 

specialised transporting systems within the barriers will be discussed separately later. 

The brain barriers can be divided into four principal interfaces: 1) the endothelium of 

the cerebral blood vessels (blood-brain barrier), 2) the epithelium of choroid plexus 

tissue in the brain ventricles (blood-CSF barrier), 3) the ependymal lining of the 

ventricles and the pia-glia limitans (CSF-brain barrier), 4) and the meningeal barrier (a 

second blood-CSF barrier). The structures associated with these barriers will be 

described in detail below, first in the mature and then in the developing CNS (see also 

Figure 1.1). 
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Figure 1.1 

The brain barriers in the developing and in adult animal. The central picture is a 

schematic diagram of the three main compartments in the central nervous 

system (CSF, brain and blood). These compartments are separated from each 

other by four separate barriers in the developing brain. 1) The blood-brain 

barrier, which is situated between the lumen of the blood vessels in the brain 

and the brain tissue itself. Arrow points to the location of tight-junctions between 

the endothelial cells that restricts the intercellular passage of molecules. 2) The 

blood-CSF barrier, which is situated between the lumen of the blood vessels in 

the choroid plexus and the cerebrospinal fluid (CSF). Arrows point to the 

position of the tight-junctions that impedes the paracellular passage of 

molecules in between the choroidal epithelial cells. 3) The CSF-brain barrier, 

which is situated at the ventricular surface and the pia-glia limitans, between the 

CSF and brain tissue. This has only been shown to be a functional barrier in the 

early developing brain (Fossan et al., 1985) where the neuroependymal cells 

form a pseudostratified layer and are connected to each other by strap-

junctions (arrowheads). 4) The meningeal barrier, which is situated between the 

CSF filled subarachnoid space (SAS) and the overlaying blood circulation. The 

cells in the outer surface of the arachnoid have tight-junctions that hinder the 

extracellular movement of molecules. The dura mater has fenestrated blood 

vessels whereas the blood vessels in the arachnoids and on the pial surface 

have functional barrier characteristics similar to the blood vessels inside the 

brain. Likewise to the ventricular CSF-brain interface, a functional barrier seems 

to exist on the outer pial surface of the brain (arrowheads) during early 

development but disappears later. 5) The mature ventricular surface is made up 

of a flat layer of ependymal cells. These ependymal cells are connected to each 

other by gap-junctions and lack tight-junctions so there is a free passage of 

molecules between the CSF and the extracellular fluid of the brain. 

Abbreviations: D — Dura mater, OA — Outer Arachnoid, SAS — Subarachnoid 

space. Modified from Saunders et al. (1999b), Habgood (1990) and Krisch et al. 

(1984). 
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(Blood - brain barrier) 
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Chapter 1: General Introduction 

Barriers in the adult brain 

I. Blood-brain barrier 

In blood capillaries in the brain, the cell membranes of endothelial cells come together 

at the luminal side to form zonulae occludentes. Zonulae occludentes refers to a region 

of the intercellular cleft where the opposing cell membranes fuse at multiple points to 

form tight-junctions that obliterate the intercellular space. In freeze-fracture it has been 

shown that these tight-junctions form a continuous fusion and completely encircle the 

endothelial cells (Connell and Mercer, 1974; Dermietzel, 1975a; Shivers et al., 1984). 

These tight-junctions are believed to form a physical barrier to compounds and thus 

forming the structural basis for the blood-brain barrier. That the barrier was situated 

between the endothelial cells was first shown by Karnovsky (1967) and in further 

studies by Brightman and Reese (1969), who injected horseradish peroxidase (HRP), a 

40 000 MW protein, into mice and visualised it under the electron microscope. HRP 

was confined to the lumen of the capillaries. It could penetrate the space in between the 

endothelial cells until it reached the tight-junction where it was stopped. An inverse 

image was found when HRP was introduced into the ventricles. HRP could penetrate 

brain tissue all the way to the endothelial cells, but was stopped in the interendothelial 

clefts. The tight-junctions of the endothelial cells have also been found to be 

impenetrable to other tracers such as cytochrome c (Milhorat et al., 1973; Milhorat et 

al., 1975), lanthanum (Brightman and Reese, 1969; Bouldin and Krigman, 1975), and 

microperoxidase (MP) (Reese et al., 1971). The latter molecule was later found to bind 

to plasma proteins so the barrier was to a MP-protein complex, which would be 

considerably larger than MP itself (Milton Brightman, personal communication). In 

contrast to the above-mentioned studies, Nag et al. (1982) found that lanthanum could 

penetrate the intercellular cleft in some cerebral arterioles but not in cerebral capillaries 

or venules. However, studies using lanthanum as a tracer has to be interpreted with 

caution because of its toxicity and also because of the differences in methods used in 
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experiments. For instance, Bouldin and Krigman (1975) perfused the brain with a 

lanthanum solution for 15 minutes in vivo before fixing the brain whereas Nag et al. 

(1982) first perfused the brain with an aldehyde solution and then with a lanthanum 

solution. The use in vivo has to be questioned since it is toxic (Milhorat et al., 1975), 

whereas the relevance of experiments in fixed tissue to in vivo penetration may be 

limited because it is not known whether channels and pores remain intact in the process 

of fixation. 

Another way to study the permeability of the blood vessel wall is by measurements of 

electrical resistance over the endothelium. An electrode inside the vessel produces a 

small current and the fall in voltage with distance to the current source is partially 

affected by the leakage of ions through the vessel wall (indirect measurement of ionic 

permeability). Studies with electrical resistance in blood vessels have revealed that the 

brain capillaries have the highest resistance recorded for any endothelium. For example, 

transmembrane resistance of 2000 f2cm 2  in capillaries on the surface of the brain in 

frogs compared to 20-30 Ocm2  in skeletal muscle endothelium (Crone and Olesen, 

1982; Crone, 1984). Because of technical problems, however, measurements have so far 

only been made in the pial vessels which are accessible from the outside of the brain. It 

is still debatable if these vessels are a good representative of the vessels found deeper 

inside the cortex (for review see Allt and Lawrenson, 1997). In addition to restricted 

paracellular pathways, the endothelial cells in the nervous tissue also have low 

pinocytotic activity (Brightman and Reese, 1969; Sedlakova et al., 1999). 

II. The blood-CSF barrier 

This barrier is situated between the blood vessels of the choroid plexus and the CSF. 

Choroid plexus tissue is found in the roof of each of the ventricles as an invagination of 
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the ventricular ependyma forming lobulated structures and is believed to be the main 

producer of CSF (Johanson, 1988). Unlike blood vessels in other parts of the brain, 

choroidal vessels seem to lack the continuous membrane-membrane fusion found in 

cerebral endothelial tight-junctions (van Deurs, 1979). The choroid plexus is one of the 

circumventricular organs (discussed later) and shows similar fenestrated vessels, i.e. the 

capillary membrane appears to be reduced at certain points and this characteristic has 

been associated with higher permeability (Peters et al., 1991) (see Figure 5.6). The 

vessels are surrounded by connective tissue and leptomeningeal cells that have loose, 

discontinuous tight-junctions which are believed not to have a significant barrier 

function (van Deurs, 1979). This has been confirmed with tracer molecules that easily 

diffuse past the cells to reach the basement membrane of the choroidal epithelial cells 

(cytochrome c study by Milhorat et al., 1975; HRP study by Becker et al., 1967 and 

Brightman, 1968; MP study by van Deurs, 1978). HRP and MP seem to cross the 

endothelium of the choroid plexus by both interendothelial passage and pinocytosis but 

which process is the more important is not known. Outside the blood vessels in the 

choroid plexus is a layer of connective tissue and overlaying this is a layer of epithelial 

cells resting on a basement membrane (see Figures 5.3-5.6). At the apical (CSF) side the 

epithelial cells are fused together to form zonulae occludentes thereby minimising the 

paracellular pathway (Brightman and Reese, 1969; Dermietzel and Schunke, 1975). The 

transitional ependymal cells in the borderline between choroidal epithelia and the 

ventricular ependyma also seem to possess tight-junctions at their apical side (Krisch, 

1986). It is these tight-junctions between epithelial cells that are believed to form the 

ultrastnictural basis of the blood-CSF barrier. This has been confirmed by tracer studies 

using HRP (Becker et al., 1967; Becker and Almazon, 1968; Brightman and Reese, 

1969; Krisch, 1986), MP (van Deurs, 1978) and cytochrome c (Milhorat et al., 1973; 

Milhorat et al., 1975). After administration into the blood, the tracers leaked out of the 

choroid plexus blood vessels into the interepithelial cleft, but the intercellular 

movement of tracers was stopped at the apical tight-junctions. The much smaller 
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lanthanum has been reported to be able to cross the epithelial tight-junctions of choroid 

plexus of rats and cats (Castel et al., 1974; Bouldin and Krigman, 1975). This would 

indicate that the tight-junctions in the choroidal epithelium are 'leakier' than those of 

the cerebral endothelium, which have been shown to be impermeable to lanthanum 

(Brightman and Reese, 1969; Bouldin and Krigman, 1975). However, as has been 

discussed above the suitability of lanthanum as an in vivo tracer has to be questioned 

since it is toxic. 

Most of the transcellular transport across the epithelial cells is believed to be from the 

basal to apical direction, by pinocytosis in vesicles and multivesicular bodies. This 

transport seems to be lower in the choroid plexus epithelial cells compared to other 

epithelia of the body (van Deurs et al., 1978; Peters et al., 1991). 

III. CSF-brain barrier 

Krogh (1946) proposed that the composition of the brain extracellular fluid (ECF) in the 

adult resembles very closely that of the CSF, the implication being that they are in open 

communication with each other. It is generally known that polysaccharides and proteins 

present in the CSF readily penetrate into the ECF (Johanson, 1993). The ventricles are 

lined with a single layer of ependymal cells, which lack tight-junctions and are joined to 

each other by gap-junctions (see Figure 1.1). Gap-junctions are believed not to serve as 

excluding structures but to form channels for exchange between adjacent cells. 

Hydrostatic and osmotic forces therefore determine the net flow of solutes between the 

CSF and brain ECF, and this interface is unlikely to pose a significant barrier in the 

adult (Johanson, 1993). Similarly to the ventricular ependyma, the outer pial surface of 

the adult brain does not seem to constitute an impediment for macromolecules to diffuse 

between the CSF of the subarachnoid space and brain tissue (Saunders et al., 1999a). 
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1111. The meningeal barrier 

The outer lining of the brain and the subarachnoid space are the least studied of the 

blood-brain interfaces despite the fact that they constitute a major interface between 

blood, CSF, and brain (Bohr and Merllgard, 1974). This interface can be considered as 

part of the blood-CSF barrier but because of its anatomical segregation it is normally 

regarded as a separate barrier. In this thesis the name meningeal barrier will be used but 

it is sometimes referred to as the outer blood-CSF barrier. The meninges consist of an 

outer thick dura, the arachnoid, and the pia mater that surrounds the whole CNS 

(Johanson, 1998). Because it is sometimes difficult to structurally distinguish between 

the pia and arachnoid, they are collectively known as the leptomeninges (Peters et al., 

1991). In between the arachnoid and the pia is the subarachnoid space, which is filled 

with CSF, collagen, and many blood vessels. In an adult human the subarachnoid space 

holds about 60% of the total CSF volume (Johanson, 1995). This is also where the 

arachnoid villi are situated which allow CSF to pass back into the blood of the venous 

sinuses by bulk flow. Some of the blood vessels in the dura are fenestrated, and cells at 

the inner surface of the dura facing the subdural space seem to lack tight-junctions and 

have been shown to be leaky to HRP; thus the dura is not believed to constitute a 

significant barrier (Nabeshima et al., 1975; Krisch et al., 1984; Balin et al., 1986). 

Instead, the outer layer of the arachnoid consists of leptomeningeal cells, which have 

tight-junctions in between them (Dermietzel, 1975b; Rascher and Wolburg, 1997). A 

barrier at this level would isolate the CSF in the subarachnoid space from the outer 

blood circulation. Studies with HRP have shown that this is stopped at the outer surface 

of the arachnoid, which is where the arachnoid cells are linked by tight-junctions 

(Nabeshima et al., 1975; Balin et al., 1986). However, Balin et al. (1986) reported 

species differences. Blood borne HRP was stopped at the arachnoid in rat and monkey, 

but could enter the subarachnoid space in mouse. Some authors have also shown that 

- 12 - 



Chapter 1: General Introduction 

there are species-dependent characteristics of the meninges including the presumed 

barrier layer of the arachnoid. Angelov and Vasilev (1988) reported that the electron 

dense band between the dura and the arachnoid membrane is less prominent in the cat 

compared to other species and also only observed occasional tight-junctions in the 

presumed barrier layer of the outer arachnoid. Further studies by Angelov (1990a) 

compared the structure of the dura-arachnoid layers in rats, rabbits, cats and humans. 

The author could not give a general description of the tissues because of the 

heterogeneity between the different species. For instance, in the rat the dura-arachnoid 

membranes comprised of four distinct layers whereas in the cat and especially in 

humans these layers were difficult to differentiate. The arachnoid itself seems to lack 

blood vessels but in the reticular tissue of the subarachnoid space there are numerous 

vessels which have endothelial cells fused together by tight-junctions (Nabeshima et al., 

1975). This constitutes an endothelial blood-CSF barrier. The blood vessels at the pial 

surface of the brain are also known to have tight-junctions and have been extensively 

used as an accessible place to study brain blood vessels in vivo (Crone and Olesen, 

1982; Butt et al., 1990). The meningeal barrier has also been shown to be impermeable 

to MP but possible transport systems have not been studied (Cserr and Bundegaard, 

1984). 

Barriers in the developing brain 

It was noted early on that the CSF in the developing brain had a higher concentration of 

protein than in the adult (Flexner, 1938). This was first interpreted as a simple reflection 

of less developed barriers, however, as the development of the brain barriers has been 

studied in more detail, a somewhat different picture has emerged (Johanson, 1989; 

Saunders, 1992). Instead of being immature it seems that the developing CNS, with its 

own requirement for growth, maintains a different environment from that of the adult 

CNS. Rather than being immature the barriers seem to be specialised during 
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development, including additional barriers, not present in the adult (Fossan et al., 1985). 

Since tight-junctions have been found to be the structural basis for the brain barriers, 

most studies have focused on the development of these in order to find correlations 

between changes in structure and permeability during development. When the literature 

is scrutinised it becomes apparent that most studies have not been successful in 

correlating changes in morphology with changes in permeability of the brain barriers 

during development. In addition there are contradictory results in defining the 

functional onset of the different brain barriers. Possible explanations for these 

contradictions are discussed below. 

I. The blood-brain barrier 

The origin of cerebral vessels in the developing brain is from the perineural plexus. This 

consists of fenestrated vessels that form a network around the outer surface of the entire 

neural tube and which sends long sprouts with abundant branches down to the 

ventricular zone of the neuroectoderm. It has been shown in the mouse that at around 

embryonic (E) day 10, these vessels lose their fenestrations and also that zonulae 

occludentes-like junctions appear between the endothelial cells (Bauer et al., 1993). In 

the rat, intraneural vessels have been reported to lose their fenestrations at around E 12- 

E13 but the perineural vessels retain their fenestrations longer until around E17 (Stewart 

and Hayakawa, 1994). Another study in the same species found fenestrated 

intraparenchymal vessels as late as E17 (Yoshida et al., 1988). During growth of the 

CNS, the cerebral blood vessels undergo several other characteristic changes. There is 

an increase in the density of brain capillaries (Caley and Maxwell, 1970; Stewart and 

Hayakawa, 1987), a decrease in the thickness of the endothelial wall (Stewart and 

Hayakawa, 1987; Simionescu et al., 1988), changes in the tight-junctional structure 

(Schulze and Firth, 1992; Stewart and Hayakawa, 1994; Kniesel et al., 1996) and a 

decrease in pinocytotic activity (Bauer et al., 1993; Xu and Ling, 1994), however, other 
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studies have shown low pinocytotic activity even in early development (Stewart and 

Hayakawa, 1987). The induction of brain vessels to form barrier characteristics early in 

development appears to come from the surrounding nervous tissue. This was shown by 

Stewart and Wiley (1981) who transplanted avascularised embryonic quail tissue into 

embryonic chicks. When brain tissue was transplanted into the coelomic cavity this 

promoted barrier distinctiveness in the invading host vessels. In contrast, when somites 

where grafted into the embryonic chick brain ventricle, the invading cells seemed to 

lack barrier characteristics. What the molecular signals are that stimulate the vessels 

invading CNS tissue to develop barrier characteristics is still not clear (Risau et al., 

1998). 

Some of the first studies of the immature CNS claimed that the tight-junctions in the 

cerebral endothelium were incomplete compared to the adult and this was thought to be 

the reason for dyes staining the brain (for references see Saunders, 1992). Improved 

fixation techniques for fetal tissue have, however, produced evidence contrary to this 

view and demonstrated complex tight-junctions present between the endothelial cells at 

early stages of brain development (Mollgard and Saunders, 1975; Xu and Ling, 1994). 

MollgArd and Saunders (1975) reported a high complexity of the endothelial tight-

junctions in human (10-13 weeks old) and sheep fetuses (E125) using freeze-fracture 

techniques. Xu and Ling (1994) found that in 1-day old rats the cerebral endothelial 

cells already exhibited tight-junctions with several contact points. There have been 

several other more recent studies on the structural development of junctions of brain 

endothelium in the rat. Schulze and Firth (1992) studied cerebral tight-junctions in thin-

sections using the goniometric tilting device and found changes in the 'narrow zone' 

(close contact between the cell membranes) relative to the entire length of the tight-

junction between developing and adult cortical vessels of rats. Embryos and postnatal 

rats showed high variability in this ratio and also prominent membrane separation 

whereas the adult tight-junctions appeared more uniform in structure. At various ages 
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between E 17 and postnatal (P) day 16, however, there was little systematic change in 

these features of the tight-junctions. Stewart and Hayakawa (1994) also studied 

developmental changes in cerebral endothelial tight-junctions using transmission 

electron microscopy and found no differences in either the length of the tight-junctions 

or the cleft index (proportion of unfused cell membrane) between embryos and adults. 

However, they did find a decrease in the proportion of junctions with expanded cleft 

with age. The authors suggested that these larger clefts might be the ultrastructural basis 

for the apparently more permeable vessels in embryos. Kniesel et al. (1996) made a 

freeze-fraction study of cerebral vessels in rats from E 13 to adulthood. They reported an 

increase in the complexity of the tight-junction network between E13 to P1, with the 

most significant increase between E18 and Pl, but found no further changes after birth. 

This finding did correlate well with changes in the transendothelial resistance in 

developing rat pial vessels during development (Butt et al., 1990). At P17 the pial 

vessels resistance was around 310 Ocm2 , which increased dramatically to 1130 C/cm 2at 

P21, but increased little further after birth (1490 Qcm2  at P28-P33). Butt et al. (1990) 

also studied the penetration of lanthanum in the pial vessels and found that these vessels 

appeared impermeable to the small particle lanthanum in vivo even in fetal animals. The 

observation that the tight-junctions stop the paracellular penetration of lanthanum in pial 

blood vessels at early stages of development was later also shown for vessels in the 

corpus callosum (Xu and Ling, 1994). Xu and Ling (1994) also investigated the transfer 

of ferritin, a large protein tracer (molecular weight 900 000 Da), in blood vessels of the 

corpus callosum and found that it was transported in vesicles at earlier stages of 

development (P1 and P7), but one week later (P14) this transfer mechanism could not 

be detected. The authors suggested that the main route by which exogenous material is 

transported across the cerebral endothelium is by trancytosis in pinocytotic vesicles, and 

that a reduction in this activity is responsible for the decrease in vessel permeability 

with age. There have also been morphological studies of endothelial tight-junctions 

combined with HRP experiments in mice (Stewart and Hayakawa, 1987) and chicks 
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(Delorme et al., 1970; Wakai and Hirokawa, 1978) during development. Stewart and 

Hayakawa (1987) reported a parallel decrease in the tight-junction index and 

permeability of HRP in mouse embryos, and suggested a "tightening" of the 

paracellular route is responsible for the decrease in permeability with age. However, the 

largest drop in permeability index occurred between EIS and P10 when there was little 

change in the tight-junctional cleft index. Moreover, when HRP was visualised under 

the electron microscope, they could find no evidence of a paracellular route even at the 

earliest age studied. Delorme et al. (1970) found that there was free passage of HRP out 

of the telencephalatic vessels up to E 10 in the chick but later in development the 

paracellular route for HRP seemed to be blocked as a result of the formation of tight-

junctions of mature appearance. This is somewhat in disagreement with a later study by 

Wakai and Hirokawa (1978) which reported that the blood-brain barrier to HRP is not 

fully developed until E15 in the chick. As pointed out by Wakai and Hirokawa (1978) 

the discrepancy between these two studies may be due to the differences in the amount 

of HRP injected. As will be discussed below, the study of Wakai and Hirokawa (1978) 

has to be questioned in relation to the rather high quantity of HRP that was injected into 

the chick embryos. It is not clear from the description by Delorme et al. (1970) what 

quantity and volumes were injected into the embryos. 

The two most popular explanations for the higher permeability across the developing 

brain endothelium have been a higher paracellular permeability or an augmented 

vesicular transport across these cells in development. Mollgard and Saunders (1975) 

suggested an alternative explanation in that the higher transfer of proteins during 

development could be due to transport in the endoplasmic reticulum of endothelial cells 

but did not further investigate these structures. As discussed later a similar transporting 

system has also been suggested to be developmentally regulated at the blood-CSF 

barrier interface. Lossinsky et al. (1986) found that both HRP and ferritin were stopped 

by the endothelial tight-junctions, but were found in tubulo-canalicular structures inside 
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the endothelial cells in neonatal mice. This transporting system was not found in adult 

mice suggesting that transport in these structures during development could be 

responsible for the apparent higher permeability of developing brain vessels. 

II. The blood-CSF barrier 

The blood-CSF barrier in the developing brain has probably been characterised better 

than any other of the blood-CNS interfaces. A primitive ventricular system is first 

formed when the neural tube is closed and fluid is trapped within the central canal. 

Interestingly this closure is associated with a subsequent increase in the intraventricular 

fluid pressure and coincides with an onset of brain enlargement. That the ventricular 

system might provide an essential driving force for normal brain expansion and 

morphogenesis was demonstrated by Desmond and Jacobson (1977) and Desmond 

(1985). These two studies showed that intubation of the embryonic ventricular system 

in the chick, that lowers the CSF pressure, resulted in less tissue volume in all parts of 

the CNS and only about 50% of the normal cell number in the brain. That the pressure 

and composition of the ventricular fluid is important for brain development raises 

interesting questions about developmentally regulated changes at both the blood-CSF 

barrier and the CSF-brain barrier, since these two barriers control the composition of 

this fluid. At the time of neural tube closure, the choroid plexus has not yet formed, so a 

blood-CSF barrier as such does not exist. Some other tissue presumably forms the fluid 

inside the expanding ventricular system, and this is believed to be the neural tissue itself 

(Catala, 1998). The choroidal epithelial cells arise from the neural tube whereas the 

more central structures of the choroid plexus form from the paraxial mesenchyme 

(Wilting and Christ, 1989). The different choroid plexuses appear in the order of 4th, 

lateral, and last the 3rd ventricular plexus in all mammalian species studied (Catala, 

1998). The 4th ventricular plexus appears at E13 in both rat and mouse, at E5-6 in 

chick, at E24 in sheep, and during week 7 in humans (Catala, 1998), so this is the first 
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time a proper blood-CSF barrier can be considered. An important point to note is that 

the choroid plexus is much larger relative to brain tissue in the developing than in the 

adult animal (Johanson, 1995). Therefore it is possible that the choroid plexus plays an 

important role in providing nutrition for the brain during development (Johanson, 

1999). 

Junctions between the epithelial cells of the choroid plexus, that resemble the zonulae 

occludentes in the brain endothelium, have been shown to be present very early during 

development in mice (Zaki, 1981), rats (Dermietzel et al., 1977), sheep (Mollgard and 

Saunders, 1975; Mollgard et al., 1979), rabbits (Tennyson and Appas, 1968), humans 

(Tennyson and Appas, 1968; Bohr and 1■40llgard, 1974), and chicks (Delorme, 1972 as 

cited by Mollgard and Saunders, 1986). Changes in epithelial tight-junction complexity 

during development have been studied in the rat by Tauc et al. (1984). They showed 

that as early as E 14 the junctions are structurally similar to those in the mature animal 

forming continuous belts around the epithelial cells. This study also investigated the 

localisation of HRP in the choroid plexus after intravenous injections. Similar to the 

adult choroidal vasculature, HRP easily leaked out of the vessels to reach the basolateral 

membrane of the epithelial cells and into the intercellular space but appeared to be 

stopped at the apical tight-junctions as early as E14. A similar study by Lu et al. (1993) 

showed that the tight-junctions of 1-day old rats impeded the intercellular flow of HRP 

and suggested that the transcellular route for HRP was in vesicles at this age. However, 

since only 1-day old rats were studied, no comparisons could be made with other 

developmental ages. Freeze-fracture studies on sheep embryos have shown that 

complex tight-junctions are present as early as the E30 (Mollgard and Saunders, 1975) 

and that the minimum number of strands and junctional depth of the tight-junctions only 

changed to a minor extent between E40 and E125 (Mollgard et al., 1976). Further 

studies in sheep fetuses by Mollgard et al. (1979) using an improved freeze-fracture 

technique also found no evidence for discontinuous strands or a change in the 
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proportion of complex strands between E30 and E125 (sheep are born around E150). 

The blood-CSF barrier of the chick has also been extensively studied during 

development. Wakai and Hirokawa (1981) reported that a proper functional barrier to 

HRP is established at E10. This study showed that HRP injected intravenously 

penetrated the tight-junctions of the choroidal epithelial cells freely until E8, was 

blocked by most junctions at E9, but was never found to penetrate the junctions at E10. 

Furthermore, HRP was never found to be transported in vesicles from blood into the 

CSF. A similar study by Bertossi et al. (1988) showed comparable results except that 

the timing of the apparent junction tightening was slightly later. At ER) HRP appeared 

to be stopped by most of the tight-junctions but a few still seemed to be leaky and at 

EIS HRP never penetrated the junctions. This study also found little vesicular transport 

of HRP in the blood-CSF direction, but after an intraventricular injection, HRP was 

taken up in vesicles and was actively endocytosed and degraded in the epithelial cells. 

They concluded that at EIS the barrier to protein is functionally and structurally very 

similar to the adult. As described below in more detail, the studies by Wakai and 

Hirokawa (1981) and Bertossi, et al. (1988) claiming a poorly developed barrier early in 

development can be questioned in regard to the physiological state of embryos as a 

result of the large volumes and high concentrations of solutions that were injected. 

The concentration of proteins in CSF reaches a peak early in development, thereafter it 

gradually decreases with age (Saunders and Dziegielewska, 1997). This generally 

occurs during fetal development in eutherian mammals reaching a total protein 

concentration that is 10-20 times the adult level. This has been interpreted by some 

(Adinolfi, 1985) as a reflection of immature barriers, but with further studies it has 

become clear that this is probably not the case (Dziegielewska et al., 1991; Habgood et 

al., 1992). If the reduced permeability of proteins with age were a reflection of tight-

junction development between the epithelial cells, the structure of the tight-junctions 

would be expected to change. The reported minor changes in tight-junction complexity 
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during development (Mollgard et al., 1976) are unlikely to account for the dramatic 

changes in permeability of proteins that have been reported (Dziegielewska et al., 

1980). When endogenous albumin, exogenous albumin from other species, and 

chemically modified derivates of albumin were injected into sheep fetuses, native 

protein reached the highest concentrations in the CSF. Similar studies in neonatal rats 

(Habgood et al., 1992) and opossums (Knott et al., 1997) found similar results. Thus a 

possible transporting system seemed to be able to distinguish between different kinds of 

albumin. It was also found that the greatest number of choroidal epithelial cells 

containing albumin coincided with the peak in CSF protein concentration in opossums 

(Knott et al., 1997). The authors suggested that the route for albumin is intracellular 

through the epithelial cells of the choroid plexus in a process that can distinguish 

between native and modified albumins. This selective transporting mechanism seems to 

only be present during early development since in the more mature brain there was no 

difference in the penetration between different species of albumin (Knott et al., 1997). 

Mollgard and Saunders (1977) investigated the tubulo-cisternal endoplasmic reticulum 

(TER) in the immature choroidal epithelial cells in sheep and found that this system had 

close contact with the cell membrane both at the basolateral and apical sides. In 

contrast, later in development the TER was separated from the cell membrane and the 

authors suggested the TER could constitute a transcellular pathway between blood and 

CSF for larger molecules such as albumin during early development. Later Balslev et al. 

(1997b) showed using EM immunocytochemistry that albumin can be found in the TER 

of the immature choroid plexus in sheep after administering it into the blood. They 

found no albumin passing the interepithelial cleft and proposed that the TER is the main 

route of transfer for albumin from blood into CSF in the immature animal. 
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III. The CSF-brain barrier 

Brightman and Reese (1969) showed that in adult animals, solutes such as HRP diffuse 

unhindered from the CSF into the extracellular fluid (ECF) of the brain. However, when 

Fossan et al. (1985) perfused HRP through the fetal sheep ventricles at E60 it did not 

penetrate into the brain but did so later in fetal development at E125. This restricted 

entry into the brain at early stages of development was suggested to be accounted for by 

novel type of junctions found between cells in the neuroependyma of the ventricular 

zone (Mollgard et al., 1987). These single strand junctions differed in their freeze-

fracture appearance from tight-junctions in that they produced wider ridges and E-face 

grooves filled with particles, and were orientated perpendicular to the CSF surface 

rather than in a circumferential belt. These junctions were believed to be an 

uncharacterised type of junction and not simply precursors of gap-junctions, and were 

named strap-junctions. These strap-junctions were only present in early stages of sheep 

brain development (eg. E20-E60), and later, as the neuroependyma is replaced by an 

ependyma with adult characteristics, the cells are connected with gap-junctions 

exhibiting the normal 20 nm intercellular cleft. This novel barrier was postulated by the 

authors to contribute to creating a high osmotic pressure gradient between the CSF 

(containing a high protein concentration) and the ECF of the brain (containing a low 

protein concentration). The physiological importance of this barrier has therefore been 

hypothesised to provide an essential force for normal brain growth and development 

(Mollgard et al., 1987). A similar CSF-brain barrier has been reported in the 

neuroependyma of a developing marsupial species, the Australian tamar wallaby 

(Dziegielewska et al., 1988). Ultrastructurally the neuroependymal cells had the same 

strap-junctions in between them as reported for sheep (Mollgard et al., 1987). When 

HRP was administered intravenously into the developing wallaby, it was found in the 

CSF but the strap-junctions in the neuroependyma appeared to stop HRP from 

penetrating from the CSF into the extra cellular fluid (ECF) of the brain. The 
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neuroependyma was not studied in later stages of development in the wallaby so 

whether the strap-junctions disappear later in development, similar to the sheep, is not 

known. 

Similarly to the interior barrier between CSF and brain, Fossan et al. (1985) found that 

the outer pial surface of the brain was less permeable to HRP in fetal sheep at E60 than 

later in gestation (E 125). This interface has also has also been shown to be impermeable 

to endogenous albumin at E60 in sheep (Balslev et al., 1997a). Fetal rats have been 

shown to have complex junctions (non tight-junctional type) between the glial end feet 

from around E14 and these were suggested to be a supplementary barrier for 

macromolecules between the subarachnoid space and the ECF of brain in early 

development (Balslev et al., 1997b). These junctions might be precursors of gap 

junctions, which in their fetal form exclude proteins from the ECF. 

IV. The meningeal barrier 

The origin of the mammalian meninges is still not clear. This is because dye and marker 

studies carried out in order to follow the destiny of specific cells has in mammals 

proven complicated, since the tissue is formed by several embryonic layers. However, 

the early differentiation of this tissue has been examined in birds and amphibians. In 

amphibians the dura has mostly a mesodermal origin whereas the leptomeninges are 

formed from the neural crest. In the chick, the spinal meninges have a mesodermal 

origin but the cephalic meninges seem to have a more complex origin in birds (Catala, 

1998). It is uncertain, however, if the composite structure of the mammalian meninges 

is similar to that of amphibians and birds (Catala, 1998), and they have been suggested 

to have both neuroectodermal and extra-neural origins (Weston, 1970; Angelov and 

Vasilev, 1989). 
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Balslev et al. (1997b) showed that the blood vessels in the pia and subarachnoid space 

are fenestrated early in development of the rat (E 12) but soon become non-fenestrated 

vessels exhibiting tight-junctions between endothelial cells (E14-E16). This observation 

is contradictory to a study by Stewart and Hayakawa (1994) who reported that pial 

vessels are fenestrated as late as E 17 in the rat. Only one study seems that have 

investigated the tight-junctions in the outer arachnoid membrane, that are thought to 

make up the external barrier to the CSF in the subarachnoid space, during development. 

Rascher and Wolburg (1997) quantitated the changes in the complexity of the tight-

junctional network between the arachnoid cells in rats and chickens during development 

using freeze-fracture techniques. The complexity index was calculated as the total 

length of the tight-junctional strand divided by the total number of branching points. 

They found a successive increase in arachnoid tight-junction complexity between El0 

and adulthood in chicks, whereas the complexity index decreased slightly between P2 

and adulthood in the rat. In the adults, the complexity index was approximately double 

in the chicks compared to that of the rat. However, as pointed out by the authors, there 

is a lack of permeability studies of this specific barrier during development, so 

structural changes cannot be compared with permeability studies in order to deduce 

whether they are of significance for the functional development of this barrier. 

Structural aspects of the brain barriers in comparison to permeability 
of lipid insoluble molecules during development 

Even though the exact timing of the maturation of the brain barriers is somewhat 

unclear, the structural basis for these barriers seems to be well established by birth in all 

eutherian mammals studied. In mouse and sheep, the first blood vessels that invade the 

brain seem to possess structural and functional barrier characteristics (Mollgard and 

Saunders, 1975; Bauer et al., 1993; Xu and Ling, 1994; Bauer et al., 1995). In the sheep, 
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the junctional morphology can be compared with proper quantitative permeability 

studies for a range of differently sized lipid insoluble markers. The steady-state 

concentrations of various lipid insoluble molecules have been shown to significantly 

decrease during development in sheep fetuses (Evans et al., 1974; Dziegielewska et al., 

1979). These studies showed that between the E60 and the E125 the steady-state 

CSF/plasma concentration for sucrose and inulin fell from 23% to 7% and 11% to 3%, 

respectively. As pointed out by the authors, this reduction in steady-state ratios could be 

explained by other factors than a decrease in barrier permeability, such as an increase in 

the CSF turnover. The continuous production of CSF flushes out solutes in the CSF and 

hinders them from equilibrating with the concentration in the blood; this effect has been 

named the CSF sink (Oldendorf and Davson, 1967; Davson and Segal, 1969) and an 

increase in CSF sink could account for the age-related decline in steady-state ratios. 

Evans et al. (1974) reported a large increase in the CSF secretion rate between E60 and 

adulthood in the sheep (2.8 to 118 pl/min). However, when the secretion rate is related 

to the total CSF volume (which also increases during development) and is calculated as 

a turnover rate of CSF per minute, this only increased from 0.62% at the E60 to 0.83% 

in the adult. Furthermore, by dividing the CSF turnover rate by the brain mass at each 

age, the CSF sink for the brain was estimated; this was shown to significantly decrease 

during development from 0.32% at E60 to 0.01% min' g l  brain weight in the adult 

sheep. Evans (1974) therefore proposed that it seems unlikely that the decreases in 

steady-state ratios can be explained by an increase in CSF sink, but rather by a decrease 

in the intrinsic permeability of the brain barriers. Structural investigations of the fetal 

tight-junctions of both endothelial and epithelial cells have reported that they closely 

resemble those of the mature sheep (Mollgard and Saunders, 1975; Mollgard et al., 

1979). It therefore seems that there is a significant decrease in barrier permeability long 

after mature tight-junctions are present. Changes in permeability of lipid insoluble 

molecules have not been studied in the mouse so similar comparisons cannot be made. 

In the rat, the exact onset of the structural characteristics for the brain barriers is still 
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disputed, however, nearly all studies show that the barriers are structurally mature at 

birth (Kniesel et al., 1996). However, the steady-state concentration of small lipid 

insoluble molecules have been shown to decrease significantly after birth (Ferguson and 

Woodbury, 1969; Habgood et al., 1993) when the structure of the tight-junction has 

been reported to be indistinguishable from the adult rat (Kniesel et al., 1996). Ferguson 

and Woodbury (1969) explained the falling ratios with age by an increase in the CSF 

sink, but did not present experimental evidence for this statement. The CSF turnover 

rate in rats as summarised by Saunders (1992) showed that this remained rather stable 

between P3 and P21-P23, and that the sink effect on the brain decreased over the same 

developmental time. Furthermore, Habgood et al. (1993) argued that if there was an 

increase in CSF sink with age this would reduce the time to approach steady-state. 

However, since this did not change between P2 and adulthood this was ruled out as an 

explanation for the age related decrease in ratios. It therefore seems that the 

permeability changes to small lipid insoluble molecules during development in sheep 

and rats is not a reflection of either maturation of the tight-junctions or an increase in 

CSF sink, but by other factors that are still to be identified. 

Difficulties in correlating barrier morphology with its function during 
development 

Possible explanations for the difficulty of correlating physiological permeability of inert 

lipid insoluble molecules (or the penetration of tracers) with structural studies of the 

barriers during development are discussed below. There is an obvious lack of good 

quantitative physiological studies of barrier permeability during development. In rats 

(Ferguson and Woodbury, 1969; Habgood et al., 1993) and sheep (Dziegielewska et al., 

1979) the permeability to various sized lipid insoluble markers has been extensively 

investigated. However, these types of studies are lacking in other species such as the 

mouse and chick in which the ultrastructure of the barriers have been studied 
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comprehensively (Doolin and Birge, 1969; Zalci, 1981; Stewart and Hayakawa, 1987; 

Bauer et al., 1993; Rascher and Wolburg, 1997). In these species, the permeability has 

only been studied by histological visualisation of some proteins, including HRP, in 

brain tissue (Delorme et al., 1970; Wakai and Hirokawa, 1978; Lossinsky et al., 1986; 

Roncali et al., 1986; Stewart and Hayakawa, 1987; Bertossi et al., 1988). The lack of 

physiological permeability studies in several species has lead to the confusion in the 

field such that comparisons have been made across species, but it is uncertain if those 

kind of comparisons are appropriate. Added confusion has also been brought about by 

the fact that birth is not a comparative developmental stage across species but 

appropriate comparisons have to be based on knowledge about general and specific 

stages of brain development (Stonestreet et al., 1996). 

Ultrastructural studies of cells at the barrier interfaces can only examine a very small 

proportion of all the cells even though a large amount of work is undertaken. This is 

especially true for thin-section electron microscopy, whereas freeze-fracture studies can 

examine much larger areas of tissue at one time. Freeze-fracture is the only practical 

way to establish that tight-junctions are continuous all around the cell or if they have 

gaps at certain points. Just to follow one junction in serial thin-sections around the cell 

would involve an enormous amount of sectioning and examination. This has lead to the 

problem that ultrastructural studies of the endothelium have only been carried out in 

certain parts of the brain, or studies have focused on the endothelium from a particular 

type of blood vessel. However, when a permeability marker is injected into the blood, 

the brain barrier permeability determined will be related to the permeability of all blood 

vessels in the brain. The problem is to know whether the blood vessels that have been 

examined ultrastructurally are representative for all vessels. Because of technical 

problems it has sometimes only been possible to study vessels that are easy to access, 

such as the pial vessels on the surface of the brain. 
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When the ultrastructure of tissue is studied from different developmental ages, the 

choice of fixation technique can also affect the outcome. Most studies have tended to 

use the same fixation techniques for all ages, but this is not always appropriate since it 

does not give satisfactory preservation of tissue. For instance, most fetal tissue is small 

and fragile and it is therefore not always possible to fix by perfusion, whereas adult 

tissue often requires perfusion fixation in order to preserve tissue adequately. Fixation is 

an important consideration because it can affect cell volumes and thus the appearance of 

cell junctions. Another aspect of studies with fetal animals is that extra care has to be 

taken in order to minimise physiological interference during experiments. This is 

especially important when markers are injected systemically or intraventricularly. If the 

volume injected is not carefully considered in relation to the volume of the compartment 

that it is injected into, this can have disastrous effects on the fetus. Equally important is 

to consider the changes in osmotic balance that the injection solution might produce in 

the fetus. As pointed out by Saunders (1992) several developmental studies have 

injected HRP in such high concentrations that it would have increased the total protein 

concentration in the blood by up to 2-3 times. For example, Wakai and Hirokawa (1978, 

1981) injected HRP intravenously into chick embryos in a concentration of about 50-

100 mg/ml. The injection volume was one tenth of the total blood volume, which would 

have resulted in approximately doubling the protein concentration in the blood. Other 

examples are the studies by Roncali et al. (1986) and Bertossi et al. (1988) in which 

HRP was injected intracardially into chick embryos aged between El° and E21 in a 

concentration of 0.3 mg per gram body weight in 0.1-0.3 ml saline solutions. A chick 

embryo at E 10 weighs approximately 2 grams (based on weights given by Davis and 

Garrison, 1968 for a chick embryo at Hamburger and Hamilton stage 36) and can 

therefore be expected to have a blood volume of about 0.2 ml. Such an injection would 

increase the systemic volume by about 50% and the protein concentration by about 30% 

in an embryo at E 10 (plasma protein concentration is 7.1 mg/ml at El0 as reported by 
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Birge et al. (1974). Furthermore, in the same study HRP was also injected 

intraventricularly in the same concentration but in a slightly smaller volume (0.05-0.1 

m1). To the author's knowledge nobody has estimated the CSF volume in a 10-day old 

chick but it can be expected to be only a fraction of the total blood volume. It is 

therefore difficult to imagine that the brain barriers could remain intact after adding 

such a large volume of fluid into the ventricular system. Yet another example is the 

study by Angelov (1990b) in which 1 and 10 mg of HRP were injected into the 

arachnoid space of adult rats and cats, respectively. This amount can be estimated to be 

10 times the total protein content in the CSF and would thus have significantly changed 

the osmotic balance in the brain. 

The permeability of the brain barriers has been extensively studied by the penetration of 

markers which can be visualised in tissue after fixation. The ideal marker should be 

physiologically inert, homogenous in particle size and structure, immobilised in its real 

position by fixation, and directly or indirectly capable of being visualised at low 

concentrations in the electron microscope. It would also be very useful if it were 

available in different molecular sizes and easy to quantify. The first tracer used for 

electron microscopy was horseradish peroxidase (HRP, mw 40 000), and it is still 

widely used as a marker for barrier integrity. However, it is not known if it is a good 

representative of other large lipid insoluble molecules such as plasma proteins. It is also 

a disadvantage that it is an enzymatic reaction product that is electron dense enough to 

be visualised under the electron microscope rather than the actual protein. Thus there 

are likely to be problems of interpretation due to diffusion of the reaction product. Other 

larger tracers suitable for electron microscopy such as ferritin (mw 900 000) and 

cytochrome c (mw 12 000) have been used but there has been a lack of low molecular 

weight tracers. Lanthanum, a very small electron dense particle, has been used in fixed 

tissue, but because of toxicity it is not suitable in vivo. Small heme-peptides, called 

microperoxidases, were introduced in the early 1970's (Feder, 1971), but they were later 
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found to bind to plasma proteins. The use of low molecular markers is essential when 

investigating small intercellular channels or cellular compartments. With the recent 

introduction of several smaller lipid insoluble tracers (such as the biotin-dextrans), the 

in vivo penetration of such molecules can be investigated in order to find out the route 

of transfer that molecules take across the brain barriers and how this compares to that of 

larger molecules. 

Studies that have tried to find correlations between morphology and physiology have 

concentrated on the ultrastructure of the paracellular route, namely the tight-junctions, 

as the structural determinant of barrier permeability. Claude and Goodenough (1973) 

correlated the transepithelial resistance of epithelia from different parts of the body of 

various species with the tight-junctional morphology. High resistance epithelia, such as 

the urinary bladder, showed high strand numbers and junctional depth whereas low 

resistance epithelia, such as the proximal tubule, had few strands and had little 

junctional depth. From this study it therefore appears that the morphology of the tight-

junctions does determine the electrical 'tightness' of a cell layer. As discussed above, 

however, tight-junctional structure and brain barrier permeability of lipid insoluble 

molecules do not always correlate well in the developing animal. Moreover, Martinez-

Palomo and Erlij (1975) used a hypertonic solution in order to make the intestines of 

rabbits more permeable. This treatment resulted in an increase in the permeability of the 

intestines, however, they could not find any change in the tight-junctional network in 

freeze-fracture replicas. It therefore seems that other aspects to a high degree also 

determine the permeability of cell layers such as other cell-cell junctions, transcellular 

routes, or other, still un-characterised attributes. There is also the possibility that the 

resolution of freeze-fracturing and thin-section electron microscopy, used to study tight-

junctional structure is not high enough to see small molecular differences that may 

underlie developmental changes in cell junction permeability. The molecular structure 

of tight-junctions is still not clear. Several tight-junction associated proteins have been 
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identified including ZO-1, ZO-2, ZO-3, 7H6, several claudins, cingulin, and occludin 

(Kniesel and Wolburg, 2000). Most attention has been given to the transmembrane 

protein occludin and some studies have found correlations between occludin appearance 

in postnatal rat development and the maturation of the blood-brain barrier (Hirase et al., 

1997 as cited by Rubin and Staddon, 1999). Several mutant occludin epithelial cell lines 

and also mice with null mutations have been developed in order to elucidate the role of 

occludin as a tight-junctional protein. Mutant cell lines have provided evidence both for 

and against occludin as a crucial transmembrane protein of the tight-junctions (Saitou et 

al., 1998; Bamforth et al., 1999). Mice lacking the occludin gene developed abnormally 

with retardation of several organs, however, barrier morphology and function in the 

intestine appeared normal (Saitou et al., 2000). Because of these and other experiments 

it is now believed that occludin is not the pivotal tight-junctional protein but only one of 

several proteins that can form strand structures, and attention has been switched to the 

family of claudins (Goodenough, 1999). It is now known that the tight-junctions are not 

as static as was first believed and that the junctional proteins probably change during 

CNS disorder such as multiple sclerosis (Bolton et al., 1998). Recently it has been 

shown that tyrosine phosphorylation of the junctional proteins can dramatically change 

the permeability of endothelial and epithelial cell cultures, however, the results are 

contradictory (Rubin and Staddon, 1999; Takeda and Tsukita, 1995 as cited by Chen et 

al., 2000; Chen et al., 2000). Other factors that seem to be able to influence the structure 

and function of the tight-junctions are cAMP, Ca2+, and GTPase levels (Kniesel and 

Wolburg, 2000). Maybe the molecular assembly and modulation of the tight-junctions 

are critical for understanding the paracellular permeability changes of the barriers 

during development. 

The circumventricular organs 

As the name implies, these tissues are situated around the ventricles of the brain and 
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include area postrema, median eminence, neurohypophysis, the pineal gland, the 

choroid plexus, and the subfornical organ (Prescott and Brightman, 1998). They are 

characterised by a lack of a blood-brain barrier and seem more adapted for exchange of 

solutes since they have fenestrated blood vessels, increased capillary density, thinner 

endothelium and a high level of vesicular transport (Prescott and Brightman, 1998). All 

these organs are believed to act as portals into or out of the brain via a signalling system 

which often includes hormones. The penetration of solutes from the circumventricular 

organs (CVO) to other parts of the brain is somewhat unclear. However, the ependymal 

cells overlying the CVO seem to possess tight-junctions that have been shown to stop 

the transfer of HRP (Madsen and Mollgard, 1979; Prescott and Brightman, 1998). Thus 

it is unlikely that the CVO act as routes of entry for the brain as a whole. 

Characteristics of barrier selectivity 

Influence of lipid solubility and molecular size 

The main determinant of a molecule's ability to enter the CNS is its lipid solubility 

(Oldendorf, 1974; Levin, 1980). Lipid solubility is important since it determines how 

easily a molecule can pass through cell membranes and to what extent it can form 

electrostatic bonds with water molecules. Consequently, the more polar groups a 

compound contains, the greater number of bonds it can form with water molecules 

which will effectively retain the compound in the aqueous phase (blood). In order for a 

compound to leave the aqueous environment (blood) and enter into the non-polar 

environment of the cell membranes, it needs to break these electrostatic bonds with 

water molecules. Lipid-solubility of a substance can easily be determined in vitro, by its 

partitioning between a non-polar and a polar phase. The partition coefficient obtained 

between octanol and water (LogPoct) has been widely used as a predictor of in vivo brain 

barrier permeability (Rapoport and Levitan, 1974). However, LogP oct  values have been 

found to be a fairly poor predictor of a molecule's in vivo steady-state concentration in 
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the CNS or brain barrier permeability. For instance, compounds with similar LogPoo 

values can, in vivo, vary by two to three orders of a magnitude in their permeability 

across the brain barriers (Levin, 1980). A possible reason why Log oct  has not always 

been a good predictor of brain uptake may be that the partitioning coefficients are 

greatly affected by the experimental conditions under which they are measured. LogF'oct 

measurements are attempted to be made under conditions so that all molecules are in 

their neutral form. However, the conditions of these measurements may be very 

different from those in vivo. Temperature and pH will directly affect the proportion of a 

compound in ionised form and thus will affect the rate of uptake into the brain. 

It might be expected that smaller molecules would penetrate the brain barriers more 

easily than larger molecules, however, this does not always appear to be the case. When 

the uptake into CSF is measured of compounds with low and similar lipid-solubility, 

this have shown that there is a strong inverse correlation between molecular size and 

steady-state concentrations in the CSF (Felgenhauer, 1974). The rate of entry in to the 

CNS for these compounds appears to be determined by the diffusion coefficient and 

since this is inversely related to molecular size, smaller molecules penetrate faster. 

However, if a much wider range of compounds is examined there is no correlation 

between brain-barrier permeability and molecular size. This suggests that molecular size 

per se does not have a major influence on blood-brain barrier permeability compared 

with lipid solubility. Furthermore, if structurally related compounds are compared, it 

appears that increasing the size of a molecule can in fact both increase its lipid solubility 

and entry into the CNS (Habgood et al., 1999). For instance, adding extra non-polar 

methyl groups to the carbon chain of methyl alcohol (to make ethanol, propanol, 

butanol etc) will increase the size, however, each extra methyl group will also make the 

molecule more lipid soluble (Habgood et al., 2000). 
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Enzymatic barriers 

There are also specific brain barrier mechanisms that are capable of controlling the 

entry of substances that are lipid soluble and thus could be expected to have a high rate 

of entry into the brain. These barrier mechanisms include enzymes that degrade 

substances as they cross the barriers and transport systems that actively transport the 

molecules back into the circulation (see below). The degradation of neuroactive 

substances such as L-dopa and tryptophan (precursors of dopamine and serotonin) by 

decarboxylases prevents them from accumulating in the brain to large extent. In clinical 

treatment of Parkinson's syndrome, it is necessary to saturate these enzymatic systems 

and this can be accomplished by administering large doses or by co-administration of a 

decarboxylase inhibitor. There are also several peptidases and angiotensin-converting 

enzymes present in the brain endothelial cells (Johansson, 1997). 

Active transport out of brain 

The concentration of a molecule in the brain is affected by both its influx into and efflux 

out of the brain. Many essential molecules for normal brain function such as glucose 

and amino acids would have a very slow penetration into the brain if it was not for 

active transport into the brain. These systems will be discussed in more detail later on in 

this Chapter. There are also several compounds, such as the drugs vinblastine and 

cyclosporine A, that have been found to have much slower uptake into the brain than 

could be expected from their lipid-solubility. The explanation for this was first found in 

a family of multi-drug resistant phospho-glycoproteins (Pgp) found in the vasculature of 

the brain and later also in a multidrug resistant protein (MRP) which has been found in 

the choroid plexus. These proteins are believed to function as a defence of the CNS 

against certain lipid soluble molecules. They are often highly expressed in brain 

tumours leading to reduced drug accumulation, and are therefore responsible for the 

clinical ineffectiveness of several anti-tumour drugs (Borst and Schinkel, 1998). 
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Tumours can also build up resistance to certain drugs because the exposure of a drug 

may lead to increased expression of both Pgp and MRP. The mechanism by which these 

proteins exclude some drugs from the brain is still not clear but is known to be energy 

dependant. Pgp and MRP both are have membrane spanning domains and can transport 

drugs from the cytosol of the cell or from the cell membrane itself to the external 

(blood) side of the membrane. These two proteins only share about 15% amino acid 

homology and substrates for them vary a great deal (Lautier et al., 1996). One way to 

overcome Pgp related drug resistance is to co-administer a known substrate or an 

inhibitor of Pgp function, leading to an increase in drug delivery (Borst and Schinkel, 

1998). However, because of the lack of good substrates for MRP, this approach has not 

yet been effective against MRP dependant drug resistance (Lautier et al., 1996). 

The importance of studying the brain barriers 

The knowledge about brain barrier selectivity is vitally important for estimating the 

entry of centrally acting drugs into the CNS. Equally important is to be able to estimate 

the CNS uptake of peripherally acting drugs with neurotoxic side effects. Therefore, 

accurate modelling of a drug's entry into the CNS could be very useful in predicting the 

prospective therapeutic success of a drug. However, at present it does not seem that 

drug companies have appreciated the full potential of understanding brain barrier 

selectivity. According to Pardridge (1999) more than 95% of all drugs are denied access 

to the brain but less than 1% of drug development effort is committed to improving 

brain delivery. Instead, more than 99% of all the effort goes to the discovery of new 

drugs. This is especially extraordinary since drugs against CNS disorders are one of the 

fastest growing areas in therapeutics. Some strategies to improve drug delivery have 

involved the utilisation of endogenous transporting systems, osmotic opening of the 

brain barriers, and the lipidisation of drugs. These have all been successful to a limited 

extent but there is still a huge scope for improvement, and also an enormous potential 
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benefit for new more specific CNS targeting drugs. Since some of the barrier 

mechanisms in the developing brain appears to be different, it is possible that 

knowledge of barrier mechanisms of the immature brain will lead to the development of 

new drug targeting strategies for the brain. 

Many pollutants, food additives and drugs in the mother's blood circulation may be 

harmful to the fetus if they are able to cross the human placenta. In the human placenta, 

the mother and fetal blood are only separated by a single layer of transfer-limiting cells 

(syncytiotrophoblasts). Compared with many other mammals, the human placenta is 

more permeable to small lipid insoluble molecules (Bain et al., 1988; Schneider, 1991) 

and is also believed to be a rather weak barrier to most drugs (Audus, 1999). It is often a 

challenge for clinicians to prescribe drugs for pregnant women because there is very 

limited knowledge of how these drugs may affect the unborn child. In addition, women 

often use drugs before they realise they are pregnant, during the first crucial time of 

pregnancy when the organs develop (Gilstrap, 1997). The problem might be even more 

challenging when the pregnant mother suffers from a chronic medical disorder such as 

asthma, diabetes, hypertension or various cardiac diseases, and the intake of a certain 

drug cannot be avoided not to jeopardise the health of the mother (Rayburn and Lavin, 

1986). Even though the brain barriers seem to form early in development, as have been 

described above, the barrier mechanisms in the immature brain are different from the 

adult. Therefore is it not always possible to know how or to what extent foreign 

substances can access the developing brain. This is especially a concern since the 

developing CNS may be particularly sensitive to exogenous material. The knowledge 

about fetal CNS barrier function is not only important when trying to predict possible 

adverse effects of substances on the unborn child but could also be of interest for fetal 

drug therapy. With better understanding of drug uptake into the fetal circulation and 

drug penetration into the developing CNS, this could be a growing field of therapy. 
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Possible routes of entry for lipid insoluble molecules 

into the CNS 

Paracellular pathway 

In vessels outside the brain, lipid insoluble molecules are believed to be transferred 

across the endothelium by filtration through pores. These pores have been suggested to 

be the intercellular cleft between endothelial cells with a radius of 40-70 A. Karnovslcy 

(1967) showed that, at least for HRP, the endothelial cleft in heart and skeletal muscle is 

indeed a functional pathway across the endothelium. However, it has been difficult to 

explain how larger lipid insoluble molecules cross the endothelium since they would be 

too large for the normal interendothelial cleft. One hypothesis has been that they cross 

through pores which are considerably larger (200-300 A) but the structural basis for 

these larger pores is still not known. The reason these large pores have never been 

localised has been proposed to be that they are rare in the vasculature, or if ever found, 

may have been believed to be artefacts (Rippe and Haraldsson, 1987). In the brain, 

however, the paracellular route is severely restricted by the continuous tight-junctions 

between endothelial cells. As has been described above it seems likely that these 

effectively stop the penetration of most proteins from blood into brain. Whether smaller 

molecules can penetrate the tight-junctions has still not been established, but this has 

often been considered to be the case (Goodenough, 1999). 

Transcellular pathways 

I. Active transport 

Normal functioning of the brain requires a higher rate of delivery of certain compounds 

than can be achieved by passive transfer. For instance the brain is in constant need of D- 
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glucose, which is delivered by the blood as an energy source for all the cells. 

Transporters for D-glucose within the brain were first described in the middle of the 

1980s and today six functional transport proteins have been identified, all related 

structurally and with similar function but expressed differently in various tissue 

(Drewes, 1998). Other molecules that are dependant on active transport into the brain 

are amino acids, peptides and ions. Amino acids are transferred into the CNS by several 

transporting systems that do not seem to be specific for one amino acid but prefer amino 

acids of particular size and charge (Smith and Stoll, 1998). Ions are either positively or 

negatively charged and would therefore have very low brain barrier permeability if not 

transported into the brain actively. They are transported by ATPases or antiporters with 

different transporting mechanisms at the luminal and abluminal membrane both in the 

endothelial cells of the brain capillaries and in the epithelial cells of the choroid plexus 

(Frelin and Vigne, 1998; Speake et al., 2001). Whether the movement of a specific ion 

in/out of the barrier cells is important for transcellular transport, or the need for the 

endothelial and epithelial cells to keep an ion gradient between themselves and the 

surroundings, is difficult to determine. At least for the choroid plexus, which is known 

to play a major role in CSF secretion, the mechanism by which CSF is produced is 

dependant on the existence of an ion gradient between the epithelial cell and blood/CSF 

(Johanson, 1995). 

II. Vesicular transport 

The plasma membrane can invaginate at both the luminal and abluminal side giving off 

membrane coated spheres called vesicles that can travel across the cell in a process 

called trancytosis. In these vesicles any molecule can be engulfed as long it is smaller 

than the size of the vesicle. Under normal circumstances the vesicular transport in brain 

endothelia is low compared to other endothelia (Connell and Mercer, 1974; Stewart, 

2000), but has been shown to be higher during development (Xu and Ling, 1994). The 

transport in vesicles has been found to be polarised in both the choroidal epithelia and 

- 38 - 



Chapter 1: General Introduction 

brain endothelia with greater uptake from the luminal membrane (van Deurs et al., 

1978; Balin et al., 1986). How important vesicular transfer is in endothelia is still 

debatable but it is believed to be only important for larger lipid insoluble molecules, 

since the process is rather slow. Stewart (2000) only found a weak correlation between 

vesicular density and protein permeability in several endothelia throughout the body 

including the brain. The author suggested that protein transfer is more dependant on 

receptor-mediated trancytosis. Three different mechanisms of vesicular transcellular 

transport have been proposed (Nag, 1998). Firstly, the vesicles are suggested to bud at 

the luminal cell membrane, move across the cell and empty their contents at the 

opposite side of the cell by fusing with the abluminal cell membrane, or by a similar 

process in the reverse direction. The second hypothesis is that vesicles only move a 

short distance within the cell and then fuse with another vesicle mixing their interior 

contents and then separate again. Eventually a substance will reach the other side of the 

cell as observed by Clough and Michel (1981) with ferritin transport in frog 

endothelium. The third hypothesis is that a whole row of vesicles fuse together and 

thereby form an extracellular channel through the cell in which fluid can move in either 

direction. This has been demonstrated by Simionescu et al. (1975) in rat muscle 

capillaries and was also suggested by Clough and Michel (1981). To the author's 

knowledge such vesicular channels have never been observed within brain endothelium 

or choroid plexus epithelium. 

III. Transfer in other subcellular structures 

Mollgard and Saunders (1977) studied the choroid plexus of the immature sheep and 

reported that the endoplasmic reticulum (ER) during early fetal development is in close 

contact with both the basolateral and apical membranes of choroidal epithelial cells. The 

ER could directly be linked with the membrane via a tubulo-cisternal system or 

vesicles. It was suggested that this system could constitute a transcellular pathway, 

which seemed to be developmentally regulated since it was not present in late fetal 
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development. This pathway was later suggested to be the route by which albumin 

crosses the epithelial cells of the choroid plexus (Balslev et al., 1997a). The ER has also 

been suggested to transport protein in the endothelial cells of the brain (Mollgard and 

Saunders, 1975). This is in contrast to Balin and Broadwell (1988) who found HIRP in 

tubular structures in the epithelial cells after systemic administration but suggested that 

these structures are components of lysosomal or endosomal systems and are not 

involved in trancytosis of HRP. The authors opposed the view by Mollgard and 

Saunders (1975, 1977) that the ER could constitute a pathway through the choroidal 

epithelium or the cerebral endothelium. Similar tubular structures were proposed to 

form functional pathways through the brain barriers by Lossinslcy et al. (1983, 1986). 

These studies showed that in states of increased brain barrier permeability, HRP and 

ferritin were found in channel like structures in endothelial cells which the authors 

referred to as tubulo-canalicular structures. 

IIII. Absorptive-mediated transfer 

More recently it has been discovered that certain peptide sequences are rapidly 

internalised into cells. This phenomenon was first observed for transcription factors of 

the Drosophila (Derossi et al., 1998), but has also been found for protein domains of 

viruses (Schwarze et al., 1999). The mechanism of the internalisation of the peptide is 

not clear, but has been suggested to involve electrostatic attraction between positive 

amino acids in the peptide and negative lipid or sugar components in the cell membrane 

(Derossi et al., 1998). The membrane is thought to destabilise and produce inverted 

micelles so that the membrane lipids form a ring around the peptide that can travel 

across the membrane and release the peptide into the cytoplasm. The findings have led 

to the development of so-called Trojan peptides, which can deliver other peptides into 

the cell when they are linked to the Trojan peptide. For example, these peptides have 

been shown to increase the transport of the anticancer drug doxorubicin into the brain 

parenchyma (Rousselle et al., 2000). 
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A 	BCD 

Figure 1.2 

Schematic diagram representing possible pathways across endothelial (blood-

brain barrier) and epithelial cells (blood-CSF barrier) in the brain. A) Diffusion. 

Lipid soluble (non-polar) compounds can diffuse through cell membranes and 

enter the brain. B) Receptor-mediated trancytosis. Some larger proteins such 

as the iron transporter transferrin bind to specific receptors at the luminal side of 

the cell membrane and the protein-receptor complex is then endocytosed. C) 

Carrier-mediated trancytosis. The cell membrane at both the luminal and 

abluminal side contains transporters that facilitate the transport of molecules 

such as D-glucose, ions and amino acids. D) Adsorptive trancytosis. Certain 

small peptides with a positive moiety can interact with the negative cell 

membrane and is then internalised into the cell. E) Vesicular transport. Vesicles 

are produced by an invagination of the cell membrane and can contain large 

molecules. Vesicular transport has been suggested to work by either vesicles 

moving from one side the opposite side of the cell, or by shuffling of contents 

from one vesicle to the next inside the cell, or by several vesicles fusing and 

forming an extracellular channel through the cell. F) Paracellular route. Most of 

the intercellular cleft is wide enough to all through all but very large molecules; 

however, at the luminal side of the endothelial cells and at the abluminal side of 

epithelial cells a zonulae occludentes (zo) is present, which severely restrict this 

pathway. G) Channels in subcellular structures. Certain tubulo-canicular 

structures in endothelia, and endoplasmatic reticulum in epithelia have been 

proposed to form functional pathways through the cell. 
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Present study 

The present study was undertaken in order to understand the mechanisms of transfer for 

small lipid insoluble molecules across the brain barriers during development. This was 

investigated in an integrated approach which combined both quantitative physiological 

permeability studies and morphological tracer studies in the same species over a similar 

developmental period. This has the significant advantage over previous studies in that 

the results from both approaches are directly comparable. 

In the present experiments, the blood-CSF and blood-brain uptake in very young 

(postnatal day 6) to newly weaned (postnatal day 65) South-American opossums 

(Monodelphis domestica) were investigated for several small lipid insoluble 

compounds. This is the earliest stage of brain development that such studies have been 

carried out in any species. Just how the present study of the brain barriers compares 

with previous studies can be illustrated by comparing the age at which the choroid 

plexuses appear in other species with the opossum. In the rat, the 4th choroid plexus 

appears at E12, the lateral at E13-E14, and the 3rd at E16 (Chamberlain, 1973). In 

sheep, the choroid plexus appears in the 4th ventricle at E 18-21, in the lateral ventricles 

at E21-E24, and in the 3rd ventricle at E30-E36 (Jacobsen et al., 1983) (sheep are born 

around E150). The earliest age at which permeability studies with inulin and sucrose 

have been carried out in these species is E 18-P2 in rats (Ferguson and Woodbury, 1969; 

Habgood et al., 1993) and E40-E60 in fetal sheep (Evans et al., 1974; Dziegielewska et 

al., 1979; Cavanagh et al., 1983). In contrast, the South-American opossum is born with 

only rudimentary lateral ventricular choroid plexuses, no 3rd ventricular plexus, and 

only a small 4th ventricular choroid plexus (Dziegielewska et al., 2001). 

In parallel to these permeability studies, an attempt has been made to visualise the route 

for small lipid insoluble molecules from blood into the brain. Only electron microscopy 
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could give high enough resolution to define any such route at the cellular level and it 

was therefore necessary to use a tracer that was or could be made electron dense. For 

larger molecules, horseradish peroxidase (a 40 000 molecular weight soluble protein) 

has been extensively used as a marker (Graham and Karnovsky, 1966; Bouchaud and 

Bouvier, 1978; van Deurs et al., 1978; Balin et al., 1986; Sedlakova et al., 1999 and 

many others), but not until quite recently has a low molecular weight electron dense 

marker been available. Microperoxidase (MP) was introduced in the early 1970's 

(Feder, 1971) as a low molecular weight marker (molecular weight 1500-1900 Daltons) 

but it was later found to bind to plasma proteins (Milton Brightman, personal 

communication). This means that it cannot be used as a small tracer in the blood, 

however, its usage as a small tracer might be valid when administered directly into the 

CSF since the CSF contains low levels of proteins. Biotin-dextrans have successfully 

been used as axonal tracers because of their inertness and low lipid-solubility (for 

references see Kobbert et al., 2000). In the present study, a low molecular weight biotin-

dextran was used as an external tracer for small lipid insoluble molecules and was 

visualised both at the light and electron microscopic level. In addition, its penetration 

from blood to CSF was also measured in order to directly compare its CSF uptake with 

other small radiolabelled markers. Its penetration from blood into the CSF and brain 

was studied at comparable ages to the quantitative permeability studies using 

radiolabelled markers. 
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Aims 

There were two main aims of this thesis: 

• The first aim was to quantitate, in vivo, changes in the transfer of small lipid 

insoluble molecules from blood to brain and blood to cerebrospinal fluid (CSF) 

that occur during development, particularly at very early stages. 

• The second aim was to visualise the transfer route for such molecules into the 

developing brain. 
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Review of techniques used to study brain uptake 

There are a number of methods used to study the uptake of molecules from blood into 

the CNS. The most commonly used in vivo and in situ methods are described below and 

are also briefly discussed in relationship to their applicability to the present studies. 

There have also been several in vitro models developed, but since it is difficult to mimic 

what is occurring during development in vivo with an in vitro model, such models were 

ruled out in the current investigations. 

In in situ methods the uptake into brain is determined after arterial infusion of test 

substance in anaesthetised or in animals immediately after death (Begley, 1992). The 

perfusate normally contains one or several test substances and an impermeable 

molecule, and is infused by a motor driven syringe pump normally through the common 

carotid. The impermeable molecule is used to estimate vascular space. From this the 

amount of test substance still trapped inside blood vessels in the brain can be 

determined and is subtracted from brain samples in order to obtain true concentrations 

in brain tissue. The perfusion can last from a few seconds up to hours. The technique 

can determine the unidirectional uptake constant (Kin; usually expressed as gl g -1  

either by using single or multiple time points. Multiple time point analysis gives a more 

accurate estimate but a larger number of animals must be used. The advantage with this 

method is that the medium containing the test substance can be precisely controlled so 

problems with protein binding or competition with endogenous compounds do not exist. 

Since in situ brain perfusion is more technically challenging than other methods this 

was judged not suitable in the present experiments due to the very small size of the 

animals. 

The brain uptake index (BUI) is a simple and fast technique which calculates the uptake 

of test substance in relation to a reference molecule into one or both hemispheres after a 
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single arterial (normally carotid) bolus injection (Cornford, 1998). The injectate 

normally consists of a 14C labelled test substance, a 3H reference isotope and 113Lndium 

(binds to transferrin and is therefore impermeable in short-term experiments). A few 

seconds after the injection the animal is decapitated and the brain dissected out and 

prepared for scintillation counting. The 3H reference isotope eg. tritiated water is almost 

completely cleared from blood during a single pass through the brain. The brain uptake 

index is calculated as [Extractedtest substance — EXtraCtedindiumVEXtraCtedreference and the 

ratio given as a percentage. BUI is only appropriate for test substances that have a fast 

uptake into the brain and could therefore not be used in the present experiments 

involving slowly penetrating lipid insoluble markers. Furthermore, it would be 

extremely difficult to give intra-arterial injections into small pups. 

Analysing the uptake rate into the CNS after peripheral injections of test substance in 

awake animals is probably the most physiological technique available (Egleton and 

Davis, 1997). The technique is experimentally simple, but it is more difficult to interpret 

the data obtained. The injection solution is prepared in a similar way to the infusate in 

perfusion experiments with an impermeable marker to determine vascular space. Blood 

samples are collected throughout the experiment until the animal is killed and brain 

tissue obtained. The data can be either analysed as a single time point or multiple time 

points. In the former analysis brain samples are collected at one time point and in the 

latter at several time points. The advantage of this method is that the test substance's 

uptake into brain can be measured in awake animals that have been minimally 

manipulated. The uptake rate is determined under the influence of all components in the 

blood and the test substance is allowed to pass the vascular bed many times. However, it 

can sometimes be difficult to interpret the results just because the uptake rate 

determined is influenced by factors such as protein binding or metabolism. A 

combination of an in situ and an in vivo technique will give the best understanding of a 

substance's uptake into CNS, because the uptake can be measured with or without the 
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influence of blood components. Since the present study was carried out in small, 

delicate, developing animals, a minimal invasive technique was required and therefore 

the single bolus injection method was chosen. Because of the very small size of animals 

it was not possible to give them intravenous injections and the uptake of markers was 

instead measured after a single intraperitoneal injection. 

Animals 

The grey short-tailed South-American opossum (Monodelphis 

domestica) 

The grey short-tailed South American opossum (Monodelphis domestica) was used in 

these experiments. The animals were obtained from the colony established at the 

Central Animal House, University of Tasmania. Monodelphis domestica is a small 

pouchless marsupial native to South-America, from eastern Panama to central 

Argentina. In the wild the animal is nocturnal, terrestrial or semi-arboreal. The adult 

male weighs about 120-150 g and the female slightly less. Animals are housed in 

individual boxes (30x40x16 cm) with a smaller nesting box inside (20x12x10 cm) and 

males and females are kept in separate rooms except for breeding. The box is filled with 

paper pellets for ground cover and shredded paper supplied for nest bedding. The room 

temperature is kept at 25-28°C with a reversed day/night cycle with 14 hours of light. 

The diet consists of cat food (fortified with meat meal, milk powder, high protein cereal, 

peanut oil, and multivitamin mix), dry cat pellets, fresh fruit such as banana or kiwi, and 

live meal worms and crickets. The female reaches sexual maturity at 6 months and the 

male at 8 with a breeding life of approximately 2 years for both sexes. Two days before 

breeding the male and female swap cages in order to pheromonally promote oestrous 

and decrease aggressive behaviour between the pair. The pair remains together for two 

weeks and afterwards the female is monitored for weight gain in order to check if the 

mating was successful. 
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Like all marsupials, this species is born at an earlier stage of brain development than 

any eutherian mammal, after a gestational period of only 14 days (Saunders et al., 

1989). The new born pup weighs approximately 0.1 grams (crown-rump length —10 

mm) and is in terms of general development equivalent of a E13-14 rat, a E35-E40 

sheep or pig, or a 6 week human embryo (Saunders et al., 1989). The main precursor of 

the cortex, the cortical plate appears at around postnatal day 3 in the Monodelphis, 

which in the rat can be first seen on E 16, in sheep at E34, or in the human at E50 

(Saunders et al., 1989). As an animal used for biomedical research it has the advantage 

over other marsupials that it breeds all year around, gives birth to large litters that range 

from 1-14 pups, and can be housed in rather small areas because of its size. It has been 

successfully used in other areas of neurobiological research such as regeneration of 

immature spinal cords (Saunders et al., 1998), and studies of spinal cord, cortex and 

olfactory bulb development (Saunders et al., 1989; Brunjes et al., 1992; Molnar et al., 

1998; Knott et al., 1999; Cabana, 2000). The only disadvantage is that the time of 

mating cannot be exactly established which make developmental studies of embryonic 

opossums difficult. 

Care of pups 

Monodelphis pups are constantly attached to mother's teats until 15-20 days after birth. 

While attached to mother, it is very difficult to make delicate injections into young 

pups. This can be made easier by lightly anaesthetising the mother during injections, 

however, this would have enforced another problem since mothers are known to eat 

their pups when disturbed. Instead in the present experiments, to avoid the risk of 

cannibalism, pups were detached from mother before injections and kept in a 

humidicrib (65-75% relative humidity) until terminally anaesthetised. The mother was 

briefly anaesthetised with isoflurane (see below) while the pups were detached. The 
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maximum time young animals were kept in the humidicrib did not exceed 41/2 hours. 

Newborns were wrapped in a tissue to minimise heat loss. A temperature probe was 

kept with the pups in the humidicrib and the temperature was maintained at 27.5- 

29.5°C. Normal adult body temperature in the opossum is lower (32°C) than in 

eutherians (Kraus and Fadem, 1987). All experiments were conducted in accordance 

with NHMRC guidelines and approval of the University of Tasmania Ethics 

Committee. 

- 50 - 



Figure 2.1 

The grey short-tailed South-American opossum (Monodelphis domestica). A) 

Close-up of a 7-day old opossum pup. B) Female with 1-day old pups attached 

to her teats. The opossum is a pouchless marsupial which makes access to the 

pups easy. It can give birth to up to 14 pups but normal litter sizes range from 5 

to 10 animals. The newborn opossum only weighs approximately 0.1 g with a 

crown-rump length of about 10 mm. C) Female with 6-day old pups attached to 

her teats. The pups weigh approximately 0.3 g at this age. D) 35-day old 

opossum weighing approximately 6-7 g. E) Cage and nesting box. The nesting 

box is filled with shredded paper which the animals use to build a nest. Adults 

are kept in separate boxes except for during mating. F) Adult opossum. The 

adult male weighs 100-120 g and the female weighs slightly less 
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Anaesthesia 

Surgery, such as nephrectomy, was performed under gaseous anaesthesia with 

isoflurane (2.5-3.5%; Abbott). This anaesthetic was chosen because of its superior 

safety margin over other anaesthetics and also its short duration of action, which means 

quick recovery. The depth of anaesthesia was evaluated by tail and toe pinch throughout 

the time of anaesthesia. Before collecting blood, CSF or brain samples animals were 

terminally anaesthetised with inhalation of halothane (Zeneca). 

Nephrectomy 

Some experiments in this thesis involved injections of radioactive markers into the 

intraperitoneal cavity of young opossums in order to measure the uptake from blood 

into the CSF and brain. The model which will be described in detail in Chapter 3 was 

based on uptake measurements determined by steady-state concentration ratios between 

CSF/plasma and brain/plasma several hours after the injections. Samples of plasma 

showed that the plasma concentration increased quickly after the injections, but after an 

initial peak the concentration gradually fell over time, which possibly was a result of 

clearance through the kidneys. Urine samples after the injection showed high 

concentrations of isotopes which confirmed that large amounts of the marker were lost 

from the blood by filtration out of the kidneys. In order to avoid renal clearance of 

markers, opossums at P37 and P65 were bilaterally nephrectomised. This was done on a 

heated operating table under isoflurane anaesthesia. Pups were laid ventrally and the 

skin was cut along the dorsal midline. After a small cut through the back muscles the 

kidneys were located and adipose tissue removed so the kidneys could easily be 

manipulated. The renal artery and vein were then ligated using a suture and the skin was 

sealed with superglue. Pups were left to recover on a heated table until awake and then 

left with their mother before final anaesthesia for sample collection. 
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Injections of radioactive markers 

Radioactive markers were obtained from Amersham International and are listed in 

Table 2.1. All isotopes for injection were prepared in sterile 0.9% NaC1 solution. The 

final activity of each marker was 4.2 - 5.0 KBq 	of 3H and 0.42 - 0.58 KBqp1-1  of 

14C. The activity of injection solution was always measured before the experiment to 

ensure reproducibility between the experiments. Standardised injections (6 pl/g body 

weight) were made into the intraperitoneal cavity with a Hamilton syringe fitted with 

either a 29-gauge needle or a glass micropipette. The intraperitoneal injection avoided 

the possibility of sudden osmotic or volume changes in the blood system. Inulin, 

sucrose and L-glucose were chosen as small lipid insoluble test molecules of 

permeability since they are minimally metabolised in the body (Habgood, 1990) and are 

believed to only distribute in extracellular compartments. As will be discussed in 

Chapter 5 this may be true for the adult animal, however, results presented in this thesis 

suggest that it may not be the case in the developing animal. The use of glycerol was 

restricted to short-time experiments only (less than 25 minutes) to minimise possible 

metabolism. The degree of possible glycerol metabolism in vivo during such an 

experiment was checked 30 minutes after an intraperitoneal injection by thin-layer 

chromatography (see below). 

- 54 - 



Chapter 2: General Methods 

Table 2.1 

Radiolabel Marker Code No Molecular Weight 

[U- 14C] Sucrose CFB-146 342 

[3F1] lnulin TRA-324 —5200 

[1-14C] L-glucose CFA-328 180 

[1(3)-3H] Glycerol TRA-244 92 

Radioactive markers used in permeability experiments. All 

markers were either 14C or 3 H radiolabelled. 

Tissue and fluid samples 

Blood samples 

As soon as a deep level of anaesthesia was obtained, blood was immediately sampled 

with a glass micropipette by mouth suction. Each pipette was prepared 1-3 days before 

usage by filling it with heparin and gently blowing out so a film of heparin was formed 

on the inside of the pipette to prevent blood clotting. In older pups (older than P10) the 

rib cage was opened and blood collected from the left ventricle of the heart. In younger 

pups blood was collected by drainage from the left subclavian/axillary artery. The artery 

was carefully dissected out and any fluid around it was removed with a cotton tip. The 

blood vessel was cut and blood collected from the groove after the dissection. This 

artery was chosen since it avoids any possibility of blood mixing with intraperitoneal 

fluid. Blood samples were transferred to a plastic tube and kept on ice until plasma was 

separated by centrifugation (5 minutes, 5000 rpm). 
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CSF and brain samples 

After blood samples were taken the heart was cut to lower the systemic pressure and 

minimise the risk of blood contamination in CSF samples. CSF was taken from the 

cisterna magna of the hindbrain by gentle mouth suction using a glass micropipette. 

The tip of the pipette was carefully pushed to penetrate through the dura mater at an 

angle to avoid damaging small blood vessels. CSF was transferred to a plastic tube and 

spun at 5000 rpm for five minutes. Every tube was inspected for blood contamination 

by examining it under a dissecting microscope over a white background. Blood 

contamination as low as 0.1% can be detected in this manner (Habgood, 1990). Any 

tube with visible blood contamination was discarded. After CSF collection the whole 

brain was dissected out and immediately frozen. 

Radio-scintillation counting 

In liquid scintillation (LS), radioactive compounds are dispersed in a liquid medium, 

which is called scintillation fluid. This fluid converts the radioactive decay particles into 

photons, which can be detected by photomultiplier tubes and a voltage is produced. The 

LS counter can be set to only count voltage pulses within a set lower and upper limit 

and this normally defines a 'counting channel' or 'counting window'. 

Ideally the rate of counts per minute (CPM; counts seen by the LS counter) is 

proportional to the disintegrations per minute (DPM) of the radioactive compound. 

However, quenching can reduce the number of photons produced by the radioactive 

emission. Quenching is commonly an intrinsic property of plant or animal tissue and 

thus can be different from sample to sample. Therefore the correct number of counts 

(DPM) can be calculated by knowing the counting efficiency, which is defined as 
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Counting efficiency — CPM 
DPM 

Quenching of any sample is determined by the LS counter by exposing the sample to a 

standard gamma ray emitting isotope. It is therefore necessary to make a series of 

samples with a standard radioactivity but different quench which will give a standard 

quench-efficiency curve (see Figure 2.2). A quench-efficiency curve has to be 

constructed for each different isotope since the counting efficiency changes with the 

energy of then-decay. At high quenching the counting efficiency is not linearly related 

to quenching and therefore high quenching in samples should be avoided. From the 

quench-efficiency curve the DPM from any sample can be determined from the CPM. It 

is also necessary to determine if the counting efficiency changes with increasing activity 

(DPM) in the sample solution. By measuring a series of samples with the same quench 

but increasing DPM this can be determined. As seen in Figure 2.3 the counting 

efficiency did not change up to at least 700 ICDPM, which is well above the activity in 

any of the sample solutions used in this study. 

Any radioactive material produces decaying particles within a certain energy spectrum 

and the counting channel can be set to only count particles within this spectrum. With 

the right channel settings, two or more radioactive substances can be counted in the 

same medium as long as their energy spectra do not overlap. Even if the spectra do 

overlap to some degree, is it possible to determine the relative activity from each 

radioactive compound. The lower energy 13-decay emittance for 3H overlaps with the 

higher energy emittance of ' 4C (see Figure 2.4A). The amount overlapping can be 

determined as follows. Two counting channels are set so the lower one (channel A) 

includes all the counts from 3H and a small proportion from 14C. The other channel 

(channel B) is set to include all other counts from 14C (See Figure 2.4B). A series with a 

standard amount of ' 4C but different quench is counted with the channels set as above. 
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The ratio of counts falling into channel A and B is calculated with different quench (see 

Figure 2.4B). Quench will reduce the pulse height and shift the energy spectrum to the 

left and a higher A:B ratio is obtained with quench, ie. the portion of counts is smaller 

in channel B (see Figure 2.4). A sample with both 3H and 14C can now be counted since 

the amount of counts produced by 14C in channel A can be estimated from the counts 

seen in channel B. By subtracting the estimated counts from 14C in channel A from the 

total counts, the CPM for 3H is determined. The error of estimating the CPM for 3H by 

this method can be minimised by having 5-10 times more 3H label than 14C. This is 

especially important when a sample is heavily quenched since the efficiency of 3H 

decreases proportionally more than 14C (see Figure 2.2). 

Sample handling for radio-activity measurements 

Aliquots of plasma and CSF were weighed and 5 ml of scintillation fluid (Packard) 

added. Brains were homogenised and aliquots weighed. To each aliquot of brain 0.5 ml 

of tissue solubiliser (Soluene-350, Packard) was added and aliquots were left in a low 

heat oven (40°C) overnight to ensure complete solubility of tissue. 5 ml of scintillation 

fluid was then added. Tubes were counted for five minutes in a liquid scintillation 

counter (Beckman LS3801) with window settings as above to allow determination of 

both 14C and 3H activity. Background counts for CSF and plasma were estimated by 

vials with only scintillation fluid and background for brain samples by tubes with 

scintillation fluid plus 0.5 ml soluene (Soluene-350, Packard). These counts were 

subtracted from all other tubes. The counting-efficiency curve constructed for each 

isotope converted the CPM determined by the counter to DPM. In order to estimate the 

true activity in brain tissue the amount of isotope still trapped within the vascular 

system of the brain was subtracted from the total activity. The residual vascular space 

was estimated from the initial distribution space of inulin (approximately 1-2 min) in 

P15 pups (n=5; used to correct values in animals between P6-P15) and P40 (n=5; used 
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to correct values in animals between P32-P65). Concentration of isotope in each sample 

was calculated as DPM/g. 
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Figure 2.2 

Counting efficiency (y-axis) for 3H and 14C against quench (x-axis). Quench 
reduces the 14C counting efficiency little whereas the 3H counting efficiency 
decreases considerably with increasing quench. Linear regression lines have 
been fitted to the data. These lines were used to determine counting efficiency 
at a given quench. The counting efficiency was necessary to know in order to 
convert the CPM measured by the scintillation counter to DPM. 
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Figure 2.3 

The radioactive concentration (DPM/pl) on the y-axis against the total amount of 
DPM in sample (x-axis). The same solution of 14C was pipetted into scintillation 
vials in increasing volumes (5-180 pl). The measured concentration of 
radioactivity (DPM/pl) was the same in all samples. This experiment showed 
that the counting efficiency did not change with either increasing sample volume 
or total amount of radioactivity. Both the sample volume and total amount of 
radioactivity were greater in these experiments than in any of the samples 
collected from animals. 
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Figure 2.4 

A is a schematic drawing of 14C and 3 H spectra and illustrates changes in 

spectra with (dashed line) or without (solid line) quench. As seen quench will 

shift the energy spectrum to the left and also decrease the counts seen by 

the scintillation counter (reduced counting efficiency). The total energy pulse 

is decreased proportionally more for 3H than 14C with increasing quench (see 

also Figure 2.2). In order to determine the counts produced both by 14C and 

3H in a sample, the scintillation counter was set to count energy within two 

windows, window A (0-400) and window B (400-660). With these settings, in 

a sample with little quench, all counts produced by 3H will fall into window A 

and the counts produced by 14C will mostly fall into window B with a small 

amount in window A. Since quench shifts the energy spectrum for 14C to the 

left this will increase the proportion of counts produced by 14C that falls in 

window A. A series of samples containing the same amount of 14C label but 

different quench were counted with the windows set as above. The results 

are shown in B. This graph shows the ratio between counts in window A and 

B (y-axis) with increasing quench (x-axis) for 14C. A linear regression line was 

fitted to the data. Samples with both 3 H and 14C can be counted since the 

amount of counts produced by 14C in window A can be estimated from the 

counts seen in window B by the regression line. By subtracting the counts 

from 14C in window A from the total counts in that window, the total counts for 

3H is determined 
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Lipid solubility of markers 

As mentioned in Chapter 1, lipid solubility is a principal molecular property 

determining rate of uptake into the CNS. Blood solutes, which are in an aqueous 

environment are believed to enter the CNS by crossing the lipid cell membrane of the 

endothelium, diffusing through the cytosol and crossing the abluminal cell membrane 

into an aqueous medium on the other side of the endothelium. This hypothesis could 

explain the high rate of penetration for lipid soluble blood solutes across the brain 

barriers, since they leave the aqueous phase of plasma more easily and are less restricted 

in crossing lipid cell membranes. A solute's lipid solubility is measured by its 

partitioning in a lipid and in a water phase. A correlation of in vitro measurements of a 

substance's partitioning in hydrocarbon/water phases and brain uptake was found by 

Mayer et al. (1959). More recently the partitioning between octanol/water has been 

measured and found to predict brain uptake more accurately (Rapoport and Levitan, 

1974). The permeability experiments (presented in Chapter 3) showed clear differences 

in brain uptake for inulin, sucrose, L-glucose and glycerol throughout development. 

Measurements of lipid solubility were conducted in order to check if differences in 

permeability of markers could be explained by their lipid solubility. 

Measurement of a substance's lipid/water partitioning is greatly influenced by the 

medium in which the measurement is performed. A molecule can exist in both ionised 

and unionised forms, and the ionised form has much more difficulty leaving an aqueous 

environment because of its polarity. Therefore the ionised form crosses the brain 

barriers at a slower rate. Measurements of a compound's lipid/water partitioning 

coefficient as well as its fractional concentration between altered species in a whole 

range of different pH media will provide information of how lipid solubility changes 

with ionisation of the drug. From this the partitioning coefficient can be calculated for 

the unionised form of the compound and is referred to as Log Plipid. This is quite 
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straightforward as long as it is possible to change the pH to drive the compound into its 

neutral form. Even if a smaller amount of the compound is in a charged form, the true 

Log Plipid can be calculated by knowing the fractional concentration for different 

species. However, if the compound can both give and take protons it becomes more 

difficult, since it will be impossible to change the pH to get large amounts of the neutral 

form of the compound. Instead the measurements can be made under standardised 

conditions (ie. pH 7.4 and 37°C) and the partitioning coefficient is then referred to as 

Log plipid.  It can be expected that the fractional concentration of different species under 

these conditions is similar to what would be found in vivo. 

Radiolabelled markers were made up in 154mM phosphate buffered saline at pH 7.4, 

and 2 ml of each isotope was transferred to 2-5 separate mixing vials. The initial isotope 

concentration in buffer was measured by radio-scintillation counting, and the total 

amount of isotope in each vial ranged between 18.5 GBq — 130 GBq. To each mixing 

vial 2 ml of (2)-Octanol was added, and to assure proper partitioning between buffer 

and octanol phase, tubes were vigorously shaken overnight at room temperature. Vials 

were spun at 3000 rpm for 5 min and left for 30 min on bench. The isotope 

concentration in the two phases was determined by radio-scintillation counting. The 

partitioning coefficient (LogD0ctan0i,25T)  for each marker is presented in Table 2.2. 
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Table 2.2 

Marker LogD ± SD n 

lnulin -3.51 ± 0.02 5 

Sucrose -3.47 ± 0.01 5 

L-glucose -2.68 & -2.68 2 

Log Doctanol, 25°C values for each marker calculated from their 

partitioning between equal volumes of phosphate buffer and 2- 

octanol at 25°C. Values shown are mean ± SD (n=number of 

individual measurements). Since only two measurements were 

made for L-glucose both are listed here. 

Possible metabolites of glycerol 

In order to check possible metabolites or breakdown products of glycerol in vivo, a P30 

opossum was injected intraperitoneally (ip) with 3H-glycerol, and blood and CSF was 

collected 30 minutes after the injection. In comparison, the longest duration of any 

measurement of the in vivo glycerol permeability was 23 minutes. 5 pi samples were 

spotted and run, together with a standard (blood from an uninjected animal mixed with 

3H-glycerol), on 20 cm silica thin layer chromatography (TLC) plates (Merck, G60). 

Plates were run in an ascending fashion in a chloroform:methanol (1:2) mixture until the 

solvent reached up to 3/4 of the plate. A non-radioactive standard was run at the same 

time to identify the glycerol position. At the end of the run, each plate was divided into 

seven equal fractions (approximately 1.5 cm each) and the gel was carefully removed 

into individual scintillation vials. The activity in each vial was determined by liquid 

scintillation counting. Background activity was measured in two vials containing only 
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the gel and was subtracted from sample vials. 

The proportional activity (%) in each fraction to the total amount on each plate was 

calculated (see Table 2.3). Standard sample showed 96% activity in the two fractions 

(fraction 4 and 5) that corresponded to the glycerol spot. The same fractions in blood 

and CSF had 71% and 80% of the activity, respectively. Less than one percent of the 

activity was found in the fraction moving with the solvent front (fraction 7) in all 

samples. The first fraction (including the initial spot) constituted 8% and 2% of activity 

in blood and CSF, respectively. 

Table 2.3 

Fraction 1 2 3 4 5 6 7 

Standard 0.2 1.0 2.5 36.7 59.2 0.4 0 

Blood 8.4 10.8 6.9 20.5 50.3 2.3 0.8 

CSF 1.7 9.2 6.3 16.2 63.4 3.1 0 

TLC analysis of blood and CSF from a P30 opossum 30 minutes after 

intraperitoneal injection of 3H-glycerol. The activity in separate fractions is 

expressed as the proportion (%) to the total on each plate (ie. the total of each 

plate is 100%). Standard was 3H-glycerol mixed with control blood 

immediately prior to chromatography. 

The first fraction corresponds to most hydrophilic substances such as water or glucose, 

the last (7 th) fraction to compounds that are most hydrophobic such as lipids. As seen in 

Table 2.3 small amounts of activity were found in the fractions above the glycerol 
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position, which indicates that little glycerol was converted in to more lipid soluble 

compounds. Instead, some glycerol seemed to have been transformed into more water 

soluble compounds found in fraction one to three. Since conversion products are almost 

uniformly lipid insoluble compounds, which would enter the CNS at a slower rate than 

glycerol, measurements of glycerol permeability should be little affected by these 

compounds. 
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Introduction 

Traditionally the permeability across the brain barriers of slowly penetrating solutes (eg. 

lipid insoluble compounds) has been measured by maintaining a constant blood plasma 

level of test substance until a steady level has been reached in the CSF and brain 

(Ferguson and Woodbury, 1969; Dziegielewska et al., 1979). A constant plasma level 

can be obtained by infusion of test substance until the amount infused equals the 

amount lost from blood (by diffusion into other tissue or renal clearance) (Ueda et al., 

1993). The concentration in brain will also slowly increase until a steady-state is 

reached. Samples of brain and plasma are taken and a ratio between the brain and 

plasma concentration is calculated and expressed as a measure of brain permeability. 

When only a single injection of marker molecule is possible, bilateral nephrectomy 

prevents renal clearance and a steady plasma level is obtained (Habgood et al. 1993). In 

both of these models, preliminary experiments have to be performed to determine the 

time scale of approaching the steady-state between CSF or brain and plasma. Steady-

state ratios between CSF/plasma and brain/plasma are then measured as transfer rates 

across the brain barriers (Habgood et al. 1993). 

For detailed procedures of methods described below such as nephrectomy, injections, 

and tissue sampling see Chapter 2. The experiments described in this Chapter were 

conducted in a sequential manner, where certain parameters in one experiment had to be 

established before the next was commenced. These parameters determined the 

procedures used in the following experiments. The results have therefore been described 

consecutively with respect to development of the underlying methodologies in order to 

understand the reasons for certain experiments and procedures The experimental model 

presented in this Chapter was used in further experiments, which are described in the 

Chapters 4 and 5. 
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Methods 

Litter based model 

Blood and CSF samples were obtained from opossum pups as early as P6. At this age 

the pups weigh 200-250 mg and presuming a similar blood to body weight ratio as in 

older animals, newborn pups would only have a blood volume of about 20-25 ill. This 

makes it impossible to use serial blood sampling from one animal in order to construct a 

plasma concentration curve of markers. This problem can be overcome by using a litter-

based model that was described by Habgood (1990). Instead of taking serial blood and 

CSF samples from one animal, a whole litter is used and only one blood sample is taken 

from each animal at successive time points. This model assumes that every littermate 

behaves in a similar manner, and a sample from one animal can represent all other 

littermates at that time point (Habgood, 1990). 

Newborn opossums model 

The very small size of newborn opossums made it technically impossible to cannulate 

any vessels for infusion or nephrectomise animals in order to maintain a constant 

plasma concentration of markers. In the present study, near to steady-state ratios were 

estimated by dividing the CSF or brain activity by the mean plasma activity throughout 

the experiment following single injection, in non-nephrectomised animals (see 

equations below). 

CSF/Plasma Ratio = CCSF jCp/asma T) 
	

(3.1) 

Brain/Plasma Ratio = Cbrain f Cp/asma T) 
	

(3.2) 
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The accuracy of estimating steady-state ratios with this method was evaluated in older 

postnatal animals by comparing steady-state ratios obtained from nephrectomised 

animals, with ratios from unoperated (intact) animals determined using the above 

equations. Preliminary experiments were necessary to determine the time it takes to 

approach a steady-state in nephrectomised animals. This was investigated in pups at P37 

since it was found impossible to nephrectomise younger animals. It was also necessary 

to determine the plasma concentration curves at several developmental ages in intact 

animals in order to check if the plasma profiles for the markers changed with age. 

Time to approach steady-state in nephrectomised animals 

In order to determine the time it takes to approach steady-state between plasma, CSF 

and brain a group of P37 opossums (n=12) were bilaterally nephrectomised (for surgical 

details see Chapter 2). Animals were injected ip with a mixture of 14C-sucrose and 3H-

inulin and killed with an overdose of halothane inhalation after 1, 2, 3 and 4 hours and 

blood, CSF, and brain samples were collected. Since a litter-based model was used, it 

was necessary to standardise the plasma concentrations between different animals in 

separate experiments. This was obtained by expressing plasma concentrations as a ratio 

between the activity in plasma and injection solution. For each experiment the isotope 

concentration in the injection solution was determined. 

Plasma concentration curves in intact animals 

Opossums at P9-10 (n=15), P15 (n=15), and P37 (n=12) were given a standardised 

injection of a mixture of 14C-sucrose and 3H-inulin. Animals were killed with an 

overdose of Halothane between 1/2  and 4 hours, and blood samples were taken in order 

to determine the plasma concentration curves of markers. The plasma concentration was 

plotted against the time after the injection. The integral of the plasma curve was used to 
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calculate the mean plasma concentration at any time point throughout the experiment. 

Ratios were calculated between the CSF/mean plasma concentration and brain/mean 

plasma concentration (see Equation 3.1 and 3.2.) 

Results and Conclusions 

Nephrectomised animals 

Plasma concentration curve and time to approach steady-state 

Animals at P37 were bilaterally nephrectomised in order to determine the time it takes 

to reach steady-state and to evaluate the novel model of estimating steady-state ratios in 

intact animals. Figure 3.1 shows the plasma concentration curve in nephrectomised 

animals after a standardised ip injection of sucrose and inulin. After nephrectomy the 

plasma concentration became stable within three hours for both inulin and sucrose. 

Sucrose being a smaller molecule with a faster diffusion rate reaches a steady level 

within one hour. Nephrectomy is therefore a suitable method of achieving steady 

plasma concentration of a substance when constant infusion is not practical. 

CSF/plasma ratios for sucrose and inulin in these animals approached a plateau by three 

hours after the injection (Figure 3.1). The brain/plasma ratios for sucrose also 

approached a plateau after three hours whereas inulin is not illustrated since it did not 

reach detectable levels (<1% of plasma concentration) within 4 hours. 

Non-nephrectomised animals 

Plasma concentration curves 

Groups of opossum pups at P9-10, P15, and P37 were injected with markers without 

prior nephrectomy. As seen in Figure 3.2 the litter based model provides a useful 

method of monitoring plasma concentrations in very small animals, where it is not 

possible to obtain serial blood samples from one animal. The plasma concentrations of 
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inulin and sucrose reached a peak within 1 hour, thereafter they fell throughout the time 

of the experiment because of renal clearance. This was confirmed by finding very high 

isotope activity in urine. The markers were cleared from the blood at a slower rate at 

P9-P15 compared to P37. When possible a polynomial regression line was fitted to the 

plasma concentration time points, and was forced to cross 0 at the origin since at time 0 

all of the isotope should be in the intraperitoneal cavity, and none in the blood. In other 

cases a computer fitted bezier curve was made to fit through the average plasma 

concentration at each time point. According to the litter-based model this was 

representative of the plasma concentration curve for all non-nephrectomised animals 

between 0 to 4 hours and the integral could then be used to estimate the mean plasma 

concentration at any time point. 

Steady-state ratios in intact animals 

In nephrectomised animals the time to approach steady-state had been determined to be 

at least three hours. According to the litter-based model the changes in plasma 

concentration curve from an individual sample could be approximated by the plasma 

concentration curve from the litter-based experiment. Steady-state CSF/plasma and 

brain/plasma ratios in intact animals were calculated using equation 3.1 and 3.2 at three 

hours. The accuracy of these ratios were determined by comparing them with ratios in 

nephrectomised animals at the same time point, which had been shown to approach a 

steady-state (Table 3.1). 
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Table 3.1 

Sucrose 	 Inulin 

CSF/Plasm Brain/plasma CSF/plasma Brain/plasma 

Nephrectomised 15.0 ± 1.8 4.4 ± 0.8 6.9 ± 0.6 3.5 ± 0.9 

Intact 14.2 ± 2.0 4.3 ± 0.5 7.3 ± 0.7 3.4 ± 0.4 

Steady-state CSF/plasma and brain/plasma ratios for 14C-sucrose and 3H-

inulin in nephrectomised (n=4) and intact (non-nephrectomised, n=5) P37 

opossums. CSF concentrations were measured in samples collected from the 

cisterna magna. In nephrectomised animals, the CSF and plasma 

concentrations both approached steady-state by 3 hours after ip injection, 

whereas in intact (non-nephrectomised) animals the plasma concentration 

peaked at 30-60 min after the injection and then gradually fell. In these intact 

animals, the mean plasma concentration was determined from the integral of 

the plasma concentration curve over the entire time course of each 

experiment and ratios calculated as CSF/mean plasma concentration or 

brain/mean plasma concentration (see equation 3.1 and 3.2). These two 

different methods of determining steady-state ratios gave similar results. 

Values are mean ± S.E.M. 
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Figure 3.1 

The left y-axes in A and B show the plasma/injectate (m) and the CSF/injectate 

(•) concentration ratios for sucrose (A) and inulin (B) following a single ip 

injection in nephrectomised opossums at P37. The right y-axes in A and B show 

the CSF/plasma ratios (A). The left y-axes in C show the plasma/injectate (•) 

and the brain/injectate (•) concentration ratios for sucrose in the same animals. 

The right y-axes in C show the brain/plasma ratios (v). The x-axes show the 

time after the ip injection. The concentration in plasma, CSF and brain were 

divided by the original concentration in the injection solution in order to obtain 

normalised data that were comparable between different animals and 

experiments. The plasma/injectate, CSF/injectate and brain/injectate 

concentration ratios are all approaching a steady level by three hours after 

injection for both markers. CSF/plasma ratios for sucrose (A) and inulin (B), and 

brain/plasma (C) for sucrose also approach a steady level by three hours after 

injection. The brain/plasma ratios for inulin were not illustrated because it did 

not reach appreciative levels in brain within three hours. All data points shown 

are means (n=3-4) and the error bars indicate ± SEM. Where no error bars are 

visible, they are contained within the symbol. 
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Figure 3.2 

Plasma/injectate concentration ratios for 14C-sucrose (A), 3H-inulin (B) in 

plasma after a single intraperitoneal injection in non-nephrectomised animals 

determined at P9-P10 (Äo, ), P15 (•), and P37 (p). The x-axes show the time 

after the ip injection. The concentration in plasma, CSF and brain were divided 

by the original concentration in the injection solution in order to obtain 

normalised data that were comparable between different animals and 

experiments. The curves shown are bezier curves computer fitted to data points 

for each age and used to calculate mean plasma concentrations. The 

plasma/injectate concentration ratios in these non-nephrectomised animals all 

reach a peak and then gradually decline over time. The curves at P9-10 and 

P15 animals were very similar for inulin and sucrose, whereas the peak for P37 

animals occurred somewhat later. 
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Validity of model 

The CSF/plasma and brain/plasma ratios of sucrose and inulin at 3 hours were very 

similar for nephrectomised and intact animals (see Table 3.1). Steady-state ratios from 

nephrectomised animals can therefore be accurately estimated from animals without 

prior nephrectomy. Nevertheless, there are a few considerations of the model when 

applying it to younger ages. Firstly, does the time to reach steady-state change with the 

age of the animals? If the equilibrating time is longer in younger animals the ratios 

would be under-estimated since the CSF and brain concentrations are still rising. This 

could not be tested in opossums since it is technically not possible to keep a steady 

plasma concentration at very young ages. However, it is unlikely that it would take a 

longer time in younger animals since lipid insoluble compounds seem to enter the CNS 

faster at younger ages (Ferguson and Woodbury, 1969; Dziegielewska et al., 1979; 

Habgood et al., 1993) and the time to reach steady-state should then be shortened (see 

Chapter 4 for discussion). Secondly, how do the differences in the plasma profile for 

markers at different ages affect the model? By calculating 3-hour steady-state ratios at 

P37 by applying the different plasma concentration curves at P9-10, P15, and P37 this 

could be determined. The data are presented in Table 3.2. By applying the P15 and P9- 

P10 plasma curve to the P37 data, the mean plasma concentration will be 

underestimated, giving higher ratios. The effect is very small on inulin ratios whereas it 

is greater on sucrose ratios especially when using the P15 concentration curve. The 

difference between using the P15 and P9-P10 concentration curves for inulin and 

sucrose is very small. It was therefore assumed that the plasma curve for P9-10 animals 

could also accurately represent the plasma curve for even younger animals. 
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Table 3.2 

P37 	P15 	P9-P10 

Sucrose 14.2 ± 0.9 18.4 ± 1.2 18.6 ± 1.2 

Inulin 7.4 ± 0.3 7.9 ± 0.3 8.3 ± 0.4 

The steady-state 3-hour ratios for inulin (n=5) and sucrose (n=5) in 
P37 opossums by applying P37, P15, and P9-P10 plasma 
concentration curves. The ratios changes for sucrose by using the 
P37 and P15 plasma concentration curves whereas the difference 
is small between P15 and P9-P10 animals. lnulin shows small 
differences in ratios by applying any of the plasma concentration 
curves. Values are means ± SEM. 
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Chapter 4: Uptake of Radiolabelled Markers 

Introduction 

Rapidly penetrating solutes will reach a CSF/plasma concentration ratio of 1 at 

equilibrium. Even slowly penetrating substances should at infinite time (equilibrium) 

reach the same concentration in the CSF as in plasma. Failure to reach a ratio of 1, as 

was reported in Chapter 3 for inulin and sucrose, could result from active transport 

from CSF to blood. However, this is unlikely in the case of substances such as sucrose 

or inulin that are supposed to be biologically inert within the body. A more likely 

explanation is a continuous replacement of CSF in the ventricles (ie. the flow of CSF), 

which could account for slowly penetrating solutes not equilibrating with the plasma 

concentration even after a long exposure in plasma. This is often referred to as the sink 

effect (Oldendorf and Davson, 1967; Davson and Segal, 1969). Slowly penetrating 

solutes will have a lower concentration in the newly formed CSF compared with 

plasma. The slower a substance penetrates the blood-CSF interface, the lower 

CcsF/Coasma ratio will be at steady-state. The steady-state level can therefore be a 

measure of permeability. 

In Chapter 3 a model was described that estimated steady-state CSF/plasma and 

brain/plasma ratios in animals with varying plasma concentrations of marker after a 

single intraperitoneal injection. The model was found to accurately estimate steady-

state ratios and this provided a way to study the penetration of markers with little 

manipulation of the animals. With further use of this model, steady-state ratios were 

estimated in Monodelphis pups at various ages between P6 to P65 for three small lipid 

insoluble markers sucrose, inulin, and L-glucose. The results are presented in this 

Chapter. In the current study, the penetration of lipid insoluble molecules has been 

measured in a quantitative way earlier in development than have previously been 

reported. The results of these experiments are compared with morphological studies 

using tracers presented in Chapter 5. 
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In order to investigate more directly the possible developmental changes that could 

give rise to age related differences in steady-state ratios, short time course uptake 

experiments were carried out (7-24 minutes). As explained in Chapter 2, Kin  can be 

determined by the initial uptake into CSF and brain. The slow uptake of sucrose and 

inulin would be difficult to detect and therefore a smaller inert molecule was needed 

with faster penetration but still with hydrophilic characteristics. L-glucose with a 

molecular weight of 182 (about half the size of sucrose), metabolically inert because of 

its L configuration, and a LogDoctanot, 25°C value of —2.68 (see Table 2.2) was used. For 

comparison, the short-term uptake rate of a moderately lipophilic molecule (glycerol, 

LogD —1.94) was studied. Such a molecule should pass the cell membranes of the 

epithelial cells of the choroid plexus and the endothelial cells in the brain blood vessels 

with relative ease. Blood flow and the vascular surface area available for exchange 

would therefore mostly determine the uptake rate into the CNS. A moderately 

lipophilic molecule was chosen because the rate of uptake would be difficult to 

measure for highly lipophilic compound, where the CSF would rapidly equilibrate with 

plasma. Glycerol with a LOgDoctanol, 25°C of —1.94 and which had been shown to be 

relatively stable in vivo during such a short duration (see Chapter 2) was chosen as a 

suitable test molecule. 

Methods 

Steady-state concentration ratios during development 

Opossums at P5-P7 (n=9), P9-P13 (n=15), P15-P17 (n=5), P32-P37 (n=10), and P65 

(n=3) were injected, ip, with a mixture of 14C-sucrose and 3H-inulin. Steady-state ratios 

between CSF/plasma and brain/plasma were estimated by the model described in 

Chapter 3 in animals killed between 3-3V2 hours after the injection. The mean plasma 
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levels for 14C-sucrose and 3H-inulin of animals between P6-P10 were estimated from 

the plasma concentration curves for P9-P10 animals, and for animals aged between 

P13-P17 from the plasma curve for P15 animals; finally for animals aged between P32- 

P37 the plasma concentration curve from P37 animals was used (see Chapter 3 for 

plasma curves). Animals at P65 were nephrectomised prior to injection but were 

otherwise treated in the same manner and ratios were calculated assuming a steady 

plasma level. 

Other groups of opossums were injected, ip, with "C-L-glucose at P18 (n=9) and P38 

(n=10). Samples of CSF, blood and brain were collected approximately every 30 

minutes between % and 4 hours in order to construct a plasma concentration curves at 

both ages. Plasma samples collected for initial uptake rate experiments (see below) 

were included as data points in the plasma concentration curves, however, this resulted 

in many data points between 0 and 30 minutes. For the clarity of presentation, data 

points were grouped within the same 10-minute interval (0-10, 10-20, 20-30 minutes 

etc) and the mean ± SEM was calculated for each group (Figure 4.1). Plasma 

concentration curves were constructed by computer fitting bezier curves to the data 

points. Steady-state ratios between CSF/plasma and brain/plasma were estimated by the 

model described in Chapter 3, in animals killed between 3 and 3% hours (n=4 for both 

ages) after the injection. Differences in steady-state ratios were tested by unpaired t-

test. For more detailed description of procedures used in these experiments see Chapter 

2. Differences in steady-state ratios between P18 and P38 for L-glucose were tested by 

two-way unpaired t-test. 

Short time-course experiments 

Opossum pups at P18 (n=9) and P38 (n=13) were injected ip with a mixture of 3H-

glycerol and "C-L-glucose. The timing of tissue sampling was crucial in these 
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experiments, and therefore the procedure of taking CSF, brain and blood samples was 

modified. After anaesthesia, CSF was collected from the cisterna magna and the 

animal immediately decapitated to stop blood flow to the brain. Blood was then 

collected from the bleeding carotid artery and the brain removed. This procedure 

minimised the time delay between CSF and blood sampling. The starting and ending 

time of the blood collection was recorded and the average time calculated as the blood 

collecting time. The average difference in time between CSF collection and blood 

sampling was 26.3 ± 4.8 (Mean ± SD; n=8) seconds in P18 animals, and 18.5 ± 4.8 

(n=10) seconds in P38 animals. All blood samples were collected between 7 and 24 

minutes after injection. Since there was no blood flow to the brain after decapitation, 

the timing of brain tissue sampling was not considered critical but nevertheless it did 

not exceed one minute after decapitation. The amount of marker molecule entering the 

brain from blood between decapitation and brain tissue sampling will not effect the 

measurements since it will be compensated for by the deduction of the vascular space. 

The time for brain sampling was recorded as the time for decapitation. CSF/plasma and 

brain/plasma ratios were calculated and plotted against the blood collection times. 

Linear regression lines were fitted to data points with least square method. Differences 

in slope of the regression lines were tested with unpaired t-test. For more detailed 

description of procedures such as injections, collection and handling of tissue samples 

used in these experiments see Chapter 2. 

Results 

Steady-state concentration ratios during development 

In order to estimate steady-state ratios for L-glucose with the model described in 

Chapter 3 a plasma concentration curve was first determined after single ip injection in 

non-nephrectomised animals at both P18 and P38. This showed that similar to inulin 

and sucrose (see Figure 3.2), the plasma concentration for L-glucose increased rapidly 
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and then gradually fell over time at both ages (see Figure 4.1). The changes in steady-

state CSF/plasma and brain/plasma ratios for radioactive markers with age are shown in 

Figure 4.2. Ratios for sucrose were consistently higher than for inulin at all ages 

examined. Sucrose CSF/plasma ratios fell from 59.1 ± 2.9% (mean ± SEM) at P6 to 6.2 

± 0.9% at P65 and inulin ratios decreased from 29.7 ± 1.4% at P6 to 1.3 ± 0.2% at P65. 

Brain/plasma ratios for sucrose were reduced from 15.9 ± 0.8% to 4.0 ± 0.2% between 

P6 and P65 whereas inulin ratios declined from 9.5 ± 0.7% to 1.4 ± 0.1% over the same 

time. Ratios for the smaller molecule L-glucose were higher than inulin and sucrose at 

corresponding ages. There was a significant reduction in steady-state CSF/plasma and 

brain/plasma ratios for L-glucose between P18 and P38. The steady-state CSF/plasma 

ratios decreased significantly from 35.5 ± 1.9% at P18 to 14.2 ± 0.3% at P38 (p<0.01). 

In a similar way the brain/plasma ratios at 3 hours were reduced from 13 ± 1.0% at P17 

to 7.1 ± 0.3% at P38 (p<0.01). Brain/plasma ratios were considerably lower than the 

CSF/plasma ratios at every age for all markers. This is probably due to a different 

distribution space in the brain compared to CSF. Both inulin and sucrose are believed 

to be extracellular markers and will therefore have a much smaller distribution volume 

in brain compared to CSF. 

Short-time course experiments 

CSF/plasma and brain/plasma ratios measured in short-time course experiments (7-24 

min) for both glycerol and L-glucose are shown in Figure 4.3. During this short initial 

period (7-24 min) the plasma concentrations were almost stable and therefore changes 

in CSF/plasma and brain/plasma concentration ratios with time were directly related to 

the rate of uptake into CSF and brain (see Figure 4.1). Analysis of the data points 

showed that uptake into CSF and brain was linear over this time period. This suggests a 

unidirectional uptake into the CNS compartments and the slope of fitted linear 

regression lines could be used to represent the initial uptake rate into either CSF or 
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brain (see Fenstermacher et al., 1981). The regression lines' intercept with the x-axis 

could estimate the initial distribution volume in the brain at P18 and P38. The 

radioactivity due to this volume was deducted from all brain samples in order to obtain 

true concentrations in brain tissue. Differences in the slope of the regression lines were 

compared using a student's t-test (unpaired). L-glucose showed a much faster initial 

rate of uptake into CSF and brain at P18 compared to P38 (Figure 4.3). The slope of the 

regression line for CSF uptake of L-glucose in P18 animals was significantly steeper 

than that of P38 (P=0.01). The difference in uptake into brain between the two ages, 

because of the greater scatter of the data, failed to reach statistical significance 

(P=0.07). The rate of uptake of glycerol into both CSF and brain appeared similar at 

both developmental ages (see Figure 4.3). The slopes of the regression lines for CSF 

uptake of glycerol, and for brain uptake of glycerol were not statistically different 

between the two ages (P=0.97 and P=0.33, respectively). 
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Figure 4.1 

Plasma/injectate concentration ratios for 14C-L-glucose in plasma after a single 
intraperitoneal injection in non-nephrectomised animals determined at P18 (0) 
and P38 (•). The x-axes show the time after the ip injection. The concentration 
in plasma, CSF and brain were divided by the original concentration in the 
injection solution in order to obtain normalised data that were comparable 
between different animals and experiments. The data points were averaged for 
1-5 animals within the same 10-minute interval (0-10, 10-20, 20-30 minutes 
etc). The curves shown are bezier curves computer fitted to data points for 
each age and used to calculate mean plasma concentrations. The 
plasma/injectate concentration ratios reach a peak and then gradually decline 
over time. Note that the plasma concentration appeared to be almost stable 
between 7-25 minutes after the injection. 
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Figure 4.2 

The y-axes show steady-state CSF/plasma (A) and brain/plasma (B) ratios (°/0) 

for 14C-sucrose (•), 3H-inulin (0), and 14C-L-glucose (A) and the x-axes show 

the postnatal age in days. All ratios were measured in non-nephrectomised 

animals, except those at P65 which were measured in animals that had been 

nephrectomised. Both CSF/plasma and brain/plasma ratios declined markedly 

with increasing postnatal age. Brain/plasma ratios were also consistently lower 

than CSF/plasma ratios at all ages. Values shown are means (n=3-8) and the 

error bars indicate ± S.E.M. Where no error bars are visible, they are obscured 

by the symbols. 
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Figure 4.3 

The y-axes show CSF/plasma and brain/plasma concentration ratios (%) for 

L glucose (A and C) and 3H-glycerol (B and D) measured in short time 

course experiments after a single ip injection in P18 (•) and P38 (0) 

opossums. The x-axes show the time after injection at which samples were 

collected. Linear regression lines have been fitted to the data points. The slopes 

of the regression lines (the rate of uptake) between P18 and P38 animals were 

compared using a student's t-test. The rate of uptake of 14C-L-glucose into CSF 
in P18 animals was significantly faster than in P38 animals (P=0.01). The rate 

of uptake of 14C-L-glucose into brain at P18 appeared faster than at P38, but the 

difference was not statistically significant (P=0.07). The rate of uptake of 3H-

glycerol into CSF and brain appeared similar both at P18 and P38 (P=0.33 and 

P=0.97,respectively). 
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Discussion 

Previous studies in rats and sheep have shown that the penetration of lipid insoluble 

molecules into brain and CSF is higher in early development and decreases with age 

(Ferguson and Woodbury, 1969; Dziegielewska et al., 1979; Habgood et al., 1993). The 

present study confirms earlier results, and shows that sucrose and inulin CSF/plasma 

ratios fell approximately tenfold from P6 to P65, and brain/plasma ratios about fivefold 

over the same time span. Ferguson and Woodbury (1969) reported much higher steady-

state ratios in rat embryos than those presented in this study (CSF/plasma ratio for 

sucrose and inulin was 88% and 76% at E17, compared with 59% and 29% at P6 in this 

study). In similar experiments during postnatal development in the rat by Habgood et al. 

(1993), much lower ratios were reported. In both these studies neonates or pregnant 

females were nephrectomised and given an ip injection of markers in order to achieve a 

stable plasma concentration. Ferguson and Woodbury (1969) found that CSF/plasma 

and brain/plasma ratios did not reach a plateau until 16-24 hours after the injection or in 

some cases the ratios were still increasing at 24 hours. Steady-state was defined by little 

change in the ratio and no effort was made to investigate whether the plasma or CSF 

concentrations were stable throughout the whole 24 hours. Habgood et al. (1993) 

showed in neonatal rats that a plateau in plasma concentration was obtained after 2-3 

hours, thereafter the plasma level gradually declined. This gradual decrease in plasma 

concentration probably explains the high steady-state ratios and also the long time until 

steady-state was achieved in the study by Ferguson and Woodbury (1969). The steady-

state experiments for sucrose and inulin showed a large decrease in steady-state ratios 

during development (see Figure 4.2). This has been shown before in other species 

(Ferguson and Woodbury, 1969; Dziegielewska et al., 1979; Habgood et al., 1993) but 

the explanation for this is still debatable. As has been discussed before in Chapter 3, the 
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most likely explanations are: 

a) a decrease in the permeability of exchange surface areas 

b) an increase in CSF turnover rate 

c) a decrease in area of exchange surfaces 

d) a decrease in blood flow to exchange surfaces 

These are discussed separately below. 

Decrease in permeability of the brain barriers 

One possible explanation for falling ratios with age could be a reduced rate of entry 

across the brain barriers during development. One of the distinct structural features of 

the mature brain barriers is the presence of complex tight-junctions in endothelia of the 

brain blood vessels and epithelia of the choroid plexus (Brightman and Reese, 1969). To 

what degree there are changes in the structure of the tight-junctions during development 

is still debatable (for more detailed discussion see Chapter 1). Reports showing complex 

tight-junctions from the first blood vessels that invade the brain (Mollgard and 

Saunders, 1975; Bauer et al., 1993) have been published as well as papers showing a 

more gradual change in the structure of the junctions (Stewart and Hayakawa, 1987). 

Nevertheless, as has been discussed before, there is a clear reduction in the penetration 

of lipid insoluble compounds after birth in the rat (Ferguson and Woodbury, 1969; 

Habgood et al., 1993) when the endothelial tight-junctions already show a mature form 

(Kniesel et al., 1996). This suggests that the development of tight-junctions is not the 

determinant of the changes in penetration of markers with age. Other explanations for 

the decline in permeability with age have been proposed to be due to a decrease in 

transcellular transport in vesicles (Xu and Ling, 1994) or different tubulo-canicular 
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structures (Lossinslcy et al., 1986; Balslev et al., 1997a). Several authors have proposed 

that the penetration of lipid insoluble molecules into CSF is by unrestricted diffusion 

(Felgenhauer, 1974; Dziegielewska et al., 1979; Habgood et al., 1993). This means that 

larger molecules are not more restricted than smaller ones; instead it is the diffusion 

capacity of the molecule which is the deciding factor. A smaller molecule will penetrate 

faster because of its higher diffusion capacity. Habgood et al. (1993) found a parallel 

decrease in CSF/plasma ratios with age for inulin and sucrose and an absence of any 

increase in the slope of curves between diffusion coefficient (D37) and steady-state 

CSF/plasma ratios. It was therefore suggested that there is change in 'pore' numbers 

rather than 'pore' size during development (Habgood et al., 1993). These 'pores' are 

morphologically uncharacterised structures that form an aqueous pathway between 

blood and CSF for water soluble molecules. In contrast, lipid soluble solutes will cross 

the blood-CSF interface rapidly in a non-selective way and newly formed CSF will 

therefore have the same concentration as in the plasma. 

Increase in CSF turnover 

A decrease in CSF/plasma steady-state levels of markers could also be a reflection of an 

increase in CSF sink, which is the process whereby CSF solutes are diluted by the 

continuous production of CSF (Davson and Segal, 1969). CSF is produced mainly by 

the choroid plexus, which is situated in the roof of each ventricle (Johanson, 1988). The 

detailed process of CSF production will not be discussed here but it involves Na+  and 

HCO3" being actively transported by the epithelial cells from blood to CSF (Speake et 

al., 2001). This creates an osmotic force for water molecules to rapidly pass from 

plasma to CSF, whereby CSF is approximately isoosmolal to plasma (Johanson, 1995). 

The CSF production generates a flow through the ventricles, spinal canal and 

subarachnoid space, which results in drainage of CSF through the arachnoid villi in the 

arachnoids (see Figure 1.1). The arachnoid viii are believed to work like pressure 
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valves whereby ventricular pressure is not augmented even if CSF production increases 

(Johanson, 1995). The fluid is formed across a selective choroidal epithelial layer and 

drained out of the system by bulk flow across the non-selective arachnoid villi 

(Johanson, 1989). The newly formed fluid will dilute any substance in the CSF and the 

effect is often referred to as the CSF sink (Saunders and Dziegielewska, 1997). 

Reproducible measurements of the CSF production rate have proven difficult. Most 

methods are quite invasive and have given different estimates of CSF production (Cserr, 

1965; Dudzinski and Cutler, 1974; Nakamura and Hochwald, 1983). The most accurate 

estimations involve determining CSF production by dilution rate of a substance from 

the CSF. The marker substance needs to be as inert as possible without escaping from 

the CSF, therefore molecules such as inulin and larger dextrans have been used 

(Rothman et al., 1961; Johanson and Woodbury, 1974). The production rate is measured 

in gl/minutes, however, when comparing different animal species it is more useful to 

express it as the rate of newly formed fluid to the whole volume of CSF. This is called 

the CSF turnover and in adult humans has been estimated to be around 0.25 % per 

minute (Johanson, 1995). 

Even more of a technical challenge is to estimate the CSF production during 

development due to the small size of the brain. This might be the reason why it has only 

been attempted in neonatal rats and fetal sheep with discrepancies between the reported 

results (Bass and Lundborg, 1973; Evans et al., 1974; Johanson and Woodbury, 1974; 

Fossan et al., 1985). There are, however, similar trends in the results of those papers: 

The CSF volume production clearly does increase during development in both species. 

When this is related to CSF volume and expressed as CSF turnover, there is no 

significant increase during development in sheep (Evans et al., 1974). Studies in 

neonatal rats by Bass and Lundborg (1973) and Johanson and Woodbury (1974) 
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reported an increase in the CSF turnover with age, however, the exact numerical value 

was quite different between the two studies. An increase in the CSF turnover should 

also reduce the time for substances to reach a steady level in the CSF. Habgood et al. 

(1993) noticed no change in the time to reach steady-state in rats between P2 and P20, 

when there was a marked decrease in steady-state ratios for both inulin and sucrose. 

In the adult, brain/plasma ratios will also be affected by an increase in CSF sink since 

there is a free exchange of solutes between the extra cellular fluid (ECF) and CSF, 

however, the situation is more complicated than in the CSF. The brain ECF volume has 

been estimated to be 15-20% of the adult brain, which makes the ECF volume 

approximately the same or slightly larger than the CSF volume (Johanson, 1993). 

Considering this, it is more likely that brain composition influences CSF more than the 

other way round in the adult. Therefore the CSF turnover is only effective in removing 

solutes from the brain when they enter the brain via the blood-brain barrier at a slow 

rate. The effect has been demonstrated by experiments where the CSF production has 

been reduced showing increased steady-state levels in brain (Davson and Segal, 1969). 

The relative importance of CSF turnover on CSF and ECF has been shown using 

dilution rates of protein from CSF and ECF. The clearance rate from CSF is faster than 

from ECF (Johanson, 1993). This might show a physiological role of the CSF turnover 

whereby it constitutes a way for polar substances produced in the brain to be transported 

out from the CNS (Johanson, 1993). The relative importance between CSF and ECF 

may be quite different in the developing compared to the adult brain. In younger 

animals the choroid plexus and CSF volume are proportionally larger to the size of the 

brain (Johanson, 1995). Interestingly, when the CSF turnover is related to brain size 

there is a clear reduction in the CSF 'sink' effect on the brain with age (Saunders, 

1992). If the turnover rate of CSF compared to brain size is lower in older animals this 

should, in contrast to the results of this study, increase the brain ratios during 

development. It therefore seem unlikely that an increase in the CSF sink is responsible 
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for the age related decline in steady-state ratios. 

Decrease in exchange surfaces and blood flow 

As mentioned before it has been suggested that the greater penetration of lipid insoluble 

compounds during development could be a result of a larger number of 'pores' available 

for penetration across the blood-CNS interface. This could be brought about by an 

increased surface area for exchange such as an augmented capillary bed. Morphological 

studies of brain capillaries have shown that capillary density increases during 

development (Caley and Maxwell, 1970; Dambska, 1995). These studies suggest that it 

is unlikely that an increase in exchange surface area could explain higher steady-state 

ratios of lipid insoluble molecules in the developing CNS. One of the factors 

influencing uptake rate is blood flow. The entry of a substance, which has high 

permeability across the brain barriers, is mostly restricted by the delivery (blood flow) 

to the exchange surfaces. However, sucrose and inulin, being lipid insoluble molecules 

(see Table 2.2), enter the CSF and brain at a slow rate and will therefore be affected 

very little by changes in the blood flow. 

Nature of the decrease in steady-state ratios 

The short-term uptake experiments were undertaken in order to more precisely examine 

the factors that could explain changes in steady-state ratios for markers with age. As 

mentioned before, the factors affecting steady-state ratios of small lipid insoluble 

molecules are permeability, CSF turnover rate, blood flow, and vascular surface area. 

The influence of CSF turnover was considered negligible in short-term experiments 

since the uptake rate was measured during a short time space in which the CSF 

production must have been very small. It was necessary to use a marker (L-glucose) that 

behaves passively and which is small enough to penetrate into the brain and CSF to a 
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measurable extent during the short time of the experiments. In addition to L-glucose, the 

uptake was measured of the moderately lipid soluble molecule glycerol (see Table 2.2). 

The radioactive labelling of glycerol in plasma and CSF was checked in samples 30 min 

after injection (see Table 2.3). This showed that 71% in blood and 80% in CSF of 

labelling was still on glycerol. Almost all the rest was on more water soluble 

compounds. Any label on water would have been rapidly and widely distributed 

throughout the whole body water and would therefore influence the CSF/plasma and 

brain/plasma ratios very little. That the proportion of radioactive label still on glycerol 

was higher in CSF than blood indicates that there was little label on compounds that 

penetrate from blood to brain at a higher rate than glycerol. Because glycerol is 

relatively lipid soluble, it could be expected to readily penetrate the cell membranes of 

endothelial and epithelial cells. The uptake rate should therefore not be affected by any 

possible tightening of the brain barriers such as a change in tight-junctional structure. It 

could, however, be expected to be influenced by a change in blood flow or exchange 

surface area. The initial uptake rate into brain and CSF for glycerol did not change 

significantly between P18 and P38. This indicates that there is little change in either 

blood flow or surface area for exchange between P18 and P38. In contrast to glycerol, 

the uptake rate for L-glucose decreased both into the CSF and brain. It can therefore be 

concluded that there is a significant decrease in the permeability of the brain barriers to 

L-glucose with age. This can to a large extent, if not all, explain the decrease in steady-

state ratios between P18 and P38 for L-glucose and probably also the striking decline in 

ratios for inulin and sucrose with age (see Figure 4.2). 
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Introduction 

There has been a lack of low molecular weight tracers available that can be visualised 

both for light and electron microscopy. Markers that have been previously used such as . 

FIRP, ferritin, and cytochrome c are large proteins that are difficult to quantitate in low 

concentrations. The only small molecular sized tracer that has been used in the past is 

lanthanum, however, it is probably not suitable for in vivo experiments because of its 

toxicity (Milhorat et al., 1975). Molecules such as inulin and sucrose, which are easy to 

quantitate because they can be radiolabelled, are water soluble, and will therefore be 

washed out of the material when tissue is processed. The only way to localise these 

molecules would be to quick-freeze the material and visualise them using 

autoradiography. However, this technique does not give high enough resolution to 

determine the intracellular distribution. In order to prevent washing out of molecules 

from the tissue, tracers need to be immobilised. This is achieved by fixation in which 

proteins and lipids crosslink, thereby preserving cell structure. Suitable tracing 

molecules need to be able to react with the fixation agents (eg. aldehydes) and be 

immediately attached to their surroundings. For the present study an inert tracer was 

needed that could be expected to cross the brain barriers in a manner similar to inulin 

and sucrose and be of comparable size. Biotin-dextrans have been extensively used for 

axonal tracing (for review see Kobbert et al., 2000) but their properties also make them 

appropriate low molecular weight tracers across the brain barriers. Dextrans are 

hydrophilic polysaccharides and have favourable characteristics for usage as an external 

tracer such as high water-solubility, they are inert in vivo and can be manufactured in a 

variety of different molecular weights. Their unusual a-1,6-polyglucose linkages are 

resilient to cleavage by most enzymes and they will therefore remain structurally intact 

for a long time. Lysine residues can be incorporated into the dextran and this makes it 

aldehyde fixable, a characteristic that was essential for the present study. Moreover, 

biotin can be conjugated to dextrans and this will make the molecule visible using 

avidin reactions. Therefore, a 3000 molecular weight, lysine fixable, biotin-dextran 
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(BDA-3000, Molecular Probes) was chosen as a small, lipid insoluble tracer. However, 

the molecular weight of the dextran is not uniform, and each sample of BDA-3000 

contains a range of different sized biotin-dextrans with an average molecular weight 

close to 3000 (technical information provided in the Molecular Probes handbook for 

product number D-7135). 

Experiments described in this Chapter were undertaken in order to visualise the route 

for small lipid insoluble molecules across the brain barriers, using BDA-3000, in the 

course of development. It was first necessary to establish whether BDA-3000 was 

crossing the brain barriers in a similar way to other small lipid insoluble molecules of 

comparable sizes. This was achieved by comparing BDA-3000 uptake into CSF with 

that of sucrose, inulin and L-glucose. BDA-3000 seemed to behave in a similar passive 

manner to these compounds (see Figure 5.9) and it was therefore further used in tracer 

experiments where it was visualised both at the light and electron microscopic levels. 

Preliminary experiments suggested that BDA-3000 was transferred across the blood-

CSF barrier (choroid plexus) and then into brain tissue and did not seem to escape out 

of blood vessels inside the brain. In order to compare morphological aspects of the 

choroid plexus with the transfer of radioactive markers and BDA-3000, the structure of 

the choroid plexus was examined during development using both the light and electron 

microscope. As has been described in Chapter 1 the choroid plexus is the site for blood-

CSF barrier mechanisms (see Figure 1.1). The structural basis of this barrier is believed 

to be tight-junctions present between adjacent epithelial cells that have been shown to 

stop the paracellular movement of tracers from blood into the CSF in adult animals 

(Becker et al., 1967; Brightman, 1968; Milhorat et al., 1973; van Deurs, 1978). Several 

studies have proposed that structural changes of tight-junctions are responsible for the 

decrease in brain barrier permeability during development (Stewart and Hayakawa, 

1987; Kniesel et al., 1996), however, there are also studies showing that tight-junctions 

with mature appearance are present both at the blood-brain and the blood-CSF barrier 
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early in development (Tennyson and Appas, 1968; Mollgard and Saunders, 1975; 

Mollgard et al., 1979; Bauer et al., 1993; Xu and Ling, 1994). Other studies have 

suggested that the permeability change is caused by a decrease of transfer in vesicular 

structures or other subcellular organelles (Mollgard and Saunders, 1977; Lossinslcy et 

al., 1986; Xu and Ling, 1994). These studies have been reviewed in detail in Chapter 1 

and possible explanations for the somewhat contradictory results of these investigations 

have also been given. The electron microscopic study in this thesis focused on 

investigating the presence and appearance of tight-junctions, vesicles and other 

subcellular structures that have been proposed to be of importance for the transfer of 

molecules from the blood into CSF in the choroid plexus. The more general 

ultrastructural development of the choroid plexus was also examined in order to assess 

the opossum as a model to study the mammalian choroid plexus. This was important to 

assess since the opossum has been reported to show a difference in choroid plexus 

development from other mammals in that it does not seem to have a stage when the 

choroid plexus epithelial cells store large amounts of glycogen (Dziegielewska et al., 

2001). 

Methods 

Validation of BDA-3000 as a tracer for small lipid insoluble 
molecules 

To confirm that BDA-3000 is a suitable marker for small lipid insoluble molecules, 

CSF/plasma ratios were measured for a structurally similar lysine fixable 3000 

molecular weight rhodamine dextran (D-3308, Molecular Probes). D-3308 was used 

instead of BDA-3000 since it is fluorescent and can therefore be measured 

quantitatively. A group of opossums pups aged P16 (n=9) were injected ip with D-3308 

(0.7 mg g body weight in sterile 0.9% NaCl solution) and samples of plasma and CSF 

were collected after three hours. For more detailed description of methods such as the 
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collection of CSF and plasma see Chapter 2. The amount of fluorescence in each sample 

was measured with an Olympus BX50 fluorescence microscope attached with a PM30 

photomicrograph unit. Samples of plasma and CSF were transferred to 5 pi glass 

capillaries and mounted on glass slides. At x10 magnification the exposure time (ET) 

was recorded for the centre of the glass capillary. CSF/plasma ratios were calculated as 

ETplasmaiETcsF (the ET is inversely related to the concentration in the sample, see Figure 

5.1). The accuracy of measuring ratios this way was confirmed by comparison with 

ratios obtained using absorbance spectrophotometry. The absorbance of serial dilutions 

of D-3308 in saline was determined by a spectrophotometer at 518 nm and ET was 

recorded for the same solutions. Ratios calculated using absorbance spectrophotometry 

between the different solutions were almost identical to ratios calculated from the ET 

readings (Table 5.1). The influence of media on ET readings was also examined; similar 

concentrations of D-3308 in saline, CSF or plasma all gave similar ET readings. That 

this was a reliable method for determining concentrations in samples was further 

confirmed by serial dilutions of D-3308 in saline; this showed a linear relationship 

(R=0.996) between ET and the concentration of D-3308 (Figure 5.1). The major 

advantage of measuring ratios with a fluorescence microscope is that very small sample 

volumes can be measured (1-2 gl) undiluted in a glass capillary. This was critical in 

young pups where only small volumes of CSF could be obtained (<10 pi); this would 

have been undetectable using conventional absorbance spectrophotometry. 
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Table 5.1 

Measurements of solutions Concentration ratios 

Solution 
Absorbance 
at 518 nm 

Exposure 
time (sec) 

Ratios 
Absorbance 

Spectrophotometry 
Exposure 

time 

A 

B 

C 

0.304 

0.090 

0.025 

4.85 

15.3 

54.7 

B:A 

C:A 

C:B 

0.296 

0.082 

0.278 

0.317 

0.089 

0.280 

On the left are measurements of absorbance and ET on three dilutions of D-

3308. On the right are concentration ratios calculated between these solutions. 

Note that the ET for a sample is inversely related to its concentration and the 

concentration ratio between sample B and A is calculated by dividing the ET of 

sample A by B. Both methods gave similar ratios, which shows that exposure 

time readings is an accurate way of determining the concentration of D-3308 in 

a sample. 

In order to check that the brain uptake of D-3308 and BDA-3000 were similar, their 

distribution in brain sections was compared. A P7 opossum was injected simultaneously 

with both D-3308 and BDA-3000 at the same dose (0.7 mg g -1  body weight) into the 

intraperitoneal cavity, and the brain fixed in Bouin's fixative after 30 min. D-3308 was 

detected directly using filters for rhodamine and BDA-3000 was visualised with the 

diaminobenzidine tetrahydrochloride (DAB) reaction (see below and Appendix A and B 

for more detailed description of histochemical methods and reagents used). 
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ET -1  

Figure 5.1 

Standard curve for D-3308. The x-axis is the concentration (mg/ml) of D-3308 

and the y-axis is ET-1  (note that the ET reading is inversely related to the 
concentration). A linear regression line was fitted to the data with a R-value of 

0.996. 

Light Microscopy 

Tissue preparation 

Litters of opossum pups at PO (n=4), P5 (n=2), P8-P9 (n=6), P13 (n=2), and P30 (n=2) 

were detached from the mother and then injected ip with the BDA-3000 (0.7 mg g -1  

body weight in a sterile 0.9% NaC1 solution). Five to 90 minutes after the injection, 

0.2 - 

0.1 - 
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animals were killed with an overdose of inhaled halothane (Zeneca) and brains 

immediately fixed. For technical reasons it was not possible to fix all brains in the same 

manner. For animals aged between PO and P13 brains were dissected out and 

submerged in Bouin's fixative. Animals at P30 were first perfuse-fixed with 

paraformaldehyde and then the brains were dissected out and submerged in Bouin's 

fixative. Paraformaldehyde was made up freshly as a 4 % solution in 0.15M phosphate 

buffered saline (PBS; pH 7.4) and kept at 4°C until just prior to perfusion. The right 

atrium was cut open and the fixative was delivered through propylene tubing into the 

left heart ventricle by a motor driven syringe pump. The delivery rate was set at half the 

animal's predicted total blood volume per minute and perfusion stopped after 10 

minutes. The total blood volume was estimated as 10% of the weight of the animal. In 

order to clear blood from the vasculature, a PBS solution containing heparin (10 

units/m1) was perfused for the first minute before switching to the fixative. After 24 

hours in Bouin's fixative, brains were dehydrated in serial solutions of ethanol (70% to 

100%) and cleared in chloroform. After embedding in paraffin wax, serial sagittal or 

coronal sections of brain tissue (5 p,m) were cut and transferred to glass slides. 

Detection of BDA-3000 in paraffin sections 

Sections were dewaxed in xylene and rehydrated in serial ethanol solutions (100% to 

70%). This was followed by incubation in peroxidase blocker (Dako) followed by 

protein blocker (Dako) for 30 min each at room temperature. An avidin-horseradish 

peroxidase complex was used to detect biotin using a Vectastain Elite ABC kit (Vector). 

Sections were then processed with the diaminobenzidine tetrahydrochloride (DAB Kit, 

Dako) reaction for about 5-10 min. After a 10 min rinse in tap water the sections were 

dehydrated in serial ethanol solutions (70% to 100%), cleared in xylene and mounted in 

DPX and left to dry overnight in a low heat oven (40°C). Control staining was 

performed on sections obtained from animals not given a BDA-3000 injection. For 
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detailed protocol see Appendix A and B. 

Transmission electron microscopy 

General morphology of choroid plexus 

Choroid plexus tissue from opossums at PO-P1 (n=4), P13 (n=4) and P64 (n=2) was 

prepared for conventional electron microscopy in order to investigate its ultrastructure 

during development. Fresh 2.5 % glutaraldehyde solution in 0.1M sodium-cacodylate 

(Sigma) buffer adjusted to pH 7.3 was used as the primary fixative. Animals were killed 

by an overdose of halothane and the whole brain was carefully removed and submerged 

in fixative in a new dish for further dissection. Care was taken not to expose tissue to 

air. Holes through the cortex into the lateral ventricles were immediately cut in order to 

fix the choroid plexus as quickly as possible. The choroid plexuses in the 4th and lateral 

ventricles were removed with a small piece of brain tissue connected to it in order to 

facilitate the orientation and handling of the tissue. Larger pieces of the choroid plexus 

were sometimes cut into several smaller fragments so they would be of an appropriate 

size. Tissue was post-fixed in the same fixative for 2-3 hours at 4°C. Tissue was rinsed 

in cacodylate buffer for 30 min and postfixed in a 1:1 mixture of 4% osmium tetroxide 

solution and 0.05 M potassium ferrocyanide in cacodylate buffer for 45 minutes. After 

rinsing in cacodylate buffer for 30 minutes, tissue was stained en bloc in an aqueous 1% 

uranyl acetate solution for 30 minutes. Tissue was then dehydrated in serial ethanol 

solutions (50 to 100%), cleared in propylene oxide and embedded in Epon 812. Detailed 

procedure of protocol can be found in Appendix C. 

BDA-3000 localisation in choroid plexus 

Opossum pups at P1 (n=3) and P13 (n=3) were injected ip with BDA-3000 (0.7 mg/g 

body weight) and choroid plexus tissue was fixed 30-40 minutes after the injection for 

electron microscopy. A 2.5 % glutaraldehyde solution in phosphate buffered saline (0.1 
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M) adjusted to pH 7.3 was made up freshly and used as the primary fixative. Animals 

were killed by an overdose of halothane and choroid plexus tissue was dissected out in 

the same manner as described above. The tissue was post-fixed in the same fixative for 

2-3 hours at 4°C. The tissue was washed in buffer for 30 min and permeabilised in a 

50% Ethanol PBS solution for 30 min. After rinsing in buffer for 30 min, the tissue was 

incubated in an avidin-horseradish peroxidase complex (Vectastain Elite ABC kit, 

Vector) for 60 min. The tissue was washed in buffer and processed with the DAB 

reaction (DAB kit, Dako) for 2-3 min. The reaction time was kept as short as possible to 

minimise precipitation. Tissue was rinsed in PBS and postfixed in a 1:1 mixture of 4% 

osmium tetroxide solution and 0.05 M potassium ferrocyanide in PBS buffer for 45 

minutes. After rinsing in PBS for 30 minutes, the tissue was stained en bloc in a 1% 

uranyl acetate solution for 30 minutes. The tissue was then dehydrated in serial ethanol 

solutions (50 to 100%), cleared in propylene oxide and embedded in Epon 812. Control 

tissue was obtained from animals not given an injection but otherwise treated in the 

same way. Detailed procedure of protocol can be found in Appendix D. 

Sectioning 

Semi-thin sections (0.5-1 gm) were cut and stained with toluidine blue and examined 

under the light microscope. Ultrathin sections were cut with an Ultratome LKB Nova 

and transferred to 200, 300 mesh grids, or butvar coated single slot grids. The 

interference colour of the thin-sections ranged from silver to pale gold. Thin-sections 

for general morphology were contrasted in 4-5% aqueous solution of uranyl acetate (30 

min) followed by lead citrate (5-10 min), whereas thin-sections that were stained for 

BDA-3000 were not contrasted. Sections were examined with a CM 100 Phillips 

electron microscope at 60 or 80 KY. 
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Results 

Structural development of the choroid plexus 

For the interpretation of BDA-3000 distribution, the morphological study of the choroid 

plexus is presented first. The light and electron microscope were used to study the 

structure of the lateral and 4th ventricular choroid plexuses at P1 and P13, and in young 

adults at P64. The main aim of the investigation was to study structures that may be 

relevant for the permeability of the blood-CSF barrier that is situated in the choroid 

plexus. Structures such as junctional complexes between cells that are believed to be 

determinants of the paracellular movement of molecules, and vesicles that may be 

significant for trancytosis of exogenous material were therefore studied in detail. 

A general description of the choroid plexus structure in the opossum will be presented 

first. The choroid plexus can be divided into the stroma, which is the core of the choroid 

plexus and the epithelial cells that form a single layer of cells outside the stroma. The 

electron microscopic study showed that the stroma contained blood vessels that were 

fenestrated and that outside of these, between the blood vessels and the epithelial cells, 

connective tissue and few interspersed fibroblast cells were present. The fenestrations 

had a width of about 50 nm which is similar to what has been reported in other species 

(Brightman and Kaya, 2000). The fibroblast cells formed finger-like projections within 

the extracellular matrix. The epithelial cells, which rested on a basement membrane, had 

a centrally located nucleus and a brush border at the ventricular surface with microvilli 

and also with occasional tufts of cilia. The microvilli had the appearance of club-like or 

clavate projections, and the cilia had 9 peripheral doublets and 2 centrally located 

microtubules (Figure 5.5), which is consistent with what has been described in other 

mammals (Dohrmann and Bucy, 1970; Dohrmann and Herdson, 1970; Davis et al., 

1973). Resting on the microvilli were occasional cells resembling the so-called 

epiplexus cells (also referred to as Kolmer cells) that have been reported in other 
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species (Sturrock, 1979; Zaki, 1981; Peters et al., 1991; Lu et al., 1993 and others). 

These cells had abundant projections, mostly in close contact with the microvilli and 

numerous vacuoles. The cytoplasm of the epithelial cells contained mitochondria, 

vesicles, rough and smooth endoplasmic reticulum, Golgi apparatus and a few dense 

bodies, which presumably contained lipids that stained dark because of osmium. A 

minority of the epithelial cells appeared to have darker cytoplasm, however, the shape 

and organelle organisation of these darker cells appeared similar compared to other 

cells. Similar "dark and light cells" have been reported in other mammalian species (see 

Discussion for references) 

The choroid plexuses appear in the ventricles in the following order: 4th ventricular 

choroid plexus appears first, followed by that in the lateral ventricles; both these 

choroid plexuses are present at birth in the opossum, although the lateral ventricular 

plexuses are only rudimentary. The 3rd ventricular choroid plexus appears around P3- 

P4. In all the ventricles, the epithelial cells of the choroid plexuses show a similar 

morphological development that can be divided into three stages. The choroid plexus 

cells first have an elongated shape forming a pseudostratified layer. In the second stage 

they have a columnar form and in the third stage a more cuboidal shape. Under the light 

microscope the epithelial cells of the 4th and lateral ventricular choroid plexus appeared 

to be in different stages of development even in the same animal (see Figure 5.2). This 

was confirmed in the electron microscope which showed that a majority of the epithelial 

cells in the lateral ventricle had a pseudostratified appearance whereas the epithelial 

cells in the outer most parts of the choroid plexus villi had a columnar shape at birth 

(see Figure 5.4). In the 4th ventricle most of the epithelial cells had a columnar shape 

except for those closer to the root of the choroid plexus. However, the cell organelle 

structures were similar in all cells with few interspersed organelles throughout the 

cytoplasma and many nuclear invaginations. Figure 5.4 shows the comparison of a 

pseudostratified epithelium from the root of the 4th ventricular choroid plexus with a 
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columnar-shaped epithelia from the outer parts of the same choroid plexus. At P13 the 

epithelial cell at the root of the choroid plexuses in both ventricles still had a somewhat 

pseudostratified appearance. At P13 and P64, the epithelia appeared very similar in both 

the lateral and 4th ventricular choroid plexus (see Figure 5.4). 

There were several ultrastructural changes of the choroid plexus during development. In 

the stroma, the endothelial wall consisted of wider segments with numerous vesicles 

and other cell organelles, and thinner sections with fenestrations. In animals at PO, 

normally only a small part of the endothelial wall contained thin segments exhibiting 

fenestrations whereas at P64 most of the endothelial wall was thin with a more uniform 

diameter exhibiting numerous fenestrations (see Figure 5.6). The individual 

fenestrations had a similar length (around 50 nm) and thickness in all animals (see 

Figure 5.6). In the endothelial wall many vesicles were present at all ages. At the 

luminal side of the intercellular cleft of the endothelial cells, zonulae occludent es-like 

junctions were present at all ages studied. Outside the blood vessels, the extracellular 

matrix became richer in connective tissue with age. As has been described above, the 

epithelial cells in the choroid plexus change in shape during development. As seen in 

Figure 5.3 the epithelial cells at PO formed a pseudostratified layer with elongated 

epithelial cells, sometimes with bulbous structures. The pseudostratified epithelium at 

PO formed a very uneven surface at the ventricular side, which changed into a layer with 

more uniform columnar cells with convex ventricular surface at P13, and changed 

further into a layer of almost cuboidal cells with flat or somewhat curved apical cell 

surface at P64. A prominent characteristic of the epithelial cells at PO was the deep 

invaginations of the nuclei. In some sections this gave the appearance that the nuclei 

consisted of several lobes. At P13 the nuclei still had numerous invaginations, although 

each individual invagination was smaller than at PO, and at P64 the nuclei appeared 

spherical with only occasional invaginations. At PO most epithelial cells had thin 

microvilli that formed short projections into the ventricle and a minority of cells lacked 
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microvilli and had a smooth ventricular cell surface. The microvilli progressively 

formed longer and more uniform projections between P13 and P64 so that the microvilli 

had a length of 2-3 gm at P64 (see Figure 5.5). Interspersed tufts of cilia were common 

at the epithelial surface at all ages. It was difficult to conclude whether the number of 

cilia changed during development in thin-sections since it is not easy to know from 

which epithelial cell individual cilia originated. It would require a very large amount of 

serial sectioning in order to estimate the true number of cilia. It is also difficult to judge 

whether the length of cilia changed with age, however, the cilia exhibited the normal 

9+2 microtubular arrangement at all ages (see Figure 5.5). During development, the 

cytoplasma became more packed with different cell organelles, which also became 

more polarised mainly to the apical side. The most noticeable change was the increase 

in mitochondrial content of the cytoplasm; this increase was less prominent between 

birth and P13 than between P13 and P64. The mitochondria were distributed throughout 

the cell but were more common in the apical part (see Figures 5.3-5.5). Not only did the 

number of mitochondria increase with age but also the size of individual mitochondria 

became bigger (see Figure 5.5). The shape of the Mitochondria changed from small, 

with a round or oval shape at PO, to large with an elongated or crescent shape in the 

young adults (P64). As cells became more polarised there was also an increase in other 

organelles such as rough endoplasmic reticulum, which tended to be mostly numerous 

towards the apical side of the cells. Small and large vesicles were present in the 

epithelial cells at all ages. The larger vesicles were especially abundant in the region 

towards the apical and intercellular surfaces. No apparent difference in the number of 

vesicles was found between the three ages. Large clear vacuole like structures (up to 2 

gm) could be found in a minority the epithelial cells at PO (see Figure 5.4). These 

structures were large enough to be visible under the light microscope in semi-thin 

sections. In the electron microscope it was revealed that a single membrane 

encapsulated the structures and it can therefore be assumed that they are intracellular 

structures. These structures were more abundant in the epithelial cells in the 4th 
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ventricle compared with those of the lateral ventricle. Similar structures could be found 

at P13, however, they were less frequent and with a smaller diameter. The large size of 

these vacuoles is probably an artefact. 

In all sections studied, a junctional complex was always present towards the apical side 

between epithelial cells. Within the junctional complex, the cell membranes of 

neighbouring cells were in close contact with each other at certain points. Using the 

goniometric tilting device (up to 20 0  tilting) it appeared that these contact points were 

similar to tight-junctions described in the choroidal epithelium of other species 

(Tennyson and Appas, 1968). The tilting device helps to orientate the membranes in 

parallel to the electron beam resulting in a sharper view of the apposing membranes. 

The interepithelial cleft was often convoluted and it was therefore not always possible 

to view the junctional complex along its whole length in one section (see Figure 5.7). In 

sections where the cell membranes were visible below the apical surface it was found 

that several tight-junctions were present within the junctional complex. There was no 

noticeable difference in the appearance of the tight-junctions or the number of tight-

junctions within the junctional complex between the three ages studied. Below the 

junctional complex, cisternal structures could often be seen that were in close contact 

with the cell membranes in adjacent cells. These cisterns were positioned in parallel to 

the cell membranes. At PO several cisterns often formed a row below the apical 

junctional complex whereas only single cisterns were found interspersed along the cell 

membranes at older ages (see Figure 5.8). 
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Figure 5.2 

H&E stained paraffin sections of the fourth ventricular choroid plexus at PO (A), 

and lateral ventricular choroid plexus at PO (B), P13 (C) and P65 (D) in the 

opossum. Note the difference in the morphology of the epithelial layer in the 

lateral and fourth choroid plexus at birth (A and B). Most of the epithelium in the 

lateral ventricles forms a pseudostratified epithelium at birth whereas most of 

the epithelial cells in the fourth ventricle have a columnar form except for those 

close to the root of the choroid plexus (insert in A). At P13 the epithelial cells 

are simple columnar and at P65 the epithelial cells have a more cuboidal shape 

which is characteristic of the mature choroid plexus. 

Scale bar is 50 pm in A, and 30 pm in B-C and insert in A. 
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Figure 5.3 

Electron micrographs of the epithelial layer in the lateral ventricular choroid 

plexus at PO (A), P13 (B) and P64 (C). The epithelial cells change in shape 

during development from being elongated (cell height 15-20 pm) at birth to short 

(cell height 8-12 pm) and wide in the mature choroid plexus. The epithelial cells 

at P1 formed great protrusions into the ventricles whereas the apical surface of 

the cells was round at P13 and more or less flat at P64. Note that at birth and at 

P13 there were few organelles in the cytoplasm. In contrast, the cytoplasm at 

P64 was very rich in organelles, especially abundant were mitochondria, which 

were concentrated towards the apical side of the cells. The nucleus shape also 

changed from being very lobulated at PO (arrowheads in A), to having small 

invaginations at P13 (arrowhead in B) and changed further to almost spherical 

at P64. 

Scale bar is 5 pm. 
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Figure 5.4 

Electron micrographs of the choroidal epithelium in different parts of the choroid 

plexus at birth (A and B) and at P13 (C and D). A and B show the fourth 

ventricular choroid plexus from the root (A) and from the outer parts of the 

plexus villi (B). A and B highlights the heterogeneity of this tissue at birth when 

some parts formed a pseudostratified layer and others already have formed a 

simple columnar layer. Also compare B with the choroid plexus in the lateral 

ventricle at birth in Figure 5.3. Arrow in A points to an epiplexus cell; these cells 

were commonly observed at all ages. Note the numerous lysosomes in the 

epiplexus cell which suggests it has a phagocytic function. Arrowhead in A 

points to a large vacuole (between 1-3 pm); these were infrequently observed in 

animals at P1 and seemed to be more common in the 4th than the lateral 

ventricular choroid plexus. The enormous size of these vacuoles is possibly an 

artefact. The vacuoles always appeared empty, however, this may be a result of 

tissue processing. C and D show the choroid plexuses from the lateral (C) and 

4th (D) ventricle at P13. These two choroid plexuses appeared similar at this 

age. 

Scale bar is 7 pm in A and B, and 5 pm in C and D. 
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Figure 5.5 

Electron micrographs of the apical side of epithelial cells at PO (A), P13 (B) and 

P64 (C). Several changes in the cell organelles were seen during development. 

The most noticeable difference was the increase in microvilli and mitochondrial 

content with age. The microvilli became longer and more abundant, and the 

mitochondria became more numerous and increased in size during 

development. The endoplasmic reticulum was mostly smooth at PO whereas 

ribosomes were often associated with the ER in the more mature epithelial 

cells. Note also the difference in nuclear shape at different ages. Tufts of cilia 

were situated interspersed on the surface of the epithelia at all ages. To the 

right hand side in B one such tuft can be seen that has been sectioned 

perpendicular to the tuft so that the cilia appear in cross section. Insert in A and 

B show high magnification of cross sections of cilia. At all ages the cilia showed 

the normal 9+2 microtubular organisation. Arrowheads point to vacuole-like 

structures (100-500 nm) that were common at all ages. As seen in B these 

structures sometimes contained vesicles and they therefore have some 

phagocytic function. 

Scale bar is 2 pm in A-C, and 350 nm in insert in A, and 300 nm in insert in B. 
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Figure 5.6 

Electron micrographs of different parts of blood vessels in the choroid plexus at 

P1 (A, C and E) and P64 (B, D and F). The wall of the blood vessels was 

composed of thicker segments with numerous cell organelles, such as 

mitochondria, vesicles and endoplasmic reticulum, and thinner segments with 

numerous fenestrations. The fenestrations appeared as segments of the wall 

without cytoplasm but only thin membrane. At birth, the endothelial cell only had 

a small part of the wall exhibiting fenestrations whereas at P64 almost the 

whole wall was thin with numerous fenestrations. A and B shows the difference 

in the thickness of the blood vessel wall between P1 and P64. The appearance 

of individual fenestrations was similar at all ages with a width of about 50 nm (C 

and D). At the luminal side of the interendothelial cleft a single tight-junctional 

structure was present (arrows in E and F). 

Scale bar is 2 pm in A and B, 250 nm in C and D, 125 nm in E, and 80 nm in F. 
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Figure 5.7 

High-power electron micrograph showing the structural identification of a tight-

junctional strand (arrow). The membranes of adjacent epithelial cells in the 

choroid plexus came together at certain point to form these junctions. The 

arrowheads show two other possible strands. The goniometric tilting device was 

used to obtain a sharper view of the cell membranes and improve the 

identification of such junctional structures. Compare also with Figures 5.6E-F 

which show tight-junctions in endothelial cells of the choroid plexus. 

Scale bar is 100 nm. 
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Figure 5.8 

Electron micrographs showing the interepithelial cleft at P1 (A) and P64 (B), and 

high power electron micrographs of the junctional complexes at P1 (C-D), P13 

(E) and P64 (F). All electron micrographs are from the lateral ventricular choroid 

plexus except for A and C that are from the 4th choroid plexus. A junctional 

complex (zo) was always present at the apical side of the interepithelial cleft at 

all ages studied. Below this complex cisternal structures were often seen in 

close association with the intercellular cleft. These cisternal structures often 

formed a whole row at P1 whereas they were less frequent at P64. The 

structural significance of this difference is unknown. The zonulae occludentes in 

A is shown in high power in D. No noticeable difference could be seen between 

the junctional complexes at different ages (compare C-F). Up to five tight-

junctions were often identified within the junctional complex (arrows). 

Scale bar is 500 nm in A and B, and 125 nm in C-F. 
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Uptake of D-3308 into the CSF and localisation in brain tissue 

The CSF/plasma ratios for D-3308 were compared to ratios obtained for inulin, sucrose 

and L-glucose in order to assess whether D-3308 behaved in a similar passive manner 

across the brain barriers to other lipid insoluble markers. As has been mentioned before, 

several authors have proposed that the penetration of lipid insoluble molecules is by 

unrestricted diffusion (Felgenhauer, 1974; Dziegielewska et al., 1979; Habgood et al., 

1993). Dziegielewska et al. (1979) showed that the concentration in CSF of several lipid 

insoluble markers was related to their diffusion coefficient (D), which can be calculated 

from the Einstein-Stokes radii. Values of D for inulin, sucrose and L-glucose were taken 

from Normand et al. (1971) and were multiplied by a factor of 1.1924 in order to 

transform values from 25°C to 32°C (D32), which is the body temperature in the 

Monodelphis (Saunders et al., 1992). The D value for D-3308 was estimated from its 

molecular weight. The D25 values for a range of molecules given by Normand et al. 

(1971) were plotted against MW-I/2  and a linear regression line fitted to the data 

(r=0.997, least squares regression). From this regression line, the D25 value could be 

estimated for D-3308 and corrected to 32°C as described above. Figure 5.9 shows the 

three-hour CSF/plasma ratios for D-3308 and other markers plotted against D32 

obtained from experimental data in animals of similar ages (P15-P16 for inulin and 

sucrose, P16 for D-3308, and P17-P18 for L-glucose). The D-3308 reaches a ratio of 

approximately 16% which is similar to the ratio for inulin (15%), but substantially less 

than those for the smaller molecules sucrose (51%) and L-glucose (60%). Details of 

inulin, sucrose and L-glucose can be found in Chapter 4. 

In order to validate D-3308 as a quantifiable replacement for BDA-3000, the 

distribution of both markers was compared in brain sections from a P7 opossum. The 

markers showed matching distribution patterns with staining in a small proportion of the 

choroidal epithelial cells and intracellular staining in some cells in the ventricular zone 
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and in the hippocampal area of the brain (Figure 5.10). The rest of the brain seemed to 

lack any staining except for the blood vessels, which were strongly stained. 
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Figure 5.9 

CSF/plasma ratios (y-axis), three hours after an intraperitoneal injection of 

markers against the diffusion coefficients D32 (x-axis) in opossums at P15-P16 

for inulin and sucrose, P16 for D-3308, and P17-P18 for L-glucose. Data for 

inulin, sucrose and L-glucose are taken from experiments presented in Chapter 

4. A linear regression line was fitted to the data points. This plot should be a 

straight line if the penetration of molecules is by unrestricted diffusion. D-3308 

falls close to the regression line, confirming that its entry into CSF is consistent 

with diffusion. 
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Figure 5.10 

Localisation of D-3308 (A and C) and BDA-3000 (B and D) in brain sections 30 

minutes after an ip injection of both tracers into a P7 opossum. 0-3308 was 

viewed directly using filter for rhodamine and BDA-3000 detected using a 

Vectastain Elite ABC kit followed by the diaminobenzidine tetrahydrochloride 

(DAB) reaction. D-3308 and BDA-3000 showed identical intracellular staining in 

a small proportion of the ependymal cells in the ventricular zone (compare A 

and B) and in epithelial cells of the choroids plexus (compare C and D). 

Scale bar is 30 pm. 
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BDA-3000 in the opossum brain at the light microscopic level 

Examination of brain sections processed for BDA-3000 revealed that in the brain at all 

ages most of the reaction product was within the lumen of the blood vessels (see Figure 

5.11). The endothelial cells also appeared positive for BDA-3000. This was most 

prominent in P30 animals in which the lumen was empty with no reaction product since 

the contents of the blood vessels had been washed out when animals were perfuse-fixed 

(see Figure 5.11). Many cells in the ventricular zone of the lateral ventricle showed 

intracellular staining in animals between PO and P9. The number of cells with 

intracellular staining in the ependymal or subependymal layer in the ventricles 

decreased with development so that at P30 none of these cells appeared to be positive 

for BDA-3000. Occasional cells in the hippocampal area showed intracellular staining 

at all ages. Little or no staining was detectable outside the blood vessel wall or in the 

brain parenchyma. The surfaces of both the ventricular neuroependyma and of the 

choroid plexuses were positive where CSF had precipitated on the surface (see Figures 

5.12 and 5.13). In general, the staining was more prominent in the brains of younger 

animals where intracellular staining in the basal forebrain and diencephalon was also 

found. At P30 the whole brain appeared devoid of reaction product except for 

endothelial cells in the brain and the perivascular space of the choroid plexus. Control 

sections showed no staining. 

Uptake of BDA-3000 in choroid plexus 

Light microscope 

The uptake of BDA-3000 in the choroid plexus was studied under the light microscope 

at various ages between PO and P30, and under the electron microscope at P1 and P13 

after single intraperitoneal injection. In the light microscope the choroid plexuses blood 

vessels and surrounding connective tissue were strongly stained along with a small 

number of the epithelial cells. Staining was visible on the surface of the choroid plexus 

- 130 - 



Chapter 5: Morphological and Tracer Studies 

and inside the ventricular system (see Figures 5.11-5.13). The staining was particularly 

abundant within the ventricular system at younger ages. In paraffin sections, the 

reaction product had a granular appearance and seemed to be absent from the nuclei of 

stained epithelial cells. The number of BDA-3000 positive cells in the choroid plexuses 

from all four ventricles decreased progressively with age. At the time of birth (PO) a 

proportionally higher number of epithelial cells was positive in the choroid plexuses in 

the lateral ventricles (Figure 5.12 and Table 5.2), whereas the 4th ventricular plexus 

contained only occasional stained epithelial cells. At this age the choroid plexus cells in 

the lateral ventricles have an elongated shape, whereas the 4th ventricular choroid 

plexus cells have a more mature columnar form (see Figure 5.2). At P8 and later only 

very occasional stained epithelial cells were found in the 4th ventricular choroid plexus 

and the proportion of stained epithelial cells in the lateral ventricles was substantially 

less than at PO (Figure 5.12). In contrast, at P8 the choroid plexus in the 3rd ventricle 

had a high proportion of stained epithelial cells (Figure 5.13). At P30 all choroid 

plexuses showed only very occasional stained epithelial cells with rather faint 

intracellular staining (Figure 5.12). The choroidal epithelial cells at this age have a 

cuboidal shape which is characteristic of the adult choroid plexus. In paraffin sections, 

from P8-P9 and in older animals, there appeared to be no staining in the upper most 

apical parts in between epithelial cells. This is the region where the tight-junctions are 

present (see Figure 5.8). At earlier ages it was difficult to determine the extent of 

intercellular staining since the epithelium at these ages have a tightly packed 

pseudostratified appearance. 

In order to quantitate the number of stained epithelial cells at different ages and in each 

separate choroid plexus, the proportion of epithelial cells with intracellular reaction 

product was determined at PO, P8 and at P30. In random coronal or sagittal sections, 

which contained choroid plexus tissue from one or all the ventricles, all epithelial cells 

were counted and the proportion of BDA-3000 positive epithelial cells was calculated. 
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A minimum of ten sections containing choroid plexus tissue from each ventricle was 

counted. The results are presented below in Table 5.2. 

Table 5.2 

n Lateral 3rd 4th 

PO 10 15.1 ± 1 .0 5.5 ± 0.2 

P8 12 4.3 ± 0.6 11.4 ± 3.1 4.8 ± 1.1 

P30 11 1.4 ± 0.3 1.9± 0.1 1.9 ± 0.1 

Proportion (%) of epithelial cells with intercellular staining of BDA-3000 in the 

lateral, 3rd and 4th ventricular choroid plexus at PO, P8 and P30. The number 

for the 3rd ventricular choroid plexus at birth is missing because this choroid 

plexus has not formed yet at this age. The proportion of BDA-3000 positive cells 

dropped in all three different choroid plexuses during development. Values as 

means ± SEM 
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Figure 5.11 

Localisation of BDA-3000 in the developing opossum brain 30-45 min after an 

intraperitoneal injection. Figures show coronal sections of the opossum 

forebrain at PO (A, D and E), P8 (B and F) and P30 (C and G). Because of the 

increase in the size of the brain with age, C only shows half the brain at P30 in 

order to illustrate the brains at different ages at comparable sizes. BDA-3000 

was detected using a Vectastain Elite ABC kit followed by the diaminobenzidine 

tetrahydrochloride (DAB) reaction. D shows a magnified area of the developing 

cortex (boxed area in A) and E is a high power micrograph of a blood vessel 

(arrow in D) from a PO animal. Note that at P30 (C) only blood vessels stained 

positive and there was no staining in the rest of the brain. Strong staining could 

be seen in precipitated CSF at PO (A and D). As shown in D it appeared that 

some cells in the ventricular zone had taken up BDA-3000 from the CSF. The 

low power view of a P8 opossum brain (B) showed strong staining in the stroma 

of the choroid plexus and in blood vessels throughout the brain. A few cells in 

the hippocampal area also seemed to have taken up BDA-3000. Note the larger 

number of blood vessels in the brain compared to PO (A). F is a high power 

micrograph of a blood vessel at P8. At all ages no noticeable difference could 

be seen in the staining around the blood vessels compared to other areas of 

brain tissue (see E, F and G). In the younger animals, brains were immersed 

fixed and thus the lumen of the blood vessels were positively stained (E and F). 

At P30 the brains were perfuse fixed resulting in the lumen of blood vessels 

appearing empty, but the endothelial cells of the blood vessels contained 

reaction product (G). At this age no staining could be seen in the brain except 

for the endothelial cells. 

Scale bar is 400 pm in A and B, 500 pm in C, 60 pm in D, 12 pm in E and F, 

and 60 pm in G. 

- 133 - 



Chapter 5: Morphological and Tracer Studies 

- J!.•••• 	- 	• 
- 	• 

• 

02 

• 

4 

• 

111111110(.1:3 
• 

ca. 

A 

4 

" 1_1..t 



Figure 5.12 

Localisation of BDA-3000 in the developing choroid plexus of the lateral 

ventricles approximately 45 min after intraperitoneal injection at PO (A), P8 (B) 

and P30 (C). BDA-3000 was detected using a Vectastain Elite ABC kit followed 

by the diaminobenzidine tetrahydrochloride (DAB) reaction. The proportion of 

choroidal epithelial cells positive for BDA-3000 in the lateral ventricle 

decreased with age (A-C). Note the developmental change in choroid plexus 

morphology from a pseudostratified layer of epithelial cells (A) to the mature 

stage with cuboidal plexus cells exhibiting large apical surface area (C). In the 

younger animals brains were immersed fixed and thus the stroma of the 

choroid plexus was positively stained (A and B). At P30 the brains were 

perfuse fixed resulting in the lumen of blood vessels appearing empty (C). 

Scale bar is 25 pm. 
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Figure 5.13 

Localisation of BDA-3000 in the lateral (A and B), 3rd (C and D) and 4th (E and 

F) ventricular choroid plexuses at P8 30-40 min after intraperitoneal injection. 

On the right are higher power micrographs of the same choroid plexus which is 

shown on the left. BDA-3000 was detected using a Vectastain Elite ABC kit 

followed by the diaminobenzidine tetrahydrochloride (DAB) reaction. The 

proportion of epithelial cells with intracellular staining of BDA-3000 was higher 

in the 3rd ventricular choroid plexus (C and D) than in the other choroid 

plexuses at this age. 

Scale bar is 60 pm in A and C and E, and 30 pm in B, D and F. 
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Transmission electron microscope 

BDA-3000 was visualised in choroid plexus tissue from the lateral and 4th ventricle at 

P1 and P13. The uptake of BDA-3000 was visualised with avidin reactions followed by 

the DAB reaction, which gives an electron dense granular reaction product visible both 

under the light and electron microscope. The staining of BDA-3000 in this section is 

referred to as the reaction product. Only selected areas of semi-thin Epon sections of the 

choroid plexus, in which reaction product was visible either in the lumen of blood 

vessels or the perivascular space when examined under the light microscope, were 

further processed for thin-section electron microscopy. 

A similar distribution of the reaction product in the choroid plexus was observed in 

ultrathin sections as in paraffin sections. Different parts of the choroid plexus exhibited 

similar staining patterns. As can be seen in Figure 5.14 the reaction product was 

abundant in the lumen of blood vessels but appeared to be most plentiful in the 

perivascular space between the blood vessels and the epithelial cells. The electron 

micrograph in Figure 5.14 is of the lateral choroid plexus at P13, however, a similar 

distribution of reaction product was seen in the lateral and 4th ventricular choroid 

plexuses at both P1 and P13. The reaction product was also abundant around the 

fenestrations of the endothelial wall. The intercellular cleft between the epithelial cells 

was often filled with the reaction product except for the most apical part. Reaction 

product was, especially at Pl, abundant on the surface of the epithelial cells, between 

and around the apical microvilli. Many vesicles in the endothelial cells often filled with 

the reaction product at both ages. The reaction product was sometimes seen in small 

vesicles, multivesicular bodies or associated to cisternal structures in the epithelial cells 

at both ages (see Figure 5.15). Large vesicular structures in the epithelial cells were 

common and were often heavily labelled with reaction product at both PI and P13 (see 

Figures 5.14 and 5.15). These vesicles were common throughout the epithelial cells, 

however, none were found to fuse with either the apical or basolateral cell membrane. 
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There was no noticeable difference in the number of these large vesicles containing the 

reaction product between the two ages. Both at P1 and P13, the outer most apical part of 

the interepithelial cleft lacked the reaction product in the area where the junctional 

complex was present. Sections of the apical side of the intercellular cleft showed that 

the reaction product was only present on the basal side of certain points of the 

intercellular cleft where the cell membranes of adjacent cells seemed to be fused (see 

Figure 5.17). Similar to the staining in paraffin sections, some of the epithelial cells 

contained large amounts of the reaction product. The proportion of these epithelial cells 

was much higher at P1 than at P13 in both choroid plexuses. Under the light microscope 

it appeared as these epithelial cells did not contain the reaction product in the nucleus. 

In contrast, under the electron microscope it was revealed that reaction product was 

present in the nucleus of these cells but in lesser quantities than in other parts of the 

cells (see Figure 5.16). The large amount of reaction product and rather diffuse 

intracellular staining of these epithelial cells made it difficult to resolve which 

organelles contained the reaction product (see Figure 5.16). The reaction product was 

especially plentiful in small vesicles and it also appeared to be associated with cell 

membranes of some cisternal-like structures (see Figure 5.16). These cisternal structures 

could be part of the endoplasmic reticulum. The mitochondria in these cells did not 

seem to contain the reaction product. Apart from having large amounts of intracellular 

reaction product the intracellular organisation of these cells was not different from other 

epithelial cells. 
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•Figure 5.14 

Electron micrograph showing the localisation of BDA-3000 in the lateral 

ventricular choroid plexus at P13. Large amounts of tracer have leaked out of 

the blood vessels and accumulated in the perivascular space. Similar 

localisation of reaction product was seen at P1. Large arrows point to large 

vacuolar structures that contained the reaction product (see also Figure 5.15). 

Note that there is reaction product in the intercellular space between adjacent 

epithelial cells but it does not appear to penetrate the zonulae occludentes at 

the most apical side of the intercellular cleft (small arrows). 

Scale bar is 10 pm. 
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Figure 5.15 

Electron micrograph showing the staining of BDA-3000 in epithelial cells of the 

lateral ventricular choroid plexus at P13. Note that the large amounts of tracer 

escaped the blood vessels and accumulated in the interstitial space between 

the blood vessels and the epithelial cells and in the intraepithelial cleft. The 

dextran could also be seen in some small and large vesicular structures (see 

arrows in A). The dark structures around the microvilli may be artefacts of the 

staining technique or a result of precipitation of CSF during fixation. Arrowhead 

in A points to a vacuolar structure that often contained large amounts of the 

reaction product. One of these vacuoles is shown in higher power in B (large 

arrow). Small arrow in B points to the upper most apical part of the intercellular 

cleft that lacked the reaction product (see also Figure 5.17). 

Scale bar is 2 pm in A and 500 nm in B. 
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Figure 5.16 

Electron micrograph showing intracellular staining of BDA-3000 in the lateral 
ventricular choroid plexus at P1. Some epithelial cells contained large amounts 
of reaction product, similar to what was observed in paraffin sections (see 
Figure 5.12). The reaction product was visible interspersed throughout the 
whole cytoplasm and also in the nucleus although less than in the cytoplasm. 
The reaction product was especially abundant in association with cisternal 
structures which may be part of the endoplasmic reticulum (arrows in B). The 
mitochondria in these cells seemed to lack the reaction product (arrowhead). 

Scale bar is 2 pm in A and 500 nm in B. 
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Figure 5.17 

Electron micrographs showing the localisation of reaction product in the 

interepithelial cleft towards the ventricular surface (on the right side of the 

micrographs) at P1 (A and B) and P13 (C and D). The reaction product was 

absent from the most apical part of the interepithelial cleft. It seems that the 

zonulae occludentes restricts the paracellular movement of BDA-3000 at both 

ages. Arrows point to possible tight-junctions that appear to impede the 

penetration of BDA-3000, however, the contrast and resolution in these 

sections did not allow for definite identification. 

Scale bar is 100 nm in A and 200 nm in B-D. 
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Discussion 

The current study was undertaken in order to examine the route of penetration across 

the blood-brain barrier and blood-CSF barrier for small molecular size, lipid insoluble 

molecules. This was made in the opossum in parallel with uptake studies using 

radiolabelled markers such as inulin and sucrose, which were presented in Chapter 4. 

Ideally, the same marker that is used for permeability studies should also be used for 

tracer studies. However, this is not possible since molecules such as inulin and sucrose 

are water soluble, difficult to fix in tissue and cannot be readily visualised in the 

electron microscope. Instead, a lysine fixable biotin-dextran was used that had a 

molecular weight of 3000 Daltons which is slightly smaller than inulin but larger than 

sucrose (see Table 2.1). In order to assess the suitability of BDA-3000 as a lipid 

insoluble tracer molecule, CSF/plasma ratio was measured at three hours for a 

fluorescent dextran (D-3308) that is structurally similar to BDA-3000 and compared to 

ratios for inulin, sucrose and L-glucose at the same time points. The dextran reached a 

ratio similar to that of inulin, but much lower than sucrose and L-glucose as would be 

expected from its molecular size (Figure 5.9). Under the light microscope, D-3308 and 

BDA-3000 co-localised in the brain indicating that both markers behave in a similar 

manner across the brain barriers and also inside the brain (see Figure 5.10). It was 

necessary to use the fluorescently labelled dextran in order to be able to quantify CSF 

and plasma concentrations in very small samples and to calculate CSF/plasma ratios. 

BDA-3000 was preferred for morphological studies because histochemical methods 

give much better resolution and it can also be made visible for ultrastructural studies. 

Thus BDA-3000 appeared to be a suitable tracer in order to visualise the pathways from 

blood to CSF and brain for small lipid insoluble molecules. 

Previous studies using electron dense markers have generally been restricted to 

morphology and lacked parallel physiological experiments, which are essential for 
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proper understanding of the functional mechanisms involved in brain barriers. These 

studies have used markers such as HRP (van Deurs et al., 1978; Tauc et al., 1984) and 

MP (van Deurs, 1978), but the physiological interpretation of these studies is difficult 

because it is not known whether the cerebral endothelial and choroid plexus epithelial 

cells handle these tracers similarly to quantitative markers such as inulin and sucrose 

used in physiological experiments (Ferguson and Woodbury, 1969; Habgood et al., 

1993). 

Route of penetration of BDA-3000 from plasma into the brain 

BDA-3000 was visualised under the light microscope in the brain after intraperitoneal 

injection in opossums aged between PO and P30.This showed that BDA-3000 appeared 

to penetrate into the brain to a lesser extent in older brains compared to younger brains 

(see Figure 5.11) suggesting a change in brain barrier permeability with age. At all ages 

cerebral endothelial cells appeared to contain BDA-3000, but there was little staining 

visible in the extracellular space surrounding blood vessels. This indicates that even as 

early as birth in the neocortex of the opossum, when blood vessels are only just 

beginning to appear, the blood-brain barrier to small molecular compounds is already 

present. It could be argued that the lack of staining around the extracellular space of the 

blood vessels could be due to dilution of the tracer to an extent that it could not be 

visualised with the present staining techniques although present. However, this seems 

unlikely since the staining techniques are very sensitive and would have been able to 

detect at least a 100-fold dilution of levels in CSF which were clearly visible. Many 

cells in close association of the ventricular system, in the ventricular zone and sub-

ventricular zone, and on the outer surface of the brain were stained in young pups. 

There was also strong staining of precipitated CSF in the ventricles on the surfaces of 

the choroid plexus and the neuropendyma. In paraffin sections it was also noted that the 

strong staining was found in the choroid plexus tissue including a small proportion of 
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choroid plexus epithelial cells. Furthermore, the proportion of choroid plexus epithelial 

cells that was positive for BDA-3000 also declined during development. The highest 

proportion of BDA-3000 positive cells in the lateral ventricular choroid plexus was in 

the newborn animal and in the 3rd ventricular choroid plexus shortly after it appears at 

around P5 (see Table 5.2). The proportion of positive cells fell subsequently (earlier in 

the lateral ventricular choroid plexus) corresponding to the decline in permeability to 

small lipid insoluble markers (compare Figures 4.2, 5.12 and Table 5.2). The light 

microscopic study of BDA-3000 localisation in the brain therefore suggests that the 

route of penetration for lipid insoluble molecules into the early developing brain is 

across the blood-CSF interface in the choroid plexus and not directly across the blood 

vessels inside the brain. The intracellular staining of some of the epithelial cells in the 

choroid plexus suggested that there was an intracellular pathway in the epithelium of the 

choroid plexus. 

The intracellular staining pattern for BDA-3000, that showed a small proportion of 

stained choroidal epithelial cells was similar to that reported for endogenous albumin by 

Balslev et al. (1997a) and Knott et al. (1997), in the same species. Balslev et al. (1997a) 

and Knott et al. (1997) suggested that these albumin positive cells may transfer albumin 

from the blood into the CSF in early development. The localisation of BDA-3000 and 

albumin was therefore compared using double labelling immunocytochemistry (see 

Appendix B for methods). Similar to DAB staining, localisation for BDA-3000 using 

streptavidin Texas-Red showed that the highest proportion of positive epithelial cells 

was found in the youngest animals. In all sections studied, choroidal epithelial cells 

were either double labelled for both BDA-3000 and albumin, or single labelled for 

BDA-3000 only. Even at P8 when the highest proportion of epithelial cells were found 

to be positive for albumin in the lateral and 4th ventricular choroid plexus by Knott et 

al. (1997), the number of BDA-3000 positive cells was higher than albumin positive 

cells in these choroid plexuses. In no sections were there any epithelial cells single 
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labelled for albumin (see Figure 5.18). The transfer of native albumin into the CSF 

during early development is by a specific mechanism that can distinguish between 

native albumin and other species of albumin (Dziegielewska et al., 1991; Habgood et 

al., 1992; Knott et al., 1997). The uptake of native albumin into the CSF seems to be the 

result of a contribution of specific transport and diffusion. Knott et al. (1997) suggested 

that both the specific transfer of native proteins such as albumin and the passive transfer 

of other proteins into the brain, are intracellular through a subset of the choroidal 

epithelial cells. Similar to the study of Knott et al. (1997) the transfer of BDA-3000 also 

seems to be intracellular since there was a good correlation between BDA-3000 positive 

choroidal epithelial cells and the decline in steady-state ratios of markers such as inulin 

and sucrose. In order to resolve in more detail possible routes of entry across the blood-

CSF barrier of small lipid insoluble molecules, both the ultrastructure of the choroid 

plexus and the localisation of BDA-3000 in the choroid plexus were studied during 

development using the electron microscope. 
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Figure 5.18 

Double labelling of BDA-3000 (A) and albumin (B) in the lateral ventricular 

choroid plexus of a P8 opossum. Albumin was detected using antibodies to 

human albumin and FITC coupled secondary antibodies, and BDA-3000 was 

detected using streptavidin conjugated with Texas-red. Arrows indicate a 

double-labelled cell and the arrowhead indicate a single labelled cell for BDA-

3000. The number of cells positive for BDA-3000 was higher than for albumin. 

No cells were found to be labelled only for albumin. 

Scale bar is 30 pm. 
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Transfer of BDA-3000 across the choroid plexus 

BDA-3000 was visualised under the electron microscope after intraperitoneal injection 

in opossums aged P1 and P13. Ultrathin sections of the choroid plexus revealed that 

large amounts of reaction product were present within the perivascular space. This 

shows that there is little or no barrier function of the blood vessels in the choroid plexus 

since the dextran easily leaked out of them (see Figure 5.14). This is in agreement with 

previous studies using other tracers such as HRP (Balin and Broadwell, 1988), MP (van 

Deurs, 1978), and cytochrome c (Milhorat et al., 1973), which all easily leaked out of 

the blood vessels in the choroid plexus. The dextran may have crossed the endothelial 

cells in several ways: firstly, the dextran may have passed through the intercellular cleft. 

Conventional electron microscopy showed that at least a single tight-junctional structure 

always seemed to be present at the luminal side of the intercellular cleft (see Figure 

5.6), which might seem to render this pathway unlikely. However, in thin sections it is 

difficult to judge whether these junctions are continuous and freeze-etch studies have 

shown that the tight-junctions in the choroidal endothelial cells are discontinuous 

(Dermietzel, 1975a). Even if the intercellular clefts were filled with reaction product it 

is difficult to evaluate whether these tight-junctions were penetrated by the dextran 

since it was possible that the dextran may have reached the upper part of the 

intercellular cleft through some other pathway, circumventing the junctions. Secondly, 

it was noted that endothelial vesicles often contained the dextran and these may have 

transferred substantial amounts of dextran from the lumen to the perivascular space. 

Thirdly, the dextran may have crossed directly through the endothelial fenestrations (see 

Figure 5.6). It is not possible to resolve whether the fenestrations were leaky to the 

dextran, however, fenestrations have been related to higher permeability in vessels 

(Dermietzel, 1975a; Brightman and Kaya, 2000). Cells in the extracellular matrix, 

between the endothelial and epithelial cells, also seem to have little barrier functions 

since large amounts of reaction product were present in the interepithelial cleft. Under 

the light microscope it appeared that the dextran was not present in the upper most 
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apical part of the interepithelial cleft from around P8 and in older animals, however, in 

the resolution of the light microscope it was not possible to reveal whether this was the 

case for younger animals as well, because of the pseudostratified appearance of the 

epithelium. That dextran was not present in the apical intercellular cleft was confirmed 

by electron microscopy as it seemed to be stopped by junctional structures between 

epithelial cells at P1 and also in pups at P13 (see Figure 5.17). The contrast and 

resolution of the thin-sections did not allow for definite identification of these junctional 

structures, however, the appearance and localisation of these structures strongly suggest 

that they are tight-junctions (compare Figures 5.8 and 5.17). With conventional electron 

microscopy it was found that at birth a junctional complex was always present at the 

most apical part of the interepithelial cleft and that several tight-junctions could be seen 

within the complex (see Figure 5.8). The tight-junctions in the pups at PO were not 

noticeably different from junctions found in older opossums (see below for more 

discussion). Studies of the movement of other tracers across the blood-CSF barrier in 

developing animals have been reviewed in Chapter 1 and will therefore only briefly be 

discussed here. Whether the epithelial tight-junctions prevent the movement of HRP in 

early development has been a matter of some controversy. Wakai and Hirokawa (1978, 

1981) and Bertossi et al. (1988) reported that in the chick the tight-junctions are leaky to 

HRP during early development (before incubation day 10-11). In contrast, Tauc et al. 

(1984) showed that the junctions stop HRP as early as E14 in the rat and Dziegielewska 

et al. (1988) reported that tight-junctions prevent the intercellular movement of HRP at 

birth in an Australian marsupial, the tamar wallaby. These differences may be species 

related, however, as has been discussed before in Chapter 1, all the studies in chicks 

used large amounts of HRP which may have affected the integrity of the brain barriers. 

Since this could have particularly affected younger fetuses it may have resulted in false 

appearances indicating that the barriers were not tight early in development. BDA-3000 

has a molecular weight less than a tenth of HRP. The present experiments show that the 

structural barrier to a low molecular weight lipid insoluble tracer, that was shown to 
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behave in a similar manner to other lipid insoluble molecules across the barrier, appears 

to be present early in development. The opossum at birth can be compared to a E13-14 

rat embryo or a 6-7 week human embryo in regard to brain development (Saunders et 

al., 1989). 

Other structures that have been proposed to be responsible for the higher permeability 

during development have been vesicles (Tauc et al., 1984). Vesicles were occasionally 

found that contained the dextran (see Figure 5.15). However, there was no indication 

whether these vesicles transferred the dextran across the epithelium since none were 

found to fuse with the cell membranes. Even if these vesicles do transfer molecules 

from the blood into the CSF it is unlikely that they are responsible for the change in 

permeability for small lipid insoluble markers during development since there was no 

difference in the number of vesicles that were labelled with dextran at P1 and P13. Most 

epithelial cells also contained vacuole-like structures that were found at both P1 and 

P13 and these seemed to be filled with the dextran (see Figure 5.15). These structures 

were infrequently seen close to the cell membranes but were never found to fuse with 

the cell membrane. It is therefore unlikely that they have transporting functions but may 

have some phagocytic role. Furthermore, these vacuole-like structures were also 

identified with conventional electron microscopy, yet again, there was no noticeable 

difference in the number of vacuoles between birth and 64-day old opossums. 

Similar to the light microscopic study, the electron microscopic investigation showed 

that a small proportion of the epithelial cells had large amounts of BDA-3000 

intracellularly. The proportion of these cells was much higher at P1 than at P13. The 

subcellular staining in these cells appeared diffuse which made the interpretation of the 

results difficult. The diffuse staining may be a consequence of the staining methods. 

The labelling technique of BDA-3000 using an avidin-peroxidase complex followed by 
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the DAB reaction is based on an electron dense enzymatic reaction product. The 

deposition of the reaction product may extend to areas around where the peroxidase 

complex is present. That the reaction product tended to spread was apparent around 

heavily stained areas such as the intercellular cleft (see Figure 5.17B). This made it 

difficult to identify the subcellular presence of the dextran in these cells. Nevertheless, 

the reaction product was particularly associated with cisternal structures that may be 

part of the endoplasmic reticulum and was also present in small vesicles in these cells. 

As has been discussed before, the transfer of albumin has been suggested to be through 

certain epithelial cells in the choroid plexus (Knott et al., 1997). The double label 

experiments with albumin and BDA-3000 showed that these co-localised to a high 

degree (Figure 5.18). Balslev (1997a) studied the uptake of albumin in the choroid 

plexus using the electron microscope and found that it was present in a system of 

tubulo-cisternal endoplasmic reticulum. The authors suggested that this system is the 

route for albumin into the CSF. Whether stained cisternal structures in the present study 

are the same as the tubulo-cisternal endoplasmic reticulum described by Mollgard and 

Saunders (1977) and Balslev (1997a) is difficult to conclude because of the diffuse 

staining. In order to test whether the diffuse staining in the present study is an artefact, 

another technique has to be applied. Nano-gold labelling could possibly give more 

specific staining of BDA-3000, however, this technique is also associated with other 

problems such as penetration limitations of the gold particles. 

It cannot be ruled out that the BDA-3000 positive cells may have taken up the dextran 

from the CSF and not from the blood. The dextran may have gained access to the CSF 

through some other route and then have been taken up by these cells. This could be 

tested by localising BDA-3000 in the choroid plexus after administering it directly into 

the CSF. However, such experiments would be technically very difficult because of the 

small size of the newborn opossum. The CSF volume of an opossum at birth is only a 

few microlitres. 
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Fine structure and function of the choroid plexus during 
development 

The fine structure of the choroid plexus was examined at three developmental ages (PO, 

P13 and P64) corresponding to ages studied in permeability experiments (see Chapter 

4). The different choroid plexuses from each separate ventricle have been reported to 

have almost matching light microscopic and ultrastructural appearances in late 

developing and adult animals (Davis et al., 1973; Gomez and Potts, 1981). This may be 

the reason why the choroid plexus is often referred to as one tissue and results from 

studies of one choroid plexus are often generalised for all choroid plexuses. As pointed 

out by Dziegielewska et al. (2001) some authors do not even mention which of the 

choroid plexuses is used in their studies. Ultrastructural studies of choroid plexus 

development have mostly used choroid plexus tissue from the lateral ventricles and 

some from the fourth ventricle, however, comparative studies of all the different 

choroid plexuses are lacking. To the author's knowledge only very few studies have 

made comparative investigations of the different choroid plexuses during development 

using the transmission electron microscope and none seem to have examined the 

diencephalic (3rd ventricular) choroid plexus. Keep et al. (1986) and Keep and Jones 

(1990) made quantitative measurements of some morphological features of the 

developing lateral and 4th ventricular choroid plexuses in the rat. They stated that the 

development of the two choroid plexuses appeared similar although the timing of 

morphogenesis was different. Tennyson (1971) studied the same two choroid plexuses 

of the rabbit, and at some stages of man during development. This study reported 

several ultrastructural differences of the two choroid plexuses with the most striking 

being that the epithelial cells of the lateral choroid plexus go through a glycogen rich 

stage which was much less prominent in the myelencephalic (4th ventricular) choroid 

plexus. The only other comparative studies of the developing choroid plexuses have 
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been presented by el-Gamma! (1981, 1983) who studied the surface changes of the 

lateral and third ventricular choroid plexus in embryonic chicks using the scanning 

electron microscope. These studies showed that the morphogenesis of lateral choroid 

plexuses was distinct in regard to proximal to distal differentiation whereas the cells in 

the 3rd choroid plexus appeared to differentiate from several unrelated sites of the 

choroid plexus. 

Kappers (1958) distinguished three stages in the development of the choroid plexus, 

however, later Shuangshoti and Netslcy (1966) and Tennyson and Appas (1968) 

characterised four stages. The difference in classification is that Shuangshoti and 

Netsky (1966) and Tennyson and Appas (1968) divided the last stage (stage III) into 

two separate stages based on stages when the epithelium is poor or rich in glycogen and 

also on reposition of the nucleus. The opossum follows a similar development to 

eutherians with the exception that the choroid plexuses seem to be lacking the large 

amounts of glycogen stored in the epithelial cells as has been observed in eutherians 

(Dziegielewska et al., 2001). This observation was confirmed in the present study, 

which did not reveal any glycogen in the epithelial cells at any age. The glycogen has 

been postulated to be serving as an energy source for the developing brain (Shuangshoti 

and Netsky, 1966). The reason for the lack of glycogen in the opossum is not clear, 

however, Dziegielewska et al. (2001) suggested that the explanation may be related to 

the higher oxygen tension in a species developing outside the uterus compared to in 

utero. As the opossum seems to lack glycogen, its choroid plexus can be divided into 

three stages of development, starting with a single columnar pseudostratified layer of 

epithelial cells, changing into a columnar layer and then further flattens into a cuboidal 

layer (see Figures 5.2 and 5.3). In the course of development, the choroid plexuses in 

each ventricle seem to exhibit similar microscopic changes. At birth in the opossum, 

most parts of the fourth ventricular choroid plexus were in stage II and some in stage I, 

whereas most of the lateral ventricular choroid plexus was in stage I. At P13, almost all 
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of the choroid plexuses were in stage II, except for a small part in the root of the choroid 

plexus that still had a somewhat pseudostratified appearance. At P64 the choroid plexus 

epithelium formed a uniform layer in stage III. Not only does it seem that each 

individual choroid plexus goes through similar developmental changes but also within 

each choroid plexus the maturation process is repeated. The choroid plexus shows distal 

to proximal differentiation of cells. The cells at the root of the choroid plexus are less 

mature than the ones in the more distal parts of the choroid plexus villi. This is in 

agreement with the belief that the choroid plexus grows from the proximal parts where 

the cells show a pseudostratified appearance until later in development. At P64 when 

the choroid plexuses can be expected to have stopped growing, the whole choroid 

plexus appears to form a uniform layer. 

The three stages of choroid plexus development were associated with several 

ultrastructural changes in both the core of the choroid plexus but more noticeably in the 

epithelial cells. The choroid plexus of the opossum showed similar ultrastructural 

changes during development that have been reported in other mammalian species such 

as rats (Cancilla et al., 1966; Keep et al., 1986; Keep and Jones, 1990), mice (Sturrock, 

1979; Zaki, 1981) and rabbits (Tennyson and Appas, 1968) with one noticeable 

difference in that no glycogen was found in the developing opossum choroid plexus. 

Several of these changes are probably a reflection of progressive specialisation of the 

choroid plexus as a highly secreting epithelium during development. That the choroid 

plexus CSF production rate increases with development has been demonstrated by Bass 

and Lundborg (1973), Evans et al. (1974), and Johanson and Woodbury (1974). This is 

not just due to an increase in overall mass of the choroid plexus but also to an increase 

in production per weight of choroid plexus tissue (Johanson and Woodbury, 1974). That 

one of the main functions of the choroid plexus is to produce CSF is today 

unquestioned. During development there was an increase in mitochondrial content 

mainly as a result of an increase in the number of mitochondria but also due to an 
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increase in the size of individual mitochondria. The increase in mitochondrial content of 

the epithelial cells is probably a reflection of an increase in CSF production of the 

choroid plexus. The production of CSF is a secretory process and therefore is dependant 

on energy. The production of CSF is dependant on fluid transfer between the blood 

vessels and into the epithelial cells. The increase in fenestrations of the blood vessels 

and basal infolding of the epithelial cells may be a reflection of this increase in fluid 

transfer. As well as producing CSF, the choroid plexus is also responsible for a constant 

regulation of the composition of the CSF. Several studies have shown that the 

regulation and transfer of ions by the choroid plexus is greatly increased during 

development (Jones and Keep, 1987; Parmelee and Johanson, 1989; Parmelee et al., 

1991; Preston et al., 1993). Structures such as microvilli and cilia on the apical surface, 

and numerous pinocytotic vesicles are probably an indication of an increase in exchange 

between the apical cell surface and the ventricular CSF. The opossum also showed a 

distinct change in the structure of the nucleus of the epithelial cells during development 

from being irregular in shape with great invaginations to almost spherical with a smooth 

membrane. Similar developmental changes in nuclear structure of the epithelial cells 

have been described before in mice by Dohrmann and Herdson (1969). These authors 

suggested that the lobulated nucleus along with a high abundance of rough endoplasmic 

reticulum and polyribosomes in the interlobulated cytoplasm were a reflection of greater 

interaction between the nucleus and cytoplasm in younger animals. More evidence that 

the changes in the ultrastructure of the choroid plexus presented in this study is a 

reflection of its functional development comes from studies of the aging choroid plexus. 

In rats, both morphological and functional changes during development appears to be 

reversed with aging; for instance, there is a decrease in the number of microvilli with 

age (Serot et al., 2001), while there is a reduction in the CSF secretion in older rats 

(Preston, 2001). 

One of the main aims of the present ultrastructural study was to investigate the presence 
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of tight-junctions between adjacent epithelial cells. Using the goniometric tilting device, 

several tight-junctions were often found within the junctional complex. The tight-

junctions appeared as points along the intercellular cleft where the two cell membranes 

of neighbouring epithelial cells were touching each other; this is similar to tight-

junctions that have been described between epithelial and endothelial cells of other 

mammals (Tennyson and Appas, 1968; Bouchaud and Bouvier, 1978; Stewart and 

Hayakawa, 1987; Peters et al., 1991; Schulze and Firth, 1992; Sedlakova et al., 1999). 

These tight-junctional structures appeared similar at all ages showing that the structural 

basis for the brain barriers is formed early in development. Other studies have reported 

differences in endothelial tight-junctions using the goniometric tilting device (Stewart 

and Hayakawa, 1987). It therefore does not seem that structural changes in the tight-

junctions can explain the changes in permeability to low molecular weight markers with 

age. The tight-junctions form a complex network at the apical part of the intercellular 

cleft. Serial sectioning can follow a junction a shorter distance but it has to be 

mentioned that establishing whether there are gaps in the junctional network is difficult 

using this technique. In order to determine whether there are openings in the tight-

junctional network a freeze-fracture study is needed. In freeze-fracture, the cell 

membrane is cleaved and junctions appear as ridges or grooves depending which side of 

the fractured membrane is visualised. This technique enables visualisation of the whole 

network of junctions between two adjacent cells in one preparation and is therefore a 

more practical technique of determining whether there are gaps in the junctions. This 

technique can also determine the complexity of the overall junctional network. Thin-

section electron microscopy and freeze-fracture studies of epithelial tight-junctions 

during development have been discussed in Chapter 1 and will therefore not be 

discussed in detail in this Chapter. Briefly, studies have not found any significant 

differences in either tight-junctional appearance in thin-sections or the complexity of the 

junctional network in freeze-fracture preparations of choroid plexus epithelial cells 

between developing and adults animals (Tennyson and Appas, 1968; Dermietzel et al., 
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1977; Mollgard et al., 1979; Tauc et al., 1984). 

Under the electron microscope the epithelial cells showed differences in their overall 

density, ranging from a light to dark appearance, but otherwise there was no difference 

in structure observed. These variations have also been reported in other species 

(Dohrmann, 1970; van Deurs et al., 1978; Sturrock, 1979). Dohrmann (1970) suggested 

that these differences in appearance of cells may represent different states of cell 

hydration but others have considered them as artefacts of fixation. Sturrock (1979) 

quantitated the dark and light cells in mice and found that the dark cells first appeared at 

E14, constituted around 12% of all the epithelial cells, and that this fraction remained 

almost constant up to 90 days after birth. Similar to Dohrmann (1970), the authors 

postulated that the dark cells may be dehydrated and reduced in size based on the fact 

that these cells had thinner microvilli than surrounding cells. In the present study, it 

seems unlikely that these differences can be explained by timing of fixation since the 

choroid plexus was dissected out and fixed by immersion immediately after animals 

were killed. The single layer of epithelial cells would have been exposed to the fixative 

instantly and was therefore presumably rapidly and uniformly fixed. There was no 

obvious pattern in the distribution of light and dark cells and dark cells were often found 

interspersed in the epithelium. It is still not known whether these morphological 

differences in cell density are of functional importance. 

Summary 

The uptake of a fluorescently labelled dextran (D-3308) showed that dextrans are 

suitable tracers for lipid insoluble molecules across the brain barriers. The lack of 

staining for BDA-3000 around blood vessels and in the extracellular space of the brain 

demonstrates that the blood-brain barrier is formed at birth in the opossum. The reaction 

product was particularly abundant in cells of the ventricular zone, precipitated CSF and 
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in the choroid plexus suggesting that the route for BDA-3000 into the brain could be via 

the choroid plexus and not across the brain blood vessels. Tight-junctional structures 

between adjacent epithelial cells seemed to impede the extracellular movement of BDA-

3000. This suggests that the dextran reached the CSF through an intracellular pathway 

in the choroid plexus. This intracellular pathway may be through some of the epithelial 

cells of the choroid plexus since the proportion of epithelial cells with intracellular 

staining of BDA-3000 declined in a similar manner to the reduction in steady-state 

ratios for inulin and sucrose. The very few blood vessels found early in development 

supports the hypothesis that these do not constitute a major route of entry for lipid 

insoluble molecules into the brain at this early age. This study could only suggest that 

this possible intracellular route at the subcellular level is associated with the 

endoplasmic reticulum. Experiments using some other labelling technique may be able 

to answer this question. 

Two main conclusions can be drawn from the ultrastructural study of the opossum 

choroid plexus. Firstly, at birth in the opossum, which can be compared to an E13-E14 

rat embryo regarding general brain development, the ultrastructural basis for the blood-

CSF barrier is already present in that tight-junctions with a mature appearance were 

visible between epithelial cells. Secondly, apart from the lack of glycogen, the 

morphogenesis of the choroid plexus in the opossum is similar to what has been 

described in other mammals both at immature and mature stages. This shows that the 

opossum choroid plexus seems to be a good model to study the functional development 

of the choroid plexus. 

- 164 - 



Chapter 6 

* 

Conclusions 

- 165 - 



Chapter 6: Conclusions 

The experiments presented in this thesis measured the uptake and visualised the route of 

entry for low molecular weight, lipid insoluble molecules from the blood into the CNS 

from early development stages until young adulthood. The main strength of these 

experiments was that permeability, tracer and morphological studies have been carried 

out in the same species over a similar developmental period. These experiments are 

therefore directly comparable with respect to developmental stages and also 

uncertainties about species variations are avoided. The present experiments together 

with previous studies (Dziegielewska et al., 1989; Knott et al., 1997; Li et al., 1997) 

mean that the grey short-tailed South-American opossum is now one of most studied 

mammalian models of transfer mechanisms into the developing brain. 

Transfer of small lipid insoluble molecules into the developing brain 

In order to study the uptake of radiolabelled markers into the brain and CSF of newborn 

opossums, a new experimental model had to be developed since previously used 

methods in other species were not suitable due to the small size of the animals. The 

model, which is described in Chapter 3, estimated steady-state concentration ratios 

between blood and CSF or brain in animals after a single ip injection without invasive 

surgery. The accuracy of determining steady-state ratios in this way was determined by 

comparing ratios obtained from intact animals with ratios from nephrectomised animals 

that had been shown to approach steady-states between plasma, CSF and brain. It was 

shown that the model could accurately estimate steady-state concentration ratios. The 

new model therefore can be used to study the uptake of molecules from blood to 

different body compartments with minimal manipulation of animals. It was further used 

to study the uptake of several radiolabelled markers of various sizes into the brain and 

CSF during development. These experiments, presented in Chapter 4 showed that the 

steady-state concentration ratios for low molecular weight, lipid insoluble molecules 

were high in early development and that they declined with age, particularly in youngest 
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animals. This is the earliest stage of brain development that such studies have been 

carried out. The decrease in steady-state ratios during development was shown to be due 

to a reduction in permeability of the interfaces between the blood-brain and blood-CSF. 

A plot of steady-state ratios and diffusion coefficient for radioactive markers in the 

opossum, and including data on succinylated albumin from Knott et al. (1997) is 

illustrated in Figure 6.1. This shows that in the opossum, at early stages of brain 

development, there is an inverse correlation between diffusion coefficient and steady-

state CSF/plasma ratios. Furthermore, with increasing developmental age there is a 

parallel decline in these curves. This suggests that the penetration of lipid insoluble 

molecules into CSF is probably by unrestricted diffusion through some water filled 

'pore' (see Dziegielewska et al., 1979). Moreover, it implies that there is a decrease in 

the number of such pores with age rather than a decrease in pore diameter, which would 

have been expected to alter the slope of curves between steady-state CSF/plasma ratios 

and diffusion coefficient (Dziegielewska et al., 1979; Habgood et al., 1993). However, 

the experiments in Chapter 4 could not determine which of the blood-CNS interfaces 

were avenues of entry for these molecules. With the use of a small dextran tracer the 

experiments presented in Chapter 5 showed that the major route into the brain for small 

lipid insoluble molecules appears to be from the blood vessels of the choroid plexus, 

across the choroidal epithelial cells, and then into brain tissue via the CSF. There was 

little evidence that the dextran crossed the endothelial cells of cerebral blood vessels 

directly into brain tissue. Although the cerebral endothelial cells stained for BDA-3000, 

none could be detected in the extracellular space around the blood vessels. This was in 

contrast to the strong staining for BDA-3000 in the CSF. 

The possible routes of entry for lipid insoluble molecules through the cells of the brain 

barriers are shown in Figure 1.2. Several of these pathways can most certainly be ruled 

out as major contributors to the transfer of lipid insoluble molecules across the barriers 

such as receptor- and carrier-mediated trancytosis and absorptive-mediated transfer. 
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These transfer mechanisms can only be used by molecules of certain configuration and 

charge. Moreover, the quantitative permeability experiments showed that these 

molecules are transferred in a passive manner and not by a facilitated mechanism. 

Another possible route for small lipid insoluble molecules into the brain could be 

through the intercellular cleft including the zonulae occludentes. Structural changes of 

the tight-junctions producing increased restrictions on the movement of molecules 

through the intercellular cleft during development, could then explain the decrease in 

permeability with age. However, the present studies using BDA-3000 do not support 

this theory. The dextran seemed to be impeded by tight-junctional structures in the 

choroid plexus already at birth whereas there was a significant decrease in the brain 

barrier permeability of radiolabelled markers after birth. Furthermore, the ultrastructural 

investigation did not reveal any differences in the appearance of the tight-junctions in 

the CNS between newborn opossums and young adults. This would have been expected 

if structural changes of these junctions were responsible for the decline in permeability 

with age. The postulated pore could be a water-filled intracellular pathway through the 

cells as was suggested by Balslev et al. (1997a). Both the light and electron microscopic 

study demonstrated an intracellular distribution of BDA-3000 in the choroidal epithelial 

cells suggesting that the dextran may have an intracellular pathway through a small 

proportion of the epithelial cells of the choroid plexus. Moreover, this intracellular 

pathway appeared to diminish during brain maturation which would fit with the 

hypothesis that this pathway is responsible for the higher permeability in young 

animals. The particular electron microscopic method used did not localise this possible 

intracellular pathway precisely because of uncertainties about reaction product 

diffusion. This problem can be further studied by the use of immunogold labelling. 

The present study demonstrated that brain barriers are certainly present at early stages 

of development, although their properties are different from those of the adult animal. 

The strength of the current studies is that physiological and morphological approaches 
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have been combined in the same preparation, so that it is possible to draw conclusions 

about the structural basis for the permeability changes observed. Without the 

morphological studies in these experiments, one could interpret the observed high 

permeability of the brain barriers in young animals to be due to the barriers simply not 

being properly developed at early stages of development. However, the morphological 

studies showed that the ultrastructural basis for the blood-CSF barrier (tight-junctions) 

is present very early in development. Subsequently, if the transfer of molecules into the 

CSF is higher in development because of a developmentally regulated intracellular 

pathway, this can be regarded as a specialisation of the transfer mechanism across the 

brain barriers in early development rather than a reflection of poorly developed barriers. 

It is difficult to hypothesise about the exact physiological importance for such transfer 

mechanisms. However, they may be important for the provision of a suitable 

environment for the growing brain. There is a high concentration of protein in the CSF 

in early development which at least for albumin has been shown to be due to specialised 

transporting mechanisms across choroid plexus cells that is only present in the 

developing brain (Habgood, 1990; Dziegielewska et al., 1991; Knott et al. 1997). The 

high levels of proteins in the CSF have been postulated to be a driving force for normal 

brain enlargement and also to provide nutrients for the growing brain (Dziegielewska et 

al., 2001). The transfer mechanisms at the choroid plexus for low molecular weight, 

lipid insoluble molecules in the CSF may have similar functions. 
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Figure 6.1 

Steady-state CSF/plasma ratios (y-axis, note logarithmic scale) against the 

diffusion coefficients (D32) for molecules of various molecular sizes (x-axis) in 

P5-P7 (•), P10-P13 (0), P15-P17 (•), P32-P37 (0), and P65 (A) opossums. 

Diffusion coefficients were calculated for 32°C, as this is the normal body 

temperature for opossums. Data for succinylated albumin (s-Albumin) are from 

Knott et al. (1997). Values shown are means (n=3-10) and the error bars are ± 

SEM. Where no error bars are visible, they are obscured by the symbols. There 

was a parallel decrease in the curves between CSF/plasma ratios and diffusion 

coefficients with increasing postnatal age 
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Further studies 

The model and techniques described in this thesis could be used for several further 

studies of transfer mechanisms into the brain. Under the light microscope it appeared 

that BDA-3000 was taken up by endothelial cells within the brain but did not appear to 

escape from these into the surrounding brain tissue. It would be interesting to determine 

the subcellular distribution of BDA-3000 in endothelial cells. This could also determine 

whether there is a paracellular pathway of the tracer in the developing blood vessels. 

Since BDA-3000 did not appear to escape the blood vessels in the brain it could be 

expected that intercellular movement of BDA-3000 between endothelial cells is already 

restricted by tight-junctions at early stages of brain development, as has been 

demonstrated in this thesis for the zonulae occludentes between choroidal epithelial 

cells. BDA-3000 could also be used to study the barriers situated within the meninges 

and the pial surface of the brain which are fluid interfaces of the brain have been almost 

forgotten in studies of exchange between blood, brain and CSF. Several species have 

been found to have developmentally regulated intercellular junctions (strap-junctions) 

of the ependymal lining of the brain ventricles. Whether such junctions exist in the 

opossum is not known but would be of interest to examine. 

This thesis presents quantitative data on the uptake of several markers (L-glucose, 

sucrose and inulin) from blood to brain and CSF along with a visualisable tracer BDA-

3000, that is of similar size to inulin. There are now several other small tracers that 

could be used to study transfer mechanisms into the brain. It will, however, be essential 

to check whether each tracer behaves in a comparable manner across the brain barriers 

to other small lipid insoluble molecules before they should be used as tracers. This has 

been overlooked in previous studies with other tracers. Biotin-dextrans are only 

available in sizes larger then BDA-3000. However, several other neuronal tracers are 

derivates of biotin and may be suitable as low molecular weight tracers. Biocytin, 
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neurobiotin and biotin cadaverine are all water soluble low molecular weight tracers 

(molecular weight range of about 250-800 Daltons) that all have amine residues and can 

therefore be fixed using aldehydes. They can be visualised with similar techniques to 

biotin-dextrans and are also available with flourophore conjugates. This means they 

could easily be quantitated using the same methods as in this thesis in order to test 

whether their transfer mechanisms into the brain can be expected to be similar to biotin-

dextrans and other lipid insoluble compounds. 
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Appendix 

Appendix A 

Fixation and processing tissue for paraffin sections 

1) Perfuse with PBS solution containing 5000 units heparin /100m1 PBS for 
approximately 1-2 min. In smaller pups that cannot be perfused fixed, the tissue is 
processed from step 3. 

2) Perfuse fix with fresh cool 4% paraformaldehyde solution. 

3) Immerse tissue in Bouin's fixative for 24 hours. 

4) 3xlhour changes in 70% ethanol. 

5) 3x1 hour changes in 95% ethanol. 

6) 3x1 hour changes 100% ethanol. 

7) Leave tissue in chloroform overnight. 

8) Leave in paraffin for 1 hour. 

9) Transfer tissue to fresh paraffin and leave under —10 inches of mercury for 1-2 
hours. 

10) Decrease pressure to —20 inches of mercury and leave for 1-2 hours. 

11) Embed in fresh paraffin and leave cool to harden. 

Dewaxing and rehydrating paraffin sections 

1) Melt paraffin in 60°C oven for 30 min. 

2) 10 min in xylene. 

3) 5 min in xylene. 

4) 5 min in xylene. 

5) 5 min 100% ethanol. 

6) 5 min 100% ethanol. 

7) 5 min 95% ethanol. 

8) 5 min 70% ethanol. 
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Appendix 

Rehydrating and mounting paraffin sections 

1) 5 min 70% ethanol. 

2) 5 min 95% ethanol. 

3) 5 min 100% ethanol. 

4) 5 min 100% ethanol. 

5) 5 min in xylene. 

6) 5 min in xylene. 

7) Mount slides. 
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Appendix 

Appendix B 

Processing paraffin sections for BDA-3000 histochemistry 

1) Dewax and rehydrate sections according to appendix A. 

2) 3x5 min wash in 0.2% Tween20 PBS. 

3) Incubate in peroxidase blocker (Dako) for 30 min. 

4) 3x5 min wash in 0.2% Tween20 PBS. 

5) Incubate in protein blocker (Dako) for 30 min. 

6) 3x5 min wash in 0.2% Tween20 PBS. 

7) Apply avidin-horseradish peroxidase complex using a Vectastain Elite ABC kit 
(Vector). Solution A and B must be mixed 30 min before incubation. 

8) 3x10 min wash in Tween20 PBS. 

9) Process sections with the diaminobenzidine tetrahydrochloride reaction (DAB Kit, 
Dako) for about 3-10 min. 

10) Rinse briefly in distilled water. 

11) Wash 10 min in tap water. 

12) Dehydrate sections according to appendix A. 

13) Mount slides with DPX. 

Processing paraffin sections for BDA-3000 and endogenous 
albumin double labelling 

1) Dewax and rehydrate sections according to appendix A. 

2) 3x5 min wash in 0.2% Tween20 PBS. 

3) Incubated in rabbit antibodies against human albumin (Dako) diluted 1:100 
overnight in fridge. 

4) 3x10 min wash in 0.2% Tween20 PBS. 

5) Incubate in a mixture of 1:30 dilution of swine anti-rabbit fluorescein conjugated 
antiserum (FITC) antibodies (Dako) and 1:70 dilution of streptavidin Texas-Red 
(Vector) overnight in fridge. 

6) 3x10 min wash in 0.2% Tween20 PBS. 

7) Mount sections in an aqueous mounting medium (Dako). 
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Appendix 

Appendix C 

Processing of choroid plexus for standard electron microscopy 

1) Choroid plexus fixed in 2.5% glutaraldehyde cacodylate buffer (0.1 M, pH 7.3) and 
left in fixative for 2-3 hours at 4 C. 

2) 3x10 min washes of tissue in buffer. 

3) Osmicate in 50/50 mixture of osmium tetroxide (4%) and 0.05 M potassium 
ferrocyanide 0.2 M PBS solution for 45 min. 

4) 3x10 min washes of sections in buffer. 

5) Leave tissue in a 1% uranyl acetate solution for 30 min. 

6) 10 min in 50% Ethanol. 

7) 10 min in 75% Ethanol. 

8) 10 min in 95% Ethanol. 

9) 2x15 min in 100% Ethanol. 

10) Rinse tissue 2x15 min in Propylene oxide. 

11) Transfer to a 50/50 mixture of Procure 812/Propylene oxide for at least 1 hours. 

12) Transfer to a 75/25 mixture of Procure 812/Propylene oxide for at least 1 hours. 

13) Transfer to 100% Procure and leave overnight. 

14) Transfer to fresh Procure and leave for 6-7 hours. 

15) Embed in fresh procure and leave in 37°C for 12 hours. 

16) Increase heat to 60°C and leave for 48 hours. 
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Appendix 

Appendix D 

Biotin-dextran labelling of choroid plexus for electron microscopy 

Injection: Intraperitoneal injection of BDA-3000 (0.7 mg/g body weight) and wait 30- 
45 min. Choroid plexuses dissected out and fixed in 2.5% glutaraldehyde 
phosphate buffered saline (0.1M, pH 7.3). Leave tissue in fridge for 2-3 
hours. 

1) 3x10 min washes of sections in large amounts of PBS. 

2) Leave sections in 50% ethanol PBS solution for 30 min. 

3) 3x10 min washes of sections in PBS. 

4) Apply avidin peroxidase complex using an ABC kit (Vector). Leave A and B 
solution for 30 min in room temperature before incubation. Incubate for 30-60 min. 

5) 3x10 min washes of sections in PBS. 

6) Carry out DAB reaction. Try keeping the reaction time as short as possible to 
minimise precipitation. 

7) 3x10 min washes of sections in PBS. 

8) Osmicate in a 50/50 mixture of osmium tetroxide (4%) and 0.05 M potassium 
ferrocyanide 0.2 M PBS solution for 45 min :  

9) 3x10 min washes of sections in PBS. 

10) Leave tissue in a 1% uranyl acetate solution for 30 min. 

11) 10 min in 50% Ethanol 

12) 10 min in 75% Ethanol. 

13) 10 min in 95% Ethanol. 

14) 2x15 min in 100% Ethanol. 

15) Rinse tissue in 2x15 min in Propylene oxide (for Procure 812). 

16) Transfer to a 50/50 mixture of Procure 812/Propylene oxide for at least 1 hours. 

17) Transfer to a 75/25 mixture of Procure 812/Propylene oxide for at least 1 hours. 

18) Transfer to 100% Procure and leave overnight. 

19) Transfer to fresh Procure and leave for 6-7 hours. 

20) Embed in fresh procure and leave in 37°C for 12 hours. 

21) Increase heat to 60°C and leave for 48 hours. 
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