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Abstract 

The aim of this project was to define more clearly the culture conditions 

for the propagation of the southern rock lobster (Jasus echvardsii) in relation to 

environmental bioenergetic constraints. 

The effects of temperature and photoperiod on the first three stages of 

development were first studied in small-scale culture experiments. Larvae reared 

at 18°C developed faster and reached a larger size at stage IV than larvae cultured 

at 14°C. Development through stage II was shorter under continuous light. 

However, the pattern of response to photoperiod shifted at stage III when growth 

was highest in all the light/dark phase treatments than under continuous light. 

The influence of temperature and light intensity in early-stage larvae was 

further investigated through behavioural and physiological studies. Results 

obtained in stages I, II and III larvae indicated an energetic imbalance at high 

temperature (-22°C). The behavioural response of stage I larvae to light intensity 

suggested that light may be used to control behaviour in culture conditions. 

Early-stage larvae showed higher oxygen consumption, nitrogen excretion, and 

feed intake under light than in the dark. This may be due to the demonstrated 

increased activity under light conditions. 

A technique based on the chemical immobilisation of larvae was 

developed to assess the effect of temperature on the standard metabolic rate and 

the energetic cost of swimming in phyllosomas. Estimates of larval locomotor 

activity at different temperatures obtained through measurements of oxygen 

consumption were in agreement with behavioural response under the same 

conditions. 

The water quality requirements of f. edwardsii larvae were determined for 

dissolved oxygen, salinity, and ammonia. A critical oxygen tension of 

4.3 ml 02  r' was found for stage I larvae at 18°C. Stage I larvae were found to be 

stenohaline and a 3 ppt departure from normal salinity (34 ppt) during culture had 

a significant effect on growth. The cost of osmoregulation was examined in 

newly-hatched larvae and in stage I phyllosomas acclimated or not to sub-normal 



salinities. Safe levels of total ammonia concentration determined for stages I, II, 

III, and IV were 2.65 mg r', 3.83 mg l -I , 4.37 mg l , and 2.98 mg r', respectively. 

The results documented throughout this thesis highlighted the significance 

of environmental manipulation to achieve greater survival and growth during the 

larval development of f. edwardsii. In addition, information on the environmental 

physiology and behaviour of early-stage larvae provided an insight into an 

integrated approach, which at term will allow for the definition of system and 

dietary requirements of all developmental stages. 
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Chapter 1 

General Introduction 



I. General Introduction 

1.1 Background 

Following in the footsteps of Japan and New Zealand, Australia is 

showing a growing interest in spiny lobster aquaculture. As with many 

aquaculture species, the high market value of spiny lobster and its declining wild 

fisheries resources around the world make it a prime candidate for mariculture 

(Kittaka, 1994). In the last decade, researchers have developed techniques for the 

mass rearing of wild caught juveniles or pueruli of several species. Culture trials 

carried out in tanks, pens, and cages (Chittleborough, 1974; Rahman et al., 1994; 

Assad etal., 1996; Hooker etal., 1997; Lozano-Alvarez, 1996) have lead to 

promising results in terms of profitability (Rahman and Srikrishnadhas, 1994) 

providing that a cost-effective diet can be developed (Jeffs and Hooker, 2000). In 

Australia, extensive research is currently under way on the nutritional 

requirements of spiny lobsters (Crear etal., 2000; Glencross etal., 2001). 

However, there are obvious constraints with the harvest of wild pueruli for 

aquaculture purposes. Naturally, the practice is controversial with the fishing 

industry and ways of regulating exploitation must be implemented. The 

commercial harvest of pueruli is currently taking place in New Zealand, in the 

Australian state of Tasmania, and is in development in the Republic of South 

Africa. Although not documented, there are reports of puerulus collection for the 

growing of spiny lobsters in India, Korea, Japan, Taiwan, Vietnam, the 

Philippines, and Chile (David Mills, personal communication). Of those 

countries, only New Zealand and Tasmania have implemented regulatory 

measures for the management of puerulus collection. In New Zealand, these 

regulations consist in the exchange of a one tonne fisheries quota for 40,000 

pueruli, while in Australia, permits for the harvest of 50,000 pueruli require that 

after one year of capture the holders of such permits release 5% of the initial catch 

and 20% of the remaining numbers. Other than legal constraints, a spiny lobster 

aquaculture industry is likely to be limited by the inter-annual fluctuations in 

recruitment previously reported in Jasus edwardsii (Gardner et aL, 1998) and in 

other panilurid species such as Panulirus cygnus in Western Australia (Phillips 
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1 . General Introduction 

and Pearce, 1989). Extended periods of low recruitment have been observed in 

Hawaii and have resulted in the failure of the Panulirus marginatus fishery in the 

north-western region of the archipelago (Haight, 1997). Therefore, the 

inconsistency in seed availability may result in the inability of the producers to 

predict output and therefore to secure markets, and funding or loans from 

financial institutions. In Australia, these legal and natural constraints intrinsic to 

spiny lobster fisheries have prompted the development of research programs on 

the propagation of several panilurid species, which if successful, would ensure the 

sustainability and durability of both aquaculture and wild fisheries sectors. 

Japan has been leading research into spiny lobster propagation for over 50 

years and this work was reviewed by Kittaka (1994). From this extensive 

experience, Japanese researchers have consistently succeeded in producing small 

numbers of post-larvae (up to 325 pueruli) of various panilurid species of the 

Jasui (Kittaka, 1988; Kittaka et al., 1988; Kittaka et al., 1997), Panulirus (Kittaka 

and Kimura, 1989; Yamakawa et al., 1989; Matsuda and Yamakawa, 2000; 

Sekine et al., 2000), and Palinurus (Kittaka and Ikegami, 1988) genera. 

However, the propagation of spiny lobsters on a commercial scale is still not 

technically feasible. 

I edwardsii (southern rock lobster) is a temperate species distributed 

throughout southern Australia and in New Zealand (Edgar, 1997). After hatching 

in coastal waters (MacDiarmid, 1985), the planktonic phyllosoma of the southern 

rock lobster can reach distances of more than 900 km offshore (Booth, 1994). 

The pelagic larval phase is estimated to last between 13 and 24 months (Bruce et 

aL, 2000) during which, growth to the puerulus nektonic stage takes place through 

11 distinct developmental stages (Lesser, 1978). Research on the propagation of 

J. edwardsii was initiated in the 1990's in New Zealand (Booth, 1996) and has 

contributed to the development of novel culture techniques for spiny lobster 

larvae (Illingworth etal., 1997). Despite these recent advances, researchers both 

in New Zealand and Japan have encountered tremendous difficulties in rearing a 

handful off edwardsii larvae through up to 17 instars and for as long as 416 days 

until they moulted into the puerulus post-larval stage (Kittaka, 1994; Booth, 

1996). Additionally, the survival of pueruli through to the first juvenile moult 
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I . General Introduction 

remains low (Kittaka, 1994). In Panulirus japonicus, the duration and body size 

of the puerulus stage was reported to be influenced by the nutritional and 

environmental history experienced throughout the larval phase (Sekine et al., 

2000). A study by Jeffs etal. (2000) also confirmed the importance of lipid 

reserves for post-settlement development in J. edwardsii pueruli. Therefore, 

considering the environmental consistency experienced by J. edwardsii during 

larval development (i.e. `phyllosoma water', Bruce et al., 2000), the performance 

of potential new-recruits is likely to be dictated by feed availability, as is the case 

in fish larvae (Canino etal., 1991). In addition to this, all abiotic factors that can 

be controlled (e.g. salinity, dissolved oxygen, ammonia) and manipulated (e.g. 

temperature, photoperiod, light intensity) in a hatchery situation can influence the 

energetic balance and consequently the survival and growth of decapod larvae 

(Pandian and Vernberg, 1997). Therefore, the successful propagation of J. 

edwardsii along with other panilurid species will require a thorough 

understanding of the environmental biology and ecology of phyllosoma. 
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1.2 Objectives and scope of the study of 
environmental physiology in phyllosoma 

At the commencement of this project in 1998, little information was 

available on the environmental requirements for propagation of J. edwardsii 

larvae. Therefore, the research presented in this thesis aimed to further define 

culture conditions in order to enhance survival and growth rate. Since then, 

studies by Moss et al. (1999) and Tong et al. (2000) have demonstrated the effects 

of light intensity and temperature, respectively, on the development of early- and 

mid-stage J. edwardsii larvae. The influence of temperature and light intensity on 

early-stage larvae are also documented in the present thesis together with the 

effects of photoperiod and water quality parameters such as dissolved oxygen, 

salinity and total ammonia, which have, so far, received little attention in spiny 

lobster phyllosomas. The response of phyllosoma larvae to these environmental 

variables was described in terms of survival, growth, physiology, and behaviour. 

Given the difficulty in rearing spiny lobster larvae (see survival rates in Kittaka, 

2000) the present thesis focused essentially on early developmental stages. The 

methods documented here were developed with the intention to be easily 

transferable to more advanced stages once survival through the early-stages is 

improved. 

1.2.1 Survival and growth 

The survival and growth of early-stage phyllosomas was examined using 

small-scale experimental culture systems to rear larvae at different temperatures, 

photoperiods, salinities, and total ammonia concentrations. Each of these factors 

have been reported to significantly influence development in decapod larvae 

(Armstrong, 1978; Matsuda and Yamakawa, 1997; Gardner and Maguire, 1998; 

Kumlu et al., 2000; among others). Therefore, the objective of this work was to 

define optimal culture conditions for larval rearing and determine possible 

ontogenic changes in response to environmental factors during the first stages of 

development. 
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1.2.2 Physiology 

So far, only a few studies have dealt with indicators such as oxygen 

consumption in palinurid larvae (Belman and Childress, 1973) despite their 

comparative value in understanding environmental physiology (Willmer et al., 

2000). Oxygen consumption, nitrogen excretion, and feed intake were measured 

in stages I, II, III and V larvae (Appendix I) with techniques adapted from the vast 

literature available on the topic (see reviews by Omori and Ikeda, 1984, Bknstedt 

et al., 2000, and Ikeda et al., 2000). The objective of this approach was to define 

culture conditions for early-stage J. edwardsii larvae through the assessment of 

their physiological response to different temperatures, light intensities, salinities, 

or under progressive hypoxia. This approach also provided scope for the 

detection of possible ontogenic changes in response to temperature and light 

intensity during early development (Lemos and Phan, 2001). In addition, 

information on the physiological response of f. edwardsii larvae to environmental 

variables were expected to provide supportive bioenergetics evidence for the 

results that were obtained when growing larvae in small-scale experimental 

culture systems. 

1.2.3 Behaviour 

Factors such as temperature, light intensity, and salinity are all determinant 

cues for the orientation and the locomotor activity of decapod larvae (Sulkin, 

1984). Field surveys (Booth, 1994; Bruce et al., 2000) have provided to date the 

only information available on the behavioural response of mid- and late-stage J. 

edwardsii phyllosoma to environmental factors. Considering the significance of 

locomotor activity in the measurements of oxygen consumption in zooplankton 

(Halcrow and Boyd, 1967; Tones and Childress, 1983; Buskey, 1998), it was 

essential to describe the behaviour of phyllosoma under different environmental 

conditions for the interpretation of their metabolic response. A technique based 

on the chemical immobilisation of phyllosoma was also assessed to determine the 

standard metabolism and the energetic cost of locomotory activity in newly-

hatched larvae. In addition, an understanding of the environmental cues driving 
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depth regulation in phyllosoma is necessary to control their behaviour in a culture 

situation. The environmental control of behaviour may prevent responses such as 

aggregation or swimming towards tank walls, which may enhance mortality by 

promoting disease transmission, cannibalism, and reducing the encounter rate 

with prey. 

1.3 Structure of the thesis 

This document contains a general introduction, six research chapters, and a 

general discussion. At the time of submission for review, none of the results 

presented throughout this document have been published in scientific journals. 

However, each chapter is organised as a journal manuscript and it is the intention 

of the author to disseminate this information through publication following review 

of the thesis. The outcome of the experiments outlined in Chapter 2 and 4 were 

presented at conferences: 

Bermudes, M., 1999. Effect of photoperiod on survival, growth, feeding and cannibalism in early 
developmental stages ofJasus edwardsii phyllosoma larvae. In: Proceedings of the 1999 FRDC 
rock lobster propagation workshop, Jan 29th — 31st, Hobart. Tasmanian Aquaculture and 
Fisheries Institute, University of Tasmania, p. 19. 

Bermudes, M. and Powell, M., 2000. Estimation of the swimming response of rock lobster (Jasus 
edwardsii, Decapoda: Crustacea) larvae to temperature using respirometry. In: Proceedings of 
the Annual Conference of the Australian Marine Science Association, Sydney, July 11-14, 2000. 

The study in Chapter 3 was part of a larger project funded by the 

Australian Fisheries Research and Development Corporation, and implemented 

for the development of rock lobster propagation techniques (Crear and Hart, 

2001). 
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2.1 Abstract 

The effect of temperature and photoperiod, and the ontogenic changes in 

response to these factors was examined in two separate experiments from 

observations of survival, intermoult period, moult increment and feeding activity 

at stage I, II and III. Larvae were reared in static water systems in groups of 20- 

21 animals. Phyllosomas were cultured at 10.5, 14.3, 18.2 and 21.5°C in one trial, 

and under 0, 6, 12, 18 and 24 hours of light/day (L) in the other. Rearing was 

terminated at stage II in larvae tested at 10.5°C and 21.5°C. In stage I larvae the 

Belehradek's expression was fitted to the relationship between intermoult period 

and temperature (V = 48.716 (T-9.425) ° 579). Survival was not affected by 

temperature at stage I, although at 21.5°C, all larvae except one died at stage II. 

Post-moult growth at stage I was greatest at 18.2°C. The rate of development and 

moult increment remained greater at 18.2°C than at 14.3°C through to stage III. 

Consumption of Artemia nauplii by stage I larvae was highest but not different at 

18.5°C and 21.5°C. Photoperiod did not affect survival through the first three 

stages but had a marked effect on intermoult period, growth and feeding. The 

response to increasing photoperiod changed during development. Stage I and II 

larvae tended to develop at a greater rate and feed more under increasing light 

phase whereas stage III larvae required a light/dark phase to achieve higher rate of. 

development and growth. Results were compared with conclusions previously 

reached in New Zealand on the effects of temperature and light on I edwardsii 

larvae. Discrepancies of outcome between these studies and the present work are 

discussed with respect to differences in experimental approach. 
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2.2 Introduction 

Both temperature and photoperiod are parameters easily manipulated in 

the laboratory and they have major effects on the survival and growth of 

crustacean larvae in culture conditions. In poikilotherm organisms such as 

decapod larvae, temperature determines basal metabolic rate and may influence 

the production of new tissue, moulting, feeding activity and locomotor activity 

(Clarke, 1987). As such, temperature was reported to affect survival (Kurata, 

1960; Kumlu etal., 2000), rate of development (Templeman, 1936; Paul and Paul, 

1999) and growth (Rothlisberg, 1979; Johns, 1981; Minagawa, 1990) of larval 

crustaceans. As opposed to temperature, photoperiod does not have a direct effect 

on the metabolism of animals. However, parameters of light such as intensity 

(Forward et al., 1984), spectral composition (Ritz, 1972; Gardner, 1996), and 

angular distribution (Schalleck, 1942) can all affect locomotor activity in decapod 

larvae, while light intensity can influence feeding in Jasus edwardsii phyllosoma 

(Moss et al., 1999). Therefore under culture conditions, variations in the duration 

of the light and the dark phase could considerably affect the energetic balance of 

light responsive larvae such as phyllosomas (Ritz, 1972; Mikami, 1995). Shifts in 

photoperiod have in fact been reported to influence survival (Minagawa, 1994), 

rate of development (Dawirs, 1982), and growth (Templeman, 1936) in decapod 

larvae. 

The present study aimed to examine the influence of temperature and 

photoperiod on the survival, rate of development, growth and feeding activity of 

the first three larval stages off edwardsii. The continuous rearing of phyllosoma 

from a few hours after hatching through to the moult into stage IV was conducted 

in static water systems allowing for the exposure of animals to different 

temperatures or photoperiods. The results obtained with this method are 

discussed with reference to work previously published on aspects of the response 

to temperature (Tong et al., 2000b) and light intensity (Moss et al., 1999) in this 

species. 
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2.3 Material and methods 

2.3.1 Larvae 

Ovigerous females were brought from the east coast of Tasmania to the 

TAFI Marine Research Laboratories in Hobart (Australia), in June 1998. Females 

were kept in indoor tanks on a flow-through system and fed regularly with squid 

and mussels until larval release. The larvae hatched in November at an ambient 

temperature of 14.5°C. For temperature and photoperiod trials, larvae were 

collected on the same day from two and three broods, respectively, with initial 

mean (±SE) larval length of 2.08 ±0.03 mm and 2.15 ±0.03 mm, respectively. 

Larvae were reared through the first 3 stages of development described by Lesser 

(1978) (see also Appendix I) and there was one instar per stage. 

2.3.2 Culture conditions 

Larvae were reared in shallow plastic bowls with 200 ml of sea water and 

25 ppm of oxytetracycline (Engemycin 100, Intervet, Australia) (Gardner and 

Northam, 1997; Appendix II). Antibiotics were used to avoid proliferation of 

opportunistic bacteria that could interfere with the effect of temperature and 

photoperiod. In events of high mortality, samples of moribund larvae were 

prepared onto TCBS medium and sent to the Animal Health Laboratory of the 

Tasmanian Department of Primary Industries, Water and Environment (Kings 

Meadows, Australia) for microbiological analysis. There were five bowls per 

treatment and each bowl was initially stocked with 20 (10 from each of two 

broods) and 21 (7 from each of three broods) newly-hatched larvae in the 

temperature and photoperiod trials, respectively. Larvae were transferred to clean 

bowls and water with fresh oxytetracycline every second day and they were fed 

daily to satiation on newly-hatched Artemia nauplii enriched for 24 hours with 

DC Super Selco (INVE, Belgium), and T. Isochrysis galbana on alternate days. 
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2.3.2.1 Temperature trial 

Phyllosomas were reared under four temperatures (mean ±SD, daily 

observations): 10.5 ±0.5, 14.3 ±0.3, 18.2 ±0.5 and 21.5 ±0.3°C, which were 

achieved in water baths equipped with thermostats. Larvae were cultured under 

24 h of light per day with 20 watt quartz halogen lights reflected on a white 

ceiling above the culture vessels (200 lux). Rearing was terminated at stage II in 

the 10.5°C and 21.5°C treatments due to slow growth and high mortality, 

respectively. 

2.3.2.2 Photoperiod trial 

Larvae were reared under five photoperiods: 0, 6, 12, 18 and 24 h light per 

day (OL, 6L, 12L, 18L and 24L). The different light phases were achieved in dark 

chambers with 20 watt quartz halogen lights on timers. Lights were reflected on a 

white ceiling above the culture vessels (200 lux). This diffuse lighting resulted in 

the even spatial distribution of larvae and Artemia thus avoiding situations where 

photoresponsive larvae and/or preys are drawn away from each other (Mikami 

and Greenwood, 1997). Despite the experiment being conducted in an air-

conditioned room, slight fluctuations in temperature from 17.5°C to 18.5°C were 

expected between treatments. Therefore, hourly records of temperature Were 

taken in each chamber with data loggers. Mean ±SD (computed from mean daily 

records) temperatures were 18.28 ±1.16, 18.37 ±1.23, 18.06 ±1.32, 18.59 ±1.17 

and 18.53 ±1.05°C in OL, 6L, 12L, 18L and 24L treatments, respectively. There 

was no statistical difference in temperature between treatments (ANOVA, F4,256 = 

1.69, P = 0.152). 

2.3.3 Assessment of larval performance 

Mortality was recorded daily and expressed as survival to stage II, III and 

IV as the percentage of larvae stocked at the start of the experiment. The rate of 

development was measured in terms of stage duration (intermoult period). 

Intermoult duration of stages I, II and III was monitored at moulting when all 

exuviae were removed and counted daily. In the photoperiod trial, intermoult 
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duration was first calculated in degree-day according to the temperatures recorded 

in each treatment with data loggers. Degree-day data were then expressed in days 

at 18°C for interpretation and presentation. To examine treatment effects on 

moult increment, 12 stage I larvae from each brood were measured for initial 

length and five randomly selected larvae from each replicate were subsequently 

measured at stage II, III and IV. Total body length was measured from the 

anterior of the cephalic shield to the end of the telson to the nearest 25 gm (Nikon 

Profile Projector Model 6C). Larvae were returned to their respective rearing 

vessel after measurement. Feed intake was determined at mid-stage I in the 

temperature trial, and at mid-stage I, II and III in the photoperiod trial. Mid-stage 

I at each temperature was estimated from preliminary experiments and feed intake 

was assessed on day 5 at 21.5 and 18.2°C, and on day 9 and 20 at 14.3 and 

10.5°C, respectively. Daily feed intake was assessed on a same mid-stage day for 

all photoperiod treatments and at each stage. Stage I, II and III larvae were fed an 

initial number of around 1000, 1500 and 1500 Artemia nauplii per bowl, 

respectively. The same amount of feed was introduced in three control bowls in 

each treatment. Estimates of daily feed intake were obtained from the difference 

in prey number between control and experimental vessels after a 24-h period. 

Feeding activity of stage I larvae was expressed as daily feed intake of Artemia 

nauplii per larva per day (Artemia larva' day -I ). 

Cannibalism was observed in the photoperiod trial during stages II and III 

and records of cannibalised larvae were made in each treatment according to the 

flow chart presented in Fig. 2.1. 
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Figure 2.1 Flow chart used to identify larvae that died from cannibalism. 
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2.3.4 Statistical analysis 

2.3.4.1 Temperature trial 

The relationship between intermoult duration of stage I larvae and 

temperature was fitted with the Belehradek's expression (McLaren, 1963): 

V = a (T + a)b  

where V is the duration of the intermoult period (days), T is the 

temperature (°C), and a, b and a are constants. Belehradek referred to a as the 

"biological zero" under which the duration of the intermoult is infinite (McLaren, 

1963). Survival, intermoult period and moult increment data were analysed in 

two steps. The effect of temperature on each of these parameters was first 

examined at stage I from :10.5 to 21.5°C by means of Analysis of Variance 

(ANOVA) followed by Least Significant Difference post-hoc test (LSD). 

Possible changes in response with development were next examined with repeated 

measures ANOVA (JMP, 1995) in larvae reared from hatch to the moult into 

stage IV at 14.3 and 18.2°C. The between subject (temperature treatments) effect 

was determined with the Pillai's Trace multivariate test (PT). Depending on the 

significance of the sphericity test, either a univariate unadjusted test (standard F 

statistic procedure; F stat.) or the Geisser-Greenhouse univariate test (epsilon 

adjusted for degrees-of-freedom; G-G univ.) were used to examine the within 

treatment effect of ontogeMc development. Survival data were arcsine square root 

transformed to meet the ANOVA assumption of normality. Daily feed intake data 

did not meet the ANOVA assumptions of homoscedasticity (Leven Median test) 

and normality (Kolmogoroy-Smirnov test). Therefore, the effect of temperature 

on feeding activity was analysed with the Kruskal-Wallis one way analysis of 

variance on ranks (K-W) and the Newman-Keuls pairwise comparison procedure 

(N-K) was used to detect specific differences between treatments. 

2.3.4.2 Photoperibd trial 

Changes in survival, intermoult period, moult increment and feed intake 

from stage I to stage III were analysed with repeated measures ANOVA following 

the procedure described above. Survival data were arcsine square root 
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transformed to meet the ANOVA assumption of normality. When a significant 

effect of photoperiod was detected during development the Least Significant 

Difference post-hoc test (LSD) was used to compare between treatments within a 

developmental stage. The effect of photoperiod on cannibalism was examined by 

ANOVA on the total mortality caused by cannibalism at stage II and III. 
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2.4 Results 

2.4.1 Temperature trial 

2.4.1.1 	Survival 

Survival to stage II was not affected by temperature under the four 

conditions investigated (ANOVA, F3,15 = 2.59, P = 0.092; Table 2.1). There was 

no overall effect of temperature on the survival of larvae reared beyond stage II at 

14.3 and 18.2°C (PT, F1,8 = 0.02, P = 0.889), and in fact, the significant decline in 

survival observed during development (F stat., F2,16= 149.36, P<0.001) was 

consistent in phyllosoma reared at 14.3 and 18.2°C (F stat., F2,16 = 0.29, 

P = 0.754). At 21.5°C most larvae died during stage II (Table 2.1). This was 

possibly caused by starvation as stage II animals reared at 21.5°C were sluggish 

and did not appear to resume feeding after moulting. In addition, a microbiology 

report on stage I and II moribund larvae concluded on a normal bacterial flora in 

larvae cultured at both 18.2 and 21.5°C (Appendix III). 

2.4.1.2 Rate of development and growth 

At stage I (between 10.5 and 21.5°C) 

Stage I larvae took 47.7±1.1, 20.6 ±0.2, 13.4 ±0.1 and 13.5 ±0.4 days 

±SD to moult into stage II at 10.5, 14.3, 18.2 and 21.5°C, respectively. The 

Belehradek function described (r 2 = 0.99, F1,17 = 2060.36, P<0.0001) the 

curvilinear relationship between the duration of larval development at stage I (V 

in days) and temperature (T in °C) (Fig. 2.2): 

V = 48.716 (T - 9.4.251°  579  

In addition, the equation indicated a theoretical biological zero of 9.4°C 

for larval development of./ edwardsii larvae at stage I. 

Rearing temperature had a significant effect on body length growth at 

stage I (ANOVA, F3,15 = 19.35, P<0.0001). Consequently, stage II larvae were 

largest at 18.2°C and smallest at 10.5 and 21.5°C (LSD, P<0.05; Fig. 2.3). 
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From stage I to stage III (at 14.3 and 18.2°C) 

The effect of temperature on the duration of the intermoult period at stage 

I, II and III (PT, F1 ,8 = 920.68, P<0.0001; Fig. 2.4) indicated a faster rate of larval 

development at 18.2°C than at 14.3°C. The intermoult period extended 

significantly during development (F stat. on stage effect, F2,16 = 77.81, P<0.0001; 

Fig. 2.4), and this occurred in larvae reared at 14.3 and 18.2°C (F stat. on 

temperature x stage effect, F2,16 = 1.28, P = 0.304; Fig. 2.4). 

Larvae reared at 18.2°C went through significantly larger moult 

increments than larvae reared at 14.3°C (PT, F1,8 = 70.32, P<0.0001; Fig. 2.5). 

Moult increments decreased with development (F stat., F2,16 = 11.31, P<0.001), 

and this trend was similar at both 14.3 and 18.2°C (F stat., F2,16 = 2.14, P = 0.150; 

Fig. 2.5). 

2.4.1.3 Feed consumption at stage I 

Daily feed consumption significantly increased with temperature (K-W, 

H = 15.3, df = 3, P<0.01; Fig. 2.6). However, there was no significant difference 

in daily feed intake between larvae reared at 18.2°C and larvae reared at 21.5°C 

(N-K, P>0.05; Fig. 2.6). 
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2. Effects of temperature and photoperiod 

Table 2.2 Survival (percent ±SD) of Jasus edwardsii larvae cultured from hatch 
through to stage IV at four temperatures. Rearing was terminated at stage II at 10.5°C 
and no larvae survived past stage III at 21.5°C. 

Stage of development 

Temperature II III IV 

10.5°C 83.67 ±5.16 

14.3°C 82.67 ±16.59 80.71 ±16.72 73.94 ±14.11 

18.2°C 88.19±7.65 83.29±10.97 76.33±12.16 

21.5°C 65.86 ±16.16 1.00 ±2.24* 

> 0.05 	> 0.05 	> 0.05 

* excluded from analysis. 
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Figure 2.2 Mean (±SE) intermoult period of stage I Jasus edwardsii larvae reared at 4 
temperatures. The Belehradek expression was fitted to the raw time data. 
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Figure 2.3 Post-moult mean (±SE) length of stage II Jasus edwardsii larvae reared 
through stage I at different temperatures. Treatments sharing common letters were not 
significantly different (LSD, P>0.05). 
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Figure 2.4 Mean (±SE) intermoult period of Jasus edwardsii larvae reared at 14.3 and 
18.2°C from hatch to moult into stage IV. 
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Figure 2.5 Mean (±SE) body length moult increment of Jasus edwardsii larvae reared 
at 14.3 and 18.2°C from hatch to moult into stage IV. 
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Figure 2.6 Mean (±SD) daily consumption of Artemia nauplii by mid-stage I Jasus 
edwardsii larvae reared at different temperatures. Treatments sharing the same letter 
were not significantly different (N-K, P>0.05). 
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2.4.2 Photoperiod trial 

2.4.2.1 Survival and cannibalism 

There was no effect of photoperiod on survival from stage I to stage III 

(PT, F4,20 = 0.99, P = 0.436), and although survival significantly declined with 

time . (F stat., F2,40 = 62.88, P<0.0001), mortality was not linked to photoperiod 

during development (F stat., F8,40= 1.07, P = 0.403; Table 2.2). There was no 

significant effect of photoperiod on the mortality due to cannibalism at stage II 

and III (ANOVA, F4 ,20= 0.61, F = 0.658; Fig. 2.7). 

2.4.2.2 Rate of development and growth 

Photoperiod had a significant effect on the intermoult period (PT, 

F4,20 = 3.42, P<0.05) during the developmental period studied. While the duration 

of the intermoult period increased significantly during development (F stat., 

F2,40 = 167.48, P<0.0001; Fig. 2.8), there were significant ontogenic variations in 

response to photoperiod (F stat. on stage x photoperiod, 440 = 5.79, P<0.0001). 

Changes in the intermoult duration response of phyllosoma to photoperiod 

occurred from stage Ito stage II (F stat., F4,20 = 5.43, P<0.01), and from stage II to 

stage III (F stat., F4,20 = 3.49, P<0.05). Indeed, the absence of a treatment effect at 

stage I (ANOVA, F4,20 = 1.92, F = 0.147) was followed, at stage II, by a decrease 

in intermoult duration as daily light exposure increased (ANOVA, F4 ,20 = 6.52, 

P<0.01; Fig. 2.8). The effect of photoperiod on the intermoult duration of stage 

III larvae (ANOVA, F4,20 = 4.27, P<0.05) was again different with larvae exposed 

to 24L becoming significantly slower to develop than larvae reared under 6L, 12L 

and 18L (LSD, P<0.05; Fig. 2.8). 

There was no statistically detectable overall effect of photoperiod on moult 

increment (PT, F4,20 = 2.69, P = 0.061) during growth from stage Ito stage III. 

Moult increment did not change with developmental stage (G-G univ., FI.56,31.29 = 

0.18, P = 0.781) and this was consistent across all treatments (G-G univ., F6.26,31.29 

= 2.35, P = 0.053; Fig. 2.9). However, there was a subtle developmental change 

in response to photoperiod from stage II to stage III (PT, F4,20 = 2.94, P<0.05). In 
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contrast with the two previous stages, stage III larvae showed a marked response 

to photoperiod (ANOVA, F4,20 = 2.95, P<0.05) and the ontogenic change in 

response observed at this stage was due primarily to a significant (LSD, P<0.05) 

decline in growth in larvae reared in 24L compared to larvae reared under 6L, 12L 

and 18L (Fig. 2.9). 

2.4.2.3 Feed consumption 

There was a significant overall effect of photoperiod on feed consumption 

in early-stage phyllosoma (PT, F4,20 = 4.09, P<0.05). Feed intake increased 

significantly during development (F stat., F2,40= 77.59, P<0.0001; Fig. 2.10) but 

this increase was influenced by photoperiod (F stat., F8,40 = 2.21, P<0.05). At 

stage I increased Artemia consumption was associated with the lengthening of the 

light phase (ANOVA, F4,20= 4.07, P<0.05; Fig. 2.10). Although there was no 

significant effect of photoperiod on the feed intake of stage II larvae (ANOVA, 

F4,20 = 2.35, P = 0.090), the trend of response was consistent with observations 

made in stage I larvae (F stat., F4,20 = 1.09, P = 0.389). The feeding pattern shifted 

significantly from state Ito stage III (F stat., F4,20 = 4.64, P<0.01) due to a relative, 

although marginal, decline in feed intake in larvae reared under 18L and 24L. 

However, this shift in response at stage III did not result in a marked effect of 

photoperiod at this stage (ANOVA, F4,20 = 2.83, P = 0.052). 

Table 2.2 Mean (±SD) percent survival to stage II, III and IV in Jasus edwardsii 
larvae reared from hatch under different photoperiods. 

Survival 	 Photoperiod (hours of light day -1 ) 

to stage 	0 	6 	12 	18 	24 

II 	97.14±6.39 97.14±2.61 97.14±2.61 99.00±2.24 99.13±1.94 

III 	89.52 ±6.21 88.61 ±7.27 89.52 ±9.16 88.52 ±4.17 93.75 ±4.89 

IV 	76.19 ±4.76 83.90 ±5.56 86.67 ±8.52 83.67 ±5.38 89.23 ±6.35 
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Figure 2.2 Mean (±SD) mortality due to cannibalism in stage II and III Jasus 
edwardsii larvae reared under different photoperiods. 
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Figure 2.3 Mean (±SE) intermoult period in the first three stages of the larval 
development of Jasus edwardsii during rearing at different photoperiods. Treatments 
within stage sharing common letters were not significantly different (LSD, P>0.05). 
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Figure 2.4 Mean (±SE) moult increment in the first three stages of the larval 
development of Jasus edwardsii during rearing at different photoperiods. Treatments 
within stage sharing common letters were not significantly different (LSD, P>0.05). 
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Figure 2.5 Mean (±SD) feed consumption in the first three stages of the larval 
development of Jasus edwardsii during rearing at different photoperiods. Treatments 
wihtin stage sharing common letters were not significantly different (LSD, P>0.05). 

28 



2. Effects of temperature and photoperiod 

2.5 Discussion 

The effect of temperature and photoperiod on the survival, rate of 

development and growth throughout the first three larval stages of J. edwardsii 

was investigated in groups of larvae reared in static water systems. In contrast, 

Moss et al. (1999) and Tong et al. (2000b) working on the same species, reared 

larvae individually in a turbulent upwelling environment to study aspects of 

temperature and light intensity. There is some discrepancy between the results of 

their work and those presented here, and throughout the discussion, further 

reference will be made to the differences in experimental approach between the 

present and past studies. 

2.5.1 Temperature 

The survival of decapod larvae (and poikilotherms in general) commonly 

declines at the lower and upper extremes of a species specific temperature 

tolerance range. Likewise, high mortality was experienced post-moult into stage 

II in J. edwardsii larvae reared at 21.5°C, the high extreme of the experimental 

range. Antibiotics were used to prevent diseases that may be caused by the 

proliferation of opportunistic bacteria. In addition, the bacteriological analysis 

suggested a normal bacterial flora (Appendix III) in moribund larvae collected in 

the 21.5°C and 18.2°C treatments. Therefore, possible causes of mortality at high 

temperature include: (1) the burden of an energetic imbalance at moult from stage 

Ito stage II; (2) oxygen starvation at moulting; (3) osmotic stress at higher salinity 

caused by evaporation (unfortunately, salinity levels were not monitored, 

however, there were obvious signs of evaporation at 21.5°C); (4) the disruption of 

cellular membrane structure and functions (Willmer et al., 2000); (5) or a 

combination of these factors around the time of moult. The high mortality 

reported by Tong et al. (2000b) in I edwardsii larvae reared at 12°C is not 

consistent with the high survival achieved at 10.5°C in the present study. Possible 

causes for discrepancy of outcome between the two studies are discussed later. 
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The rate of development of poikilotherms is closely linked to temperature. 

The relationship between the intermoult duration in stage I J. edwardsii and 

temperature between 10.5°C and 21.5°C was curvilinear as described by the 

Belehradek's expression. Similar patterns of response were reported in Pandalus 

jordani (Rothlisberg, 1979), Cancer irroratus (Johns, 1981), Ran ma ranina 

(Minagawa, 1990), Panulirus japonicus (Matsuda and Yamakawa, 1997) and 

Lithodes aequispinus (Paul and Paul, 1999). The Belehradek's function indicated 

a theoretical biological zero of 9.4°C for larval development at stage I. Tong et 

al. (2000a) found a lower theoretical biological zero of 7.53°C for embryonic 

development in I edwardsii. However, these two figures are hardly comparable, 

firstly because they relate to a different developmental phase (endogenous feeding 

embryos compared to exogenous feeding larvae), and secondly, because Tong et 

al. (2000a) used linear exttapolation to determine the biological zero for 

embryonic development as opposed to the Belehradek's expression applied here. 

The duration of the intermoult period progressively increased throughout 

the early stages at both 14.3°C and 18.2°C. Previous observations on the rate of 

development of I edwardsii larvae reared in an upwelling culture system 

indicated little increase in the duration of the intermoult period until the fifth stage 

(Illingworth etal., 1997). This suggests either that static systems are less than 

optimum for the long term rearing of phyllosomas, possibly because of water 

quality deterioration, or that larvae underwent a shift in environmental 

requirements (other than temperature) with ontogenic development. Continuous 

lighting may have contributed to the progressive extension of the intermoult 

period observed in the present study since there was a marked delay in 

development in stage III larvae reared under constant light in the photoperiod 

experiment. 
At stage I, maximum body growth was found at 18.2°C compared to 

animals reared at 10.5 and 21.5°C. Similar larval growth patterns were found in 

other crustacean species with smaller individuals obtained at the cool and warm 

extremes (Rothlisberg, 1979; Johns, 1981; Minagawa, 1990; Kumlu et al.., 2000; 

see also review by Anger, 2001). Sweeney and Vannote (1978) suggested that the 

smaller arthropod larvae obtained under non-optimum regimes (i.e. cooler or 
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warmer) are the result of a disequilibrium between the timing of development 

(e.g. ecdysis) and larval growth (e.g. energy storage). If this is the case in J. 

edwardsii, larvae hatching in northern Tasmanian waters between November and 

December (e.g. King Island; Winstanley, 1977) at sea surface temperatures 

ranging from 12.7°C to 17.4°C (records from 1989 to 1999, King Island (I)) are 

likely to grow larger and be subsequently fitter (Hare and Cowen, 1997; see also 

Appendix IV) than their counterparts hatched from July to October in southern 

Tasmanian waters at temperatures ranging from 8.6°C to l4.1°C' (Maatsuyker 

Island). This hypothesis would not hold true if northern and southern larval 

populations had different temperature optima for growth. In addition, food 

availability and/or accessibility would also be expected to have a significant effect 

on the growth processes. Finally, the assumption of size dependence fitness in J. 

edwardsii larvae needs further investigated in terms of predator avoidance, 

predatory efficiency, and post-metamorphosis performance among other criteria. 

Subsequent growth observed in the present study at 14.3 and 18.2°C followed a 

similar pattern to intermoult period with moult increment being overall larger at 

18.2°C than at 14.3°C, and moult increment declining independently of 

temperature throughout development. 

Daily feed consumption increased from 10.5 to 18.2°C but did not 

significantly increase thereafter to 21.5°C. Considering that larvae at 21.5°C 

would have a higher metabolic rate than larvae at 18.2°C, a relative decline in 

feed intake at elevated temperatures may result in an energy imbalance. This 

shortfall in energy intake in concomitance with the disequilibrium between the 

timing of development and larval growth suggested by Sweeney and Vannote 

(1978), could explain the sharp decline in larval growth observed at stage I from 

18.2 to 21.5°C as opposed to the steady increase in moult increment seen between 

10.5 and 18.2°C. Tong etal. (2000b), also working with stage I f edwardsii 

larvae hatched from embryos incubated at ambient temperature and at 15°C, 

reported on a similar pattern of increased feed consumption from 15 to 18°C 

which then steadied between 18°C and 24°C. However, these authors did not find 

any difference in growth for larvae reared between 18 and 24°C. Differences in 

the methodological approach between the present study and work done in New 

(I)  NOAA satellite AVHRR imagery. 	 31 
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Zealand could explain the discrepancy in results reported here. The rearing of 

individual animals in an upwelling system (Tong et al., 2000b) contrasts in many 

aspects with the group rearing in static water used here. Aspects of the culture 

conditions that could have influenced growth include: (1) animal density (i.e. 

individual vs. group rearing); and (2) turbulence (i.e. upwelling vs. static water). 

In Palaemon serratus (Reeve, 1969) and Carcinus maenas (Dawirs, 1982), larvae 

reared in isolation grew to a larger size than animals reared communally. 

Turbulence was reported to play an important role in the feeding of a number of 

zooplanktonic species by raising the encounter rate between predators and preys 

(Dower et al., 1997). Therefore, the experimental approach used by Tong et al. 

(2000b) is likely to have stimulated feeding and in turn reduced the energy 

deficiency resulting from the group rearing of larvae at 21.5°C in the present 

study. 

Under the conditions of this experiment, a temperature of around 18°C 

was suitable for the rearing of the first three larval stages in J. edwardsii. Further 

work is now required to define temperatures required for the culture of mid and 

late stage animals as temperature preferences may change with development (e.g. 

Panulirus japonicus; Matsuda and Yamakawa, 1997). 

2.5.2 Photoperiod 

Even though the literature shows a similar pattern across species in the 

response of crustacean larvae (and of poikilotherms in general) to temperature 

(Anger, 2001), there is no obvious inter-species consistency in their response to 

photoperiod. Variation in the length of the light phase can influence survival (e.g. 

Homarus americanus; Templeman, 1936), rate of development (e.g. Carcinus 

maenas; Dawirs, 1982) and growth (e.g. Thenus orientalis; Mikami, 1997) of 

decapod larvae. Nevertheless, other species such as Sesarma reticulatum 

(Costlow and Bookhout, 1962), Palaemonetes vulgaris (Knowlton, 1974) and 

Panda/us borealis (Wienberg, 1982) were reported to be unaffected by 

photoperiod. 
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While the survival of f edwardsii larvae was high across treatments 

throughout the first three stages of development, photoperiod affected intermoult 

period and growth with significant ontogenic differences in response observed at 

each of the three stages investigated. Gardner and Maguire (1998) reported on the 

increased incidence of cannibalism in Pseudocarcinus gigas zoeas as photoperiod 

extended. In the present study, the mortality due to cannibalism among 

edwardsii larvae was highly variable (i.e. 11 to 74%) across photoperiod 

treatments and did not appear to be related to the length of the light phase, or to 

feeding activity under the various light regimes tested. 

A number of species including Carcinus maenas (Dawirs, 1982) and 

Thenus orientalis (Mikami, 1997) showed consistent growth response to 

photoperiod throughout larval development. This contrasts with the changes in 

photoperiod requirement observed in the early stages of larval development in J. 

edwardsii. At stage II, shorter intermoult periods were achieved with increasing 

photoperiod, while at stage III, larvae reared in light/dark treatments grew 

comparatively larger and in less time than larvae reared under complete darkness 

and constant light. Mikami (1997), suggested that the slow growth observed in 

Thenus orientalis larvae reared under constant light could be related to an inability 

to feed by positively phototactic animals drawn away from the food sitting at the 

bottom of the culture vessel. Shallow (-2cm deep) bowls and diffuse lighting 

were used in the present study to avoid such artefacts. Therefore, the stress from 

constant exposure to light is likely to have been solely responsible for the relative 

decline in feed intake observed in stage III larvae reared under 24L. Suppressed 

growth caused by reduced food rations was clearly demonstrated in I edwardsii 

larvae by Tong et al. (1997). Furthermore, the hypothesis that reduced growth 

under sub-optimum conditions is caused by a disequilibrium between the timing 

of development and energy storage (Sweeney and Vannote, 1978) may also 

applies to photoperiod since declining growth appears to be associated with 

reduced feed intake in J. edwardsii larvae (e.g. stage II and III under OL, and stage 

III under 24L). 

Similar to the reduced larval development reported in Callinectes sapidus 

(Sandoz and Rogers, 1944) and Carcinus maenas (Dawirs, 1982) reared in the 
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dark, J. edwardsii larvae cultured in the present study performed poorly in 

complete darkness in terms of rate of development (i.e. at stage II and III), growth 

(i.e. at stage III) and feed intake (i.e. at stage I). In contrast, Moss etal. (1999) 

working on the same species, found that although stage I larvae fed less in the 

dark, they grew to a larger size than larvae reared under constant high light 

intensities (0.1 and 10 pmol s 	Once again, differences in experimental 

approach (isolation vs. group rearing and turbulent vs. static environment), could 

account for the discrepancy in the results obtained between these authors and the 

present study. 

The similar feed consumption observed in a turbulent environment 

between larvae reared in complete darkness and individuals under constant light 

(Moss et al., 1999) suggests that J. edwardsii phyllosomas are not visual feeders 

but capture preys from random encounter. In this case, the low feed intake 

presently observed in larvae reared in static water in the dark would be the result 

of a reduced level of activity. In Callinectes sapidus larvae, McConaugha et al. 

(1991) have associated a higher night-time feeding with the 60% increase in 

swimming speed at night reported by Sulkin etal. (1979). Since light stimulates 

swimming in phyllosoma of the Palinuridae and Scyllaridae families (Ritz, 1972; 

Mikami, 1995; Chapter 3, Fig. 3.8 and Table 3.9), a lack of light would cause a 

reduction in activity and a drop in encounter rate between larvae and preys. 

• Work by Mikami (1997) indicated that a light/dark phase was necessary to 

synchronise moulting of Thenus orientalis larvae around dawn. Rhythmic 

environmental factors are also known to regulate internal physiological processes 

(Sulkin et al., 1979), and Aiken (1969) suggested that photoperiod affects the 

ecdysial rhythm in crustaceans. These are possible explanations for the stimulated 

rate of development and growth observed in stage III J. edwardsii larvae reared 

under light/dark regimes. 

In view of the results obtained in this trial, a continuous light regime is 

suitable for rearing J. edwardsii larvae through stages I and II as it stimulates 

feeding. However, stage III larvae appeared to require a light/dark regime, which 

enhanced their rate of development and growth. 
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2.6 Conclusions 

The methodology used by Moss et al. (1999) and Tong et al. (2000b) to 

study the effect of photoperiod and temperature exposes individual larvae to the 

turbulent environment normally experienced in a tank. As such, this approach can 

be deemed a more suitable assessment tool to determine environmental culture 

conditions for J. edwardsii larvae than the group rearing in static water applied in 

the present study. However, from the perspective of defining culture conditions 

for mass rearing, experimental work conducted on individual larvae excludes the 

animal interaction that would normally take place within a culture vessel. 

Phyllosomas occur at low density in their oceanic habitat (Bruce et al., 2000), and 

animal interaction at relatively high densities could be a significant factor to take 

into account when defining environmental preferences for propagation in a 

hatchery situation. Therefore, the use of a system combining both water mixing 

and group rearing could be a suitable alternative to both methods for experimental 

work on propagation techniques in I ectwardsii. 
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3. Ontogeny of Response to Temperature and Light Intensity 

3.1 Abstract 

The behavioural (swimming speed, photoresponse, phototaxis and 

geotaxis) and physiological (oxygen consumption, nitrogen excretion and feed 

intake) responses to temperature and light intensity were examined in early-stage 

Jasus edwardsii larvae sampled from mass culture tanks at successive stages. 

Phyllosoma were photokinetic and positively phototactic at hatching and became 

predominantly negatively phototactic by day 2. At mid-stage I however, larvae 

were evenly distributed between positive and negative photoresponse under the 

lowest light intensity tested (2.9 • 10 14  quanta s-1  cm-2). This response was not 

observed again at mid-stage II or mid-stage III, implying that older larvae may 

have a lower light threshold for reversal of phototaxis. The level of illuminance 

might therefore be an important consideration for controlling behaviour in culture. 

Rising temperature caused a gradual decline in the negative geotaxis of newly-

hatched larvae. Except for signs of avoidance of cold water in mid-stage I larvae, 

the response to temperature faded with age and larvae were predominantly 

positively geotactic at mid-stage II from 10 to 22°C. This indicated that other 

factors would influence depth regulation at this stage. The physiological response 

observed in larvae exposed to conditions ranging from 10 to 22°C was 

characterised by a relative decline in weight specific oxygen consumption at 

elevated temperatures. While feed intake followed the same trend in stage I and 11 

larvae, nitrogen excretion increased linearly within the same temperature range. 

Therefore, high temperatures (-22°C) may cause an energetic imbalance and 

reduce growth potential in early stages. The physiological response of larvae 

from hatching to stage V was higher under light than in the dark. This was 

primarily attributed to the increase locomotor activity associated with 

photoresponse. Light ranging in intensity from 7.7 • 10 12  to 3.9 • 10 14  

quanta s-1  cm-2  is recommended to stimulate feeding in early larval stages and 

may be followed by a resting dark phase to maximise feed assimilation. 
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3.2 Introduction 

Temperature and light intensity are two of the most variable components 

of the abiotic environment of zooplankton. While both factors are depth 

dependent, light intensity also varies on a diurnal basis. At sea, Jasus edwardsii 

larvae are distributed over a wide depth profile both during the day and at night 

(Booth, 1994; Bruce etal., 2000). Behavioural studies (Russell, 1925; Boden and 

Kampa, 1967; Harding et al., 1987; Haney, 1988; among others) indicated that the 

majority of zooplankters undergo vertical migration within their respective 

habitat. There is evidence from field surveys that J. edwardsii larvae are no 

exception to this behavioural trait of crustacean zooplankton (Booth, 1994; Bruce 

et al., 2000). Diel vertical migration is thought to play an important role in 

predator avoidance (Gliwicz and Pijanowska, 1988) and advection transport 

(Phillips and McWilliam, 1986). In addition, McLaren (1963) proposed that the 

variations in temperature encountered by migrating animals was of significant 

metabolic advantage since it allowed them to feed actively in warm surface waters 

before sinking to colder strata where their food assimilation and growth would be 

maximised. However, Haney (1988) noted later that there was little experimental 

evidence to support the possible metabolic advantage of depth regulation in 

zooplankton. In other words, there is no evidence for differences in thermal 

optima between different metabolic functions. 

From an aquaculture perspective it is essential to define the influence of 

temperature and light intensity on the behaviour and physiology of J. edwardsii 

larvae. The behavioural response of many decapod larvae to temperature and 

light has already been the focus of extensive work and was reviewed by Sulkin 

(1984) for brachyuran larvae. There are many similarities in the response of 

decapod larvae to temperature and light and these will be discussed later in view 

of the results obtained in the present study. Generally however, the response is 

species dependent and reflects environmental preferences, and also the 

environmental history of the experimental animals (Forward, 1974; Stearns and 

Forward, 1984). From a physiological perspective, information on behavioural 
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responses is crucial to the understanding of changes in metabolism driven by 

shifts in locomotor activity under variable environmental conditions. The 

physiological response of animals to abiotic factors can assist the aquaculturist in 

understanding the processes underlying development and growth of cultured 

animals. While the effect of temperature on the physiology of decapod larvae is 

well documented, little information is available on the effect of light intensity on 

physiological processes such as oxygen consumption and nitrogen excretion. The 

series of experiments described in this chapter aimed at defining the behavioural 

and physiological responses of early-stage I edwardsii larvae to temperature and 

light intensity in an effort to understand but also predict the effect of these factors 

on larval development. The methods used here were adapted from experimental 

procedures available throughout the vast scientific literature that deals with the 

present topics of interest. 
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3.3 Material and methods 

3.3.1 Larvae 

In the following trials, larvae were examined at various stages of 

development from directly after hatching (newly-hatched) to stage V (stages 

described by Lesser, 1978). Larvae were obtained from ovigerous females caught 

in coastal waters around Tasmania and kept in captivity at the TAFI Marine 

Research Laboratories (Australia). Newly-hatched larvae were collected from 

hatching tanks during September-November of 1999 and 2000 at ambient 

temperatures ranging from 12.0 to 17.1°C. Larvae from 15 females were reared 

through to stage V at 18°C following the method described by Ritar (2001). Each 

brood was reared in two 10 L flow-through tanks, each initially stocked with 1000 

newly-hatched phyllosomas. The density gradually declined as larvae were 

sampled for experiments at mid-stages I, II, ifi and V (see Table 3.1 for age and 

morphometrics). During mass culture phyllosomas were fed adult Artemia (1.5-3 

mm) at a ration of 180 mg of dry weight Artemia per 10 L of water, and uneaten 

food and dead larvae were removed daily. The tanks were exchanged and cleaned 

weekly. To avoid interference from possible circadian behavioural patterns, all 

experiments were conducted between 1000 and 1600 h. In all temperature trials, 

larvae (except newly-hatched animals) were acclimated to their experimental 

temperature for 24 h prior to the start of an experiment. 

3.3.2 Behaviour 

3.3.2.1 Temperature 

The geotactic response was examined at seven temperatures ranging from 

10.3 to 21.9°C in newly-hatched J. edwardsii larvae, and at mid-stages I and II. 

Seven sets of three glass columns (300 x 100 x 100 mm) with sea water were 

maintained at different temperatures inside thermo-regulated aquaria. Larvae 

were introduced to each column and left to acclimate in the dark for 1 h before 
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observation of geotaxis. Observations were made on 20 individuals per column in 

newly-hatched and mid-stage I larvae and in 16 animals per column at mid-stage 

II. Three broods were tested, one per column within each temperature group. The 

position of the larvae in the column (upper or lower half) was recorded using a 

hand held torch. Since I edwardsii larvae are phototactic, observations were only 

made in one half of the columns starting from the middle. Data were analysed 

with repeated measures ANOVA following arsine square root transformation to 

meet the assumption of homoscedasticity. 

3.3.2.2 Light 

The effect of light intensity on the locomotor activity of phyllosoma was 

examined in newly-hatched larvae swimming towards a light source (20 watt 

quartz halogen) adjusted to low (2.9 • 10 14  quanta s-1  cm-2), medium (2.5 • 10 15  

quanta s-1 cm-2), or high (1.8 • 10 16  quanta s 	light intensity as measured at 

the middle of the experimental column (Fig. 3.1) with a Biospherical QSL 100 

light meter. The different light intensities were obtained by placing layers of 

aluminium fly screen and drawing paper in front of the light source. These filters 

did not affect the peak wavelength of the light source (652 nm) as measured with 

a portable spectroradiometer (Li-Cor, LI-1800). Conversions of light intensities 

from quanta s-I  cm-2  to W m-2  and prnol s -1  m-2  are presented in Appendix V. 

After the light was turned on, larvae were released from a small cage placed at the 

middle of the column (Fig. 3.1.A). Their swimming towards the light (Fig. 3.2) 

was recorded with an overhead camera connected to a video recorder. Swimming 

speed (cm s-I ) was later measured on a monitor as the time taken for larvae to 

cover a 10-cm horizontal section (distance between the cage and the 'finish line', 

see Fig. 3.2) of the chamber. A total of 20 larvae from each of four broods were 

examined at each light intensity. The effect of the log transformed light intensity 

on swimming speed was described with linear regression analysis. 

The phototactic response of f. edwardsii larvae was examined throughout 

stage I at two-day intervals from hatching until day 10, and at mid-stage II and 

mid-stage ifi. Larvae in stock cultures started to moult into stage II at day 10, and 

only stage II phyllosomas (49-85% of the population in this age class) were 
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sampled on this day. The light regime (photoperiod and light intensity) was not 

rigorously controlled during mass culture and there may have been some 

differences of light intensity between tanks. Since previous light experience may 

affect the behavioural response of decapod larvae (Forward, 1974; Stearns and 

Forward, 1984), phyllosomas were placed in the dark for 2 h prior to each trial in 

an attempt to minimise tank effect. Larvae were introduced in the partitioned 

centre of the column (Fig. 3.1.B) and were given 10 min to recover from handling 

after which, the light source adjusted to 2.9 	10 14, 2.5 • 10 15, or 1.8 • 10 16  

quanta s-1  cm-2  was switched on and the partitions removed. The partitions were 

replaced after 10 min of exposure to light and larvae were counted in each of the 

three sections of the column. The same iirotocol was repeated in the dark. For 

each age class, phototaxis was examined in 15-20 larvae from each of four 

different broods and at each light intensity. The photoresponse was analysed in 

terms of percent positively phototactic larvae of the responsive animals (i.e. larvae 

outside the centre section of the column). Repeated measures ANOVA on the 

arsine square root transformed response rates was used to analyse the change in 

response to light intensity during stage I and between mid-stages I (i.e. day 6), 

and LEL Developmental changes in response were further described within each 

age class by comparing the response of larvae subjected to light with the 

behaviour of larvae in the dark control (Dunnett's test). 

3.3.3 Physiology 

The following observations were conducted in relation to temperature in 

larvae grown to mid-stage I, II and HI, and in newly-hatched, mid-stage I, H, ifi 

and V larvae under different light intensities. Oxygen consumption and nitrogen 

excretion were determined in two separate broods and due to number 

requirements for all experiments (i.e. behaviour and physiology X temperature and 

light intensity) and the occasional mortality event during mass culture, larvae 

from different broods were used at each stage. At mid-stage V, nitrogen excretion 

was measured in a single progeny. Feed intake was examined in 15-20 larvae 

from a minimum of three broods at each age class and under each environmental 

condition tested. In the temperature trials, physiological observations were 
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conducted in seven aquaria each equipped with a thermostat to maintain 

temperatures (mean ±SD) of 9.9 ±0.3, 12.1 ±0.2, 14.0 ±0.1, 16.0 ±0.1, 18.0 +0.1, 

20.0 ±0.1 and 21.8 ±0.1°C. Due to limitation in the number of phyllosomas 

available, the response of stage ifi larvae was only examined at 9.9 ±0.3, 14.0 

±0.1, 18.0 ±0.1, and 21.8 ±0.1°C. Light-proof chambers were constructed to 

compare the physiological response of larvae placed in the dark, and exposed to 

low (7.7 • 10 12  quanta s4  cm-2) and high (3.9 • 10 14  quanta s-1  cm-2) light 

intensities. In the light ,  treatments, a quartz halogen light source was reflected on 

a white ceiling above the animals to provide even distribution of light throughout 

the chambers. Each light-proof chamber was fitted with a water bath maintained 

at an incubation temperature of 18°C. 

3.3.3.1 Oxygen consumption (V02) 

Two different respirometer designs were used to measure oxygen 

consumption in J. edwardsii larvae (Fig. 3.2). Plastic syringes (Fig 3.2.A) were 

used in the temperature experiment while transparent glass respirometers (Fig. 

3.2.B) were preferred for testing the effect of light intensity. Animal density and 

period of exposure are outlined in Table 3.2. The respirometers were filled with 

UV sterilised, 0.2 i_tm filtered sea water treated with oxytetracycline (25 ppm) to 

minimise background microbial respiration. Larvae were left to recover from 

handling stress while acclimating to the respirometers for 1-2 h before a first 

water sample (0.75 ml) was drawn to determine the initial oxygen saturation level. 

The oxygen content was left to decline in the respirometer (see incubation period 

in Table 3.2) and a second water sample was taken to determine final oxygen 

tension. To avoid oxygen stratification, respirometers were gently shaken before 

each water sampling. Percent oxygen saturation of initial and final samples was 

measured with a polarographic electrode connected to a digital controller (Rank 

Brothers Ltd., UK). In each treatment, VO2 was assessed in five replicate 

respirometers and two controls without phyllosoma. The dry weight (DW) of test 

animals was determined from three samples of larvae (from 10 individuals per 

sample in newly-hatched larvae to 2 individuals per sample at stage V) rinsed in a 

0.9% solution of ammonium formate and dried for 24 h at 60°C. The weight of 
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each sample was measurement to the nearest 10 lig on a precision balance 

(Mettler AT261 DeltaRange, Mettler-Toledo AG, Switzerland). Oxygen 

consumption was expressed in IA 0 2  mg DW-I  11-1  after deduction of background 

respiration obtained from the control respirometers. Oxygen saturation in the 

respirometers was kept above 80% (Ikeda et al., 2000) throughout these trials. 

However, dissolved oxygen fell below this level on one occasion (temperature 

experiment: stage 11 larvae from one brood incubated at 21.8°C) when final 

oxygen tension (mean ±SD, n = 5) reached 3.8 ±0.2 ml 02  r'. This concentration 

was nonetheless near the P cri t  determined for stage I larvae at elevated temperature 

(3.9 ml 02  r' ;  see Chapter 5). The response to temperature at each stage and the 

ontogenic change in response at each light intensity were modelled according to 

the procedure described later in this section. Curves were compared with the 

Kimura Likelihood Ratio test. 

3.3.3.2 Nitrogen excretion 

Nitrogen excretion rates were determined in groups of larvae placed in 

acid cleaned, sealed glass vials containing UV sterilised, 0.2 i_trri filtered sea water 

treated with oxytetracycline (25 ppm). Details of the volume of the vials, number 

of animals per group and period of exposure to temperature or light intensity are 

presented in Table 3.2. At the end of the period of exposure, a 3-ml sample of 

water was taken from each of 5 replicate vials and 2 controls for each treatment. 

Ammonia concentrations were determined according to the method described by 

Solorzano (1969). Larval dry weight (DW) was obtained following the procedure 

outlined earlier, and excretion was expressed in lig NH 4-N mg DW I  If' after the 

deduction of NH4-N concentration in the control vials. The effect of temperature 

on nitrogen excretion through development was assessed with analysis of 

covariance (ANCOVA) for lines with the same slope (Sokal and Rholf, 1995). 

The effect of light intensity on nitrogen excretion was analysed with the Kimura 

Likelihood Ratio test after modelling the response through time at each intensity. 
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3.3.3.3 Feed intake 

The effect of temperature and light intensity on the consumption rate of 

adult Artemia by phyllosoma was assessed in clear plastic jars. Experimental 

procedures are further detailed in Table 3.2. Note that larger preys were offered 

to stage V larvae. An average Artemia length was determined from the 

measurement of 20 Artemia for each feeding trial. Weight specific consumption 

of dry weight Artemia Gig Artemia mg DW -1  If ' ) was computed following the 

conversion of Artemia length into dry weight according to the exponential 

function determined by Evjemo and Olsen (1999) for Artemia franciscana: 

Artemia dry weight = 0.751 e0 22 L) 

where L is Artemia length (mm). Response modelling and the Kimura 

Likelihood Ratio were used to describe the effect of temperature and light 

intensity on larval feed intake throughout early development. These procedures 

are detailed later in this section. 

3.3.4 Physiological indicators 

3.3.4.1 van't Hoffs rule 

The Qio was computed using the following formula (Ikeda etal., 2000): 
Qio = (k2 koloicr,-To 

where k2  and k1 are respiratory rates (in pi 02 mg DWI  11-1 ) observed at 

temperatures T2 and T1 (in °C), respectively. A Qio of around 1 indicates that no 

change in metabolic rate has occurred within the thermal range considered while a 

Qio of around 2 indicates a doubling of metabolism for every 10°C increment. 

Values of the Q i o were obtained at stage I, II and III for three temperature ranges: 

10-14°C, 14-18°C and 18-22°C. The Qio values obtained at each stage were 

grouped by temperature range for statistical analysis. The effect of temperature 

on the change in Qio in stage 	phyllosoma was assessed with the Welch 

ANOVA for data with unequal variance followed by a Games-Howell ad-hoc test 

(G-H). 
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3.3.4.2 Convection requirement index (CRI) 

The CRI was calculated as the quotient of mean feed intake and mean 

oxygen consumption (Newell and Branch, 1980) for each environmental condition 

examined and at each stage. The CRI is an indicator of metabolic feeding 

efficiency. Given the computation of the CRI in the present study, statistical 

analysis was not applicable. Therefore, only careful interpretations were drawn 

from analysis conducted on each of the components of the quotient (i.e. oxygen 

consumption and feed intake). 

3.3.4.3 0:N ratio 

In order to describe the effects of environmental variables on the type of 

metabolic substrate (i.e. protein and/or lipid) oxidised by phyllosoma the atomic 

ratio between oxygen consumed and nitrogen excreted was computed according to 

the following formula (Agard, 1999): 

0:N =al b x 1.25 

where a and b are the mean weight specific oxygen consumption and 

nitrogen excretion respectively, obtained for given age class and environmental 

condition. As for the CRI, the nature of the 0:N ratio computed in the present 

study did not allow for statistical analysis. Therefore the interpretation of the data . 

was made according to the statistically tested effect of environmental variables on 

the components of the quotient (i.e. oxygen consumption and nitrogen excretion). 

3.3.5 Statistical procedures 

This section describes the procedures for repeated measures ANOVA and 

for the Kimura Likelihood Ratio test used in this study. In order to improve the 

clarity of the reading throughout the 'Results' section, the type of analysis used 

and the effect tested for will be indicated for each data set. 

3.3.5.1 Repeated measures ANOVA 

The Univariate Repeated Measures (JMP, 1995) procedure was used to 

assess developmental changes in behavioural response to temperature and light 
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(geotaxis, response, phototaxis). The between subject (temperature or light 

treatments) effect was determined with the Pillai's Trace multivariate test (PT). 

According to the significance of the sphericity test, a univariate unadjusted test 

(standard F statistic procedure; F stat.) or the Geisser-Greenhouse univariate test 

(epsilon adjusted for degrees-of-freedom; G-G univ.) were used to examine the 

within treatment effect of ontogenic development. The above analyses were 

conducted in JMP 3.1 and SPSS 10.0. 

3.3.5.2 Response modelling 

For data pertaining to the assessment of the influence of temperature, the 

models fitted to the raw data described the effect of temperature at each stage, 

whereas models applied to the responses to light intensity described the change in 

response to light with age at each intensity. Comparisons of curves were used to 

test for either ontogenic changes in response to temperature or the effect of light 

intensity. 

Two criteria were used to fit the best type of model possible to the raw 

data but also to provide models easy to interpret and compare with each other: the 

Akaike's Information Criterion (AIC; Haddon, 2001); and the coefficient of 

determination adjusted for degrees of freedom (R2adj). Note also that to be 

statistically comparable models for a type of physiological response have to be the 

same for either each stage over a temperature range, or each light intensity 

throughout development. Therefore, compromise was sometimes required 

between the two criteria in order to obtain models that would be representative of 

the data and would also be relevant to the analysis. AIC and R2adj were computed 

in SigmaPlot 6.0, JMP 3.1 and Microsoft Excel 97. 

3.3.5.3 Comparing lines and curves 

The Kimura Likelihood Ratio test (KLR) was used to test for overall 

differences between a group of curves (e.g. respiration versus temperature at each 

stage, respiration versus age at each light intensity), and for ad-hoc tests of the 

coefficients of the model to determine the source of discrepancy between curves. 

Generally, the intercept was used to compare the level of response between stages 
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(i.e. temperature trial) or between treatments (i.e. light intensity trial), while the 

other coefficients of a model were compared to seek changes in the shape of the 

curve between stages or treatments. Note, however, that the intercept was of little 

comparative value when curves were of a significantly different shape. In this 

case analyses of variance (i.e. ANOVA and Least Significant Difference test) 

were used to compare between responses grouped at the stage level (i.e. 

temperature trial) or at the treatment level (i.e. light intensity trial). When data did 

not meet assumption of ANOVA (i.e. normality and/or homoscedasticity), 

Kruskal-Wallis ANOVA on ranks (K-W) followed by the Games-Howell test for 

multiple comparison (G-H) were carried out with SPSS 10.0 statistical software. 

The KLR analyses were carried out following the Microsoft Excel spreadsheet 

procedure described by Haddon (2001). Further details of the parameters tested in 

each model are given in the 'Results' section. 
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Stage of development 

newly-hatched 

mid-stage I 

mid-stage II 

mid-stage DI 

mid-stage IV 

Age (days) Length (mm) Dry weight (p.g) 

0 _ 68.93 ±4.60 

4-6 2.02 ±0.03 128.57 ±4.84 

15-18 2.91 ±0.03 274.71 ±7.72 

25-30 	, 3.80 ±0.04 501.57 ±24.09 

52-55 5.90 ±0.13 1234.75 ±120.16 

3. Ontogeny of Response to Temperature and Light Intensity 

Table 3.2 Age, mean (±SE) length, and mean (±SE) dry weight of Jasus edwardsii 
larvae examined for behavioural and physiological response to temperature and light 
intensity. 

Table 3.3 Protocols used to determine oxygen consumption, nitrogen excretion and 
feed intake in Jasus edwardsii larvae. 

I II 

Stage 

III V 

Oxygen consumption 

Volume of respirometer (m1) 12 12 12 17 

Incubation period (h) 4-6 

Animals per respirometer (n) 8-10 4-5 3 2 

Nitrogen excretion 

Volume of vial (ml) 9.5 9.5 9.5 25 

Incubation period (h) 8-9 

Animals per vial (n) 8-10 5 3 4 

Feed intake per larva 

Volume in jar (ml) 15 20 20 30 

Incubation period (h) 24 

Initial Artemia in jar (n) 15 20 20 15 

Size of Artemia (mm) 1.2-2.0 1.2-2.0 1.2-2.0 2.2-3.0 
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partitions 
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horizontal test column 

A: swimming speed configuration 

Figure 3.2 Schematic view of the apparatus used to test to swimming speed of newly-
hatched Jasus edwardsii larvae (configuration A) and the phototaxis of phyllosoma from 
newly-hatched to stage BI (configuration B). 
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,  reflection of winch  line 

3. Ontogeny of Response to Temperature  and Light  Intensity 

Figure 3.3 Frame view of newly-hatched Jasus edwardsii larvae swimming towards a 
light source. Swimming speed was measured from the point of release from the cage (Fig. 
3.1.A) to the 'finish line' (distance of 10 cm). A notch on the winch line (reflecting at the 
surface of the water), which does not appear on this view, indicated the time of release 
from the cage. 

54 



4_.......----■* sampling syringe 

12-ml syringe 

B. Glass respirometer 

sampling syringe 

o-rings 

plunger 

glass vial 

3. Ontogeny of Response to Temperature and Light Intensity 

A. Syringe respirometer 

Figure 3.4 Schematic view of the syringe respirometer (A) and of the glass 
respirometer (B) used to measure the oxygen consumption of Jasus edwardsii larvae 
under different temperatures and light intensities, respectively. 
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3.4 Results 

3.4.1 Behavioural and physiological responses to temperature 

3.4.1.1 Geotaxis 

Temperature had a significant effect on the behaviour of f. edwardsii 

larvae (PT, F6,14=14.54, P<0.0001; Fig. 3.4). There was a significant decline in 

negative geotaxis from hatching to stage H (G-G univ., F1.40, 19.55 = 74.86, 

P<0.0001) which was accompanied by a shift in response through development 

(G-G univ., F8.34, 19.55 = 3.25, P<0.05). Indeed, in newly-hatched larvae, the loss of 

negative geotaxis observed under increasing temperature (ANOVA, F6,14 = 9.84, 

P<0.001) was significantly marked only above 16.0°C (LSD, P<0.05), while the 

decline in negative geotaxis seen at mid-stage I (ANOVA, F6,14 = 4.06, P<0.05) 

was significant (LSD, P<0.05) already at temperatures above 10.3°C (Fig. 3.4). 

There was also a significant effect of temperature on the geotactic response of 

stage II larvae (ANOVA, F6,14 = 3.03, P<0.05). This latest observation should, 

nonetheless, be interpreted cautiously due to the small number of larvae that were 

responsive to the experiment at this stage. 

3.4.1.2 Physiology 

The oxygen consumption of J. edwardsii larvae increased with increasing 

temperature, following a sigmoidal pattern (Table 3.3; Fig. 3.5) within the range 

of temperature tested at stage I (R2adj = 0.741, P<0.0001), stage II (R2adj = 0.745, 

P<0.0001) and stage Iff (R2adj  = 0.809, P<0.0001). The Kimura Likelihood Ratio 

test indicated a significant ontogenic change in the respiratory response of 

phyllosomas over the three stages (df = 4, X,2  = 53.02, P<0.0001). There was no 

difference in the shape of the sigmoid response from stage Ito stage III (Fig. 3.5 

and Table 3.4) since development did not significantly affect either coefficient a 

(df = 1, x2=3.46, P = 0.063), b (df = 1, x2=  0.95, P=0.330), or xo (df=1, x2= 2.22, 

P = 0.136). However, there was a significant ontogenic change in weight specific 
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VO2 (df = 1, x2  = 4.61, P<0.05) as indicated by the difference between models at 

the intercept level (yo). According to the significant decline in the intercept of the 

logistic model from stage Ito stage II (df = 1, x2  = 4.15, P<0.05), and from stage I 

to stage 1111 (df = 1, x2  = 4.78, P<0.05), weight specific oxygen consumption 

decreased with development. The Qios (mean ±SD, n =3) grouped by stage for 

the temperature intervals of 9.9-14.0°C, 14.0-18.0°C and 18.0-21.9°C were 2.10 

±0.88, 2.73 ±0.26 and 1.34 ±0.19, respectively. The Qio fluctuated significantly 

within the range of temperature tested (Welch ANOVA, F2,3.51 = 23.5, P<0.01) 

and was significantly higher in the 14-18°C range than between 18 and 22°C 

(G-H, P<0.01). 

Nitrogen excretion increased linearly with temperature at stage I 

(R2adj  = 0.47, F1,68 = 61.14, P<0.0001), stage II (R2adj = 0.48, F1,103= 95.25, 

P<0.0001) and stage III (R2adj = 0.56, F1,38 = 50.35, P<0.0001) (Fig. 3.6 and Table 

3.5). All three regression lines were parallel (ANCOVA, F2,209 = 0.12, P = 0.889) 

indicating a similar rate of increase in nitrogen excretion in stages I, II, and III 

larvae in relation to temperature. Weight specific nitrogen excretion levels 

dropped significantly with age (ANCOVA, F2,211 = 122.15, P<0.0001) as stage I 

larvae excreted significantly more nitrogen per unit of weight than stage II 

(ANCOVA, F1,172 = 194.49, P<0.0001) and III (ANCOVA, F1,107 = 181.83, 

P<0.0001) larvae. However, there was no difference in excretion levels between 

stage II and BI larvae (ANCOVA, F1,142= 2.15, P = 0.145). 

The feeding response to temperature was described at each stage with a 

quadratic model (Table 3.3) for the purpose of comparing the ontogenic change in 

the feeding rate increase with temperature (Fig. 3.7 and Table 3.6). Note that at 

stage In, however, the feed intake relationship (y in ps Artemia mg DW I  

with temperature (x in °C) is better described (Table 3.3) with the following linear 

regression (R2adj = 0.75, F1,59 = 177.24, P<0.0001): 

y = -2.96 + 0.41 x 

There were marked developmental changes in the feeding response to 

temperature from stage Ito stage DI (KLR, df = 3, x2  = 321.18, P<0.0001). This 
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ontogenic difference in feeding is mainly attributed to a shift in the slope of the 

feed intake response to a temperature gradient (KLR, df = 1, X2  = 7.24, P<0.01). 

The decline of the regression slope with development, from stage Ito stage III 

(KLR, df = 1, X2  = 6.80, P<0.01), and from stage II to stage III (KLR, df = 1, 

X2 = 4.54, P<0.05), showed a significant age related loss in temperature sensitivity 

in terms of feeding. To a lesser extent, ontogenic differences in feed intake were 

also observed at the higher end of the temperature range tested (KLR on c, df = 1, 

X2 = 3.87, P<0.05). There was indeed a tendency for the relative decline in feed 

intake observed in the first two stages to be absent at stage M. This was indicated 

by the KLR test on the coefficient c of the quadratic expression between stage I 

and III (df = 1, X2  = 3.24, P = 0.072), and stage II and DI (df = 1, X2  = 3.67, 

P = 0.055). Although the KLR test highlighted a significant change through 

development in the intercept of the model (df 1, X2  = 6.10, P<0.05), this 

observation could not be associated directly with an ontogenic change in weight 

specific feed intake since the shape of the response curve varied between stages. 

Nonetheless, there was an overall ontogenic shift in weight specific feed intake 

(K-W on feed intake grouped by stage, df = 2, X2  = 86.31, P<0.0001). Feed 

consumption declined with development and was higher at stage I than at stage II 

(G-H, P<0.0001), and again higher at stage II than at stage ifi (G-H, P<0.001). 

The CRI appeared to be lower in stages II and DI larvae than in stage I 

larvae (Table 3.7) and although CRI was consistent from 14 to 22°C, it was lower 

at 10°C throughout development. 

The 0:N ratio markedly increased from stage Ito stage II (Table 3.8) and 

lowest values were consistently observed at 22°C throughout development. 
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Table 3.2 The Akaike's Information Criterion and (coefficient of determination adjusted for degrees of freedom) obtained for the modelling of 
oxygen consumption and feed intake against temperature in stages I, II, and III Jasus edwardsii larvae. Values underlined indicate the most 
parsimonious model (i.e. AIC) and/or the model with the least unexplained error (i.e. R 24). Bold values indicate the model selected for further analysis. 

Model* 

Oxygen consumption 	 Feed intake 

Stage I 	Stage II 	Stage BI 	Stage I 	Stage II 	Stage BI 

(1) y = a + bx 

(2) y = a + bx + cx 2  

(3) y = a +bx + cx 2  + clx 3  

a 

_ 

-309.46 

-308.56 

-314.32 

(0.73) 

(0.71) 

(0.74)  

_ 

-278.26 

-279.37 

-279.38 

(0.74) 

(0.74) 

(0.75)  

_ 

-188.90 

-187.22 

-192.99 

	

198.10 (0.69) 	142.00 (0.53) 	9j(7) 

	

193.53 (0.74) 	136.49 (0.56) 	11.59 (0.75) 

(0.81) 

(0.78) 

(0.81)  

(4) y = 
I x 

+ 	
jb 

(— 
x 0  

a (5) y = yo + 

1 + (—
x 

X,D

) b  

* (1) linear regression; (2) quadratic regression; (3) cubic regression; (4) logistic model with three parameters; (5) logistic model with four parameters. 
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=MI 10.3°C 
■ 12.4°C 
M= 14.0°C 
=III 16.0°C 
Ei1E3 18.1°C 
   20.0°C 
EMZZI 21.9°C 

newly-hatched 	I 
	

II 

Stage of development 

Figure 3.2 Mean (±SD) negative geotaxis in newly-hatched, stage I and 11 Jasus 
edwardsii larvae placed in the dark and exposed to temperatures ranging from 10.3°C to 
21.9°C. Treatments with different letters differed significantly (LSD; P<0.05). 
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8 	10 	12 	14 	16 	18 	20 	22 	24 

Temperature (°C) 

Figure 3.3 Mean (± SD) oxygen consumption of stage I, II and ifi Jasus edwardsii 	• 
larvae exposed to different temperatures. A logistic expression was fitted to the raw data 
at each stage (Table 3.4). 

Table 3.2 Parameters of the logistic expression fitted to the oxygen consumption of 
Jasus edwardsii larvae in response to temperature at stage I, II, and ifi (Fig. 3.5). 
Coefficients within a same row with different superscripts were significantly different 
(KLR, P<0.05). 

y = yo + 

1 + (—x  j b  
x o  

Parameter 

Stage I 

Estimate 	P 

Stage II 

Estimate 	P 

Stage 1II 

Estimate 

a 0.429 <0.0001 0.684 <0.001 0.463 <0.0001 

-13.032 <0.001 -6.708 <0.05 -9.780 <0.01 

xo 15.320 <0.0001 15.459 <0.0001 16.535 <0.0001 

yo 0.500a  <0.0001 0•336b  <0.001 0•375 b  <0.0001 

* where y is oxygen consumption (pi 0 2  mg DW-1 11" 1 ) and x is temperature (°C). This 
model was selected according to the procedure outlined in Table 3.3. 
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Figure 3.4 Mean (±SD) nitrogen excretion in stage I, II, and 111 Jasus edwardsii larvae 
exposed to different temperatures. A linear regression was fitted to the raw data at each 
stage (Table 3.5). 

Table 3.2 Parameters of the linear regressions fitted to the nitrogen excretion of Jasus 
edwardsii larvae in response to temperature at stage I, II and HI (Fig. 3.6). Coefficients 
with different superscripts were significantly different (ANCOVA, P<0.0001). 

y=a+bx* 

Stage I 	 Stage 11 	 Stage Ill 

Parameter Estimate 	P 	Estimate 	P 	Estimate 	P 

a 	0.014' 	<0.05 	-0.010b 	<0.05 	-0.011 b 	0.082 

b 	 0.003 	<0.0001 	0.003 	<0.0001 	0.003 	<0.0001 

* where y is nitrogen excretion (.1g NE I-N mg DW-1 If 1 ) and x is temperature (°C). 
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8 	10 	12 	14 	16 	18 	20 	22 	24 
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Figure 3.5 Mean (±SD) feed intake in stage I, II and ifi Jasus edwardsii larvae 
exposed to different temperatures. Raw data were fitted with a quadratic regression at 
each stage (Table 3.6). 

Table 3.2 Parameters of the quadratic regressions fitted to the feed intake of Jasus 
edwardsii larvae in response to temperature at stage I, II and ifi (Fig. 3.7). Coefficients 
within a same row with a different superscript were significantly different (KLR, 
P<0.05). 

y = a + bx + cx 2  * 

Stage I 	 Stage II 	 Stage In 

Parameter Estimate 	P 	Estimate 	P 	Estimate 

a 	-15.034 	<0.001 	-11.811 	<0.0001 	-3.622 	0.079 

	

2.188" 	<0.0001 	1.633" <0.0001 	0.502b 	0.073 

	

-0.040a 	<0.05 	-0.035' <0.01 	-0.003" 	0.737 

* where y is feed intake (.tg Artemia mg DW -1 11 1 ) and x is temperature (°C). This model 
was selected according to the procedure outlined in Table 3.3. 
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Table 3.3 Convection requirement index (CRI) in stages I, II, and IH Jasus edwardsii 
larvae exposed to different temperatures. 

Temperature (°C) 

Larval stage 10 12 14 16 18 20 22 

11.0 16.1 21.1 22.5 22.4 22.7 26.0 

II 3.0 7.3 6.1 7.9 7.7 7.7 7.3 

ifi 2.6 6.3 6.4 7.3 

Table 3.4 0:N ratios in stage I, 11 and 1111Jasus edwardsii larvae exposed to different .  
temperatures. 

Temperature (°C) 

Larval stage 10 12 14 16 18 20 22 

13.97 13.56 13.63 16.08 17.69 14.83 14.95 

II 24.78 23.50 26.40 27.04 25.87 25.27 22.87 

ifi 27.96 22.81 25.61 20.22 
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34.2 Behavioural and physiological response to light intensity 

3.4.2.1 Behaviour 

The swimming speed of newly-hatched larvae increased in a logarithmic 

fashion with increasing light intensity and is described by the following 

expression (linear regression, r2 = 0.356, F1,10= 5.534, P<0.05; Fig. 3.8): 

SS = -1.421 + 0.159(l0gio(m)) 

where SS is the swimming speed (cm s -1 ) of newly-hatched larvae and LI 

is the light intensity (quanta s4  cm-2). 

There was a significant difference in the response of phyllosoma exposed 

to conditions ranging from dark to high light intensity (PT, F3,8 = 107.96, 

P<0.0001; Table 3.9). This pattern of response was consistent in newly-hatched, 

stage I, 11, and In larvae (age, F stat., F3,6= 0.15, P = 0.924), and did not 

significantly change across light conditions (i.e. dark, and low, medium and high 

light intensities) throughout early development (light x age, F stat., F9,24 = 0.964, P 

= 0.493). For all age classes examined, exposure to light resulted in a 

significantly higher response under any of the light intensities tested than in the 

dark (Dunnett's comparison with control, P<0.01, Table 3.9). 

The phototactic response of phyllosoma changed significantly during the 

first 10 days of larval development (age, F stat., F5,5= 117.06, P<0.0001; Fig. 3.9). 

Furthermore, this shift in response occurred across all light intensities tested (age 

x light, F stat., F10,12=  1.33, P = 0.317). Newly-hatched larvae showed 

significant positive phototaxis under all light intensities tested (Dunnett's 

comparison with control, P<0.01; Fig. 3.9). Although larvae became 

predominantly negatively phototactic from day 2 onwards (Fig. 3.9), positive 

phototaxis significantly increased (LSD, P<0.05) late in stage I (i.e. day 6 and 8) 

and early in stage II (i.e. day 10) from the low response observed at day 4. Light 

intensity had a significant influence on the photoresponse of phyllosoma (PT, F2,9 

= 4.87, P<0.05) through the first 10 days of larval development. Although this 

effect was not detected within each age class it was particularly evident at day 2, 6 

and 8 when the distribution of larvae exposed to low light intensity was not 

significantly different from the random distribution of animals in the dark control 

group (Fig. 3.9). 
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There was no significant change in photoresponse between mid-stages I, II 

and III (age, F stat., F2,5 = 3.43, P = 0.115), and no significant effect of light 

intensity within the range tested (light, PT, F2,6= 2.19, P = 0.194; Fig. 3.10). In 

addition, the response to light intensity was constant with age (light x age, F stat., 

F4,12 = 1.03, P = 0.430). Nonetheless, the lack of significant difference between 

the distribution of responsive mid-stage I larvae subjected to low light intensity 

and in the dark (Dunnett's comparison with control, P>0.05) contrasted with the 

predominantly negative phototaxis observed at mid-stages 11 and DI under low 

light intensity. 
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14.5 	15.0 	15.5 	16.0 	16.5 
Log (light intensity in quanta s -1  cm -2 ) 

Figure 3.1 Mean (±SE) swimming speed of newly-hatched Jasus edwardsii larvae in 
relation to log-transformed light intensity. The relationship was fitted with a linear 
regression on the raw data. 

Table 3.2 Mean (±SD) photoresponse (% larvae) observed in four age classes of early-
stage Jasus edwardsii larvae under three light intensities and a dark control. 

Stage 

Light intensity (quanta s-1  cm-2) 

Dark 

control 

Low 

2.9 • 	10 14  

Medium 

2.5 • 	10 15  

High 

1.8 • 	10 16  

Newly-hatched 57.50 ±6.27 94.70 ±4.33 94.80 ±3.57 91.98 ±8.71 

Mid-stage I 61.35 ±10.31 87.77 ±6.88 94.38 ±3.75 97.50 ±5.00 

Mid-stage II 60.56 ±13.36 91.35 ±4.22 96.71 ±2.85 96.79 ±2.78 

Mid-stage HI 46.11 ±16.86 97.22 ±2.55 97.78 ±3.85 95.56 ±5.09 
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1  
0 

dark control 

MEI low: 2.92. 10 14  quanta s-1  cm -2  

medium: 2.53. 10 15  quanta s-1  cm-2  

OEM  high: 1.80. 10 16  quanta s 

I  b 1 1 	c 
 1 

1 	III A. 

2
11 
	4 

Age (days) 

8 	10 

Figure 3.2 Mean (±SD) positive phototaxis in Jasus edwardsii larvae exposed to 
different light intensities from day 0 to day 10 (i.e. post-moult into stage 11). Age classes 
with different letters differed significantly in phototaxis (LSD, P<0.05). * significantly 
different from control within the same age class (Dunnett's test, P<0.05). 

Stage of development 

Figure 3.3 Mean (±SD) net photoresponse in Jasus edwardsii larvae exposed to 
different light intensities at mid-stages I (day 6), II (day 15-18) and 111 (day 25-30). 
* significantly different from control within the same age class (Dunnett's  test;  P<0.05). 
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3.4.2.2 Physiology 

The developmental decline in weight specific oxygen consumption was 

described with an exponential function (Table 3.10 and 3.11) for larvae in the 

dark (R2adi = 0.59, F2,47 = 35.82, P<0.0001), larvae exposed to low light intensity 

(R2adj = 0.85, F2,46 = 133.28, P<0.0001) and larvae exposed to high light intensity 

(R2adj 0.73, F2,47 = 68.02, P<0.0001) (Fig. 3.11). Light intensity had a significant 

effect on VO2 throughout development from hatching to stage V (KLR, df = 3, 

X2 = 118.99, P<0.0001). According to the difference in the coefficient b of the 

model (i.e. inflection of the exponential response), the shape of the oxygen 

consumption response through time was affected by light intensity (KLR, df = 1, 

X2 = 4.55, P<0.05). The initial ontogenic exponential decline in oxygen 

consumption was significantly larger in larvae exposed to low light intensity than 

in larvae in the dark (KLR on b, df = 1, X2  = 4.49, P<0.05). However, there was 

no effect of light intensity on the overall VO2 decline from hatching to stage V 

(KLR on a, df = 1, x2=  2.72, P = 0.099). The intercept of the model was also 

influenced by light intensity (KLR, df = 1, X2  = 12.39, P<0.001), and the 

comparison of intercepts between curves of significantly similar shape indicated 

that larvae exposed to high light intensity showed significantly higher Vo 2  than 

larvae in the dark throughout early development (Table 3.11). 

Nitrogen excretion declined in a curvilinear fashion during development. 

Data were fitted with a rational expression (Table 3.10, Table 3.12 and Fig. 3.12) 

for the response observed in the dark (R2adj = 0.43, F1,42 = 33.93, P<0.0001), under 

low light intensity (R2adj = 0.49, F1,41 = 41.38, P<0.0001), and under high light 

intensity (R2adj = 0.53, F1,43 = 50.28, P<0.0001). There was an overall effect of 

light intensity on the nitrogen excretion of phyllosoma throughout the 

developmental period examined (KLR, df = 2, X2  = 20.80, P<0.0001). The 

amplitude of the decline in nitrogen excretion through time (i.e. coefficient b in 

the rational expression) was not significantly different between the three light 

intensities tested (KLR, df = 1, X2  = 0.91, P = 0.340). However, there was an 

overall effect of light intensity on the excretory rate of phyllosoma (KLR on a, 

df = 1, X2  = 15.37, P<0.0001), and nitrogen excretion was lower in the dark than in 
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low (KLR, df = 1, x2=  8.19, P<0.01) and high (KLR, df = 1, x2=  14.73, P<0.001) 

light intensity as indicated by ad-hoc testing between the intercept (a) at each light 

intensity (Table 3.12). 

The weight specific consumption of Artemia declined in a curvilinear 

fashion throughout early development as described by the rational expression 

(Table 3.10, Table 3.13 and Fig. 3.13) for larvae in the dark (R2adj = 0.69, 

F1,92 = 208.48, P<0.0001), larvae under low light intensity (R2adj = 0.69, 

F1,92 = 204.87, P<0.0001), and larvae under high light intensity (R2adj = 0.64, 

F1,92 = 166.13, P<0.0001). There was a significant effect of light intensity on feed 

intake throughout development (KLR, df = 2, X2  = 16.90, P<0.001). Although the 

shape of the response was consistent across treatments (KLR on b, df = 1, 

X2 = 1.12, P = 0.290), light intensity significantly influenced the feed intake level 

of phyllosoma during early ontogeny (KLR on a, df = 1, X2  = 9.43, P<0.01). Feed 

intake by larvae in the dark was significantly lower than in larvae under low 

(df = 1, X2  = 8.69, P<0.01) and high light intensity (df = 1, X2  = 6.30, P<0.05), but 

there was no difference in Artemia consumption between larvae under low and 

high light intensity (df = 1, X2  = 0.05, P = 0.816). 

The CRI appeared to decline during early larval development and from 

mid-stage Ito mid-stage V the CRI was consistently higher in larvae exposed to 

low light intensity than in larvae in the dark and under high light intensity (Table 

3.14). 

The 0:N ratio increased with development and there was no clear pattern 

of response between the three light conditions tested (Table 3.15). 
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Table 3.2 The Akaike's Information Criterion and (coefficient of determination adjusted for degrees of freedom) obtained for the modelling of 
oxygen consumption, nitrogen excretion and feed intake against age in Jasus edwardsii larvae exposed to dark, low or high light intensity. Values 
underlined indicate the most parsimonious model (i.e. AIC) and/or the model with the least unexplained error (i.e. R2adj .). Bold values indicate the model 
selected for further analysis. 

Model* 

Oxygen consumption 

Dark 	Low 	High 

Nitrogen excretion 

Dark 	Low 	High Dark 

Feed intake 

Low High 

(1) y=a+bx+cx2  -195.2 (0.58) -181.5 (0.78) -172.3 (0.73) -346.1 (0.42) -324.4 (0.47) -324.9 (0.53) 282.3 (0.63) 305.2 (0.65) 329.8 (0.57) 

(2) y = 	a  - 195.7 (0.58) - 176.9 (0.75) - 167.6 (0.69) -348.4 (0.43) -329.8 (0.49) -325.6 (0.53) 275.2 (0.65) 299.6 (0.66) 319.6 (0.61) 
1+ bx 

(3) y = a x e -bx  -193.4 (0.56) -166.2 (0.69) -161.2 (0.65) -348.3 (0.43) -325.9 (0.46) -327.0 (0.54) 283.1 (0.62) 309.4 (0.63) 329.9 (0.57) 

(4) y = y o  + a x e -bx  -191.1 (0.59)  -199.1 (0.85)  -173.5 (0.73)  -346.7 (0.42) -328.9 (0.54) -325.1 (0.53) 301.1 (0.66) 334.5 (0.67) 341.6 (0.61) 

* (1) quadratic regression; (2) rational expression with two parameters; (3) exponential function with two parameters; (4) exponential function with 
three parameters. 
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Figure 3.2 Mean (±SD) oxygen consumption in early stage Jasus edwardsii larvae in 
the dark, and under low (7.7 • 10 12  quanta s4  cm-2) and high (3.9 • 10' 4  quanta s- ' cm-2) 
light intensity. An exponential expression was fitted to the raw data at each light intensity 
(Table 3.11). 

Table 3.2 Parameters of the exponential expression applied to the oxygen 
consumption in early stage Jasus edwardsii larvae exposed to different light intensities 
(Fig. 3.11). Coefficients within a same row with different superscripts were significantly 
different (KLR, P<0.05). 

y=y0 +ax e (-bxx)  * 

Dark 

Light intensity 

Low High 

Parameter Estimate P Estimate P Estimate P 

YO 0.668 a  <0.0001 0900 b <0.0001  0907 b  <0.0001 

a 0.484 <0.0001 0.770 <0.0001 0.777 <0.0001 

0.048 "  <0.05 0113 b <0.0001 0.068 	b  <0 .001 

* where y is oxygen consumption 01102  mg DW I  10 and x is age (days). This model 
was selected according to the procedure outlined in Table 3.10. 
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Figure 3.3 Mean (±SD) nitrogen excretion in early stage Jasus edwardsii larvae in the 
dark, under low (7.7 • 10 12  quanta s - ' cm-2) and high (3.9 • 10 14  quanta s - ' cm-2) light 
intensity. A rational expression was fitted to the raw data at each light intensity (Table 
3.12). 

Table 3.2 Parameters of the rational expression applied to the nitrogen excretion in 
early stage Jasus edwardsii larvae exposed to different light intensities (Fig. 3.12). 
Coefficients within a same row with different superscripts were significantly different 
(KLR, P<0.05). 

a 
Y 	 1+ bx 

Light intensity 

Dark Low High 

Parameter Estimate P Estimate P Estimate P 

a 0.058 a  <0.0001 0.083 '  <0.0001 0.094 "  <0.0001 

b 0.064 <0.01 0.088 <0.01 0.068 <0.01 

* where y is nitrogen excretion Gig NH4-N mg DW-1 11- ') and x is age (days). This model 
was selected according to the procedure outlined in Table 3.10. 
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Figure 3.4 Mean (±SD) feed intake in early stage Jasus edwardsii larvae in the dark, 
under low (7.7 10 12  quanta s - ' cm-2) and high (3.9 10 14  quanta s-1  cm-2) light intensity. A 
rational expression was fitted to the raw data at each light intensity (Table 3.13). 

Table 3.2 Parameters of the rational expression applied to the feed intake in early 
stage Jasus edwardsii larvae exposed to different light intensities (Fig. 3.13). Coefficients 
within a same row with different superscripts were significantly different (KLR, P<0.05). 

a 
Y = 1+ bx 

Light intensity 

Dark 
	

Low 	 High 

Parameter Estimate 	P 	Estimate 	P 	Estimate 

a 	 17.666 "  <0.0001 	21579 b 	<0.0001 	21261 b <0.0001 

0.183 	<0.0001 	0.126 	<0.0001 	0.152 	<0.0001 

* where y is feed intake (pig Artemia mg DW -1  h- ') and x is age (days). This model was 
selected according to the procedure outlined in Table 3.10. 
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Table 3.3 Convection requirement index (CRI) computed for newly-hatched, and 
stages I, II, In and V Jasus edwardsii larvae subjected to different light intensities. 

Larval stage Dark 

Light intensity 

Low High 

Newly-hatched 15.85 13.02 12.65 

I 8.21 9.51 7.61 

ri 4.32 7.11 5.59 

III 2.33 3.64 3.37 

V 5.03 5.24 4.33 

Table 3.4 0:N ratios in newly-hatched, and stages I, II , III and V Jasus edwardsii 
larvae exposed to different light intensities. 

Larval stage Dark 

Light intensity 

Low High 

Newly-hatched 25.30 25.20 24.82 

I 27.83 29.05 20.65 

II 39.08 43.53 42.46 

III 48.41 42.15 37.54 

V 92.38 79.15 87.13 
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3.5 Discussion 

3.5.1 Behaviour 

Light and gravity are the principal orienting stimuli governing the 

directional response of animals in the vertical plane (Fraenkel and Gunn, 1961). 

However, the signs of response and their amplitude can be altered by other 

environmental parameters such as light intensity, temperature and salinity (Sulkin, 

1984). While gravity is essentially a constant parameter with depth, light is 

highly variable in the marine environment. Factors such as season, time of the 

day, depth, water quality and weather conditions can all affect light intensity and 

spectral composition (Clarke, 1970). In decapod larvae, light can act as a stimulus 

in both the locomotor activity of the animal and its orientation (see review by 

Sulkin, 1984). In this study on J. edwardsii phyllosoma larvae light stimulated 

both locomotor activity and phototaxis. The swimming speed of phyllosomas 

increased logarithmically with increasing light intensity thereby tending toward a 

maximum at the highest intensity tested (1.8 • 10 16  quanta s -1  cm-2). Mikami 

(1995) reported a similar logarithmic pattern in the swimming speed of newly-

hatched Thenus orientalis larvae exposed to illuminance of different intensities. 

The effect of light intensity on swimming speed has been reported in other larval 

decapod species (topic reviewed in Sulkin, 1984). The presence of photokinesis 

in J. edwardsii larvae implies their ability to vary locomotor activity according to 

ambient lighting and this may be reflected in their metabolic rate. 

The change in body orientation or phototaxis caused by light has been 

studied in many decapod larvae for its evident link with the diel vertical migration 

behaviour of zooplankton. Diel modes of depth regulation are generally classified 

as nocturnal or reverse migration patterns (see review by Haney, 1988). In the 

nocturnal migration pattern, zooplankters swim upward towards the end of the day 

and spend the night in the upper waters. This behaviour contrasts with the reverse 

migration pattern in which the animals move downward around dusk and spend 

the night at depth. Newly-hatched J. edwardsii larvae were positively phototactic 
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under all light intensities tested in the present study. Positive phototaxis was also 

reported in the newly-hatched phyllosoma of Panulirus cygnus (Ritz, 1972) and 

Thenus orientalis (Mikami, 1995). In P. cygnus however, Ritz (1972) found an 

upper intensity threshold of 4.6 mW cm -2  at which the positive response 

disappeared. By contrast, newly-hatched J. edwardsii larvae remained attracted to 

a light source of higher intensity (1.8 • 10 16  quanta s-1  cm-2  or 6.0 mW cm-2; see 

light intensity unit conversion in Appendix V). This may suggest dissimilarity 

between the early dispersal strategy of,/ edwardsii and P. cygnus larvae since 

depth regulation, governed in part by light intensity, plays an important role in 

advective transport (Phillips and McWilliam, 1986). 

From positively phototactic at day 0, J. edwardsii larvae reversed their 

response by day 2 and from this stage in their development larvae appeared to be 

predominantly negatively phototactic. However, during stage I, negative 

phototaxis appeared as a gradual response to increasing light intensity. 

Furthermore, in 2, 6 and 8 days old stage I larvae, the population sampled under 

low light intensity was evenly distributed between positive and negative 

photosensitive animals. This implies that the lowest light intensity tested in the 

present work (2.9 • 10 14  quanta s-1  cm-2) approached the illuminance threshold of 

phototaxis reversal in mid-stage I I edwardsii larvae. This level of light is below 

the range of illuminance of 50 to 250 RE m-2  s 	10 15  to 1.5 • 1016  

quanta s-1 cm-2), which limits the vertical distribution of early stage P. cygnus 

larvae within depth of 30 to 60 m in the middle of the day (Rimmer and Phillips, 

1979). This suggests that J. edwardsii larvae would reach greater depth than their 

western Australian counterparts. Because of the many factors that can modify the 

light threshold in decapod larvae (see review by Sulkin, 1984), results obtained in 

the laboratory and in the field should nonetheless be compared cautiously. 

The observations made on the photoresponse of phyllosoma throughout 

stage I indicate that J. edwardsii larvae would rapidly adopt a nocturnal diel 

migration pattern. Descending at depth during day light from day 2 after hatching 

(i.e. at 18°C), phyllosomas would not only be well adapted to an oceanic 

environment early on in their development but would also require a habitat where 

they could reach significant depth. Therefore one could speculate that larvae 
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hatched in large bays and estuaries could become trapped by the hydrodynamics 

of these coastal features and consequently become lost to recruitment. Although 

this concept remains hypothetical, it could be linked to the offshore migration of 

ovigerous J. edwardsii females towards the deep seaward part of reefs reported in 

New Zealand (McKoy and Leachman, 1982; MacDiarmid, 1991). McKoy and 

Leachman (1981) suggested that offshore movement of females in areas of strong 

water currents would assure larval dispersal away from the coast where larvae 

would escape the high predatory pressure of the reef studied by Kingsford and 

MacDiarmid (1988). Furthermore, developing into nocturnal diel vertical 

migrators would provide larvae with an additional strategy against the loss of pre-

recruits to early predation (Haney, 1988). 

Older larvae at mid-stage II and ifi showed consistent movement away 

from the light from 2.9 • 10 14  to 1.8 • 10 16  quanta s-1  cm-2 . By contrast with stage I 

animals there was no sign of a possible reversal in phototaxis at the lowest 

intensity tested, suggesting a decline in light threshold with age. This could 

indicate the descent of larvae older than stage Ito lower strata as they move 

offshore, similar to the ontogenic change in depth distribution found by Rimmer 

and Phillips (1979) in P. cygnus larvae. However, factors other than light 

intensity such as hydrostatic pressure (Ennis, 1975; Schembri, 1982; Gardner, 

1996), temperature (Forward, 1990) and the presence of thermoclines 

(McConnaughey and Sulkin, 1984; Boudreau et al., 1991; Gardner, 1998) can 

influence depth regulation in zooplankton and should be investigated in J. 

edwardsii larvae. 

The hypothesis of a nocturnal migration pattern in early-stage I edwardsii 

larvae drawn here from laboratory experiments is in agreement with data obtained 

in field surveys (Booth, 1994; Bruce et al., 2000). Booth (1994), for instance, 

found that late stage larvae became more common in the upper 100 m 1-2 h after 

sunset than during the afternoon. Bruce et al. (2000) indicated that I edwardsii 

larvae of indeterminate stages occurred at the surface in broad daylight, before 

0800 h and after 1300 h. These observations contrast with the predominant 

negatively phototactic behaviour reported earlier in this chapter. Starvation was 

found to increase the occurrence of positive phototaxis in Rhithropanopeus 
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harrisii larvae (Cronin and Forward, 1980) and may influence the photoresponse 

of J. edwardsii larvae in the wild, driving them into nutrient rich surface waters. 

Temperature has been reported to play an important role in the depth 

regulation of decapod larvae since it affects both their body orientation and the 

locomotor activity that modifies their buoyancy (Sulkin, 1984). The geotactic 

response of decapod larvae to temperature is generally characterised by upward 

swimming at low temperatures and active downward swimming or passive 

sinking at elevated temperatures (Ott and Forward, 1976; McConnaughey and 

Sulkin, 1984; Forward, 1990; Boudreau et al., 1991; Gardner, 1998). Newly-

hatched J. edwardsii larvae were predominantly negatively geotactic from 10 to 

14°C, and the distribution of the animals gradually shifted downward from 16 to 

22°C. Although, the possible effect of temperature on the rate of activity of 

phyllosoma was not tested in the present study, the trend observed in newly-

hatched larvae is comparable to the downward shift of Rhithropanopeus harrisii 

and Callinectes sapidus stage I larvae exposed to extreme warm temperatures that, 

Ott and Forward (1976) and McConnaughey and Sulkin (1984) respectively 

attributed to a cessation of locomotor activity. The negative response to gravity in 

newly-hatched J. edwardsii larvae between 10 and 14°C implies that despite the 

absence of light phyllosoma would remain at or near the surface within this range 

of temperatures. These thermal conditions are within the range of sea surface 

temperatures recorded from southern to northern Tasmanian waters (i.e. 8.6 to 

17.4°C 2 ) during the period of larval release in the wild (Winstanley, 1977). 

The gradual decline in negative geotaxis with increasing temperature that 

was observed in newly-hatched larvae was absent at mid-stage I. At this stage, 

gravity in the absence of light, was the predominant cue for depth regulation in 

phyllosomas at temperatures ranging from 12 to 22°C. Below this range however, 

the larvae swam to the surface. This observation suggests that the sensing of cold 

water (i.e. —10°C) during vertical migration would stimulate swimming and/or a 

shift in the body orientation of J. edwardsii phyllosoma. Such behaviour is 

similar to the avoidance of cold water reported in R. harrisii and Neopanope sayi 

(Forward, 1990), and in Homarus americanus (Boudreau et al., 1991). Avoidance 
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of cold temperature was no longer observed in mid-stage II larvae within the 

thermal range tested. Therefore at this stage, larvae could tolerate colder 

temperatures to possibly reach greater depth. Alternatively, temperature might 

cease to be a factor for depth regulation in stage 11 larvae. The prevalence of J. 

edwardsii phyllosomas at the surface at night, at temperatures ranging 

predominantly from 12.2 to 15.0°C (Bruce et al., 2000) would suggest that to 

maintain their buoyancy by way of locomotor activity under these conditions, 

stage II and possibly older larvae would have to respond to one or a combination 

of the following factors: (1) the increase in hydrostatic pressure with depth (Kelly 

et al. 1982; Schembri, 1982); (2) low light intensity levels originating from the 

moon or the stars (Rimmer and Phillips, 1979); (3) circadian triggers such as 

dusk, dawn (SulIcin et al., 1979) and/or changes in angular light distribution 

(Schalleck, 1942; 1943). 

3.5.2 Physiology 

In the present study, oxygen consumption, nitrogen excretion and feed 

intake were measured as indicators of the physiological response of early-stage J. 

edwardsii larvae placed under different temperature and light intensity regimes. 

The rates of oxygen consumption reported here should be regarded as routine 

metabolism in unrestrained animals (Ikeda et al., 2000). There was, however, a 

marked discrepancy between the results obtained at 18°C in the temperature 

experiment and those reported under similar ambient conditions in the light 

intensity trial in which, oxygen consumption rates were consistently 9 and up to 

64% higher than in the temperature trial. Although the methods used in both trials 

were similar in many aspects (Table 3.2), differences in extrinsic factors (e.g. 

lighting conditions, design of the respirometer) and/or intrinsic factors (e.g. larval 

nutritional status) may have hypothetically caused marked variations in the 

measurement of oxygen uptake. The direct overhead fluorescent light used in the 

temperature trial contrasted with the more diffuse lighting provided in the light 

intensity trial. A possible difference in larval photobehaviour between these two 

conditions (Schalleck, 1942; 1943) could have a noticeable effect on locomotor 
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activity and therefore on metabolism. Furthermore, the elongated and narrow 

syringes used in the temperature trial might have promoted greater confinement of 

the larvae than the glass respirometers designed with a wider base. Consequently 

the level of activity might have been lower in the syringe than in the glass 

respirometer. Oikawa and Itazawa (1995) reported on a decline in oxygen 

consumption with increased confinement in Cyprinus carpio. Additionally, the 

larval nutritional status might have been different between the two trials. Indeed, 

in the temperature trial, larvae were adapted for 24 h to their experimental 

temperature during which period they were fed in a static vessel. In these 

conditions, the specific dynamic action (post-prandial metabolic pulse) linked 

with the level of food ingested (Kiorboe et al., 1985; Chapter 3 in this thesis) 

could have been lower than in larvae sampled directly from the rearing tanks (i.e. 

light intensity trial), where turbulent mixing is likely to increase the rate of 

encounter with preys and therefore feed intake (Dower et al., 1997). The above 

reasoning remains speculative and further research is required to clarify this issue 

which is of considerable importance in future work on the comparative 

physiology of./ edwardsii larvae. Nonetheless, the V0 2  measurements obtained 

in this study are in close agreement with respiratory rates reported in phyllosoma 

of the spiny lobster Panulirus interruptus (Belman and Childress, 1973). 

The general trend throughout this work was the decline of all three 

physiological parameters examined from stage Ito stage II, which subsequently 

remained stable until stage V. Such change in weight specific response is 

common in decapod larvae and was previously reported with observations of 

oxygen consumption (Mootz and Epifanio, 1974; Agard, 1999) and nitrogen 

excretion (Capuzzo and Lancaster, 1979; Agard, 1999). Of these two metabolic 

parameters, most reports are on the ontogenic decline in V02. According to 

Prosser (1973), an ontogenic decline in oxygen consumption is due to the 

disproportionate increase in tissue of low metabolic rate as the organism grows 

and develops. In Palaemon serratus larvae, the decline in weight specific oxygen 

consumption from stage IV to stage V was explained by a sudden increase in the 

number of cells in the hepatopancreas, and by an increase in enzymatic activity 

due to the acclimation of the organism to its new diet (Yagi et al., 1990). 
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Similarly, Agard (1999) suggested that the developmental decline in metabolic 

rate observed in Macrobrachium rosenbergii larvae was due to morphological 

changes in the hepatopancreas. In J. edwardsii larvae the development of the 

hepatopancreas, which is clearly visible during the first stage (personal 

observation) together with acclimation to a new diet might also explain the early 

ontogenic decline in oxygen consumption. A developmental decline in weight 

specific oxygen consumption is nonetheless not a general trend in crustacean 

larvae as Capuzzo and Lancaster (1979) reported on an increase in VO2 with 

development in Homarus americanus, and Johns (1981) found no change in V02 

throughout the larvae development of Cancer irroratus. 

Although several authors have found a relative decline and/or a depression 

in oxygen consumption at elevated acclimation temperatures (Halcrow and Boyd, 

1967; Schatzlein and Costlow, 1978; Newell and Branch, 1980), the sigmoid 

pattern observed in J. edwardsii larvae at stage I, II and III has seldom been 

reported in other decapod larvae. Such response could primarily be attributed to 

the range of temperature tested in relation to the specific thermal preferendum of 

J. edwardsii larvae. The Q io  analysis for the range of temperatures tested 

matched the sigmoid pattern of oxygen consumption particularly as the significant 

decline of the Qio from the 14-18°C range (i.e. 2.73) to the 18-22°C range (i.e. 

1.34) corresponded with the flattening of the Vo2  response at high temperatures. 

This suggests a decline in the rate of VO 2  increase at high temperature (i.e. 18- 

22°C) similar to observations made by Halcrow and Boyd (1967) in Gammarus 

oceanicus, and by Schatzlein and Costlow (1978) in the larvae of Emerita 

talpoida and Libinia emarginata. The behavioural response of f edwardsii to 

temperature could explain the inflection of the curve at cold temperatures in stage 

I larvae since under these conditions phyllosoma were reported to swim actively 

upwards. However, the behavioural response to temperature in stage II animals 

provides no support for a sigmoid pattern of oxygen consumption at this stage. It 

should be stressed that the different behavioural, biochemical and physiological 

reactions that make up the overall metabolism of an animal are known to respond 

to temperature at different rates (Willmer et al., 2000). It is therefore possible that 

extreme high temperatures would cause some metabolic processes to slow their 
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activity while under conditions of extreme low temperature an organism would be 

unable to reduce the rate of some physiological processes below a vital level. If 

this were the case in J. edwardsii larvae, the extreme temperature tested here 

would be beyond the thermal preferendum for the species. However, before this 

can be confirmed the capacity of I edwardsii larvae to adjust their metabolism 

through sufficient acclimation (i.e. leading to acclimatization (Clarke,1987)) must 

be assessed. 

The weight specific nitrogen excretion of f edwardsii larvae followed a 

linear increase with rising temperature at a similar rate in all three stages 

examined. This implies that a greater amount of protein is being metabolised 

following a temperature rise. Since in zooplankton, nitrogen excretion is linked to 

food availability (Corner and Cowey, 1968; Appendix VI), and because 

experimental animals were fed prior to measurements of excretion, the level of 

nitrogen output observed in the present study is likely to have been influenced by 

the feeding rate of phyllosoma during acclimation at different temperatures. 

However, in stage I and II larvae, feeding activity showed a relative decline in its 

response rate at high temperature, in agreement with reports by Tong et al. (2000) 

working on the same species. The implications of these contrasting observations 

between nitrogen excretion and feed intake are two fold. Firstly, at high 

temperatures, nitrogen excretion is only partly linked to the nutritional status of 

phyllosoma. Therefore, the lack of incline in the nitrogen excretion curve at the 

warm end of the thermal range tested could be a sign of physiological stress under 

sub-optimal conditions. And secondly, the potential of phyllosoma to compensate 

for increased energy losses through protein utilisation at high temperatures is 

diminished. Consequently, growth would be reduced in I edwardsii larvae reared 

under conditions approaching temperatures at the warmer end of the experimental 

range tested in the current experiment. These findings are in agreement with 

results obtained in Chapter 2 in which reduced growth and survival were reported 

at 21.5°C. However, the present suggestion of reduced growth potential at high 

temperature contrasts with the evidence of sustained growth and increased 

development reported by Tong et al. (2000) for early stage J. edwardsii larvae 

reared from 18 to 24°C. Nonetheless, Tong et al. (2000) rightfully acknowledged 
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that their observations, which came in spite of a relative reduction in food 

consumption at high temperature, may have been influenced by past nutritional 

history. These authors suggested that at high temperatures their experimental 

animals previously mass reared under optimal conditions (i.e. as we know them so 

far) might have drawn on reserves in excess of the 'point of reserve saturation' 

(Anger and Dawirs, 1981) to move to the next stage. 

Although, changes in the rate of response to temperature may be indicators 

of stress (Schatzlein and Costlow, 1978), the measurement of individual 

physiological functions does not necessarily provide evidence that an organism's 

potential for survival or growth will be reduced (Brett, 1958). The convection 

requirement index (CRI) and the 0:N ratio provide a better assessment of 

environmental stress with respect to the nutritional status and the growth potential 

of the animal (Bayne, 1973; Newell and Branch, 1980; Johns, 1981). The 

convection requirement index was used in the present study to compare the 

potential energy gain or loss by phyllosoma at different temperatures and light 

intensities. Reflecting the respiratory and feeding responses off edwardsii larvae 

to temperature, the CRI was relatively constant between 14 and 22°C in all three 

stages examined. This suggests that energy intake and energy losses are balanced 

within this temperature range. 

The 0:N ratio is commonly used in zooplankton to provide information on 

the nature of the substrate oxidised (Corner and Cowey, 1968; Ikeda et al., 2000). 

Carbohydrates make up 5% at most of the dry weight of zooplankton (Raymont 

and Conover, 1961), which is not enough to support an animal's metabolic 

requirement for 24 h (Ikeda et al., 2000). Therefore, zooplankton must rely 

essentially on protein and lipid as their main metabolic substrates. In 

ammonotelic animals, the ratio of oxygen respired and nitrogen excreted is 

approximately 8 by atoms when metabolism is chiefly protein oriented (Ikeda, 

1974). Furthermore, in zooplankton, an 0:N ratio higher than 8 indicates an 

increased reliance on lipid as metabolic substrate, while an 0:N ratio greater than 

24 corresponds to a lipid-dominated catabolism (Ikeda, 1974; Mayzaud and 

Conover, 1988). Consequently, in J. edwardsii larvae, the marked increase in 
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0:N ratios from stage Ito stage H indicated an increase in lipid catabolism with 

development. Such a shift in metabolic substrate could coincide with the 

development of the digestive system discussed earlier. However, this observation 

contrasts with reports of ontogenic decline in 0:N ratio in Homarus americanus 

(Sasaki et al., 1986) and in Hyas araneus (Anger, 1991) larvae. As highlighted by 

Mayzaud and Conover (1988), the value of the 0:N ratio depends essentially on 

the nutritional situation faced by the animal. Indeed, if feed intake is less than the 

metabolic requirements, the animal considered may increase its reliance on lipid 

as energy substrate in order to spare amino-acids from the oxidative process 

(Huggins and Munday, 1968). If this was the case in J. edwardsii larvae, the 

developmental increase in 0:N ratio observed in the present study would reflect 

the inappropriateness of the diet used in culture rather than an ontogenic change in 

nutrional requirements. The 0:N ratio of f edwardsii larvae placed at 22°C 

remained consistently below values obtained at lower temperatures during the first 

three stages of development. Indeed, a low 0:N ratio at high temperature resulted 

from a relative decline in oxygen consumption accompanied by a linear increase 

in nitrogen excretion. Therefore, the increased protein catabolism for 

maintenance at high temperature represents a net loss to growth. Johns (1981) 

and Agard (1999) reported on the effect of temperature on the 0:N ratio in larvae 

of C. irroratus and M rosenbergii respectively. These authors also found a 

tendency for larvae to shift toward a protein-oriented metabolism under 

environmental conditions (i.e. temperature and salinity) determined as sub-

optimal for growth. 

Depending on the ambient temperature, locomotor activity can represent 

between 52 and 82% of the metabolic demand of active newly-hatched' 

edwardsii larvae (Chapter 4). Therefore, any external factor such as light that can 

influence locomotor activity in decapod larvae (Sulkin, 1984) may have 

significant repercussions on an animal's metabolism. In J. edwardsii larvae, all 

three physiological functions examined (i.e. oxygen consumption, nitrogen 

excretion and feed intake) were influenced by light. The increased VO2 observed 

in larvae subjected to light (i.e. low and high light intensities) when compared to 
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larvae in the dark, prevailed throughout early development to stage V. Overall, 

the response by larvae exposed to low and high light intensities did not differ in 

terms of oxygen consumption, nitrogen excretion and feed intake. These results 

suggests that the main effect of light intensity in phyllosoma is found between 

total darkness and light, and that under light phyllosoma would perform equally at 

low or high light intensity, at least for the range of light intensities tested in the 

present study. Since light at the levels experienced by phyllosoma in the present 

study is unlikely to have a direct influence on metabolism, the increase in VO2 in 

larvae exposed to light may be attributed primarily to increased locomotor 

activity. Indeed, the effect of light on locomotor activity and responsiveness of 

larvae was clearly demonstrated earlier in this chapter. In agreement with the 

present findings, Kils (1979) reported a 30% increase in oxygen consumption in 

Euphausia superba under light than in animals in darkness. Nonetheless, the 

effect of illuminance on metabolism is not a widespread phenomenon in 

zooplankton and Pearcy et al. (1969) did not find any difference in oxygen 

consumption between Euphausia pacifica placed in the dark and subjected to 

light. 

Weight specific nitrogen excretion levels were elevated under light, and as 

with the increased V02, coincided with increasing locomotor activity. This 

suggests that J. edwardsii larvae use protein as a metabolic substrate for 

propulsion. This observation has significant implications in the design of a 

rearing system since excessive locomotor activity could potentially impair growth. 

Although, metabolic energy losses increase under light, they may be compensated 

by the greater feed intake seen in larvae subjected to low and high light intensities 

as opposed to larvae in the dark. These results are consistent with findings by 

Moss et al. (1999) working on the same species, and with reports of higher 

feeding rates under light than in the dark in Rhithropanopeus harrissii (Cronin 

and Forward, 1980) and Ranina ranina (Minagawa, 1994) larvae. From mid-

stage I and in subsequent stages, J. edwardsii larvae placed under low light 

intensity showed consistently higher CRI than larvae in the dark, which is partly 

explained by the difference in feeding rates between the two treatments. 

Although these results were not directly statistically validated, they tend to 
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indicate that larvae exposed to low light intensity have a greater metabolic feeding 

efficiency than phyllosomas placed in the dark. A similar difference in CRI was 

observed between low and high light intensity but given the lack of statistically 

significant differences in the oxygen uptake and feeding rate between the two 

light intensities, a similar interpretation would be speculative. 

The relatively high values of 0:N ratio obtained in this study are the 

consequence of the higher oxygen uptake recorded in the light intensity trial than 

in the temperature experiment. As in the temperature experiment, the 0:N ratio 

increased from newly-hatched to stage V indicating that in culture conditions, J. 

edwardsii larvae tend to rely more on lipid as a metabolic substrate with 

development. As discussed earlier, it is not clear whether this shift in metabolic 

substrate is related to ontogenic changes in dietary requirements, or to a 

deterioration of the nutritional status in older larvae. There was, however, no 

clear shift in 0:N associated with light intensity. 

During daylight surface sampling at sea, Bruce et al. (2000) observed the 

highest densities of f. edwardsii larvae before 0800 h and after 1600 h. 

According to the results of the present study, the light levels experienced at these 

times of the day by phyllosoma may enhance their feeding rate. However, further 

work is required with a broader illuminance range to determine metabolic and 

feeding light thresholds and to investigate diurnal changes in feeding activity in J. 

edwardsii larvae. 
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3.6 Conclusions 

The observations made on the behaviour of J. edwardsii larvae suggested 

that temperature affects geotaxis in stage I larvae but has no effect at stage [1. By 

contrast the photoresponse of phyllosoma prevails throughout the early stages of 

development and is characterised by positive phototaxis at hatch, but this is 

reversed to negative phototaxis within 2 days. From an aquaculture perspective, 

the control of animal behaviour is essential in order to prevent the animals from 

being in prolonged contact with the walls of the rearing vessel, to avoid uneven 

larval distribution, and to raise the encounter rate with preys. The results obtained 

in the present study clearly indicated that light could be used to control the 

behaviour of stage I phyllosomas in the laboratory by adjusting the light intensity 

to a level approaching the threshold for reversal of phototaxis. A clearer 

understanding of the mechanisms underlying depth regulation in phyllosoma 

larvae is essential not only to further our understanding of larval migration and 

recruitment to the fishery but also to improve the design of culture systems. 

The physiological data obtained throughout the present study provided 

valuable information on the metabolic processes underlying the effect of 

temperature and light intensity on the development and growth of f. edwardsii 

larvae. The energetic imbalance (i.e. reduced feed intake versus raised nitrogen 

excretion) at high temperatures (i.e. above 18°C) may cause depression in growth 

in early-stage J. edwardsii. Therefore, high temperatures should be avoided in 

culture until the capacity of phyllosoma to acclimatise to such conditions is 

assessed. 

In view of the physiological results obtained with light intensity, a light 

phase is recommended for the culture of phyllosoma in order to maximise feed 

intake. This, followed by a dark phase of decreased larval metabolic activity may 

improve food conversion. During the light phase, intensities equal to or below 

3.9 • 10 14  quanta s -1  cm-2  should be suitable for larval rearing. While higher light 
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intensities are likely to be inappropriate in culture given the nocturnal migration 

pattern of J. edwardsii larvae observed in the wild (Booth, 1994; Bruce et al., 

2000), lower light levels require further investigation considering the trends 

observed in the present study in terms of oxygen consumption, nitrogen excretion, 

feeding rate and behaviour. 
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4.1 Abstract 

The standard metabolic rate (SMR) of newly-hatched Jasus edwardsii 

larvae was obtained by measuring oxygen consumption in phyllosomas 

immobilised with 2-phenoxyethanol. The cost of swimming was calculated as the 

difference between oxygen consumption in active larvae (i.e. routine metabolic 

rate) and the standard metabolic rate of immobilised phyllosomas. Oxygen 

consumption increased with increasing temperature in both immobilised and 

swimming larvae. Oxygen consumption was higher in swimming larvae than in 

immobilised larvae at 10 and 15°C and not significantly different at 20°C. This 

implied that the swimming activity of larvae at 10 and 15°C allowed for 

maintenance of buoyancy or upward swimming as opposed to passive sinking at 

20°C where swimming was minimal. These conclusions were validated from 

video examination of behavioural response. Negative geotaxis was significantly 

higher in larvae at 10 and 15°C (93.3 ±2.9 and 85 ±5 % ±SD, respectively) than at 

20°C (35 ±8.7 % ±SD). In addition, the level of activity was not significantly 

different between larvae at 10 and 15°C which showed similar rates of ascent 

(0.43 ±0.24 and 0.42 ±0.23 cm s -1  ±SD respectively) at these temperatures. The 

present study demonstrated that temperature is an important cue for depth 

regulation in I edwardsii larvae. In addition, chemical immobilisation with 2- 

phenoxyethanol may be an expedient technique for the direct measurement of 

SMR in I edwardsii larvae, and the respirometry method presented here was 

effective in studying the behavioural response of newly-hatched larvae. 
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4.2 Introduction 

The energetics of swimming in aquatic animals was described by several 

authors as the increase in oxygen consumption associated with increasing activity 

(Foulds and Roff, 1976; Mickel and Childress, 1978; Cowles and Childress, 1988; 

Buskey, 1998). Experimentally, the cost of swimming is obtained from the 

difference between routine (i.e. oxygen consumption in unrestrained organisms) 

and standard metabolism (i.e. metabolism in a resting animal). Due to the 

technical difficulties in measuring standard metabolism alone, only a few studies 

have quantified the cost of locomotor activity in planktonic crustaceans. 

Estimations of the standard metabolic rate (SMR) can be obtained either through 

direct measurement on resting animals (Klyashtorin and Kuz'micheva, 1976), or 

extrapolated at zero activity from the modelling of swimming activity in response 

to a gradual stimulus (Halcrow and Boyd, 1967; Torres and Childress, 1983). 

Other workers have calculated SMR as the difference between routine metabolic 

rate (RMR) and cost of swimming, the later being estimated from the calculation 

of dead drag (Vlymen, 1970; Klyashtorin and Yarzhombek, 1973). Little 

information is available on anaesthesia as a means of immobilising aquatic 

animals for measuring standard metabolic rate. This method was briefly 

mentioned by Raymont (1983) and was previously used on herring (Clupea 

harengus) eggs (Holliday et a/. 3964), and on skate (Raja erinacea) (Hove and 

Moss, 1997) to measure resting metabolic rate and standard metabolism, 

respectively. 

This study aimed at assessing the use of anaesthesia as a method for direct 

measurement of standard metabolic rate in order to define the energetic cost of 

swimming in Jasus edwardsii larvae. The energy expenditure for swimming was 

compared to behavioural response at different temperatures. Results were 

examined with respect to the applicability of anaesthesia in estimating standard 

metabolism and the cost of swimming in spiny lobster larvae. 
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4.3 Material and methods 

4.3.1 Larvae 

Larvae were obtained during the spring of 1998 and 1999 from berried 

females caught off the east coast of Tasmania, and brought to the TAFT Marine 

Research Laboratories, Hobart. Until hatching of the larvae, females were held at 

ambient temperature and fed pilchards. At hatching, temperature ranged from 

14.9 to 16.5°C. Unless specified, trials were conducted with larvae from a single 

brood. To avoid interference from possible circadian behavioural patterns, the 

following trials were all conducted between 1000 and 1700 h. 

4.3.2 Preliminary studies: Oxygen consumption by resting, 
starved, and fed larvae 

The immobilisation of larvae for up to 6 h (period required to measure 

oxygen consumption in a closed respirometer) was achieved by bathing in a 

solution 2-phenoxyethanol (M.W. = 138.17; 1.109 g m1 -1 ) in seawater (1 m11-1 ). 

The steadiness of the metabolic rate of stage I larvae (n = 12, 6 from each of 2 

different broods) in this resting state was measured through microscopic 

examination of heart pulse (Fig. 4.1). From its normal level in seawater, the heart 

rate of stage I larvae dropped significantly (P<0.0001; Kruskal-Wallis test on 

ranks; Fig. 4.2) in 2-phenoxyethanol and remained subsequently stable for 6 h 

(P>0.05; Dunn's method for multiple comparison). Treatment with 2- 

phenoxyethanol did not cause any mortality during the resting phase, and up to 48 

h post-exposure. A starvation period of 17.5 h was determined to be sufficient to 

measure the oxygen consumption in post-absorptive stage I larvae (Appendix VI). 

Following these preliminary findings, oxygen consumption (V02) was 

measured in mid-stage I larvae under three different physiological states: (1) 

resting post-absorptive (RPA), (2) active post-absorptive (APA), and (3) active 

absorptive (AA). The larvae used in this experiment had been previously reared 

in six culture vessels (about 100 per 500 ml vessel) for four days, during which 

time they were fed Artemia nauplii and maintained at 17°C. Food was withheld 
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18 h prior to the start of the experiment in four of the six culture vessels (see 

Appendix VI). Starved larvae were used to measure VO2 in RPA and APA larvae, 

while V02 in AA was assessed on larvae fed until their transfer into respirometers. 

For each physiological state, oxygen consumption was measured in five closed 

12-ml syringe respirometers (see description in Chapter 3, Fig. 3.3) stocked with 

ten active larvae (five from two different vessels). The respirometers were filled 

with 0.2 pm filtered 34 ppt seawater with 25 ppm of oxytetracycline (Engemycin 

100, Intervet, Australia) to minimise background microbial respiration. Two-

phenoxyethanol was added to seawater in the RPA treatment. Respirometers were 

incubated in a waterbath at 17°C and larvae were acclimated to the syringe for at 

least 1 h before measuring oxygen consumption over a 4-h period following the 

procedure outlined in Chapter 3. Oxygen partial pressure was determined in 1-ml 

water samples using a BMS Mk2 (Radiometer, Copenhagen) connected to a 

Cameron Instrument Company BGM 300 blood gas analyser (Port Aransas, 

Texas). The electrode was calibrated to zero using a solution of sodium 

metabisulphite and to 100% saturation with aerated seawater. Oxygen 

consumption was expressed as 121 02 larva -1  W I  after deduction of background 

respiration obtained from three control respirometers at each treatment. Data 

failed to meet the ANOVA assumption of homoscedasticity and the effect of 

physiological state on oxygen consumption was tested with the Kruskal-Wallis 

one way ANOVA on ranks (K-W). Differences between treatments were isolated 

with the Newman-Keuls method of multiple comparison (N-K). Analyses were 

carried out with Sigmastat 1.0 statistical software. 

4.3.3 Experiment 1: The effect of temperature on the 
metabolic rate of resting and active larvae 

Oxygen consumption was measured in newly-hatched larvae in an active 

and in a resting state, and at three different temperatures: 9.8, 15.0, and 20.0°C. 

VO2 measurements were carried out following the methods described above except 

that 10 larvae per respirometer were incubated for 6 h (including 1 h of 

acclimation) instead of 5 h, to allow for detection of oxygen consumption at the 

lowest temperature tested (i.e. 9.8°C). The equipment used to measure oxygen 
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saturation in 1-ml samples consisted of a polarographic electrode connected to a 

digital controller (Rank Brothers Ltd., UK). The lowest final level of dissolved 

oxygen observed (4.77 ml o, 1-1 ) was above the Pcri t  determined in stage I larvae 

(Chapter 5). The effect of physiological state and temperature on the oxygen 

consumption of newly-hatched larvae was analysed with a two way analyses of 

variance (2-ANOVA) after log transformation of the data in order to meet 

assumption of homoscedasticity. SPSS 10.0 statistical software was used for this 

analysis. The 'cost of swimming' (Vo2  active - V02  resting) was calculated at 

each temperature as an indicator of activity. The van't Hoffs rule's Qio (Clarke, 

1987) was computed for the resting and active metabolic rates, and for the cost of 

swimming following the formula given in Chapter 3. 

4.3.4 Experiment 2: The effect of temperature on geotaxis 

Following the methods described in Chapter 3, the geotactic response of 

newly-hatched larvae to temperature was tested in glass columns (320 x 100 x 100 

mm) placed in aquaria maintained at 10.0, 15.0, and 20.1°C. There were three 

columns at each temperature and 30 larvae were introduced into each column. 

The effect of temperature on negative geotaxis of newly-hatched larvae was tested 

with ANOVA and the analysis was carried out using SPSS 10.0. 

4.3.5 Experiment 3: The effect of temperature on the rate 
• 	of ascent 
The rate of ascent of newly-hatched larvae was examined at 9.9, 14.9 and 

20.0°C. At each temperature larvae (n 100) were placed in a glass column and 
left to acclimate in the dark for 1 h. After acclimation the positively phototactic 
newly-hatched phyllosomas (see Chapter 3) were attracted to the bottom of the 
column with a light source (Fig. 4.3). The upward swimming of larvae was 
recorded with a camera connected to a video recorder (Fig. 4.4). An infrared light 
placed above the column was used to visualise the animals in the dark. Video 
recordings were later analysed to determine the larval rate of ascent over a 10-cm 
vertical section in larvae (n = 80) not touching the column's walls. Mean rates of 
ascent at different temperatures were compared with a t-test using SPSS 10.0 
statistical software. 
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Figure 4.1 Magnified ventral view of a stage I Jasus edwardsii phyllosoma. The heart 
is located in the circled area. 
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Figure 4.2 Mean (±SD) heart pulse rate (pulse mini ) of stage IJasus edwardsii larvae 
in a prolonged resting state under 2-phenoxyethanol. 
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Figure 4.3 Frame view of newly-hatched Jasus edwardsii larvae in a water column, 
swimming downwards towards a light source. 

Figure 4.4 Frame view of newly-hatched Jasus edwardsii larvae migrating upwards in 
a water column. The rate of ascent was measured between the two dotted white lines. 
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4.4 Results 

4.4.1 Preliminary experiment: Oxygen consumption by 
resting, starved, and fed larvae 

Oxygen consumption of stage I larvae increased with increasing 

physiological demand (K-W, df =2, H = 11.4, P<0.01; Fig. 4.5). Oxygen 

consumption in RPA larvae was lower than in APA larvae, which was in turn less 

than oxygen consumption in AA larvae (N-K, P<0.05). 

RPA • 	APA 	AA 

Physiological state 

Figure 4.1 Mean (±SD) oxygen consumption by stage I Jasus edwardsii larvae under 
three different physiological states: (1) RPA (resting post-absorptive); (2) APA (active 
post-absorptive); and (3) AA (active absorptive). Treatments with different letters 
differed significantly (N-K, P<0.05). 
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4.4.2 Experiment 1: The effect of temperature on the 
metabolic rate of resting and active larvae 

The oxygen consumption of newly-hatched larvae was significantly 

dependent on their physiological state (2-ANOVA, F1,24 = 59.85, P<0.0001; Fig. 

4.6) and on temperature (2-ANOVA, F2,24= 76.81, P<0.0001). A significant 

interaction effect between temperature and the physiological state of the larvae 

was indicative of a change in response within the temperature range tested (2- 

ANOVA, F2,24 = 18.85, P<0.0001). Respiratory rates increased in both resting and 

active larvae as temperature increased (Fig. 4.6). However, the effect of 

temperature was less pronounced in active larvae than in resting larvae as 

reflected in the differences in the Qio values between animals under the two 

physiological states (Table 4.1). At 9.8 and 15.0°C, the aerobic metabolism of 

active larvae increased significantly (P<0.05) from the resting rate, by factors of 

5.4 and 2.1, respectively (Fig. 4.6). At 20.0°C, there was a change in the response 

of active larvae to temperature, and Vo2 in resting and active larvae were not 

significantly different (Fig. 4.6; P = 0.999). The Q i o for 'cost of swimming' 

dropped from 0.93 in the range 9.8-15.0°C down to 0.02 in the range 15.0-20.0°C 

(Table 4.1). 

4.4.3 Experiment 2: The effect of temperature on geotaxis 

Temperature significantly affected the geotactic response of newly-

hatched larvae (P<0.0001; Fig. 4.7).. Larvae were negatively geotactic at 10.0 and 

15.0°C and became positively geotactic at 20.1°C. 

4.4.4 Experiment 3: The effect of temperature on the rate 
of ascent of newly-hatched larvae 

There was no difference between the rate of ascent of larvae at 9.9°C and 

at 14.9°C (P = 0.888; Table 4.1). It was not possible to measure the rate of ascent 

of larvae at 20.0°C which interestingly for newly-hatched animals displayed 

negative phototaxis (see Chapter 3) during the running of the experimental 

protocol. 
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Table 4.2 The effect of temperature on the oxygen consumption (Vo2), Q 10, and ascent 
rates of newly-hatched Jasus edwardsii larvae anaesthetised or active. Temperatures are 
rounded up to the nearest integer. 

Temperature 	 10°C 	 15°C 	20°C 

Resting rate 

VO2 (g102 .1arva-1 -11-1 ) 	0.0083 ±0.0033 	0.0331 ±0.0084 	0.0928 ±0.0258 

Qio 	 14.3 	 7.7 

Active rate 

Vo2  (11.102 .1arva-1 .1f 1 ) 
	0.0449 ±0.0163 	0.0684 ±0.0106 	0.0976 ±0.0154 

Qio 
	 2.2 	 2.0 

Cost of swimming 

V02  Oil 02.1arva-1 .11-1 ) 
	0.0366 
	

0.0353 	0.0048 

Qio 
	 0.93 	 0.02 

Rate of ascent (cm.s-1 ) 	0.43 ±0.24 	0.42 ±0.23 

* This experiment could not be conducted at 20°C. 
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Figure 4.2 Mean (±SD) oxygen consumption by resting and active newly-hatched 
Jasus edwardsii larvae at three different temperatures. 
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Figure 4.3 Mean (±SD) geotaxis in newly-hatched Jasus edwardsii larvae placed at 
three different temperatures. 
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4.5 Discussion 

4.5.1 The partitioning of metabolism 

Preliminary results demonstrated that the metabolic rate of J. edwardsii 

phyllosomas could be partitioned by manipulating feed intake and swimming 

activity. Clarke (1987) reviewed the metabolic processes that may contribute to 

the standard (SMR) and the routine metabolic rate (RMR) measured during 

respiration experiments on marine organisms. According to Clarke (1987), the 

difference in oxygen consumption between fed and starved larvae would represent 

the 'specific dynamic action' (SDA) which has been observed in several other 

planktonic species (see review by Raymont, 1983). The post-prandial metabolic 

pulse of fed animals, or SDA, reflects the cost of growth (biosynthesis) rather than 

the cost of feeding (gut activity, amino-acid oxidation and urea excretion) 

(Jobling, 1983; Kiorboe et al., 1985; Thor, 2000). Therefore, SDA may be a 

valuable performance indicator in future work on the environmental and 

nutritional requirements of J. edwardsii larvae. 

Standard metabolic rate has been measured or estimated in many aquatic 

organisms (Halcrow and Boyd, 1967; Vlymen, 1970; Klyashtorin and 

Yarzhombek, 1973; Klyashtorin and Kuz'micheva, 1976; Tones and Childress, 

1983). However, anaesthesia has rarely been used to immobilise animals in order 

to perform direct measurements of SMR. The technique was reliable in 

estimating the standard metabolic rate of little skate (Raja erinacea) (Hove and 

Moss, 1997). Following the successful chemical immobilisation of stage I 

edwardsii larvae and the expedient way in which their metabolic rate could be 

measured in this resting state, the present study aimed at assessing whether or not 

anaesthesia may be a suitable to directly measure SMR in phyllosoma. 
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4.5.2 Assessment of anaesthesia to estimate SMR 

4.5.2.1 Response to external stimulus under anaesthesia 

edwardsii larvae treated with 2-phenoxyethanol showed sensitivity to 

external stimulus (i.e. temperature). This response to an external stimulus 

together with the presence of a stable heart beat rate for up to 6 h under 2- 

phenoxyethanol, indicated the operation of basal neurocircuitry, muscle tonus and 

movement of respiratory apparatus, processes which contribute to the standard 

metabolism as defined by Clarke (1983). Sensitivity to external stimulus under 2- 

phenoxyethanol was also reported in rainbow trout (Robb and Kestin, 1998). 

4.5.2.2 The energetic cost of swimming compared with behaviour 

Respirometry and visual observation techniques compared well in 

estimating the behavioural response to temperature of newly-hatched larvae. 

Although the metabolic rate of both resting and active larvae increased with 

temperature, the lower 'cost of swimming' at 20°C suggested a change in 

behaviour (reduced activity and possibly sinking) at elevated temperatures. This 

assumption was supported by positive geotaxis at 20°C (assumed to be due to 

reduced activity), while larvae exposed to 10 and 15°C were negatively geotactic 

and swam actively upwards. Therefore, according to respirometry and 

behavioural observations, the positive geotaxis reported at 20°C is likely to be due 

to the cessation of swimming activity that led to passive sinking. This 

phenomenon is common in decapod larvae which can regulate their depth 

distribution through changes in locomotor activity when faced with shifts in 

ambient temperature (see review by Sulkin, 1984). For instance, passive sinking 

at elevated temperatures was reported in Rhithropanopeus harrisii (Ott and 

Forward, 1976) and Callinectes sapidus (McConnaughey and Sulkin, 1984), while 

swimming activity declined in Gammarus oceanicus (Halcrow and Boyd, 1967), 

and in Crangon crangon (van Donk and de Wilde, 1981) exposed to high 

temperatures. 

Furthermore, the level of swimming activity estimated from measurements 

of oxygen consumption agreed with the rates of ascent observed during vertical 

migration. Indeed, the similar rates of ascent recorded at 10 and 15°C 

corresponded with equivalent energetic cost of swimming at 10 and 15°C. 
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4.5.2.3 The cost of swimming assessed with anaesthesia 

Under conditions stimulating swimming in spiny lobster larvae, the energy 

demand associated with swimming resulted in large increases in metabolic rate 

from a standard metabolic level (2.1 and 5.4 times at 10 and 15°C, respectively). 

Although these results were consistent with those obtained in Gammarus 

oceanicus (Halcrow and Boyd, 1967), Gnathophausia ingens (Mickel and 

Childress, 1978), Euphausia pacifica (Torres and Childress, 1983), and Dioithona 

oculata (Buskey, 1998), they disagreed with previous studies which found that 

energy expenditure for swimming was negligible compared to the overall energy 

expenditure of the animal (Vlymen, 1970; Klyashtorin and Yarzhombek, 1973; 

Foulds and Roff, 1976; Klyashtorin and Kuz'micheva, 1976). According to 

Torres and Childress (1983), these authors underestimated the energetic cost of 

swimming in planktonic crustaceans, chiefly because they reached their 

conclusion despite the failure to control activity when measuring standard 

metabolism. 

An understanding of the effect of 2-phenoxyethanol on each of the 

components of standard metabolism (as defined by Clarke, 1983) remains beyond 

the scope of technical feasibility. However, the results obtained in the present 

study confirm the hypothesis that immobilisation with 2-phenoxyethanol may be 

used in estimating the SMR of f. edwardsii larvae. These results also support 

findings by Hove and Moss (1997) who used MS-222 to anaesthetise Raja 

erinacea in order to estimate diurnal changes in activity. 

4.5.3 The Qlo of SMR, RMR, and 'cost of swimming' 

The Qio term, which is derived from the van't Hoff rule, is commonly 

applied by biologists to approximate the relationship between the rate of 

biological processes and temperature. Although declining with increasing 

temperature, the Q i o values obtained in resting larvae were unusually high (see 

review by Clarke 1983) suggesting a stress response and/or the absence of 

compensation for the standard metabolism of newly-hatched larvae. The stress 

possibly experienced by larvae at 10 and 20°C could be associated with the 
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limited period of acclimation (— 1 h) to the experimental temperature for larvae 

acclimatised to an incubation temperature near 15°C. The suppression of 

metabolism observed at 10°C could result from a lack of heat (Hochachka, 1990), 

whereas the overshoot observed in resting larvae at 20°C could be the 

consequence of an abrupt change in temperature (Prosser, 1973). Note, however, 

that the different metabolic processes that make up SMR are known to respond to 

temperature at different rates (Clarke, 1987). Therefore, measures of standard 

metabolic rate at two different temperatures (e.g. 10 and 20°C) may not 

necessarily be comparable and Q i o values must be interpreted cautiously. 

In active larvae, Qio values approaching 2 in the range 10-15°C and 15- 

20°C were consistent with the expected rate of chemical reaction of the van't Hoff 

rule. Based on the results stated above, it would be incorrect to interpret the 

consistency of the Qio from 10 to 20°C as a linear relationship between metabolic 

response and temperature. Rather, and as indicated by findings on the metabolic 

rate of resting larvae and behaviour, the consistency of the Q io  in this instance, 

reflects a drop in activity together with the overshooting of the basal metabolic 

rate at 20°C. Values of the Q i o obtained for the 'cost of swimming' (near 1 and 

near 0 for the ranges 10-15°C and 15-20°C respectively) were consistent with 

behavioural response. Unless, the van't Hoff rule is applied to defined metabolic 

processes such as swimming activity and standard metabolism, the Qio can 

potentially be misleading. Clarke (1983) noted that there was no logical basis for 

the application of the van't Hoff law to describe the metabolic response of whole 

organisms to temperature. Most importantly, we should stress the need to control 

or know the level of activity when assessing the effects of temperature on 

metabolism (Holeton, 1974, cited in Tones and Childress, 1983). 
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4.6 Conclusions 

Both the avoidance behaviour and the lack of metabolic compensation at 

elevated temperature suggest that newly-hatched J. edwardsii larvae are 

behavioural thermoregulators. Measuring the metabolic rate of anaesthetised 

larvae was an effective method to determine standard metabolic rate and the 

energetic cost of swimming in newly-hatched I edwardsii larvae. This technique 

may be used in future research to determine diurnal activity patterns (Hove and 

Moss, 1997) or to study the response of J. edwardsii larvae to environmental 

factors other than temperature. Additionally, the method described in the present 

study may be used to assess the behavioural response of aquatic organisms 

exposed to natural environmental conditions, which are often difficult to simulate 

in situ. 
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5. Effect of hypoxia at different temperatures 

5.1 Abstract 

The effect of progressive hypoxia on oxygen consumption (V0 2) was 

investigated in stage I f. edwardsii larvae at 14.2, 18.1 and 22.6°C to assess the 

tolerance of larvae to low oxygen tension and to determine whether their response 

was influenced by temperature. Under all temperatures tested, stage I larvae were 

partial oxyregulators as indicated by the curvilinear decline in V02  under declining 

ambient dissolved oxygen (DO). Although the shape of the Vo2 response pattern 

varied with temperature, Pcri t  (i.e. the critical oxygen tension at which V02 is 

influenced by DO) remained unaffected and ranged from 3.90 to 4.32 ml 02  r'. 
Recommendations for the rearing of phyllosoma were made on the basis of these 

critical levels of dissolved oxygen. The change in response pattern, particularly 

from 18.1 to 22.6°C indicated that the oxyregulatory capacity of stage I larvae 

increased at high temperature. This observation together with the significant 

decline in Qio from the 14.2-18.1°C range to the 18.1-22.6°C range, implied 

thermal stress in larvae placed at 22.6°C. 
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5.2 Introduction 

The respiratory response of animals faced with hypoxia is either to 

conform their oxygen consumption (V02) to ambient oxygen (oxyconformers), or 

to regulate their VO2 (oxyregulators) so that VO2 is independent of progressive 

hypoxia (normoxic zone) down to a critical concentration of oxygen (DO) 

below which Vo2 becomes dependent upon further reduction of ambient dissolved 

oxygen (Vernberg and Vernberg, 1972; Willmer etal., 2000). In marine 

invertebrates, the response to hypoxia is generally dictated by the dissolved 

oxygen variations inherent to their habitat (Vernberg and Vernberg, 1972). This 

was demonstrated by Ikeda (1977) who found a lower tolerance to hypoxia in 

zooplankters from oxygen rich surface waters than in organisms from oxygen-

deficient bottom water. Crustaceans can nonetheless avoid anoxic or hypoxic 

conditions by moving to oxygen rich strata (Pihl et al., 1991). However, such 

behaviour would have no significant benefit to organisms placed in a rearing tank 

where turbulence prevents oxygen stratification. From an aquaculture 

perspective, it is therefore essential to define the response pattern of Jasus 

edwardsii larvae to hypoxia (i.e. oxyconformity or oxyregulation) in order to 

determine water quality requirements and improve larval rearing practices. 

This study aimed to determine the oxygen consumption response pattern 

and the critical value of dissolved oxygen in stage I J. edwardsii larvae subjected 

to progressive hypoxia. Since temperature may affect the oxyregulation capacity 

of invertebrates (Willmer et al., 2000), the possible stress effect of increasing 

temperature was investigated through the assessment of changes in the respiratory 

response pattern to hypoxia of stage I J. edwardsii larvae acclimated to different 

temperatures (van Winkle and Mangum, 1975). 
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5.3 Material and methods 

First stage J. edwardsii larvae were obtained throughout October and 

November 2000 from ovigerous females brought to the TAFI Marine Research 

Laboratories in July of the same year. Females were kept in indoor tanks on a 

flow-through system at ambient temperature ranging from 12.0 to 17.1°C, and fed 

regularly with squid and mussels until larval release. Newly-hatched larvae were 

collected at the surface of the tank and transferred into larval rearing units (Ritar, 

2001). Prior to sampling for temperature acclimation, larvae were reared for three 

to four days on adult brine shrimps (1.5-2.5 mm) at 18°C. Acclimation to 

experimental temperature was conducted in static water 220 ml plastic jars placed 

floating in aquaria equipped with thermostats to maintain temperatures of 14, 18 

and 22.5°C. The jars, filled with sea water and 25 ppm of oxytetracycline, were 

stocked with 20 larvae. Larvae were fed during acclimation (i.e. 1.5-2.5 mm adult 

Artemia to satiation) and feed was withdrawn from the jars at least 17 h prior to 

the start of the measurement of oxygen consumption. Therefore, VO2 was 

measured in post-absorptive larvae (see Appendix VI). VO2 under progressive 

hypoxia was assessed in 4, 5 and 6 d old larvae acclimated to 18, 22.5 and 14°C 

for 24, 48 and 48 h, respectively. 

Changes in oxygen consumption under declining DO were assessed at 

14.2 ±0.1, 18.1 ±0.1 and 22.6 ±0.1°C (mean ±SD) by placing 12 larvae in a 2 ml 

respirometry chamber fitted above a polarographic oxygen electrode (Fig. 5.1), 

which was connected to a digital reader (Model 10, Rank Brothers Ltd, England). 

The larvae were acclimated to the experimental conditions for one hour during 

which oxygen saturated 0.2 i.tm filtered sea water treated with oxytetracycline (25 

ppm) was passed through the chamber with a peristaltic pump. The flow of water 

was stopped to monitor the decline in oxygen content in the chamber with 

SmartReader 7 (ACR System Inc.) data loggers connected to the digital reader. 

The DO in the chamber was left to drop down to below 2 ml 02  1-1 . Larvae were 

then retrieved to determine their dry weight (as per method described in 
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Chapter 3). To estimate oxygen consumption by the electrode, the chamber was 

flushed with oxygen saturated seawater and the decline of DO was recorded 

overnight with a data logger. Despite a 1-h acclimation period, initial readings 

were elevated. Stable readings were estimated to be reached at 5.2, 4.8 and 4.4 ml 

at 14.2, 18.1 and 22.6°C, respectively. These levels of DO (--90% saturation) 

were obtained within the first 30 min of recording suggesting that a period of 

acclimation of 1.5 h is required for stage I J. edwardsii larvae to recover from 

handling stress and reach a stable VO2. Data are presented as mean ±SD [11 02 mg 

DW I  II I  of four trials at declining DO intervals of 0.4 ml 0 2  1-1 , after deduction of 

background oxygen consumption by the electrode. 

The relative degree of oxyconformity (i.e. linear decline of V02 with 

decreasing DO) or oxyregulation (i.e. V02  is constant over a range of DO) was 

evaluated by fitting quadratic regression models to the VO2 response to declining 

DO at each temperature (van Winkle and Mangum, 1975). The effects of 

temperature on the intercept and the shape of the quadratic relationship between 

Vo2  and DO were tested with the Kimura Likelihood Ratio test (KLR) following 

the procedure described by Haddon (2001). VO2max (i.e. level of the maximum 

V02  under progressive hypoxia) and DOcri t  (i.e. critical oxygen concentration at 

which V02 becomes DO dependent) were determined for larvae from each brood 

and at each temperature by fitting a segmented model with plateau to the response 

curve. This analysis was conducted in SAS using the NLIN procedure (SAS 

Institute, 1990). The effect of temperature on VO2max and DO cri t  was assessed with 

analysis of variance (ANOVA) followed by the Least Significant Difference test 

(LSD) for multiple comparison. The Qio was computed using VO2max data 

according to the formula cited in Chapter 3. The possible change in Qio between 

the 14.2-18.1°C range and the 18.1-22.6°C range was analysed with a t-test. 

ANOVA, t-test and LSD were conducted in JMP 3.1 statistical software. 

117 



magnetic stirrer 

water jacket 

screen 

stirring flea 

02  electrode 

freshwater inlet 

seawater inlet 	 seawater outlet 

incubation 
chamber 

freshwater outlet 

_,..,•\,-■,,..*,/ 

5. Effect of hypoxia at different temperatures 

Figure 5.1 Schematic view of the experimental apparatus used to measure the oxygen 
consumption of stage I Jasus edwardsii larvae subjected to declining DO at different 
temperatures. 
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5.4 Results 

Quadratic models illustrated the significant decline of Vo 2  by larvae 

exposed to declining DO (Fig. 5.2) at 14.2°C (r 2  = 0.48, F2,129=  58.61, P<0.0001), 

18.1°C (r2  = 0.60, F2,113 = 85.43, P<0.0001), and 22.6°C (r2  = 0.63, F2,97 = 81.16, 

P<0.0001). V02 was temperature dependent (ANOVA, F2,9 = 26.17, P<0.001) 

and significantly increased from 14.2 to 18.1°C and again from 18.1 to 22.6°C 

(Table 5.1). Nonetheless, according to the Qio, the change in VO 2max  was greater 

between 14.2 and 18.1°C than between 18.1 and 22.6°C (t-test, F1,6 = 6.72, 

P<0.05, Table 5.1). Temperature did not affect the DO crit  of stage I larvae 

(ANOVA, F2,9 = 0.12, P = 0.887, Table 5.1). 

As indicated by the Kimura Likelihood Ratio test, there was a change in 

the VO2 response to declining DO over the range of temperatures tested (KLR on 

and ,(32 , df = 2, x2  = 28.18, P<0.0001). Pairwise comparison of models between 

temperatures showed a significant change in the shape (coefficients and /32) of 

the metabolic response to progressive hypoxia from 18.1°C to 22.6°C (Table 5.2). 

The significant decline of the /32 coefficient at 22.6°C (Table 5.2) suggests 	' 

increased oxyregulatory capacity in stage I larvae subjected to high temperature. 

Table 5.2 Mean (±SD) V02.  (pI 02  mg DW I  11'), Q lo  and DO.* (ml 02  r') in stage I 
Jasus edwardsii larvae exposed to three different acclimation temperatures. Values within 
each row bearing different superscripts were significantly different (LSD, P<0.05). 

temperature (°C) 14.2 18.1 22.6 

VO2max 0.68 ±0.07a  0.87 ±0.08" 1.01 ±0.04c  

Qio 1.89 ±0.27 a  1.42 ±0.24 

DOcrit 4.30 ±1.51 4.32 ±1.03 3.90 ±1.49 
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Figure 5.2 Respiratory response of stage I Jasus edwardsii larvae under declining DO 
at three different temperatures. Response at each temperature was fitted with a quadratic 
polynomial model (Table 5.2). 

Table 5.2 Coefficient estimates and their significance for quadratic polynomial models 
fitted to the respiratory response of stage I Jasus edwardsii larvae under declining DO at 
three different temperatures (Fig. 5.2). Coefficients of a same row with different 
superscripts differed significantly (KLR, P<0.05). 

14.2°C 
	

18.1°C 	 22.6°C 

Coefficient Estimate 	P 	Estimate 	P 	Estimate 	P 

fio 	0.2371 a  <0.001 	0.1784 " 	0.060 	01370 b 	0.290 

	

0.1855 a  <0.0001 	0.2913 	<0.0001 	05947 b  <0.0001 

	

-0.0195 a  <0.001 	-0.0313" <0.001 	-0.0783 b  <0.0001 
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5.5 Discussion and conclusions 

The curvilinear VO2  response pattern to progressive hypoxia under three 

different temperatures indicated partial oxyregulation in stage I J. edwardsii 

larvae (van Winkle and Mangum, 1975). However, given the high DOcrit 

observed in phyllosomas, their capacity for oxyregulation appeared to be 

relatively limited compared to Carcinus maenas (Taylor et al., 1977) and Penaeus 

monodon (Liao and Murai, 1986). In their natural coastal habitat both C. maenas 

and P. monodon may frequently be faced with hypoxic conditions in contrast with 

J. edwardsii larvae which live in a well oxygenated oceanic habitat with little 

fluctuation in dissolved oxygen (Willmer et al., 2000). For instance, depth 

oxygen profiles recorded in waters off the northeastern coast of Tasmanian 

(150°E, 40°S) indicated minimum dissolved oxygen concentration in the summer 

of 5.1 and 4.6 ml 02  1 1  at the surface and at 100 m depth, respectively (Jeff Dunn, 

personal communication; data exctracted from the CSIRO Atlas of Regional Seas 

database). Therefore, the partial oxyregulation observed in stage I J. edwardsii 

larvae is not surprising, considering the relative consistency in dissolved oxygen 

encountered in their habitat. This hypothesis is in agreement with Behnan and 

Childress (1973) who, discussing the limited oxygen regulatory capabilities of 

Pan ulirus interruptus stage I larvae, concluded on the inappropriateness of 

mechanisms for oxygen regulation in organisms occurring at the surface of the 

ocean. Ikeda (1977) provided additional evidence to this argument when he found 

that the effect of lowered oxygen concentration was less pronounced in 

zooplankters collected from oxygen-deficient bottom water, than in species 

occurring in oxygen-rich surface waters. It is therefore possible that given their 

oceanic habitat I edwardsii larvae would not be adapted to low oxygen tension. 

This could be intuitively supported by the development of gills at the 11 th  and last 

larval stage (Lesser, 1978), before metamorphosis into the puerulus that will 

assume benthic settlement. 

Although, the DOent  of stage I J. edwardsii larvae did not change with 

acclimation temperature, the /32 coefficient of the quadratic regression describing 
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the effect of progressive hypoxia was lower at 22.6°C than at 14.2 and 18.1°C. 

According to van Winkle and Mangum (1975) this implies increased 

oxyregulation in J. edwardsii larvae exposed to higher temperatures. These 

results clearly contrast with the general trend reported in crustaceans and teleosts 

for which the oxyregulating capacity declines under raising temperature (Taylor et 

al., 1977; Bridges and Brand, 1980; Schurmann and Steffensen, 1997; Claireaux 

and Lagardere, 1999). For instance, the increase in DO c fi t  with increasing 

temperature that was reported in Carcinus maenas, was attributed to the decline in 

oxygen affinity of blood pigments that is associated with raising temperature 

(Taylor et al. 1977). In addition, intrinsic factors such as activity that may be 

influenced by temperature can affect the response of aquatic organisms to 

hypoxia. Bridges and Brand (1980), and Claireaux and Lagardere (1999) 

demonstrated that higher levels of activity profoundly reduced the capacity for 

oxyregulation in Galathea strigosa, and Dicentrarchus labrax, respectively. Even 

though the level of activity was not assessed in the present study, observations of 

behaviour reported in Chapter 3 and Chapter 4 indicated a marked reduction of 

locomotor activity in newly-hatched and mid-stage If. edwardsii larvae subjected 

to elevated temperatures. Therefore, an increase in the level of activity of larvae 

at 14.2 and 18.1°C may explain the reduced oxyregulatory response observed 

under these conditions compared with larvae exposed to 22.6°C. Furthermore, the 

marked decline in the fl2  coefficient of the quadratic regression at 22.6°C implies a 

stress response under such conditions as suggested by van Winkle and Mangum 

(1975). This is supported by a decline in the Qio from the 14.2-18.1°C range to 

the 18.1-22.6°C range, a change in Qio being indicative of a shift in response 

(Vernberg and Vernberg, 1972). 

The oxygen affinity of heamocyanin is known to decline at higher 

temperature, and at lower pH according to the normal Bohr shift (Mangum and 

Ricci, 1989; Willmer et al., 2000). Therefore, the similar V02 response under 

progressive hypoxia observed in I edwardsii larvae at 14.2 and 18.1°C implies 

the contribution of an underlying compensatory mechanism at 18.1°C. 

Considering the absence of gills in the first 10 larval stages and the flattened 

morphology of the phyllosoma (Lesser, 1978), diffusion through the body surface 
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seems a likely pathway for gas exchange. Consequently, under conditions 

causing lower oxygen affinity in blood pigments (i.e. high temperatures) greater 

efficiency in oxygen uptake could be achieved by increasing ventilation in order 

to enhance the gradient of 02 partial pressure between extrinsic and intrinsic 

oxygen tensions. External ventilation at the body surface may be achieved 

through locomotor activity or the beating of setae. However, the higher metabolic 

demand that would result from such a mechanism was not observed in the present 

study. Alternatively, increased ventilation could be achieved intrinsically through 

enhanced cardiac output and therefore, enhanced perfusion rate. Heart beat rate 

being temperature dependent in invertebrates (deFur and Mangum, 1979) the 

expected higher cardiac output of phyllosoma at 18.1°C could be a sufficient 

mechanism to compensate for lower oxygen blood affinity and achieve 

temperature independence of the oxyregulatory capacity in J. edwardsii larvae. 

Although stage I I edwardsii larvae appeared to be partial oxyregulators, 

they are not well adapted to sustain hypoxia in culture and dissolved oxygen 

levels should be kept above 4.3 ml 02  rl (-6.15 mg 02 1'). The concentration 

recommended here is greater than the minimum safe dissolved oxygen 

concentration (i.e. 5 mg 0214 ) generally prescribed in aquaculture manuals 

(Forteath, 1990) and textbooks (Barnabe, 1991). Therefore, special care must be 

taken in the design of a rearing system to insure that oxygenating devices are 

installed. In intensive systems, dissolved oxygen levels should also be monitored 

regularly and particularly after feeding events given the post-prandial rise in 

oxygen consumption reported in Chapter 4. 
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6.1 Abstract 

This study aimed at defining the effects of fluctuating salinity on Jasus 

edwardsii larvae. The effects of sudden changes in salinity from ambient 

conditions at hatching (i.e. 34.5 ppt) to 25, 28, 31, 34 and 37 ppt were examined 

through investigations of behavioural and respiratory responses in newly-hatched 

larvae. Although a linear increase in negative geotaxis with increasing salinity 

indicated a preference for higher salinities, the interpretation of the respiratory 

response remained ambiguous due to the compounded effects of salinity on 

locomotor activity and buoyancy. In a second experiment larvae were reared 

from hatching through to stage 11 under continuous salinity regimes (C) at 28, 31, 

34 and 37 ppt and under repeated exposure (R) to 28, 31 and 37 ppt from a control 

salinity of 34 ppt. Continuous exposure to 28, 31 and 37 ppt and repeated 

exposure to 31 and 37 ppt did not delay development as opposed to the repeated 

exposure to 28 ppt. While post-moult growth to stage II was not suppressed by 

fluctuating salinity in the 31R and 37R ppt groups, larvae were significantly 

smaller in the 28R, 28C, 31C and 37C ppt regimes than in the 34 ppt continuous 

control treatment. The effect of salinity acclimation on the respiratory response of 

mid-stage I larvae was examined in a third experiment. The increased metabolic 

rate of non-acclimated larvae at reduced salinities reflected the energetic cost 

associated with osmotic stress and with regular shifts in ambient salinity. 

However, the decline in oxygen consumption in larvae acclimated to a salinity of 

28 ppt did not support the assumption that reduced growth under continuous 

osmotic stress may be linked to the metabolic cost of osmoregulation. The results 

of the present study were discussed with respect to the physiological cost of cell 

volume regulation in animals subjected to changes in ambient salinity. 
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6.2 Introduction 

The effect of salinity on marine invertebrates is well documented and 

ranges from sublethal to lethal according to the magnitude of the change in 

salinity and the tolerance capacity of the species. Estuarine and coastal 

crustaceans are often euryhaline and can withstand large shifts in external salinity 

as opposed to their stenohaline oceanic counterparts that live in or can actively 

select isohaline waters (Willmer et al., 2000). In a euryhaline species such as 

Carcinus maenas for instance, larval development is not affected by salinities 

ranging from 25 to 32 ppt (Anger et al., 1998). In contrast, the stenohaline 

Pandalus borealis, known to have an optimal salinity around 31 ppt, does not 

complete larval development at 25 ppt (Wienberg, 1982). In culture situations, 

sublethal effects of salinity stress such as delayed development and reduced 

growth (Anger etal., 1998; Pechenik etal., 2000; Hereu and Calazans, 2000; 

Kumlu etal., 2001) may reflect the energetic costs associated with specific 

avoidance behaviours (Scarratt and Raine, 1967; Latz and Forward, 1977) or cell 

volume regulation (Hawkins and Hilbish, 1992; Lankford and Targett, 1994; Woo 

etal., 1997). 

Since most of the larval development of panilurid species takes place in 

oceanic waters (Phillips and McWilliam, 1986) of relatively constant salinity, 

larvae of these species are not expected to have the capacities to withstand the 

large shifts in ambient salinity that can occur in coastal and estuarine areas where 

marine hatcheries are often located. For instance, salinities ranging from 29.5 to 

34.5 ppt have been recorded for the incoming water at the marine laboratories of 

the Tasmanian Aquaculture and Fisheries Institute located on the Derwent estuary 

(Tasmania, Australia) during a two month period during the summer of 1996 

(Chamchang, 1997). The present work was carried out to examine the effect of 

changes in ambient salinity on the behaviour, survival, growth and metabolic rate 

of the first stage of the spiny lobster, Jasus edwardsii. The experimental salinities 

cover the range of salinities reported in coastal waters of Tasmania were research 

on the propagation of this species is being conducted. The range was also 
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extended to supranormal salinities that can occur in hatcheries working with a 

recirculation system. The effects of salinity on the geotaxis and oxygen 

consumption of the positively phototactic newly-hatched larvae were first 

assessed in an attempt to determine the origin of energy expenditure at different 

salinities. More animals were reared at different salinities throughout stage I and 

the effect of frequent changes in salinity was investigated through repeated 

exposure to sub and supranormal concentrations. In order to assess the link 

between the effect of salinity on development, and the metabolic response to 

changes in ambient salinity, oxygen consumption was measured in 

correspondingly acclimatised (continuous exposure) and non-acclimatised 

(repeated exposure) larvae. 
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6.3 Material and methods 

6.3.1 Origin of larvae 

Larvae were sourced from ovigerous females caught off the east coast of 

Tasmania from June to October in 1999 and 2000, and brought to the TAFI 

Marine Research Laboratories (Hobart, Australia). Newly-hatched larvae were 

collected from hatching tanks from September to December of both years. The 

ambient salinity at the time of hatching ranged from 31.2 to 35.3 ppt. 

6.3.2 Behaviour and physiology of newly-hatched larvae 

6.3.2.1 Behaviour 

The geotaxis of newly-hatched larvae was examined in seawater of 

different salinities. Waters at salinities ranging from 25 to 37 ppt with a three ppt 

increment (25, 28, 31, 34 and 37 ppt) were obtained by mixing 0.2 pm filtered 

seawater with deionised freshwater or hypersaline water (— 40 ppt). Hypersaline 

water was obtained by heating (— 40°C) filtered seawater for a few days. Salinity 

was monitored with a YSI Model 63 salinity meter during mixing. At each 

salinity, 20 newly-hatched larvae were placed in each of three glass tubes with a 

flat bottom (H: 300 mm, 0: 30 mm). The position of the larvae in the column 

(top or bottom half of the tube) was recorded after 30 min exposure. Geotaxis 

was observed in a total of 1200 larvae from four broods. Larvae were gradually 

acclimatised to the experimental temperature (18°C) over a period of 2 h. Data 

are expressed as mean (±SE) negative geotaxis between progenies. 

The loss in buoyancy associated with decreasing salinity was assessed in 

newly-hatched larvae narcotised for at least 30 min in a solution of seawater and 

2-phenoxy-ethanol (1 ml p'). The sinking of newly-hatched larvae over a vertical 

drop of 10 cm in mid-water was timed in a glass vertical column with a dark 

background. Twenty larvae from each of three broods were examined at each 

salinity (25, 28, 31, 34 and 37 ppt). Data are expressed as mean (±SE) sinking 

rate between broods. 
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6.3.2.2 Physiology 

The oxygen consumption (V02) of newly-hatched larvae was measured at 

salinities of 25, 28, 31, 34 and 37 ppt. The experiment was repeated on two 

different broods. Oxygen uptake was measured at each salinity in five replicate 

respirometers, which contained 10 larvae each, and two control respirometers 

without larvae. The syringe respirometers used in the present study were 

described earlier in Chapter 3 (Fig. 3.2.A). Oxytetracycline (25 ppm; Engemycin 

100, Intervet) was added to the water in the respirometers to reduce microbial 

background respiration. Oxygen consumption was measured for 5-6 hours after 

1-2 h of recovery from handling, and was expressed in Ill 02 mg DW I  II I  
following the experimental protocol described in Chapter 3. Data obtained from 

the broods tested were pooled for analysis and expressed as mean (±SD). 

6.3.3 Acclimation in stage I larvae 

6.3.3.1 Rearing at different salinities 

To examine the effect of frequent changes in ambient salinity (28, 31, 34 

and 37 ppt) on the survival and growth of stage I larvae, newly-hatched animals 

were placed under two salinity regimes: continuous exposure (C) and repeated 

exposure from a control salinity level (R). In the repeated exposure group, larvae 

were exposed to their respective treatment salinity (28, 31 or 37 ppt) at the start of 

the trial. After 24 h of exposure to these conditions, larvae were returned to the 

'normal' control salinity (34 ppt) for 24 h before a further 24 h exposure to 

treatment salinity, and so on. In both continuous and repeated exposure groups, 

larvae were returned to the control salinity from day 9 after hatching and until 

they moulted into stage II so that all larvae would moult under the same 

conditions. During the intermoult period, larvae in the repeated exposure group 

were placed five times of 24 h each under treatment salinities. Larvae were reared 

in 60 ml plastic jars with 50 ml of water and 25 ppm of oxytetracycline. There 

were 12 larvae per jar (4 from each of 3 broods) and five replicated jars per 

treatment. Feeding of live Artemia (1-2 mm in length), complete water exchange 

(+25 ppm oxytetracycline), and removal of dead larvae were carried out daily. 

All larvae that moulted into stage II were measured for total body length (from the 
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anterior of the cephalic shield to the end of the telson) on a Nikon Profile 

Projector Model 6C to the nearest 25 pm. Minimum (after water exchange) and 

maximum (before water exchange) salinity were recorded daily and averaged to 

obtain a salinity measurement for each day during rearing. Mean (±SD) salinity 

levels were 28.05 ±0.14, 31.06 ±0.08, 34.09 ±0.15, 37.08 ±0.17 ppt and are 

rounded up to the nearest integer in the text. The pH at each salinity was initially 

adjusted to 8.2 with a few drops of a sodium bicarbonate solution (pH 9). The 

mean (±SD) pH in culture media from daily measurements of initial (after water 

exchange) and final pH (before water exchange) were 8.01 ±0.04, 8.02 ±0.04, 

8.04 ±0.05 and 8.07 ±0.05 at 28, 31, 34 and 37 ppt, respectively. The pH was not 

significantly different between salinity treatments (ANOVA, F3,32 = 2.85, P>0.05). 

Mean (±SD; daily measurement) rearing temperature was 18.53 ±0.23°C. 

6.3.3.2 Routine metabolic rate 

The effect of acclimation to sub- and supra-normal salinities on the routine 

metabolic rate (RMR: oxygen consumption in unrestrained animals) of stage I 

larvae was determined from measurements of Vo2 at different salinities (28, 31, 

34 and 37 ppt) and in two groups of larvae: acclimated (A) and non-acclimated 

(NA). Acclimated larvae were 4-day-old animals reared from hatching at constant 

salinities (mean ±SD, n = 3) of 28.6 ±0.5, 31.7 ±0.6, and 37.6 ±0.2 ppt. Non-

acclimatised larvae of the same age had been cultured at the control salinity (mean 

±SD, n = 3) of 34.7 ±0.4 ppt. Larvae were reared to day 4 in 60 ml plastic jars 

with 50 ml of seawater and 25 ppm of oxytetracycline. Feeding and water 

exchange were carried out daily. There were 10 larvae per jar and animals from 

each jar were placed in a respirometer. Larvae were sourced from three broods. 

There were six replicate respirometers (two for each brood) and two control 

respirometers per treatment. Total animal dry weight (method detailed in Chapter 

3) was determined in all respirometers and oxygen consumption was expressed in 

1.11 02 mg DW I  W I  following the experimental protocol described in Chapter 3. 

The minimum final DO observed in respirometers throughout the present trials 

(i.e. 4.1 m11-1 ) was close to the DOcri t  (i.e. 4.3 m11-1 ) determined for stage I larvae 

(see Chapter 5). Data were expressed as mean (±SD). 
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6.3.4 Statistical analysis 

All data were tested for normality (Shapiro-Wilk W test) and 

homoscedasticity (Levene's test or regression analysis of standard deviation 

against mean). Linear regression analyses were applied to the geotaxis and the 

sinking rate of newly-hatched larvae in response to salinity. The effect of salinity 

on the oxygen consumption of newly-hatched larvae was analysed with one way 

analysis of variance (ANOVA) and multiple comparison was carried out with the 

least significant difference test (LSD). Two way analyses of variance (2- 

ANOVA) excluding the control group (34 ppt, continuous exposure or 

acclimated) were used to describe the combined effect of type of exposure and 

acclimation with salinity on survival, duration of intermoult period, post-moult 

body length and oxygen consumption. Analyses of variance were also performed 

on each exposure or acclimation group (continuous vs. repeated and acclimated 

vs. non-acclimated) and treatments at subnormal salinities or with a different 

acclimation or exposure regime were compared to the control group (34 ppt, 

continuous exposure or acclimated) with the Dunnett's test. T-tests were used to 

highlight specific differences between groups or treatments that were not detected 

by the above statistics. Survival data were arsine square root transformed before 

analysis. All computations were carried out with JMP 3.1 statistical software. 
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6.4 Results 

6.4.1 Behaviour and physiology of newly-hatched larvae 

6.4.1.1 Behaviour 

The occurrence of negatively geotactic larvae increased linearly with 

increased salinity (linear regression, r2 = 0.580, F1,18 = 23.52, P<0.001; Fig. 6.1), 

while the rate of sinking of narcotised larvae declined linearly with increasing 

salinity (linear regression, r2 = 0.567, F1,13 = 17.03, P<0.01; Fig. 6.2). 

6.4.1.2 Routine metabolic rate (RMR) 

Salinity had a significant effect on the respiratory rates measured in 

newly-hatched larvae (ANOVA, F4,64 = 13.77, P<0.0001; Fig. 6.3). Oxygen 

consumption was highest in animals at 31 ppt (LSD, P<0.05) and from this 

salinity oxygen consumption declined as larvae were exposed to lower and higher 

salinities (Fig. 6.3). The least oxygen consumption was observed in larvae at 37 

ppt (LSD, P<0.05) and oxygen uptake in larvae at 25 ppt was not significantly 

different than at 28 ppt and 34 ppt (LSD, P>0.05). 

6.4.2 Acclimation in stage I larvae 

6.4.2.1 Survival 

Overall mean (±SD) survival of stage I larvae to stage II was 75.0 ±15.6%. 

Survival was uniform across salinities (2-ANOVA, F2,24 = 0.28, P = 0.758; Table 

6.1) and was neither different between continuously exposed and repeatedly 

exposed larvae (2-ANOVA, F1,24= 1.36, P = 0.255) nor was the response pattern 

different between the two exposure groups (2-ANOVA, salinity x exposure, 

F2,24= 2.79, P = 0.082; Table 6.1). 
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Figure 6.1 Linear relationship between salinity and the negative geotaxis displayed by 
newly-hatched Jasus edwardsii larvae. Mean (±SE), 95% confidence intervals and 
equation are shown. 
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Figure 6.2 Linear relationship between sinking rate and salinity in newly-hatched 
Jasus edwardsii larvae. Mean (±SE), 95% confidence intervals and equation are shown. 
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Figure 6.3 Mean (±SD) oxygen consumption in newly-hatched Jasus edwardsii larvae 
exposed to different salinities. Treatments with different letters are significantly different 
(LSD, P<0.05). 

Table 6.2 Post-moult percent survival (mean ±SD) to stage II in Jasus edwardsii 
larvae reared either under continuous or repeated exposure to different treatment 
salinities. 

Salinity (ppt) 

Exposure 

Continuous Repeated 

28 78.00±10.95 68.00±21.68 

31 56.00 ±26.08 80.00 ±7.07 

34 74.00 ±15.17 

37 70.00 ±7.07 76.00 ±5.48 
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6.4.2.2 Intermoult period 

Overall, the duration of the intermoult period was affected by salinity 

(2-ANOVA, F2,24 = 6.53, P<0.01) in stage I J. edwardsii larvae (Fig. 6.4). While 

there was no significant difference in developmental time between larvae in the 

continuous and repeated exposure groups (2-ANOVA, F1,24 = 0.16, P=0.690), the 

pattern of response to salinity was different between the two exposure groups 

(2-ANOVA, F2,24 = 5.69, F<0.01). Indeed, continuous exposure to salinities 

ranging from 28 to 37 ppt had no effect on intermoult duration (ANOVA, 

F3,16= 2.90, 

P = 0.067), whereas repeated exposure within the same range of salinities 

significantly affected development (ANOVA, F2,12 = 8.16, P<0.01). 

Consequently, development was slower in larvae reared in 28R ppt than in larvae 

at 34C ppt (Dunnett's, P<0.05; Fig. 6.4). The difference in response between 

continuous and repeated exposure groups was particularly marked at 37 ppt (t-test, 

t8 = 10.73, P<0.05; Fig. 6.4). 

6.4.2.3 Growth 

Salinity significantly affected body length growth in both continuous 

exposure (ANOVA, F3,16 = 6.95, P<0.01) and repeated exposure (ANOVA, 

F2,12 = 6.65, P<0.05) groups (Fig. 6.5). Overall, the type of exposure to ambient 

salinity did not influence growth (2-ANOVA, F1,24=2.30, P=0.143). However, the 

growth response was different between the continuous and repeated exposure 

groups (2-ANOVA, salinity X exposure, F2,24 = 3.75, P<0.05). Larvae reared 

continuously at 28C, 31C and 37C ppt had significantly reduced post-moult size 

compared to larvae cultured at 34C (Dunnett's, P<0.05). In contrast, in the 

repeated exposure group, only larvae reared at 28R ppt moulted to a significantly 

smaller size (Dunnett's, P<0.05) compared to larvae in the control group 

(34C ppt). The difference in growth response between repeated and continuous, 

exposure groups was particularly marked at 37 ppt (t-test, t8=9.29, P<0.05; 

Fig. 6.5). 
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6.4.2.4 	Routine metabolic rate 

A two-way analysis of variance excluding the control group (34A ppt) 

indicated a significant effect of salinity on the oxygen consumption of stage I 

larvae (F2,30 = 3.87, P<0.05; Fig. 6.6). This effect of salinity was statistically 

marked in both acclimated (ANOVA, F3,20 = 3.58, P<0.05) and non-acclimated 

larvae (ANOVA, F3,20 = 4.67, P<0.05). V02 was significantly different from the 

34A ppt control group only in larvae reared at 28A ppt (Dunnett's, P<0.05). 

Respiratory rates were overall higher in non-acclimated larvae than in acclimated 

animals (2-ANOVA, F1,30 = 9.79, P<0.01) but this difference varied significantly 

over the salinity range tested (2-ANOVA, salinity x acclimation, F2,30 = 8.78, 

P<0.01). This interaction between salinity and acclimation was particularly 

apparent at 28 ppt where V02 in non-acclimated phyllosoma was significantly 

higher than in acclimated larvae (t-test, tio = 42.88, P<0.0001). Oxygen 

consumption by non-acclimated larvae and acclimated larvae was not 

significantly different at 31 ppt (t-test, t10= 1.19, P = 0.301) and 37 ppt (t-test, 

t10= 1.78, P = 0.212). 
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Figure 6.1 Mean (±SE) duration of the intermoult period of stage I Jasus edwardsii 
larvae exposed continuously or repeatedly to different treatment salinities. Treatments 
with different letters differed significantly (t-test, P<0.05). * significantly different from 
control (Dunnett's, P<0.05). 
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Figure 6.2 Mean (±SE) body length at stage II in Jasus edwardsii larvae exposed 
continuously or repeatedly to different treatment salinities during stage I. Treatments with 
different letters differed significantly (t-test, P<0.05). * significantly different from 
control (Dunnett's, P<0.05). 
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Figure 6.3 Mean (±SD) oxygen consumption by stage I Jasus edwardsii larvae 
following a sudden change in salinity from the control condition (34 ppt) and at different 
acclimation salinities. Treatments with different letters differed significantly (t-test, 
P<0.05). * significantly different from control (Dunnett's, P<0.05). 
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6.5 Discussion 

6.5.1 Effects of salinity in newly-hatched larvae 

6.5.1.1 Behaviour 

Throughout their oceanic early life history panilurid larvae are able to 

regulate their depth, seeking optimal conditions for development and/or advective 

transport (Phillips and McWilliam, 1986; see response to temperature in Chapter 3 

and Chapter 4). Newly-hatched J. edwardsii larvae are known to be positively 

phototactic (Chapter 3, Fig. 3.9) but displayed the opposite response (or positive 

geotaxis) when placed at lower salinities under lights. A gradual increase in 

negative geotaxis (or positive phototaxis) with increasing salinity suggested a 

preference for higher salinities and no avoidance of hypersaline waters (37ppt). 

The avoidance of subnormal salinities was also demonstrated in newly-hatched 

Homarus americanus larvae by Scarratt and Raine (1967) while Latz and Forward 

(1977) reported on a similar phototaxis reversal in Rhithropanopeus harissii 

larvae exposed to lower salinities. The behavioural response of J. edwardsii 

larvae to salinity may be of considerable ecological significance for phyllosoma 

hatching in estuaries or bays where heavy rainfalls could lower the salinity of 

surface waters. However, the ability of phyllosomas to move along a salinity 

gradient still needs to be demonstrated. 

6.5.1.2 Routine metabolic rate (RMR) 

According to Kinne (1971), there are four types of metabolic response to 

salinity: (1) increased metabolic rate at subnormal salinities and/or decrease at 

supranormal salinities; (2) increased metabolic rate at both subnormal and 

supranormal salinities; (3) metabolic rate decreases in salinities below or above 

normal salinity range; (4) metabolic rate is not affected by changes in salinity. 

The routine metabolic rates of newly-hatched J. edwardsii larvae at different 

salinities suggest that they follow the type 3 response with a normal salinity at 

around 31 ppt. However, since behavioural patterns indicated a preference for 
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salinities higher than 31 ppt, factors other than osmotic stress such as swimming 

activity, are likely to have influenced the respiratory response over the range of 

salinities tested. The locomotory compensation for loss in buoyancy in the —32% 

of larvae swimming upward in 31 ppt water may have indeed contributed to 

raising oxygen consumption to a peak under this condition. Therefore, since 

metabolic rates were higher at low salinities (25 and 28 ppt) than at higher salinity 

(37 ppt), a type 1 response in routine metabolism may have been masked by the 

compounded effects of salinity on buoyancy and locomotor activity. As such, the 

V02 response obtained in the present study is the sum of standard (or basal) 

metabolism and locomotor activity. Since these two components of RMR respond 

differently to salinity, data interpretation with respect to the energetic cost of 

osmotic stress is often ambiguous (von Oertzen, 1984). Given that in newly-

hatched J. edwardsii larvae, swimming activity did not compensate for the loss in 

buoyancy at lower salinities, the locomotor activity of larvae placed at 28 ppt can 

be assumed to be at most equal to the swimming activity of larvae at higher 

salinities. Consequently, the decline in Vo2 observed between 28 and 34 ppt and 

between 25-28 and 37 ppt may be partly attributable to the metabolic cost of 

osmotic regulation, which is detailed next. 

6.5.2 Effects of salinity in stage I phyllosoma 

6.5.2.1 The basis of osmoregulation in invertebrates 
Truly marine invertebrates are generally stenohaline and their body fluids 

are nearly isosmotic with the environment (Willmer et al., 2000). Consequently, 

in most marine invertebrates, and especially in organisms devoid of external 

osmoregulation organs (i.e. gills) as in phyllosoma, osmoregulation occurs chiefly 

at the cellular level. Due to the accumulation of metabolites, cells always need to 

maintain a degree of osmoregulation to control swelling. This is achieved through 

passive diffusion of solutes (osmotic effectors) across the membrane, ion-coupled 

transporters (e.g. symporters and antiporters), and active transport (e.g. the 

sodium pumps) (Willmer etal., 2000). Osmotic effectors include inorganic ions 

(e.g. Na+/K+) and substances referred to as ninhydrin-positive substances (NPS) 

(Pierce, 1971) which are essentially comprised of free amino-acids (Livingston et 
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al., 1979; Stickle et aL, 1985). NPS are of fundamental ecological significance to 

marine organisms because they allow cells to regulate their volume while 

maintaining a stable ionic balance. In invertebrates, active ion transport is thought 

to be the primary response to an osmotic shock while the accumulation or output 

of NPS is a longer term osmoregulatory process (Silva and Wright, 1994; Willmer 

et al., 2000). Regardless of the type of osmotic effectors used in cell volume 

regulation, an osmotic stress will incur extra energy cost to a marine organism. In 

hyposaline water, energy will be lost through the active transport of inorganic ions 

and NPS (Willmer et al., 2000) and through the loss of NPS synthesised from the 

catabolism of endogenous proteins (Hawkins and Hilbish, 1992). On the other 

hand, in hypersaline water, active ion transport and also the cellular accumulation 

of NPS represent significant energy sinks for invertebrates (Hawkins and Hilbish, 

1992). These mechanisms of osmoregulation will referred to in the following 

interpretation of the results on the effect of fluctuation in ambient salinity 

obtained in the present study. 

6.5.2.2 Constant and fluctuating salinities 

The survival of stage I J. edwardsii larvae was uniformly high over the 

range of salinities tested (i.e. 28 to 37 ppt) and in the two exposure groups. In 

addition, the exposure to steady concentrations ranging from 28 to 37 ppt did not 

significantly influence the rate of development. However, growth during stage I 

was affected at sub and supranormal constant salinities (i.e. 28C, 31C and 37C 

ppt) compared to the control group at 34 ppt. Similarly, slight shifts from optimal 

salinity (less or equal to 5 ppt) were reported to impair growth in marine 

crustaceans such as Pandalus borealis (Wienberg, 1982) and in Metapenaeus 

monoceros (Kumlu et al., 2001). Interestingly, the repeated exposure of larvae to 

subnormal concentrations during stage I did not suppress development and growth 

at 31 and 37 ppt. However, larvae regularly subjected to shifts in salinity of larger 

amplitude (i.e. 28R ppt group) were delayed in their development and moulted to 

a smaller size than larvae in the control group. These results suggest that J. 

edwardsii larvae tolerate repeated shifts in salinities of 3 ppt of magnitude while 

exposure to shifts of a magnitude of 6 ppt would affect their development. This is 

not surprising considering that the energetic loss associated with active transport 
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of ions and compensatory solutes would be proportional to the shift in ambient 

osmolarity. Furthermore, repeated shifts in ambient salinity might constantly alter 

the hormone concentration in the body fluid as was reported in fish (Woo et al., 

1997) and interfere with the ecdysial processes of phyllosoma. 

Growth data obtained in the present study indicated that stage I J. 

.edwardsii larvae have a greater tolerance for short-term shifts in ambient salinity 

than for continuous acclimation within the 31-37 ppt range and particularly at 37 

ppt. This difference may be function of the time and energy spent 

osmoregulating. Indeed, following transfer from one medium to another the time 

course of osmotic equilibrium has been estimated to be from 0.5 to 6 h in the 

larvae of several crustacean species (see review by Charmantier, 1998). 

Consequently, osmoregulatory processes may have been less energetically 

demanding for larvae in the fluctuating salinity group than for animals in the 

steady salinity group in which regulation was continuous. However, this 

assumption is not valid for larvae reared at 28 ppt. In fact, at 28 ppt, development 

was faster and larvae tended to be larger under continuous exposure than in a 

fluctuating salinity environment (i.e. 28R ppt). This response at lower salinity 

might indicate a shift in the cellular osmoregulatory process triggered by long 

term acclimation to hyposmotic conditions. In the bivalve Mytilus californianus 

for instance, Silva and Wright (1994) found that the active transport of inorganic 

ions was the first process of cell volume regulation occurring during short term 

response to hyposmotic stress, while losses of NPS were primarily involved in 

long term acclimation. If the same pattern of response to salinity acclimation 

occurred in J. edwardsii larvae, it would appear to be energetically beneficial only 

in animals placed under severe osmotic stress (i.e. 28 ppt). 

6.5.2.3 Salinity acclimation 

Non-acclimated J. edwardsii larvae showed a sharp response to salinity 

with metabolic demand rising with decreasing salinity, and overall, a higher 

metabolic rate than acclimated larvae. In contrast with the respiratory response of 

newly-hatched larvae to salinity, the metabolic rate of 4-day-old animals matched 

Kinne's (1971) type 1 response. This shift in response is likely to be associated 

with the ontogenic change in behavioural response to light reported in Chapter 3 
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(Fig. 3.9), since J. edwardsii larvae become negatively phototactic two days after 

hatching in full strength sea water (34-35 ppt). Therefore, at this more advanced 

stage and without the confounding effect of locomotor activity, changes in oxygen 

consumption with salinity may be linked directly to osmoregulatory activity. A 

number of past investigations have attempted to determine some agreement 

between the metabolic rate of animals and their growth performances under 

different salinities (Anger etal., 1998; Pechenik et al., 2000). In the present 

study, respiratory data in non-acclimated larvae provided strong evidence for an 

elevated metabolic rate under hyposmotic stress. This pattern is similar to the 

increased oxygen consumption at lower salinities reported in Neomysis intermedia 

(Simmons and Knight, 1975), and to the salinity stress observed in Cancer 

magister megalopas (Brown and Terwilliger, 1999). In stage I I edwardsii 

larvae, this response may reflect the energetic loss associated with cell volume 

regulation outlined earlier and would explain the delayed development and 

reduced growth observed in the 28R ppt group. However, the respirometry results 

obtained for stage I larvae acclimated at different salinities did not provide 

convincing physiological evidence for the marked effect of a deviation from 

'normal' salinity observed on larval growth in the continuous exposure group. 

This was particularly the case at the 31 and 37 ppt acclimation salinities under 

which larvae had VO2 similar to the VO2 of animals in the control group (34 ppt) 

despite having previously shown a significant reduction of growth under these 

conditions. Pechenik et al. (2000) also reported on a poor relationship between 

growth rate and energy expenditure in the euryhaline pobichaete (Capitella sp. I). 

Working on Carcinus maenas larvae, Anger et al. (1998) concluded that from 

measurements of oxygen consumption and food assimilation, only the decline in 

assimilation could provide a sensible explanation for the decrease in larval growth 

observed under reduced salinities. Therefore, in J. edwardsii larvae, a possible 

effect of salinity on feed intake, conversion efficiency, or both could have resulted 

in the reduced growth observed in the 31C and 37C ppt groups. There was 

nonetheless, a marked decline in VO2 observed in I edwardsii larvae acclimated 

to the 28 ppt salinity. Under this condition, the difference in metabolic rate 

between acclimated and non-acclimated larvae could in fact explain the delayed 

development observed under repeated exposure to the same salinity. 
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6.6 Conclusions 

. As for most marine invertebrates, the results presented in this chapter 

indicated that J edwardsii larvae are stenohaline with a weak tolerance for hypo 

and hyperosmotic stress. Although the survival of stage I larvae was not affected 

by salinities ranging from 28 to 37 ppt, their long term tolerance may be 

diminished from the constant exposure to waters shifting only slightly from 

normal salinity (i.e. —34-35 ppt). Additionally, repeated shifts from normal 

salinity within the range of 31-37 ppt did not appear to affect larval development 

and growth during stage I. The energetic cost of osmoregulation could not be 

determined accurately through the measurement of oxygen consumption. 

Therefore, a next step in understanding the long term effect of changes in ambient 

salinity in phyllosoma should be an integrated physiological approach including 

the studies of body fluid osmosis, respiration, excretion and feeding. Such 

detailed investigation would provide the necessary data to assess the effects of 

constant and fluctuating salinities on a finer scale than the scope of the present 

study allowed for. 
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7. Tolerance to ammonia 

7.1 Abstract 

The total ammonia median lethal concentration (96-h LC50) was 

determined for stages I, H, 111, and IV Jasus edwardsii larvae with static water 

bioassays at 19.0°C. The 96-h LC50 for total ammonia (and corresponding NH3- 

N) were 31.58 (0.97) mg r', 45.71 (1.40) mg 14 , 52.12 (1.59) mg 14 , and 35.51 

(1.01) mg 14  at stage I, II, HI, and IV, respectively. Stage II larvae were cultured 

through to stage III at total ammonia concentrations of 0.52 (control), 1.37, 3.83, 

6.28, and 9.49 mg 14 . The intermoult period of stage II larvae significantly 

increased at and above a total ammonia concentration of 6.28 mg 14 . Therefore, 

the no-observable-effect-concentration (NOEC) was 3.83 mg 14  (0.12 mg 

m13-N 14 ) in stage II phyllosoma. The NOECs at stage I, III, and IV were 

estimated by dividing the 96-h LC50 obtained at each stage by the acute:chronic 

ratio (i.e. 96-h LC50 ± NOEC) determined experimentally in stage II larvae. The 

estimated NOECs for total ammonia (and corresponding NH 3-N) were 2.65 (0.08) 

mg 14 , 4.37 (0.14) mg 14 , and 2.98 (0.09) mg 14  for stage I, III, and IV larvae, 

respectively. 
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7.2 Introduction 

The water quality in aquaculture systems commonly deteriorates with the 

accumulation of nitrogenous wastes originating from intensive feeding regimes. 

Ammonia may be liberated in the aquatic environment from the decay of uneaten 

food and as the result of catabolism in cultured organisms (Tomasso, 1994). 

Ammonia is the main nitrogenous excretory product in aquatic animals (Willmer 

et al., 2000). Total ammonia (Ammonia-N, or NH4+  + NH3) exists in solution 

primarily as the ammonium ion (NH) and the un-ionised NI13 (NH3-N) 

molecule, the proportions of which are pH, temperature, and salinity dependent. 

The un-ionised form of ammonia is able to diffuse readily across cell membranes 

(Fromm and Gillette, 1968) and is considered to be more toxic to aquatic animals 

than the ionised form (i.e. NH) (Tomasso, 1994). Ammonia toxicity was 

reported in all life stages (i.e. larvae, post-larvae, juveniles, and adults) of 

crustaceans (Armstrong et al., 1978; Chin and Chen, 1987; Kou and Chen, 1991; 

Young-lai etal., 1991; Lin etal., 1993; Zhao etal., 1998). Shifts in the tolerance 

to ammonia throughout life stages and also during larval development were 

common findings amongst these studies. Although chronic toxicity data are 

essential to the design of aquaculture systems, this aspect of ammonia toxicity in 

crustaceans has been less extensively studied than acute toxicity (Armstrong et 

al., 1978; Chen and Tu, 1991; Chen and Lin, 1992; Wasielesky etal., 1994). 

The aims of the present study were to define acceptable levels of ammonia 

for the hatchery propagation of Jasus edwardsii. The ontogenic changes in the 

tolerance of larvae to acute levels of total ammonia were examined from the first 

to the fourth stage of development. The effect of chronic levels of ammonia on 

growth was also examined in stage H larvae. Recommendations of acceptable 

chronic levels of total ammonia and un-ionised ammonia were estimated for stage 

I, HI, and IV larvae from the acute:chronic ratio (Tomasso, 1994) obtained 

experimentally in stage 11 phyllosomas. 
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7.3 Material and methods 

7.3.1 Toxicity bioassays 

Static bioassays were conducted for 96 h to determine the total ammonia 

(mg 1- ') median lethal concentration (also referred to as 96-h LC50) in mid-stages 

I, II, 111, and IV J. edwardsii larvae. Larvae were sampled from mass culture 

tanks (Ritar, 2001) and placed in plastic jars (220 ml) filled with seawater (mean 

of daily salinity measurements ±SD = 34.2 ±0.8 ppt) and a buffered stock solution 

of ammonium chloride (2000 mg 1- ') in order to obtain exposure concentrations 

ranging from 10 to 90 mg Ammonia-N r'. Jars were stocked with 15, 12, 10 and 

10 animals at stage I, LE, UT, and IV, respectively. Tests were conducted in larvae 

from 2 broods at each stage and in duplicates for each brood. Jars were randomly 

arranged in a thermo-regulated water-bath (mean of daily temperature 

measurements ±SD = 19.0 ±0.5°C). Larvae were fed daily with on-grown artemia 

(length: 1.5-3 mm). Dead larvae were removed and counted daily, while live 

animals were transferred to clean jars and test solution. The actual total ammonia 

concentration in test solutions was determined daily with the phenol-hypochlorite 

method (Solorzano, 1969). pH was measured daily and averaged (±SD) at 8.04 

±0.09. Antibiotic (oxytetracycline hydrochloride, Engemycin 100, Intervet, 

Australia) was added to seawater (25 ppm) to prevent heavy natural mortality. To 

account for natural mortality, a control treatment without ammonia was added to 

each bioassay. Mortality rates observed at each concentration tested were 

corrected for natural mortality assumed to be independent of treatment and caused 

by handling and rearing conditions in the control groups with the following 

Abbott's formula (Finney, 1971): 

P* —C P = 	 
1— c 

where P, C and P* are proportions of mortality caused by ammonia 

toxicity, natural mortality, and total mortality, respectively. The 96-h LC50 

(±95% CI) for total ammonia was obtained at each stage using probit analysis 
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(Norugis, 1990) on the response corrected for natural mortality. The 

corresponding concentrations of NH3-N were calculated from the tables available 

in Bower and Bidwell (1978). Differences in the rate of response to increasing 

dose rates of ammonia from stage Ito stage IV were assessed by testing for 

parallelism (Nordis, 1990) between stages of the linear relationships of the probit 

transformed response against dose rate. The above analyses were carried out with 

SPSS 10.0 statistical software. 

7.3.2 Growth trial 

Recently moulted stage II larvae (mean ±SD length = 2.97 ±0.06 mm) 

were sampled from mass culture tanks following rearing through stage I, with the 

method described by Ritar (2001). Stage II larvae were preferred to first stage 

phyllosomas in order to avoid the mortality that can occur a few days post-

hatching, which is due to poor larval fitness. The larvae were reared through to 

stage DI at nominal total ammonia concentrations of 0, 1, 3, 6, and 10 mg 

using the same method described above for bioassays. The actual test 

concentrations presented in the text were determined from daily measurements of 

total ammonia in culture seawater with the phenol-hypochlorite method 

(Solorzano, 1969). There were three replicates per treatment and larvae were 

initially stocked at a density of 12 per 220 ml plastic jar (-60 larvae 1 - '). Mean 

(±SD) temperature, salinity and pH computed from daily measurements were 18.9 

(±0.1)°C, 34.1 (±1.0) ppt and 8.03 (±0.03), respectively. Larvae that moulted into 

stage IR were removed from the culture vessels and their image was captured on 

computer with a Panasonic Super Dynamic WV-CP450 video camera attached to 

an Olympus S240 stereomicroscope for measurement to the nearest 11.1m with 

Scion software. The effect of total ammonia on survival, intermoult period and 

post-moult body length was assessed by ANOVA after data were tested for 

normality (Kolmogorov-Smimov test) and homoscedasticity (Leven Median test). 

These analyses were carried out with JMP statistical software. The no-

observable-effect concentration (NOEC) and the lowest-observable-effect 

concentration (LOEC) are expressed for total ammonia and un-ionised ammonia. 
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7.4 Results 

7.4.1 Acute ammonia toxicity 

7.4.1.1 96-h LCso 
There was a tendency for the total ammonia 96-h LC50 to increase from 

stage Ito stage DI and subsequently decline at stage IV (Fig. 7.1). However, 

these observations could not be statistically validated since the 95% confidence 

intervals indicated uniform LC50s from stage Ito stage IV. The 96-h LC50 for 

total ammonia (and corresponding NH 3-N) were 31.58 (0.97) mg r', 45.71 (1.40) 

mg r', 52.12 (1.59) mg r', and 35.51 (1.01) mg 1 -1  at stage I, II, III, and IV, 

respectively. 

7.4.1.2 Rate of mortality response to increasing Ammonia-N 
There was a significant difference in the rate of response to Ammonia-N 

(df = 3, x2  = 34.47, P<0.0001) from stage Ito stage IV (Fig. 7.2). Indeed, 

sensitivity to total ammonia declined from stage Ito stages II (df = 1, X,2  = 20.13, 

P<0.0001) and DI (df = 1, X2  = 11.42, P<0.001), but increased from stage DI to 

stage IV (df = 1, x2  = 14.64, P<0.0001). Rates of mortality response to ammonia 

were similar at stages I and IV (df = 1, x2  0, P = 1), and at stages II and III 

(df= 1, X2  0, P=1). 

7.4.2 Effect of ammonia toxicity on growth 

The survival of stage II larvae to stage ifi was not affected within the 

range of total ammonia concentrations tested (ANOVA, F4,10 = 0.58, P = 0.683; 

Table 7.1), nor did ammonia have an effect on the body growth of stage 

phyllosoma (ANOVA, F4,10= 1.051, P = 0.429; Table 7.1). However, there was a 

marked effect of total ammonia concentration on the duration of the intermoult 

period (ANOVA, F4,10 = 11.60, P<0.001; Fig. 7.3), and the LOEC at which 

development was significantly longer (LSD, P<0.05) was 6.28 mg (or 0.19 mg 

NH3-N 1- 5. The NOEC was 3.83 mg Ammonia-N (or 0.12 mg NH3-N r5. 
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Stage 

Figure 7.1 96-h LC50  ±95% CI of total ammonia in stages I, II, III, and IV Jasus 
edwardsii larvae. 
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Figure 7.2 Probit transformed mortality of stages I, II, III, and IV Jasus edwardsii 
larvae in response to increasing dose rates of total ammonia. The response was fitted with 
a linear regression at each stage. 
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Table 7.2 Post-moult mean ±SD survival (%) and mean ±SE length (mm) in stage II 
Jasus edwardsii larvae reared through to stage III at different dose rates of ammonia. 

Total ammonia (mg I -1 ) 

Nominal levels 0 1 3 6 10 

Measured levels 0.52 1.37 3.83 6.28 9.49 

Survival 82.1 ±24.2 88.6 ±4.6 86.1 ±9.6 94.4 ±4.8 94.4 ±4.8 

Length 3.87 ±0.00 3:83 ±0.03 3.89 ±0.02 3.89 ±0.02 3.88 ±0.01 
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Figure 7.3 Mean ±SE intermoult period in stage II Jasus edwardsii larvae reared 
through to stage III at different concentrations of total ammonia. Treatments with 
different letters are significantly different (LSD, P<0.05). 
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7.5 Discussion 

The acute effect of ammonia (i.e. NH4 ÷  + NH3) was documented on the 

larval stages of several crustacean species (Chin and Chen, 1987; Young-Lai et 

al., 1991; Lin etal., 1993; Zhao etal., 1998). The tolerance ofl edwardsii 

phyllosomas to ambient total ammonia and NH3-N was higher than the estimated 

96-h median lethal concentration in Penaeus monodon nauplii (Chin and Chen, 

1987), but similar to the 96-h LC 50  reported in Homarus americanus (Young-Lai 

et al., 1991) and Penaeus japonicus (Lin etal., 1993) larvae. Despite a lack of 

statistical significance, it is suggested that the tolerance of J. edwardsii larvae 

increased with development from stage Ito stage LII. Furthermore, from stage Ito 

stages ll and DI, there was an apparent decline in the rate of mortality response to 

increasing ammonia concentration. Greater tolerance to raised ambient ammonia 

with development are common in crustacean larvae and were reported in P. 

monodon (Chin and Chen, 1987), H. americanus (Young-Lai et al., 1991), P. 

japonicus (Lin etal., 1993), and Eriocheir sinensis (Zhao et al., 1998). However, 

ontogenic declines in tolerance, such as observed in the present study for stage IV 

J. edwardsii larvae are rare. J. edwardsii larvae do not possess gills until 'gill 

buds' appear in the eleventh and last stage of the larval development (Lesser, 

1978). Therefore, an ontogenic change in the organisation of the organs of 

osmoregulation is not likely to explain the increased sensitivity to ammonia at 

stage IV. Rearing techniques for J. edwardsii larvae are continually refined to 

improve survival and growth and, suboptimal conditions during mass culture in 

the present study may have contributed to reduced larval fitness by stage IV (i.e. 

about 35 days of rearing), thus diminishing their ability to cope with stress. 

The effect of ammonia on the growth of crustaceans has rarely been 

studied in species other than penaeid and palaemonid prawns (Armstrong et al., 

1978; Chen and Tu, 1991; Chen and Lin, 1992; Wasielesky etal., 1994). 

Reduced weight gain and body length increment (Armstrong et al., 1978; Chen 

and Tu, 1991; Chen and Lin, 1992) are commonly reported as the effects of 
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ammonia on crustacean growth. In J. edwardsii larvae, however, increasing total 

ammonia concentration had no effect on body growth but delayed development at 

stage II. Comparatively, Lin etal. (1993) observed a slowing of the moulting 

frequency accompanied by a reduction in growth in P. japonicus post-larvae 

exposed to increasing concentrations of ambient ammonia. Previous workers 

have conducted growth trials over longer periods of eight weeks (Chen and Tu, 

1991) and 30-60 days (Chen and Lin, 1992), or examined animals with high 

moulting frequency (Armstrong et al., 1978). Therefore, experiments conducted 

over several larval stages in J. edwardsii could result in reduced weight gain or 

length increment, lowering the NOEC obtained for stage II larvae in this study. 

Although the mechanisms of ammonia toxicity in crustaceans remain 

hypothetical, there has been a number of valuable contributions on the topic 

(reviewed in Colt and Armstrong, 1981 and Tomasso, 1994). Relevant to the 

present study, are the reports of reduced excretion in Callinectes sapidus 

(Mangum et al., 1976; as cited by Colt and Armstrong, 1981) and Macrobrachium 

rosenbergii (Armstrong, 1978; as cited by Colt and Armstrong, 1981) exposed to 

the addition of ammonia to the external medium. Colt and Armstrong (1981) 

hypothesised that since passive diffusion of NH 3  is the major excretion pathway in 

most aquatic animals, it would become more difficult for animals to excrete under 

high ambient ammonia. As a result, animals may reduce or stop feeding to limit 

the internal accumulation of nitrogenous waste products. Note however, that 

Penaeus chinensis juveniles are particularly well adapted to fluctuating levels of 

ambient ammonia since they are able to shift their excretion mode from 

ammonotelic to ureotelic in conditions of elevated external ammonia (Chen and 

Lin, 1995). While urea is less toxic than ammonia, its synthesis from ammonia 

would nonetheless incur extra energetic cost to the animal (Willmer etal., 2000). 

Ammonia toxicity has also been attributed to the ammonium ion 

particularly at high concentrations and/or at low pH (Armstrong et al., 1978). The 

excretion of nitrogen as NH 4+  is thought to be in the form of an ion exchange of 

NH4+  for Na+  within active transport sites (Na+/K+-ATPase or sodium pump) of 

the cell membrane (Pequeux and Gilles, 1981; Willmer et al., 2000). In larvae of 

the giant river prawn (M rosenbergii), Armstrong et al. (1978) found that the 
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ammonium ion had a greater affinity for the active transport site than the sodium 

ion. Consequently, ambient NI-1 4+  successfully competed with Na+  to reduce 

sodium absorption, thereby diminishing body concentration of this important salt 

that is directly or indirectly involved in amino acid synthesis, transmembrane 

movement of amino acids or sugars, and possibly gene expression (Willmer et al., 

2000). 

At the cellular level, high ammonia concentration can cause the diversion 

of a-ketoglutarate from energy conversion reactions to detoxification processes. 

This mechanism has so far been investigated in teleosts only and was extensively 

reviewed by Tomasso (1994) who cited that the diversion of a-ketoglutarate 

would cause a 68% loss from the normal rate of energy production by the 

glycolytic-citric acid cycle-electron transport system pathway. 

The ammonia toxicity mechanisms stated above could have each played a 

role in reducing survival and growth in I edwardsii larvae. A clear understanding 

of ionic and osmotic regulation throughout larval history of f. edwardsii is 

therefore required to define the primary mechanisms of ammonia toxicity for this 

species and such investigation was beyond the scope of the present study. 

The concomitant study of acute and chronic ammonia toxicity allows for 

the calculation of an acute:chronic ratio (i.e. 96-h LC 50  NOEC). An inter-

species average of this ratio can provide a rough estimate of acceptable levels of 

ammonia for growth in species for which only acute ammonia toxicity data are 

available (Tomasso, 1994). This concept is particularly relevant to larval 

development in crustaceans since an acute:chronic ratio determined in early larval 

stages could be used to obtain acceptable ammonia concentrations for growth in 

subsequent stages for which median lethal concentrations are known. An 

acceptable level of consistency throughout development with respect to the 

ontogeny of osmoregulation must yet be verified for the principle to be valid, 

since the tolerance to ambient osmolarity and ionic strength is likely to change 

with the development of gills, for instance (Charmantier, 1998). In I edwardsii, a 

same acute:chronic ratio could be applied from stage Ito stage X larvae 

considering that 'gill buds' appear at stage XI (Lesser, 1978). In stage If J. 
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edwardsii larvae, the no-observable-effect concentration (NOEC) for NH 3-N was 

0.12 mg r', which together with the 96-h LC50 for the same stage yield an 

acute:chronic ratio equal to 11.67, a value that is near the NH 3-N acute:chronic 

ratio of 12 reported for P. monodon juveniles (Tomasso, 1994). Considering an 

acute:chronic ratio of 11.93 for total ammonia in stage II J. edwardsii larvae, the 

total ammonia and the 

NH3-N NOECs can be estimated for stage I, HI and IV, and are presented in 

Table 7.2. 

Table 7.2 Estimated or experimental no-observable-effect-concentrations (NOEC, 
mg l-1 ) obtained for total ammonia and un-ionised ammonia in stage I, II, HI and IV Jasus 
edwardsii larvae. * experimental data. 

Stage 	NOEC for NH4+  + NH3 	NOEC for NH3-N 

I 	 2.65 	 0.08 

II 	 3.83* 	 0.12* 

HI 	 4.37 	 0.14 

Iv 	 2.98 	 0.09 

These values (Table 7.2) are consistent with the recommendation by 

Forteath (1990) to maintain crustaceans and molluscs at NH 3-N levels no greater 

than 0.1 mg r'. Although these values can be considered as safe levels for 

growing early stage J. edwardsii larvae, it is again important to stress that they 

should be further refined through the assessment of the effect of ammonia on 

growth in longer term (i.e. more than one stage) exposure trials. In addition to 

this, further work should focus on the ammonia tolerance of mid and late larval 

stages in order to define water quality requirements throughout the entire larval 

development. An understanding of the mechanisms of chronic toxicity of both 

NH4+  and N113 would also be valuable to the design of filtration systems for the 

culture of spiny lobster phyllosomas. 
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8.1 Experimental approach: Limitations and scope 

8.1.1 Growth and physiological studies 

From an aquaculture perspective, the effect of varying levels of 

environmental factors can be assessed through small scale experimental cultures 

which yield results such as survival and growth rate that are directly relevant to 

large scale culture situations. Indeed, given survival and growth data, there can be 

no doubt that 18°C was a better temperature than 14 and 21.5°C to rear J. 

edwardsii larvae through the first three stages of development. In addition, 

constant darkness was found to be detrimental to grow early stage phyllosoma, 

while the effect of constant light shifted with development from beneficial at 

stages I and II, to detrimental at stage III. On the other hand, the scope of 

physiological assessment spans from the understanding of the effect of 

environmental factors from a bioenergetics perspective, through to the definition 

of optimal culture conditions. For instance, the reduced growth observed at high 

temperature (i.e. 21.5°C) in stage I larvae may be explained by a relative decline 

in feeding rate combined with increasing energy output through nitrogen excretion 

at 22°C. In this particular case, recommendations on rearing temperature can be 

issued from physiological assessment. However, the interpretation of metabolic 

response to varying levels of abiotic factors can sometimes be ambiguous. For 

instance, the ontogenic change in response to constant light during growth from 

stage Ito stage ifi contrasted with the absence of developmental variation in the 

physiological response to light intensity from hatching to stage V. However, it is 

important to stress that the culture method and the detailed physiological 

examination are two fundamentally different approaches. In fact, while a 

physiological assessment can provide snapshots of the response of animals at any 

given time during the intermoult period, the response obtained from growing 

animals is influenced by the condition tested, but also by the nutritional history 

prior to the developmental stage considered. For instance, the status of the 

reserves accumulated during previous stages, particularly with respect to the 
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'point of reserve saturation' (Anger and Dawirs, 1981), may influence growth 

during a given stage by masking or enhancing the effect of environmental factors. 

This assumption is supported by the findings of Mikami etal. (1995), who 

concluded that palinurid phyllosoma could accumulate reserves when food is 

available and that when starved, larvae could draw on these reserves to develop 

through to subsequent stages. Therefore, the snapshot physiological approach, 

which is not confounded by past nutritional history, is likely to be more suitable 

than the rearing of larvae through successive stages for detecting ontogenic 

changes in response. 

8.1.2 Scope for a bioenergetic approach 
In order to reach an overall understanding of, and to predict the effect of 

environmental factors on the bioenergetics of phyllosoma, the metabolic response 

must be detailed at the level of the energy budget model (Anger, 1991): 

G=F—L—R—U 
where G is total body growth, F is food uptake, L represents losses by 

defaecation and leaching of small particles and liquid from food due to inefficient 

feeding mechanisms, R is respiration (oxygen consumption), and U is nitrogen 

excretion. The partitioning of energy flows to such level of detail has been 

described for the larvae of several crustacean species (Mootz and Epifanio, 1974; 

Levine and Sulkin, 1979; Johns, 1982; Dawirs, 1983; Lemos and Phan, 2001). In 

the work presented in Chapter 3, only F, R and U were estimated and L was 

omitted due to the technical difficulties in collecting large amounts of faeces for 

calorimetric analysis. Consequently, it was not possible to draw and compare 

energy budgets (i.e. the potential for growth) between J. edwardsii larvae reared 

under different environmental conditions. Additionally, the determination of F is 

essential in estimating food assimilation (A = F — L) which, in zooplankters, may 

be affected by factors such as temperature (Johns, 1982) and light intensity 

(Buikema, 1975). However, considering the inherent difficulties in estimating 

energetic losses associated with feeding mechanisms (Anger, 1991), and due to 

defaecation (Omori and Ikeda, 1984), food assimilation may have to be deducted 

as the difference between G and (R + U) estimates. Such approach in balancing 
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energy budgets is commonly used with larval crustaceans and requires the 

culturing of experimental animals in order to estimate energy accumulation during 

the developmental stage studied (Mootz and Epifanio, 1974; Levine and Sulkin, 

1979; Johns, 1982; Dawirs, 1983; Lemos and Phan, 2001). Other than 

understanding the effect of environmental factors on energy flows in I edwardsii 

larvae, a bioenergetics approach may also be applied in areas such as larval 

nutrition to compare assimilation between different diets. 

8.1.3 Behavioural response to environment 

The study of larval behaviour in response to varying levels of 

environmental factors (i.e. light intensity, temperature and salinity) were valuable 

in understanding the behaviour of larvae under culture conditions (e.g. ontogenic 

changes in phototaxis), in defining environmental preferences (e.g. increased 

negative geotaxis under increasing salinity), and in understanding the behavioural 

processes underlying physiological responses (i.e. the effect of temperature and 

light intensity on locomotor activity). 

8.1.3.1 Environmental cues and preference 

Light, temperature and salinity were all found to influence the depth 

regulation of newly-hatched or older J. edwardsii larvae. However, the type of 

response obtained for this species and with the methods used (e.g. temperature 

and salinity), and the range of conditions tested (e.g. light intensity), did not 

permit the accurate determination of environmental preferences from the study of 

behaviour alone. The geotactic response of newly-hatched larvae to salinity was, 

for instance, misleading under hypersaline conditions that were subsequently 

found to suppress growth. Similarly, the behaviour of newly-hatched and stage I 

larvae under different temperatures (Chapter 3 and 4) failed to provide supportive 

evidence for the thermal preference determined through the rearing of 

phyllosomas. The reasons for this lack of agreement between behavioural studies 

and results obtained from culturing animals may be due either to the sensory 

capacities of phyllosomas, or to the techniques used during the present work. 
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Indeed, given the natural habitat of newly-hatched larvae (i.e. coastal waters), it is 

not surprising to find that they are only able to sense subnormal salinities rather 

than supranormal concentrations. Therefore, if newly-hatched larvae are not 

equipped to sense hypersaline conditions, it is possible that the negative geotaxis 

of newly-hatched larvae observed at higher salinities (i.e. 34 ppt) will be enhanced 

by an increase in the density of the external medium (i.e. at 37 ppt). The methods 

used in the present studies of behaviour may also have limited the scope for' 

behavioural response by exposing larvae to a constant condition each time. For 

instance, the absence of negative geotaxis at stage II may have been due to a lack 

of choice (i.e. gradient) within the experimental column. Notwithstanding the fact 

that thermal gradients at sea would not be so sharp as to be sensed by 

zooplankters over the 30 cm vertical section of the water columns used here, other 

environmental stimuli may be essential for the vertical orientation and positioning 

of J. edwardsii phyllosomas. For example, hydrostatic pressure and light intensity 

can be powerful determinants in the orientation of decapod larvae (Ritz, 1972; 

Forward et al., 1984; Ennis, 1975; Schembri, 1982; Gardner, 1996; among 

others). Providing that these parameters can be adjusted, choice experiments 

would allow for a clear distinction between the environmental stimuli controlling 

depth regulation in J. edwardsii phyllosoma and should be trialed in future work 

on in situ behaviour. 
The present study did, nonetheless, provide an insight on the order of 

importance of light and temperature as factors controlling migration in early-stage 

phyllosoma. Temperature significantly influenced the vertical positioning of 

newly-hatched and stage I larvae, but did not appear as the sole factor controlling 

behaviour in stage I and II phyllosoma placed at temperatures above 12°C. In 

contrast, the rate of response to light prevailed throughout early development. 

Consequently, light may be considered as a predominant cue for the control of 

behaviour in J. edwardsii larvae. Additionally, results obtained in the, present 

study tended to show the presence of a light intensity threshold in stage I 

phyllosomas. In decapod larvae, such a shift in phototaxis generally occurs at 

very low light intensities (Ritz, 1972; Forward et al., 1984; among others). 

Therefore, to clearly demonstrate the presence of a reversal in behaviour under 

declining light intensity in larval J. edwardsii, illuminance levels much lower than 

165 



the scope of the present study allowed for, will need to be tested. One of the aims 

of studying the behavioural response of larvae to environmental variables is to 

define culture conditions that will prevent the occurrence of behaviours leading to 

cannibalism, increased contact with tank walls, reduced feed intake and other 

responses that may be detrimental to survival and growth. For that reason, rather 

than a light intensity threshold per se, future investigations should attempt to 

determine a range of preferred illuminance levels similar to what has been 

reported for Panulirus cygnus larvae (Rimmer and Phillips, 1979). The same 

approach holds for other abiotic factors such as light spectral composition and 

angular distribution, temperature, and hydrostatic pressure. 

8.1.3.2 The energetics of behavioural response 

The locomotor activity of phyllosomas was strongly influenced by factors 

such as temperature (Chapter 4), light intensity (Chapter 3), and salinity (Chapter 

6). Therefore, to understand the metabolic response of f. edwardsii larvae to their 

environment, it is essential to quantify their locomotor activity. While studies of 

behavioural response in the form of phototaxis and geotaxis can provide some 

information on the level of activity, they do not lead to the direct estimation of the 

energetic cost of locomotion. The chemical immobilisation of larvae was 

assessed in Chapter 4 and yielded promising results. However, this procedure is 

open to controversy as the exact effects of 2-phenoxyethanol on the different 

physiological functions of the overall metabolism (Clarke, 1987) are still 

unknown. Therefore, research may be required to develop further techniques to 

estimate the energetic cost of swimming in phyllosoma. 

Other than allowing for a greater understanding of the metabolic response 

of J. edwardsii larvae to environmental factors, studies of locomotor activity may 

be necessary for the improvement of larval culture management techniques. In 

fact, considering that swimming can represent up to 52% (at 15°C) of the energy 

losses in newly-hatched larvae (Chapter 4), the timing of feeding with respect to 

diel rhythm of locomotor activity (Sulkin et al., 1979) may be essential in 

optimising the 'convection requirement index' (CRI = energetic return for 

metabolic investment). For instance, given that in J. edwardsii larvae a light/dark 

photoperiod resulted in enhanced growth to stage III (Chapter 2) and that feed 
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intake and swimming activity (together with metabolic rate) are greater in the 

light than in the dark (Chapter 3), feeding the larvae during the light phase (e.g. at 

dawn) would optimise the CRI. The improvement of culture system design and 

larval management techniques for the propagation of J edwardsii will come 

through further studies on factors such as light, and its parameters (intensity, 

spectrum and angular distribution). In addition, future valuable contributions may 

emerge from the study of often overlooked environmental variables such as water 

currents and turbulence, which have demonstrated effects on the metabolic rate 

(Alcaraz et al., 1994), swimming activity (Buskey, 1998), and feeding rate 

(Dower et al., 1997) of zooplankters. 

8.2 Tolerance and adaptability 

The results obtained throughout this thesis regarding the tolerance of 

early-stage J. edwardsii phyllosoma to the shifts in water quality that can occur in 

a hatchery situation, represent valuable guidelines for the management of larval 

rearing facilities. Stage I phyllosomas showed little tolerance for hypoxia with a 

critical oxygen tension of 4.3 ml 02  1-1  at 18°C (-80% saturation in 34 ppt 

seawater) which is higher than the minimum recommended levels for aquatic 

animals (Forteath, 1990; Bamabe, 1991). Larval growth during stage I was 

suppressed under constant salinities of 31 and 37 ppt and although repeated 

salinity fluctuation of 3 ppt from normal salinity (i.e. 34 ppt) did not affect 

development, the effect of long term exposure to repeated osmotic stress has yet 

to be determined. There is growing evidence to suggest that the ontogeny of 

crustacean larvae is adapted to the changes in habitat that may occur during larval 

development. Indeed, ontogenic changes in osmoregulatory processes (e.g. 

anatomical and/or physiological development) have been reported in several 

species and these are closely linked to habitat selection (see review by 

Charmantier, 1998). For instance, the ability of post-embryonic crustacean larvae 

to hyperosmoregulate at low salinity can be found in the larvae of Uca 

subcylindrica that regularly encounter low salinity conditions in rainfall puddles 
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(Rabalais and Cameron, 1985). On the other hand, Penaeus japonicus larvae 

progressively increase their tolerance to reduced salinity (e.g. appearance of 

osmoregulatory epithelia) as they migrate from the open ocean to estuaries and 

lagoons for settlement (Charmantier et al., 1988; Bouaricha et al., 1994). It is 

therefore not surprising to find that stage I J. edwardsii larvae have a limited 

tolerance to hypoxia and shifts in salinity, situations which are not likely to occur 

during their migration from coastal to oceanic waters, and until they migrate back 

to the coast for settlement. 
Maximum safe total ammonia levels were found to be around 2-3 mg 

NH4+  + NH3  1-1  from stage Ito stage IV. The tolerance to ammonia of early-stage 

J. edwardsii larvae is similar to that of larvae in other decapod species such as 

prawns and clawed lobsters (Young-Lai et al., 1991; Lin et al., 1993). This 

similarity of tolerance across species may be explained by the toxicity 

mechanisms of ammonia, thought to be caused largely by the free diffusion of 

unionised ammonia across membranes (Colt and Armstrong, 1981), which would 

affect different species in a similar way at a cellular level. 

From the results obtained in the present thesis, it is recommended to 

monitor water quality parameters regularly, or to consider using alarm devices 

that could be built in larval rearing systems. Future work on the ontogeny of 

anatomical and physiological development of respiration and osmoregulation, and 

on the mechanisms of gas and ion exchange in I edwardsii larvae would greatly 

enhance our understanding of their water chemistry requirements for propagation. 

8.3 Perspective for research and aquaculture 

Reducing the length of the larval phase has been identified as one of the 
priority areas of spiny lobster propagation research in Australia (Crear and Hart, 
2001). The work presented throughout this thesis indicated that the larval 
development of f edwardsii could be significantly influenced by all factors tested 
in growth experiments (i.e. temperature, photoperiod, salinity, ammonia). In 
addition, light intensity and dissolved oxygen may also affect larval development 
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through their effect on metabolic rates. Therefore, it may be possible to minimise 

the duration of the larval phase through the control of environmental factors. 
However, it is still too early in the research phase to speculate on optimistic 

figures on the potential rate of development in J. edwardsii larvae. Additionally, 

there has not yet been any cost-benefit analysis carried out for spiny lobster 
propagation. Considering the comparatively little time required to obtain prawn 

post-larvae or fish juveniles (Kittaka, 1990; Pillay, 1993), the advances 
documented throughout this thesis are not likely to lead to the commercial 
feasibility of a spiny lobster aquaculture industry based on propagation. Other 
areas of research such as nutrition, the endocrine control of growth, health 
management, and genetic selection may also enhance the commercial potential of 
spiny lobster propagation. Although research in each of these areas could 

significantly contribute to the reduction of the larval phase, this latest is likely to 

remain protracted compared with species that are currently being cultured 
commercially (i.e. prawns). Therefore, doubts should be expressed on whether 
the commercial viability of spiny lobster culture from egg to juvenile will be 

achieved considering the current labour intensive hatchery techniques used. 
However, providing that survival can be improved to the level required for 

supplying seeds to an aquaculture industry, there is still hope for the long-term 

commercial feasibility of spiny lobster propagation through the development of 
cost-effective culture techniques. The design of a culture system minimising 

handling (Illingworth et al., 1997), together with the development of a formulated 

diet currently under way in Australia and New Zealand (Bradley Crear, personal 
communication) are along those lines of minimising production costs. Further 

research in the area of propagation cost-effectiveness may include: (1) the 
assessment of alternative power supplies to generate heat such as thermal effluent 
or solar power, (2) the development of minimal labor input husbandry techniques 

(e.g. to grade larvae), and (3) the endocrine synchronisation of moult. 
However, the very first step in larval propagation will be to significantly 

improve survival. Such a goal will require a long-term research effort in further 

defining environmental requirements particularly in terms of feeding and 

assimilation efficiency, in meeting the nutritional needs of phyllosoma that are 
dictated by their culture environment, and in developing health management 

practices. 
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Appendices 

Appendix I 

Early larval stages of the 

southern rock lobster 

Jasus edwardsii 
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Appendices 

Figure 1.1 Ventral view of a stage I Jasus edwardsii phyllosoma. 
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Figure 1.2 Side views of a stage I Jasus edwardsii phyllosoma. 
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Figure 1.3 Ventral view of a stage II Jasus edwardsii phyllosoma. 

Figure 1.4 Ventral view of a stage III Jasus edwardsii phyllosoma. 
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Figure 1.5 Ventral view of a stage IV Jasus edwardsii phyllosoma. 

Figure 1.6 Ventral view of a stage V Jasus edwardsii phyllosoma. 
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Appendix II 

Prophylactic treatment for 

experimental static culture 

177 



Appendices 

11.1 Introduction and methods 
There is an inherent variability in the success of crustacean propagation 

due to the common occurrence of bacterial diseases (Muroga et al., 1989, cited in 

Nogami and Maeda, 1992; Igarashi et al., 1991). This variability and/or the loss 

of replicates may significantly limit the interpretation of data and consequently, 

the scope of experimental studies. This experiment aimed at defining the 

oxytetracycline dose rate to use during experimental work in order to minimise 

mortality due to opportunistic bacteria. The effect of animal density was also 

tested to determine optimal density in a small static-water culture system. 

Newly-hatched larvae collected from one brood in September 1998 were 

reared through to stage II in 250-ml shallow dark green plastic bowls. The 

experiment was set up as a Latin square design with treatments of different larval 

densities (100, 150, and 200 larvae 1 - '), and oxytetracycline (OTC; Engemycin 

100, Intervet, Australia) concentrations (0, 12.5, 25 and 50 ppm). The 12 bowls 

were randomly placed on a bench under fluorescent lights and at room 

temperature (-20°C). Larvae were fed daily with Artemia nauplii and 

phyllosomas were transferred every second day to clean bowls and water (+ 

oxytetracycline at the treatment level). Mortality and moulting were recorded 

daily. Larvae were collected after moulting into stage II and their body length 

was measured on a Nikon Profile Projector Model 6C to the nearest 25 Rm. The 

0 ppm OTC / 100 larvae treatment was inadvertently lost on the second day of 

the experiment. Whether data met assumptions of ANOVA or not, the effects of 

larval density and OTC concentration were determined with ANOVA or the 

Kruskal-Wallis test (K-W), respectively. Multiple comparison between 

treatments was carried out with the Least Significance Difference test (LSD). 

Differences in variance between treatments were tested with the Bartlett's test 

(Bartlett) of homogeneity of variance (Sokal and Rohlf, 1995). 
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11.2 Results and conclusions 
Although larval density did not significantly affect survival (K-W, df = 2, 

x2 = 3.68, P=0.159; Fig. 11.1.a), it did have a significant influence on the duration 

of the intermoult period (ANOVA, F2,8= 12.74, P<0.01; Fig. 11.1.c), and on the 

growth (ANOVA, F2,8= 5.85, P<0.05; Fig. Hie) of stage! larvae. The 

intermoult period was shorter while growth was greater at densities of 100 and 

150 larvae r icompared with larvae reared at a density of 200 larvae 1 -1  (LSD, 

P<0.05). Oxytetracycline had no effect on survival (K-W, df = 3, x2  = 5.58, 

P = 0.134; Fig. fl.l.b), the duration of the intermoult period (ANOVA; F 3 ,7=0.04, 

P=0.987; Fig. 11.1.d), and growth (ANOVA, F3,7= 0.28, P = 0.838; Fig. II.l.f) 

during stage I. However, the variation in survival was greater in the larvae reared 

with 0 ppm OTC group than in larvae cultured with 25 and 50 ppm OTC (Bartlett, 

P<0.05; Fig. H. Lb). 

On the basis of these results densities of 100 and 150 larvae 1 -1  are 

recommended to rear J. edwardsii larvae through stage I in an experimental static 

water system. However, lower densities that may further enhance growth should 

be tested in the future. Oxytetracycline dose rates of 25 and 50 ppm were 

effective in improving survival and reducing variability between replicates. These 

results are in agreement with findings by Gardner and Northam (1997). Note that 

the use of antibiotic is not recommended for the mass culture of phyllosoma since 

this practice may lead to the emergence of antibiotic resistant bacteria strains. 

Therefore, research is needed in areas such as pathogens biocontrol (Maeda et al., 

1997) in order to improve the health of cultured phyllosomas. 
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Figure 11.1 The effects of larval density and oxytetracycline treatment on the survival 
(mean ±SD), intermoult period (mean ±SE), and length at stage II (mean ±SE) of Jasus 
edwardsii larvae reared through stage I. Treatments with different letters differed 
significantly (LSD, P<0.05). Treatments with different symbols (+1-) had significantly 
different variances (Bartlett, P<0.05). 
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Additional data 

• for Chapter 2 

- Microbiology Report - 
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Note: In the '[CULTURE]' section of the following report, 'FISH #' labelled 'Stage 

1 larvae' and 'Stage 2 larvae' were groups of moribund phyllosomas that had 

been reared at 21.5°C, and 'FISH #' labelled 'From 1 stage 1 larvae' was a single 

moribund larva sampled in the 18°C treatment. All samples (single larva or 

groups) were prepared on TCBS medium in petri dishes, which were sent to the 

Animal Health Laboratory of the Tasmanian Department of Primary Industry, 

Water and Environment for analysis. 

182 



Appendices 

Tasmania 

DEPARTMENT 
PRIMARY INV.:SIAM: 
WATER andtsrakONMENT 

Animal Health Laboratory 
Department of Primary Industries, Water and Environment 

ABN 58 259 330 901 ' 

   

PO Box 46 
	

Enquiries Phone: (03) 6336 5216 

Kings Meadows TAS 7249 
	

Fax: (03) 6344 3085 

Marine Research Laboratory 
NUBEENA CRESCENT 
TAROONA TAS 7053 

Section Report - Microbiology 

Case Id: 	98/3290 	 Serial No: 	4975 

Submitter: 	BERMUDES 	 Order No: 

Reference No: 

Received: 	10/10/2001 	 Revision: 	0 

Finalised: 	15/12/1998 	 Extra Copy 

Owner: 	TAFI MARINE RESEARCH LABS 
GPO BOX 192B 
TAS 7000 

Species: 	Rock Lobster 	 Age: 	0 	Sex: 	Unknown 

ACCESSION No: 98/3290 
 

SERIAL No: 
4975 
FISH SPECIES: Rock lobster 

[MICROSCOPY] 

FISH # SITE  FINDING  Qty 

No smears submitted 

[CULTURE] 

FISH # SITE 
 

FINDING  Qty 

Whole animal (labels as received) 
Stage 1 larvae 	Mixed bacteria including 

Vibrio alginolyticus 
	 ++ 

1 	 183 



Appendices 

From 1 stage 1 larvae Mixed bacteria including 
V. tubiashii 
 + + 

Stage 2 larvae  Mixed bacteria including 
Vibrio alginolyticus 

[Qty:] ? occasional + small ++ moderate +++ large 

[COMMENTS:] The significance of these findings are hard to assess 
from this snapshot. V. alginolyticus has been reported as a 
pathogen in some fish species, however it is also a common 
component of normal bacterial floras associated with marine 
animals. V. tubiashii is a recognised pathogen of oyster larvae, 
but it has not been reported as a pathogen of other marine 
animals; it has been isolated on several occasions in mixtures of 
bacteria from a variety of fish and shellfish but the significance 
of the finding was not clear. The bacteria isolated appear to be 
consistent with normal(?) colonization. It is possible that the 
bacteria may be present in excess numbers, but this can only be 
established through quantitative sampling. 
From the note accompanying the samples, a ?permanent? bath of 
oxytetracycline at 25ppm was used for rearing the larvae. What 
steps were taken to ensure that the concentration of 
oxytetracycline was maintained in the water? It should be noted 
that this antibiotic is moderately labile and it is highly 
unlikely that a bioactive form of the antibiotic would be present 
in the water after 13 days if only one addition of antibiotic had 
been used at day 1. 

[DIAGNOSIS:] Normal bacterial flora? 

[AUTHORISED:] Dr Jeremy Carson  DATE: 15/12/98 

Judith Handlinger 
Ph: 

DPIWE Exercises due care in performing all tasks but takes no responsibility for errors 
associated with sample collection or freight forwarding. 
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IV.1 Introduction and methods 

Larval size and rate of development are generally used as indices of fitness 

in studies of larval population. While aquaculture research focuses essentially on 

comparing mean growth between planned sets of treatments, little emphasis is 

being placed on larval population structure and dynamics under culture 

conditions. The aim of this work was to determine the growth pattern of a 

population of Jasus edwardsii larvae reared in a controlled environment in terms 

of the relationship between intermoult duration and incremental body growth. 

Larvae collected from one brood in October 2000 were reared through to 

stage II in 250-ml shallow dark green plastic bowls. On the morning of hatching 

about 35 larvae were placed in each of 10 bowls filled with seawater with 25 ppm 

oxytetracycline (Intervet, Australia). Larvae were fed daily with 1.5-2.5 mm adult 

Artemia following transfer to clean bowls and water (+oxytetracycline). 

Mortality and moulting were recorded daily. Newly-moulted stage II larvae were 

collected on the day of moulting (before 1200 h every day) and preserved in 

formalin prior to measurement of body length to the nearest 1 .t,m with a computer 

imaging system (described in Chapter 7). Stage II larvae were preserved in 

separate containers for each replicated culture vessel and for each day of 

moulting. Temperature and salinity during the experiment were (mean ±SD; daily 

observations) 18.7 ±0.1°C and 34.6 ±0.6 ppt, respectively. Larvae were placed 

under a 12 h light: 12 h dark photoperiod, and the light intensity in the culture 

vessels during the light phase was 1.1 • 10 14  quanta s-1  cm-2 . The Kolmogorov-

Smirnov-Lilliefors test (K-S) was used to compare the frequency of moulting at 

the end of stage Ito a normal distribution over the period required for all larvae to 

moult into stage II. The relationship between length at stage II and the duration of 

stage I was fitted with a second order polynomial model. The effect of the 

duration of development during stage I on the size of larvae at stage II was 

analysed with analysis of variance for unequal sample size and specific 

differences in larval length between different moult cycle periods were determine 

with the GT2-method (Sokal and Rholf, 1995). All statistical procedures were 

carried out with JMP 3.1 and SPSS 10.0 softwares. 
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IV.2 Results and discussion 

Larval survival (mean ±SD, n=10) through to stage II was 89.2 ±7.5%. 

Moulting of phyllosoma from stage I to stage II occurred from day 9 to day 14 

post-hatching (Fig. IV.!). The time frequency distribution of moulting events 

during this period significantly deviated from a normal distribution (KSL, 

P<0.0001), and 80.4 ±4.3% mean ±SE (n = 10) of the larvae had moulted by day 

11 (skewness of overall data; gi = 1.12). The length of the larvae declined in a 

curvilinear fashion as the intermoult period extended (quadratic regression, r2 = 

0.64, F2,37 = 32.69, P<0.0001; Fig. IV.2). The size of the larvae was significantly 

dependent on the duration of development for intermoult periods ranging from 10 

to 13 days (ANOVA, F3,32 = 6.88, P<0.01) and larvae moulting after 10 and 11 

days of development were larger than larvae moulting 13 days post-hatching 

(GT2, P<0.05). 

T 

50 

0 Aiimit 
9 	10 	11 	12 	13 	14 

Intermoult period (days) 

Figure IV.! Mean (±SE) moulting frequency during the 6-day period necessary for all 
the stage I Jasus edwardsii larvae of  a  population to moult into stage It 
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Figure IV.2 Mean (±SE) body length in stage H Jasus edwardsii larvae reared 
through stage I in 10 to 14 days. The relationship between intermoult period  and  the body 
length of phyllosomas was fitted with a quadratic model. Numbers on each plot indicate 
the number of replicated rearing vessels in which moulting was recorded on a given day. 
Bars with different letters differed significantly (GT2, P<0.05). 

Hare and Cowen (1997) have extensively reviewed the scientific evidence 
supporting and refuting the 'growth-mortality' hypothesis in planktonic larvae 
which proposes that as feeding success increases, growth increases and the 
probability of mortality due to starvation and predation decreases. The same 
authors identified three mechanisms for the 'growth-mortality' hypothesis: (1) if 
mortality is size dependent, then at a given age, larger individuals will have a 
higher probability of survival than smaller individuals (ie. 'bigger is better' 
concept); (2) if the probability of mortality is a decreasing function of size, then 
individuals with higher growth rates will have a lower probability of mortality 
compared to slower growing larvae (ie. 'growth-rate' mechanism); and  (3)  if 
juveniles have a lower mortality rate than larvae, then individuals that develop 
faster and make the larval-to-juvenile transition at a younger age will have higher 
probability of survival than slower growing animals (ie. 'stage-duration' 
mechanism). 
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The results of the present experiment indicate that faster developing larvae 

grow to a larger size than phyllosomas with delayed moulting. However, these 

findings imply that 'faster is bigger' and not that 'bigger is better' in J. edwardsii 

larvae. Nonetheless, from a numbers perspective and assuming that growth-rate is 

a fair assessment of fitness, it would appear that size may matter in J. edwardsii 

larvae. This assumption is supported by the fact that the near 80% of larvae that 

moulted early (from day 9 to day 10) tended to be larger than the phyllosomas 

with delayed development (moult at day 12-14). In addition, similar observations 

were made in Chapter 2 and 6 with animals exposed to different temperatures and 

salinities, respectively. Results from these studies indicated that phyllosomas 

placed under optimal conditions (ie. 18°C and 34 ppt) grew faster and larger than 

under suboptimal conditions. Faster development has obvious advantages in 

benthic invertebrates with a protracted pelagic larval phase in, for example, 

reducing the risk of predation prior to settlement. Since faster developing larvae 

are also larger, the growth strategy of J. edwardsii phyllosomas may encompass 

the three mechanisms of the 'growth-mortality' hypothesis cited earlier (ie. 

'bigger is better', 'growth-rate', and 'stage-duration' mechanisms). However, 

these proposed mechanisms need to be verified on the basis of a genetic pool 

larger than the one brood used in the present study. In addition, it remains 

essential to assess directly the effect of size on rate of development (ie. instead of 

the effect of rate of development on size studied here). 

The pattern of population growth observed in the present study may have 

significant implications for the management of mass cultures of J. edwardsii 

larvae. Indeed, the culling of slower (and smaller) growing animals may need to 

be considered if it is demonstrated that faster developing animals (also larger) 

hay-  e greater probability of survival to metamorphosis than individuals with 

slower growth rate. 

IV.3 References 
Hare, J.A. and Cowen, R.K., 1997. Size, growth, development, and survival of the planktonic 

larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology, 78: 2415-2431. 
Sokal, R.R. and Rohlf, F.J., 1995. Biometry. W.H. Freeman and Company, New York, p. 887. 

189 



Appendix V 

Light intensity 

Unit conversion tables 

190 



Appendices 

V.1 Unit conversion methods 
In order to allow for comparison of results with past or future studies, the 

light intensities tested in Chapter 3 on the behaviour (Table V.1) and on the 

physiology (Table V.2) of early-stage J. edwardsii larvae were converted from 

quanta s -1  cm-2  to other units commonly used to express light intensity. Note that 

initial measurements were carried out with a spherical quantum sensor 

(Biospherical QSL 100) as 'photosynthetic photon flux fluence rate' (PP1-1-R) also 

referred to as 'quantum scaler irradiance' or 'photon spherical irradiance'. PP1-1-It 

is defined as the integral of photon flux radiance of photosynthetically active 

radiation (PAR, 400-700 nm waveband) at a point and over all directions about 

the point (LI-COR, 1991). There is no unique relationship between PPFFR and 

the 'photosynthetic photon flux density' (PPFD) measurements of incident 

radiation at a point, which is obtained with a cosine (180°) quantum sensor. 

Depending on the diffusion of the light source the PP141-1) may be 1 (eg. 

collimated beam of normal incidence) to 4 (eg. perfectly diffuse radiation) times 

the PPFD (LI-COR, 1991). 

Conversion between quantum units (quanta s 	to larnol s-1  m-2) 

1 ilmol S -1  111-2  = (1 quanta s-1  cm-2  x 10,000) ÷ 6.022 • 10 17  

Conversion from quantum to radiometric units (Ilmol s -1  ITI-2  to W m-2) 

In order to convert light intensities from quantum to radiometric units 

(Thimijan and Heins, 1983) a conversion factor was determine for the type of 

light used in the experiments presented in Chapter 3. The light intensity from a 

quartz halogen light source placed in a dark chamber was measured in limol s -1  

al-2 and in W Tr1-2  using a portable spectroradiometer (Li-Cor, LI-1800). The 

factor of 5 (473.9 Amol s-1 
 

r11-2  ÷ 94.8 W m-2) obtained in this way can be used 

to convert gmol s -1  m-2  into W m-2 : 

1 W m-2  = 1 grnol s-1  rr1-2  ± 5 
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Table V.1 Light intensities used to study the behavioural response of f. edwardsii 
larvae (Chapter 3) converted into different units of radiation. 

Light intensity units 

Treatment quanta s' 1 crn'2  quanta s liM01 S-1 m-2 w  m-2 W CM-2  MW CM-2  1.1.W CM-2  

low 

medium 

high 

2.9 

2.5 

1.8 

- 10 14  
• 10  

- 10 16  

2.9 

1.8 

- 10 18  
• 10 19  
• 10213  

4.843 

42.068 

298.904 

0.969 

8.414 

59.781 

9.7 

8.4 

6.0 

• 10 5  
- 104  
- 10'3  

0.0969 

0.8414 

5.9781 

96.87 

841.36 

5978.08 

Table V.2 Light intensities used to study the physiological response of f. edwardsii 
larvae (Chapter 3) converted into different units of radiation. 

Light intensity units 

Treatment quanta s -1  crn'2  quanta s -1  111-2  AMO1 S-1 m-2 w m-2 W CM-2  MW crn'2  1.1,W cm-2  

low 

high 

7.7 • 

3.9 • 

10 12  
10 14  

7.7 • 

3.9 • 

10 16  
10 18  

0.127 

6.476 

0.025 

1.295 

2.5 • 

1.3 

10-6  

10'5  
0.0026 

0.1295 

2.55 

129.53 

V.2 References 
LI-COR, 1991. Radiation Measurements Instruments. LI-COR, Inc., Lincoln, Nebraska, USA. 
Thimijan, R.W. and Heins, R.D., 1983. Photometric, radiometric, and quantum light units of 

measure: A review of procedures and interconversion. HortScience, 18: 818-822. 
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VI.1 Introduction and methods 
The aim of this study was to determine the time required for stage I larvae 

to reach a post-absorptive state in order to determine their 'specific dynamic 

action' (Jobling, 1983; Chapter 4). 

Larvae from two females were reared from hatch in a static culture system 

of four 220 ml shallow plastic bowls filled with 200 ml of seawater treated with 

25 ppm of oxytetracycline (Engemycin 100, Intervet, Australia). Fifty larvae 

from each brood were stocked in each of the vessels. The water and the bowls 

were exchanged every second day and larvae were fed to satiation daily with 

Artemia nauplii. Rearing was conducted in the dark, at 16-17°C. In order to 

monitor the state of starvation of stage I larvae, food was withheld from day 6 

post-hatching. At that time (0 h), 10 larvae from each brood were sampled and 

placed in each of two acid washed vials containing 10 ml of 1 jim filtered sea 

water + 25 ppm oxytetracycline. The vials were incubated for 24 h at 16-17°C 

after which time the larvae were removed from the vials and the water samples 

were preserved at —30°C. The same procedure was repeated at 3, 6, 12, 24, 48, 

and 72 h after the beginning of the starvation period. Four control vials with no 

larvae were incubated for 24 h. The frozen samples were analysed for ammonia 

according to the phenolhypochlorite method described by Solorzano (1969) after 

less than two weeks of sampling (Parsons et al., 1984). Nitrogen excretion was 

expressed gg NRI-N larva after deduction of ammonia in the control vials. 

Note that the measurements obtained in this study are not comparable with those 

presented in Chapter 3 due to the longer incubation period used here. Nitrogen 

excretion was plotted against starvation period (h) for each of the two broods and 

fitted with a quadratic polynomial model. The starvation period required for 

nitrogen excretion to reach a minimum was computed with the following formula: 

Xinin = 
2,82 

where Xmin  (h) is the time after the start of starvation when nitrogen 

excretion was the lowest, andfii  and /32 are coefficient of the quadratic model (ie. 

y = fio  + fix + Ax2). 
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VI.2 Results and conclusions 
The curvilinear nitrogen excretion response of stage I phyllosoma to 

starvation indicated an initial decline in excretion down to a minimum after 17.5 h 

followed by a later rise in excretion as starvation continued. 

It was concluded that 17.5 h of starvation was required before oxygen 

consumption could be measured in larvae in a post-absorptive state. The 

phenomenon of increased nitrogen excretion after a prolonged starvation period 

was previously reported in zooplankton (Mayzaud, 1973) and in crustaceans 

(Regnault, 1981). The increased catabolism of protein in starved J. edwardsii 

larvae suggests the ability of the larvae to switch from a lipid to a protein based 

metabolism in times of starvation (Mayzaud, 1976). However, the greater 

nitrogen excretion observed in starved larvae may be explained partly by an 

increased food foraging activity similar to the hunger mediated migration of 

zooplankton reviewed by Haney (1988). Indeed, as reported in Chapter 3, protein 

constitutes an important source of energy in actively swimming phyllosomas. 

VI.3 References 
Haney, J.F., 1988. Diel patterns of zooplankton behaviour. Bulletin of Marine Science, 43: 583- 

603. 
Jobling, M., 1983. Towards an explanation of specific dynamic action (SDA). Journal of Fish 

Biology, 23: 549-555. 
Mayzaud, P., 1973. Respiration and nitrogen excretion of zooplankton. II. Studies of the 

metabolic characteristics of starved animals. Marine Biology, 21: 19-28. 
Mayzaud, P., 1976. Respiration and nitrogen excretion of zooplankton. IV. The influence of 

starvation on the metabolism and the biochemical composition of some species. Marine Biology, 
21: 19-28. 

Regnault, M., 1981. Respiration and ammonia excretion of the shrimp Crangon crangon L.: 
Metabolic response to prolonged starvation. Journal of Comparative Physiology, 141: 549-555. 

Sokirzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite 
method. Limnology and Oceanography, 14: 799-801. 
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Figure VI.! Nitrogen excretion of stage I Jasus edwardsii larvae subjected to 
different starvation periods. A quadratic regression was fitted to the raw data obtained 
from 2 different broods. 
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