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ABSTRACT 

This study presents measurements of the atmospheric energy 

fluxes over south-east Australia and discusses the role of these fluxes 

and their divergence in the regional scale atmospheric energy budget. 

Monthly averages of quasi-horizontal energy fluxes were 

calculated from daily observations at six upper air stations for the 

period 1974-1976. The relative contributions of the mean and eddy fluxes 

were considered. 

Energy flux divergences were computed for four months of 1975 

and compared with independent estimates derived from (a) satellite 

radiant flux data (in the case of the overall energy flux divergence), 

and (b) a regional moisture budget (for the latent energy term). Adjustments 

of the raw wind data to ensure mass balance were found to be necessary and 

objective techniques for this purpose are discussed. Although exact balance 

of the energy budget was not obtained, the contribution of the different 

energy types (enthalpy, potential, latent, kinetic) consistently showed 

counteraction among the various terms and between their mean and eddy 

resolutions. For each of the four months considered, the total energy 

flux divergence showed zonal convergence and meridional divergence. 

Vertical profiles of the energy flux divergence are also presented. 

The net radiant flux density at the top of the atmosphere, 

closely related to the atmospheric energy flux divergence over the 

region, showed small interannual variations. Analysis of the short and 

long wave satellite radiation data showed that these variations, due 

mainly to changes in cloudiness, were dominated by the fluctuations in 

the short wave term. 

The relation between the surface synoptic weather pattern 

and atmospheric energy transport was investigated by correlating the 

monthly average mean and eddy fluxes with the frequency of different wind 
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directions and isobaric curvatures. Useful relations were found except 

for the zonal eddy flux. The meridional fluxes were most closely related 

to the frequency of northerly surface winds over the region. 

The study incorporates a review of the global scale earth-

atmosphere energy budget and also of other regional scale investigations. 

Some differences between results for south-east Australia and the zonal 

average are noted. 



CHAPTER 1 

INTRODUCTION 

The net poleward energy transport by the atmospheric general 

circulation has been the subject of several major observational studies, 

but increasing attention is also being given to longitudinal variations. 

It is now possible to combine satellite data with aerological 

observations in investigations into the atmospheric energy flows of 

regional scale weather systems. The present study uses this 

combination to investigate monthly averages of the atmospheric energy 

flux and flux divergence over south-eastern Australia during a three 

year period. 

For considerations of the energy budget of the earth-

atmosphere system the only significant source of energy is solar 

radiation, and on a climatic time scale the inward flux of solar 

radiation is almost, and perhaps exactly, balanced by the radiation 

reflected and emitted from the earth-atmosphere system. However not 

all points on the earth's surface or in the atmosphere are themselves 

in radiation balance. Almost all of the atmosphere suffers a net 

radiative loss, but at the earth's surface a radiative surplus in 

equatorial regions gives way to a deficit in polar regions. This 

differential heating, with a radiative surplus in warmer regions 

and a deficit in the cooler regions, maintains available potential  

energy which drives the atmospheric and oceanic circulations. These 

circulations transport energy on average from the earth's surface to 

the atmosphere (principally in the form of latent heat due to 

evaporation but also as sensible heat) and from atmospheric regions 

of total energy surplus to those experiencing a deficit. The flow of 

energy within the atmosphere is simultaneously a cause and a result 

of the "weather" and moderates the temperatures that would occur if 

iall"parts of the earth had a locally balanced radiative budget. 
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Although the terms of the earth's radiation budget and the 

consequent poleward energy flow were first evaluated by 

Sir George Simpson in 1928, the past thirty years have produced a 

series of studies on the global scale using the increased network of 

aerological stations. The most complete of these observational studies 

of the atmospheric general circulation are those of Oort and Rasmusson 

(1971) for the Northern Hemisphere and of Newell et al (1972, 1974) 

which were concerned principally with the tropics. No equally extensive 

studies have been made for the whole of the Southern Hemisphere, due 

mainly to data scarcity. 

During the 1960's photographic and radiometric data from 

satellites provided independent and authoritative measurements of the 

radiative properties of the earth-atmospheric system. In some cases 

these determinations differed significantly from pre-satellite estimates. 

For example, Vonder Haar and Suomi (1971) reported an observed mean 

planetary albedo of 0.29 compared with the earlier theoretical estimate 

of 0.35. Most of the error was due to an overestimate of tropical 

cloudiness. The new results suggest a greater absorption of solar 

radiation in the tropical oceans with a consequent increase in the 

required oceanic energy flow. 

Studies based on both aerological and satellite data have 

revealed significant regional scale variations. Newell et al (1972, 

1974) demonstrated marked longitudinal variations in many of the fluxes 

and, in their conclusions, anticipated studies on the regional scale 

based on and adding to their findings on the general circulation scale. 

Vonder Haar (1972), making use of the early satellite data, noted that 

in the case of the annual average of net radiation at the top of the 

atmosphere "the magnitude of intrazonal net radiation gradients is as 

strong in some sectors as the more well-known north-south gradients", 

and he suggested that intrazonal circulations may arise. His results 
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show a strong gradient of net radiation between a maximum over the 

Bay of Bengal and a minimum over eastern Australia. 

Further investigation of such regional scale variations has 

been facilitated by the fact that radiation measurements are now 

available from satellites on a routine basis. High resolution 

radiometric observations have been made by the NOAA series of near-

polar orbiting satellites since June 1974. One of the stated aims of 

the NIMBUS 6 Earth Radiation Budget Experiment was "to provide direct 

measurements of the radiation budget on regional scales (500km) on a 

monthly basis, for climate monitoring and prediction." (Smith et al, 

1977). A study of the Asian summer monsoon has been made based on 

the NOAA data (Winston and Krueger, 1977). Further studies on this 

scale should assist in the formulation of theories on the atmospheric 

energy flux and in the development and validation of numerical climate 

models. 

Holopainen (1977) uses satellite net radiant flux data to 

show that there must be a net energy transport in the atmosphere from 

the oceans to the continents, but recognizes that more needs to be 

known about the net radiation than simply its magnitude. He concludes: 

"An important future investigation must be to 

study on the basis of aerological observations, 

in what form and by what mechanism this net 

energy transport is accomplished. This kind 

of study would seem particularly interesting 

and feasible for the Australian area which, in 

the light of satellite observations is an 

anomalous region and has a good network of 

aerological stations". 
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Concern with regional scale variations provides the motivation 

for the present study. The atmospheric energy budget over South 

Eastern Australia is considered for the three year period 1974-1976, 

by combining satellite observations of net radiation at the top of 

the atmosphere with determinations of the energy flux within the 

atmosphere using aerological observations. The objectives of the 

study are: 

1. The calculation of the monthly averages of 

the atmospheric flux components at individual 

stations for the three year period. 

2. To calculate the total energy flux divergence, 

using satellite net radiant flux measurements 

as verification and to assess the relative 

contributions of 

(a) the mean and eddy fluxes 

(b) the zonal and meridional fluxes, and 

(c) the individual energy types (sensible, 

latent) to the regional energy budget. 

3. To consider variations of the fluxes and radiation 

components in relation to the prevailing synoptic 

weather patterns. 

Chapter 2 gives a brief review of energy budget measurements 

on the global and regional scales. In Chapter 3 an outline is given 

of the method employed in the research together with the results 

obtained. The results are discussed further in Chapter 4 and conclusions 

are presented in Chapter 5. 



S. 

CHAPTER II 

REVIEW 
THE EAR11-1-ATIIOSPHERE ENERGY BUDGET 

2.1 	The Global Scale Earth -Atmosphere Energy Budget 

Comprehensive reviews of the atmospheric energy budget 

are given by Lorenz (1967) and Newell et al. (1969), while the 

studies of Newell et al. (1972, 1974) and Oort and Rasmusson (1971) 

present detailed analyses of the energy transport by the general 

circulation of the atmosphere. Investigations of the energy budget 

using satellite data (e.g. Oort and yonder Haar, 1976) provide a 

useful check on such studies. 

Recent estimates of the terms involved in the global scale 

energy budget are discussed briefly in this section, based mainly 

on the results presented by Newell et al. (1974) and Oort and 

Rasmusson (1971) hereafter referred to as NEA and OR respectively. 

2.1.1 	Energy Budget of an Atmospheric Column 

The energy equations for an earth-atmosphere column are 

derived in Appendix Al, and for a column extending from the top of 

the atmosphere to below the level at which significant energy exchanges 

occur, can be written symbolically (Eq. A1.14) as 

Cl* = V.(FA  + F& Q* 	SA  + SG  + So  
TA ... (2.1) 

where Q*TA  is the net radiant flux at the top of the atmosphere, 

F
A 

is the vertically integrated energy flux (sensible and latent 

energy) in the atmosphere, F o  is the oceanic energy flux and S A , 

S
0 
 and S

G 
represent the rate of energy storage in the atmosphere, 

ocean and ground respectively. The flux of sensible energy includes 

the enthalpy (=CpT), potential energy and kinetic energy terms 

(see Appendix Al). The budget of Eq. 2.1 is shown schematically 
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in Fig. 2.1. The energy flux terms involve covariances of the form 

vii where v represents a velocity component, h some atmospheric or 

oceanic property, and the overbar denotes a time average. Such 

terms are called the average total transfer of the property h. 

Expressing v and h in terms of their mean and a deviation 

(denoted by a prime) 

v = 	+ v' 
	

h = F + h' 	... (2.2) 

then vh = 	+ v') OT h') 

= vh + v' h' 	 ... (2.3) 

By definition Tr. ' is zero. The first term on the right side 

- — 
vii is called the mean transfer and v' h' the transient eddy term. 

For energy budget studies on a global scale zonal averages are 

often considered. Denoting the zonal averages of A and its deviation 

from the zonal average by CU and A respectively, the average total 

transfer can be expanded as: 

[vh] = r,73 [h] + C v h I + [v'h'] 	... (2.4) 

The terms on the right hand side represent the transport 

by the mean motion, standing eddies and transient eddies respectively. 

Rasmusson (1972) stresses that the transient eddy terms 

represent contributions from the entire temporal spectrum between 

the response time of the radiosonde and the period over which the 

data are averaged. Annual averages include seasonal variations as 

transient eddies, while in averages over more than one year inter-annual 

variations would also contribute. 



• 
Fig. 2.1 Schematic representation of the energy budget in an earth—atmosphere column. Q A represents the net radiant 

flux at the top of the atmosphere, FA the vertically integrated energy flux (sensible and latent) in the atmosphere, 
F0 the vertically integrated oceanic flux and SA , S G  and So  the rates of energy storage in the atmosphere, ground 
and ocean respectively. 
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2.1.2  Energy Storage 

(a) Energy Storage in the Atmosphere 

Rates of energy in the atmosphere as a function 

of latitude and season are listed in Table 2.1 

using the northern hemisphere results of Oort 

and Vonder Haar (1976) and the global value as 

presented by NEA. The storage rates show a 

-2 i 
maximum exceeding 20 W m 	n high latitudes 

during late spring and a minimum below -20 W m
-2 

in early autumn. The two sets of values show 

the same basic pattern but there are significant 

differences particularly at high latitudes. 

This may be due to the more detailed calculations 

of Oort and Vonder Haar. Contributions to the 

total storage from individual energy terns are 

discussed by Oort (1971). 

(b) Heat Storage in Land 

The rate of heat storage (S G) in the land is 

dealt with in standard texts such as Sellers 

(1965) and Monteith (1973). A brief summary is 

given in Appendix Al. The values used by NEA 

in their global energy budget study are listed 

in Table 2.1. These values have been weighted 

by the percentage of land in each latitude zone 

giving low values in the southern hemisphere 

due to the large fraction of the surface that 

is ocean. Even in the northern hemisphere the 

rate of energy storage in the land has a smaller 

amplitude than that for the atmosphere. The 

atmospheric and land storage terms also differ 

in phase, with the land values having their 

greatest magnitude in summer and winter. 



Table 2.1 

Rate of Energy Storage in the Atmosphere (SA) and Land (SG) (W E-2) 

Latitude December - February March - May June - August September - November 

SA 
(1) 	(2) 

SG S (1)  Am  SG  (1) A(2) 	SG 5A  
(1) 

SA 

(2) 

80-90414 -4 -3 0 11 19 0 5 2 	1 -11 -18 0 

70-80 -5 -3 -2 12 19 1 	' 6 2 	2 -13 - -18 -1 

60-70 -5 -2 -3 14 17 1 7 3 	3 -16 -19 -2 
. 

50-60 -6 -2 -3 16 IS 1 ' 	7 4 	3 -17 -18 -1 

40-50 -5 -3 -2 IS IS 1 7 S 	3 -16 -18 -1 

30-40 -4 -3 -2 11 13 1 6 6 	2 -13 -16 -1 

20-30 -3 -2 -1 8 10 1 4 4 	1 - 9 -11 - 1 

10-20 -2 -2 -1 4 5 0 2 1 	1 - 4 - 5 0 

0- 10 -1 - 1 0 1 2 0 0 -1 	0 0 1 0 

0-104S 1 0 - 2 0 -1 0 2 0 

10-20 3 0 -6 0 -2 0 5 0 

20-30 4 0 -11 -1 -2 -1 7 0 

30-40 5 0 -12 0 -1 0 9 0 

40-50 4 0 -10 0 -1 0 8 0 

50-60 4 0 -10 0 -1 0 . 	7 0 

60-70 5 0 -14 -1 -2 -1 11 0 

70-80 7 1 -19 -1 -2 -2 14 1 

80-90 8 2.  -21 -2 -3 -2 16 1 

Northern  -1.5 10 10 0.5 5 3 	2 -11 -11 -1 
Hemisphere -4  -2 

Southern 0.5 -12 -0.5 -2 -1 9. 0 
HemispheTe 

Globe 0 -0.5 - 1 0 1.5 0.5 - 1 -0.5 

Globe (3) 0.5 1.5 0.5 -2.5 

References: (1) Newell et al. (1974) 
(2)Oort and Yonder Naar (1976) 
(3)Ellis et al. (1978) 

8. 
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(c) Heat Storage in the Ocean 

The rate of heat storage in oceans can be calculated 

from sea surface temperature data using the same

approach as for storage in land. NEA briefly review 

early efforts at evaluating this term but express 

strong reservations about the accuracy of the 

estimates. 

Ellis et al (1978) and Oort and Vonder Haar (1976) 

present estimates based on oceanographic soundings 

to a depth of 275 metres, below which temperature 

variations were small. The main energy storage 

was found to occur in the first 100 metres. 

Details of the analysis are described by Levitus 

and Oort (1977). Sampling problems were encountered 

with considerable areas of sparse data in the southern 

hemisphere. The results of Oort and Vonder Haar for 

the northern hemisphere are shown in Fig. 2.2. In 

mid-latitudes the values agree reasonably well with 

those of NEA but significant differences are revealed 

in the tropical oceans, with the more recent results 

showing a more pronounced annual variation. There 

are also large differences near the North Pole, but 

the values for that region are considered unreliable 

due to scarcity of data. 

RATE OF heAT STORAGE IN OCIANS (wail or 1) 

Fig. 2.2 Rate of heat storage in the northern hemisphere oceans as a function of latitude and month of year. Units are 
111 m-2. To obtain typical oceanic values divide by the percentage of the horizontal area covered by oceans 
(61 per cent for the northern hemisphere as a whole). (After Oort and Vonder Haar, 1976). 
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Comparison with Table 2.1 shows that the heat 

storage in the ocean is nearly an order of 

magnitude greater than in the land or atmosphere. 

The highest oceanic values occur in mid-latitudes 

and have an amplitude exceeding 100 W m
-2

. 

Oort and Vonder Haar point out that most of the 

northern hemisphere storage occurs east of 

North America over the Gulf Stream region and 

east of Asia over the Kuroshio area. 

2.1.3 	Atmospheric Energy Flux 

The studies of OR and NEA concentrate mainly on horizontal 

transports although also considering vertical fluxes. OR used once 

daily (00 GMT) observations between the surface and 75mb from about 

700 northern hemisphere stations for the five year period May 1958 to 

April 1963. The data were objectively analysed and grid point values 

extracted. 

NEA used data from 330 tropical radiosonde and radar wind 

stations for the period July 1957 to December 1964 with supplementary 

extratropical data. Most analyses were carried out subjectively. 

OR present results for the northern hemisphere of the mean 

and eddy poleward fluxes of enthalpy, potential energy, latent energy 

and kinetic energy. For the mean fluxes the individual terms, especially 

the potential energy and enthalpy fluxes, are large in magnitude but 

partially compensate so that the total transport is much smaller than 

the individual terms. The mean transport in the tropics (Hadley Cell) 

is smaller than the eddy transport of mid-latitudes. The sign of the 

transport at low latitudes is determined by the potential energy 

transport. Oort (1971) describes the processes that transform latent 

energy into potential energy through condensation and upward vertical 

motion in the inter-tropical convergence zone (ITCZ). The conversion 

of potential to internal energy takes place in the subsiding air of the 

sub-tropical ridge. 
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The minor role of eddies in the horizontal energy transport 

of the tropics reflects the uniformity of the temperature and moisture 

fields in the region rather than the absence of eddies. Eddy transfer 

of potential energy is small due to the almost geostrophic nature of 

observed winds outside the tropics. 

The results of OR, while confirming the findings of earlier 

studies that the maximum flux of sensible energy occurs in winter and 

that it is accomplished mainly by large scale eddies, also found that 

at mid-latitudes the standing eddies had a greater effect in mid-winter 

than the transient waves. Vertical cross-sections of the poleward 

energy transport by eddies show two maxima, one at about 850mb and 

the other near the tropopause at about 200mb. 

The eddy flux of latent energy is an important term in the 

overall budget especially between 20 and 40 °N where, in some months, 

due to the strong standing eddy term associated with the Asian monsoon, 

it exceeds the eddy sensible energy flux. However, Rasmusson (1972) 

cautions that the latent energy flux measurements are likely to have 

significant errors due to limited vertical sampling in routinely 

available radiosonde reports. The kinetic energy flux is very small 

relative to the other terms. Oort (1971) found that the annual cycle 

in the standing waves contributes about 15 per cent of the annual 

poleward energy transport by the standing eddies but inter-annual 

variability did not contribute significantly to the eddy fluxes for the 

northern hemisphere. Inter-annual variations in latent energy flux 

have been discussed more recently by Rosen et al. (1979). 

The divergence of the atmospheric flux (V.FA  in Eq. 2.1) 

over the northern hemisphere taken from Oort and Vonder Haar (1976) 

is presented in Fig. 2.3. There is a region of energy convergence 

in polar latitudes with a smaller region of weak convergence at about 

o i IS N n the first eight months of the year. A zone of strong divergence 

persists in the sub-tropical latitudes of 20-30 0N with a secondary area 
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of divergence in the 40-500  belt between late autumn and early spring. 

The values differ slightly from divergences calculated using the flux 

estimates of OR, particularly for winter where the results of OR 

indicate only a single area of divergence at low latitudes giving way 

to convergence at high latitudes. 

Fig. 2.3 Atmospheric energy flux divergence based on radiosonde data as a function of latitude and month of the year 
for the northern hemisphere. Units are W m -2. (After Oort and Vonder Haar, 1976). 

OR concentrated almost exclusively on the northern hemisphere 

due to the paucity of data in the southern hemisphere, but some results 

to 40oS are presented by A. These reveal significant differences 

between the fluxes at similar latitudes in each hemisphere. Comparison 

of the two sets of results also indicates a degree of uncertainty in the 

flux estimates as there are considerable differences in areas where the 

results overlap, especially for the mean fluxes. While these discrepancies 

may reflect real differences between the two periods studied, they may 

also be due to different analysis techniques or inadequate data fields. 

Oort (1978) concludes from a numerical simulation study in which some data 

were omitted that the present network is inadequate for the determination 

of atmospheric transports. He found that although the transient eddy 

terms were well-defined in both hemispheres, the standing eddy terms 

were significantly in error in the northern hemisphere and highly 

unreliable, although a minor term, in the southern hemisphere. 

The accuracy of the results presented by both NEA and OR has 

also been questioned by Mak (1978) as a result of his estimates of the 

northern hemisphere standing eddy momentum flux at SOOdb. His study used 

geostrophic winds determined from analysed height fields, rather than 
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interpolated station data as used by OR and NEA. He found a larger 

standing eddy flux than in the earlier studies and also systematic 

differences in the fluxes over ocean and continental areas with the 

zonal average being a small residual of large compensating terms. As 

found by Oort (1978) the transient eddy term agreed with earlier 

estimates. 

The contributions of the different energy components to the 

atmospheric flux divergence in the northern hemisphere are shown for 

summer and winter in Fig. 2.4. The divergence of the mean flux is a 

small residual of large terms with the enthalpy and latent energy flux 

divergences having opposite phase to the potential energy flux divergence. 

The mean and eddy flux divergences are about the same magnitude as far 

north as 60
oN even in winter. The eddy flux divergences of enthalpy and 

latent energy tend to be out of phase between 30 and 70 °N in winter and 

equatorward of 60 °N in summer. All the mid-latitude flux divergences 

are small in summer. Poleward of 60°N in winter and 70°N in sumer, the 

sign of the total energy convergence in the atmosphere is due to the 

eddy flux. 

2.1.4  Net Radiant Flux at the Top of the Atmosphere 

Estimates of the net radiant flux at the top of the 

atmosphere can be made with radiative transfer models using climatological 

data. NEA present several estimates of the global distribution and annual 

cycle of this term, while Sasamori and London (1972) present results 

with special emphasis on the southern hemisphere. 

Apart from theoretical limitations these model results 

suffer from a lack of data, especially on cloud cover over the oceans. 

Independent measurements of the earth-atmosphere radiation budget from 

satellites have been made since a preliminary experiment performed on 

Explorer in 1959. Early results were presented by Winston (1967), 

Winston and Taylor (1967) and Raschke and Bandeen (1970). Estimates 

based on five years' data using mainly low resolution radiometers 
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were published by Vonder Haar and Suomi (1971), and data from Nimbus 3, 

the first satellite with synoptic scale resolution (10 4  - 106  km2 ) 

coverage over the entire globe were presented by Raschke et al. (1973). 

Zonal and global averages of these studies were in good agreement, but 

a study by Winston et al. (1972) found significant differences in the 

longitudinal distribution of long wave radiation and albedo between 

their results and those of Vonder Haar and Suomi. 

Subsequent results have been published by Oort and Vonder Haar 

(1976) using data from a variety of satellites between 1964 and 1971, 

Jacobowitz et al. (1979) using 18 months' data from the Earth Radiation 

Budget (ERB) Experiment on the Nimbus 6 satellite and Winston et al. (1979), 

analysing 1974-1978 data from the operational NOAA series of satellites. 

While offering the possibility of continuously and accurately 

monitoring the earth-atmosphere radiant flux, satellite data have their 

own problems of acquisition ancrinterpretation. These problems will be 

discussed at some length because of the use made of satellite data in 

this study. 

Yates (1977) summarises the main instrumental characteristics 

required as a flat, stable and known spectral response with known 

angular properties. The short wave instrument should also be calibrated 

by a sun view with the same instrumentation as the earth view. 

In practice these requirements can only be partially met. The 

energy spectrum is usually sampled at discrete channels with one channel 

normally sufficient to cover the short solar wavelengths (0.2-4pm) but 

several channels for the earth's thermal radiation. Theoretical 

calculations of radiative transfer show that about 98 per cent of the 

variance in the spectrally integrated radiance can be accounted for by 

using the water vapour window (10.5-12.5pm) radiance alone (Winston et al. 

1979). Significant reductions of standard error occur when the 13.3pm 

carbon dioxide and 14.5pm water vapour radiances are also included. 
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The short wave radiometers on board the NOAA series of 

operational satellites had no in-flight calibration, and there has 

been questioning of some albedo measurements (Gruber, 1977). The ERB 

Experiment and the instruments on present Japanese and American 

geostationary satellites are calibrated by viewing the sun. 

One of the stated aims of the ERB Experiment was to measure 

the angular characteristics of the earth's radiative fluxes which 

present problems in interpreting the measured radiances. Four narrow 

angle telescope channels were able to scan along and across the sub-

satellite track. The operational NOAA satellites only scanned cross-

track. In their radiation budget study Raschke et al. (1973) used an 

empirical model relating reflectance to the solar zenith angle to 

compute flux densities of reflected solar radiation and to average them 

over the daylight period, while in the treatment of NOAA data the 

reflected radiative flux is assumed to be isotropic. Similarly, in the 

interpretation of the - long wave radiative flux measurements some limb 

darkening corrections are 'required. 

Observations from a single satellite in a sun-synchronous 

orbit suffer from a sampling problem in that daily averages are based 

on the assumption that each day-time (night-time) measurement is 

representative of the whole day (night) period. Diurnal variations of 

temperature and cloudiness are not monitored. This problem is ameliorated 

where data from satellites having different observation times are 

amalgamated, although this introduces difficulties due to differences 

in the type, viewing geometries and resolutions of the sensors. 

A comparison of results from sensors having different resolutions 

is given by Smith et al. (1977) who present concurrent results from an 

omnidirectional and a narrow angle scanning radiometer. Such significant 

features as the inter-tropical convergence zone (ITCZ) are not resolved 

by the low resolution instrument. 
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Except for the ERB Experiment, direct measurements have not been 

made of the solar constant and a value is adopted for computing the albedo 

and the net radiant flux, Q4A, the latter being derived from the formula: 

Q4A  = S(1-a) - Q 	...(2.10) 

where S represents the solar constant, a albedo and 	the outgoing 

long wave radiant flux from the top of the atmosphere. 

Because the net radiant flux is a small difference of two 

large terms, small relative errors in either a, or the assumed 

solar constant can lead to significant absolute errors in Q4 A . 

Data from the NOAA satellites and ERB experiment are compared 

on a global scale by Gruber (1977). Except for the outgoing long wave 

radiation in which a systematic error occurred in the uncorrected NOAA 

results, the agreement between the two sets of data was good, even though 

the NOAA satellites had been developed primarily as operational satellites 

and were not ideally suited for a radiation budget study. 

Global maps of NOAA data (Winston et al., 1979) and Nimbus 3 

results (Raschke et al., 1973) are also geRerally similar, but with some 

notable differences. Commenting on the Nimbus 3 results Holopainen 

(1977) notes that the departures of net radiant flux from the zonal 

average tend to be positive over the oceans and negative over the land. 

The NOAA data do show negative anomalies over the north African region 

but the main anomalies within mid-latitude zones in the southern 

hemisphere are relative deficits to the west and a surplus over and to 

the east of the South American and African continents. This pattern 

is also evident to a lesser extent over Australia which generally has 

a net radiant flux above the zonal average. These disagreements may 

be due to the difference in observation times of the satellites, about 

1130 and 2330 local time for Nimbus 3 and 0900 and 2100 for the NOAA 

satellites. 
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Seasonal values of the net radiant flux taken from Gruber 

(1977) are presented in Table 2.2. The mean annual meridional energy 

transports (ocean and atmosphere) derived from the results obtained 

from several satellites show good agreement. Except for the values 

of Raschke et al. (1973) these satellite studies confirm the finding 

of Vonder Haar and Suomi (1971) that there is no annual inter-hemispheric 

energy transport despite the asymmetries in geophysical and meteorological 

properties of the hemispheres. 

Table 2.2 

Seasonal Values of Net Radiative Flux based on 
one year of data from the NOAA satellites. 

(Taken from Gruber, 1977) 

Net radiant flux (W m(2) 

Latitude Dec - Feb Mar - May 
• 

Jun - Aug Sep - Nov 

80 °N -175 ,  -125 -100 -180 

70 -180' . -115 - 20 -170 

60 -170 	 ,.. - 52 12 -142 

50 -145 - 17 27 -102 

40 -112 10 	... 43 -65 

30 -80 18 47 -39 

20 -45 32 45 - 	7 

10 +10 52 48 30 

Equator 35 45 30 45 

10 58 25 -10 43 

20 70 - 	5 -47 40 

30 73 -40 -80 35 

40 53 -60 -125 10 

50 30 -118 -162 - 20 

60 5 -147 -180 - 60 

70 - 63 -163 -175 -132 

80 °S -120 -150 -150 -129 

Inter-annual variations of satellite-derived radiative 

parameters are considered for the monsoon area by Winston and Krueger 

(1977) and their use as a diagnostic tool in circulation studies suggested. 
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2.1.5 	Overall Energy Balance 

In the energy budget equations in the form of Eq. 2.1 there is 

still one unknown, V.F
0 
 the divergence of the oceanic energy flux. Oort 

and Vonder Haar (1976) consider that direct measurements of this term are 

not feasible and calculate the term as a residual from known values of 

the other terms. The results reveal a more major role of the oceanic flux 

in transporting energy from the tropics than had been expected before 

satellite-derived estimates. An area of divergence in the tropics gives 

way to convergence at high latitudes where the atmospheric flux becomes 

the dominant energy transporter. In the tropics the results suggest a 

large oceanic flux from the summer to the winter hemisphere. 

Although the atmospheric fluxes are poorly known in the southern 

hemisphere due to lack of data, Trenberth (1979) has applied the same 

method. For mean annual conditions his results show that the oceanic 

and atmospheric fluxes are approximately equal between 00  and 30 ° S. Even 

as far south as 60 ° S the oceanic flux still transports about one third 

of the total flux, in con*ast to the northern hemisphere where the 

oceanic flux is negligible at 60 ° N. He attributes this to the different 

land-sea distribution of the two hemisphere's and the absence of significant 

atmospheric standing eddy flux in high southern latitudes. 

The budget of the atmospheric column alone can be considered. 

This is described by Eq. A1.12, expressing the sensible and latent energy 

fluxes as a combined atmospheric flux FA . 

QTA 	QBA 	= V.FA 4. SA - (QH 	QE) 
	...(2.11) 

This approach requires an estimation of the net radiational 

cooling of the atmosphere (QTA
* 
 - QBA*)  and the sensible and latent 

energy fluxes (QH,  QE) from the surface to the air. Oort (1971) combines 

available estimates of these terms with his estimates of V-FA 
 and S

A 
to 
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test whether all the terms balance. He finds fair agreement considering 

the assumptions used in the determination of all the terms. Oort and 

Vonder Haar (1976) use satellite radiation data and measured values of 

V.FA  and SA  to estimate the term QBA*  - QH  - QE,  the net energy flux 

from the atmosphere to the earth, as a residual. 

2.2 	Regional Scale Energy Budget Studies 

The energy transformations taking place on a regional scale 

and the role of such scales in the general circulation have been the 

subject of studies by a number of investigators. This section briefly 

reviews these studies starting with early tropical results and leading 

on to mid-latitude reports. 

2.2.1 	Tropical Studies 

The earliest regional scale energy studies investigated the 

dynamics of tropical areas. A study of the inter-tropical convergence 

zone (ITCZ) over several months led Riehl and Malkus (1958) to suggest 

that individual cumulonimbus clouds were responsible for the vertical 

energy transport in the ascending arm of the Hadley Cell. 

Berson (1961) investigated the summer monsoon in the northwest 

Australia-Indonesian region to focus attention on the role of longitudinal 

asymmetries in the tropical circulation. He found a more vigorous 

circulation in the monsoon regime than had been found in reports of 

studies on the winter side of the ITCZ. The dominant energy flux terms 

were the import of latent energy and export of sensible energy by the 

monthly mean wind with the latter term dominating. The eddy flux of 

latent energy was about 25 per cent of the mean latent energy flux and 

counteracted the mean latent energy flux divergence, a trend attributed 

by Berson to ocean land moisture gradients in the area. 

The meridional sensible and latent energy flux divergences 

were about 150 W m
-2 

while the divergence of the individual zonal fluxes 

was generally less than 50 W m -2
. The overall energy flux divergence was 

a small residual in which both meridional and zonal terms were significant. 
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While the meridional winds in all cases showed latent energy import and 

sensible energy export the reverse was generally true for the zonal winds 

during the monsoon months. 

Berson considered an upper layer bounded by the 550mb level and 

found a large potential energy divergence with smaller enthalpy convergence. 

In the lower layer (pressures exceeding SSOmb) the reverse was true with 

both terms smaller in magnitude. 

Hastenrath (1966) discusses the energy budget of two areas, one 

over the Caribbean Sea and the other over the Gulf of Mexico, based on 

one year's aerological data. Although classed as trade wind areas 

Hastenrath found that the Caribbean Sea showed marked seasonal variation. 

In the dry (winter) season its energetical behaviour was that of a 

classical trade wind zone with latent energy export and sensible energy 

import. This pattern was reversed in the wet (summer) season with latent 

energy import and sensible energy export so that the region behaved like 

ITCZ regions. The Gulf of Mexico also showed this reversal in mid-summer. 

For both areas the divergence of the energy flux was found to be associated 

principally with the mean poleward transport. The vertical structure, 

however, was more complex than the two layer division of Berson. Alternating 

layers of inflow and outflow were found with the summer values dominated by 

-2. a flux divergence from the 300-100mb layer of 1300 W m 	The individual 

sensible energy flux divergences were an order of magnitude greater than 

the radiative terms. Vertical transfer of energy was carried out mainly 

by the mean motion, but the eddy (convective) terms were also significant, 

especially in summer. 

Gruber (1970) considered the energy budget of the Florida 

Peninsula during summer months to ascertain the role played by convective 

processes in the vertical transport of energy for that region. A diurnal 

variation of the flux divergences was found even as high as the 200mb level, 

related to the sea-breeze circulation, and the measured flux divergences 

were adjusted according to an idealised model to obtain a daily average value. 

The wind data were objectively adjusted to ensure mass balance over the area. 
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Gruber found that the Peninsula represented a potent energy 

source for the atmosphere, calculating the net transfer of energy at the 

air-surface boundary as about 210 W m
-2 

compared with estimates of 150 

and 120 W m12 for the Caribbean and Gulf of Mexico respectively in 

Hastenrath's study. About 80 per cent of this transfer over Florida 

was in the form of latent energy. 

A schematic version of the energy budget as discussed by Gruber 

is given in Fig. 2.5. Alternating layers of import and export were 

observed with energy convergence in the lowest layer and export at the 

top. The export of sensible energy by the upper layer is again the major 

term and although less than the export from this level over the Caribbean 

it is almost twice the corresponding value of 430 W m
12 from the adjacent 

Gulf of Mexico during the summer of 1960 (Hastenrath, 1966). 

Vertical energy fluxes were calculated by Gruber as residuals 

after estimating the non-adiabatic terms of net radiant flux and latent 

energy release by precipitation for each layer. Mean and turbulent 

processes were both signii49ant in the vertical transfer of energy, with 

turbulent processes (convection) dominating the transfer of latent energy. 
•,* 

The potential energy and enthalpy flux divergences over the 

Florida Peninsula in summer are an order of magnitude greater than the 

zonally averaged values at the same latitude (cf. Fig. 2.4). The latent 

energy flux divergence is less than the zonal but the total atmospheric 

energy flux divergence is still about 120 W m
-2 compared with an average 

value for the 20-30 ° N latitude belt of about 20 W m -2 . Gruber suggests 

that the mean circulation was primarily responsible for the atmospheric 

flux divergence over Florida, while in the zonal average for summer the 

total eddy flux divergence appears to dominate. 

In summer the Caribbean Sea also appears to export more sensible 

energy (53 W m -2 , Hastenrath, 1966) than the zonal average (14 W m -2) but 

its latent energy flux convergence, and both forms of energy for the 

Gulf of Mexico are close to the zonal averages. In winter the Caribbean 
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also exports slightly more than the zonal average with an above average 

convergence of sensible energy more than compensated by a large latent 

energy flux divergence (126 W m12 compared to a zonal average of 77 W m
-2

). 

The Gulf of Mexico, in contrast, appears as an area of strong energy 

import (-154 W m1 2) in a weakly exporting latitude belt (+11 W m -2) due 

mainly to strong sensible energy convergence. 

2.2.2 	Mid-high latitude studies 

A study of the energetics of the region surrounding the Baltic 

Sea was carried out by Behr and Speth (1977) using seven years of records. 

Energy equations of the form Eq. A1.18 were used so that latent energy 

is only considered when condensation occurs. The non-adiabatic energy 

sources for the atmospheric column were taken as the release of latent 

energy by condensation and the net long wave radiation as well as heat 

transfer from the surface. Short wave absorption in clouds or air seems 

to have been neglected. 
	ks, 

Horizontal flux divergences of enthalpy and potential energy 

were computed by Behr and'Speth, including a breakdown into mean and 

eddy components. The mean fluxes were generally greatest in October and 
••■ • 

least in July in line with the mean wind field, but the eddy fluxes showed 

no marked annual cycle. Although the mean fluxes were several orders of 

magnitude greater than the eddy fluxes, the divergences of each were 

comparable in magnitude. The individual flux divergences varied markedly 

in sign and magnitude over the four sub-areas. The overall energy flux 

divergence was generally a small residual of large counteracting terms 

with individual enthalpy flux divergencess as large as 2000 W m
-2

. 

Among the non-adiabatic terms the sensible energy transfer from the 

surface and the latent energy released by precipitation were an order 

of magnitude less than the net long wave radiation which ranged from 

-165 to -220 W m
-2

. 
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While the divergence of the eddy potential energy flux was 

generally of the same sign as the eddy enthalpy flux divergence this 

was not true for the respective mean flux divergences. There was also 

marked counteraction between the mean and eddy terms of enthalpy flux 

divergence. 

The individual flux divergences, especially the sensible energy 

terms, are at least one order of magnitude greater than the zonal average 

values (cf. Fig. 2.4) where the greatest flux divergence at these 

latitudes was about 120 W m
-2 for the mean potential energy flux divergence 

at 55 °N in winter. Summing the individual components shows that the region 

generally has sensible energy convergence of between 100 and 150 W m
-2 . 

For the north and east of the study area in winter this rate of import 

is only slightly greater than the zonal average, but otherwise this 

strong convergence is in contrast to a zonal average of weak divergence. 

The variation in the pattern of flux divergences over the study 

area expresses the importance of regional scale variations in the earth-

atmosphere energy budget and reveals an even more complex structure than 

is suggested by zonal averages. 

Gallardo et al. (1977) performed energy budget calculations for 

the western Mediterranean area based on two years'data. In the overall 

energy budget several options for the net atmospheric radiant flux and 

condensational heating were used as exact balance of all the terms was 

not obtained. 

A latent energy budget for the area was also attempted by 

Gallardo et al using climatic rainfall and evaporation data combined 

with the computed latent energy flux divergences. Precipitation was 

calculated as a residual and gave reasonable agreement with observed 

values except for spring. The latent energy flux divergence was found 

to be dominated by the mean flow. Latent energy import occurred between 

the surface and 850mb in all seasons except summer when there was strong 

export up to the 700mb level. 
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The mean flux divergences of sensible energy (enthalpy and 

potential energy) at individual levels were generally an order of 

magnitude greater than those of the eddy flux, but both components 

were of comparable magnitude in the vertical integral due to 

alternating layers of opposite sign in the vertical profiles of mean 

flux divergence. There was considerable variation between the two years 

studied. Average vertical profiles of the total and eddy sensible energy 

flux divergences are shown in Fig. 2.6. The mean flux divergence shows a 

layer of strong convergence in the middle and upper troposphere with 

divergence in the lower stratosphere. A layer of convergence occurs near 

the surface in winter. The eddy flux divergence is essentially of the same 

sign in the vertical with summer divergence and winter convergence. 

Strongest eddy convergence in winter occurs near the jet stream level but 

the strongest summer divergence occurs near the surface. 

The eddy and mean flux divergences of sensible energy counteracted, 

as also found in the study of Behr and Speth. The eddy term dominated in 

winter leading to overall convergence, but the mean term in summer was 

almost twice the eddy term, again producing overall convergence. Sensible 

energy divergence occurred in winter and spring. 

Relative to the zonal average (a mean of the values for 35 °N 

and 45 °N in Fig. 2.4) the western Mediterannean appears to be an energy 

exporter in summer with a total flux divergence of 47 W m
-2 compared to 

a zonal average of 3 W m
-2 . The reverse is true in winter with a net 

import (-44 W m-2 ) in a belt of average divergence (17 W m -2 ). The 

component mean and eddy terms are at least an order of magnitude greater 

than the corresponding zonal averages, and the distribution between 

latent and sensible energy is different from the zonal norm. The zone 

as a whole has sensible energy divergence and latent energy convergence 

in both summer and winter, while the western Mediterranean has convergence 

of both terms in winter, and in summer has strong sensible energy 

convergence (-80 W m
-2

) more than compensated by latent energy divergence 
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(127 W m -). In summer, then, the area seems to act as a strong moisture 

source using imported sensible energy (mainly from the mean flow) to drive 

evaporation from the surface. 

2.2.3 	Water Vapour Budget Studies 

In addition to the results quoted above information on the 

latent energy component of the energy budget can be obtained from water 

vapour budget studies which have been carried out as part of more general 

water budget investigations. Many are principally hydrological studies 

concerned with computing net rainfall runoff, but some describe the 

atmospheric processes involved in the water vapour transport. 

Such studies have been reviewed by Rasmusson (1977) who discusses 

the methods used and likely sources of error. Rasmusson questions the 

accuracy of studies carried out for areas less than about 10 6 
 km2  using 

the routine upper air network, not only because of errors in the radiosonde 

observations but also because of the inadequate spatial and temporal 

resolution possible with the existing upper air network. In earlier work 

Rasmusson (1967) found a significant diurnal variation in water vapour 

fluxes on even the continental scale (the United States in this case), 

especially in summer. An intensive study for the Baltic Sea region 

(Baese and Liebing, 1977) of evaporation minus precipitation obtained 

realistic results only for the larger sub-regions (of the order of 

10
5 

km
2
). 

Palmen (1967) also discusses the reliability of water vapour 

budget analyses and quotes the results of a study over northern Africa 

(including the Sahara desert) which revealed a strong excess of 

evaporation over precipitation, which would seem unlikely according to 

present hydrological knowledge. 

One of the earliest studies was that of Hutchings (1957) who 

studied a 9 x 10
4 

km
2 
area over southern England for the three summer 

months of 1954 using twice daily rawinsonde observations at four stations. 

He found reasonable agreement between the net convergence and storage of 
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water vapour calculated from the upper air data and the difference between 

observed precipitation and computed evapotranspiration. Both the mean 

and eddy terms of the water vapour flux divergence changed sign in the 

vertical with convergence in the lowest layers (1000-850mb) and divergence 

above. Although the magnitudes of the mean terms were greater at 

individual levels than the eddy terms, both terms were comparable in the 

vertical integral and opposite in sign. Hutchings found that the vertical 

transport of water vapour was due more to the small-scale convective and 

turbulent flux than transport by the mean vertical mass flux. 

A study by the same author for the Australian region (Hutchings, 

1961) based on one year's once daily upper air data found reasonable 

agreement in eastern Australia on an annual basis but not on a monthly 

basis. Hutchings attributed some of the disagreement to the computed 

evapotranspiration which represented potential rather than actual values. 

Rasmusson (1968) used three year's twice daily data to calculate the 

pattern of water vapour flux divergence over North America. Although in 

general agreement with independent hydrological data, Rasmusson was not 

confident about the fine structure of the results. The sign of the total 

water vapour flux divergence over the continent again varied in the 

vertical in summer with low level convergence and upper level divergence. 

In winter there was convergence at most levels. The central American Sea 

was portrayed as a strong source area with the continent acting as a sink, 

particularly near the north Pacific Coast and the south-east coast. 

None of the studies appears to adjust the upper air data for 

overall mass balance, although Rasmusson (1968) suggests that some of 

the errors may be due to mass imbalance. Considering the compensation 

between mean and eddy terms and among different layers and the need found 

in total energy budget studies for an adjustment of the data to obtain 

mass balance, it would seem that a similar procedure to ensure mass balance 

would be desirable for latent energy budget studies even though the water 

vapour transport is confined mainly to the lower troposphere. 
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CHAPTER III 

ANALYSIS METHODS AND RESULTS 

3.1 	Data Sources and Quality 

3.1.1 	Data Sources 

The data used in the present study are of two main types - 

standard climatic data and satellite radiometric observations. The 

climatic data were mainly routine daily upper wind and radiosonde 

observations over south-east Australia for the period 1 January 1974 

to 31 December 1976, supplied on magnetic tape by the Australian 

Bureau of Meteorology. Details of the reporting stations used are 

listed in Table 3.1 and the locations of the stations are shown in 

Fig. 3.1. The radiosonde records included values of the mixing ratio  

of water vapour, defined as the mass of water vapour per unit mass of 

dry air. Energy flux computations require values of specific humidity  

(defined as the mass of water vapour per unit mass of the air-water 

vapour mixture). The two terms are approximately equal numerically 

because of the small quantities of water vapour in the air under 

normal conditions. Values of mixing ratio were treated in the 

computations as being equivalent to values of specific humidity. 

Long term averages of the upper air observations were taken 

from Maher and Lee (1977) except for the total water vapour content for 

which the results of Pierrehumbert (1972) were used. Where required, 

long term or monthly averages of surface climatic data were taken from 

Bureau of Meteorology publications. The area studied was the hexagon 

bounded by a line joining the stations Adelaide, Cobar, Williamtown, 

Wagga Wagga, Laverton and Mt Gambier. The area of this hexagon was 

measured planimetrically as 4.30 x 10 5 km 2 . 

Monthly mean satellite radiation data were obtained on microfilm 

from the United States National Oceanic and Atmospheric Administration - 

National Environmental Satellite Service (NOAA/NESS) covering the period 

from June 1974, when the observations commenced, to February 1978. 



Table 3.1 

Details of Rawinsonde Stations Used 

, 

Station WMO Number Latitude ( ° S) Longitude (°E) 
Elevation 
(Metres) 

Wind Finding 
 

* 
Observation Times (GMT) 

Equipment Upper Wind Radiosonde .  

Adelaide 94672 34 °  57' 138 ° 	32' 
- 	. 

7.6 WF44 

	

0500, 	1100, 

	

1700, 	2300 1100, 	2300 

Mildura 94693 34 0  14' 142 ° 	05' 51%3 WF2 0500, 	1100,  1700, 2300 

Cobar 94711 31 °  32' 145 ° 	49' 243.8 WF2 

	

0500, 	1100, 

	

1700, 	2300 
2300 

Williamtown 94776 32 °  49' 151 °  ''50' 4.0 WF44 
0500, 	1100, 
1700, 2300 

1100, 	2300 

Wagga Wagga 94910 35 °  06' 147 ° 	30' 214.3 WF3 
0500, 	1100,
1700, 	2300 2300 

Laverton 94865 37 °  53' 144 ° 	45' 14.3 WF44 

	

0500, 	1100, 

	

1700, 	2300 
1100, 	2300 

Mt Gambier 94821 37
0  49' 140 ° 	46' 64.9 WF44 

	

0500, 	1100, 

	

1700, 	2300 2300 

* One hour earlier when Daylight Saving Time in operation 



-f- -f- 
Cobar 

-1- -30S 

Williamtown 

-40S 	4- 

135E 	140E 	145E 	150E 	155E 

Fig. 3.1 Location diagram showing reporting stations used and the irregular hexagonal study area. 
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The radiation budget parameters (absorbed solar radiation, albedo, 

outgoing long-wave radiation, net radiation) are given at grid points 

with 2.5 degree latitude-longitude spacing for the whole globe. The 

data were acquired from the 2-channel scanning radiometers on the 

operational satellites NOAA-2 to NOAA-S, which had a near polar 

sun-synchronous orbit at an altitude of approximately 1100km. Gray (1978) 

stated that the measurement of each parameter was based on one "look" 

per day with an adjustment to the local vertical. As a day-time and a 

night-time value of long wave radiation are measured, the average of 

these two values was used in this study as representative of the 

twenty-four hour period. Gray also states that limitations on computer 

processing time did not permit the averaging of measurements from 

successive orbits in areas of overlap. Gruber (1977) gives details of 

methods and approximations used in deriving the radiation budget values. 

Reflected energy was sensed in the 0.5 - 0.7 pm range of the visible 

spectrum and spot measurements of the albedo were assumed to represent 

average daily values. Emitted energy was measured in the infrared 

water vapour window 10.5 - 12.5 pm, and a non-linear regression equation 

used to determine the total outgoing longwave radiation flux (4 - SO pm) 

from measurements in the window region. (Abel and Gruber, 1979). 

3. 1 . 2 Data Quality 

(a) Radiosonde and Upper Wind Data 

The data supplied on magnetic tape had previously been 

subjected to the Bureau of Meteorology's routine 

quality control, aimed at eliminating transmission 

and processing errors and ensuring internal self-

consistency of the records. These tests included 

hydrostatic checks of the radiosonde records and 

limitations on the vertical wind shear in the upper 

wind data. Between the surface and 100mb the 

radiosonde data Were available at thirteen levels 

and the upper wind measurements at fourteen levels. 
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Most of the pressure levels in the two data sets were 

coincident, although the 750mb level is used for 

upper winds and the 800mb level in the radiosonde 

data. Mixing ratio measurements were not given above 

the 400mb level. 

Errors in Australian upper air observations are 

discussed in The Laverton Serial Sounding Experiment 

(Bureau of Meteorology, 1968). The errors in wind 

estimates increase with height due to uncertainty 

in determining the position of the balloon. For the 

WF44 radar system the maximum root mean square (rms) 

vector error expected in the upper troposphere was less than 

5 m s
-1 

for 95 per cent of flights. For the Laverton 

system studied the actual random errors were 

approximately half the maximum specified by the 

manufacturers, implying an actual maximum rms vector 

error of about 2.5 m s
-1 . Figures presented for the 

Laverton WF2 radar were similar to the maximum errors 

expected on the WF44 system. However, the manual 

calculations required in the processing of WF2 reports 

add further errors of the same order of magnitude 

(Spillane, 1969). 

The rms errors for the temperature and pressure were 

found to be less than 0.8 K and 1.0 mb respectively. 

Humidity measurements in the absence of cloud are 

estimated to be accurate to within five per cent at 

temperatures above 0 °C. No estimate of the error was 

given for temperatures below 0 °C although Oort (1978) 

quotes a figure of ten per cent. The measured values 

within clouds may be too low by up to twenty-five per cent. 
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The humidity sensing elements used in the radiosondes have 

a threshold value of mixing ratio dependent on pressure 

and temperature, below which humidity is not recorded. 

(See Table 3.2). Values of mixing ratio below the 

threshold value are treated as zero in the radiosonde 

records. The treatment of values below the threshold 

in the flux computations is discussed in the next 

section. 

The effect of these instrumental errors on flux values 

can be considered using the formula for the propagation 

of errors (Young, 1965). The variance u 2 of a quantity 

y(a,b) calculated from the observed quantities a and b 

is given by 

a>, 2 = (3y/3a) 2  CI
a

2 
 

+ (3y/31) 2  ab 	...(3.1) 

Table 3.2 

Minimum Relative Humidity and corresponding mixing ratio (g Kg
-1

) 
that can be normally measured by the radiosondes currently used in Australia. 

Temperature 
("C) 

Limiting 
Relative 
Humidity 

Limiting Mixing Ratio (g/Kg) for given Pressure (mb) 

1000 900 850 800 700 600 	! 500 	1 400 

1 	I 

30 14% 3.7 4.1 	4.4 4.6 5.3 

20 15 2.2 2.4 	2.6 2.7 3.1 	3.7 

10 18 1.4 1.5 	1.7 1.8 2.0 	2.3 	i 	2.8 

0 21 0.8 0.9 	1.0 1.0 1.1 1.3 1.6 	1.9 

-10 24 0.4 0.5 	' 	0.5 0.5 0.6 0.7 0.9 	1.0 

-20 26 0.2 0.2 	0.2 0.3 0.3 0.3 0.4 0.5 

-30 29 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 

-40 32 0.1 0.1 0.1 0.1 
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(i) Total enthalpy flux 

The variance a 2  of the enthalpy flux (C TV) is then 

a 2  = (CpV) 2  aT
2 

1 
+ (C T)2 a

v
2 ... (3.2) 

where aT and av 
are the variance of temperature and wind 

velocity respectively. 

Taking typical values of 25 in s -I  and 250 K for V and T 

respectively, and using av  = 2.5 in s 	and aT  = 0.8 K gives 

a value of 6.2 x 10 6  W in Kg -I  for a in a flux of 6.2 x 10 6  

W in Kg-I . Because of the large magnitude of the temperature, 

the contribution of the first term on the right hand side of 

Eq. 3.2 is negligible, and the errors are dominated by the 

uncertainty in the wind measurements. 

(ii) Latent energy flux 

For latent energy flux LqV the variance a 2  is 
2 

a 2  = (LV) 2  a 2  + (Lq) a 2  
2 	q 	V 

... (3.3) 

Using a = 0.05q and v = 2.5 in s -1  the standard deviation 

a represents 25 per cent of the latent heat flux for 
2 

V = 10 in s -1  but only eight per cent of the flux for V 

= 40 in s -1 . The partial contribution to a 2  of the specific 

humidity errors (found by inserting av  = 0 in Eq. 3.3) is 

five per cent, but the partial contribution of wind errors 

• (J = 0) decreases from 25 per cent at V = 10 in s -1  to 

6 per cent at V = 40 in s. In contrast to the enthalpy flux 

the contributions of errors in specific humidity are comparable 

' with those in wind measurements, especially at high wind speeds. 



a 2  = (Cp(T-T)) 2 (a  2 4.  a  2) 

3 	V 	V
T 	T (Cp(v-07)) 2  (a 2  + a—a )  ... (3.5) 
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(iii) Eddy enthalpy flux 

The variance 0
32 

	the e eddy enthalpy flux C T'V' 

(defined in Chapter 2) can be found by applying the 

formula for the propagation of errors to the 

expression 

y (T, -17, V, Td) = CpT'V' = Cp(T-1) (V-V) 	... (3.4) 

Then 

The variance of the mean of a set of n measurements is given 

by the variance of the individual measurements divided by 

the number of measurements. 

2 Then 	a = a 2/n and 0 2 = a/n 
T 	T 

... (3.6) 

where n is the number of observations. 

For monthly averages a 2  and a_2 will be small compared 
Tr.  

with a 2  and a 2  so that a 2  is given approximately by 
3 

a 2  = (CpV') 2  a 2  + (CpT9 2  a 2  
3 

... (3.7) 

Values of a expressed as a percentage of the eddy flux are 
3 

given in Table 3.3 for a range of T' and V' using aT  = 0.8K 

and a = 2.5 in s -1 . Also given are the contributions of each V 

term to the total percentage. The percentage error decreases 

from near SO per cent at low values of T' and V' to about ten 

per cent for high values. Again, in contrast to the total 

enthalpy flux, the errors from temperature measurements are 

comparable with those from wind measurements, except for low 

values of V'. 
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The above considerations refer to root mean square (rms) 

errors in individual observations. For monthly averages, 

assuming the instrumental errors are random rather than 

systematic, the rms errors will be reduced by the factor 

1/130, and for vertical integrals a further reduction of 

1//M will occur where m is the number of levels used. 

Table 3.3 

RMS instrumental error in eddy enthalpy flux measurements, for a range 
of wind and temperature deviations, using a l. = 0.8K and av  = 2.5 m s 1 , 
expressed as a percentage of the eddy flux. The partial contribution 

for instrumental errors in temperature alone (a=0)  or wind alone (aT=0) 
are given in lines a and b respectively, with the combined percentage 

error derived from Eq. 3.3 in line c. 

V'(ms -1 ) 

T1 (K) 5 10 20 40 

a. 16 16 16 16 

5 	b. 50 25 13 6 

c. 53 30 20 17 

a. 8 8 8 8 

10 	b. 50 25 13 6 

c. 51 26 15 10 

a. 5 5 5 5 

15 	b. 50 25 13 6 

c. 50 25 14 8 

Spillane (1969) and Oort (1978) point out that mesoscale and 

microscale variations may add further errors of the same order 

of magnitude as the instrumental errors. Missing data, 

especially wind observations at high levels, are another source 

of error. The tendency for reports to be missing during high 
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wind shear conditions, or lost in rain echoes for some radar 

systems (e.g. WF2), may produce a bias in mean wind or flux 

values. A quantitative study of this problem was made for 

momentum fluxes by Priestley and Troup (1964). They found 

that the omission of as few as ten per cent of observations 

caused significant errors in the eddy momentum flux u' v', 

in some cases even causing a reversal of sign. 

Systematic diurnal variations in the wind and energy fields 

will also lead to errors as energy fluxes representing a 

daily average are calculated from once or at most twice daily 

rawinsonde flights. On the small-scale the fluxes at coastal 

stations will be affected by land-sea contrasts and local 

sea-breeze circulations, but there is evidence that diurnal 

variations also occur on a large scale. Rasmusson (1967) 

found a significant diurnal variation in the water vapour flux 

field over North America, especially south of 50 ° N in summer, 

as part of a broad-scale diurnal circulation that could be 

detected at pressures as low as 500Mb. He found that diurnal 

variations in the water vapour flux divergence were comparable 

with the computed mean flux divergence itself. 

(b) Satellite Data 

Difficulties in satellite radiometric observations in 

general have been discussed briefly in Chapter II. The 

accuracy of the NOAA data is discussed qualitatively by 

Gruber (1977) who states that systematic noise 

characteristics of the system and the lack of onboard 

calibration for the visible radiometer compounded 

uncertainty due to the narrow spectral intervals of the 

equipment and the assumptions used in reducing the raw 

data to estimates of radiance. 
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Oort and Vonder Haar (1976) present estimates of the 

standard error of the mean in seasonal and annual 

net radiation measurements for ten degree latitude 

zones. The standard error was generally less than 

7 W m-2  in low and middle latitudes but increased to 

between 10 and 15 W m -2  poleward of 70 0 . These 

estimates were based on measurements from a variety 

of satellites and equipment over 29 months of records. 

The authors suggest that the natural temporal 

variability dominates their error estimate. The 

difficulties of intercomparison are reduced when data 

from only one series of satellites are used, but the 

temporal sampling problem is accentuated as the NOAA 

satellites cross the Equator at approximately 0900 

and 2100 local time. This limited sampling will 

introduce errors due to the diurnal variation of 

albedo (variations of cloudiness as well as solar 

zenith angle) and long wave radiation. 

In a comparison of the early NOAA measurements with 

results from the Nimbus 6 Earth Radiation Budget 

Experiment, Gruber (1977) found that NOAA long wave 

radiation fluxes were consistently 10 W m -2  higher. 

As measurements reported by Gruber imply an annual 

net radiation deficit for the earth of 12 W m -2  it 

seemed that the NOAA long wave data were systematically 

too high. The linear regression used to derive the 

long wave radiant flux from the measured radiances was 

replaced by a non-linear regression and the archive 

values corrected (Winston et al. 1979). The corrected 

results were used in this study. Gruber also reports 
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that between December 1975 and September 1976 measured 

albedo values appear to be too low by about three per 

cent in albedo units due to instrument degradation. 

3.2 	Method 

3.2.1 	Evaluation of Energy Fluxes 

The equations for the energy balance of an atmospheric 

column and for the breakdown of fluxes into mean and eddy terns have 

been outlined in Chapter 2 and Appendix Al. The products of daily 

values of the wind components with each of the energy terms (enthalpy, 

potential energy, latent energy and kinetic energy) were averaged over 

a month at each of the six radiosonde stations to obtain the mean monthly 

total flux at a given pressure level. The mean flux for each month was 

calculated from only those observations used in calculating the total 

transfer. The eddy flux was then obtained by subtracting the mean 

from the total flux. Generally only 2300 GMT data were used, although 

the results at 1100 GMT are presented for several months. 

Trapezoidal integration was used to obtain the vertical 

integral at each station, with the daily surface pressure used as the 

lower limit of integration. The upper limit of integration was taken 

as 100 nib because of the increase in the proportion of missing observations 

at pressures below this value. It was assumed that the net vertical 

flux of mass or energy through the 100 nib level averaged over the area 

in question is zero, although not necessarily requiring the vertical 

velocity or vertical energy flux at each station to be zero. 

The net radiation measurements are taken from outside the 

atmosphere, so that for comparison between the net radiation and energy 

flux divergence measurements, it was assumed that the satellite 

measurements could be regarded as representative of the radiation at the 

100 nib level. This is not unreasonable as: 
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(a) 90 per cent of the mass of the atmosphere is below 

the 100 nib level, and 

(b) the region above 100 mb is close to radiative 

balance in mid-latitudes (Dopplick 1974). 

For the 950, 750 and 250 nib levels, upper wind but not 

radiosonde measurements were available. Interpolation from adjoining 

levels was used to obtain the temperature, geopotential and mixing 

ratio at these levels. In the case of 750 and 250 nib the mean of the 

measurements at adjacent levels was used, but for the 950 nib level 

the surface and 900 nib values were weighted according to the difference 

in pressure of each from 950 nib. Otherwise, no attempt was made to 

interpolate missing observations, except for several months treated 

in detail and discussed in Section 3.3. 

3.2.2 	Flux DivergenCes 

The divergences of the winds and energy fluxes were calculated 

by evaluating line integrals round the polygon joining the reporting 

stations using the method outlined by Gruber and O'Brien (1968). 

Consider a hexagon with sides of length S l , S 2 , 	 S
6 

and unit outward normal vectors n n
2' 	 n6 as shown in Fig. 3.2 

The line integral of the normal wind component Vn  round the hexagon 

is given by: 

	

6 	. 

	

V ds = E 	v . n. ds. n  

	

i= 	1 — 	1 1 
... (3.8) 

(Note: when i = 6, i+1 refers to Vertex 1) 
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96 

Fig. 3.2 Irregular hexagon with stations at the vertices, sides si, 	, s6 and unit normal vectors ni, 	, n6 
directed outwards. 

Using trapezoidal integration, which effectively assumes a linear 

variation of the normal wind component between successive integration 

points, 

6 1 (V +V 	) 	s n QC Vn ds = E — 
2 	1+1 i=1 

... (3.9) 

Expanding the brackets and collecting coefficients of the Vi gives 

6 
Vn ds = EV. 	. 	 n 1 	(Si 	. + S. 	n. 	) 	... (3.10) 

1=-1-1+1 	—
2 	1+1 —1+1 

The wind vector at each station i is weighted by a vector 

W. = 1 (S.n.+S. 	n. ) which has magnitude equal to, but direction -1 	 1+1 —1+1 

normal to the line joining the mid-points of the sides adjacent to the 

station. So the line integral can be simply evaluated from the values 

at each station, and if integrals over different polygens are desired, 

these can be achieved by merely altering the factors applied to the 

value at each station. 
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The bearings and magnitudes of the vectors W i  for the hexagon 

being considered were calculated using standard spherical trigonometrical 

techniques and are listed in Table 3.4. Due to the curvature of the 

earth, the bearing of the outward normals varies slightly along the line 

joining each station, so that an average value was used. The values 

in Table 3.4 were verified by calculating the divergence of uniform 

westerly and southerly winds over the hexagon. 

Table 3.4 

Bearing and Magnitude of the Weighting Vectors 
used in the Calculation of Energy Flux Divergence. 

STATION MAGNITUDE 

(Km) 

BEARING 

(Degrees clockwise 
from north) 

Adelaide 420.8 303.7 

Cobar 633.2 349.5 

Williamtown 213.2 67.7 

Wagga 425.8 138.5 

Laverton 333.3 153.0 

Mt Gambier 	. 320.2 211.1 

3.2.3 	Treatment of Water Vapour Measurements 

(a) Correction for Values of Specific Humidity below the 

Threshold Values 

Two sets of figures are often given in the presentation 

of precipitable water data. In one set, observations 

of specific humidity below the threshold are assigned 

the threshold value and in the other set these are 

treated as zero. It was decided that in presenting 

flux measurements this was too cumbersome and that 
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some averaging was necessary. Actual values will 

be between these extreme values. Assuming that the 

frequency distribution of specific humidity on a 

monthly basis is reasonably well-behaved (e.g. is 

a single-humped distribution) then the expected 

value of a given measurement below the threshold 

should be a function of the proportion of 

observations below the threshold. 

i .e . q* = f(m/n)B 	 ... (3.11) 

where q* represents the adopted value of the specific 

humidity, B is the threshold mixing ratio and f is a 

factor less than unity dependent on the ratio of the 

number of observations below the threshold m to the 

total number of measurements n. 

The two limiting cases used to choose a value for f 

are shown in Fig. 3.3. 

(a) 

Fig. 3.3 Limiting frequency distributions used to suggest values for the factor f ( see text) 	• 

- 

In case (a) all the observations are above the threshold, 

and in (b) all are below the threshold. If the distribution 
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in (a) is moved slightly towards lower values of q, 

so that one observation is below the threshold value, 

the expected value of that observation would be close 

to B. In this case, then, f is chosen to be unity. 

If all the observations are below the threshold, a 

value of B/2 is Chosen as the mean value of mixing 

ratio expected, giving f=1/2. Then equation (3.11) 

becomes 

q* = (0.5 	0.5(m/n))B 	... (3.12) 

This selection, in particular case (b) is rather 

arbitrary, but as most below threshold observations 

occur at high levels where the water vapour content 

is low, the procedure is not critical. 

In the flux calculations the ratio m/n was determined 

on a monthly basis. A quadratic equation had been 

derived for each pressure level from the values in 

Table 3.2 to express the threshold value B in terms 

of the temperature at that level. The appropriate 

value of B was determined on a daily basis from the 

observed temperature. 

(b) Correlation of Mean and Median Specific Humidity 

In the publication of mixing ratio data (treated as 

specific humidity in this study) the Bureau of 

Meteorology presents median rather than mean data 

because of the above-mentioned threshold limitation. 

To enable comparison of the monthly mean values 

obtained as outlined above with Bureau of Meteorology 

median data, the relation between the two was 

investigated over 32 months for which concurrent 
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data were available. A linear least squares 

regression technique was used to obtain a 

relation of the form 

= b + a* q 
mean 	median 

... (3.13) 

where a and b are constants. 

Results obtained from the combined data at the 

6 radiosonde stations are given in Table 3.5. 

Table 3.5 

Regression of mean on median specific humidity q mean = b + a* q median 
based on 32 months combined data of the six radiosonde stations. 

Level ( mb) 
Regression 

Coefficient (a) 
Intercept 

(b) 
Standard error of 

regression coefficient 
, 

Correlation 
Coefficient 

Surface 0.98 0.2 0.011 0.99 

900 0.95 0.3 0.012 0.99 

850 0.93 0.3 0.014 0.98 

800 0.83 0.6 0.014 0.97 

700 0.79 0.7 0.025 0.92 

600 0.93 0.4 0.041 0.90 

SOO 0.87 0.3 0.051 0.89 

400 0.80 0.1 0.084 0.87 

The regression equations were applied to the long 

term median values of mixing ratios presented by 

Maher and Lee (1977) for the period 1957-1975 to 

calculate long term averages of total water 

vapour content. If the median value was not given, 

half the threshold limit was used. The regression 

coefficients derived from single station data were 
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used where the standard error was less than 0.05. 

Otherwise the results of all stations combined 

were used, (generally at or below 700 mb).  A 

comparison of the results for Laverton with 

the average of the two sets of precipitable water 

figures obtained by Pierrehumbert (1972) for the 

period 1958-1969 is presented in Table 3.6. The 

greatest difference in the two sets is about 

5 per cent. 

Table 3.6 

Total water vapour content for Laverton (2300 GMT) derived by 
regression from median mixing ratios for 1957-1975 (Maher and Lee, 1977) 

compared with monthly mean values for the period 1958-1969 
(Pierrehumbert, 1972). Units are MJ m -2 . 

Month 
Water vapour content (MJ m-2 ) 
derived by regression from 

median mixing ratios 

Monthly mean water vapour 
content (MJ m-2 ) from 
Pierrehumbert (1972)* 

January 47.6 48.6 

February 48.1 50.2 

March 46.2 47.9 

April 42.1 40.3 

May 37.8 36.5 

June 34.5 32.4 

July 32.2 30.2 

August 32.2 30.8 

September 34.3 32.7 

October 37.7 37.5 

November 39.8 41.3 

December 43.6 45.1 

- 	Year 39.7 39.5 

* The average of the "exclusive" and "inclusive" values of 
Pierrehumbert (1972) were used. 
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3.2.4 	Adjustment of Wind data for Mass Balance 

As in the studies of Gruber (1970) and Behr and Speth (1977) 

the mass flux integrated over the total atmospheric column was found to 

be significantly different from zero, even for monthly mean winds. For 

example mean winds for January, 1974 showed a mean convergence of 

6.5 x 10 -3  Kg m-2 s -1  implying an unrealistic surface pressure rise of 

55 millibars per day. Observed pressure changes between successive 

months are generally less than 5 millibars or less than 0.5 per cent 

of the total mass. Assuming a typical value for the total atmospheric 

energy content of 2500 MJ m -2 , the maximum expected energy flux averaged 

over one month due to the surface pressure Change alone is about 5 W m -2 , 

which is less than the standard error of the net radiation measurements. 

So for monthly mean conditions it is reasonable to assume that the 

integrated mass divergence should be zero. 

On a daily basis the surface pressure change averaged over the 

total area could be as much as 10mb, and the corresponding energy flux 

associated with such a pressure change averaged over one day is about 

300 W m-2 . This makes it unreasonable to assume zero mass divergence on 

a daily basis, although Behr and Speth (1977) appear to make this 

assumption. In the present study the required integrated mass divergence 

for a given day was calculated from the surface pressure change which 

occurred between the preceding and succeeding days. 

Several objective techniques have been used to adjust for mass 

balance in energy budget studies. Gruber and O'Brien (1968) describe a 

technique for least squares minimisation with constraints. Using a 

Lagrangian undetermined multiplier the procedure Chooses a least-squares 

smoothing of the wind components normal to the perimeter of the atmospheric 

box while requiring the winds to satisfy mass balance. The procedure 

considers an arbitrary atmospheric volume, round the perimeter of which 

are M sounding stations, each providing data at L levels. The total mass 

flux divergence a is assumed to be known from independent physical 

considerations. 
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V ds
dP/

g = a 	... (3.14) 
P
t 

The wind data at each level are represented by a polynomial 

of degree N-1 where N.sM. The stations are numbered from 1 to M and 

theone-dimensimalspaceco-ordinatex.of station j is the fractional 

distanceroundtheperimeter(i.e.x.51 ) . 

The appropriate polynomial for each level 1 is given by 

n(1) 	n-I 
x. 

1 Pn (x.) = E 	
a. 	

j 
i=1 

... (3.15) 

It is not necessary for the degree of the polynomial to be the same at 

alllevels.Thecoefficients a. 1  are chosen by a least squares 

minimisation of the function S defined by: 

	

L M 	L 	M 
S(a. 	= E 	E 	(V. -

1
P) 2  +A(EF EW.P- 

1 1 , 

	

1=1 j=1 	
j1 	n 	1=1  1 j=1  J1 n get) ... (3.16) 

where Vil  represents the normal wind component at station j and level 1, 

and A is an arbitrary Langrangian multiplier. The bracketed part of the 

second term on the right hand side expresses the integral in Eq. (3.14) 

as a finite integration of the value of the polynomial approximation at 

any station j and level 1. The integration weights F 1  (vertical) and 

W. (horizontal) are determined by the particular finite integration used, 

which in this study was trapezoidal integration. 

Gruber and O'Brien (1968) point out that the most appropriate 

least squares polynomial must be of sufficiently high degree that it 

provides a good approximation to the data, but not of such a high degree 

that the data is fitted too closely and the "noise" retained. 
, • • 
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Further details of the solution of Eq. 3.16 are given in 

Appendix A2. The method was applied to one of the theoretical wind 

profiles with superimposed random error suggested by Gruber and O'Brien 

and also to actual mean monthly data. The divergence and vertical 

velocity at each level using actual and adjusted data are shown in 

Fig. 3.4(a) for January 1974. In this case a fifth degree polynomial 

(i.e. N = 6) was used at all levels. 

The results obtained with the synthetic and actual data are 

similar to those of Gruber and O'Brien (1968) when N = M - 1 (their 

Fig. 6), namely, that a small adjustment of the same sign is made to 

the divergence at each level. It was found that when the horizontal 

spacing of stations and the vertical spacing of the pressure levels is 

uniform an equal adjustment to the divergence is made at all levels by 

uniform Change to the normal wind components at all the stations. 

When a polynomial of fourth degree (i.e. N = M - 2) was used 

it was found that for uniform horizontal spacings the adjustments to each 

level are the same as for N = M - 1, but the adjustment to the individual 

winds is not even. The changes to the individual winds tend to alternate 

in sign, and the magnitude of the changes at a given station depend on 

which station was chosen as the origin for the x co-ordinate. If the 

horizontal spacing of the stations is not uniform, then the adjustments 

may even alternate in sign in the vertical. 

For lower degree polynomials the adjustments made were even 

larger and also varied in sign. 

As the adjustments do not seem to be made on a physically 

realistic basis when N<M-1 it seems that the method outlined is suitable 

only for N = M -1. In this case, however, there is no need to solve the 

set of linear equations (Eq. 3.16) for each occasion as it was found that 
- • • 

the outward normal wind component at each station and level was adjusted 

by the amount A 	given by: 
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F 	(W. /E  -( 1/E F, 2  ) ( )/E Wk)  D l 
 

i=1 	k=1 
... (3.17) 

where D is the difference between the observed and required mass divergence. 

Foruniformverticalandhorimitalspacings(F l andW) the AV) , are ) 

uniform.Asthedirectionsatheoutwardriormalsareium.in , AV . can be ), 

added vectorically to the original wind vectors to obtain a set of 

adjusted wind observations that satisfy the mass divergence constraint. 

The procedure involves much less computation time than the solution of 

large matrices required by the initial statement of the technique, and 

makes its application on a daily basis feasible. 

O'Brien (1970) suggests that because the errors in wind 

measurements increase with height, a uniform adjustment of the divergence 

estimates may not be the best form of correction. For observations at a 

single station with uniform vertical spacing he suggests an adjustment 

AD to the divergence at each level given by 

AD = -2kD/K(K+1) 	... (3.18) 

where k is the number of the level, ranging from 0 to K, and D is the 

difference between the required and observed vertically integrated 

divergence. O'Brien gives examples of the use of this form of adjustment 

in synoptic case studies. 

The procedure could equally well be applied over a region with 

D referring to error in divergence over the region instead of at a single 

station. The general form of adjustment to the normal wind component would 

become: 

L 
AV. = -(W.

3/E 
 Wk 2) (P 1 (Po- P 1 ) D/E

i.4 
 (F.2(P 

 oi  
-P.) . )) ,  ... (3.19) 

3.  
k=1 

4- 
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where P
1 
is the pressure at level 1 and P o 

is the surface pressure. 

Adjustments of this form (denoted as Method 2) for January 1974 are 

displayed in Fig. 3.4. 

Both methods were tested in the evaluation of energy fluxes. 

It was found that the first method gave better results but details of 

comparison are deferred until Section 3.3. 

A third form of adjustment is used by Behr and Speth (1977). 

They assume that the error in mass divergence is distributed uniformly 

round the perimeter of the atmospheric box and linearly distributed 

according to pressure increments in the vertical. However, this method 

was not attempted in the present study. 

3.3 	Results 

3.3.1 	Satellite Radiation Observations 

From the mesh used by NOAA, grid points were selected so that 

the area sampled approximated the region of interest for this study. 

The grid points used and the area represented are shown in Fig. 3.5. 

It had originally been intended to calculate flux divergence measurements 

over two sub-areas to the north and south of the line Mildura-Wagga Wagga. 

Although this plan was not followed through due to limitations in the 

upper air data, satellite radiation data were extracted to represent 

these two sub-areas of the total area, denoted by AB. The grid-points 

used for each sub-area are also shown in Fig. 3.5. 

Time series of the monthly mean absorbed short-wave, outgoing 

long wave, and net radiation at the top of the atmosphere for the three 

year period from June 1974 to May 1977 are shown in Fig. 3.6 for each 

sub-area. Values for AB are approximately. the average of the values 

for A and B, and are given in Table 3.7. The outgoing long wave values 

are the average of the day-time and night-time measurements. Also shown 

in Fig, 3.6 are averages for each month based on all the data available 

(almost four complete years). As mentioned previously, due to 
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instrument malfunction the absorbed short wave radiation values for the 

period December 1975 to September 1976 may be systematically high by as 

much as five per cent (assuming a decrease of three per cent in the global 

average albedo of about 30 per cent). This may explain the high values 

of net radiation for 1976, although the values for 1977 are even higher. 

The available solar radiation varies from 190 W m-2  to 505 W m-2  

for area A and from 175 to 507 W m -2  for B. Albedo values for A are 

generally less than for B resulting in a slightly higher maximum of absorbed 

short wave radiation in A (about 400 W m -2  compared with 375 W m-2  in B). 

The average minimum over A exceeds that of B by about 20 W m-2 , slightly 

more than the difference in available solar radiation. 

The amplitude of the outgoing long wave radiation is only about 

ten per cent of the amplitude of absorbed solar radiation, and 

irregularities are relatively more significant. 

The net radiation curve is determined mainly by the absorbed 

short-wave radiation due to the small amplitude of the long-wave 

radiation variations. 

Departures from the four year average for each month appear 

relatively slight in all three quantities. In most cases anomalies in 

the absorbed solar radiation are accompanied by small anomalies in the 

outgoing long wave radiation of the same sign, which compensate in part 

for the short wave anomalies. So net radiation anomalies are usually 

in phase with anomalies in the absorbed solar radiation but slightly 

smaller in magnitude. The average anomaly for absorbed short wave 

radiation over A was 11 W m1 2  compared with 7.5 W m1 2  for B with extreme 

values being -29 W m -2  in A (December 1975) and -17 W m -2  in B (October 1975). 

The extreme departures of outgoing long wave radiation from 

the monthly average were -13 W m -2  for A (October 1976) and 7 W m -2  for 

B 	Wm-2  in July 1974 and +7 W m-2  in May 1976). The highest departures 

for net radiation were -20 W m-2  for A (September 1975) and - 14 W m-2  for 

B (August 1975). 



Table 3.7 

Atmospheric energy budget terms for the study area, 1974-1976. 
The atmospheric energy flux divergence was calculated as a residual from the 

net radiant flux density and storage terms. Units are W m 2. 

Net radiant flux density Q* TA 
Ground 
Storage 

Atmospheric Storage SA 	Atmospheric Energy Flux Divergence 

Month 1974 1975 1976 S
G 1974 ,  1975 1976 1974 1975 1976 

Jan 
, 

- 102.4 100.3 4.7 6 ,9 .; 7.8 	. 3.1 - 89.9 92.5 

Feb - 58.3 71.9 1.7 
4, - 

, 	-5.6 1.3 -2.6 - 55.3 72.8 

Mar - 14.8 27.4 -1.7 -7.7 C -6.2 -10.5 _ 22.7 39.6 

Apr - -47.9 -31.1 -4.7 -12.2 -6.6 -7.7 - -36.6 -18.7 

May - -93.8 -80.2 -6.4 -10.1 -9.6 -8.1 - -77.8 -65.7 

Jun -106.9 -116.2 ., -107.2 -6!4 -7.7 -4.8 -4.2 -92.8 -105.0 -96.6 

Jul -104.3 -109.8 -96.1 -4.7 -1.9 -1.8 -2.3 -97.7 -103.3 -89.1 

Aug -67.2 -72.3 -49.3 -1.7 3.9 5.7 -0.5 -69.4 -76.3 -47.1 	• 

Sep -7.0 -22.7 -0.2 1.7 6.4 5.8 2.4 -15.1 -30.2 -4.3 

Oct 34.7 34.9 39.0 4.7 4.8 4.0 1.9 25.2 . 	26.2 32.4 

Nov 105.8 100.8 100.2 6.4 4.0 11.8 6.9 95.4 82.6 86.9 

Dec 115.4 110.1 122.1 6.4 4.4. 6.4 9.1 104.6 97.3 106.6 

Yr - -3.5 8.1 0 -1.2 1.1 -1.0 - -4.6 9.1 
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The departures from average were consistently of one sign for 

extended periods. The net radiation was mainly below the four year 

monthly average from July 1974 to November 1975 in B and to February 1976 

in A (except for the summer months of 1974-5 in the latter case). This 

was succeeded by a period of generally above average net radiation which 

lasted until January 1977 (except October and November 1976 in A). 

The departures of the absorbed short and emitted long wave 

radiation from the four year average for each month (AQ and AQ t 

respectively) were linearly regressed and good correlations found. The 

regression equations and correlation coefficients (r) for the areas A 

and B are: 

Area A 

  

 

AQ t = 0.375 AQ r = 0.90 	... (3.20) 

(Standard error of estimate: 2.6 W m -2 , 

standard error of regression coefficient: 0.03) 

Area B 

AQ t = 0.295 AQ 
	

r = 0.72 	... (3.21) 

(Standard error of estimate: 2.5 W m -2 , 

standard error of regression coefficient: 0.04) 

Because of autoregression in the monthly data the number of 

degrees of freedom will be less than the number of observations. The 

method of normalised correlation coefficients described by Davis (1976) 

and Sciremammano (1979) was used to test the significance levels of the 

above correlation coefficients which were both found to be better than 

the 0.1 per cent level. 

4' 
	 The predominant cause of interannual variations in the absorbed 

short wave radiation will be differences in cloud cover, so the results 
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suggest that cloud cover variations affect the short wave component more 

than the long wave. Similar results have been found on a global basis 

by Ohring and Clapp (1980) using the NOAA data. 

Further information on the relative roles of the long and short 

wave radiation components can be presented in the form of Fig. 3.7. Here 

the four-year monthly averages of the absorbed short and emitted long 

wave radiant flux densities are plotted as a scatter diagram. The straight 

line (Qt = Qt) applicable to a situation of no energy transport or storage 

reveals the departures of observed values from a case of local radiative 

equilibrium. These mean curves display the annual cycle. Inter-annual 

variations are perturbations from these curves governed by the linear 

relationships of Equations 3.20 and 3.21. The annual cycle shows a 

hysteresis effect with differences between the warming and cooling phases. 

The curve for the study area (AB) is markedly different from that 

representing the zonal average for 35 ° S between late spring and autumn. 

It shows a more rapid increase of its effective temperature in spring, 

higher peaks in summer and a more rapid cooling to about the same level 

as the zonal average in winter and early spring. These differences can 

be attributed to the difference in the underlying surfaces - land in the 

case of the study area and mostly sea for the zonal average. Other 

interesting features of the curves are segments with negative slope 

(e.g. from December to February in the zonal average) implying an 

increase in the effective temperature for a decrease in the available 

short wave input. Also noticeable is the relative constancy of the long 

wave flux from winter to mid-spring despite the large increase in the 

absorbed short wave radiation. In these cases the energy flux divergences 

and storage terms must alter so as to counteract the changes in the 

short wave radiation. 

t• 
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Similar curves for the two sub-areas considered in the study 

(A, B) are also shown in Fig. 3.7. They reveal noticeable differences, 

particularly in summer and autumn when the long wave radiation for the 

northern area A drops away quickly from the December peak, presumably 

due to the southward movement of the inter-tropical convergence zone 

(ITCZ) and its associated cloudiness. The monthly average for January 

over A shows large inter-annual variations, a reflection of the erratic 

nature of the southward extent of the ITCZ. After this rapid drop the 

long wave radiation drops only slowly until late autumn when there is 

another steep fall to the mid-winter values. For sub-area B the long 

wave radiation increases until February and then drops away more slowly. 

3.3.2 	Atmospheric and Ground Storage 

(a) Atmospheric Storage 

The rate of energy storage in the atmosphere is given 

by the time derivative of the total energy of the 

atmospheric column, and is given by the first term 

on the right hand side of Eq. A1.11 

P2 	dp/g 
S  s  2

- I 	(v2/ + CpT + Lq) A 	Q 	at 1) 1 	2 
... (3.22) 

Monthly mean values of atmospheric energy were found 

for the six radiosonde stations from daily 2300 GWT 

observations using trapezoidal integration between the 

daily surface pressure and 100 mb. The rate of energy 

storage for a given month was found from the 

difference in energy contents between the succeeding 

and preceding month, using an average of the six stations 

to represent the area AB. The data required for the two 

months December 1973 and January 1977 were obtained from 

monthly averages of upper air published by the Bureau 

of Meteorology, using the regression equations outlined 

in the previous section to determine the mean specific 



54. 

humidity from the published median  values. For 

kinetic energy, average December and January values 

for the 1974-1976 period were used. 

The monthly rates of energy storage in the atmosphere 

from January 1974 to December.1976 are given in 

Table 3.7. The amplitude of this storage term is 

only about ten per cent of that for net radiation. 

However, in two of the years the rate of energy 

storage in the atmosphere became positive while the 

sign of net radiation was still strongly negative, and 

turned negative while the net radiation was strongly 

positive, implying that these energy changes were due 

to the flux divergence rather than the net radiation. 

Time series of the total energy content and latent 

energy content between the surface and 100 mb for 

Laverton, Adelaide and Williamtown are presented in 

Fig. 3.8 along with long term averages for these 

stations calculated from data presented by Maher and 

Lee (1977). Long term means of kinetic energy were 

not available, so values averaged over the three 

years 1974-1976 only were used. The expected annual 

cycle dominates, with lowest values generally in July 

or August (although as late as October in Adelaide 

during 1976) and highest values in February. Inter- 

monthly variations, however, may be against the general 

seasonal trend. The latent energy cycle is in phase 

with the total energy cycle but also shows strong month-

to-month variations. 
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The long term average of total energy shows departures 

from a sinusoidal variation, a feature discussed by 

Oort (1971) in his Northern Hemisphere study. Between 

October and December the increase of total energy 

during the warming phase lags the variation at the 

surface due to marked cooling of the stratosphere. 

This effect is particularly noticeable at Laverton. 

The hump near June in the cooling phase corresponds 

to a period of marked warming at pressures below 250 mb 

associated with a lowering in the mean level of the 

tropopause. 

The annual range of the long term averages of energy 

content for Laverton, Adelaide and Williamtown 

respectively are 89, 82 and 98 MJ m -2  for total energy 

and 20, 17 and 37 MJ m-2  for latent energy. The range 

of latent energy is about 20 per cent of the total 

range for Adelaide and Laverton, but near 40 per cent 

for Williamtown and Cobar, reflecting the greater role 

played by moisture in the energy balance at these 

equatorward stations. 

(b) Ground Storage 

The monthly average soil heat flux can be obtained by 

averaging Eq. 2.8 over a monthly period. 

i.e. S
G 

(o
'
t) = AT

o 
(2'4) C A/P) h sin (2Trt/P + Tr/4) 	...(3.23) 

5S 

An estimate of the surface amplitude AT9 and the date 

of maximum temperature are required. Because of the 

simplifications used in the derivation of this equation 

and uncertainties in estimates of the specific heat 
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of soil C s , the rate of energy storage in the ground 

was determined from climatic averages of temperature 

rather than actual values over the period 1974 to 1976. 

Long term averages of the monthly mean temperature 

(Bureau of Meteorology, 1975) for the six stations. 

shown in Fig. 3.1 were used to determine the average 

annual screen temperature amplitude. This was adjusted 

to a surface temperature amplitude by the factor 1.3 

as described in Chapter 2. The monthly average screen 

temperatures showed an approximately sinusoidal 

variation through the year as required by the assumptions 

used in obtaining Eq. 3.23. The results are given in 

Table 3.7. 

The amplitude of the ground storage cycle is 6.5 W m-2  

and the terms are comparable with the atmospheric 

storage terms. A time derivative of the long term 

atmospheric energy curve (Fig. 3.8) shows that the rate 

of energy storage in the atmosphere leads that of 

ground storage by about one month in autumn, but that 

the two terms are approximately in phase during Spring. 

3.3.3 	Energy Fluxes and Flux Divergence 

(a) Vertically Integrated Energy Fluxes 

Vertical integrals from the surface to 100 mb of the 

combined sensible and latent energy flux for the six 

stations are shown in the form of a time series in 

Fig. 3.9. The total and eddy fluxes are both shown, 

in the form of a scalar magnitude and a direction. 

The three year averages for each month are given in 

Table 3.8. 
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Fig. 3.9(a) Time series of the vertically integrated total and eddy flux magnitude and direction for the period January 1974 to December 11976 at Cobar, Wagga Wagga and Williandown. 
Units of flux magnitude are 10 10  W m-1. 

0 
c x O

• 

it.o 

E .— 	300 
1:3 • 200 



Fig. 3.9(b) Time series of the vertically integrated total and eddy flux magnitude and direction for the period January 1974 to December 1976 at Adelaide, Mount Gambier and Laverton. 
Units of flux magnitude are 10 10  W 
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The greatest total flux occurs mostly in July with 

values in the second half of the year generally 

higher than those in the first half. This pattern 

can also be seen in the eddy flux, although the 

average September values are lower than some values 

in the first half of the year. In the time series 

an annual variation is only distinct at Cobar and 

Williamtown, and to a lesser extent at Adelaide. In 

the spatial average for the six stations the 

difference between June and July is quite striking. 

While July has the highest total and eddy flux, June 

has the lowest eddy flux and the fifth lowest total 

flux. 

The eddy flux was generally less than one per cent 

of the total flux for each station, and as a percentage 

of the total flux showed little variation through the 

year or between stations although the lowest values 

generally occurred in the winter months, and the values 

for January at Cobar and Williamtown exceeded one per 

cent in 1974 and 1976. Ratios of the eddy to total 

flux averaged over the three years are given in 

Table 3.9. 

The time series for each station reveal similar patterns. 

A strong peak in the total flux for July 1974 and 

July 1975 at Cobar, Williamtown and Adelaide is also 

evident at the other three stations, while troughs 

occurred at each station in March 1974 and February 1976. 

Correlation coefficients (r) were calculated between 

the fluxes at two pairs of stations,. For the total 

fluxes at Adelaide and Williamtown the correlation was 
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high (r = 0.87) but for the eddy fluxes, the 

correlation coefficient was only 0.25. For 

Laverton and Cobar the correlation coefficient 

for the eddy flux (r = 0.74) exceeded that for 

the total flux (r = 0.55) with both values lying 

between the Adelaide-Williamtown values. 

The explanation for these correlations can be seen 

in the angles at which the fluxes are directed. The 

total flux is generally directed close to 270 0  

(westerly) for all stations with little deviation, except 

when the flux has a very low value, such as at 

Williamtown in January 1974. Because the eddy flux is 

so small relative to the total flux, the mean flux is 

usually directed within half a degree of the total 

flux. 

The direction of the eddy flux was much more variable. 

The average angles between the eddy and mean fluxes 

are listed in Table 3.10. The range used for the 

angles was from -180 to +180 degrees with the positive 

direction taken as clockwise from the mean to the eddy 

flux. The eddy flux is mostly directed at an angle 

of about +60 0  to the mean flux although negative angles 

did occur. In these cases either the eddy or mean flux 

was small. At least one station had a negative angle 

in each of the three June months considered. Table 3.10 

shows that the angle was generally lowest in winter, 

and exceeded 90 0  on average in December. In the annual 

mean, the angle was lowest at Cobar (57 0 ) and highest at 

Mt Gambier (65°). 

•• 
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The total and eddy fluxes are plotted in Fig. 3.10 

as vectors for the mid-season months, and also for 

June in light of the difference in fluxes between 

June and July during the study period. The annual 

and inter-annual variations displayed are discussed 

further in Chapter 4. 

Table 3.9 

Mmthly averages for the period 1974-1976 of the ratio of vertical ly 
integrated eddy flux to the vertically integrated total flux 

(expressed as a percentage) . 

Month Adelaide Cob ar Willi amtown Wagga Laverton Mt Gambier Average 

January 0.70 ' 	1.06 1.42 0.40 0.58 0.60 0.79 
--, 

February 0 .38 	. 0 .88 0.64 0.57 0.46 0.43 0.56 

March 0 .34 0 .27 0 .45 0.34 0.31 0.38 0.35 . 

April 0 .58 0 .52 0 .23 ' 0.70 0.46 0.51 0.48 

May 0 .72 0 .45 0 .18 0.67 1.04 0.78 0.64 

June 0.20 0.28 0.13 0.31 0.31 0.27 0.25 
• 

July 0 .35 0 .31 0 .30 0.29 0.37 0.51 0.35 

August 0 .38 . 	0 .23 0.13 0.18 0.24 0.29 0.24 

September 0 .46 0 .29 0.24 0.39 0.48 0.57 0.41 

October 0 .48 0 .35 0.30 0.43 0.61 0.56 0.45 

November 0 .52 0 .35 0.19 0.26 0.47 0.60 0.40 

December 0 .45 0 .46 0.45 0.49 0.45 0.40 0.45 

Annual 0.46 0.45 0.39 0.42 0.48 0.49 0.45 

• Based on two years' data only. 
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Table 3.10 

Monthly average angle (degrees) between the vertically integrated 
Mean and Eddy Fluxes (measured clockwise from the mean to the 

eddy vector) for the period 1974-76. 

Month Adelaide Caber Williamtown Wagga Laverton Mt Gambier Average 

January as 53 76 73 85 82 76 

February 36 54 65 49 79 61 57 

March 77 6 109 32 75 64 61 

April 63 62 62 SS 74 72 65 

Nay SI 70 53 . 59 SO 41 54 

June 18 24 -14 65 -14 41 20 
. 

July 54 61 43 64 33 43 50 

August 33 31 63 SI 38 47 43 

September 53 42 42 
• 

67 69 68 57 

October 78 88 79 78 76 78 79 

November 81 111 46 12 98 86 72 

December 109 78 73 103 101 102 94 

Annual 61 57 58 59 64 65 61 

• Based on two years',data only. 

(b) Vertical Profiles 

Time series showing the vertical distribution of the i and 

j components of the total and eddy flux are shown in 

Fig. 3.11 for the three stations Laverton, Adelaide and 

Williamtawn. These stations were chosen to represent a 

broad spatial range, and also on the basis of 

completeness of records. The total flux will be closely 

determined by the monthly mean i or j wind component as 

61. 



ZOOG 

Flux 

Imo 

Williamtown 

Pressure (rnb) 
700 

JUL 
1975 

Flux units are 10 4  W m Kg' 

Fig. 3.11(a) Time series showing the vertical distribution of the total zonal flux. 
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the total atmospheric energy varies only slowly with 

altitude. This is reflected in the high values of 

the total flux component, especially the i component, 

in the upper troposphere (e.g. the 100 nib layer 

centred on 200 nib) . The i component of the flow is 

generally westerly, although easterly flow occurs at 

the SO nib level, and also in the lower troposphere 

mainly during summer. In January 1974 the easterly 

flow extended to pressures below 500 nib at Williamtown 

with easterly flow up to the 700 mb level persisting 

until March. Easterly flow was well developed again 

in the 1975-1976 summer, whereas in the previous summer, 

easterly flow appeared only in February. The three figures 

for the i component show marked similarities, especially 

in the appearance of jet associated maxima near the 200 nib 

level. This is to be expected from the good correlation 

of the total flux discussed in the previous section. 

Continuity between the three stations is not so evident 

in the cross sections of the j component of total flux. 

The highest values are less than those of the i component 

reflecting the predominant zonality of the winds over the 

region. There are alternations of direction temporally 

and also in the vertical. The highest value reached was 

a southerly flow at the 200 nib level at Williamtown in 

March 1976. 

In contrast to the total flux, the zonal eddy flux shows 

alternations between easterly and westerly transport, 

although westerly flow predominates. The highest values 

occur in the upper troposphere, as for the total flux. 
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The maxima in the i component of eddy flux can be 

identified for each of the three stations, but there 

is no clear continuity of minor features between 

stations. The highest values for the three years 

occurred at the 300 mb level at each station, in 

July 1974 for Williamtown and Laverton and August 1974 

for Adelaide. 

The j component of the eddy flux is generally 

negative, i.e. directed southwards, although there 

is some northward transport, mainly in the upper 

troposphere. The meridional eddy flux shows a more 

uniform vertical distribution than the fluxes discussed 

above, although the largest values tend to occur at 

pressures exceeding 800 mb. This latter feature was 

noted for Laverton by NEA. 

One feature noticeable in the eddy fluxes, particularly 

the i components at each of the stations, is a marked 

change from June to July in 1974 and 1975. The 

magnitude and usually the direction changed dramatically. 

The change was not so marked in 1976. 

(c) 	Flux Divergence 

The required energy flux divergences calculated as a 

residual from the net radiation and storage terms 

(Eq. 2.1) are given in Table 3.7. As the storage terms 

are generally small relative to the net radiation, the 

required flux divergence closely follows the net 

radiation. 
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Energy flux divergences calculated from the raw wind 

data revealed errors of several orders of magnitude. 

The errors were associated with physically unreal 

values of the mass flux divergence, indicating that 

corrections for mass balance were required, as discussed 

in Section 3.2. This was done for four months and these 

months were chosen to represent a variety of prevailing 

synoptic situations. However the selection was limited 

by the completeness of records, as data were required 

from each station at all levels for the calculation of 

mass flux divergence. No months had a complete set of 

records for all days at all levels, and interpolation of 

missing data was required. The number of observations 

available for the 500 and 100 nib levels are given for 

each station in Table 3.11. The interpolations were 

undertaken manually by considering time series at adjacent 

levels and nearby stations. For three of the stations, 

(Laverton, Adelaide and Williamtown) 1100 GMT radiosonde 

data were available, facilitating the interpolation. 

Upper wind data were also available at 0500, 1100 and 

1700 GMT for all stations and these reports could be used 

to help fill gaps in the data. 

The required mass divergence for a given day was calculated 

from the pressure difference between the succeeding and 

preceding day. Two processes were used as discussed in 

Section 3.2. The few months for which daily mass balance 

of the winds was attempted were February, April, July and 

August of 1975. The energy flux divergences before and 

after the mass balance adjustments are listed in Table 3.12 

along with the required energy flux divergences as listed 

in Table 3.7. 
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The results show a dramatic improvement although the 

final values are still significantly in error. Merely 

ensuring a complete set of data reduced the error by 

an order of magnitude in three of the four months. Of 

the two methods used to adjust for mass balance, the 

first method (uniform correction in the vertical) 

consistently gives better results for these monthly 

averages. For a single flight the second method may 

be more useful. The values produced by the first 

method will be adopted for discussion. 

Agreement between the derived and required energy flux 

divergence is best for February 1975, where the 

calculated flux divergence of 44 W m -2  differs by 

only 11 W m-2  from the required value. The discrepancy 

for August is disappointingly large, and much larger 

than that for July 1975. The agreement is worst for 

the months of July and August when there were most 

missing data. 

Table 3.11 

Number of Observations at the SOO and 100 mb levels in the months 
for which wind data were adjusted for mass balance. 

Station February 1975 April 1975 July 1975 August 1975 

SOO 100 SOO 100 SOO 100 500 100 

Adelaide 28 28 30 28 30 28 31 31 

Cobar 28 26 30 28 31 25 30 21 

Williamtown 28 28 28 25 31 30 31 30 

Wagga Wagga 26 19 30 23 29 12
* 

 29 14 

Laverton 27 26 29 30 31 31 31 30 

Mt Gambier 27 25 29 28 30 29 31 29 
_ 

* 20 at 150 nib 



Table 3.12 

Energy flux divergence measurements (W 2 -2 ) for four months in 
1975 showing the effects of interpolating missing data and adjusting 

the winds for mass balance. The energy flux divergences of the zonal and 
meridional wind components (denoted i and j, respectively) are included in 
addition to results for the wind vector. Required flux divergences were 

extracted from Table 3.7. The mass balance techniques are discussed in the text. 

Total Flux 
divergence (Wm-2 ) 	Jivergence 

Eddy Flux 
(Wm -2 ) 

Mean Flux 
divergence 
(We 2 ) 

i J Vecto4 i i Vector Vector 

February 1975 

SS Required 

Raw data -97 3912 3815 20 114 134 5681 

Missing data interpolated -3475 658 -2817 58 1 59 -2877 

Mass balance 1 -2617 2661 44 54 -11 43 1 

Mass balance 2 -2607 2697 90 SS -8 47 42 

April 1975 

Required -37 . 

Raw -3831 -1930 -5761 23 -46 -23 -5737 

Missing data interpolated -5776 5032 -744 -41 35 -6 -737 

Mass balance 1 -5543 5557 14 -39 34 -5 19 

Mass balance 2 -5542 5566 24 -40 33 -7 31 

July 1975 

Required -103 

Raw 8080 3238 11319 -770 848 78 11240 

Missing data interpolated -8348 9047 699 2 56 38 661 

MISS balance 1 	• -8606 8442 -164 6 44 50 -213 

Mess balance 2 -8611 8429 -181 5 43 48 -229 

August 1975 

Required -76 

Raw -5943 10066 4123 -62 80 18 4105 

Missing data interpolated -1372 1780 408 -71 -94 -165 573 

Mass balance 1 -1563 1328 -235 -67 -92 -159 -76 

Mass balance 2 -1565 1321 -244 -67 -89 -156 -89 

66. 
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The total and mean vector flux divergences are 

consistently a small difference between large zonal 

and meridional terms, although this pattern is less 

marked for August 1975. In each of the four months 

considered, there was energy convergence by the zonal 

component and divergence in the meridional term. 

Eddy flux divergences in each of the four months are 

altered only slightly by the mass balance adjustments 

from the values obtained after interpolation to form 

a complete data set, while the adjustment for the 

divergence of the mean flux may be several orders of 

magnitude. This is particularly noticeable for February 

where the mean flux divergence is reduced from -2877 W m -2  

to practically zero. The size of the adjustments made 

to the mean flux divergence and the fact that the latter 

is a small difference of two large terms derived from 

the i and j wind components, suggest that the mean energy 

flux divergence is poorly determined by the limited 

spatial and temporal sampling, whereas the eddy flux 

divergences may be realistic. It may be useful to accept 

the eddy flux divergence and infer the mean flux 

divergence from the difference between the observed 

and required divergences. In this case, the mass balance 

adjustments to the raw wind data would not be essential if 

the data were interpolated to form complete sets. This 

required mean flux divergence is given for the four months 

in Table 3.13 and, if realistic, indicates competing 

processes between mean and eddy flux divergence for July 

and August 1975. 
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Table 3.13 

Estimates of the mean flux divergence (W m -2 ) as a residual from 
the required energy flux divergence and the computed eddy'flux divergence. 

February 1975 April 1975 July 1975 August 1975 

Required Energy Flux 
divergence 

Computed Eddy Flux 
divergence 

Residual Mean Flux 
divergence 

55 

44 

11 

-17 

-5 

-12 

-103 

49 

-152 

-76 

-160 

84 

The contributions of the various energy types (enthalpy, 

latent energy, etc) to the total flux divergence are 

discussed in Chapter 4. 

An independent test of the latent energy flux divergence 
1. 

was made by attempting to estimate the terns of the water 

vapour budget (Eq. A1.15), using estimates of the 

precipitation 'andpotential evaporation from Bureau of 

Meteorology surface data. As noted in Appendix Al this 

approach is also subject to large errors. Monthly rainfall 

totals for the study were planimetered to derive an estimate 

of the areal average precipitation. To evaluate the areal 

evapotranspiration, estimates of open water evaporation 

were made from Bureau of Meteorology Class A Pan data by 

using the factors developed for two small lakes near the 

study area (Blue Lagoon and Lake Wyangan) by Hoy and 

Stephens (1979). These factors are 0.91, 0.87, 0.72 and 

0.73 for February, April, July and August respectively. 

The open water evaporation was converted to an estimate 

of the potential evapotranspiration over vegetation using 

the simple crop factors of 0.8 for February, 0.7 for 

April and 0.6 for the winter months (Monteith, 1973). 
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Monthly station values were plotted and planimetered to 

obtain the areal average evaporation. Estimates of the 

small atmospheric moisture storage term were made from 

the changes in the latent energy component of the total 

atmospheric energy storage discussed in Section 3.3.2. 

The results (Table 3.14) suggest that the measured latent 

energy flux divergences for July and August 1975 are of 

the wrong sign. In these months precipitation exceeded 

potential evapotranspiration, requiring moisture 

convergence, whereas the measured values show divergence. 

Precipitation over the region was close to average in 

July 1975 and well above average in August so that moisture 

convergence seems more plausible. It should be noted that 

these errors are still small components of the discrepancy 

in the total energy budget and, in fact, that a change to 

latent energy convergence would worsen the overall 

discrepancy for these two months. 

Measured moisture divergences for February and April 1975 

are in accord with the excess of potential evapotranspiration 

over precipitation. In February, where the overall energy 

budget discrepancy is small, inserting the measured flux 

divergence, storage and latent energy release due to 

precipitation in Eq. A1.15, suggests an actual  

evapotranspiration of only about half the potential rate. 

This seems feasible as the rainfall in this month and the 

preceding two months was below average over most of the 

study area, reducing the supply of soil moisture available 

for evapotranspiration. For April the actual evapotranspiration 

is about 70 per cent of the potential, if the measured 

moisture divergence is accepted. 
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Table 3.14 

Terms in the moisture budget averaged over the study 
area for four months in 1975. 

February 
1975 

April 
1975 

July 
1975 

August 
1975 

Class A Pan evaporation 230 114 67 71 
- monthly total (mm) 

Potential evapotranspiration 
over vegetation, ET (mm) 

168 70 29 31 

Monthly precipitation, R (mm) 25 16 45 48 

ET - R (mm month-1 ) 143 54 -16 -17 

ET - R (W m-2 ) 148 52 -15 -16 

Moisture storage, S
Q 
 (W m-2 ) 1 -2 0 1 

Required latent energy flux
divergence, ET - R - 	(W m-2 ) SQ  

147 54 -15 -17 

Measured latent energy flux 
divergences (W m-2 ): 

(a) raw data -14 -30 -161 -57 

(b) missing data interpolated 20 22 8 27 

(c) after mass balancing 59 35 4 18 
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Table 3.14 also gives estimates of moisture divergence 

obtained before adjusting the winds for mass balance. 

The raw data, which had some missing observations, are 

very much in error, except perhaps in August. The mass 

balancing procedure gives the best results in each case. 

Even in water vapour budget studies it seems that a mass 

balancing procedure, as suggested by Rasmusson (1968), 

may be beneficial. 

(d) 	Effect of Mass Balance Adjustment on Computed Fluxes 

The effect of the mass balance procedure on the computed 

fluxes was considered by comparing the relative changes 

in the i and j components of the vertically integrated 

fluxes of the interpolated data sets before and after 

the adjustment for mass balance using the first method. 

This serves as a measure of the average correction made 

to the fluxes, although overestimating the changes where 

the flux components change sign in the vertical. 

For the eastward component of the total and mean flux 

the change was mostly less than one per cent, with the 

largest change being two per cent. The changes made to 

the eastward eddy flux were also mostly less than one 

per cent, but one alteration was eleven per cent. This 

occurred on an occasion when the eddy flux was small, and 

changed sign several times in the vertical. 

The northward component of the fluxes were modified to a 

greater extent. Although the changes were still mostly 

less than five per cent, there were several changes 

exceeding ten per cent, with the largest change being 29 per 

cent in the eddy flux at Adelaide for February 1975 and in 

the total flux for Laverton in August 1975. The vertical 

profiles of these fluxes before and after adjustment are 
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shown in Fig. 3.12. In both cases the vertically 

integrated flux was a small difference of oppositely 

directed fluxes, and neither the fluxes themselves nor 

the structure of the profile have been altered 

significantly by the mass balancing adjustments. The 

greater effect of the mass balancing on the meridional 

fluxes is attributed to this typical vertical profile. 

The zonal flux is generally more constant in sign 

throughout the atmosphere. 

The effects on the vertically integrated vector fluxes were 

generally a change in magnitude by less than two per cent 

and a direction change of less than two degrees, as the 

largest relative changes were made to the generally small 

meridional components. For the case of February 1975 at 

Adelaide discussed above the effect on the vertically 

integrated eddy flux vector was a change of ten per cent 

in the magnitude and a rotation of five degrees. Because 

the energy flux divergence is a small term these small 

changes to the fluxes produce drastic changes to the 

computed energy flux divergence, but the discussion above 

on the fluxes is not invalidated. 

3.3.4 	Sculpting Errom 

(a) Missing Observations and Instrumental Errors 

The effect of missing observations on the fluxes was 

investigated by comparing the fluxes calculated from 

the raw data with those where missing observations had 

been interpolated to form complete sets of data for a 

month. From the four months for which the data had 

been augmented, July 1975 at Wagga Wagga was selected 

as having the most missing observations. A comparison 
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of the vertical profiles using the raw and augmented 

data is given in Fig. 3.13, with the number of 

observations available at each level in the raw data. 

Even one missing observation can cuase a significant 

difference in the calculated flux. The underestimation 

of the jet stream associated flux near the 200 mb level 

is in line with the findings of studies discussed in 

Section 3.2. The largest relative errors occur in 

the meridional total energy flux. 

In the vertically integrated vector flux for the four 

months interpolation generally made only small differences, 

but for some stations the change in magnitude was as 

high as ten per cent for the total and mean flux and 

30 per cent for the eddy flux. Direction changes were 

mostly less than two degrees although as high as seven 

degrees for the eddy flux. In the case of July 1975 at 

Wagga Wagga mentioned above, the changes to the 

vertically integrated fluxes are listed in Table 3.15. 

The modifications made by the mass balance adjustment 

procedure were much less than the difference due to 

missing observations. 

For the mean flux of the total energy E (= gz + CpT + Lq + 11V 2 ) 

the instrumental errors will be dominated by errors in the 

wind observations as discussed in Section 3.1.2. The 

example given in that section, assuming the instrumental 

errors are random, suggests an error of about two per cent 

for the monthly mean zonal flux but about 20 per cent for 

the mean meridional flux where the average wind speed was 

of the same order of magnitude as the instrumental error. 
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For the eddy flux of the total energy, the latent 

energy flux will also be important at low levels, 

although the eddy fluxes of potential and kinetic energy 

are generally small. The error estimates in Section 3.1.2 

suggest that the instrumental error in the monthly eddy 

fluxes could be between five and ten per cent. 

For the vertically integrated fluxes these estimates 

for random instrumental error should be divided by 

about three as the data are summed over thirteen levels. 

This does not consider the other sources of error 

discussed in Section 3.1.2 that compound the purely 

instrumental errors. However, the profiles of 

Fig. 3.13 suggest that even a small number of missing 

observations can cause errors that exceed these 

observational errors. 

(b) Temporal Sampling 

Any consistent diurnal variations in the energy fluxes 

or radiation terms would not be sampled by the once daily 

satellite sampling or the use of only 2300 GMT upper air 

data. Diurnal variations in absorbed short wave radiation 

and outgoing long wave radiation could be studied using 

data from a geostationary satellite or a series of polar- 

orbiting satellites, but such data were not available 

for this study. Energy fluxes were calculated for the 

three stations at which 1100 GMT radiosonde and upper wind 

information was available. As the missing observations 

are crucial, as indicated in the previous section, the 

missing records were interpolated and a comparison made 

of these augmented 1100 and 2300 GMT data sets. 
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Table 3.16 gives the magnitude and direction of the 

vertically integrated fluxes at 2300 and 1100 GMT for 

February, July and August 1975. There are significant 

differences in the magnitude of the fluxes especially 

in February although for this month four complete 1100 

GMT flights were missed at Adelaide and six at Laverton. 

The direction appears more consistent, especially for 

the total flux. The large change in the direction of 

the eddy flux for February at Adelaide occurs for a 

very low value of the eddy flux and may be partly due 

to the high number of missing observations. 

However, the results in February suggest that the 

diurnal effect may be significant, especially in 

summer, and this raises doubts about the adequacy of 

using only once daily upper air observations. As they 

were not altered greatly by the mass balancing adjustments, 

the eddy flux divergences were re-calculated using an 

average of the 2300 and 1100 GMT fluxes where both were 

available, and 2300 GMT data otherwise. These divergences 

were compared with the values obtained using 2300 GMT 

data only (before mass balancing). The eddy flux 

divergences changed from 59 to 45 W m -2  in February 1975, 

38 to 24 W m-2  in July but only from -165 to -167 W m-2  

in August 1975. This may be an artificial test reflecting 

only the uncertainty in the eddy flux at each station, 

but it may also indicate that a once daily calculation is 

not sufficient, although when used with the mean flux 

divergences for 2300 GMT the disagreement between the 

estimated and required total flux divergences is 

accentuated rather than improved. 
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Table 3.15 

Effects on the vertically integrated flux components at Wagga Wagga 
in July 1975 of interpolating missing data. Flux units are 

10 10W m-I . (Vertical profiles of the flux components are shown in Fig. 3.13). 

Component Raw data 
Missing Observations 

Interpolated 

i component of total flux 4.78 5.10 

i component of eddy flux 0.012 0.016 

j component of total flux -0.37 -0.41 

j component of eddy flux -0.014 -0.015 

Magnitude of total flux vector 4.79 5.11 

Direction of total flux vector 274 274 

Magnitude of eddy flux vector 0.019 0.021 

Direction of eddy flux vector 319 313 

(c) Spatial Sampling 

Linear interpolation of the fluxes between adjacent 

stations is another possible source of error in the 

flux divergence calculations, especially where mountain 

ranges intervene between adjacent stations. The airflow 

over mountains, in particular the extent of blocking 

of the low level flow, is not well understood. The latent 

energy flux is likely to be most affected by the linear 

interpolation approximation due to its confinement to the 

lower layers. This problem, in the context of water vapour 

transport, has been discussed by Hutchings (1957). He 

considered the two extremes of 

(i) linear variation between stations with all 

the flow below ridge level blocked, or 
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Table 3.16 

Comparison of vertically integrated flux measurements for 
1100 and 2300 GMT at Adelaide. Milliamtovn and Laverton. 

Kissing data have been interpolated at both observation times. 
Flux units are 101° 

i component 

in 	
of flux 

Time ( 	total 	eddy 

j component 
of flux 

total 	eddy 
Total Flux 

It1agnitude 
Vector 

Di rect 'n 
Eddy Flux 
Magnitude 

Vector 
Direct 'n 

I 
Adelaide February 1975 

1100 1.98 0.001 1.11 -0.003 2.27 241 0.003 350 

2300 2.15 0.002 0.74 0.001 2.28 251 0.003 257 

July 19 5 

1100 5.85 0.020 

i 

-0.76 -0.023 5.90 278 0.030 319 

2300 5.88 0.015 -0.90 -0.024 5.94 279 0.028 327 

August 1975 

1100 4.22 0.018 0.56 -0.009 4.26 263 0.020 296 

2300 4.35 0.017 0.55 -0.011 4.38 263 0.020 302 

Villiastovn February 197! 

1100 1.66 0.013 0.17 -0.015 1.67 264 0.020 319 

2300 1.83 0.011 0.29 -0.010 1.85 261 0.015 312 

July 1975 

1100 4.86 0.015 -0.08 -0.008 4.86 271 0.016 298 

2300 5.10 0.011 -0.19 -0.007 5.11 272 0.013 305 

August 1975 

1100 5.22 0.008 -0.17 -0.006 5.22 272 0.010 308 

2300 5.21 0.009 -0.20 -0.006 5.21 . 272 0.010 304 

Laverton February 1975 

1100 2.25 0.004 0.83 -0.006 2.40 250 0.007 329 

2300 2.16 0.005 0.76 -0.009 2.29 251 0.010 333 

July 1975 

1100 5.51 0.018 -1.11 -0.019 5.62 281 0.026 316 

2300 5.54 0.017 -1.00 -0.021 5.63 280 0.027 321 

August 1975 

1100 3.81 0.009 0.21 -0.008 3.81 267 0.013 312 

2300 3.64 0.010 0.03 -0.008 3.64 270 0.013 310 
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(ii) the flow altered by the topography such that 

all the water vapour passes over or between 

the mountains. 

This second case is equivalent to assuming that the 

mountains do not exist, and is described by a linear 

variation between stations. Hutchings concluded that 

this second option was more reasonable, although this 

would not be so for cases of orographically induced 

precipitation. 
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OIAPTER IV 

DISCUSSION 

Introduction 

This chapter discusses the contribution of each energy type 

(enthalpy, latent energy, etc.) to the total flux and flux divergence, 

and the vertical profile of these terms. A brief investigation of the 

synoptic patterns that prevailed during the study period is included as 

an introduction to the discussion. 

4.1 	Synoptic situations and their relation to the measured 
energy fluxes 

The relation of the energy fluxes to synoptic patterns has been 

the subject of several investigations. In a regional study for North 

America, Astling and Horn (1972) found that the type of synoptic 

disturbance played an important role in determining the poleward eddy 

flux of total energy with large amplitude troughs and closed lows 

(classified at the SOO mb level in their scheme) being most effective. 

The maximum transport occurs during the intensifying stage. Tucker (1979) 

found evidence that the poleward transient eddy transport of sensible 

energy in the southern hemisphere was carried out principally by individual 

low pressure systems and that the developing and mature stages of such 

systems were the most effective. He suggested that the observed 

latitudinal profile of the poleward transient eddy enthalpy flux may be due 

to the preponderance of different stages in the life cycle of such systems 

at different latitudes. 

The daily (0900 EST) mean sea level isobaric analyses as published 

in the Bureau of Meteorology Monthly Weather Review series issued for each 

state, were classified according to the gradient wind direction over the 

study area, with a subsidiary classification into the curvature of the 

isobars. Four stream directions were used covering the quadrants centred 

on the cardinal points, with three further categories for situations 

where no single wind direction could be assigned. These covered (a) high 
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pressure systems or ridges, (b) troughs, low pressure systems or fronts 

with a marked wind change and (c) cols. The sub-classification for 

isobar curvature consisted of three categories - cyclonic, anticyclonic 

or indeterminate, the latter including both straight and mixed flow. 

Where fronts occurred without a marked wind change, the occurrence was 

included in the appropriate wind direction category. This scheme is 

similar in principle to the Lamb classification scheme as used by Murray 

and Lewis (1966). 

The classification scheme could obviously be extended to 

include upper air patterns but was used as a simple index of the 

synoptic pattern over the study area. A step-wise multiple regression 

was applied to calculate the multiple correlation coefficient between 

the monthly totals in each category and the vertically integrated fluxes, 

and to assess the most useful predictors of the various fluxes. At each 

step in the regression program the next synoptic category to be entered 

is selected according to which will make the greatest reduction in the 

residual error sum of squares. This means that the variables are not 

necessarily selected in decreasing order of correlation with the 

dependant variable, due to correlations among the independent variables. 

Histograms for each wind direction category on a monthly basis 

are shown in Fig. 4.1. Also shown are the combined totals of anticyclonic 

and cyclonic curvature. 

The easterly and westerly categories show clear annual cycles 

with westerly winds common from late autumn to early spring, but rare in 

summer and early autumn, while the reverse pattern is displayed for 

easterly winds. The number of highs over the area was generally highest 

in winter, in line with the results of Karelsky (1961), while the 

frequency of lows was a minimum from about May to July. 
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Some inter-annual variations can also be seen. The most 

noticeable is the relative absence of westerlies in 1976 which is 

apparently compensated for by an increase in the number of highs 

over the area. The period from April to August 1976 was very dry over 

most of the study area. Another marked feature is the high number of 

easterly situations from spring 1975 to autumn 1976, compared with the 

same period the previous year. Southerly situations were absent in 

January 1974 with a commensurate increase in northerly, easterly and 

high pressure centre occurrences. 

Inspection of Fig. 3.9 shows that the major peaks in the 

frequency of westerlies also tend to be associated with peaks in the 

vertically integrated zonal total energy flux (e.g. July 1974, May 1975 

and July 1975) while a low frequency of westerlies or frequent occurrence 

of easterlies tend to be associate with reduced zonal flux (e.g. May 1974 

and most summer months) -. 

Table,4.1 

MUltiple Correlation Coefficients (r) and Standard Errors 
of Estimate (SEE) between the vertically integrated fluxes and 

the synoptic categories. Units of standard error are 10 °  W 

Station Zonal 	Total 
Flux 

r 	SEE 

Zonal 

r 

Eddy 
Flux 

SEE 

Meridional 
Total Flux 

r 	SEE 

Meridional 
Eddy Flux 

r 	SEE 

Adelaide 0.81 87 0.58 0.74 0.68 44 0.74 0.54 

Cobar 0.89 80 0.52 0.70 0.69 47 0.73 0.46 

Nillimmtown 0.89 80 0.48 0.63 0.64 44 0.56 0.44 

Nagga 0.80 79 0.37 0.74 0.73 39 0.76 0.46 

Laverton 0.71 94 0.43 0.76 0.76 43 0.70 0.59 

Mt Gambier 0.76 98 0.59 0.68 0.74 39 0.70 0.60 

Average 0.84 77 0.50 0.62 0.74 35 0.81 0.35 
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In the time cross-sections for the zonal total flux (Fig. 3.11) 

it can be seen that the peaks in the jet stream transport are also 

associated with greater transport in the lower troposphere, so that 

the surface wind regime is closely related to the vertically integrated 

flux. The correlation coefficients between the zonal total flux 

averaged over the six stations and the number of westerly and easterly 

occurrences in each month were 0.67 and -0.69 respectively. The 

significance levels of these correlation coefficients were tested using 

the method described in Section 3.3 and found to,be at about the seven 

per cent level. 

The correlation coefficients for the zonal fluxes at individual 

stations were of similar magnitude except at Laverton and Mt Gambier 

where significantly lower values were found (approximately 0.5) with a 

better correlation for westerlies than easterlies. The best correlation 

for easterlies occurred at Cobar (r = -0.77) and for westerlies at 

Williamtown (r = 0.63). 

Correlations with the other categories were all much lower 

(less than 0.4). The step-wise multiple regression between the 

spatially averaged zonal total flux and all of the categories selected 

easterlies, southerlies, westerlies and lows as the first four variables 

and found a multiple regression coefficient of 0.84. The regression 

coefficients for easterlies and southerlies were negative. The multiple 

correlation coefficients for individual stations varied from 0.7 to 

0.9 and are listed in Table 4.1. 

The meridional total flux often changes sign in the vertical 

(see Fig. 3.11) and although there is good correspondence between the 

major peaks in the vertically integrated flux and high occurrence of 

northerlies (e.g. January and May 1974, July and September 1975) it is not 

so good for the southerly category. The correlation coefficients between 

the meridional total flux (averaged over the six stations) and the monthly 

totals of northerly and southerly situations were -0.58 and 0.34 respectively. 
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Using the method mentioned above, the correlation between the flux and 

the frequency of northerlies was found to have a significance level of 

one per cent, which was even more significant than the correlation 

between zonal total flux and easterlies due to less autocorrelation 

within the meridional data. The correlation with southerly occurrences, 

however, was less than with the number of highs (r = 0.47) and only 

slightly greater than with the number of easterlies (r = -0.32). For 

individual stations the correlation with the frequency of northerlies 

was highest at the three south coastal stations (the best being at 

Adelaide with r = 0.63) and worst at Williamtown (r = 0.36). At 

Williamtown and Wagga, the frequency of highs had a better correlation 

than the frequency of northerlies, but at all stations the correlation 

with southerlies was lower than for northerlies. The multiple correlation 

coefficient with all the categories was 0.74 and the first three variables 

entered into the regression were northerlies, easterlies and lows, all 

with negative regression coefficient. (Southern hemisphere polewards 

fluxes are treated as negative in the present sign convention). 

The highest values of the zonal eddy flux are associated with the 

jet stream and dominant peaks in the vertical integral (e.g. July and 

August 1974) do not have any marked maximum near the surface. (See Fig. 3.11). 

The multiple correlation coefficient between the six station average flux 

and the synoptic indices is only 0.50 (although near 0.6 for individual 

station fluxes at Adelaide and Mt Gambier). The first variable selected 

was the frequency of westerlies with a partial correlation coefficient 

of 0.3 which is significant only at the 10 per cent level after allowing 

for autocorrelation. For individual stations, the correlations were of 

the same order, with westerlies being the best predictor except at Wagga 

and Laverton where the number of lows was more closely although inversely 

related. 
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For the areal average of meridional eddy flux the multiple 

correlation coefficient was 0.81 with northerlies being the first 

variable selected followed by the number with indeterminate curvature, 

southerlies and lows. Except for the second variable mentioned, the 

regression coefficients were negative. 	Except at Williamtown 

individual station values were slightly lower, but were at least 0.7 

with northerlies the best predictor. At Williamtown the multiple 

correlation coefficient was only 0.56 and westerlies had the best 

partial correlation. 

The areally averaged meridional eddy flux had a partial 

correlation coefficient of -0.49 with the monthly totals of northerlies. 

After allowing for autoregression, this is still significantly below 

the 0.5 per cent level, so that the frequency of northerlies does seem 

a useful indicator of the average meridional eddy flux. The correlations 

for individual stations were slightly lower but still generally better 

than -0.4. The number of highs was also well correlated with the eddy 

flux although not selected by the regression procedure due to a strong 

correlation between the frequencies of highs and northerlies. The 

correlation coefficient for southerlies was generally below 0.2 and even 

varied in sign among the stations. A major peak of southerly occurrences 

in June 1976 was associated with generally northward eddy transport, but 

other strong southerly peaks (e.g. May and November 1974) have strong 

southward transport. 

There seem to be useful correlations between the simple 

synoptic index selected and the areally averaged zonal total and 

meridional eddy flux, and to a lesser extent the meridional total flux, 

but the linear regression of the surface categories for the zonal eddy 

flux is much less successful. The success of an index relating surface 

patterns to vertically integrated fluxes obviously depends on changes 

at the surface being consistently reflected through the depth of the 

atmosphere. The alternation of sign in the vertical profile of the zonal 
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eddy flux has been shown in previous studies for stations in the study 

region (e.g. NEA). 

The high partial correlation coefficients between the frequency 

of northerlies and the meridional total and eddy fluxes are in line 

with a study for middle latitudes of the northern hemisphere by 

Miles (1976) who found that the polewards flux of enthalpy was more 

closely related to an index of the surface meridional circulation than 

to the surface zonal flow. He considered the total polewards flux 

averaged round 45 ° N for which the mean meridional flux is secondary to 

the eddy flux, in contrast to the values for the study region where the 

converse is generally true. 

The frequency of lows was among the first few variables 

selected by the multiple regression technique for the meridional total 

and eddy flux, although the correlation coefficient between the monthly 

values of eddy flux and the number of closed lows centred over or near 

the study area (within SOO kilometres) was quite low (r = 0.23). A study 

of individual synoptic features over the study region would produce more 

significant results. 

4.2  Contribution of the various energy types to the overall 
flux and flux divergence 

4.2.1  Total Flux 

Values of the vertically integrated total fluxes for the 

mid-season months averaged over the six study stations and over the 

years 1974-1976 are presented in Table 4.2. The zonal components 

generally show only small variations from year to year and among the 

six stations whereas the meridional values vary even in sign both 

spatially and temporally, so that the average values for the meridional 

flux are significantly smaller than values in individual years and three 

years' data cannot be regarded as providing a stable average. 
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The total fluxes are dominated by the i component as 

indicated by the almost westerly direction of the flux vectors. 

The major contribution to the zonal total flux is from the persistent 

westerly flow over the region in the upper troposphere where water 

vapour content is low, so that the vertically integrated flux is 

dominated by the sensible energy flux. The enthalpy flux generally 

accounts for 70 to 75 per cent of the overall total with another 25 to 

30 per cent in the geopotential flux. Kinetic and latent energy flux 

make up only about one per cent. 

In the meridional component where the vertical distribution 

of the flux is more uniform, the latent energy term is relatively 

more important and is occasionally of comparable magnitude to the 

sensible energy fluxes. In January, when the overall flux is a small 

residual of counteracting fluxes, the latent energy flux even exceeds 

the combined flux. 

The latent energy flux vector has a significant northerly 

component, especially in summer, while the other vectors are almost 

directly eastward. 

4.2.2 	Eddy Fluxes 

Average values of the eddy fluxes and vector angle are also 

given in Table 4.2. In the eddy flux the enthalpy and geopotential 

do not have such large absolute magnitudes, and the distribution of 

the combined flux among the constituents is more even. The combined 

zonal eddy component is generally directed towards the east, but there 

is some counteraction between the values of individual terms, and also, 

except for kinetic energy, among the stations. All the constituent 

terms are significant with the geopotential term generally the smallest. 

The meridional eddy transport is performed principally by the 

enthalpy and latent energy fluxes with the kinetic energy and geopotential 

fluxes usually accounting for less than 10 per cent. 
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Table 4.2 

Mid-season Values of Vertically Integrated Fluxes 
averaged over the 6 study stations and the three 

years 1974-76 (10 8  W m 1). 

Month Type Total Flux 	Eddy Flux 

Zonal Meridional Angle Zonal Meridional Angle 

January Kinetic 0.4 0 275 0.13 -0.04 287 

Enthalpy 178 -3.5 271 0.09 -0.65 352 

Potential 71 4.3 267 -0.18 0.01 093 

Latent 0.4 -1.2 341 0.17 -0.52 342 

Sum 250 -0.4 270 0.19 -1.20 351 

April Kinetic 0.3 -0.1 278 0.14 -0.05 290 

Enthalpy 187 :2.4 271 0.43 -0.63 326 

Potential 70 -1.2 271 -0.03 -0.03 045 

Latent 1.0 	., -0.4 291 -0.01 70.32 001 

Sum 258 -4.1 271 0.53 -1.02 333 

July Kinetic 1.2 0 271 0.31 -0.05 279 

Enthalpy 373 5.5 269 0.75 . 	-0..84 318 

Potential 127 5.6 267 0.02 0.07 196 

Latent 2.3 -0.5 282 0.17 -0.21 321 

Sum 503 10.7 269 1.25 -1.04 310 

October Kinetic 0.5 0 270 0.13 -0.02 279 

Enthalpy 261 8.4 268 0.05 -0.92 357 

Potential 89 4.3 267 0.02 -0.01 297 

Latent 1.8 -0.5 286 0.04 -0.47 355 

Sum 353 12.1 268 0.24 ,1.42 350 
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In contrast to the other eddy fluxes the geopotential flux 

is often directed northwards. The average value for July is northward 

at all stations except Adelaide. The geopotential flux may exceed ten 

per cent of the total meridional eddy flux, but in such cases (e.g. 

Williamtown in April and July) it is usually directed northwards and 

offset by a relatively large component of the kinetic energy flux 

directed southwards. The relative contributions of the sensible and 

latent energy terms vary among the stations with the sensible energy 

having a lowest and the latent energy a highest percentage at the inland 

stations of Cobar and Wagga. The lowest proportion of latent energy 

flux occurs at the south coastal stations of Mt Gambier and Laverton. 

There is also a seasonal variation with the relative contribution of 

sensible energy being highest in winter and lowest in summer, and 

conversely for latent energy. 

The overall eddy flux is directed approximately south-eastwards 

in April and July, but close to southwards in January and October. The 

kinetic energy flux is more westerly than the combined eddy flux, and 

the geopotential flux is variable in direction. 

4.2.3 	Flux Divergence 

The contributions of the individual energy types to the total, 

mean and eddy flux divergence listed in Table 4.3 show much counteraction 

between the various terms. In the total flux divergence the terms of 

largest magnitude are the enthalpy and geopotential, but even the kinetic 

energy flux divergence is not negligible, despite its very small 

contribution to the total flux. In July and August the measured divergences 

of the kinetic energy flux are larger than those of latent energy. 

For the four months considered there was consistent divergence 

of the enthalpy flux with geopotential flux convergence of greater 

magnitude, resulting in overall sensible energy convergence. The measured 
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latent energy terms showed divergence in each of the four months. This 

seems an unusual result for the winter months and was discussed in 

Section 3.3. 

In the eddy flux divergence the enthalpy term is usually the 

largest, 	latent energy generally next, with the flux divergences 

of kinetic energy and geopotential of comparable magnitude. The combined 

eddy term of sensible energy showed divergence except in August, and 

hence is mostly opposed to the mean sensible energy term. 

There is also counteraction between the mean and eddy latent 

energy terms, with the eddy flux showing convergence. Similar counteractions 

were noted in the studies for the Baltic and Mediterranean discussed in 

Chapter 2. 

Table 4.3 

Flux Divergence (W m -2)‘'of individual energy forms 

• 	Energy Form February 1975 April 1975 July 1975 August 1975 

Total Flux 	Kinetic -1 3 -13 -21 

Enthalpy 300 286 30 118 

Geopotential -314 -310 -185 -350 

Latent 59 35 4 18 

Combined 44 14 -164 -235 

Eddy Flux 	Kinetic 1 9 8 -15 

Enthalpy 43 17 32 -105 

Geopotential 6 -6 19 5 

Latent -6 -25 -10 -44 

Combined 43 -5 49 -160 

Mean Flux 	Kinetic -2 -6 -21 -6 

Enthalpy 257 269 -2 223 

Geopotential -319 -304 -204 -355 

Latent 65 59 14 62 

Combined 1 19 -213 -75 
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As noted in Chapter 3 for the overall energy flux, the mean 

fluxes of the individual energy types, but again not the eddy fluxes, 

show a pattern of convergence in the zonal and divergence in the 

meridional components, except the kinetic and latent energy fluxes in 

August 1975. 

On a monthly basis the measured latent energy flux divergences 

as discussed in Section 3.3 have been supported for February and April 

by the moisture budget, but shown to be wrong even in sign for July and 

August. However, this is not crucial as the latent energy term is 

relatively unimportant during the winter months. In February, the combined 

sensible energy flux divergence is a small residual of the counteracting 

enthalpy and geopotential terms, so that most of the total flux divergence 

is due to the latent energy term, specifically the mean latent energy 

flux divergence, as the eddy latent energy term is small and convergent. 

The moisture budget depends on the relative magnitudes of precipitation 

and evapotranspiration, so that the overall atmospheric energy budget is 

strongly linked to surface conditions. 

For the other months the overall terms can only be regarded as 

tentative due to the large discrepancy in the total budget. In April the 

combined sensible energy term is again smaller than the latent energy 

divergence, which in turn is smaller than the February value although 

the eddy term is larger. The sensible energy convergence is also due 

to the mean motion. 

In July, the sensible energy terms, particularly geopotential 

energy, dominate. The total and mean latent energy terms are smaller 

than the kinetic energy terms, and the enthalpy terms are also smaller 

than other months. 

For August, the geopotential is the smallest of the eddy terms 

and the largest of the mean terms. The eddy and mean sensible energy 

terms are of the same sign in contrast to the other months, while the 

latent energy term has strong counteraction between the mean and eddy terms. 



91. 

4.3 	Vertical Profiles of Flux and Flux Divergence 

Vertical profiles of the overall energy flux components have 

been discussed in Chapter 3. Profiles for individual energy components 

at stations in or near the study area are given by NEA and for moisture 

transports by Hutchings (1961), so only the main features will be 

mentioned here. 

The total transport consisting of the mean winds weighted by 

the absolute energy values is dominated by the sensible energy. As 

shown in Fig. 3.11 the zonal transport is strongly concentrated in the 

200-300 nib layer, but the meridional component is more uniformly 

distributed with layers of alternating signs. 

The meridional eddy enthalpy flux has a peak at about 850 nib 

in all seasons, which extends to near the surface in summer, especially 

for the south coastal area. A secondary peak is evident between about 

200 and 150 nib especially in summer, with a tertiary peak at 400 nib most 

noticeable in spring. The corresponding zonal term has a positive peak 

at about 250 nib especially in winter, but the flux changes sign several 

times in the vertical. 

For eddy latent energy the meridional component is generally 

directed polewards at all levels, reaching a peak at about the 750 nib 

level, but remaining significant at the 400 nib level. The zonal component 

is generally smaller with negative (westwards) flux near the surface and 

eastwards flux in upper layers. 

Vertical profiles of the total and eddy flux divergences, 

including divergences of the zonal and meridional components, are shown 

in Fig. 4.2 for the four months which were adjusted for mass balance. 

One noticeable feature is the compensation between the zonal and meridional 

components through the whole vertical profile of the total flux divergence. 

As noted for the vertically integrated fluxes this is not so marked in 

August 1975. The total flux divergence profiles reflect the pattern of 
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mass flux divergence and the values at each level are dominated by the 

sensible energy. As discussed previously, though, all the terms are 

significant when vertically integrated, due to the compensating import 

and export in different layers. This also applies to the vector total 

and eddy terms where, at individual levels, the total flux divergence is 

an order of magnitude greater than the eddy term, but the vertical 

integrals of each are comparable. 

Another noteworthy feature is the magnitude of the flux 

divergences at individual levels which can exceed 1000 W m-2  (100 mb) -1  

particularly at high levels. The zonal and meridional terms in July 

approach twice this value in the 200-300 nib layer. 

For February 1975 the total flux divergence shows strong 

convergence averaging about 1200 W m-2  over the 200-300 nib layer with 

export at most other levels. Both the zonal and meridional components 

contribute to the convergence, while these terns are usually of opposite 

sign in other layers. In the eddy profile the zonal and meridional terns 

re-inforce in a layer between the surface and 850 mb but generally counteract 

otherwise. In the eddy layer near the surface the enthalpy and latent 

energy terms are roughly comparable, and of the same sign, but at higher 

levels the latent energy term is mainly convergent while the enthalpy 

term remains divergent. The mean latent energy flux was divergent at all 

levels and both the mean and eddy terms were still significant at 400 mb, 

the lowest pressure for which mixing ratio data were available. 

The pattern that emerges is of many counteracting effects, but 

overall there is energy convergence in the upper layers (particularly by 

the mean flow) and divergence by all forms of energy at lower levels. 

The April 1975 profile again shows strong counteraction between 

zonal convergence and meridional divergence except near the surface and 

at 200 nib, with the net effect being import of energy in the 150-300 nib 

layer and mostly export otherwise. The corresponding mass flux profile 
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for the month indicating mean downwards vertical motion is in line with 

the frequent occurrence of highs and anticyclonic isobaric curvature in 

this month. The eddy flux divergence terms are small in comparison with 

those of other months, and alternate in sign several times in the vertical 

with the meridional and zonal terms generally of opposite sign. The 

eddy latent energy term showed consistent convergence, with highest 

values between the surface and 850 mb. The vertical integral of the 

eddy flux divergence is small, so that the total flux divergence is 

dominated by the mean motion which imports sensible energy in the upper 

layers and exports sensible and latent energy in the middle and lower 

layers. 

A noteworthy feature of the July profile is the low value of the 

total flux divergence in the upper troposphere, due to almost exact 

cancelling between the large zonal and meridional terms. In contrast to 

April the eddy profile shows a fairly regular structure with strong 

divergence in the upper layer over a less marked layer of convergence. 

The August 1975 profile has total flux divergence near the 

surface with generally convergence in middle and upper layers, but no 

marked counteraction between the zonal and meridional components as in 

the other months considered. The eddy term is strongly convergent at 

most levels, in both zonal and meridional components, and in sensible and 

latent energy. 

The large value of the total energy convergence at 100 nib in 

August (-1350 W m-2  (100 mb) -1 ) suggests that if the profile had been 

extended to lower pressures the vertically integrated flux divergence, 

which is a very small residual of opposing terms, could have been 

significantly affected. For example, an average of only half the 100 nib 

value for an extra 20 nib would have added an extra convergence of 135 W m-2  

to the vertical integral. A contribution of this magnitude is roughly the 

discrepancy in the energy budget for August. The choice of the 100 nib 

level as the effective top of the atmosphere may have been a significant 
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source of error, as in this case the overall mass flux has been forced 

to be slightly more convergent than it would have been had the data been 

extended to pressures less than 100 mb. This also appears to be a 

problem to a lesser extent in other months, particularly July, and it 

may be more than a coincidence that the month in which the energy budget 

discrepancy is least (February) has the smallest total flux divergence 

at the 100 mb level. 

The 200-100 mb layer does play a significant role in the 

vertically integrated flux divergence in each of the months considered. 

As the pressure of the tropopause level generally exceeds 200 mb, this 

suggests that interactions between the troposphere and lower stratosphere 

are significant in the atmospheric energy budget. 

The results of the two dimensional model of Paltridge (1978) 

based on a postulate of maximising the rate of entropy production also 

suggest a pattern of zonal convergence and meridional divergence (his 

figures 9 and 10) although the absolute values of the fluxes in Paltridge's 

results are much smaller than observed as they represent fluxes based on 

energy budget considerations alone. According to Paltridge's hypothesis 

such a pattern would be due to the relative radiative regimes of south-east 

Australia and adjacent areas, particularly oceans. 

4.4 	Comparison of Measured Fluxes and Flux Divergences with 
zonal averages 

The mean meridional fluxes for the study area were several 

orders of magnitude greater than the zonal average and varied greatly 

over the three years, even in sign, so that they cannot be realistically 

compared with the zonal average. Seasonal average values of the eddy 

enthalpy, geopotential and latent energy fluxes derived from the 1974 to 

1976 data are shown for four of the stations in Table 4.4 along with zonal 

average values taken from NEA. As results for 40 °S were not available, the 

values for 40 0  N were used instead. The results of NEA include transient 
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and standing eddies, although the latter are small in the southern 

hemisphere (van Loon and Williams, 1977), and are averaged over five 

years, so that interannual variations would also contribute to the 

eddy term. 

All the station values of the combined eddy flux in summer, 

and all except Williamtown in spring, are larger than the zonal average, 

but the reverse is true in winter with Williamtown only 32 per cent and 

Laverton only 39 per cent of the zonal average. 

In the eddy enthalpy transport the station values generally 

exceed the zonal average except in winter. Values in summer are well 

above the zonal value, especially at Laverton, but' the winter fluxes 

at Williamtown and Laverton are only about half the zonal average. 

The eddy geopotential term is small both in the zonal average 

and at individual stations. While the zonal averages are all directed 

toward the north, some station values are polewards. 

The eddy latent energy fluxes are close to the zonal values in 

summer and spring, significantly less in autumn, but well below in winter, 

especially at Laverton and Williamtown where the fluxes are only 20 and 

16 per cent respectively of the zonal average. 

It is difficult to draw conclusions as northern hemisphere data 

are used for most of the zonal averages, but the difference in the 

relation to the zonal average between summer and winter at Cobar probably 

reflects differences in the prevailing synoptic patterns. In winter the 

sub-tropical ridge lies over the area, and the frequency of high pressure 

systems is high (Karelsky, 1961), whereas in summer Cobar is in a prevailing 

easterly zone and on the fringe of the monsoonal area over northern 

Australia. The results do suggest that south-east Australia may be a 

preferred area for meridional eddy transport in spring and summer, but 

an area of below average transport in winter. 
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Due to the uncertainty in southern hemisphere atmospheric 

flux measurements, the computed values of flux divergence for the 

study area can only be compared with northern hemisphere values. The 

total flux divergence for February 1975 (a required value of 55 W m -2 ) 

is greater than the summer value of 29 W m -2  for 35 ° N (see Section 2.1). 

The required values for July and August 1975 are convergences of -103 

and -76 W m-2  respectively but the zonal average for 35 ° N is a slight 

divergence of 6 W m -2 . The flux divergence of the different energy forms 

for the study area are generally greater in magnitude than the zonal 

average, especially for summer. The 35 ° N values do not show any counteraction 

between the enthalpy and geopotential mean flux divergences. 

Considering the flux divergences of only the meridional 

components over the study area, shows that the eddy terns are generally 

about the same magnitude, although sometimes of opposite sign due to 

different counteractions with the mean flux. The mean sensible energy 

flux divergences are several orders of magnitude greater than the zonal 

average due to the strong compensation between zonal import and meridional 

export over the study area. The mean latent energy term is also larger 

than the zonal average, but not to the same extent. 

The flux divergences for the individual energy terms over the 

study area are generally similar in magnitude to the estimates of 

Gallardo et al (1977) for the Mediterranean area, although interactions 

between the mean and eddy terms may be of opposite sense. The main 

exceptions are a lower total sensible energy convergence in winter over 

the Mediterranean, and a stronger sensible energy convergence in summer 

counteracted by a very strong latent energy export (127 W m -2 ). This is 

a reflection of the difference in the underlying surface-totally land in 

one case and mainly water in the other. 
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The individual vector flux divergences over the study area 

do not reach the peak values experienced over the high latitude Baltic Sea 

and adjacent areas. Behr and Speth (1977) report values of mean enthalpy 

flux divergence exceeding 2000 W m-2 . Where this occurs, there is a 

strong counteraction by the eddy enthalpy and both geopotential terms, so 

that the combined sensible energy terns are of the same order of magnitude 

as for the study area. 	
a 

Table 4.4 

Comparison of Average Polewards Eddy Fluxes for the study region for the 
years 1974-76 with Zonal average values taken from NEA. The zonal average 
used correspond to 30 6 S for Cobar (CO), 40 6 N for Laverton (1.1) and the mean 

of the 30 ° 5 and 40 6 N values for Adelaide (AD) and Williamtown (WNO. 
Units.are 10 6  W m-1. 

Flux Season ' AD Zone CO Zone WM Zone LV Zone 

Eddy Summer -65 -24 -41 -22 -46 -24 -96 -25 

Enthalpy Autumn -77.  -46 -40 -27 -40 -46 -67 -65 

Winter -65 4  -78 -48 -47 -34 -78 -55 -109 

Spring -118 -60 -75 -38 -48 -60 -109 -82 

Annual -81 -52 -51 -33 -42 -52 -82 -70 

Eddy.  Summer 2 1 -1 1 -1 1 4 2 

Geopotential Autumn -5 2 1 3 6 2 2 2 

Winter 9 5 9 6 4 5 5 5 

Spring -6 4 1 6 7 4 -7 2 

Annual 0 3 3 4 4 3 1 3 

Eddy Summer -36 -36 -49 -35 -37 -36 -46 -36 

Latent Autumn -25 -42 -31 -38 -9 -42 -25 -46 

Energy Winter -15 -43 -22 -36 -7 -43 -10 -51 

Spring -45 -40 -48 -36 -27 -40 -43 -44 

Annual -30 -40 -37 -36 -20 -40 -31 -44 

Total Summer -98 -58 -91 -56 -83 -58 -138 -60 

Eddy Autumn -108 -85 -71 -61 -43 -85 -90 -109 

Winter -70 -117 -61 -78 -37 -117 -61 -155 

Spring -168 -97 -121 -68 -68 -97 -160 -125 

Annual -111 -89 -86 -66 -58 89 -112 -112 



98. 

CHAPTER V 

CONCLUSIONS 

This study was aimed at examining the atmospheric energy 

fluxes and the energy budget on a regional scale and attempting to 

relate these to the prevailing synoptic patterns. Summaries of the 

technique employed and the results obtained are given below. 

5.1 	Technique 

The study combined satellite, radiosonde and some surface 

meteorological data in an evaluation of the terms of the atmospheric 

energy budget for the region. Although strict closure of all the terms 

was not obtained the adjustment of the wind data for mass balance made 

it possible to draw some conclusions regarding energy transfers within 

the region. Adjustments which were evenly divided in the vertical in 

proportion to the pressure interval gave better results than a scheme 

which made greater adjustments at upper levels (i.e. lower pressures). 

Gross errors are introduced to the flux divergence estimates by missing 

data, and a coherent set of data seems essential. Missing data also 

cause significant errors in the flux measurements, particularly the 

meridional and eddy terms. Given a coherent data base, only small 

adjustments are made to the eddy flux divergence by the mass balancing 

procedure, and its application to the monthly mean winds only may still 

give satisfactory results with a considerable saving in computation. The 

latent energy flux divergences are also altered significantly by the 

adjustments for mass balance, suggesting that even in moisture budget 

studies such a procedure is warranted. 

The NOAA Heat Budget Archive derived from the operational satellites 

provided valuable information on the net radiant flux density which would 

otherwise have had to be obtained from radiative transfer models. Some 

minor problems with the data are the uncertainty in the long wave flux 

measurements and the limited temporal sampling. This latter factor may 
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account for differences between NOAA and Nimbus-3 estimates of ocean-

land contrasts in the radiative fields. 

The techniques employed in this study could be refined by 

including data from other observation times. This would involve much 

interpolation as only three of the six stations have radiosonde data 

at 1100 GMT. The wind data from other observation times at least could 

be used with interpolated values of temperature, geopotential and 

specific humidity. The location of the study area could also be moved 

inland to exclude the mountain range that lies along the east of the 

study area. The possibility that pressure levels below 100 mb may be 

significant in the overall energy budget, suggests that the vertical 

range of observations should be extended, even at the cost of more 

interpolation due to an inevitable increase in the frequency of missing 

observations. 

5.2 	Results obtained 

The overall energy budget for the study area is seen to be a 

complex interplay of the different energy forms, their zonal and 

meridional components and their mean and eddy resolutions. In particular 

there is counteraction in the total energy flux divergence between generally 

zonal convergence and meridional divergence reflecting the pattern of mean 

mass flux over the area. All the energy forms, even kinetic energy, are 

significant in the overall budget. 

For most of the terms there is also compensation in the vertical, 

with the overall divergence a small residual of opposing terms, especially 

for the mean flux divergence. Because of this it seems that levels above 

the tropopause, and even pressure levels below 100 mb in some cases, are 

significant. 

The measured fluxes, except the zonal eddy term, showed good 

correlations with a simple index of the surface synoptic pattern, formed 
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as a multiple linear regression of the number of occurrences per month 

of specified air stream direction and curvature categories. 

Satellite radiation measurements revealed interesting differences 

of the radiative regime between the study area and the zonal average and 

also within the study area. The differences with respect to the zonal 

average reflect the differences in the predominant underlying Surface 

For the study region anomalies of individual monthly values from the 

four-year mean showed a good correlation between the short wave and long 

wave terms, with the former generally larger in magnitude, so that the 

anomalies of net radiation are inversely related to variations in cloudiness. 

Because it is a very small residual, little information on the atmospheric 

energy flux divergence is provided by the net radiation at the top of 

the atmosphere, apart from an estimate of its overall magnitude. 

5.3 	Possible Extensions of the stu4 

The study could logically be extended temporally and spatially 

to provide results for a larger area over longer periods, but also for 

shorter durations to investigate individual synoptic systems. The 

current availability of frequent geostationary satellite data enables 

net radiant fluxes to be evaluated even for time scales of the order of 

one day. Further investigations of the moisture budget could be made, 

although their usefulness in estimating areal evapotranspiration on the 

regional scale appear limited with the present density of upper air 

stations. 
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APPENDIX Al 

ENERGY BUDGET EQUATIONS FOR THE ATMOSPHERE 

Following Haltiner (1971) the equation for the sum of kinetic 

energy K and geopotential energy 0 per unit mass of the atmosphere in 

(x, y, p, t) co-ordinates can be derived from the vector equation of 

motion: 

3K/3t + V . (KV + 0V) = w all/ ap  + V.D 	... (A1.1) 

where p represents pressure, V velocity, w = 
dp

/
dt 

is the vertical 

pressure-velocity and V.D. is the frictional dissipation. 

The thermodynamic equation for an air parcel is 

Q
D 

= c
p
dT/dt - adp/dt 	... (A1.2) 

where QD is the rate of energy added non-adiabatically, c is the 

specific heat at constant pressure and a is the specific volume. 

From Eq. A1.2 the following equation for the enthalpy 

I = Cp T is derived: 

auat + v . (1y) = aw + QD 	 ... (A1.3) 

adding equations A1.1 and A1.3 gives 

a (K+ ')/at +V . (K + I + 0) V = QD  + V.D. 	... (A1.4) 

DO/ 
as 	ap = -a by the hydrostatic assumption. 

Eq. A1.4 states that the rate of change of kinetic energy and 

enthalpy is controlled by non-adiabatic heating Q D, frictional dissipation 

(V.11) and the total energy flux divergence. The flux divergence of 
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enthalpy can be considered as a divergence of internal energy flux and 

work done adiabatically by the pressure forces on the walls of the 

atmospheric volume (e.g. Starr, 1951). 

The value of c for dry air under normal atmospheric conditions 

is 996 J Kg -1  K -1  and the corresponding value for moist air C is 
Pm 

given by: 

c 	= c 	(1+0.00081q) 	 ... (A1.5) 
Pm 	P 

where q is the specific humidity of water vapour measured in grams of 

water vapour per kilogram of dry air. The highest values of q 

experienced under normal conditions are of the order of 20 g Kg -1  

so that the correction due to moisture content is generally less than 

two per cent throughout the atmosphere. 

Frictional forces are only significant in the bottom 100 mb 

and are generally accepted as being small relative to the other terms. 

The practice adopted in other energy budget studies (e.g. Hastenrath 1966, 

Gruber 1970, Newell et al. 1974) of neglecting this term will be followed. 

The divergence operator in Eq. A1.4 can be separated into a 

two-dimensional divergence V2 in the constant pressure surface and a 

component normal to this plane 

V . A = V2. A2 4' 3A /ap  ... (A1.6) 

where A is an arbitrary vector, with component A2 in the constant 

pressure surface and A normal to it. 

Integrating Eq. A1.4 vertically from level 1 to level 2 

obtains an expression for the energy balance over a cross-sectional 

area dA: 
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f z2  Q PdzdA = !P I  Q,dp/gdA 
zi D 	P2 u 

fpi a, 
P2 'at (V2/2 	c 1) dp/gdA 

+ g l  V2.(V2/2 + gz + c T) V2 dp/gdA 
Pa 	P 

fp a, 
132 '3p Lo (V2 /2 + gz + c T) dp/gdA ... (A1.7) 

As the vertical velocity is generally small relative to the 

total velocity, V2 = V. Using the Gauss divergence theorem to expand 

the second term on the right hand side 

fz2 n adzdA = a/ tfP 1  (v2 /2 + c T1  (1,-,./gdA 
zi 'D 	3 	P2 	p-, 

+ fp' 6  (V2 /2 + gz + c T) V.n ds dp/g 
P2 a 	P 

+ ((V2/2 + gz + cpT)w/g)1 dA 

- ((V2 /2 + gz + cpT)w/g)2 dA 	... (A1.8) 

where a is a closed line of segments ds bounding the area of 

interest, with n the unit normal vector to the line element (positive 

outwards). 

The non-adiabatic energy sources are the net radiation through 

the top (Qi) and bottom (Ql) of the column and the heat released by 

condensation in the column. It is assumed that the latter term can be 

measured by the precipitation rate measured at the ground. 

Thus PI
*  * 

p2  QD  Q2  - Q2  QR  ...(A1.9) 
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where Q is positive in the downward direction and Q R  represents the rate 

of energy supplied by rainfall. 

The equation corresponding to Eq. A1.8 for the latent energy 

budget is 

/PI  
a
LqV.n ds dp/g + a/ 	Lq dp/g dA 

P2   

+ (Lqw/g)1 dA - (Lqw/g)2 dA + Q R  = 0 	... (A1.10) 

This equation is only approximate as it neglects heat of 

fusion in ice formation or sublimation, and the transport of liquid  

water in the atmosphere. 

Substituting Eq. A1.10 and A1.9 in A1.8 gives 

* 	* 

Q2  - Qi  = /3t I PI  (V2/2 + c T + Lq) dp/g dA 
P2 

+ /P i  6 (V2/2 + gz + c T + Lq) V.n ds dp/g 
P2 

+ ((V2 /2 +g z +cpT+1,q) w/g) 1  dA- ( (V2 / 2+gz +cpT+Lq)w/g) 2 dA 	... (A1.11] 

When the integration extends from the surface to the top of the 

atmosphere, the last term on the right hand side is zero, and the second 

last term is equal in magnitude but of opposite sign to the sum of 

sensible and latent energy transfers from the surface to the air, QH  

and Q
E 
respectively. Q

E 
is measured by the evapotranspiration rate 

(assuming dew is negligible, an assumption generally valid except perhaps 

in deserts). 
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The first term on the right hand side represents the storage of energy 

in the atmosphere, with the c T term including both internal energy 

(c
V 
 T) and potential energy. Errors due to a restricted vertical 

integration are discussed by Oort (1971). The second term denotes the 

divergence of the energy flux. Using essentially the notation of Oke 

(1978) Eq. A1.11 can be expressed as 

QTA 	QBA = V * (FH 	FQ)  SH 	SQ 	(Of. 	QE) 
	

... (A1.12) 

where the subscripts TA and BA denote the top of the atmosphere 

and surface (bottom of the atmosphere) respectively. FH  and FQ  

denote the vertically integrated fluxes of sensible energy (enthalpy, 

potential energy and kinetic energy) and latent energy. SH  and SQ  

represent therate of energy storage in the atmosphere as sensible (S H) 

and latent energy (S Q). 

The divergence operator refers to two dimensions only. For the net 

radiation at the surface 

QBA = QH 	QE 4. SG 	SO 	V  • 1-0 
	... (A1.13) 

where S
G and S refer to the rate of energy storage in the ground (SG) 0 

and ocean respectively, and V . fo  represents the divergence of the 

sensible energy flux in the ocean. 

This equation is again an approximation as it neglects terns 

such as snow melt, sensible energy transfer by precipitation, expenditure 

of energy for photosynthesis and heat flux from the earth's interior. 

Adding Eq. A1.13 to Eq. A1.12 gives 

QTA = V .(FH 	FQ 	FO) 	S
• 	

SQ SG SO 
	... (A1.14) 
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This equation states that the net radiant flux at the top of the 

atmosphere either flows out of the column as sensible or latent 

energy, or is stored in the air, ground or ocean. The measurement 

of V . FQ  is subject to errors due to inaccuracies in the humidity 

sensing elements of conventional radiosondes. An alternative form of 

Eq. A1.14 can be obtained by expressing Eq. A1.10 in the form 

SQ  + V . FQ  - Qc  + QR  = 0 	... (A1.15) 

Substituting in Eq. A1.14 gives 

QTA Q
R QE = V . (FH  + Fo) + SH  + SG  + So 	... (A1.16) 

This alternative method has difficulties of its own, particularly the 

measurement of precipitation over data sparse areas and the difficulty 

of measuring actual rather than potential evapotranspiration even where 

conventional data exist. 

Throughout the present study the energy equations in the form 

of Eq. A1.14 were used. As the area being studied covered land only, 

the terms V .F
0 
 and S

0 
 were zero, so that the energy equation can be 

written: 

Q
TA 

= V . F
A 

+ S
A 

+ S
G 
 ... (A1.17) 

combining the atmospheric sensible and latent energy terms into 

F
A 

and S
A

. 

For studies over areas that include large bodies of water equations 

in the form of A1.12 are usually more convenient, With Q H  and QE  estimated 

using empirical transfer functions and Q
TA 

- Q
BA' 

the net atmospheric 
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radiative flux, from radiation models possibly supplemented with satellite 

data. 

Behr and Speth (1977) consider only the sensible energy budget. 

The form of equation used can be found by subtracting Eq. A1.10 from 

Eq. A1.12. Then 

QTA QBA = V . F
H  + SH  - QR  _ QH 	... (A1.18) 

- A constant value of L = 2500J g 1  was used throughout this 

study. Newton (1972) points out that in this case the sensible energy 

carried by the water vapour should not be taken into account, i.e., 

C should be constant and not increase with water vapour content as in 

Eq. Al.S. An increase of sensible energy with increasing temperature 

compensates for the decrease in L with increasing temperature. However, 

the procedure used will not introduce significant errors. 

Heat storage in Land 

Sellers (1965) uses the classical theory of heat transfer in 

a homogeneous medium under the action of a sinusoidal temperature 

variation to show that the rate of heat flux at the surface at time t 

is given by: 

S
G 

(o,t) = A To (2np C
s 
 A/P) 1/2  sin (2nt/P + n/4) 

s  
... (2.8) 

where A To is the amplitude of the surface temperature wave, P is the 

period of oscillation, A is the thermal conductivity, Cs  is the 

specific heat and ps  is the density of the soil. For the annual cycle 

the time of maximum heat flux precedes the time of maximum surface 

temperature by 111 months. 
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Sellers quotes studies that suggest a value of 1.3 for the 

ratio of the amplitude of the temperature wave at the soil surface to 

that of screen temperature measurements at a height of 2 metres. Values 

of p , CS  and A depend on the type of soil and the soil moisture content. s  

The thermal conductivity increases with increasing soil moisture content, 

showing a rapid increase at low moisture contents, but only a gradual 

increase for medium and high soil moisture. The heat capacity of 

p
s 
 C also increases with increasing soil moisture content, but with a 
 s 

smaller relative variation. The range of (p s  C s  A) 11  is restricted by 

moisture contents generally experienced in the field, and Sellers (1973) 

uses a value of 0.0017 J m -1  K-1  S -1/2  as a global average. 



APPENDIX A2 

FURTHER DETAILS ON PROCEDURES FOR THE MASS BALANCE ADJUSTMENT 

The polynomial fitted to winds at each level was expressed 

in Eq. 3.15 as 

n(1) 	n-1 x. 
1 Pn (x 	

a.
.) = E 	11 j 

i=1 
... (A2.1) 

It is required to choose the coefficients a il  so as to 

minimise in a least squares sense, the difference between the observed 

data and its polynomial approximation under the constraint of Eq. 3.14. 

Such problems are treated in numerical analysis text books such as 

Rust and Burrus (1972). 

The terms of Eq. A2.1 can be written in matrix notation as 

W = PA 	 ... (A2.2) 

wherePisamatrixwhosetermsarepowersofx.imving MxL rows and NL 

columns where NL = E n(1). A is a vector of the coefficients. ail  

The function S to be minimised is then given by 

S = (V - PA)
T (V - PA) _ ... (A2.3) 

where V is the vector of observed winds and the suffix T denotes the 

transpose of the matrix. 

The equation of constraint can be expressed as 

HA = a 	 ... (A2.4) 

A set of Lagrangian undertermined multipliers is introduced 

and the new function to be minimised is 

1=1 

S= (V - T (V -P&  + (HA - a) T 	
... (A2.5) 
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This is equivalent to Eq. 3.16 although a little more general 

in that there can be more than one constraint. In the mass balance 

problem, there is only one equation of constraint, making a a constant 

and requiring only a single undetermined multiplier. 

At the minimum of S. all the partial derivatives with respect 

to the independent variables A and a are zero. 

i.e. 	aS/aA= -2PTV + 2PTPA + HTX = 0 	... (A2.6) 

as/ 
DX = HA - a = 0 _ _ _ ... (A2.7) 

Writing X = 2, the final equations expressed in matrix 

notation are 

( T  HT 
/ T 
P V P P  

0/ 	\ 

 

... (A2.8) 

 

This is a linear set of equations of the form BX = Y. The 

matrix B is square and symmetric, depending only on the spacing of the 

stations and the degree of the approximating polynomial at each level. 

The vector Y on the right hand side is derived from the observed wind 

data and the required constant a. Numerical techniques can be used to 

solve for the vector X, which yields the vector of coefficients A. 

This can then be substituted in Eq. A2.2 to derive the adjusted wind 

components. 

The procedure requires significant computer time as even for 

6 stations with 10 levels, B is a 61 x 61 matrix if N=M-1 at each level. 
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To prevent the matrices being ill-conditioned the components 

of the matrix all need to be of approximately the same order of 

magnitude. It was found necessary to normalise the horizontal and 

verticalweightingcoefficientsig.and F 1 
in Eq. 3.16. 

Gruber and O'Brien (1968) suggest that if the data at a given 

level are regarded as reliable, then that level can be retained unaltered 

by making the polynomial of degree M at that level. This was attempted, 

but the matrix proved algorithmically singular if this was done even 

for one level. 

The result quoted in Eq. 3.17 is suggested by the result 

found by O'Brien (1970) who used the same approach to determine the 

values of vertical velocity derived from an input field of observed 

divergences subject to the constraint of zero mass balance over a large 

region as in the Above problem. The values of vertical velocity at any 

location were regarded as independent. O'Brien showed analytically for 

the case of uniform horizontal and vertical spacing that to satisfy the 

constraint, least squares minimisation required a uniform adjustment at 

each level and each station. For non-uniform spacing the result of 

Eq. 3.17 is obtained. This suggests that when N=M-1, giving N unknowns 

ail 
and N equations at each level, there are enough degrees of freedom 

for the values at each station to be independent, and that the problem 

then becomes equivalent to that treated by O'Brien.. 


