
Tutorial Enhancement

and Automated Code Helper

by

David Burela (BCOMP)

A dissertation submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Computing

University of Tasmania

(November, 2006)

Declaration
This thesis contains no material which has been accepted for the award of any other
degree or diploma in any tertiary institution, and that, to my knowledge and belief,
the thesis contains no material previously published or written by another person
except where due reference is made in the text of the thesis.

Signed

Abstract

This work proposes a system, entitled TEACH (Tutorial Enhancement

and Automated Code Helper) which will allow students to complete

programming tutorials online with the ability to submit their work to a

server for instant analysis and receive meaningful feedback on any

errors found with the code. This is achieved through a chosen set of

analysis tools which have been brought together as a system and

presented here as the "Three Spheres of Analysis". The building of

TEACH will test the hypothesis that students will prefer learning in

the newly developed automated tutorial system over the current

tutorial system. The results show students are receptive to the system;

however are not convinced that it would replace the current tutorial

system.

Acknowledgements

I would like to begin by expressing my extreme gratitude to my supervisor Dr. Julian

Dermoudy. Thanks to his experience and wisdom I was able to complete this thesis,

without him it would not have been possible. He was very accommodating with his

vision of the research allowing room to move, something he was not required to do

but it is very much appreciated. His guidance began in my 1 st year of computing and

continued through the last 5 years.

My partner Emma Woolford deserves my gratitude next. Emma's experiences in

writing a thesis last year helped prevent a lot of suffering on my part for which I am

grateful. Without her love and late nights of proofreading my thesis I would not have

completed it in time.

Finally a general recognition to all of my friends and family especially the ones that

helped me with minor tasks in the last week! (In no particular order) James Gourley,

David Hall, Conan Young, Colin Robinson, Rob Saunders and Raelene Morey.

UTASOR UNIVERSITY OF TASMANIA
Contents

Table of Contents

Table of Contents 	 iii

List of Figures 	 vi

List of Tables 	 viii

1. Introduction 	 1

1.1. 	Thesis structure 	 1

2. Literature Review 	 3

2.1. 	Overview 	 3
2.2. 	Structure and Scope 	 3
2.3. Background 	 3

	

2.3.1. 	IOCT101 Programming and Problem Solving 	 3

	

2.3.2. 	Java Language 	 4

	

2.3.3. 	Common Beginner Programmer Mistakes 	 6
2.4. 	Related Systems 	 7

	

2.4.1. 	Environment for Learning to Program (ELP) 	 7

	

2.4.2. 	Automatic Assessment and Programming Tutor 	 8

	

2.4.3. 	Expresso 	 8
2.5. Matching Methods 	 9

	

2.5.1. 	Diff.exe 	 9

	

2.5.2. 	Regular Expressions 	 9
2.6. 	Style Checking 	 10

	

2.6.1. 	CheckStyle 	 10

	

2.6.2. 	Hammurapi 	 11
2.7. 	Static Analysis 	 11

	

2.7.1. 	Static Analysis using Source Code 	 13

	

2.7.2. 	Static Analysis using Java Byte Code 	 13

	

2.7.3. 	PMD 	 14

	

2.7.4. 	Bandera 	 14

	

2.7.5. 	FindBugs 	 15

	

2.7.6. 	JLint 	 16
2.8. 	Dynamic Analysis 	 16

	

2.8.1. 	Test-driven Development 	 17

	

2.8.2. 	Junit 	 17
2.9. 	Tools 	 18

	

2.9.1. 	Hyper Text Mark-up Language (HTML) 	 18

	

2.9.2. 	Extensible Mark-up Language (XML) 	 18

	

2.9.3. 	ASP.NET 2.0 	 19

	

2.9.4. 	JavaServer Page (JSP) 	 19

3. Module selection 	 20

UTASM UNIVERSITY OF TASMANIA
Contents

3.1. 	Introduction 	 20
3.2. Development Platform 	 20
3.3. Base Framework 	 21
3.4. Choice of Analysis Methods 	 22
3.5. The 3 Spheres of Analysis 	 22

	

3.5.1. 	Sphere 1: Static Analysis 	 23

	

3.5.2. 	Sphere 2: Style Checking 	 25

	

3.5.3. 	Sphere3: Custom Matcher 	 26
3.6. 	Other Analysis 	 27

4. Architecture, Topology and Design 	 29

4.1. 	Introduction 	 29
4.2. 	Directory Structure 	 29

	

4.2.1. 	Core Components 	 29

	

4.2.2. 	External Resources 	 30
4.3. 	Database Design 	 30
4.4. 	Application Structure 	 32

	

4.4.1. 	Compilation of Source Code 	 32

	

4.4.2. 	Sphere 1: Static Analysis 	 33

	

4.4.3. 	Sphere 2: Style Checking 	 35

	

4.4.4. 	Sphere 3: Code Matching 	 35

	

4.4.5. 	Graphical Feedback 	 36

5. Evaluation 	 37

5.1. 	What the Students Will be Testing 	 37

	

5.1.1. 	Modules 	 37

	

5.1.2. 	Code Matching 	 37
5.2. 	Testing Session 	 37
5.3. Sample Programs 	 38

	

5.3.1. 	Division 	 39

	

5.3.2. 	Logic Error 	 39

	

5.3.3. 	Ignoring Return Value 	 40

	

5.3.4. 	String Buffer 	 41
5.4. 	Survey 	 41

	

5.4.1. 	About the Questions 	 42

	

5.4.2. 	How the students were Contacted 	 42
5.5. Ethics committee Approval 	 42

6. Results and Observations 	 43

6.1. 	Survey Results 	 43

	

6.1.1. 	Question 1 	 43

	

6.1.2. 	Question 2 	 43

	

6.1.3. 	Question 3 	 44

	

6.1.4. 	Question 4 	 45

	

6.1.5. 	Question 5 	 45

	

6.1.6. 	Question 6 	 46

iv

UTAS UNIVERSITY OF TASMANIA
Contents

6.1.7. 	Question 7 	 47
6.1.8. 	Question 8 	 47
6.1.9. 	Question 9 	 48
6.1.10. Question 10 	 48
6.1.11. Freeform comments 	 49

7. Conclusion 	 50

7.1. 	Future Work 	 51
7.1.1. 	Security Issues 	 51
7.1.2. 	Infinite Loops 	 51
7.1.3. 	Code Input Enhancements 	 51
7.1.4. 	Showing the Error in Context 	 51
7.1.5. 	Background Processing 	 52
7.1.6. 	Distributed Processing 	 52
7.1.7. 	Dynamic Analysis 	 52

8. References 	 53

Appendix A: Information and Consent Forms 	 57

Appendix B: Survey Form 	 60

Appendix C — Tutorial Questions 	 63

Cl. 	Tutorial Question 1 — Division.java 	 63
C2. Tutorial Question 2— LogicProblem.java 	 64
C3. Tutorial Question 3 — ReturnValue.java 	 65
C4. Tutorial Question 4— StringBuffjava 	 66
C5. Tutorial Question 5— W2Swap.java 	 67

Appendix D: Reference of Available CheckStyle Checks 	 68

Appendix E: FindBugs Bug Descriptions 	 74

V

UTASOA UNIVERSITY OF TASMANIA
Contents

List of Figures

Figure 1 ELP and the program analysis framework integration (Truong, Bancroft et al. 2003) 	 8

Figure 2 Matching a regular expression on a piece of text 	 10

Figure 3 Regular expression for matching email addresses (Goyvaerts 2006) 	 10

Figure 5 Tree generated using parser (Amit 2005) 	 13

Figure 4 Example of bug found with Static Analysis tools 	 13

Figure 6 Code that exhibits the bug patterntaken from (Goetz 2006) 	 14

Figure 7 Bytecode listing for code in Figure 6 taken from (Goetz 2006) 	 14

Figure 8 A unit test written in Junit 4.0 taken from (Doshi 2005) 	 17

Figure 9 Graphical representation of the 3 Spheres of Analysis 	 23

Figure 10 Regular Expression to match a String or int declaration 	 27

Figure 11 TEACH database structure 	 31

Figure 12 TEACH architecture 	 32

Figure 13 TEACH default settings for FinclBugs 	 33

Figure 14 FindBugs call with selected visitors 	 34

Figure 15 Example executions of CheckStyle 	 35

Figure 16 Screenshot of TEACH: source code input(left) and the resulting feedback(right) 	36

Figure 17 Error output of tutorial question 1 	 39

Figure 18 Error output of tutorial questsion 2 	 40

Figure 19 Error output from tutorial question 3 	 40

Figure 20 Error output from question 4 	 41

Figure 21 Responses to Question 1 	 43

Figure 22 Responses to Question 2 	 44

Figure 23 Responses to Question 3 	 44

Figure 24 Responses to Question 4 	 45

Figure 25 Responses to Question 5 	 45

Figure 26 Responses to Question 6 	 46

Figure 27 Responses to Question 7 	 47

vi

UTAS UNIVERSITY OF TASMANIA
Contents

Figure 28 Responses to Question 8 	 47

Figure 29 Responses to Question 9 	 48

Figure 30 Responses to Question 10 	 49

vii

UTAS UNIVERSITY OF TASMANIA
Contents

List of Tables

Table 1 Top 20 identified programming errors of beginning students (Hristova, Misra et al. 2003) 	 5

Table 2 Common Java programing mistakes (Topor 2002) 	 6

Table 3 Five distinguishing characteristics of the ELP system (Truong, Bancroft et al. 2005) 	7

Table 4 Bug finding tools and their basic properties (Rutar, Almazan et al. 2004) 	 14

Table 5 Conclusion and future work (Hovemeyer and Pugh 2004) 	 16

Table 6 Design Goals for XML taken from (Bray, Paoli et al. 1997) 	 18

Table 7 Bug finding tools and their basic properties (Rutar, Almazan et al. 2004) 	 23

viii

UTAS92 UNIVERSITY OF TASMANIA
Chapter 1: Introduction

1. Introduction
The aim of this thesis is to build and evaluate the effectiveness of a web-based tutorial

system. The system should allow students to enter code into a web page and have it

submitted to a server for compilation and assessment, for the purpose of assisting

beginner programmers learn programming basics. The hypothesis for the research is that

students will prefer learning in the newly developed automated tutorial system over the

current tutorial system.

"When learning to program, it is essential that students are given the opportunity to

practise in an environment where they can receive constructive and corrective feedback

Feedback is an especially important factor in the learning process when it is available

on request. However, with large class sizes, it is difficult for teaching staff to

synchronize their heavy schedules to provide additional help when the students need

it."(Truong, Bancroft et al. 2005)

The proposed system, entitled TEACH (Tutorial Enhancement and Automated Code

Helper), will allow students to select a tutorial question that they with to complete, the

selected tutorial being loaded onto the webpage allowing the student to modify it. Upon

completion of the required tutorial code the student will then submit it to the server

which will then compile and execute it. A series of analysis tools will then be run against

the student's code to detect and provide meaningful feedback on any errors found with

the code. The set of analysis tools run against the code has been brought together as a

system and presented here as the "Three spheres of analysis".

1.1. Thesis structure

Chapter 2 presents a review of the literature that will describe the context of all the

technologies and tools that are considered in this thesis.

Tutorial Enhancement and Automated Code Helper

UTAS UNIVERSITY OF TASMANIA
Chapter 1: Introduction

Chapter 3 explores the tools available for use by the system and the decisions on why

the final tools were chosen. The "Three Spheres of Analysis" will also be introduced in

this chapter.

Chapter 4 gives a detailed description on how the system was implemented and the

structure of each component.

Chapter 5 describes the testing process and how the testers were recruited to evaluate the

system.

Chapter 6 examines the results of the survey submitted by the testers.

Finally, Chapter 7 concludes this thesis, and presents future work.

Tutorial Enhancement and Automated Code Helper 	 -2-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

2. Literature Review

2.1. Overview

The purpose of this literature review is to present an exploration of tools which would be

of use in assisting students to learn more effectively. Various approaches and techniques

will be explored within this review to determine which are suitable to the architecture

and application. The major goal of this literature review is to provide an understanding

from which to select appropriate solutions, for later investigation within the thesis.

2.2. Structure and Scope

Section 2.3 outlines the background of the thesis and also the context of the research.

Section 2.4 explores any related work previously conducted in this field of research.

Section 2.5 will inspect matching methods that may be of use to this research.

Section 2.6 presents style checking of Java source code.

Section 2.7 introduces static analysis of source code, and investigates available software

solutions.

Section 2.8 examines dynamic analysis and its role in software testing.

Finally, Section 2.9 will investigate tools upon which TEACH is built.

2.3. Background

2.3.1. 	KXT101 Programming and Problem Solving

KXT101 Programming and Problem Solving is the first year programming unit at the

University of Tasmania. The focus of this thesis is to assist these beginner programmers.

IOCT101 teaches students the basics of Object Oriented programming in Java, and how

to test/debug programs. The unit is a requirement for certain degrees and a pre-requisite

for the study of further programming units, as it teaches programming fundamentals

(UTAS 2006).

Tutorial Enhancement and Automated Code Helper 	 -3-

UTASW UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

"Students learn to use a high level language such as Java to write programs which solve

problems defined by a program specification. They master fundamental concepts

relating to imperative, object-based programming and are introduced to concepts

relating to graphical user interfaces and event driven programs. Students are required

to demonstrate syntactic, logical and strategic knowledge of the programming

constructs introduced in the unit. They are expected to use systematic processes to plan,

document, debug and test their programs. Programming exercises are introduced in the

context of small problems." (UTAS 2006)

2.3.2. 	Java Language
The Java language was initially created by James Gosling at Sun Microsystems. The

initial aim of the project in 1991 was to create a tool which could be used to extend other

programming languages to handle programming tasks that were traditionally hard to do.

The first version of Java had been intended to be a cross platform environment for

developing software for home appliances. Java was meant to simplify development as

traditional languages like C++ are compiled to a processor specific binary, but home

appliances have a variety of different processors, meaning they required additional

development and testing time. As home appliances are usually a low cost item, keeping

development costs down is a large area of conern (Savitch 1999).

In 1994 James Gosling came to recognise that his language would be ideal for the

internet. In 1995 Netscape decided to make the next version of its web browser,

Netscape Navigator, capable of running Java programs(Savitch 1999). Java's initial

surge of popularity was due primarily to being one of the first programming languages

which deliberately embraced the concept of writing programs that can be executed using

the Internet (John Lewis 2001).

Java source code is not compiled into an executable binary, instead it is converted into

bytecode. This bytecode is an intermediate format which allows it to be portable.

Tutorial Enhancement and Automated Code Helper 	 -4-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

"Java byte code executes inside a Java Virtual Machine (or VM). The Java VM

provides host services for the Java application/applet. These services include memory

allocation, garbage collection, i/o, and basic graphics and windowing. The Java VM

also enforces security, preventing Java byte code from interacting directly with the

hardware on the host OS. Inside every Java-capable browser is a Java VM There are

also stand-alone Java VMs that can execute Java applications outside of a browser."

(Sun 1998)

By compiling Java programs into bytecodes it allows the programs to be cross platform,

as it has not been tied to a specific processor. The first Java Virtual Machines interpreted

each bytecode instruction as it encountered it. All this parsing meant that Java was much

slower than traditional compiled languages like C++, but more recent versions of the

Java Virtual Machine include features such as JIT compilation (Just In Time) which

compile the bytecode form into machine-native, or operating-system-native instructions

which greatly enhance the performance of the executing program.(Sun 1998)

Table 1 Top 20 identified programming errors of beginning students (Hristova, Misra et al. 2003)

Syntax errors
1. = versus
2. = versus .equals (faulty string comparisons)
3. mismatching, miscounting and/or misuse of {}, [], (), " ", and "
4. Confusing "short-circuit" evaluators (&& and II) with
5. conventional logical operators (& and I).
6. incorrect semi-colon after an if selection structure before the if statement or

after the for or while repetition structure before the respective for or while
loop

7. wrong separators in for loops (using commas instead of semi-colons)
8. an if followed by a bracket instead of by a parenthesis
9. using keywords as method names or variable names
10. invoking methods with wrong arguments
11. forgetting parentheses after method call
12. incorrect semicolon at the end of a method header
13. leaving a space after a period when calling a specific method
14. >= and =<

Logic errors
1. improper casting
2. invoking a non-void method in a statement that requires a return value
3. flow reaches end of non-void method
4. methods with parameters: confusion between declaring parameters of a

Tutorial Enhancement and Automated Code Helper 	 -5-

UTASW UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

method and passing parameters in a method invocation
5. incompatibility between the declared return type of a method and in its

invocation
6. class declared abstract because of missing function

2.3.3. 	Common Beginner Programmer Mistakes
When starting out, students new to programming frequently make the same mistakes

(Hristova, Misra et al. 2003). Gathering a list of these common mistakes can help focus

the learning exercises that are given, in order to help a student spot these problems in the

code by themselves.

Hristova, Misra et al (2003) describe an error detection tool that was created at Bryn

Mawr College, titled Expresso. The paper explains how they created a list of common

programming errors that students make and what these errors were. The researchers

surveyed a number of teaching staff and students and created a final list. They originally

had a list of 62 errors, but cut it down to a list of the top 20 errors that they felt were

essential from an educational perspective as shown in Table 1.

Table 2 Common Java programing mistakes (Topor 2002)

1. Not specifying the size of a new array
2. Not using correct array bounds
3. Doing arithmetic on an instance of a wrapper class
4. Adding a value of a primitive type to a collection (a set or list) or a map
5. Not casting the value of type Object returned by listget(i) or map.get(key)

to the required type
6. Using static components unnecessarily
7. Not reading the next line inside a loop
8. Creating a string tokenizer for a line before checking the line is present
9. Reading all input before processing it
10. Threading code
11. Doing nontrivial computation in a class constructor.
12. Not using common API methods
13. Not breaking out of a loop when required
14. Not breaking at the end of each case in a switch-statement
15. Assigning constant values to Boolean variables in if-statements.
16. Declaring variables globally, unnecessarily
17. Repeating code that should be in a method called repeatedly
18. Being too complicated
19. Combining computation and input/output in a single, complex method

Tutorial Enhancement and Automated Code Helper 	 -6-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

Griffith University compiles their own list of common programming errors for their

beginning programming course. Table 2 shows a summary of their commonly identified

errors. Many of these are similar to the errors previously discussed.

2.4. Related Systems

2.4.1. 	Environment for Learning to Program (ELP)
Environment for Learning to Program (Truong, Bancroft et al. 2003; Truong, Roe et al.

2004; Truong, Bancroft et al. 2005) was designed at the Queensland University of

Technology (QUT). The purpose of the system was to assist their first year Information

Technology students develop their programming skills. It is an interactive web based

environment for teaching programming basics. The system provides feedback to the

students via a static analysis framework, allowing the students to see potential errors in

their program. Figure 1 provides an overview of the ELP architecture.

Table 3 Five distinguishing characteristics of the ELP system (Truong, Bancroft et al. 2005)

1. The system supports fill in the gap programming exercises and customized compilation
error messages which reduce the complexity of writing programs. This allows students
to focus on the problem to be solved and engages them more actively in the learning
process.

2. The system is web based which eliminates the programming environment difficulties
that students usually encounter. This also enables smooth integration of programming
with lecture notes, tutorials and other web based content.

3. The ELP incorporates a program analysis tool which provides instant feedback for
students about the quality and correctness of their programs.

4. The ELP supports configurable exercises i.e. the exercises and the environment can be
configured for different stages of students learning.

5. The system allows tutors to provide additional feedback through annotations on
students' programs

As well as providing the tools to detect problems, it assists the students learning by
allowing them to concentrate on just the code, without being required to learn how to
setup a working environment and compiler. This separation of learning to program and
compilation tools can assist the learning process. Further features can be seen in
Table 3.

Tutorial Enhancement and Automated Code Helper 	 -7-

UTAS* UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

Figure 1 ELP and the program analysis framework integration (Truong, Bancroft et al. 2003)

_ 2, 	Automatic Assessment and Programming Tutor

Loosely based on ELP, the Automatic Assessment and Programming Tutor (AAPT) was

created by University of Tasmania (UTAS) student Cynthia Sim in 2005. AAPT is a

web-based tutorial system created using JSP and being hosted on Apache Tomcat 3.3.2.

AAPT operates as follows; A student will load the exercise in a web browser and try to

finish the exercise by completing all required code. Once the student thinks they have

completed it, they submit the code to the server which then attempts to compile the code

and execute it. If there are any compile time or runtime errors, the system will report

them back to the student to review. Otherwise the system will return the output of the

student's code to the screen.

AAPT has the advantage of teaching students over the traditional method of text editor

and compiler, as it does not assume that the student has knowledge on how to install

compilers or how to operate them. The basic feedback system also assists in students

learning(Sim 2005).

2.4.3. 	Expresso

Expresso(Hristova, Misra et al. 2003) was created to assist beginner programmers

understand cryptic compiler error messages. The researchers compiled a list of the most

common Java errors that students make, by contacting professors at 58 universities as

well as special interest groups. They then split all the errors into 3 groups: syntax,

semantic and logic errors. Using this list of common mistakes as a base they were able to

create a program that does multi-pass pre-processing on the code to detect these

common errors. A verbose set of responses was created to direct the student to what the

Tutorial Enhancement and Automated Code Helper 	 -8-

UNIVERSITY OF TASMANIA
Chapter 2: Literature Review UTAS 9,2

error was in a more readable message, and also providing suggestions on how to fix the

error.

By assisting the student to be able to track down errors more easily than with the

standard compiler error messages, it allows the student to concentrate on figuring out

how to correct the code, instead of forcing them to first try to and locate where exactly

the error is, and then how to correct it. They see the need for the tool diminishing as the

student gains a better understanding of the language and compiler (Hristova, Misra et al.

2003).

2.5. Matching Methods

In order to allow the comparison of the student's code to possible problems and

solutions, a method of matching the code to the reference code is needed.

	

2.5.1. 	Diff.exe
The GNU diff utility is used to show differences between two text files. This set of

differences is often called a 'diff or 'patch'. Diff compares two files line by line, finds

groups of lines that differ, and reports each group of differing lines. GNU diff provides

ways to suppress certain types of differences that are not relevant, changes in the amount

of white space between words or lines a common option(Free Software Foundation

2000).

	

2.5.2. 	Regular Expressions
Regular expressions(Goyvaerts 2006) are used to do complex string matching on a piece

of text. They are expressed as a sequence of characters which describe a pattern to be

matched. The name regular expressions comes from the mathematical theory which they

are based on(Goyvaerts 2006).

A simple example of using regular expressions is trying to find both spellings of the

colour grey/gray, in a piece of text. The regular expression shown in Figure 2 would

match all occurrences of grey and gray in the target text.

Tutorial Enhancement and Automated Code Helper 	 -9-

UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

Regular expression: gi[ae]y

Target text:
The cement is coloured grey. The sky looks gray today.

The incorrect response has been greyed out.

Figure 2 Matching a regular expression on a piece of text

A much more advanced regular expression can be constructed that will find any email

address. Figure 3 has an example expression that would match any email address. The

expression can be modified by a programmer to verify that text entered is a valid email

address by replacing the first "\b" with a "^" and the last "\b" with a "$" symbol instead

(Goyvaerts 2006).

\b[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}th
Figure 3 Regular expression for matching email addresses (Goyvaerts 2006)

Many tools that can be used to assist in the creation of regular expressions can be found

at http://en.wikipedia.org/wiki/Regular expressions.

2.6. Style Checking

By keeping a consistent style across a project such as coding style, indentations,

methods, this will benefit the project by being easier to maintain (Hammurapi Group

2006). In addition, programming style is one of the most important foci of KXT101 —

more important perhaps than correctness. It is important for tools to be

developed/adopted which will aid in the identification of poor (aberrant) programming

style and aid in its correction.

2.6.1. 	CheckStyle
Checkstyle(CheckStyle 2006) is an open source tool freely available on the intemet,

which is used for checking Java source code ensuring it adheres to a specified standard.

Checkstyle can check for a variety of different coding conventions, including

indentation, white space and naming conventions. A full list of available checks is listed

in Appendix D.

Tutorial Enhancement and Automated Code Helper 	 -10-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

Checkstyle is fully customisable in the types of checks it performs. An XML file is used

to specify which style checks should be applied against the source code. Checkstyle can

also be extended by a developer. Custom checks or filters can be written and then

utilised in future checks. Reports can be exported and saved as either HTML or XML

files (CheckStyle 2006).

2.6.2. 	Hammurapi
Hammurapi(Hammurapi Group 2004) is a code review tool for Java. It scans Java

source files and inspects them to ensure they comply with coding standards. Reports can

then be generated in either HTML or XML for the user (Hammurapi Group 2004).

Hammurapi inspects a piece of java source code reporting the findings by creating

Violations, issuing Warnings, creating Annotations or gathering Metrics.

After analysis is completed Hammurapi accumulates the findings and generates a final

report (Hammurapi Group 2004).

2.7. Static Analysis

Static code analysis is a technique for checking an application for potential bugs without

actually executing it. It works at either the source-code level or byte code level of an

application. Bug patterns are specified within the analysis program, the source that is

provided by the user is then searched with any matches show where a potential problem

could exist. This is useful as the code that has been checked may be syntactically correct

but logic errors could be present within the code, which can be easily found with these

tools.

Hidden logic errors that are commonly present are:

• Trying to dereference a null pointer

• Mistakenly using the Boolean comparison shortcuts & and I instead of the full

&& and II

Tutorial Enhancement and Automated Code Helper 	 -11-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

• Checking for a null pointer in one section of the code and then checking again

shortly after (May indicate a misconception about the application)

Figure 5 shows a piece of example code which can cause a problem when the

application executes, the programmer has checked if the object is null, but then invokes

a method on the null object which will throw an exception, the error is obviously a

mistake by the programmer and should be fixed. Standard testing procedures may not

find the bug, as the execution path needed may not be called under most testing

conditions, leaving a hidden bug which may be hard to track down later (Hovemeyer and

Pugh 2004; Rutar, Almazan et al. 2004).

Static analysis draws on a number of techniques to detect possible code defects:

• Code pattern matching — match common bugs like iftstrl—str2)

• Data flow analysis — tracks objects and their states

• Flow-graph analysis (cyclomatic complexity) — number of decisions

(Amit 2005)
public class GenerateAST {

private String printFuncName() {
System.out.println(funcName +

"Generate AST");

CompilationUnit
TypeDeclaration
ClassDeclaration:(publ ic)

UnmodifiedClassDeclaration(GenerateAST)
ClassBody
ClassBodyDeclaration
MethodDeclaration:(private)
ResultType
Type
Name:String

MethodDeclarator(printFuncName)
FormalParameters

Block
BlockStatement
Statement
StatementExpression
PrimaryExpression
PrimaryPrefix
Name:System.out.println

PrimarySuffix

Tutorial Enhancement and Automated Code Helper 	 -12-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

Arguments
ArgumentList
Expression
AdditiveExpression:+
PrimaryExpression
PrimaryPrefix
Name:funcName

PrimaryExpression
PrimaryPrefix
Literal: "Generate AST"

Figure 4 Tree generated using parser (Amit 2005)

2.7.1. 	Static Analysis using Source Code

Static analysis tools that work on Java source code first need to scan through the source

using a parser, after which rules are executed on that source code. Parsers turn the Java

source code into a simplified tree-like structure known as an "Abstract Syntax Tree", an

example can bee seen in Figure 4. Most static analysis tools execute an external parser to

do the base work for them allowing the analysis tool to concentrate in detecting . After

the tree is generated, the static analysis tool executes rules on the tree to find possible

problems (Amit 2005).

if (myObject = null)

myObject.doSomething();

Figure 5 Example of bug found with Static Ana ysis tools

2.7.2. 	Static Analysis using Java Byte Code

Instead of running on the source code, some tools instead work on the bytecode of the

compiled Java Class files, an example of bytecode can be seen in Figure 6. As with

source-based static analysis tools, most bytecode-based tools employ the use of an

external parser first, after which the rules are executed on the parsers output. The types

of problems that can be found using the Java bytecode are similar to the ones that can be

found using source code analysis, neither approach has significant advantages or

disadvantages over the other; they are simply different approaches to the same task

(Amit 2005).

Tutorial Enhancement and Automated Code Helper 	 -13-

UTASM UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

public class BadClass {
public void doBadStuff() {

System.gc();

Figure 6 Code that exhibits the bug patterntaken from (Goetz 2006)

public void doBadStuff();
Code:

	

0: 	invokestatic 	#2; //Method java/lang/System.gc:()V

	

3: 	return
Figure 7 Bytecode listing for code in Figure 6 taken from (Goetz 2006)

2.7.3. 	PMD
PMD (InfoEther 2006) is a static analysis tool which works on Java source code

searching for potential bugs. PMD is able to detect a wide range of potential problems:

unused local variables and parameters, wasteful String/StringBuffer usage, unnecessary

if statements, for loops that could be while loops and finally copy/pasted code. Rutar, N.,

C. B. Almazan, et al. (2004) states that in addition to the traditional bugs detected, PMD

also detects bugs that are stylistic conventions that may cause potential problems if used

inappropriately.
Table 4 Bug finding tools and their basic properties (Rutar, Almazan et al. 2004)

Name Version Input Interfaces Technology

0.362 Command Model

Bandera (2003) Source Line, GUI checking

2.0a7 Command Theorem

ESC/Java (2004) Source Line, GUI proving

Command

0.8.2 Line, GUI, Syntax,

Findbugs (2004) Bytecode IDE, Ant dataflow

3.0 Command Syntax,

Jlint (2004) Bytecode Line dataflow

Command

1.9 Line, GUI,

PMD (2004) Source IDE, Ant Syntax

2.7.4. 	Bandera
Bendera (Bandera 2006) is a tool framework for model checking Java programs. The

Bandera framework is organized as a modular pipeline of tools, each tool

communicating with the preceding and following (Dwyer, Hatcliff et al. 2006).

Tutorial Enhancement and Automated Code Helper 	 -14-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

Bandera requires the programmer annotate their source code with the type of checks to

be performed, or nothing specified if the programmer only wants to verify some

standard synchronization properties. Without annotations Bandera verifies the absence

of deadlocks (Rutar, Almazan et al. 2004).

2.7.5. 	FindBugs
FindBugs (FindBugs 2006) is an open source bug pattern matcher which works with

Java bytecode. The source, binaries and documentation are available from

http://findbugs.sourceforge.net/. It is a static analysis tool that is able to be extended by a

user to find custom defined patterns (Hovemeyer and Pugh 2004; Rutar, Almazan et al.

2004; CheckStyle 2006).

Currently, FindBugs contains detectors for about 50 bug patterns. All of the bug pattern
detectors are implemented using BCEL, an open source bytecode analysis and

instrumentation library. The detectors are implemented using the Visitor design pattern;

each detector visits each class of the analyzed library or application. (Hovemeyer and

Pugh 2004)

The bug detectors that FindBugs has implemented can be put into 4 main categories:

• Class structure and inheritance hierarchy detectors that look at the structure of

the classes.

• Linear code scan detectors that work on methods of classes to be analysed.

• Control sensitive detectors which use a control flow graph for analysed methods.

• Dataflow detectors are the most complex of the detectors; these use the control

and data flow of the application to find bugs. An example of a programming

error which dataflow detectors can find is the de-referencing of a null reference-

variable.

(Hovemeyer and Pugh 2004)

A complete list of the bugs may be found in Appendix E.

Tutorial Enhancement and Automated Code Helper 	 -15-

UTAS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

1. Raising the awareness of developers of the usefulness of bug-finding tools
2. Incorporating bug-findings tools more seamlessly into the development process: for
example, by providing them as part of Integrated Development Environments
3. Making it easier for developers to define their own (application-specific) bug
patterns
4. Better ranking and prioritization of generated warnings
5. Identification and suppression of false warnings
6. Reducing the cost of bug-finding analysis, through incremental analysis techniques,
and background or distributed processing

Table 5 Conclusion and future work (Hovemeyer and Pugh 2004)

The paper "Finding bugs is easy" (Hovemeyer and Pugh 2004) makes suggestions on

future work that could be done with FindBugs; Table 5 shows these. The key points of

the suggestions are the raising of awareness of bug-finding tools, the integration of these

tools into a developer's workflow and the identification of ways to keep the detection at

a high quality so as to not overwhelm the developer with false positives.

2.7.6. 	Jlint
Mint (JLint 2006) is a pattern matching tool which works on Java bytecode. Mint is

similar to Findbugs as it also is an open-source tool which performs syntactic checks and

dataflow analysis. In addition to this, JLint also has an additional detector for finding

multi threaded problems and checking for deadlocks on resources by building a lock

graph and ensuring that there are never any cycles.

JLint is not easily extendable by the user to find additional patterns (Rutar, Almazan et
al. 2004).

2.8. Dynamic Analysis

Dynamic analysis is the process of testing an application at runtime; this is

predominately done by passing in various inputs and ensuring the expected output was

returned. Dynamic analysis can be automated to execute against an application during

the development lifecycle.

Tutorial Enhancement and Automated Code Helper 	 -16-

UTASM UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

	

2.8.1. 	Test-driven Development
The idea behind test-driven development is to write a test case for a new piece of

functionality before the actual code is written, the code is then written to pass the test.

(Edwards 2003) discusses the benefits of students learning to program through this

methodology. By learning to code an application in smaller pieces instead of the usual

'big bang' approach taken by students, they learn to be more confident in the piece they

just wrote, thus allows them to make changes and additions with great confidence.

	

2.8.2. 	Junit
Junit is an open source unit testing framework for creating and running unit tests for the

Java programming language. Junk was created by Kent Beck and Erich Gamma. When

written, a unit test will test a piece of code to ensure the expected functionality of a piece

of code works as expected. A Junk test case works by calling pieces of code, asserting

what variables should be before and after a code section executes (Clark 2006). Figure 8

illustrates a unit test with assertions, a call is made checking the availabliltiy of a book

after which an assertion is made that the result should be true. After execution the

assertion will be verified and throw an error if the unit test failed.
package example.junit4;

import org.)unit.Test; z. Import Test annotation
import static Org.]unit.ASSert. essectEguals; 2. Import static assertiquaa
import junit.tramevork.JCn1t4TestAdapter; 	3. Import Jilnit4TestAsfapter

public class LibraryTest(4. TO 4cfare a rturtfuxe as a test metriod
use tfie Wrest annotation

@Test public void bookivailableInLibrary01
Library library nro Library();
boolean result - library.checkAvailabilityByTitlerzlebster's Dictionary.);
essee tEguais rOur Library should have the standard Dictionary",

true, 5. lise CMS of trill assert meths&
result);

public static junit.fraraevork.Tesc suite() (
return flee JOnitiTestAdapter (LibraryTest .elass);

6. fliniterest.ada,ster is required to ',tn./Unite tests tritfi tfie oar
junit runner

Figure 8 A unit test written in Junit 4.0 taken from (Doshi 2005)

Tutorial Enhancement and Automated Code Helper 	 -17-

UTAS* UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

2.9. Tools

2.9.1. 	Hyper Text Mark-up Language (HTML)
Hyper Text Mark-up Language (HTML) (Raggett, Le Hors et al. 1999) is the standard

language of the Internet. HTML was developed in the early 1990s by Tim Berners-Lee.

HTML files are simply text files consisting of text interspersed with standard tags used

to `mark-up' the formatting by specifying font type, where to place images, etc. A web

browser will read in the formatting and render the page onto the screen based on the

mark-up instructions. Links can be created between files to create a network of

information. HTML files were used early on to help people share information (Raggett,

Le Hors et al. 1999).

Table 6 Design Goals for XML taken from (Bray, Paoli et al. 1997)

1. XML shall be straightforwardly usable over the Internet.
2. XML shall support a wide variety of applications.
3. XML shall be compatible with SGML.
4. It shall be easy to write programs which process XML documents.
5. The number of optional features in XML is to be kept to the absolute minimum, ideally

zero.
6. XML documents should be human-legible and reasonably clear.
7. The XML design should be prepared quickly.
8. The design of XML shall be formal and concise.
9. XML documents shall be easy to create.
10. Terseness in XML markup is of minimal importance.

2.9.2. 	Extensible Mark-up Language (XML)
Extensible Mark-up Language (XML) (Bray, Paoli et al. 1997) is a datastructure

consisting of a set of tags to mark-up the data. The design goals of XML can be seen in

Table 6. "... XML, describes a class of data objects called XML documents and partially

describes the behavior of computer programs which process them. XML is an

application profile or restricted form of SGML, the Standard Generalized Markup

Language [ISO 8879]. By construction, XML documents are conforming SGML

documents.

XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

Tutorial Enhancement and Automated Code Helper 	 -18-

UTASS UNIVERSITY OF TASMANIA
Chapter 2: Literature Review

character data, and some of which form markup. Markup encodes a description of the

document's storage layout and logical structure. XML provides a mechanism to impose

constraints on the storage layout and logical structure." (Bray, Paoli et al. 1997)

	

2.9.3. 	ASP.NET 2.0

ASP.NET (Microsoft 2006) is a web programming technology created by Microsoft that

allows developers to create dynamic web pages. ASP.NET web pages consist of both

HTML mark-up and source code to enable the page to be dynamic. The source code of

an ASP.NET web page can be written in any one of a number of different programming

languages including C#, VB.NET and C++ (Mitchell 2006).

	

2.9.4. 	JavaServer Page (JSP)
"JavaServer Pages (JSP) technology provides a simplified, fast way to create web pages

that display dynamically-generated content. The JSP specification, developed through

an industry-wide initiative led by Sun Microsystems, defines the interaction between the

server and the JSP page, and describes the format and syntax of the page." (Sun 2005)

JavaServer Page (JSP) is a server side technology used for generating dynamic web

pages. JSP uses a combination of XML tags and scriptlets to define the logic of the page,

it also separates the formatting (HTML or XML) tags and returns these to the response

page. By using this approach the page logic is separated from the design and display.

JSP pages are compiled into servlets when it is called for the first time, subsequent

requests for the page do not require further compilation unless the original JSP is

modified (Sun 2005).

Although JSP pages are compiled into servlets, they have additional benefits over

straight Java servlets in that they are simpler to develop, and allow a logical separation

of code logic and page presention (Sun 2005).

Tutorial Enhancement and Automated Code Helper 	 -19-

UTASOf UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

3. Module selection

3.1. Introduction

In designing a solution with which to either prove or disprove the hypothesis presented

above, a careful selection of components must be made to ensure that the final system is

suitable in testing the hypothesis. First the choice of development platform is explored in

Section 3.2 as the decision will affect all aspects of the system. Section 3.3 investigates

the base framework upon which the rest of the system will be built. Section 3.4 details

the importance of analysis tools in the system. Section 3.5 presents the 3 spheres of

analysis and their role in the system, an investigation into the choices of each sphere is

presented. The chapter concludes with Section 3.6 which explains which technologies

were excluded from the system.

3.2. Development Platform

The choice of development platform for TEACH is an important component. The

decision of development platform affects the ease at which the system can be developed;

a wrong decision can be detrimental to the project. The longer term issue of support and

further development must be taken into consideration when the decision is made.

The two leading web based platforms are Microsoft's ASP.NET (Microsoft 2006) and

Sun's JSP (Sun 2005). An overview of both platforms reveals similar feature sets, both

being well supported online, and both feature many tools to aid development.

A decision on development platform can't be done without looking at the overall

environment in which it would be placed. Future students that take on the re-

development or extension of the system may be at a disadvantage if ASP.NET were

chosen as the School of Computing currently only teaches Java and as a result, they may

not be able to easily build future work onto it. Additionally, the School of Computing

has a significant investment in Tomcat installations in their server room. It would be of

Tutorial Enhancement and Automated Code Helper 	 -20-

UTAS UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

great advantage to utilise the existing facilities, rather than attempt to setup a new server

environment.

It was decided to use JSP as the development platform due to the set-up of the School of

Computing's web server infrastructure, policies, and teaching and learning curricula.

3.3. Base Framework

With the decision to go with JSP, the next issue was that of development. Should

TEACH be started from scratch so that it can be crafted with its needs being met

explicitly or should TEACH be built on top of an already existing framework?

Starting from scratch is always an attractive solution, as you get to build it to your vision

of the system without compromising with another person's decisions. Unfortunately

developing this way will drastically increase the development time of the system, and

would require reinventing the wheel, as well as reinventing the same bugs which will

require debugging.

Using a framework that has already been built will be advantageous. A framework

completed by Cynthia Sim is AAPT; which was developed as a base framework for a

web based programming tutor. AAPT contains many of the features required by

TEACH: tutorial selection, a compilation system and a database backend allowing

adding/updating of tutorials.

The decision was made to use AAPT as the base framework and to extend it. The

advantage of taking this approach is a reduction in development time, meaning more

time can be spent on the TEACH specific functionality, instead of the generic functions

of a web based tutorial system. One potential limitation of using AAPT is being required

to learn how the system is built and discovering where it can be extended potentially

taking a significant length of time; however this is a small price to pay for a pre-

developed framework.

Tutorial Enhancement and Automated Code Helper 	 -21-

UTASW UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

3.4. Choice of Analysis Methods

The choice of analysis methodology took a significant portion of the planning time. A

set of analysis tools would be required to run over a students work to detect problems,
bugs and errors.

Picking a single style of analysis would pickup a specific span of problems, but may not

cover a wide range leaving some errors unnoticed. After consultation with my

supervisor, an agreed set of analysis was decided to form the boundaries of the project.

These boundaries are discussed in the section 3.5.

3.5. The 3 Spheres of Analysis

The three spheres were designed to complement each other, each detecting a different

range of issues the student may encounter, or that the lecturer may want to detect.

By focusing each sphere on a specific set, the best solution can be found for each. By

combining the results of each, the union of the different test regimes can be provided.

Figure 9 shows how the different spheres could complement the others to provide

greater coverage.

With the wide range of solutions available for each of the spheres, it is important that the

chosen solution is extensible. Future requirements from the School of Computing may

require TEACH to be modified, by having the spheres able to be flexible and extensible

it will allow certain aspects to be changed by the lecturers without requiring code

changes to TEACH or the underlying spheres.

Tutorial Enhancement and Automated Code Helper 	 -22-

UTAS* UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

Figure 9 Graphical representation of the 3 Spheres of Analysis

1. 	Sphere 1: Static Analysis
Static code analysis is a technique for checking an application for potential bugs without

actually executing it. Static analysis works at the source level, or the byte code-level, of

an application.

This was seen to be an important module to TEACH as it would be the one to most

directly affect the students' perception of the system. The types of errors found and the

amount of feedback given was an important factor in deciding which tool to use in the

solution.
Table 7 Bug finding tools and their basic properties (Rutar, Almazan et al. 2004)

Name Version Input Interfaces Technology

0.3b2 Command Model
Bandera (2003) Source Line, GUI checking

2.0a7 Command Theorem
ESC/Java (2004) Source Line, GUI proving

Command
0.8.2 Line, GUI, Syntax,

Findbugs (2004) Bytecode IDE, Ant dataflow

3.0 Command Syntax,
Jlint (2004) Bytecode Line dataflow

Command
1.9 Line, GUI,

PMD (2004) Source IDE, Ant Syntax

Tutorial Enhancement and Automated Code Helper 	 -23-

UTAS UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

The decision on which tool to use was not affected by whether the analysis was done on

the source code, or the bytecode. In chapter 2 a number of tools were reviewed, Table 7

shows their some of their basic properties. Each will now be considered against the

criteria for this project and against each other.

Bandera
Bandera was not practical for standard use. It requires the programmer to annotate their

source code with the checks that should be performed. Without these assertions Bandera

does not run on any useful piece of Java code (Rutar, Almazan et al. 2004) and it is

difficult to see how students could easily produce these annotations without

complicating the tutorial system. Due to this limitation Bandera was not considered

further as a solution for the system.

JLint
JLint had many features that were desirable. For example it performs syntactic checks as

well as dataflow checks. However JLint was not easily extensible which ruled it out as a

viable choice when it was against similar tools which were extensible in an easier

manner. As mentioned earlier extensibility is an important criteria due to future

expansion.

PMD
PMD performs syntactic checks on a piece of source code, however it does not perform

dataflow checks. The dataflow checks will be advantageous for TEACH as problems

identified in the literature review would be detected.

Additionally many of the bugs detected in PMD depend on programming style "For

example, having a tly statement with an empty catch block might indicate

that the caught error is incorrectly discarded"(Rutar, Almazan et al. 2004), which may

not be compatible with the lecturers teaching style.

Tutorial Enhancement and Automated Code Helper 	 -24-

UTAS UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

Find Bugs
Similar to JLint, FindBugs possessed many features that were desirable for TEACH.

FindBugs performs dataflow checks on source code, which is advantageous due to the

type of errors that students commonly perform. FindBugs provides a GUI interface in

addition to the command line interface. The GUI assisted in learning how FindBugs

performed its analysis and the options available which would be invaluable when trying

to interface with TEACH. Reports are able to be exported to HTML or XML format,

allowing the results to be easily obtained.

Finally FindBugs is flexible both in execution and in extensibility. When called from the

command line parameters are passed to it to specify what checks to perform, allowing

each execution of it to perform differing analyses if desired by the lecturer. Extensibility

was previously mentioned as being an important feature as it will future proof the

TEACH solution.

3.5.2. 	Sphere 2: Style Checking
By keeping a consistent style across a project such as coding style, indentations,

methods, it will benefit the project by being easier to maintain (Hammurapi Group
2006).

A style checking module in TEACH ensures the students are learning to develop to a

consistent theme. Teaching students to code in a consistent manner as they are starting to

learn programming may help reinforce a good coding style.

Two different style checking applications were examined in the literature review. Both

were open source applications that covered a range of style errors. Checkstyle was

chosen, as it was better documented, possessed a solid list of the type of style errors that

are found, was very easily modifiable. CheckStyle was able to be quickly integrated into

TEACH as it had a simple command line interface and the XML reports were structured

in a simple way.

Tutorial Enhancement and Automated Code Helper 	 -25-

UTASOM UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

3.5.3. 	Sphere3: Custom Matcher

Detecting logic and style problems is advantageous; however an application can

successfully compile, be bug free, but still may not do what is required.

Although satisfied with the static analysis and style checking, the supervisor required a

way to be able to detect if the student wrote the program to the specifications and didn't

program a series of 'print' lines that would output the expected result instead of

programming the required functionality.

It would be advantageous if more than one solution can be specified with a definition of

"This is a good solution" or "This is a bad solution".

Literal Matching
A method was required which could match the code submitted by the student to what the

lecturer expects from the student.

Literal matching of text was explored first. It had the positive aspect of the lecturer

explicitly defining what the student should type for their solution to be correct for the

tutorial. Unfortunately being this precise has the major disadvantage of being too strict

on what the student could do. In order for the student to have been deemed to have

coded a correct solution, they would have to have exactly the same text as the lecturer —

the same variable names, the same white space, etc. This was too restrictive on the

student, and so other options were explored.

Diffutils
Unix diff is a suitable way to match to different pieces of source code (the one submitted

by the student, and the reference one from the lecturer) (Free Software Foundation

2000).

Diff was built for this kind of function, its sole purpose is to compare the differences

between two different source files. Unfortunately it was not suitable for this system. It

shows the differences between the two files, therefore if used to compare the differences

Tutorial Enhancement and Automated Code Helper 	 -26-

UTASOM UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

between, for example, four possible solutions, the amount of data coming back would be

overwhelming and would take much development to create any meaningful feedback

from this system.

Regular Expressions
Without a suitable solution readily available, the decision was made to explore a custom

solution. Regular expressions came up as a way to have softer matching of text. Instead

of requiring an exact match of text, by using regular expressions it is more flexible. With

exact text matching, a simple task such as matching a variable declaration is difficult, as

there is a variable amount of white space that could be used eg.

int valuel = 5;

versus

int 	valuel=5;

By using regular expressions, the problem of white space can be easily overcome, as

well as handling the choice of identifier. Figure 10 shows a regular expression used in

TEACH to detect any String or int variable declaration.

(StringlinO\S±4±(\s±\=1\=)(\s+1)4+;

Figure 10 Regular Expression to match a String or int declaration

Use of regular expressions also allows backtracking, meaning that a variable can be

matched in one section, and then be used to match further in the expression.

An example is a variable declaration then an assignment to that variable later in the

code.

3.6. Other Analysis

Dynamic analysis considered but was not included in TEACH. Although it would have

complemented the solution, the added complexity would not have been worth the

additional effort at this stage. Getting a solid focused analysis framework down was a

better time investment rather than breadth in a shaky framework. The School of

Tutorial Enhancement and Automated Code Helper 	 -27-

UTASO$ UNIVERSITY OF TASMANIA
Chapter 3: Module Selection

Computing does not currently teach Unit testing, additionally it is an advanced topic that

should not be introduced to first year students.

Tutorial Enhancement and Automated Code Helper 	 -28-

UTASSIA UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration

4. Architecture, Topology and Design

4.1. Introduction

TEACH was built as an extension to the original AAPT system created by Cynthia Sim.

The development PC was an Athlon 3000+ with 512MB of RAM. Windows XP was

installed, with TEACH running on Tomcat 4.1.31, with Java 5.0 Release 6.

The remainder of this chapter will explain the architecture of TEACH, it will first give

an overview of the file system structure of the system, explain the database and finally

the chapter will cover the application and the software solution.

4.2. Directory Structure

The directory structure of TEACH — which is essentially inherited from the original

AAPT implementation — is split into two main components:

• The core components: the website, executable Java classes and databases

• External resources: tutorial questions, temporary submit directories, and other

executables

Each of these will now be elaborated.

4.2.1. 	Core Components

The core components sit inside the Tomcat \webapps \AAPT folder. There are a total

of three folders:

• db. This directory contains the Microsoft Access database that is used to store

settings.

• j sp. This directory contains all of the website pages, images, and j sp files

required for TEACH to run.

• WEB- INF. This directory contains all classes required to run the servlets.

The classes under the WEB- INF folder are further sub-divided into the following

packages and sub packages:

Tutorial Enhancement and Automated Code Helper 	 -29-

UTASOS UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration

• Access. This package contains all the classes required to retrieve information

from the Access database.

• Application. This package contains the servlet classes used to submit code

to be reviewed from the clients, and return the results to them.

o XML parser. This sub package of the Application package is used to

parse the XML outputted from FindBugs and Checkstyle and create

objects to represent the information. This is explored further in sections

4.4.2 and 4.4.3

• Entity. This package contains all of the object classes: Questions, XML data,

bugs, etc. It will be used by classes in the other packages.

(Sim 2005)

4.2.2. 	External Resources

The external resources folder is used to hold everything not directly related to the

website, including:

• Checkstyle. Holds the Checkstyle 4.2 application

o Check_settings. Stores the customisable style .XML files

• Exercises. The source files of the tutorials/exercises

• FindBugs. Holds the FindBugs 1.0.0 application.

• SubmitWork. When students submit their source code to be checked, it is

temporarily stored here.

4.3. Database Design

TEACH uses a database to store information on the questions and solutions. The original

AAPT database was used with many modifications.

There are 4 tables which are used to define all of the customisable aspects of TEACH, a

diagram show the structure is shown in Figure 11.

Tutorial Enhancement and Automated Code Helper 	 -30-

dd pt_solution

s 'id
(Lid
s bcation
findbugs arguments
checkstyle_xmlpath

(Lid
q_name
q_location
q_desc
q use

aapt_defa u Its
El
findbugs_arguments
checkstyle_xmlpath

UTAS* UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration

• aapt_question. Stores the questions name, the path to the tutorial source

code, the description displayed on the webpage, and whether it is enabled and

shown on the webpage.

• aapt_solutionweight s. This is used to define the search patterns and how

much each successful match is worth. Also definable is the maximum number of

times the pattern can be matched against the piece of source code.

• aapt_solution. This is used to allow the lecturer to override the default

settings used in FindBugs and Checkstyle and allows them to specify their own

settings. The naming of this table is due to its previous function with AAPT.

• a apt de f ault s. The default settings for FindBugs and Checkststyle

Although TEACH expanded on the original work of AAPT, to simplify the

implementation, all table names were kept to the original naming scheme of prefixing

each table name with "aapt_".

aa pt_q uestio ii 	 aa p t_so lutio nweights

ID
q_id
expression
weight
max matches

Figure 11 TEACH database structure

Tutorial Enhancement and Automated Code Helper 	 -31-

if
IC),"

I
Return
errors

•

H-YE

UTAS* UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration

4.4. Application Structure

As indicated above, TEACH was built on top of the pre-existing web-based tutorial

system, AAPT, which simplified development of the system. More time was able to be

spent evaluating appropriate tools and implementing it well.

The majority of the development effort of TEACH was spent on the 3 spheres of

analysis: Static analysis, Style checking and Code matching. Figure 12 shows how the

three spheres are integrated into the system.

L
Source

ompi
'errors?

NO
1.

Run
additional
analysis

Static
analysis

Style
checking

+
Code

Matching
4 	

	1
Parse XML

Figure 12 TEACH architecture

4.4.1. 	Compilation of Source Code

Compilation of the submitted code is the core required functionality of the system.

AAPT provided the functionality for compilation, with some slight modifications made

for TEACH. AAPT implemented the code compilation by creating a folder to store the

submitted code, with the folder name based upon the IP address of the client machine.

This implementation led to concurrency issues, for example if the same student was

Tutorial Enhancement and Automated Code Helper 	 -32-

UTASg$ UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration

working within multiple browser windows, or if it appears that many clients are

originating from the same IP. TEACH modified this to instead assign each submission a

unique number, creating a folder with this number to work within, thus preventing

concurrency issues.

Within the code of the tutorials, each may have its own class name, due to Java having a

strict file naming convention for Java files, when code is submitted it is saved in its

allocated folder named as the tutorial eg. Division.Java.

If there were any errors during compilation, the system records them, halts any further

analysis, and returns the error messages to the user. If compilation of the student's code

was successful, then further analysis is run. The code is compiled using the standard

Java compile tool (javac)

4.4.2. 	Sphere 1: Static Analysis

As discussed in section 3.5.1, FindBugs was chosen as the analysis tool for static

analysis of submitted code. It was integrated into the TEACH system to provide

feedback on the students work. This is achieved by invoking FindBugs on the folder

where the students work has been saved and compiled, Figure 13 shows the default

command line call TEACH uses. The FindBugs application will then proceed to detect

problems in the students code, the types of problems checked for is dependant upon the

command line call, Figure 14 shows an example of how different checks can be added

and removed.

findbugs -textui -low -xml:withMessages -outputFile bugs.xml -sourcepath filePath

Figure 13 TEACH default settings for FindBugs

Once analysis is complete FindBugs compiles a detailed report, exports it to an XML

file, and saves it in the folder with the student's submitted code.

Tutorial Enhancement and Automated Code Helper 	 -33-

UTASOIS UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration

findbugs -textui -chooseVisitors +v1,-v2 -xml:withMessages -outputFile bugs.xml -sourcepath filePath

Figure 14 FindBugs call with selected visitors

A custom XML parser (FindbugsParser. . java) processes the bug report and

builds up a class object. This class object contains list of each bug's individual details:

type, short description, line where it occurs, etc. These details are used to present the

student with an understandable list of problems. The class object also contains the

detailed information on each bug type, which will enable the student to resolve the bug.

The final class object is passed onto the next servlet which handles the formatting of the

webpage and how the list of bugs will be displayed to the student.

As discussed in section 3.5.1, one of the features of FindBugs is its flexibility and ease

of being extendible. TEACH has embraced this and made it easy for the lecturer to

define what checks should be performed. Each tutorial is able to have the command line

call that will invoke FindBugs on student's code defined individually. This allows the

lecturer to define which type of bugs should be looked for, and also to define which of

the bugs found should be shown. Each bug has a priority level of how severe the bug is

(High, Medium and Low). It may be decided that for beginning tutorials, only High

priority bugs will be displayed, but for the more advanced (e.g. 2nd year students), all

levels of bugs should be displayed.

Lecturers are able to create their own custom bug detectors and place them into the

plug in subfolder. The lecturer may want to create custom detectors to detect of the

student has made a call to a custom School of Computing class file. For example, it may

be advantageous to detect that the student initialised, used, and then destroyed the

custom classes.

If the tutorial has not defined its own FindBugs settings, then default settings will apply.

TEACH will call FindBugs to perform the FindBugs default checks, and to report High,

Medium and Low level bugs.

Tutorial Enhancement and Automated Code Helper 	 -34-

UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration UTASW

4.4.3. 	Sphere 2: Style Checking
As discussed in section 3.5.2, CheckStyle was chosen as the code style analysis tool. It

was integrated into the TEACH system to provide feedback on the students' work. This

is achieved by invoking CheckStyle on the folder where the student's code is held.

CheckStyle requires that when it is executed, the path of an XML file will be passed to

it. This XML file specifies the standards that the code being checked should adhere to.

TEACH allows the lecturer to define for each tutorial question, which coding style

should be followed. The setting for which XML file to use for each tutorial question is

retrieved from the database as required; if no file has been specified, then the default

TEACH coding style XML file is used.

This flexibility will allow a lecturer to define their own standard for style checking over

a set of tutorial questions, and allowing for individual questions to have their own style

if necessary. Figure 15 shows the default invocation of Checkstyle and a call using a

different XML file for that tutorial question.

checkstyle-all-4.2.jar -c TEACH_default_checks.xml -f xml -o checkstyle_errors.xml *java

checkstyle-all-4.2.jar -c Q37_checks.xml -f xml -o checkstyle_errors.xml *.java

Figure 15 Example executions of CheckStyle

4.4.4. 	Sphere 3: Code Matching
Sphere three required a custom analysis tool to be created. The Java regular expression

API was used to match the students' code against patterns defined by the lecturer. The

lecturer may define multiple patterns in the database to be matched for a tutorial. Each

pattern has other properties that can be defined: the point value for the pattern matching

and the maximum number of times the pattern can accrue points for matching.

The code matching module, when called on a source file, will lookup the tutorial

question in the TEACH database, and each pattern defined for the tutorial question will

be retrieved. Each pattern will then be used in turn to try and make matches against the

Tutorial Enhancement and Automated Code Helper 	 -35-

UTAS9S UNIVERSITY OF TASMANIA
Chapter 4: Architecture, topology and configuration

student's code, if a successful match is made the points value of the pattern is added to

the student's score and an internal counter is incremented to hold the number of matches

this pattern has made so far. After a match has been made, if the pattern allows any more

matches the code is searched for a further match. If the pattern has reached the

maximum number of matches, or there was not a successful match, the next pattern is

evaluated. This cycle is continued until there are no longer any patterns left. to check.

Once completed, the student's final score is passed onto the next servlet for feedback to

the student.

4.4.5. 	Graphical Feedback
The analysis tools and the feedback generator were separated so that the analysis tools in

the backend can be added, updated or changed without significant modifications needed

elsewhere. The segregation also allows modifications of the layout of the results

independently of the rest of the TEACH system. The analysis tools pass their results to

the feedback module, thus allowing it to concentrate solely on the presentation of the

results to the student. Each of the result objects is processed, with each error being

written to the HTML output to be presented to the student, an example of the output can

be seen in Figure 16.

.4
3
W

W
1
1
;

Question: Si:tress-My divide 2 integers to get a real number

Please start sour statements lou new ewe (including braces)

Program: I. .
division.java
*author: David Smola
Oversion I (September 20061

• •Please compile as is before modifying

public class Division

rblic

steno void main(Sbing [1 args)

int varo -5;
int varB - 7;

double result - ware/verb;

System.out.ohntinfresult);
1

I Reset

Feedback: Execution

There are no compiler errors.

We detected 1 possible bulls)

int division result cast to double
At Division.java:Dine 17)

Additional information on the bugs found

inn division result cast to double

This code casts the result of an integer division operation to double. Doing division
on integers loses precision. The fact that the result was cast to double suggests that
this predsion should have been retained. What was probably meant was to cast one
or both of the operands to double before performing the division. Here is an example:

tote-a;

tot 0;

// Ikons: yields result 0.0
double valuel 	x / 71

// Right: yields result 0.4
double vslue2 	0 / Idoublel 0;

Program output

0.0
[Main Page)

Figure 16 Screenshot of TEACH: source code input(left) and the resulting feedback(right)

Tutorial Enhancement and Automated Code Helper 	 -36-

UTASW UNIVERSITY OF TASMANIA
Chapter 5: Evaluation

5. Evaluation

5.1. What the Students Will be Testing

	

5.1.1. 	Modules

The final system used for testing saw the students evaluating a subset of the entire

system, specifically the Checkstyle and FindBugs module integrations. The

expectation being that they will see the benefits of these individual modules and will

respond to them.

The sample programs that have been created will be used to show the static analysis

module in action. There is no specific sample program for the style checking — the

rationale being that the students will encounter it under normal use of the program.

	

5.1.2. 	Code Matching

The students will not be testing the code matching and scoring module at this time.

Although it was built and works satisfactorily, it is felt that there was not enough time to

successfully build and test examples that would show this feature in full. The time

investment required in creating one of these was better spent in creating higher quality

sample questions for the static analysis module.

5.2. Testing Session

The students were required to spend 10-15 minutes with TEACH in order to familiarise

themselves with the system. Upon completion of the session, the student would

complete a survey form to provide feedback about the system and its utility.

More information about the tutorial questions is given in section 5.3, and information on

the survey can be found in section 5.4.

Each testing session was done with 1-3 students at a time.The general format of the

sessions followed a general outline:

Tutorial Enhancement and Automated Code Helper 	 -37-

UTASM UNIVERSITY OF TASMANIA
Chapter 5: Evaluation

• Introduce myself to the student and give a brief overview of what my aims are

for TEACH.

• Provide students with the information sheet and consent form, explaining the role

of each.

• Once the student had signed the consent form, TEACH was loaded in their web

browser.

• The student is shown where the information webpage on how to use TEACH is

located and told they may look at it after I leave them.

• The first tutorial exercise (Division. j ava) is opened, and compiled without

modification to show the student the error message.

• The student is instructed to compile each tutorial without modification before

attempting it.

• The student is left alone for 10-15 minutes to complete the tasks.

• A survey form is supplied to the student to complete.

5.3. Sample Programs

In order for the students to have a system to test, sample tutorial questions needed to be

generated. These questions should successfully show the students different kinds of

errors that can be detected, and also how the system can assist in their tutorial learning.

The choice of sample questions is important as the students will only have limited time

to interact with the system.

The final set of sample questions constructed for testing covered a range of common

mistakes. The full source code for each tutorial program is included in Appendix C.

Some examples are presented in the following sub-sections.

Tutorial Enhancement and Automated Code Helper 	 -38-

UTASW UNIVERSITY OF TASMANIA
Chapter 5: Evaluation

	

5.3.1. 	Division

Tutorial question 1 was used to demonstrate a common division scenario. A beginning

programmer may make the mistake of dividing 2 Integer numbers together, expecting a

decimal answer. Not realising the effect of dividing 2 Integer numbers is an Integer, the

student may spend a lot of wasted time trying to debug the problem. Figure 17 shows the

error generated if the student tries to compile the tutorial without modification.

We detected 1 possible bug(s)

int division result cast to double
At Division.java:[line 17]

Additional information on the bugs found

int division result cast to double

This code casts the result of an integer division operation to double. Doing division
on integers loses precision. The fact that the result was cast to double suggests that
this precision should have been retained. What was probably meant was to cast one
or both of the operands to double before performing the division. Here is an example:

int x = 2;
jot y = 5;
// Wrong: yields result 0.0
double valuel = x / y;

// Right: yields result 0.4
double value2 = x / (double) y;

Figure 17 Error output of tutorial question 1

	

5.3.2. 	Logic Error

Tutorial question 2 was used to demonstrate detection of a logic error. The program

consists of two separate if statements with a semicolon after each. The effect of this is

that the line after each if statement executes, regardless of how the conditional statement

evaluated. This is a mistake that could stay hidden without being detected, TEACH

highlights this error to the student.

Figure 18 shows the error generated if the student tries to compile the tutorial without

modification.

Tutorial Enhancement and Automated Code Helper 	 -39-

UTASOIS UNIVERSITY OF TASMANIA
Chapter 5: Evaluation

We detected 2 possible bug(s)

Useless control flow in method
At LogicProblem.java:[line 19]

Useless control flow in method
At LogicProblem.java:[line 21]

Additional information on the bugs found

Useless control flow in method

This method contains a useless control flow statement. Often, this is caused by
inadvertently using an empty statement as the body of an if statement, e.g.:

if (argv.length == 11;
System.out.println("Hello, " + argv[0]); 	

,

Figure 18 Error output of tutorial questsion 2

5.3.3. 	Ignoring Return Value

Tutorial question 3 was used to demonstrate how a student might call a method on an

object, but then fail to store the results anywhere. This could be done either by simply

forgetting to store the result of a call to s t r ingA . length () like in the question (see

Appendix C3), or it could be from not realising that the method call does not actually

modify the underlying object, but returns a new object, eg. stringA. trim H.

Figure 19 shows the error generated if the student tries to compile the tutorial without

modification.
We detected 1 possible bug(s)

Method ignores return value
At ReturnValue.java:[line 17]

Additional information on the bugs found

Method ignores return value

The return value of this method should be checked. One common cause of this
warning is to invoke a method on an immutable object, thinking that it updates the .
object. For example, in the following code fragment,

String dateString = getHeaderField(name);
dateString.trim();

the programer seems to be thinking that the trim() method will update the String
referenced by dateString. But since Strings are immutable, the trim() function returnS,
a new String value, which is being ignored here. The code should be corrected to:

String dateString = getHeaderField(name):
dateString = dateString.trim();

Figure 19 Error output from tutorial question 3

Tutorial Enhancement and Automated Code Helper 	 -40-

UTASM UNIVERSITY OF TASMANIA
Chapter 5: Evaluation

5.3.4. 	String Buffer

Tutorial question 4 was an advanced tutorial not desigined for 1s t year students but was

included to demonstrate to advanced testers the depth of analysis the system can

provide. The theory behind this is that it is inefficient to sequentially add elements to a

String, as it needs to create a new String object each time. A more efficient

approach would be to buffer up all the elements to add to the String and then create

the final St ring object at the end.

Figure 20 shows the error generated if the student tries to compile the tutorial without

modificaiton.

We detected 1 possible bug(s)

Method concatenates strings using + in a loop
At StringBuff.java:[line 17]

Additional information on the bugs found

Method concatenates strings using + in a loop

The method seems to be building a String using concatenation in a loop. In each
iteration, the String is converted to a StringBuffer/StringBuilder, appended to, and ;
converted back to a String. This can lead to a cost quadratic in the number of
iterations, as the growing string is recopied in each iteration.

Better performance can be obtained by using a StringBuffer (or StringBuilder in Java ,
1.5) explicitly.

For example:

// This is bad
String s =
for lint i = 0; i < field.length; ++i) {
S = s + field[i];

1

// This is better
StringBuffer bud new StringBuffer();
for lint i =0; i < field.length; ++i)
buf.append(field[i]);

}
String s = buf.toString();

'

Figure 20 Error output from question 4

5.4. Survey

After testing the system the students were required to complete a survey on the system.

The survey will assist in capturing the students' reactions from their use of the system.

Tutorial Enhancement and Automated Code Helper 	 -41-

UNIVERSITY OF TASMANIA
Chapter 5: Evaluation

	

5.4.1. 	About the Questions

The questions were designed to obtain from the students testing the system, their

feedback on how they would rate certain features of the system: navigation through the

system, the type of feedback returned to the user, etc. The survey questions can be

viewed in Appendix B.

Each question was able to be rated according to the following range

1. Strongly Disagree

2. Disagree

3. Neutral

4. Agree

5. Strongly Agree

N/A.

	

5.4.2. 	How the students were Contacted

An email message was sent out to all undergraduate and postgraduate students of the

School of Computing, the contents of the email message can be seen in Appendix A.

The email message contained the relevant information regarding TEACH and what

would be required from students volunteering to test the system.

5.5. Ethics committee Approval

All research undertaken at the University of Tasmania that involves human participants

requires approval from the University's Ethics Committee. The research that has been

undertaken for this thesis was submitted to the Ethics Eommittee for approval, and was

deemed to have met all requirements. It was granted approval and allocated number

H9140.

Tutorial Enhancement and Automated Code Helper 	 -42-

Question 1

6

NumbeN
of

responsts

Strongly Disagree Neutral 	Strongly Agree

UTAS* UNIVERSITY OF TASMANIA
Chapter 6: Results

6. Results and Observations

6.1. Survey Results

6.1.1. 	Question 1

Question 1 asked the student to evaluate the statement "The system is intuitive to use

Figure 21 Responses to Question 1

From Figure 21, only a single tester of the 11 thought that the system was not intuitive to

use. This is an outstanding result as the system will need to be easily picked up and used

by students in a tutorial environment without much direction.

6.1.2. 	Question 2

Question 2 asked the student to evaluate the statement "Are the instructions clear".

Pleasingly, the results obtained were synonymous with our hopes. From Figure 22, 82%

of the testers felt that the instructions were clear and the remaining 18% had no strong

opinion on it.

Tutorial Enhancement and Automated Code Helper 	 -43-

UTAS* UNIVERSITY OF TASMANIA
Chapter 6: Results

Figure 22 Responses to Question 2

6i.3. 	Question 3
Question 3 asked the student to evaluate the statement "Navigation through the different

phases of the system is readily achieved."

Figure 23 Responses to Question 3

From Figure 23, only a single tester felt that navigating the different phases was not

readily achieved. With 72% of the testers recording favourable results it is a positive

sign that TEACH is easily navigatable, but that there may be a slight room for

improvement.

Tutorial Enhancement and Automated Code Helper 	 -44-

Question 5
5 y

5

4 7 	
,

Numb& 	2 	 2

Of 2
responses y

7
Strongly Disagree 	Neutral 	Strongly Agree

UTAS* UNIVERSITY OF TASMANIA
Chapter 6: Results

6.1.4. 	Question 4
Question 4 asked the student to evaluate the statement "I like how compiler messages,

execution output, and feedback on source code are separated on the screen"

Figure 24 Responses to Question 4

From Figure 24, 82% of the students like how the compiler messages, execution output,

and feedback were separated on the screen. This is an excellent response as feedback

from TEACH is the most important aspect of the system.

Question 5
Question 5 asked the student to evaluate the statement "Feedback from the system given

to you was clear and easy to understand."

Figure 25 Responses to Question 5

Tutorial Enhancement and Automated Code Helper 	 -45-

uestion 6

4

Numbe
of 2

responses
i

Strongly Disagree 	Neutral 	Strongly Agree

UTAS* UNIVERSITY OF TASMANIA
Chapter 6: Results

From Figure 25, 64% of testers felt that the feedback from the system was clear and easy

to understand, a figure which is not as high as would be liked. Clear feedback is a

necessity for a code analysis tool and thus should focus strongly on refining this part of

the system. The types of style checks specified to be checked for were taken from an

example file included with CheckStyle, but modified to remove some of the more

advanced checks. Further tweaking of the XML file will be needed to get feedback

which has greater relevance to the student.

6.1.6. 	Question 6
Question 6 asked the student to evaluate the statement "The integration of compiler and

web browser is advantageous."

Figure 26 Responses to Question 6

From Figure 26, at 54% roughly half of the testers felt that the integration of the Java

compiler with a web browser was advantageous. While this is not a favourable outcome,

the compilation feature is there to simplify the workflow of the tutorials. Students

indicated they did not think the course should be simplified; instead all students should

be required to learn and understand how a compiler works as it is an integral part of

being a programmer.

Tutorial Enhancement and Automated Code Helper 	 -46-

UTAS911$ UNIVERSITY OF TASMANIA
Chapter 6: Results

6.1.7. 	Question 7

Question 7 asked the student to evaluate the statement "I think that this system would

improve my learning". From Figure 27, 72% of testers felt that TEACH would improve

their learning. This is an exceptional response, with TEACH being a learning system it

is very encouraging that such a large percentage of students feel as if using TEACH

would indeed improve their learning.

Figure 27 Responses to Question 7

6.1 8. 	Question 8

Question 8 asked the student to evaluate the statement "I think that this project is

useful." From Figure 28, 91% of testers felt that this research project was useful. This

gives standing to continue the project in subsequent years.

Figure 28 Responses to Question 8

Tutorial Enhancement and Automated Code Helper 	 -47-

UTAS* UNIVERSITY OF TASMANIA
Chapter 6: Results

6.1.9. 	Question 9

Question 9 asked the student to evaluate the statement "I would like to use the system."

Figure 29 Responses to Question 9

From Figure 29, 64% of testers felt they would like to use the system, the results while

being favourable are not as agreeable as hoped. This makes for an interesting

observation as previously in Question 7 students had responded they think TEACH

would help improve their learning. The question may have generated this response as a

result of students thinking the system would be suitable for other students but not for

themselves. Further work needs to be to uncover the reasoning behind this response.

6.1.10. 	Question 10

Question 8 asked the student to evaluate the statement "You are happier with this system

compared to the traditional tutorial system." From Figure 30, with only 36% of testers

responding that they are happier with this system compared to the traditional tutorial

system, the response does look promising. However when the result is looked at in

context of the freeform comments at the end of the survey the reasons become clearer.

Students suggested that instead of just using this system in isolation, TEACH should

instead be integrated with the current tutorial system to enhance them rather than replace

them outright.

Tutorial Enhancement and Automated Code Helper 	 -48-

UTASW UNIVERSITY OF TASMANIA
Chapter 6: Results

Figure 30 Responses to Question 10

6.1.11. 	Freeform comments

The last questions on the survey allowed the students to provide feedback on which parts

of the system they liked, disliked or would like to change. Many of the suggestions were

cosmetic changes to the system and these have been discussed under further work.

Tutorial Enhancement and Automated Code Helper 	 -49-

UTASW UNIVERSITY OF TASMANIA
Chapter 7: Discussion

7. Conclusion
This work began by presenting the hypothesis stating students will prefer learning in the

newly developed automated tutorial system over the current tutorial system with the aim

of building and evaluating the effectiveness a web-based tutorial system. A review of the

literature was then offered describing the context of each technology and tool considered

in this thesis. An exploration of the tools available for use by the system was presented

with justifications on why the each of the final tools was chosen. The "Three Spheres of

Analysis" was introduced and the role explained in the context of the work. A detailed

description was given on how the system was implemented. Finally the system was

tested by students and feedback collected for analysis with the results exhibited and

discussed.

The results show that the students were pleased with the system with positive feedback

given on the intuitiveness of the system, clear instructions, navigation through the

system and separation of feedback given by the system. Students indicated that they

thought the system would improve their learning and also revealed that they felt the

project was useful.

Despite being pleased with the system and stating the system would improve their

learning, the numbers were divided over the decision that they would prefer this new

style of tutorial learning over the traditional method. The results leave the hypothesis in

an inconclusive proof or disproof, however from the results a new option presents itself:

the students' suggestion that the new system be integrated with the current tutorial

system rather than simply replacing it. This new option of integrating the new system

with the current tutorial system should be explored in a future research project.

Tutorial Enhancement and Automated Code Helper 	 -50-

UTASW UNIVERSITY OF TASMANIA
Chapter 7: Discussion

7.1. Future Work

	

7.1.1. 	Security Issues

TEACH was built with the aim of testing the hypothesis of this research; thought was

not put into security concerns. Investigating ways to make TEACH more secure would

be advantageous before being rolling out to students. One of the students in a testing

session displayed how they were able to execute any application on the server, including

"Format C:".

	

7.1.2. 	Infinite Loops

The student's code is compiled and then executed on the server, this causes an issue if

the student has accidentally or maliciously put an infinite for loop into the code. The

offending Java program will run on the server indefinitely consuming resources. An area

of improvement would be to allow Java programs to run up to a determined length of

time before being forcefully shutdown.

	

7.1.3. 	Code Input Enhancements

Feedback from the students indicated they would appreciate some graphical and

functional enhancements to the code input area. Suggestions on enhancements included

colouring of Java keywords similar to that provided by professional IDEs to assist in

making the code readable. Placing line numbers was another suggestion which would

assist in locating where a particular error had occurred.

	

7.1.4. 	Showing the Error in Context

Students requested that they be able to see the reported errors in their context of the

surrounding code, instead of a line number being returned. Knowing where the error

occurred in context of the surrounding code may be as important as the actually reported

error.

Tutorial Enhancement and Automated Code Helper 	 -51-

UTASM

UNIVERSITY OF TASMANIA
Chapter 7: Discussion

	

7.1.5. 	Background Processing

An interesting area of research would involve modifying TEACH to continuously detect

errors without the student having to submit the code manually. This could be

implemented similar to automated spell checkers in word processors with erroneous

sections of code highlighted after being written.

	

7.1.6. 	Distributed Processing

Enhancements could be applied to TEACH making it a distributed system. Different

analysis spheres could be assigned to dedicated servers potentially reducing the analysis

time of TEACH whilst making it scalable.

	

7.1.7. 	Dynamic Analysis

Integrating dynamic analysis tools into TEACH may be useful for teaching more

advanced students, this would be dependant on the teaching structure of the School of

Computing.

Tutorial Enhancement and Automated Code Helper 	 -52-

UNIVERSITY OF TASMANIA
Chapter 8: References UTASOB

8. References
Amit, C. (2005). "Java & Static Analysis." Dr. Dobb's Journal; San Mateo 30(7): 25,27.

Bandera. (2006). "Bandera." Retrieved 2006/08/20, from

http://bandera.projects.cis.ksu.edu .

Bray, T., J. Paoli, et al. (1997). "Extensible Markup Language (XML)." World Wide

Web Journal 2(4): 27-66.

CheckStyle. (2006). "CheckStyle Available Checks." Retrieved 2006/09/06, from

http://checkstyle.sourceforge.net/availablechecks.html.

CheckStyle. (2006). "CheckStyle Homepage." Retrieved 2006/07/18, from

http://checkstyle.sourceforge.net/.

Clark, M. (2006, 2006/02/20). "JUnit FAQ." Retrieved 2006/08/03, from

http://junit.sourceforge.net/doc/faq/faq.htm.

Doshi, G. (2005). "JUnit 4.0 in 10 minutes." Retrieved 2006/09/04, from

http://www.instrumentalservices.com/index.php?option=com content&task=vie

w&id=45&Itemid=52.

Dwyer, M. B., J. Hatcliff, et al. (2006). "Evaluating the Effectiveness of Slicing for

Model Reduction of Concurrent Object-Oriented Programs." LECTURE NOTES

IN COMPUTER SCIENCE 3920: 73.

Edwards, S. H. (2003). "Teaching software testing: automatic grading meets test-first

coding." Conference on Object Oriented Programming Systems Languages and

Applications: 318-319.

FindBugs. (2006, 2006/07/10). "FindBugsTM - Find Bugs in Java Programs." Retrieved

2006/07/20, from http://findbugs.sourceforge.net/.

Tutorial Enhancement and Automated Code Helper 	 -53-

UTASM UNIVERSITY OF TASMANIA
Chapter 8: References

Free Software Foundation, Inc. (2000). "Comparing and Merging Files." Retrieved

2006/08/15, from

http://www.gnu.org/software/diffutils/manual/html mono/diff.html.

Goetz, B. (2006, 2006/06/20). Retrieved 2006/07/25, from http://www -

128.ibm.com/developerworks/library/j-jtp06206.html?ca=dgr-

lnxw01BugDetectors.

Goyvaerts, J. (2006). Regular Expressions: The Complete Tutorial, Lulu Press, Inc.

Hammurapi Group (2004). Hammurapi User Manual.

Hammurapi Group. (2006, 2006/07/29). "Automated code review." Retrieved

2006/06/20, from

http://wiki.hammurapi.biz/index.php?title=Automated code review.

Hovemeyer, D. and W. Pugh (2004). "Finding bugs is easy." ACM SIGPLAN Notices

39(12): 92-106.

Hristova, M., A. Misra, et al. (2003). "Identifying and correcting Java programming

errors for introductory computer science students." Proceedings of the 34th

SIGCSE technical symposium on Computer science education: 153-156.

InfoEther. (2006). "PMD." Retrieved 2006/05/22, from http://pmd.sourceforge.net .

JLint. (2006). "JLint home page." Retrieved 2006/08/07, from

http://sourceforge.net/projects/jlint/.

John Lewis, W. L. (2001). Java. Software Solutions, Addison-Wesley.

Microsoft. (2006). "ASP.NET Developer Center." Retrieved 2006/10/25, from

http://msdn.microsoft.com/asp.net/.

Mitchell, S. (2006). Sams Teach Yourself ASP.NET 2.0 in 24 Hours, Sams Publishing.

Tutorial Enhancement and Automated Code Helper 	 -54-

UTASM
UNIVERSITY OF TASMANIA

Chapter 8: References

Raggett, D., A. Le Hors, et al. (1999). "HTML 4.01 Specification." W3C

Recommendation REC-htm1401-19991224, World Wide Web Consortium

(W3C), Dec.

Rutar, N., C. B. Almazan, et al. (2004). "A Comparison of Bug Finding Tools for Java."

Software Reliability Engineering, 2004. ISSRE 2004. 15th International

Symposium on: 245-256.

Savitch, W. (1999). JAVA. An introduction to computer science & programming,

Prentice-Hall.

Sim, C. (2005). Automatic Assesment and Programming Tutor, University of Tasmania.

Bachelor of Computing with Honours.

Sun. (1998, March). "Sun Microsystems Accessibility Program - Overview of Java."

Retrieved 2006/08/07.

Sun. (2005). "JavaServer Pages Technology - Frequently Asked Questions." Retrieved

2006/08/07.

Topor, R. W. (2002). "CIT1104 Programming II: Common (Java) programming errors."

Retrieved 2006/04/06.

Truong, N., P. Bancroft, et al. (2003). "A web based environment for learning to

program." Proceedings of the twenty-sixth Australasian computer science

conference on Conference in research and practice in information technology-

Volume 16: 255-264.

Truong, N., P. Bancroft, et al. (2005). "Learning to program through the web."

Proceedings of the 10th annual SIGCSE conference on Innovation and

technology in computer science education: 9-13.

Tutorial Enhancement and Automated Code Helper 	 -55-

UNIVERSITY OF TASMANIA
Chapter 8: References

Truong, N., P. Roe, et al. (2004). "Static analysis of students' Java programs."

Proceedings of the sixth conference on Australian computing education-Volume

30: 317-325.

University of Maryland (2006). Findbugs Documentation.

UTAS. (2006). "KXT101 overview." Retrieved 2006/06/20, from

http://www.comp.utas.edu.au/app/outlines/index.jsp?outlineID=144.

Tutorial Enhancement and Automated Code Helper 	 -56-

UTASSIA UNIVERSITY OF TASMANIA
Appendix A: Information and Consent forms

Appendix A: Information and Consent Forms

Tutorial Enhancement and
Automated Code Helper

INFORMATION SHEET

Dr Julian Dermoudy
Degree Coordinator
School of Computing
Private Bag 100
Hobart Tas 7001

David Burela
Masters Student
School of Computing

Phone 6226 2933 	 Phone 6226 2922
Email Julian.Dermoudy(autas.edu.au 	Email dburelaCautas.edu.au

What I am trying to do

As part of my Masters Degree in Computing, I am investigating whether students will

be happier to use the web-based assistive learning environment or the traditional

classroom tutorial learning. The project aims to assist with computing students

learning, by means of advanced logic checking, as well as style checks.

What I would like you to do

What I would value now is assistance in determining on how the students feel about

using the web-based assistive learning environment and suggestions for its

improvements and possible use.

If you agree to participate, you will attend the School of Computing's PC laboratories

and use the system for up to 30 minutes at a time of your choice between the 12th &

13th of October and the 19th & 20th (between 10am to 6pm), and then fill out a survey

based on your experiences with the system (which should take 5 to 10 minutes). The

system will request you to select and enter source code into the given text area. The

source code will then be submitted to the server to check for logic, compilation and

style errors, following which feedback will be given to you. The goal of the system is to

provide useful feedback to students so that they can improve their programming.

Tutorial Enhancement and Automated Code Helper 	 -57-

UTASOB UNIVERSITY OF TASMANIA
Appendix A: Information and Consent forms

How will the data be used?

Your survey responses form the data for my study. As the survey does not request any

identifying information, your responses are anonymous. It follows that you will not be

identifiable in the research output.

Voluntariness

Your participation is entirely voluntary, and not part of course requirements. You can

withdraw from this research at any time, without any effect. If you would like to

participate in this study, please complete and return a signed copy of the attached

Consent Form to Mrs Andrea Kingston (the Secretary of the School of Computing).

Please note that the consent forms will be stored separately from the survey responses,

and will not be linked to them (in order to preserve anonymity). The research data will

be securely stored at the School of Computing for 5 years before being destroyed.

Ethics approval

This project has received ethical approval from the Human Research Ethics Committee

(Tasmania) Network (Approval No. H9140) and the School of Computing. If you have

any concerns of an ethical nature or complaints about the manner in which the project is

conducted, you may contact the Executive Officer of the Network, Marilyn Pugsley, Ph

6226 7479; email: Marilyn.Pugsley(autas.edu.au University students may also discuss

any concerns regarding this project confidentially with the University Student

Counsellor, Mark Hood, phone (03) 6324 3787.

Thank you for taking the time to read this information sheet. I hope you will be willing

to participate in this study. If you would like to receive a summary of the findings of

this study, please contact me or my supervisor, Dr Julian Dermoudy (contact details

supplied at the top of this information sheet).

Tutorial Enhancement and Automated Code Helper 	 -58-

UTASOS UNIVERSITY OF TASMANIA
Appendix A: Information and Consent forms

Tutorial Enhancement and
Automated Code Helper UTAS

CONSENT FORM

An investigation of whether students will be happier to use the web-based
assistive learning environment or the traditional classroom tutorial learning.

1. I (the participant) have read the information sheet and any questions I have asked
have been answered to my satisfaction.

2. The nature and possible effects of the study have been explained to me.

3. I understand that the study involves selecting a question, completing the
sourcecode and trying to remove all errors, and completing a survey, which should
take no more than 40 minutes in total.

4. I understand that all research data will be securely stored on University of Tasmania
premises for 5 years before being destroyed.

5. I agree that research data gathered for the study may be published provided I am
not identifiable as a participant.

6. I understand that the researchers will maintain my identity as a participant in this
study confidential and that any information obtained by the researcher will be used
only for the purpose of the research.

7. I agree to participate in this research and understand that I may withdraw at any
time without any effects.

Name of participant 	
Signature of participant 	 Date 	

Statement by researcher:
I, the researcher, have explained this project and the implications of participation in it
to this volunteer and I believe that the consent is informed and that he/she
understands the implications of participation.

Name of researcher 	
Signature of researcher 	 Date 	

Tutorial Enhancement and Automated Code Helper 	 -59-

UTASW UNIVERSITY OF TASMANIA
Appendix B: Survey form

Appendix B: Survey Form

Tutorial Enhancement and
Automated Code Helper UTAS

SURVEY FORM

Please indicate your choice by circling the appropriate number:

1 — Strongly Disagree 2 — Disagree 3 —Neutral 4— Agree 5 — Strongly Agree

1) The system is intuitive to use. 1 2 3 4 5 N/A

2) The instructions are clear. 1 2 3 4 5 N/A

3) Navigation through the different phases of the system is

readily achieved.

1 2 3 4 5 N/A

4) I like how compiler messages, execution output, and

feedback on source code are separated on the screen.

1 2 3 4 5 N/A

5) Feedback from the system given to you was clear and easy

to understand.

1 2 3 4 5 N/A

6) The integration of compiler and web browser is

advantageous.

1 2 3 4 5 N/A

7) I think that this system would improve my learning 1 2 3 4 5 N/A

8) I think that this project is useful. 1 2 3 4 5 N/A

9) I would like to use the system. 1 2 3 4 5 N/A

10) You are happier with this system compared to the traditional

tutorial system.

1 2 3 4 5 N/A

Continued....

Tutorial Enhancement and Automated Code Helper 	 -60-

UNIVERSITY OF TASMANIA
Appendix B: Survey form UTAS

11) The best aspect of the system is...

12) The worst aspect of the system is...

13) If I could, I would add/change/remove...

14) Any other comments:

r
Thank you for your time and valuable feedback!

Have a great day!

-62- Tutorial Enhancement and Automated Code Helper

UNIVERSITY OF TASMANIA
Appendix C: Tutorial Questions UTAS9$

Appendix C — Tutorial Questions

Cl. Tutorial Question 1 — Division.java
/ * *

/ * *
Division. java
@author: David Burela
@version 1 (September 2006)

**Please compile as is before modifying
* /

public class Division
1

public static void main(String [1 args)
{

int varA = 5;
int varB = 7;

double result = varA/varB;

System.out.println(result);
1

1

Tutorial Enhancement and Automated Code Helper 	 -63-

UTAS9S UNIVERSITY OF TASMANIA
Appendix C: Tutorial Questions

C2. Tutorial Question 2— LogicProblem.java
/**

LogicProblem.java
@author: David Burela
@version 1 (September 2006)

**Please compile as is before modifying
This program should display if a number is greater than
or less than 5.
Bonus marks for displaying if it is equal to 5

*/

public class LogicProblem
1

public static void main(String [] args)
{

int number = 7;

if(number < 5);
System.out.println(number + " is Less than 5");

if(number > 5);
System.out.println(number + " is Greater than

Tutorial Enhancement and Automated Code Helper 	 -64-

UTASOR UNIVERSITY OF TASMANIA
Appendix C: Tutorial Questions

C3. Tutorial Question 3— Return Value.java
/**

ReturnValue.java
@author: David Burela
@version 1 (September 2006)

**Please compile as is before modifying
This program should return the length of your name.

*/

public class ReturnValue

public static void main(String [1 args)

String name = "Your name"; 	//Place your name
here

int namelen = 0;
name.length();

System.out.println("your name is " + namelen +"
long!");

Tutorial Enhancement and Automated Code Helper 	 -65-

UTASM UNIVERSITY OF TASMANIA
Appendix C: Tutorial Questions

C4. Tutorial Question 4— StringBuff.java
/ * *

StringBuff.java
@author: David Burela
@version 1 (September 2006)

This program adds 10 ":"s to a string
* /

public class StringBuff
{

public static void main(String [] args)
{

String buffer= "";,
for (int i=0; i < 10; i++)
{

buffer = buffer
	11 : 11 ;

System.out.println(buffer);

Tutorial Enhancement and Automated Code Helper 	 -66-

UTASSS UNIVERSITY OF TASMANIA
Appendix C: Tutorial Questions

CS. Tutorial Question 5— W2Swap.java
/ **

W2Swap.java .
@author: Robyn Gibson
@version 1 (February 2003)

This program should swap the values of varA and varB
and print out the newly swapped values

*/

public class W2Swap
{

public static void main(String [1 args)
{

int varA = 5;
int varB = 7;
// create int storage for temp variable

//display varA and varB
System.out.println("varA current value -
System.out.println("varB current value -

// temp becomes varA

// varA becomes varB

// varB becomes temp

//display varA
//display varB

+ varA);
+ varB);

Tutorial Enhancement and Automated Code Helper 	 -67-

UTASW UNIVERSITY OF TASMANIA
Appendix D: Reference of available CheckStyle checks

Appendix D: Reference of Available CheckStyle Checks
Checkstyle provides many checks that you can apply to your sourcecode, below is an
alphabetical reference taken from (CheckStyle 2006).

DoubleCheckedLocking

Ensures that the names of abstract classes conforming to
some regular expression.
Checks for long anonymous inner classes.
Checks if array initialization contains optional trailing
comma.
Checks the style of array type definitions.
Detects inline conditionals.
Finds nested blocks.
Check that finds import statements that use the *
notation.
Restricts nested boolean operators (&&, II and ^) to a
specified depth (default = 3).
This metric measures the number of instantiations of
other classes within the given class.
The number of other classes a given class relies on.
Checks that constant names conform to a format
specified by the format property.
Checks that if a class defines a covariant method equals,
then it defines method equals(java.lang.Object).
Checks cyclomatic complexity against a specified limit.
Checks that the parts of a class or interface declaration
appear in the order suggested by the Code Conventions
for the Java Programming Language.
Check that the default is after all the cases in a switch
statement.
Checks for restricted tokens beneath other tokens.
Checks that classes are designed for inheritance.
Detect the double-checked locking idiom, a technique
that tries to avoid synchronization overhead but is
incorrect because of subtle artifacts of the java memory
model.
Checks for empty blocks.
Checks the padding of an empty for initializer; that is
whether a space is required at an empty for initializer, or
such spaces are forbidden.

AbstractClassName

AnonInnerLength

ArrayTrailingComma

ArrayTypeStyle
AvoidInlineConditionals
AvoidNestedB locks

AvoidStarImport

BooleanExpressionComplexity

ClassDataAbstractionCoupling

C lassFan0 utComp lex ity

ConstantName

CovariantEquals

CyclomaticComplexity

DeclarationOrder

DefaultComesLast

DescendantToken
DesignForExtension

EmptyBlock

EmptyForInitializerPad

Tutorial Enhancement and Automated Code Helper 	 -68-

UTASOS UNIVERSITY OF TASMANIA
Appendix D: Reference of available CheckStyle checks

Checks the padding of an empty for iterator; that is
whether a space is required at an empty for iterator, or
such spaces are forbidden.
Detects empty statements (standalone ';').
Checks that an EntityBean implementation satisfies
EntityBean requirements.
Checks that classes that override equals() also override
hashCode().
Restricts the number of executable statements to a
specified limit (default = 30).
Checks if any class or object member explicitly
initialized to default for its type value (null for object
references, zero for numeric types and char and false for
boolean.
Checks for fall through in switch statements Finds
locations where a case contains Java code - but lacks a
break, return, throw or continue statement.
Checks for long source files.
Checks that class which has only private ctors is
declared as final.
Ensures that local variables that never get their values
changed, must be declared final.
Check that method/constructor/catch/foreach parameters
are final.
Checks that all static fields are declared final.
A generic check for code problems, the user can search
for any pattern.
Checks the header of the source against a fixed header
file.
Checks that a local variable or a parameter does not
shadow a field that is defined in the same class.
Make sure that utility classes (classes that contain only
static methods) do not have a public constructor.
Catching java.lang.Exception, java.lang.Error or
java.lang.RuntimeException is almost never acceptable.
Checks for imports from a set of illegal packages.
Checks for illegal instantiations where a factory method
is preferred.
Throwing java.lang.Error or
java.lang.RuntimeException is almost never acceptable.
Checks for illegal tokens.

EmptyForIteratorPad

EmptyStatement

EntityBean

EqualsHashCode

ExecutableStatementCount

ExplicitInitialization

FallThrough

FileLength

FinalClass

FinalLocal Variable

FinalParameters

FinalStatic

GenericIllegalRegexp

Header

HiddenField

HideUtilityClassConstructor

IllegalCatch

IllegalImport

Illegal Instantiation

IllegalThrows

IllegalToken

-69- Tutorial Enhancement and Automated Code Helper

UNIVERSITY OF TASMANIA
Appendix D: Reference of available CheckStyle checks

IllegalTokenText

IllegalType

ImportControl

ImportOrder
Indentation

InnerAssignment

InterfaceIsTve

JUnitTestCase

JavaNCSS

JavadocMethod
JavadocStyle
JavadocType
Javadoc Variable

LeftCurly

LineLength

LocalFinalVariableName

LocalHomeInterface

LocalInterface

Local VariableName

MagicNumber

MemberName

MessageBean

MethodLength

Checks for illegal token text.
Checks that particular class are never used as types in
variable declarations, return values or parameters.
Check that controls what packages can be imported in
each package.
Class to check the ordering/grouping of imports.
Checks correct indentation of Java Code.
Checks for assignments in subexpressions, such as in
String s = Integer.toString(i = 2);.
Implements Bloch, Effective Java, Item 17 - Use
Interfaces only to define types.
Ensures that the setUp(), tearDownOmethods are named
correctly, have no arguments, return void and are either
public or protected.
This check calculates the Non Commenting Source
Statements (NCSS) metric for java source files and
methods.
Checks the Javadoc of a method or constructor.
Custom Checkstyle Check to validate Javadoc.
Checks the Javadoc of a type.
Checks that a variable has Javadoc comment.
Checks the placement of left curly braces on types,
methods and other blocks:
Checks for long lines.
Checks that local final variable names conform to a
format specified by the format property.
Checks the local home interface requirements:
every method must not throw the
java.rmi.RemoteException
Reference: Enterprise JavaBeansTM
Specification,Version 2.0, section 9.6.2.
Checks the methods of a local interface.
Checks that local, non-final variable names conform to a
format specified by the format property.
Checks for magic numbers.
Checks that instance variable names conform to a format
specified by the format property.
Checks that a MessageBean implementation satisfies
MessageBean requirements.
Checks for long methods.

Tutorial Enhancement and Automated Code Helper 	 -70-

UTAS9S

MethodName

MethodParamPad

MissingCtor

MissingSwitchDefault

ModifiedControl Variable

ModifierOrder

UNIVERSITY OF TASMANIA
Appendix D: Reference of available CheckStyle checks

Checks that method names conform to a format specified
by the format property.
Checks the padding between the identifier of a method
definition, constructor definition, method call, or
constructor invocation; and the left parenthesis of the
parameter list.
Checks that classes (except abstract one) define a ctor
and don't rely on the default one.
Checks that switch statement has "default" clause.
Check for ensuring that for loop control variables are not
modified inside the for block.
Checks that the order of modifiers conforms to the
suggestions in the Java Language specification, sections
8.1.1, 8.3.1 and 8.4.3.
Checks for multiple occurrences of the same string
literal within a single file.
Checks that each variable declaration is in its own
statement and on its own line.
Ensures that exceptions (defined as any class name
conforming to some regular expression) are immutable.
Checks the npath complexity against a specified limt
(default = 200).
Checks for braces around code blocks.
Restricts nested if-else blocks to a specified depth
(default = 1).
Restricts nested try-catch-finally blocks to a specified
depth (default = 1).
Checks that there is a newline at the end of each file.
Checks that there is no whitespace after a token.
Checks that there is no whitespace before a token.
Checks line wrapping for operators.
Ensures there is a package declaration.
Checks that all packages have a package documentation.
Checks that package names conform to a format
specified by the format property.
Disallow assignment of parameters.
Checks that parameter names conform to a format
specified by the format property.
Checks the number of parameters that a method or
constructor has.

MultipleStringLiterals

MultipleVariableDeclarations

MutableException

NPathComplexity

NeedBraces

NestedIfDepth

NestedTryDepth

NewlineAtEndOfFile
No WhitespaceAfter
NoWhitespaceBefore
Operator Wrap
PackageDeclaration
PackageHtml

PackageName

ParameterAssignment

ParameterName

ParameterNumber

Tutorial Enhancement and Automated Code Helper 	 -71-

UNIVERSITY OF TASMANIA
Appendix D: Reference of available CheckStyle checks UTAS 	

Checks the padding of parentheses; that is whether a
space is required after a left parenthesis and before a
right parenthesis, or such spaces are forbidden, with the
exception that it does not check for padding of the right
parenthesis at an empty for iterator.
Checks for imports that are redundant.
Checks for redundant modifiers in interface and
annotation definitions.
Checks for redundant exceptions declared in throws
clause such as duplicates, unchecked exceptions or
subclasses of another declared exception.
A check that makes sure that a specified pattern exists
(or not) in the file.
Checks the header of the source against a header file that
contains a
Checks the methods of a remote home interface.
Checks the methods of a remote interface.
Checks that code doesn't rely on the "this" default.
A check that makes sure that a specified pattern exists in
the code.
Restricts return statements to a specified count (default =
2).
Checks the placement of right curly braces.
Checks that a SessionBean implementation satisfies
SessionBean requirements.
Checks for overly complicated boolean expressions.
Checks for overly complicated boolean return
statements.
Checks that static, non-final variable names conform to a
format specified by the format property.
Performs a line-by-line comparison of all code lines and
reports duplicate code if a sequence of lines differs only
in indentation.
Checks that string literals are not used with == or !=.
Checks that an overriding clone() method invokes
super.clone().
Checks that an overriding finalize() method invokes
super.finalize().
Reports tab characters ('\t') in the source code.
Checks that 'this' is not a parameter of any method calls
or constructors for a bean.

ParenPad

RedundantImport

RedundantModifier

RedundantThrows

Regexp

RegexpHeader

RemoteHomeInterface
RemoteInterface
RequireThis

RequiredRegexp

ReturnCount

RightCurly

SessionBean

SimplifyBooleanExpression

SimplifyBooleanReturn

StaticVariableName

StrictDuplicateCode

StringLiteralEquality

SuperClone

SuperFinalize

TabCharacter

ThisParameter

Tutorial Enhancement and Automated Code Helper 	 -72-

UNIVERSITY OF TASMANIA
Appendix D: Reference of available CheckStyle checks

ThisReturn

ThrowsCount

TodoComment

TrailingComment

Translation

TypeName

TypecastParenPad
UncommentedMain

UnnecessaryParentheses

UnusedImports
UpperEll
VisibilityModifier

WhitespaceAfter

WhitespaceAround
WriteTag

Checks that 'this' is not returned by a bean method.
Restricts throws statements to a specified count (default

1) .

A check for TODO comments.
The check to ensure that requires that comments be the
only thing on a line.
The TranslationCheck class helps to ensure the correct
translation of code by checking property files for
consistency regarding their keys.
Checks that type names conform to a format specified by
the format property.
Checks the padding of parentheses for typecasts.
Detects uncommented main methods.
Checks if unnecessary parentheses are used in a
statement or expression.
Checks for unused import statements.
Checks that long constants are defined with an upper ell.
Checks visibility of class members.
Checks that a token is followed by whitespace, with the
exception that it does not check for whitespace after the
semicolon of an empty for iterator.
Checks that a token is surrounded by whitespace.
Outputs a JavaDoc tag as information.

Tutorial Enhancement and Automated Code Helper 	 -73-

UTASSV UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

Appendix E: FindBugs Bug Descriptions
The standard bugs found by FindBugs version 1.0.0 taken from (University of Maryland
2006).
Description 	 Category
AM: Creates an empty jar file entry 	 Correctness
AM: Creates an empty zip file entry 	 Correctness
BC: Impossible cast 	 Correctness
BC: instanceof will always return false 	 Correctness
BIT: Incompatible bit masks 	 Correctness
BIT: Incompatible bit masks 	 Correctness
BIT: Incompatible bit masks 	 Correctness
BIT: Bitwise OR of signed byte value 	 Correctness
BOA: Class overrides a method implemented in super class
Adapter wrongly
CN: Class implements Cloneable but does not define or use Correctness clone method
CN: clone method does not call super.clone() 	 Correctness
Co: Abstract class defines covariant compareTo() method 	Correctness
Co: Covariant compareTo() method defined 	 Correctness
DE: Method might drop exception 	 Correctness
DE: Method might ignore exception 	 Correctness
DLS: Overwritten increment 	 Correctness
DMI: Passes a constant value for a month outside of the
expected range of 0..11
DMI: hasNext method invokes next 	 Correctness
DMI: Code contains a hard coded reference to an absolute Correctness pathname
DMI: Non serializable object written to ObjectOutput 	Correctness
DMI: Invocation of substring(0), which returns the original value Correctness
DP: Classloaders should only be created inside doPrivileged Correctness block
DP: Method invoked that should be only be invoked inside a Correctness doPrivileged block
Dm: Can't use reflection to check for presense of annotation with Correctness default retention
Dm: Method invokes System.exit(...) 	 Correctness
Dm: Method invokes runFinalizersOnExit, one of the most
dangerous methods in the Java libraries.

Correctness

Correctness

Correctness

Tutorial Enhancement and Automated Code Helper 	 -74-

UTAS UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

EC: equals() used to compare array and nonarray
EC: Invocation of equals() on an array, which is equivalent to —
EC: Call to equals() with null argument
EC: Call to equals() comparing unrelated class and interface
EC: Call to equals() comparing different interface types
EC: Call to equals() comparing different types
ES: Comparison of String objects using == or !=
Eq: Abstract class defines covariant equals() method
Eq: Covariant equals() method defined
Eq: Covariant equals() method defined, Object.equals(Object)
inherited
FE: Test for floating point equality.
Fl: Explicit invocation of finalizer
Fl: Finalizer does not call superclass finalizer
Fl: Finalizer nullifies superclass finalizer
FIE: Class defines equals() but not hashCode()
HE: Class defines equals() and uses Object.hashCode()
HE: Class defines hashCode() but not equals()
HE: Class defines hashCode() and uses Object.equals()
HE: Class inherits equals() and uses Object.hashCode()
IA: Ambiguous invocation of either an inherited or outer method
IC: Initialization circularity
ICAST: Integer shift by an amount not in the range 0..31
ICAST: int division result cast to double
ICAST: int value cast to double and then passed to Math.ceil
IJU: TestCase has no tests
IJU: TestCase implements setUp but doesn't call super.setUp()
IJU: TestCase implements a suite method, but this method is not
static and should be
IJU: TestCase implements tearDown but doesn't call
super.tearDown()
IL: A container is added to itself.
IL: An apparent infinite recursive loop.
IM: Integer multiply of result of integer remainder
IMSE: Dubious catching of IllegalMonitorStateException
INT: Integer remainder modulo 1
INT: Vacuous comparison of integer value
IP: A parameter is dead upon entry to a method but overwritten

Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness

Correctness

Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness

Correctness

Correctness

Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness

Tutorial Enhancement and Automated Code Helper 	 -75-

UTAS UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

ISC: Needless instantiation of class that only supplies static
methods
It: Iterator next() method can't throw NoSuchElement exception
J2EE: Store of non serializable object into HttpSession
JCIP: Fields of immutable classes should be final
MF: Class defines field that obscures a superclass field
MF: Method defines a variable that obscures a field
NP: Null pointer dereference in method
NP: Null pointer dereference in method on exception path
NP: Immediate dereference of the result of readLine()
NP: Method call passes null to a parameter declared @NonNull
NP: Method may return null, but is declared NonNull
NP: A known null value is checked to see if it is an instance of a
type
1\113 : Possible null pointer dereference in method
NP: Possible null pointer dereference in method on exception
path
NP: Possible null pointer dereference due to return value of
called method
NP: Method call passes null for unconditionally dereferenced
parameter
NP: Method call passes null for unconditionally dereferenced
parameter
NP: Non-virtual method call passes null for unconditionally
dereferenced parameter
NP: Store of null value into field annotated NonNull
NP: Read of unwritten field
NS: Questionable use of non-short-circuit logic
Nm: Class defines equal(); should it be equalsO?
Nm: Confusing method names
Nm: Class defines hashcode(); should it be hashCode0?
Nm: Class defines tostring(); should it be toString()?
Nm: Apparent method/constructor confusion
Nm: Very confusing method names
ODR: Method may fail to close database resource
ODR: Method may fail to close database resource on exception
OS: Method may fail to close stream
OS: Method may fail to close stream on exception
QBA: Method assigns boolean literal in boolean expression

Correctness

Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness

Tutorial Enhancement and Automated Code Helper 	 -76-

UTASOS UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

OF: Complicated, subtle or wrong increment in for-loop
RC: Suspicious reference comparison
RCN: Redundant comparison of non-null value to null
RCN: Redundant comparison of two null values
RCN: Redundant nullcheck of value known to be non-null
RCN: Redundant nullcheck of value known to be null
RCN: Nullcheck of value previously dereferenced
RE: Invalid syntax for regular expression
RE: "." used for regular expression
RR: Method ignores results of InputStream.read()
RR: Method ignores results of InputStream.skip0
RV: Random value from 0 to 1 is coerced to the integer 0
RV: Method checks to see if result of String.indexOf is positive
RV: Method discards result of readLine after checking if it is
nonnull
RV: Remainder of 32-bit signed random integer
RV: Method ignores return value
SA: Self assignment of field
SI: Static initializer for class creates instance before all static
final fields assigned
SIO: Unnecessary type check done using instanceof operator
SQL: Method attempts to access a prepared statement parameter
with index 0
SQL: Method attempts to access a result set field with index 0
SQL: Nonconstant string passed to execute method on an SQL
statement
SQL: A prepared statement is generated from a nonconstant
String
STI: Unneeded use of currentThread() call, to call interrupted()
STI: Static Thread.interrupted0 method is mistakenly attempted
to be called on an arbitrary Thread object
SW: Certain swing methods should only be invoked from the
Swing event thread
Se: Non-transient non-serializable instance field in serializable
class
Se: Non-serializable value stored into instance field of a
serializable class
Se: Method must be private in order for serialization to work
Se: serialVersionUID isn't final

Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness

Correctness

Correctness
Correctness
Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness

Correctness
Correctness

-77- Tutorial Enhancement and Automated Code Helper

UTAS UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

Se: serialVersionUID isn't long
Se: serialVersionUID isn't static
Se: Class is Serializable but its superclass doesn't define a void
constructor
Se: Class is Externalizable but doesn't define a void constructor
SnVI: Class is Serializable, but doesn't define serialVersionUID
UCF: Useless control flow in method
UI: Usage of GetResource may be unsafe if class is extended
UMAC: Uncallable method defined in anonymous class
UR: Uninitialized read of field in constructor
UwF: Field only ever set to null
UwF: Unwritten field
VA: Primitive array passed to function expecting a variable
number of object arguments
Dm: Method invokes dubious String.toUpperCase() or
String.toLowerCase: use the Locale parameterized version
instead
El: Method may expose internal representation by returning
reference to mutable object
E12: Method may expose internal representation by
incorporating reference to mutable object

Fl: Finalizer should be protected, not public

MS: Method may expose internal static state by storing a
mutable object into a static field

MS: Field isn't final and can't be protected from malicious code

MS: Public static method may expose internal representation by
returning array

MS: Field should be both final and package protected

MS: Field is a mutable array

MS: Field is a mutable Hashtable

MS: Field should be moved out of an interface and made
package protected

MS: Field should be package protected

MS: Field isn't final but should be

Correctness
Correctness

Correctness

Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness
Correctness

Correctness

Internationalization

Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code
vulnerability
Malicious code

Tutorial Enhancement and Automated Code Helper 	 -78-

UTASM UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

vulnerability

DC: Possible double check of field 	 Multithreaded correctness

Dm: Monitor wait() called on Condition 	 Multithreaded correctness

Dm: A thread was created using the default empty run method Multithreaded
correctness

ESync: Empty synchronized block 	 Multithreaded
correctness

IS: Inconsistent synchronization 	 Multithreaded
correctness

IS: Field not guarded against conconcurrent access 	Multithreaded
correctness

JLM: Synchronization performed on java.util.concurrent Lock in Multithreaded
method 	 correctness

LI: Incorrect lazy initialization of static field 	 Multithreaded
correctness

ML: Method synchronizes on an updated field 	 Multithreaded
correctness

MWN: Mismatched notify() 	 Multithreaded
correctness

MWN: Mismatched wait() 	 Multithreaded
correctness

NN: Naked notify in method 	 Multithreaded
correctness

No: Using notify() rather than notifyAll() in method 	Multithreaded
correctness

RS: Class's readObject() method is synchronized 	Multithreaded
correctness

Ru: Invokes run on a thread (did you mean to start it instead?) 	Multithreaded
correctness

SC: Constructor invokes Thread.start() 	 Multithreaded
correctness

SP: Method spins on field 	 Multithreaded
correctness

SWL: Method calls Thread.sleep() with a lock held 	Multithreaded
correctness

TLW: Wait with two locks held 	 Multithreaded
correctness

UG: Unsynchronized get method, synchronized set method 	Multithreaded
correctness

Tutorial Enhancement and Automated Code Helper 	 -79-

UTA SO'S UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

Multithreaded UL: Method does not release lock on all paths correctness
Multithreaded UL: Method does not release lock on all exception paths correctness
Multithreaded UW: Unconditional wait in method correctness

VO: A volatile reference to an array doesn't treat the array 	Multithreaded
elements as volatile 	 correctness
WS: Class's writeObject() method is synchronized but nothing Multithreaded
else is 	 correctness

Multithreaded Wa: Condition.await() not in loop in method correctness
Multithreaded Wa: Wait not in loop in method correctness

Dm: Method invokes dubious Boolean constructor; use
Boolean.value0f(...) instead
Dm: Method allocates a boxed primitive just to call toString
Dm: Explicit garbage collection; extremely dubious except in
benchmarking code
Dm: Method allocates an object, only to get the class object
Dm: Use the nextInt method of Random rather than nextDouble
to generate a random integer
Dm: Method invokes dubious new String(String) constructor;
just use the argument
Dm: Method invokes dubious String.equals("); use
String.length() — 0 instead
Dm: Method invokes toString() method on a String; just use the
String
Dm: Method invokes dubious new String() constructor; just use
VIII

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Performance

Fl: Empty finalizer should be deleted 	 Performance
Fl: Finalizer does nothing but call superclass finalizer 	Performance
ITA: Method uses toArray() with zero-length array argument 	Performance
SBSC: Method concatenates strings using + in a loop 	Performance
SIC: Should be a static inner class 	 Performance
SIC: Could be refactored into a named static inner class 	Performance
SIC: Could be refactored into a static inner class 	 Performance
SS: Unread field: should this field be static? 	 Performance
UPM: Private method is never called 	 Performance
UrF: Unread field 	 Performance

Tutorial Enhancement and Automated Code Helper 	 -80-

UTAS UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

UuF: Unused field
WMI: Inefficient use of keySet iterator instead of entrySet
iterator
BC: Questionable cast to abstract collection
BC: Questionable cast to concrete collection
BC: Unchecked/unconfirmed cast
BC: instanceof will always return true
CI: Class is final but declares protected field
DB: Method uses the same code for two branches
DB: Method uses the same code for two switch clauses
DLS: Dead store to local variable
DLS: Dead store of null to local variable
DMI: Invocation of toString on an array
ICAST: Unsigned right shift cast to short/byte
IM: Check for oddness that won't work for negative numbers
MTIA: Class extends Servlet class and uses instance variables.
MTIA: Class extends Struts Action class and uses instance
variables.
NP: Load of known null value
Nm: Class names should start with an upper case letter
Nm: Class is not derived from an Exception, even though it is
named as such
Nm: Field names should start with an lower case letter
Nm: Method names should start with an lower case letter
PS: Class exposes synchronization and semaphores in its public
interface.
PZLA: Consider returning a zero length array rather than null
REC: java.lang.Exception is caught when Exception is not
thrown
RI: Class implements same interface as superclass.
SA: Self assignment of local variable
SF: Switch statement found where one case falls thru to the next
case
ST: Write to static field from instance method
Se: Comparator doesn't implement Serializable
UM: Method calls static Math class method on a constant value
UwF: Field not initialized in constructor
XFB: Method directly allocates a specific implementation of xml
interfaces

Performance

Performance

Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style
Style

Style

Style
Style

Style

Style
Style

Style

Style

Style

Style
Style

Style

Style
Style
Style
Style

Style

Tutorial Enhancement and Automated Code Helper 	 -81-

UTASM UNIVERSITY OF TASMANIA
Appendix E: FindBugs Bug Descriptions

Tutorial Enhancement and Automated Code Helper 	 -82-

