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Abstract  

 

1.  The thesis describes the synthesis of new compounds including 

both N- and 0-acyl sphingoids, N- and 0-acyl p.-hydroxyaminoacids, 

related oxazolines, and aminoacid esters and amides of lipids. 

 

2.  Some minor lipids chromatographed with ceramides from commercial 

and fresh biological sources were identified as partially oxidised 

cerebrosides and monoglycerides respectively. 

 

3.  Chromatographic methods (TLC and GLC) were elaborated for the 

study of sphingolipids with special reference to the study of 

a) acyl migration; 

b) ageing; 

c) stereochemistry. 

 

4.  Resolution of groups of erythro and threo sphingoids by TLC and 

separation of individual diastereoisomers by GLC permitted the 

assignment of erythro configuration to natural sphingoids of brain. 

 

5.  It was shown that synthetic oxazolines derived from sphingoids and 

containing 0
1 
and 0

3 
in the ring were predominantly of the former 

kind if derived from erythro sphingoids, and of the latter kind if 

derived from threo sphingoids. 

 

6.  All oxazolines, except those derived from erythro sphingenine and 

containing 03  in the ring, underwent acid hydrolysis without change  

of configuration. 

 

7.  Synthetic 0-acyl sphingoids readily changed to ceramides in neutral 

or alkaline media but the conversion of ceramides to 0-acyl isomers 

could not be brought about by acid; oxazoline intermediates were 

not found. 

 

8.  Neither oxazolines nor 0-acyl sphingoids have been found in fresh or 

aged ceramide solutions.  Changes of ceramides on ageing are 

ascribed to photo-oxidation. 

 

9.  The fatty acid composition of sphingolipids from the milk of Friesian 

cows was surveyed. 

 

10.  The neutral lipids of 68 workers exposed to lead  were assayed. 

	

11. 	Studies of aminoacids in neutral lipid fractions suggest the presence 

of some covalently bound aminoacid-lipid combinations. 
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INTRODUCTION  

1. Definition  

This work is a report of analytical, synthetic, and mechanistic 

studies of ceramides and some of their constitutional or chromatographic 

analogues. 

2. Nomenclature, abbreviations, symbols and other conventions  

(a) Nomenclature  

The recently revised nomenclature for sphingolipids , will be 

adopted where possible. 

The term "sphingoids" will refer to 2-amino-1,3-octadecanediol, 

its homologues and stereoisomers, and to the hydroxy, methoxy, and 

unsaturated derivatives of these compounds.  "Sphingenines" and 

"sphinganines" denote the stereoisomers of 2-amino-trans-4-octadecene-

1,3-diol and 2-amino-1,3-octadecanediol, respectively. 

The configuration of substituents on sphingoids or 2-hydroxy 

fatty acids is specified where necessary by the prefixes "D" or "L" 

(not "R" or "S") which follow the locant of substitution.  These 

prefixes specify the orientation of the functional groups to the right 

or left, respectively, of the carbon chain when written vertically in 

a Fischer projection with Cl at the top.  The notations "e" (erythro) 

or "t" (threo) are used when two adjacent substituents have the same 

or opposite configuration, respectively.  The term "rac" (racemic) 

represents a mixture of the DLe and DLt-stereoisomers.  Examples of 

sphingoids differing in configuration are given (Fig. 1). 



CH 2 OH 

HERal4 ---2, NH 2 

--1-140H 

1 
(CH 2 ) 14  

3 

CH 2  OH 
1  

H
2
Ncmft-6-.asH 

Hem.1..ma0H 
1 

(CH2 ) 14  

3 

2D,3D-sphinganine, or  21.,3D-sphinganine, or 

De-sphinganine  •Dt-sphinganine 

cH 9OH 
' 

H 	--ma NH
2 

Flea:0"`C-m3001-1 

Hosow-C-.010H 

(61 2 ) 13  

3 

4D-hydroxy-De-

sphinganine 

Fig. 1  

H 2 C 
e)C—(CH 2 ) 12CH 3  

OH 

C—H 

(H
2 ) 12 

Li
3 

2-tridecy1-4-(1D-hydroxy-trans-2-hexadeceny1)-2-oxazoline 

Fig. 2 



The terms "ceramide" and "N-acyl sphingoid" are equivalent. 

The generic terms, sphingolipids, ceramides, sphingomyelins, 

and glycosphingolipids, will be used.  The last-mentioned lipids 

include all compounds containing at least one monosaccharide, such as 

glucosylceramides (or generally, cerebrosides), lactosylceramides, 

psychosines, sulphatides, and gangliosides.  The configuration of 

the sphingoids in these groups of compounds, generally believed to be 

De, will be specified where known, e.g. DLt-sphingomyelin. 

Acyl sphingoids include N-acyl, 0-acyl (e.g. 3-0-palmitoyl 

sphingenine), and di- or tri-acyl compounds in which the locations of 

the acyl groups are indicated so as to distinguish 1-0,3-0, 1-0,N, 

and 3-0,N derivatives.  The term "ceramide esters" implies that one 

of the hydroxyls of ceramides is esterified, as in the known cerebroside 

esters of brain. 

2-Oxazolines derived from sphingoids shall be termed "sphingoid-

oxazolines".  The oxygen not participating in the ring is indicated 

a 
as a hydronpane or hydroxyalkene substituent, e.g. 2-tridecy1-4- 

(1D-hydroxy-trans-2-hexadeceny1)-2-oxazoline (Fig. 2). 

(b) Abbreviations  

In addition to the common abbreviations such as Me (methyl) and 

Trid (tridecyl), others will be used, e.g. lh-Hexad A2 , for 1-hydroxy-

trans-2-hexadecenyl. 

hMe, for hydroxymethyl. 

cEy, for carboethoxy. 

TLC and GLC stand for thin-layer chromatography and gas-liquid 

chromatography, respectively. 

JR. UV, NMR, and MS spectra refer to infrared, ultraviolet, 

nuclear magnetic resonance, and mass spectroscopy, respectively. 
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Trimethylsilyl and dinitrophenyl are abbreviated as TMSi and DNP, 

respectively. 

NFA, for non-hydroxy fatty acid, and HFA, for 2-hydroxy fatty 

acid, will be used for the classification of sphingolipids. 

(c) Symbols  

Non-hydroxy fatty acids (or methyl esters) are symbolised by 

carbon number:number and position of double bonds; the double bond 

has the cis arrangement unless otherwise indicated.  Thus, 18:1(9) 

stands for oleic acid.  In the case of 2-hydroxy fatty acids, the 

configuration of the hydroxy group is specified, and the letter h 

precedes the symbols.  Thus, D-h18:0 stands for D-2-hydroxystearic 

acid. 

Sphingoids are symbolised by carbon number:number of double 

bonds, but distinguished from fatty acids with the letters d or t, 

which stand for dihydroxy and trihydroxy respectively (i.e. the 

number of hydroxy groups in the sphingoid).  The ones most encountered 

are d18:1 (sphingenines), d18:0 (sphinganines), and t18:0 (4D-hydroxy-

De-sphinganine); the double bond of d18:1 occurs at C4, and has the 

trans-configuration unless otherwise stated. 

The notations used for acyl sphingoids are combinations of the 

symbols described for fatty acids and sphingoids, e.g. D-h18:0-Dt-

d18:1 (a ceramide), and 3-0-18:0-0t-d18:1 (an 0-acyl sphingoid). 

(d) Other conventions  

Melting points are shown as °, which refers to °C. 

IR spectral frequencies are given in cm
-1 

(wavenumbers); 

stretching and bending modes are indicated by the symbols v and 6, 

respectively. 



5 

NMR spectral data are given in T values. 

3.  Nature and scope of investigations  

Earlier work in this Department
2 

drew attention to problems 

associated with the TLC analysis of ceramides. 

The identification and estimation of ceramides by means of TLC 

is rendered difficult or critically unacceptable through the presence 

of other lipids of comparable mobility.  The main contaminants were 

identified as cholesterol, fatty acids, and a-monoglycerides.  Simple 

techniques sufficed to separate them from ceramides. 

Gradual loss of homogeneity in purified ceramide preparations 

indicates chemical change.  The identification of the reaction 

products, and the establishment of the mode of their formation from 

parent ceramides, constitutes a substantial part of the work presented 

in this thesis.  The most likely products arising in ageing ceramide 

solutions were the 3-0-acyl sphingoids, which could be derived from 

ceramides by acyl migration through oxazoline (or oxazolidine) 

intermediates (Fig. 3). 

Other products of interest were anhydrides, e.g. tetrahydropyrans 

(Fig. 4), which could form via an epoxide 3 , and 1,4-tetrahydrooxazines 

(Fig. 5), which may arise from HFA ceramides. 

Model  ipounds of acylated sphingoids and sphingoid-oxazolines 

were prepared, and their chemistry studied with their presence in 

natural products in view.  The presence of at least two asymmetric 

centres gave rise to problems of distinguishing between stereoisomers. 

Related model compounds derived from -hydroxy amino acids were also 

prepared and used to study acyl migrations and stereochemical 

conditions. 



1-0-acyl sphingoids 

6 

H 	H 	 H 	H 	 H 	H 

I 

	

R C — C --- CH 	R C—C---- CH 	R — C — C — CH 2 	 2 
1 	I 	1 	2  IOH 	INH 	6H H IN

\/

10 OH NH 0 
2 1 s  

C= 0 C= 0 

-? 

11/ 

I 	I  

H 	H 

	

R C — C --- CH 	 ——CH 	 — CH , 2 

I 	
2•—

OH 	H 	
1 

2 

OH 	0 	NFLOH 
\\, 

-OH 

IIV 	 lit' 

cerami des 	oxazolines 	3-0-acyl sphingoids 

Fig. 3 

1 1 

H2OH 

R 	NH 

tetrahydropyrans 	1,4-tetrahydrooxazines 

Fig. 4  Fig. 5  

Legend  

R,R', and R" are long-chain alkyl groups. 
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Some minor problems were met with in connection with the TLC 

analysis of ceramides. 

(i) The finding of amino acids in lipids of comparable mobility to 

ceramides suggested  the presence of lipoamino acids, which might 

have been derived from glycerol, fatty acids, cholesterol or 

sphingoids. 

(ii) In some commercial ceramide preparations anomalous TLC spots, 

slower than the parent ceramides, were detected.  These were shown 

to be due to polyols formed in the course of preparation of the 

ceramides. 

(iii) Ceramides and other lipids exposed to subdued sunlight for 

relatively short periods of time underwent photooxidation, giving 

rise to anomalous TLC spots. 

4. , Structure of the thesis  

Work submitted in the form of this thesis is divided as follows: 

CHAPTER 1.  Materials, methods for their isolation, and 

some qualitative and quantitative analytical procedures. 

CHAPTER 2.  The analysis of major contaminants in natural 

and commercial ceramide preparations.  Evidence for new naturally 

occurring minor lipids derived from sphingoids.  The synthesis and 

chemical nature of acyl sphingoids, sphingoid-oxazolines, and related 

compounds. 

CHAPTER 3.  The stereochemical analysis of acyl sphingoids 

and sphingoid-oxazolines. 

Some of the methods and findings of Chapters 1 to 3 have found 

application in short projects reported in the Appendices. 
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APPENDIX 1.  A survey of sphingolipids in the milk of 

Friesian cows. 

APPENDIX 2.  A survey of serum lipids in workers exposed 

to lead. 

APPENDIX 3.  Lipoamino acids. 

5.  Review  

(a) Controversies relating to the existence of natural threo-

sphingolipids  

The major sphingoids isolated from tissues are De-d18:1 and 

De-d18:0, from animals4-7 , and t18:0, from plants 8 .  The biosynthesis 

of sphingolipids requires e-sphingoids, but their diastereoisomers can 

play an equally active part.  All isomers have been found to accept 

the acyl group to form ceramides enzymatically in vitro 9  and in vivo l° . 

Psychosine may be prepared from a variety of e- and t-sphingoids, 

especially the former
11

. 

In the biosynthetic pathways leading to sphingomyelin, several 

authors were sceptical of the role of t-d18:1 as an active lipid 

acceptor.  The N-acylation of sphingenyl-l-phosphorylcholine in rat 

brain gave a product which showed the chromatographic properties of 

t-sphingomyelins
12

.  This finding was questioned, since the 

sphingenine synthesised in rat brain was known to have the 

e-configurat'qn 6 .  Some thought that the sphingenyl-l-phosphoryl- 

choline isomerised during its preparation 13 , while others noted 

discrepancies in its analytical data
14

.  Recent claims that sphingenyl- 

or sphinganyl-l-phosphorylcholine function neither as intermediates 

in the biosynthesis nor in the degradation of sphingomyelin have only 

added to confusion15. 
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Evidence for natural t-sphingolipids was also obtained from 

investigations on the biosynthesis of sphingomyelin from CDP-choline 

and ceramides
16

.  Using an enzyme system from chicken liver, 

t-ceramides were the only active substrates, even though sphingoids 

from chicken liver have the e-configuration.  More recently, another 

enzyme (cholinephosphotransferase) has been found to catalyse the 

reaction using either t- or e-ceramides
14

. 

(b) Acyl migrations in systems related to ceramides  

The mechanism and stereochemical course of acyl migrations 

between nitrogen and oxygen atoms on adjacent carbons have been 

critically investigated; in many cases oxazoline intermediates 

were prepared
17-23

. The most important results of such investigations 

are summarised in Fig. 6.  In general, dry hydrogen chloride at room 

temperature converts cis-acylaminoalcohols (II) to esters (III) with 

retention of configuration; (III) reverts to (II) on treatment with 

alkali.  The trans-acylaminoalcohols (I) are unaffected by this mild 

treatment, but heating with hydrogen chloride brings about acyl 

migration accompanied by an inversion of configuration, and ester (III) 

is formed. 

Retention and inversion mechanisms have been postulated to 

explain configurational changes that occur during treatment of 

acylaminoalcohols with acid (Fig. 7)
17

. The possibility of inversion 

prior to acyl migration has also been considered 19 .  The mechanisms are 

thought to involve transient cyclic hemiacetals (V) rather than oxazolines 

(VI) (Fig. 8).  The 0 to N migration in N-(2-hydroxyethyl)-benzamide  did 

not yield an oxazoline intermediate, but in the N to 0 migration, some 2- 

phenyloxazoline was isolated
24

.  This suggests that in similar systems, 



OH 	H 

H 	NH 
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10 
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SOC1 2 	V 	
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I/
H]C 	
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H 0 - 2 
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1 
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0 	NH 	-H20 

R2 	2  

R --- CH --- CH --- R 1  R — CH --- CH --- R 1  
1 	1 	1 	1 
0 	NH 	 0 	NH 3 

/C 

R2 	OH 2 	 2 	.0 

B. 	Inversion mechanism 

Fig. 7 



1 1 

r 	r 0  NH 

\
c
/  

Y- 
R 

/OH 

V I 

fig. 8  

oxazolines may be formed during migrations. 

The migration of the acyl group in ceramides to either the Cl-

or the C3-hydroxyl, via oxazolines or oxazolidines, is a possibility 

which has not been investigated.  Past work has suggested that 

during acid hydrolysis of natural sphingolipids, some acyl migration 

to the C3-hydroxyl occurs via 2-hydroxy oxazolidine intermediates 

(cf. V, Fig. 8)
25,26

.  Inversion at C3 during acid hydrolysis is 

known to occur since t-sphingoids may be isolated
27,28

.  The migration 

is thought to proceed through the inversion mechanism (Fig. 7), which 

has more recently been verified 18 .  In sphingolipids, there are two 

hydroxy groups to which the acyl group may migrate; also the C3- 

migration may be affected by either the allylic double bond or the 

long-chain alkyl group of the sphingoid.  As yet, 0-acyl sphingoids 

have not been prepared.  Oxazolines
25,29 

:nd oxazolidines
30 , derived 

from De-d18:0 or De-18:1, and containing a phenyl group in the 2- _ 

position on the ring, have been successfully prepared. 

An acyl migration of a different nature was noticed during the 

attempted dephosphorylation of sphingomyelin with acetic acid-acetic 

31. anhydride , similar migrations were observed in glycerophosphatides
32

. 
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This type of migration was thought to be a carbon-to-carbon acetoxyl 

shift rather than a nitrogen-to-oxygen acyl shift 31 . 

Anhydrides (e.g. Figs. 4,5) derived from N-acyl dihydroxy 

sphingoids have not been studied so far as is known.  However, in 

plant materials, tetrahydrofuran derivatives have been produced from 

phytosphingolipids by dehydration in acid 33 ' 34 ; more recently, natural 

anhydrocerebrins have been found35. 
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CHAPTER 1  

MATERIALS AND METHODS 

1.  Materials and equipment  

(a) Lipids  

The main suppliers of materials are abbreviated, KL, APS, SIG, 

and F for Koch-Light Laboratories, Ltd., Applied Science Laboratories, 

Inc., Sigma Chemical Co., and Fluka AG,-Chemische Fabrik, respectively. 

Others less frequently referred to will be mentioned at the 

appropriate places. 

Lipids from commercial sources are listed (Table 1). 

Stereoisomers of sphingenine  DLe, and DLt-isomers) were 

prepared from brain sphingolipids. 

Pure DLt-sphinganine was prepared from the commercially available 

compound, which contained some e-sphinganine as an impurity. 

Glucosylceramideand lactosylceramide were obtained from milk 

sphingolipids. 

Synthetic ceramides were prepared as described by others
36

. 

(b) Other chemicals  

Amino acids of greater than 99% purity were obtained from SIG. 

N-ethyl-N'-dimethylaminopropyl carbodiimide was obtained from 

Serva Biochemicals Inc., 1-fluoro-2,4-dinitrobenzene from KL, and 

aliphatic nitriles from Aldrich Chemical Co., Inc.. 

The reagents for silylation, bis(trimethylsilyl)trifluoro- 

acetamide, trimethylchlorosilane and SIL-PREP were supplied by APS. 
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Tablel.  Commercial preparations  

1. Ceramides, from bovine brain cerebrosides (KL) 

2. NFA ceramides, from brain cerebrosides (APS,SIG) 

3. HER ceramides, from brain cerebrosides (APS,SIG) 

4. Ceramides, from bovine brain sphingomyelin (SIG) 

5. Ceramides, natural mixture (APS)  -- 

6. N-palmitoyl or N-lignoceroyl sphinganine (Miles-Yeda, Ltd.) 

7. Cerebrosides, from bovine brain, highly purified (KL) 

8. Cerasine (N-1ignoceroy1 :DL-sphingeny1-f3-D-ga1actoside) (SIG) 

9. Sphinganine, rac synthetic (KL) 

10. Sphinganine, e or t synthetic (SIG) 

11. 4D-hydroxy-De-sphinganine, from yeast (SIG) 

12. Sphingenine sulphate, from bovine brain sphingolipids (KL) 

13. Sphingomyelin, from bovine brain (KL,SIG) 

14. Cephalin, natural (egg yolk) or L -a- and DL-a-synthetic (F) 

15. Lecithin, L -a- and DL-a-synthetic (F) 

16. Phosphatidyl ethanolamine, syntheti: (KL) 

17. Phosphatidyl-L-serine, from bovine brain, pure CHR (KL) 

18. Lysolecithin (KL) • 

19. Cholesterol and cholesterol esters (F) 

20. Glycerides, synthetic (SIG,APS) 

21. Fatty acids and methyl esters, non-hydroxy type (SIG) 

22. Methyl esters, branched chain (APS) 

23. Methyl esters, 2-hydroxy type (APS) 

24. Fatty acids, 2-hydroxy type (F, Serva Biochemicals Inc.). 
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(c) Chromatographic materials and equipment  

Silica gel G (and GF254 ) and commercially prepared plates were 

supplied by E. Merck. 

• Silicic acids for column chromatography were supplied by SIG 

(SIL-LC type) and Mallinckrodt Chemical Works (100-120 mesh powder). 

Gas Chrom Q and liquid phases (GE SE-30 (GC grade), OV-1, OV-7, 

OV-17, and EGSS-X) were obtained from APS. 

TLC tanks were supplied by Camag Inc., and the plate spreader by 

Shandon Southern. 

(d) Instruments  

The GLC analysis of methyl esters was carried out on a Phillips 

PV4000 gas chromatograph, while sphingoids, ceramides, and amino acids 

were analysed on a Shimadzu GC-4BMPFE instrument; detection in both 

cases was by means of flame ionisation. 

A Hilger-Watts spectrodensitometer was modified by Mr. A. Bottomley, 

Research Officer, University of Tasmania, for the scanning of TLC plates. 

Photography was done with a Polaroid overhead camera. 

IR, UV, MS, and NMR spectra respectively were recorded on the 

following instruments: 

( i) Beckmann IR-33 spectrophotometer 

( ii) Hitachi Perkin-Elmer 124 spectrophotometer 

(iii) EAI QUAD-300 mass spectrograph 

( iv) JEOL JNM-4H-100 spectrophotometer. 
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2.  Methods of isolation from natural sources  

(a) General extraction procedures  

For the various tissues and fluids studied, the choice of 

• extraction procedure depended on the weight given to such factors as 

quantitative recovery of lipids and solvent economy.  Smell scale 

operations were carried out by a modification
37 

of the Folch procedure
38

, 

while the Bligh and Dyer method 39  was preferred for large scale 

extractions.  In either case, traces of aqueous phase were removed by 

filtration through silicone-treated (Whatman 1-PS) paper.  In general, 

95-99% recovery of the lipids was achieved; the losses were due mainly 

• to gangliosides and some polar glycolipids. 

(b) Preparation of milk sphingolipids  

The extraction of the lipids from whole milk requires large volumes 

of solvent
39

.  An alternative procedure of freeze-drying followed by 

extraction avoided this problem, and the milk could be stored before 

extraction. 

The sphingolipids are preferably obtained from skim milk", 

although some polar lipids are concentrated in the fat globule membrane
41

. 

In the following procedure, whole fresh milk from Friesian cows was used. 

(i) Extraction of the total lipids  

Freeze-dried milk powder (155 g), containing about 35% lipid, was 

treated with four equal lots  (10 of chloroform-methanol (2:1) and 

the combined extract partitioned with water (1)
38

.  After standing 

overnight, the chloroform layer was dried over anhydrous magnesium 

sulphate, and the solvent removed under reduced pressure at 40°. 
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(ii) Preparation and fractionation of the polar lipids  

The removal of the bulk of the neutral lipids (glycerides, 

cholesterol esters, and cholesterol) was carried out by liquid-liquid 

partition42 .  The residual lipids (50 g) were dissolved in the upper 

phase (120 ml) of a petroleum ether (40-60)-(87%) ethanol equilibrated 

mixture (50:50).  This solution was then extracted twenty times with 

the lower ethanol phase (50 ml each).  Monitoring by TLC showed that 

the phospho- and glyco-lipids were completely partitioned into the 

ethanol phase after six extractions.  Ceramides, and other lipids of 

similar polarity required a further fourteen extractions for 95% of 

their removal.  The combined ethanolic extracts were diluted with 

benzene and concentrated under reduced pressure to yield a lipid 

fraction containing about 30% phospholipids.  The analysis of extracts 

was carried out by previously tested methods
40

. 

The separation of the phospho- and glyco-lipids from the neutral 

lipids and ceramides was carried out by column chromatography. 

Silicic acid, pretreated by washing out he fines with water
43

, was 

activated at 120°C for 2 hours immediately before use.  The powder 

(100 g), slurried with diethyl ether (240 ml), was used to prepare the 

column (19 cm x 34 cm), as recommended for the isolation of lipid 

classes from 1-2 g of a mixture
44

. 

The polar lipid fraction (14 g) was dissolved in a small volume 

of diethyl ether, and applied to the top of the column.  The neutral 

lipids were eluted (2-3 ml/min) with diethyl ether (400 ml) and 

discarded.  The fraction containing ceramides was eluted with 

chloroform (150 ml) followed by chloroform-methanol (9:1, 100 ml), and 

set aside for further analysis (Fraction I).  The phospho- and glyco- 

lipids were eluted with an increasing concentration of methanol in 
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chloroform (Fraction II), and subjected to mild alkaline hydrolysis to 

cleave ester bonds
45

.  The sphingolipids were then isolated by 

preparative TLC.  Cerebrosides and diglycosylceramides (yields, 

12 mg each) gave positive anthrone46  and negative phosphate47  tests. 

Some anthrone-positive material between the sphingomyelin and 

diglycosylceramide was observed in the position corresponding to 

sulphatides; on purification by TLC this fraction gave a stronger 

anthrone test, but there was not enough material for characterization. 

A third anthrone-positive peak in the elution pattern of buttermilk 

phospholipids was suggested to be triglycosylceramides 48 , by noting 

some similarities with blood serum glycosphingolipids 49 .  The 

possibility of sulphatides was not mentioned 48 , but these compounds 

could be separated from oligoglycosylceramides if required
50

. 

(c) Preparation of brain sphingolipids  

Brain, second only to spinal cord, is the richest source of 

natural sphingolipids
51-53

, which comprise about 25% of its dry weight. 

The white matter contains cerebrosides, sphingomyelin, and sulphatides 

in the ratio 6:2:1, and is an excellent source of d18:1 31 ' 54 .  The 

grey matter contains gangliosides and diglycosylceramides as well, 

and these contain relatively large quantities of d20:1 31 ' 55  

The dehydration and extraction of much of the cholesterol from 

a human brain was carried out with acetone essentially as described 51 . 

Ester-bound glycerophosphatides were hydrolysed with mild alkali
45

, and 

the sphingolipids recrystallised to remove some of the ether-bound 

glycerophosphatides.  The procedures of using ether to remove 

glycerophosphatides 51 , and iodine in potassium iodide to cleave ether 

linkages
56

, were avoided as they lead to losses of sphingolipids. 
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(i)Dehydration of the brain  

Brain tissue (1.5 kg) was homogenised in a Waring blender and 

stirred overnight with acetone (2 t) at 4°.  After centrifuging, 

the supernatant was poured off, and the solid treated overnight with 

more acetone (2 t).  After decantation of the solvent the brain was 

dehydrated sufficiently to make filtration possible.  The solid was 

re-extracted four times with acetone (1 t each) to yield a light 

brown solid (about 270 g).  TLC of the acetone extracts revealed the 

presence of large quantities of cholesterol and other neutral lipids, 

with small quantities of glycolipids. 

(ii)Removal of glycerophosphatides  

The dry, solid residue obtained from the acetone dehydration was 

extracted with 2 lots, 1 k each, of hot chloroform-methanol (2:1), 

then with the same volume of hot chloroform-methanol (1:2).  The combined 

extracts were taken to dryness under reduced pressure, and the lipid residue 

(130 g) refluxed for 10 minutes in dry methanol (1 t) containing fresh 

sndium (5 g).  The solution was neutralised to phenolphthalein with 

anhydrous methanolic hydrogen chloride (1 N, about 220 ml), chloroform 

(2.5 k) added and partitioned with water (1 t).  Salts and glyceride 

degradation products in the upper phase were removed by aspiration, and 

the lower phase evaporated to dryness (yield, 108 g).  Recrystallisation 

from ethanol ydve an off-white powder (70 g), consisting essentially of 

sphingolipids.  The removal of neutral lipid contaminants with non- 

polar solvents such as hexane or carbon tetrachloride resulted in a 

colloidal sphingolipid suspension which could not be centrifuged 

successfully.  The preparation still contained small amounts of methyl 

esters, and degradation products of the plasmalogens and lyso-ethers. 

These could be removed, and the separation of the sphingolipids effected 
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by column chromatography
56

. 

(iii) Ceramides from brain sphingolipids  

With the exception of ceramides, sphingolipids are only partially 

hydrolysed with alkali, and undergo acid hydrolysis with difficulty 

resulting in relatively low yields of sphingoids and undesirable 

byproducts.  Thus, a method for the conversion of total sphingolipids 

to ceramides would be advantageous.  Sphingomyelins may be converted 

to ceramides by treatment with acetic acid-acetic anhydride
57 

or 

phospholipase C 56 .  Sulphatides may be converted to cerebrosides by 

treatment with acetic acid
59 

or anhydrous methanolic hydrogen 

chloride
60

.  In the author's experience the acetic acid-acetic 

anhydride treatment 57  was preferred owing to the simultaneous removal 

of the phosphorylcholine moiety from sphingomyelins and the sulphate 

group from sulphatides.  A disadvantage of this procedure was that 

some hydrolysis of the amide bond occurred, producing diastereoisomeric 

N-acetyl sphingoids. 

Total brain sphingolipids (10 g) were heated with acetic acid-

acetic anhydride (4:1, v/v; 100 ml) under reflux for one hour.  The 

solvent was removed under reduced pressure, and the residue treated 

with chloroform-0.6 N methanolic sodium hydroxide (1:1, v/v; 10 for 

one hour at room temperature
45

.  Hydrochloric acid (0.6 N, 500 ml) was 

then added, the mixture shaken vigorously and the chloroform phase 

removed.  This solution contained chiefly cerebrosides with smaller 

amounts of ceramides and N-acetyl sphingoids.  The solvent was removed 

under reduced pressure (8.6 g of lipid recovered), and the cerebrosides 

were degraded to ceramides by the procedure of Carter, Rothfus and 

Gigg (1962)61. 
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(iv) Preparation of sphingoids  

The stereoisomers of sphingenine and sphinganine have been 

chemically synthesised
62-64  

However, the configuration of the 

sphingoids isolated from natural products can be determined by the 

hydrolytic procedure used.  Acid or alkaline hydrolysis of t-ceramides 

produces t-sphingoids only (see Ch. 3, p. 90).  Alkaline hydrolysis 

of e-ceramides produces e-sphingoids only
65

, but acid hydrolysis produces 

adiastereoisomeric mixture, with the e-isomers predominating
27

'
57 

To obtain the best yield possible of t-sphingoids by existing hydrolytic 

procedures, with a minimum of by-products , aqueous-methanolic 

hydrochloric acid (1 N) could be used 66 . 

Alkaline hydrolysis 61  of the ceramides from (iii) yielded 

essentially De-sphingoids (2.3 g, from 10 g of sphingolipids); small 

amounts of t-sphingoids, detected as DNP derivatives 31 , were found as 

a result of the dephosphorylation treatment.  Recrystallization from 

ethyl acetate gave a light yellow wax, m.p. 60-70 0  (1.8 g).  Its 

composition, determined by GLC (see p. 36, this chapter), was e-d18:1 

(86%), t-d18:1 (8%), e-d18:0 (3%), and other sphingoids (3%). 

Acid hydrolysis of the ceramides 66 , followed by N-acetylation 

of the sphingoids
67

, produced a mixture of mainly three derivatives 

which were separated by TLC on borate-impregnated TLC plates (solvent, 

chloroform-methanol (8:1)).  The derivatives were characterised by 

IR spectroscopy, mass spectroscopy, and GLC; the sphingoid composition 

was thus determined as e-d18:1 (40%), t-d18:1 (33%), e-d18:0 (2%), 

and 3-0-Me-d18:1 (25%).  The pure, isomeric sphingoids were obtained 

after alkaline hydrolysis 65 .  A comparison of the sphingoid 

composition obtained after the above treatment, with that obtained 

after acid hydrolysis 66  of pure cerebrosides, was made.  The sphingoid 

composition was, in the latter case, e-d18:1 (58%), t-d18:1 (20%), 
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e-d18:0 (2%), and 3-0-Me-d18:1 (20%). 

3.  TLC Methods  

The versatile technique of TLC was used for the fractionation 

of natural lipid mixtures, also for the assessment of the purity of 

lipid preparations and the identification of individual constituents. 

It was also used for the monitoring of extractions and separations of 

columns. 

For the purposes of this work, the chromatographic adsorbent, 

silica gel G, was standardised.  This is a white powder consisting of 

silicic acid (Si0 2 .xH 20) and contains anhydrous calcium sulphate as a 

binder.  The structure of the former is regarded to consist of 

tetrahedral siloxane (Si.O.Si) units, with silanol (Si.OH) groups 

present at the surface
68

.  A mono- or multi-molecular layer of 

adsorbed water covers the surface, but this "free" water can be removed 

reversibly by heating at 100 to 120°.  The amount of free water present 

in the silica gel was found to influence the chromatographic mobility 

of compounds such as free ceramides
40

. 

(a) Preparation of plates  

A slurry of silica gel G in distilled water was applied to a 

metre-long rack of glass plates (20 cm x 5 to 100 cm) by means of a 

commercial applicator.  Analytical plates (250 p thick) were prepared 

using a slurry of 33 g of silica gel in 60 ml of water.  Preparative 

plates (1 mm thick) were prepared using a slurry of 100 g of silica 

gel in 175 ml of water.  The plates were air-dried for 30 minutes, 

followed by activation for 1 hour at 110°. 

Chemicals were incorporated by using solutions in the place of 
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water.  Sodium tetraborate (or simply "borate") impregnated plates 

were often used, and a 10% w/w loading of the chemical on the dry 

silica gel gave effective separations.  These plates were stable 

indefinitely under normal laboratory conditions.  Silver nitrate 

impregnated plates darkened quickly, and were best used immediately 

after activation; their preparation required a plastic spreader 

rather than the conventional brass spreader as the silver ion could 

displace the copper onto the plate. 

(b) Development  

Chromatograms were developed in rectangular glass tanks lined 

with solvent-saturated filter paper
69

. 

The solvents used for TLC were of analytical reagent grade; 

acetone and diethyl ether were redistilled.  Two mixtures commonly 

used were 

( i) chloroform-carbon tetrachloride-methanol-water (50:50:12:0.5). 

(ii) chloroform-methanol-water (65:25:4) 79 . 

Many of the lipid materials used for TLC standards have been developed 

in either of these mixtures, and corresponding R f  values tabulated 4 9. 

Solvent (i), useful for the analysis of ceramides and lipids of 

comparable polarity, gave more reproducible results than the 

chloroform-methanol mixtures usually used for the TLC analysis of 

ceramides
71

, also the presence of water increased the resolution of 

NFA and HFA ceramides.  Solvent (ii) was used for the analysis of 

phospho- and glycolipids. 

Fresh solvent was necessary after the development of five to 

six chromatograms, as the more volatile components were lost; also, 

impurities were transferred from the adsorbent. 
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Cc) Visualisation  

The general reagent used for the detection of lipids was a 

solution of sulphuric acid (50%) containing potassium dichromate 

(0.5%)
72  

The solution was sprayed as a fine mist onto the plates, 

and the lipids charred by heating for 30 minutes at 250 0 . 

Lipids containing known functional groups were distinguished with 

the aid of specific reagents. Sensitive spray reagents are available 

for the detection of phosphorus
47

, sugar
46

, nitrogen
73

, ester
74

, free 

amino
75

, and vicinal diol
76

. 

The plates were photographed for permanent record. 

(d) Recovery of lipids from plates  

Non-destructive reagents such as iodine, water, or fluorescent 

indicators (e.g. dichlorofluoroscein) have been used for detecting 

lipids on TLC plates prior to their recovery. In this laboratory, 

eosin was found to be very sensitive to lipids at 254 nm, much more 

so than dichlorofluorescein. Its limit of detection was 0.5 pg of 

lipid (as pure ceramide or cholesterol) over 1 cm on an analytical 

plate. An aqueous solution (0.5%), sprayed as a fine mist onto the 

chromatogram, was adequate for the purpose. 

The portions of silica gel containing the desired compounds were 

marked under the UV light, scraped off the plate, and treated with 

chloroform-methanol (2:1).  Silica gel au,i indicator were removed by 

washing the extract with one-third the volume of a dilute borate 

solution.  The extract was filtered, and the solvent removed under 

reduced pressure. 

Preparative separations of compounds of comparable chromatographic 

mobility were carried out on layers 250 p thick, rather than the 1 mm 

layers conventionally used.  The operation was time consuming, but 
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better separations were obtained (a possible reason for this is the 

difference in movement of a particular compound either near the 

surface of the adsorbent or near the glass plate). 

(e) Purification of natural ceramides  

The TLC analysis of natural ceramides in solvent (i) is rendered 

difficult by the presence of other lipids of comparable mobility, 

namely fatty acids and monoglycerides.  As demonstrated (Fig. 1), 

fatty acids move closer to the NFA ceramides, while monoglycerides move 

with the HFA ceramides.  Attempts to wash out the fatty acids from a 

chloroform-methanol (2:1) solution of the lipids with alkalis such as 

ammonia, sodium carbonate and sodium hydroxide solutions were 

ineffective.  Neither could the monoglycerides be removed from total 

lipids by mild hydrolysis 45 . 

Silica gel plates impregnated with borate or arsenite ions were 

tested for their effect on the relative mobilities of the lipids, but 

resolution of major classes was not satisfactory by such methods. 

Borate retarded slightly the monoglycerides and the fatty acids moved 

with the NFA ceramides.  Arsenite stopped the fatty acids from moving, 

but the monoglycerides moved with the NFA ceramides. 

The problem was solved by 2-dimensional TLC (Fig. 3, p.28). 

(i) Removal of the fatty acids  

The mobility of fatty acids relative to ceramides was influenced 

by the presence of alkalis or acids in the developing solvent.  The 

solvent, chloroform-carbon tetrachloride-methanol-15N ammonium 

hydroxide (50:50:12:1) caused the fatty acids to stay near the origin, 

while the presence of acetic acid (1-2%) caused them to move close to 

the solvent front (Fig. 2). 
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Weak alkali such as sodium carbonate, added to the adsorbent, 

caused acidic components to remain at the origin.  A convenient use 

of this method was that of applying a narrow band (0.5 cm wide) of the 

alkali immediately above the origin on a plate.  Other lipids were 

not affected by the barrier, migrating quantitatively to their normal 

R
f 

values. 

A less convenient method to remove the fatty acids was by 

treatment with diazomethane.  Methyl esters were produced 77 , which 

migrated to the solvent front on the TLC plates. This method was 

avoided, due to the toxicity of the reagent and its harmful effects 

on the basic phosphatides. 

(ii) Separation of the monoglycerides  

In general, chlorinated solvent-alcohol-water mixtures caused 

monoglycerides and HFA ceramides to move together on the plate (cf. 

Figs. 1,2).  Substituting the chloroform for ether or the alcohol 

for acetone (or dioxan), influenced the relative mobilities of the 

ceramides and monoglycerides; the latter now moved with the NFA 

ceramides.  Dry ether-acetone mixtures completely separated the 

lipids, but ceramide bands appeared diffuse and not as well resolved 

as they could have been had water been present in the solvent. 

The most effective solvent mixture was ether-acetone-15N 

ammonium hydroxide (30:20:2), which causec the monoglycerides to move 

near the NFA ceramides.  The presence of the aqueous alkali not only 

removed fatty acids from the TLC system, but increased the resolution 

of the two ceramide bands.  As the second solvent of a 2-0 

chromatographic system, with chloroform-carbon tetrachloride-methanol-

15N ammonium hydroxide (50:50:12:1) as the first solvent, monoglycerides 

were completely separated from NFA and HFA ceramides (Fig. 3).  The 
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Fig. 1.  TLC plate illustrating the relative mobilities of 
ceramides and some neutral lipids.  Developing solvent, chloroform- 
carbon tetrauhloride-methanol-water (50:50:12:0.5).  1, NFA ceramides 
(upper spot), HFA ceramides (middle spot), and cerebrosides (lower 
spots); 2, ri-monoolein; 3, serum lipids; 4, oleic acid; 
5, cholesterol. 

Fig. 2.  TLC plates illustrating the removal of fatty acids from 
ceramides and monoglycerides.  Developing solvents for plates A,B, and 
C respectively were chloroform-carbon tetrachloride-methanol-15 N 
ammonium hydroxide (50:50:12:1), chloroform-methanol-acetic acid (95:5:2), 
and chloroform-carbon tetrachloride-methanol-water (50:50:12:0.5).  A 
sodium carbonate band is present above the origin on plate C.  1, NFA 
ceramides (upper spot) and HFA ceramides (lower spot); 2, serum lipids; 
3, oleic acid. 



Fig. 3.  2-dimensional TLC plate illustrating the separation of 
ceramides from monoglycerides.  Developing solvents for directions A 
and B respectively, chloroform-carbon tetrachloride-methanol-15 N 
ammonium hydroxide (50:50:12:1) and ether-acetone-15 N ammonium 
hydroxide (80:20:2).  1, cholesterol; 2, NFA ceramides; 
3, a-monoolein; 4, HFA ceramides; 5, oleic acid; 6, cerebrosides. 

Fig. 4.  2-dimensional TLC plate illustrating the separation 
of serum lipids.  Developing solvents, as for Fig. 3.  1, cholesterol 
plus other neutral lipids; 2, NFA ceramides; 3, monoglycerides; 
4, fatty acids plus polar lipids. 
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method was used for the identification of these lipids in blood serum; 

NFA ceramides and monoglycerides were present, and HFA ceramides were 

absent (Fig. 4).  Recovery of the fatty acids free from other lipids, 

could be achieved if desired by replacing ammonium hydroxide with 

water in the first solvent. 

(f) Spectrodensitometry of lipids  

The quantitative analysis of lipids may be carried out by 

spectrodensitometry.  The accuracy is dependent on such factors as 

variation in thickness and degree of moisture of the adsorbent, the 

process used to apply the locating reagent, the shape and demarcation 

of the spots, and the distribution of components
78

. 

The variations in thickness became insignificant since 

commercially prepared plates were used.  The moisture level was 

controlled using desiccated cabinets. 

The process used to apply the locating reagent was immersion 

after TLC
79

. This was found more practical than either spraying 

after TLC, or incorporation in the adsorbent before TLC
80-82 

The shape and demarcation of the spots were largely controlled .  

by lining theTLC tanks with filter paper. 

(i) Analysis of serum lipids using phosphomolybdic acid  

Commercially prepared silica gel G plates were prewashed with 

chloroform-methanol (2:1) in a TLC chamber.  Sodium carbonate 

barriers were applied just above the origin and the plates dried at 

90 0  for 30 minutes.  Lipids in chloroform were applied evenly over 

1.0 cm widths and 1.5 cm apart by means of a microsyringe.  The 

plates were then developed in a suitable solvent system.  After 

drying, they were immersed evenly and slowly into a solution consisting 
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of 5 g of phosphomolybdic acid in 70 ml of water, 25 ml of ethanol, 

and 5 ml of 70% perchloric acid 79 .  The excess reagent was quickly 

removed with blotting paper, and the plates heated for exactly 20 

minutes at 85°.  After cooling, the blue phosphomolybdate spots were 

scanned. 

Results obtained by this method were reproducible.  Neither the 

reagent on the plates nor the colour of the spots deteriorated after 

4-5 days provided the plates were overlaid with a clean glass plate 

and stored in the dark. After several weeks, the plates protected 

with glass gradually assumed a blue colour, while plates exposed to 

the atmosphere returned to the original yellow colour within days. 

Standard calibration curves for cholesterol, ceramides, and 

monoglycerides are illustrated (Fig. 5).  The method was sensitive, 

with lower limits of 0.05 pg for cholesterol, 0.1 pg for ceramide, 

and 0.5 pg for monoglyceride.  The relationship, area = kCB, where C 

is the concentration 83 , did not fit the durves for cholesterol or 

ceramides.  It will be seen that the densities of the spots vary 

significantly for the same concentration of the three lipids.  This 

indicates other factors are involved in the reduction of the 

phosphomolybdic acid besides double bonds.  It was shown that a 

saturated monoglyceride (a-monopaimitin) did not reduce the 

phosphomolybdic acid, either alone or when in the presence of natural 

monoglycerides or HFA ceramides.  Thus hydroxyl, ester, and amide 

groups have no effect on the reagent under the conditions described. 

Tripalmitin and stearic acid showed no reaction either79 . 

In practice, cholesterol esters, triglycerides, diglycerides 

and cholesterol, are simply separated by TLC, and assayed by spectro-

densitometry.  The analysis of ceramides or monoglycerides is more 

difficult, since spectrodensitometry measures the total concentration 
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Fig. 5.  Spectrodensitometric analysis of cholesterol (curve A), ceramides 
(curve 8), and monoglycerides (curve C) with phosphomolybdic acid. 
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of these lipids which have similar chromatographic mobilities.  To 

overcome this difficulty, one must look either to specific reagents or 

solvents that allow sufficient chromatographic separation. 

(ii) Analysis of serum monoglycerides  

Serum monoglycerides were analysed by spectrodensitometry of the 

coloured spots produced by their reaction with sodium metaperiodate 

and Schiff's reagents
76

.  The colours did not deteriorate on standing 

for some time, and since the time for scanning was less than 1 minute, 

the results were reliable. 

A known quantity of normal serum lipids were applied to a 

commercially prepared plate.  Milk monoglycerides, consisting mainly 

of monoolein, were used as standards.  The plate was developed in 

chloroform-methanol (93:7),dried, and immersed slowly and evenly into 

a solution of sodium metaperiodate (1%).  After 30 seconds, excess 

reagent was quickly removed with blotting paper, and the plate placed 

in a tank saturated with dry sulphur dioxide for 15 minutes.  It was 

then sprayed lightly with Schiff's reagent and placed back into the 

tank for 1 hour.  The coloured spots due to p-rosaniline were scanned 

immediately after removal from the sulphur dioxide atmosphere.  The 

value, 5 mg %, was a typical value for normal serum monoglycerides 79 . 

(iii) Analysis of serum ceramides 

Serum ceramides were analysed by spectrodensitometry of the 

coloured spots produced by their reaction with t-butylhypochlorite and 

potassium iodide-starch reagents
73

.  The plates darkened within 

minutes on exposure to the atmosphere, and iodine was lost from the 

spots.  However, consistent results were obtained with standards 

subjected to the same conditions provided that analysis was carried 
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out without delay. 

A known quantity of the serum lipid was applied to a silica gel 

plate, prepared as described previously; commercially prepared plates 

were found unsuitable for this method.  NF A ceramides were used as 

standards.  The plate was developed in chloroform-methanol (93:7), 

dried, and sprayed evenly with a solution of t-butylhypochlorite in 

cyclohexane (2%).  After drying under a cold air blast for 1 hour, 

the plate was sprayed lightly with a solution of KI-starch (1%) and 

the coloured spots scanned immediately.  Values of 1 mg% for NFA 

ceramides and 0.04 mg% for HFA ceramides were obtained. 

4. 	GLC Methods  

GLC was used for three purposes, for long-chain methyl ester, 

N-acyl sphingoid, and amino acid analyses. 

(a) Analysis of methyl esters  

Methyl esters, both saturated and monounsaturated, were analysed 

by GLC on 3% GE SE-30 (GC grade) on Gas Chrom Q contained in silanized 

glass columns (3 mm ID by 2 m). Polyunsaturated methyl esters were 

distinguished on a column of 3% EGSS-X on Gas Chrom Q.  Columns were 

conditioned for 36 hours at temperatures near the upper limits for the 

liquid phases. 

GLC operating conditions  

Initial temperature, 160° 

Final temperature, 310° 

Programming rate, 5°/minute 

N
2 

and H
2 
flow rates, 20 ml/minute 

Air flow rate, 250 ml/minute 
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Detector temperature, 310° 

Injector temperature, 310° 

Using the above operating conditions, the relative retention times 

of some unsubstituted methyl esters (A), 2-trimethylsiloxy methyl 

esters (B), and 2-acetoxy methyl esters (C) have been recorded (Table 

2).  The direct relation observed between the carbon number and 

relative retention time (Fig. 6) permits extrapolation or interpolation 

so as to determine the retention times of other methyl esters. 

Table 2  

Retention times of methyl esters, relative to methyl stearate (18:0) 

Carbon no. A B C 

12:0 0.27 - 

14:0 0.47 0.77 - 

16:0 0.73 1.02 0.19 

18:0 1.00 1.29 0.38 

.  20:0 -  1.27 1.55 0.59 

22:0 1.53 1.78 0.86 

24:0 1.78 2.01 1.13 

26:0 2.07 2.23 1.34 

18:1 1.05 - - 

18:2 0.96 - - 

18:3 0.96 - - 

20:1 1.23 - - 

22:1 1.50 - - 

24:1 1.75 2.20 - 
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(b) Analysis of N-acyl sphingoids  

N-acyl sphingoids (ceramides), including N-acetyl sphingoids, 

were analysed as their TMSi ethers by GLC on a column (3.3 mm by 3 m, 

glass) containing 1% GE SE-30 (GC grade) plus 1% OV-17 on Gas Chrom Q. 

A column of 1% OV-1 on Gas Chrom Q, which has been favoured for 

separating homologues of e-ceramides
84

, gave equally effective 

separations.  The relative retention times of diastereoisomeric 

ceramides were similar to those observed for the N-acetyl analogues, 

separated on the above columns, or on 3.8% SE-30 on Diatoport S
85 

(a study of stereoisomers is given in Ch. 3). 

Derivatisation of the N-acyl sphingoids prior to GLC was 

accomplished by treatment for one hour with SIL-PREP (200 pg of lipid 

was treated with 100 pt of reagent).  N-acetyl derivatives were 

analysed in the reagent, while ceramide derivatives were analysed in 

carbon disulfide after removing the reagent under reduced pressure 

with an oil pump 
86

. 

The carrier gas used was helium rather than nitrogen, since this 

has been found to increase thc resolution of ceramide derivatives, 

and give a better relative detector response 84 . 

GLC operating conditions  

Column temperatures were 220° or 300°, for N-acetyl sphingoid or 

ceramide derivatives, respectively (the latter could be separated on 

1% OV-1 on Gas Chrom Q at 280° with similar retention times). 

Detector temperature, 280° 

He flow rate, 50 ml/min. 

H
2 

flow rate, 40 ml/min. 

Air flow rate, 300 ml/min. 
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Table 3  

Retention times of TMSi derivatives of diastereoisomeric N-acyl 

sphingoids, relative to the isomer derived from e-d18:0 

Sphingoid moiety 
in derivative 

N-acetyl 
derivative 

N-stearoyl 
derivative 

t-d18:1 

t-d18:0 

e-d18:1 

e-d18:0 

3-0-Me-d18:1 

2D,3D,4D-t18:0 

0.84 

0.87 

0.93 

1.00 

1.10 

1.20 

0.85 

0.89 

0.93 

1.00 

   

The actual retention time for the derivatives containing e-d18:0 was 

about 16.5 minutes. 

(c) Analysis of amino acids  

Amino acids were converted to their TMSi derivatives, and analysed 

by GLC essentially as described 87 .  The column consisted of 10% OV-7 

on Gas Chrom Q contained in glass columns (3.3 mm ID by 3 m), and gave 

separations similar to those obtained on a column containing less 

liquid phase. 

GLC operating conditions  

Initial temperature, 75°. 

Final temperature, 290°. 

Programming rate, 4°/minute. 

N
2 

flow rate, 60 ml/minute. 

H2 
flow rate, 40 ml/minute. 

Air flow rate, 300 ml/minute. 

Detector temperature, 280°. 
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In the accompanying table (Table 4), retention times are given 

relative to phenanthrene.  The structures of amino acid derivatives 

have been recorded
87

.  Amino acids that can contain 2,3 or 4 TMSi 

groups are given numbered subscripts. 

Table 4  

Retention times of TMSi derivatives of amino acids, relative to phen-

anthrene 

Amino acid derivative Relative retention time 

Alanine 0.36 

Glycine 2  0.39 

Val me 0.47 

Leucine 0.52 

Isoleucine 0.55 

Glycine3  0.56 

Proline 0.57 

Serine 0.61 

Threonine 0.63 

Hydroxyproline 0.74 

Aspartic acid 0.75 

Methionine 0.76 

Cysteine 0.78 

Arginine3  0.78 

Glutamic acid 2 0.78 

Glutamic acid3 0.82 

Phenylalanine 0.84 

Lysine3  0.92 

Arginine4  0.95 

Lysine4  0.98 

Histidine2 1.01 

Tyrosine 1.03 

Histidine3 1.05 

Tryptophan 3  1.21 

Cystine 1.25 

Tryptophan 2  1.25 
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CHAPTER 2  

LIPIDS ASSOCIATED WITH OR DERIVED FROM CERAMIDES 

1.  Polyol artefacts in KL ceramides  

Ceramides, prepared from mono-, di-, or trihydroxy e-sphingoids, 

and normal or racemic 2-hydroxy fatty acids, have been analysed by 

TLC
71,88

.  Natural ceramides, differing in the number, position, 

and stereochemistry of hydroxy groups
89,90 

and the fatty acid . chain 

length
91

, have also been studied.  Silver ions added to the adsorbent 

causes the separation of ceramides differing in the degree of 

unsaturation45 ' 92 ; for distinguishing between derivatives containing 

either e-d18:1 or e-d18:0, borate has been used
93

.  Observations of 

chromatographic spots that could not be interpreted on findings listed 

above gave rise to investigations reported in this section. 

The low R
f 

values suggested polar groups in excess of those 

normally found in ceramides.  Of particular interest were two 

compounds with R f  values of 0.25 and 0.20 (Fig. 1, lane 2) observed 

in some KL ceramide preparations .  The polyols described by 

Hammarstrom
92 

have similar R
f 
values, but other possibilities cannot 

be excluded.  Serum lipids in sufferers from heart disease have 

constituents of the same chromatographic mobility; these were 

considered to belong to a class of ceramicies with additional hydroxy 

groups on either the fatty acid or sphingoid moeities 2 .  Ceramides derived 

from t18:0 belong to this class (lanes 3 and 4), and these have been 

found in small concentration in animals
90

. 

A sample of the KL ceramide was separated by preparative TLC into 

the four lipid classes tentatively regarded as "ceramides 1,2,3 and 4" 

in order of decreasing R f  values
94 ; the solvent for TLC was chloroform- 



Fig. 1.  TLC plate illustrating the relative mobilities of 
ceramides and cerebrosides.  Developing solvent, chloroform-carbon 
tetrachloride-methanol-water (50:50:12:0.5).  1, KL ceramides, pure; 
2, KL ceramides (batch No. 43209), with the show-moving compounds; 
3, 24:0-t18:0; 4, D-h16:0-t18:0; 5, cholesterol (upper spot) and 
cerebrosides (lower spots). 
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methanol (92:8).  The following methods (a) to (e) proved that 

"ceramides 1 and 2" were respectively NFA and HFA derivatives of 

d18:1, and that "ceramides 3 and 4" were respectively NFA and HFA 

derivatives of the sphingoid 

CH 2OH 

CH3 (CH 2 ) 12CH=CH-CH-CH-CH 2-0-CH-O-CH-CH 2OH 

I  I 
OH NH2 	— ICH

2
OH 

(a) IR spectroscopy  

The IR spectra of the four ceramide classes were alike; 

-1 
"ceramides 3 and 4" showed a stronger v C-0(1050-1040 cm ) which 

indicated a higher content of primary hydroxyl groups.  The C-H out- 

of-plane deformation (960 cm
-1

) for the trans double bond indicated 

the presence of d18:1. 

(b) Conversion of cerebrosides to polyols  

Degradation of KL cerebrosides
61

, followed by TLC
92

, afforded 

polyols which had the same chromatographic mobilities as "ceramides 3 

and 4".  Mild acid hydrolysis 61  of these compounds produced "ceramides 

1 and 2" respectively. 

(c) Analysis of the sphingoids by mass spectroscopy  

Strong ,i.kaline hydrolysis of the ceramides 93  yielded sphingoids, 

which were converted to TMSi-N-acetyl sphingoids 67 .  The mass spectra 

for the derivatives obtained from "ceramide 1" (Fig. 2), "ceramide 2" 

(not shown), and KL sphingenine (Fig. 3) were essentially identical. 

With the exception of minor peaks due to 1,3-di-0-TMSi-N-acetyl d18:0 

(compared with a pure sample in Fig. 4), the spectra were similar to the 

published one for 1,3-di-0-TMSi-N-acetyl d18:1
67

.  The absence of 
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peaks due to 1,3,4-tri-O-TMSi-N-acetyl t18:0 was verified by comparison 

of the spectra with a published one for this derivative 95 .  The mass 

spectral fragmentation modes for the above derivatives follow those 

proposed for other TMSi-N-acyl sphingoids84 ' 96 , and will not be 

discussed here. 

The spectra for the derivatives obtained from "ceramide 

(Fig. 5) and "ceramide 4" (not shown) have a prominent peak at m/e 311 

which also occurs for the derivative obtained from d18:1 (Fig. 3). 

Some other fragmentation modes are represented in Fig. 5, together 

with the structure, for these derivatives.  Two mechanisms which 

account for some of the observed ions have been ascribed to the effects 

of the radical and positive ion sites, respectively
97

.  If A 

represents the sphingenine part of the molecule, and B the polyol part, 

then the two mechanisms may be represented as follows: 

+ 
A-CH

2 -0'-B  A + CH
2
=0-B   ( i) 

+L 
A-CH

2
-0

i
'-B  A-CH

2
-0' + B

+ 
  (ii) 

Ions at m/e 396 and m/e 398 for the sphingenine and sphinganine 

derivatives respectively may thus be proposed. 

R-CH-CH-CH
2 
 -0-CH   R-CH-CH-tH

2 
+ 0-CH 

I  I  II 
RTMSiO NH  RTMSiO NH 

1  1 
COCH

3  COCH
3 

Other ions due to mechanism (ii) occur at m/e 351, m/e 319, m/e 396 

or 398 and m/e 262 (the latter due to loss of trimethylsilanol from 

the ion at m/e 351).  An ion expected at m/e 452 for cleavage between 

C
2 
and C

3 of the sphingenine moeity, with charge retention on the 

fragment containing the acyl moeity, does not appear.  However the 

ions at m/e 306 and We - 216 may result from secondary rearrangements, 
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Fig. 2.  Mass spectrum of the di-O-TMSi-N-acetyl sphingoids derived from KL "ceramide 1". 
84 

The symbols used to indicate fragments are the same as those used by Samuelsson and Samuelsson. 
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with losses of two trimethylsilyl radicals followed by a trimethyl-

silanol molecule, respectively. 

(d) Analysis of the sphingoids by GLC  

The TMSi-N-acetyl sphingoids derived from the ceramides were 

analysed by the GLC method previously described (p. 36).  "Ceramides 

3 and 4" respectively were converted to "ceramides 1 and 2" before 

analysis.  The two main sphingoids present in each ceramide were 

e-d18:1 and e-d18:0; these were present in the ratio 97:3 approximately. 

Other sphingoids occurred in traces and were ignored. 

(e) Analysis of the fatty acids  

The fatty acids derived from the ceramides after hydrolysis 93  

were converted to methyl esters
98

, and analysed by GLC as previously 

described (p. 36).  The NFA derivatives ("ceramides 1 and 3") and 

HFA derivatives ("ceramides 2 and 4") respectively gave fatty acid 

compositions (Table 1) similar to those derived for cerebrosides 

(Table 2).  The major fatty acids are, in decreasing order of 

importance, 24:1, 24:0, and 18:0 for NFA ceramides, and h24:0, h24:1, 

and h18:0 for HFA ceramides.  For sphingomyelin (Table 2), 18:0, 

24:1, and 24:0 are the major fatty acids, in decreasing order of 

importance. 

The fatty acid compositions of bovine brain cerebrosides and 

sphingomyelin have been previously recorded, and are essentially the 

same as those observed here but for the absence of the longer chain 

fatty acids (C26 to C30) 99 .  Such fatty acids have been found in 

human brain"°. 
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Table 1  

Fatty acid composition of KL ceramides weight %) 

Fatty acid "Ceramide 1" "Ceramide 	" "Ceramide 2" "Ceramide 4" 

12:0 0.2 trace 0.1 0.1 

14:0 0.4 0.4 0.2 0.3 

15:0 0.1 trace - 0.2 

16:0 5.0 3.9 1.1 0.1 

16:1 - - trace - 

17:0 0.1 0.1 trace - 

18:0 11.9 10.7 15.3 14.6 

18:1 0.4 0.3 0.6 0.2 

18:2 1.6 0.2 - - 

19:0 trace 0.1 0.7 0.5 

20:0 1.4 1.3 1.3 1.0 

20:1 0.7 0.3 0.5 0.2 

21:0 0.1 0.1 0.1 0.2 

21:1 - - - - 

22:0 5.5 5.8 7.6 2.3 

22:1 - trace - - 

23:0 5.8 5.8 8.4 7.3 

23:1 0.2 0.2 0.3 - 

24:0 21.3. 20.0 28.1 31.0 

• 24:1 32.6 31.1 16.1 16.2 

25:0 2.2 2.3 4.0 3.5 

25:1 1.3 0.9 1.8 0.5 

26:0 3.1 3.3 5.5 4.2 

26:1 5.1 3.5 5.3 1.0 

27:0 0.2 4.3 0.7 6.9 

27:1 0.4 0.1 trace - 

28:0 0.1 0.6 0.2 0.8 

28:1 0.3 2.6 0.6 4.0 

29:0 trace 1.5 0.5 2.6 

29:1 - 0.3 trace 0.5 

30:0 trace 1.9 0.3 1.5 
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Table 2  

Fatty acid composition of bovine brain sphingolipids (weight %) 

Fatty acid Sphingomyelin NFA cerebrosides HFA cerebrosides 

12:0 0.1 trace 

14:0 0.1 trace 0.2 

15:0 0.4 0.1 

16:0 2.9 0.3 0.3 

16:1 

17:0 0.2 

18:0 36.8 10.7 16.3 

18:1 0.5 1.9 

18:2 0.3 

19:0 0.3 0.4 0.4 

20:0 0.7 2.4 1.6 

20:1 

21:0 0.1 0.4 0.6 

21:1 

22:0 2.8 15.3 5.6 

22:1 0.5 1.4 0.8 

23:0 2.4 6.0 7.5 

23:1 1.1 1.8 1.0 

24:0 8.8 15.4 37.5 

24:1 26.1 30.1 13.6 

25:0 2.4 2.5 4.6 

25:1 4.8 2.3 1.3 

26:0 2.2 2.8 4.0 

26:1 5.0 4.2 3.3 

27:0 0.3 0.5 0.4 

27:1 0.6 0.5 0.5 

28:0 0.3 0.9 0.8 

28:1 0.5 1.0 

29:0 

29:1 

30:0 trace 
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2.  Lipids accompanying natural ceramides  

Other workers with serum ceramides
101 

recorded relatively high 

amounts of C12 to C18 fatty acids, which are not usually found in such 

natural ceramides
102

.  This suggested that contaminating fatty acids 

and monoglycerides have been overlooked.  The relative chromatographic 

mobilities of these lipids, and their separation by special TLC 

techniques, have been described previously (p. 25).  In TLC solvents 

containing chloroform and methanol, monoglycerides and HFA ceramides 

have similar chromatographic mobilities.  However, only HFA ceramides 

were isolated by TLC from serum lipids 2 .  Proof of the structures of 

the lipids which contaminate natural ceramides on TLC plates has been 

provided in the case of milk lipids; their isolation was carried out 

by preparative TLC. 

(a) Identification and analysis of the fatty acids  

The chromatographic mobility of the lipid fraction similar to 

that of NFA ceramides is ascribed to fatty acids. The IR spectrum 

of the fraction (Fig. 6) was practically identical to that of oleic . 

acid, with absorption occurring at 3000 q,  2400 cm -1 , 1710 cm 

-1  -1 
1280 cm  for the carboxyl group, and 3000 cm  for the double bond. 

-1 
A weak band occurring at 1550 cm could be an N-H deformation mode 

due to the presence of associated amino acids; ceramides are excluded 

by the absence of a C=0 stretch at 1660 cm -1 , and by the fact that 

their concentration in milk is very small
103

. 

The fatty acids were converted to methyl esters
98 , and analysed 

by GLC as previously described (p. 33).  The composition was 18:1 

(84%), 16:0 (14%), and 14:0 (2%); these are the major fatty acids of 

milk triglycerides. 
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(b) Identification and analysis of the monoglycerides  

The chromatographic mobility of the lipid fraction similar to 

that of HFA ceramides is ascribed to a-monoglycerides.  The IR 

spectrum of the fraction (Fig. 7) was similar to that of synthetic 

a-monopalmitin, with absorption occurring at 3360 cm  v 0-H, 

1740 cm
-1 

for v C=0, 1150 cm
-1 

for the secondary v C-0, and 1100 cm -1 

for the primary v C-0.  The fraction gave positive colour tests for 

ester74  and vicinal dio1 76  on the plate, and a negative colour test for 

nitrogen
73

. 

The purity of the fraction was checked by carrying out colorimetric 

analyses for glycerol
104

, vicinal diol
105

, and the number of ester 

groups
106

.  The values obtained respectively, per mg of lipid, were 

2.30 mmole, 2.10 mmole, and 2.38 mmole.  The 1:1 correspondence 

between these values gave an indication of a-monoglycerides, although 

the slightly lower value for vicinal diol indicated the presence of 

some f3-monoglycerides which may have formed during TLC107 .  Pure 

a-monoolein gave values of 2.80 mmole/mg, indicating that the fraction 

was 85% pure; the impurity wa found to be mostly fatty acid. 

3.  Lipids derived from ceramides and related compounds  

The ageing of ceramides suggests oxidation and/or reacylation. 

Of these two, the latter received more attudtion, as it occurred even 

when precautions were taken against the former. 

(a) The stability of acyl sphingoids  

The non-reactivity of ceramides in chloroform-methanol (2:1) 

solution, after standing for three weeks at room temperature, has been 
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noted
108

; during this time little or no change was detected on TLC 

plates.  In this laboratory, similar experiments were conducted,  with 

comparable results.  Ceramides, stored either dry, in chloroform 

solution at 00 , or in chloroform solution at room temperature in the 

presence of sodium hydrogen carbonate or traces of sodium hydroxide, 

did not give any anomalous TLC spots during a period of three years. 

However, on TLC plates impregnated with borate, a minor component 

below the ceramides was observed when testing solutions which had been 

standing at room temperature for several months.  As addition of 

ammonia or strong alkali to the solution did not remove the minor 

component, it was not an 0-acyl sphingoid.  Alkaline hydrolysis gave 

t-18:1, suggesting some inversion of the original ceramides.  This 

may have been brought about by the action of a trace of hydrochloric acid 

formed in the ageing chloroform, although ceramide solutions containing 

added hydrochloric acid did not appreciably accelerate the process. 

The addition of hydrogen chloride to a dry ether solution of ceramides 

produced some 0-acyl sphingoids, but unlike the reaction with 

N-palmitoy1-1-(p-nitropheny1)-2-amino-1,3-propanediol
109

, addition and 

hydrolysis products were also formed. 

0-acyl sphingoids were stable when stored dry, but in chloroform 

solution at 00  isomerisation to the N-acyl compounds was complete 

after several weeks. 

(b) Natural ceramides and related con younds  

Ceramides have been found in nearly every type of tissue of animal 

origin, and in most cases, the relative concentration is small. 

Hence the study of compounds related to ceramides in lipids from 

plasma, erythrocytes, liver, kidney, brain, spleen, aorta, and lung, 

was found to be impractical.  Platelet lipids, which are rich in 
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, 
ceramides (0.5 to 1.3% 

wit0110111 
 and relatively poor in neutral 

lipids, were potentially the most practical source.  Platelet 

ceramides also have a high turnover rate
112

. 

The platelets obtained from ox blood (5 t)
110 

were extracted
38

, 

and the lipids tested for ceramides and related compounds by TLC 

(Fig. 8).  As observed (lane 2), NFA ceramides are resolved into 

three components (probably due to differences in the fatty acid moeity), 

while compounds corresponding to HFA ceramides appear as two components. 

The results obtained by adding ammonia to the lipid solution were not 

conclusive in suggesting the presence of small amounts of 0-acyl 

sphingoids in platelets, since the TLC plates appeared much the same 

before and after treatment (except for acidic components).  The two 

components corresponding to HFA ceramides were respectively found to 

be monoglycerides, and possibly HFA ceramides, by 2-dimensional 

chromatography (p. 26); the latter has not been observed before in 

platelets. 

On other TLC plates, sphingoid-oxazolines were not found in 

platelet lipids after the removal of interfering glycerides with mild 

alkali
45

. 

(c) Starting materials for oxazolines  

The preparation of oxazolines from sphingoids, acyl sphingoids or 

related compounds was attempted by three methods: 

i) dehydration of N-acyl derivatives; 

ii) condensation of ..-hydroxyamino acid esters with imidic 

acid ester hydrochlorides; 

iii) condensation of sphingoids with imidic acid ester 

hydrochlorides. 



Fig. 8.  TLC plate illustrating ceramides from  ox  platelets. 
Developing solvent, chloroform-carbon tetrachloride-methanol-water 
(50:50:12:0.5).  1, cholesterol (Rf 0.64), ceramides  (Rf  0.50, 0.35), 
and cerebrosides (Rf 0.12, 0.09); 2, platelet lipids; 3, sphingoid-
oxazolines (Rf 0.80, 0.70) and acyl sphingoids (Rf 0.50, 0.45). 
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i) Dehydration of ceramides and related compounds was 

attempted with thionyl chloride.  Of the compounds tested, only 

threonine and allothreonine derivatives containing long-chain fatty 

acyl groups formed oxazolines without side reactions (N-phenyl 

analogues gave similar results
113

).  Ceramides and N-acyl phenyl- 

serinols gave a-chloro substituted oxazolines; phenylserine 

derivatives produced no oxazoline at all, but only a-chloroamides. 

From these results, use of thionyl chloride as a dehydrating agent 

would appear unsuitable for the preparation of oxazolines from amides 

with a a-hydroxy group in the benzylic or allylic positions
114,115. 

ii) The condensation of a-hydroxyamino acid esters with either 

aliphatic or aromatic imidic acid ester hydrochlorides gave oxazolines 

in quantitative yields.  The reaction using free imidic acid esters 

and a-hydroxyamino acid ester hydrochlorides gives relatively low 

yields 116 , and was not used.  Reduction of the ester group to the 

alcohol could be carried out successfully with lithium aluminium 

hydride; the double bond of the ring was not affected under the 

conditions used, although 2-alkyl oxazolines of a similar nature have 

been stated to be susceptible to attack by this reducing agent. 

The preparation of long chain alkyl a-hydroxyamino acid analogues 

would be advantageous because of the high yields of oxazolines, and 

the unambiguous nature of their synthesis.  Also, the configuration of 

the oxazolines may be determined by using Elliot's observation that 

sodium ethoxide catalyses the transformation of cis- to trans- 

oxazolines
116,117

.  The preparation of the isomers of a-amino-0- 

hydroxystearic acid by methods other than existing ones
118,119

, was 

attempted.  Copper II-Schiff base chelates have been successfully 

condensed with short chain aldehydes under base-catalysed conditions, 

120,121 
producing a-hydroxyamino acids in yields usually greater than 60% 
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The reactions were carried out in either water or methanol in which 

thereactants were soluble.  In the present work, yields of the 

derivatives were found to be low, owing to the insolubility of the 

aldehydes in the reaction media. 

iii) Sphingoids were found to condense with imidic acid 

ester hydrochlorides in good yield (60-80%).  The presence of the 

three adjacent functional groups available for reaction led to a 

mixture of oxazolines which required methods for their separation 

and characterisation.  These aspects are discussed in the next 

section. 

(d) The chemistry of sphingoid-oxazolines  

The reaction scheme (Fig. 9) for the preparation and degradation 

of sphingoid-oxazolines illustrates four isomeric compounds (I), (II), 

(III), and (IV) which may be derived from the condensation of e- and 

t-sphingoids with imidic acid ester hydrochlorides.  It was found 

that (I) and (III) were the.major products of the synthesis, and (II) 

and (IV) the minor products.  Solutions of the oxazolines displayed 

an equilibrium in which the more stable isomers were favoured (see 

Ch. 3, p. 91). 

Purification of a mixture of the oxazolines could be carried out 

by recrystallization from ethanol, or by preparative TLC followed by 

recrystallization of the oxazoline (I). 

Under mildly acidic conditions 122 , the oxazolines (I) and (III) 

were unstable, yielding the acid salts of the 0-acyl sphingoids (V) 

and (VI), respectively.  On careful treatment with ammonia to pH 

5_6116, the free 0-acyl sphingoids (VII) and (VIII) were obtained. 
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The addition of more ammonia to pH 8 or greater caused the acyl group 

to migrate, and the ceramides (IX) and (X) were isolated without change 

of configuration. 

The position of the free hydroxyl group in the oxazolines (I, II, 

III, or IV) may be verified by examining the periodate oxidation 

products
123

.  Ring cleavage and oxidation were carried out with 

periodic acid in pyridine
124

.  The aldehydes liberated, and those 

liberated from either d18:0 or d18:1 were compared on TLC plates 

(developing solvent, hexane-diethyl ether (9:1))125.  Hexadecan-l-al 

(Rf , 0.50) and trans-2-hexadecen-l-al (R f , 0.41) were produced from 

d18:0 and d18:1 respectively, and only the oxazolines (I) and (IV) gave 

these aldehydes (XIII).  The oxidation products of the oxazolines 

(III) and (II) did not show TLC spots corresponding to these aldehydes, 

and presumably the compounds (XIV) were produced. 

The spectroscopic, chromatographic, and stereochemical differences 

in the products illustrated in Fig. 9 are treated in Chapter 3. 

(e) Oxidation of ceramides  

•  Unsaturated lipids can be susceptible to photooxidation and 

autoxidation under normal storage conditions, the latter can be 

prevented by storing lipids either dry or in solution, under nitrogen, /  

and by using antioxidants.  During TLC, lipids are quite stable to 

autoxidation
126

. 

The photooxidation of lipids has not been critically investigated. 

Hence, experiments were conducted to assess the effects of various 

conditions, especially those under which one works normally in the 

laboratory, on lipid residues.  It was found that unsaturated lipids 

exposed to natural light gave reaction products of slower chromato-

graphic mobility than the parent lipids; the reactivity increased as 
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the degree of unsaturation increased.  The photooxidation of 

ceramides, and some common neutral lipids, are illustrated in Fig. 10 

•and Fig. 11, respectively.  The parent lipids had been applied to the 

origin of the TLC plate, and exposed to subdued sunlight for one day; 

similar results were obtained for lipids finely dispersed on a watch- 

glass.  Negative results were obtained for saturated lipids, or lipids 

stored in the absence of sunlight under normal laboratory conditions 

(or in pure oxygen, either dry or saturated). 

4.  Experimental  

(a) Attempted dehydration of compounds related to ceramides  

( i) Phenylserine  

Benzaldehyde (400 g) was added with stirring to glycine (150 g) 

and sodium hydroxide (120 g) in water (500 ml) at 5-10° and allowed to 

stand overnight.  The crude product was macerated, treated with 

concentrated hydrochloric acid (250 ml), cooled in ice overnight, 

filtered, and recrystallized from aqueous ethanol.  The yield was 

260 g (71%), and its m.p. was 194-5° as reported 127 . 

( ii) Phenylserine ethyl ester  

Hydrogen chloride was bubbled for several hours through a 

suspension of phenylserine in dry ethanol.  The solution was 

concentrated under reduced pressure yielding the hydrochloride salt of 

phenylserine ethyl ester (m.p. 132° after washing with dry ether). 

This was dissolved in ice-cold water, excess potassium carbonate added, 

and the free ester extracted with ether.  The product, recrystallized 

twice from ether, melted at 82°.  On another occasion the same sequence 

of steps gave a product which melted at 87°.  Both products were pure, 

as indicated by their homogeneity on TLC plates, NMR spectroscopy, and 



Fig. 10.  TLC plate illustrating some photooxidation products 
of ceramides resulting from exposure to subdued natural light for one 
day (lanes 2-6).  Developing solvent, chloroform-carbon tetrachloride- 
methanol-water (50:50:12:0.5).  1, KL ceramides (freshly applied); 
2, NFA ceramides, natural mixture; 3, HFA ceramides, natural mixture; 
4, 24:0-De-d18:1; 5, 24:1-De-d18:0; 6, 24:0-De-d18:0. 

Fig. 11.  TLC plate illustrating some photooxidation products of 
neutral lipids (lanes 2-7).  Developing solvent, chloroform-carbon 
tLtrachloride-methanol-water (50:50:12:0.5).  1, cholesteryl oleate 
(Rf 0.80), methyl oleate (Rf 0.73), and cholesterol  (Rf  0.57), freshly 
applied; 2, cholesteryl oleate; 3, methyl oleate;  4,  cholesterol; 
5, oleic acid; 6, monoolein; 7, triolein; 8, triolein (Rf 0.80), 
oleic acid (Rf 0.45), and monoolein (Rf 0.35), freshly applied. 



63 

elemental analysis.  The literature gives a melting point of 138°, 

and assumes that it is the t-isomer
127

.  The results obtained here 

indicate that its diastereoisomer may also be present (Analysis: 

C, 63.1; H, 7.2; N, 6.8%.  Calcd. for  C, 63.1; H, 7.2; 

N, 6.7%). 

(iii) DLt-phenylserinol (DLt-l-phenyl-2-amino-1,3-propanediol) 

Phenylserine ethyl ester (10 g) in dry ether (400 ml) was treated 

with lithium aluminium hydride.  The viscous liquid obtained was 

recrystallized from ether to give t-phenylserinol, m.p. 88° (as 

reported
127

), in 30% yield (2.4 g)(Analysis: C, 64.7; H, 7.8; 

N, 8.3%. Calcd. for C 9H 1302N: C, 64.7; H, 7.8; N, 8.4%). The 
4 

remainder, consisting most likely ofe-phenylserinol, could not be 

induced to crystallize. 

( iv) N-stearoyl phenylserine ethyl ester; reaction with SOC1 2  

Stearoyl chloride
128 

(0.01 mole, or 3.03 g) in N,N-dimethyl-

formamide (10 ml) was added slowly to a solution of phenylserine ethyl 

ester (0.01 mole, or 2.093 g) in N,N-dimethylformamide (30 ml) and 

triethylamine (2 ml), and the solution stirred for two hours at room 

temperature.  The reaction mixture was then added to an ice-water 

mixture (200 ml), acidified with dilute hydrochloric acid, and the crude 

product filtered and washed thoroughly with water.  Recrystallization 

from petroleum ether (60-70) yielded 4.37 g (95%) of N-stearoyl 

phenylserine ethyl ester, m.p. 55-56°. 

Thionyl chloride (4 ml) was added dropwise to a solution of 

N-stearoyl phenylserine ethyl ester (3.325 g) in chloroform (4 ml) at 

0° and left to stand overnight.  The solvents were removed under 

reduced pressure at room temperature, the residue dissolved in diethyl 

ether, washed with sodium carbonate solution, and the solvent removed 
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to yield 3.3 g of material.  This was applied to a column of silicic 

acid (100 g), and ethyl-(N-stearoy1-3-phenyl-3-chloro-2-amino) 

propanoate eluted with chloroform in 70-80% yield (m.p. 75-76'). 

(v) N-stearoyl t-phenylserinol; reaction with SOC1 2  

The reaction conditions for the preparation of N-stearoyl t-

phenylserinol were the same as those for the preparation of N-stearoyl 

phenylserine ethyl ester.  The product was obtained in 79% yield, and 

when recrystallized from methanol melted at 78-80° (the p-nitro analogue 

melts at 92_940129). 

The products resulting from the reaction of this compound with . 

thionyl chloride at 0° were numerous.  IR spectroscopy identified some 

of the minor products as amides and esters containing a chlorine group 

on the carbon atom in the a-position to the phenyl group.  The major 

product, isolated in 40-50% yield by silicic acid column chromatography, 

was 2-heptadecy1-4-(1-phenyl-1-chloromethyl)-2-oxazoline.  This compound 

was non-reactive towards silver carbonate and hot sodium hydroxide 

solution, remained a colourless oil at 0°, and showed strong absorption 

at 1665 cm
-1 

•(v C=N) in the IR spectrum.  The NMR signals were clearly 

resolved, occurring at 2.75 T (for 5 aromatic protons), 3.1 T (for 1 

proton on the carbon containing the Cl), 3.8 T (for 2 protons in the 

5-position on the ring), 7.85 T (for 1 proton in the 4-position on the 

ring), and 8.75 and 9.1 T (for the aliphatic protons). 

N-isonicotinoyl phenylserinol  

Isonicotinoyl chloride hydrochloride was prepared by heating a 

solution of isonicotinic acid in thionyl chloride at 60 °  for 1 hour
130

. 

The solvent was removed under reduced pressure, and the residue sublimed 

onto a cold finger at 1 mm Hg pressure.  It melted at 157-160 °  (dec.); 
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after one recrystallization the m.p. rose to 164-165°, as reported 130 . 

Isonicotinoyl chloride hydrochloride (1.066 g, or 6 mmole) in N,N-

dimethylformamide (20 ml) was added with stirring to t-phenylserinol 

(1,000 g, or 6 mmole) in N,N-dimethylformamide (20 ml) and triethylamine 

(2 m1).  After standing overnight the triethylamine hydrochloride was 

removed by filtration, the solvent removed under reduced pressure, and 

the residue dissolved in hot chloroform.  The free isonicotinic acid 

was removed by filtration, and the chloroform cooled to yield 1.55 g 

(95%) of N-isonicotinoyl t-phenylserinol, m.p. 145-146° (white flakes). 

Recrystallization from 2% ethanol in chloroform yielded the same 

compound, which gave one spot on TLC plates (Analysis: C, 65.6; 

H, 5.9; N, 10.1%. Calcd. for C 1 01603 N 2 : C, 66.1; H, 5.9; N, 10.3%). 

The compound was soluble in water and alcohols, sparingly soluble 

in hot chloroform, and insoluble in ether and hydrocarbons.  Its IR 

spectrum showed absorption at 3390 cm  OH), 3300 cm  NH), 

-1  
3230 cm  and 1630 cm  (v C=0), and 1540 cm  (6 NH).  The UV spectrum 

gave peaks at 211 mw (c max = 18100) and 252 Mp (E max = 7200) for the 

pyridyl and phenyl groups. 

(vii) Reaction of a natural ceramide mixture with SOC1 2  

The action of thionyl chloride at 0° on NFA ceramides produced a 

mixture of (3-ch1oroamides, (3-ch1orooxazolines (v C=N, 1660 cm
-1

), and 

other produc's. 

(b) Long-chain (3-hydroxyamino acids  

(i) Copper II-Schiff base complexes  

N-salicylideneglycinataquo copper II dihydrate was prepared from 

salicylaldehyde, glycine, and cupric acetate, as described
131

.  After 
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recrystallization from water-ethanol mixtures, dark green crystals 

were obtained. 

N-pyruvylideneglycinatoaquo copper II dihydrate was prepared 

essentially as described
120

, with the exception that the final product 

was recrystallized from water.  It decomposed at 206° (reported, 195'). 

N-pyruvylideneglycinatopyridine copper II trihydrate was prepared 

by treating the above compound with pyridine in dry acetone
120

. The 

product decomposed at 142° (reported, 133'). 

(ii) a-amino--hydroxystearic acid  

The preparation of a long-chain  hydroxyamino acid proved to be 

difficult owing to the insolubility of the aldehyde in the aqueous-

methanolic media necessary to dissolve the complex.  Several 

variations of the method described here were tried, but yields were 

poor (5% or less). 

To a mixture of N-pyruvylideneglycinatoaquo copper II dihydrate 

(1.3 g, or 5 mole) and hexadecanal 132  (2.4 g, or 10 mmole) in 

methanol (40 ml) and diethyl ether (5 ml), were added 1 N sodium 

methoxide (7 m1).  The mixture was stirred under nitrogen overnight 

at 35°.  After this time, 3 N acetic acid (5 ml), water (50 ml), and 

diethyl ether (100 ml) were added, and the products partitioned into 

the ether.  Evidence for the presence of a-amino--hydroxystearic 

acid was found in its IR spectrum, its positive reaction with ninhydrir 

and the chromatographic behaviour of its DNP derivative.  The latter 

experiment indicated the presence of e- and t-isomers, since two spots 

were found on TLC plates impregnated with borate (R f  values, 0.63 and 

0.75; developing solvent, chloroform-methanol-water (65:25:4)). 

An equally unsuccessful attempt to prepare the above compound 

was made using N-pyruvylideneglycinatopyridine copper II trihydrate. 
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This complex was found to be more soluble in the methanol-ether 

mixtures used for the reaction, but yields were still low owing to the 

insolubility of the aldehyde. 

(iii) a-amino-e.-hydroxy-trans-4-hexenoic acid  

N-pyruvylideneglycinatoaquo copper II dihydrate (2.6 g, 10 mmole) 

and crotonaldehyde (2.1 g, 30 mmole) were dissolved in water (50 ml), 

and sodium hydroxide added to bring the pH up to 9.5.  The solution 

was stirred at room temperature for four hours, after which the pH 

was adjusted to 4.5 with 3 N acetic acid.  It was then poured onto a 

column (3 cm x 10 cm) of Amberlite IR-120 (H form).  The column was 

washed with distilled water (1 0, and the amino acids eluted with 2‘11 

aqueous ammonia (1 t).  The solvent was removed to produce a 

stereoisomeric mixture of DL-a-amino-f3-hydroxy-trans-4-hexenoic acids 

(impure), m.p. 200° (dec.).  The mixture had similar chromatographic 

properties as the DL-a-amino÷.hydroxy-4-hexynoic acids 133 . 

(c) Oxazolines and their degradation products from ,...hydroxyamino  

acids  

Phenylserine ethyl ester, or threonine ethyl ester 134 , were 

condensed with aliphatic or aromatic imidic acid ester hydrochlorides 

to yield oxazolines.  Their lithium aluminium hydride reduction 

products gave 0-acyl derivatives on mild iwdrolysis; further treatment 

with alkali afforded N-acyl derivatives.  The accompanying tables 

(Tables 3,4) give some properties of the compounds prepared. 

(i) Imidic acid ester hydrochlorides135  

Lauronitrile (18.1 g, or 0.1 mmole) and absolute ethanol (4.5 g, 

or 0.1 mole) were treated with hydrogen chloride (4.4 g, or 0.12 mole) 
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at room temperature for three hours.  Dry ether (100 ml) was added, 

and the mixture left at 00  overnight to yield 18 g of ethyliminolaurate 

hydrochloride, m.p. 79-80° (dec.).  Similarly prepared were ethylimino- 

myristate hydrochloride, m.p. 82-84° (dec.), ethyliminostearate 

hydrochloride, m.p. 87-89° (dec.), and ethyliminobenzoate hydrochloride, 

m.p. 114-115° (dec.); the latter was prepared at 0°. 

2,5-dialky1-4-carboethoxy-2-oxazolines  

- 

The following method is typical.  Phenylserine ethyl ester 

(0.02 mole) and ethyliminolaurate hydrochloride (0.02 mole) were 

dissolved in anhydrous chloroform (50 ml) and refluxed for one hour. 

The ammonium chloride was washed out with water, or removed by 

centrifuging at 15000 r.p.m., and the chloroform removed at 40° under 

reduced pressure.  The product was used without purification for 

reduction of the carboethoxy group, as follows. 

(iii) 2,5-dialky1-4-hydroxymethy1-2-oxazolines  

A stirred suspension of lithium aluminium hydride (0.6 g) in dry 

ether (50 ml) was boiled for 10 min and cooled in ice.  To this was 

added, dropwise, a solution of an ester (0.015 mole) in dry ether 

(50 m1).  The mixture was stirred for a further 10 minutes at room 

temperature, refluxed for 10 minutes, cooled, and the excess reagent 

hydrolysed by adding water (1 ml) and 10% sodium hydroxide (2 ml) 

dropwise.  The lithium and aluminium salts were removed by 

filtration, and the ether removed under reduced pressure.  The 

residual oil was dissolved in hot ether or hexane, filtered, cooled 

in a mixture of ice and salt, and the crystals collected. 
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(iv) 1-0-acyl-phenylserinol hydrochlorides  

A solution of the oxazoline from (iii) in 1 N methanolic 

hydrochloric acid was left at room temperature overnight.  The solvent 

was removed at room temperature under reduced pressure, and the 

residue recrystallized from an appropriate solvent. 

-acyl-phenylserinols  

A solution of the 0-acyl derivative from (iv) in methanol was 

treated with dilute ammonia carefully to pH 5-6.  Chloroform was 

added, the ammonium chloride washed out with water, and the solvent 

removed at room temperature under reduced pressure to yield the N-acyl 

derivatives; recrystallization from chloroform-hexane gave a pure 

product.  The free 1-0-acyl phenylserinols were not stable enough 

for their isolation under these conditions; 0-benzoyl threonines 

have been isolated, however
116

. 	Storage of the hydrochlorides over 

potassium hydroxide in a vacuum did not liberate the free 0-acyl 

derivatives. 

(vi) Configuration of the oxazolines
117 

2-Undecy1-5-pheny1-4-carboethoxy72-oxazoline (1.50 g) was 

hydrolysed to the 0-acyl derivative by treatment for 18 hours at room 

temperature with 0.5 N methanolic hydrochloric acid (25 m1).  The 

solution was neutralized with 2 N sodium hydroxide, a further 5 ml of 

this reagent added, and refluxed for 30 minutes.  After cooling, 2 N 

hydrochloric acid (10 ml) and ice-water (100 ml) were added, the 

precipitate collected, dried over KOH, and recrystallized twice from 

chloroform-hexane (1:6).  N-undecanoyl phenylserine was obtained in 

90% yield (1.31 g), m.p. 112-113 ° .  The IR spectrum showed absorption 
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at 2310 cm  (v N-H), 1700 cm, 1725 cm  (v C=0 for the acid), 

-1  -1 
1643 cm  (v C=0 for the amide), and 1523 cm  (6 N-H).  Analysis by 

TLC on plates impregnated with borate revealed the presence of a 

single compound (developing solvent, chloroform-methanol-water 

(65:25:4); R f  value, 0.60). 

2-Undecy1-5-pheny1-4-carboethoxy-2-oxazoline (1.50 g) was treated 

with sodium ethoxide (2.5 g) in dry ethanol (25 m1).  After 10 minutes 

water (5 ml) was added, the solution refluxed for 15 minutes, then 

acidified with hydrochloric acid to 0.5 N and allowed to stand overnight 

at room temperature.  The N-acyl compound was formed by adding 10% 

sodium hydroxide to pH 11, and acidifying with dilute hydrochloric acid. 

Recrystallization from chloroform-hexane (1:6) afforded crystals in 

85% yield (1.24 g), m.p. 112-113°.  Its IR spectrum and chromatographic 

properties were identical to those of the product obtained from direct 

acid hydrolysis, indicating the trans-configuration for the oxazolines. 

(d) Oxazolines and their degradation products from sphingoids  

Sphingoids were condensed with aliphatic imidic acid ester 

hydrochlorides to yield oxazolines.  A reaction scheme illustrating 

some of their degradation products has been described (Fig. 9, p. 59). 

All compounds prepared are tabulated (Tables 3,4). 

(i) Oxazolines  

A solution of a sphingoid (1 mole, or 300 mg) and imidic acid 

ester hydrochloride (1 mole) in dry chloroform (4 ml) was refluxed 

for 3 hours under nitrogen, cooled, and the liberated ammonium 

chloride washed out with water.  The chloroform was removed under 

reduced pressure at room temperature, and the oxazoline purified 

either by recrystallization from ethanol, or by preparative TLC 
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(developing solvent, 2% CH 3OH in CHC1 3 ).  In general the yields were 

good (60-80%), and fine white crystals were obtained from pure 

starting materials. 

( ii) 0-acyl sphingoids  

A solution of the sphingoid-oxazoline (0.4 mmole) in chloroform 

(10 ml) was acidified with 0.1 N sulphuric acid (0.22 mmole), and 

allowed to stand for three days at room temperature under nitrogen. 

After this time, the excess acid was washed out by adding methanol 

(2.8 ml) and water (4 ml), and shaking.  The lower chloroform layer 

was withdrawn, evaporated to dryness at room temperature under 

reduced pressure, and the residue recrystallized from methanol to 

yield 0-acyl sphingoid sulphates. 

The acid salt (0.25 mole) in chloroform (10 ml) was treated with 

0.05 N methanolic ammonia (5.2 ml, or 0.26 mmole) at 0°.  Water (4 ml) 

was added, and the free esters partitioned into the chloroform.  The 

solvent was removed at room temperature under reduced pressure, and 

the ester recrystallized from methanol. 

N-acyl sphingoids  

The 0-acyl isomers in chloroform were treated with methanolic 

sodium hydroxide.  After acidifying and washing out the salt and free 

acid, the residue was purified by TLC, and recrystallized from methanol 

or ethanol to yield pure ceramides. 



Table 3  

Oxazolines derived from phenylserine, threonine, or sphingoids a  

No. Oxazoline substituents 
R
2 	

R
4 	

R
5 

M.p. °  Yield % IR data 
(Nujol) 

Formulae C % 
Found 
(Calcd.) 

H % 
Found 
(Calcd.) 

N % 
Found 
(Calcd.) 

1 Und cEy Ph 10-11 100 1660 (v C=N) C23H3503N 73.7 9.8 4.1 
1735 (v C=0) (73.9) (9.4) (3.8) 

2c  Heptad cEy Ph 42-43 100 1660 (v C=N) 

3b,c Ph cEy Ph •  <0 100 1642 (v C=N) 
1735  (v C=0) 

4
c Und cEy Me -7 100 1660 (v C=N) 

1740 (v C=0) 

5b,c Ph cEy Me <0 100 1645 (v C=N) 

6
c 

Heptad cEy Me 28 100 1660 (v C=N) 

7 Und hMe Ph 49.5 85 1660 (v C=N) C21 1-12302N 76.2 10.0 4.1 

3230 (v O-H) (76.1) (10.0) (4.2) 

8 Ph hMe Ph 160 82 1644 (v C=N) C 1 01502N 76.1 6.0 5.6 
3155 (v 0-H) (75.9) (6.0) (5.5) 
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Und  hMe  Me 

Ph  hMe  Ph 

42.5 

87 

82 

86 

1660(v. C=N) 
3250 (v 0-H) 

1642 (v C=N) 
3170 (v 0-H) 

C16H31 02N 

C10H1302N 

71.3 
(71.3) 

69.0 
(69.1) 

11.4 
(11.6) 

7.0 
(6.9) 

5.3 
(5.2) 

7.6 
(7.3) 

11 Trid  lh-Hexad
A2 	

H 89-90 68 1665 (v C=N) C32H 61 02N 78.6 12.3 2.6 
3150 (v 0-H) (78.2) (12.5) (2.8) 

12 Trid  lh-Hexad  H 74-75 7 1665 (v C=N) C32H63 0 2N 77.2 12.8 2.6 
3230 (v 0-H) (77.8) (12.9) (2.8) 

13 Trid  hMe  Pentad 47-49 74 1655 (v C=N) C32H6302N 77.7 12.8 2.7 
3245 (v 0-H) (77.8) (12.9) (2.8) 

, 

a) All compounds are new.  b) could not be induced to crystallize.  c) have not been sent for microanalysis. 



Table 4  

Esters and amides derived from phenylserine and sphingoidsa 

No. Compound Name M.p. °  Yield % IR data 
(Nujol) 

Formulae C % 
Found 
(Calcd.) 

H % 
Found 
(Calcd.) 

N % 
Found 
(Calcd.) 

..b 
1 1-0-undecanoyl  phenylserinol, 134-5 92 1730 (v C=0) C 21 H3603NC1 65.3 9.4 3.9 

HC1  salt (dec.) 3360 (v 0-H) (65.4) (9.4) (3.6) 

2c  1-0-benzoyl  phenylserinol, 177-9 95 1725  (v C=0) C16H1803 NC1 62.1 5.9 4.5 

HC1  salt (dec.) 3400 (v 0-H) (62.4) (5.9) (4.6) 

3 N-undecanoyl  phenylserinol 96-97 100 1635 (v C=0) 9  H  03 N 72.2  , 10.1 4.0 
1525 (6 N-H) ' (72.5) :  (10.2) (3.9) 

4d N-benzoyl  phenylserinol 161.5 93 1625 (v C=0) C 16H 17 03N 69.4 6.4 5.3 
1545  (6  N-H) (70.8) (6.3) (5.2) 

5 1-0-14:0-De-d18:1, H 2SO4  salt 122 82 1740 (v C=0) C32H640 5NS 68.8 11.7 2.6 
(dec.) (68.8) (11.5) (2.5) 

6 1-0-14:0-De-d18:1 95 68 1720 (v C=0) C32H6303 N 76.0 12.2 2.7 
(75.4) (12.5) (2.8) 

7 1-0-14:0-De-d18:0, H 2SO4  salt 130-2 78 1740 (v C=0) C32 H660 5NS 67.1 11.8 2.4 
(dec.) (68.5) (11.9) (2.5) 

8 1-0-14:0-De-d18:0 96-99 64 1720 (v C=0) C32 H6503N 74.9 12.6 2.5 
(75.1) (12.8) (2.7) 
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h 
9 	3-0-14:0-DLt-d18:0, H 2SO4  salt 166-9 

(dec.) 
75 1740 (v C=0) 

10
h  

3-0-14:0-DLt-d18:0 89-91 63 1720 (v C=0) 

11 e,h  14:0-De-d18:1 94-95 64 1640 (v C=0) 
1545 Co N-H) 

12f  14:0-DLe-d18:0 100-1 , 68 1640 (v C=0) 
1550 (6 N-H) 

13
h  

14:0-DLt-d18:0 93-94 58 1610 (v C=0) 
1550 	(6 N-H) 

/ 
14g 	24:0-DLt-d18:1 93-94 72 1610 (v C=0) C42 H8303 N 76.9 	/ 13.3 2.1 

1545 (6 N-H) (77.0' (12.9) (2.2) 

15g 	24:0-DLt-d18:0 92-93 65 1610 (v C=0) CA2H8503 N 77.2 12.8 2.0 
1550 	(6 N-H) -r  (77.3) (13.1) (2.1) 

a)All compounds, with the exception of No. 12, are new; 
b)Cl% found, 9.2 (calcd., 9.5);  c) Cl% found, 11.5 (calcd., 12.0); dl recrystallized many times; 

e) reported m.p. for 14:0-DLe-d18:1, 86_87136;  f) reported m.p., 103_418 ; g) prepared by method of HammarstrOm36 ; z 
the m.p. of its e-isomer was thesame as that reported 137 ; h) not prepared in sufficient quantity for microanalysis. 
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CHAPTER 3  

STEREOCHEMICAL STUDIES OF SPHINGOID DERIVATIVES 

Other authors have separated diastereoisomers of psychosines 138  

and sphingosylphosphorylcholines
13 

by TLC on plain silica gel, and of 

DNP derivatives of sphingoids
31 

and polyhydroxy fatty acids
139 

on 

silica gel impregnated with borate.  Diastereoisomeric N-acetyl 

sphingoids have been separated by GLC
84

.  It is now shown that the 

modifications described in Chapter 1 (pp.23and 36) for these methods 

may be used for similar chromatographic separations of aLy1 sphingoids. 

The results may be used to obtain evidence for the existence of 

natural diastereoisomeric ceramides.  This is also the place to 

consider possible stereochemical changes in acyl sphingoids and 

related oxazolines under normal or adverse conditions, and 

spectroscopic differences between isomers. 

1.  TLC of isomeric acyl sphingoids and sphingoid-oxazolines  

(a) Diastereoisomeric ceramides  

Ceramides were synthesized essentially by a known method 3  , that 

of condensing the sphingoid and fatty acid in the presence of a 

carbodiimide.  The byproducts of the synthesis (mainly N-acylureas
140

) 

were removed by preparative TLC, and the ceramides recrystallized from 

methanol.  Most of the ceramides prepared for TLC (or GLC) analysis, 

including all of those derived from t-sphingoids or L-2-hydroxy fatty 

acids, were new compounds so far as is known; some were prepared in 

quantities large enough for microanalysis (p.75). 
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The separation of diastereoisomeric ceramides on TLC plates is 

illustrated in Figs. 1 to 5, and their R f  values are listed in 

Table 1.  It may be seen that diastereoisomeric NFA ceramides do not 

separate on a plain TLC plate (Fig. 1).  On a plate impregnated 

with borate (Fig. 2), NFA ceramides derived from either e-d18:1 

(lane 2), t-d18:1 (lane 3), or t-d18:0 (lane 5), are retarded.  The 

former effect has been observed befor-e71 .  The latter effect may be 

ascribed to the complex formed between the borate ion and the two 

hydroxy groups of the sphingoid.  The partial separation observed 

between diastereoisomers derived from d18:1 (lanes 2 and 3) indicates 

that the borate ion may complex with the 3-hydroxy group and the 

double bond.  A minor component in lane 6 was left unidentified by 

others using similar standards
137

.  Its persistent similarity to the 

product of lane 5 under diverse chromatographic conditions suggests 

that it is also a t-ceramide. 

HFA ceramides derived from a DLe- orDLt-sphingoid (d18:1 or d18:0), 

or a mixture of these, and a racemic 2-hydroxy fatty acid, gave two 

spots on freshly activated plain TLC plates (Fig. 3, lanes 2 and 3). 

Similar results have been obtained by others for diastereoisomeric 

HFA ceramides derived from De-d18:1
36

; the upper and lower spots 

observed here may be ascribed to HFA ceramides derived from L- and D-

hydroxy fatty acids respectively.  When representatives of these 

ceramide classes were prepared from a diastereoisomeric mixture of 

d18:1 or d18:0, a partial separation on undctivated TLC plates was 

observed (not illustrated).  On plates impregnated with borate, the 

e- and t-ceramides, with either L- or D-hydroxy fatty acids, were 

completely separated from each other (Figs. 4 and 5).  These results 

differ from those of NFA ceramides in that e- and t-diastereoisomers 

derived from d18:1 are separated.  This behaviour could be explained 

by a borate complex formed between the hydroxy group of the fatty acid 
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Analysis of diastereoisomeric ceramides 
Edwin E George and John B Polya 
Chemistry Department, University of Tasmania, Hobart, 7000, Australia 

Determination of the most important sphingolipids 
(particularly sphingomyelins and cerebrosides) is carried out by 
their hydrolysis to free ceramides (N-acyl sphingoids l ) which are 
then subjected to chromatography, usually after derivatisation. 
Such a procedure is inadequate when interest centres on the 
presence of free ceramides that are of diagnostic significance in 
food chemistry' or clinical biochemistry' as minor constituents 
of some natural fats and oils. A simple method of t .1.c. suitable 
for the analysis of sphingomyelins and cerebrosides °  does not 
separate free ceramides from the latter or requires additional 
operations' that make routine assays impracticable and fail to 
distinguish between different classes of ceramides. 

A convenient method of t.l.c. employs silica gel G (Merck) 
and a mixture of chloroform/carbon tetrachloride/methanol/ 
water, 50:50:12:0-5 v/v (eluting agent A). Ceramides in the 
region of R 1 0-28-0-56 are well separated from the much slower  

cerebrosides and faster cholesterol bands, and sub-
fractionation of structurally or stereochemically different 
classes of ceramides is satisfactory for the purposes of 
quantitative analysis of preparative t .1.c. 

Three types of interfering lipid have been found. Free fatty 
acids can be eliminated either by a lcm thick bar -; — produced at 
the bottom of the plate by spraying it with a 10 per cent solution 
o f sodium carbonate or more satisfactorily by replacing water in 
the eluting agent by 15N ammonia. ' Neither of these procedures 
affects the R fof neutral lipids. Monoglycerides have the same R, 
values as the relatively rare ceramides derived from a-hydroxy-
acids, and can be recognised by colour tests for esters' or vicirial 
diols,' estimation of ester groups' or infrared spectroscopy. 
In some commercial ceramides prepared by oxidative 
degradation of cerebrosides followed by hydrolysis, 9  on 
encounters `polyols' identified as CI-13(CH2)12CH 
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Table 2 Retention times of diastereiosomeric ceramides,°relative to N-stearoyl erythro-sphinganine 

Ceramides derived from sphingenine 	 Ceramides derived from sphinganine 

N-acyl-b 	unsubstituted acid 	 hydroxy acids 	 unsubstituted acid 	 hydroxy acids 

e 	I 	L'e 	L 't 	D'e 	D't 
	

L'e 	L't 	D'e 	D't 
14:0 	0-47 	0•43 • 
16:0 	0.66 	0-60 . 	0-68 
18:0 , 	0.93 	0-85 	0-96 
20:0 	1-35 	1-24 	1-35 
22:0 	1-99 	1-82 	2-00 
24:0 	2•90 	2.66 	2-86 
24:1 
26:0 	4-22 	 4-14 

0.47 	 0-50 	0-45 
0-66 	0-68 	0-56 	0-70 	0-63 	0-68 

0-96 	0.79 	1•00 	0.89 	0.96 
1-35 	1.14 	. 1-45 	1.29 	1-37 
2.00 	1.68 	2-14 	190 	2.03 
2-86 	2-43 	3-12 	2.78 	2.90 

	

3.07 	2.74 
4.14 	3.55 	 4-20 

0.63 0.68 	0-56 
0-96 	0-79 
1-37 	1-14 
2.03 	1-67 
2-90 	2-42 

4.20 	3-51 
or D and e or t indicate the configuration of the 2-hydroxy fatty acid and sphingoid, respectively; 

bnumber of C atoms and unsaturation are indicated • 

=CH- CHOH - CH(NHCOR)-CH 20-CH(CH 2OH)-OCH 
(CH 2OH)2  by infrared and mass spectroscopy and conversion 
into ceramides on prolonged hydrolysis. In many cases (e.g. 
study of synthetic ceramides) monoglycerides and polyols may 
be ignored; otherwise they may be separated from ceramides by 
two-dimensional chromatography first with eluting agent A, 
then ether/acetone/ 15N ammonia, 80:20:2 v/v.' 

Stereochemical separation of various sphingoid derivatives 
by t.l.c. on silica gel l" or silica gel impregnated with borate." 
has been extended to ceramides available as commercial 
samples or prepared from brain".'or milk"or by synthesis.' 
Free threo ceramides move slower than erythro 
diastereoisomers. Although separation of diastereoisomeric 
ceramides derived from unsubstituted fatty acids and 
unsaturated s hingoids is incomplete (presumably owing to the 

group), 2-hydroxy-acid. derivatives of both saturated and 
unsaturated sphingoids are easily separated. It is known that 
erythro ceramides derived from L-acids move faster than those 
derived from p-acids ,12  now it is found that the same rule applies 

to threo ceramides and that D-erythro moves faster than L-threo. 
R 1  values on plain and borate-treated t.l.c. plates developed with 
chloro form containing 8 per cent v/v methanol (eluting agent B) 
shown in Table 1 are given relative to the Rf (0-50) of racemic 
N-stearoyl-erythro-sphinganine. 

Separation of diastereoisomeric sphingoids as N-acetyl 
derivatives by g.l.c. 18  can be extended to ceramides. Retention 
times relative to N-stearoyl erythro-sphinganine in the range on 
a column (3.3mm by 3m, glass) containing 1 per cent GE SE-30 
(GC grade) plus 1 per cent 0 V-17 on 100-120 mesh Gas Chrom Q 
are shown in Table 2. It is-seen that threo compounds emerge 
before erythro isomers. 

The authors thank the Commonwealth Department of 
Education for a postgraduate grant (to E.E.G.). 
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Table I R f  values of ceram ides relatively to N-stearoyl.erythro-sphinganine 
on plain t.l.c. plates or plates impregnated with 10 per cent w/w borate, 
developed with 8 per cent CH 3OH in CHCI 3. 

Ceramide moieties ° 	 Relative R f values on 

N-acyl 	racemic sphingoid plain plates borate plates 

1-12 
1.10 
1-12 
1.10 
0-92 
0-90 

0-84 
0-78 
1.12 
0.86 
0.72 
0.68 

0.92 0-92 References 
0-90 0-74 
I .02 0-72 IUPAC-1UB Comm. of Biochemical 'Nomenclature: 'The nomenclature 
0-76 0.60 of lipids', J. Lipid Res., 1978, 19,114 
1-00 0-58 2 	Polya, J. B., Dairymen's Digest, 1973, 1, 9 
0-70 0-36 3 	Polya, J. B. & Parsons, R. S., Med. J. Aust., 1973, 1, 873 
1.00 1.00 4 	Gloster, J. & Fletcher, R. F., Clin. Chim. Ada, 1966, 13, 235 
0-74 0-74 5 	Lowenstein, J. M. (Ed.) in `Methods in encymology', 1969, 15, p 308 
0-98 0.58 6  Skidmore, W. D. & Entenman, C., J. Lipid Res., 1962, 3, 471 
0-70 0-36 7  Shaw, N., Biochim. Biophys. Acta., 1968, 164,435 
0.90 0.64 8 	Renkonen, 0., ibid. 1961, 54, 361 
0-64 0-54 9  Carter, H. E., Roth fus, J. A. & Gigg, R., J. Lipid Res., 1961, 2, 228 
0.84 0-50 1 ° Fujino, Y. & Negishi, T., Biuochim. Biophys. Ada., 1968, 152, 428 
0.56 0.28 II lwamori, M., Moser, H. W. & Kishimoto, Y., J. Lipid Res., 1975, 16, 332 
0-90 0.88 12  Karlsson, K. A. & Pascher, 1., ibid. 1971, 12, 466 
0.64 0.66 13  Karlsson,.K. A., Chem. Phys. Lipids, 1970, 5, 6 
0.84 0-50 14  Carter, H. E:, Haines, W. J., Ledyard, W. E. & Norris, W. P., J. Biol. 
0-56 0-28 Chem., 1947, 169, 77 

15  Morrison, W. R. in Gunstone, F. D., 'Topics in lipid chemistry', 1970, 1, 51 
16  George, E. E., M.Sc. Qual. Thesis, University of Tasmania, 1974 
17  Hammarstrom, S., J. Lipid Res., 1971, 12, 760 
18  Carter, H. E. & Gayer, R. C., ibid, 1967, 8, 391 
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Fig. 1.  TLC plate illustrating the separation of isomeric 
ceramides.  Developing solvent, chloroform-carbon tetrachloride- 
methanol-water (50:50:12:0.5).  1, natural ceramides from brain 
sphingomyelin; 2, 24:0-DLe-d18:1 (upper spot) and 14:0-De-d18:1 
(lower spot); 3, 24:0-DLt-d18:1; 4, 24:0-DLe-d18:0 (upper spot) and 
14:0-DLe-d18:0 (lower spot); 5, 24:0-DLt-d18:0 (upper spot) and 
14:0-DLt-d18:0 (lower spot); 6, standard ceramides, 24:0-DLe-d18:0 
(upper spot) and 16:0-DLe-d18:0 (lower spot). 

Fig. 2.  TLC plate illustrating the separation of diastereoisomeric 
NFA ceramides; the silica gel is impregnated with borate (10% w/w). 
Developing solvent, chloroform-carbon tetrachloride-methanol-water 
(50:50:12:0.5).  1, natural ceramides from brain sphingomyelin; 
2, 24:0-DLe-d18:1;  3, 24:0-DLt-d18:1; 4, 24:0-DLe-d18:0; 
5, 24:0-DLt-d18:0; 6, standard ceramide, 24:0-DLe-d18:0. 



Fig. 3.  TLC plate illustrating the separation of diastereoisomeric 
HFA ceramides.  Developing solvent, chloroform-methanol (92:8). 
1, natural mixture of NFA ceramides (upper spot) and  HFA  ceramides 
(lower spot); 2, L-h18:0-DL(e+t)-d18:1 (upper spot)  and  D-h18:0- 
DL(e+t)-d18:1 (lower spot); 3, L-h18:0-DL(e+t)-d18:0  (upper  spot) and 
D-h18:0-DL(e+t)-d18:0 (lower spot). 

Fig. 4.  TLC plate illustrating mixtures of diastereoisomeric 
;;FA ceramides; the silica gel is impregnated with borate (10%, w/w). 
Developing solvent, chloroform-methanol (85:15).  1, natural mixture 
of HFA ceramides; 2, DL-h24:0-DL(e+t)-d18:1; 3, DL-h18:0-DL(e+t)- 
d18:1; 4, DL-h26:0-DL(e+t)-d18:0. — 



Fig. 5.  TLC plate illustrating the ceramides which have been 
isolated from a diastereoisomeric mixture and recrystallized; the 
silica gel is impregnated with borate (10%, WM. 	Developing 
solvent, chloroform-methanol (85:15).  1, DL-h16:0-DL(e+t)-d18:°; 
2, L-h16:0-DLe-d18:0; 3, L-h16:0-DLt-d18:0; 4, D-h16:0-DLe-d18:0; 
5, D-h16:0-DLI--d18:0. 

Fig. 6.  TLC plate illustrating the relative chromatographic 
mobilities of isomeric acyl sphingoids; the silica gel  is  impregnated 
with borate (10%, w/w).  Developing solvent, chloroform-methanol (92:8). 
1, 14:0-De-d18:1 (the faint spot below is probably a trace of the 
t-isomer); 2, 1-0-14:0-De-d18:1 (upper spot) and 3-0-14:0-De-d18:1 
power spot); 3, 1-0-14:0-DLe-d18:0 (upper spot) and 3-0-14:0-DLe-d18:0 
(lower spot); 4, 3-0-14:0-DLt-d18:0; 5, 14:0-DLe-d18:0 (upper spot) 
and 14:0-DLt-d18:0 (lower spot). 
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Table 1  

Rf values of ceramides and 0-acyl sphingoids, relative to 18:0- 

DLe-d18:0, on plain TLC plates (column A), or plates impregnated with 

10% w/w borate (column 8).  For plates developed with 8% CH 3OH in 

CHC1 3 , 18:0-DLeTd18:0 moves to Rf  0.50. 

Compound name R.4, values 

A 

24:0-DLe-d18:1 1.12 0.84 

24:0-DLt-d18:1 1.10 0.78 

24:0-DLe-d18:0 1.12 1.12 

24:0-DLt-d18:0 1.10 0.86 

14:0-DLe-d18:1 0.92 0.72 

14:0-DLt-d18:1 0.90 0.68 

14:0-DLe-d18:0 0.92 0.92 

14:0-DLt-d18:0 0.90 0.74 

1-0-14:0-DLe-d18:1 0.74 0.54 

3-0-14:0-DLe-d18:1 0.58 0.36 

1-0-14:0-DLe-d18:0 0.64 0.44 

3-0-14:0-DLe-d18:0 0.48 0.28 

3-0-14:0-DLt-d18:0 0.48 0.28 

L-h 26:0-DLe-d18:1 1.02 0.72 

D-h 26:0-DLe-d18:1 0.76 0.60 

L-h 26:0-DLt-d18:1 1.00 0.58 

D-h 26:0-DLt-d18:1 0.70 0.36 

L-h 26:0-DLe-d18:0 1.00 1.00 

D-h 26:0-DLe-d18:0 0.74 0.74 

L-h 26:0-DLt-d18:0 0.98 0.58 

D-h 26:0-DLt-d18:0 0.70 0.36 

L-h 16:0-DLe-d18:1 0.90 0.64 

D-h 16:0-DLe-d18:1 0.64 0.54 

L-h 16:0-DLt-d18:1 0.84 0.50 

D-h 16:0-DLt-d18:1 0.56 0.28 

L-h 16:0-DLe-d18:0 0.90 0.88 

D-h 16:0-DLe-d18:0 0.64 0.66 

L-h 16:0-DLt-d18:0 0.84 0.50 

D-h 16:0-DLt-d18:0 0.56 0.28 
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and the amide nitrogen
141

.  Scale models based on the known 

structure of 24:0-t18:0
142 

showed that the hydroxy group of the - 

fatty acid and either of the hydroxy groups of the sphingoid were too 

distant for borate complex formation. 

These results show that the TLC detection of t-NFA ceramides in 

a diastereoisomeric mixture is difficult.  On the other hand, the 

detection of t-HFA ceramides derived from 2-D-hydroxy fatty acids, 

and e- or t-HFA ceramides derived from 2-L-hydroxy fatty acids, is 

possible.  In natural HFA ceramides neither t-sphingoids nor L-hydroxy 

fatty acids were detected by TLC (Figs. 3 and 4, lane 1 in each). 

The separation of ceramides derived from a DLe- or DLt-sphingoid, 

and a normal, 2-L-hydroxy or 2-D-hydroxy fatty acid, was attempted 

with TLC plates impregnated with borate and cellulose.  The results 

were negative, but the mixtures may be resolved into their optical 

isomers by a recently published method
143 

which involves derivatisation 

with L(+) acetylmandeloyl chloride followed by TLC separation. 

(b) Isomeric 0-acyl sphingoids and related oxazolines  

The TLC separation of 0-acyl sphingoids from the parent ceramides 

on silica gel impregnated with borate is illustrated by Fig. 6.  This 

kind of plate was found to give more effective separations than plain 

plates.  Both 1-0-acyl sphingoids (major components, lanes 2 and 3) 

and 3-0-acyl sphingoids (major component, lane 4) are retarded by 

borate; the latter move the slowest since they contain a primary 

hydroxyl group.  The 3-0-acyl derivatives of e-d18:1 and e-d18:0 

are represented by the slower moving minor spots of lane 2 and lane 3 

respectively.  The Rf  values of 0-acyl sphingoids are compared to 

those of ceramides in Table 1. 

Sphingoid-oxazolines are comparatively more non-polar than 
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acyl sphingoids; on TLC plates used to analyse ceramides, sphingoid-

oxazolines move close to the solvent front.  A solvent system of 2% 

methanol in chloroform is more suitable for their analysis by TLC, 

and as illustrated (Fig. 14), isomers derived from e-d18:1, e-d18:0, 

and t-d18:0 are separated.  Borate has no complexing effect on these. 

compounds, which is understandable since one of the hydroxy groups 

and the amide nitrogen of the parent ceramides are utilised in ring 

formation. 

2.  GLC of diastereoisomeric ceramides  

Mixtures of ceramides, synthesised from diastereoisomeric 

sphingoids and normal or racemic 2-hydroxy acids , were analysed 

essentially by the GLC method described in Chapter 1 (p. ), with 

the exception that the helium flow rate was faster, 90 ml/minute. 

In general, t-ceramides emerged before e-ceramides.  In the case of 

NFA ceramides derived from d18:1, the separation of diastereoisomers 

was incomplete, and a t-isomer was recognized as a minor component by 

a bump on the peak for the e-isomer (Fig. 7).  Diastereoisomeric NFA 

ceramides derived from d18:0 were completely separated (not illustrated). 

In the case of HFA ceramides derived from d18:1, a t-isomer containing 

a D-2-hydroxy acid was completely separated from the other isomers 

(Fig. 8).  The t-isomer containing an L-2-hydroxy acid was part of 

the peak for the e-isomers, though when chromatographed separately its 

retention time was slightly lower.  Diastereoisomeric HFA ceramides 

derived from d18:0 gave similar results (not illustrated); however, 

the separation of these was slightly improved on a column of 3% SE-30 

on 100-120 mesh Gas Chrom Q, and the t-isomer containing an L-2- 

hydroxy acid was also distinguished (Fig. 9). 

The retention times for some of the synthetic ceramides 
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column (2m x 3mm) of 3% GE SE-30 on 100-120 mesh Gas Chrom Q, 
temperature 285°, and N2 flow rate 40 ml/min., was used. 
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Fig. 10.  GLC separation of ceramides derived from brain NFA cerebrosides. 
The carbon chain lengths of the fatty acids are illustrated.  GLC 
conditions are given in Fig. 7. 
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Table 2  

Retention times of diastereoisomeric ceramides, relative to 18:0-DLe-d18:0 

Fatty 
acid 

Ceramides derived from DL-d18:1 Ceramides derived from DL-d18:0 

NFA derivatives HFA derivatives
* 

NFA derivatives HFA derivatives
* 

e t L'e L't D'e D't e _ t L'e L't D'e D't 

14:0 0.47 0.43 0.47 0.50 0.45 

16:0 0.66 0.60 0.68 0.66 0.68 0.56 0.70 0.63 0.68 0.63 0.68 0.56 

18:0 0.93 0.85 0.96 0.96 0.79 1.00 0.89 0.96 
, 

0.96 0.79 

20:0 1.35 1.24 1.35 1.35 1.14 1.45 1.29 1.37 1.37 1.14 

22:0 1.99 1.82 2.00 2.00 1.68 2.14 1.90 2.03 2.03 1.67 

24:0 2.90 2.66 2.86 2.86 2.43 3.12 2.78 2.90 2.90 2.42 

24:1 3.07 2.74 

26:0 4.22 4.14 4.14 3.55 4.20 4.20 3.51 

L' or D' and eor t indicates the configuration of the 2-hydroxy fatty acid and sphingoid, respectively. _ _ 
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investigated, relative to 18:0-DLe-d18:0, are given in Table 2.  The 

similarity of these values for either e-ceramides or t-ceramides 

containing the same number of carbon atoms is evident.  Analysis of 

mixtures of ceramides of natural origin would require group separation 

followed by GLC-mass spectrometry. 

The methods for producing ceramides from other sphingolipids have 

not been investigated with regard to isomerisation.  Thus natural 

brain ceramides, ceramides derived from brain sphingomyelin either 

enzymatically
58 

or by acetic acid hydrolysis
57

, and ceramides derived 

from brain cerebrosides by periodate oxidation followed by reduction 

and mild acid hydrolysis 61 , were analysed by this GLC method.  The 

results for NFA ceramides and HFA ceramides derived from cerebrosides 

are illustrated (Figs. 10 and 11 respectively); t-ceramides were 

not detected.  Alkaline hydrolysis of each ceramide fraction produced 

e-sphingoids only as determined by GLC (Ch. 1, P.36). 

3.  Stereochemical changes during hydrolysis of sphingoid derivatives  

Acyl sphingoids and relat2d oxazolines derived from e-d18:1, 

• t-d18:1, e-d18:0, or t-d18:0 were subjected to hydrolysis with acid
98 

or strong alkali
61 
 , and the sphingoids analysed as DNP derivatives on 

TLC plates impregnated with borate
31

.  Acid hydrolysis of N-acyl-, 

3-0-acyl-, and 2,3-substituted oxazoline derivatives of e-d18:1 

liberated the sphingoid unchanged, its diastereoisomer t-d18:1, 

dehydration products
144

, and 0-methyl derivatives
145,146

.  All other 

sphingoid derivatives underwent acid hydrolysis with little degradation 

• or stereochemical changes to the sphingoids.  Alkaline hydrolysis 

liberated only e-sphingoids in all cases, with the exception of the 

sphingoid-oxazolines which were not affected by this treatment. 
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4. 	Isomerisation of sphingoid-oxazolines in solution  

Pure sphingoid-oxazolines were stable when stored dry at 0 0 , but when 

dissolved in dry solvents such as alcohol, chloroform, or ether, the 

compounds began to isomerise.  The presence of alkali and/or water 

did not change the rate of isomerisation appreciably.  After several 

days of standing at room temperature, when no further change could be 

detected, mixtures of isomeric oxazolines in equilibrium were obtained. 

As illustrated (Figs. 12 and 13), the configurations of the sphingoids 

(determined by TLC of the DNP derivatives
31 

) did not change during 

isomerisation.  The isomers most favoured were I (Fig. 12) and III 

(Fig. 13), derived from e- and t-sphingoids respectively; these were 

the principal compounds obtained from the condensation of the sphingoids 

with imidic acid ester hydrochlorides (Ch. 2, 13.70).  The trans- 

oxazolines (III) seemed to be more stable than the cis-oxazolines (I), 

judging by the relative intensities of the TLC spots for each isomeric 

mixture (Fig. 14).  The ratios I/II and III/IV, determined by weight 

after TLC separation, were approximately 70/30 and 95/5 respectively. 

During the isomerisation, and for several weeks after the reaction was 

complete, amides and esters of the parent compounds were not produced, 

as judged by TLC.  The isomers could be separated by TLC (with some 

degradation to acyl sphingoids) and recrystallized without isomerisation. 

The processes of Figs. 12 and 13 resumed only when the separated 

isomers were .2dissolved. 

The oxazoline (II, R=CH3 (C112 ) 14 ), gave indefinite compounds when it 

was used by other workers
25 

for the synthesis of dihydrosphingomyelin; 

the instability observed here for this type of oxazoline may account for 

this.  The synthesis was eventually carried out successfully with the 

2-phenyl analogue. 
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Figs. 12,13.  Sphingoid-oxazolines in equilibrium in solution 
(derivatives of D-sphingoids only are illustrated for convenience). 
R = long-chain alkyl group. 
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Fig. 14.  TLC plate illustrating isomerised sphingoid- 
oxazolines after standing in solution for several days; the intense 
spots are the more stable isomers.  Developing solvent, chloroform- 
methanol (98:2). 1, oxazolines derived from e-d18:1 and 14:0 
(Rf 0.50, 0.33); 2, oxazolines derived from e-d18:0 and 14:0 
(Rf 0.56, 0.23); 3, oxazolines derived from t-d18:0 and 14:0 
(Rf  0.23, 0.56). 
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5.  Spectroscopic analysis of sphingoid derivatives  

The detection of acyl sphingoids and sphingoid-oxazolines in 

ceramides, and the differentiation of isomeric sphingoid derivatives, 

was possible by the use of IR spectroscopy.  Mass spectroscopy was of 

little use, due to the similarity in spectra.  Apart from a few IR 

spectra for e-ceramides (in KBr discs) published by other workers 36 ' 137  

no data are available on diastereoisomers and related sphingoid 

derivatives.  These are recorded in this section. 

(a) Diastereoisomeric acyl sphingoids  

The IR spectra (in Nujol) for 24:0-DLe-d18:0 and 24:0-DLt-d18:0 

(Figs. 15 and 16 respectively) are typical of those for other 

diastereoisomeric NFA ceramides.  The main differences between the two 

are the positions of the C=0 stretch, the combined N-H and 0-H stretch, 

and the C-0 stretch.  These differences may be attributed to the 

degree of intramolecular hydrogen bonding between the 3-hydroxy group 

of the sphingoid and the amide group.  The main absorption bands for 

e-NFA ceramides (also for the natural derivatives) occur at 3260 cm
-1 

(v N-H and v 0-H), 3080 cm  II overtone of highly associated 

amides
147

), 1640 cm
-1 

(amide I band, primarily v C=0), 1550 cm
-1 

(amide II band, a mixture of 60% o N-H and 40% v C- N148), 1280 cm-1  

(amide III band, a mixture of 40% v C-N, 30% 5 N-H, and 20% v 
 

and 7190 cm
71 

to 1020 cm
-1 

(v C-0).  For t-NFA ceramides, the 

-1 
respective frequencies are 3440 cm

-1 
plus 3350 cm 

-1
, 3080 cm  (much 

-1 
decreased in intensity), 1610 cm

-1
, 1550 cm

-1
, 1310 cm 

-1 , and 1110 cm 

plus 1080 cm-1 .  Diastereoisomers derived from d18:1 also absorbed at 

960 cm
-1 

(6 C-H for the trans-double bond).  All these data were 

similar in both Nujol and KBr.  In some spectra, including those of 
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both natural and synthetic ceramides, there was observed splitting of 

the amide I and amide II bands.  The spectrum for 14:0-De-d18:1 

(Fig. 17), which was run under the same conditions as those reproduced 

in Figs. 15 and 16, shows absorption at 1643 cm -1 , 1615 cm-1 , 1566 cm-1 , 

and 1544 cm
-1

. 

Diastereoisomeric HFA ceramides could be distinguished by noting 

the positions of the amide I and amide II bands, the intensity of the 

amide II overtone, and the shape of the combined N-H and 0-H stretch. 

Apart from these differences the spectra were much the same.  The 

amide I and amide II bands for the four isomers of (L+D)-h16:0-(e+t)- 

d18:0 are respectively 1645 cm
-1 

and 1545 cm
-1 

(L-e),1645 cm
-1 

and 

1530 cm  1620 cm  1545 cm-1 (D-e), and 1615 cm -1  and 

1545 cm
-1 

(D-t).  The amide II overtone at 3070 cm
-1 

was present only 

in the spectra for the e-derivatives. 

The spectra for 0-acyl sphingoids are characterised by sharp peaks 

for v 0-H, v N-H, v C=0, v C-0-C, and v C-0.  For example, 1-0-14:0- 

e-d18:1 absorbed at 3320 cm
-1 

plus 3250 cm
-1 

(v 0-H, v N-H), 1720 cm
-1 

(v C=0), 1600 cm  N-H), 1172 cm  C-0-C), 1032 cm  C-0, 

lowered from the usual position of 1100 cm
-1 

by a-unsaturation and 

a-branching), and 963 cm  C-H for the trans-double bond).  The 

presence of these compounds in ceramides are easily determined by the 

ester carbonyl stretch. 

(b) Sphingoid-oxazolines  

The IR spectra of isomeric sphingoid-oxazolines (in Nujol) are 

distinguished by the positions of their C=N and 0-H stretching modes, 

and the region between 1300 cm  1000 cm -1 .  With reference to 

Figs. 12 and 13 (p.92), of the four possible isomers only 

representatives of the oxazoline (I) gave a value of 1667 cm
-1 

for 
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v C=N (e.g. Figs. 18 and 19).  The other isomers (II, III, and IV) gave 

a lower value, 1656 cm
-1 

for v C=N (e.g. Fig. 20 for a representative 

of III), due to the decreased association with the hydroxyl hydrogen. 

Other workers
25

'
149 

have reported v C=N values of 1665 cm
11 

and 

1667 cm
-1 

for representatives of (II); in the former case
25

, 

isomerisation to (I) may have occurred, as was mentioned before (p.91). 

The position of v 0-H varies only slightly for each isomer, 

occurring between 3250 cm1 and 3200 cm
-1 

for the oxazolines derived 

from d18:0, and 3150 cm
-1 

for the oxazoline (I) derived from d18:1. 

Other workers 25  ' 149  have reported v 0-H values of 3460 cm 1  and 

3333 cm
-1 

for representatives of (II). 

The region between 1300 cm  1000 cm  the spectra of 

representatives of (I) show many sharp peaks, some of which are due 

to the C-0 and C-O-C stretching modes.  Oxazolidine ring systems have 

three IR bands between 1200 cm
-1 

and 1100 cm
-1 

characteristic of the 

O-C-N group15() ; frequencies higher than these could indicate a 

contribution from 0-C=N. 
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APPENDIX  1 

SPHINGOLIPIDS FROM THE MILK OF FRIESIAN COWS 

The methods for the isolation of the sphingomyelin and 

glycosylceramides from milk have been described in Chapter 1 (P.16); 

ceramides were isolated from the lipid fraction rich in these by 

preparative TLC.  Sphingomyelin and monoglycosylceramides were 

converted to ceramides 58 ' 92 , which were separated by TLC into two 

classes, NFA and HFA derivatives; the former were separated again by 

TLC on plates impregnated with borate into two fractions, one 

containing saturated sphingoids and the other unsaturated sphingoids
71

. 

All the ceramide fractions, and the diglycosylceramides, were 

hydrolysed
98

, and the methyl esters analysed by GLC by the method 

described in Chapter 1 (p.33).  The mixture of normal and hydroxy 

methyl esters from the diglycosylceramides were separated by TLC prior 

to analysis. 

The structures of the main glycosphingolipids of Friesian milk 

were shown to be glucosylceramides and lactosylceramides by 

comparison of their IR spectra with those of the glycosphingolipids 

from other milk samples
48,151 , and by TLC on plates impregnated with 

borate
152

.  The proportion of hydroxy fatty acids in these compounds 

was higher (6% w/w of the total) in whole Friesian milk than in 

buttermilk power (less than 1%) 153 ; sphinyomyelin contained less 

than 1% (w/w) of hydroxy fatty acids.  The fatty acid compositions 

of the sphingolipids are tabulated (Table 1), and the separation of 

the methyl esters derived from NFA sphingomyelins and HFA sphingo- 

myelins are illustrated (Figs. 1 and 2 respectively).  The 

principal acids, in decreasing order of importance, of NFA sphingo- 

lipids are 23:0, 24:0, 22:0, and 16:0, and of HFA sphingolipids are 23:0, 
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h23:0, h24:0, h22:0 and h16:0.  Such results have been observed by 

others for ceramides 103 , sphingomyelin154 ' 155 , glycosy1ceramides 93 ' 153 , 

and gangliosides
156

, all obtained from either buttermilk powder or 

Holstein cow milk.  The similarity in the composition of the 

sphingolipids suggests (a) that unsaturated sphingoids are derived 

from saturated sphingoids
157

, and (b) that ceramides may be a common 

precursor in their biosynthesis, although the ceramides may have been 

partly derived from the sphingomyelins by enzymatic hydrolysis". 



Table 1  

Fatty acid composition (weight %) of the major sphingolipids from the milk of Friesian cows 

Fatty acid Ceramide Sphingomyelin 

HFAa  

Glucosyl ceramide Lactosyl 	ceramide 

NFAa  NFAb  NFAc  NFAb  NFAc  HFAa  NFAa  HFAa  

12:0 0.5 0.1 trace 0.1 - - - 1.1 trace 

14:0 1.7 0.7 0.4 	, 1.9 1.2 0.3 1.9 5.9 1.4 

15:0 0.1 0.2 0.2 0.2 0.2 0.1 trace 0.4 0.1 

16:0 16.8 14.0 15.8 8.3 9.8 10.8 9.7 16.6 13.5 

16:1 0.1 0.2 0.1 - 0.3 ' 	0.1 - 0.5 - 

17:0 0.5 0.3 0.3 - 0.3 0.2 0.5 0.4 0.8 

18:0 3.6 2.9 2.2 3.9 2.8 1.3 3.8 10.4 4.2 

118:0 4.2 6.3 3.6 - 1.1 1.3 - 4.9 - 

18:1 1.6 0.2 0.2 0.2 - 0.5 0.1 

18:2 0.6 trace 0.1 - - - - - - 

19:0 0.3 0.8 0.4 0.6 0.4 0.2 trace 0.1 - 

20:0 0.6 1.6 1.0 1.6 1.8 0.8 2.3 2.2 1.2 

21:0 0.9 1.4 0.8 1.5 2.1 0.2 1.0 1.2 1.3 

21:1 trace 0.2 trace - 1.9 0.8 - - 

22:0 16.7 17.4 . 18.6 16.5 22.3 23.9 18.9 17.2 16.2 

22:1 0.2 2.0 0.3 - 2.1 1.0 - - - 



Table 1  (continued) 

23:0 23.5 23.4 24.3 32.0 25.9 29.8 34.7 19.5 24.8 

23:1 0.8 2.5 0.6 0.2 2.6 1.3 0.3 0.8 2.9 

24:0 17.7 14.6 19.9 17.9 18.9 21.5 19.0 15.6 23.8 

24:1 4.6 5.9 3.8 7.3 2.8 3.9 2.1 0.8 3.8 

25:0 2.6 3.0 2.1 3.8 1.7 0.9 2.4 1.0 1.5 

25:1 0.9 1.6 . 0.9 1.4 1.9 1.5 1.1 0.3 1.2 

• 26:0 0.5 0.6 0.5 1.3 2.1 1.0 1.3 0.4 1.7 

26:1 0.3 0.4 0.3 1.5 0.3 0.1 0.7 0.2 0.9 

• 27:0  • 0.1 0.4 • 0.2 0.1 0.5 0.2 0.2 0.2 0.1 

27:1 0.2 0.2 0.3 - 0.3 0.1 - 0.1 - 

28:0 0.2 0.8 . 0.1 0.1 0.9 0.3 0.2 0.1 - 

28:1 • 0.1 trace 0.2 - trace - - - 0.1 

Total 
unsaturates 9.5 13.8 7.0 10.6 12.3 8.9 4.3 4.2 8.9 

a) derivatives of total sphingoids.  b) derivatives of saturated sphingoids.  c) derivatives of unsaturated 
sphingoids. 
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Fig. 1.  GLC of the normal methyl esters derived from bovine milk 
sphingomyelin.  Operating conditions have been described in Ch. 1 (p.33). 
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APPENDIX 2  

SERUM LIPIDS IN WORKERS EXPOSED TO LEAD 

Blood sera from 68 male adults from the Electrolytic Zinc 

Company (Hobart, Tas.) were analysed for cholesterol, free ceramide, 

and monoglyceride, by the spectrodensitometric method described 

in Chapter 1 (p. 29).  The results are compared to those of 

normal adults not exposed to such industrial conditions (Table 1), 

and those of other normal surveys
79

.  The mean values for free 

cholesterol and total cholesterol are similar to the normal values, 

but ceramides and monoglycerides are present in higher concentration 

• in workers exposed to lead than in normals. These findings require 

further investigations which are outside the scope of this project; 

they appear in this thesis as an example of practical application of 

analytical methods treated in Chapter 1. • 



Table 1  

Serum lipids of industrial employees exposed to heavy metals, in particular, lead 

Number NFA Ceramides (mg %) Monoglycerides (mg %) Free 
Cholesterol  (mg %) 

Total 
Cholesterol  (mg %) 

Total/Free 
Cholesterol 

1 1.8 23 204 
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41 26 70 . 	274 
42 25 43 200 
43 25 78 267 
44 30 97 309 
45 .. 	30 92 252 
46 18 66 220 
47 22 74 236 
48 28 78 261 
49 38 64 210 
50 

CFI . 	15 103 290 
51 30 88 268 
52 25 78 192 
53 18 60 186 
54 40 92 242 
55 18 57 212 
56 30 92 304 
57 . 	18 55 208 

58 40 103 282 
59 25 66 193 
60 28 64 260 

61 38 70 268 
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62 1 8 50 202 4.0 

63 1.8 18 48 186 3.9 

64 3.0 11 87 209 2.4 

65 1 9 46 160 3.5 

66 1.8 30 66 202 3.1 

67 1 9 55 254 5.0 

68 1 7 66 212 3.2 

Mean ± ISO 3.6 ± 1.8 15.8 ± 10.5 67.3 ± 24.2 241 ± 42.2 3.6 ±  1.7 

Control 2.7 7 63 217 ' 3.4 



APPENDIX 3  

LIPOAMINO ACIDS 

Since amino acids were found in lipid extracts in the course 

of this work, compounds soluble in typical solvents for lipids, and 

in which a single amino acid or peptide was covalently linked either 

through the carboxyl or amino group to a neutral lipid moiety, were 

studied under this heading.  Proteolipids and lipopeptides158 , and 

aminoacylphosphatides of the kind found in bacteria 159 , and 

phosphatidyl serine, will be excluded. 

1.  Review  

Investigations of the lipids of tissues and microorganisms 

have not shown unequivocally the presence of lipoamino acids in all 

cases.  The formation of lipid-amino acid complexes has, however, 

been reporced in cellular preparations, such as hen oviduct mince'
60,161 

 

In general, the complex has bean demonstrated after addition of 

• radioactive amino acid to the cell preparation, in a medium of 

supporting metabolism, by the measurement of radioactivity in a crude 

or purified fraction extracted with lipid solvents, and the subsequent 

recovery of the unchanged amino acid after hydrolysis.  It was found 

that the complexes could be separated into discrete fractions by 

countercurrent distribution and column chromatography.  Furthermore, 

the non-polar lipid fraction eluted from silicic acid with benzene 

contained virtually no radioactivity; this argues against the 

participitation of neutral lipids in the complexes; it was suggested 

that neutral lipids containing amino acids might well behave like 

polar lipids 160 . 
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The constituent lipids of whole human blood have been examined 

by chromatography on columns of silicic acid
162

.  All lipid fractions, 

with the exception of the least polar fractions (cholesterol esters 

and triglycerides) liberated amino acids on hydrolysis.  In a later 

paper by the same author, it was concluded that some lipid-amino acid 

complexes are artefacts formed in vitro from endogenous amino acids, 

but that others do exist in vivo
163

. 

The nature of the bonding between the amino acids and the lipids 

has been investigated
164

.  To determine whether the carboxyl groups 

of the amino acids were covalently linked to the lipids by ester bonds, 

the reaction of various lipid-amino acid complexes with hydroxylamine 

were studied; the presence of both ester and possibly amide bonding 

was established.  The presence of N-acylamino acids in skin has been 

suggested, but not proven
165

. 

2.  Evidence for the existence of lipoamino acids  

Proof for the existence of natural lipoamino acids could not be 

found by the use of TLC alone, although this technique did provide 

some evidence.  For example, plates'overloaded with natural lipids 

and then developed to separate the neutral ones gave some very faint 

positive ninhydrin reactions around cholesterol.  The degree of 

reaction increased when the plates were sprayed with hydrochloric acid 

after development, heated for 30 minutes at 120 0 , and then sprayed 

with ninhydrin. 

Stronger evidence was found by the use of GLC.  The neutral 

lipid fractions (cholesterol esters, triglycerides, and cholesterol) 

and fatty acids of blood plasma (heart disease cases) were isolated 

by TLC, and treated with 6N hydrochloric acid overnight at 110°. The 
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lipid residues were removed by extraction with chloroform, and the 

aqueous phase filtered and evaporated to dryness.  TLC was found 

inadequate for identifying the amino acids in the residue
166

, and GLC, 

especially the method of Gehrke et. al.
87

, was routinely used (p.37). 

The compositions of the lipid-bound amino acids were compared with 

those of the free amino acids of the plasma samples.  There seemed to 

be no apparent order in the amino acid patterns of any of the lipid 

extracts, but the relative concentrations of some lipid-bound amino 

• acids differed greatly from those of the free amino acids (Table 1). 

This is an indication that the amino acids are not present in lipids 

. simply as artefacts, although the lipids may act as better solvents for 

the higher molecular weight species. 

Table 1  

Relative ratios of some free and lipid-bound amino acids in plasma. 

Lipid class Amino acid ratios 

Ly s/Try 
Tyr

/His 
Gly + Ala 
leu + ileu 

free amino acids 1  - 1 1 

cholesterol  esters 0.66 1.45 10.98 

cholesterol 0.26 0.88 12.72 

triglyceri 4 es 0.51 0.42 1.56 

fatty acids - 0.23 3.64 
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3.  The synthesis of lipoamino acids  

(a) Cholestanol and cholesterol esters of amino acids  

The preparation of cholestanol esters of neutral, non-hydroxy 

amino acids was carried out essentially by a method described by 

others, that of direct fusion of cholestanol with the amino acid in 

the presence of dry hydrogen chloride
167

.  The product was dissolved 

in chloroform, and ammonia added to liberate the free ester from its 

salt.  The ammonium chloride was washed out with water, the solvent 

removed, and the ester recrystallized from ethanol.  Some of the 

compounds prepared are tabulated (Table 2). 

Cholesterol esters of amino acids could not be synthesised by 

direct fusion, and the following method was used.  Cholesterol (1 mmole), 

N-phthaloyl DL-alanyl chloride
168,169 

(1 mole) and triethylamine (1.45 

mole) were fused at 150 0  under nitrogen to give a high yield (70-80%) of 

cholesterol N-phthaloyl DL-alaninate (no product was formed when the 

reaction was carried out in pyridine).  Recrystallization from ethanol 

afforded 300 mg of white crystals, m.p. 137-138°, and which gave a single 

spot (Rf  0.7) on a TLC plate developed with chloroform-methanol (98:2). 

The phthaloyl derivative (200 mg) was refluxed for one hour with 

hydrazine (0.3 mole) in ethanol (30 ml), without appreciably affecting 

the ester bond.  The phthaloyl hydrazide was removed, and the crude 

cholesterol DL-alaninate (120 mg) purified by TLC (developing solvent, 

chloroform-methanol (93:7)).  The derivative was found difficult to 

obtain free of contaminating cholesterol and starting material, either 

by TLC, column chromatography, or crystallization.  However, the 

• hydrochloride salt (m.p. 232° (dec.)) could be isolated after treating 

an ethanolic solution of the free amine with 6 N hydrochloric acid. 

This compound was stable under normal laboratory conditions, but the 



Table 2  

Cholestanol and cholesterol esters of amino acids a  

No. Compound Name  
' M.p.° Yield % R

f 
value

b 
Formulae 

C% 
Found 
(Calcd.) 

H% 
Found 
(Calcd.) 

N% 
Found 
(Calcd. 

cholestanol  glycinate HC1 c  245-6 48 0.45 
(dec.) 

cholestanol glycinate c  178-180 47 0.45 

3 cholestanol alaninate HC1 c 'd  238 66 0.62 C30H 5402NC1 71.6 11.0 2.8 
(dec.) (72.6) (11.0) (2.8) 

4 cholestanol  alaninatec ' e  120 68 0.62 C30H 530 2N 78.2 11.6 3.0 
(78.4) (11.6) (3.0) 

5 cholesterol alaninate HCl f  138 30 0.62 C30H 5202 NC1 72.6 10.6 2.7 
(73.6) (10.8) (2.8) 

6 cholestanol  prolinate HC1 224-7 65 0.49 C 31 H 570 2NC1 72.7 10.7 2.5 
(dec.) (73.6) (10.8) (2.7) 

7 cholestanol  prolinate 133-5 64 0.49 C 31 H 560 2N 79.2 11.4 2.9 
(79.1) (11.4) (2.9) 

8 cholestanol  phenylalaninate HC1 226-8 42 0.74 C35H 580 2NC1 74.8 10.1 2.4 
(dec.) (75.5) (10.2) (2.5) 

9 cholestanol  glycylleucinate 98-100 32 0.35 C35 H 61 03 N 2 75.9 10.9 4.5 
(75.4) (11.0) (5.0) 

a) New compounds are underlined. 
cholesterol or cholestanol, 0.68. 
e) No analytical data gi.;en 167 . 

b) Developing solvent, CHC13-CC14-CH30H-H20 (50:50:10:0.5); Rf value for 
c) Higher yields obtained here than rePorted 167 .  d) Reported M.p. 258° ( dec.) 16  

f) Analysis for Cl, Found 7.4; Calcd. 7.2. 
7 • 



Table 3  

N-acylamino acids and N-acylpeptides, and derivatives related to glyceryl esters of amino acids a  

No. Compound Name M.p.° Yield % R  value
b 

f 
Formulae 

C% 
Found 
(Calcd.) 

H% 
Found 
(Calcd.) 

N% 
Found 
(Calcd.) 

1 

2 

3 

5 

6 

N-stearoyl DL-alaninec  

N-stearoyl DL-threonine 

N-stearoyl DL-glycylleucine
d 

1-(N-phthaloyl  DL-alany1)- 
2,3-propenoate 

1-(N-phthaloyl  DL-alany1)- 
2,3-epoxypropane 

1-(N-phthaloyl  DL-alany1)- 
propane-2,3-diole 

109-110 

82-6 

103-5 

38.5 

61-3 

- 

84 

79 

65 

89 

73 

45 

0.76 

0.69 

0.78 C26H5004N 2 

C
14

H1304N 

C
14

H 130 5N 

C14 H150 6N 

67.2 
(67.7) 

64.8 
(64.9) 

61.4 
(61.1) 

56.4 
(57.3) 

11.1 
(11.1) 

5.1 
((5.1) 

5.1 
(4.8) 

5.6 
(5.2) 

6.3 
(6.2) 

5.6 
(5.4) 

5.3 
(5.1) 

4.7 
(4.8) 

a) All compounds, with the exception of No. 1, are new.  b) Developing solvent,CHC13CH3OH-H20 (65:25:4); the N-acyl 
derivatives move with cerebrosides.  c) This compound has the same properties as the active one reported, 1.e. 

N-stearoyl L-alanine170 .  d) The IR spectrum shows absorption at 3335 cm -1  and 3310 cm -I (v N-H), 1735 cm - I (v C=0), 
1650 cm-1  and 1618 cm -1  (amide I), 1544 cm' and 1513 cm' (amide II), and 1263 cm - I and 1245 cm' (amide III). 
e) This compound could not be induced to crystallize. 
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free amine deteriorated over several weeks in cold chloroform. 

(b) N-acylamino acids  

N-acylamino acids and N-acylpeptides were synthesised by the 

method of Suyama et al.
170

, and purified by recrystallization from 

chloroform or hexane-chloroform mixtures.  The IR spectra of the 

compounds tested have a band at 3310 cm
-1 

(v N-H), which would probably 

be characteristic of all N-acylamino acids except the basic ones. 

The positions of the bands due to the ester and amide groups vary. 

Some of the compounds tested have been analysed (Table 3, Nos. 1 to 3). 

(c) Glyceryl esters of amino acids  

The preparation of glyceryl esters of neutral, non-hydroxy amino 

acids was not possible by direct fusion methods.  The reaction 

between a-monostearin and alanine in the presence of dry hydrogen 

chloride produced mainly distearin and glycerol.  A reaction scheme 

similar to that for the production of cholesterol esters of amino 

acids was attempted, but the final step of removing the phthaloyl . 

group with hydrazine, either hot or cold, resulted in the destruction 

of the ester bond.  However, some new compounds were prepared (Table 

3, Nos. 4 to 6) which may be useful for further work of this nature. 

( 1) 1-(N-phthaloyl DL-alany1)-2,3-propenoate  

N-phthaloyl DL-alanyl chloride (10.6 g), allyl alcohol (35 ml, 

a 0.25 M excess), and pyridine (30 ml) were refluxed under nitrogen 

for 1 hour, cooled, and the solution poured into an ice-cold saturated 

sodium bicarbonate solution (100 ml) with vigorous stirring.  A light 

yellow oil settled out, which was extracted into ether (2 x 100 ml), 
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washed with water and 10% sodium chloride solution, and dried over 

anhydrous sodium sulphate.  The ether was removed under reduced 

pressure, and the residual oil dissolved in a minimum volume of hot 

petroleum ether (60-80).  On cooling, a colourless oil reprecipitated, 

which was crystallized by shaking vigorously in an ice-salt bath. 

The white product obtained was chromatographically pure, and showed the _ 
desired spectral characteristics. 

(ii)1-(N-phthaloyl DL-alany1)-propane-2,3-diol  

Hydroxylation of the double bond in the ester (i) was carried out 

in hot hydrogen peroxide-acetic acid, a method which has been used 

successfully both with and without a catalyst for the hydroxylation of 

allyl alcohol
171 

 .  The allyl ester (4 mole) was dissolved in glacial 

acetic acid (4 ml), hydrogen peroxide (8 mole) added and the solution 

heated on a water bath at 80° for two days.  Practically all of the 

allyl ester had reacted after this time, as judged by TLC, and two 

products of Rf  values 0.30 and 0.60 (developing solvent, CHC1 3 -CH3OH 

(92:8)) were separated.  Both compounds were colourless viscous liquids 

which could not be induced to crystallize.  The product corresponding 

•to R
f 

0.30 was shown spectrally to be 1-(N-phthaloyl DL-alany1)- 

glycerol (yield 0.53 g) and it gave a positive periodate-Schiff's 

reaction on the plate indicating the 1,2-diol group
76

.  The product 

corresponding to R f  0.60 (yield 0.4 g) gave a negative periodate-

Schiff's test, and was determined to be an acetate (formed probably 

during the reaction via the ion, R-C-0-CH 2-CH-CH 2 ) by analysis of its 

\0/  
•+ 

spectra, e.g. a methyl singlet at 7.9 T in the NMR spectrum and a 

sharp OH stretch in the IR spectrum (3470 cm-1). 
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A second method for hydroxylation was carried out on a small 

scale using osmium tetroxide 172 ; in this case the acetate was not 

formed, and TLC indicated the major reaction product the same as 

above. 

(iii) 1-(N-phthaloyl DL-alany1)-2,3-epoxypropane  

Epoxidation of the double bond in the ester (i) was carried out 

with m-chloroperbenzoic acid
173

.  The allyl ester (0.01 mole) and 

metachloroperbenzoic acid (2.5 g of 83%) in dichloromethane (30 ml) 

were stirred overnight at room temperature (21°).  Titration of an 

aliquot with standard sodium thiosulphate solution indicated 35% 

reaction.  A little catalyst was now added (18 pl of trifluoroacetic 

acid), the temperature raised to 27°, and the reaction allowed to 

continue for three days.  After this time 70-80% reaction had occurred. 

The excess peracid was destroyed with sodium sulphite (0.76 g) and the 

epoxide freed from m-chlorobenzoic acid by washing with 5% sodium 

bicarbonate solution, followed by 10% sodium chloride solution and 

finally water.  The solvent was evaporated, and the residual oil 

crystallized from petroleum ether (60-80)-ethyl ether (9:1) at -10°.  . 

It showed one TLC spot only, gave a positive periodate-Schiff's test, 

and its spectra indicated the epoxide. 

(d) N-aminoacyl sphingoids  

N-phthaloyl DL-alanyl chloride (1 mmole), DL(e+t)-d18:0 (1 mmole) 

and triethylamine (160 pl) in dimethylformamide (2 ml) were allowed to 

stand overnight at room temperature.  Ether (200 ml) Was added, the 

mixture washed with water, and the solvent removed under reduced 

pressure.  N-phthaloyl DL-alanyl-DL(e+t)-d18:0, m.p. 98-104 ° , was 

isolated by preparative TLC (developing solvent, chloroform-methanol 
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(9:1)) in 80% yield.  The phthaloyl group was removed by treatment 

with hydrazine (0.8 mmole) in alcohol (3 ml) at 40 0 
 for two days. 

The diastereoisomeric mixtures, L-alanyl-DL(e+t)-d18:0, and D-alanyl-

DL(e+t)-d18:0, were isolated from the reaction mixture by TLC 

(developing solvent, chloroform-methanol (3:1) ;  yield, 28% of each); 

the Rf 
values were 0.35 and 0.27 respectively.  Their structures 

were confirmed by TLC comparison with the products derived from either 

L- or D-alanine, and by IR spectroscopy (3280 cm -1 , 3080 cm-1 , 1642 cm-1 , 

-1  -1 
1255 cm, 1075 cm, and vibrations due to C-H for both compounds; 

the L- and D-isomers were distinguished by adsorption at 1525 cm 

-1 
1550 cm  respectively).  On TLC plates impregnated with borate, 

compounds containing e-d18:0 were separated from those containing 

t-d18:0. 

The compound, DL-alanyl-De-d18:1, prepared by the above method 

on a smaller scale, gave similar chromatographic and spectral 

properties as described for the saturated analogues. 
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