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Abstract 

This thesis investigates patterns of soil contamination and natural 

colonisation in an area deforested by a long-established, but 

decommissioned, copper smelter at Mount Lye11 in western Tasmania. 

The rehabilitation of this area is investigated by modifying colonisation 

and species performance in relation to edaphic factors in accordance with 

succession management models. 

The distribution of soluble metals in soils along transects of increasing, 

downwind displacement from the smelter stacks provided evidence of 

Cu/Zn contamination and Al mobilization. A higher than expected soil 

pH suggested a partial reversal of the process of soil acidification by SO 2  

deposition. This may, in part, explain relatively low, near-smelter 

contamination levels at Mount Lye11 in comparison to similar sites in the 

vicinity of smelters of world-renown. Nevertheless, colonising species 

grown in Mount Lye11 soils exhibited severe growth abnormalities and 

these were linked to elevated water-extractable metal concentrations. 

A survey of the vascular flora, and multivariate analysis, were used to 

describe the composition and distribution of vegetation colonising the 

denuded western slopes of Mount Lye11. Compositional trends were explored 

in relation to edaphic factors by vector fitting, and a numerical classification 

of survey sites was used to group sites by characterising species coincidences. 

The classification was used to describe and map spatially distinct colonising 

communities that differed demonstrably in their tolerance to the phytotoxic 

metals present in the soils. Species with differential tolerances to the 

contaminants were identified. The naturalised, exotic grass Agrostis 
capillaris, was a wide-spread, metal-tolerant colonising species. In contrast, 



many local trees and shrubs were intolerant of the extreme site conditions. 

A strong spatial correspondence was evident between the colonising 

communities and contamination patterns in the vicinity of the smelter 

installations. 

Rehabilitation methods for severely eroded sites adjacent to the original 

smelters were investigated. Emphasis was placed on broadcast sowing as a 

means of native species re-introduction. A novel, non-destructive, 

mechanical seedbed preparation method was compared to a conventional 

method and was found to provide comparable seedling establishment. 

Low impact, seedbed preparation and application methods for steep, eroded 

slopes were also compared and dissimilar methods were found to enhance 

the establishment of colonising Acacia species. The ameliorative effects of 

field applications of lime on the growth of colonising seedlings were 

evaluated. 

The reclamation of Mount Lye11 is discussed with reference to patterns of 

natural colonisation. 
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Photo of the Queen River valley depicting the site of the Mount Lye11 
Mining Company blast furnaces c1899. The deforested lower slopes of 
Mount Lye11 can be seen  in  the hinterground. 



Aerial photograph of Mount Lye!! in 1991. Queenstown is situated in the 
lower-middle of the photograph. The West Lye11 open cut and the western 
slopes of Mount Lye11 are located in the centre and centre-top of the 
photograph, respectively. 



Ch.1/Introduction 

Chapter 1 

The climate, geology and vegetation of Mount Lye!!, the legacy of 

environmental impacts as a result of copper mining and smelting and 

the aims and structure of this thesis 

1.1 Introduction 

Mining began in prehistory as a means of supply of unrefined minerals. Some 

minerals later developed trade value and were greatly sought. In special cases, 

such as that of salt, minerals assumed a value equal to that of currency. 

Subsequently, world population growth, trade and the recognition of new 

materials, ensured that the demand for minerals, and therefore mining, would 

expand to most areas of the world. 

Mining activities, whether surface or deep, have often resulted in significant, 

and sometimes spectacular, alterations to a landscape (Bradshaw, 1992). 

Generally, the significance of these alterations grew in line with demand and 

the technology-limited scale of the extraction procedure. However, until very 

recent times concern over permanent, or semi-permanent, alterations to the 

appearance of landscapes, or the function of their ecosystems, rarely arose. 

Extraction took place until an ore body was exhausted (Bradshaw, 1992), access 

became difficult or the market collapsed. Thereafter, a mine was simply 

abandoned. There were no contingency plans, for example, for mine closure 

and site rehabilitation. 
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Chi/Introduction 

In terms of the history of mining, the development of a copper mine at 

Mount Lye11 late last century is recent. Never the less, the initial mining 

methods employed were very much pre-20th century (Blainey, 1993); driven 

by man, horse or crude steam power; and the mining ethos that of the pioneer 

and the then, none too distant, Australian gold rush. In this age, when forests 

were set alight in order to aid prospecting and overburden left where it fell, 

the maintenance of environmental quality was not an issue (Blainey, 1993). 

Indeed, control over the environment, even where it produced tangible 

degradation, such as air or water pollution, was accepted and considered a 

necessary sign of progress. 

Mount Lye11 was the subject of unrestrained exploitation for copper. One 

company, the Mount Lye11 Mining and Railway Company (MLMRC), formed 

in 1893, was to dominate the development of the site. The environmental 

impact that this exploitation was to have, much of it unrecognised in the 

early years, was visually complete around 1900 (Mount Lye11 Company 

Museum). In the space of a decade, eucalypt forest and rainforest vegetation 

on the mountain had been reduced to an eroded graveyard of blackened stumps, 

bathed in the acrid fumes of a then new, pyritic-smelter works (Blainey, 1993). 

These developments occurred before environmentalism, and later 

formalisations such as environmental impact assessments, pollution control 

regulations and mine closure plans became publicly accepted, and legitimate 

and unavoidable concerns of the mining industry. 

In 1990, the Mount Lye11 Mining and Railway Company (MLMRC), in 

recognition of major environmental concerns, decided to address some of 

the historic, environmental legacies of one hundred years of copper prospecting, 

2 



Ch.1/Introduction 

extraction and smelting at Mount Lye11 (Falkner, pers. comm.). The Company 

formed an Environmental Department which - among a raft of serious 

environmental problems, some of which appeared technically, let alone 

financially, insoluble, such as acid mine drainage emanating from innumerable 

mapped and unmapped drains, fissures and addits throughout the mining 

lease - undertook to redress the most visually apparent environmental legacy 

of mining at Mount Lye11; the denuded hillsides surrounding the mine and 

smelter site. These hills were known locally as the 'Queenstown Desert'. 

The present study formed a part of the MLMRC's environmental program. 

The intention of this part of the program was to provide a research-based 

platform on which the revegetation of the denuded hills could be based. 

Consequently, this thesis was directed towards an understanding of the 

vegetation re-colonising Mount Lye11 and developing means to accelerate 

revegetation. 

1.2 Location, climate and geology 

1.21 Location and climate 

Mount Lye11 is located 39 kilometres inland from the west coast of Tasmania 

and a few kilometres to the north east of the present-day, mining township of 

Queenstown (Fig.1). The mountain separates the catchments of the King River, 

to the east, from the Queen River to the west. The summit is reached at 917 

m. The majority of mine workings are found in the Queen River catchment, 

on the western face of Mount Lye11, between the 160 m (Queen River) and 550 

m contours (Fig. 2). 
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Ch.lfintroduction 

The temperate maritime climate of the west coast of Tasmania results in a 

climate at Mount Lye11 that is humid with cold winters and mild summers. 

The warmest month is February and the coldest July. Snow can fall on the 

mountain in any month above approximately 600 m, but there is no permanent 

snowline. The nearby town of Queenstown (Lat. 42° 06' S, Long. 145° 33' E), at 

an altitude of 129 m above sea level, has mean daily maximum temperatures 

of 22.0 and 11.6 °C in Feburary and July, respectively (Bureau of Meteorology, 

Hobart). The equivalent mean daily minimum temperatures are 12 and 2 °C. 

The town has a long-term, mean annual rainfall of 2517 mm per annum. 

This increases to approximately 3500 mm with altitude. Rainfall is relatively 

evenly spread throughout the year (240 days/year) with a Feburary minimum 

(121 mm) and an August maximum (263 mm). Evaporation may exceed rainfall 

for only one or two months per year. 

1.22 Regional geology 

The Dundas Trough is a sedimentary and volcanic region which extends, 

over a 20-30 km wide strike for 250 km from Elliot Bay, south of Macquarie 

Harbour, to Deloraine in the north of the State (Green, 1990). Situated near 

the southern end of this unit is the Cambrian-aged, Mount Read Volcanic 

belt. This is a sequence composed of silicic lavas, volcaniclastics, massive flow 

breccias and minor intrusives and dykes (Mount Lye11 Technical Review, 

1993; Solomon, 1989). Sedimentary lenses occur within the formation. 

A major north-south fault, the Henty, divides the Volcanic sequence into two 

distinct stratigraphic zones. To the north and west of the fault zone is the 
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Ch.lfintroduction 

Central Volcanic Complex, itself overlain by the mainly andesitic Dundas 

Group. To the east and south, composed of feldspar-phryic rhyolitic volcanics, 

is the South Central Volcanic Complex, and the volcano-sedimentry Western 

Sequence. These latter units are overlain by the Tyndall Group, a sequence of 

quartz and feldspar-phryic lavas and pyroclastics (Mount Lye11 Technical 

Review, 1993). Mount Lyell, and the area contained within the MLMRC lease, 

are situated within the South Central Volcanic Complex. 

1.23 The geology of Mount Lye!! 

The geology of Mount Lyell lease is characterised by the contact of two dissimilar 

surface geologies. The central and eastern areas of the mountain are part of 

the Owen Conglomerates of Ordivician origin. These conglomerates consist 

of fine to very coarse siliclastics of mixed fluvial and marine facies (Mount 

Lyell Technical Review, 1993). The presence of haemitite gives a distinctive 

pink colouration to much of the unit. A fault, the Great Lyell, running 

approximately north-south along the western flank of Mount Lyell, divides 

the conglomerates from the Mount Read Volcanic sequence. The majority of 

economic deposits have been found adjacent to this fault zone. 

Metamorphism, and associated faulting and folding, occurred in the Great 

Lyell fault zone during the Tabberabberan Orogeny of the Middle Devonian 

(Mount Lyell Technical Review, 1993; Wade and Solomon, 1958). Ore deposition 

took place toward the end of this period of alteration (Wade and Solomon, 

1958). Since the late 1960's, most geologists have accepted the deposits as 

subaqueous-exhalative in origin (Mount Lyell Technical Review, 1993). 

7 
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1.24 Mine mineralogy 

The mineral deposits occur in the zone of alteration entirely within the Mount 

Read Volcanic sequence (Solomon, 1989, Corbett, 1981; Solomon and Elms, 

1965; Wade and Solomon, 1958). Schistose pyroclastics, composed mainly of 

quartz, sericite, chlorite and siderite are host to the deposits. These host rocks 

are known locally as 'felsic volcanics'. Units of 'intermediate-mafic' and 'mafic' 

volcanics occur throughout the felsic sequence. 

The felsic volcanics consist of fine grained quartz chlorite-sericite rocks. They 

are variably haemitite-pink to grey in colour. In thin section, the ground mass 

consists predominately of fine-grained, mosaic textured quartz crossed by a 

network of sericite±chlorite (Mount Lye11 Technical Review, 1993). Pyrite, 

chalcopyrite, magnetite, monazite and apatite occur as accessory minerals. 

The intermediate-mafic and mafic volcanics consist of fine-grained, dark green 

to grey, chloritic-sericitic-quartz schists. Trace element geochemistry suggests 

that these are intensely altered andesitic to basaltic volcanics (Mount Lye11 

Technical Review, 1993). In thin section these rocks are composed of intergrown 

chlorite and sericite with disseminated quartz, accessory pyrite, magnitite, 

haematite, monazite and apatite. 

The mineral deposits occur as iron and copper sulphides in three main 

combinations; massive pyrite (Fe SO-chalcopyrite (Cu Fe S 2), disseminated 

pyrite - chalcopyrite and chalcopyrite-bornite (Cu 5  Fe S4; Solomon, 1989; Corbett, 

1981; Solomon and Elms, 1965). The smaller, massive pyrite-chalcopyrite 

deposits, as found at the Blow, occurred near the top of the mine sequence at 
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relatively high grades. Disseminated chalocpyrite was located stratigraphically 

beneath the massive sulphide. This larger, lower grade deposit (0.72-2.38% 

Cu), accounted for approximately 86% of the total ore deposits (Mount Lye11 

Technical Review, 1993). By 1994, 111 million tonnes of this ore deposit, mostly 

from the West Lye11 open cut and the Prince Lye11 underground mines, had 

been extracted. 

1.3 Vegetation 

1.31 Tasmanian rainforest classification 

The modern form of rainforest in Tasmania is distinct from the other three 

rainforest types represented in Australia and is described as cool temperate. 

The accepted definition is that of forest dominated by members of a small 

suite of 'Antarctic flora' tree species. Jarman and Brown (1983), add that the 

members of this small group do not require disturbance for regeneration. It 

exists principally in the western and central areas of the State where it reaches 

its greatest extent and diversity. 

Within Tasmanian rainforest, two main floristic groups are recognised; the 

Myrtle-Beech alliance, dominated by hardwood and conifer species from the 

genera Nothofagus, Eucryphia, Atherosperma, Athro taxis, Lagarostrobus, 
Phyllocladus and/or Diselma; and the less extensive, Pencil Pine alliance, 

dominated by Athro taxis cupressoides (Jarman et al., 1984). The Myrtle alliance, 

which occurs from the lowlands to about 1000 m (Jarman et al., 1991), is 

dominated by the species Not hofagus cunninghamii on optimal sites (Read, 

1991). It is comprised of three sub-alliances which form a floristic and structural 
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continuum; namely, callidendrous, thamnic and implicate (Jarman et a/., 1991). 

These names are without ecological conotation and were chosen to reflect the 

physiognomy of the groups. These authors recognised further division in 

each sub-alliance by understory type. 

1.32 Aspects of rainforest succession 

Succession in Tasmanian rainforest is believed to be controlled by climate, 

soil fertility and fire (Jackson, 1968; Macphail, 1991). The relative importance 

of each factor is dependent on time and geographic scale. Accordingly, climate, 

and to a lesser extent soil fertility, is understood to affect rainforest composition 

and, ultimately, its regional range, over the long term. Conversely, fire is 

capable of altering the composition and range of rainforest in the short term. 

Tasmanian rainforest is believed to have developed from early post-glacial 

'alpine' scrub some 10 000 - 11 000 years ago. Pollen records indicate that the 

composition of this scrub was dominated by a Nothofagus, Phyllocladus and 

Eucalyptus association (Macphail, 1991). Records for the intervening, warm 

interglacial period to the present day, collated from a variety of sites around 

Tasmania, indicate that the relative proportions of major rainforest species 

shifted in both time and space, resulting in a succession of rainforest associations. 

Based on his understanding of the pollen record for Tasmania, Macphail 

(1991) concluded that there is not, and is unlikely to be, a stable, floristic entity 

in Tasmania called temperate rainforest. 

Support for the role of soil fertility in rainforest succession comes from Jarman 

et al. (1991). These authors, in an examination of floristic data from western 
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Tasmanian rainforest sites, concluded that within a climatic region, geology, 

through its effect on soil fertility, is the most important determinant of 

variability in rainforests at the level of the three major sub-alliances. They 

found that fertile sites overwhelmingly supported structurally and floristically 

simple, Myrtle-dominated, callidendrous forest while, conversely, less fertile 

sites supported thamnic or implicate communities. These findings were in 

accordance with those of Jackson (1968) and Kirkpatrick (1977), who reported 

that the infertile soils of west and south-west Tasmania supported a 

comparatively complex rainforest community dominated by Myrtle 

(Nothofagus cunninghamii), and Sassafras (Atherosperma moschatum) with 

Leatherwood (Eucryphia lucida) and Celery Top pine (Phyllocladus 

asplenizfolius). 

1.33 Fire frequency and its influence on the communities of western Tasmania 

In comparison to the effects of climate and soil fertility, fire is capable of 

altering the composition and range of Tasmanian rainforest in the short term. 

This is due to the relative lack of adaptations to fire displayed by each member 

of the small group that characterises the rainforest (Jackson, 1968). Whereas a 

mean fire frequency of about 400 years maintains Tasmanian rainforest 

(Duncan, 1991), and allows for the successional development of the climax 

sub-alliances described by Jarman et al. (1991), increased fire frequencies result 

in rainforest replacement or their confinement to fire shadows. Jackson (1968) 

estimated that rainforest occupies only 23% of its potential range in Tasmania. 

Elsewhere, fire is believed to maintain the presence of fire-sensitive or fire-

dependent vegetation (Jarman et al., 1982; Brown and Podger, 1982; Bowman 

and Jackson 1981; Kirkpatrick, 1977; Jackson, 1968). Fire-dependent vegetation 
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of this type has been described as being composed of fire disclimax communities 

(Kirkpatrick, pers comm.). 

In general, fire disclimax communities occur when the mean fire interval is 

reduced below that required by the dominant rainforest species to attain sexual 

maturity. Where rainforest is excluded, typical fire-dependent communities 

develop and their composition is strongly related to the interval between 

fires. A single fire-event in low altitude forest can result in a temporary increase 

in species richness with the invasion of wind dispersed shrubs and species 

from adjacent vegetation types (Kirkpatrick, 1977). Subsequent events result 

in typical, fire-dependent communities. In western Tasmania, rainforest has 

been replaced over much of its range by eucalypt forest, scrubland and sedgeland; 

the most frequently burnt, lowland areas being occupied by heathy sedgeland 

(Kirkpatrick, 1977). These communities, some containing residual or regrowth 

rainforest species, are themselves understood to be successionally related 

(Duncan, 1991; Brown and Podger, 1982; Kirkpatrick, 1977). For example, 

sedgeland maintained by fire on sites suitable for rainforest, may form scrubland 

when woody species re-invade forming a closed canopy (Duncan, 1991). In the 

absence of fire scrubland may in turn be invaded by rainforest species. Where 

subsequent fires occur, Eucalyptus species may invade. 

Prehistorical evidence of the effect of fire upon rainforest communities can be 

also found in the pollen record. Based on species disappearances from the 

record, Macphail (1991), presents an Holocene example of the extinction of 

Tasmanian endemic conifers and Nothofagus gunnii under an increasing 

fire frequency. The author concludes that local extinction of rainforest species 

and their replacement by a button-grass sedgeland (Gymnoschoenus 
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sphaerocephalus), at a high altitude cirque in the Denison Ranges, is 

symptomatic of the species susceptibility to closely-spaced wildfires. 

1.34 King Billy pine and the vegetation of Mount Lye11 prior to the arrival of 

the Europeans 

King Billy Pine can be found in all three Tasmanian rainforest sub-alliances - 

callidendrous, thamnic and implicate (Jarman et al., 1984; Jarman et al., 1991) - 

as a co-dominant of tall forest with Nothofagus cunninghamii, and 

Atherosperma moschatum over a fern understory (callidendrous), a dominant 

or co-dominant with Phyllocladus aspleniifolius, and Eucryphia spp. over 

typical understory species Agastachys odorata and Richea pandanifolia 

(implicate) and a dominant in low forest with Nothofagus cunninghamii, 

Atherosperma moschatum and Phyllocladus asplenifolius over Agastachys 

odorata (implicate). The species is also found in montane forest where, at 

altitude, it forms low forest with A. cupresssoides over Nothofagus gunnii 

and Richea pandanifolia. 

Evidence of the composition of the pre-European forest at Mount Lyell comes 

from a variety of sources; relict, photographic and written. In 1895, a two-furnace 

smelter and ore processing facilities were constructed on a terrace of the Queen 

river just north of the present day town of Queenstown. Photographs of the 

construction and early operation of the installations take in the pre-European 

vegetation of the lower (between 200 to 300 m in altitude), western slopes of 

Mount Lyell prior to clearance (Mount Lyell Company Museum). Although 

the photographs are not distinct to species level, they depict rainforest and 

mixed-forest; the latter over-topped by eucalypt emergents. The emergent trees, 
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confined mainly to the spurs, were probably Smithton Peppermint (E. nitida) 
or Messmate (E. obliqua). The former is a widespread Tasmanian endemic 

referred to in Mount Lyell's historical records (Blainey, 1993). Mixed forest of 

this type is maintained at fire frequencies between 100-400 years (Duncan, 

1991). Blackwood (A. melanoxylon) was probably present as an understory 

species on fire prone sites. In the wetter drainage lines, the photographs record 

the presence of rainforest. Nothofagus cunninghamii, Atherosperma 
moschatum and Eucryphia lucida were undoubtedly present as canopy 

dominants. 

On the middle slopes of the Mountain (250 to 600 m), most notably on its 

western face, the presence of numerous King Billy pine stumps (Athrotaxis 
selaginoides), representing a range of size classes, attest to the significance of 

this species in the pre-European forest. The presence of this fire-sensitive 

species indicates that fire had been absent from the middle slopes of Mount 

Lye11 for some centuries prior to the arrival of European man. King Billy pine 

probably occurred as a dominant or co-dominant component of implicate 

rainforest. Likely co-dominant species at this altitude are Sassafras 

(Atherosperma moschatum), Myrtle (Nothofagus cunninghamii) and Celery 

Top pine (Phyllocladus aspleniifolius). The early prospectors are recorded as 

having fashioned sluice boxes from the former in the vicinity of the Iron 

Blow (Blainey, 1993). Blackwood (Acacia melanoxylon) was probably locally 

abundant in exposed, fire-prone sites. 

On the upper slopes of Mount Lye11 (above 650 m), King Billy pine is likely to 

have dominated low, montane forest. Remnants of this forest type, including 

King Billy pine stags, persist on Mount Lye11 today. 
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1.4 A review of the mining history of Mount Lye11 in relation to environmental 

impacts 

1.41 Early exploration and timbergetting 

The earliest man-made disturbances to the face of Mount Lye11 were those of 

the geologist Charles Gould, who at the request of the Tasmanian Government, 

undertook to survey the area between Macquarie Harbour and the Eldon 

Ranges (Blainey, 1993). In 1862, on his second attempt to locate gold in payable 

quantities, Gould used the contemporary prospecting method of 'scrub' firing, 

followed by pit and alluvial sampling, in the Linda Valley. This valley takes 

its headwaters from a saddle running between the southern slopes of Mount 

Lye11 and adjacent Mount Owen. 

The consequences of this early prospecting were doubtless severe on those 

species not able to withstand fire. In his diary Gould remarked that tea-tree 

(Lep tosperm urn spp.), a readily combustible genus, covered much of the Linda 

Valley bottom while the upper slopes (presumably of both Mount Lye11 and 

Mount Owen) were barren (Hobart Mercury, 1862). The prospecting fires, which 

burnt for days under favourable conditions (Blainey, 1993), would have been 

lit among the scrub and allowed to progress uphill, through rainforest on the 

middle slopes, to the alpine zone. Fire-sensitive rainforest species, notably the 

long lived, but slow growing King Billy Pine (Athrotaxis selaginoides), would 

have been killed. Although Gould spent many days sampling in the Linda 

Valley area, he did not identify the deposit that was to become known as the 

Iron Blow; a formation with a minor gold and silver deposit. Later excavation 

of the Blow led to the discovery of the Mount Lye11 copper deposits. 
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Further disturbances to the slopes of Mount Lye11 probably did not occur until 

1883 when the McDonough brothers and partner Steve Karlson, pegged the 

Iron Blow and washed sufficient gold from the head of the Linda Valley to 

cause a minor rush numbering sixty prospectors (Blainey, 1993). In order to 

wash the fine gold the prospectors built dams, water races and sluice boxes. 

Blainey (1993) records at least one of the latter was formed from a hollowed 

out sassafras (Atherosperma moschatum) trunk. Reference is also made to 

small peppermint gums (Eucalyptus nitida) growing on the rocky outcrop 

that formed the Iron Blow. 

In 1885, with the financial aid of new shareholders, the Iron Blow was blasted 

and excavated. At the same time the surface soils of the nearby slopes at the 

head of narrow Linda Valley were sluiced for fine reef gold. In the favoured 

areas soils were sluiced to a depth of more than a metre. Three years later, a 

dray road was constructed and a stamp mill brought to the Linda Valley by the 

Mount Lye11 Gold Mining Company. Its boiler was fired by local timber. In 

1892, William Orr and Bowes Kelly bought a controlling interest in the company. 

Their interest was copper ore, assayed at 4.5 to 7%, rather than gold. One year 

later, in order to raise more capital, the Mount Lye11 Mining Company was 

formed (March 1893). This resulted in the development of more tunnels and 

shafts. 

The initial clearing of vegetation at Queenstown had allowed for the 

construction of camps and provided firewood. As mining activity increased 

so did the demand for timber and the extent of vegetation clearance. Timber, 

taken from the slopes of Mount Lye11, and subsequently, from as far away as 

the King River valley, was used in the construction of tunnels and shafts, 
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tramways, water races, and dwellings. 

By chance, the western face of Mount Lye11 offered an irresistible resource; an 

extensive stand of King Billy Pine (A. selaginoides), a strong, durable species 

with a sizable, tapered-pole form that was remarkably easy to mill and of 

renowned durability. The use of this resource in construction, and subsequently 

as a furnace fuel during the refining processes, resulted in the complete 

exploitation of the stand. The existence of this stand is today recorded by the 

presence of numerous stumps. In 1912, the development of the Lake Margret 

power station, as a supply of hydro-electricity to the mine, reduced fuel demands 

and timbergetting all but ceased (Blainey, 1993). 

1.42 Smelting 

Blainey's work, 'The peaks of Lye11', provides the only comprehensive history 

of mining and smelting at Mount Lye11 during the early years. This section 

summarises the developmental history of Mount Lye11 and draws exclusively 

on Blainey's excellent synthesis. 

The Mount Lye11 Mining Company initially sent ore to Adelaide and Swansea 

(Wales) for smelting. In order to minimise costs, particularly those of 

transportation, two 150 ton blast furnaces designed by Robert Sticht were 

constructed by the Company during 1895. These were located in the Queen 

River Valley at the foot of the western slope of Mount Lye11. To support its 

construction a saw mill, brick kilns and a crushing plant were built. Wood for 

the boilers was hauled from all the nearby valleys. The ore was transported 

from the nearby mountain on a steam tramway connected to an aerial haulage 
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line. 

The smelters, fired in June 1896, relied on coke and high-sulphur content 

iron pyrite ore as a fuel source. They were hailed as a success. Shares soared, a 

boom ensued, and by 1898 42 companies (only four of which were ever to find 

payable ore) had taken up adjacent leases. Soon thereafter, the Company 

quarried many of the hills around Queenstown for hundreds of thousands of 

tons of siliceous smelter flux, a mineral that was lacking in the Iron Blow ore. 

In late 1902 Sticht perfected pyritic smelting had almost eliminated the need 

for coke as a blast-fuel. 

By 1899 the number of blast furnaces operated by the Mount Lye11 Mining 

Company on the Queen River site had reached 11. At the time, Sticht claimed 

that his smelters would treat 1000 tons of ore a day. The black heap of nearby 

slag grew. Blainey (1993) records that seven or eight furnaces in continuous 

blast would have produced 120 000 tons of sulphur dioxide per annum 

(unconfirmed sources suggest figures of 200 000 tonnes per annum). On still 

days the sulphur fumes filled the Queen River Valley, thickening the morning 

fogs of winter. When the prevailing westerlies blew, the sulphur pall extended 

toward Gormanston, and beyond, its influence said to be seen in the corroded 

telegraph poles ten miles to the east of the Linda Valley. The fumes polluted 

drinking water, caused respiratory problems and yellowed or 'burnt-off' 

regrowth (Sarson, pers comm.). 

Bushfires became a frequent summertime occurrence. From 1896 to the turn 

of the century many of the leases were burnt numerous times. The upper 

slopes of Mount Lye11 burnt. Hundreds of houses, including the entire town 
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of Penghana, which supplied and sheltered the Company's smelting men, 

were burnt out of existence. Trees that had not been selected for mine 

construction, infastructure, housing or fire wood were doubtless consumed. 

These probably included Myrtle (Nothofagus cunninghamii), a rainforest 

species not preferred for construction. Exposed, the organic rich soil dried in 

the prevailing winds, burnt and washed away in the heavy rain. Blainey 

(1993) describes the landscape at the turn of the century as "black and desolate, 

a cemetery of black stumps" in which "two beautiful valleys had become as 

- ugly as battlefields". Although no records remain of the exact extent of the 

deforested areas during this period, it is likely to have exceeded 4 000 hectares. 

Wood (1991) estimated the extent of the highly disturbed area from aerial 

photographs at approximately 1000 ha in 1953 (Fig. 3). 

In 1899 the Mount Lyell Mining Company's payroll averaged 2 600 men and 

two years later, became the largest copper producer in the Southern Hemisphere. 

However, the concentration of the Iron Blow deposits rapidly dropped from 

6.04% in 1896 to 2.59% in 1900. Between 1899 and 1901, with concentrations in 

the Iron Blow still falling, the Company reluctantly accepted the predictions 

that Mount Lyell was a large, low grade copper field and began to purchase 

copper-rich siliceous ore from a rival company, the North Lyell Company, 

and a number of rich but small satellite mines. 

In 1903, after considerable animosity and manoeuvring, the Mount Lyell Mining 

and Railway Company was formed from the two largest, competing companies 

at Mount Lyell; the prime assets of which were North Lyell's high grade ore 

and Mount Lyell's efficient smelters. North Lyell's ore required iron and 
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Fig. 3: Area of denudation at Mount Lye11 in 1953. 
(Map redrawn from Wood, 1991) 
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sulphur to separate the copper. The low grade deposit in the lion Blow became 

a flux quarry. It averaged 48% sulphur and, with the exception of that recovered 

from the mine for superphosphate production, none was recovered from the 

smelter gases. As the copper grades declined the percentage of both lead and 

zinc increased. Neither were recovered, and were lost as smelter emissions. 

Declining ore grades demanded alternate metallurgical processing. In 1916, 

the first flotation plant at Queenstown concentrated low grade schist ore. This 

process produced waste tailings which were piped directly into the nearby 

Queen River. From 1922 until 1934 the concentrate was sintered of sulphur, 

then smelted without the aid of pyrites in one small furnace. Electrolytic 

refining was also used from 1928. Semi-pyritic smelting later eliminated 

sintering and a dust-collecting apparatus was installed. This was claimed to 

eliminated 95% of the 52 tons of particulate emissions produced each 24 hours. 

Semi-pyritic smelting continued until the smelters were finally shut at the 

end of 1969. 

1.43 The modern era 

After 1969, a selective flotation method was used to form a copper concentrate 

which was shipped to Australian and overseas smelters. This method of 

separating the copper pyrite minerals from the host rock was used until the 

closure of the mine in December 1994 (Falkner, pers. comm.). During this 

period approximately 4 000 tonnes of tailings, including residual metals, were 

produced per day and discharged directly into the Queen River. The tailings, 

alkaline due to the addition of lime to the flotation slurry, partially neutralized 

the acidified waters of the Queen (Locher, 1995; Wood, pers. comm.). Eventually, 
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the tailings deposited in deeper water of the Macquarie Harbour, via the lower 

King River, forming a sub-aerial delta measuring approximately 2.5 km' (Taylor 

et al., 1996) in area at the river mouth. 

Today, unabated acid mine drainage (Miedecke, et al., 1996), the tailings delta, 

and dissolved metals such as Cu (Teasdale et al., 1996) from the mine workings 

pose ongoing risks to the local environment and population (de Blas, pers. 

comm). As I write (1995), these risks are the subject of The Mount Lye11 

Remediation Research and Demonstration Program funded jointly by the 

Federal (Office of the Supervising Scientist) and the Tasmanian Governments. 

This multi-disciplinary project is to focus on the impacts of acid-mine drainage 

and tailings deposition in the Queen River and delta in Macquarie Harbour. 

Concurrently, Copper Mines ot Tasmania (CMT) has taken over the old Mount 

Lye11 lease with plans for further copper mining (3.5 Mt per annum at a head 

grade of 1.45% Cu). The proposal includes refining using alternate technology 

and the construction of a tailings dam to the west of Queenstown. 

1.5 The contemporary environment of Mount Lye!! 

1.51 Surface geology 

During the life of the mine, severe erosion exposed subsoils over extensive 

areas of the lease (Wood, pers. comm.) and resulted in the deposition of an 

estimated 10 Mt of top soil in the Queen and King River systems (Locher, 

1995). The loss of top soil throughout the Mount Lye11 mining lease has 

resulted in a surface layer typically composed of either exposed, partially-

weathered sub-soils or consolidated parent materials. 
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The surface geology of the lease, and much of the western face of Mount Lyell, 

is characterised by partially weathered, metamorphic assemblages of quartzes, 

sericites, chlorites and sulphides in various proportions (Mount Lyell Technical 

Review, 1993). A felsic sequence (quartz sericite-chlorite) dominates the lease. 

At intervals, irregular units of intermediate-mafic volcanics occur throughout 

the felsic sequence. The units exhibit proportionally less quartz and range 

from 20-30 cm up to tens of metres thick (Mount Lyell Technical Review, 

1993). 

In the felsic volcanics, weathering of the more succeptible minerals, such as 

haemitite or chlorite, has produced a pale pink to white, quartz-dominated 

skeletal material with a sandy texture. In places, fractured veins of quartz 

have formed deep drifts composed solely of coarse fragments. In the mafic 

volcanics, weathering has produced emerald green to orange-iron red, sericitic 

clays. On this geology, partially-decomposed volcanic fragments and pebbles 

litter the surface (author's observations). Folded, iron rich, volcanics occur as 

jagged, poorly weathered outcrops throughout the lease. 

1.52 The present-day vegetation of Mount Lye!! 

The fire frequency of the Mount Lyell region increased with the arrival mining 

prospectors of mid-last century (Blainey, 1993). Today the vegetation of the 

Mount Lyell region is typified by fire-disclimax communities (Kirkpatrick, 

pers. comm.) of eucalypt forest (dominated by Eucalyptus nitida), blackwood 

forest (dominated by Acacia melanoxylon), scrubland (dominated by 

Leptospermum spp.) and buttongrass sedgeland (dominated by 
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Gymnoschoenus sphaerocephalus). Rainforest has been eliminated or restricted 

to fire shadows. 

None of the above community descriptions, however, adequately describe the 

present-day vegetation of Mount Lyell, particularly along its western, southern 

and south-eastern flanks. Here, the combined effects of prospecting fires, 

intensive timber-getting and prolonged smelter contamination have had their 

greatest impact. Assessment of period aerial photographs (Wood, 1991) revealed 

that approximately 15 km' were denuded of vegetation in the early 1950's 

with and aditional 25 km' affected. In the intervening years, colonisation by a 

restricted number of plants has occurred and this has resulted in the formation 

of a depauperate 'community'of tolerant species. In the areas of greatest impact, 

typically close to the smelter stacks, vascular vegetation is non-existent or 

severely restricted, and sparse colonisation by bryophytes, algae and a few, 

residual higher plants represent the only visible signs of life (Author's pers. 

obs.). 

The upper slopes of Mount Lye11 have been less altered by direct and indirect 

mining activities. However, wildfires have degraded the vegetation and 

exposed the thin soils to erosion. Today, an open montane shrubland exists. 

In fire shadows, a few King Billy Pines remain. 

1.6 The scope of this work 

The investigations reported on in this study were confined to the deforested 

and eroded areas falling between the Mount Lye11 smelter site and the eastern 

boundary of the Mount Lye11 lease (30M/80). The study area totalled 
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approximately 400 hectares, or about 1/10 of the total area of the lease. About 

75% of this area has slopes between 15 and 25°. Excluded were any areas 

directly disturbed by recent mining operations, such as surface excavations 

and waste rock dumps. Prominent exclusions from the study area were the 

workings of the West Lye11 open cut and its associated waste dumps. 

The general aims of this work were two-fold: 1) to explore compositional 

trends in the colonising vegetation in relation to the edaphic environment, 

and 2) evaluate rehabilitation methods using local, colonising species. 

• Chapter 2 of this thesis begins with a review of the literature. The topics 

discussed include the deposition emissions from base-metal smelters, the effects 

of sulphur dioxide on vegetation and soils, metal phytoxicity and metal 

tolerance, the assessment of metal contamination and the rehabilitation of 

acid, metal-contaminated terrestrial ecosystems. 

Chapter 3 describes soil characteristics along transects of increasing displacement 

from the Mount Lye11 smelters. Particular attention is paid to soil-metal 

concentrations. Comparisons of metal distribution patterns and contamination 

levels are drawn with other world-renowned, base metal smelters. Phytotoxic 

contaminants are discussed. 

Chapter 4 explores the relationships between the composition of the colonising 

community and edaphic variables. Soil and floristic data were collected in a 

survey of the environment of Mount Lye11. Occurrence was used as a measure 

of the differential performance of species and related to edaphic variables 

with the aid of numerical analyses. The colonising community was mapped 
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with the aid of a classification. The chapter contributes towards greater 

understanding of the process of re-colonisation in metal-contaminated areas, 

and in doing so, provides a guide to the site conditions that local species are 

able to tolerate. 

Chapter 5 examines the phytotoxicity of the Mount Lye11 soils along a metal 

concentration gradient. Seedling growth in pot trials was used as a measure of 

tolerance. Pot and field trials are used to assess the usefulness of a conventional, 

neutralising agent as a means of phytotoxicity amelioration. 

Chapter 6 compares two mechanical seedbed preparation methods designed to 

enhance the lodgement, germination and early survival of local, colonising 

species. Seed was broadcast sown at an eroded, near-smelter location with 

phytotoxic soil characteristics. 

Chapter 7 explores low-impact methods of seedbed preparation for the 

establishment of local, colonising species on Mount LyeWs steep, eroded slopes. 

The chapter compares several non-mechanical methods of seedbed preparation 

and seed application at a near-smelter location with phytotoxic soil 

characteristics. 

Chapter 8 provides a summary of the thesis. It considers appropriateness of 

the strategies of reclamation and neglect to Mount Lye11 and gives 

recommendations. 
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Chapter 2 

Literature review 

2.1 Overview 

Throughout the world, waste gases from certain industrial smelting operations 

have been linked with the contamination or alteration of terrestrial and 

freshwater ecosystems. Many of these smelter gases have contained a high 

percentage of sulphur dioxide. In terrestrial ecosystems the exposure of 

vegetation to sulphurous smelter gases has caused injury and death in sensitive 

plants. Persistent exposure has resulted in reduced site productivity and altered 

species diversity. In soils, the deposition of SO 2  emissions has been associated 

with significant shifts in elemental solubility, equilibrium and speciation 

chemistry, often culminating in accelerated cation leaching. Soil acidification 

has also been reported. 

In the case of base metal smelters, the deposition of metal particulates has 

lead to elevated concentrations of soil metals. Elevated soil-metal 

concentrations have been linked to phytotoxicity. This may be of especial 

concern in low pH environments as soil acidity influences metal bio-

availability. In the vicinity of base metal smelters, vegetation subjected to 

prolonged metal contamination has been completely eliminated. In some 

locations, vegetation elimination has contributed to severe physical 

degradation, such as extensive soil erosion. Disturbance at these sites is 

catastrophic and results in drastically simplified ecosystems. Locally, these 

27 



Ch.2/Literature review 

simplified ecosystems have been referred to as deserts. 

Natural recolonisation occurs in areas contaminated by base metal smelters. 

However, altered selection pressures may result in communities distinct from 

those following a natural disturbance. Recolonisation usually begins when 

emissions are significantly reduced or eliminated. Commonly, such reductions 

result from mine or smelter closure. Species richness in recolonised areas is 

commonly low, and a restricted number of survivors of the original flora, 

together with pre-adapted colonising species, are likely to be present. Individuals 

are often stunted due to the presence of stressful environmental conditions. 

Even when smelter emissions are eliminated, recolonisation may be retarded 

for many decades, especially in soils exposed to high levels of phytotoxic 

contamination. 

The reclamation of lands degraded by smelter emissions and related mining 

activities has been attempted in a number of areas of the world. An underlying 

principle is to reduce soil toxicity. To this end, neutralizing agents and fertilizers 

have been applied. Species re-introduction has been attempted by replanting 

or resowing. Success, however, has been limited. This may be due to the loss 

of many of the qualities of a pre-existing environment. Reclamation success 

may have to meet both objective measures, such as survival and growth rate, 

and local community expectations. Meeting reclamation requirements may 

require major intervention and involve great cost. 
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2.2 The composition, dispersion and deposition patterns of gaseous and 

particulate emissions from smelter chimneys 

2.21 Smelting products 

Smelting typically results in both gaseous and particulate atmospheric products. 

The smelting of sulphide ores produces gaseous sulphur dioxide. Gaseous SO 2  

may react with atmospheric water to ultimately form sulphuric acid, or, 

following chemical or photo-oxidisation in the atmosphere, produce secondary 

particulate sulfates (Brown, 1982). Within a plume oxidation can occur on the 

surfaces of soot, liquid-coated particles or droplets. Particulate products may 

also be represented by various metallic elements as either process losses or 

by-products. Common examples of metallic particulates found in smelter 

emissions are copper, zinc and lead. 

2.22 Plume patterns and plume dispersion 

Many factors influence the pattern and dispersion of a plume originating 

from an atmospheric point-source of emission. The most influential are the 

prevailing atmospheric conditions, as these control the diffusive effects of 

wind speed and turbulence (Gifford, 1976). Dry atmospheric conditions produce 

a number of characteristic plume patterns (Oke, 1978) with certain patterns 

associated with either localised or long-distance dispersion. For example, 

neutral atmospheric conditions produce streaming, which may result in 

dispersion over long-distances, while stable atmospheric conditions cause 

fumigation and this tends to produce localised deposition. 
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The dispersion of smelter emissions has been modelled for short time periods 

(e.g. 1 hour). The most widely applied plume dispersion model for a continuous, 

point-source emission is the Gaussian model (Hanna, 1982). This model 

includes the factors: point-source concentration, height of emission, effective 

plume height, lateral distance from plume center-line, wind speed at effective 

plume height and lateral and vertical dispersion. All of the models contain a 

number of assumptions and do not attempt to account for chemical 

transformations such as sulfate conversion rates. 

A factor which may influence the dispersion from a point source of emission 

is the local terrain (Oke, 1978). Elevated terrain down-wind of a point source 

of emission may act to reduce the effective plume height. Physical influences 

on plume dispersion interact with the prevailing meteorological conditions. 

For example, in stable meteorological conditions with a positive, vertical 

temperature gradient (Mitchell, 1982; Pasquill, 1962) a plume may impact a 

hill in its path, whereas in neutral or unstable conditions a plume will ride 

up over a hill (Hanna, 1982). 

2.23 Wet and dry deposition 

The deposition of both gaseous and particulate sulfate compounds requires 

some means of vertical transport to ground level. Two forms of sulphur 

deposition are generally recognised; wet deposition and dry deposition. Under 

dry conditions deposition usually occurs by gravitational settling, although it 

may also occur under certain unstable atmospheric conditions. Wet deposition 

occurs due to atmospheric condensation and precipitation scavenging. 
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The dry deposition of both gaseous and particulate sulfate compounds occurs 

under the influence of gravitation. Garland (1977) considered dry SO 2  deposition 

the most significant means of sulphur transport from air to land in the UK, 

with an average deposition velocity of 0.85 cm s -1 . However, the deposition 

rates of most particulate sulfates are an order of magnitude smaller than 

those of gaseous sulphur as most particulates are <111 (Maul, 1982, Garland, 

1978). Slow deposition velocities result in long atmospheric residence times 

and pollutants are known to be transported up to several thousand kilometres 

from primary sources of emission (Brown, 1982). For these particles precipitation 

scavenging is considered the only significant removal mechanism (Maul, 1982). 

Small deposition velocities have led to the omission of sulfate particulates 

from deposition models (Maul, 1982; Sehmel, 1980). 

Dry. deposition may also occur under unstable atmospheric conditions. 

Convective turbulence may produce a looping plume pattern due to the 

development of large eddy structures in daytime during summer (Oke, 1987). 

This may result in relatively undiluted emissions reaching the ground in the 

vicinity of a smelter. Another atmospheric condition in which undiluted 

emissions may reach ground level is known as fumigation. Fumigation usually 

occurs under stable conditions on winter mornings when surface warming 

causes mixing under an inversion layer. Under these conditions fumigation 

results in SO 2  fogs. Sulphur dioxide fumigation of this type reportedly occurred 

in a mountain valley at Trail, British Columbia near a lead and zinc smelter 

(Dean et al., 1944) following the overnight, down-valley drainage of poorly 

diluted pollutants. 

In comparison to dry deposition, wet deposition tends to be localised and may 

31 



Ch.2/Literature review 

be the dominant mode of sulphur deposition in areas of high precipitation. 

Wet deposition occurs as atmospheric water condenses and scavenges gaseous 

sulphur dioxide and particulate sulfate compounds above (rainout) and below 

(washout) the cloud base (Brown, 1982; Maul, 1982). In the case of gaseous 

emissions the reaction with hydroxide ion radicals results in sulphurous acid 

(Brown, 1982). Sulphurous acid rapidly oxidises to form sulphuric acid or acid 

rain, usually by the time it reaches the ground (Maul, 1982). Some gaseous 

emissions may be removed below the cloud base (washout) and occur as 

sulfite ions in rainwater (Maul, 1982). Wet deposition of sulfate particulates is 

dominated by rainout, with washout only important for the largest particles 

i.e. >2[1, (Garland, 1978). 

2.24 Deposition envelopes 

Although there appear to be no definitive studies, it is plausible that different 

deposition envelopes exist for each constituent of a plume as the chemical 

form of emissions affects particle size which in turn interacts with the 

mechanisms of deposition and influences atmospheric residence times. For 

example, some authors have suggested that the deposition envelopes of sulphur 

dioxide and metal particulates resulting from point sources of emission are 

not necessarily the same (Hutchinson and Whitby, 1974). The supposition 

appears to be that under dry conditions, sulphur dioxide is more likely to be 

deposited closer to a source than metal particulates due to its greater depositional 

velocity. It has also been suggested that chemical separation within a plume 

resulting in distinct deposition envelopes may be reflected by the receiving 

soil environment. Overrein (1972), in an attempt to explain the occurrence of 

the lowest soil pH at some distance downwind from a smelter source, suggested 
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that various basic particulates, themselves capable of acid neutralisation, tended 

to deposit closer to a point source than acid particulates. 

2.3 The effect of sulphur dioxide fumigation and particulate deposition on 

leaf tissue 

At elevated concentrations, gaseous sulphur dioxide is an unspecific toxicant 

affecting many cell functions in higher plants (Knabe, 1976), although sensitivity 

is demonstrably species-specific (Murray, 1984; O'Connor, 1974). In sensitive 

species, exposure to sub-lethal SO 2  concentrations in laboratory fumigation 

trials has resulted in reductions in net CO 2  assimilation rates (Addison et al., 
1984) and chlorosis (Knabe, 1976). Sulphur dioxide enters mainly through leaf 

stomata and injury occurs when dissolved SO 2 diffuses through leaf tissue via 

cell walls (Knabe, 1976). Dissociation products include the highly phytotoxic 

sulfite ion (Knabe 1976). Within the cell the presence of the sulfite ion results 

in numerous biochemical interactions, notably adversely affecting the 

permeability of the cell membrane and the function of cell chlorophyll. Other 

authors have reported on the inhibitory effects of SO 2  and sulfite on cellular 

function and photochemical processes (Veeranjaneyulu et al., 1990). 

Acute SO2  injury results in cell collapse, and has been known to cause defoliation 

in the vicinity of a source of SO 2  emission (Preston, 1988). Initially, in broad-

leaved plants necrosis begins in the more susceptible marginal and interveinal 

areas of the leaf and extends inward (Knabe, 1976; O'Conner, 1974). The affected 

areas appear dark green, with a water-soaked discolouration as cell contents 

leak into intercellular spaces, become flaccid, and, upon drying, can range in 

colour from white to red-brown or black (Taylor, 1971). 
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Laboratory fumigation chamber experiments using seedlings have been used 

to rank species sensitivities in response to elevated levels of SO 2. O'Conner et 
al. (1974) have published the only comprehensive SO2  fumigation study of 

Australian native plants. None of the West Tasmania rainforest endemics 

were included in the study. However, six widespread species present in the 

Queenstown area were examined. At concentrations of up to 3 ppm (7860 

Rgm-3) over four hours, the seedlings of four species, were rated resistant to 

extremely resistant to SO2  fumigation(Acacia dealbata, Acacia melanoxylon, 
Eucalyptus obliqua and Melaleuca squamea), while two other species were 

rated two moderately sensitive (Melaleuca squarrosa and Banksia marginata). 

2.4 The effects of sulphate deposition on soils 

2.41 Sulphate 

Sulphur enters the soil system from the atmosphere either directly, as dry 

deposition on the surface of foliage, soil, or litter or dissolved in precipitation 

(Brown, 1982). It may also enter the soil indirectly following assimilation into 

plant tissue and subsequent release by litter decomposition (Brown, 1982). 

Sulfate accumulation is not known except in dry regions (Brown, 1982). The 

major pathway for the removal of sulphur from a soil system is by sulfate 

leaching. However, additional losses can occur where crops are harvested or 

microbial volatisation is significant. Leaching losses depend mainly on soil 

sulphur status, rainfall and soil texture, and losses from bare soil are generally 

more severe than from cropped land (Brown, 1982). In some soils, sulphate 

leached from upper horizons may be retained by adsorption in subsoils. 
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Acidified streams and lakes draining catchments exposed to elevated sulphur 

deposition have been widely reported (e.g.Wright and Gjessing, 1976). 

In contrast to the phytotoxic metals, direct toxic effects due to sulfate 

contamination are uncommon in well-drained soils (Brown, 1982). More 

usually, toxicity is caused by H 2S formation during waterlogging, or by the 

accumulation of soluble sulfates in poorly drained acid soils (Halsted and 

Rennie, 1977). Sulphate deposition may indirectly result in increases in metal-

ion solubility in response to soil acidification (Malmer, 1976) and cation leaching 

(Reuss et a/., 1987). 

2.42 Cation leaching, acidification and metals 

The initial effect of sulphur deposition on soil is to increase the concentration 

of H.' and SO 4 2" in the soil solution (Reuss et al., 1987). Raised hydrogen and 

sulfate-ion concentrations result in two recognised, direct geochemical 

consequences: the displacement and subsequent leaching of soil nutrient cations 

(Wookey and meson, 1991; Heute and McColl, 1984; Malmer, 1976) and increased 

metal-ion solubility (Nelson and Campbell, 1991; Reuss et al., 1987; Malmer, 

1976). These responses are the result of acid-neutralising reactions at cation 

• exchange sites or on mineral structures. 

Cation leaching in response to sulphur deposition has been widely reported, 

and has been confirmed by laboratory acid-loading experiments (Dahlgren et 

al., 1990; Heute and McColl, 1984). Dahlgren et al. (1990) reported that strong 

acid inputs were initially neutralised by SO 42-  adsorption and the release of 

basic cations from the exchange complex. The contribution of base cation 
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release to acid-neutralisation was related to the base saturation of the soil. 

Prolonged loading resulted in the depletion of the base cation reserve while at 

the same time the adsorption/release of SO 42" found a new equilibrium. 

Thereafter, aluminium dissolution became the primary acid-neutralisation 

mechanism. Matzner and Prenzel (1992) reported that the principal Er buffering 

process in a German forest subject to heavy acid deposition was the release of 

Al ions. 

The other recognised consequence of sulphur deposition on soils is its influence 

on pH-dependent, metal-ion availability. Non-essential or micro-nutrient, 

metallic elements are normally non-toxic to plant life at the solubility-restricted 

concentrations at which they are found in the natural environment. Restricted 

metal-ion solubility, rather than rarity, usually limits plant availability and 

thus the potential for phytotoxicity. However, acidic inputs, in combination 

with base cation leaching, may result in an accumulation of acid cations in 

the soil solution and result in a lowering of soil pH (Malmer, 1976). Increased 

acidity may shift the solubility, abundance and speciation of metal-ions and 

can result in alterations to bio-availability with phytotoxic consequences 

(Nelson and Cambell, 1991; Malmer, 1976). Examples of metal-ions that display 

increased solubility with pH decrease are copper (Flemming and Trevors, 

1989), zinc (Balsberg Pahlsson, 1989) and aluminium (Andersson, 1988). Species 

of each of these elements have the potential to be phytotoxic at elevated 

concentrations or under conditions of increased availability. 

2.43 Interaction with the environment 

Not all soils are equally disposed to cation leaching and acidification. The 
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sulfate adsorption capacity of a soil may vary between soil types and within a 

profile in association with clay content, organic matter, free sesquioxides and 

pH (Heute and McColl, 1984; Malmer, 1976). For example, the sesquioxide 

rich, weathered soils of the southeastern United States appeared better buffered 

and more able to adsorb SO4 2" than the immature soils of northern North 

America and Europe (Reuss et al., 1987). Similarly, Malmer (1976) considered 

soils high in clay or organic colloidal content more resistant to nutrient cation 

leaching, and thus less sensitive to acidification than typically acidic, carbonate-

free, siliceous soils with low base saturation (Reuss et al., 1987). Krug aind'Fink 

(1983) caution that soil acidity does not necessarily confer susceptibility to 

further acidification. These authors maintained that because IV ions in acid 

rain are inefficient at exchanging bases at pH 4 or lower, the less acid, coarse 

siliceous soils with low cation exchange capacities are more susceptible to 

acidification (Krug and Fink ,1983; Malmer,1976). Similarly, acid humic soils 

may be buffered against further acidification as 1-1+ hinders the dissociation 

and solubility of naturally occurring acid-forming humic materials (Richie 

and Posner, 1982). 

Even in the absence of an anthropogenic source of metal-ions increased soil 

acidity may lead to soil toxicity, as in the case of aluminium. As soil pH falls 

below 4.5 the solubility of aluminium rapidly increases, accelerating its release 

from soil minerals (Andersson, 1988; Reuss et.al ., 1987; McLean, 1976). The 

ubiquity of Al as a constituent of soil minerals, and the toxicity of some of its 

inorganic species, contribute to a potential to influence biota under conditions 

of acidic deposition. 
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2.44 Reversal 

There is some experimental evidence to suggest that decreases in acid deposition 

will lead to equilibrium reversal between the soil solution and exchange sites, 

which over time, may result in reductions in the concentrations of soluble 

metal ions. In a column leaching experiment using the B horizon from a 

spodosol, Dahlgren et al. (1990) found that, following a decrease in acid loadings, 

basic cations were retained, SO4 2-  was released and concentrations of soluble 

Al were reduced. Desorption of SO 4 2-  lead to a lowering of the pH of the 

• leachate. Acidification due to desorption ceased when the SO,' leachate 

concentrations approached the input concentrations. Despite the reductions 

in Al concentration, the authors concluded that Al dissociation remained the 

main Wneutralising process, accounting for acidity as a result ofSO 4 2" desorption 

and cation retention. 

2.5 Soil pH and the phytotoxic metals aluminium and copper 

2.51 Soil pH 

The direct effects of the H ion on plant growth are difficult to assess as other 

potentially harmful elements are likely to be present in toxic concentations, 

and other elements may be sub-optimal (Foy, 1992). Foy (1992) indicated that 

in acid soils below pH 4.0, the toxicity of certain metal ions such as Al and Mn 

are probably more important than H ion toxicity. Nevertheless, excess H ions 

are understood to compete with other cations for root adsorption sites, interfere 

with ion transport and cause root membrane failure. Competition for root 

adsorption sites may cause nutrient deficiencies such as Ca (Lund, 1970). H 
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ion toxicity has reportedly effected the activity and survival of rhizobia and 

other soil microorganisms (Richardson et al., 1988a,b; Kamprath and Foy, 

1985; Moore, 1974). 

Foy (1992) considered clearly identifiable H ion toxicity highly unlikely in 

higher plants grown on agricultural soils, but conceeded that H ion toxicity 

could play a role when plants are grown on mine spoils below about pH 3.0. 

2.52 Aluminium 

Soil pH, aluminium dissolution and speciation 

Aluminium is an abundant constituent of soil but is a non-essential element 

for plant nutrition. At neutral pH levels, Al is almost insoluble (Singer and 

Munns, 1987) and is therefore unavailable and does not interfere with plant 

health. However, the dissolution of Al from soil minerals increases as soil pH 

falls below 4.5 (Foy, 1992), or rises above 8.5 (Fuller and Richardson, 1986), and 

results in excess soluble aluminium (Andersson, 1988; Reuss et a/., 1987). 

Excess soluble Al in low pH soils is one of a number of metals that may cause 

phytotoxicity. Foy (1974, 1984, 1988) and Kamprath and Foy (1985) considered 

Al toxicity to be probably the most important growth limiting factor for plants 

in strongly acidic soils and mine spoils. Aluminium toxicity has also been 

associated with cultivated soils (Foy, 1992) and acidic subsoils. In contrast, 

high Al concentrations occur naturally in the acid soils of the tropics and the 

spodosols of the humid temperate regions, primarily under forest (McKeague 

et al., 1983). Plants in these environments have adapted to high Al 
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concentrations and native tropical plants will grow under conditions that 

would be fatal to cultivated grains (Foy, 1992). 

The soil pH at which Al becomes soluble depends upon many soil factors 

including the predominant clay minerals, organic matter levels, the 

concentrations of other cations, anions and total salts, and particularly, the 

plant species or cultivar (Foy, 1984; Kamprath and Foy, 1985). Shifts in Al 

speciation in soils as a result of acidification favour the soluble, inorganic 

monomeric forms, in contrast to polymeric or organically complexed forms. 

In soil below pH 4.5, Al exists primarily as Al', and in this form it occupies a 

large part of the exchange complex (Foy, 1992). It is generally the monomeric 

forms that are recognised as phytotoxic (Andersson, 1988; Bell and Edwards, 

1896; Blarney et al., 1983; McLean, 1976). In solution, Al may be involved in 

cation displacement and obstruct exchange in the soil complex due to its high 

valence and ability to polymerise (McLean, 1976). Bloom et al. (1979) concluded 

that exchange of Al ions from organic matter exchange sites controls the 

relationship between pH and Al' activity in soils with a low amount of 

permanent charge CEC relative to the quantity of organic matter. 

McLean (1976) explains that, when the hydrogen ion concentration in the soil 

solution increases to a pH of 4 or below, hydronium ions (OH3+) are formed, 

resulting in the dissolution of aluminium ions from the edges of partially 

weathered mineral structures. The aluminium ions become six-fold 

coordinated with oxygen in OH2  groups forming aluminohydronium ions, 

A1(OH2)6; a substitution in which aluminium ions displace hydrogen from 

hydronium ions. Sequential dissociation of the aluminohydronium ions 

results in partially neutralised, hydroxy-aluminium ions (OH-Al). Some 

40 



Ch.2/Literature review 

hydroxy-aluminium ions remain in the soil solution. Others are adsorbed 

and polymerise on the surfaces of clay minerals, or become complexed with 

organic matter. Both adsorbed and complexed hydroxy-aluminium ions 

obstruct the exchange of other cations, such as calcium, and thereby inhibit 

neutralisation at exchange sites. 

The chemistry of Al transformations in soils has been recently reviewed by 

Huang (1988). A review of the effects of freshwater acidification on the 

geochemistry of aluminium and other metals is provided by Nelson and 

Campbell (1991). 

Tests for aluminium toxicity in soils 

Numerous measures have been used to relate soil Al to plant growth. These 

measures include exchangeable Al (using a variety of extractants such as CaCl„ 

LaC13, NH40Ac and KCL), exchangeable Al index (Reeve and Sumner, 1970; 

NH4C1), Al saturation percentage of effective cation exchange capacity (KCL 

Al/KCL Al plus NH40Ac exchangeable Ca, Mg, K and Na; Evans and Kamprath, 

1970), soil solution Al and Al activity. 

Adams and Lund (1966) and Wright (1989) considered conventional Al soil 

tests (pH, acid exchangeable Al, percentage Al saturation of CEC and salt 

extractable Al) unuseful for predicting Al toxicity across a wide range of soils. 

Nevertheless, exchangeable Al has been related to root growth and yield 

(McKenzie and Nyborg, 1984; Siagusa et al., 1980; Moschler et al., 1960), but the 

measure does not always relate to plant response because of differences between 

soils in mineralogy, surface charge, organic matter and other factors (McCray 
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and Sumner, 1990). Some authors have used Al saturation of CEC to predict 

Al toxicity (Evans and Kamprath, 1970, Blarney and Nathanson, 1977; Farina 

and Channon, 1980; Kamprath and Foy, 1985). This method, however, must 

be used within a narrowly defined set of conditions regarding soil type, plant 

species and genotype (Foy, 1987; Adams et al., 1967). Other authors suggest, 

that where similar parent materials exist, pH and extracted Al (KCL or other 

salts) may be useful in predicting Al toxicity for a given plant (Blarney and 

Nathanson, 1977; McCormick and Amendale, 1983). Pravan et al. (1982) showed 

that plant injury was a function of the activity of Al 3+ in the soil solution 

rather than total Al concentration. Brenes and Pearson (1973) and Adams and 

Lund (1966) also reported close relationships between plant growth and Al 

activity. 

The concentration of the soil solution provides a more direct measure of the 

conditions experienced by plant roots (McCray and Sumner, 1990). Baker et al. 
(1988) and Bruce (1988) indicated that, in comparison to conventional methods, 

the soil solution provides a more accurate means of assessing Al toxicity and 

various methods have been used to extract soil solutions. Soil-water extracts 

have been used in a number of studies to assess soil toxicity in lands 

contaminated by acidic deposition from base-metal smelters (Freedman and 

Hutchinson, 1980; Whitby and Hutchinson, 1974). Soil solution Al' 

concentration has been found to be related to plant growth in a number of 

studies (Adams and Moore, 1983; Evans and Kamprath, 1970; Ragland and 

Coleman, 1959). 
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Symptoms of aluminium toxicity 

Aluminium toxicity is a complex disorder (Foy 1992) which can manifest as P. 

Ca, Mg, or Fe deficiency or drought stress (Alam and Adams, 1980; Foy, 1984, 

1988; Kamprath and Foy, 1985). In some plants the foliar symptoms of Al 

toxicity resemble that of P deficiency, in others Ca deficiency (Foy, 1992) or 

even Fe deficiency (Clark et al., 1981; Foy and Fleming, 1982). Symptoms of Al 

toxicity in the whole plant tend to occur as stunting of shoots and roots. 

Aluminium is not known to interfere with seed germination but seedlings 

may be more susceptible to aluminium toxicity than older plants and this 

affects establishment by impairing root development (Nosko et al., 1988). The 

physiological effects of Al on plants have been reviewed by Foy (1974, 1984). 

The toxicity of aluminium to vascular plants has been reviewed by Andersson 

(1988). 

2.53 Copper 

Copper is one of the essential plant nutrient microelements. However, 

particulate deposition, or decreases in soil pH, may result in excess soluble Cu. 

At elevated levels, Cu is known to be toxic to both terrestrial and aquatic life 

(Flemming and Trevors, 1989). Never the less, the toxicity of Cu may be 

greatly influenced by environmental factors (McBride, 1989). 

Many environmental factors affect the toxicity of the cupric cation because it 

is reactive and susceptible to modification by complexation, and is subject to 

precipitation and adsorption processes (Flemming and Trevors, 1989; McBride, 

1989). Complexation of dissolved Cu controls speciation and concentration. In 
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soils and sediments, Cu adsorption occurs on the surface of Fe and Al hydrous 

oxides and hydrous Mn oxides (Thornton, 1979), on clay minerals in proportion 

to CEC, and on organic matter (Elliot et al., 1986, Thornton, 1979). The majority 

of the total Cu in soils has been found associated with the organic fraction 

(Thornton, 1979). This fraction is believed to control the mobility and 

bioavailability of Cu (Elliot et al., 1986). Divalent Cu, for example, has one of 

the greatest affinities for soil organic matter (Stevenson and Ardakani, 1972). 

Existing evidence suggests that dissolved Cu' is almost completely in 

organically complexed form (McBride and Blasiak, 1979). Consequently, soluble 

organically complexed metals, such as Cu, are likely to control availability for 

plant uptake (McBride, 1989). 

In pot and solution culture trials, the addition of Cu has stunted growth in 

trees (Heale and Ormrod, 1982; Fessenden and Sutherland, 1979), grasses 

(Symeonidis et al., 1985; Rauser and Winterhalder, 1985; Hogan et al., 1977b) 

and crop species (Wong and Bradshaw, 1982; Toivonen and Hofstra, 1979; 

Walsh et al., 1972). Rauser and Winterhalder (1985), found that Cu was more 

toxic than both Ni and Zn. Usually, root growth is more affected than shoot 

growth, resulting in reduced root-shoot ratios. Critical leaf tissue concentrations 

for most species are between 15 and 25 lig Cu gi  (Balsberg Pahlsson, 1989). The 

sensitivity of various organisms to elevated levels of copper in soils has been 

reviewed by Flemming and Trevors (1989). 

Sediments may act as a sink for metal pollutants. Because of this, metal toxicity 

can be a major problem in lakes and estuarine environments (Flemming and 

Trevors, 1989). Copper, for example, is known to be extremely toxic to aquatic 

biota, including fish, invertebrates and algae (Flemming and Trevors, 1989). 
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However, considerable variation in tolerance is apparent, for example, in 

laboratory studies Hodson et al. (1979) found that 30 gg L-1  was lethal for 

salmonids (96 hr-LC50) whereas for blue gills equivalent levels of mortality 

were not reached until concentrations reached 6000 lig 

2.6 Migration of soil contaminants 

Soil contaminants may be eroded by either water or wind. Erosion may lead 

to contaminant redistribution locally or throughout catchments. As metal 

contamination is known to be associated with particular soil fractions, notably 

clay and organic matter (Ghadiri and Rose, 1991a), particle selectivity may 

result in the concentration of soil metals, resulting in enrichment. The most 

common form of enrichment occurs as erosion removes soil materials from 

catchments and redeposits them as sediments in lakes and estuaries. Eroded 

material may have contaminant concentrations ten times that of the original 

soil, although twofold increases are more common (Sheppard et al., 1992). 

Soil contaminants may also be redistributed within a soil profile. Redistribution 

mechanisms within soils include mass flow, fracture flow, the diffusion of 

dissolved or gaseous species, particle or colloid migration and mechanical 

mixing or bioturbation of sorbed particles (Sheppard et al., 1992). However, 

these mechanisms are not necessarily of equal importance in the redistribution 

of metallic soil contaminants. For example, Sheppard et al. (1992) considered 

it rare for contaminants, such as copper and zinc, that are adsorbed onto soil 

particles, or are of colloidal size, to migrate through a soil profile. Nair et al. 
(1990) considered mass flow the dominant mechanism of contaminant 

redistribution within a soil profile. 
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2.7 Metal tolerance 

The evolution of metal tolerance by the non-random reproduction of genes 

in organisms exposed to high-metal substrates or contaminated environments 

falls within the theory of natural selection and can occur given sufficient 

generations. Examples of differential tolerance to elevated concentrations of 

heavy metals are known for individual species representing a wide range of 

organisms as diverse as microorganisms, algae, fungi and vascular plants. 

A variety or population that displays fewer growth abnormalities or less 

inhibition for a given contaminant concentration is generally termed metal-

tolerant. Tolerance has been established experimentally by the use of solution 

culture experiments and clonal or varietal comparisons. Many researchers 

have derived the tolerance indices from root inhibition measurements at 

various contaminant concentrations (Rauser and Winterhalder, 1985; Fox, 

1984, Nicholls and McNeilly, 1979; Hogan and Rauser, 1979; Hogan, et al., 
1977b; Gregory and Bradshaw, 1965; Wilkins, 1957). 

Tolerance to elevated levels of one or more metallic elements has been 

recognised in populations of grass species recolonising contaminated soils 

(Jowett, 1958; Bradshaw, 1952). Despite very high levels of soil contamination, 

tolerant varieties have been known to evolve and establish apparently healthy 

populations (Shaw, 1989). Of these metal tolerant populations members of the 

genus Agrostis are perhaps the most well known. For example, tolerance to 

copper has been identified in genotypes of Agrostis gigan tea (Rauser and 

Winterhalder, 1985; Hogan and Rauser, 1979; ), A. capillaris (Nicholls and 

McNeilly, 1979; Wainwright and Woolhouse, 1977; Gregory and Bradshaw, 
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1965), and A. stolonifera (Wu and Antonovics, 1975). In a solution culture 

comparison of root growth in A. gigantea clones, Hogan et al. (1977b) identified 

copper tolerance in tillers removed from an acid (pH 4.7 - 5.1), nickel-copper 

roast bed soil at Sudbury with very high concentrations of copper (317 - 699 

ppm ammonium acetate extractable). The authors found that a high metal 

concentration must be present for a degree of tolerance to be expressed, but 

that high soil-metal concentrations do not necessarily imply that the plants 

growing thereon will be metal tolerant. The explanation for this appeared to 

be the degree of pH-determined, metal availability. Interestingly, although 

reflecting the metal composition of the soils from which they originated, root 

and shoot metal concentrations were not considered a reliable indicator of 

metal tolererance. Non-tolerant clones were understood to be restricted to 

discrete populations in areas of lower metal availability (Hogan et al., 1977a). 

There is some evidence of metal tolerance occurring in vascular plants growing 

on ultramafic substrates. These are parent materials and low nutrient soils 

that are characteristically rich in ferromagnesium minerals and their products; 

magnesium, nickel, chromium and cobalt (Lee et al., 1983; Proctor, 1971). The 

vegetation on some of these substrates has been reported to exhibit peculiarities, 

such as distinct but sparse vegetation, and these have been attributed to 

magnesium and nickel related toxicity. On some ultramafic substrates, distinct 

physiognomic differences in vegetation, and associated endemism, have been 

recognised in contrast to surrounding areas on dissimilar substrates (Gibson 

et al., 1992; Proctor and Woodell, 1975). Morphological differences, such as 

reduced or altered leaf size, have also been reported (Gibson, et al., 1992; Lee et 

al., 1983). In Australia, a small number of the species found on these substrates 

have been termed metal-accumulating species due to the presence of high 
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levels of nickel in their foliage (eg. Batianoff et al., 1990; Severne and Brooks, 

1972). 

Lee et al., (1983) used the root tolerance test of Wilkins (1957) to study intraspecific 

differences in the growth of Agrostis capillaris derived from ultramafic and 

non-ultramafic populations. An ultramafic population, originating from New 

Zealand soils with typically high concentrations of Mg, Ni, Cr and Co, was 

found to be tolerant of cobalt. However, the authors could not demonstrate 

tolerance to elevated concentrations of either Mg, Ni or Cr. In contrast, Procter 

et al. (1971), using the solution culture test of Gregory and Bradshaw (1965), 

reported the existence of nickel tolerant ecotypes of Agrostis spp. from an 

ultramafic area in Britain. It appears that, in contrast to total metal 

concentrations, such disparate results may be explained by site factors that 

influence the availability of metals to plants. Nickel availability has been 

related to soil pH and organic matter content (Halsted et al., 1969), and 

interactions with Ca, Mg, K, Fe and PO4 are known (Procter and Woodell, 

1975). 

Tasmanian ultramafic areas, however, appear to contrast with other areas in 

displaying no consistent expression of physiognomic differentiation and very 

limited endemism (Gibson et al., 1992). Kirkpatrick (pers. comm.) notes that 

Epacris glabella and Micrantheum serpentinum appear restricted to ultramafics 

in western Tasmania. However, in a survey of the vegetation of Tasmanian 

ultramafic areas, Gibson et al. (1992) were unable to identify indicator species 

in the higher rainfall areas of the west of the State. These authors suggested 

that inconsistent physiognomic differentiation in Tasmanian ultramafic 

vegetation may be a result of interactions between edaphic factors and past 
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fire histories. Interestingly, in New Zealand, Lee et al. (1983) found no evidence 

of intraspecific differences between ultramafic and non-ultramafic populations 

of Leptospermum scoparium when both were grown on ultramafic soils. These 

authors concluded that tolerance in this species is a result of genetic plasticity 

in the species rather than the more usual, development of distinctive genotypes. 

This species is native and common in western Tasmania. 

To date, attempts to breed and select metal tolerant plants have been largely 

confined to cereals (Scott and Fisher, 1989). 

2.8 The response of ecosystems to acidic smelter emissions 

2.81 Smelters worldwide 

The impacts of industrial emissions on ecosystems are often particularly evident 

near large point sources of air pollution such as steelworks, power stations 

and coal, coke or fuel-oil fired base-metal smelters. For example, large areas of 

degraded land or contaminated vegetation and soils have been reported in 

the vicinity of copper smelters based on sulphide ores at Ashio, Tochigi-ken 

(The Daily Yomiuri, 1993), Ducktown, Tenessee (Quinn, 1992), Sulitjelma, 

Norway (Lerbersli and Stinnes, 1988), Flin Flon, Manitoba (Hogan and Wotton, 

1984), Superior, Arizona (Wood and Nash, 1976), Sudbury, Ontario (Rutherford 

and Bray, 1979; Hutchinson and Whitby, 1974) and Copper Hill, Tennessee 

(Hedgecock, 1914). Typically, a zone of severe alteration or impact forms, 

distended in the direction of flow of the prevailing wind (Hogan and Wottan, 

1984; Merry et al., 1981; Little and Martin, 1972). This zone is usually surrounded 

by zones of less severe impact (Smith, 1974). In terms of severe impact, the 
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smallest of the above examples represented an area of some 6 900 hectares. 

The reported effects on vegetation of prolonged exposure to high sulphur 

content emissions from copper smelters range from the elimination of sensitive 

species to complete deforestation. In many cases deforestation has lead to 

extensive soil loss and desertification. At the nickel/copper smelter at Sudbury, 

Ontario, Hutchinson and Whitby (1974) reported the elimination of SO 2- 

sensitive species, such as the Eastern White Pine (Pinus strobus), over vast 

areas subjected to fumigation dating back to the 1880's. Similarly, Hogan and 

Wotton (1984) reported that 50 years of SO 2  emissions had resulted in extensive 

tree mortality and reduced species diversity in a mixed conifer-deciduous 

forest adjacent the copper/zinc smelter at Flin Flon, Manitoba. In northern 

Norway, Lobersli and Steinnes (1988) reported heavy reductions in species 

diversity and density in the vicinity of a Cu smelter emitting approximately 

20 000 tonnes of SO2  annually. In upland Arizona, Wood and Nash (1976) 

correlated reduced species diversity and density with distance from a recently 

decommissioned, copper smelter at Superior. Annual species, completely absent 

at 0.4 km, were more affected than perennial species. 

The exposure of vegetation to elevated levels of sulphur, however, does not 

necessarily result in a loss of species diversity. Preston (1988) reported that, in 

comparison to relatively unpolluted areas, species diversity in a sage scrub 

community close to an oil refinery established for 25 years increased with an 

associated shift in favour of annual plants. Preston likened the shift in relative 

abundance to that occurring after fire and considered the overall effects of 

chronic SO 2  stress as retrogression; stress resulting in altered species diversity 

and structure suggesting a reversal of succession (Whittaker and Woodwell, 

1978). 
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2.82 Soil acidification 

Although the deposition of sulphur dioxide and sulfate particulates from base 

metal smelters has been linked to soil acidification (Wood and Nash, 1976; 

Hutchinson and Whitby, 1974; Whitby and Hutchinson, 1974), the acidification 

of a soil system appears to be site-dependent. For example, a number of authors 

have found no direct relationship between soil acidity, as measured by pH, 

and displacement in the vicinity of Cu smelters despite a minimum of 50 

years of operation (Hogan and Wottan, 1984; Freedman and Hutchinson, 1980). 

Freedman and Hutchinson (1980) suggested that impact of acidic smelter 

emissions on soils was largely dependent upon the buffering capacity of natural 

soils and base cation inputs from litter. The contribution of pollutant cations 

to acid-buffering capacity, and significant sulfate leaching losses were also 

proposed (Freedman and Hutchinson, 1980). 

2.83 Metal contamination of soils and vegetation 

Many studies undertaken in the vicinity of base-metal smelters have indicated 

that metal contamination of soils has occurred (Gabriel, 1994; Lobersli and 

Steinnes, 1988; Freedman and Hutchinson, 1980; Hogan and Wottan, 1984; 

Hazlett. et  al., 1983; Martin et al., 1982; Freedman and Hutchinson, 1980; 

Hutchinson and Whitby, 1974; Little and Martin, 1972). In some instances 

contamination has been recognised at distances exceeding 10 kilometres from 

a source (eg. Freedman and Hutchinson, 1980). The majority of these studies 

also showed that soil metal concentrations declined markedly with increasing 

distance from a source (Lobersli and Steinnes, 1988; Hogan and Wottan, 1984; 

Hazlett. et al., 1983; Freedman and Hutchinson, 1980; Hutchinson and Whitby, 
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1974). 

A number of these studies have found similar negative correlations between 
metal concentrations in foliage and increasing distance from a source (Lobersli 

and Steirmes, 1988; Freedman and Hutchinson, 1980; Hutchinson and Whitby, 

1974). However, metal accumulation in the foliage of plants exposed to smelter 

emissions appears to be species-dependent. For example, Hazlett et al. (1983), 
found correlation between metal concentrations in foliage and distance from 

the source in Agrostis scabra but not in Betula pubescens. 

2.9 Assessment of smelter-polluted terrestrial ecosystems 

2.91 Classification 

Van Haut (1970) and Smith (1974) classified the effects of smelter pollution on 

ecosystems around a point-source of emission into successional or impact 

zones. Smith (1974) formed three classes: Class 1 (low pollution load), Class 2 

(intermediate pollution load) and Class 3 (high pollution load). In Class 1 the 

ecosystem acted as a sink for contaminants and nutrients, with individuals 

showing little or no physical or physiological alteration. In Class 2 reduced 

growth, reduced reproduction and increased morbidity might occur. The 

outcome for the ecosystem might be reduced productivity, altered species 

composition and increased susceptibility to insect and pathogens. In Class 3 

individuals suffered acute morbidity or death. Species loss might be 

accompanied by nutrient and soil impoverishment, altered microclimate and 

hydrology, and result in severe ecosystem simplification. 
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Rutherford and Bray (1979) broadly classified the damaged and eroded soils at 

Coniston in terms of topographical and morphological differences. 

2.92 Plant and soil chemical analysis 

Most studies of terrestrial ecosystems exposed to smelter emissions over a 

prolonged period have been concerned with the extent and degree of soil 

contamination by heavy metals (e.g. Lobersli and Steinnes, 1988; Hogan and 

Wottan, 1984; Hazlett. et al., 1983; Martin et al., 1982; Freedman and Hutchinson, 

1980; Hutchinson and Whitby, 1974). This approach has been adopted due to 

the persistence displayed by most metallic elements in soils in comparison to 

their residence times in vegetation (Bowen, 1975). Martin et al. (1982) considered 

soil the ultimate sink for heavy metals in an ecosystem. 

Contamination in the vicinity of operational smelters has been also investigated 

by the analysis of metal concentrations in litter (Martin et al., 1982), in leaf 

tissue, (Lobersli and Steinnes, 1988; Hogan and Wottan, 1984; Hazlett. et al., 

1983; Martin et al., 1982; Freedman and Hutchinson, 1980; Hutchinson and 

Whitby, 1974; Little and Martin, 1972) and in seed (Merry et al., 1981), usually 

along transects or downwind of a source. Some researchers have used 

correlation analyses as a means of identifying trends and sources of 

contamination (eg. pollutant x distance and pollutant x pollutant correlations; 

Hogan and Wottan, 1984; Freedman and Hutchinson, 1980). Relationships 

have also been identified between metal concentrations in foliage and their 

corresponding levels in soils, although most researchers point out that such 

relationship may not necessarily be causal (Lobersli and Steinnes, 1988; Hazlett. 

et al., 1983; Hogan and Wotton, 1984; Little and Martin, 1972). 
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2.93 Assessment of metal contamination 

Researchers have sought biologically relevant measures of heavy-metal toxicity. 

In general, the assessment of the effects of metal toxicants on biota has been 

approached in two ways: 

1) by field sampling soil or organisms that have been exposed to contamination 

and examining the concentration or distribution of contaminants in and 

between soil and organisms. This approach is usually accompanied by 

correlation analysis or calculation of a concentration ratio. 

2) by the adding of specific compounds, extracts or whole soils of known 

contaminant concentration to test organisms and measuring the responses of 

those organisms. These experiments are usually performed in pot or laboratory 

bioassay trials, as the artificial environment minimises the risk of uncontrolled 

influences masking the relationship between a contaminant and a test 

organism. 

Neither approach is ideal. The former suffers from a lack of demonstrated 

causality while the latter is potentially misleading if the principles are applied 

to a whole environment without qualification. The two approaches are 

considered in more detail below. 

Early work on soil contamination relied on the total concentration of metals 

in the soil. However, it was realised that these may have little direct biological 

significance, as a large proportion of a total determination may be in a form 

unavailable to organisms. In order to overcome this limitation, researchers 
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investigating metal contamination have used alternate soil extractants to the 

strong acids used for total digests. 

Examples of commonly used extractants for metals are DTPA (Hogan and 

Wottan, 1984), ammonium acetate (Freedman and Hutchinson, 1980), water 

(Freedman and Hutchinson, 1980; Whitby and Hutchinson, 1974). DTPA, a 

chelating agent, is a weak acetic acid that is understood to remove micronutrient 

cations and water-soluble constituents adsorded on solid phases and may 

simulate the action of plant roots (Rayment and Higginson, 1992). DTPA 

extraction has been used to assess the micronutrient status of soils including 

Cu and Zn (Lindsay and Norvell, 1978). Ammonium acetate and water are 

weak extractants. These extractants are considered to better represent plant-

available metals. In comparison to total determinations, the use of weak 

extractants has seen improvements in concentration-response correlations. 

However, interpretation remains limited to the degree to which these 

extractants mimic the chemical environment experienced by organisms. 

Toxicity assessment by soil and plant chemical analysis has seen the derivation 

of the concentration ratio. This is based on the recognition that plants may 

either exclude or accumulate metals from soils (Beckett et a/., 1977). Sheppard 

et al. (1992) provide an example of a concentration ratio: the metal concentration 

of the edible portion of a plant to the concentration in the plough layer. 

However, as with attempts to correlate metal concentrations between foliage 

and soil, this model of contaminant transfer via the root system assumes 

linearity between soil and plant concentrations. The assumption may not be 

reasonable (Sheppard and Evenden, 1988a). 
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Laboratory bioassay studies have been used to examine alterations in the 

response of sensitive organisms when exposed to a range of metal 

concentrations. Under controlled conditions, this form of bioassay has 

permitted the identification of upper critical levels: the minimum 

concentration of essential or non-essential elements, either in solution or in 

plant tissue, at which toxic effects become apparent (Beckett and Davis, 1977). 

Van Assche and Clijsters (1990) and Whitby and Hutchinson (1974) provide 

two examples of the use of bioassays in order to assess soil contamination 

originating from smelters. For example, Van Assche (1990), found a strong 

negative correlation between water-soluble Zn in a contaminated soil and 

shoot length in two week old Phaseolus vulgaris. However, while numerous 

organisms have been selected for soil ecotoxicological work, such as work on 

the growth and reproduction of earthworms (van Gestal et al., 1988), Sheppard 

(1992) states that the aspect of soil and aquatic bioassay research that meets 

with most agreement is that no single test is sufficient to express toxicity. This 

is because the concentrations at which organisms express toxicity symptoms 

vary between species. For example, in a review of aluminium toxicity to 

vascular plants, Andersson (1988) records the great differences in Al tolerance 

found both between and within species. This has led to attempts to specify the 

amount of data required to set useful values of soil quality using soil toxicology 

data for a number of different taxonomic groups (van Straalen and Denneman, 

1989), and, in some instances, the advocacy of a bank of soil toxicity tests 

(Wang and Bartha, 1990; Sheppard et al., 1992a). 

In theory, upper critical levels derived from bioassays under controlled 

conditions could be identified for any number of the biota within an ecosystem. 

However, as the influence exerted by a toxic element is highly dependent 
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upon its environment, the environmental relevance of laboratory-based, 

critical levels may be extremely questionable. Beckett and Davis (1977) made 

considerable progress in the search for an index of toxicity for higher plants 

that was independent of the environmental conditions under which the 

organism was grown. These authors considered yield alone a poor index of 

toxicity as the height of the yield-concentration plateau depended on many 

factors such as the growth conditions. Moreover, they reasoned that, as the 

toxic effects of a given concentration of an element in the soil solution also 

depended on numerous factors, this too is likely to be a poor index of toxicity. 

Conversely, they showed that the tissue concentrations of metals in barley 

seedlings at the upper critical level were almost independent of yield under 

various growing conditions and devised a measure of elemental accumulation 

relative to the onset of toxicity. Although little use appears to have been 

made of this measure, foliar analysis has been used in attempts to diagnose 

levels of contaminants and has generally met with support among researchers 

(Balsberg Pahlsson, 1989). 

While soil and plant chemical analysis, concentration ratios and laboratory-

based, critical levels provide useful guidelines, especially where the response 

of a range of taxa are examined, it is impossible to stipulate field-threshold 

values above which metal-phytotoxicity appears (Balsberg Pahlsson, 1989; 

Andersson, 1988). This is because the influence exerted by heavy metals on 

organisms may be controlled by genetic, environmental, growth stage and 

toxicological factors (Sheppard et al., 1992). Schuster (1991) discusses the 

dilemma of extrapolation of laboratory toxicity results to the field. Sheppard 

et al. (1992) conclude that the effects of soil properties on the toxicity of 

contaminants are poorly known and that judgement is needed to define 
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unacceptable levels of natural toxic elements. 

2.10 Definitions in reclamation 

Restoration, rehabilitation and replacement 

Irrespective of the nature of a degraded environment three general approaches 

to vegetation management are recognised: restoration, rehabilitation and 

replacement (Bradshaw, 1992). These terms require some clarification. 

Restoration implies a return to pre-existing conditions; that is, a return to the 

original species composition of a community accompanied by the re-

establishment of ecosystem structure and function. At the very least, restoration 

requires a detailed knowledge of species autecology, inter-relationships and 

their contribution to ecosystem development. This type of information is not 

always known for community dominants, let alone a plant community as a 

whole. Although Bradshaw (1992) believed that restoration is possible, it 

remains an ultra-specialized goal, and is rarely, if ever achieved in drastically 

disturbed land (Fox, 1984). 

Rehabilitation is generally understood to require a reversal of degenerative 

processes. Although not always acknowledged, the longer term objectives must 

involve the re-establishment of ecosystem function, as this will determine 

the durability of the new community. Understandably, a universal component 

of a successful rehabilitation strategy is a return to soil stability. This is 

commonly achieved by a combination of mechanical and vegetative means. 

There is, however, no requirement that a newly established community be 
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similar to the original. 

Rehabilitation does not require the return of a pre-existing diversity, nor does 

it necessarily imply the use of indigenous species. The strategy may involve 

the partial return of an indigenous community, or may rely exclusively on 

the use of exotic species, such as cultivated legumes and grasses. This is known 

as rehabilitation with replacement. In some situations provision of a cover 

crop has been beneficial. Since the complexity of the original ecosystem is not 

required, replacement should be the easiest option (Bradshaw and Chadwick, 

1980). The adoption of a strategy of rehabilitation does, however, imply the 

return of productivity to a site. In certain circumstances, this may exceed that 

of the original community. The term reclamation is generally understood to 

include both restoration and rehabilitation. 

Reclamation strategies and neglect 

It is possible to adopt two broad strategies in regard to degraded land: reclamation 

and neglect. Reclamation includes any type of physical, chemical or biological 

ameliorative treatment in order to achieve an acceptable level of site 

productivity, species richness or ecosystem function. The objectives of 

reclamation may include restoration, rehabilitation or replacement. Neglect 

relies on the natural redevelopment of site stability and complexity under the 

influence of weathering, nutrient accumulation and successional processes. 

Neglect may be a viable option on sites previously occupied by well-developed 

communities, or where nutrient and environmental conditions remain 

favourable (Bradshaw, 1992). Bradshaw and Chadwick (1980) concluded that 
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in the temperate, northern hemisphere the complete return of ecosystem 

complexity may occur within 100 years, but observed that, in other situations, 

where special limiting factors such as acidity and metal toxicity occur, there 

may be almost no colonisation after the elapse of 50 or 100 years. The strategy 

of neglect can also lead to further site degradation. Some examples of situations 

where neglect may lead to further degradation are sites exposed to increased 

fire frequency, wind or water erosion, or subject to weed infestation. 

Under certain circumstances, neglect may result in outcomes similar, to those 

achieved by reclamation. Consequently, either strategy may be a viable option. 

The selection of an appropriate strategy for a degraded site can only be made 

following a consideration of the desired objectives of reclamation in relation 

to existing knowledge of that environment and proven methods of reclamation. 

2.11 The amelioration of metal toxicity in acid soils 

Organic matter 

The amount of organic matter in a soil has been found to be a major factor in 

determining the toxicity of metals to plant growth (Thomas and Hardgrove, 

1984; Hardgrove and Thomas, 1981; Elliot et al., 1979; McLean, 1965). This is 

due to the high affinity between organic matter and some metals (Livens, 

1991; McBride, 1989). This suggests that adding organic matter to contaminated 

soils should reduce metal toxicity by reducing availability. Hue et al. (1986), 

for example, found that various organic acids were differentially able to 

ameliorate Al toxicity in soil solutions. 
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Organic matter amendments, such as plant residues, wood chips, composted 

tree bark and papermill sludge, have been used to reclaim degraded soils 

(Logan 1992) and sewage sludge has been applied to Cu and Zn smelter 

contaminated soils (Berry, 1986; Berry 1985, Franks et al., 1982) with some 

success. In the case of sewage sludge, care must be exercised not to introduce 

additional contaminants with the ameliorant. ' 

Neutralising amendments 

The fraction of an organically complexed metal, such as Cu', relative to the 

free form increases at higher pH (McBride, 1989). Similarly, Evans and Kamprath 

(1970) found that as the organic matter content of soils increased, less AP+ was 

present in the soil solution for a given pH. This type of evidence suggests that 

pH control of metal sorption/desorption and precipitation/dissolution 

mechanisms may ameliorate metal toxicity by reducing availability. 

Field applications of calcium-based materials or limes, such as calcium 

carbonate, to acid, metal contaminated lands have reportedly reduced toxicity 

(Clements et al., 1968), initiated natural plant colonisation (Winterhalder, 

1991; 1981a; 1981b), ameliorated nutrient deficiencies (Rodinkirchen, 1992) and 

aided colonisation by acid-intolerant vascular species (Rodenkirchen, 1992). 

Winterhalder (1991; 1981a; 1981b) considered the addition of lime a trigger 

factor for the initiation of natural plant colonisation by birch, aspen and willow. 

In disturbed lands affected by strip mining, the addition of lime has resulted 

in the improved survival of N 2  -fixing, woody species on highly acidic spoils 

(Carpenter and Hendsley, 1979). The application of lime has been found to 

moderate the effects of acid rain on the understory species of European 
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coniferous forests subjected to simulated H 2SO4  rain (Rodenkirchen, 1992). 

Lime application is understood to ameliorate metal toxicity by enhancing 

sorption and precipitation (Logan, 1992; Sopher and Baird, 1982) 

Some studies have shown that gypsum (CaSO 4 .2H20) can neutralise acid 

subsoils (Oates and Caldwell, 1985; Pavan et a/., 1984; Reeve and Sumner, 

1972) and stimulate growth by reducing metal toxicty (Adams and Hathcock, 

1984; Pavan et al., 1984) or increasing Ca levels (Adams and Hathcock, 1984). 

Phosphorus 

Reductions in Al toxicity with added P have been reported in nutrient solution 

studies (Alva et al., 1986; Blarney et al., 1983) and with soil-grown plants 

(Bache and Crooke, 1981; Awad et al., 1976). In the vicinity of phosphate 

fertilizer particles, local low pH conditions and high phosphate concentration 

may cause the dissolution of clays and the precipitation of Al phosphate (Huang, 

1988). However, in highly weathered soils with low P availability the usefulness 

of P applications as a means of overcomming Al toxicity can depend on P-fixing 

capacities (Fox and Searle, 1978). 

2.12 Site histories: the rehabilitation of acid, metal-contaminated terrestrial 

ecosystems 

The methods used to reclaim lands altered by prolonged exposure to emissions 

from copper smelters have tended to be site specific. The reasons for this are 

manifold. Firstly, it is apparent from the above discussion of the literature 

that the significance of smelter emissions on an environment are likely to 
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vary not only with plume composition and deposition patterns but with the 

chemical and physical characteristics of the environment in which the 

deposition occurs, and with the tolerance of a local biota to the altered conditions 

of growth. Secondly, reclamation methods must be scale-appropriate. Factors 

of scale, for example, might include the practical limitations presented by a 

local topography to a mechanised method of ground preparation or plant 

re-introduction. Thirdly, a newly established community may be similar or 

otherwise to the vegetation that preceded it. However, as similarity does not 

necessarily confer acceptability, some recourse to subjective judgement may 

be required. For example, the introduction of a non-native species might be 

judged acceptable only after consideration of the site within a local context. At 

sites where reclamation has taken place over many years shifts in the cultural 

perception of acceptability may occur - alongside technological advances. Even 

without cost as a consideration, all of these factors are likely to influence 

strategic choices in reclamation. 

In a few cases reclamation works have evolved over decades of trial and 

error. The following are examples of reclamation works in areas denuded by 

acidic pollution from copper smelters. All have reclamation histories spanning 

at least twenty years. The examples are geographically and topographically 

distinct and demonstrate how the environment of deposition can affect the 

approach taken toward reclamation. They are introduced in order of increasing 

topographic severity. 

The best known and most studied example of a denuded and highly 

contaminated environment due to prolonged exposure to emissions from a 

nickel/copper smelter occurs on the relatively featureless Laurentian Shield 
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at Sudbury, Ontario. A century of SO2  fumigation, particulate deposition, 

lumbering and fire resulted in 10 000 ha of barren land and 36 000 ha of 

stunted open birch-maple woodland (Winterhalder, 1988). Contamination 

occurred initially from nickel-copper roast beds operating before the turn of 

the century, and later, from smelters exhausted through stacks and superstacics. 

Amiro and Courtin (1981) divided the residual communities into two groups, 

namely: the barren, birch transition and maple transition group and the 

hemlock, white pine and northern hardwood forest. 

In the early 1970's 6 000 tree, shrub and grass seedlings were planted using 

student labour (Lautenbach and Winterhalder, 1979). Experimental trials 

examined the application of lime, phosphorus and nitrogen (Balsille and 

Winterhalder, 1978). Mulches and composts were also tested as soil ameliorants. 

Liming, fertilizing and grass seeding was undertaken (Hume, 1983). 

Winterhalder (1991; 1981a; 1981b) considered the addition of lime a trigger 

factor for the initiation of natural plant colonisation by birch, aspen and willow. 

Between 1978 and 1990, 3 000 of the 10 000 pollution-affected hectares at Sudbury 

were reseeded with grass and planted to 1.2 million Jack and Red Pine seedlings 

by Inco Limited at a cost of Can.$14 million (Canadian Geographic, 1991). 

Broadacre liming was undertaken from the air. 

At Ducktown, Tennessee, copper roasting, smelting and timbergetting that 

began during the latter part of last century resulted in 6 000 to 9 000 ha of 

seriously eroded or degraded land (Quinn, 1992; Tyre and Barton, 1986). When 

reclamation planting began in the 1930's Hursh (1948) estimated that 2 833 ha 

were bare land and 6 880 ha deforested grasslands. Some early works required 

replanting three times (Tyre and Barton, 1986). The revegetation trials of Berry 
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(1979) and Berry (1982; 1985) used deep subsoiling (60+ cm) in combination 

with municipal sewage or fertilizer tablets to improve the survival and growth 

of hand planted Pinus taeda (Loblolly pine) seedlings. Pinus virginiana, Rob in ia 
pseudoacacia and other hardwood species were also planted experimentally 

(Quinn, 1992; Berry, 1983). In subsequent broadacre plantings ground 

preparation specified the use of contour subsoiling, 90 cm deep to 1.2 m centers, 

followed after settling, by planting and pellet fertlizer (Tyre and Barton, 1986). 

However, these methods, could not be used where the topography was steep 

or gullied. By 1986 the denuded area had only been reduced in size by about 

400 ha. (Tyre and Barton, 1986). Aerial sowing of grasses was also tried in 

limited areas. Plantings of Loblolly pine and sowings of Eragrostis curvula 
(Weeping Love grass) were considered a fairly successful combination (Quinn, 

1992). 

At Ashio, Tochigi-ken (Japan), 12 000 hectares in a mountainous region, that 

became known as the "Japanese Grand Canyon", were deforested as a result of 

pollution from the Furukawa Co. copper smelter and associated timber-getting 

(The Daily Yomiuri, 1993). Reclamation began in 1956. In contrast to the 

Canadian and American approaches, the current methods involve either 9 

pegging bags filled with seed, fertilizer and soil along narrow, purpose-

constructed terraces or, in the steepest terrain, broadcast-sowing grass and tree 

species by helicopter with dilute asphalt as a stabilizer. To date (1993) reclamation 

costs have amounted to Y$2 billion. 
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Chapter 3 

Soil characteristics along transects of increasing displacement 

from the Mount Lye11 smelter ruins 

3.1 Introduction 

Soils in the vicinity of acid producing, base-metal smelters have been 

studied along transects originating at a point-source of emission (Hogan 

and Wotton, 1984; Freedman and Hutchinson, 1980; Rutherford and Bray, 

1979; Wood and Nash, 1976; Hutchinson and Whitby, 1974). Many of 

these studies describe concentration-displacement patterns that indicate 

particulate metal contamination and its source (Fig.1). In some soils, acid-

deposition has led indirectly to profound chemical alteration, principally 

as a result of acid-neutralising reactions in the exchange complex. These 

reactions are known to lead to cation leaching (Wookey and meson, 1991) 

and a depletion of the base cation reserve (Dahlgren, 1990). Acid-deposition 

may result in pH-dependant shifts in the solubility, abundance and 

speciation of metal-ions (Malmer, 1976), causing alterations in the 

availability of soil metals to plants. Alterations to metal-ion availability 

can result in phytotoxicity (eg. Kramer, 1969). 

Despite apparent similarities between terrestrial environments exposed 

to emissions from base-metal smelters, impacts on soils and soil chemistry 

resulting from the deposition of metals and other smelter contaminants 

are likely to be unique. For example, some studies have 
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Figure 1: Surface soil, metal-ion concentrations (total) along transects 

originating at the smelter stacks of four base-metal smelter sites. At the 

time of sampling each of the sites had been exposed to base-metal smelter 

emissions over a duration of at least 50 years. Non-target metals can be 

considered controls and are identified by an asterisk. The data for Figures 

la-1d have been extracted from Hutchinson and Whitby (1974), Hogan 

and Wotton (1984), Freedman and Hutchinson (1980) and Kirkpatrick 

(unpublished), respectively. 
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identifed soil acidification (Wood and Nash, 1976; Hutchinson and Whitby, 

1974; Whitby and Hutchinson, 1974), but others have found no direct 

relationship between soil acidity and displacement, despite many years of 

deposition (Hogan and Wottan, 1984; Freedman and Hutchinson, 1980). 

Discrepancies have been attributed to interactions between contaminants 

and the receiving environment. Freedman and Hutchinson (1980) 

suggested that impact of acidic smelter emissions on soils was largely 

dependant upon the buffering capacity of natural soils and base cation 

inputs from litter. Other authors have also indicated that soils vary in 

ability to adsorb acid deposition (Reuss et al., 1987; Krug and Fink, 1983; 

Richie and Posner, 1982; Heute and McColl, 1984; Malmer, 1976). 

The history of environmental impacts at Mount Lye11, however, has not 

been confined to the effects of smelter emissions on soil types. In the 

period between smelter establishment and closure, whole soil profiles 

were eroded to subsoils over much of the mountain. Amounts of 10 M 

tonnes of lost top soil have been calculated (Locher, 1995). Erosion on 

this scale, much of which is thought to have occurred in the early years 

of the development, resulted in significant off-site redistribution of both 

soils to the lower reaches of the King River and Macquarie Harbour. Soil 

contaminants are likely to have been similarly redistributed. Against this 

background of soil erosion, the exposed, but residual subsoils were 

continuously exposed to acidic, Cu smelter emissions until smelter closure 

in 1969. Consequently, the status of soil contamination at Mount Lye11 

remained in question, but was likely to have been greatly influenced by 

contaminant redistribution and the capacity of residual soils to buffer the 

deposition of acidic, Cu smelter emissions. 
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This chapter describes some chemical and physical characteristics of the 

Mount Lye11 soils along two radial transects originating at the smelter 

ruins. It is concerned with the identification of metallic contaminants 

surrounding the smelters, their concentrations, distribution and source. 

The investigations were confined to the surface soils as these have been 

shown to contain the highest concentrations of metals in contaminated 

profiles (Freedman and Hutchinson, 1980; Rutherfofd and Bray, 1979; 

Wood and Nash, 1976; Tyler, 1975). Soil chemical characteristics, such as 

pH, total exchangeable bases and available metals, provided a means of 

assessing soil alteration due to the deposition of acid-forming and 

particulate smelter emissions. 

In the absence of universally-accepted diagnostic methods, the extractant 

used in the determination of available metal-ion concentrations was 

conservative, and chosen to best reflect bio-availability. The soils were 

analysed for soluble concentrations of both target (i.e. Cu) and non-target 

(i.e. Al and Zn) metals. McCray and Sumner (1990) considered the 

concentration of the soil solution to provide a direct measure of the 

conditions experienced by plant roots. Baker et al. (1988) and Bruce (1988) 

indicated that, in comparison to conventional methods, the soil solution 

provides a more accurate means of assessing metal-ion toxicity. Freedman 

and Hutchinson (1980) and Whitby and Hutchinson (1974) used . soil-water 

extracts to assess soil toxicity in lands contaminated by acid-producing, 

base-metal smelters. 
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3.2 Methods 

3.21 Soil sampling 

Soil samples were taken along two radial transects originating at the the 

Mount Lye11 smelters (Fig. 2). The transects were confined to the Mount 

Read volcanic sequence. An easterly transect, following the direction of 

the prevailing winds, rose from an initial elevation of 230 m close to the 

smelter site, to 480 m at a distance of 1.71 km. A similar, northerly transect, 

rose from 220 m, to an elevation of 530 m at a distance 2.32 km. The 

sample sites were located on ridgetops or slopes in direct line-of-sight of 

the smelters. 

At each site, a composite soil sample was prepared from 10 to 15 randomly 

located subsamples. The subsamples were excavated to a depth of 2 cm. 

Sufficient soil was removed at each location to provide a subsample of 

approximately 2 kg. The samples were packed into 20 litre plastic buckets 

with close-fitting lids for transport. 

Samples of exposed Mount Read Volcanic subsoils (C horizon) were 

collected similarly from several sites at least 5 km removed from the 

smelters. These were considered uncontaminated and used as an 

indication of background levels. Composite samples were collected using 

the same methods as at the transect sites. 
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3.22 Sample preparation, soil analysis 

The laboratory preparation of the soil samples followed the 

recommendations suggested by Rayment and Higginson (1992). The soil 

samples were initially broken up by crushing between sheets of 

polyethylene. The samples were then coarse sieved (1 cm nylon mesh), 

thoroughly mixed and transferred to clean, 20 litre plastic buckets for 

cold storage (2-3°C) and use in subsequent pot trials (Chapter 5). A 2 kg 

portion of each sample was reserved for laboratory determinations. 

The laboratory samples were divided in a sample divider into two halves 

of approximately equal mass and allowed to air dry. One portion was 

sieved (6 mm brass mesh) and a subsample subjected to pH measurement. 

A soil/water suspension (1:1 soil/distilled water by weight) was prepared 

and, after shaking, pH measurement performed with the aid of a WTW 

electronic pH meter (model pH6) fitted with a Type E 50 electrode. Prior 

to pH measurement the meter was standardised to the manufacturer's 

specifications. After additional sieving (2 mm mesh), another subsample 

was reserved in sealed plastic bags for total nitrogen determination using 

the Kjeldahl procedure (Bremer and Mulvaney, 1982). Total nitrogen 

was determined by the Mount Pleasant Laboratories, Kings Meadows, 

Tasmania. Soil texture was determined using a rod and ribbon method 

and a key based on Northcote (1979). The remaining soil was stored at 

2-3°C in labelled plastic bags as reference material. 

The other half of each soil sample was used to determine selected soil 

chemical attributes. As the samples were to be subjected to metal-ion 
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determinations, two precautions were taken in order to minimise external 

contamination during sample preparation; prior to use all the utensils 

were rinsed in a solution of 5% nitric acid (14M analytical grade) and 

plastic-bodied, nylon-mesh sieves were used throughout. The samples 

were sieved (6 mm nylon mesh) and air-dried to constant weight on 

polyethylene lined aluminium trays at 40 °C in a fan-forced oven. Drying 

periods varied with the composition of each sample and in some cases 

extended over several days. After drying, each sample was sieved (2 mm 

nylon mesh) and sealed in labelled, plastic bags. 

The air-dry samples were used to estimate soil moisture (ODM), organic 

matter content (LOT), total exchangeable bases (TEB) and metal-ion 

concentrations. Samples weighing approximately 4 grams were transferred 

to clean crucibles of known mass and the air-dry mass of each calculated. 

The samples were then placed in an oven for a period of 6 hours at 

105°C. After drying to constant weight and reweighing at room 

temperature, the moisture content of each sample was calculated using 

the percentage method of Rayment and Higginson (1992). 

Organic matter content was determined by loss-on-ignition (LOI). Oven-dry 

(105°C) samples of known weight (approximately 2 g) were placed in 

pre-weighed, high-temperature crucibles and heated to 450 °C in an high 

temperature oven for a period of 6 hours. Each sample was reweighed at 

room temperature and the difference in sample mass used to estimate 

percentage organic matter content. 

Total exchangeable bases (TEB) were determined by the Mount Pleasant 
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Laboratories, Kings Meadows, Tasmania. 

A weak extractant, distilled water, was used to determine the soluble 

metal-ion concentrations. This extractant was chosen in preference to 

stronger extractants as many, such as the strong acid digests, are believed 

to have little direct biological significance (eg. Baker et a/., 1988 ; Bruce, 

1988; Prevan et al., 1982). The method used was similar to that of Freedman 

and Hutchinson (1980) and Whitby and Hutchinson (1974) during 

investigation of lands contaminated by acidic deposition from base-metal 

smelters. 

Soil-water extracts were prepared from 66 grams of each sample, diluted 

3 to 1 by mass with distilled water, and mechanically shaken in acid-rinsed, 

high-density polyethylene bottles for 3 hours. After standing for 24 hours, 

the extracts were decanted into clean polypropylene bottles. The extracts 

were sent to the Mount Pleasant Laboratories, Kings Meadows where 

they were preserved by acidification with 2 mL L -1  HNO3  (ASTM, 1989b) 

and analysed by atomic absorption spectrometry (Varian 1275) for the 

metals Cu, Zn, and Al. Soluble metal concentrations were obtained in 

mg L-1 . 

3.23 Data exploration 

The physical and chemical attributes of the soils along each transect were 

tabulated and contrasted. Soil pH and metal-ion data was explored with 

the aid of regression analysis. Comparisons were drawn between the 

metal-ion concentrations recorded at Mount Lyell and those reported for 
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soils from similar near-smelter sample sites. The concentrations at which 
metal-ions have reportedly resulted in growth abnormalities in the higher 

plants were documented. 

3.3 Results 

3.31 Soil characterisation 

...- 
Two soil types, derived from similar volcanic parent materials, were 

distinguished by texture analysis in the survey area. The two types were 

broadly representative of the dominant volcanic geology on the western 

face of Mount Lye11 and differed mainly with respect to quartz composition. 

On both transects, exposed fine-grained, chlorite-sericitic schists were 

located at sampling sites nearest the smelters (Table la and Table lb). 

These formed exposed, clay-dominated subsoils, described as intermediate-

mafic volcanic in origin (Mount Lye11 Technical Review, 1993). Soils at 

the remaining sampling sites were sericite-chlorite and siderite schistose 

pyroclastics. These formed sandy barns, described herein as felsic volcanics. 

Small lenses of buried soil horizons or buried colluvial material were 

also noted in the survey area. Soil samples were not taken where these 

profiles were encountered. 

All samples had an acidic reaction. The pH of samples on the easterly 

transect lay within half a unit (Table la). The lowest value, 4.3, was 

recorded 230 m from the smelter site, at Site 1 and the highest, 4.8, at 850 

m (Site 4). There was, however, no clear pH-displacement relationship 

(R=0.26; Fig. 3a). For example, at 1150 m (Site 5), the most distant sampling 
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Table la and lb: Surface soil characteristics along two radial transects 

originating at the Mount Lye11 smelters. 

Table la: Easterly transect 

Sample sites 1 2 3 4 5 6 

Dispcement 
horn smelters (m) 230 400 650 850 1150 1712 
Soil texturel  medium sandy light sandy sandy sandy 

clay clay sXrEdy 
loam 

loam clay 
loam 

loam  

Soil pH2  4.3 4.5 4.7 4.8 4.5 4.5 
Loss on ignition (%) 3.9 3.7 3.1 5.3 7.0 5.6 
% air dry moisture 0.6 0.7 1.5 2.0 2.6 1.5 
N(%Total)3  0.78 0.90 0.37 0.47 0.35 0.76 
TEB (n-eq 100g-1 )4  1.25 0.99 0.73 0.76 0.95 0.76 
Ca (m3q 10005  0.36 0.29 0.16 0.18 0.20 0.19 

Table lb: Northerly transect 

Sample sites 

igsrgVerlat:It  rl(m) 

1 

225 

2 

435 

3 

575 

4 

850 

5 

1837 

6 

2075 

7 

2325 
Texture class' medium medium sandy light sandy sandy sandy 

clay clay clay randy flay galx1  gay 

Soil pH2  3.8 4.1 4.1 4.5 5.7 5.2 5.2 
Loss on ignition CYO 4.6 5.3 2.3 3.6 1.5 2.6 6.0 
% air dry moisture6  0.6 0.7 0.6 1.1 0.2 0.7 0.7 
N(%Total)3  0.78 0.65 0.62 0.47 0.35 0.62 0.84 
TEB (rre:1100g -1)4  1.11 1.02 0.88 0.76 0.95 0.78 0.79 
Ca (rreq 100g-1 )5  0.29 0.34 0.21 0.20 0.28 0.31 0.29 

1)Soil texture: Soil texture determination based on ANU Forestry texture evaluation guidelines 
derived from Northcote (1979). 
2) Soil pH was measured in a 1:1 soil/distilled water mix using a WTW electronic pH meter (model 
pH6) fitted with a Type E50 electrode. 
3)Kjeldahl procedure (Bremer and Mulvaney, 1982) 
4) TEB = Total NH 4/CL exachangable bases 
5)NI-14C1 extractable calcium 
6) Air dry moisture (ODM); Rayment and Higginson (1992). 
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Figure 3: Mean soil pH along easterly (3a) and northerly (3b) transects 

originating at the Mount Lye!! smelters. Composite samples were formed. 

Each sample was comprised of 10 to 15 subsamples (0-2cm depth). Soil pH 

was measured in a 1:1 soil/distilled water mix using a WTW electronic 

pH meter (model pH6) fitted with a Type E50 electrode. Regression lines 

are shown. 
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point on the transect, soil pH was similar to that recorded at 400 m. The 

mean soil pH for the transect was 4.6±0.2. 

Samples from the northeasterly transect were similarly, moderately acidic, 

with a mean soil pH of 4.7±0.7 (Table lb). The lowest pH recorded on this 

transect was 3.85 at Site 1. A linear correlation indicated that soil pH 

increased with increasing displacement (R=0.92; Fig. 3b). For example, 

between 850 m and 1837 m, soil pH increased approximately one unit to a 

maximum of 5.7 at 1837 m (Site 5). The mean soil pH for the three most 

distant sites on this transect was 5.4±0.3. 

Sample sites along both transects recorded low or very low TEB, LOI and 

total nitrogen (Table la and Table lb). 

Concentrations of the target metal Cu were highest at sites nearest the 

smelters. The highest concentrations recorded were 10.41 and 9.60 mg L', 

on the easterly and northerly transects, respectively. Concentrations 

declined rapidly with increasing displacement along both transects (Fig. 

4a and Fig. 4b). The concentration-displacement patterns for Cu were 

strongly negative-exponential (R=0.95 and R=0.97 for the easterly and 

northerly transects, respectively) and background concentrations appeared 

to be reached between 1000-1500 m displacement. The mean Cu 

concentrations for the easterly and northerly transects (3.51±4.1 and 

2.77±3.6, respectively) exceeded those of the background volcanics by factors 

of 12 and 9, respectively (Table 2). 
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Figure 4: Soluble copper and zinc concentrations for surface soils along 

easterly (Fig. 4a) and northerly (Fig. 4b) transects originating at the Mount 

Lyell smelters. Composite samples were formed. Each sample was 

comprised of 10 to 15 subsamples (0-2cm depth). Soil-water extracts 

(acidified) were made up with distilled water at a dilution rate of 3 to 1 by 

mass. Exponential regressions are shown. 
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Table 2: A comparison of near-smelter transect data for soil-metal 
concentrations at Mount Lye11 and similar soil data for Coniston' (Ontario) 
and Superior' (Arizona). Background data for the Mount Read Volcanics 
are shown. 

Displacement 
from smelter (m) 

Sample depth (cm) 

Soil pH 

Acid extractable 
total digest (ppm) 

Cu 
Al 
N i 
Zn 
Pb 

Water extractable 
metals (mg1: 1) 

Cu 
Al 
Zn 
Pb 

Nutrients and others 

LOT (To organics) 
TEB (mEq100g -1 ) 
Total N (°/0) 

Mount 
Lyell 
(East) 

230-1 700 

0-2 

4.6 ±0.2 1  

160.5±1234  
na 
na 
215.0±52.34  
272.5±13.44  

3.51 ±4.1 1  
6.37±7.5 1  
0.32±0.31  
<0.61  

4.6 ±1.6 1  
0.9 ±0.21  
0.06±0.02 1  

Mount 
Lyell 
(North) 

225-2 325 

0-2 

4.7±0.7 

na 
na 
na 
na 
na 

2.77±3.6 1  
8.10±9.8 1  
0.33±0.1 1  
<0.61  

3.7±1.7 
0.9±0.1 
0.08±0.022  

Mount 
Read 
Vol. 

-5000 

0-2 

4.22  

624  
na 
na 
624  
534 

0.3 ±0.21  
1.4 ±0.4 1  
0.6 ±0.8 1  
<0.6 1  

15.6 ±2.5 1  
na 
na 

Coniston 	Superior 

800-1 500 	400-1 400 

surface 	surface 

3.2 -±0.2 	-5.06  

2527.0 ±5165 	5 778.5±5 
24 100.0 ±18 51 5  na 
3 480.0 ±22965 	na 
86.4 ±14.05 	207±1306  
60.5 ±3125 	218±1486 

50.7 ±12.33 	na 
63.8 ±18.73 	na 
0.9 ±0.13 	na 
na 	 na 

7.6 -±1.563 	na 
na 	 na 
na 	 na 

4306  

1 This study: eastern transect, n=6 ; northern transect, n=7; Mount Read Vol., n=5 
2 Kirkpatrick (1984); n=2 
3 Whitby and Hutchinson (1974); n=2 
4 Kirkpatrick (unpbl.) n=2 
5 Hutchinson and Whitby (1974); n=2 
6 Wood and Nash (1976); n=2 	 na = not available 
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The non-target metal Zn displayed a similar concentration-displacement 

pattern to that of Cu along both transects (Fig. 4a and Fig. 4b). The highest 

concentrations occurred nearest the smelter site (0.75 and 0.60 mg L -1  for 

the easterly and northerly transects, respectively). Thereafter, Zn 

concentrations declined exponentially with increasing displacement 

(R=0.91 and R=0.78, respectively). Background concentrations were reached 

at displacements of between 500-600 m. The mean Zn concentrations for 

the easterly and northerly transects (0.32±0.3 and 0.33±0.1, respectively) 

did not exceed those of the background volcanics (Table 2). 

Concentrations of the metal Al were highest at site 3 (19.3 mg L-1) on the 

eastern transect and site 1 (29.9 mg L -1) on the northern transect (Fig. 5a 

and 5b). Al concentrations on the easterly transect were not exponentially 

related to displacement (R= 0.30) and appeared to peak at a displacement 

of 650 m before falling to background levels. The concentration pattern 

for the northerly transect was also unrelated to displacement (R=0.45). 

An elevated concentration appeared to be confined to the site nearest the 

smelter. The mean Al concentrations for the easterly and northerly 

transects (6.37±7.5 and 8.10±9.8, respectively) exceeded those of the 

background volcanics by factors of 4.5 and 5.8, respectively (Table 2). 

Concentrations of the non-target metal Pb approached detection limits 

(0.1 mg L-1 ) and did not vary with displacement on either transect. 
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Figure 5: Soluble aluminium concentrations for surface soils along easterly (5a) 
and northerly (5b) transects originating at the Mount Lye11 smelters. The samples 
were formed from composites, each comprised of 10 to 15 subsamples (0-2cm 
depth). Soil-water extracts (acidified) were made up with distilled water at a 
dilution rate of 3 to 1 by mass. Exponential regressions are shown. 
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3.4 Discussion 

Soil acidity 

Soil acidification has been reported in the vicinity of some, but not all, 

base-metal smelters. For example, at sampling sites located between 0.8 

and 1.9 km east of the INCO smelter at Conistion, Ontario, Whitby and 

Hutchinson (1974) reported mean surface-soil pH 0.6 to 1.6 units below 

that of the native podzolic soils of the region (pH 3.8 to 4.8). In contrast, 

soils sampled downwind of the Mount Lye11 smelters were on average 

no more acidic than the native top-soils of the region. The mean soil pH 

along the two transects were approximately an half unit above those 

reported for soils on similar parent volcanics (Kirkpatrick, 1984). This 

was unexpected given the area's history of acid-deposition and raised the 

question of whether acidification had taken place, or was undergoing a 

process of reversal. On the Mount Lye11 transects, below average soil pH 

only occurred at sample sites in close proximity to the smelters. Presumably, 

these near-smelter sites were in receipt of the highest acid-loadings. 

Several explanations regarding acidification at Mount Lye11 are possible. 

Severe and extensive soil erosion in the survey area has resulted in the 

loss of the region's typically acidic, organic-rich surface horizon. This loss 

is likely to have removed much residual acidity in mass transport of soil 

and organic material. It could thus be argued that the moderately-acid, 

soils recorded in the transects bare little resemblance to the acid-

depositional soils of the early smelting years. Alternatively, soil 

acidification may have been counteracted by the release of base cations 
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from subsoils exposed to weathering by erosion. At the time of sampling, 

21 years after the cessation of smelting at Mount Lye11, base accumulation 

may have been sufficient to permit a reversal of the equilibrium between 

the soil solution and exchange sites. Such reversal processes have been 

recognised in column-leaching, laboratory experiments (Dahlgren et al. 
;1990). Under a regime of reduced acid loadings, Dahlgren et al. (1990) 

demonstrated the retention of base cations and the release of SO 42 . 

Desorption of SO4' led to a temporary lowering of leachate pH but 

acidification ceased when SO42" leachate concentrations approached the 

input concentrations. Upon the cessation of operation, acidification could 

therefore be expected to cease, or reverse, as desorbed SO 4 2-  concentrations 

approach input concentrations. Consequently, it is plausible that soil pH 

at Mount Lye11, is today higher than at smelter closure, as a of result of 

greatly reduced acid-deposition, base cation inputs and attendant 

equilibrium reversal. 

Soil pH along the northerly transect, appeared to increase with increasing 

displacement. Although this pattern was consistent with the pH-

displacement relationships recognised at some other sites of prolonged 

acid-deposition from Cu smelters (Hutchinson and Whitby, 1974; Whitby 

and Hutchinson, 1974), a similar, displacement-dependant relationship 

appeared to be absent to the east of the smelters. This may have been due 

to an abrupt change in soil type, from clay to loam, along that transect. 

Alternatively, limited sampling relative to the extent of acid-deposition 

may have masked any pH-displacement relationship in this direction. 

The low TEB, LOT and total nitrogen levels recorded were consistent with 
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those reported at other base-metal smelter sites where significant site 

degradation had occurred (Hutchinson and Whitby, 1974). 

Soil metals: copper 

Copper concentrations along both transects at Mount Lye11 were elevated 

in the vicinity of the smelter and declined exponentially with increasing 

displacement. The concentration-displacement patterns were comparable 

in form to those of similar pollutant metals found in the vicinity of 

other point-source, base metal smelters (e.g. ',ethersli and Steinnes, 1988; 

Hogan and Wotton, 1984; Freedman and Hutchinson, 1980; Wood and 

Nash, 1976; Hutchinson and Whitby, 1974: Fig 1). The displacement patterns 

provided strong, if circumstantial, evidence of the source of the 

contamination. 

The mean Cu concentrations recorded for Mount Lyell, however, were 

an order of magnitude lower than those of other world renowned smelter 

sites (Table 2). For example, Hutchinson and Whitby (1974) and Whitby 

and Hutchinson (1974) reported mean Cu concentrations of 2 527.0/50.7 

ppm (total/water extractable) at downwind sites between 800 and 1500 m 

from the Coniston smelter. In contrast, Kirkpatrick (unpublished) and 

the current work record mean Cu concentrations of 160.5/3.5 ppm 

(total/water extract) at similarly located sites between 230 and 1 700 m 

from the Mount Lyell smelter. Differences in ore grades, tonnages, smelting 

processes, the local environment and the period over which smelting 

occurred are likely to account for these disparities. Contaminant 

redistribution, due to on-going soil erosion, is also likely to have had a 
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strong influence on the present-day Cu levels at Mount Lye11. 

The concentration-displacement patterns along the two transects also 

suggested that Cu contamination at Mount Lye11 was considerably less 

extensive than that found under comparable circumstances at many of 

the world-renowned sites. Fitted negative-exponential equations indicated 

that background concentrations for Cu were regained at displacements of 

between 1000-1500 metres downwind of the smelter. In comparison, at 

Coniston, Ontario, background concentrations of the target metals Ni and 

Cu were reached at downwind-displacements exceeding 13.5 km (Whitby 

and Hutchinson, 1974). It is likely that elevated topography, climatic 

influences (eg. temperature inversions) and a relatively low stack height 

combined to restrict the dispersion of Cu emissions from the Mount 

Lyell smelters. 

Soil metals: zinc 

Although Zn was a non-target metal at Mount Lyell, the concentration-

displacement pattern for the metal was similar in form to that of the 

target metal Cu (Fig 4). This was probably a by-product of Cu production 

and the result of flue-gas losses. Nevertheless, Zn concentrations were an 

order of magnitude lower than those of Cu, and with the exception of the 

near-smelter sites, below that of the background volcanics. 

Soil metals: aluminium 

Elevated Al concentrations were recorded on both transects. Unlike Cu 
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and Zn, however, the concentrations did not describe strong negative-
exponential relationships with increasing displacement. This was probably 

due to the origin of the metal. The presence of significant concentrations 

of soluble Al was understood to be an indirect consequence of sulphate 

deposition and occur due to within-soil, chemical reactions. As soils vary 

in their capacity to buffer acidic inputs, notably in sulphate adsorption 

capacity (Reuss et al., 1987; Heute and McColl, 1984; Malmer, 1976), Al 

dissolution could be expected to vary between soil types. Thus, Al 
concentrations in the soil solutions are likely to be a function of both 

sulphate loadings and soil type, and are not as likely as the depositional 

metals to form recognisable concentration-displacement relationships. 

The influence of a sulphate-buffering capacity on Al concentration may, 

in part, provide an explanation of the departure of the Al concentration-

displacement patterns from those of the other metals. On the easterly 
transect, the concentration-displacement pattern for Al was notable for a 

concentration maximum at some distance from the smelters. A possible 

explanation was that, in this downwind direction, the mid-sites were in 

receipt of the highest acid loadings. This might occur as SO 2  gases are 

relatively light and tend to travel before intercepting the ground (sensu 
Wood and Nash, 1976). This would have consequences for Al dissolution. 

This explanation could not be confirmed in this study. 

Phyto toxicity 

The concentrations at which metals are considered phytotoxic are 

environmentally dependent and difficult to set, even when determined 
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under similar assay conditions, as great differences exist between and 

within species (Balsberg PAhlsson, 1989; Andersson, 1988). Despite these 

limitations, the results of solution culture experiments provide an 

indication of the concentrations at which growth impairments might be 

expected (Table 3). These data suggest that abnormalities in tree species, 

due to Zn, Cu and Al toxicity, can be expected at concentrations in the 

range of 1.0-2.0, 4.0-20.0 and 2.0-200 mg L -1, respectively. In grasses and 

herbs, toxicity appears to occur at somewhat lower concentrations, with 

growth abnormalities, for the three aforementioned metals, generally 

evident at the concentrations 0.1-1.8, 0.02-0.06 and 0.2-25 mg L -1 . 

Soluble Cu concentrations, on both the Mount Lye11 transects, exceeded 

those expected to impair growth in northern hemisphere, woody species 

(-4 mg L-1) at 31% of the sampling sites and at all sites located between the 

smelters and approximately 500 m (Table 3). The maximum Cu 

concentration recorded, 10.4 mg L-1  at Site 1 on the easterly transect, was 

approximately twice the minimum concentration known to cause growth 

abnormalities in woody species (Table 3). Aluminium concentrations 

exceeded those known to impair growth (-2 mg L -1) at 77% of the sampling 

sites (eg. site 3 easterly transect and site 1 northerly transect). The maximum 

Al concentration recorded, 29.9 mg L-1  at site 1 on the northerly transect, 

was 15 times that known to cause impairment in woody species (Table 3). 

In contrast, Zn concentrations were below the known impairment level 

in tree seedlings. They were, however, generally above those known to 

be phytotoxic to some grasses and herbs at sites close to the smelters. 
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Table 3: Reported minimum Zn, Cu and Al concentrations resulting in 

growth abnormalities in seedlings of various higher plants in metal-salt 

or nutrient solution. 

Metal 
species 

zn2+ 

zn2+ 

zn2+ 

zn2+ 

cu2+ 

cuz, 

cuz, 

Cu 

cu2+ 

cuz, 

Al3+  

Al3+  

Al3+  

AP+  

Al3+  

Concentration Species 
(mg L4) 

	

0.1 	Festuca rubra 

	

1.1 	Picea abies 

	

1.8 	Lolium perenne 

	

2.0 	Picea abies 

	

0.02 	Lolium perenne 

	

0.06 	Agrostis 
capillaris 

	

4.0 	Pinus resinosa 

	

5.0 	Picea sitchensis 

	

20.0 	Alnus crispa 

	

20.0 	Acer rubrum 

	

0.2 	Glycine max 

	

0.7 	Trifolium repens 

	

2.0 	Picea abies 

	

5.4 	Agrostis s to nonifera 

	

25.0 	Lolium perenne 

Effects* 

rrl 

rr/rs 

rr/rs 

rrl 

rr/rs 

rrl 

rr/rs 

rr/rs 

bd 

rsd 

rrl 

ml 

rrl 

rrl 

mw 

References 

Powell et al., 1986a, b 

Godbold and Htittermann, 
1985 

Wong and Bradshaw, 1982 

Godbold 
and HOttermann, 1985 

Wong and Bradshaw, 1982 

Wainwright 
and Woolhouse, 1977; 
Symeonidis et al., 1985 

He ale and Ormrod, 1982 

Burton et al., 1986 

Fessenden and 
Sutherland, 1979 

He a le and Ormrod, 1982 

Alvaet al., 1986 

Jarvis and Hatch, 1985 

Rost-Siebert, 1984 

Clarkson, 1966a 

Hackett, 1964 
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Table 3 continued: 
- 

Al3+  

A 13  

Al3+  

45.0 

120.0 

200.0 
200.0 

Pinus sitchensis 

Betula pop ulifolia 

Quercus rubra 
Q.palustris 

rrl 

rrl 

rrl 
rrl 

McCormick 
and Steiner, 1978 
McCormick 
and Steiner, 1978 

McCormick 
and Steiner, 1978 

*rrl =reduced root length; rr/rs= reduced root and shoot; rrw=reduced root mass; rsd = 

reduced stem diameter; db= decreased biomass 
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3.5 Conclusion 

The surface soils at Mount Lye11 have been severely eroded leaving 

extensive, exposed subsoils. Despite soil loss, the chemical characteristics 

of these subsoils reflect a history of acid and metal-particulate deposition. 

These influences have resulted in surface soils with chemical 

characteristics in common with soils in the vicinity of other long-

established, base-metal smelters. The exposed subsoils along two transects 

originating at the Mount Lye11 smelters were moderately acidic, deficient 

in organic matter, low in exchangeable bases and lacking in nitrogen. 

There was evidence of Cu and Zn deposition and Al mobilization. 

Evidence of metal contamination was provided by the distribution patterns 

of soluble metals in soils. Copper concentrations were elevated near the 

smelter and declined exponentially with increasing displacement. The 

contaminant concentration patterns were comparable to those of pollutant 

metals in the vicinity of other base-metal smelters. However, in 

comparison to smelters of world renown, Cu contamination at Mount 

Lye11 was an order of magnitude lower and fat less extensive. Nevertheless, 

some soluble Cu concentrations exceeded those known to cause growth 

abnormalities in seedlings of woody plants. 

Soluble Zn was similarly distributed to Cu. The concentrations recorded 

were an order of magnitude lower than those of Cu and less extensive. 

Although none of the concentrations exceeded those known to cause 

growth abnormalities in seedlings of woody plants, they were above those 

known to be toxic to some grasses and herbs. Contamination by zinc 
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appeared to be a byproduct of Cu production by smelting. 

Displacement from the smelters at Mount Lye11 did not appear to be an 

adequate guide to soil Al concentrations. Elevated concentrations of soluble 

Al were recorded, but unlike the other metals, Al concentrations did not 

appear to be directly related to displacement. As the sulphate adsorption 

capacity of a soil type is understood to influence Al dissolution, it is 

likely that soluble Al concentrations at Mount Lye11 are the product of 

location-specific, depositional concentrations and the inherent buffering 

capacity of the soils. Some of the Al concentrations recorded exceed those 

known to cause growth abnormalities in seedlings of woody plants. 

Severe soil erosion at Mount Lye11 is likely to have reduced metal-ion 

contamination by off-site redistribution, and concentrations of the metals 

Cu, Zn and Al are likely to be lower today than at any time during the 

operation of the smelter. Weathering, and related base-accumulation, 

may have also contributed to a partial reversal of the process of acidification 

and rising soil pH may have contributed to reduced metal-ion dissolution. 

Moderated levels of soil contamination are likely to have significant 

ramifications for plant colonisation. 

92 



CH4/Vegetation survey 

Chapter 4 

Colonising communities and the environmental factors which 

influence their occurrence and abundance at Mount Lye11 

4.1 Introduction 

The area surrounding the Mount Lye11 smelters falls into two readily 

recognizable zones: one with higher plant vegetation and the other without. 

Aerial photographs taken in the period since the cessation of smelting indicate 

that the vegetated zone is a result of natural recolonisation. The slow rate and 

progressive pattern of natural colonisation suggested a response to soil-metal 

contamination. Accordingly, identification of the edaphic conditions associated 

with colonising vegetation might add to understanding of the process of natural 

colonisation in a metal-contaminated area and assist revegetation works by 

providing a guide to the site conditions that local species are able to tolerate. 

The objective of this chapter was to explore the relationships between 

compositional trends within the colonising community and edaphic 

environmental variables. A survey of the vascular flora, and multivariate 

analysis, were used to to describe the composition of the vegetation and trends 

were related to edaphic factors by vector fitting. The edaphic variables selected 

• were those considered to exert either direct, or indirect, influence on 

phytotcodcity. Species presence was used as a measure of the differential species 

performance as this is considered useful where vegetation is developing 

following a major disturbance. Numerical classification was used to group 

sites by characterising species coincidences. Species richness, considered in 
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circumstances where a restricted number of environmental gradients dominate 

a vegetation pattern as a means of interpreting a region-specific multi-

dimensional response (Peet, 1992), was used to assist the description of the 

groups. The classification was used to describe and map colonising communities 

and was related to contamination patterns. 

4.2 Methods 

Site selection and vegetation survey 

Floristic and environmental data were collected at both vegetated and 

unvegetated sites located to the east of the Mount Lye11 smelters. Data were 

recorded at a total of 57 sites in a survey area of approximately 360 hectares 

(Fig. 1). The sites were selected systematically using a grid overlay (cell size of 

250 m) on 1:25000 map (Gormanston 3834) of the survey area. Mechanically 

disturbed areas, including mine workings such as roads, open cuts and dumps, 

were avoided. 

At each survey site, a 20 x 20 m quadrat was marked out. In each quadrat, the 

presence of vascular plant species were recorded. Species identification was 

achieved with the aid of Curtis (1963), Curtis (1967), Curtis and Morris (1975), 

Hyde-Wyatt and Morris (1989), Willis (1973,) and Duncan and Isaac (1986). 

Nomenclature follows Buchanan (1995). In addition, the basal area of woody 

species at each site was calculated from stem circumference measurements 

(_10 cm) taken at a stem height of 5 cm. This height was used to minimise the 

inconvenience caused by the multi-stemmed form of many individuals. 
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Soil sampling and laboratory preparation 

A composite, surface soil sample was taken at each site. Each sample was 

prepared from 10 to 15 subsamples excavated to a depth of 2 cm. Sufficient soil 

was removed at each location to provide a subsample of approximately 0.4 kg. 

The samples were placed in sealed plastic bags for transport. 

The laboratory preparation of the soil samples followed the recommendations 

suggested by Rayment and Higginson (1992). The samples were initially broken 

up by crushing between sheets of polyethylene, coarse sieved (1 cm nylon 

mesh) and thoroughly mixed. The samples were divided in a sample divider 

into two halves of approximately equal mass and allowed to air dry. 

Soil analyses and other site data 

One half of the sample was sieved (6 mm brass mesh) and a subsample subjected 

to pH measurement. A soil/water suspension (1:1 soil/distilled water by weight) 

was prepared and, after shaking, pH measurement performed with the aid of 

a WTW electronic pH meter (model pH6) fitted with a Type E 50 electrode. 

Prior to pH measurement the meter was standardised to the manufacturer's 

instructions. After additional sieving (2 mm mesh), another subsample was 

reserved in sealed plastic bags for total nitrogen determination using the 

Kjeldahl procedure (Bremer and Mulvaney, 1982). Total nitrogen was 

determined by the Mount Pleasant Laboratories, Kings Meadows, Tasmania. 

Soil texture was determined using a rod and ribbon method and a key based 

on Northcote (1979). The remaining soil was stored at 2-3°C in labelled plastic 

bags as reference material. 
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The other half of each soil sample was used to determine selected soil and 

chemical attributes. As the samples were to be subjected to metal-ion 

determinations, two precautions were taken in order to minimise external 

contamination during sample preparation; all the utensils were rinsed in a 

solution of 5% nitric acid (14M analytical grade) prior to use and plastic-bodied, 

nylon-mesh sieves were used throughout. The samples were sieved (6 mm 

nylon mesh) and air-dried to constant weight on polyethylene-lined 

aluminium trays at 40 °C in a fan-forced oven. Drying periods varied with the 

composition of each sample and in some cases extended over several days. 

After drying, each sample was sieved (2 mm nylon mesh) and sealed in labelled, 

plastic bags. 

The air-dry samples were used to measure soil moisture (ODM), organic matter 

content (LOI), total exchangeable bases (TEB) and metal-ion concentrations. 

Samples weighing approximately 4 g were transferred to clean crucibles of 

known mass and the air-dry mass of each calculated. The samples were then 

placed in an oven a for a period of 6 hours at 105°C. After drying to constant 

weight and reweighing at room temperature, the moisture content of each 

sample was calculated using the percentage method of Rayment and Higginson 

(1992). 

Organic matter content was determined by loss-on-ignition (LOT). Oven-dry 

(105°C) samples of known weight (approximately 2 g) were placed in pre-

weighed, high-temperature crucibles and heated to 450 °C in an high 

temperature oven for a period of 6 hours. Each sample was reweighed at 

room temperature and the difference in sample mass used to estimate 

percentage organic matter content. 
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Total exchangeable bases (TEB) were determined by the Mount Pleasant 

Laboratories, Kings Meadows, Tasmania. 

Distilled water, a weak extractant, was used for soluble metal-ion analyses. 

This extractant was chosen in preference to stronger extractants as many, such 

as strong acid digests, are believed to have limited biological significance 

(McCray and Sumner, 1990; Wright, 1989; Baker, 1988; Adams and Lund, 1966). 

Soil-water extracts were prepared from 66 grams of each sample, diluted 3 to 1 

by mass with distilled water, and mechanically shaken in acid-rinsed, high-

density polyethylene bottles for 3 hours. After standing for 24 hours, the extracts 

were decanted into clean polypropylene bottles. The extracts were sent to the 

Mount Pleasant Laboratories, Kings Meadows where they were preserved by 

acidification with 2 mL L 1  HNO3  (ASTM, 1989b) and analysed by atomic 

absorption spectrometry (Varian 1275) for the metals Cu, Zn, and Al. Soluble 

metal concentrations were obtained in mg L -1 . 

The water extractable, metal-ion analyses were complemented by 

determinations for DTPA extractable Cu (Lindsay and Norvell, 1978), and Zn 

(Lindsay and Norvell, 1978) and CaC1 2  extractable Al. The extractions were 

performed and measured (AAS) by Mount Pleasant Laboratories, Kings 

Meadows, Tasmania on sieved (1 mm mesh), air-dry soil samples. Funding 

constraints restricted the total number of chemical analyses available. For 

example, water extractable Cu data were available for 38 of the 57 sites. The 

exact number of analyses available for each soil attribute can be found in 

Table 5. 

In addition to the above chemical attributes, measurements of the depth of 

the exposed sub-soils and slope were made at each site. Depth was recorded 
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after digging a hole in the subsoils until compacted parent material was reached. 

The slope at each site was recorded with the aid of a clinometer. Lastly, the 

sites were described by their linear and perpendicular displacements. These 

were defined as (1) the linear displacement from the smelters to a sample site 

(displacement) and (2), the displacement from a line indicating the direction 

of the prevailing wind to a sample site (perpendicular). 

The above community and soil data were collated on a spreadsheet in 

preparation for subsequent computer-based, numerical analyses. 

Numerical analyses - ordination 

Multi-dimensional scaling (MDS), a form of indirect gradient analysis, was 

used to model variation in the distribution of the colonising taxa. In comparison 

with other ordination methods, MDS is considered robust for ecological data 

(Minchin, 1987a/b). The method can be used to produce an ordination diagram, 

formed such that the dissimilarity of sites in terms of composition is reflected 

in their separation (Faith and Norris, 1989). In the MDS procedure, species 

composition data are first replaced by a matrix of dissimilarity values between 

sites. MDS derives an ordination space wherein the distances between all 

pairs of site points, adjusted over successive iterations, best match the 

corresponding dissimilarities. A stress function indicates how well, or badly, 

site separation in the ordination diagram matches the dissimilarity values. In 

non-metric MDS, the stress function is defined by a monotonic (rank-order) 

relationship between dissimilarities and distances (Bowman and Minchin, 

1987; Kruskal and Wish, 1978). 

Species and their occurrences (presence-absence community data) were entered 
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into the ecological data management program DECODA (Minchin, 1990). This 

program prepares data for ordination. A matrix of compositional dissimilarities 

was calculated using the Czekanowski (Bray-Curtis) coefficient. The matrix 

was subjected to ordinations by non-metric MDS from one to four dimensions. 

The MDS program's default options were followed. An ordered, condensed 

matrix of the community data was printed. DECODA was then used to calculate 

the percentage frequencies of species that occurred at three or more of the 

sample sites. 

The vegetation ordination was related to the measured edaphic and derived 

variables by vector fitting. This procedure has been used to find the directions 

of maximum correlation for environmental variables within an ordination 

(Minchin, 1990). The method finds the vector (rotated axis) in the ordination 

space such that the projections (scores) of the sites on this vector are maximally 

correlated with the values of a given variable (Bowman and Minchin, 1987). 

Vectors of maximum correlation were calculated between the species 

configuration and each of the environmental variables using an option 

provided by DECODA (Minchin, 1990). The Monte-Carlo approach, a test of 

the hypothesis that a correlation could have been found even if the 

environmental variable were randomly assigned to the sites (Faith and Norris, 

1989), was used to test the significance of the maximised correlation. This 

permitted the identification of variables with significant monotonic trends 

across the ordination and their directions. DECODA was used to calculate 

percentile data for the significant variables. Vectors of maximum correlation 

were presented diagrammatically. 
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Numerical analyses - classification 

TWINSPAN (Hill, 1979b), a program widely used in community ecology, was 

used to classify the samples. This is a form of divisive cluster analysis or 

dichotomized ordination analysis (Hill 1979b). The phytosociological concept 

behind the program TWINSPAN is that a group of sites can be characterised 
by a group of differential species; species that appear to prevail on one, or 

other, sides of a dichotomy (Jongman et al. , 1987). The method employed by 

the TWINSPAN program to classify sites and species has been explained by 

Jongman et al. (1987). In TWINSPAN, a crude dichotomy is made by ordinating 

the sites by a method of correspondence analysis. The centroid of the first 

ordination axis provides an initial division. In an iterative process, further 

divisions are created by using the frequencies of the species on either side 

(known as positive and negative) of the first division. Differential species are 

identified by computing a preference score. The divisions provide an hierachical 

classification of sites based on species' preferences. 

The program TWINSPAN (Hill, 1979b) was used to classify the sites and to 

construct an ordered two-way, sites by species table. The site classification 

identified both preferential and non-preferential species. Preferential species 

were species not in common between two clusters. A dendrogram was used to 

indicate the preferential species used in the divisions of sites. 

Mapping 

The classification of vegetation by TWINSPAN allowed the sites to be mapped. 

Vegetation mapping was complemented by a spatial representation of soil-Cu 

concentration classes. Three classes were selected after consideration of the 
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following information: 1) the results of seedling trials in Mount Lye11 soils 

(CH. 3), 2) the mean and range of soil Cu concentrations over which tolerant 

and non-tolerant species were present in the survey of the colonising 

community and 3) reference to levels of Cu tolerance identified in the literature 

(Ch. 3). Environmental data for each of the mapping units were contrasted. 

4.3 Results 

Species composition, origins and frequency 

Forty-four vascular plant species, representing 23 families, were identified 

from 56 of the 57 sites sampled (Table 1). Among the species were 26 

Dicotyledonae, 8 Monocotyledonae, 3 Gymnospermae and 7 Pteridophyta. None 

of the species were annuals. Fifteen of the species (34 %) were known to occur 

naturally in West Coast rainforest (Table 2); these included a single occurrence 

of Athrotaxis selaginoides (King Billy pine). Another 14 species were normally 

confined to eucalypt forest and woodland and/or scrub, heath, sedgeland and 

herbland. None of the species were recognised as exclusively alpine. Five 

species were exotic (Agrostis capillaris , Cortadaria selloana, Cupressus 
macrocarpa, Cytisus scoparius and Hypochaeris radicata). Two species, Acacia 
dealbata and A. sophorae, were believed to have been imported with soil. A 

single Cupressus macrocarpa was believed to be the progeny of a small stand 

of conifers planted near the smelter. 

Twenty-five of the Mount Lyell species occurred in the sampling sites at a 

frequency of 5% or more. These species were ranked in descending order of 

percentage frequency (Table 3). Only four species occurred at more than 50% 

of all sites. The most commonly occurring species was Restio tetraphyllus, the 
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Table 1: Alphabetical list of vascular species represented in colonised 

zone at Mount Lye!!. 

Species Family 

  

Dicotyledonae 

Acacia dealbata Link 
Acacia melanoxylon R.Br. 
Acacia mucronata Wild. ex Wendl.f. 
var. mucronata 
Acacia sophorae (Labill.) R.Br. 
Atherosperma moschatum Labill. 
Baeckea leptocaulis Hook.f. 
Comes perma retusum Labill. 
Cyathodes juniperina (Forst.f.) Druce 
Cytisus scoparius (L) Link 
Epacris impressa Labill. 
Epacris heteron em a Labill. 
Gaultheria hispida R.Br. 
Hypochoeris radicata L. 
Lep tospermum glaucescens S. Schauer 
Lep tospermum nitidum Hook. f. 
Lep tospermum scoparium 
Forst & Forst.f. var. scoparium 
Melaleuca squamea Labill. 
Monotoca scoparia (Sm) R.Br. 
Olearia erubescens (DC.) Dippel 
Oxylobium arborescens R.Br. 
Persoonia gunnii Hook. f. 
var. gunnii 
Phebalium squameum (Labill.) 
Engl. subsp. squameum 
Pimelea linifolia R.Br. 
Sprengelia incarnata Sm . 
Telo pea truncata (Labill.) R.Br. 
Trochocarpa gunnii (Hook. f.) Benth. 

Monocotyledonae 

Agrostis capillaris L.  

Mimosaceae 
Mimosaceae 
Mimosa ceae 

Mimosaceae 
Monimiaceae 
Myrtaceae 
Polygalaceae 
Epacridaceae 
Fabaceae 
Epacridaceae 
Epacridaceae 
Ericaceae 
Asteraceae 
Myrtaceae 
Myrtaceae 
Myrtaceae 

Myrtaceae 
Epacridaceae 
Asteraceae 
Fabaceae 
Proteaceae 

Rutaceae 

Thymelaeaceae 
Epacridaceae 
Proteaceae 
Epacridaceae 

Poaceae 
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Blandfordia punicea (Labill.) Sweet 	Liliaceae 
Cortadaria selloana (Schults& Schltes.f.) Poaceae 
Asch. Graebner 
Empodisma minus 	 Restionaceae 
(Hook.f.) L.Johnson & Cutler 
Gahnia grandis (Labill.) S.T. Blake 	Cyperaceae 
Restio monocephalus R.Br. 	 Restionaceae 
Restio tetraphyllus Labill. 	Restionaceae 
Isolepis aucklandica (Hook f.) Boeck. 	Cyperaceae 

Gymnospermae 

Taxiodiaceae 
Cupressaceae 
Podocarpaceae 

Athrotaxis selaginoides D. Don 
Cupressus macrocarpa Gord. 
Phyllocladus aspleniifolius 
(Lab ill.) Hook.f. 

Pteridophyta 

Blechnum nudum (Labill.) 
Mett ex Luerss. 
Blechnum wattsii Tind. 
Gleichenia microphylla R.Br. 
Histiopteris incisa (Thunb) J.Smith 
Las treopsis acuminata 
Lycopodium deuterodensum Herter 
(Houlston) Morton 
Pteridium esculentum 
(Forst.f.) Cockayne 

Blechnaceae 

Blechnaceae 
Gleicheniaceae 
Dennstaedtiaceae 
Dryopteridaceae 
Lycopodiaceae 

Dennstaedtiaceae 
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Table 2: Community origins of the species occurring at Mount Lye11. 
The communities of the native species follow Kirkpatrick (1977). 

Species 	 1 	2 	3 
	

4 	56 

Dicotyledonae 

Acacia dealbata 	 x 
Acacia melanoxylon 	 x 
Acacia mucronata 	 x 
Acacia sophorae 	 x 
Atherosperma moschatum 	 x 	x 
Baeckea leptocaulis 
Comes perma retusum 
Cyathodes juniperina 	 x 	x 
Cytisus scoparius 	 x 
Epacris impressa 
Epacris heteronema 	 x 	x 
Gaultheria hispida 	 x 	x 
Hypochaeris radicata 	 x 
Leptospermum glaucescens 	 x 
Leptospermum nitidum 	 x 
Leptospermum scoparium 	 x 
Melaleuca squamea 
Monotoca submutica 	 x 	x 
Olearia erubescens 
Oxylobium arborescens 	 x 
Persoonia gunnii 	 x 
Phebalium squameum 	 x 
Pimelea linifolia 
Sprengelia incarnata 	 x 	x 	x 
Telopea truncata 	 x 	x 	x 
Trochocarpa gunnii 	 x 

Monocotyledonae 

Agrostis capillaris 	 x 
Blandfordia punicea 	 X 	X 	X 

	x 
Cortadaria selloana 	 x 
Empodisma minus 	 x 	x 
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Table 2 continued 	 1 2 	3 	4 	5 6 

Monocotyledonae 

Gahnia grandis 	 x 	x 	x 
Restio monocephalus 
Restio tetraphyllus 
Isolepis aucklandica 

Gymnospermae 

Athrotaxis selaginoides 	 x 	x 
Cypressus macrocarpa 
Phyllocladus asplenizfolius 	x 	x 	x 

Pteridophyta 

Blechnum nudum 
Blechnum wattsii 	 x 	x 
Gleichenia microphylla 
His topteris incisa 	 x 	x 
Lycopodium deuterodensum 
Lastreopsis acuminata 
Pteridium esculentum 	 x 	x 

1 - alpine 
2 - rainforest 
3- eucalypt forest and woodland 
4- scrub, heath, sedgeland and herbland 
5 - coastal 
6 - naturalised exotics or weed species 
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Table 3: Species frequency table for those species occurring at more than 
5% of the sampling sites. The species are sorted in descending order of 
frequency. 

Species Frequency % frequency 

Restio tetraphyllus 41 71.93 

Agrostis capillaris 40 70.18 

Gaultheria hispida 32 56.14 

Acacia mucronata 29 50.88 

Acacia melanoxylon 21 36.84 

Cyathodes juniperina 21 36.84 

Leptospermum scoparium 15 26.32 

Gleichenia microphylla 12 21.05 

Persoonia gunnii 12 21.05 

Isolepis aucklandica 12 21.05 

Oxylobium arborescens 8 14.04 

Phebalium squameum 8 14.04 

Blechnum wattsii 7 12.28 

Epacris heteronema 7 12.28 

Gahnia grandis 7 12.28 

Epacris impressa 5 8.77 

Sprengelia incarnata 5 8.77 

Acacia dealbata 4 7.02 

Atherosperma moschatum 4 7.02 

Monotoca submutica 4 7.02 

Comesperma retusum 3 5.26 

Rypochaeris radicata 3 5.26 

Pimelea linifolia 3 5.26 
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Cord rush, which occurred at 71.9% of the sample sites. This species normally 

occurs in acid wetlands. The next most commonly occurring species were the 

naturalised, exotic grass Agrostis capillaris (70.2%), the Snow Berry, Gaultheria 
his pida (56.1%), and the Willow-leaved wattle,Acacia mucronata, (50.9%). Of 

these species, only G. his pida was considered a rainforest species. A. mucronata 
normally occurs in eucalypt forest, woodland or scrub. 

With the exception of A. capillaris, weed species were not prominent among 

the colonising community. Of the remaining 3 weed species recorded, only H. 
radicata occurred at a frequency exceeding 5%. The species C. scoparius was 

recorded at low frequencies. This species, however, was present in greater 

numbers on the verges of some local roads and tracks. These locations were 

excluded from the survey due to the influence of roadside contamination by 

soil and vegetative material of unknown origin. Consequently, the species 

frequency recorded in this survey may not accurately reflect the invasive 

potential of C. scoparius. A single occurrence of C. selloana was recorded. 

Community ordination 

DECODA provided a plot of minimum stress verses the number of scaling 

dimensions. The plot showed minimum stress reduction above two 

dimensions. At the same time, the mean residuals for the two and three 

dimensional configurations were consistent and effectively identical. The 

minimum stress configuration in two-dimensions was accepted as an adequate 

representation of the compositional variation among the 57 sites (stress = 

0.2115). The two-dimensional MDS ordination was then added to the program's 

master file. A description of the DECODA master file is provided (Table 4). 
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Table 4: A description of the master file created in DECODA using 

community and environmental data for 57 sampling sites near Mount Lye11 

Number of species = 46 
Number of samples = 57 
Number of species variables = 4 
Number of sample variables = 23 
Number of abundance measures = 1 

Reading species labels from species index... 

Name of MDS input file: 
ly.mds 

Description of MDS input: 
community 

Multidimensional scaling type: Global non-metric 

Number of starting configurations = 10 
Minimum no. of dimensions = 1 
Maximum no. of dimensions = 4 
Solution scaling option = 2 (Half-Changes) 
Seed for random numbers = 333333 
Maximum no. of iterations = 100 
Stress ratio stopping value = 0.999000 
Small stress stopping value = 0.010000 Data type: community data 

Presence-absence (binary) data are used. 

Species which do not occur in any samples are excluded. 

Dissimilarity coefficient: Czekanowski (Bray-Curtis) 

No. of samples included = 57 
No. of species included = 42 
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Using the Monte-Carlo approach, vector fitting indicated that 3 of the 13 edaphic 

environmental variables were significantly correlated with the vectors of 

maximum correlation in the species' configuration. These were Cu(w), soil 

depth and loss-on-ignition (LOI). Correlations were also found for the 

community variables, total basal area and species richness, and the derived 

variables, perpendicular and displacement (Table 5). 

Vectors of equal and arbitrary length, corresponding to the significant 

environmental variables, were used to indicate the directions of maximum 

correlation (Fig. 2). A strong, inverse relationship between soil Cu(w) and 

displacement from the smelter is evident along a vector from the right-hand 

top corner to the left-hand bottom corner. The productivity and community 

variables, total basal area and species richness, were closely associated. The 

directions of these vectors were more closely oriented toward that of increasing 

displacement than that of increasing Cu(w). Soil depth appeared to be largely 

unrelated to Cu(w) and the other variables. 

The representation of compositional variation offered by the two-dimensional 

MDS ordination was initially examined in an ordered site by species matrix. 

Sites were sorted in ascending order of the variable Cu(w). In this matrix, 

separations in the distributions of the most frequently occurring species were 

indistinct. This was considered unlikely considering 1) the environmental 

gradient exhibited by soil Cu(w), and 2) an accepted differential Cu resistance 
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Table 5: Results of vector fitting 

SAMPLE 	VARIABLE N MAX R 

DIRECTION COSINES AND 
ANGLES OF FITTED 	- 
VECTORS WITH 
CONFIGURATION AXES 

Prob 	1 	2 

1 Total basal 57 0.4136 0.000*** -0.9806 0.1959 
area 168.7 78.7 

2 Richness 57 0.8133 0.000*** -0.9821 0.1884 
169.1 79.1 

3 pH 57 0.2679 0.150 -0.5968 -0.8024 
126.6 143.4 

4 Displ 57 0.7286 0.000*** -0.7048 -0.7094 
134.8 135.2 

5 ODM 56 0.2490 0.250 0.2478 0.9688 
75.7 14.3 

6 LOI 55 0.3101 0.050* -0.4263 0.9046 
115.2 25.2 

7 Slope 56 0.2060 0.270 0.5341 0.8454 
57.7 32.3 

8 Depth 55 0.3821 0.020* 0.0635 0.9980 
• 	86.4 3.6 

9 Perpendicular 56 0.7046 0.000*** -0.9901 -0.1402 
171.9 98.1 

10 Cu(w) 38 0.5098 0.000*** 0.6232 0.7821 
51.5 38.5 

11 Al (w) 36 0.2920 0.260 0.3108 0.9505 
71.9 18.1 

12 Zfl(w) 36 0.2646 0.320 0.9909 0.1345 
7.7 82.3 

13 TEB 21 0.1117 0.910 0.8730 -0.4877 
29.2 119.2 

14 Nitrogen 16 0.1965 0.810 0.4537 -0.8911 
63.0 153.0 

15 Cu(DTPA) 17 0.4569 0.230 -0.1031 0.9947 
95.9 5.9 

16 A1(CaC12) 14 0.4218 0.420 0.9797 0.2005 
11.6 78.4 

17 Zn(DTPA) 14 0.4768 0.240 -0.3553 0.9347 
110.8 20.8 
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Fig. 2: Vectors of maximum correlation for physico-chemical and derived 
variables using the Monte-Carlo approach. Vector length does not indicate 
correlation strength. Significance level p<0.05. 
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between species. (e.g. Agrostis spp. and various tree species). The limited size 

of the Cu(w) data set may have been partly responsible for the indistinct 

species separations. 

Species' distributions along the Cu gradient were believed to be better 

represented by the fitted vector for Cu(w). The scores for the sample sites 

along the fitted vector for Cu(w) were saved in the master file as a new 

sample variable. Sorted in ascending order, this variable reflected the Cu(w) 

gradient. The site by species matrix for the fitted vector provided a compositional 

gradient in which distinct separations between the dominant 

species were evident (Table 6). 

At the upper-end of the Cu(w) gradient, the absence of almost all species, with 

the exception of A. capillaris, and the occasional A. melanoxylon, was notable. 

At a somewhat lower position on the gradient, the species R. tetraphyllus, G. 
his pida and A. mucronata are 'sudden' introductions to the new community. 

Separations of the less frequent species are not as easily interpretable. However, 

richness appears to increase toward the lower-end of the gradient. Interestingly, 

A. capillaris and A. melanoxylon disappear from the sample sites toward the 

lower-end of the gradient. 

The percentile plots confirmed that species in the colonising community 

occurred over discrete ranges of soil Cu(w) concentration (Fig. 3). Three distinct 

concentration ranges were evident. Three species, A. capillaris, A. melanoxylon 

and C. juniperina, occurred over the broadest range of Cu(w) concentrations. 

All three species were present at sites at which soil Cu(w) concentrations 

exceeded 10 mgL-1. The plots suggested that a second species' group occurred 

over a somewhat smaller range of soil Cu(w) concentrations. This grouping 
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Table 6: The scores for the fitted vector, along which species' scores displayed 
maximum correlation with the variable Cu(w), were used to sort the sampling 
sites to provide a compositional gradient. The community data was then 
printed in the form of an ordered, condensed matrix. In this matrix, the 
columns represent the sampling sites and the rows represent species occurrence. 
Species occurrence at a sample site was sorted in ascending order of median 
occurrence and represented by the printed character 1. The sampling sites 
exhibit a range of Cu(w) concentrations from low (at left) to high (at right). 
Species occurring at frequencies of less than 5% were excluded. 

Fitted Cu(w) 

1 255155451 	5 55142121343434432212 4314312234134323 

23962436775056823410713159945082622084718065347849573196 

Hypochaeris radicata 

Agrostis capillaris 

Acacia melanoxylon 

Acacia dealbata 

	 1- 11 	 

	11 	11111111111-111111111111111111111-111111- 

	1- 	1- -1-1 	1111-11 	1-11-11--111--11-- 

	1 	1 	 1-1 	 

Leptospermum scoparium ----1--11----1-----1 	1-1--11- -1- 	-11-1 	 

Persoonia gunnii 	1-11-1--i 	1---1-1 	1 -1 	 1- 	1- 

Isolepis aucklandica 	1- 1- 	-1--1- 	11 	1 	11 	 11-1-- 

Acacia mucronata -1--1111111--1-11-111111----1--1111-111-1111 	 

Restio tetraphyllus 11111111111111111111111111-111111-111111-1--1---1 	 

Epacris impressa 	1 	1 	1 	 1--1 	 

Phebalium squameum 	1 -1 	 11-1 	1-1 	1 	 

Gaultheria hispida 111-111111111111111111111111111--1 	1 	 

Oxylobium arborescens -1---1--1 	1---1 	1---1 	1 	 

Cyathodes juniperina 11--11-1111--1-11111 	1111-11 	1 - 	 

Blechnum wattsii 	1-1 	1- 111 	1 	 

Epacris heteronema 	1- 	-1-1 	1 	1 	1--1 	 

Gleichenia micropylla ----1111-1-111--11-1 	1 	 

Gahnia grandis ----11--1 	1 	1 	11 	 

Sprengelia incarnata 	11---1 	1 	 1 	 

Monotoca scoparia 	11 	1 	  1- 

Atherosperma moschatum -11 	  

Comesperma retusum 	1 	 1- 1 	 

Pimelea lindleyana -1 	1 	-1 	  
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Fig. 3: Percentile plots for the twelve most frequently occurring vascular species 

occurring at Mount Lye11. The plots represent the range of soil Cu concentrations 

(water extract) over which the species occur. Each species box encloses 90% of 

the data; the bottom and top line of each box represent 5% and 95%. The 

middle line represents the median value of the data (50%), While the lower 

and upper lines (dotted) represent 25% and 75% of the data, respectively. 
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included the species R. tetraphyllus, G. his pida, A. melanoxylon, L. scoparium, 
P. gunnii and I. aucklandica. These species were present at sites exhibiting soil 

Cu(w) concentrations to a maximum of between 7-8 mgL -1 . A third grouping, 

comprised of the species P. squameum, G. m icrophylla and 0. arborescens, 
occurred over the narrowest soil Cu(w) concentration range. These species 

were present to a maximum soil Cu(w) concentration of approximately 2 

mg1L-1 . 

Community classification 

The sites by species table provided by TWINSPAN showed that the classification 

procedure divided the sites 14 times before failing (Table 7). However, three 

divisions were considered adequate to classify the sites. After three divisions, 

four distinct sample site groups were identified and these groups were selected 

as the basis of a 'community' classification (Fig. 4). The first division separated 

I. aucklandica from 12 other preferential species. At this division, three non-

preferential species were identified (A. capillaris,G. his pida, and R. tetraphyllus). 
The next two divisions separated the species A. melanoxylon from A. 
mucronata/G. hispida/ R.tetraphyllus, and R. tetraphyllus/ C. juniperina/ G. 
his pida from A. melanoxylon/A. dealbata, E. impressa/ E. heteronema/ P. 
gunnii/ S. incarnata and T. truncata. The species' groupings were termed 

Groups 1, 2, 3 and 4 respectively. For the purposes of easy recognition, the 

groups were then described with reference to most characteristic species. The 

descriptive groups were Agrostis grassland (Group 1), Restionaceae/ Acacia 

mucronata tall shrubland (Group 2), Restionaceae low shrubland (Group 3) 

and Acacia melanoxylon shrubland (Group 4).Agrostis was selected as 

characteristic species for Group 1, despite being a non-preferential species. The 

species, however, did describe an easily recognisable grouping where all other 

116 



CH4/Vegetation survey 

Table 7: TWINSPAN species by sites table. The order of the site groups was 
determined by comparison of the two site groups formed at any level with 
site groups at two higher hierarchical levels. The species classification was 
based on the degree to which species are confined to particular groups of 
species (fidelity). Zeros and ones on the right-hand side and bottom indicate 
the dichotomies. 

344444 5 155553355 445411413 12 23112224 3 12 3312221233 
639568662382470591540432037609265021723418819573441785917 

gunnii 	1- 111111----11--1-1 	 1 	 0000 

dealbata 	11 	 1 	 1 	  0001 

impressa 	111 	1-1 	  0001 

acuninata 	 1 	  0001 

squamea 	-1-1 	  0001 

aspleniifolius- -1 	  0001 

truncata 	-1 1 	  0001 

heteronema 	---1111 	1 	 11 	  0001 

incarnata 	—1-1- 1 	11 	  0001 

retusum 	1 	1 	1 	  0001 

scoparium 	-11111 1 1--11-1-111 	1- 	-1 	  0001 

moschatum 	1----111 	  001 

arborescens 	---11---111-111 	  001 

grandis 	 1 	111--1 	1 	1 	  0100 

scoparia 	-1 	1 	11 	  0100 

squameum 	-1 	111----1111 	  0100 

sophorae 	 1 	  0101 

wattsii  	0101 

selaginoides 	 1 	  0101 

nitidum 	 1 	  0101 

deuterodensum 	 1 	  0101 

esculentum 	 1 	  0101 

leptocaulis 	 1 	  0101 

nudUm 	 1---1 	  0101 

macrocarpa 	 1 	  0101 

scoparius 	 11 	  0101 

juniperina 	----1-1 111-11111 11111 111--1-- -1 	1 	 011 

microphylla 	11- -11-1- 	-1--11111 	1 	  011 

melanokylon 	1111111 	111--111-1--1-1 	111- -1--1- 100 

radicata 	 11 	1 	 100 

mucronata 	---1111111111111-11-11-1111 	1111111 	1 	 101 

hispida 	1111-111111111111-1111-11-1-111-1-111-11 	 101 

lindleyana 	1 	1 	1 	  101 

tetraphyllus 	----1-1111111111-1111111111-111111-11111111111111 	 110 

capillaris 	-11111--1-1---11-1-111111--11---111111111-111111-1-111111 1110 

incisa 	1 	 1 	 1110 

minus 	 11 	 1111 

erubescens 	 1 	  1111 

monocephalus 	 1 	  1111 

aucklandica 	 1 	 11 	1--11 11- -1 	1-11 1111 
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000111000000000000000000111110000011111111111100000001111 

0000000 0 0 1111111110001 100011 0 000000001110001111 

	

001111111000011111 	 000000011 
0000001 	00001 	 0111111 



CH4/Vegetation survey 

Fig. 4: TWINSPAN dendrogram. The numbers at each branch indicate the 
number of sampling sites at each division. Preferential and non-preferential 
species are listed in decreasing order of frequency for the second division. 
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woody species, with the exception of remnant A. melanoxylon individuals, 

were absent. An alternative name for this grouping might equally have been 

'A. melanoxylon remnant barrenlands', in reference to the regrowth of a very 

restricted number of A. melanoxylon individuals from root stocks and the 

low level of occurrence of a limited number of other species. 

The Agrostis grassland (Group 1) was characterised by the presence of A. 
capillaris and the absence of most other species. Accordingly, with a total of 7 

species recorded, the mean species richness was the lowest of the four groups 

(Fig. 5). Grassland occurred at the highest mean Cu(w) concentrations (4.42±3.81 

m gL-1; Table 8). This group represented 19% of the sample sites. A. melanoxylon 
tended to occur either as widely-spaced individuals or in discrete clumps. The 

presence of this species could be best explained as a result of vegetative regrowth. 

The species is known to sucker (Kirkpatrick, pers. comm.). In the Mount Lyell 

area, the author has observed root suckers near established trees with damaged 

root systems. 

The second group, the Restionaceae/ Acacia mucronata tall shrubland (Group 

2), was characterised by the species R. tetraphyllus in the presence of the tall 

shrub A. mucronata. The group was differentiated from Group 1 by the presence 

of R. tetraphyllus and G. his pida. The total number of species recorded was 13. 

This group recorded the second highest, mean soil Cu(w) concentration 

(1.97±1.37 mg L-1 ) and represented 30% of the sample sites. 

The third group, the Restionaceae low shrubland (Group 3), was characterised 

by R. tetraphyllus in the presence of C. juniperina, G. his pida and two fern 

species: B. wattsii and G. microphylla. Thirty-three species were recorded and 

mean species richness was markedly higher than those of Groups 1 and 2 
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Fig. 5: Mean species richness for sample sites classified by TWINSPAN groups 
and Cu (w) concentration. The Cu(w) concentrations were grouped into five 
categories ranging from 0 to >8 mg L -1. The lack of richness data in some 
concentration categories indicated the absence of a soil category within a group. 
Fig. 4 

M
ea

n  
ri

c h
ne

ss
  

ff1 Group 1; n=11 
• Group 2; n=17 
• Group 3; n=23 
El Group 4; n=6 

 

0-2 	2-4 	4-6 	6-8 	>8 
Water-extractable soil Cu (mgL-1) 



CH4/Vegetation survey 

Table 8: Community and environmental data for the four TWINSPAN 
groups. Means and standard deviations (in brackets) are provided. 

Twinspan Group 4 	Group 3 	Group 2 	Group 1 

group: 	Acacia 	Restio/- 	Restio/ - 	Agrostis 

melanoxylon 	low 	 A. mucronata 	grassland 

shrubland 	shrubland 	tall 

shrubland 

Area 
(ha) 40 120 120 80 

Community data 
Richness 22 33 13 7 

Environmental data 

pH8  4.2 (0.6) 4.8 (0.5) 4.6 (0.6) 4.4 (0.4) 

0DM1  1.0 (1.9) 1.1 (1.5) 0.6 (0.4) 1.8 (1.6) 

LOI2  4.7 (5.1) 4.4 (3.7) 3.2 (2.2) 3.5 (3.0) 

Slope' 21 (9) 19 (9) 18 (7) 21 (7) 

Depth6  31 (22) 23 (14) 19 (12) 25 (17) 

Cu(w)5  1.23 (0.48) 1.65 (1.93) 1.97 (1.37) 4.42 (3.81) 
Al (w) 5  24.31 (35.3) 12.08 (8.88) 12.82 (18.27) 18.84 (24.40) 

Zn (w)5  1.18 (0.88) 0.56 (0.40) 1.34 (2.11) 1.20 (1.30) 

TEI33  1.46 (0.18) 0.87 (0.22) 1.99 (2.95) 0.93 (0.23) 

N 4  0.3 (0.1) 0.7 (0.2) 0.6 (0.2) 0.6 (0.3) 
9 n 6 23 17 11 

1r/oair dry moisture (ODM); Rayment and Higginson (1992). 
2) LOI: Loss on ignition (%) 
3) TEB: Total exchnageable bases (mEq100g -I ) 
4) Total Kjeldahl nitrogen (/0); (Bremer and Mulvaney, 1982) 
5)Souluble metals (mg 1: 1 ) 
6)Depth (cm) 
7) Slope in degrees 
8) Soil pH was measured in a 1:1 soil/distilled water mix using a WTW electronic pH meter (model pH6) 
fitted with a Type E50 electrode. 
9) number of sample sites in twinspan group 
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(Fig. 5). The group had the second lowest mean soil Cu(w) concentration 

(1.65±1.93 mg L-1  ). It represented 40% of the sample sites and formed the 

largest area of any of the vegetation groups. 

The last vegetation group was the Acacia melanoxylon shrubland. Characteristic 

shrubs in this group, as distinct from Group 3, included E. impressa, E. 
heteronema and P. gunnii (Fig 3). With a total of 22 species represented, the 

group recorded the highest mean species richness of the four vegetation groups 

(Fig. 5), while recording the lowest mean soil Cu(w) concentration (1.23±0.48 

mg C1; Table 9). The group was not widespread, being restricted to a total of 

10% of the sample sites. 

Species frequencies in the four vegetation groups are shown in Table 10. 

Mapping of the vegetation groups 

Mapping of the distribution of the TWINSPAN groups revealed four discrete 

vegetation units that were spatially related (Fig. 6). Immediately to the east of 

the smelters lay Group 1; the group with the lowest species' richness and the 

highest mean Cu(w) concentration. Adjacent, and progressively further 

eastwards from Group 1, lay Groups 2 and 3. The same order of vegetation 

unit separation was evident to the north-east of the smelters. Group 4 lay to 

the north of the smelters. 

Mapping of the soil Cu data into concentration classes provided a spatial 

representation of soil contamination (Fig. 7). The classes were spatially related 

and, in general, described an highly contaminated, near-smelter zone 

surrounded by zones of progressively lower contamination. The pattern was 
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Table 9: Frequency of species in the four TWINSPAN groups. 

	  Species 
Frequency (%) 

Group 1 	Group 2 Group 3 Group 4 

Acacia dealbata - - 8.7 33.3 
Acacia melanoxylon 45.4 - 43.5 100 
Acacia mucronata 9.1 41.2 78.3 50.0 
Agrostis capillaris 81.8 76.5 56.5 83.3 
Atherosperma moschatum - - 13.0 16.7 
Blechnum nudum - - 8.7 - 

Blechnum wattsii - - 30.4 _ 

Comesperma retusum - - 8.7 16.6 
Cyathodes juniperina 9.1 5.9 78.3 16.7 
gpacris impressa - - 8.7 50.0 
Epacris heteronema - - 17.4 50.0 
Gahnia grandis - 26.1 16.7 
Gaultheria hispida - 70.1 87.0 - 
Gleichenia microphydla - 5.9 47.8 - 
Histiopteris incise - 5.9 16.7 
Hypochaeris radicata 9.1 - 8.7 - 

Isolepis aucklandica 33.4 29.4 13.4 - 

Lastreopsis acuminata - - - 16.7 
Leptospermum scoparium - - 43.5 83.3 

Melaleuca squamea - - 4.3 16.7 
Monotoca scoparia - 13.0 16.7 

Olearia erubescens - 5.9 - - 

Oxylobium arborescens - - 26.1 33.3 
Persoonia gunnii _ 5.9 26.1 83.3 
Phebalium squameum - - 30.4 16.7 
Phyllocladus aspleniifolius - - - 16.7 
Restio tetraphyllus 27.3 94.1 91.3 16.7 
Sprengelia incarnata - - 13.1 33.3 

Telopea truncate - - - 33.3 
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consistent with the negative-exponential relationship found previously 

(Chapter 3). 

A strong correspondence was evident between distributions of the Cu 

concentration classes and the vegetation units. This provided visual evidence 

of the importance of metal contamination in determining patterns of natural 

colonisation. 

4.4 Discussion 

Emissions from base-metal smelters have been known to cause significant 

vegetation change due to species exclusion (Lebersli and Steinnes, 1988; Wood 

and Nash, 1976; Hutchinson and Whitby, 1974; Buchauer, 1971; Gorham and 

Gordon, 1960; Teale, 1951b; Haywood, 1907). During the early operational life 

of a smelter, species exclusions may occur progressively as a direct result of 

foliar injury and subsequent defoliation. Early works attributed these impacts 

to SO2  fumigation (Blainey, 1993; Linzon, 1972; Gorham and Gordon, 1960). 

There was some experimental evidence to suggest that foliar injury due to 

SO2  fumigation was exacerbated by the presence of metallic dusts (Krause and 

Kaiser, 1977). Later authors recognised the contribution of elevated 

concentrations of metallic soil-contaminants to vegetation change (Lebersli 

and Steinnes, 1988; Hogan and Wotton, 1984; Hazlett et al., 1983; Freedman 

and Hutchinson, 1980; Wood and Nash, 1976; Hutchinson and Whitby, 1974; 

Little and Martin, 1972; Buchauer, 1971; Gresta and Godzik, 1969). These authors 

found phytotoxic soil contaminants capable of causing vegetation change. 

The reported effects on vegetation of prolonged exposure to high-sulphur 

content emissions from Cu smelters range from the elimination of sensitive 
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species to deforestation and denudation (Blainey, 1993; Labersli and Steinnes, 

1988, Hogan and Wotton, 1984; Heale and Ormrod, 1982; Wood and Nash, 

1976; Hutchinson and Whitby, 1974). At a community level, these effects usually 

manifest as reduced species richness. In extreme cases, this type of industrial 

disturbance can be considered catastrophic; resulting in the almost complete 

destruction of an ecosystem. Morover, unlike discrete and non-catastrophic, 

disturbance events, such as fire, flood, landslip or disease, the effects of base-

metal smelters on vegetation tend to be long-lasting. This is due to the immobile 

nature of metallic elements in soils (Wood and Nash, 1976; Jones and belling, 

1967). 

In circumstances where soil contamination results in phytotoxicity, the effects 

of residual contamination may outlive the active operation of a smelter by 

many decades. In consequence, phytotoxic soil contamination is likely to 

influence the pattern of natural colonisation in the vicinity of decommissioned 

base-metal smelters. Antonovics et al. (1971) recognised that contaminated 

sites offered an opportunity to study the effect of metals on plant distribution. 

Smelter closure, or a reduction in smelter emissions, may provide an 

opportunity to metal-tolerant colonisers from neighbouring vegetation. 

Detailed reports of the patterns of natural colonisation in metal contaminated 

areas following the closure of a smelter are, however, scant. The Ni/Cu smelter 

at Coniston, Ontario closed in 1972. Six years later, Cox and Hutcthinson 

(1980, 1979) reported that the grass Deschampsia cespitosa had invaded large 

areas of the barren area surrounding the smelter and similar nearby complexes. 

On phytotoxic soils with both low pH and elevated metal concentrations, they 

attributed colonisation to the development of metal tolerance. Similarly, Rauser 

and Winterhalder (1985) identified Cu and Ni tolerance in D. cespitosa on the 
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highly contaminated, Coniston roast bed. On another abandoned roast bed in 

the same Sudbury smelting region, Hogan and Courtin (1977b) identified Cu 

tolerance in the grass Agrostis gigantea. The plants were growing in discrete 

'islands' with both high extractable Cu and low pH. Non-tolerant clones were 

apparently restricted to the more favourable sites (Hogan and Courtin, 1977a). 

At Mount Lye11, site disturbance and contamination resulted in site availability. 

With the closure of the last smelter in 1969, site availability provided an 

opportunity that is best understood as one of primary colonisation. Unlike 

secondary colonisation, which begins with a more or less mature soil containing 

stored seeds and vegetative propagules, colonisation at Mount Lye11 began 

largely from bare rock and inorganic soils. The earliest colonisers were 

reportedly algae - isolates of algal species from contaminated sites have been 

elsewhere suspected of copper tolerance (Twiss, 1990) - and subsequently, 

mosses. More than twenty years later, higher plants have established only a 

limited presence on the mountain. 

In this study, the presence of vascular plant species was understood to be a 

function of both successful dispersal (or, in the case of A. melanoxylon, 
persistence) and differential species performance. Species performance was 

measured by occurrence. These factors resulted in a strong, selective gradient. 

The strong relationship between species coincidence and soil Cu concentrations 

indicated that differential occurrence was largely a result of varying Cu tolerance. 

Varying tolerance to soil Cu was the only environmental variable examined 

capable of substantially explaining the species performance component of the 

selective gradient. The role of the variable soil depth is likely to have been 

minor. Soil depth may have contributed to species coincidence through an 
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effect on the physical favourability of the skeletal soils to germination. In 

general, the least favourable of the soils were found closest to the smelters. 

Alternatively, depth may have contributed to species coincidence by chance, 

due to a gradient in soil depth from the smelter, situated in the valley bottom, 

to the middle slopes of Mount Lye11. This gradient tended to parallel that 

displayed by soil Cu concentration. Similarly, soil organic matter, represented 

by loss-on-ignition (LOT), may have contributed to species coincidence in a 

minor way through an effect on plant-available Cu. There was no relationship 

between Cu(w) and depth. This was not unexpected given that the surface Cu 

concentrations were understood to be largely of depositional, rather than of 

parental, origin. 

Varying tolerance to Cu is considered responsible for the formation of the 

distinct vegetation groups. The spatial relationships revealed by mapping of 

the vegetation groups suggested vegetation zonation. This was understood to 

be the result of spatial shifts in the dominance of tolerant or resistant species 

(sensu Smith and Huston, 1989). Winterhalder (1987), similarly, recognised 

spatial heterogeneity between colonising plants and related them to 

contamination patterns in the Sudbury region. 

The presence of Agrostis capillaris at Agrostis grassland sites was testimony 

of the species ability to tolerate high concentrations of available Cu. Copper 

tolerance in this species accorded with the findings of earlier experimental 

works (Symeondis et al., 1985; Nicholls and McNeilly, 1979; Wainwright and 

Woolhouse, 1977; Walley et al., 1974; Gregory and Bradshaw, 1965). 

The tolerance, invasive ability and durability of members of this genus have 

been demonstrated at a number of metal contaminated sites throughout the 
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northern hemisphere. The invasive nature of the local, native, A. capillaris, 
was inadvertently demonstrated on a metal contaminated site in Ammerberg, 

Sweden (Bergholm and Steen, 1989). Over a 10 year period the species was 

able to invade plots on zinc sand wastes, amended with sewage sludge or 

topsoil and sown to pasture grasses, attaining a cover of 20-50%. In the Sudbury 

region, A. scabra and A. gigan tea populations were able to partially colonise, 

albeit with a cover of less than 1%, a highly contaminated, abandoned roast 

bed that had lain undisturbed since 1929 (Hogan et al., 1977b). In the same 

region, Hazlett et al., (1983) reported that falling smelter emissions in the 

1970's permitted partial recolonisation of denuded areas by A. scabra. This was 

the only species recorded to tolerate the least favourable, near-smelter sites. 

4.5 Conclusion 

The industrial disturbance seen at Mount Lye11 was catastrophic in the almost 

complete destruction of an ecosystem. Subsequent closure of the smelters 

presented an opportunity to colonising species. However, residual, and spatially 

discrete, soil contamination has dominated the pattern of natural colonisation 

by providing a strong, selective gradient. In this study, the differential occurrence 

of colonising species was found to be a result of varying Cu tolerance. In 

conjunction with the ability to invade, varying species tolerance was responsible 

for the formation of distinct, zonal, vegetation groups. This was reflected in 

the richness of the groups. The vegetation groups were distinct from the 

present-day environs of the region; typified by the fire-disclimax communities 

of Eucalypt forest, Blackwood forest, Tea-tree scrub and Buttongrass sedgeland. 

At Mount Lye11, further unaided species introductions appear to be dependent 

upon reductions in Cu-related soil phytotoxicity. 
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Chapter 5 

The reclamation of metal-contaminated soils with phytotoxic 

characteristics: toxicity amelioration with a chemical neutralising 

agent 

5.0 General introduction 

Atmospheric emissions from base-metal smelters have contaminated soils 

by metal deposition, or acid-induced soil alterations (Nelson and Cambell, 

1991; Reuss et al., 1987, Malmer, 1976), and have resulted in soils with 

phytotoxic characteristics. In plants, the symptoms of metal phytotoxicity 

can be expressed as either foliar or root abnormalities. Stunted growth is a 

common abnormality in both roots and shoots (Foy, 1992) and foliar 

discolouration may occur (Foy, 1992). Metal toxicity resulting in root 

abnormalities may also be expressed indirectly as macronutrient nutrient 

imbalances or deficiencies (Foy, 1984; Smith and Bradshaw, 1972) and can 

render plants susceptible to water stress (Foy, 1988). In cases of extreme 

phytotoxicity, increased mortality is likely. At the community level, a typical 

symptom of metal phytotoxicity in the vicinity of decommissioned base-

metal smelters is low species richness (eg. Wood and Nash, 1976). Low 

species richness is generally the result of the exclusion of non-tolerant 

species. 

Two general approaches to have been used to reclaim chemically 

contaminated soils; engineering and ecological approaches (Logan, 1992). 

Engineering approaches have been used in cases of extreme contamination 

and include various froms of removal and subsequent treatment, chemical 

or heat immobilization! mobilization and biotic /abiotic degradation. 
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Ecological approaches to soil reclamation involve the manipulation of 

inherent soil processes to immobilize, mobilize, transform or degrade 

contaminants. Ecological reclamation may include landscape stabilization, 

neutralisation of acid or alkaline soils, the addition of organic matter, 

fertilization and the establishment of vegetative cover. Specific site 

requirements may necessitate a combination of engineering and ecological 

approaches to soil reclamation. 

Steep topography, high rainfall, limited accessibility and the chemical 

characteristics of the contaminants at the Mount Lye11 site restricted the 

choice of appropriate soil reclamation methods. As is often the case in 

rocky soils and mine spoils (Logan, 1992), engineering approaches such as 

deep ripping in order to dilute soil contaminants were impractical at Mount 

Lye11 due to the topography, numerous rocky outcrops, poor accessibility 

and a risk of severe erosion. Similarly, the importation of large volumes 

of organic matter in order to complex soluble metallic contaminants was 

impracticable without a plausible means of incorporation and reasonable 

chance of bio-degradation. 

In situ immobilization methods appeared to offer a means of reducing the 

solubility of soil contaminants at Mount Lye11. Reference to the literature 

suggested that lime might be a suitable ameliorant (eg. Alva et al., 1993; 

Logan, 1992; Logan and Cassler, 1989; Winterhalder, 1988; Winterhalder, 

1983a; Hume and Winterhalder, 1983; Wirtterhalder, 1981a/b). Where metal 

toxicity occurs, lime application has the potential to ameliorate toxicity by 

enhancing sorption and precipitation (Logan, 1992) and by enhancing metal 

complexation with organic matter (Logan, 1992). In circumstances where 

excess acidity prevails, lime is recognised for its positive contribution to 

soil structure, to nutrient bioavailability (Logan, 1992), and consequently to 
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plant growth and productivity (Logan, 1992; Atlas and Bartha, 1981). 

In this chapter, contaminated and potentially phytotoxic soils were removed 

at intervals along a metal concentration gradient originating at the Mount 

Lye11 smelter ruins and examined in pot trials. The growth of seedlings of 

local colonising species was used as a measure of phytotoxicity and lime 

requirements were determined directly following treatment applications. 

Field trials examined the ameliorative effects of lime when applied as 

surface treatments and the potential for broadacre lime application. 

Part A: Pot trials 

5.1 Introduction 

The growth of two local colonising species in soils taken along an easterly 

transect originating at the Mount Lye11 smelters was compared in a pot 

trial. Along this transect, soils ranged in soluble Cu and Al from 

concentrations above those reported as phytotoxic to tree species to 

background levels. Calcitic lime (CaCO 3) was selected as an appropriate 

neutralising agent due to its low cost, availability and reputation as a soil 

improver on both agricultural lands and acid mine spoils. The sample 

soils were treated with a calcitic lime at application rates intended to raise 

soil pH to between 5 and neutral. Lime was added to the upper layer of soil 

of each pot as the treatment of this layer has resulted in superior growth in 

pot trials of acid, metal-contaminated soils (Pinkerton and Simpson, 1977). 

The response to treatments was assessed by observation and measurement. 

The local tree/shrub species Acacia melanoxylon and Leptospermum 

scoparium were chosen for the trial due to the relatively high frequency of 
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their occurrence in recolonised areas and the potential of their contribution 

to revegetation. Local provenance seed of Acacia mucronata, another species 

occurring in these areas, was unavailable at the time of the trial. 

5.2 Methods 

5.21 Soil sampling 

Soil samples were taken at five sampling sites located in an easterly direction 

from the original Mount Lye11. The sites were the same as those selected in 

Chapter 3 with the exception that site 6 was excluded. The sampling locations 

are shown in figure 2 of the same chapter. 

Soil sampling and sample preparation for soil chemical analysis followed 

the procedures described in Chapter 3, sections 3.21 and 3.22, respectively. 

Soluble metal-ion concentrations for the soils were obtained in mg L -1  for 

the metals Cu, Zn, and Al using soil-water extracts. The extraction proceedure 

for the metal-ion analyses followed was given in Chapter 3 (sect. 3.22). The 

water soluble, metal-ion analyses were complemented by determinations 

for DTPA extractable Cu (Lindsay and Norvell, 1978), and Zn (Lindsay and 

Norvell, 1978) and CaC12  extractable Al. The extractions were performed 

and measured (AAS) by Mount Pleasant Laboratories, Kings Meadows, 

Tasmania on sieved (1 mm mesh), air-dry soil samples. 

5.22 Soil and glasshouse preparation 

Acacia melanoxylon 

In the glasshouse, two hundred tapered, plastic seedling pots (5x5x12 cm) 
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were evenly divided into five blocks. These were filled with soil from one 

of each of the five sampling sites to a depth of one half their volume. In 

each block, the remaining volume was made up by allocating soil treated 

with one of four levels of lime. There were 10 replications. 

To minimise variation, the treatments were pre-prepared in bulk by 

thoroughly mixing the quantity of lime and soil required. The treatments 

were ground calcitic lime (mesh size 1.0 mm) at the rate of 0, 200, 400 and 

600 g m -2. The application rates were selected following consideration of 

the lime requirements generally experienced with clay-barns (4 000 to 5000 

kg ha' every three to four years; Sopher and Baird, 1982), the origin of the 

soils and the soil reaction. The treated pots were labelled, watered and 

allowed to stand for two weeks. 

Locally collected, Mount Lye11 provenance A. melanoxylon seeds were 

heat stratified in near boiling water for 45 seconds. Directly following 

stratification the seeds were immersed in cold water and allowed to stand 

overnight. The seeds were then placed on open plastic trays and incubated 

at 20°C in a constant temperature cabinet. Following germination seedlings 

of equivalent radical length (5±1 mm) were selected, transferred to the 

glasshouse and planted bare-rooted in the pre-prepared tubes. Two seedlings 

were planted per tube. The tubes were randomised on the glasshouse bench 

and watered daily. 

The seedlings were harvested after 53 days. This period was selected 

following visual inspection of a preliminary pot trial which indicated a 

lime-treatment response after 40 plus days. Each seedling was carefully 

removed from its tube and the root system was thoroughly washed. Root 

nodulation was noted. The seedlings were then oven dried at 60 °C for 6 
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hours and weighed, prior to bagging and labelling. 

At harvest, four pots from each treatment in each block were selected at 

random for pH measurement. Only the upper half of the soil contained in 

each pot was sampled (0-5cm). Soil pH was measured in a 1:1 soil/ water 

suspension using a WTW electronic pH meter (model pH6) fitted with a 

Type E50 electrode. 

Leptospermum scoparium 

A similar pot trial was performed using the species L. scoparium and soil 

from the same 5 soil sampling sites. The procedure used was as for A. 

melanoxylon with the following three exceptions; an extra treatment level 

was added (100 gm -2 ), the seedlings were transplanted as 5-week old seedlings 

and one seedling was planted per pot. 

5.23 Data analysis 

A. melanoxylon 

The A. melanoxylon experiment formed a single factor, randomised 

complete block with treatments allocated to pots within blocks. There were 

four lime treatments, five soil sampling sites and two subsamples per pot. 

The treatments were replicated 10 times. 

The seedling dry weight data were subjected to a two-way analysis of variance 

(ANOVA) using the generalised linear modelling (GLM) procedure in 

SAS /STAr edition 6.03 (SAS Institute Inc., 1988). The program treated the 

data for each pair of seedlings in the pots (experimental units) as subsample 
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measurements. Plots of residuals versus fitted values indicated that data 

conformed to the model requirements of normality and homogeneity. 

The between treatments effect was tested against a block times treatment 

residual. 

Least square means were calculated and ranked. The means were compared 

using the probability difference (pDiff) option of the SAS/STAT ®  program. 

This permitted a pairwise comparison of means. 

Soil-metal concentrations were correlated with seedling dry weight. 

L. scoparium 

The L. scoparium experiment formed a single factor, randomised complete 

block with treatments allocated to pots within blocks. There were five lime 

treatments and five soil sampling sites. The treatments were replicated 

eight times. 

Statistical handling of the L. scoparium data was similar to that of the a A. 
melanoxylon experiment. Soil-metal concentrations were correlated with 

seedling dry weight. 

5.4 Results 

5.41 Chemical characteristics of the pot trial soils 

The chemical characteristics of the soils taken along the transect and used 

in the pot trials are summarised in Table la. 
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Table la: Surface soil characteristics for five composite soil samples 

representing sites along a radial transect originating at the Mount Lye11 

smelters. 

Sample sites 1 2 3 4 5 

Displacement 
from smelters (m) 230 400 650 850 1150 

Soil texture medium sandy light sandy sandy 
clay 	clay sandy loam clay 

loam loam 
Soil pH2  4.3 4.5 4.7 4.8 4.5 

Loss on ignition (°/0) 3.9 3.7 3.1 5.3 7.0 

% air dry moisture 0.6 0.7 1.5 2.0 2.6 

N(°/0Total)3  0.78 0.90 0.37 0.47 0.35 

TEB (in3q 10004  1.25 0.99 0.73 0.76 0.95 

Ca (mezt 100g-1 )5  0.36 0.29 0.16 0.18 0.20 

Water extractable metal ion concentrations' 

Cu (mg L-1 ) 10.41 6.72 2.34 0.90 0.39 

Zn (mg L-1 ) 0.75 0.48 0.18 0.36 0.06 

Al (mg L-1) 5.94 10.5 19.32 0.27 0.09 

Extractable metal concentrations 

Cu (DTPA) 51.70 222.0 70.7 10.5 31.5 

Zn (DTPA) 1.63 17.7 16.30 0.30 1.98 

Al(CaC12) 41.40 27.7 17.6 8.28 2.30 

1)Soil texture determination based on ANU Forestry texture evaluation guideline derived from Northcote (1979). 
2) Soil pH was measured in a 1:1 soil/distilled water mix using a WTW electronic pH meter (model pH6) fitted with 
a Type E50 electrode. n=4. 
3)Kjeldahl procedure (Bremer and Mulvaney, 1982) 
4) TEB = Total NH4 /CL exachangable bases 
5) N1-14C1 extractable calcium 
6) Air dry moisture (ODM) Rayment and Higginson (1992). 
7) Extraction proceedure as per Ch. 3 (sect. 3.22) 
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5.42A. melanoxylon 

Seedling growth in untreated site 1 and site 2 soils stagnated after the first 

couple of weeks. Most shoots failed to develop beyond the seed leaves, and 

root development was severely inhibited. Typically, the root systems were 

severely stunted, thickened, and lacked branching and root hairs (Fig. la). 

The tips of the primary roots were commonly stained a watery-brown or 

blackened. This was understood to be necrotic, cell collapse. The worst 

affected systems lacked any lateral development and were reduced to a 

stubby and thickened primary root. This resulted in mechanical instability 

and sometimes collapse. Nodulation did not occur. While none of the 

seedlings died within the period of the trial, survival appeared unlikely. 

The severity of root abnormalities decreased markedly with increasing 

displacement from the smelter. The root systems in untreated sites 3, 4 

and 5 soils were progressively longer, less thickened and more branched 

(Fig. la and lb). Roots tended to remain cream-white in colour throughout 

their length but nodulation did not occur. Shoots developed secondary 

leaves and seedling survival did not appear to be in question. 

The appearance of the A. melanoxylon root systems improved dramatically 

with the application of lime at all levels and resulted in predictable rise in 

soil pH (Table lb). Nodulation occurred on seedlings grown in soils from 

sites 3, 4 and 5. The improvement in root appearance with liming was 

particularly evident in soils from sites 1 and 2. Typically, the root systems 

gained length, were more branched and less thickened (Fig. 2). Necrosis of 

the root tip did not occur. Root hairs, however, were commonly absent. 

Analysis of variance of A. melanoxylon seedling dry weights indicated 
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Figure 1: A. melanoxylon root development in untreated Mount Lye11 

soils in a preliminary pot trial. Fig. la: seedlings grown in site 1, 2 and 3 

soils. Fig.lb: Seedlings grown in site 4 and 5 soils. The photographs 

were taken on day 47 of a preliminary trial. The lowercaption in Fig.lb 

should read sites 1-5. 
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Table 1b: Soil p}11  for five soils sampled along an easterly transect originating 

at the Mount Lye11 smelters and treated with ground lime in a pot trial. 

The measurements were taken on the day of harvest. 

Site Displacement 
from smelter 
(m) 

0 

Lime treatment (gm-2) 

100 	200 	400 600 

1 230 4.22 5.14 5.75 6.53 6.58 
2 400 4.51 5.25 5.67 6.28 6.53 
3 650 4.73 5.39 5.43 6.31 6.49 
4 850 4.84 5.46 5.68 6.74 7.65 
5 1150 4.49 5.05 5.55 6.36 7.15 

Mean 4.6 5.3 5.6 6.4 6.9 

1) Soil pH was measured in a 1:1 soil/distilled water mix using a WTW electronic pH meter (model pH6) 
fitted with a Type E50 electrode. n=4. 
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Figure 2: Photo of A. melanoxylon root development in lime treated 

and untreated (control) Mount Lye11 soils from site 1 in pot trial. The 

photo was taken on the day of harvest. 
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that a site by treatment interaction existed (F12,19  = 6.84, p = 0.0001; Table 

2). The interaction between treatments and sites can readily be recognised 

in the plot of mean seedling dry weight against displacement of each of 

the sites (Fig. 3). Subsequent analysis, using site by treatment mean square 

as an error term, showed that the means differed between treatments 

(F3 , 19  = 8.26, p = 0.0030), but not significantly between sites (F4, 19  = 1.09, p = 

0.4046). 

Pairwise comparisons of differences between treatment means indicated 

that, in comparison to the controls, the addition of ground calcitic lime 

increased the dry weight of A.melanoxylon seedlings at most, but not all, 

of the Mount Lye11 sites (Table 3). The exceptions were the 400 and 600 g 

m' treatments at site 5. However, although all of the lime treatments 

improved dry weight at sites 1 to 4 inclusive, differences between the 

responses to treatment levels at these sites were not statistically 

distinguishable. At site 5, only the 200 gm"2  treatment improved seedling 

dry weight. Higher lime application rates at this site produced no 

measurable benefits over that of the control treatment. 

Correlation of soil-metal concentrations and seedling dry weights 

Regressions of soluble soil-metal concentration and the seedling dry weight 

data displayed distinct differences between the metals. For A. melanoxylon, 

seedling dry weight was negatively and linearly related to the metals Cu 

(R = -0.91) and Zn (R = -0.89), but appeared unrelated to Al (R = -0.26; Fig. 

4a-c). In comparison, A. me lanoxylon seedling dry weight was negatively, 

but less strongly related to DTPA-extracted Cu (R = -0.64) and DTPA-

extractable Zn; Fig. 4d-f). A strong negative, linear relationship was found 

between seedling dry weight and CaC12  extracted Al (R = -0.93). 
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Table 2:Summary of an analysis of variance of Acacia melanoxylon seedling 

dry weights from a lime-application pot trial. Pre-germinated seedlings of 

equivalent radical development were transplanted into soils taken from 

five sites located to the east of the Mount Lyell smelter complex. The 

soils were treated prior to transplantation with ground lime at the rates 

of 0, 200, 400 and 600 gm'. Two seedlings were planted per pot. The 

seedlings were harvested after 53 days. The data were analysed as a 

randomised complete block of five sites and four treatments with 

subsampling . 

Source 	D.F. Sums of Mean 

squares square value 

Model 	19 
	

0.085 	0.0045 14.45 	0.0001 

Error 	333 
	

0.1033 0.0003 

Corrected Tota1352 
	

0.1884 

Source DFType HISS MSF Value P>F 

Treatment 3 	0.053 0.017 	56.52 0.0001 

Site 4 	0.009 0.002 	7.46 0.0001 

T'ment* Site 12 	0.254 0.002 	6.84 0.0001 

Tests of hypotheses using Type 3 MS for Site*Treatment as an error 

term 

Treatment 3 0.053 0.017 80.26 0.0030 

Site 4 0.009 0.002 1.09 0.4046 
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Figure 3: Mean total dry weights for A. melanoxylon seedlings in soil removed 
from five Mount Lye11 locations and subjected to four lime treatments in a 

pot trial. The soils samples were taken at increasing eastward displacement 

from the original Mount Lyell smelters. The treatments (ground lime) were 
applied at the rates of 0, 200, 400 and 600 gm -2  and mixed with soil in the top 

five centimetres of each pot. The seedlings were transplanted as germinated 

seed and harvested after 53 days. Error bars represent standard deviations. 
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Table 3: Mean total dry weights for A. melanoxylon seedlings grown in 

soils from five Mount Lye11 sites and subjected to four lime treatments (0, 

200, 400 and 600 gm') in a pot trial. Differences between ranked treatment 

means at each site were extracted from a probability table generated by the 

'pdiff' option in the analysis of variance procedure offered in SAS/STAT R  

edition 6.03 (SAS Institute Inc., 1988). Differences are summarised 

by annotation: any two means annotated with a dissimilar letter, or 

letter combinations, are significantly different at the 0.05 level or greater. 

Site Lime treatment means 

1 Treatment 0 2000 6000 4000 

Mean 0.012a 0.036b 0.045b 0.054b 

2 Treatment 0 2000 4000 6000 

Mean 0.011a 0.056de 0.063df 0.067df 

3 Treatment 0 4000 2000 6000 

Mean 0.030c 0.050de 0.055de 0.058de 

4 Treatment 0 4000 2000 6000 

Means 0.032c 0.049de 0.056de 0.057de 

5 Treatment 0 6000 4000 2000 

Means 0.043be 0.047de 0.048de 0.073f 
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5.43 L. scoparium 

Although survival did not appear to be in question in any of the untreated 

soils, seedling growth was slow and resulted in reduced internode lengths 

and leaf sizes. In untreated site 1 and site 2 soils, pallid leaf tones indicated 

chlorosis. Above-ground growth rates appeared to increase with the 

displacement of the sampling sites from the smelters. Root abnormalities 

in L. scoparium appeared less severe than in A. melanoxylon. In soils 

from sites 1 and 2, the systems were poorly developed, lacking both length 

and branching. Root tip necrosis and thickening were, however, generally 

absent. Like A. melanoxylon, the severity of root abnormalities appeared 

to be related to increasing displacement of the soil sampling sites. In 

untreated site 3,4 and 5 soils, L scoparium root systems became progressively 

longer and more branched. 

The appearance of the L. scoparium root systems improved with the 

application of lime at all levels. Again, the improvement was particularly 

noticable for sites 1 and 2. The root systems gained length and were more 

branched. 

Analysis of variance for L. scoparium mean seedling dry weights indicated 

that a site by treatment interaction existed (F 16,168 = 1.73, p = 0.0455; Table 4). 

The interaction between treatments and sites can be recognised in the plot 

of mean seedling dry weight against displacement of each of the sites (Fig. 

5). Subsequent analysis, using site by treatment mean square as an error 

term, showed that the means differed between treatments (F 4 , 16  = 5.67, p = 

0.0049), but not significantly between sites (F 4 , 16  = 1.68, p = 0.2027; Table 4). 

Pairwise comparisons of differences between treatment means indicated 
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Table 4: Summary of an analysis of variance of Leptospermum scoparium 

seedling dry weights from a lime-application pot trial. Pre-germinated 

seedlings of equivalent radical development were transplanted into soils 

taken from three sites located to the east of the Mount Lye11 smelter complex. 

The soils were treated prior to transplantation with ground lime at the 

rates of 0, 100, 200, 400 and 600 gm -2. One seedling was planted per pot. The 

seedlings were harvested after 53 days. The data were analysed as a 

randomised complete block of three sites and five treatments without 

subsampling. 

Source D.F. Sums of 
squares 

Mean 
square 

F 
value 

p >F 

Model 24 0.0116 0.0005 3.28 0.0001 
Error 168 0.0366 0.0001 
Corrected Total 192 0.0366 

Source DF Type HISS MS F 
value 

p>F 

Site 4 0.0017 0.0004 2.91 0.0231 
Treatment 4 	• 0.0058 0.0014 9.81 0.0001 
T'ment* Site 16 0.0041 0.0002 1.73 0.0455 

Tests of hypotheses using Type III MS for Site *Treatment as an error term 
Treatment 4 0.0058 0.0014 5.67 0.0049 
Site 4 0.0017 0.0004 1.68 0.2027 
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Figure 5: Mean total dry weights for L. scoparium seedlings in soil removed 

from five Mount Lye11 locations and subjected to five lime treatments in a 

pot trial. The soil samples were taken at increasing eastward displacement 

from the original Mount Lye11 smelters. The treatments (ground lime) were 

applied at the rates of 0, 100, 200, 400 and 600 gm-2 and mixed with soil in 

the top five centimetres of each pot. The seedlings were transplanted as 

germinated seed and harvested after 53 days. Error bars represent standard 

deviations. 
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that, in comparison to the controls, the addition of ground calcitic lime 

increased the dry weight of L. scoparium seedlings at sites 1,2 and 3. (Table 

5). With one exception (Site 2, 600 gm -2), there was nothing to distinguish 

between the four levels of lime treatment at these sites. In contrast, there 

was no improvement as a result of lime treatment at site 4. At site 5, only 

the treatments 100 and 200 gm' resulted in an increase in dry weight. 

Correlation of soil-metal concentrations and seedling dry weights 

Regressions of soluble soil-metal and seedling dry weight data for the species 

L. scoparium displayed similar patterns to that found with A. melanoxylon. 
Negative linear relationships were found with the metals Cu (R = -0.73) 

and Zn (R = -0.60; Fig. 6a-b). A weaker relationship was found with the 

metal Al (R = -0.63; Fig. 6c). Seedling dry weight was also negatively related 

to DTPA-extracted Cu (R = -0.81), DTPA-extracted Zn (R = -0.69) and CaC12  

extracted Al (R = -0.80; Fig. 6d-f). 

5.5 Discussion 

Tolerance 

Seedlings of both A. melanoxylon and L. scoparium were similarly 

intolerant of the untreated Mount Lyell soils. Intolerance was especially 

marked in soils taken from the sampling sites closest to the smelters. The 

visual symptoms of intolerance at these sites were typified by stunted shoots 

and severe root system abnormalities. The symptoms, and particularly 

those of the root systems, were consistent with those known to occur as a 
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Table 5: Mean total dry weights for L. scoparium seedlings in soil removed 

from three Mount Lye11 locations and subjected to five lime treatments ( 0, 

100, 200,400 and 600 gm -2) in a pot trial. Differences between ranked treatment 

means at each site were extracted from a probability table generated by the 

'pdiff' option in the analysis of variance procedure offered in SAS/STAT R  
edition 6.03 (SAS Institute Inc., 1988). Differences are summarised by 

annotation: any two means annotated with dissimilar letter combinations 

are significantly different at the 0.05 level or greater. 

Site Lime treatment means 

1 Treatment 0 400 600 200 100 

Mean 0.026a 0.037b 0.043b 0.044b 0.046b 

2 Treatment 0 100 200 400 600 

Mean 0.020a 0.034b 0.034b 0.042b 0.056d 

3 Treatment 0 600 100 400 200 

Mean 0.027ac 0.037b 0.040b 0.042b 0.043b 

4 Treatment 0 600 400 100 200 

Mean 0.035cb 0.041b 0.043b 0.045bd 0.046bd 

5 Treatment 0 600 400 100 200 

Mean 0.039cb 0.040cd 0.040cd 0.050d 0.051d 
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result of exposure to phytotoxic concentrations of both soil Al (Foy, 1992) 

and Cu (Symeonidis et al., 1985; Heale and Ormrod, 1982; Wong and 

Bradshaw, 1982; Fessenden and Sutherland, 1979; Toivonen and Hofstra, 

1979). Symptoms of severe phytotoxicity occurred at water-soluble Cu, Al 

and Zn concentrations at, or above, 2.0, 5 and 0.3 mg L -1, respectively. At 

these concentrations, both Cu and Al were of a similar magnitude to those 

known to cause growth disorders in woody species in solution trials (Table 

3/chapter 3). Seedlings grown in Mount Lye11 soils taken from the more 

distant sampling sites displayed fewer phytotcodc symptoms. 

The visual symptoms of intolerance were reflected by the seedling dry 

weight measurements. These indicated that seedling dry weight varied 

positively with the displacement of the sampling site from the smelters. 

As increasing displacement from the smelter generally represented a decline 

in soil-metal concentrations, it was likely that seedling tolerance varied as 

a function of soil-metal concentration. In the case of soil Cu, this hypothesis 

was supported by strong negative correlations between seedling dry weight 

and soluble Cu. A similar, relationship existed between seedling dry weight 

and soluble Zn. It was unlikely, however, that Zn was a cause of toxicity as 

the concentrations present were below those recognised as causing growth 

disorders in tree, grass and herb species. 

Inverse relationships, between soil Cu and seedling dry weight, have been 

found for both woody and crop species in pot trials. Fessenden and 

Sutherland (1979) treated Black Spruce (Picea mariana) and Green Alder 

(Alnus crispa) with CuSO4  at Cu concentrations ranging from 20 to 150 

ppm. In unlimed soil, they found reductions in dry weight of seedling at 

all concentrations of applied Cu. The dry weight reductions were especially 

marked in the case of Green Alder. Applications exceeding 60 ppm, however, 

157 



Ch. 5/ Phytotoxicity neutralization 

did not result in further growth reductions. Toivonen and Hofstra (1979) 

found that the dry weight of barley cultivars decreased significantly when 

treated with Cu solutions ranging from 10 to 100 ppm. 

In contrast to the metals Cu and Zn, the regression analyses suggested that 

the relationship between soluble Al and seedling dry weight was inconsistent 

between species. This suggested that either 1) the extractant inadequately 

reflected the presence of toxic Al species, 2) that the species differed in their 

tolerance of Al or 3) that Al was not a primary cause of phytotoxicity. It 

appears likely that water extraction reflected the presence of toxic Al species 

as several authors have indicated that, in comparison to conventional 

methods, the soil solution provides a more accurate means of assessing Al 

toxicity (McCray and Sumner, 1990; Baker et a!, 1988; Bruce, 1988; Pravan e t 

a /.,1982). It is more likely that the species differed to some degree in their 

tolerance to soluble Al. This explanation, however, could not be 

substantiated with the data available. Strong support for the third 

explanation comes from a survey of the vascular flora at Mount Lyell, and 

multivariate analysis, which failed to find a relationship between soil Al, 

both soluble and CaC12 extracted, and compositional trends (Chapter 4). It is 

worth noting that the relationships found between CaCl2  extractable Al 

and seedling dry weight could not be adequately explained. However, as Al 

is known to form complexes with phosphorus, rendering P less available 

for plant growth, the regression with the stronger, CaC1 2  extractant may be 

reflecting P availability rather than Al toxicity. 

An alternate hypothesis to that of metal intolerance was that the seedlings 

were responding to a nutrient gradient. This was plausible as acid soils are 

known to restrict the availability of nutrient resources directly as a result 

of altered elemental solubilities (Thompson and Troeh, 1973). The 
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hypothesis, however, appeared unlikely as the relationship between total 

nitrogen and seedling dry weight, while strong, was negative (Fig. 7 and 8). 

This suggested that, against a background of metal contamination, increasing 

concentrations of soil nitrogen might prove unfavourable to young 

seedlings, due to higher, and presumably more toxic, levels of metal 

assimilation. This explanation could not be examined in this work. 

Phyto toxicity amelioration 

The addition of lime to Mount Lye11 soils improved the appearance and 

dry weight of seedlings of both species. The improvement was especially 

noticable in sample soils exhibiting high metal concentrations. This result 

was consistent with the concept of soil-metal immobilization by sorption 

or precipitation (Logan, 1992; Logan and Cassler, 1989). Root systems, in 

particular, benefited, developing greater length and branching. The benefits, 

however, were not universal. As distance of the soil sampling sites from 

the smelter installation increased there was a tendency for lime treatment 

to become less effective or ineffective. This tendency, substantiated by site 

by treatment interactions, indicated that the response to lime treatments of 

both species was inconsistent. There was, for example, no benefit from the 

higher lime applications at the most distant site (site 5). The most likely 

reason for this was falling Cu concentrations, which at -0.3 mgL -1, had 

dropped below those generally known to cause phytotoxicity. At these Cu 

concentrations, only the lowest rate of lime application benefited growth. 
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This may have been a result of improvements in pH-influenced, nutrient 

availability. The ineffectiveness of high-lime application, although not 

deleterious to growth at any of the applied levels, suggested that over-liming 

was possible and could result in induced deficiencies. 

The response of the A. melanoxylon and L. scoparium seedlings to lime 

application was essentially similar to that of other woody species treated 

with various concentrations of CuSO 4  and lime in pot trial. Fessenden and 

Sutherland (1979) found that lime addition at low application rates generally 

improved the growth of Black Spruce. At high Cu concentrations, they 

concluded that the effect was mainly due to reduced Cu availability, and 

therefore reduced Cu toxicity, while at lower concentrations, the response 

was probably due to raised soil pH and concomitant changes in available 

nutrients. However, the same authors found that, at low applied Cu 

concentrations (20 ppm), lime application reduced the growth of Green 

Alder, while at higher concentrations little or no benefit was realised. 

They speculated that, at low Cu concentrations, lime application introduced 

a Cu deficiency, while at higher Cu concentrations (80 to 150 ppm), lime 

was an ineffective ameliorant. 

Nodulation 

Reference to the literature suggested that soil pH plays an important role 

in rhizobial survival and multiplication, and root infection and nodulation 

(Richardson et al., 1988a,b; Franco and Munns, 1982; Carvalho et al ., 1981; 

Bryan, 1923a, b). In pasture and legume species, soils of low pH may affect 

rhizobial survival (Bryan, 1923a, b) and nodulation number (Franco and 

Munns, 1982). In early work, Bryan (1923a, b) reported that the critical soil 

pH for rhizobial activity varied with species. For example, alfalfa, red clover 
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and soybean rhizobia were killed at pH 5.0, 4.5 and 3.5, respectively. More 

recent work suggests that the root infection process requires higher soil pH 

than rhizobial survival (Richardson et al., 1988a,b; Carvalho etal., 1981). 

Nodulation did not occur on A. melanoxylon seedlings in the untreated 

Mount Lyell soils. These soils ranged in pH from 4.3 to 4.8. In these soils, it 

is likely that H ion concentrations reduced the activity of soil rhizobia. 

Nodulation did occur on seedlings in some of the lime treated soils at soil 

pH greater than 5. Exceptions occurred at sites 1 and 2 where lime treatment, 

while improving seedling appearance and dry weight, did not result in 

nodulation within the period of the trial. At these near-smelter sites, 

nodulation is likely to have been restricted by metal toxicity. 

Part B: Field trials 

5.6 Introduction 

Field applications of lime in acid, metal contaminated lands have reportedly 

reduced toxicity (Clements et al., 1968), initiated natural plant colonisation 

(Winterhalder, 1991; 1981a; 1981b), ameliorated nutrient deficiencies 

(Rodinkirchen, 1992) and aided colonisation by acid-intolerant vascular 

species (Rodenkirchen, 1992). Winterhalder (1991; 1981a; 1981b) considered 

the addition of lime a trigger factor for the initiation of natural plant 

colonisation by birch, aspen and willow. In disturbed lands affected by strip 

mining, the addition of lime has resulted in the improved survival of N 2  
-fixing, woody species on highly acidic spoils (Carpenter and Hendsley, 

1979). 

The objective of the lime field trials was to determine whether the benefits 
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of lime application realised under pot trial could be achieved in the field. 

In most soils, the most effective procedure for promoting root growth is to 

mix lime throughout the plough layer, although commonly this procedure 

is not economically feasible (Foy, 1992). Other methods include mixing at 

deeper soil layers, placement in a band on the plow sole and injection 

behind subsoiling chisels. As mechanical working of the soils at Mount 

Lye11 was not possible given the steepness and inaccessibility of the terrain, 

lime applications were restricted to surface spreading or top-dressing. 

The trial provided an indication of the response of seedlings to broadacre 

applications of ground calcitic lime in exposed, acid sub-soils displaying 

elevated concentrations of soil metals. Single and repeat lime applications 

were compared. 

5.7 Methods 

5.71 Experimental design 

A. melanoxylon and L. scoparium seedlings were raised as tube stock from 

Mount Lye11 provenance seed. The seed provenances were the same as 

those used in the ground lime pot trial. The seedlings were grown in a 

standard potting mix with slow release fertiliser. At five months of age, 

the strongest of the tube stock were selected for planting out. Planting was 

undertaken in November 1991. 

The sites selected for the field trials were a subset of those sampled along 

the easterly transect in Chapter 3, and later used in the lime pot trial (Part 

A, this chapter). The sites, each placed on a ridge-line, were numbers 1, 3 

and 5. At each site, sixty 0.25 m 2  experimental plots were pegged out in 10 
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blocks of six treatments. Each plot was separated from its nearest neighbour 

by 0.5 m. Treatments were allocated at random to plots within blocks and 

each plot labelled. The trial areas were then fenced to ensure protection 

from rabbits. One seedling of each species was planted per plot. Water was 

provided initially but there were no follow-up applications. 

Three levels of lime treatment (0, 2000 and 4000 kg ha -1) and two of application 

(single and repeat) were used. The form of lime used was ground calcitic 

lime. Lime treatments were made six weeks after planting, in January 

1992. Repeat treatments, where prescribed, were applied in December 1992. 

The treatments were applied to the surfaces of each 0.25 in 2  plot as dry 

granules. In order to minimise the movement of granules, the soil surface 

surrounding each seedling was lightly scarified with the aid of a rake-hoe 

prior to the application of the treatment. A summary of the application 

rates, together with the relevant treatment codes, is provided (Table 6). 

The growth rate of the seedlings was monitored by periodic stem diameter 

measurements taken at a height of 5.4 cm above the soil surface. Stem 

measurements were taken at plant-out and in conjunction with treatments. 

The final measurements were taken in December 1993. 

As diameter increase is not linearly related to productivity, diameter 

measurements were initially converted to basal stem area. Basal-area 

increments were then calculated as the difference between successive stem 

area measurements and these were used as the basis for subsequent analyses. 

The data presented here represent the growth increment for the 24 month 

period from December 1991 to December 1993. Sites 2 and 3 were destroyed 

by vandals in early 1992. Consequently, no data were obtained for these 
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Table 6: Lime application rates and treatment codes 

Lime treatment (kg ha-1) 0 2000 2000 4000 4000 

No. of Applications na 1 2 1 2 

Treatment code Control L1 (1) L1 (2) L2(1) L2 (2) 
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sites. The following analyses refer to data derived from site 1. At a 

displacement of approximately 220 m, this site was the closest of the three 

to the Mount Lye11 smelters. The surface soil characteristics for the field 

sites are presented in Table la of this chapter. 

5.72 Data analysis 

The raw data were initially converted from stem diameter measurements 

to stem area. Growth increments during the first year following the lime 

applications, the subsequent year, and the total were then calculated by 

subtraction. Calculation as relative growth rate was not considered necessary 

as the initial stem diameters of the seedling stock were similar (± 2 mm) 

and the trial was to run over an extended period. Data transformations 

were not applied as a plot of residuals against fitted values gave no indication 

of changing residual variability. 

The experiment formed a two-factor, randomised complete block with 6 

treatments and 10 blocks. The treatments were structured with 3 levels of 

lime and 2 levels of application (single and dual) to form a 3 x 2 factorial 

design. Data for the two species were analysed separately. There was no 

replication with respect to site. 

The basal area data were analysed as a two-factor, randomised complete 

block and subjected to an ANOVA using the GLM procedure of SAS/STAT R  

edition 6.03 (SAS Institute Inc., 1988). Least squares means were calculated 

and compared using the probability difference (pDiff) option of the program. 

The treatment means for each species were then ranked in order of increasing 

increment. 
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5.8 Results 

Soil pH 

Prior to lime treatment the mean soil pH of the field site was 4.3±0.1. 

Subsequent pH measurements indicated that the mafic-clay soils responded 

predictably to the addition of lime (Table 7) and increases in soil pH were 

recorded in response to each of the treatments. One year after application, 

the surface soil pH of the L 1  (1) and L2  (1) treatments were 5.9±0.2 and 

7.7±0.3, respectively. These treatments represented application rates of 2000 

and 4000 kgha-1. . Without repeat treatment, these levels appeared to be 

maintained during the subsequent year. Repeat applications further raised 

soil pH. 

Seedling mortality and appearance 

Seedling mortality was very low with only one seedling death per species 

during the two-year field trial (Fig. 9). The deaths, which occurred within 

three months of transplantation, resulted in a mortality rate of 1.7%. 

The majority of A. melanoxylon seedlings exhibited abnormal growth. 

Symptoms of stress were visually manifested by leaf discolouration, 

premature leaf loss, reduced leaf size, stunted stems and, in comparison to 

uncontaminated lands, markedly reduced growth rates. Leaf chlorosis and 

fall were particularly noticeable during the first 6 months after 

transplantation and the worst affected individuals lost most of their foliage. 

Recovery, invariably poorer in the control treatments, did not occur until 

the first spring. Stunted growth, witnessed by basally thickened and tapered 

stems, was noticable during the subsequent years growth. Purple hues 
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Table 7: Mean soil pH for lime treated site 1 soils in a field trial. Surface 
lime applications were made six weeks after planting, in January 1992. 
Repeat treatments were applied in December 1992. The pH measurements 
were recorded one year after treatment. 

Soil pH was measured in a 1:1 soil/distilled water mix using a WTW 
electronic pH meter (model pH6) fitted with a Type E50 electrode. n=4. 

Treatment C I-1 (1) I-1 (2) I-2(1) I-2(2) 

December '92 4.3 5.9 6.1 7.7 7.6 
December '93 4.5 5.1 7.5 7.4 8.6 

Figure 9: Photo of A. melanoxylon and L. scoparium seedlings in a 
lime application trial (site 1) in December 1992. At this stage, 13 months 
had elapsed since planting out. 
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appeared in stems and foliage of the treated seedlings. 

Growth abnormalities in L. scoparium were not as pronounced as those in 

A. melanoxylon. Leaf discolouration and fall were displayed on some 

individuals by light-green leaf tones and sparse foliage. Growth rates 

appeared to be below that expected for the species. The appearance of most 

of the seedlings improved in the second year although some degree of 

stunting was evident. Purple hues again appeared in stems and foliage of 

the treated seedlings. A few seedlings flowered 6 months after 

transplantation and produced fruits thereafter. 

At the conclusion of the trial, excavation of the root systems showed 

abnormal development. The A. melanoxylon seedlings had formed tight 

root balls in residual potting soils. In this zone, fine roots were numerous 

and nodulation occurred. Beyond the potting soils, longer, thicker but weakly 

branched roots formed. Fine roots were infrequent and nodulation absent. 

The L. scoparium seedlings produced similar, although less pronounced, 

root abnormality symptoms. 

The response to lime treatments 

All the raw data conformed to the assumptions associated with the ANOVA 

technique. 

The A. melanoxylon stem increments for the two year period to December 

1993 did not differ significantly between treatments (F2 ,20  = 2.71, p<0.091) or 

applications (F 1 , 20  = 2.13, p<0.1233; Table 8). In the same period, the L. 

scoparium stem increments differed between treatments (F2 ,20  = 6.01, 

p<0.0090; Table 9), but not between applications (F 1 , 20  = 0.46, p<0.5062). 
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Table 8 and 9: Analysis of variance of A. melanoxylon and L. scoparium 

seedling stem area increments from a lime-application field trial. Three 

levels of lime treatment (0, 2000 and 4000 kgha4) and two of application 

(single and dual) were used. The form of lime used was ground calcitic 

lime. Lime applications were made to the soil surface six weeks after planting, 

in December 1991, and again, where prescribed, one year later. Stem area 

increments for the two year period ending December 1993 were calculated. 

The data were analysed as a two-factor, randomised complete block of 

three treatments and two applications. 

Table 8 A. melanoxylon 

Source 	D.F. Sums of 
squares 

Mean 
square value 

Model 	9 9895.83 1099.54 2.16 0.0728 
Error 	20 10185.68 509.28 
Corr. total 	59 20081.51 

Source 	DF Type IIISS MS F Value P>F 

Treatment 	2 2758.04 1379.02 2.71 0.0911 
Blocks 	4 4336.17 1084.04 2.13 0.1149 
Application 1 1318.33 1318.33 2.59 0.1233 
T'men t*Ap p . 2 1483.28 741.64 1.46 0.2568 

Table 9 L. scoparium 

Source 	D.F. Sums of Mean 
squares square value 

Model 	9 8978.04 997.56 2.31 0.0572 
Error 	20 8639.76 431.99 
Corr. total 	59 17617.80 

Source 	DF Type IIISS MS 	F Value 	P>F 

Treatment 	2 5194.68 2597.34 6.01 0.0090 
Blocks 	4 2002.61 500.65 1.16 0.3583 
Application 1 197.96 197.96 0.46 0.5062 
T'ment*App .2 1582.78 791.39 1.83 0.1860 
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The mean stem increments for the A. melanoxylon seedlings were plotted 

(Fig. 10). Although the response to lime treatment was not significant, 

inspection of the response trends suggested that the ground lime treatments 

did not adversely affect growth (Fig. 10). As the ANOVA suggested that the 

response to treatments approached significance, it is foreseeable that a 

positive lime treatment response might occur if the trial were held over a 

longer duration. 

Pairwise comparisons of differences between L. scoparium treatment means 

indicated that three treatments increased the growth increment. In 

comparison to the control, each of the treatments L2(2), L1 (2) and L2(1) 

increased the mean growth increment by more than three times (Fig. 11). 

Of these treatments, the treatment L2 (1) resulted in the highest mean stem 

area for the site (47.8±22.6 m m2) during the 1991/93 period. 

5.9 Discussion 

Growth and mortality 

Despite symptoms of metal-related, phytotoxicity throughout the trial, the 

mortality of the transplanted tube stock, in untreated soils at site 1, was 

low. This result was in contrast to the pot trial, which demonstrated that 

site 1 soils were extremely toxic to bare-rooted, seedling transplants and 

likely to result in early death. Consequently, low seedling mortality in the 

field trial indicated that soil in the pots influenced survival. Excavation 

showed abnormal root systems. These were typified by two types of root 

formation: fine, 'pot-bound' roots forming a tight root-ball in residual 

potting soils and longer, thicker, hairless but less numerous roots in 
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Figure 11: Mean stem area increments for L. scoparium seedlings grown in 

a field trial at near-smelter site (Site 1). The data represent the annual area 

increments for the 2-year period following seedling transplantation. Lime 

treatments were applied to the soil surface at the rates of 0 (C), 2000 kgha 4(L1) 

and 4000 kghi1(L2). Repeat applications, one year after the initial treatments, 

were tested and identified by the designation 2. The means were ranked in 

ascending order of magnitude and tested by pairwise comparison using the 

pDiff option in SAS/STAT R  edition 6.03 (SAS Institute Inc., 1988). Differences 

between treatments for the 2-year period, at significance levels of 0.05 or 

greater, are indicated by dissimilar annotations. 

L2 (1) L1 (1) 	1_9 (2) 	L1 (2) 
Treatments 
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'native' soils. It appeared that the potting soils enabled the seedlings to 

persist, while root exploration of less favourable soils proceeded. 

Two years after planting out, the mean stem areas of the A. melanoxylon 

and L.scoparium seedlings, in untreated soils, were 35.0 and 12.8 mm 2, 

respectively. In the case of A. melanoxylon, 72% of the growth had occurred 

in the second year. The second year growth of L. scoparium represented 

83%. This demonstrated that growth was possible in these soils despite 

evidence of significant metal contamination. 

Lime treatment 

The amelioration of metal contaminated soils by the surface application of 

lime depends on the movement of lime to the rooting zone. The low 

solubility of lime suggests that surface applications may fail to reach the 

root zone (Logan, 1992). In agricultural systems, Sopher and Baird (1982) 

reported that lime applied to the surface of clay soils may move downward 

less than 1 cm in 18 months. Consequently, poor solubility may limit the 

ability of lime to ameliorate metal contamination. A commonly adopted 

remedy, the deep incorporation of lime, is usually considered preferable to 

surface spreading, but is only possible under restricted circumstances. Despite 

this, surface applications of lime have been judged beneficial to growth in 

some acid soils. For example, Rechcigl et al. (1988) concluded that surface 

lime application was adequate for the establishment of and productivity of 

alfalfa on an acid clay loam. In a greenhouse column leaching experiment, 

Mathews and foost (1990) found that surface lime application effectively 

corrected soil Mn and pH problems limiting alfalfa growth, but had no 

effect on subsoil chemical properties. 
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At Mount Lye11, topography restricts lime treatment to surface applications. 

Despite this restriction, surface lime application at the near-smelterfield 

trial moderated above-ground toxicity symptoms, including slow growth, 

premature leaf loss, foliar discolouration and chlorosis, stunting, and 

premature flowering. Surface applied lime was generally beneficial to 

seedling productivity with both species responding similarly. The largest 

growth increments over the two year period were achieved by application 

of lime at rate of 4000 kg ha -1 . This application rate was comparable to the 

lime requirements (3600-3700 kg ha') typically considered necessary in order 

to raise the pH of clay barns from 4 to 6 (Sopher and Baird, 1982). In 

comparison to the untreated control, the lime treatment L 1 (2) increased 

the mean stem area of A. melanoxylon by a factor of 2. Similarly, the lime 

treatment L2 (1) increased the mean stem area of L. scoparium by a factor of 

3.7. Higher application rates, however, did not result in further stem area 

increases for either species. Application rates of 2000 kgha t  resulted in 

inferior growth rates. There were no measurable benefits when lime 

treatments, of equivalent total application rate, were applied over two, 

rather than one, season. 

Chemically the net effect of lime addition is understood to be a reduction 

in the relative number of hydrogen ions in the soil solution resulting in a 

rise in soil pH. Rising soil pH reduces the solubility, and therefore the 

availability of many metal-ions (Foy, 1988; Foy, 1984: Foy, 1974). The growth 

response of seedlings to lime treatment at Mount Lyell was largely attributed 

to metal-ion immobilization rather than, for example, pH correction or a 

rectification of Ca deficiency. Some benefit may have been derived from 

improved organic matter mineralisation and phosphorus availability. 

However, purple stem and foliage discolouration indicated that liming, in 

the absence of other macronutrients, induced P deficiency on these soils. 
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Products other than lime may be suitable ameliorants for acidic, metal 

contaminated soils such as found at Mount Lye11. Gypsum (CaSO4.2H20) is 

more soluble than lime. Some studies have shown that gypsum 

(CaSO4 .2H20) can neutralise acid subsoils (Oates and Caldwell, 1985; Pavan 

et al., 1984; Reeve and Sumner, 1972). Phospho-gypsum, a by-product of 

fertilizer production, may also be suitable. Watson and Hoitink (1985) 

showed that the high free CaCO3  content of of papermill sludge enhanced 

the ability of sludge to reclaim acidic mine spoil by maintaining pH 7.6 

three years after the application of 150 to 300 t ha -1  to spoil with an initial 

pH of 3.4. The fibrous nature of the product also gave it desirable slope 

stabilizing properties. A recent product, cement kiln dust-stabilized sludge, 

may also be suitable for the reclamation of highly acidic soils (Logan, 1992). 

Neutralising soil amendments such as lime commonly provide an effective 

short-term means of controlling soil pH and the bioavailability of heavy 

metals but long-term control must consider the acid-buffering capacity of 

the soil (Logan, 1990). However, raising the buffering capacity of 

contaminated soils requires the addition of various organic amendments 

such as sewage sludge. This approach, and most others involving organic 

amendments, would be impractical given the area of denudation and 

topography of Mount Lye11. In comparison, chemical neutralisation offers 

short-term control of metal-contaminated soils and improvements in the 

growth rates of colonising species. With time, species proliferation and 

subsequent in situ decomposition are likely to offer increased soil buffering 

capacity and long-term control of metallic contaminants. 

5.10 Conclusions 

Seedling growth, in pot and field trials, was used as a measure of plant 
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tolerance to soil metals along a concentration gradient at the Mount Lye11 

smelter site. In pot trials, tolerance, as measured by seedling dry weight, 

varied with the displacement of the soil sampling site from the smelter. 

Acute toxicity symptoms, notably root system abnormalities, were evident 

at sampling sites nearest the smelters. Survival in these soils was improbable. 

In field trial, the survival rate of transplanted tube stock at a near-smelter 

site was high. However, growth remained depressed, and two years after 

planting out, resulted in stunted individuals with abnormal root systems. 

Characteristic toxicity symptoms, elevated water-soluble metal 

concentrations and strong metal to dry weight correlations linked seedling 

intolerance to Cu phytotoxicity. In contrast, Al phytotoxicity could not be 

demonstrated despite sometimes high analytical concentrations. The 

complexity of the Al chemistry suggested that the tests used here might 

not be able to adequately discriminate between the toxicities of Al species. 

The problems of interpretation were compounded by limited data. This 

was a product of field-site vandalism. 

Lime application was used in an attempt to ameliorate metal-related, soil 

phytotoxicity. In general, seedlings benefited from lime application by 

exhibiting fewer toxicity symptoms while producing increased biomass. 

The response was likely to be largely related to increased soil pH and 

reduced Cu availability. In pot trials, lime application greatly improved 

the dry weight of seedlings in near-smelter soils exhibiting high Cu 

concentrations. At contaminated field sites, the application of lime was 

generally beneficial to growth. This finding was in accordance with those 

at other metal-contaminated smelter sites where lime application has 

benefited native plant colonisation (Winterhalder, 1981a/b, 1983a, 1988) At 

Mount Lyell, however, the effectiveness of the treatments may have been 

177 



Ch. 5/ Phytotoxicity neutralization 

hampered by the limitations of surface application and a low-solubility 

neutralising agent. Nevertheless, the responses provide a guide to the 

lime requirements of the colonising species along a toxicity gradient. 

Neutralising soil amendments such as lime commonly provide an effective 

short-term means of controlling soil pH and the bioavailability of heavy 

metals but long-term control must consider the acid-buffering capacity of a 

soil. This work indicates that, at Mount Lye11, neutralising amendments 

will assist the growth and proliferation of colonising species. Long-term 

control of metallic contaminants, however, is only likely to be provided by 

improved buffering capacity as a result of the in situ decomposition of 

organic materials derived from colonising species. 
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Chapter 6 

Seedbed preparation and the use of a mechanical roller-aerator 

to enhance the lodgement, germination and early survival of 

broadcast sown seed at an eroded, near-smelter location with 

phytotoxic soil characteristics 

6.1 Introduction 

For any one species, a large disparity usually exists between the number 

of viable seeds produced and dispersed into an area and the actual seedling 

numbers established (Sheldon, 1974). Harper et al. (1961; 1965) recognised 

that any seed or seedling losses result in a widening of the gap between 

the seedling establishment potential of a species and the actual numbers 

of seedlings occurring. This difference, between the seedling establishment 

potential of a species and the seedling population, can be termed the 

'seedling gap'. If a receiving surface is sufficiently unfavourable for 

establishment, the seedling gap may approach, or equal, the seedling 

establishment potential of a species. 

In comparison to a forest floor, which is highly heterogeneous in its 

physical and chemical make-up, the exposed sub-soils at Mount Lye11 

offer little diversity, and therefore few establishment opportunities. There 

are, for example, limited opportunities for seed to lodge and anchor. 

Establishment opportunities are further restricted by the number of sites 

capable of supporting growth. Harsh environmental conditions, such as 

exposure to extreme moisture stress, are likely to result in desiccation 

and death. Consequently, significant seed and seedling losses could be 
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expected from both a failure to lodge and from exposure to unfavourable 

growth conditions. Similar factors have limited the success of broadcast 

sown seed on mine overburden (Koch, 1980). 

The aim of this chapter was to quantify seedling establishment following 

broadcast sowing of a number of colonising species and to maximise 

establishment through the provision of appropriate seedbed treatments. 

This approach permitted an assessment of the feasibility of broadcast 

sowing as a method of rehabilitation within the Mount Lye11 environment. 

To maximise seedling establishment, two methods of seedbed preparation 

were compared to control sowings on a machine-accessible, ridge-top site 

adjacent the original smelters. Seedbeds were prepared with the aid of a 

multi-tyned offset roller, or roller-aerator. For comparison, a similar 

seedbed was prepared by conventional deep-rip treatment. The intention 

of the roller-aerator treatment was the creation of a seedbed of physical 

complexity sufficient to increase seed lodgement, and germination and 

growth opportunities, without producing undue surface destabilisation. 

Soil phytotoxicity was combated by the addition of calcitic lime. 

Seedling establishment was calculated from seedling population counts. 

Establishment percentages permitted the calculation of species sowing 

rates and cost evaluation. This information was essential for species and 

seedbed treatment recommendations, particularly where seed was in 

limited supply. 

6.2 Methods 

The experimental site was located approximately 150 m east of the original 
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smelters within the Agrostis grassland zone (Fig. 1). The site was a ridge-top 

of westerly aspect, with an average slope of 6°. With the exception of 

isolated individuals or small communities of Agrostis capillaris, Res tio 

tetraphyllus and a single Acacia melanoxylon, the area was entirely free 

of existing vegetation. • 

The site was located on exposed, mafic-clay subsoils. Prior to treatment, 

ten equally spaced, surface soil samples (0-5 cm) were removed in an 

formation. A composite sample was formed for nutrient and metal-ion 

analysis. Sample preparation followed that of section 3.22 (Chapter 3). 

Two mechanical, pre-sowing seedbed treatments were evaluated against 

broadcast sowings on unprepared ground. The mechanical seedbed 

treatments were a double rip-line (tyne length 40cm) and a soil 'aeration' 

treatment. The latter treatment was created using a 'Superworm Soil 

Aerator' (Appendix 1). The aerator, two multi-spiked, off-set rollers (tyne 

length 20cm), was attached to a four wheel drive tractor via a 3-point 

linkage. The surface of the control treatment was undisturbed. 

The mechanical implementation of the treatments demanded a split-plot 

experimental field plan. Fifteen mainplots, in five blocks of three, were 

marked out and randomly allocated to one of the two mechanical seedbed 

treatments or a control. Each mainplot measured approximately 4x35 m 

with long axis across contour. The rip and the aeration treatments were 

applied as single passes parallel to the long axes of the plots. 
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Following the mechanical treatment of the seedbeds eight 1x2.5m subplots 

within each mainplot were marked out with corner pegs, with each subplot 

separated from its nearest neighbour by a 1m buffer. The subplots were 

randomly allocated one of the test species and labelled with a coded 

tagging system. Ground calcitic lime was applied to the surface of each 

subplot at the rate of 4000 kg ha -1 . Rabbit-proof fencing surrounded the 

entire field trial. 

In order to minimise inter-plot seed contamination, each subplot was 

surrounded by an in-ground drainage system, with plastic lined sumps 

forming seed traps located at appropriate intervals. The sumps were 

excavated five months after sowing. This procedure allowed the number 

of seeds lost from each subplot to be counted. 

Local provenance seed was used in the trial. The species sown were 

Acacia melanoxylon, Acacia mucronata, Acacia verticillata, Acacia 
dealbata,Leptospermum scoparium,Oxylobium arborescens, Gaultheria 
his pida and Agrostis capillaris. All of these species occur on the west 

coast of Tasmania and, with the exception A. verticillata, are present as 

colonisers within the partially recolonised area of Mount Lye11. The 

occurrence of A.dealbata, unlike the other species, appeared to be related 

to roading. Its presence at Mount Lye11 is likely to be the result of soil 

spillage or storage during transportation from the nearby river valleys 

over the life of the mine rather than as a result of unaided, natural 

recolonisation. 

Seed was broadcast during the last week of June 1992. Details of the 

sowing rates and seed viabilities are provided in Table 1. The germinants 

were counted during the weeks commencing 5/11/92 (Spring), 11/1/93 
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(Summer), 14/6/93 (Winter) and 28/10/93 (Spring). Upon identification 

each germinant was marked with a wire peg. When new germinations 

occurred further pegs were added. Where deaths occurred, pegs were 

removed. Recruitment and losses for each subplot were tallied at each 

survey. 

Seedling establishment was calculated from seedling population counts 

(standardised field germination number minus mortality) as the 

percentage of the number of viable seeds sown (the seedling potential). 

Standardisation count data accounted for unequal residual seed numbers 

due to erosional losses from the subplots. The distribution of each species' 

seedling potential was characterised by the proportion of the viable seeds 

sown attributed to seedling establishment, seed loss due to erosion, seedling 

mortality or unaccounted loss factors. 

6.3 Data analysis 

Preparation of the germination and mortality count data 

The total number of seeds sown to each subplot (Table 2) were estimated 

from sowings of known mass (Table 1). The number of seeds remaining 

in each subplot five months after sowing (5/11/92) were then calculated 

by subtracting the number of seeds captured in the drainage sumps (i.e. 

(Table 2). 
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Table 1: Seed lot collection numbers, seed counts, viability and sowing 

rate data 

Species Collection 	Estimated' 	Seed 	No. viable 	Fieldtrial 
No. 	no. of 	viabilityseeds 	broadcast 

seeds 	(yo) 	kg-i 	sowing rate; 
kgha -1  and 

in bulk 	 rate per 
seedlot 	 subplot 

( brackets ) 

A.mucronata 001/02/92 66 666 89.5 59 666 300.0 (0.075) 

A.melanoxylon 003/02/91 70 149 81.0 56 821 268.0 (0.067) 

A.verticillata 003/02/92 48 640 79.2 38 523 50.0 (0.012) 

A.dealbata 001 /01 /91 53 030 96.5 51 174 197.4 (0.049) 

L.scoparium 001/11/90 —106  90.0 900 000 10.4 (0.003) 

Estimate based on mean seed counts (n=3) 
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Table 2: Total number of viable seeds sown, estimated erosional losses 

and an estimate of the number of residual seeds remaining five months 

after sowing in trial plots given three pre-sowing soil treatments. n = 5 

Species Collection 	Treatment 	Total Mean no. 	Residua1 1  

no. 	 no. of of seeds in 	no. of 

	

seeds drainage 	seeds 

	

sown sumps2  to 	per 

per 	5/11/92; 	subplot; 

	

subplot standard 	standard 

	

deviation 	deviation 

	

( brackets) 	(brackets) 

A.mucronata 001/02/92 rip 5000 15.2 (12.4) 4977.6 (27.0) 

A.mucronata 001/02/92 aerate 5000 22.4 (27.0) 4971.2 (30.0) 

A.mucronata 001/02/92 control 5000 28.8 (30.2) 4993.4 (6.8) 

A.melanoxylon 003/02/91 rip 4700 10.2 (9.8) 4689.8 (9.8) 

A.melanoxylon 003/02/91 aerate 4700 25.8 (35.3) 4674.2 (35.3) 

A.melanoxylon 003/02/91 control 4700 8.4 (18.4) 4691.6 (18.7) 

A.verticillata 003/02/92 rip 608 3.6 (4.3) 604.4 (4.3) 

A.verticillata 003/02/92 aerate 608 0.2 (0.5) 607.8 (0.4) 

A.verticillata 003 /02 /92 control 608 12.4 (11.5) 595.6 (11.5) 

A.dealbata 001/01/91 rip 2618 6.8 (15.2) 2611.2 (15.2) 

A.dealbata 001/01/91 aerate 2618 19.2 (38.6) 2598.8 (38.6) 

A.dealbata 001/01/91 control 2618 47.0 (42.0) 2571.0 (42.4) 

L.scoparium 001 /11 /90 rip 2600 ne 

L.scoparium 001/11/90 aerate 2600 ne 

L.scoparium 001/11/90 control 2600 ne 

1 - estimates derived from sieving of runoff sediments in drainage sumps 
ne - not estimated. 
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lost to surface wash) from the number of seeds sown. This was termed 

the residual number of seeds per subplot. The mean residual number of 

seeds were calculated for each species/ seedbed treatment combination 

The germination count-data for each subplot were standardized with the 

number of seeds sown per subplot in proportion to the residual number 

of seeds per subplot. The intention was to account for unequal residual 

seed numbers between subplots. In practice, this meant that, in subplots 

where erosional loss of seed occurred, the number of germinants in a 

subplot were adjusted upwards. Where deaths occurred, these were 

standardised and subtracted from the corresponding germination counts. 

The result of these calculations was the seedling number per subplot 

(standardized) at four periods of sampling. 

With each successive sampling, recruitment and mortality data became 

cumulative. These data were termed the seedling number per subplot 

(cumulative). In order to allow inter-specific comparison, the seedling 

numbers per subplot (cumulative) were divided by number of viable 

seeds sown per subplot (the seedling potential). These data were termed 

the seedling establishment percentage per subplot and were used as the 

basis for statistical analyses. 

Analysis of seedling establishment 

The experiment formed a split-plot randomised complete block with 

treatments allocated to mainplots within blocks and species allocated to 

subplots within mainplots. 

The seedling number per subplot (cumulative) and the seedling 

establishment percentage per subplot data were subjected to an ANOVA 
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using the GLM procedure of SAS/ STAT R  edition 6.03 (SAS Institute Inc., 

1988) and analysed as a two level, randomised complete block with 

treatments allocated to- mainplots and species to subplots. The between 

treatments effect was tested against a block times treatment residual. These 

data conformed to the model requirements of normality and homogeneity 

and arc-sine transformation was considered unnecessary. 

Least squares means were calculated and compared using the probability 

difference (pDiff) option of the SAS/STAT R  program. Following the 

ranking of treatment and species means, a multiple-range comparison of 

the pairwise probability differences between means was created and 

summarised. 

Analysis of erosional seed losses and seedling mortality 

Erosional loss counts of Acacia seed captured in drainage sumps were 

calculated as a percentage of the total number of viable seeds of each 

species sown per subplot. The data were subjected to an ANOVA using 

the GLM procedure of SAS /STAT R  edition 6.03 (SAS Institute Inc., 1988) 

and analysed as a two level, randomised complete block. The between 

treatments effect was tested against a block times treatment residual. 

Similarly, the standardised seedling mortality counts were calculated as a 

percentage of the total number of viable seeds of each species sown per 

subplot and the data subjected to an ANOVA. Both data sets conformed 

to the model requirements of normality and homogeneity. 

Least squares means were calculated and compared using the probability 

difference (pDiff) option of the SAS/STAT R  program. Following the 

ranking of treatment and species means for both data sets, multiple-range 
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comparisons of the pairwise probability differences between means were 

created and summarised. 

The relative cost of species establishment by broadcasting 

The seedling establishment percentages permitted the calculation of 

sowing rates and species composition in year-old seedlings. The relative 

cost of species' establishment were then calculated. No attempt was made 

to cost, in absolute terms, the implementation of each treatment as the 

costs of applying each pre-sowing treatment vary with circumstance. 

The relative costs of the establishment of a single seedling of each species 

were calculated, using the seedling establishment percentages for each 

treatment, at an average cost of $100 per kg bulk seed. 

The distribution of seedling potential 

The number of viable seeds sown per subplot represented the seedling 

potential of each species. The distribution of each species' seedling potential 

was calculated from the mean number of seedlings to establish, the mean 

seed loss due to surface erosion and the mean number of seedling deaths 

as a percentage of the number of viable seeds sown. The proportion of 

the seedling potential unaccounted for by known factors was calculated 

by subtraction. 
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6.4 Results 

The physical appearance of the treated plots 

The multi-tyned, offset rollers of the Superworm Soil Aerator punctured 

the soil surface with approximately 13 discrete, rip-cavities per meter 

squared. The implement produced minimal surface disturbance and 

profile upheaval (Fig. 2). Approximately 10% of the soil surface within 

the plots was disturbed by the single-pass treatment. 

With time, a percentage of the broadcast seed were washed into the cavities 

and buried by back-fill from surface wash. Accordingly, most of the 

germinants in this treatment occurred in clusters at the point of tyne-soil 

contact. Surface wash into cavities may have also assisted in the 

incorporation of lime. 

After initial soil resettling, the roller-aerator treated surfaces did not appear 

to further contribute to erosion. No fill or gully erosion was initiated by 

the treatment. Despite the rocky terrain, the Superworm Soil Aerator 

was reliable during the application of this treatment. There were no 

mechanical breakages; a function of the 'roll-over, ride-up' feature of the 

design. 

In contrast to the roller-aerator treatment, the rip-line treatment resulted 

in considerable profile upheaval and brought many large diameter pieces 

of parent material to the surface. This material offered few opportunities 

for seed to lodge and germinate. Conversely, depressions formed along 
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Fig.2: Photo of the soil cavities created by the multi-tyned, offset rollers 
of the Superworm Soil Aerator. 
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the rip-lines, filled with eroded material and tended to trap seed. Soil 

moisture in these depression tended to be retained long after the 

surrounding area had dried. Most germinants occurred in this zone. 

Germination also occurred on both sides of the rip-lines in areas traversed 

by the dozer tracks. 

The rip-lines and dozer-track scarification disturbed more than 90% of 

the soil surface of each plot. In the months following treatment, many of 

the lines became sites of gully erosion, despite the relatively shallow 

gradient of the experimental area. 

The surface of the control plots was an exposed subsoil clay. The surface 

was heavily littered with pebble and rock fragments of volcanic origin. 

The fragments themselves appeared to have accumulated on the surface 

due to the erosion of the finer soil particles over time. As a result, many 

relatively recently exposed fragments were raised on short, clay pedestals. 

No changes were apparent in the overall appearance of the unworked 

surface of the control plots during the period of monitoring. Germinants 

occurred with no obvious spatial pattern other than a tendency to lodge 

and establish adjacent to rock fragments. 

Soil chemical properties of the experimental site 

The mean soil pH at the experimental site was 4.40±0.29. The water soluble 

concentrations of Cu, Al and Zn were 7.11, 29.88 and 0.95 mg L -1, 

respectively. In the cases of Cu and Al, these concentrations were above 

the means recorded for the Agrostis grassland sites (Table 9, Chapter 4). 

The Zn concentration was approximately average for the zone. The 
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addition of ground lime raised the mean soil pH to 5.33±0.45. 

The seedling populations 

Seeds of A. capillaris, G. his pida and 0. arborescens failed to germinate in 

any of the subplots, irrespective of the seedbed treatment. Sowings of a 

fourth species, L. scoparium, resulted in very few germinants, giving 

mean seedling establishment percentages of less than 0.5% in both of the 

mechanical treatments. 

A substantial number of seeds of all the remaining species germinated 

(Fig. 3). The mean germination number and the mean number of deaths 

for the 16 month period following broadcast sowing are presented by 

treatment in Table 3. 

The germination of Acacia began in mid-October 1993 with each of the 

four species displaying numerically similar population trends during the 

first year following sowing. Seedling numbers in both of the mechanical 

seedbed treatments rose rapidly during late spring and early summer and 

peaked during the first summer following sowing. Thereafter seedling 

numbers exhibited a gradual decline as losses exceeded recruitment. The 

mean seedling number (standardised) at four sampling periods during 

the 16 months following broadcast sowing are presented in Figures 4a-d. 

The mean seedling numbers recorded for L. scoparium contrasted 

markedly with those of the Acacia species (Fig. 4e). 
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Figure 3: Photo of Acacia mucronata seedlings growing in cavities created 

by a pre-sowing seedbed treatment. The treatment was provided by 

multi-tyned, offset rollers. The photo records seedlings, indicated by 

wire markers, 21 months after sowing. The tape delimits the 1 x 2.5 m 

subplot. 
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Table 3: Mean number of germinants and seedling deaths for four species 

of Acacia and L.scoparium provided with one of two pre-sowing, 

mechanical seedbed preparation treatments or an unprepared control. 

The means represent total seedling counts for the 16 month period 

following broadcast sowing. 

Species Collection 	Treatment 	Mean 	 Mean no. 
no. 	 germinationl 	of deaths2  

number 	 (standardised) 
(standardised) 	to 28/10/93 
to 28/10/93 	and standard 
and standard 	deviation 
deviation 	 (in brackets) 
(in brackets) 

A.mucronata 001/02/92 rip 316.8 (190.0) 17.4 (8.5) 
A.mucronata 001/02/92 aerate 336.7 (104.5) 13.6 (2.1) 
A.mucronata 001/02/92 control 78.8 (44.3) 4.4 (3.4) 

A.melanoxylon 003/02/91 rip 267.9 (76.1) 33.2 (36.3) 
A.melanoxylon 003/02/91 aerate 203.5 (84.0) 23.4 (10.4) 
A.melanoxylon 003/02/91 control 102.4 (73.6) 11.0 (5.7) 

A.verticillata 003/02/92 rip 84.5 (25.8) 8.8 (5.2) 
A.verticillata 003/02/92 aerate 78.4 (23.7) 7.8 (3.9) 
A.verticillata 003/02/92 control 20.2 (12.9) 3.0 (2.0) 

A.dealbata 001/01/91 rip 107.2 (168.5) 4.4 (6.1) 
A.dealbata 001/01/91 aerate 84.5 (147.9) 4.2 (5.8) 
A.dealbata 001/01/91 control 35.4 (72.1) 2.6 (4.3) 

L.scoparium 001/11/90 rip 20.4 (16.5) 2.4 (3.7) 

L.scoparium 001/11/90 aerate 11.5 (10.4) 1.6 (1.5) 
L.scoparium 001/11/90 control 3.0 (2.1) 1.4 (1.5) 

1 - gernul.riation number; the mean of five replicate counts 

2- mortality; the mean number of deaths in five replicate plots 
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Fig 4a - 4e: The mean seedling number (standardised) for Acacia species 
and L. scoparium for four periods of sampling during the 16 months 
following broadcast sowing. One of two mechanical seedbed treatments 
or an unprepared control were provided prior to sowing on a ridgetop 
location adjacent to the original smelter stacks. The seedbed preparation 
treatments were a double rip line and a roller-aeration. The seedling 
number represents standardised subplot germination counts minus 
seedling deaths for each period of survey. Error bars represent standard 
deviations. n=5 
Fig. 4a 
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Fig. 4d 
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Erosional seed losses 

Sowings of L. scoparium, A. capillaris and 0. arborescens resulted in few 

or no germinants. All three species, and particularly A.capillaris and L. 

scoparium, have small, light seed and much of the seed sown may have 

been washed from the subplots by surface flow following rainfall, despite 

the soil preparation treatments. Quantitative estimates of the seed losses 

of these species were not attempted, as grass and tea tree seeds are buoyant 

when dry, and seed is therefore likely to have escaped collection in a 

water-trap system. 

Analysis of the seed loss data for Acacia seed captured in the drainage 

sumps during the first five months following sowing indicated that the 

mean erosional seed losses differed between seedbed treatments (F2 ,36  = 

4.81, p <0.0424; Table 4a), when tested against a block*treatment error 

term, but not between species (F 3,36  = 1.74, p <0.1752). Mean seed losses for 

all three seedbed treatments represented 2% or less of the total number 

of viable seeds sown per subplot (Table 5a). 

The multiple-range comparison of treatment means indicated that both 

the aerate and the rip seedbed treatments resulted in a significant decrease 

in the erosional seed losses in comparison to the control. A summary of 

the multiple range comparison of seed loss treatment means is provided 

(Table 5a). 

The response to seedbed preparation treatments 

The seedling number per subplot (standardized) and the seedling 
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Table 4a: Summary of an analysis of variance of Acacia seed loss from a 
broadcast sowing field trial of split-plot design. The data were derived 
from counts of seed captured in drainage sumps during the four months 
following sowing and calculated as a percentage of the total number of 
seeds of each species sown per subplot. The data were analysed as a 
randomised complete block of two levels with treatments allocated to 
mainplots and species allocated to subplots within mainplots. The seedbed 
treatments were a surface rip, roller-aeration and an undisturbed control. 

The field trial was located on a ridge-top of moderate gradient 

approximately 150 m from the original smelter site. 

Source 	D.F. Sums of 	Mean 

	

squares 	square 	value 

Treatment 	2 	7.77 	3.88 	4.38 	0.0199 

Species 	3 	4.64 	1.55 	1.74 	0.1752 

Block 	4 	2.78 	0.69 	0.78 	0.5436 

T'ment* Species 6 	10.76 	1.79 	2.02 	0.0881 

Error 	36 	31.93 	0.89 

Tests using Block*Treatment as an error term 

Treatment 	2 	7.77 	3.88 	4.81 	0.0424 

Block 	4 	2.78 	0.69 	0.86 	0.5261 
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Table 5a: Mean percentage seed loss for species of Acacia provided with 

one of three pre-sowing seedbed treatments. The seedbed treatments were 

a surface rip, roller-aeration and an undisturbed control. 

A summary of a multiple range comparison of treatment means based 

on the pdiff option of the GLM procedure in SAS Institute Inc. (1988) is 

provided*. 

Mechanical seedbed treatment 

Control 
	

Aerate 	Rip 

Seed loss 

treatment 

means 	 1.15 . 	0.50 	 0.30 

*Those means not underlined by the same line differ significantly at p0.05. 
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establishment percentage per subplot data were subjected to the ANOVA 

procedure. These analyses displayed similar trends in regard to significance 

effects for the four survey periods. The data selected for further 

development were the seedling establishment percentages per subplot 

for the species L. scoparium, A. mucronata, A. melanoxylon, A. verticillata 
and A. dealbata derived from seedling count data recorded to 28/10/93. 

The mean seedling establishment percentages for five colonising species 

and each of the seedbed treatments are presented in Figure 5. The lowest 

non-zero seedling establishment percentage recorded was for the species 

L. scoparium and the control seedbed (0.1%), while the highest was recorded 

for A. verticillata and the rip seedbed treatment (15.7%). 

The ANOVA of the seedling establishment percentages indicated that 

the means differed significantly between seedbed treatments when tested 

against a block*treatment residual (F 2,48  = 13.36, p <0.0028; Table 4b). 

The multiple range comparison of treatment means indicated that, for 

the species A. mucronata and A. verticillata, both the aerate and the rip 

seedbed treatments resulted in significant increases in seedling 

establishment in comparison to the control treatment. The response of 

these species to the mechanical treatments, however, did not differ 

significantly from each other and consequently, were equally effective as 

a means of providing a seedbed. 

Seedling establishment in response to seedbed treatments was, however, 

not significant for the species L. scoparium, A. melanoxylon and 
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Fig.5: Seedling establishment percentages for five colonising species 

provided with two mechanical, pre-sowing seedbed treatments (Rip, R; 

Aerate,A) and a control (C) 16 months after broadcast sowing. The mean 

seedling establishment percentages were calculated from standardised 

count data termed the seedling number per subplot (cumulative 

germinations minus deaths for each subplot to the 28/10/93) divided by 

the total number of viable seeds sown per subplot and represented as 

percentages. n = 5. Error bars represent standard deviations. 
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Table 41x Summary of an analysis of variance of the seedling establishment 

percentage for a split-plot randomised complete block design with three 

pre-sowing seedbed treatments and five species (four species of Acacia 

and L.scoparium ) for data derived from seedling counts during the 16 

months following sowing. The seedbed treatments were a surface rip, 

roller-aeration and an undisturbed control. 

The field trial was located on a ridge-top of moderate gradient 

approximately 150 m from the original smelter site. 

Source 	D.F. Sums of 	Mean 

	

squares 	square 	value 

Treatment 	2 	351.66 	175.83 	16.65 	0.0001 

Species 	4 	975.41 	243.85 	23.09 	0.0001 

Block 	 4 	109.58 	27.39 	2.59 	0.0480 

TI ment* Species 10 	247.42 	30.93 	2.93 	0.0096 

Error 	 48 	506.85 	910.59 

Tests using Block*Treatment as an error term 

Treatment 
	2 	351.66 	175.83 	13.36 	0.0028 

Block 	 4 	109.58 	27.39 	2.08 	0.1752 
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A. dealbata. A summary of the multiple range comparison of treatment 

means is provided (Table 5b) 

The species' response 

The seedling establishment means differed significantly between species 

(F4,48 = 23.09, p < 0.0001; Table 4b). The mean seedling establishment 

percentages for the five colonising species without regard to seedbed 

treatment were calculated and a multiple range comparison of species 

means provided (Table 6). The mean seedling establishment percentage 

of A. verticillata (11.3%) was significantly higher than all the other species 

in the trial. Conversely, the establishment percentages of L. scoparium 
(0.4%) and A. dealbata (2.88%) were significantly lower than all the other 

species in the trial. 

There was a significant treatment*species interaction (F 10,48  = 2.93, p < 

0.0096). This was due to somewhat lower rip treatment means for A. 

mucronata than that recorded for the species in the roller-aerate treatment 

(Table 5b). A converse trend in the magnitude of the mean response 

existed between these two treatments for all the other species under trial. 

Mortality 

Analysis of the mortality data for Acacia seedlings for the twelve months 

following germination indicated that the mean mortality percentage 

differed between seedbed treatments (F2 , 36  = 8.92, p < 0.0092; Table 4c), 

when tested against a block*treatment error term and between species 
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Table 51/: Mean seedling establishment percentages for five colonizing 

species provided with one of three pre-sowing seedbed treatments. The 

seedbed treatments were a surface rip, roller-aeration and an undisturbed 

control. 

A summary of a multiple range comparison based on the pdiff option of 

the GLM procedure in SAS/STAT R  edition 6.03 (SAS Institute Inc., 1988) 

is provided*. 

Species 

Mechanical seedbed treatment 

Control 	Aerate Rip 

A.dealbata 1.30 3.27 4.08 

A.melanoxylon 2.41 4.76 6.18 

A.mucronata 1.67 7.26 6.71 

A.verticillata 3.58 14.56 15.7 

L.scoparium 0.07 0.43 0.77 

*Those means not underlined by the same line differ significantly at p0.05. 
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Table 6: Mean seedling establishment percentages for five colonising 
species given without regard to seedbed treatment. 

A summary of a multiple range comparison based on the pDiff option of 
the GLM procedure in SAS/STAT R  edition 6.03 (SAS Institute Inc., 1988) 
is provided*. 

Species 
L .scoparium 	A. dealbata A .melanoxylon A. mucronata 	A. verticillata 

Species 	0.4 	2.88 	4.45 	5.21 	11.27 

means 

*Those means not underlined by the same line differ significantly at p5_0.05. 
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Table 4c: Summary of an analysis of variance of Acacia seedling mortality 
from a broadcast sowing field trial of split-plot design. The data were 
derived from standardised seedling mortality counts calculated as a 
percentage of the total number of viable seeds of each species sown per 
subplot for the twelve month period following germination. The data 
were analysed as a randomised complete block of two levels with 
treatments allocated to mainplots and species allocated to subplots within 
mainplots. The seedbed treatments were a surface rip, roller-aeration and 
an undisturbed control. 

The field trial was located on a ridge-top of moderate gradient 
approximately 150 m from the original smelter site. 

Source 	D.F. Sums of 	Mean 

	

squares 	square 	value 

Treatment 	2 	30.6 	1.53 	5.55 	0.0079 
Species 	3 	13.27 	4.42 	16.04 	0.0001 
Block 	4 	1.32 	0.33 	1.20 	0.3288 
T'ment* Species 6 	2.06 	0.34 	1.24 	0.3076 
Error 	36 	9.93 	0.28 

Tests using Block*Treatment as an error term 

Treatment 	2 	3.06 	1.53 	8.92 	0.0092 
Block 	4 	1.32 	0.33 	1.96 	0.1997 
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(F3 ,36  = 16.04, p <0.0001). Mean seedling mortality for four species of Acacia 
ranged from 0.10 (A.dealbata) to 1.8 % (A.verticillata). 

The multiple-range comparison of treatment means indicated that both 

the Aerate and the Rip seedbed treatments resulted in significantly lower 

seedling mortality for the species A.verticillata in comparison to the 

control. The differences in the treatment means for the other species 

were not significant. A summary of the multiple range comparison of 

seed loss treatment means is provided (Table 5c). 

During the summer following the final seedling count most of the A. 
dealbata seedlings died. None had appeared healthy throughout the trial 

with most displaying premature seedling-leaf loss. With the exception of 

A. melanoxylon, none of the remaining species were as adversely affected 

with regard to appearance or leaf fall, although the growth rates of most 

individuals were judged abnormally slow. Leaf discolouration and 

premature loss affected many of the A.melanoxylon seedlings in the 

period of survey. However, catastrophic mortality rates did not occur. 

Phytotoxic symptoms were infrequent or absent in A. mucronata, 

A.verticillata and L. scoparium in the survey period. 

The cost effectiveness of species/treatment combinations 

Calculation of the seedling establishment percentages for each of the 

species and treatment combinations permitted evaluation of the results 

on the basis of cost. In order to provide an example of the relative 
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Table 5c Mean seedling mortality percentage for four species of Acacia 
provided with one of three pre-sowing seedbed treatments. The seedbed 
treatments were a surface rip, roller-aeration and an undisturbed control. 

A summary of a multiple range comparison of treatment means based 
on the pdiff option of the GLM in SAS/STAT R  edition 6.03 (SAS Institute 
Inc., 1988) is provided*. 

Species 

Mechanical seedbed treatment 

Control 	Aerate Rip 

A.dealbata 0.10 0.17 0.17 

A.melanoxylon 0.29 0.62 0.87 

A.mucronata 0.10 0.30 0.39 

A.verticillata 0.63 1.61 1.82 

*Those means not underlined by the same line differ significantly at 
130.05. 
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species/treatment costs, the seed quantities required to produce 1000 

seedlings given each combination were calculated (Table 7). The number 

of kilograms of seed required (bulk seedlot) to produce 1000 seedlings in 

the field was calculated by dividing the number of seedlings required by 

the number of viable seeds per kilogram multiplied by the seedling 

establishment percentage for the treatment. 

Using an average purchase cost of $100 per kg for each of the species 

examined, the cost of establishing a single seedling of each species was 

calculated for each treatment. Four species cost less than $0.05 per seedling 

to establish using the roller-aerate pre-sowing treatment namely, 

A.melanoxylon ($0.03), A.mucronata ($0.02) L.scoparium ($0.02) and 

A.verticillata ($0.01). At $0.06 per seedling, A.dealbata was comparatively 

expensive to establish, despite the provision of seedbed preparation. 

The distribution of the seedling potential 

Seedling establishment, erosional seed loss and seedling mortality were 

all calculated as a percentage of the number of viable seeds sown per 

subplot. This permitted an assessment of the distribution of the seedling 

potential of each species, and by subtraction, an estimation of the seedling 

potential unaccounted for by seedlings, seed loss or death. 

The seedling establishment percentage, the percentage seed loss due to 

erosion and the percentage seedling mortality accounted for a relatively 

small portion of the seedling potential of the four species of Acacia (Table 

8). 
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Table 7: Mean seedling establishment percentages for broadcast sown seed, 
an example of the seed quantities required to produce 1000 seedlings in 
the field and the relative cost of seedling establishment. 

The seedling establishment percentages were based on standardised 
germination count and mortality data for the 16 month period following 
sowing (termed the seedling number per subplot - cumulative). 
Standardisation accounted for unequal subplot losses of surface lying 
seed due to erosion. The seedling establishment percentages were 
calculated by dividing the cumulative seedling number per subplot by 
the number of viable seeds sown per subplot. Standard deviations are 
given in brackets. 

Species Seedlot 	Pre-sowing Seedling 	Seed quantity 	Cost 
collection 	seedbed 	establish/ 	required 	of 
number 	treatment ment %1 	to provide 	seedling 

1000 	est/ment3  
seedlings2 	($/seedling) 
(kg) 

A.mucronata 001/02/92 rip 6.71 (4.40) 0.249 0.02 

A.mucronata 001/02/92 aerate 7.25 (2.33) 0.235 0.02 

A.mucronata 001/02/92 control 1.67 (0.98) 1.000 0.10 

A.melanoxylon 003/02/91 rip 6.18 (2.48) 0.231 0.02 

A.melanoxylon 003/02/91 aerate 4.75 (2.09) 0.300 0.03 

A.melanoxylon 003/02/91 control 2.42 (2.04) 0.589 0.06 

continued 
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Table 7 continued 

Species 	Seedlot 	Pre-sowing Seedling 	Seed quantity 	Cost 
collection 	seedbed 	establish/ 	required 	of 
numb 	treatment merit % 1 	to provide 	seedling 

1000 	est/ment3  
seedlings2 	($/seedling) 
(kg) 

A.verticillata 003/02/92 rip 15.70 (5.52) 0.130 0.01 
A.verticillata 003/02/92 aerate 14.55 4.44) 0.141 0.01 
A.verticillata 003/02/92 control 3.59 (2.37) 0.573 0.06 

A.dealbata 001/01/91 rip 4.08 (6.45) 0.462 0.05 
A.dealbata 001/01/91 aerate 3.27 (5.87) 0.577 0.06 
A.dealbata 001 /01 /91 control 1.30 (2.69) 1.450 0.14 

Lscoparium 001/11/90 rip 0.77 (0.68) 0.130 0.01 
L.scoparium 001/11/90 aerate 0.42 (0.45) 0.238 0.02 
Lscoparium 001/11/90 control 0.06 (0.01) 1.666 0.16 

1- n=5 

2 - Bulk seed quantity(kg) required to provide 1000 seedlings at the treatment establishment rate 
determined for the species. 

3- Based on an average seed purchase cost of $100 per kilogram. 
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Table 8: The distribution of the seedling potential for four species of 

Acacia given three pre-sowing, seedbed treatments at a near-smelter site. 

The seedling potential equalled the number of viable seeds sown of each 

species to each treatment subplot. 

The number of seedlings to establish (seedling establishment), seed loss 

due so surface erosion (seed loss), and the number of seedling deaths 

(mortality) were calculated as a percentage of the number of viable seeds 

sown. The proportion of the seedling potential unaccounted for by seedling 

establishment, seed loss and mortality was calculated by subtraction. 

Species Treatment Mean 
seedling 
establishment 
% 

Mean 
seed loss 
% 

Mean 
mortality 
% 

Unaccounted 
loss of 
seedling 
potential 
(%) 

A.mucronata rip 6.7 0.3 0.4 92.6 
A.mucronata aerate 7.2 0.5 0.3 92.0 
A.mucronata control 1.7 0.6 0.1 97.6 

A.melanoxylon rip 6.2 0.3 0.9 92.6 
A.melanoxylon aerate 4.7 0.7 0.6 94.0 
A.melanoxylon control 2.4 0.2 0.3 97.1 

A.verticillata rip 15.7 0.7 1.8 81.8 
A.verticillata aerate 14.5 0.0 1.6 83.9 
A.verticillata control 3.6 2.5 0.6 93.3 

A.dealbata rip 4.1 0.3 0.2 95.4 
A.dealbata aerate 3.3 0.8 0.2 95.7 
A.dealbata control 1.3 1.9 0.1 96.7 

1 - Seedling potential equalled the number of viable seeds sown 
2 - Seedling establishment percentage equalled the germination counts (standardised) minus deaths 
(standardised) divided by the seedling potential 
3 - Seed loss % equals the number of viable seeds lost to surface erosion divided by the seedling 
potential 
4- % mortality equals the number of deaths (standardised) divided by the seedling potential 
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Seedling establishment for A. mucronata increased from a mean of 1.7% 

in the control treatment to 7.2% in response to the roller-aeration 

treatment, however, only a small component (0.1%) of this increase could 

be attributed to a reduction in seed loss due to the treatment. Conversely, 

seedling mortality for the species increased marginally (0.2%) in response 

the roller-aeration treatment. For this treatment/species combination the 

proportion of the seedling potential remaining unaccounted for was 

approximately 92%. 

The distribution of the A. verticillata seedling potential was similar to 

that of A. mucronata. Seedling establishment for the species A. verticillata 
increased from a mean of 3.6% in the control treatment to 14.5% in 

response to the roller-aeration treatment. However, only 2.5% of this 

increase could be attributed to a reduction in seed loss due to the treatment. 

Seedling mortality for the species increased 1.0% in response the roller-

aeration treatment. For this treatment/species combination the proportion 

of the seedling potential remaining unaccounted for was approximately 

84%. 

6.5 Discussion 

The preparation of an appropriate seedbed is commonly cited as a 

requirement for successful revegetation with Australian native species 

where broadcast methods are employed (Glossop, 1982; Hinz, 1980). For 

example, surface ripping has been applied widely, as the initial, and 

sometimes only, means of broadacre seedbed preparation prior to broadcast 

sowing in denuded environments as diverse as grazing land, logging 

coupes and graded, artificial landscapes formed from replaced mine 

overburden (Hinz, 1995; Lyons, 1995; Gunness and Lawrie, 1988). Successful 
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use of this method of ground preparation has been attributed to factors as 

diverse as the environments themselves. These include increases in the 

number of seed-suitable microsites, improved soil aeration, water 

penetration, drainage, burial and protection from predators. 

The majority of Mount Lye11, however, is unsuited to most conventional 

forms of seedbed preparation due to the steepness of the terrain and the 

likelihood of major soil disturbance leading to further serious and possibly 

uncontainable erosion. Nevertheless, the potential efficiencies offered by 

an appropriate, mechanical means of seedbed preparation remain 

compelling. 

In this chapter, a roller-aeration implement, originally designed to aerate 

compacted dairy pasture, was evaluated as a means of providing a seedbed 

suitable for the establishment of broadcast sown, colonising species. The 

Superworm Soil Aerator, while limited to relatively moderate terrain by 

the capabilities of the tow vehicle, eliminated concerns regarding soil 

erosion as the tynes punctured the soil surface creating discrete, rip-cavities. 

This produced minimal surface disturbance and profile upheaval. 

The mean seedling establishment percentages for the Acacia species in 

the control sowings on unprepared ground ranged from a minimum of 

1.3±2.7 (A.dealbata) to a maximum of 3.6±2.4% (A.verticillata). Clemens 

(1980) suggested that a field seedling establishment of 10% should be 

considered the upper limit possible for viable, broadcast sown Acacia and 

other legume seed in degraded, but otherwise uncontaminated 

environments. The same author suggested that a more typical figure 

might be 5%. Other researchers, working in the area of mine site 

revegetation, support this estimate (Bellairs, pers. comm.). Consequently, 

216 



Ch. 6/ Seedbed preparation 

the establishment percentages in response to the control treatment were 

below that expected for the genus despite the absence of competition 

from other species and the exclusion of browsing pressures. 

In the roller-aeration treatment, the mean seedling establishment 

percentages for the Acacia species were higher than those of the control 

treatment. The seedling establishment percentages for the treatment 

approached or exceeded those expected for the genus and ranged from a 

minimum of 3.3±5.9 (A. dealbata) to a maximum of 14.5±4.4% (A. 
verticillata). The increases were significant for A. mucronata and A. 
verticillata. The establishment percentages represented a four-fold 

improvement in seedling establishment for both species. 

The conventional, deep-rip seedbed treatment also resulted in higher 

mean seedling establishment percentages for all of the Acacia species in 

the trial. The increases were significant for A. mucronata and A. verticillata. 
Notably, the seedling establishment percentages in response to the rip 

treatment were statistically indistinguishable from that recorded for the 

roller-aeration treatment. Consequently, the two disparate mechanical 

treatments were equally effective as seedbed preparations for these two 

species. 

The increases in seedling establishment recorded in response to the 

mechanical seedbed treatments were due to both a reduction in the number 

of seeds lost to surface erosion and to higher levels of germination and 

establishment. However, the distribution of the seedling potential in the 

mechanical seedbed treatments indicated that the contribution of seed 

loss to higher levels of seedling establishment, although significantly 

less than those of the control treatment, was small in proportion to the 
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improvement in seedling establishment. This suggested that response to 

mechanical seedbed treatments had, to a large extent, occurred as a result 

of a moderation of the environmental extremes to which the surface 

lying seed were exposed during germination and early growth. It appeared 

that the treatments increased the number of seed-suitable microsites. 

There was no evidence from the control treatments to suggest that the 

increases in seedling establishment were caused by a reduction in the 

number of seedling deaths. 

In general, the mechanical seedbed treatments used in these trials were 

unsuitable for the smaller seeded species. The species L. scoparium, 0. 
arborescens, G. hispida and A. capillaris responded poorly, or failed 

completely, in response to both of the mechanical seedbed preparation 

treatments. Some seed losses are likely to have occurred due to water, 

and possibly wind, erosion. Additional losses may be accounted for by an 

inappropriate depth of cultivation produced by the mechanically treated 

seedbeds in relation to the size of the seeds. 

Based on the average seed price of $100 kg', estimates of the cost of 

seedling establishment on an unprepared seedbed ranged from $0.06 (A. 

verticillata) to $0.14 (A. dealbata) per seedling. Mechanical seedbed 

preparation reduced the cost of establishment of all the Acacia species in 

the trial. The cost of establishment of the two species exhibiting significant 

responses to the roller-aeration treatment, A. mucronata and A. 

verticillata, was reduced from $0.10 to $0.02 and $0.06 to $0.01 per seedling, 

respectively. These estimates were well below the average cost of seedling 

stock at approximately $0.65 per seedling. 

Despite a low establishment percentage, the cost of L. scoparium 
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establishment was comparable to that of the Acacia species. This was a 

consequence of the high number of seeds per kilogram. Consequently, 

the inclusion of this species in a broadacre sowing program could well be 

justified on the basis of comparable establishment costs. 

A large proportion of the seedling potential of the broadcast seed was 

unaccounted for by erosional seed loss, germinant and seedling mortality. 

Seed dormancy or death are likely to account for the discrepancy. The 

influence of soil phytotoxicity on seed mortality is not known. 

6.6 Conclusions 

The complexities of experimental design and the difficulties posed by 

field trials have apparently hindered research into Australian native seed 

establishment on degraded and mined lands. They have also resulted in 

doubtful practices, such as unreplicated trials with poor sowing and 

monitoring proceedures. Consequently, there are very few reliable, 

published references regarding field establishment rates for native species 

on degraded or mined lands. For example, no reliable references to seedling 

establishment percentages for Leptospermum species, or the other non-

Mimosaceae species, were found in the literature. Much of the work 

done in this field remains unpublished in inhouse documents. Field 

sowings on unprepared seedbeds rarely, if ever, approach the seedling 

potential of a species and many losses of surface lying seed may occur as a 

result of an unfavourable seedbed. Seedbed preparation can narrow the 

seedling gap, the difference between the seedling potential of a species 

and the actual numbers of seedlings occurring, and result in cost-effective 

sowings. 
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The objective of this chapter was to evaluate mechanical seedbed 

preparation for the establishment of a range of broadcast sown colonising 

species within the Mount Lye11 environment. Broadcast sowings on 

unworked subsoils resulted in poor seedling establishment and three of 

the eight species in the trial failed to produce seedlings. Mechanical seedbed 

treatment did not assist these species. In comparison, a small number of 

several species of the genus Acacia established on unworked ground. In 

general, these species responded well to two mechanical, pre-sowing 

seedbed treatments. 

The roller-aerator, seedbed treatment provided by the Superworm Soil 

Aerator resulted in significant increases in seedling establishment in A. 
mucronata and A. verticillata. The improvement greatly reduced the 

establishment cost of a seedling. The seedling establishment percentages 

recorded for the treatment approached or exceeded the field percentages 

considered the upper limit possible for sowings of the genus on 

uncontaminated land. The establishment percentages achieved by the 

roller-aerator treatment were statistically equivalent to those recorded 

for a conventional deep-rip treatment. The roller-aerator treatment, 

however, did not aggravate soil erosion. 

Improvements in seedling establishment percentages as a result of 

mechanical seedbed treatment were attributed to the provision of 

favourable microsites. These provided a buffer to the environmental 

extremes to which the surface lying seed were exposed during germination 

and early growth. Small gains were achieved by reductions in erosional 

seed losses and seedling mortality. Presumably, this was due to the creation 

of a larger number of seed-suitable microsites. This was consistent with 

the observation that desiccation of unprotected seedling radicals was a 
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major cause of seedling death in surface broadcast seed. 

The seedling establishment percentages achieved during these trials 

indicated that three species of Acacia: A. verticillata, A. mucronata and 

A. melanoxylon, can be economically re-established by broadcast sowing 

at a highly degraded, contaminated site. The ease of the mechanical seedbed 

treatment and the improvement in seedling establishment greatly 

improved the overall cost-effectiveness of broadcasting as a method of 

revegetation. However, seedbed preparation by these mechanical methods 

is limited by steepness and accessibility. It is estimated that approximately 

10% of Mount Lye11 could be considered machine-accessible to 

conventional or adapted machinery. This includes most ridge-top 

locations. Although representing only a small proportion of the total 

area, rehabilitation of these areas could, over time, influence much of 

the remaining, under-vegetated areas by acting as an on-site source of 

seed and organic matter. 
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Chapter 7 

An assessment of mininum impact, seedbed preparation and seed 

application methods for the establishment of colonising species 

on steep, eroded slopes at Mount Lye!! 

7.1 Introduction 

Attempts have been made to re-establish vegetation on degraded 

landscapes by surface broadcasting (Winterhalder, 1983b). However, even 

in moderate terrain, seed broadcast under these circumstances is likely to 

be lost in surface wash and heavy losses may negate the cost-advantages 

offered. Mechanical surface contouring, or re-grading, accepted practises 

within some sectors of the mining industry, provides a stable soil surface 

for revegetation, but is expensive and not suited to steep, erodable and 

culturally significant sites. 

On a small scale, steep slopes, such as along road batters, have been 

rehabilitated to introduced pasture species by non-mechanical methods 

such as hydro-mulching (eg. Hydro Electric Corporation of Tasmania). 

Largely due to their costs, however, such methods are not generally applied 

broadacre. In contrast, the sand mining industry provides one of the few 

examples of the use of a non-mechanical means of broadacre surface 

stabilization prior to revegetation. On North Stradbroke Island, a bitumen 

emulsion, sold as Terolas, is sprayed over a drilled cover-crop and native 

seed mix (Bellairs et al., 1995; Brooks and Bell, 1984). The stabilizer 

minimises aeolian sand movement during plant establishment and is 

bio-degradable over 20 plus years (pers. obs.). At Ashio, reclamation of 

mountainous areas denuded by pollution from the Furukawa Co. copper 

smelter has been attempted by broadcast-sowing grass and tree species by 

helicopter with dilute asphalt as a stabilizer (The Daily Yomiuri, 1993). 
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Over much of the area of Mount Lye11, steep erodable slopes prevent the 

use of conventional, mechanical surface stabilization methods in a region 

that receives high rainfall. In addition, it is likely that the proximity of 

the township to the site would make the use of mechanical methods, 

such as re-contouring, culturally unacceptable. Never the less, cost-effective 

revegetation at Mount Lye11 is likely to require the use of broadcast sown 

seed on steep-slopes and these will require adequate stability to enable 

establishment. 

This chapter compares minimum-impact methods of seedbed preparation 

and seed application for colonising species on steep slopes. Seven non-

mechanical treatments suited to broadcast sowing were examined and 

assessed by seedling establishment. The treatments could be categorised 

as either low-cost methods based on broadcasting or higher-cost methods 

based on a proprietary product designed for erosion control. The organic 

product, J-tacTM  (Appendix 2), was selected for its rapid bio-degradability. 

The treatments were selected to minimise erosive seed loss prior to 

germination and to moderate environmental extremes. Four of the 

treatments specified the application of the organic stabilizer/adherent : 

one of these treatments included straw as mulch; another a pre-glued, 

straw/paper-shred 'amalgam'. The adherent treatments were compared 

to a pre-sowing, cover crop and manual, soil preparation treatments. 

Each of the treatments was implemented in a manner relevant to broadacre 

or 'strip acre' application. None of the treatments required significant 

working of the soil or relied on the direct placement of seed to depth. 
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7.2 Methods 

The experimental site was located approximately 150 m east of the original 

smelters within the Agrostis grassland zone (Fig.1). 

Eighty four 1 m 2  plots were laid out in twelve blocks of seven treatments 

on a vegetation-free, 20 0  slope of westerly aspect (Fig.2). Each plot was 

located in order to preclude overland 'seed contamination' from nearby 

plots. 

All of the blocks were located on exposed, mafic-clay subsoils. The surface 

of most blocks exhibited heavy scatterings of fractured, quartz scree, 

probably of vein origin, while some featured erosion-polished clays. The 

area selected for each block was based on the within-block surface 

uniformity. 

Plots within blocks were randomly allocated to one of each of the seven 

seedbed preparation and application treatments. The plots were marked 

with a steel peg and identified using a coded tagging system. Fencing was 

not provided. Ground calcitic lime was applied at the rate of 4000 kg ha" 1  

to each plot prior to treatment. This resulted in an increase in soil pH 

from 4.35±0.30 to 5.20±0.40. The water soluble concentrations of Cu, Al 

and Zn were 2.71, 10.9 and 0.11 mg C1, respectively. In the cases of Cu and 

Al, these concentrations were above the means recorded for the Agrostis 
grassland sites (Table 9, Chapter 4). The Zn concentration was 

approximately average for the zone. 

All treatments, with the exception of the cover crop treatment, received a 

surface sowing of an Acacia-Leptospermum seed mix at the time of seedbed 
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Fig. 1: Location of 'steep-slopes' seedbed field trial 
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Figure 2: The location of the field trial on an eroded, 20° slope. The 

operator is depicted applying adherent from a pressure container. 
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preparation (June 1993; Fig.3). The cover crop was to be oversown with 

the Acacia-Lep tospermum seed mix later in the same year. 

The seed mix included three species of Acacia and L. scoparium. The 

Acacia species were A. melanoxylon, A. mucronata and A. verticillata. 
The seed used was of local provenance. These species are considered 

colonising species in the region. 

The seven seedbed preparation and application treatments were: 

1) Adherent 1 (Al): an organic binder; 

2) Adherent 2 (A2): a higher concentration of organic binder; 

3) Mulch (M): straw plus an organic binder; 

4) Paper-glue (Pg): seed, shredded straw and paper sprayed with PVA 

glue, allowed to dry and applied with an organic binder; 

5) Cover crop (CC); a broadcast sown cover crop (two pasture species and 

a naturalized exotic) and an organic binder; 

6) Manual soil perforation with a Leggot's spear (L): 25 x 5 cm deep divots 

per m 2  (Leggot, 1981). 

7) and a control (C): broadcast sown seed-mix only. 

The adherent used is described in Appendix 2. Details of the species 

mixtures, sowing rates and the methods of seedbed preparation and seed 

application of each treatment are provided in Appendix 3. The germinants 

were counted during the last weeks of October 1993 and again in March 

1994. In the October count, the three species of Acacia were recorded 

collectively as 'Acacia species' as the seedlings' size precluded positive 

identification. Each plot was overlain with a quadrat divided into 100 

equally sized cells. Nine cells, representing nine percent of the surface of 

each plot, were then selected at random for seedling counts. 
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Figure 3: Seed mixes were hand broadcast. The photo depicts  the  sowing 

of the paper-glue mix and the application of the adherent. 
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7.3 Data analysis 

The Treatments 

To facilitate comparison with seedlots of differing viability and application 

rate, the germination count data for the late spring (October) and the 

early autumn (March) survey periods were converted to percentage 

seedling establishment by division by the total number of viable seeds 

sown per plot. 

As differentiation between the three species of Acacia was difficult at the 

October seedling count the total number of Acacia seedlings was summed. 

Seedling establishment percentages were calculated from the total number 

of viable Acacia seeds sown per plot using an average seedlot viability of 

90%. Establishment percentages for the species L scoparium at the October 

survey were also calculated. 

The experiment formed a single factor, randomised complete block with 

twelve blocks and six non-structural treatments allocated to plots within 

blocks. The October seedling establishment percentage data for the Acacia 
species and L.scoparium were subjected to an ANOVA using the GLM 

procedure of SAS/STATR  edition 6.03 (SAS Institute Inc., 1988) and analysed 

as a randomised complete block with treatments allocated to blocks. These 

data conformed to the model requirements of normality and homogeneity 

and arc-sine transformation was considered unnecessary. 

The March seedling establishment percentage data for each the four species 

were subjected to an ANOVA using the GLM procedure of SAS/ STATR 
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edition 6.03 (SAS Institute Inc., 1988) and analysed as a randomised 
complete block with treatments allocated to blocks. These data conformed 

to the model requirements of normality and homogeneity and arc-sine 

transformation was considered unnecessary. 

Least squares means were calculated and compared using the probability 

difference (pDiff) option of the SAS/STATR  program. Following the 

ranking of treatment and species means, a multiple-range comparison of 

the pairwise probability differences between means was created and 

summarised. 

Treatment costs 

The cost of each treatment was calculated based on the seedling 

establishment percentages and material costs. The seed costs were based 

on the nominal target of 5000 seedlings of each species per hectare. The 

required number of stems per hectare were divided by the number of 
viable seeds per kilogram and then multiplied by the appropriate seedling 

establishment percentage. The resultant 'number of kilograms of viable 

seed required to produce 5000 seedlings in the field for a particular 

treatment' was costed at the average seed cost of $100 kg -l. No attempt 

was made to incorporate labour costs as these will vary with circumstances. 

7.4 Results 

It was intended that the cover crop (CC) treatment provide a physical 

barrier to seed loss by erosion and a protected seedbed environment onto 

which the desired colonising species might be later sown. The introduced 

pasture species used in the cover crop (CC) treatment did not, however, 

230 



Ch.7/ Seedbeds on steep slopes 

display sufficient vigour (or density) at any time in the four month period 

between sowing and initial scoring to provide this function. Despite the 

addition of a nitrogenous fertilizer (ammonium nitrate; 250 kgha -1) growth 

was restricted to widely spaced plants with abnormally small leaf sizes. 

Leaf chlorosis was also evident, particularly in the rye grass. With the 

exception of A. capillaris all of the seedlings in the cover crop treatment 

were dead after nine months. The seedling establishment rate for A. 
capillaris in the cover crop treatment was 0.15%. Consequently, the 

treatment was considered unworkable and the Cover crop (CC) treatment 

was discontinued. 

No maintenance difficulties were experienced with the remaining six 

treatments. 

Assessment of the Spring seedling counts 

An initial assessment of the response to treatments was made for both 

the Acacia species and L. scoparium using the seedling count data for 

October. 

The seedling establishment means for the October seedling counts for the 

Acacia species and L. scoparium differed between treatments (F5,45  = 6.88, 

p < 0.0001 and F5,45  = 4.19, p < 0.0033, respectively; Table 1). Seedling 

establishment means for the Acacia species ranged from a maximum of 

9.3% (Leggot's spear treatment) to a minimum of 2.2% (control treatment; 

Fig. 4a). The equivalent maximum and minimum for L. scoparium were 

8.6 (mulch) and 2.8% (control), respectively (Fig. 4b). 
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Table 1: Analysis of variance of the effect of six broadcast-sowing seedbed 
treatments on seedling establishment in a 'steep slopes' field trial. The 

data were analysed as seedling establishment percentages for the total 

number of Acacia seedlings arising from sowings of three species and L 

.scoparium. The data represent the seedling counts for October. 

Source 	D.F. Sums of 	Mean 

	

squares 	square 	value 

Acacia species 

Block 11 280.99 25.54 2.37 0.0208 

Treat 5 371.07 74.21 6.88 0.0001 

Error 55 485.18 10.78 

L. scoparium 
Block 11 233.46 21.22 1.73 0.0974 

Treat 5 257.09 51.42 4.19 0.0033 

Error 55 552.39 12.27 
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Figure 4a: Seedling establishment percentages for three species of Acacia 
given six seedbed preparation and application treatments on a 20° slope. 

The treatments were Adherent (Al), Adherent (A2), Paper glue (Pg), mulch 

(M), Leggot' spear (L) and control (C). The data were calculated from the 

sum of the Acacia seedling counts (A. melanoxylon, A. mucronata and 

A. verticillata) divided by the total number viable Acacia seeds sown and 

represented as a seedling establishment percentage. Mean establishment 

percentages were calculated for both a spring (October) and an autumn 

(March) seedling count. The percentages were ranked in order of increasing 

magnitude for the March count. Error bars represent standard deviation. 
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Figure 4h: Seedling establishment percentages for L. scoparium given six 
seedbed preparation and application treatments on a 20 0  slope. The 
treatments were Adherent (Al), Adherent (A2), Paper glue (Pg), mulch 
(M), Leggot's spear (L) and control (C). The data were calculated from 
seedling counts divided by the total number viable seeds sown and 
represented as a seedling establishment percentage. Mean establishment 
percentages were calculated for both spring (October) and autumn (March) 
seedling counts. The percentages were ranked in order of increasing 
magnitude for the March count. Error bars represent standard deviation. 
n =12 
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The multiple range comparison of the October treatment means indicated 

that both the mulch and the Leggot's spear treatments resulted in 

significantly higher Acacia seedling establishment in comparison to all 

the other treatments. For the species L. scoparium, only the mulch 

treatment provided a significantly higher mean seedling establishment 

response. 

Three species of Acacia 

The estimated total number of Acacia seedlings for all treatments increased 

from 2 999 to 5 149 in the period between the October and the March 

counts. This was reflected in higher seedling establishment percentages 

across all treatments for the species A. mucronata and A. verticillata in 

comparison to the other Acacia species (Fig. 4a). A converse trend appeared 

to be true for A. melanoxylon, which exhibited declining establishment 

percentages over the same period, 

The March seedling counts permitted the identification of Acacia by species. 

Seedling establishment treatment means for A. mucronata and A. 
verticillata ranged from maxima of 21.7 ±13.1% (mulch) and 29.3 ±24.5% 

(mulch) to minima of 4.6±5.5 and 7.6±10.7%, respectively (control 

treatments; Fig. 5a/5b). 

The seedling establishment means for A. mucronata and A. verticillata 
differed between treatments (F 5 ,55  = 9.49, p < 0.0001 and F5,55  = 3.27, p < 

0.0118, respectively; Table 2). There was no corresponding treatment 

response for A. melanoxylon (F5 ,55 . 1.86, p <0.1158). 

The multiple range comparison of the March treatment means indicated 
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Fig. 5a: Seedling establishment percentages for A. melanoxylon and A. 
mucronata given six seed application treatments. The treatments were 

Adherent (Al), Adherent (A2), Paper glue (Pg), mulch (M), Leggot' spear 

(L) and control (C). The data represented the mean number of germinants 

nine months after sowing (March '94 count) divided by the total number 

viable seeds sown and calculated as a percentage. The percentages were 

ranked in order of increasing magnitude. Error bars represent standard 

deviation. n = 12 

A summary of a multiple-range comparison of treatment means based 

on the pDiff option of SAS/STATR  edition 6.03 (SAS Institute Inc., 1988) 

is provided. Means annotated with disimilar letters are significantly 

different (p< 0.05). 
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Fig. 5Ix Seedling establishment percentages for A. verticillata and L. 
scoparium given six seed application treatments. The treatments were 
Adherent (Al), Adherent (A2), Paper glue (Pg), mulch (M), Leggot' spear 
(L) and control (C). The data represented the mean number of germinants 
nine months after sowing (March '94 count) divided by the total number 
viable seeds sown calculated as a percentage. The percentages were ranked 
in order of increasing magnitude. Error bars represent standard deviations. 
n =12 

A summary of a multiple-range comparison of treatment means based 
on the pDiff option of SAS/STATR  edition 6.03 (SAS Institute Inc., 1988) 
is provided. Means annotated with disimilar letters are significantly 
different (p< 0.05). 
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Table 2: Analysis of variance of the effect of six broadcast-sowing seedbed 
treatments on seedling establishment in a 'steep slopes' field trial. The 
data were analysed as seedling establishment percentages for three species 
of Acacia and L. scoparium. The data represent the seedling counts for 
March. 

Source 	D.F. Sums of 	Mean 

	

squares 	square 	value 

A. 	melanoxylon 
Block 11 110.06 10.00 1.83 0.0713 
Treatment 5 51.02 10.20 1.86 0.1158 
Error 55 301.24 5.48 

A. mucronata 
Block 11 1115.15 101.38 1.85 0.0673 
Treat 5 2600.84 520.17 9.49 0.0001 
Error 55 3014.16 54.80 

A. 	verticillata 
Block 11 5446.48 495.15 1.63 0.1173 
Treat 5 4977.23 995.44 3.27 0.0118 
Error 55 16757.93 304.69 

L. scoparium 
Block 11 72.78 6.61 2.48 0.0132 
Treat 5 43.13 8.63 3.24 0.0124 
Error 55 146.56 2.66 
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that both the Leggot's spear and the mulch treatments resulted in 

significantly higher A. mucronata seedling establishment in comparison 

to all the other treatments (Fig. 6). The responses represented three-fold 

and five-fold increases, respectively, in mean seedling establishment in 

comparison to the control treatment (Fig. 5a). 

The response of A. verticillata to treatments was similar to that of A. 
mucronata. With the exception of the Paper-glue treatment, the Leggot's 

spear and the mulch treatments resulted in significantly higher A. 
verticillata seedling establishment in comparison to the all other 

treatments. For these treatments, the responses represented three-fold 

and four-fold increases in mean seedling establishment, respectively (Fig. 

5b). 

L. scoparium 

The total number of L. scoparium seedlings across all treatments decreased 

from 21 100 to 9 368 over the October to March sampling interval. The 

seedling establishment percentages calculated for L. scoparium in March 

were commensurately lower than those of October. The mean March 

seedling establishment percentages for the species ranged from a maximum 

of 3.2 +/- 2.3 (mulch) to a minimum of 1.4 +/-1.3% (control). 

The establishment means for the species differed between treatments 

(F5 ,55  = 3.24, p <0.0124) and between blocks (F 11 , 55  = 2.48, p <0.0132; Table 

1). Both the paper glue and the mulch treatments provided significantly 

higher mean seedling establishment responses in comparison to the other 

treatments (Fig. 5b). The response to the paper glue and the mulch 

treatment represented three-fold and five-fold increases in mean 
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Figure 6: Photo of a mulch (M) plot 10 months after treatment 
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germination in comparison to the control treatment, respectively. 

The cost of broadacre treatment 

Cost comparisons indicated that the Leggot's spear treatment was the 

most economical means of establishing Acacia and L. scoparium (Table 

3). 

7.5 Discussion 

In order to prevent plot to plot contamination by seed due to erosion, the 

design of this experiment required a field layout in which the plots within 

blocks were laid out along a contour. This layout may have reduced the 

spatial correlation normally expected between the soils of plots in blocked, 

field trial designs (MuIla et al., 1990). In this trial, slope and surface material 

differences occurred along the contour. Consequently, the comparatively 

large standard deviations recorded in this trial are likely to be, in part, a 

consequence of the heterogeneity of the field site. In the mulch treatment, 

micro-topographic wind-shear differences between the plots may have 

compounded variability. 

Some of the treatments applied in the field trials have been tested 

elsewhere. For example, Lyons (1995) used deep ripping and the Leggot's 

spear method to successfully sow approximately 20 hectares of silica scree 

following surface mining in the Mount Isa area. Mulching has only been 

applied to relatively small areas. With the exceptions of the examples 

from the sand mining industry given earlier (Bellairs et al., 1995; Brooks 

and Bell, 1984) and reclamation works at Ashio (The Daily Yomiuri, 

1993), the use of stabilizers/adherents in broadacre work is unusual. The 
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Table 3: The cost of broadacre application for four species using six broadcast-

sowing seedbed treatments based on seedling establishment percentages 

and material costs. A nominal stem density of 5000 seedlings per hectare 

is used by way of example. The seedling establishment percentages were 

obtained in a field trial located at a near-smelter site on an eroded, 20° 

slope. 

Species 	Treatment Mean Seed' req. Materials2  Total cost 
seed to provide ($ha) 	of t'ment 
estab. 5000 stems 	 ($ha-1 ) 

A. mucronata 

(°/0) ($ha-1) 

control 4.6 180 n.a. 180 
Ad.1 6.2 135 270 405 
Ad.2 6.4 130 540 670 
Pg 6.4 130 57 187 
Leggots 13.4 62 n.a. 62 
mulch 21.7 38 645 683 

A. melanoxylon 
control 0.41 2150 n.a. 2150 
Ad.1 1.42 619 270 887 
Ad.2 0.41 2150 540 2690  
Pg 1.22 720 57 777 
Leggots 2.34 376 n.a. 376 
mulch 2.64 333 645 978 

A. 	verticillata 
control 7.58 171 n.a. 171 
Ad.1 12.6 103 270 373 
Ad.2 6.57 197 540 737 
Pg 18.7 69 57 126 
Leggots 23.8 55 n.a. 55 
mulch 29.3 44 645 649 

continued 
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Table 3 continued 

Species 	Treatment Seed Seed' req. Materials' Total cost 
estab. to provide ($ha -1 ) 	of t'ment 
'Yo 	5000 stems 	 ($ha-1) 

($ha1) 

L.scoparium 
control 0.61 91 n.a. 91 
Ad.1 1.41 39 270 309 
Ad.2 1.62 34 540 574 
Pg 2.08 27 57 84 
Leggots 1.62 34 n.a. 34 
mulch 3.18 17 645 662 

1 - The required number of stems per hectare were divided by the number of viable seeds 
per kilogram and multiplied by the seedling establishment percentage. The resultant 
'number of kilograms of viable seed of a given provenance required to produce 5000 seedlings 
in the field for a particular treatment' was costed at the average seed cost of $100 kg-1 . 

2 - The cost of material requirements per hectare were calculated as follows; 

control: 	 n.a. 

Adherent (Adl) : 	30kg x $9kg-1  = $270 G - Tac adherent) 

Adherent (Ad2) : 	60kg x $9kg-1  = $540 (J - Tac adherent) 

Paper glue (Pg) : 	$52 (PVA); 2 straw bales ($2.50 bale -1) 45; newspaper = $0 

Leggot's spear (L): 	n.a. 

mulch (M): 	150 straw bales ($2.50 bale -1) = $375; 30kg x $9kg -1 = $270 U  - 
Tac adherent) 
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author does not know of the use of J-tac TM  outside of the landscaping 

industry. The paper-glue method is, to the author's knowledge, novel. 

L. scoparium 

Both the mulch (M) and the paper-glue (Pg) treatments resulted in 

significant increases in L scoparium seedling establishment in comparison 

to the control (C). The response is likely to be due to improved seed 

lodgement and more favourable seed microsites. After setting, the 

combination of straw and adherent in the mulch (M) treatment formed a 

rigid, surface-covering straw 'mat'. The mat provided protection from 

rain-splash, surface wash and environmental extremes. The artificial 

organic seedbed may have partially mimicked those supporting seedlings 

naturally. 

In the paper-glue (Pg) treatment, shreds of paper with seed adhered to its 

surface stuck to the soil surface. This assisted seed lodgement. As the 

treatment added no bulk organic matter, however, it is less likely that L. 

scoparium seed in the Paper-glue (Pg) treatment benefited from 

improvements in the microsite environment. The treatment appeared 

well suited to the exceptionally small seed of the species. 

The two treatments were, however, not ideal. Straw from the mulch (M) 

treatment and paper shreds from the Paper-glue (Pg) treatment were 

removed from sections of many plots by wind action. A number of the 

mulch (M) treatment plots lost up to half of their straw within the survey 

period. The microtopography of each plot appeared to be important in 

the retention or loss of treatment materials. 
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None of the remaining treatments provided an improvement in the 

seedling establishment percentage for this species. This may have been 

due to a dissipation of the binding agent in the absence of structural 

material or, in the case of the Leggot's spear treatment, dimensionally 

inappropriately microsites in relation to the size of the seed. 

Acacia species 

Both the mulch (M) and the Leggot' spear (L) treatments resulted in 

improved A. mucronata and A. verticillata seedling establishment 

percentages. In contrast, however, none of the treatments resulted in 

significant increases in seedling establishment for A. melanoxylon in 

comparison to the controls. 

In the case of the mulch (M) treatment, the response is likely to be due to 

improved seed lodgement and more favourable seed microsites. Seedling 

losses due to low surface humidity and post-germination dessication may 

have been avoided. The comparatively large seed size of Acacia was 

apparently well suited to the dimensions of the cavities formed by the 

Leggot's spear (L) treatment. Seed washed into the cavities was back-filled 

by eroded mineral soil. This resulted in seed burial and provided a suitable 

germination environment. 

The Acacia seedling establishment percentages achieved by the Leggot's 

spear (L) and mulch (M) treatments on steep slopes were comparable to 

those achieved by the same species in the mechanical rip and roller-aerate 

seedbed treatments evaluated under similar field conditions in Chapter 

6. 
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Treatment costs 

The cost of seed and materials to establish 5000 seedlings per hectare were 

calculated for each of the treatments under examination. The costing did 

not, however, include labour, as this varied with the site and resources 

available on site. The following discussion relates only to those species 

displaying a significant response to treatments in comparison to the 

controls. Non-significant treatments for example, such as the Leggot's 

spear treatment with L. scoparium cannot be considered reliable estimates 

of establishment costs. 

The most cost-effective 'steep slopes' treatment for two of the three species 

of Acacia was the Leggot's spear (L) treatment. This was the result of 

relatively high seedling establishment percentages for each species with 

negligible material costs. Seed costs for the Leggot's spear treatment ranged 

from $55 hat  to $62 ha"1  for A. verticillata and A. mucronata, respectively. 

In comparison, the establishment of 5000 seedlings of each of the above 

species using the mulch (M) treatment cost $649 and $683 ha', respectively. 

These treatments could only be justified in exceptional circumstances. 

For A. melanoxylon, the control treatment (C) resulted in excessively 

high establishment costs ($2150 ha -1). The high cost of establishing some 

species, such as A. melanoxylon, may best be overcome with tube stock. 

The most cost-effective treatment for L. scoparium was the paper glue 

(Pg) treatment ($84ha-1). This treatment was much less expensive than 

the next most cost-effective, the mulch (M) treatment ($662ha -1). The 

treatment was, however, only marginally cheaper than control (C) 

treatment. If labour costs were added, it is doubtful whether this treatment 

could be justified. Year-round availability, and comparitively low seed 
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collection costs, suggest that this species may be suited to aerial sowing 

with little or no ground preparation. 

7.6 Conclusions 

The difficulty of establishing vegetation by broadcast methods at degraded 

sites with seedbeds offering low surface stability and few germination 

opportunities is compounded by steep terrain and regions of high annual 

rainfall. Mechanical soil stabilization methods may be inappropriate. In 

this chapter, the germination and establishment of local, colonising species 

on steep, eroded slopes was compared to establishment following 

minimum-impact methods of seedbed preparation and seed application. 

The treatments included a nursery crop, mulching, two applications of a 

stabilizing agent, a seed-paper amalgam and manual working. 

Three of the treatments, the paper-glue (Pg), the Leggot's spear (L) and 

the mulch (M) treatment, were beneficial to the establishment of one or 

more of the colonising species. The responses were understood to be the 

result of improved seed lodgement and moderated environmental 

extremes. Treatments offering the highest seedling establishment were 

not necessarily the most cost-effective. 
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Chapter 8 

Conclusions 

8.1 Research summary 

Compositional trends and the edaphic environment 

The alterations caused by copper mining and smelting at Mount Lye11 

have been catastrophic, resulting in a much simplified near-smelter 

environment that bares little resemblance to the original. Soil and biotic 

diversity, known and unknown, have been lost leaving exposed subsoils 

that are unfavourable to colonisation and growth. Although on-site 

smelting ceased in 1969, recovery appears artifically slow. 

Massive and extensive soil losses typify Mount Lye11. Despite these losses, 

and the likelihood of contaminant redistribution, the present-day chemical 

characteristics of the Mount Lye11 subsoils reflect a history of acid and 

metal-particulate deposition. Metal distribution patterns suggest Cu and 

Zn deposition and Al mobilization, with Cu concentrations elevated near 

the smelters but declining rapidly with increasing displacement. This type 

of concentration-displacement pattern mirrors those found in the vicinity 

of other base-metal smelters of world renown. However, similar 

comparisons suggest that contemporary Cu concentrations at Mount Lye11 

are an order of magnitude lower and far less extensive than those elsewhere. 

248 



Ch. 8/Conclusions 

Never the less, Cu and Al concentrations that exceeding those known to 

cause growth abnormalities in seedlings of woody plants were recorded in 

the vicinity of the smelters. 

It has long been understood that plant species, and even genotypes, may 

differ in their susceptibility to particular forms of environmental stress, 

and may therefore exercise a different effect upon vegetation composition 

(Grime, 1979). A consequence of this is that vegetation development may 

be inhibited by environmental stress (Grime, 1979). While the causes of 

environmental stress, defined as external constraints which limit plant 

growth, are commonly complex due to the manifold and inter-active nature 

of the environment, residual soil contamination resulting from the 

deposition of smelter emissions creates extra-ordinary stresses upon plants 

colonising disturbed areas. 

At Mount Lye11, the closure of the smelters presented an opportunity to 

pre-adapted, colonising species. However, residual, and spatially discrete, 

metal contamination has contributed to environmental stress, and this 

has dominated the pattern of natural colonisation and vegetation 

development by providing a strong, selective gradient. This is reflected in 

the formation of distinct, zonal vegetation groups by colonising species of 

varying metal tolerance. Typically, the composition of these groups was 

aberrant and lacking in species richness. Vegetation zonation was 

understood to be the result of spatial shifts in the dominance of tolerant 

species. It is believed that shifts in dominance will continue to occur, albeit 

artificially slowly, with time. 
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Rehabilitation methods 

Seedling growth, in pot and field trials, measured plant tolerance to soil 

metals along a concentration gradient. In general, tolerance varied with 

displacement from the smelters. The trials indicated that severe phytotoxic 

symptoms in colonising species are linked to elevated soil Cu concentrations. 

Aluminium phytotoxicity, however, is unconfirmed. 

Lime amendment was used in an attempt to ameliorate metal-related, soil 

phytotoxicity. In pot trials, seedlings of colonising species benefited with 

fewer toxicity symptoms and increased biomass. Field amendments are 

generally benificial, but hampered by the the limitations of surface 

applications. At Mount Lye11, neutralising amendments have potential for 

the control of pH and metal availability in the short-term. 

Harsh seedbed conditions as found at Mount Lye11 provide unfavourable 

circumstances for the germination and establishment of broadcast sown 

seed. Mechanical seedbed preparation improves seedling establishment for 

hard-seeded species by providing lodgement and favourable microsites. 

For these species, seedbed preparation assists the cost-effectiveness of 

broadcasting as a means of species introduction. Other species may not 

respond to mechanical seedbed preparation. 

Steep terrain and low surface stability provides restricted opportunities for 

mechanical seedbed preparation. Minimum-impact methods of seedbed 

preparation and application differ in their effectiveness by species. 
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Treatments offering the highest establishment are not necessarily the most 

cost-effective as material costs vary markedly. 

8.2 The future of restoration and neglect 

The pre-European vegetation of Mount Lye11 cannot be restored. Unlike 

many rehabilitation works, soil replacement, perhaps the easiest means of 

rehabilitation, and regaining diversity, is not feasible due to prohibitive 

costs. 

If Mount Lye11 cannot be restored, what is its future? What would be the 

outcome of neglect? This thesis has provided some of the answers. Natural 

colonisation over the past 20 years has resulted in the re-invasion of a 

limited number of higher plant species. The occurrence of vascular plants 

in the new community appears to be largely a result of varying resistance 

to soil Cu. Varying resistance to Cu is primarily responsible for the formation 

of distinct, spatially-related vegetation groups. These floristically-

depauperate groups, provide partial cover. 

Over time, the presence of the new community offers a potential for 

improved site quality. Nutrients and organic matter should accumulate to 

form soils. Soil formation should reduce phytotoxicity and contribute to 

the re-establishment of ecosystem function. Such improvements in site 

quality are likely to permit invasion by less tolerant species. Growth rates 

should increase commensurately. However, significant improvements to 

site quality, sufficient to markedly increase species richness, abundance 
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and productivity, are unlikely in the near-future. Natural processes, such 

as the reversal of acidification and improved soil-buffering capacity, may 

require many tens of decades. 

The vegetation zone occupied by the Agrostis grassland group is a case in 

point. Neglected, the residual phytotoxicity is likely to maintain a zone of 

depauperate vegetation well into the next century. 

8.3 A strategy for rehabilitation 

Although it has not been the objective of this thesis to explore every 

known rehabilitation method - though more than reported here have 

been the subject of preliminary trials - I wish to provide an example of a 

an appropriate rehabilitation strategy for Mount Lye11. It is not the only 

suitable strategy. It should also be noted that any prescription must be 

location appropriate. The zones identified in the vegetation classification 

provide a starting point. Again, I will refer to the Agrostis grassland zone. 

Most of the Agrostis grassland zone is relatively steep, erodible and 

phytotoxic. The zone can be subdivided topographically into ridges, mid-

slopes and drainage lines. Rehabilitation of the ridge-lines would, with 

time, provide a source of propagules and organic matter to the mid-slope 

areas. The rehabilitation of these relatively small areas would contribute 

to on-going site amelioration and lower-slope colonisation. 

Rehabilitation of the ridgelines could be achieved in a number of ways. 
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Two examples are given. The ridgelines at Mount Lye11 permit mechanical 

access for seedbed preparation and broadcast sowing. Only resistant species 

with seed available in quantity should be selected. Mechanical seedbed 

preparation should aim to provide seed micro-sites without sacrificing 

surface stability. Elsewhere, a low-impact method of seed bed preparation 

could be used on inaccessible terrain. The application of a soil-neutralising 

agent would assist the establishment of seedlings of resistant, colonising 

species. Acacia mucronata provides a good example of a nitrogen fixing, 

resistant species with a life-span measured in decades. Subsequently, the 

appropriate application of fertilizers might prove beneficial. However, 

extreme caution must be used in order to avoid the leaching of nutrients 

and downstream pollution. Aerial applications of fertilizers are not 

recommended. 

Alternatively, the ridgelines could be ripped and planted to stock of resistant 

species. In conjunction with rabbit control, survival rates could be expected 

to be high. At planting, nutrients as pellets could be applied sub-aerially. 

Tree guards and weed mats are not considered necessary. 

Other methods of seedling establishment are expected to have limited 

application. Sub-soiling might provide a means of gaining rapid growth, 

in especially unfavourable sites. The method, however, would require 

good machine access and care would be needed to avoid the importation 

of weeds. The application of sewage should be investigated. The cost of soil 

importation, even in relatively small quantities, can be expected to be 

high. Terracing and bagging with a soil/seed mixture might prove 
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appropriate in the steepest and most inaccessible of sites. However, the 

results of a preliminary, terracing trial at Mount Lye11 were not encouraging. 

The tolerant species, Agrostis capillaris, should be encouraged to further 

colonise the mid-slopes. Observations of fenced plots suggest that this could 

be achieved by reducing browsing through rabbit control. Fencing may 

assist. Further work is needed to establish the conditions required for field 

germination of this species under harsh or contaminated conditions. 

Drainage lines in the zone are being adequately colonised by the rush, 

Restio tetraphyllus. There are some examples where rush colonies have 

facilitated later introductions. Attempts to germinate and transplant (open-

rooted) this species have failed. 

In 1993, mismanagement, community attitudes and political gain combined 

to stop all rehabilitation work at Mount Lye11. I hope this thesis provides 

inspiration to those that follow. 
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Appendices 

Appendix 1: The Superworm Soil Aerator 

The Superworm Soil Aerator is manufactured by M and M Hedgus Pty. 

Ltd., General Engineers, 8-10 Forest Street, Colac, Victoria 3250. The 

manufacturers claims for the Superworm are improved soil aeration, relief 

of soil compaction, improved pasture root systems and internal drainage, 

reduced reaction time of applied lime and fertilizer while retaining soil 

structure; all without creating 'erosion channels or disturbing roots and 

rocks. Reconditioned roller-aerators sell for approximately $5 000 to $6 000. 
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Appendix 2: J - Tac R  

J-TacR  was supplied by Field Air (Ballarat) Pty.Ltd. under the product name 

Plantac. It is made by the Reclamare Company, Seattle,WA. as an organic 

hydrocolloid. Its makers say that it is a "complex formulation of high 

quality polysaccharides and other linear polymers of high molecular 

weight". Among its claimed properties are a mulch, seed and soil stabilizer. 
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Appendix 3: 'Steep slopes' treatment specifications 

NB. All treatments received ground calcitic lime at the rate of 4000 kgha -1  prior to seedbed 

preparation and seed application. 

1) Cover crop (CC) 

Seedbed preparation and seed application 

The seed mix was broadcast sown. The soil was surface sprayed with binder (J-TacR) mixed 

at 3 gL-1  and applied at the rate of 1 Lni2. One half of the binder by volume was applied to 

the soil surface prior to sowing and the remainder applied immediately after sowing. 

, 

Seed mix 

species 	sowing rate (kgha-1 ) 

Medicago sativa 	 20 

cv. alsike 

Lolium perenne 	 20 

cv. concord 

Agrostis capillaris 	 1.75 

cv. Mt.Lyell 

2) Leggot's spear (L) 

Seedbed preparation and seed application 

Twenty four evenly spaced soil surface 'perforations (2.5x5 cm deep) per rri were made 
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manually using a Leggot's spear. The seed mix was broadcast sown. 

Seed mix: 

Species 	 Sowing rate (kgha-1 ) 

A. melanoxylon 	 80 

A. mucronata 	 60 

A. verticillata 	 47.5 

L. scoparium 	 82.5 

3) Adherent 1 (Al) 

Seedbed preparation and seed application 

The soil surface was sprayed with binder mixed at 3 Ol and applied at the rate of 1 Lm-2. 

One half of the binder by volume was applied to the soil surface prior to sowing. The seed 

mix was then broadcast sown. The remaining binder was applied immediately after sowing. 

Seed mix: as for #2 

4) Adherent 2 (A2) 

Seedbed preparation and seed application 

The soil surface was sprayed with binder mixed at 3 gU l and applied at the rate of 2 Lm-2. 

One half of the binder by volume was applied to the soil surface prior to sowing. The seed 

mix was then broadcast sown. The remaining binder was applied immediately after sowing. 
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Seed mix: as for #2 

5) Mulch (M) 

Seedbed preparation and seed application 

The soil surface was sprayed with binder mixed at 3 gU l and applied at the rate of 1 Lin-2. 

One half of the binder by volume was applied to the soil surface prior to sowing. The seed 

mix was then broadcast sown and the soil surface spread with straw (2000 kgha-1  or 150 

square bales). The remaining binder was applied after mulching. 

Seed mix: as for #2 

6) Paper glue amalgam (Pg) 

Seedbed preparation and seed application 

Seed mix and finely chopped straw (2 an long) sprayed with dilute PVA wood glue (2.5:1 

PVA to water) on a backing of newspaper. The seed/straw mix was allowed to dry and 

lightly broken up to permit even spreading during broadcast sowing. The soil surface was 

sprayed with binder mixed at 3 gl.: 1  and applied at the rate of 1 Lm-2. One half of the binder 

by volume was applied to the soil surface prior to sowing. The seed mix was then broadcast 

sown. The remaining binder was applied immediately after sowing. 

Seed mix: as for #2 
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7) Control (C) 

Seedbed preparation and seed application 

Seed mix broadcast sown on unprepared ground. 

Seed mix : as for #2 
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