
Archiving RDF Data in Relational Databases

By

Darning Chu, BComp

A dissertation submitted to the School of Computing in partial

Fulfillment of the requirements for the degree of

Master of Computing

University of Tasmania
(NOV, 2011).

1/53

Abstract

RDF has become the de-facto standard for the representation and exchange of

information. It is not only used for representing the context of Linked Open

Data and semantic-Web, but also used as to publish structured data in science

and business. It is also the driving force behind the increasing research interest

in RDF data management. RDF is the data format for publishing liked data,

and links between databases are based on database state. Failure to maintain

the history of a database may lead to loss of evidence for links. In addition,

regarding storage and querying, it is not reasonable to simply keep all the

database versions. Therefore, this paper will develop specialized archiving

technologies.

This paper have compared existing archiving techniques and the approaches

of store RDF in relational databases, and based on one of existing approach,

the paper developed two solution of archiving RDF data in relational

databases. Also, in order to track the history of changes to the data, the paper

proposes the strategies to extend existing methods for storing RDF in

relational databases. For each of strategy, the paper present the efficient way

for updating and archiving RDF data. Based on the strategies, the paper

develops approaches about how to query these data. At last, there are

evaluations of the proposed methods via different experiments

2 / 53

1. INTRODUCTION

With the rapid growth of the semantic web, a great deal of resource

description framework (RDF) data has been created and published for

knowledge sharing and information searching. According to the definition

from the World Wide Web Consortium (W3C), RDF is a language which has

been designed as a flexible representation of information about resources in

the World Wide (RDF Primer 2004). Examples include representing

information about published CDs (e.g., artist, country, company, price, year)

in a web-accessible collection, or descriptive information about a user's

preference for the CD's style. Recently, RDF has gain momentum in the

context of Linked Open Data (LOD) and the Semantic-Web, where it is used

to publish structured data in domains like life sciences and environmental

monitoring, as well as in supporting Web 2.0 platforms. The RDF (Resource

Description Framework) is increasingly becoming the de-facto standard for

the representation and exchange of information (Duan et al 2011). It is

obviously that in the recent Linked Open Data (LOD) initiative where the data

from various domains such as geographic locations, people, companies, books,

films, scientific data (genes, proteins, drugs), statistical data are interlinked to

provide one large data cloud (Duan et al 2011). The cloud has around 200 data

sources which have contributed a total of 25 billion RDF triples until of

October 2010. RDF are used for many large companies and organizations as

the business data representation format, either for search engine optimization,

better product search semantic data integration, or for representation of data

from information extraction. RDF is also used for Google and Yahoo to

optimize search engine, there is a clear incentive for its growth on the web.

For example, in E-science, there is an increasing support for RDF as an

import/export format. In the area of life sciences, RDF also has been selected

for data extractions. Finally, Web 2.0 platforms for online communities are

considering RDF as a non-proprietary exchange format and as an instrument

for the construction of information mash-ups (Neumann & Weikum 2009).

In RDF, all data items are represented in the form of (subject, predicate,

object) triples (Klyne & Carroll 2004). Here are some examples from the CIA
3/53

World Factbook. The World Factbook (ISSN 1553-8133; also known as the

CIA World Factbook) is a reference resource produced by the Central

Intelligence Agency of the United States with almanac-style information

about the countries of the world (CIA 2010). The Factbook is available in

HTML format, which is partially updated every week. It can be downloaded

for use off-line. It provides a two- to three-page summary of the demographics,

geography, communications, government, economy, and military of 267

entities including U.S.-recognized countries, dependencies, and other areas in

the world. It is frequently used as a resource for academic research papers.

This paper also uses the CIA Factbook as the dataset for experimental

evaluation. RDF can be used to describe a fact like population information for

a given country from the Factbook database. For instance, current population

information about Australia can be described by using the following triples

(subject, predicate, object):

• (Australia, Type, Country)

• (Australia, hasCategory, People)

• (People, hasProperty, Population)

• (Population hasValue, 21,262,641)

If translating the examples as a graph, it would be shown as Figure 1:

4 / 53

hasCategory. hasPropetty,

type.

/hasValue,

41114
Figure 1 the fact of Australian population translate RDF triples into graph

The Australian Bureau of Statistics may want to query information about

Australian population; however, with the current practice of overwriting the

current database state whenever a new version is published, it is difficult to

find out about the population of a specified year (say 2009) or how the

population has changed since 2001. In order to be able to keep track of

Australian population we will have to maintain all the past versions of the

database. The same is true for scientific data, and the ability to store all the

previous versions of a database is especially important for scientific data

(Buneman et al 2004). Many science experiments are based on particular

versions of public available databases. Failure to maintain the history of a

database may lead to loss of scientific evidence as the versions may be lost

and scientific findings cannot be verified later on. Therefore, maintaining all

the history of data is important. Given the increased popularity of RDF, the

goal of this project is to explore efficient and scalable ways for storing RDF

data.

5/53

Since RDF data has become mass data, a significant problem that needs to be

addressed is how to efficiently store and query large archives of RDF

databases. Obviously, it is not reasonable to simply keep all the database

versions. Since the RDF data will be increasingly large, completely storing all

the versions is not an efficient approach regarding storage space. Additionally,

when querying the database, it may cause some performance problems.

Assume that all the previous versions of the database are stored in separate

files. If someone wants to retrieve Australian population history, firstly, he has

to scan through all these files. Secondly, he has to find population record,

identify whether it has changed, and then present the result to the user. The

advantage of the system that we are proposing is that this task can be done

using a SPARQL query. It will be much easier for the user to get the history of

Australian population.

2. RELATED WORK AND LITERATURE REVIEW

2.1 EXISTING ARCHIVING TECHNIQUES

There has been considerable research on RDF data querying and storing:

Since scientific data is held in a hierarchical format and has a key structure, so

[7] have utilized these features to develop an archiving technique. Archiving

plays a significant role on scientific data with the function of recording all

past versions of database to assist in verifying findings grounded on a specific

version. Much scientific data is stored in a hierarchical format as well as in

possession of key structure which is used to offer a canonical identification for

each element of the hierarchy. In this research, based on these properties, an

archiving technique that is not only efficient in its making use of space, but

also maintains the continuity of elements by versions of the databases has

been developed, all of which is not offered by the traditional

minimum-edit-distance diff approaches. However, timestamps is applied into

the approach. By merging all versions of data into one hierarchy, an element

that appear in multiple versions is recorded only once with the assistant of a

timestamp. Compared with the approaches that store a sequence of deltas

where it required undoing a large number of changes or significant reasoning

6/53

with the deltas, the archiving technique has capability that related with

offering meaningful change description by the way of identifying the semantic

continuity of elements as well as merging them into one data structure.

Besides that, the archive could ensure us easily answer certain temporal

queries such as restoring of any specific version from the store and seeking for

the history of an element. The archive that does not result in any significant

space has been proved by a suite of experiments. Besides that, considering

with utilization of XML format to represent hierarchical data as well as

resulting archive, it is obvious that XML could be regarded as significant tool

that directly applied on their archive, which is another helpful property of

their approach. One of most particular aspect is that an XML compressor is

applied into their archive and compresses archive outperforms compresses

diff-based repositories in space efficiency based on the results of their

experiments. Lastly, they also present how they can extend their archiving tool

to an external memory archive for higher scalability and introduce various

index structures that can further improve the efficiency of some temporal

queries on their archive.

[3, 9] have argued that there could be some problems, which was resulted by

storing a sparse data set (like RDF) in multiple tables. Consequently, storing a

sparse data set in a single table has been suggested while the complexities of

sparse data management can be handled inside an RDBMS with the addition

of an interpreted storage format (Chu, Beckmann & Naughton 2007). The

proposed format starts with a header which contains fields such as relation-id,

tuple-id, and a tuple length. When a tuple has a value for an attribute, the

attribute identifier, a length field (if the type is of variable length), and the

value appear in the tuple. The attribute identifier is the id of the attribute in the

system catalog while the attributes that appear in the system catalog but not in

the tuple are null for that tuple. The sparse data sets in a horizontal schema

can in general be stored much more compactly in the format by the reason that

the interpreted format stores nothing for null attributes. The resorting

retrieving the values from attributes in tuples is more complex, whereas the

storage of the interpreted format has benefits for sparse data. Actually, the

format is called interpreted by the reason that the storage system must
7/53

discover the attributes and values of a tuple at tuple-access time, rather than

using precompiled position information from a catalog, as the positional

format allows (Beckmann et al 2006). In order to deal with this problem, there

is a new operator (called EXTRACT operator) introduced to the query plans

to Prior to any reference to attributes recorded in the interpreted format and

returns the offsets to the referenced interpreted attribute values which is then

used to retrieve the values. Due to reliance on the number attributes stored in a

row or the length of the tuple, it is obvious that the Value extraction from an

interpreted record is a potentially expensive operation (Chu, Beckmann &

Naughton 2007). Besides that, once a query evaluation plan fetches each

attribute individually and uses an EXTRACT call per attribute, the record will

be detected for each attribute and will thus be very slow. Therefore, in order to

in order to save tirne, a batch EXTRACT technique is considered as an

effective method to allow for a single scan of the present values.

[26] have proposed a path-based relational RDF database. This approach

primarily emphasize on improving the performance for path queries by the

way of extracting all reachable path expressions for each resource and then

storing them. As a result of that, in opposed to the flat tripe stores or the

property tables approach, it is unnecessary to perform join operations. In this

approach, each subgraph is stored by applicable techniques into distinct

relational tables, which is following to separate the RDF graph into subgraphs.

To more exactly, all classes and properties are extracted from RDF schema

data, and all resources are also extracted from RDF data. There is a

corresponding relational table, which is used to store each extracted item that

assigned an identifier and a path expression (Matono et al 2005.

[37] have introduced the Hexastore RDF storage scheme with primary

emphasis on scalability and generality in its data storage, processing and

representation, which is based on the idea of indexing the RDF data in a

multiple indexing scheme. It could treat any RDF element and treats subjects,

properties and objects equally rather than discriminate against them. Without

doubt, there are special index structures that built around for each RDF

element type. Moreover, every possible ordering of the importance or

8/53

precedence of the three elements in an indexing scheme is materialized. Each

index structure in a Hexastore centers around one RDF element and defines a

prioritization between the other two elements (Weiss et al 2008). Two vectors

are associated with each RDF element (e.g. subject), one for each of the other

two RDF elements (e.g. property and object). In addition, lists of the third

RDF element are appended to the elements in these vectors. In total, six

distinct indices are used for indexing the RDF data. These indices materialize

all possible orders of precedence of the three RDF elements. A clear

disadvantage of this approach is that Hexastore features a worst-case five-fold

storage increase in comparison to a conventional triples table (Weiss et al

2008).

[39] have proposed to decompose RDF graph into a forest of semantically

correlated XML trees with two decomposition algorithms. They store them in

an XML repository and rewrite SPARQL queries into XPath/XQuery queries

to be evaluated in the XML repository. In order to achieve the aim of harvest,

such search power requires robust and scalable data repositories which are

used to store RDF data as well as support efficient evaluation of SPARQL

queries. The relation model and relational database technologies for these

tasks have become the primary basis for most of the existing RDF storage

techniques (Auer & Herre 2005). They either keep the RDF data as triples, or

decompose it into multiple relations. Once there is mis-match between the

graph model of the RDF data and the rigid 2D tables of relational model, it

will damage the scalability of such repositories and frequently renders a

repository inefficient for some types of data and queries. [39] propose to

separate RDF graph into a forest of semantically correlated XML trees, store

them in an XML repository and rewrite SPARQL queries into XPath/XQuery

queries to be evaluated in the XML repository. As analyzed above, this

research is with the purpose of discussing the basic idea of RDF to-XML

decomposition and the criteria of such decomposition in terms of correctness,

redundancy and query efficiency. After that, relied on these criteria, it will

propose two RDF-to-XML decomposition algorithms. Depended on the

results of experimental evaluation, it illustrates that compared to the existing

RDF techniques; their approach has the capabilities of improving the
9/53

efficiency of storage as well as query processing.

[11] have presented the function RDFMATCH of Oracle-based SQL table to

query RDF data. By effective utilization of rich querying capabilities of SOL

as well as seamless combination with queries on traditional relational data, the

results of RDFMATCH table functions could be further processed. The core

implementation of RDFMATCH query translates to a self-join query on

triple-based RDF table store. By the way of making use of B-tree indexes and

creating materialized join views for specialized subject property, the resulting

query could operate efficiently. Subject-Property Matrix materialized join

views is used with the aim of minimizing the query processing overheads that

are inherent in the canonical triple-based representation of RDF (Eugene et al

2005). Depending on the user demand and query workloads could hold out the

increment of the materialized join views. There is a special module which is

offered to analyze the table of RDF triples and estimate the size of various

materialized views, based on which a user can define a subset of materialized

views. For a group of subjects, the system defines a set of single-valued

properties that occur together. These can be direct properties of these subjects

or nested properties. A property pl is a direct property of subject xl if there is

a triple (xl, pl, x2). A property pm is a nested property of subject x 1 if there

is a set of triples such as, (x 1 , p 1 , x2), (xm, pm, xm+1), where m> 1. For

example, if there is a set of triples, (John, address, addrl), (addr 1, zip, 03062),

then the zip property is considered as a nested property of John (Eugene et al

2005).

2.2 STORING RDF AND APPROACHES FOR STORING

RDF USING RELATIONAL DATABASES

There are several approaches to storing RDF data:

• Keeping RDF data in RAM. It is efficient but just can tackle small data

due to the limitation to the storage capacity. In addition, keeping RDF data in

RAM cannot store data persistently, that is, the data will get lost once the

system is down. Thus, this approach is only suitable for small—scale and

10 / 53

non-persistent data.

• Keeping data in files. This approach can read the data from files to RAM,

and then operate on the data in RAM, and write the updated data from RAM

back to files. The advantage of this approach is simplicity, but it is inefficient

because this approach needs to read and write files frequently (Brickley &

Guha, 2004). Moreover, it is also not appropriate for mass data manipulating.

• Keeping data in native XML/RDF databases. XML databases support

storing and querying data with a special XML/RDF format (Abadi et al 2007).

Since RDF's representation is based on XML syntax, RDF data can be saved

in XML database. The advantage is that XML databases start to become

powerful enough to maintain and large amounts of data. However, querying

these databases in general is inefficient and querying XML/RDF in particular

is not very user friendly.

• Keeping RDF in relational databases. Many researches have verified

that relational database management systems are very efficient, scalable and

successful in storing and querying RDF data. Since the RDF data can be

represented in the form of (subject, predicate, object) triples, these triples can

be stored in a relational database with an intuitive schema in a single table.

This table has three columns, subject, predicate and object. For instance, to

represent the fact that "Australian birth rate is 15births/1,000", we can use

triples:

• (Australia, Type, Country)

• (Australia, hasCategory, People)

• (People, hasProperty, Birth rate)

• (Birth, hasValue, 15 births/1,000 population)

The first advantage of this approach is that it allows storing and querying

large amounts of RDF data in an efficient way. The linked data initiative and

the semantic web will generate billions of triples in the near future and

relational database management systems by now are advanced enough to;

11/53

provide secure and reliable technologies to persistently store and manipulate

large amounts of RDF data.

The advantages regarding storage and querying large-scale data render

relational databases an ideal candidate for archiving RDF data. Relational

databases provide a scalable off-the-shelf solution to data storage and I

therefore will use relational databases to store and query RDF data.

There are some different ways of storing RDF data in a relational database.

[31] have presented a classification of the relational RDF stores:

• Triple (Vertical) Approach: Each RDF triple (subject, predicate, object) is

stored in a three-column schema directly.

Triple-stores have been developed using relational databases for a long time.

They are implemented in databases, with only three columns in a schema

corresponding to the three components of a RDF triple, respectively (Sintek &

Decker 2001). Triple-stores are easy to realize with relational technologies

and the schema has a simple and intuitive structure. However, since all data

are in one table, this causes many self-join operations when translating a

SPAQL query expression into a SQL query. Thus, querying data in databases

using the vertical triple-store approach can be inefficient. As a result, many

approaches try to overcome this limitation by creating the exhaustive set of

indexes and relying on fast processing of merge joins.

Subject Predicate Object

Australia hasName Australia

Australia type Country

Australia hasCategory People

People hasName People

People type Category

People hasPropeily Population

Population hasName Population

Population hasValue 16,923,478 (July 1990)

12 / 53

Population type 	Property

Table I: RDF triples-store in relational database

Table 1 shows that some RDF triples are stored in relational database by

triples-stroe approach, if someone wants to query the population of Australia.

In SPARQL, it would be:

PREFIX factbook: <http://www.csiro.au/au/CIAWFB/nsti>

SELECT ?pvalue

WHERE {

?country <factbook:type> <factbook:Country> .

?country <factbook:hasName> "Australia".

?country <factbook:hasCategory> ?people.

?people <factbook:hasName> "People".

?people <factbook:hasProperty> ?population.

?population <factbook:hasName> "Population".

?population <factbook:hasValue> ?pvalue

In SQL, it would be:

SELECT F. object

FROM rdfdataset as A, rdfdataset as B, rdfdataset as C, rdfdataset as D

rdfdataset as E, rdfdataset as F

WHERE

A.predicate = "hasName" AND

A.object = "Australia" AND

B.predicate = "hasCategory" AND

A.subject = B.subject AND

B.object = C.subject AND

C.predicate = "hasName" AND

C.object = "People" AND

D.subject = C.subject AND

13 / 53

D.predicate = "hasProperty" AND

D.object = E. subject AND

E.predicate = "hasName" AND

E. object = "Population" AND

E.subject = F.subject AND

Fpredicate = "hasValue";

Form the example, we can find out that the more triple patterns there are in

the SPARQL query the more self-joins are necessary in the corresponding

SQL query

[28] have described the RDF-3X (RDF Triple express) engine for querying

large-scale RDF data. With creating the exhaustive set of indexes and relying

on fast processing of merge joins, it tries to overcome the criticism that triples

storing may cause a large amount of self-joins. The physical design of

RDF-3x is based on regardless of workloads, and enable to eliminate the need

for physical design tuning. It does these by creating indexes over all 6

permutations {spo,sop,pos,pso,osp,ops} of the three dimensions that constitute

an RDF triple. In addition, indexes over count-aggregated variants for all three

two-dimensional and all three one-dimensional projections are building. Using

these 6 indexes is able to enhance the efficiency of querying data. Following

the RISC-style design philosophy (Chaudhuri & Weikum 2000), the query

processor relies mostly on merge joins over sorted index lists by using the full

set of indexes on the triple tables. The query optimizer depends on its cost

model that mostly focuses on join order and the generation of execution plans

and finding the lowest-cost execution plan. In theory, selectivity estimation

has a huge effect on plan generation. By virtual of this is a standard problem

in database systems, the schema-free nature of RDF data causes the problem

to more challenging.

RDF-3X makes use of dynamic programming for plan enumeration, with a

cost model based on RDF-specific statistical synopses.

It relies on two kinds of statistics (Neumann & Weikum 2009):

14 / 53

1) Specialized histograms which are generic and can handle any kind of triple

patterns and joins. The disadvantage of histograms is that it assumes

independence between predicates.

2) Frequent join paths in the data which give more accurate estimation.

During query optimization, the query optimizer uses the join path selectivity

information when available and otherwise assumes independence and use the

histograms information.

As a result, in the situation of uncompressed indexes, the overhead for data

storage is six times its original overhead, but it can change to double overhead

for data storage from sextuple.

• Property table stores: Multiple RDF properties are modeled as n-ary table

columns for the same subject.

Due to a large amount of shelf-joins involved in the Triples-store approach,

the researchers proposed two types of property tables to speed up queries over

the triple-stores.

Jena is an open-source toolkit for Semantic Web programmers (McBride

2002). It implements archiving RDF graphs using an SQL database through a

JDBC connection. The schema of the first version of Jena is combined by a

resources table (JENA API 2009), a statement table, and a literals table. The

statement table (Subject, Predicate, ObjectURI, ObjectLiteral) referenced the

resources and literals tables for subjects, predicates and objects and included

all statements. Two columns were used for differentiating literal objects from

resource URIs. The literals table contained all literal values and the resources

table contained all resource URIs in the graph (McBride 2002). However,

every query operation needed to multiple joins between the statement table

and the literals table or the resources table. To tackle with this problem, space

has been sacrificed to achieve for saving time in Jena 2. It uses a schema in

which resource URIs and simple literal values are stored directly in the

statement table. Column values are encoded with a prefix that indicates the

type of the value in order to distinguish database references from literals and
15/53

URIs. Literal values whose length exceeds a threshold such as blobs are stored

in a separate literals table. Likewise, long URIs is stored in a separate

resources table. By virtual of storing values directly in the statement table, it is

possible to run many queries without a join. However, since the same value

(literal or URI) is stored repeatedly, the schema uses up a large amount of

database space. The solution of increasing database space consumption is

using string compression schemes. Jena allows multiple graphs to be stored in

a single database instance. All graphs were stored in a single statement in

Jenal . However, because Jena2 is able to support the use of multiple

statement tables in a single database, applications can flexibly map graphs to

different tables. In this way, graphs may be stored by two ways, those are

often accessed together may be stored together, the others are hardly accessed

together may be stored separately (Sakr & AI-Naymat 2009).

Basically, applications usually have access patterns in which certain subjects

and/or properties are accessed together. For instance, a graph of data about

country might have many occurrences of objects with properties name,

location, population, climate that are referenced together. Jena2 uses property

table as a general facility for clustering properties that are commonly accessed

together (Guha 2001). A property table is a separate table that stores the

subject-value pairs related by a particular property. Another property table

stores all instances of the property in the graph where that property does not

appear in any other table used for the graph. In Jenal, each query is evaluated

with a single SQL select query over the statement table. In Jena2, due to there

can be multiple statement tables for a graph, queries have to be generalized

(Sakr & AI-Naymat 2009). Using the knowledge of the frequent access

patterns to construct the property-tables and influence the underlying database

storage structures can provide a performance benefit and reduce the number of

join operations during the query evaluation process. Table 2 illustrates the

example of property table store

Property table:

subject hasName type hasCategory

16/53

Australia Australia Country People

People People Category NULL

Population Population Property NULL

Othertriples table:

subject predicate object

People hasProperty Population

Population hasValue 16,923,478 (July 1990)

Table 2 : Property table store

Also, the SQL query for retrieving the population of Australia would be:

SELECT B. object

FROM Property as X Property as Y, Property as Z,

Othertriples as A, Othertriples as B

WHERE

XhasName = "Australia" AND

XhasCategory = Y.subject AND

Y.hasName = "People" 	AND

Y.subject = A.subject 	AND

A.object = Z.subject 	AND

Z.hasName = "Population" AND

Z.subject = B.subject

The most important advantage of the property tables is that they can reduce

subject-subject self-joins of the triples table.

However, the disadvantage of property tables is that RDF data usually not to

be very structured and not all the properties have been defined for every

subject listed in the table (Berners-Lee, Handler & Lassila 2001). The more

NULL values will exist in the table that is caused by the less structured the

data. In fact, these representations can be extremely sparse — containing

hundreds of NULLs for each non-NULL value. These NULLs impose a

17 / 53

substantial performance overhead.

The second problem with property tables is the abundance of multivalued

attributes found in RDF data (Abadi et al 2007). Multi-valued attributes are

surprisingly prevalent in the Semantic Web. In general, there always seem to

be exceptions, and the RDF data model provides no disincentives for making

properties multi-valued.

Multi-valued properties are problematic for property tables for the same

reason they are problematic for relational tables. They cannot be included

with the other attributes in the same table unless they are represented using list,

set, or bag attributes. However, this requires an object-relational DBMS,

results in variable width attributes. (Abadi et al 2007)

[25] have introduced another property table approach in relation with storing

RDF data without any assumption about the query workload statistics. The

primary objectives of this approach are (Levandoski & Mohamed 2009): (1)

reducing the number of joins operations which are required during the RDF

query evaluation process by storing related RDF properties together (2)

reducing the need to process extra data by tuning null storage to fall below a

given threshold. A tailored schema is offered to each RDF data set through

this approach, which represents a balance between property tables and binary

tables and is based on two main parameters: 1) Support threshold which

represents a value to measure the strength of correlation between properties in

the RDF data. 2) The null threshold which represents the percentage of null

storage tolerated for each table in the schema. Besides that, the approach

involves two phases: Clustering and partitioning. During the phase of

clustering, the RDF data are scanned to automatically discover r groups of

related properties. Based on the support threshold, each group of n properties

which are grouped together in the same cluster are good candidates to

constitute a single n-ary table and the properties which are not grouped in any

cluster are good candidates for storage in binary tables. The partitioning phase

is with the purpose of checking the formed clusters and balancing the tradeoff

between storing as many RDF properties in clusters as possible while keeping

18 / 53

null storage to a minimum based on the null threshold. One of the main

concerns of the partitioning phase is twofold (Levandoski & Mohamed 2009).

Firstly, it is necessary to ensure that no overlap exists between the clusters as

well as that the existence of each property should be in a single cluster.

Secondly, during the process of query, it is obvious to reduce the number of

table accesses and unions necessary.

In summary, while property tables can significantly improve performance by

reducing the number of self-joins and typing attributes (Theoharis,

Christophides & Karvounarakis 2005), they introduce complexity by requiring

property clustering to be carefully done to create property tables that are not

too wide, while still being wide enough to answer most queries directly.

Ubiquitous multi-valued attributes cause further complexity. In addition,

though property tables are very good at speeding up queries that can be

answered from a single property table; they require joins or unions to combine

data from several tables.

• Horizontal (vertically partitioned) table stores: RDF triples are modeled as

one horizontal table or a set of vertically partitioned binary tables (one table

for each RDF property)

[1] first presented the idea of using a fully decomposed storage-model to store

RDF data. In this approach, the triple table is rewritten into n two-column

tables where n is the number of unique properties in the data (Abadi et al

2007). All triples that have the same predicate are grouped in the same tables.

Thus the triples table will be partitioned into n two-column tables where n is

the number of unique properties in the data. In each of these tables, the first

column contains the subjects that define that property and the second column

contains the object values for those subjects while the subjects that do not

define a particular property are simply omitted from the table for that property.

In every two-column table, predicate is the name of the table, subject is the

first column and object is the second column. Each table is sorted by subject,

thus specific subjects can be queried quickly. In addition, since tables are

sorted by subject, fast merge joins are available to reconstruct information

19/53

Subject object

Population 16,923,478 (July 1990)

about multiple properties for subsets of subjects. For a multi-valued attribute,

each distinct value is listed in a successive row in the table for that property.

Moreover, optionally indexing the value column for each table is also feasible

(or a second copy of the table can be created clustered on the value column).

Table 3 shows the relational representation of vertically partitioned approach.

hasName:

subject object

Australia Australia

People People

Population Population

Type:

subject object

Australia Country

People Category

Population Property

hasCategory: 	 hasProperty:

subject object

Australia People

has Value

subject object

People Population

Table 3: vertically partitioned store

The SQL query for retrieving the population of Australia would be:

SELECT hasValue.object

FROM hasName, type, hasCategory, hasProperty

20/53

WHERE

hasName. object = "Australia"

AND

hasName. subject = hasCategory.subject

AND

hasCategory. object = hasName.subject

AND

hasName. object = "People"

AND

hasName.subject= hasProperty.subject

AND

hasProperty. object = hasValue.subject

AND

hasName. object = "Population";

The advantage of this approach is that each triple is (Sidirourgos et al 2008):

1). in the decomposed storage model, a multi-valued attribute has been no

longer a problem. Each distinct value is listed in a consecutive row in the table

for that property if a subject has more than one object value for a particular

property. For example: if Australia has 2 categories, the table would be:

Australia Economy

Australia People

2).Support for heterogeneous records. Subjects that do not define a particular

property are simply omitted from the table for that property. In the example

above, category Type is defined for one subject (Australia), the table therefore

can be kept small (NULL data need not be explicitly stored). The advantage

becomes increasingly significantly if the data is not well-structured.

Only those properties accessed by a query need to be read. I/O costs can be

substantially reduced.

Fewer unions and fast joins. Since all data for a particular property is stored in

21 / 53

the same table, union clauses in queries are less for using. Although the

vertically partitioned approach will require more joins relative to the property

table approach, properties are joined using simple, fast (linear) merge joins.

A disadvantage of this approach is that when querying several properties,

these two-column tables will be merged, so there are some costs for merge

join. Also, inserts can be slower into vertically partitioned tables, since

multiple tables need to be accessed for statements about the same subject.

Additionally, [33] have identified drawbacks for the vertically-partitioned

approach regarding complexity of generated SQL queries and query execution

efficiency. If a query is not isolated to access a predefined number of

properties, the SQL code becomes large and complex. It challenges the

capabilities offered by most optimizers. Moreover, if the property in a query is

bound to a variable, then the rows returned from each property table must be

union-ed. In the case where the property is not part of the result, then the

union operator must also perform a duplicate elimination. Finally, since the

data is not clustered on objects, a query which joins on objects, will not allow

the use of a fast (linear) merge join.

From [33]'s evaluations, they have compared the triple-store RDF storage

solution with the others approach, when they implemented using a

state-of-the-art commercial row-store engine, [33] conclude that once the

proper clustered indices are used, the triple-store performs better than the

vertically-partitioned approach and others. [33] shows that the

vertically-partitioned approach exhibits better query execution times with

column-store implementation. However, they present that if the number of

properties in an RDF data-set is high, there are potential scalability problems

for the vertically-partitioned approach. With a larger number of properties, the

triple-store solution manages to outperform other approaches on their

column-store implementation as well. Combined with the fact that other

approach is data-dependent, they show that the 3 column approach shows

good performance in most cases. In addition, 3-column approach is one of the

common methods to store RDF. Therefore, this paper's solutions are based on

3-column approach.

22 / 53

3 PROPOSAL

From the Section 2, we can conclude that the vertically partitioned table stores

causes complexity of generated SQL queries and query execution efficiency,

property table approach have NULL values problem — it will exist in the table

that causes substantial performance overhead, and 3-column approach have

the best performance in most cases. Therefore, the goal of this project is to

explore efficient and scalable ways for archiving RDF data using relational

database technologies.

Specifically, I will make the following contributions:

I) I will propose the strategies to extend existing methods for storing

RDF in relational databases in such a way that the history of changes to

the data can be tracked. The strategies will be easy to generalize----they

should not depend on a particular schema of the RDF data; the strategies will

have persistent structure----changing the structure of the RDF data will not

cause a change of the relational database schema, and efficient to query.

2) For each of proposed strategy I will describe how to update and

archive RDF data in an efficient way. In addition, I also intend to develop

approaches about how to query these data (in contribution 3)).

3) For each proposed extensions there has to be a method describing

how to translate queries into SQL queries of the respective schema. I will

be especially interested in answering three types of queries:

a) How did the data look like at a certain point in time (e.g. what was

Australian population salary in version 1 st March 2003?

For this question, the query can find Australian population in a given version

that was valid on 1 St March 2003.

b) How did the value of some object change (e.g. how did Australian

population change over the past 5 years?)

23 / 53

The answer should list all the population of Australia in past 5 years by

joining all the related versions.

c) What is the difference between two versions (e.g. the different between

version 65(2001) and version 67 (2003)).

Using these queries, one can query RDF data in relational database to track

how data changed and where or when a key fact happened.

4) The last part of my project will be an evaluation of the proposed

methods. The proposed methods will be evaluated regarding:

a) Storage space:

Large-scale data like library data will be used to evaluate the capacity of

storage, and compare with other approaches.

b) Efficiency of merging a new version into the archive:

Operations include bulk updates and single updates. The evaluation criteria

will be execution time and complexity of implementing the approach.

c) Query answering

This part evaluate the complexity of SQL statements to answer the queries

and how efficient (time) for the queries to be answered.

4 IMPLEMENTED APPROACH

Two solutions (4- and 5-column) are proposed which are based on 3- column

approach. Additionally, two RDBMS are used for implementation, namely

MySQL and PostgreSQL.

4.1 4-COLUMN SOLUTION

The idea of the 4-column solution is to add a fourth column for storing the

24 / 53

version info, and to introduce a "version_info" table for maintaining details of

individual database versions. Table 4 illustrates the solution.

RDFSET:

Subject Predicate Object Version

Australia/People/Birth rate has Value 14.43 births/I ,000 population 1

Australia/People/Birth rate hasValue 14.29 births/1,000 population 2

Australia/People/Birth rate has Value 14.13 births/1,000 population 3

Australia/People/Birth rate hasValue 13.99 births/1,000 population 4

Australia/People/Birth rate has Value 13.73 births/ 1,000 population 5

VERSION INFO:

Id available_time

1 1993 est.

2 1994 est.

3 1995 est.

4 1996 est.

5 1997 est.

Table 4:4-column solution for archiving RDF data

In 4-column solution, when merging a new version database into database, we

just need to create a new version id in VERSION_INFO table, and then insert

the new triples into RDFSET table with the new version id.

With this solution, users can query the history of data. For example, if

someone wants to query the Australian Birth rate in 1995, users query the

VERSION INFO to find out the corresponding id for 1995, and then they can

retrieve the birth rate in 1995.

The solution is a simple way to archiving RDF data; however, it has some

drawbacks. First, it has to store redundant triples, even the updating triples

25 / 53

have same subject, predicate and object with the triples in the archive, but in

4-column they are two different tuples with the different versions; second,

answering queries may become slower due to the size of the relation and the

necessary self-joins in the queries. Nevertheless, the solution offers a basic

idea for how to archive RDF data and track the data. Based on it, the

5-column solution is next proposed.

4.2 5-COLUMN SOLUTION

The main idea of the 5-column solution is to use two columns to indicate the

period when the triples are valid. Table 5 shows 5-column solution's table

structure.

RDFSETA:

Sub Pre Obj Startversion Endversion

Australia/People/Birth

rate

hasValue 12.26

births/1,000

population

16 16

Australia/People/Birth

rate

hasValue 12.14

births/1,000

population

17 17

Australia/People/Birth

rate

hasValue 12.02

births/1,000

population

18 18

Australia/People/Birth

rate

hasValue 11.9

births/1,000

population

19 20

Australia/People/Birth

rate

hasValue 12.55

births/1,000

population

21 22

Australia/People/Birth

rate

hasValue 12.47

births/1,000

population

23 -1

26 / 53

RDFSETV:

Sub Pre Obj

Australia/People/Birth rate hasValue 12.26 births/1,000 population

Australia/People/Birth rate hasValue 12.14 births/1,000 population

Australia/People/Birth rate hasValue 12.02 births/1,000 population

Australia/People/Birth rate hasValue 11.9 births! 1,000 population

Australia/People/Birth rate hasValue 12.55 births/1,000 population

Australia/People/Birth rate hasValue 12.47 births/1,000 population

VERSION INFO:

Id Available time

16 2004

17 2005

18 2006

19 2007

20 2008

21 2009

22 2010

23 2011

Table 5 5-column solution for archiving RDF data

This solution has two columns to identify the available time of the triples. For

example, the record from above (Australia/People/Birth rate, hasValue, 12.26

births/1,000 population, 16, 16) means this record was inserted into Database

from "16" (in accordingly VERSIONINFO table, it is 2005) and no longer

available from "17" (which means there was a newer record has updated

Australia/People/Birth rate with a new value); the record

(Australia/People/Birth rate, hasValue, 12.47 births/1,000 population, 23, -1)

means the record is available from version "23" and "4" means it is still

available now.

Since 5-column solution has 2 additional columns to indicate the period when

27 / 53

triples are valid, the first advantage of it is that it can reduce the redundant

triples. Compared with 4-column solution, 5-column does not have to store all

the triples which have same subject, predicate and object but different version

ids in table, 2 additional columns are able to identify the available period of

the triples. The second advantage of this solution is efficiency of querying. In

the 4-column solution, the query for a certain fact will be much slowly,

because there are numerous tuples have same subject, predicate and object.

But in 5-column solution, the querying has better performance than

4-column's due to reducing the superfluous triples.

To implement this solution, we need to create three tables in the relational

database schema. RDFDATASETA is the archival table, VERSIONINFO is

the version information table, and RDFSETV is the table that contains the

next version of the data. The records in RDFSETV are the data set which will

be inserted into RDFSETA. After transforming RDF data from XML/RDF,

N3 and TURTLE into (subject, predicate, object) format, the data are stored in

RDFSETV table. Before the records in the next database version (RDFSETV)

can be inserted into RDFSETA, information about the new version has to be

stored in VERSION _INFO. Therefore, a new id with current date is inserted

into VERSION INFO at first. The column "Id" in VERSION INFO is _ 	 VERSION_ INFO

 as an AUTO_INCREMENT (called in MySQL) or SERIAL (called

in PostgreSQL) column to store the new version information automatically. As

a result the next version id is created in the VERSION _INFO with the current

time before the next database version is inserted into RDFSETA.

4- and 5-column solutions include single operations and bulk insert. First,

single operations are used to update the data without RDFSETV. In this

scenario, the archive is updated directly using single triple modification

operation. These operations are insertSingelTriple, deleteSingleTriple and

updateSingleTriple. Second, in bulk insert, we consider the archive as a data

warehouse for versions. The data is maintained elsewhere and we want to

"dump" full versions of the data into the archive at certain points in time in

order to keep the history of the data. However, since 4-column as introduced

before, it is easy to implement, so this paper focus on the 5-column solution

28/53

implementation.

4.2.1 single archiving RDF data in RDBMS

In single operations, a triple does "not exist" means there is no tuple in the

current archival table that matches the triple on subject, predicate, and object

and that has an end-value of-I.

1) insertSingleTriple: insert a single triple into RDFSETA means a new

triple will be stored in the database with its corresponding version id. The first

step is to check whether the inserting record exists in the RDFSETA. So the

related method exist(Triple)'s SQL statement is as follows:

"SELECT COUNT (*)

FROM RDFSETA

WHERE

sub = Triple, sub AND pre = Triple.pre AND

obj = Triple.obj AND endversion = -1;"

If count (*) returns 0, a new version id will be created in VERSION INFO

and stored in a Java variable. The Java code for the related method

createNextVersion () code is:

String sql =

"insert into versioninfo (availabletime) values (current timestamp);";

st = conn.createStatement0;

st execute(sql, Statement. RETURN GENERATED_KEYS);

rs = stgetGeneratedKeYs0;

rs.next0;

nextversion = rs.getInt(1);

The third step to insert the single triple into Database with created version and

endversion-value of-i.

The related code of insertSingleTriple (Triple, start_version) is:

29/53

public void insertSingleTriple(Triple triple) (

if (!this.exists(triple," RDFSETA")) (

int version = this.createNextVersion();

this.insertTriple(triple, version);

}

}

Table 6 shows that table RDFSETA and VERSION INFO before and after _

insert the triple (Australia/People/Urbanization/rate of urbanization, hasValue,

1.2% annual rate of change)

Subject Predicate Object Start end

Australia/People/Birth

rate

hasValue 12.55 	births/1,000

population

21 -1

Id Available_time

1 1990

2 1991

... ...

21 2009

Table 6.1 before insert the triple, RDFSETA and VERSION_INFO

Subject Predicate Object Start end

Australia/People/Birth rate hasValue 12.55 births/1,000

population

21 -1

Australia/Urbanization/rate of

urbanization

hasValue 1.2% annual rate of

change

22 -1

Id Available_time

1 1990

2 1991

... ...

21 2009

22 2010

Table 6.2 after insert the triple, RDFSETA and VERSION_INFO

2) deleteSingleTriple: the meaning of "delete" is a little bit different from
30 / 53

normal meaning of "delete" in database operation. The deleted records in RDF

archival table mean their information is no longer available, but in order to

track the history of data, we also need to keep them in Database. Similar to

insertSingleTriple, deleteSingleTriple also needs to check whether the triple

exists in the archival table; if yes, a new version id is created, and the

end-value of the deleting record is set to version_id — 1 by deleteTriple (Triple,

id). The corresponding SQL statement is as follows:

UPDATE RDFSETA SET endversion = id

WHERE

sub = Triple, sub AND pre = Triple.pre AND obj = Triple.obj;

To set the end interval to new version -1 is in the implementation of

deleteSingleTriple(), the Java code of deleteSingleTriple () is as follows:

public void deleteSingleTriple(Triple triple) (

if (this.existsle," RDFSETA ")) {

int version = this.createNextVersion0;

this.deleteTriple(trjple., version - 1);

Table 7 shows that table RDFSETA and VERSION INFO before and after

delete the triple in RDFSETA.

Subject Predicate Object Start end

Australia/People/Birth

rate

hasValue 12.55 	births/1,000

population

21 -1

Id Avai lable_time

1 1990

2 1991

... ...

21 2009

Table 7.1 before delete the triple, RDFSETA and VERSION_INFO

31 / 53

Subject Predicate Object Start end

Australia/People/Birth

rate

hasValue 12.55 	births/I,000

population

21 21

Id Available_time

1 1990

2 1991

... ...

21 2009

22 2010

Table 7.2 after delete the triple, RDFSETA and VERSIONINFO

3) updateSingleTriple: update the triple is that there is an existing triple in

archival table, it needs to insert a new triple with same subject, predicate and a

different object. Thus, there are two steps to implement the function. First the

triple is deleted by deleteSingleTriple, after that, the triple with new object's

value is inserted into RDFSETA by insertSingleTriple. The method code is:

public void updateSingleTriple(Triple oldTriple, Triple newTriple) (

if ((this. exists (oldTriple," RDFSETA '))

&&(! this. exists (newTriple, " RDFSETA'))) (

int version = this.createNextVersion();

this.deleteTriple(oldTriple, version - 1);

this.insertTriple(newTriple, version);

Table 8 shows that table RDFSETA and VERSION INFO before and after

update the triple (Australia/People/Birth rate, hasValue, 12.55 births/1,000

population) with (Australia/People/Birth rate, hasValue, 12.47 births/1,000

population) in RDFSETA.

Subject Predicate Object Start end

Australia/People/Birth

rate

hasValue 12.55 	births/I,000

population

21 -1

32 / 53

Id Available_time

1 1990

2 1991

... ...

21 2009

Table 8.1 before update the triple, RDFSETA and VERSION_INFO

Subject Predicate Object Start end

Australia/People/Birth

rate

hasValue 12.55 	births/1,000

population

21 21

Australia/People/Birth

rate

hasValue 12.47 	births/I,000

population

22 -1

Id Available_time

1 1990

2 1991

... ...

21 2009

22 2010

Table 8.2 after update the triple, RDFSETA and VERSION_INFO

4.2.2 bulk archiving RDF data in RDBMS (MySQL and PostgreSQL)

Bulk insert is to store the next database version (RDFSETV) into archive

(RDFSETA), and update existing triples in archive in order to track the history

of the data. In 5-column solution, author defined 3 operations to archive RDF

data.

1) Load data: RDF data is represented by XML/RDF, N3 and TURTLE

format [15], and inserted into table RDFSETV in MySQL or PostgreSQL.

Since the data set is huge, these inserts have started to become a bottleneck in

the bulk archiving RDF data. In [21]'s research, he indicate that people were

doing the classic batch inserts using a PreparedStatment and executeBatch on

MySQL. The inserts that was too slow, even after adding the parameter

rewriteBatchedStatements to users' JDBC URL. Fortunately, MySQL

Connector/J 5.1.3 and later include two additional methods:
33 / 53

MySQL. The inserts that was too slow, even after adding the parameter

rewriteBatchedStatements to users' JDBC URL. Fortunately, MySQL

Connector/J 5.1.3 and later include two additional methods:

setLocalInfileInputStream() sets an InputStream instance that will be used to

send data to the MySQL server for a LOAD DATA LOCAL INFILE

statement rather than a FileInputStream or URLInputStream that represents

the path given as an argument to the statement (MySQL API 2010).

This stream will be read to completion upon execution of a LOAD DATA

LOCAL INFILE statement, and will automatically be closed by the driver, so

it needs to be reset before each call to execute*() that would cause the

MySQL server to request data to fulfill the request for LOAD DATA LOCAL

INFILE (MySQL API 2010).

getLocalInfileInputStream() returns the InputStream instance that will be used

to send data in response to a LOAD DATA LOCAL INFILE statement.

Figure 2 (cited from [21]) shows the results of compared LOAD INFILE with

BATCH INSERT.

90,000

110.000 •-

■
70,000 "

60,000

I 50.000

40.000

30,000

20.000

10.000 •

0

Load Wile vs Batch Insert

- LOAD [WILE

- BATCH INSERT

Rows Inserted

Figure 2 LOAD INFILE with BATCH INSERT

Therefore, on MySQL, the load data code is as follows:

34 / 53

else (

is = new FilelnputStream(/Ile);

st.setLocalInfilelnputStream(is);

St. execute

("LOAD DATA LOCAL INFILE Yile.txt' INTO TABLE RDFSETV

(sub, pre, obj);");

Also, PostgreSQL has its own bulk insert method: copy data. The Java code

on PostgreSQL is:

File temp = new Filerd:Iltemp.txt ');

os = new FileOutputStream(temp);

byten b = new byte[l0 BUFFER_SIZE];

int read;

while ((read = is.read(b)) != -1) (

os.write(b, 0, read);

st.execute("COPY RDFSETV FROM 'd:Iltemp.txt");

2) Bulk insert: after loading the data into RDFSETV, the next step is to

merge the tuples into RDFSETA. For the tuples which exist in RDFSETV but

not in RDFSETA, they will be inserted into RDFSETA. The meaning of exist

here is the same as defined before, a tuple in the current database version that

matches the triple on subject, predicate, object and that has an end-value of -1.

Similar with single operations, before performing the insert operation, a new

version needs to be created and retrieved. The bulk insert method can be

implemented using different SQL statements (as shown below). The

differences and efficiencies among them are introduced in Section 5. The

tuples which will be bulk inserted can be illustrated by red part in Figure 3.

The bulk insert operations are "NOT IN", "NOT EXISTS" and "LEFT JOIN"

on MySQL, and it has an addition option "EXCEPT" on PostgreSQL

compared to MySQL.

"NOT IN" SQL statement is:
35 / 53

INSERT INTO RDFSETA

SELECT sub, pre, obj, version Id, -I FROM RDFSETV

WHERE

(RDFSETV.sub, RDFSETV.pre, RDFSETV.obj)

NOT IN

(SELECT RDFSETA.sub, RDFSETA.pre, RDFSETA.obj

FROM RDFSETA

WHERE RDFSETA .endversion = -1);

"NOT EXISTS" SQL statement is:

INSERT INTO RDFSETA (sub,pre,obj, start, endversion)

SELECT sub, pre, obj, version_id,-1 from RDFSETV

WHERE NOT EXISTS

(SELECT * FROM RDFSETA

WHERE

RDFSETA.sub = RDFSETV.sub AND

RDFSETA.pre = RDFSETV.pre AND

RDFSETA.obj = RDFSETV.obj AND

RDFSETA.endversion = -1);

"LEFT JOIN" SQL statement is:

INSERT INTO RDFSETA

SELECT RDFSETV.sub, RDFSETV.pre, RDFSETV.obj, version_id,-1

FROM RDFSETV

LEFT JOIN RDFSETA on

(RDFSETA.sub= RDFSETV.sub AND

RDFSETA.pre= RDFSETV.pre AND

RDFSETA.obj = RDFSETV.obj AND

RDFSETA.end = -1)

WHERE RDFSETA .sub IS NULL;

"EXCEPT" (EXCEPT only be supported by PostgreSQL) SQL statement is:

36/53

RDFSETA.obj = RDFSETV.obj AND

RDFSETA.end = -1)

WHERE RDFSETA.sub IS NULL;

"EXCEPT" (EXCEPT only be supported by PostgreSQL) SQL statement is:

INSERT INTO RDFSETA (select sub, pre, obj, versionid,-1

FROM

(SELECT sub, pre, obj FROM RDFSETV

EXCEPT

(SELECT 	RDFSETA.sub, 	RDFSETA.pre,

RDFSETA.obj

FROM RDFSETA

WHERE RDFSETA.endversion = -I)) as C);

Figure 3. The tuples will be bulk inserted (red)

3) Bulk delete: the records are deleted from RDFSETA exist in RDFSETA

but not in RDFSETV, that is to say. In Figure 4, the blue part represents the

records that need to be deleted.

37 / 53

NOT EXISTS

(SELECT * FROM RDFSETV

WHERE

RDFSETA.sub = RDFSETV.sub AND

RDFSETA.pre = RDFSETV.pre AND

RDFSETA.obj = RDFSETV.obj);

5 EXPERIMENT

5.1 EXPERIMENT GOAL

The Goal of the experiments is to test the solutions' storage space and

efficiency of adding a new version of the database to the archive

5.2 EXPERIMENTAL SETUP

The experiments have been implemented with different SQL statements,

different database configurations (on MySQL and PostgreSQL), and the

different datasets (i.e. FACTBOOK and GO).

5.2.1 DATASETS

This paper uses FACTBOOK as the experiment data set. The FACTBOOK

provides information on the history, people, government, economy, geography,

communications, transportation, military, and transnational issues for 267

world entities. Their Reference tab includes: maps of the major world regions,

as well as Flags of the World, a Physical Map of the World, a Political Map of

the World, and a Standard Time Zones of the World map [19]. In the

experiments, we use 100 version of the CIA Factbook in RDF format (starting

from 1990).

The Gene Ontology project is a major bioinformatics initiative with the aim of

standardizing the representation of gene and gene product attributes across

species and databases. The project provides a controlled vocabulary of terms

for describing gene product characteristics and gene product annotation data

38/53

from GO Consortium members, as well as tools to access and process this

data [14].In the experiments, we use 50 version of the GO in RDF format

(starting from 2009)

Figure 6 and 7 show the number of delete tuples, insert tuples and all the

tuples in archive after every RDFSETV version has been inserted into

RDFSETA (5-column solution), from the figure, we can find out that there are

increasingly bulk inserting and deleting operations in the first several versions

and gradually less in the other versions for Factbook dataset. Since the two

different datasets has similar performance, so this paper focuses on one of

result from the dataset, e.g. World Factbook.

5.2.2 MYSQL

Figure 5 shows the storage space statistics of 4- and 5-column solution. It

clearly shows that the one of 4-column solution's drawbacks is using huge

storage space to keep data's versions. Therefore, this paper's experiments are

related to 5-column solution.

On MySQL, Every type of SQL statement runs 3 times to get their average

number with creating different index on archive (RDFSETA).

Author has developed NOT IN, NOT EXISTS, LEFT JOIN approaches on

MySQL. With these different SQL statements, author tested the different

indexes like SPOE (subject, predicate, object, endversion), SPO, OPS, PSO as

well. In addition, it takes an unacceptable time if perform these SQL

statements without index on MySQL.

Table 9 is the time of import triples into Database, since the 5-column

solution running on MySQL always needs to create index, so the result is

calculated by the average of all the experiments. We will compare the loading

time on PostgreSQL (with index and without index) and on MySQL (with

index).

Load data 	Time

39 / 53

86226 (records) 9138 (ms)

Table 9 Load data on MySQL

The performances of 5-column solution with different SQL statements on

MySQL are unexpected, different indexes with different SQL statements have

similar time overhead. The reason for that is that when these three types of

SQL statements are running, MySQL always uses index to optimize the

queries. The results of time overhead with different SQL statements and

indexes on MySQL are shown in Table 10.

From the Table, we can find out that bulk insert with index SPO (subject,

predicate, object) has better performance than SPOE (subject, predicate,

object, end). The reason of that is with index SPOE, its longer index increases

the updating time. Also, it may conclude that bulk insert with index PSO is

better than SPO and OPS on MySQL because less index updating time spent.

Figure 8 and 9 show the insert time and merge time (insert time + delete time)

for NOT IN, NOT EXISTS and LEFT JOIN with index PSO on MySQL.

From the Figure 8 and 9, it can find out that LEFT JOIN has a little bit better

performance than the others. In addition, respect to Figure 5, it can find that

bulk insert operations' overhead increase quickly at first because there are

more deleting and inserting operations at the beginning.

40 / 53

0

8 1$ 22 29 36 43 50 57 64 71 78 85 92 99

1000000

900000

800000

700000

600000

500000

400000

300000

200000

100000

• delete

• insert

• triplesinDB

triples in DB

25C000011

20000000

15C00000

— 4-columns solution

— 5-columns solution

10000000

5000D00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 ver lion number

Figure 5. 4- and 5-column solution archive statistics on MySQL (FACTBOOK)

Figure 6 Dataset Statistics FACTBOOK

41 / 53

16000000 -

14000000 -

12000000 -

10000000 -

8000000 -

6000000

4000000

2000000 -

• insert

• delete

• TriplesinDB

0 	-11111/1,11111111111/111111111111111111111111111111

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Figure 7 Dataset Statistics GO

(ms) SPO SPOE OPS PSO

NOT IN 4057558 4213184 4331715 4160777

NOT

EXISTS
4020513 4239498 4380869 4097298

LEFT

JOIN
4118943 4261755 4251236 3950536

Table 10. Total time on MySQL statistic

(MS)

45000

40000

35000

30000

25000

20000

15000

10000

5000

0 •

NOT IN

NOT EXISTS

LEFT JOIN

1 (version number)

42 / 53

(MS)
25000

20000

15000

10000

5000

0

(4,voics6"2'

NOT IN

NOT EXISTS

LEFT JOIN

1111111111111111111111111111111111711 1111111111111111 llllllllll 11111111 lllllllllll 11111111111111111

7 11 19 25 31 37 43 49 55 61 67 73 79 85 91 97
(version number)

Figure 8. Merge time with index pso on MySQL

Figure 9. Insert time with index pso on MySQL

5.2.3 POSTGRESQL

On PostgreSQL, author implemented NOT EXISTS, EXCEPT, and LEFT

JOIN for 5- columns solutions.

Since querying with index PSO has the best performance on MySQL, the

experiment also uses this index on PostgreSQL to compare without index on

PostgreSQL.

As the shown from Figure 10 and 11, EXCEPT is much better than LEFT

JOIN and NOT EXISTS. In addition, no index on PostgreSQL manages to

outperform with index for bulk inserting of 5-column solution. Respect to

Figure 5, it also can find that at the beginning of bulk insert, the overhead

increase rapidly since much inserting and deleting operations.

43/53

NOT EXISTS

LEFT JOIN

EXCEPT
r 	

	ULL11_
-a 1.011.11111A1611411aani ALA

I W•

WI 111,1111111IIIIIIIIIIIIII111IIIIIIIIIIIMIIMIM (version number)
1 9 17 25 33 41 49 57 65 73 81 89 97

(MS)
25000

20000

15000

10000

5000

0

Figure 10.1 Insert time without index

(MS)

25000

20000

15000

10000

5000

0

NOT EXISTS

LEFT JOIN

EXCEPT

IIIIIIIIIIIIIIIIIT1llITITIMIIIITIIIIII11 lITIIII1IIIIII111I1IIIIIIIIITTIIIII111171111111111111111

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99(version number)

Figure 10.2. Insert time with index PSO

44/53

emit

"AO11111111,711 WTI II

NOT EXISTS
	-LEFT JOIN

EXCEPT

fr

lii 	liii liii 	Ill! liii iiill!!i Trill 	11111111 	I 	I 	ll 	T 	11111111 	11111111 Til I 	liii 	ill 	II

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 (version number)

III1III I1

fel 01 Ln 	r•-• rn 0r LI1 r-I N m 01 	 I rc inn
NIMM.7 .7 LA (.0 	NWMM

Y ir: - 4, 	A
• ,

(MS)
45000

40000

35000

30000

25000

20000

15000

10000

5000

0

NOT EXISTS

• LEFTJOIN

EXCEPT II VT 1.1111Perl w 'rigor

(M S)
45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Figure 11.1 Merge time without index on PostgreSQL

Figure 11.2 Merge time with index PSO on PostgreSQL

6 QUERY

In this section, the paper introduces three types of querying based on the

5-column solution. They are:

6.1 SNAPSHOT QUERY:

The query retrieves all the triples from one database version. In this query, we

retrieve a database version from the archive, we need to retrieve all the triples
45/53

that have an (start, end) interval which includes the version number we are

looking for. There are two types of this querying, for example, the query

which retrieves the history of a country and a query that retrieves the current

population of the country. The SQL statements for retrieving the history of

Australia in 2008 and the current population of Australia are:

The history of Australia in 2008:

SELCT B.subject, B.predicate, B.object

FROM RDFSETA as, A RDFSETA as B, VERSION INFO

WHERE

VERSION INFO.availabletime = "2008" AND

A.predicate = "hasName" 	 AND

A.object = "Australia" 	 AND

A.subject = B.subject 	 AND

B. start <= VERSION INFO.id 	AND

(B. end > = VERSION INFO.id 	OR

B.end = -I);

The current population of Australia:

SELECT F. object

FROM RDFDATASET as A, RDFDATASET as B, RDFDATASET as C,

RDFDATASET as D, RDFDATASET as E, RDFDATASET as F

WHERE

A.predicate = "hasName" AND

A. object = "Australia" AND

B.predicate = "hasCategory" AND

A.subject = B.subject AND

B.object = C.subject AND

C.predicate = "hasName" AND

C.object = "People" AND

D. subject = C. subject AND

D.predicate = "hasProperty" AND

D. object = E. subject AND

E.predicate = "hasName" AND
46/53

E. object = "Population" AND

E.subject = F.subject AND

F.predicate = "has Value" AND

Fend = -1;

6.2 DIFF QUERY:

The query retrieves all the triples that are different between two versions of

the archive. That is, all triples that are in version X but not in version Y will be

retrieved by SQL query, so we need to retrieve all the triples that have one

version but not the others.

The SQL statement is (say X<Y):

In X but not in Y:

SELCT RDFSETA.sub, RDFSETA.pre, RDFSETA.obj
FROM RDFSETA

WHERE
RDFSETA.start <= X AND
RDFSETA.end <=1'-1

In Y but not in X:

SELECT RDFSETA.sub, RDFSETA.pre, RDFSETA.obj
FROM RDFSETA

WHERE
RDFSETA.start > X AND
(RDFSETA.end = -.1 or RDFSETA.end >= Y)

6.3 TEMPORAL QUERIES

This type of query is able to query how a certain 'fact' or object changed over

time, for instance, how did the population of Australia change? We need to

find all the triples that have an (start, end) interval which locates the given

range.

SELECT Fobject

47/53

FROM RDFDATASET as A, RDFDATASET as B, RDFDATASET as C,

RDFDATASET as D, RDFDATASET as E, RDFDATASET as F

WHERE

A.predicate = "hasName" AND

A. object = "Australia" AND

B.predicate = "hasCategory" AND

A.subject = B.subject AND

B.object = C.subject AND

C.predicate = "hasName" AND

C.object = "People" AND

D.subject = C. subject AND

D.predicate = "hasProperty" AND

D.object = E. subject AND

E.predicate = "hasName" AND

E.object = "Population" AND

E.subject = F subject AND

Fpredicate = "has Value" AND

(F start <= A.start AND

(Fend = -1 OR Fend >= A.start) OR

A.start <= Estart AND

(A. end = -1 OR A. end > = Fstart)) AND

(Fstart <= B.start AND

(Fend = -1 OR Fend >= B.start) OR

B.start <= Fstart AND

(B.end = -1 OR B.end >= Fstart)) AND

(F start <= C. start AND

(Fend = -1 OR Fend >= C.start) OR

C.start <= Fstart AND

(C.end = -1 OR C. end > = Fstart)) AND

(F start <= D. start AND

(Fend = -1 OR Fend >= D.start) OR

D.start <= Fstart AND

(D.end = -1 OR D. end > = Fstart)) AND

(F start <= E.start AND
48 / 53

(Fend = -1 OR Fend >= E.start) OR

E.start <= Fstart AND

(E.end = -1 OR E.end >= Fstart));

With start and end column, it is easy to query all the triples from one database

version (snapshot) and retrieve all the triples that are different between 2

versions (cliff). But it is complicated for querying how a certain fact has

changed (temporal) because it needs to identify different situation of the fact.

In addition, from the three types of queries, it can find out that the more triple

patterns there are in the SPARQL query the more self-joins are necessary in

the corresponding SQL query, it is also a drawback for 3-column approach.

7 COLUSIONS

In this paper, compared with existing archiving RDF data approaches, two

archiving RDF data in relational database solutions which are able to track the

history of changes to the data have been described. The experiments for the

5-column solution have demonstrated that the "EXCEPT" on PostgreSQL has

the best performance. Also, with 5-column solution it can be conclude that

PostgreSQL is more suitable for archiving RDF data than MySQL is. In

addition, based on 5-column solution, three different types of SQL queries

have been developed. The queries can be used for to retrieve the triples from a

certain version, to find the triples that have one version but not the others, and

to track how a fact has changed. An issue exists in queries is that much

self-join have been caused when perform the temporal queries. It is also the

problem in triples store approach. A natural question is whether it can be

improved if developing the solution which based on other existing approaches

like property table approach and vertically approach. Another issue is to

develop archiving RDF data on RDFDB, and to compare them with

approaches on relational database.

49/ 53

8 REFERENCES

[1]. Abadi, D.J, Marcus, A, Madden, S & Hollenbach, K.J 2007, 'Scalable semantic web

data management using vertical partitioning', VLDB'07, pp. 411-422

[2]. Auer, S & Herre, H 2005 'A versioning and evolution framework for RDF

knowledge bases', viewed 10 th May 2011,<

http://www.informatik.uni-leipzig.de/—auer/›.

[3]. Beckmann, J.L, Halverson, A, Krishnamurthy, R & Naughton. J.F 2006, 'Extending

RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage

Format', In Proceedings of the 22nd International Conference on Data

Engineering (ICDE), page 58.

[4]. Berners-Lee, T, Handler, J & Lassila, 0 2001, 'The Semantic Web', Scientific

American,vol. 184,2001,pp.34-43.

[5]. Brickley, D & Guha, R.V 2004, 'RDF Vocabulary Description Language 1.0: RDF

Schema', W3C Recommendation, viewed 15 th SEP,

http://www.w3.org/TR/rdf-schema/.

[6]. Broekstra, J 8t Kampman. A 2004, 'SeRQL: An RDF Query and Transformation

Language', Submitted to the International Semantic Web Conference, ISWC 2004.

[7]. Buneman, P, Khanna, S, Tajima, K & Tan, W.0 2004, 'Archiving scientific data',

ACM Transactions on Database Systems, March, vol. 29, no. 1, pp. 2-42.

[8]. Chaudhuri, S & Weikum, G 2000, 'Rethinking Database System Architecture:

Towards a Self-Tuning RISC-Style Database System', 26 th International

Conference on Very Large Data Bases (VLDB), pages 1-10, 2000

[9]. Chu, E, Beckmann, J.L & Naughton, J.F 2007, 'The case for a wide-table approach

to manage sparse relational data sets'. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 821-832.

[10].Duan, S, Kementsietsidis, A, Srinivas, K & Udrea, 0 2011. 'Apples and oranges: a

comparison of RDF benchmarks and real RDF datasets', Proceedings of the 2011

international conference on Management of data ACM New York, NY, USA.

[11]. Eugene, I.C, Souripriya, D, George E & Jagannathan, S 2005. 'An Efficient

SQL-based RDF Querying Scheme'. In Proceedings of the 31 st International

Conference on Very Large Data Bases (VLDB), pages 1216-1227.

[12].Guha, R 2001, 'RDFDB-An RDF Database', http://www.guha.com/rdfdb/.

[13]. http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-implementation

-notes.html.

50/53

[14].http://www.geneontology.org/

[15].http://www.w3.org/2000/10/swap/doc/cwm.html

[16].http://www.w3.org/TR/rdf-mt/

[17].http://www.W3C.org /standards/semanticweb/

[18].http://jena.sourceforge.net/ontology/

[19].https://www.cia.gov/library/publications/the-world-factbook/

[20].http://www.hpl.hp.com/semweb/doc/RDB/rdb-performance.htm1,2003.

[21].http://jeffrick.com/2010/03/23/bulk-insert-into-a-mysql-database/

[22].http://www.w3.org/2001/sw/DataAccess/

[23].http://www.w3.org/TR/rdf-sparql-query/

[24].Klyne, G 8t Carroll, J 2004, 'Resource Description Framework (RDF): Concepts and

Abstract Syntax', W3C Recommendation, viewed 15 th SEP,

http://www.w3.org/TR/rdf-concepts/.

[25].Levandoski, 1 & Mohamed, F.M 2009 'RDF Data-Centric Storage', In Proceedings

of the IEEE International Conference on Web Services (ICWS), 2009.

[26].Matono, A, Amagasa, T, Yoshikawa, M & Uemura, S 2005, 'A Path-based

Relational RDF Database'. In Proceedings of the 16 th Australasian Database

Conference (ADC), pages 95-103.

[27].McBride, B 2002, 'Jena: A Semantic Web Toolkit', IEEE Internet Computing,

6(6):55-59.

[28].Neumann, T & Weikum, G 2009 'the RDF-3X engine for scalable management of

RDF data', VLDB, vol. 19, pp. 91-113.

[29].RDF Primer. W3C Recommendation, viewed 15 th SEP,

<http://www.w3.org/TR/rdf-primer, 2004>.

[30].Reggiori, A 2004, 'RDFStore Perl/C RDF storage and API',

http://rdfstore.sourceforge.net/.

[31].Sakr, S & AI-Naymat, G 2009 'Relational processing of RDF queries: a survey',

SIGMOD, December, vol.38, no.4.

[32].Seaborne, A 2004, 'Rdql-a query language for RDF', viewed 15th SEP,

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

[33].Sidirourgos, L, Goncalves, R, Kersten, M, Nes, N & Manegold, S 2008,

'Column-store support for RDF data management: not all swans are white',

PVLDB 23-28 Aug.

[34].Sintek, M & Decker, S 2001, 'TRIPLE-an RDF query, inference and transformation

language', Deductive Databases and Knowledge Management (DDLP).

51 / 53

[35].Theoharis, Y, Christophides, V 8t Karvounarakis, G 2005, 'Benchmarking database

representations of RDF/S stores', ISWC 2005, LNCS 3729, Springer-Verlag, Berlin,

pp. 685-701.

[36].Volkel, M 2004, 'D2.3.3.V1 SemVersion—versioning RDF and ontologies', viewed

10th May,

<knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.3.3v1.pdf >.

[37].Weiss, C, Karras, P & Bernstein, A 2008, 'Hexastore: sextuple indexing for

semantic web data management', Proceedings of the VLDB Endownment

(PVLDB), 1(1):1008-1019.

[38].World Wide Web Consortium (W3C), < http://www.w3.org/>.

[39].Zhou, M & Wu, Y 2010 'XML-Based RDF data management for efficient query

processing', WebDB 10.

52/53

APPENDIX:

All the code and all data used for experimental work have been submitted as

electronic documents.

53 / 53

