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Abstract 

RDF has become the de-facto standard for the representation and exchange of 

information. It is not only used for representing the context of Linked Open 

Data and semantic-Web, but also used as to publish structured data in science 

and business. It is also the driving force behind the increasing research interest 

in RDF data management. RDF is the data format for publishing liked data, 

and links between databases are based on database state. Failure to maintain 

the history of a database may lead to loss of evidence for links. In addition, 

regarding storage and querying, it is not reasonable to simply keep all the 

database versions. Therefore, this paper will develop specialized archiving 

technologies. 

This paper have compared existing archiving techniques and the approaches 

of store RDF in relational databases, and based on one of existing approach, 

the paper developed two solution of archiving RDF data in relational 

databases. Also, in order to track the history of changes to the data, the paper 

proposes the strategies to extend existing methods for storing RDF in 

relational databases. For each of strategy, the paper present the efficient way 

for updating and archiving RDF data. Based on the strategies, the paper 

develops approaches about how to query these data. At last, there are 

evaluations of the proposed methods via different experiments 
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1. INTRODUCTION 

With the rapid growth of the semantic web, a great deal of resource 

description framework (RDF) data has been created and published for 

knowledge sharing and information searching. According to the definition 

from the World Wide Web Consortium (W3C), RDF is a language which has 

been designed as a flexible representation of information about resources in 

the World Wide (RDF Primer 2004). Examples include representing 

information about published CDs (e.g., artist, country, company, price, year) 

in a web-accessible collection, or descriptive information about a user's 

preference for the CD's style. Recently, RDF has gain momentum in the 

context of Linked Open Data (LOD) and the Semantic-Web, where it is used 

to publish structured data in domains like life sciences and environmental 

monitoring, as well as in supporting Web 2.0 platforms. The RDF (Resource 

Description Framework) is increasingly becoming the de-facto standard for 

the representation and exchange of information (Duan et al 2011). It is 

obviously that in the recent Linked Open Data (LOD) initiative where the data 

from various domains such as geographic locations, people, companies, books, 

films, scientific data (genes, proteins, drugs), statistical data are interlinked to 

provide one large data cloud (Duan et al 2011). The cloud has around 200 data 

sources which have contributed a total of 25 billion RDF triples until of 

October 2010. RDF are used for many large companies and organizations as 

the business data representation format, either for search engine optimization, 

better product search semantic data integration, or for representation of data 

from information extraction. RDF is also used for Google and Yahoo to 

optimize search engine, there is a clear incentive for its growth on the web. 

For example, in E-science, there is an increasing support for RDF as an 

import/export format. In the area of life sciences, RDF also has been selected 

for data extractions. Finally, Web 2.0 platforms for online communities are 

considering RDF as a non-proprietary exchange format and as an instrument 

for the construction of information mash-ups (Neumann & Weikum 2009). 

In RDF, all data items are represented in the form of (subject, predicate, 

object) triples (Klyne & Carroll 2004). Here are some examples from the CIA 
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World Factbook. The World Factbook (ISSN 1553-8133; also known as the 

CIA World Factbook) is a reference resource produced by the Central 

Intelligence Agency of the United States with almanac-style information 

about the countries of the world (CIA 2010). The Factbook is available in 

HTML format, which is partially updated every week. It can be downloaded 

for use off-line. It provides a two- to three-page summary of the demographics, 

geography, communications, government, economy, and military of 267 

entities including U.S.-recognized countries, dependencies, and other areas in 

the world. It is frequently used as a resource for academic research papers. 

This paper also uses the CIA Factbook as the dataset for experimental 

evaluation. RDF can be used to describe a fact like population information for 

a given country from the Factbook database. For instance, current population 

information about Australia can be described by using the following triples 

(subject, predicate, object): 

• (Australia, Type, Country) 

• (Australia, hasCategory, People) 

• (People, hasProperty, Population) 

• (Population hasValue, 21,262,641) 

If translating the examples as a graph, it would be shown as Figure 1: 
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hasCategory.  hasPropetty,  

type. 

/hasValue, 

41114  
Figure 1 the fact of Australian population translate RDF triples into graph 

The Australian Bureau of Statistics may want to query information about 

Australian population; however, with the current practice of overwriting the 

current database state whenever a new version is published, it is difficult to 

find out about the population of a specified year (say 2009) or how the 

population has changed since 2001. In order to be able to keep track of 

Australian population we will have to maintain all the past versions of the 

database. The same is true for scientific data, and the ability to store all the 

previous versions of a database is especially important for scientific data 

(Buneman et al 2004). Many science experiments are based on particular 

versions of public available databases. Failure to maintain the history of a 

database may lead to loss of scientific evidence as the versions  may  be lost 

and scientific findings cannot be verified later on. Therefore, maintaining all 

the history of data is important. Given the increased popularity of RDF, the 

goal of this project is to explore efficient and scalable ways for storing RDF 

data. 
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Since RDF data has become mass data, a significant problem that needs to be 

addressed is how to efficiently store and query large archives of RDF 

databases. Obviously, it is not reasonable to simply keep all the database 

versions. Since the RDF data will be increasingly large, completely storing all 

the versions is not an efficient approach regarding storage space. Additionally, 

when querying the database, it may cause some performance problems. 

Assume that all the previous versions of the database are stored in separate 

files. If someone wants to retrieve Australian population history, firstly, he has 

to scan through all these files. Secondly, he has to find population record, 

identify whether it has changed, and then present the result to the user. The 

advantage of the system that we are proposing is that this task can be done 

using a SPARQL query. It will be much easier for the user to get the history of 

Australian population. 

2. RELATED WORK AND LITERATURE REVIEW 

2.1 EXISTING ARCHIVING TECHNIQUES 

There has been considerable research on RDF data querying and storing: 

Since scientific data is held in a hierarchical format and has a key structure, so 

[7] have utilized these features to develop an archiving technique. Archiving 

plays a significant role on scientific data with the function of recording all 

past versions of database to assist in verifying findings grounded on a specific 

version. Much scientific data is stored in a hierarchical format as well as in 

possession of key structure which is used to offer a canonical identification for 

each element of the hierarchy. In this research, based on these properties, an 

archiving technique that is not only efficient in its making use of space, but 

also maintains the continuity of elements by versions of the databases has 

been developed, all of which is not offered by the traditional 

minimum-edit-distance diff approaches. However, timestamps is applied into 

the approach. By merging all versions of data into one hierarchy, an element 

that appear in multiple versions is recorded only once with the assistant of a 

timestamp. Compared with the approaches that store a sequence of deltas 

where it required undoing a large number of changes or significant reasoning 
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with the deltas, the archiving technique has capability that related with 

offering meaningful change description by the way of identifying the semantic 

continuity of elements as well as merging them into one data structure. 

Besides that, the archive could ensure us easily answer certain temporal 

queries such as restoring of any specific version from the store and seeking for 

the history of an element. The archive that does not result in any significant 

space has been proved by a suite of experiments. Besides that, considering 

with utilization of XML format to represent hierarchical data as well as 

resulting archive, it is obvious that XML could be regarded as significant tool 

that directly applied on their archive, which is another helpful property of 

their approach. One of most particular aspect is that an XML compressor is 

applied into their archive and compresses archive outperforms compresses 

diff-based repositories in space efficiency based on the results of their 

experiments. Lastly, they also present how they can extend their archiving tool 

to an external memory archive for higher scalability and introduce various 

index structures that can further improve the efficiency of some temporal 

queries on their archive. 

[3, 9] have argued that there could be some problems, which was resulted by 

storing a sparse data set (like RDF) in multiple tables. Consequently, storing a 

sparse data set in a single table has been suggested while the complexities of 

sparse data management can be handled inside an RDBMS with the addition 

of an interpreted storage format (Chu, Beckmann & Naughton 2007). The 

proposed format starts with a header which contains fields such as relation-id, 

tuple-id, and a tuple length. When a tuple has a value for an attribute, the 

attribute identifier, a length field (if the type is of variable length), and the 

value appear in the tuple. The attribute identifier is the id of the attribute in the 

system catalog while the attributes that appear in the system catalog but not in 

the tuple are null for that tuple. The sparse data sets in a horizontal schema 

can in general be stored much more compactly in the format by the reason that 

the interpreted format stores nothing for null attributes. The resorting 

retrieving the values from attributes in tuples is more complex, whereas the 

storage of the interpreted format has benefits for sparse data. Actually, the 

format is called interpreted by the reason that the storage system must 
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discover the attributes and values of a tuple at tuple-access time, rather than 

using precompiled position information from a catalog, as the positional 

format allows (Beckmann et al 2006). In order to deal with this problem, there 

is a new operator (called EXTRACT operator) introduced to the query plans 

to Prior to any reference to attributes recorded in the interpreted format and 

returns the offsets to the referenced interpreted attribute values which is then 

used to retrieve the values. Due to reliance on the number attributes stored in a 

row or the length of the tuple, it is obvious that the Value extraction from an 

interpreted record is a potentially expensive operation (Chu, Beckmann & 

Naughton 2007). Besides that, once a query evaluation plan fetches each 

attribute individually and uses an EXTRACT call per attribute, the record will 

be detected for each attribute and will thus be very slow. Therefore, in order to 

in order to save tirne, a batch EXTRACT technique is considered as an 

effective method to allow for a single scan of the present values. 

[26] have proposed a path-based relational RDF database. This approach 

primarily emphasize on improving the performance for path queries by the 

way of extracting all reachable path expressions for each resource and then 

storing them. As a result of that, in opposed to the flat tripe stores or the 

property tables approach, it is unnecessary to perform join operations. In this 

approach, each subgraph is stored by applicable techniques into distinct 

relational tables, which is following to separate the RDF graph into subgraphs. 

To more exactly, all classes and properties are extracted from RDF schema 

data, and all resources are also extracted from RDF data. There is a 

corresponding relational table, which is used to store each extracted item that 

assigned an identifier and a path expression (Matono et al 2005. 

[37] have introduced the Hexastore RDF storage scheme with primary 

emphasis on scalability and generality in its data storage, processing and 

representation, which is based on the idea of indexing the RDF data in a 

multiple indexing scheme. It could treat any RDF element and treats subjects, 

properties and objects equally rather than discriminate against them. Without 

doubt, there are special index structures that built around for each RDF 

element type. Moreover, every possible ordering of the importance or 

8/53 



precedence of the three elements in an indexing scheme is materialized. Each 

index structure in a Hexastore centers around one RDF element and defines a 

prioritization between the other two elements (Weiss et al 2008). Two vectors 

are associated with each RDF element (e.g. subject), one for each of the other 

two RDF elements (e.g. property and object). In addition, lists of the third 

RDF element are appended to the elements in these vectors. In total, six 

distinct indices are used for indexing the RDF data. These indices materialize 

all possible orders of precedence of the three RDF elements. A clear 

disadvantage of this approach is that Hexastore features a worst-case five-fold 

storage increase in comparison to a conventional triples table (Weiss et al 

2008). 

[39] have proposed to decompose RDF graph into a forest of semantically 

correlated XML trees with two decomposition algorithms. They store them in 

an XML repository and rewrite SPARQL queries into XPath/XQuery queries 

to be evaluated in the XML repository. In order to achieve the aim of harvest, 

such search power requires robust and scalable data repositories which are 

used to store RDF data as well as support efficient evaluation of SPARQL 

queries. The relation model and relational database technologies for these 

tasks have become the primary basis for most of the existing RDF storage 

techniques (Auer & Herre 2005). They either keep the RDF data as triples, or 

decompose it into multiple relations. Once there is mis-match between the 

graph model of the RDF data and the rigid 2D tables of relational model, it 

will damage the scalability of such repositories and frequently renders a 

repository inefficient for some types of data and queries. [39] propose to 

separate RDF graph into a forest of semantically correlated XML trees, store 

them in an XML repository and rewrite SPARQL queries into XPath/XQuery 

queries to be evaluated in the XML repository. As analyzed above, this 

research is with the purpose of discussing the basic idea of RDF to-XML 

decomposition and the criteria of such decomposition in terms of correctness, 

redundancy and query efficiency. After that, relied on these criteria, it will 

propose two RDF-to-XML decomposition algorithms. Depended on the 

results of experimental evaluation, it illustrates that compared to the existing 

RDF techniques; their approach has the capabilities of improving the 
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efficiency of storage as well as query processing. 

[11] have presented the function RDFMATCH of Oracle-based SQL table to 

query RDF data. By effective utilization of rich querying capabilities of SOL 

as well as seamless combination with queries on traditional relational data, the 

results of RDFMATCH table functions could be further processed. The core 

implementation of RDFMATCH query translates to a self-join query on 

triple-based RDF table store. By the way of making use of B-tree indexes and 

creating materialized join views for specialized subject property, the resulting 

query could operate efficiently. Subject-Property Matrix materialized join 

views is used with the aim of minimizing the query processing overheads that 

are inherent in the canonical triple-based representation of RDF (Eugene et al 

2005). Depending on the user demand and query workloads could hold out the 

increment of the materialized join views. There is a special module which is 

offered to analyze the table of RDF triples and estimate the size of various 

materialized views, based on which a user can define a subset of materialized 

views. For a group of subjects, the system defines a set of single-valued 

properties that occur together. These can be direct properties of these subjects 

or nested properties. A property pl is a direct property of subject xl if there is 

a triple (xl, pl, x2). A property pm is a nested property of subject x 1 if there 

is a set of triples such as, (x 1 , p 1 , x2), (xm, pm, xm+1), where m> 1. For 

example, if there is a set of triples, (John, address, addrl), (addr 1, zip, 03062), 

then the zip property is considered as a nested property of John (Eugene et al 

2005). 

2.2 STORING RDF AND APPROACHES FOR STORING 

RDF USING RELATIONAL DATABASES 

There are several approaches to storing RDF data: 

• Keeping RDF data in RAM. It is efficient but just can tackle small data 

due to the limitation to the storage capacity. In addition, keeping RDF data in 

RAM cannot store data persistently, that is, the data will get lost once the 

system is down. Thus, this approach is only suitable for small—scale and 
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non-persistent data. 

• Keeping data in files. This approach can read the data from files to RAM, 

and then operate on the data in RAM, and write the updated data from RAM 

back to files. The advantage of this approach is simplicity, but it is inefficient 

because this approach needs to read and write files frequently (Brickley & 

Guha, 2004). Moreover, it is also not appropriate for mass data manipulating. 

• Keeping data in native XML/RDF databases. XML databases support 

storing and querying data with a special XML/RDF format (Abadi et al 2007). 

Since RDF's representation is based on XML syntax, RDF data can be saved 

in XML database. The advantage is that XML databases start to become 

powerful enough to maintain and large amounts of data. However, querying 

these databases in general is inefficient and querying XML/RDF in particular 

is not very user friendly. 

• Keeping RDF in relational databases. Many researches have verified 

that relational database management systems are very efficient, scalable and 

successful in storing and querying RDF data. Since the RDF data can be 

represented in the form of (subject, predicate, object) triples, these triples can 

be stored in a relational database with an intuitive schema in a single table. 

This table has three columns, subject, predicate and object. For instance, to 

represent the fact that "Australian birth rate is 15births/1,000", we can use 

triples: 

• (Australia, Type, Country) 

• (Australia, hasCategory, People) 

• (People, hasProperty, Birth rate) 

• (Birth, hasValue, 15 births/1,000 population) 

The first advantage of this approach is that it allows storing and querying 

large amounts of RDF data in an efficient way. The linked data initiative and 

the semantic web will generate billions of triples in the near future and 

relational database management systems by now are advanced enough to; 
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provide secure and reliable technologies to persistently store and manipulate 

large amounts of RDF data. 

The advantages regarding storage and querying large-scale data render 

relational databases an ideal candidate for archiving RDF data. Relational 

databases provide a scalable off-the-shelf solution to data storage and I 

therefore will use relational databases to store and query RDF data. 

There are some different ways of storing RDF data in a relational database. 

[31] have presented a classification of the relational RDF stores: 

• Triple (Vertical) Approach: Each RDF triple (subject, predicate, object) is 

stored in a three-column schema directly. 

Triple-stores have been developed using relational databases for a long time. 

They are implemented in databases, with only three columns in a schema 

corresponding to the three components of a RDF triple, respectively (Sintek & 

Decker 2001). Triple-stores are easy to realize with relational technologies 

and the schema has a simple and intuitive structure. However, since all data 

are in one table, this causes many self-join operations when translating a 

SPAQL query expression into a SQL query. Thus, querying data in databases 

using the vertical triple-store approach can be inefficient. As a result, many 

approaches try to overcome this limitation by creating the exhaustive set of 

indexes and relying on fast processing of merge joins. 

Subject Predicate Object 

Australia hasName Australia 

Australia type Country 

Australia hasCategory People 

People hasName People 

People type Category 

People hasPropeily Population 

Population hasName Population 

Population hasValue 16,923,478 (July 1990) 
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Population type 	Property 

Table I: RDF triples-store in relational database 

Table 1 shows that some RDF triples are stored in relational database by 

triples-stroe approach, if someone wants to query the population of Australia. 

In SPARQL, it would be: 

PREFIX factbook: <http://www.csiro.au/au/CIAWFB/nsti> 

SELECT ?pvalue 

WHERE { 

?country <factbook:type> <factbook:Country> . 

?country <factbook:hasName> "Australia". 

?country <factbook:hasCategory> ?people. 

?people <factbook:hasName> "People". 

?people <factbook:hasProperty> ?population. 

?population <factbook:hasName> "Population". 

?population <factbook:hasValue> ?pvalue 

In SQL, it would be: 

SELECT F. object 

FROM rdfdataset as A, rdfdataset as B, rdfdataset as C, rdfdataset as D 

rdfdataset as E, rdfdataset as F 

WHERE 

A.predicate = "hasName" AND 

A.object = "Australia" AND 

B.predicate = "hasCategory" AND 

A.subject = B.subject AND 

B.object = C.subject AND 

C.predicate = "hasName" AND 

C.object = "People" AND 

D.subject = C.subject AND 
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D.predicate = "hasProperty" AND 

D.object = E. subject AND 

E.predicate = "hasName" AND 

E. object = "Population" AND 

E.subject = F.subject AND 

Fpredicate = "hasValue"; 

Form the example, we can find out that the more triple patterns there are in 

the SPARQL query the more self-joins are necessary in the corresponding 

SQL query 

[28] have described the RDF-3X (RDF Triple express) engine for querying 

large-scale RDF data. With creating the exhaustive set of indexes and relying 

on fast processing of merge joins, it tries to overcome the criticism that triples 

storing may cause a large amount of self-joins. The physical design of 

RDF-3x is based on regardless of workloads, and enable to eliminate the need 

for physical design tuning. It does these by creating indexes over all 6 

permutations {spo,sop,pos,pso,osp,ops} of the three dimensions that constitute 

an RDF triple. In addition, indexes over count-aggregated variants for all three 

two-dimensional and all three one-dimensional projections are building. Using 

these 6 indexes is able to enhance the efficiency of querying data. Following 

the RISC-style design philosophy (Chaudhuri & Weikum 2000), the query 

processor relies mostly on merge joins over sorted index lists by using the full 

set of indexes on the triple tables. The query optimizer depends on its cost 

model that mostly focuses on join order and the generation of execution plans 

and finding the lowest-cost execution plan. In theory, selectivity estimation 

has a huge effect on plan generation. By virtual of this is a standard problem 

in database systems, the schema-free nature of RDF data causes the problem 

to more challenging. 

RDF-3X makes use of dynamic programming for plan enumeration, with a 

cost model based on RDF-specific statistical synopses. 

It relies on two kinds of statistics (Neumann & Weikum 2009): 
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1) Specialized histograms which are generic and can handle any kind of triple 

patterns and joins. The disadvantage of histograms is that it assumes 

independence between predicates. 

2) Frequent join paths in the data which give more accurate estimation. 

During query optimization, the query optimizer uses the join path selectivity 

information when available and otherwise assumes independence and use the 

histograms information. 

As a result, in the situation of uncompressed indexes, the overhead for data 

storage is six times its original overhead, but it can change to double overhead 

for data storage from sextuple. 

• Property table stores: Multiple RDF properties are modeled as n-ary table 

columns for the same subject. 

Due to a large amount of shelf-joins involved in the Triples-store approach, 

the researchers proposed two types of property tables to speed up queries over 

the triple-stores. 

Jena is an open-source toolkit for Semantic Web programmers (McBride 

2002). It implements archiving RDF graphs using an SQL database through a 

JDBC connection. The schema of the first version of Jena is combined by a 

resources table (JENA API 2009), a statement table, and a literals table. The 

statement table (Subject, Predicate, ObjectURI, ObjectLiteral) referenced the 

resources and literals tables for subjects, predicates and objects and included 

all statements. Two columns were used for differentiating literal objects from 

resource URIs. The literals table contained all literal values and the resources 

table contained all resource URIs in the graph (McBride 2002). However, 

every query operation needed to multiple joins between the statement table 

and the literals table or the resources table. To tackle with this problem, space 

has been sacrificed to achieve for saving time in Jena 2. It uses a schema in 

which resource URIs and simple literal values are stored directly in the 

statement table. Column values are encoded with a prefix that indicates the 

type of the value in order to distinguish database references from literals and 
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URIs. Literal values whose length exceeds a threshold such as blobs are stored 

in a separate literals table. Likewise, long URIs is stored in a separate 

resources table. By virtual of storing values directly in the statement table, it is 

possible to run many queries without a join. However, since the same value 

(literal or URI) is stored repeatedly, the schema uses up a large amount of 

database space. The solution of increasing database space consumption is 

using string compression schemes. Jena allows multiple graphs to be stored in 

a single database instance. All graphs were stored in a single statement in 

Jenal . However, because Jena2 is able to support the use of multiple 

statement tables in a single database, applications can flexibly map graphs to 

different tables. In this way, graphs may be stored by two ways, those are 

often accessed together may be stored together, the others are hardly accessed 

together may be stored separately (Sakr & AI-Naymat 2009). 

Basically, applications usually have access patterns in which certain subjects 

and/or properties are accessed together. For instance, a graph of data about 

country might have many occurrences of objects with properties name, 

location, population, climate that are referenced together. Jena2 uses property 

table as a general facility for clustering properties that are commonly accessed 

together (Guha 2001). A property table is a separate table that stores the 

subject-value pairs related by a particular property. Another property table 

stores all instances of the property in the graph where that property does not 

appear in any other table used for the graph. In Jenal, each query is evaluated 

with a single SQL select query over the statement table. In Jena2, due to there 

can be multiple statement tables for a graph, queries have to be generalized 

(Sakr & AI-Naymat 2009). Using the knowledge of the frequent access 

patterns to construct the property-tables and influence the underlying database 

storage structures can provide a performance benefit and reduce the number of 

join operations during the query evaluation process. Table 2 illustrates the 

example of property table store 

Property table: 

subject hasName type hasCategory 
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Australia Australia Country People 

People People Category NULL 

Population Population Property NULL 

Othertriples table: 

subject predicate object 

People hasProperty Population 

Population hasValue 16,923,478 (July 1990) 

Table 2 : Property table store 

Also, the SQL query for retrieving the population of Australia would be: 

SELECT B. object 

FROM Property as X Property as Y, Property as Z, 

Othertriples as A, Othertriples as B 

WHERE 

XhasName = "Australia" AND 

XhasCategory = Y.subject AND 

Y.hasName = "People" 	AND 

Y.subject = A.subject 	AND 

A.object = Z.subject 	AND 

Z.hasName = "Population" AND 

Z.subject = B.subject 

The most important advantage of the property tables is that they can reduce 

subject-subject self-joins of the triples table. 

However, the disadvantage of property tables is that RDF data usually not to 

be very structured and not all the properties have been defined for every 

subject listed in the table (Berners-Lee, Handler & Lassila 2001). The more 

NULL values will exist in the table that is caused by the less structured the 

data. In fact, these representations can be extremely sparse — containing 

hundreds of NULLs for each non-NULL value. These NULLs impose a 

17 / 53 



substantial performance overhead. 

The second problem with property tables is the abundance of multivalued 

attributes found in RDF data (Abadi et al 2007). Multi-valued attributes are 

surprisingly prevalent in the Semantic Web. In general, there always seem to 

be exceptions, and the RDF data model provides no disincentives for making 

properties multi-valued. 

Multi-valued properties are problematic for property tables for the same 

reason they are problematic for relational tables. They cannot be included 

with the other attributes in the same table unless they are represented using list, 

set, or bag attributes. However, this requires an object-relational DBMS, 

results in variable width attributes. (Abadi et al 2007) 

[25] have introduced another property table approach in relation with storing 

RDF data without any assumption about the query workload statistics. The 

primary objectives of this approach are (Levandoski & Mohamed 2009): (1) 

reducing the number of joins operations which are required during the RDF 

query evaluation process by storing related RDF properties together (2) 

reducing the need to process extra data by tuning null storage to fall below a 

given threshold. A tailored schema is offered to each RDF data set through 

this approach, which represents a balance between property tables and binary 

tables and is based on two main parameters: 1) Support threshold which 

represents a value to measure the strength of correlation between properties in 

the RDF data. 2) The null threshold which represents the percentage of null 

storage tolerated for each table in the schema. Besides that, the approach 

involves two phases: Clustering and partitioning. During the phase of 

clustering, the RDF data are scanned to automatically discover r groups of 

related properties. Based on the support threshold, each group of n properties 

which are grouped together in the same cluster are good candidates to 

constitute a single n-ary table and the properties which are not grouped in any 

cluster are good candidates for storage in binary tables. The partitioning phase 

is with the purpose of checking the formed clusters and balancing the tradeoff 

between storing as many RDF properties in clusters as possible while keeping 
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null storage to a minimum based on the null threshold. One of the main 

concerns of the partitioning phase is twofold (Levandoski & Mohamed 2009). 

Firstly, it is necessary to ensure that no overlap exists between the clusters as 

well as that the existence of each property should be in a single cluster. 

Secondly, during the process of query, it is obvious to reduce the number of 

table accesses and unions necessary. 

In summary, while property tables can significantly improve performance by 

reducing the number of self-joins and typing attributes (Theoharis, 

Christophides & Karvounarakis 2005), they introduce complexity by requiring 

property clustering to be carefully done to create property tables that are not 

too wide, while still being wide enough to answer most queries directly. 

Ubiquitous multi-valued attributes cause further complexity. In addition, 

though property tables are very good at speeding up queries that can be 

answered from a single property table; they require joins or unions to combine 

data from several tables. 

• Horizontal (vertically partitioned) table stores: RDF triples are modeled as 

one horizontal table or a set of vertically partitioned binary tables (one table 

for each RDF property) 

[1] first presented the idea of using a fully decomposed storage-model to store 

RDF data. In this approach, the triple table is rewritten into n two-column 

tables where n is the number of unique properties in the data (Abadi et al 

2007). All triples that have the same predicate are grouped in the same tables. 

Thus the triples table will be partitioned into n two-column tables where n is 

the number of unique properties in the data. In each of these tables, the first 

column contains the subjects that define that property and the second column 

contains the object values for those subjects while the subjects that do not 

define a particular property are simply omitted from the table for that property. 

In every two-column table, predicate is the name of the table, subject is the 

first column and object is the second column. Each table is sorted by subject, 

thus specific subjects can be queried quickly. In addition, since tables are 

sorted by subject, fast merge joins are available to reconstruct information 
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Subject object 

Population 16,923,478 (July 1990) 

about multiple properties for subsets of subjects. For a multi-valued attribute, 

each distinct value is listed in a successive row in the table for that property. 

Moreover, optionally indexing the value column for each table is also feasible 

(or a second copy of the table can be created clustered on the value column). 

Table 3 shows the relational representation of vertically partitioned approach. 

hasName: 

subject object 

Australia Australia 

People People 

Population Population 

Type: 

subject object 

Australia Country 

People Category 

Population Property 

hasCategory: 	 hasProperty: 

subject object 

Australia People 

has Value 

subject object 

People Population 

Table 3: vertically partitioned store 

The SQL query for retrieving the population of Australia would be: 

SELECT hasValue.object 

FROM hasName, type, hasCategory, hasProperty 
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WHERE 

hasName. object = "Australia" 

AND 

hasName. subject = hasCategory.subject 

AND 

hasCategory. object = hasName.subject 

AND 

hasName. object = "People" 

AND 

hasName.subject= hasProperty.subject 

AND 

hasProperty. object = hasValue.subject 

AND 

hasName. object = "Population"; 

The advantage of this approach is that each triple is (Sidirourgos et al 2008): 

1). in the decomposed storage model, a multi-valued attribute has been no 

longer a problem. Each distinct value is listed in a consecutive row in the table 

for that property if a subject has more than one object value for a particular 

property. For example: if Australia has 2 categories, the table would be: 

Australia Economy 

Australia People 

2).Support for heterogeneous records. Subjects that do not define a particular 

property are simply omitted from the table for that property. In the example 

above, category Type is defined for one subject (Australia), the table therefore 

can be kept small (NULL data need not be explicitly stored). The advantage 

becomes increasingly significantly if the data is not well-structured. 

Only those properties accessed by a query need to be read. I/O costs can be 

substantially reduced. 

Fewer unions and fast joins. Since all data for a particular property is stored in 
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the same table, union clauses in queries are less for using. Although the 

vertically partitioned approach will require more joins relative to the property 

table approach, properties are joined using simple, fast (linear) merge joins. 

A disadvantage of this approach is that when querying several properties, 

these two-column tables will be merged, so there are some costs for merge 

join. Also, inserts can be slower into vertically partitioned tables, since 

multiple tables need to be accessed for statements about the same subject. 

Additionally, [33] have identified drawbacks for the vertically-partitioned 

approach regarding complexity of generated SQL queries and query execution 

efficiency. If a query is not isolated to access a predefined number of 

properties, the SQL code becomes large and complex. It challenges the 

capabilities offered by most optimizers. Moreover, if the property in a query is 

bound to a variable, then the rows returned from each property table must be 

union-ed. In the case where the property is not part of the result, then the 

union operator must also perform a duplicate elimination. Finally, since the 

data is not clustered on objects, a query which joins on objects, will not allow 

the use of a fast (linear) merge join. 

From [33]'s evaluations, they have compared the triple-store RDF storage 

solution with the others approach, when they implemented using a 

state-of-the-art commercial row-store engine, [33] conclude that once the 

proper clustered indices are used, the triple-store performs better than the 

vertically-partitioned approach and others. [33] shows that the 

vertically-partitioned approach exhibits better query execution times with 

column-store implementation. However, they present that if the number of 

properties in an RDF data-set is high, there are potential scalability problems 

for the vertically-partitioned approach. With a larger number of properties, the 

triple-store solution manages to outperform other approaches on their 

column-store implementation as well. Combined with the fact that other 

approach is data-dependent, they show that the 3 column approach shows 

good performance in most cases. In addition, 3-column approach is one of the 

common methods to store RDF. Therefore, this paper's solutions are based on 

3-column approach. 
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3 PROPOSAL 

From the Section 2, we can conclude that the vertically partitioned table stores 

causes complexity of generated SQL queries and query execution efficiency, 

property table approach have NULL values problem — it will exist in the table 

that causes substantial performance overhead, and 3-column approach have 

the best performance in most cases. Therefore, the goal of this project is to 

explore efficient and scalable ways for archiving RDF data using relational 

database technologies. 

Specifically, I will make the following contributions: 

I) I will propose the strategies to extend existing methods for storing 

RDF in relational databases in such a way that the history of changes to 

the data can be tracked. The strategies will be easy to generalize----they 

should not depend on a particular schema of the RDF data; the strategies will 

have persistent structure----changing the structure of the RDF data will not 

cause a change of the relational database schema, and efficient to query. 

2) For each of proposed strategy I will describe how to update and 

archive RDF data in an efficient way. In addition, I also intend to develop 

approaches about how to query these data (in contribution 3)). 

3) For each proposed extensions there has to be a method describing 

how to translate queries into SQL queries of the respective schema. I will 

be especially interested in answering three types of queries: 

a) How did the data look like at a certain point in time (e.g. what was 

Australian population salary in version 1 st  March 2003? 

For this question, the query can find Australian population in a given version 

that was valid on 1 St  March 2003. 

b) How did the value of some object change (e.g. how did Australian 

population change over the past 5 years?) 
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The answer should list all the population of Australia in past 5 years by 

joining all the related versions. 

c) What is the difference between two versions (e.g. the different between 

version 65(2001) and version 67 (2003)). 

Using these queries, one can query RDF data in relational database to track 

how data changed and where or when a key fact happened. 

4) The last part of my project will be an evaluation of the proposed 

methods. The proposed methods will be evaluated regarding: 

a) Storage space: 

Large-scale data like library data will be used to evaluate the capacity of 

storage, and compare with other approaches. 

b) Efficiency of merging a new version into the archive: 

Operations include bulk updates and single updates. The evaluation criteria 

will be execution time and complexity of implementing the approach. 

c) Query answering 

This part evaluate the complexity of SQL statements to answer the queries 

and how efficient (time) for the queries to be answered. 

4 IMPLEMENTED APPROACH 

Two solutions (4- and 5-column) are proposed which are based on 3- column 

approach. Additionally, two RDBMS are used for implementation, namely 

MySQL and PostgreSQL. 

4.1 4-COLUMN SOLUTION 

The idea of the 4-column solution is to add a fourth column for storing the 
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version info, and to introduce a "version_info" table for maintaining details of 

individual database versions. Table 4 illustrates the solution. 

RDFSET: 

Subject Predicate Object Version 

Australia/People/Birth rate has Value 14.43 births/I ,000 population 1 

Australia/People/Birth rate hasValue 14.29 births/1,000 population 2 

Australia/People/Birth rate has Value 14.13 births/1,000 population 3 

Australia/People/Birth rate hasValue 13.99 births/1,000 population 4 

Australia/People/Birth rate has Value 13.73 births/ 1,000 population 5 

VERSION INFO: 

Id available_time 

1 1993 est. 

2 1994 est. 

3 1995 est. 

4 1996 est. 

5 1997 est. 

Table 4:4-column solution for archiving RDF data 

In 4-column solution, when merging a new version database into database, we 

just need to create a new version id in VERSION_INFO table, and then insert 

the new triples into RDFSET table with the new version id. 

With this solution, users can query the history of data. For example, if 

someone wants to query the Australian Birth rate in 1995, users query the 

VERSION INFO to find out the corresponding id for 1995, and then they can 

retrieve the birth rate in 1995. 

The solution is a simple way to archiving RDF data; however, it has some 

drawbacks. First, it has to store redundant triples, even the updating triples 
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have same subject, predicate and object with the triples in the archive, but in 

4-column they are two different tuples with the different versions; second, 

answering queries may become slower due to the size of the relation and the 

necessary self-joins in the queries. Nevertheless, the solution offers a basic 

idea for how to archive RDF data and track the data. Based on it, the 

5-column solution is next proposed. 

4.2 5-COLUMN SOLUTION 

The main idea of the 5-column solution is to use two columns to indicate the 

period when the triples are valid. Table 5 shows 5-column solution's table 

structure. 

RDFSETA: 

Sub Pre Obj Startversion Endversion 

Australia/People/Birth 

rate 

hasValue 12.26 

births/1,000 

population 

16 16 

Australia/People/Birth 

rate 

hasValue 12.14 

births/1,000 

population 

17 17 

Australia/People/Birth 

rate 

hasValue 12.02 

births/1,000 

population 

18 18 

Australia/People/Birth 

rate 

hasValue 11.9 

births/1,000 

population 

19 20 

Australia/People/Birth 

rate 

hasValue 12.55 

births/1,000 

population 

21 22 

Australia/People/Birth 

rate 

hasValue 12.47 

births/1,000 

population 

23 -1 
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RDFSETV: 

Sub Pre Obj 

Australia/People/Birth rate hasValue 12.26 births/1,000 population 

Australia/People/Birth rate hasValue 12.14 births/1,000 population 

Australia/People/Birth rate hasValue 12.02 births/1,000 population 

Australia/People/Birth rate hasValue 11.9 births! 1,000 population 

Australia/People/Birth rate hasValue 12.55 births/1,000 population 

Australia/People/Birth rate hasValue 12.47 births/1,000 population 

VERSION INFO: 

Id Available time 

16 2004 

17 2005 

18 2006 

19 2007 

20 2008 

21 2009 

22 2010 

23 2011 

Table 5 5-column solution for archiving RDF data 

This solution has two columns to identify the available time of the triples. For 

example, the record from above (Australia/People/Birth rate, hasValue, 12.26 

births/1,000 population, 16, 16) means this record was inserted into Database 

from "16" (in accordingly VERSIONINFO table, it is 2005) and no longer 

available from "17" (which means there was a newer record has updated 

Australia/People/Birth rate with a new value); the record 

(Australia/People/Birth rate, hasValue, 12.47 births/1,000 population, 23, -1) 

means the record is available from version "23" and "4" means it is still 

available now. 

Since 5-column solution has 2 additional columns to indicate the period when 
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triples are valid, the first advantage of it is that it can reduce the redundant 

triples. Compared with 4-column solution, 5-column does not have to store all 

the triples which have same subject, predicate and object but different version 

ids in table, 2 additional columns are able to identify the available period of 

the triples. The second advantage of this solution is efficiency of querying. In 

the 4-column solution, the query for a certain fact will be much slowly, 

because there are numerous tuples have same subject, predicate and object. 

But in 5-column solution, the querying has better performance than 

4-column's due to reducing the superfluous triples. 

To implement this solution, we need to create three tables in the relational 

database schema. RDFDATASETA is the archival table, VERSIONINFO is 

the version information table, and RDFSETV is the table that contains the 

next version of the data. The records in RDFSETV are the data set which will 

be inserted into RDFSETA. After transforming RDF data from XML/RDF, 

N3 and TURTLE into (subject, predicate, object) format, the data are stored in 

RDFSETV table. Before the records in the next database version (RDFSETV) 

can be inserted into RDFSETA, information about the new version has to be 

stored in VERSION _INFO. Therefore, a new id with current date is inserted 

into VERSION INFO at first. The column "Id" in VERSION INFO is _ 	 VERSION_ INFO 

 as an AUTO_INCREMENT (called in MySQL) or SERIAL (called 

in PostgreSQL) column to store the new version information automatically. As 

a result the next version id is created in the VERSION _INFO with the current 

time before the next database version is inserted into RDFSETA. 

4- and 5-column solutions include single operations and bulk insert. First, 

single operations are used to update the data without RDFSETV. In this 

scenario, the archive is updated directly using single triple modification 

operation. These operations are insertSingelTriple, deleteSingleTriple and 

updateSingleTriple. Second, in bulk insert, we consider the archive as a data 

warehouse for versions. The data is maintained elsewhere and we want to 

"dump" full versions of the data into the archive at certain points in time in 

order to keep the history of the data. However, since 4-column as introduced 

before, it is easy to implement, so this paper focus on the 5-column solution 
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implementation. 

4.2.1 single archiving RDF data in RDBMS 

In single operations, a triple does "not exist" means there is no tuple in the 

current archival table that matches the triple on subject, predicate, and object 

and that has an end-value of-I. 

1) insertSingleTriple: insert a single triple into RDFSETA means a new 

triple will be stored in the database with its corresponding version id. The first 

step is to check whether the inserting record exists in the RDFSETA. So the 

related method exist(Triple)'s SQL statement is as follows: 

"SELECT COUNT (*) 

FROM RDFSETA 

WHERE 

sub = Triple, sub AND pre = Triple.pre AND 

obj = Triple.obj AND endversion = -1;" 

If count (*) returns 0, a new version id will be created in VERSION INFO 

and stored in a Java variable. The Java code for the related method 

createNextVersion () code is: 

String sql = 

"insert into versioninfo (availabletime) values (current timestamp);"; 

st = conn.createStatement0; 

st execute(sql, Statement. RETURN GENERATED_KEYS); 

rs = stgetGeneratedKeYs0; 

rs.next0; 

nextversion = rs.getInt(1); 

The third step to insert the single triple into Database with created version and 

endversion-value of-i. 

The related code of insertSingleTriple (Triple, start_version) is: 
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public void insertSingleTriple(Triple triple) ( 

if (!this.exists(triple," RDFSETA")) ( 

int version = this.createNextVersion(); 

this.insertTriple(triple, version); 

} 

} 

Table 6 shows that table RDFSETA and VERSION INFO before and after _ 

insert the triple (Australia/People/Urbanization/rate of urbanization, hasValue, 

1.2% annual rate of change) 

Subject Predicate Object Start end 

Australia/People/Birth 

rate 

hasValue 12.55 	births/1,000 

population 

21 -1 

Id Available_time 

1 1990 

2 1991 

... ... 

21 2009 

Table 6.1 before insert the triple, RDFSETA and VERSION_INFO 

Subject Predicate Object Start end 

Australia/People/Birth rate hasValue 12.55 births/1,000 

population 

21 -1 

Australia/Urbanization/rate of 

urbanization 

hasValue 1.2% annual rate of 

change 

22 -1 

Id Available_time 

1 1990 

2 1991 

... ... 

21 2009 

22 2010 

Table 6.2 after insert the triple, RDFSETA and VERSION_INFO 

2) deleteSingleTriple: the meaning of "delete" is a little bit different from 
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normal meaning of "delete" in database operation. The deleted records in RDF 

archival table mean their information is no longer available, but in order to 

track the history of data, we also need to keep them in Database. Similar to 

insertSingleTriple, deleteSingleTriple also needs to check whether the triple 

exists in the archival table; if yes, a new version id is created, and the 

end-value of the deleting record is set to version_id — 1 by deleteTriple (Triple, 

id). The corresponding SQL statement is as follows: 

UPDATE RDFSETA SET endversion = id 

WHERE 

sub = Triple, sub AND pre = Triple.pre AND obj = Triple.obj; 

To set the end interval to new version -1 is in the implementation of 

deleteSingleTriple(), the Java code of deleteSingleTriple () is as follows: 

public void deleteSingleTriple(Triple triple) ( 

if (this.existsle," RDFSETA ")) { 

int version = this.createNextVersion0; 

this.deleteTriple(trjple., version - 1); 

Table 7 shows that table RDFSETA and VERSION INFO before and after 

delete the triple in RDFSETA. 

Subject Predicate Object Start end 

Australia/People/Birth 

rate 

hasValue 12.55 	births/1,000 

population 

21 -1 

Id Avai lable_time 

1 1990 

2 1991 

... ... 

21 2009 

Table 7.1 before delete the triple, RDFSETA and VERSION_INFO 
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Subject Predicate Object Start end 

Australia/People/Birth 

rate 

hasValue 12.55 	births/I,000 

population 

21 21 

Id Available_time 

1 1990 

2 1991 

... ... 

21 2009 

22 2010 

Table 7.2 after delete the triple, RDFSETA and VERSIONINFO 

3) updateSingleTriple: update the triple is that there is an existing triple in 

archival table, it needs to insert a new triple with same subject, predicate and a 

different object. Thus, there are two steps to implement the function. First the 

triple is deleted by deleteSingleTriple, after that, the triple with new object's 

value is inserted into RDFSETA by insertSingleTriple. The method code is: 

public void updateSingleTriple(Triple oldTriple, Triple newTriple) ( 

if ((this. exists (oldTriple," RDFSETA ')) 

&&(! this. exists (newTriple, " RDFSETA'))) ( 

int version = this.createNextVersion(); 

this.deleteTriple(oldTriple, version - 1); 

this.insertTriple(newTriple, version); 

Table 8 shows that table RDFSETA and VERSION INFO before and after 

update the triple (Australia/People/Birth rate, hasValue, 12.55 births/1,000 

population) with (Australia/People/Birth rate, hasValue, 12.47 births/1,000 

population) in RDFSETA. 

Subject Predicate Object Start end 

Australia/People/Birth 

rate 

hasValue 12.55 	births/I,000 

population 

21 -1 
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Id Available_time 

1 1990 

2 1991 

... ... 

21 2009 

Table 8.1 before update the triple, RDFSETA and VERSION_INFO 

Subject Predicate Object Start end 

Australia/People/Birth 

rate 

hasValue 12.55 	births/1,000 

population 

21 21 

Australia/People/Birth 

rate 

hasValue 12.47 	births/I,000 

population 

22 -1 

Id Available_time 

1 1990 

2 1991 

... ... 

21 2009 

22 2010 

Table 8.2 after update the triple, RDFSETA and VERSION_INFO 

4.2.2 bulk archiving RDF data in RDBMS (MySQL and PostgreSQL) 

Bulk insert is to store the next database version (RDFSETV) into archive 

(RDFSETA), and update existing triples in archive in order to track the history 

of the data. In 5-column solution, author defined 3 operations to archive RDF 

data. 

1) Load data: RDF data is represented by XML/RDF, N3 and TURTLE 

format [15], and inserted into table RDFSETV in MySQL or PostgreSQL. 

Since the data set is huge, these inserts have started to become a bottleneck in 

the bulk archiving RDF data. In [21]'s research, he indicate that people were 

doing the classic batch inserts using a PreparedStatment and executeBatch on 

MySQL. The inserts that was too slow, even after adding the parameter 

rewriteBatchedStatements to users' JDBC URL. Fortunately, MySQL 

Connector/J 5.1.3 and later include two additional methods: 
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MySQL. The inserts that was too slow, even after adding the parameter 

rewriteBatchedStatements to users' JDBC URL. Fortunately, MySQL 

Connector/J 5.1.3 and later include two additional methods: 

setLocalInfileInputStream() sets an InputStream instance that will  be  used to 

send data to the MySQL server for a LOAD DATA LOCAL INFILE 

statement rather than a FileInputStream or URLInputStream that represents 

the path given as an argument to the statement (MySQL API 2010). 

This stream will be read to completion upon execution of a LOAD DATA 

LOCAL INFILE statement, and will automatically be closed by the driver, so 

it needs to be reset before each call to execute*() that would cause the 

MySQL server to request data to fulfill the request for LOAD DATA LOCAL 

INFILE (MySQL API 2010). 

getLocalInfileInputStream() returns the InputStream instance that will be used 

to send data in response to a LOAD DATA LOCAL INFILE statement. 

Figure 2 (cited from [21]) shows the results of compared LOAD INFILE with 

BATCH INSERT. 
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Figure 2 LOAD INFILE with BATCH INSERT 

Therefore, on MySQL, the load data code is as follows: 
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else ( 

is = new FilelnputStream(/Ile); 

st.setLocalInfilelnputStream(is); 

St. execute 

("LOAD DATA LOCAL INFILE Yile.txt' INTO TABLE RDFSETV 

(sub, pre, obj);"); 

Also, PostgreSQL has its own bulk insert method: copy data. The Java code 

on PostgreSQL is: 

File temp = new Filerd:Iltemp.txt '); 

os = new FileOutputStream(temp); 

byten b = new byte[l0 BUFFER_SIZE]; 

int read; 

while ((read = is.read(b)) != -1) ( 

os.write(b, 0, read); 

st.execute("COPY RDFSETV FROM 'd:Iltemp.txt"); 

2) Bulk insert: after loading the data into RDFSETV, the next step is to 

merge the tuples into RDFSETA. For the tuples which exist in RDFSETV but 

not in RDFSETA, they will be inserted into RDFSETA. The meaning of exist 

here is the same as defined before, a tuple in the current database version that 

matches the triple on subject, predicate, object and that has an end-value of -1. 

Similar with single operations, before performing the insert operation, a new 

version needs to be created and retrieved. The bulk insert method can be 

implemented using different SQL statements (as shown below). The 

differences and efficiencies among them are introduced in Section 5. The 

tuples which will be bulk inserted can be illustrated by red part in Figure 3. 

The bulk insert operations are "NOT IN", "NOT EXISTS" and "LEFT JOIN" 

on MySQL, and it has an addition option "EXCEPT" on PostgreSQL 

compared to MySQL. 

"NOT IN" SQL statement is: 
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INSERT INTO RDFSETA 

SELECT sub, pre, obj, version Id, -I FROM RDFSETV 

WHERE 

(RDFSETV.sub, RDFSETV.pre, RDFSETV.obj) 

NOT IN 

(SELECT RDFSETA.sub, RDFSETA.pre, RDFSETA.obj 

FROM RDFSETA 

WHERE RDFSETA .endversion = -1); 

"NOT EXISTS" SQL statement is: 

INSERT INTO RDFSETA (sub,pre,obj, start, endversion) 

SELECT sub, pre, obj, version_id,-1 from RDFSETV 

WHERE NOT EXISTS 

(SELECT * FROM RDFSETA 

WHERE 

RDFSETA.sub = RDFSETV.sub AND 

RDFSETA.pre = RDFSETV.pre AND 

RDFSETA.obj = RDFSETV.obj AND 

RDFSETA.endversion = -1); 

"LEFT JOIN" SQL statement is: 

INSERT INTO RDFSETA 

SELECT RDFSETV.sub, RDFSETV.pre, RDFSETV.obj, version_id,-1 

FROM RDFSETV 

LEFT JOIN RDFSETA on 

( RDFSETA.sub= RDFSETV.sub AND 

RDFSETA.pre= RDFSETV.pre AND 

RDFSETA.obj = RDFSETV.obj AND 

RDFSETA.end = -1) 

WHERE RDFSETA .sub IS NULL; 

"EXCEPT" (EXCEPT only be supported by PostgreSQL) SQL statement is: 
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RDFSETA.obj = RDFSETV.obj AND 

RDFSETA.end = -1) 

WHERE RDFSETA.sub IS NULL; 

"EXCEPT" (EXCEPT only be supported by PostgreSQL) SQL statement is: 

INSERT INTO RDFSETA (select sub, pre, obj, versionid,-1 

FROM 

(SELECT sub, pre, obj FROM RDFSETV 

EXCEPT 

(SELECT 	RDFSETA.sub, 	RDFSETA.pre, 

RDFSETA.obj 

FROM RDFSETA 

WHERE RDFSETA.endversion = -I)) as C); 

Figure 3. The tuples will be bulk inserted (red) 

3) Bulk delete: the records are deleted from RDFSETA exist in RDFSETA 

but not in RDFSETV, that is to say. In Figure 4, the blue part represents the 

records that need to be deleted. 
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NOT EXISTS 

(SELECT * FROM RDFSETV 

WHERE 

RDFSETA.sub = RDFSETV.sub AND 

RDFSETA.pre = RDFSETV.pre AND 

RDFSETA.obj = RDFSETV.obj); 

5 EXPERIMENT 

5.1 EXPERIMENT GOAL 

The Goal of the experiments is to test the solutions' storage space and 

efficiency of adding a new version of the database to the archive 

5.2 EXPERIMENTAL SETUP 

The experiments have been implemented with different SQL statements, 

different database configurations (on MySQL and PostgreSQL), and the 

different datasets (i.e. FACTBOOK and GO). 

5.2.1 DATASETS 

This paper uses FACTBOOK as the experiment data set. The FACTBOOK 

provides information on the history, people, government, economy, geography, 

communications, transportation, military, and transnational issues for 267 

world entities. Their Reference tab includes: maps of the major world regions, 

as well as Flags of the World, a Physical Map of the World, a Political Map of 

the World, and a Standard Time Zones of the World map [19]. In the 

experiments, we use 100 version of the CIA Factbook in RDF format (starting 

from 1990). 

The Gene Ontology project is a major bioinformatics initiative with the aim of 

standardizing the representation of gene and gene product attributes across 

species and databases. The project provides a controlled vocabulary of terms 

for describing gene product characteristics and gene product annotation data 
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from GO Consortium members, as well as tools to access and process this 

data [14].In the experiments, we use 50 version of the GO in RDF format 

(starting from 2009) 

Figure 6 and 7 show the number of delete tuples, insert tuples and all the 

tuples in archive after every RDFSETV version has been inserted into 

RDFSETA (5-column solution), from the figure, we can find out that there are 

increasingly bulk inserting and deleting operations in the first several versions 

and gradually less in the other versions for Factbook dataset. Since the two 

different datasets has similar performance, so this paper focuses on one of 

result from the dataset, e.g. World Factbook. 

5.2.2 MYSQL 

Figure 5 shows the storage space statistics of 4- and 5-column solution. It 

clearly shows that the one of 4-column solution's drawbacks is using huge 

storage space to keep data's versions. Therefore, this paper's experiments are 

related to 5-column solution. 

On MySQL, Every type of SQL statement runs 3 times to get their average 

number with creating different index on archive (RDFSETA). 

Author has developed NOT IN, NOT EXISTS, LEFT JOIN approaches on 

MySQL. With these different SQL statements, author tested the different 

indexes like SPOE (subject, predicate, object, endversion), SPO, OPS, PSO as 

well. In addition, it takes an unacceptable time if perform these SQL 

statements without index on MySQL. 

Table 9 is the time of import triples into Database, since the 5-column 

solution running on MySQL always needs to create index, so the result is 

calculated by the average of all the experiments. We will compare the loading 

time on PostgreSQL (with index and without index) and on MySQL (with 

index). 

Load data 	Time 
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86226 (records) 9138 (ms) 

  

Table 9 Load data on MySQL 

The performances of 5-column solution with different SQL statements on 

MySQL are unexpected, different indexes with different SQL statements have 

similar time overhead. The reason for that is that when these three types of 

SQL statements are running, MySQL always uses index to optimize the 

queries. The results of time overhead with different SQL statements and 

indexes on MySQL are shown in Table 10. 

From the Table, we can find out that bulk insert with index SPO (subject, 

predicate, object) has better performance than SPOE (subject, predicate, 

object, end). The reason of that is with index SPOE, its longer index increases 

the updating time. Also, it may conclude that bulk insert with index PSO is 

better than SPO and OPS on MySQL because less index updating time spent. 

Figure 8 and 9 show the insert time and merge time (insert time + delete time) 

for NOT IN, NOT EXISTS and LEFT JOIN with index PSO on MySQL. 

From the Figure 8 and 9, it can find out that LEFT JOIN has a little bit better 

performance than the others. In addition, respect to Figure 5, it can find that 

bulk insert operations' overhead increase quickly at first because there are 

more deleting and inserting operations at the beginning. 
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(ms) SPO SPOE OPS PSO 

NOT IN 4057558 4213184 4331715 4160777 

NOT 

EXISTS 
4020513 4239498 4380869 4097298 

LEFT 

JOIN 
4118943 4261755 4251236 3950536 

Table 10. Total time on MySQL statistic 

(MS) 
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Figure 9. Insert time with index pso on MySQL 

5.2.3 POSTGRESQL 

On PostgreSQL, author implemented NOT EXISTS, EXCEPT, and LEFT 

JOIN for 5- columns solutions. 

Since querying with index PSO has the best performance on MySQL, the 

experiment also uses this index on PostgreSQL to compare without index on 

PostgreSQL. 

As the shown from Figure 10 and 11, EXCEPT is much better than LEFT 

JOIN and NOT EXISTS. In addition, no index on PostgreSQL manages to 

outperform with index for bulk inserting of 5-column solution. Respect to 

Figure 5, it also can find that at the beginning of bulk insert, the overhead 

increase rapidly since much inserting and deleting operations. 
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6 QUERY 

In this section, the paper introduces three types of querying based on the 

5-column solution. They are: 

6.1 SNAPSHOT QUERY: 

The query retrieves all the triples from one database version. In  this  query, we 

retrieve a database version from the archive, we need to retrieve  all  the triples 
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that have an (start, end) interval which includes the version number we are 

looking for. There are two types of this querying, for example, the query 

which retrieves the history of a country and a query that retrieves the current 

population of the country. The SQL statements for retrieving the history of 

Australia in 2008 and the current population of Australia are: 

The history of Australia in 2008: 

SELCT B.subject, B.predicate, B.object 

FROM RDFSETA as, A RDFSETA as B, VERSION INFO 

WHERE 

VERSION INFO.availabletime = "2008" AND 

A.predicate = "hasName" 	 AND 

A.object = "Australia" 	 AND 

A.subject = B.subject 	 AND 

B. start <= VERSION INFO.id 	AND 

(B. end > = VERSION INFO.id 	OR 

B.end = -I); 

The current population of Australia: 

SELECT F. object 

FROM RDFDATASET as A, RDFDATASET as B, RDFDATASET as C, 

RDFDATASET as D, RDFDATASET as E, RDFDATASET as F 

WHERE 

A.predicate = "hasName" AND 

A. object = "Australia" AND 

B.predicate = "hasCategory" AND 

A.subject = B.subject AND 

B.object = C.subject AND 

C.predicate = "hasName" AND 

C.object = "People" AND 

D. subject = C. subject AND 

D.predicate = "hasProperty" AND 

D. object = E. subject AND 

E.predicate = "hasName" AND 
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E. object = "Population" AND 

E.subject = F.subject AND 

F.predicate = "has Value" AND 

Fend = -1; 

6.2 DIFF QUERY: 

The query retrieves all the triples that are different between two versions of 

the archive. That is, all triples that are in version X but not in version Y will be 

retrieved by SQL query, so we need to retrieve all the triples that have one 

version but not the others. 

The SQL statement is (say X<Y): 

In X but not in Y: 

SELCT RDFSETA.sub, RDFSETA.pre, RDFSETA.obj 
FROM RDFSETA 

WHERE 
RDFSETA.start <= X AND 
RDFSETA.end <=1'-1 

In Y but not in X: 

SELECT RDFSETA.sub, RDFSETA.pre, RDFSETA.obj 
FROM RDFSETA 

WHERE 
RDFSETA.start > X AND 
(RDFSETA.end = -.1 or RDFSETA.end >= Y) 

6.3 TEMPORAL QUERIES 

This type of query is able to query how a certain 'fact' or object changed over 

time, for instance, how did the population of Australia change? We need to 

find all the triples that have an (start, end) interval which locates the given 

range. 

SELECT Fobject 
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FROM RDFDATASET as A, RDFDATASET as B, RDFDATASET as C, 

RDFDATASET as D, RDFDATASET as E, RDFDATASET as F 

WHERE 

A.predicate = "hasName" AND 

A. object = "Australia" AND 

B.predicate = "hasCategory" AND 

A.subject = B.subject AND 

B.object = C.subject AND 

C.predicate = "hasName" AND 

C.object = "People" AND 

D.subject = C. subject AND 

D.predicate = "hasProperty" AND 

D.object = E. subject AND 

E.predicate = "hasName" AND 

E.object = "Population" AND 

E.subject = F subject AND 

Fpredicate = "has Value" AND 

(F start <= A.start AND 

(Fend = -1 OR Fend >= A.start) OR 

A.start <= Estart AND 

(A. end = -1 OR A. end > = Fstart)) AND 

(Fstart <= B.start AND 

(Fend = -1 OR Fend >= B.start) OR 

B.start <= Fstart AND 

(B.end = -1 OR B.end >= Fstart)) AND 

(F start <= C. start AND 

(Fend = -1 OR Fend >= C.start) OR 

C.start <= Fstart AND 

(C.end = -1 OR C. end > = Fstart)) AND 

(F start <= D. start AND 

(Fend = -1 OR Fend >= D.start) OR 

D.start <= Fstart AND 

(D.end = -1 OR D. end > = Fstart)) AND 

(F start <= E.start AND 
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(Fend = -1 OR Fend >= E.start) OR 

E.start <= Fstart AND 

(E.end = -1 OR E.end >= Fstart)); 

With start and end column, it is easy to query all the triples from one database 

version (snapshot) and retrieve all the triples that are different between 2 

versions (cliff). But it is complicated for querying how a certain fact has 

changed (temporal) because it needs to identify different situation of the fact. 

In addition, from the three types of queries, it can find out that the more triple 

patterns there are in the SPARQL query the more self-joins are necessary in 

the corresponding SQL query, it is also a drawback for 3-column approach. 

7 COLUSIONS 

In this paper, compared with existing archiving RDF data approaches, two 

archiving RDF data in relational database solutions which are able to track the 

history of changes to the data have been described. The experiments for the 

5-column solution have demonstrated that the "EXCEPT" on PostgreSQL has 

the best performance. Also, with 5-column solution it can be conclude that 

PostgreSQL is more suitable for archiving RDF data than MySQL is. In 

addition, based on 5-column solution, three different types of SQL queries 

have been developed. The queries can be used for to retrieve the triples from a 

certain version, to find the triples that have one version but not the others, and 

to track how a fact has changed. An issue exists in queries is that much 

self-join have been caused when perform the temporal queries. It is also the 

problem in triples store approach. A natural question is whether it can be 

improved if developing the solution which based on other existing approaches 

like property table approach and vertically approach. Another issue is to 

develop archiving RDF data on RDFDB, and to compare them with 

approaches on relational database. 
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APPENDIX: 

All the code and all data used for experimental work have been submitted as 

electronic documents. 
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