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SUMMARY 

An ivestigation of the noise which is an inherent part of 

delta modulation due to the nature of the modulation process is 

presented. A large part of the examination of the noise consists 

of an investigation of the noise performance of delta modulation. 

In order to limit unwanted paramenters, the study has been mainly 

confined to an ideal delta modulator with a perfect, single 

integration feedback network. The investigation presented is 

restricted to the modulation - demodulation process in the main, 

with emphasis on voice communication usage. The feasability of a 

computer simuation of delta modulation and the design and 

construction of an experimental modulator is presented. Analysis 

and comment on the qualitative and quantitative aspects of noise in 

delta modulation is included with reference to measurements taken, 

and existing analysis being made. 
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INTRODUCTION 

In the current state of voice and video telecommunication the 

use of analogue methods for new communication channels is still 

dominant. In particular, amplitude modulation, frequency modulation, 

and direct analogue transmission are most frequently used. With current 

trends in technology and service requirements, the use of digital 

communication systems is showing itself to be preferable to analogue 

methods in many circumstances. 

The most developed, and at present the preferred type of digital 

communication system is pulse code modulation (PCM) which is in commercial 

use in many technologically advanced countries. Digital modulation 

systems have the advantages over analogue systems of: the capacity for 

regeneration with amplification (thus preventing the accumulation of noise 

over long routes); compatability with digital data transmission; use with 

time division multiplexing (TDM); and lower power consumption by virtue 

of the two state nature of the transmitted signal. 

The other basic form of digital modulation, which uses a 

simpler principle of operation, is delta modulation. By virtue of the 

quantization in time and amplitude of the signal to be modulated by a 

digital method, some information is discarded in the modulation process. 

This gives rise to a type of noise intrinsic to the modulation process, 

and it is an investigation of this type of noise for delta modulation 

which forms the basis of this thesis. 

In the first chapter a brief review is made of continuous 

carrier modulation and analogue pulse modulation, leading up to digital 

pulse modulation. This provides a basis for the introduction of delta 

modulation with discussion of its origin and operating principles. 

A review of the modifications, improvements and current state of develop-

ment of delta modulation is contained and a comparison with pulse code 

. modulation is made. 

The second chapter consists of an investigation into the nature 

and magnitude of the noise which is inherent in the delta modulation 

process for simple, non-companded systems. A review of existing noise 

analysis with investigation into the factors and definitions involved 

. is made. 

In the third chapter the establishment of a computer simulation 

(using an Elliott 503 computer) for a single perfect integration, 

simple delta modulator is presented. The noise power results obtained 

from various simulations are discussed along with the factors 

influencing the results and the effectiveness of the simulation. 
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The design, realization and performance of an experimental . 

delta modulator are described in the fourth chapter. Discussion 

of the method of noise measurement, the accuracy and repeatability 

of results and limitations of the circuitry is also included. 

In the fifth chapter the experimental and computer simulation 

estimates of the performance of delta modulation are compared and any 

discrepancy is explained in terms of the different conditions applying 

to each. The results obtained from the measurements are discussed 

and analysed relative to the expected performance and 	the 

established theoretical descriptions. Where discrepancy between the 

various performance descriptions is observed it is explained in terms 

of either; the limitations of the theory, the lack of relevance of the 

conditions considered to the theory, or inaccuracies in the results 

due to limitations in the conditions under which the performance 

results were obtained. 

It is shown in this thesis that no theoretical analysis yet 

determined gives an accurate description of delta modulation performance 

for all ranges of operating conditions. (ie. for a given set of system 

parameters; for a full range of input signal values and a representative 

range of expected input signal types). It has been demonstrated that the 

most accurate and useful description for a range of input loadings is that 

of Abate17 , which is empirically derived and gives estimates for the non-

overload performance which are close to the theory of O'Neal
35 (derived 

from van de Weg
34 ). 

It has been demonstrated in this thesis that simple delta modulation 

performance can be described by four regions of performance. These regions 

are clearly distinguishable for sinusoidal inputs but the region of part-

ial slope overload is not readily distinguished from the slope overload 

region wherea broadband input signal is being considered. The performance 

region of partial slope overload is defined, analysed and confirmed by 

experimental and computer simulation results for a sinusoidal input. 

Previously this region of performance has only been referred to descript-

ively; as for example by O'Nea1
35 : "as if the basic granular quantizing 

noise has been supplemented by furthur noise, due to the onset of the slope 

overload condition." The performance region of minimum quantizing noise 

for high clock frequencies has also been described, analysed and con-

firmed by experimental and computer simulation results. Discussion of the 

noise power spectrum and its variation with the input signal loading is 

included along with discussion of the effect of variation in the 

probability density function of both the error signal and the 

output-to-line pulse signal. It has been determined that the use of 

a sinusoid as a test signal is useful in.indicating the'nature of noise 

and the qualitative performance of delta modulation but is only of 

limited relevance quantitatively for specific non-sinusoidal inputs. 
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CHAPTER 

THE DEVELOPMENT OF DIGITAL MODULATION SYSTEMS  

1.1 	Introduction  

The era of electrical communication commenced in 1838 when 

Samuel Morse conveyed information over a distance using the variation 

of electrical parameters in an electrical transmission medium. This 

first electrical communication system was the telegraph in which 

information., in the form of an input message was coded into pulses, 

using a binary code, which were converted to electrical pulses for 

transmission by wire to be dectected and decoded at the receiving end. 

From this date the demand for electrical communication has soared 

due to the high speed of information transmission inherent in electrical 

communication. With the perfection of a transducer for the conversion 

of sound to a time varying electrical signal directly related to the 

sound, telephony for direct voice communication resulted. The discovery 

of the possibility of using electromagnetic radiation as the transmission 

medium led, with wireless telegraphy, to modulation. A high frequency 

carrier wave more suited to the transmission medium is modulated by the • 

systematic variation of the carrier in accordance with the input signal. 

Modulation must be performed in such a way that an acceptable approxi-

mation to the input signal can be reconstituted at the receiving end. 

Modulation has developed into a vital process in electrical 

communication systems because of various demands which are satisfied, 

and benefits which result from modulation. The. main benefits of 

modulation result from the shift in the natural frequency range of the 

information to a much higher frequency. Among the benefits are: 

Ease of electro magnetic radiation at higher frequencies. 

The allocation of different signals to different carrier 

frequencies. This allows many communication paths, each separable 

from the others, to use a common transmission medium. Thus a single 

channel with a wide bandwidth can be fully untilized by the simultaneous 

transmission of many narrow bandwidth signals. 

Transmission at higher frequencies allows greater power 

transmission and the facility to select the frequency of transmission 

most suited to available equipment and to the transmission medium. 

Modulation in general has the effect of suppressing noise 

interference on the transmitted signal. In particular, certain 

modulation methods allow a trade-off between bandwidth requirements 

and noise suppression. 
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1.2 	Types of Modulation  

The various methods of modulationcan be divided into roughly 

three categories. Such division is useful in describing the basic 

principles of any type of modulation. However some commercial 

communication systems may contain characteristics of more than one 

, type of modulation. 

Continuous Wave Modulation  

Continuous wave or continuous carrier modulation has a sinu-

soidal wave as the carrier. Some parameter of this Carrier is varied 

in a continuous fashion by the signal to be transmitted (i.e. the 

modulating signal). The frequency of the sine wave carrier must be 

greater than the maximum signal frequency designed to be transmitted, 

and in general the carrier frequency is many times the maximum signal . 

frequency. 

Amplitude modulation (AM) in which the amplitude of the carrier 

sinusoid is the continuously varied paramenter was the. first modulation • 

method used. Amplitude modulation and various modifications of AM

remain the dominant methods of modulation in electrical communication. 

The other parameters of a sinusoid carrier which can be varied 

as a function of modulating signal are the phase, which gives phase 

modulation (PM), and the time derivative of the phase or the instant-

aneous frequency, which gives frequency modulation (FM). Both these 

continuous wave modulations are closely allied and are known as angle 

modulation. 

Pulse Modulation  

The carrier for pulse modulation is a train of periodic pulses. 

Some parameter of each pulse is varied by the modulating signal: Clearly • 

any pulse modulation system, since it transmits information only at the . 

instant of the pulse, is a discrete or non-continuous system, For the 

transmission of non-continuous information the only requirement, would 

be that the pulse rate is matched' to the rate of information. The use 

of pulse modulation for a continuously time varying signal depends on 

the theory of sampling. By sampling at a rate of at least twice the 

maximum signal frequency (fm) all the information of the continuous. 

signal is contained in the samples. 

As the pulse rate, is determined by the above considerations 

the parameters of . the pulse train carrier suitable for variation are 

the height, width or position of each pulse. This gives respectively, 

pulse amplitude modulation (PAM)., pulse width modulation (PWM) and 

pulse position modulation (PPM): Although non-continuous, these methods 
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of pulse modulation are analogue in nature in common with continuous 

wave modulation. This distinction can be made because the variable 

paramenter is being changed directly and continuously be the modulating. 

signal. 

Digital Pulse Modulation  

The feature of digital pulse modulation which makes it markedly 

different from the other modulation methods is that the periodic pulse 

train carrier has standard pulses. There is no variation of any pulse' 

parameter with the modulating signal. Instead the information is con-

veyed by the pulses being assigned one of several states. In general 

digital pulse modulation systems are binary systems. Hence it is merely 

the determination of the presence or absence of a pulse which conveys the 

information. 

Because of the discrete nature of the information (either 1 or 0) 

contained in each pulse, the signal sample values must have discrete 

values. Thus quantization - the assignment to each sample value of a 

discrete value - is necessary. In addition, to convey the information 

of the quantized signal value to one or more pulses some coding is 

required. 

Pulse code modulation (PCM) was the originally conceived method 

for the digital transmission of continuous time varying signals. 

Although the concept of PCM was fully defined by A. H. Reeves in 1938 

it was not until the last decade that the advances in semiconductor 

switching elements made PCM links feasable for commercial use. The 

process of modulation using PCM (see Fig. 1.1) consists of: sampling 

the analogue signal at the rate required for reconstruction, quantizing 

the sampled values, and finally coding the quantized amplitudes into a 

digital format using the standard binary code. For commercial telephony 

128 quantizing levels are used that are exactly specified by a group 

of binary coded pulses. 

It is interesting to note that the rapidly growing commercial 

use of PCM and digital data transmission represents a return to the method 

used in the original electrical communication - the telegraph. The major 

advances in electronics however, now permit automatic coding with far more 

efficient coding systems. 

A modification of PCM is to code and transmit only the difference 

between successive signal sample amplitudes. This method is known as 

differential pulse code modulation (DPCM) (see Fig. 1.1). The concept 

of DPCM was defined in the early 1950's and resulted from attempts to 

increase the efficiency of the digital coding of analogue signals. 

Because of the correlation between successive sample values of analogue 

signals such as speech, there is a redundancy in transmitting each sample 
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value. With DPCM systems there is a feedback path around the quantizer. 

The feedback network makes a predication of the value of the incoming 

sample and this is subtracted from the sample value. The feedback 

network "predicts" by some form of decoding or reconstruction of the 

differential quantizer output. The simplest system is one which gives 

the previous sample value as the prediction for the next value. 

A special case of DPCM results if the difference value is coded 

with a one bit cade. This results in each sample's value being represented 

by only one pulse in the pulse train carrier. The presence or absence 

of each pulse indicates whether a unit increase or decrease in the 

reconstructed signal is the closest approximation to the input signal. 

Such a digital pulse modulation system with unity bit coding of the input 

sample differential is known as delta modulation (DM). (See Fig. 1.1). 

Although delta modulation can be regarded as a special case of 

DPCM the method was proposed prior to the conception of DPCM. Due to 

the uniqueness of the unity bit code compared with a code of several 

digits, delta modulation has many characteristics which make it quite 

distinct from the other digital pulse modulation methods. A full 

discussion of the origin and concept of delta modulation is made in 

Section 1.4. Included is a comparison with PCM and DPCM which points 

out the fundamental differences and consequences of these differences 

regarding the practical realization of a digital communication system. 

Before proceeding to a comparison of the basic modulation 

methods it should be pointed out that some actual communication systems 

are to some degree a hybrid of methods. The most frequently used 

comnination occurs in systems where some pulse modulation method is the 

initial and fundamental modulation. In such cases it is common in the 

final stage, for the pulse train (either analogue or digital) to modulate 

on R.F. or microwave carrier for transmission purposes. The use of this 

final stage of continuous wave modulation depends on the transmission 

medium and the distance involved. 

1.3 	A Comparison of Modulation Types  

To compare methods of modulation with the intention of arriving 

at an optimum method for electrical communication is clearly a meaningless 

• exercise. Due to the large variety of signals, transmission conditions, 

distances, and quanlity requirements, the priorities of desired characteris-

tics varies depending on the overall communication system under discussion. 

However in comparing the intrinsic advantages and disadvantages of any 

particular method of modulation the various factors which are of greatest 

significance are: 
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1. The quality of performance. 

2. The average transmitted power. 

3. Bandwidth required for transmission, BT . 

4. Compatibility with equipment sharing techniques such as 

multiplexing. 

5. Suitability for use with repeaters on long distance or high 

attenuation transmission paths. 

6. Equipment expense factors such as complexity and quantity. 

• 

In discussing these factors, terms are defined which will be 

standard throughout the thesis: 

The quality of performance of a communication system depends on 

a large number of factors many of which are difficult to analyse. However 

the commonly used measure of quality is the output signal-to-noise ratio 

(SNR) defined by: 

S0 = Ratio of average signal power to average noise 

Clearly the output SNR gives no indication of many quality factors such 

as, the nature of the noise, or the susceptibility of the system to 

signal distortion or interference. For example, it may be stated that 

where the noise is basically random white noise uncorrelated to the 

signal,then acceptable output SNR's for speech are 30 dB or greater. 

However some particular system or modulation method may give rise to 

noise whose nature makes a 30 dB SNR totally unacceptable due to the 

unpleasant sounding nature of the noise. Where such factors are of 

significance in the comparison of modulation methods they are mentioned 

separately. In order to make the output SNR a suitable measure of the 

noise performance inherent .with the basic method of modulation alone, it 

is frequently expressed in terms of the input SNR defined by; 

S in 	Ratio of the average signal power to average 
Nin 	noise power at the input to the detector (or 

decoder). 

A more objective measure would take into account the proportion of the 

average transmitted power, P T, at the detector input which is contributed 

by the noise power, Sin . If a system has a significant part of the total 

transmitted power, PT , accounted for by, say, a non-information carrying 

carrier, then the output SNR is reduced compared to a system which devotes 

\all of PT  to the signal power, S in . For this reason it is often more 

meaningful to express the output SNR in terms of Por where relevent 
T/Nin  

to indicate what proportion of PT  is accounted for by S in. Perhaps the 

best measure of relative performance of any modulation method, and*the 

one which'is used most frequently throughout this thesis, is the output 

SNR in terms of Z (see Carlson2) where Z is defined by; 

power at the receiver output. 
o' 
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■ Output SNR of baseband transmission under the same 

transmission conditions. 

Hence, 
Ratio of transmitted power to noise power in the 
message bandwidth. 

P
T 	

Where the noise is assumed to be additive 
— 	white noise of density 11 
w  and W ■ message bandwidth. 

The performance figures in terms of Z are in terms of the channel 

quality taking into account both the transmission power and the noisy-

ness of the channel and receiving equipment. 

The bandwidth of frequencies required in the transmission channel 

by a particular system for the. transmission of One signal is'Called , tbe 

• transmission bandwidth and is, denoted by B T . This factor becomes 

particularly significant when it is desired to transmit many Individual 

signals over a common limitect bandwidth transmission facility. The 

common usage of a transmission channel is achieved by using either 

frequency division multiplexing (FDM) or time division multiplexing 
4 (TDM) 2, . TDM has two significant advantages over FDM, namely siinpler 

. 	, 
circuit implementation and relative immunity to interchannel interference 

r 	. 
or crosstalk. Any pulse mod4lation system (digital or analogue):can 

be multiplexed with TDM, whereas FDM is only suitable for use withl': 

continuous wave modulation.- 1Where multiplexing is desired (as in long 

distance telephone communication) the multiplexing method suitable to 

a particular method of modulation must be considered in any comparison 

of modulations. 

In selecting modulatien methods to be Used in realizin0 

communication link there.areConttraints other than those mentioned 

already which are not related to the fundamental nature of tbe:method 

of modulation. For example a new system, although apparently'superior 

for some particular communication task to the currently used  

may well be slow in being implemented due to the well established 

technology of the existing system. Also the compatibility (4i2 new 

system to the.existing.facilities may impede its utilization, ,,However' 

such constraints will not be taken into account in this thesis in the 

discussion of any modulation system. 

1.3.1 Continuous Wave Modulation 

; 2,3 
Conventional analysis . 	gives estimates of the output SNR for 

c-w modulation methods as shown in Fig. 1.2 along with other relevant 

characteristics. •Such , analyais is based on the reasonable assumption 

that the dominant signal contamination occurs in the channel:and - early 

receiver stages and results from white noise, which is independent of • 

the signal. The limitation of the output SNR of AM-, DSB modulation 

results from the signal power being only a small part of the 
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m2 
transmitted power (S 	24m 2 PT)• As full modulation cannot be 

maintained in general (i.e. m<1), over 2/3 of the transmitted power will 

be wasted in the non-information bearing carrier. This, combined with 

the transmission bandwidth required, makes the performance of AM-DSB compare 

poorly with SSB modulation. However, the suppressed carrier of SSB or 

DSB-SC makes the receiver circuitry considerably more complex and thus 

DSB is used in broadcasting where many receivers of a single channel 

are involved. The noise performance of SSB degenerates considerably 

where signal discontinuities are significant and thus DSB or DSB-SC are 

used for the continuous wave modulation of pulse signals. 

Narrow band FM shows no basic improvements over AM but wide 

band FM has the valuable characteristic, which is frequently required, 

Of wideband noise reduction. 

Fig. 1.2 shows the potential WBFM has for large increases in 

the output SNR relative to baseband transmission. This is achieved at 

the expense of a greatly increased channel bandwidth requirement. Wide- 

band noise reduction with phase modulation (PM) is not possible as the 

phase modulation index Od  is constrained to be less than nr. Thus PM 

compares poorly with AM for analogue signals but finds its use in digital 

pulse train modulation of h.f. carriers (i.e. Phase shift keying or PSK). 

where it strongly resembles DSB-SC amplitude modulation by digital signals 

(i.e. amplitude shift keying or ASK). FM is also highly suited to deem-

phasis filtering by which, typically, an extra 12dB of output SNR can be 

obtained without any increase in the required transmission bandwidth. 

Indefinite output SNR improvement for WBFM cannot be achieved by 

increasing D,(and hence BT) as a point will be reached where the increased 

input noise Nip,  due to increabing BT
, starts to cause severe signal 

distortion. Therefore WBFM suffers from a threshold effect which severely 

limits the output SNR for Sin /Nin of about 13dB or lower (see Fig. 1.3). 

This represents a channel capacity limit corresponding to Z about 20 

BT/f • 
Clearly this also puts a limit on increasing the transmission 

bandwidth in favour, of reduced transmission power,or the use of extremely 

noisy transmission paths. 

1.3.2. Analogue pulse Modulation  

The benefits of PAM result from its suitability to TDM and it there. 

by inherits the advantages of TDM over FDM. In fact PAM and also PPM and 

PWM would almost invariably be used with TDM to give multi-channel use of 

a single transmission path. The bandwidth and noise performance of PAM 

are in general inferior to AM but they can tend towards baseband perform-

ance. 

PPM and PWM are analogous to angle modulation, in that the varying .  

, 	parameter is in the time domain and they exhibit wideband noise reduction.. 
0 
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Fig. 1.2 illustrates the good wideband noise reduction of PPM, with the 

output SNR increasing with B
T 

at the same rate as for WBFM (i.e. 

So/No cK BT2  ). The maximum output SNR for PPM falls about 8dB below 

WBFM for the same conditions. However a practical PPM system could be 

of the order of 18 dB below WBFM in noise performance. PWM shows wide-

band noise reduction which is poor compared to FM or PPM. A threshold 

effect similar to that experienced by FM occurs with PPM and PWM. With 

the pulse modulations the threshold results from noise peaks which give 

false pulses if the transmission bandwidth, and hence the noise power., 

exceeds a threshold level. 

As well as its noise reduction property, PPM along with the 

other analogue pulse modulations has the advantage of having the 

potential to use an on-off transmitted signal, which gives rise to 

greater transmitter efficiency. 

If, in the final stage of an analogue pulse modulation system, 

c-w modulation of a high frequency carrier is performed (e.g. ASK or PSK) 

for transmission purposes, then the transmission bandwidth required 

(as shown in Fig.1.2) is in general doubled or more than doubled. 

(The only exception is where a multisignal PAM-TDM pulse train is low 

pass filtered and transmitted as an analogue signal using AM-SSB.) 

Overall, analogue pulse modulation systems do not compare favourably 

with c-w modulation from either the bandwidth or noise performance 

viewpoints. Their use depends heavily on the desirability of their 

special merits mentioned previously. The superiority of TDM over 

FDM however would have guaranteed PAM and PPM a major role in long 

distance, multi-signal, point to point telephony had not their use been 

short-circuited by PCM. 

1.3.3. Digital Pulse Modulation  

The nature of the noise and the noise performance of digital 

systems is unique, due to the basically different nature of information 

coding as discussed in Section 1.2. Sampling of a band limited signal 

involves no contribution to noise but the amplitude quantization of a 

sampled signal does introduce an error or noise function. This noise 

results from the loss of information when each sampled value is restricted 

to take on a discrete value and is known as the quantization noise. In 

digital systems no attempt is made to transmit the exact signal, but a 

coded pulse train carries the information of an approximation to the 

signal, namely the quantized signal. This gives digital systems 

unique characteristics, listed below, in which the merits of its use lie. 
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1. The transmitted signal consists of constant size, periodic 

pulses, the presence or absence of each pulse being. the only. information 

required of the transmitter carrier. Thus, provided the noise power is 

below some threshold level, so that virtually no pulses are lost or false .  

• pulses added, there will be no significant loss of information at the re-

ceiver and hence no random-channel noise at the output. 

2. The digital pulse train can be detected and regenerated with 

the rejection of all accumulated noise and distortion at repeater stations. 

This is a unique advantage over analogue modulation methods,'where tbe sig-

nal connot be distinguished from the signal plus noise and thus repeaters 

amplify both signal and noise, as well as introducing some further 

distortion. 

3. Whereas the noise performance of analogue systems is limited 

by -random noise in the channel and by distortion, the noise :performance 

of digital systems is virtually completely determined by the, error that 

results from quantization. Furthermore,. provided the channel SNR is 

above the threshold value, the quantization noise is determined totally 

by the spacing of the quantizing levels. By spacing the quantizing 

levels as closely as desired, (with a corresponding increase in the number 

of quantizing levels), the output SNR can be made as high alVdesired. As 

the quantizing level spacingtis reduced, and hence the output .  SNR is 

increased, there is an increase in the transmission bandwidth required. 

This- indicates that digital eystems exhibit wideband noise reduction as 

will be shown later. 

As well as their special advantages, digital pulse systems share 

the advantages of analogue pulse modulation of being suitable for use 

with TDM and having an on-off transmission signal. In addition, digital 

modulation systems, having dominantly digital hardware are highly suited 

to large scale IC realization, and are to a large degree, compatible 

with digital data transmission. 

Pulse code modulation, having a binary code, has the number of quan 

tizing levels (q) related to the number of pulses (or digits),. required to 

uniquely specify each level (p), by q 2.  The transmission bandwidth 

required as shown in Fig. 1.2 is based on that required for - the resolution 

of non-return-to-zero (NRZ) tor  full width pulses. If half width pulses 

were used in order to facilitate simpler clock synchronization at the 

receiver, then the required transmission bandwidth would be Aoubled. 

The, analysis leading to the output SNR expressions for. PCM, as 

'shown in Fig. .1.2, will be Considered in more detail than the previously 

discussed systems because of its significance in later discussion of 

delta modulation noise. Some textual discrepency for PCM output SNR 

estimates occurs, due to varying.defintionslof the output signal. . 
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employed. Such companding, designed to give a signal with as cloie to 

uniform distribution over the full input range as possible; is easier to 

implement than a PCM system with the quantizing level spacing adjusted to 

match the signal characteristics. With companding the value of/3 2 
■ 3 can 

be approached for typical signals and so the estimate of the Output SNR is 

given as S 
o 
 /N

o 
 ■ 22p However, to keep a uniform basis for comparison 

with other systems the slightly higher estimate obtained with a sinusoidal 

signal of full amplitude is 'given in Fig. 1.2. 

The minimum channel Or input SNR before bit errors become' 
2 	• significant is the threshold level and is estimated 1, at: (S /N ) 

in. in 
Threshold ■ 30 (15dB). Thiscorresponds to Z

th 
■ 
30 BT m 

/ f ■ 30p. 

It is significant to;bear in mind that for a typical.cOmmercial 

PCM system for telephony with.a 7 digit .  code (pal) the companding is such 

that it reduces the output SOR from 44 dB as estimated by the equation of . 

Fig. 1.2 to about 32 dB. The companding is designed, however, to give a 

large dynamic range ,  of input signals of about 35 dB. 

The noise performance analysis for PCM indicates that in addition 

to the advantages of digitalpulse modulation discussed earlier, PCM 

exhibits a more powerful wideband noise reduction than the other, modulation 

methods (refer Fig. 1.4), with an exponential increase in output for 

increasing transmission bandwidth. PCM, in common with all Cligital, . 

systems shows no output SNR improvement with improving channel conditions 

once threshold has been reached. Operating just above the threshold,. 

Fig. 1.3 indicates that for typical speech transmission requirements, and 

for comparable transmission bandwidth requirements, PM is considerably 

superior to the best analogue pulse modulation (PPM) and is only Inferior 

to FM with deemphasis. 

. Because of all the factors mentioned, and in particular because 

of its capacity for noiseless regeneration and use with TDM; and because 

the quite complex quantizing and coding equipment can be shared by all 

the multiplexed signals; PCM Is rapidly growing in use for long-distance 

telephone transmission. 

• 	 7 - 
Differential' pulse code modulation (DPCM) has been shown 

6,
to 

be capable of output SNR improvement if the normalised correlation between 

adjacent samples is greater than about 0.5.McDonald7 
estimates that for 

speech . signal transmission, DPCM' Can give from 6 to 10 dB . increase in the 

output.SNR relative to PCM for the same conditions. Alternatively 

DPCM can give performance on a par with commercial PCM with a 6 digit 

instead.of the 7 digit code group for PCM thus giving a reduction in the 

transmitted pulse rate from 56 to 48 kHz. However' DPCM suffers from a 

severe%equipment problem whenuse With TDM is required; as it. frequently 

would be. This problem arises because a differential quantizer/coder 
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• requires consecutive samples to be from the same signal. Therefore the 

method of sampling and multiplexing 	many signals prior to their input' 

into a common quantizer/coder as is done with PCM is not so readily 

'available to DPCM. 

Some further discussion of this problem as it relates to delta 

modulation is included in Section 1.4. 

1.4 	Delta Modulation. 

1.4.1 The Basis of Delta Modulation  

The concept of delta modulation (DM) as a method for converting 

analogue signals into digital form was first noted in a French patent in 
9 1949 and was fully described by Schouten, 8 

 and Jager and Greefkes 8, in 

1952. The basic method is to code into a one-bit digital code the differenc 

between the input signal to be transmitted, f(t), and a "predicted" or 

reconstructed signal, r(t) (See Fig. 1.6). The reconstructed signal is 

obtained by passing the modulated pulse train through a linear network 

(F1). Reconstruction of the signal at the receiving end is achieved by 

pulse regeneration, (the first step for signal recovery in all digital 

modulation systems) followed by a linear network, generally the same as Fl; 

and finally low pass filtering to remove noise components outside,  the 

signal bandwidth. Thus the feedback path in the delta modulator can be 
, 

regarded as a local decoder. ' 

Coding of the difference or error signal, e(t), into , a one digit 
- 

code is achieved using a two-level quantizer and a periodic sampler 

(or pulse modulator). If the quantizer output is high at a sampling 

instant, indicating that e(t) .;  is positive, then a pulse (or binary one). 

is transmitted and r(t) increases in an attempt to form a better 

. approximation or prediction fe the input signal. Likewise if the • 

quantizer output is low, a binary zero (no pulse or a negatiVe . pulse) is 

transmitted and r(t) is decreased. By virtue of the binary nature of the 

quantizer, the sampling could alternatively be performed directly before • 

the quantizer,Without altering the system's performance. The - only 

values which affect the output are those at the clocking instants. 

The most basic and first delta system , considered, used an integrato 

in the feedback path with disCrete narrow pulses for the output digital 

signal. Fig. 1.7 shows the system and the wave-forms that result. 

assuming perfect integration And ideal impulses. The receiver output 

is the dame as r(t) after low pass filtering and the output noise Signal 

is very 'close to e(t) after low pass filtering. The error signal is not 

. identical to the unfiltered noise, as r(t) is delayed behind I(t) by some 



FIG 1.8 Waveforms of the Input and Output with a Double  

Integration Feedback Network  

Maximum slope change of r(t) hfo  in To  secs. 
Therefore ; Maximum rate of change of slope change = 

FIG 1.9 Illustrating Output Instability with a Double Integration  

Feedback Network 
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fraction of a Clock period, giving e(t) some input signal component,as 

will be shown later. Such a system has an amplitude quantized reconstructed 

signal,similar to a decoded PCM signal,but certain important .differences 

exist. 

1. Each quantized level is constrained to be one unit higher or 

lower than in the previous saMpling period. 

2. In such an ideal -  system there is no limitation on the maximum 

input signal amplitude as exists with PCM. The limitation on r(t) and 

hence the input signal, is anamplitude rate of change limitation with 

the maximum slope given by f ch, where h is the quantizing level spacing 

or'the height of the step response of the integrator. 

3. With PCM the quantizing error at any sampling instant-is h/2 

or less in magnitude as discuesed in Section 1.3. For DM, as.a consequence 

of the first point, the error !signal at the sampling instant,.e . (kTc) 

can have a magnitude-up to h provided the signal slope, f!(t), 

is within the maximum value' 

4. To sample at a rate greater than the Nyquist rate with PCM 

does little to enhance the performance and is wasteful with transmission 

bandwidth. This contrasts with DM which requires a sampling rate 
• 

considerably greater than the Nyquist rate in order to have the capability 

to handle a reasonable range of input signal slopes. Moreover-for a given 

maximum signal slope, increasing the sampling frequency allows the 

quantizing level spacing to be: reduced and thus gives .a reduction in the 

output noise. 

1.4.2 Double Integration. 

In order to give the reconstructed signal a greater capacity to 

adapt to the input signal,. a double integration feedback network ha been 

proposed
9 	

Each binary one output gives a unit slope increase in 

r(t) and each binary zero output a unit decrease in slope. Typical wave 

forms for a double integration : feedback are shown in Fig. 	From this 

figure it can be seen that a greater dynamic range of input signal can be 

handled compared with single integration, giving a correspondingly greater 

output SNR. The limit on the input signal dynamics, so that . r(i) 'can track 

the input signal, would be expected to be a limit on the rate of change of 

slope of f(t) given by f'(t) ax 
= hf

2
• 
 However Fig. 1.9 illustrates that 

	

m: 	• c  
for certain signals whose second derivative does not exceed the limit, 

instability can arise resulting in oscillations of r(t). Just as with 

single integration the amplitude of r(t) overcompensates, giving a stepwise 

approximation of f(t); so with double integration the slope of r(t) over-

compensates,but with the possibility of far more serious consequences in 
, 	- 

the form of instability in r(t).. 
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—1, 
Whether oscillations in r(t) will occur depends on the 

characteristics of the input signal. For a particular type of signal it 

would seem reasonable that a combination of single and double integration 

' could provide optimum approximation to the input by r(t),while avoiding 

the instability problem. 

1.4.3 Optimum Feedback Network  

With direct amplitude quantization as occurs with PCM, there 

exists the same amplitude capacity, A, for all signal frequencies. 
max   For input signals such as speech when the amplitude spectrum 15  falls 

with increasing frequency (see Fig. 1.11), this results in redundancy in 

the systems' amplitude capacity for the higher signal frequencies. 

Considering again, for single integration DM, the limit on f(t) 

to prevent overload. The maximum slope capability of r(t) is f ch and so 

for a sinusoidal input signal, f(t) = Asin2TTft, the maximum amplitude, 

A , to prevent slope overload is given by fl(t) max = Amax2 IT f fc
h. max 

Hence A 	= 
f
c
h 

. Thus, for a given single integration DM system the 
max Ilrf  

input amplitude capacity decreases at 20dB per decade for increasing signal 

frequency. This indicates a good adaption of DM to voice communication. 

For a double integration feedback network, neglecting the stability 

problem, the limit on a sinusoidal signal to prevent overload is given by: 

f"(A)max m (2"f)2Amax m hfc2 ' 

f 
2 

Hence, A  
max - 27T f 

Thus for double integration the overload characteristic has the maximum 

signal amplitude falling at 40dB per decade for increasing signal 

frequency. This direct relationship between the feedback network transfer 

function and the overload characteristic means, that by suitably combining 

single and double integration in the feedback path, the overload 

characteristic can be made to correspond fairly closely to the signal 

spectrum. This mixed integration provides a reduction of redundancy in the 

signal amplitude capacity of the modulator as shown in Fig. 1.11. 

An alternative approach to the question of the optimum feedback 

network is one based on the principle that the maximum information will 

be carried by each pulse when the removal of inherent signal redundancies 

by the use of negative feedback is optimized. 

It would ,  appear that the maximum removal of signal redundancy will 
be achieved when r(t), the reconstructed or "predicting° signal, depends 

on each previous sampling instant value to the same degree as the input 

signal depends on its previous sampling instant values. Based on this it . 
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would be reasonable to attempt to give r(t) on autocorrelation function 

which was the same as the average ,  autocorrelation function of the input 

signal for time displacements greater than or equal to T. This is a 

matter of trying to achieve a power spectrum for r(t) which corresponds 

to the average power spectrum of the input for frequencies below f c . A 

similar approach was briefly used by de Jager
9 to arrive at his "double 

integration" feedback network. Based on the assumption of a flat (white 

noise) spectrum for the output pulse signal, p(t) over the frequency range 

of interest; de Jager concluded that for voice communication, the feedback 

network's transfer function should be directly related to the average speech 

spectrum. 

Lacking eyidence as to the exact nature of the output pulse signal, 

it will be assumed as a first approximation that p(t) has a random polar-

ity, so that some idea of the power spectrum, P(C)), of p(t) can be obtained 

in order to make an estimate of the optimum feedback transfer function. Thi 

assumption gives a pulse signal power spectrum which is flat for all frequen 

cies as shown in Appendix A, From this it would be concluded that a feed-

back transfer function which matched the average input spectrum would give 

a spectrum for r(t) which also matched the average input spectrum, as 

desired. (It should be noted that, while being matched, the power spectrum 

or r(t) should slightly exceed that of the input, particularly at the 

higher signal frequencies, so that higher order overloads cannot occur.) 

However, as shown in Appendix A, as the probability of no change in the out-

put pulses' polarity increases beyond one half, so the power spectrum of the 

pulse train begins to roll-off in the frequency range 0 - 	Such a 

situation would be characterized by series of successive output pulses with 

the same polarity. The effect would be to reduce the higher frequency (up 

to fc
/2) power of r(t). If the input signal (which will be taken to be 

speech) contained considerable power at some higher frequencies (as shown 

in Fig. 1.12) when the higher frequency spectral density of r(t) was 

reduced as discussed, then the signal power could exceed the capability of 

r(t) in this frequency region. This would result in a higher order over-

load, e.g., r(t) being unable to match the derivative of the slope rate of 

change of f(t) (i.e. f'''(t) ) or some combination of f"(t) and f'''(t). 

Such a situation is shown diagramatically in Fig. 1.12. It is hypothesized 

that such higher order derivative overload results in the onset of an 

oscillatory wave in r(t). 

Considering again Fig. 1.9 it is observed that associated with 

the onset of the oscillation there is a fairly rapid change in the input 

signal slope which would be associated with a high frequency signal 

component. Also the preceeding output pulse signal has a series of 

consecutive pulses of the same polarity. This correlation between the 

noted conditions at the onset of oscillation and those predicted to be 

associated with a higher order derivative overload, supports the hypothesis 

that oscillation results from a higher order derivative overload. It can 

also be seen from Fig. 1.9 that the greater the number of consecutive pulse 
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of the same polarity in p(t), the greater the amplitude and lower the 

• frequency of any ensuing oscillation. 

A suitable corrective measure to prevent oscillation, based on the 

above arguement, would be to include a high pass section in the feedback 

network which takes effect at the higher signal frequencies, in order to 

compensate for the power spectrum roll-off. The frequency at which the 

roll-off in P(W) becomes significant depends on f c  and Pnc , as shown 

in Appendix A, where Pnc  is the probability of no change in the output. 

pulse trains' polarity between successive clock intervals. Typically, for 

Pnc ■ 3/4 and fc 
■ 56 kHz, the power of p(t) is down 3dB at 10kHz. To make 

a reasonable estimate of the desired frequency, f u  as shown in Fig. 1.12 at 

which the high frequency boost to r(t) should take effect, the maximum P nc  

for given system and signal parameters should be known. 

De Jager
9 consideres the stability problem with double integration 

as one of a lack of "prediction". He proposes a partial bypass of the 

second integrator in order to give an immediate step response in r(t) 

prior to the slope change. This is achieved with a feedback network 

having an impulse time response as shown in Fig. 1.13, with the 

corresponding transfer function 

-FIG 1.13 Feedback Network Impulse Response and Transfer FUnction '  

for Double Integration with Partial Bypass 

( ie. with a high frequency boost ) 

(t) i  

This modification to the feedback network, suggested by de Jager in order 

to achieve stability, is of the same form as proposed above. Be Jager 

suggests intuitively that 'Y should be about equal to T c  and hence that 

Wu  2=1/Tc . Thus fu 
fc /VT 	By measurement on a particular system 

and input signal, de Jager found the f u  = fc/2Trwas close to optimal. 

Using a combination of single and double integration for the feedback 

network, with partial bypass of the second integrator, the time response 
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to a unit impulse will be of the form shown in Fig. 1.14. The correspond-

ing frequency characteristic is shown in Fig. 1.12 (b),,with fu  ■ fc/271.  

for f
c 

■ 56kHz. 

FIG 1,14 Impulse Response for Mixed Integration Feedback Network 

with Partial Bypass  

( ie. with the high frequency boost ) 

r() 

This gives a typical r(t) signal as shown in Fig. 1.10. Such a mixed 

integration delta modulation system is frequently referred to in the 

literature as double integration delta modulation, since pure double 

integration is seldom considered. 

1.4.4 Unique Characteristics of Delta Modulation  

Delta modulation shares the advantage mentioned earlier of digital 

modulation systems such as: noisless regeneration capacity, a two state 

transmission signal, suitability to'digital I.C. instrumentation, and so 

on. Delta modulation also has several characteristics which make it 

unique from DPCM and particularly from PCM. 

The unity-bit code of DM results in a two-level quantizer (or 

comparitor) where a complex, many-level quantizer (typically 128 levels) 

is required for PCM and DPCM. Additionally, the one bit code gives a 

sampling rate equal to the output pulse rate, resulting in typically a 

much higher sampling rate for DM. This removes the necessity of low pass 

filtering the input signal to prevent aliasing error as required with PM 

and DPCM. As a result of these features, basic DM exhibits remarkable 

circuit simplicity, which was indeed the fundamental reason for the early 

interest in DM. 

As discussed in Section 1.4.3 there is a natural adaption of the 

amplitude capability spectrum of any differential system to the mean 

speech spectrum. In particular this applies where the feedback network 

can be modified to give an optimum adaption. In addition to giving a 

minimum redundancy in capacity, this adaption to speech also provides 

a smooth roll-off for frequencies outside the range of immediate interest. 

Thus a more natural sound would be expected compared to PCM or DPCM, where 

, sharp band limiting of the higher frequencies is required in order to give 
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c.  

a finite bandwidth suitable to sampling at the Nyquist rate (typically 

8kHz). 

The use of a one-bit code however, has a major disadvantage. In 

order to achieve a reasonable signal amplitude capacity with.a one-bit code, 

a sampling rate much greater than. the Nyquist rate is required. Since 

all the information of a signal is contained in the sampled signal' when 

the Nyquist rate is used, the higher rate would seem redundant from the 

information transmission viewpoint. In fact,as will be discussed in 

Chapter 2, delta modulation shows an increase in the output SNR approxi-

mately proportional to; from: the third to the fifth power of the output 

pulse rate, depending on the feedback network. This compares poorly with 

PM and DPCM where an increased pulse rate is used to increase the number 

of digits per code group, giving an exponential SNR increase.With 

increasing pulse rates; as discussed in Section 1.3. For typical commercia] 

PCM a maximum output SNR of about 44dB for a pulse rate of 56kHz is obtain 

ed (Fig. 1.2). As will . be shown in Chapter 2, DM for comparable perfor-.. 

mance requires an output pulse rate of about 75 kHz. 

Another major difficulty with DM, which is encountered with any 

differential pulse modulation method, relates to its use with,TDM. As 

differential (negative feedback) coders depend on the high correlation 

between consecutive sampled signal values, the multiplexing of signals 
,10 cannot be performed before the coder7 	. For the coding of .a Multi- 

plexed signal a much more complex coder would be required, with the 

facility to store the current: predicted value, r(kT
c), for each channel, 

so as to be available for comparison with the next sample from the same 

channel. Thus the very significant benefit to PCM,'for long haul .voice 

communication; of a common quantizer and coder for many signals, is - not 

shared by DPCM or DM. However the basic simplicity of DM and 'the current 

trends in I.C. technology, are making the use of a delta coder/decoder 

at each transducer continually more feasable. This could result:in totally 

digitized communication links', With the resulting reduction Invulnerability 

to distortion and interference as an additional benefit. 



FIG 1.15. Companded ( or Adaptive ) Delta Modulation — Schematic 

Input fftN 	e( t ) 
Signal 1  ' 

Clock 
Pulses 
Freq. fc 

Pulse 

Modulator 

Output p(t) 

Reconstructed 
Signal 
r(t) 

Decoding 
Network 

Fl. 

Control 

Circuitry 

Control 
Voltage 

Pulse 
Amplitude 
Modulator 

FIG 1.16 Continuous Delta Modulation — Greefkes ll  

Input f(t) e(t) Output p(t) 

Pulse 

r(t) • Modulator 

Low—Pass 
Filter 

Low—Pass 
Filter 

fo x=100Hz 

• 

Decoding 

Network 

Fl  

Pulse , 

Amplitude 

Modulator 

.., 	• 	• 

• 

Local 

Decoder 

FIG 1.17 Discrete (nstantaneous) Companding — Schematic 

1 -FC 

Input ,e(t) Pulse 

Modulator 
Output p(t) 

f(t) 	"(x 

r(t) Digital 

Sequence 
Detector 

Level 

Generator 

Kip(kTc ) Ko,K4...Kn  

Feedback Pulse Kii0p(k+1)Tc  

Decoding 
. 	 . . . etc 

Amplitude .■••-■•••■•• 

Network Fl Weighting 



21. 

1.5 	Modified Delta Modulation Systems  

The main purpose for modifying, or adding to the basic delta 

modulation system has been to improve the performance under maximum signal , 

conditions and to increase the dynamic range of input signals which will 

give satisfactory performance. Ideally it would be desirable to have a 

constant output SNR for a wide range of input signal powers; (typically 

a SNR of greater than 30dB for an input dynamic range of about 35dB is 

required for commercial telephony). This would give a noise power which 

. varied directly with the signal power and was thus "masked" by the signal 

equally well over the required range Of input signals. 

As mentioned in Section 1.3.3 the signal dynamic range of PCM is 

increased using instantaneous or static companding. This provides a good 

dynamic range, but at the expense of the maximum output SNR. Modifications 

to DM are generally designed to provide dynamic companding, which is 

achieved by varying the "step size" of r(t), (or more precisely, by varying 

the size of the pulses into the feedback network) according to the level of 

the input signal. Thus dynamic companding is designed to give an additions: 

facility for prediction by r(t) of the input signal. Just as the mixed 

integration feedback network discussed in Section 1.4.3, is designed, to 

give long term speech spectrum matching; so companding is designed, through 

pulse size adoption, to give shorter term signal level matching. From the 

information theory viewpoint, dynamic companding is introduced in order to 

increase the information carried by each output pulse, by reducing the 

correlation between . pulses. Reduction in the correlation occurs as the 

pulse train spectrum tends to become flat. As discussed in Appendix A 

this corresponds to the pulse train tending towards a random binary signal. 

Thus companding can be regarded as an attempt to increase the information 

content of the output pulse train by increasing the probability of a change 

in pulse polarity when a series of consecutive "ones" or "zeros" is occur-

ing (that is, when the input signal level is tending towards overload). 

The basic system for companding DM is shown in Fig. 1.15. The 

implementation of companding can be divided into roughly two categories; 

continuous companding and discrete companding. With continuous companding, 

first proposed by Greefkes and de Jager
11 , the step size is varied in a 

continuous manner by a control voltage derived from the input signal level 

or the derivative of the input signal. The control voltage varies at a muc 

slower rate than the pulse rate and the companding is often referred to as 

"syllabic companding", as the rate of step size variation is frequently 

made to roughly correspond to the rate of signal level change of speech or 

the "syllabic rate". 

The continuous delta modulation for speech proposed by Greefkes 

and de Jager
11 

incorporates a level detection circuit at the input as 

shown in Fig. 1.16. This adds a low frequency signal, below the 
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minimum speech frequency, thus incorporating the control voltage in the 

transmitted pulse signal as a variation in the mean number of positive 

pulses. A simil'ar system is presented by Tomazawa and Kaneko
12 

which 

eliminates the input level detection circuitry. Instead the control 

circuitry contains a reconstruction filter, the output of which is 

level detected and used as the control voltage for the pulse amplitude. 

This provides a square law expansion of the signal content of p(t) and 

does not involve an increase in the low frequency or dc content of 

p(t). Brolin and Brown
13 developed a compander in which a level 

detector from the input feeds a separate delta coder with a low clock 

rate. The reconstructed signal of the control delta coder determines 

the step size, and the two digital pulse streams are multiplexed for 

transmission. Other continuous delta modulation systems have been 

considered (see Project Mallard 
14) all similarly based on a detection 

of the density of the input pulses to the feedback decoding network, 

Fl, with the pulse weight being adapted in a continuous manner 

accordingly. For a clock rate of 56kHz and a test signal of 800Hz, the 

performance of continuously companded systems are typically of the order 

of: maximum output SNR of 30dB for a dynamic range of inputs of 35dB or 

greater
11,12,15. 

• 

Discrete companding bases the variation of the step size on the 

preceding sequence of binary output pulses. The step size is usually 

changed in discrete increments and at a rate equal to the clocking rate. 

For this reason such adaption is frequently referred to as instantaneous 

companding and is equivalent to a non-companded delta modulation system 

with static (instantaneous) compression of the input signal and expansion 

of the output. The step height control voltage is derived from the binary 

output via digital logic circuitry (see Fig. 1.17). One of the first 

companded delta modulation systems proposed was Winkler's "high information 

delta modulation" 
16 which employed discrete instantaneous companding. 

After two consecutive output pulses of the same polarity, the local 

decoder (consisting of a sequence detector and an exponential level 

generator) doubles the weighting Ki , of the input to the feedback network 

(F1) for each successive pulse of the same polarity. A change in polarity - 

halves the weighting (or the control voltage) until the minimum level, K o , 

is reached. A basically similar system was developed by Schindler
15 

which 

also exhibits a logarithmic companded characteristic. Abate
17 gives a 

general discussion on discrete companding with DM and concludes from 

computer simulation that equispaced levels give marginally better performance 

than exponentially spaced levels for a signal with a uniform spectrum. 

Wing
18 

has proposed a discrete adaptive DM system exhibiting very simple 

circuitry. His proposed optimum system' has the step height depending 

linearly on the proportion of ones (or zeros) in the preceeding four 

binary output Pulses. 
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With the wide choice of logic circuitry and step weighting, no 

method has so far shown itself greatly superior; while many new digital 

systems based on the output binary sequence are being proposed. 19,20,21 

To a large degree the best logic and weighting system will depend on the 

type of input signal
22

. Instantaneous companding has two disadvantages 

relative to continuous companding. With the step size being determined 

by the immediate output pulse sequence, any mismatching between the 

transmission and receiving pulse weighting circuitry will produce 

distortion in the received signal 16,24.  On the other hand, mismatching 

with continuous companding only causes error in the level of the signal 

at the output. Secondly, for a given maximum step size, continuous 

companding under full load employs the maximum step size over the entire 

range of instantaneous signal values. Instantaneous companding however, 

like static companding for PCM, has varying step sizes even under full 

load, depending on the instantaneous signal value. For this reason an 

instantaneous companded system cannot achieve the same maximum output 

SNR ratio as a non-companded or continuously companded system with the 

same maximum step size. 

These factors have led to the use of syllabic (continuous) 

companding for the currently more promising delta systems and in 

particular for the system recently proposed by Greefkes 23 
and investigated 

further by Zarda and Hauser 24 . Although continuous, Greefkes' "digitally 

controlled delta modulation" uses digital sequence detection of the output 

pulses. After four consecutive pulses of the same polarity (indicating 

that a certain loading level has been exceeded) the sequence detector 

gives a "high" output. By low pass (syllabic) filtering of the sequence 

detector output, the pulse amplitude control voltage is generated. This 

gives a control voltage directly related to the mean time (over a 10 msec. 

period) that the loading level is exceeded. Thus the system is kept 

fairly close to the overload (optimum) condition for a wider range of 

input signal levels. The use of digital circuitry allows a greater 

range of step height variation (companding range) without stability 

problems. Typically, "digitally controlled delta modulation" has been 

shown
24 

to give an output SNR of 30dB or greater for a dynamic range 

of input signals of 45dB, with an 800Hz signal and a clock frequency of 

only 40kHz; the maximum SNR being about 37dB. The best published results 

for an instantaneous dynamic companded delta system appear to be those 

given by Schindler's system develped at IBM 15 For an 800 Hz sinusoidal 

signal with a 56kHz clocking rate, an output SNR of greater than 30dB over 

a signal range of 35dB, and a maximum SNR of about 39dB, were measured. 

With the many illustrations of companded delta modulations 

potential performance superiority over companded PCM, for voice 

communication; it is now only the development of a low cost I.C. delta 
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coder/decoder that is required for delta modulation to become competitive 

or superior to PM for commercial telephony. 

Other modifications to the basic delta modulation method include; 

delta-sigma modulation, in which the Input signal undergoes pre-emphasis 

with an integrating network prior to entering a conventional delta 

modulator.
25,26 

Also, asynchronous delta modulation
27 

for which the 

clock rate is not fixed but varies according to the demands of the 

signal. Such variations on the basic delta modulation method are of 

interest for communication situations where their unique characteristics 

are of benefit. Such situations however, fall outside the mainstream of 

electrical communications. 
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CHAPTER 2. 

INVESTIGATION OF NOISE INHERENT IN DELTA MODULATION SYSTEMS  

2.1 • 	Introduction 

In order to represent a continuous signal by a binary pulse 

sequence, it is necessary to consider an approximation of the signal. The 

approximation to discrete amplitude values, is necessary because a finite 

binary sequence can only specify a discrete amplitude. From the information 

viewpoint, the approximation is necessary to limit the amplitude information 

to a finite value, because a binary sequence can contain only a finite 

amount of information. Thus a binary representation of a continuous signal, 

necessarily involves the introduction of an error funtion. The error 

funtion gives rise to noise which is inherent in any digital modulation 

method. The noise resulting from amplitude quantization, is completely 

distinct from the usual sources of noise in electrical communication such 

as distortion, interference, and random noise in the channel and equipment. 

Because of pulse regeneration with digital modulation methods, these types 

of noise are totally eliminated at the pulse regeneration stage of a receiver 

and their contribution from the regeneration stage to the final output 

would be negligible. Their effect can be to cause errors in the regenerated 

binary signal which gives rise to output noise. As discussed in Section 

1.3.3 for PCM And more fully analysed by Carlson
2 , the probability of an 

error in any particular pulse decreases rapidly for an input SNR increase-

ing beyond some threshold value. For delta modulation, as with PCM, 

provided some input SNR threshold is exceeded, (as it is under normal 

operating conditions), there is virtually no contribution to the output 

noise by pulse errors. (Because the effect of a pulse error is different 

for different modulation methods, the input SNR threshold for delta 

modulation will not be the same as that for PCM. In fact it will vary with 

delta modulation depending on the actual implementation. However the 

threshold input SNR for PCM, given conservatively at 15dB
2 , would be of the 

same order as that for delta modulation. Discussion of the effect of 
20 	30 

channel errors can be found in Johnson , Wolf and elsewhere.) It can 

therefore be concluded that for a delti modulation system operating under 

normal conditions, virtually all noise at the output is due to noise 

introduced in the modulating process itself, i.e. noise inherent in the 

modulation. 

In this investigation, only non-companded systems will be considered, 

because the main purpose of companding is to extend the range of input 

signals for which near optimum, or at least satisfactory performance is 

achieved •and not to effect overall reduction or alteration of the noise. 

Furthermore the basis for analysis of companded delta modulation would be 

an analysis of the system with a constant "step size". 



.• 
. 	, 

- 

NI we 

: Ii 
-- 	• 

''''ili 

• 

1 	1 1 • 1-1 	1 

. 
- 	-I 

, 	1 
1 1 

NI 

; 

- 	- 

is.„.■ 
--"■ 111111  _ 

=I II 

i 1 	i ! 	t ,. ..1, ,- • ■ 1  , , 	i , 	t, 
• i 

mil - Ilt 

; • 

" , 	, 1 	t• 	: 	. 	_ 
len. 

. 
aim Dm ow - 

• • i. -, 1 i 
Now NV 

i . 	t 	t 11•4  IR 
ii 1 . 	I I 

, 

f(t) 
and 
r(t) 

e(t) 

e(k 0 ) 

, 

I 	- 
- 

, 	.. 	.1 , 	• 	, 

L , 	i_ I  _•,.. 
-1, --- 	• 

' " 
_l 1 	t 

- 
-1 

J .'  . 
. 

	
.1 

_ __ h. 
_1_2 

' 
:_ __  I 	. 2._ 

1 	i 	.1 	" ... 'CI 	.1 " , 

.1. -1. 
. 1 t 1 	- 

. 

[. 

I 	1  . 

1 	. 

Irdldt 

, 

-

--; -
  --,----. _.. ,

L
. 	

 

. 	i 	,, 
11-1'-1 -I 

. 	.1_1 
. 

., 
'. 	I 	. 

„ 	i 	1  
1 	• 

t 

11.ii 
■ 	1 , 1 

. SOLI ft  
I 	I 

a. 
	• _ 	_ 

1 . 
_ 	:.1,.. 1•- i 111111411q14‘  ! 't. 	1 

. 	. 	. 	t 	: 

(0) 

f(t) 
and 
r(t) 

e(t) 

e(kTc ) 

• 	• 

, 
. 

1 	: 	' I 	, „ 

- r . 
- _i__ 

- 	t-i-  
--- ---- 

- 

- 	! 	i 

1 1  --117  : T - : : 	---, 
1--'--- 

_ - __L. _ 
- 

• 

■ ' -..; 	- 

nig 

- ...______ — 
... 
. _ 

_ 
- 

._ 

_ 
. _ 

- 

_t 	.I.  _ ___... ._.... _ _.i._ , 
_ 	,...,.  _i .. - .. 

_ 
_L 

_ _ 
_ 
_, 

. , 	1 ... 
1 L 

- 	- I -1  - 

1 	i 	r_t_ 
_I__ 

•- 

r  
-- 

' 

.... 11._.. 1 _ 
-..1_1_  . 	.  

, 

• ..... 

._ 

F
-
1
  

, 	1 i.1 

-1;1-  
. 

- — 
-11 

I --- i-  - 	- -'-• 

I 	-  

. 	1 n — 
, H . , 	1 . . 

, 
. 	1 	I 

. 
I 	4 	4 

: 
, I 	I 	I  

f(t) 
and 
r(t) 

e(kTo ) 

FIG 2.1 • i  qpical Waveforms for Variables in a Simple Delta 

Modulator with Ideal Integration 
(a) 

Input 
	

(t) Pulse 

f(t) 4 
	Modulator 

(t) 

Feedback 
Demodulating 
Network 

Fl 

e(t) ■ f(t) - r(t) 

1■••■••. (t) 'Channel 
(assumed 
error 

free) 

Demod, 
Network 

Fl 

Output 
y(t) L.P. 

Filter 

(b) 



26. 

2.2 	Nature of the Noise 

The noise produced in a delta modulation process is generally 

classified as consisting of two types - quantizing. or granular noise 

and overload noise.* The noise resulting solely from the signal 

approximation, inherent to the modulation, is termed the quantizing noise 

and it accounts for all the output noise when the magnitude of the input 

signal is well within the system's capacity. Thus quantizing noise for 

DM is equivalent to the quantizing noise for PCM which results from the 

descrete amplitude representation of the continuous input signal. If the 

input signal magnitude exceeds the capacity of the system in some way, for 

example amplitude, slope, rate of change of slope and so on, then some type 

of overload condition ensues giving rise to an overload noise component at 

the output. 

Although these two types of noise are readily distinguishable 

when one is dominant, the actual transition between types, or a 

definition of the onset of overloading has proved difficult. Overloading 

is generally defined in the literature for single integration demodulating 

networks, (either ideal or lowpass filtering) and is said to occur when the 

maximum signal slope is greater than the maximum slope the modulator (or 

r(t)) can achieve. Typical waveforms for the reconstructed signal, r(t), 

of a DM system with a single, perfect integration feedback network with ideal 

impulse inputs (referred to hereafter as a simple delta modulator) are shown 

in Fig. 2.1 for three levels of input loading. 

Referring to Fig. 2.1(a), two definition of the total output noise 

can be made. The first, and the one used in all the early analysis, 

(de Jager, van de Weg, Zetterberg etc.) defines the noise as being given 

by error funtion (e(t) = f(t) - r(t))after low pass filtering. Such a 

definition, does not take into account the delay of r(t) relative to the 

input, which results from the action of the decoding network, as can be 

seen in Fig. 2.1. Therefore the error function, e(t), would have a component 

* This nomenclature for the two types of noise is not used 

universally throughout the literature on delta modulation. 

Frequently the term "quantizing noise" is used to refer to 

all noise resulting from the modulation process itself, and 

thus includes both granular and overload noise. However the 

author feels that overload noise is not accurately described 

as quantizing noise as its nature is totally different from 

that resulting from the amplitude quantization of a continuous 

signal. 
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which was correlated to the input, and for this reason the noise defined 

from e(t) will be referred to as the correlated noise. The noise which 

is linearly independent of the input and thus represents more faithfully 

the unwanted output component will be termed the uncorrelated noise. As 

such, the uncorrelated noise function is the difference between the demodu-

lator output, y(t), (which is equivalent to r(t) after low pass filtering in 

the system model of Fig. 2.1) and the input signal with suitable delay and 

amplitude change required to give a minimum difference. The output signal 

will be given by this changed but undistorted input which can be written as 

kf(t-t o). Thus, the uncorrelated noise function is given by: 

n(t) ■ y(t) - kf(t-to) where k and to  are such that n(t) has minimum power. 

One important aspect of the nature of the noise is the subjective 

effect. Although the output SNR is the accepted measure of the quality of 

the output, the ultimate measure of output will depend on the effect of the 

noise power on subjective factors such as intelligibility and "unpleasantness" 

of the noise. Little subjective evaluation of delta modulation has been made 

to date as quantization noise is not regarded as being significantly more or 

less offensive than random .noise and it has the advantage over the noise of 

non-digital systems of not being present during idling periods. Overload 

is akin to distortion and its subjective effect would be of considerable 

significance to output quality for a system operating under overload 

conditions. However as the operation of a delta system under a significant 

degree of overlaod is not frequently contemplated, the subjective effect has 

sgain been given little thought. Subjective evaluation of various digital 

and linear modulation methods has been performed by Donaldson, Chan and 

Douville
31,32 . Their evaluation, however, has been directed towards system 

comparison, rather than correlation between output SNR and the subjective 

output quality. 

Recognition of subjective effects is made by Aaron et al,
33. in their 

definition of correlated and uncorrelated noise. Their distinction between 

the two types is different from that proposed above and is more suited to 

the meaning of "correlated". The correlated noise is defined as that 

component which could result from passing the signal through a linear 

network. The uncorrelated noise component is defined as being linearly 

independent of the signal and is thus additive, uncorrelated noise. Therefore 

the uncorrelated noise =.y(t) - L[f(t , where L is the linear operator which 

will give an uncorrelated noise power minimum. Such a definition, while 

allowing for the totally different subjective nature of correlated and 

uncorrelated noise, defines an output signal, LIM , which contains 

distorted input signal components. 
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2.3 	Noise Analysis  

Analysis of the noise produced by delta modulation is not suited 

to the general tools of system analysis because of the presence of both 

nonlinear elements and a feedback path. As it relates to delta modulation, 

the approach of Bennett
5 to direct quantization systems is considered, as 

are the problems encountered in general with delta modulation analysis. 

This section, and also the computer simulation and experimental investigation, 

primarily consider the simple, single integration case. This gives a 

simpler base for analysis and simulation which will provide a guide to 

general delta modulation performance analysis and give insight into the 

'nature of the noise. 

2.3.1 	Initial Consideration  

If we consider a simple delta modulator with an input signal such 

that the system is operating well below overload the reconstructed signal 

will be a shown in Fig. 2.1(b). The same line of analysis .  will now be 

applied that led to the expression for the hoise power with PCM, as out-

lined in Section 1.3.3. 

The value of f(t) at any clocking instant (i.e. the input signal 

sample value f(kTc), is given by the sum of the reconstructed signal 

value just after a clocking instant r(kT c), plus the discrete' quantizing 

error value, e(kT c) 

That is: f(kT
c 	

r(kTc) + e(kTc) 	where e(kT = e(kT+) 

and r(kT
c 

= r(kT
c
+) 

It can be seen from Fig. 2.1(b) that -h(((kTc+).<+h, providing the 

system is operating below overload. In fact it is convenient for the 

single integration case to define the overloading condition as occuring 

when the magnitude of e(kT
c
) exceeds h, the step height. This corresponds 

exactly to the definition that no overloading will occur provided the 

maximum signal slope is less than or equal to hf c , the maximum slope 

capability of r(t). For a signal with an equal probability of taking any 

value over a large range of step heights (i.e. for A max>>h) it would seem 

reasonable to assume that e(kT
c
) has an equal probability of taking on any 

value between -h as shown below. 
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For a continuous function denoted by x(t) with a uniform 

probability density function as above, the mean square value is given by: 

x
2 h2  

x
2 

= 	dx = r  

-h 
00 

_00 	x This can be written as 	1 P (CAJ)deA) = h
2
/3, where P

x
(W) is the power 

spectrum of x(t). For the discrete quantizing error (given by the 

continuous function, x(t), sampled at a rate of fc) the above power will 

be the power in the region 0 - fc/2.  (See Bennett
5). 

where Pek  (GO) is the power spectrum of e(kT ). If the received 

quantized signal, r(kT c), were being low-pass filtered (ideal) with a 

cut-off at f
c
/2, this expression would provide an estimate of the noise 

power due to quantizing. However as the low pass filtering for DM 

invariably has a cut off frequency much lower than f c
/2, a knowledge of the 

spectrum of e(kT
c
) would be required in order to estimate its power after 

typical low pass filtering. Hence such analysis does not lead to the 

same satisfactory conclusion as is achieved for PCM where the Nyquist 

sampling rate is used. Further, it can be seen from observation of 

Fig. 2.1 and from a consideration of the restrictions placed on the 

discrete values that r(t) Can assume, that e(kT) does not, in general, 
C  
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take on any value between -h in a truly random manner, but each value will 

depend on the previous values and the signal characteristics to a signif- 

icant degree. 

For an initial consideration of the quantizing noise, it will 

be assumed that e(kT
c
) is a random variable bound by -h and with some 

non-zero probability density function between -n. In this case the 

autocorrelation function of e(kT) will have the value e
2
(kT) atT=0 

and zero elsewhere, and thus the power spectrum, Pek (W), of e(kT c), 

will be flat over all frequencies, with a value denoted by A. Assuming 

secondly that the probability density function of e(kT c
) is uniform between 

-h, then by applying the previous result that the power in the band 

0 - f
c
/2 equals h2 /3 we get: 

-(A'VA 
9 

-- A 	
2 

h 	h 
 T 

3c 	3x2Tr c 	
2  

C0 
	2 

If e(kT ) is passed through an ideal low pass filter with a cut-off 

* 	

3 
h2  

P k (w)d60 = Atdc = 

• 
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' frequency, fm, this would give an estimate of the output noise power 

(correlated) as: 

Noise power in band 	fm  = 

e0,„ 
h2 

• * 
ek (CA))cil.A) = 3cjc2wm  

2h2 f
m  

000,00 2 6 3  

   

3f
c  

 

This corresponds to a delta modulation system operating with r(t) being 

demodulated from p(t) as a discrete signal. It is therefore equivalent 

to a system where r(t) is •ide4ly sampled at a rate f c 
before low pass 

. filtering. 

In order to bring this analysis into line with the 

, reality of the continuous nature of r(t) and e(t), the effect 

, of finite width pulses will be considered. As shown in Fig. 2.2, 

I r(t) equals r(kT c) convolved with the finite width pulse 

fUnction, g(t)and thus -the- al6plitude spectrum of r(t) is given by the 

product of the spectrum of g(t) (denoted by G(W) ). The convolution 

of g(t) and e(kT c) however, will not give e(t) exactly as shown in 

Fig. 2.3 due to some signal component of e(t). The difference appears 

to be small and so, approximating e(t) as e(kTs
)ft(t) we obtain the 

estimate of the power spectrumi of e(t), (using Eqn. 2.2), as: 

sin2 (60T
c
/2)' 

n *ftIN Fr, ,NI2 	h
2 

Pe(W) 	L ek "A" 1
f 

"7"-" i l 	3x21r T c 	((J)T
c
/2)L 	

2  4 

Thus the amplitude spectrum, E(CO) of e(t) will be of the form 

sin (oiTc /2) e 	COT c/2) 
as shown in Fig. 2.3 

  

(WT/2) 

The exact expression for e(t) from e(kT c), as shown graphically in 

Fig. 2.3(a); is 

e(t) = e(kT
c 
	g(t) + f(t) - f(kT c) 

	g(t) 	 25  

Hence the amplitude spectrum of e(t) is given by 

E(W) = Ek 
(()GG)) + F(6J) - F

* (6))G(60) 

The additional term F(W) - F (60)0(6)) will give small signal components, 

distorted in amplitude and phase, as cross-products with the sampling 

frequency and its harmonics (as shown in Fig. 2.3(b)) for a sinusoidal 

signal. For a given amplitude spectrum such terms could be calculated. 

On the basis of this analysis we would expect the qunatizing error 

to have 

6 	7j Tc/ 2 
• (i) an amplitude spectrum of the form sin.)T

c /2 e 
 

.c 

and a power spectrum of the farm sin
2
(CUT

c
/2) 

 

(6)T
c
/2)

2 
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FIG 2.4 Some Models for the Autocorrelation Function of the Sampled 

Error FUnction, e(kT(.) and the Resulting Power Density Spectrum  
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(ii) with ideal low pass filtering with cut-off at f m, a 

quantizing noise power given by: 

64.1 	
2 

h
2 	j r.  sin ()T /2) 

Nq ■ ;TT; 	(ctirc/2) 2- do.) 

h
2 

^J 

6TTf 
. 	2 
2h f

m  
3f

c  

2Wm  provided fc > f
m • 

as in Eqn. 2.3 

Hence this analysis predicts a quantizing noise power proportional to h
2 

and l/f
c 
and also proportional to fm 

for 	. 
m c 

2.3.2 The Effect of Error Signal Correlation  

Re-examining the assumptions made in arriving at the 

quantizing noise power and the quantizing error spectrum, it 

would appear that the assumption that e(kT
c
) is a random variable 

has the least justification. As mentioned earlier in this section 

each value of e(kT
c
) shows significant dependence on the previous values 

for the typical waveforms in Fig. 2.1. This is particularly so for the 

deterministic type of input signal considered, but for a random signal the 

assumption would be well justified. To obtain some idea of the effect 

of a non-random e(kT
c
) on the conlusions made above, autocorrelation 

functions for e(kTc
) as shown in Fig. 2.4 will be considered, representing 

models of the type of autocorrelation function which might be expected. 

It is shown that any significant autocorrelation over the first few clock 

periods has a very significant effect on the power spectrum. In particular 

if the correlation between adjacent values of e(kTc
) is negative the power 

spectrum in the region of frequencies less than f/4, (which would include 

the signal frequency region for normal DM operation) is reduced. 

As the tendency to a reversal in sign of e(kT c) between successive 

samples increases, the noise power in the low frequency region decreases. 

Such a situation can be seen to be approached in Fig. 2.1 as the maximum 

signal slope is decreased or alternatively, for all other parameters fixed, 

as the clocking frequency, f c  is increased. Although it is difficult to 

estimate the rate of reduction in noise power (for increasing f c) in a 

given band 0 - fm  due to shape changes in the power spectrum of the error 

function; it is possible to make two significant predictions for the 

behaviour of the error function. 

While the dominant tendancy of r(t) remains to change direction 

at each clocking instant; adjacent values of the autocorrelation function 

of e(kTc) will alternate in sign and this will result in: 

31. 

26  
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(i) a power spectrum for e(kT c) which remains.basically flat 

over the lower frequency range, say for f<fc /4; and 

(ii) a powerEpectral density in this region which is consider-

ably less than h
2
/(34.0

c
) for significant negative correlation between 

successive values of e(kT ). c • 

' Over the range of conditions where r(t) is sufficiently far 

from elope overload for adjacent values of e(kT 
c 
 ) to have a negative 

correlation, the relationship Nq = 2h
2 
 f
m
/(kf

c
)(provided f;>f

m
) of 

Equation 2.6 would still be expected to hold, except that the constant 

k would be somewhat greater than three. 

On the other hand, as the slope overload condition is 

approached, the onset of positive correlation between adjacent values 

of e(kT
c
) would be expected to give a power spectral density, over the 

lower frequencies which is non-uniform and of greater than h
2
/3C0c. 

Under these conditions the same relationship for Nq would not necessarily 

be expected to hold. This ties in with observation of r(t) (Fig. 2.1c) 

as slope overload is approached. Although f'(t)maxOfc and hence 

le(kTc)I<h and no slope overload occurs, a state of "partial" or 
"instantaneous" slope overload can be seen to exist at times when r(t) 

fails to produce a change of sign in e(t) after two or more successive 

steps in the same direction. Furthermore it is under these conditions 

that the terms f(t) - f(kT
c
)4:g(t) of Eqn. 2.5, neglected in the 

analysis of e(t) by the consideration of e(kTc) alone, becomes increas-

ingly significant. 



33. 

2.3.3 The Effect of the Error Probability Density Function 

The assumption of a uniform probability density function for 

e(kT
c
) between +h appears well justified under most, non-overload, 

operating conditions. The main situation where significant deviation 

\ from a uniform distributuion appears most likely to occur, is with 

// deterministic types of input signals such as a sinusoidal signal. 

,Considering the diagrams below, of fixed amplitude sinusoidal signals, 

it can be seen that non-uniform probability density functions will 

result due to the error function e(kT c
), taking on values in a certaid 

range for a disproportionate number of times. 

FIG 2.5  Illustrating the Expected Nature of the Probability Density 

Function of the Discrete Error Function for a Sine Wave Input  

The dominant range of error values will be determined by the signal 

value relative to the discrete amplitude levels when the signal . 

derivative is near or at zero. For the sinusoidal signal case the most 

probable values of e(kT
c
) will be A - kh and A - (k+l)h, where kh is the 

discrete amplitude level closest to, but less than A in magnitude. 

Discontinuities in P(e(kT )) would be expected at these values of 

e(kT ), and p(e(kTc)) 
will be symmetrical about zero for signalS with 

zero dc content as shown in Fig. 2.5. The deviation from a uniform 

probability density function will be more pronounced for signals with 

law amplitudes relative to the step height due to the greater 

proportion of each period spent:by r(t) between the levels of greatest 

magnitude. 
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The only effect of the variation of the probability density 

fUnction in itself, is to give a mean square value for e(kT ) other 

than the value of h
2
/3 which results from a uniform probability 

density function. By taking whatwould be expected to be a rather 

eXtreme distribution for e(kT ),:it can be shown that the maximum 
• c 

liariation of the mean Square value froth 'h2 /3 would only be of the 

order of 20% for the type of signals usually considered. This is 

in line with the conclusions of 4etterberg28 and Sakrison
1 
who indicate 

• 

that the expression for the mean square value of the quantizing error 

for PCM based on a uniform distribution for the error, holds good 

for other distributions, provided the signal value is much greater 

than the quantizing level spacing. 

2.3.4 The Effect of a High Clocking Frequency  

• A model for the situation when the clock frequency becomeS 

very large relative to the maximum signal frequency can be established 

a5-shown in Fig. 2.6. The discrete error function, e(kT )' can be 
c  

represented by the clock frequency sampling of a sawtooth function, x(t), 

of amplitude h and period denoted .  by 2T
o' This gives an accurate' ) 

description of e(kT
c) for all clock frequencies provided the input 

signal is a constant slope signal, with the slope given by h(T 	T )/T T o 	o c' 
fo) Such a model provides for analysis of e(kT ) under the con-

ditions of a very small input signal change between successive clocking 

instants (i.e. T 	T )• 

	

o 	c 

The amplitude spectra forx(t), s(t), (the sampling function) 
• 

and the resulting spectrum for e(kT ), (given by E
k *(f) = X

.* 
 (f)) : c 

k 
are shown in Fig. 2.6. The components centred around zero frequency 

ace given by: 
t 

h 	+j(277- --°- -.14 	C,J :+j(60 -)t .. T 	j(ELIO  a., -,j( 4) 0-6 )t 4kTd] 	TT  e 	c  + TIT  e 
o 

'to  

+ h 
 e  j(41T t-r- - -T ) j2(L) -(AQt 

	

wr 	
c 	e 
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t 	- 

e 0 
4. (A)Nt 	h 	-j (2nTT Ha 	Tr x 	- 
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FIG 2.7 One Sided Power Spectrum of the Discrete Error FUnction. e(kTn )  
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*.• 	. 	c 
• e(kT )1 

Tr [ 
sin ((CO 	)t + 27-24 + sin (2((.) 	)t + 41T-24 0  c 	T

c 	
2 	o 	c 	T

c 

h 	 1 

• • • + 1 
sin.( (LJ -Ij )t + 2OTT

t
0 m  o  c  • 

Tc ' 

Therefore the power of the components centered around zero frequency 

is given by: 

h2 1 	1 	1 
1 + — + — + 	• + — + • • . 

2 IT
2 

2
2 

3
2 n

2 

e 

h
2 

12 
s ince 

As 	
c' 

the signal slope tends to zero, and the power in some given 

• band, 0 to f
m' 

(where f .(f /40 tends to h
2
/12 and likewise the power 

m c 
in the region (f /2 - f

m
) to fi/2 tends to h

2
/4. This indicates that . 

.c 
for. .a zero slope (ie. dc) signal, the noise power in a given frequency band 

, 
is independent of the clock frequency. This result is as would have been 

expected intuitively from observation of the error waveform for a de 

signal. 

The value of h
2
/12 for‘the power e(kT

c
) does not represent a 

•minimum power in the bandwidth• 0 - f for all conditions. Fig. 2.7 

shows the one sided power spectrum of e(kT
c
) in the region 0 to f /2 for 

a signal with a slope of constant magnitude = h(f c  - fc) where 

h(f
c 
- f )<Khf . Therefore Fig. 2.7 shows the estimated power spectrum 

o 	c 
of e(kT

c
) for a constant triangular wave input. For a sinusoidal input 

or any varying slope input signal with a maximum slope, f'(t) 	, of 
meg. 

h(f 	-f ), the discrete spectral lines of Fig. 2.7 will represent the 
c 	o 

maximum deviation of each component from its respective axis (either 

f 0 or f
c
/2). A similarity between the general shape of Fig 2.7 and 

Fig. 2.4 with alternating signs between adjacent autocorrelatiOn values 

can be noted. It can be seen that if a number of high autocorrelation 

values of alternating sign were considered in Fig. 2.4 (which would 

correspond to the autocorrelation function of e(kT c) under the 

conditions being considered), the power spectrum in Fig. 2.4 would tend 

to the extreme case shown in Fig. 2.7. The immediate conclusion which 

can be made from this analysis is that for a given signal with a maximum 

slope limitation (i.e. a band limited signal) the increasing of'f c  will 

only produce a reduction of the noise power in a given band, 0 to fm , 

until the noise power components centered around f/2 (namely Pek 
I 

, 	f
c
/2) 

fail to make any significant contribution to the power in the region 

0 to f
m
. Thus the noise power reduction of simple DM of 10dB/decade 

for increasing fc , as estimated in Eqn. 2.6 from the earlier analysis, 

will have a cut-off point at some clock frequency, above which.no noise 
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FIG 2.8 Estimated Nature of Noise Performance  

for simple (single integration) Delta Modulation. 

where 
fcl = minimum clock frequency for no slope overload; . 

defined by f s (t)max  = hfcl. 
function of fm  and fqt)max  fcu 

Nmin  = function of lifi(t)max h2  and fm  
2 

and Nmin < 112/12 (for fm <f0/4). In general Nm - <:11/272  in 	. 
In Region II , the asymptote is given by 

2h2f6 Nq = -7.7-=•for ideal LP filtering , with cut off 
• 	A"0  frequency , fM<Kfc  . 

where k>3  (and appears to be of the order of 6) 

Noise 
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N 
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power reduction will occur. A general expression for the value of this 

upper ucut-off" clock frequency, f eu , is not readily available from the 

preceeding analysis but it can be seen that f eu  depends mainly on fm , 

and the maximum signal slope, h(f -f ) and also, to some degree on the 
c o 

probability density function of the signal derivative, f ? (t). 

A second conclusion from Fig. 2.7 is that for a given f and f m 
the minimum noise power in the region 0 to fm ,.denoted by Nmiu , will 

reduce for increasing f'(t)max,  due-to an increasing proportion of P . 
ekj 0 

falling outside the frequency band 0 to f
m
. This reduction is again 

limited and will only occur until f 	(dependant on f t (t)
max

)ncreases 
cu 

to f
c
. (This corresponds to the point at which the increase in f'(t)max 

gives rise to components of Pek 
(f) which are centered aroundf

c
/2 

(namely
Pekf

c
/2)' having a significant effect in the region 0 to fm .) 

2.3.5 Summary  

Fig. 2.8 summarizes the expected nature of the noise power, 

with curves showing the predicted nature of its relationship to f e  

and the input signal amplitude. To this stage the clocking frequency's 

effect on the noise power alone has been considered. In discussing 

overall performance it is to be noted that there will be a second 

effect of f
c 
on the available output SNR. For virtually all types 

of input signal the maximum signal slope will vary directly with the 

,signal amplitude, A. Since the maximum slope capability of r(t) = hf c , 

then for a constant state of loading, f'(t)max  and hence A will vary 

directly with f e . Therefore for increasing f e  there will be an 

additional 20dB/dec. increase in the output SNR available, while 

maintaining the same level of loading. 
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2.4 	Review of Established Noise Analysis  

The first performance analysis for delta modulation was proposed 

by de Jager
9 to describe the quantizing noise. De Jager's analysis is 

based on the following assumptions: 

(i) The noise is considered to result from the error function 

e(t) after low-pass filtering. 

(ii) Very little correlation exists with e(t) forr%T c and . 
44  

hence the power spectrum is flat for f<Kf c . Therefore the quantizing ' 

noise power, Nq, is proportional to fie  where fm  is the low-pass filter 

cut-off frequency. 

(iii) The power density varies inversely with f c ,since the total 

power of e(t) must remain constant for all fc
. Therefore N 0(1/f

c • 

(iv) The quantization noise power is totally independent of the 

input signal parameters. 

Based on these assumptions and using numerical methods to 

calculate the constant of proportionality, de Jager arrived at the 

expression for the quantizing noise power, for single integration, as: 

f h
2 

N = 0.316212-- 
f
c 

Considering a sinusoidal signal ( of frequency f s) and taking the maximum 

• signal amplitude before overloading (A 	() t-  ) as given by: f' -=27fA  max 	max 	s max 

= f
c
h

' 
The maximum signal power, S 	= f 

2
h
2
/2(2Trf)

2 
f  3 max 	c 

Therefore S 
max  

f 
2
f q 	s m 

Similarly for double * integration de Jager predicts 

= 0.000676 
Nq  

 
2, 3 
f fm 

Similar analysis of a single integration exponential delta 

modulator is made by Johnson 
29

with the further assumptions 

* This "double" integration actually being mixed integration as 

referred to in section 1.4.3. 

S
max 

• 
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that: 

(i) If the noise function is obtained by subtracting the 

input,delayed by one clock period, from the output; the noise will 

be of a random nature and will be representative of the unwanted 

output signal. 

(ii) The power spectral density of the noise will be of the 

form sin
2 (T1'f/f ) which will be equal to 1, for  

m 	c 

(11.  f ifc) 

The constant of proportionality was determined from a 

computer simulation designed to give the total (unfiltered) noise 

power. This led to the expression for N of: 

2Kf d2  

'where d is the maximum step height and the value of K was estimated. 

to be approximately 1/6 for most input amplitudes but increasing as 

slope overload is approached to reach the value of approximately 

1/3 at the point of slope overload. Johnson's predicted output.SNR 

expression.  with K = 1/6 is: 

S
max

/N
q 
= (3/8 77 2) (f 3/f 2f ) C s m 

which is very 'close to that of,de Jager. 

A more thorough analysis of the quantizing noise is .  Presented 

by van de Weg
4 for single integration delta modulation. Van de Weg 

derives an exact mathematical expression for the quantizing noise 

amplitude spectrum when a generalized input signal, f(t) is considered. 

To evaluate the noise power from the unresolved expression,van de Weg 

considers three limitations. 

(i) ideal low pass filtering with cut-off frequency w . 
, in 

(ii) the ms value of' the signal derivative (denoted. by D 2  

where D= P(t)j 2  ) equals 	1/4 of the overload slope. • 

ie. 	D 2  = hfc /4 

(iii) the input signal, f(t), having the characteristics of 

random noise with a power spectral density of.constant value, 

for frequencies up to W and Zero above in  

With suitable approximation, van de Weg arrives at, the expression 

for the noise power of *: 

*This equation is a slightly reduced form of van de Weg's equation
34 

• 
as presented by O'Nei135, 



F
i
g
.
 
2
.
9
 
T
h
e
o
r
e
t
i
c
a
l
 
P
e
r
f
o
r
m
a
n
c
e
 
C
u
r
v
e
s
,
 
f
r
o
m
 
O
'
N
e
a
1
35  

a
n
d
 
A
b
a
t
e
r
 
 

.for a'random bandlimited Gaussian input signal with a 

uniform spectrum and: mean square power,0
2  ... 1 unit. 

step height, h 	
■
 
1 unit. 

• 
:. 

 - •:1F:' 
• _,..„ I 

- 

• ... nil 
- 

. - _ --=i II 
. "•.. ---; 
-
 -±

: 
- - 

- 

. 
. 

- 	
I
 

._ 
_Il 

 
I
 

_ __ • 

. _
 

_ _ _ 
„ 

_ 	. 
_ _ 

_ i .. 
_ _ 

__ .. _ 
_ • ____ 

___ _ 
• _ 

 •_•_ 
_ __ 

._ 
. 

. 
-:.....EE 

.. 
_. _ . 	 _ 

" 
. 

. 

_ 

- - - - 

... 

. _ 

 

	TTTT  

- 

waj , 	 

- 

_ 
- 	 - - . - 

i 
.:. 

111 

. ! 1 
...%*■L 	. 	, 

_ 
-4-- 	 t4-7 

_ 
1 . 

_ 	
 

- 
_ _ _ .._ _ 	• _ 

_
 

1 . - 
_ 

- • - 
- - 
_ _ 
- - - 	- i - 

- . , - - _ _ 	
... 

11 
- _ . 	 - I I- - 

_ 
-
 

11_11111111!1,  11:N 
111,771 

HU; ■1:-17.H;1 

M
N

 
1 

- 
-- 

- 
	

 
1 - 

• 
_ _ - 

_ _ _ 
_ _ 

. 

-1--LE
-----,---= 

, - 
In 

 

ELL i 

_ 1 
1 l i ngligli 

re 
_ . 

Figm
. 

mu 
m a. 

• mow 
ill 

• 
• 

• 
m

i...s1 
±

!11111F 1±_I 
 

, 
_

 
idI 

, 

1 1: !  11111  5i;  
p m  Milt :i t  
FT 
'H I  t! it  
'H i  1 H 1 111 

1 1 1 ' 

e  
,2 . 1 1 ,01 .11  , co  MO E  

•

=ri7-1:1iiiii 

	
 

=_,:_ 

1 _ 
_ .-•:: 

_ , _ 
•

- 
_ 4:--- 

LH] 

[...:11 

_ 4:.:--._ 1:.-1.-- _--,E4-_17.r.:_: == - 

i-,,_ 
.L. 

,
 	

1  
--'--- 

_:-. 
-1-: 

illi 
-MT1  
LI  

----7--  - 
1-  a

ll" 
' - 117 

- _ _
 

.:1-74
-1 

_ . 
...." 

TriT 
7-9t  
In- 

111 _ 
_ _ . = 

rill 

I 	; 

...■••71  
I 	i  

_ 
_ 

:-_-
_ 

- 	,- , 
_ 	1 

a  
_ :, ,_ 

, 
_ .. _ . . 

777;-  
V/tile 

POpi  

_ 	 _ . _ _-. _•-• 
	
 _

 I
 

_ _ 
_ 

1 1:.001;11 
Lt. ITFT  
LaLaLLLL 

7-77-71 
11  

EFITTITITI  

_ • • --• 	- -± 

• 

- 

-1 = 
1
 - 

_ _ 

..• 
- 

-
 

_ - •_ 
_ - 

_
_
.
.
_
_
.
 

- - 
_
 

-
-
 

._ 

_ ......_ 

-
 -
 
-
 
+
4
7
 

, 	
1--E1- 

_
 - _

 

. 

_
 

_ 	
.. 

.. 	 . 

L 	
..4 . 

.1 	. 
, • 	 .. ...._ c=0 

co. 

or) 

co 



2h
2
f 	8h

2 
f 

m 	m 
N+ - -2- 
q 3f 	TT 

C 	C 

(-1)
nl 

sin(217nf If ) 
Tfl 	C 

2 	21Infm/fc  
1 

 
n)  

	 2.7 

39. 

where a is the value of the input signals autocorrelation function 
.n 

R
f
(r) for /1 = nT

c 	
(i.e. a

n 
= R

f
(nT

c
))and the other symbols have 

their usual meaning.. With the above limitations applied, numerical 

reduction gives the SNR approximation 

S/N ci (dB) = 30 log(f c/fm) - 18.25, provided fc :› 4f
m 
	28  

This equation is independent of any signal parameters or the step height 

since it applies for the particular input signal magnitude which gives 

an rms value of the signal derivative = hf
c
/4. 

Assuming the quantizing noise is independent of the type of signal, 

van de Weg applies this analysis for a full-load sine wave signal to give: 

f
c max w 

	

10log(0.040 	--2-- ) 	dB 
f fm  

which is identical with the expression arrived at by de Jager. More 

specifically, for a sine wave signal, applying van de Weg's condition 

of the signal being 1/4 of the overload value, we get: 

	

N = 0.317 h2 fm/fc' for 	A = /ff h/4x2Tirf 

	

>and 	
f
c

4f
m 

Considering again the general equation for N of van de Weg 

(Equation 2.7) it can be seen that the first term is the same as the 

expression derived in Section 2.3.1 for the quantizing noise power. . 

Van de Weg however, indicates that the summation term of Equation 

2.7 has a very significant effect on the estimate of N • reducing the 

expression for N for the 1/4 load sine wave signal from 

0.667 h
2
f /f to 0.317 h

2
f.  /f . 

m c 	m c 

Van de Weg's expression for the qunatizing noise power of 

Equation 2.7 is generally accepted as the most precise and useful 

prediction of quantizing noise. O'Nea1
35 uses van de Weg's expression to 

determine the quantizing noise performance with varying system parameters 

by completing the analysis without restricting the signal to a specific 

level of loading. This is done for band limited Gaussian input signals with 

both flat and "integrated" (RC filtered) spectrums. O'Neil's estimation 

of the overloading noise power is based on the analysis of Rice (ibid) 

and the resulting curves for a bandlimited Gaussian signal with a uniform 

spectrum are shown in Fig. 2.9. These curves are given in terms of a 

"normalized step size", hf c 
 /f  m 

 for an input signal with a constant tins . 

3 
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value of unity. Thus for a signal with an tins value of Orthe step height, 

h, of Fig; 2.9 can be regarded as being the step height relative to the 

signal (i.e. h/g). 

The validity of the analysis is checked by comparison with computer 

simulation results. Good agreement (within about 1/2dB) was found 

in the qunatizing noise region but in the overload region O'Neil's 

curves underestimated the SNR very significantly. 

Further analysis of slope overloading noise is presented by . 

Protonotarios
36 whose expressions are generally accepted in preference 

to those of Rice/O'Neil as being more accurate. 

Protonotarios uses van de Weg's description of the quantizing noise power. 

Further confirmation of van de Weg's description is provided by Goodman
37 

Working from a consideration of the delta modulation signals as sampled 

data random processes, Goodman provides an independent analysis of the 

quantizing noise. An expression is determined by deriving the correlation 

statistics of the input signal and this gives an expression which is 

virtually the same as van de Weg's. 

The difficulty with the use of van de Weg's expression 

(Equation 2.7) for the prediction of the quantizing noise performance 

is that further analysis is required to reduce the equation, so that 

a satisfactory description of the quantizing noise power for a 

particular type of input signal is provided. Abate
17 provides simple 

equations to give approximate descriptions of the quantizing and overload 

noise. These are based on empirical observation from the computer 

simulation results of O'Neil and not on analytical considerations. Abate 

describes the performance in terms of a "slope loading factor" s, which 

is directly related to O'Neil's "normalized step size". In terms of the 

mean power of the siva]. derivative, D, Abate defines s as: 

4)in 

s = hf
c
/D 	where D = f1(t)12 = 	CJ2P

f
(GO)dLO 

0 

and P
f
((A)) is the one sided power spectrum of the input signal. As 

with O'Neil's description of the noise power, Abate considers an input 

signal with an ms value of unity. For a signal with an tins value of 

, the value of s should be divided by C r (to give s = hf c/O-D -`) 

and the value Of D multiplied by 02  

Abates empirical description of the noise power is given 

by the equations to three asymptotes, as below: 
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Quantizing noise power, N = 6 I  Wm ) 
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• 

For a bandlimited signal with a uniform spectrum ( as considered by O'Neil 

for the curves of Fig. 2.9) the value of D/W m
2 
 is 1/3 and the 

equations become: 

and 
f h 

v3 	c 
+ 1)e

-3s
, where s = 	fm  

The SNR performance is predicted to be asymtotic to the curves 

given by S/N(dB) = -10l0g(N q +N o), (since s=1) which arc shown by the 

dashed curves of Fig. 2.9. When the quantizing noise is dominant, the 

performance predicted by Abate agrees closely (within about ldB) with . 

that of O'Neil over the region of interest. Thus Abate's simple, closed 

form equations for N provide a good approximation to the analytical 

quantizing noise estimate of van de Weg. When the overload noise is 

dominant, Abate's predicted performance is greatly different from O'Neil's 

and it shows much greater agreement with the results from O'Neil's 

computer simulation;the discrepency being in general considerably less 

than 5dB. 

The particular case considered byvande Weg for the simplifi-

cation of his general expression was for a uniform signal spectrum 

with D = f
c
h/4 (i.e. signal loading = 1/4 of the overload level). 

This corresponds to s =.4 and gives by Abate's formulae 

f
m
3 	• f

m 

f
c
3 	

3 
477

2 
1
T  s

2 
= 70.2 

3 f
c 
3  

Hence S/N(dB) = 30 log(fo/fm) - 18.46, for negligible No . 
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f
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for s> 8  

No 	= 0.125 
8fl 	 3 + 1) e
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27. 
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21T ATM - f
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where 
f
c
h 

= 0.450 
f
c
h 

f
m 

42. 

This agrees closely with the relationship estimated by van de Weg 

(Equation 2.8). 

The consideration of an input signal with an integrated * 

spectrum having a corner frequency, fefm./4 and with an exponential 

density function, is considered to provide a satisfactory approximation 

to single channel speech signals (i.e. non-multiplexed speech signals) 

(see Abate
17 , p. 299). Abate found that his empirical equations were 

suitable for both Gaussian and exponential distributions. Thus 
** 

adapting his equations for an integrated spectrum with  

we have: 

f /f 	if 
since 	D/W. 2 
	m 	

a 

. 	m 	
= 0.1250 

tan
-1(f /f 

m 

2 

3 

	

= 0.125 41
T 	fm s2 , for s 

	

3. 	fc
3 

The curves specified by the above three asymtote equations could be eXpect-

. ed to provide one of the best and simplest predictions of the noise per-

formance of simple delta modulation. 

If an input signal with an rms value of a - is considered the 

above equations become (with the expansion of s to 0.450 fch/Crfm 

and D/W m
2 

to 0..125(7
2
) 

3 
160 

for f
c >08.45 

-fm 
677h 

Cr ' 

 

• 2  12 

 

f 
= 	_Ln  h2  

3 fc 	' for 
y  8 

c 0.45 fm 0/h 

 

2  13 

 

fc N
o 35 (1. 	-- 	

-1 35 	f /f + 1) e • 	cr c m 
2.74 	cr f 

* The integrated spectrum is flat up to a frequency of f z  and falls at 

20dB/decade from f to f , being bandlimited at f.,  
m . 	

m 
 

fefm
/4 provides a suitable 'speech spectrum approximation for fm in 

2  14 
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, for  

Varying Input Signal. 
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43. 

Figs 2.10 and 2.11 show the variation in noise power estimated by 

these equations for Varying f 
C' 
	andCrrespectively with the step 
m 

height .11 = 1 unit. These curves indicate the two quantizing noise 

states specifically predictedby Abate. This feature of the 

quantizing noise is not discussed in any of the other delta mod-

ulation analyses although it is inherent in the general expression' 

of van de Weg and the subsequent- curves of O'Neil. This expected 

quantizing noise performance has two consequences which are 

significant in determining the conditions for optimum performance. . 

• (i) Under the condittons of a constant magnitude input signal 

(Fig. 2.10) there is an upper clock frequency, fcu' 
 above which 

little reduction in noise power is expected. Most other analysis, 

such as that of de Jager and Johnson, does not predict any limit 

to the 10 dB/decade noise reduction with increasing f
c
. The 

general shape of the quantizing noise against clock frequency 

characteristic shown in Fig. 2.10 was predicted in Section 2.3 

(see Fig.2.8). 

(ii) For a constant f and f
m 

( as in Fig. 2.11) Abate does not 

predict a constant quantizing noise for all signal values within 

the overload level but predicts a 10dB/decade rise in N for signal 

values reducing below some critical level, CO. Thus in order to maintain 

near optimum output SNR the maximum signal should be near the over-

loading level, not only to maximize the signal power , but also to 

keep the noise power at the minimum level for as large a range of 

input signal values as possible. 

A complete analysis of both the quantizing and overload 

noise of delta modulation was made in the relatively early stages 

of the investigation of delta modulation by Zetterberg
28 

 . 

Zetterberg's analysis has since received little attention as his 

performances estimates show little agreement over a large range of 

operating conditions with either his awn or subsequenct experimental 

results. (This.is indicated in Fig. 2.12). The basis of Zetterberg's 

overload noise analysis is to consider the product hf being held 

constant while h, and hence the quantizing noise, diminishes towards 

zero. The expression for N o thus derived is deemed to hold good 

for all values of h and f. Similarly for the quantizing noise,hf 

is considered fixed while f tends to become infinite and 
C .  

hence the overload noise tends to zero. The failure of Zetterberg's 

analysis to provide an adequate description of the noise, would be 

due to the failure of the description of the noise in the extreme 

conditions considered, to hold over the full range of values of 

h and f
c
. However one interesting result of Zetterberg's analysis 

is that for a constant input magnitude relative to the step height 
• 

(i.e. cr/h  constant), it predicts a constant N with varying f 
P 

as was predicted in Section 2.3 and also by Abate's equation'for 



Fig. 2.13 .  Theoretical Performance Curves from Zetterberg
28

, for  

Varying Clock Frequency  

for a random noise input signal with a' uniform spectrum, 

bandlimited at 200Hz and 4kllz. 
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44. 

f > f . This is indicated in Fig. 2.13 showing Zetterberg's estimated 
c 	cu 

• SNR against f
c 
relationship for various 07h values. Zetterberg's 

quantizing noise expression(fOr a bandlimited random noise signal) of: 

*0 

N ■ 20 2  > 
n=1 

br2-FIT 	fm (h ) 3  

(2TT)
3 
 f

3 

can be simplified by substituting for f3 , for a uniform-bandlimited 

spectrum, where: 

	

44, 	441 

CJ3
2 - 	 2r() 

cuo fP f (W)dG) 	= 02D/a2  =W 2/3 

0 

2.404 	,-.3 

 

(27) 3  Tr 13 h  /°- 	= 	1.918 h3 / -'  

(21T) 3  

From Abate's expression for s>8 of: 

3 

N 	/ 
	f

m
3 	s

3 
since .1)/(j rn

2 
= 1/3 for a uniform band- 

6 
limited spectrum. 

and s 
hf = /5- hfc  

2TT fm 

/Y 
then N 1.643 = 

(2TT ) 3  

Therefore for large fc 
Abate's N expression is the same as Zetterberg's 

but with a value of 0.67 dB lower. From Fig. 2.10 it can be seen 

that Abate's noise description predicts that the central quantizing 

noise region (Region II) becomes relatively less significant as a' 
increases. In doing so, Abate's description tends towards the 

Zetterberg predicted situation of a direct transition from the 

overload region (Region I) to the high f c , quantizing noise region 

(Region III). However the lack of validity of Zetterberg's 

analysis for the large range of conditions for normal (near-optimum) 

operation, severely limits its usefulness. 

Further discussion of delta modulation noise and SNR 

performance expected by established analysis in the light of 

experimental and computer simulation results is included in 

Chapter 5. 
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CHAPTER 

COMPUTER SIMULATION OF :A SIMPLE DELTA MODULATION SYSTEM. 

3.1 	Introduction 

The establishment of a;computer simulation of a simple delta 

modulator using the Elliott 5p3 digital computer at the University of 

Tasmania is discussed. The purpose of the simulation was: 

(i) to determine the'feasability of establishing a computer 

simulation for satisfactory analysis and performance estimation of 

delta modulation. 

(ii) to determine the types of,problems and the limitations 

involved with the computer simulation. 

(iii) to provide data likely to give greater insight into the 

nature and performance of noise in a simple delta modulation system 

and suitable for comparison with predicted performance, experimental 

results and established theory: 

A satisfactory compute*. simulation, in addition to providing 

and processing results rapidlyy:once the programme is established, has the 

advantage of being able to readily provide data on such things:as the 

error amplitude spectrum. Simulation is also useful in investigating 

idealized' systems which may have been considered in theoretica l - 

analysis but can only be approximated to, in an experimental realization. 

A simple, single ("ideal") integration delta modulator was 

considered for the computer simulation because the predicted 
5 

performance and most frequently, the existing theory, is based on 

the single ideal integration case.. In addition it provides simpler 

programming and the conclUsions'can be extended to apply to the.. 

"leaky" integration case or other cases of delta modulation. 

An 800 Hz sinusoid was used as the input test signal, the actual 

frequency being only significant relative to the other time based 

parameters involved. A Einusoid signal was considered because of ease of 

generation and ease of separation of the output into signal and noise 

components. The frequency of 800 Hz was used for the test signal 

because this is the sine wave frequency usually accepted as being 

the most representative of speech signals as considered for telephony*. 

The step height, h, is taken t8 be one unit throughout. 

The normalized standard deviation frequency for the long term spectrum 

of bandlimited speech (say 0 to 3.5kHz) is given by: 

\ 1/2  
cto 

j(S(f)f - cif 

S(f)df. 

T = 800 Hz 

\ 00 
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3.2 • Establishment of Programme - Problems and Limitations 

The first programme established was designed to give the 

total value of the error function, e(t)=f(t)-r(t), which corresponds 

to the (correlated) noise with no output filtering. The important 

parameters relating to the simulation, whose effects were investigated, 

are: 

(i) the number of input signal cycles considered 

(ii) the computer sampling rate, f s  

(iii) the initial conditions of the system variables, f(t) and r(t). 

The analysis of either r(t) or e(t) by taking sample values ata rate f s , 

depends on the power of these functions falling off a high frequencies. 

If this is the case, the error due to the neglected power (namely the 

power at frequencies greater than f s
/2) can be made small by the use 

of a sufficiently large f s
. With the system's clock frequency, f c , 

equal to an integral multiple of the signal frequency, the error 

function will repeat itself every one, or at the most two cycles 

of the input signal. Under such conditions only one or two input 

cycles are needed to obtain a description of e(t) .  which would be 

the same as that from a large number of.cycles of input. 

Initially, e
2 (0, the mean square value of e(t), was determined 

for various computer sampling rates and for a range of initial 

conditions. The system parameters used were f c  = 40kHz and the input signal 

amplitude, A=20/17 =80% A 	(where A
max 

= theoretical maximum sinusoid 
max 

amplitude before overload = fch/2Trf). Fig. 3.1 shows the percentage 

change in e 2 (t), for various k, which would result if k were doubled. 

(k = number of computations per clock period. ie . fs=kfc). The low 

percentage changes in e
2
(0 indicates that the noise power is low at these 

high frequencies and that computation rates of 10 or 20 times f c 
should 

The effect of varying the delta system's function values at the 

start of computation is shown in Fig. 3.2 where z is as defined in the 

diagram. The range of z shown is the range that would be expected in 

an actual system. Over the full range of z the expected value of 

e
2 (0 would be about 0.45 with a possible variation of up to about 

5% for any particular initial conditions. Under actual operating 

conditions each value of z would not necessarily be expected with 

'equal probability. In addition the power of e(t) in some limited 

frequency range may be more susceptible to variation with different 

give a good description of the error function (with e
2
(0 within about 4% 

and 2% respectively, of the actual value). If only the power up to same 

frequency, less than f s/2, is being considered then these computation 

rates would be expected to give an even closer estimate of the actual 

power. 
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initial conditions than 

values of e
2
(0 in Fig. 

to the noise power will 

used in the simulation. 

e
2 (0, the total power of e(t). However the 

3.2 give an indication of how good the approximation 

be if a particular set of initial conditions are 

The second programme investigated was designed to give the 

amplitude spectrum of e(t) over range of frequencies of several times 

the clock frequency and to give the frequency component values of the 

reconstructed signal, r(t) over the lower range of frequencies so that. 

the noise power is a given frequency range, 0 to fm , can be calculated. 

The frequency analysis of r(t),inpreference to e(t),was performed 

because this facilitates simpler programming and removal of the signal 

component with delay and amplitude variation taken into account as 

desired. 

The frequency analysis was achieved by incorporating into the 

simulation programme a standard procedure for the computation of the 

Fourier coefficients of a function specified at n sample points. The 

procedure initially used was the HUCC Library Procedure MH01, at the 

University of Tasmania. This procedure was found to give rise to 

significant error in the computed Fourier components which was typically 

from 0 to 10% but for some components was well over 100%. The error 

resulted from the use of iterative methods in the procedure for the 

calculation of the sine and cosine values required. The cumulative 

multiplication from one initial sine and cosine value, many thousands 

of times, allowed the computer round off error to take on very 

significant proportions. For this reason a modified Fourier analysis 

programme was used which computed one sine and one cosine value for 

each Fourier coefficient, thus reducing the length of the interative 

' processes and therefore limiting the loss of accuracy, at the expense of 

slightly increased computation time. 

The first frequency analysis (Run 3) used an f c 
of 40 kHz. Since 

this is an integral multiple of the siggal frequency (f 800  Hz)it means 

that one input cycle gives a total description of r(t). Twenty 

computations were performed per clock. period (that is, f s  = 20f c  = 800kHz) 

and thus the analysis gave frequency Components up to 400kHz. The results 

from Run 3 indicated the following problems involved with the simulation. 

(i) The values of the frequency components fluctuate widely 

(by up to 80% from the mean) for adjacent frequencies. This problem 

results from the use of a single frequency test signal which gives 

rise to a multitude of harmonics and harmonic cross-products of the 

signal and clocking frequencies. This effect has been noted previously 

by Bennett5 , de Jager9  and others. 

(ii) Because r(t) was periodic, at 800Hz in this case, the 

frequency components were spaced at 800Hz intervals thus giving only 

a small number of components in a typical audio band, say 0 to 4kHz. 
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This small number of components combined with the large fluctuations in 

value would result in low reliability for the power indicated in a given 

'band. 

(iii) The use of only One cycle of input, or of a clock frequency. 

'equal to an integral multiple of the signal frequency, gives only one 

Set of parameter values for the start of an input cycle. Clearly this 

does not give results which are representative of the total situation 

with the given system parameters. 

These problems could be % overcome by using a large number of 

cycles of the input signal as is done by Johnson
29 
 in his computer 

simulation to find the total .(unfiltered) noise power. Also, by adding 

small magnitude, low frequency components to the sinusoid signal; the 

periodicity of r(t) can be removed by giving much more random conditions 

at the start of each cycle. This would also smooth the large fluctuations 

due to signal and clock frequency cross-products and for these reasons 

these methods have frequently been used for experimental measurements 

kde Jager9 , Hauser and Zarda
24

,and others). The use of many cycles of in- 

put however, faces two major computing difficulties when frequency' ' 
; 
analysis 'is required. 

(i) The computing time for the Fourier analysis programme Would 

pecome excessive. (A computing time of about 20 minutes with the Elliott 

503 was required for Run 3 in which 1 cycle of the input and 1000 

function sample values were considered.) 

(ii) The required storage (for the function sample values) would 

be such that the internal store of the computer would be insufficient 

and external storage (such as punched tape) would be required. This 
- 

would greatly increase the handling difficulties in running the simulation 

y frequency analysis programme. 

If only the noise power after low pass filtering is required then 

a digital filter could be included in the simulation. This would allow 

the computation of the noise power by the continuous process (not 

requiring storage), of summing the squares of the output sample values. 

To consider the ease of incorporating a digital filter with this intent, 

-a design was considered, for a typical audio filter, and is given in 

Appendix B. However, a digital filter was not implemented in the simila-

Fion as it is beyond the immediate aim of establishing a satisfactory 

simulation frequency analysis programme. 
4 

A simulation is required., which gives with a small number. of ' 

Input cycles, an output', r(t), approaching in nature the output which 

would be achieved using a large number of input cycles, each with 

fandomized starting values. This would allow a frequency analysis 

'Fo be performed and the noise power with idealized low-pass filtering 
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to be determined. In order to investigate the feasability of such' 

a simulation giving satisfactory results,various programmes were 

run with varying conditions for the simulation implementation. Al]. 

the parameters of the delta modulation system being simulated were . 

kept virtually constant, with f c  close to 40kHz and an input signal 

amplitude of 20/TT units, where h=1 unit. 

The second simulation/frequency analysis (Run 4) used 4 
cycles of input (thus giving Fourier components with 200 Hz spading)' 

and the discrete amplitude spectrum of e(t) was plotted by the 

computer (see Fig. 3.5). The Computer store limited the number 

of computations per clock pericid to 10 giving a computation sampling 

frequency of 40.4kHzand . thus afrequency analysis up to 202kHz.. 

The system's clock frequency, f'c , of 40.4kHz was selected to give 

Fourier components at f c  and its harmonics and also so that cross 

products of f
c 

and its harmonics, with the input signal are readily .  

distinguishable (ie. components at if -4- 800k; i and k integral.) .  Also 
c - 

the use of an f
c 
which is not it integral multiple of 800 Hz. gives 

varying system parameter values at the start of each cycle; although • 

for Run 4 only two unique starting conditions existed, as shown below 

in Fig. 3.3. 	• 

Run 4 was repeated with f(t) advanced by 1/20th of a clocking 

period (Tc) relative to the clocking instant. This changed the . Value 

of f(t) at the first computer sampling instant from 0 (as in Fig. ,3.3) 
20  

to — sin 2IT ( 1 
800

- — 	). This small variation in the initial 
TT 	20 40 400 

conditions produced a significant change in the amplitude of the' 

harmonic components. The fluctuations in the amplitude spectrum 

remained approximately the same in nature although the amplitude of 

any particular component varied . by  typically 0 - 20% and by at the • 



FIG .3.6 	COMPUTER PRINTOUT OF ERROR FUNCTION AMPLITUDE SPECTRUM 
• . 	. 

=30 

FREQUENCY . 	• _ 
10 . 	15 	JO 

' • 	 • ' 1 t 	 •! •0 	I 	I: 	

II  

 

f • 	 ' „A I 	ti 
• ,̀•": 

114 	 1). \• 	I 

20 

-10 

3 —V 
• j 	,or• 	 4- 1, 	.1 

0 

	

50 	 

-70 

	

-80 	 

NO18E 
A1'111170E...1 
d8 - • 	, 	. 	. 
(zero io peak amplitude A  
re/alive to.one step heisht 

	 Power Spectrum reificied Estimated Po ver Spectrum 
by 11(o) sinc 2(Trf/f,..) from Fig3•9 with appropriate 
:where (o) 	hefloi power scale changes 

, ifre9uency power densdy 20c/B added to correct 
. 'as estimated from Me 	for /00//z spacing of-not:se 

;compuIer resulls in 5:0-8 amphlude componenh ond 
'OPPro,oriale power scale . 30:8 added to corteci for. 
.chanye of 23c0 has zero -to -peak rather /hati 

. !again been included.) pms value of noise 
- - 	 oriphizio'e componeds. 

• Run 5 	• 
• inpUi sisr7al Amplitude = 6.36620 units 

/6./ dB 
..k- equena , f, .--= 800 Hz 

- Clock ftecpency- - -,40. kliz 
Step hebt -=.. 1 u'nii . _ 

-50 



etc 

• • • 0.8757; 0 8 7 5.1.  

No i g . of 	. 
C/ock Periods 

350 351 350 p..6/ .  352 ' 

50. 

most over 100%; This indicates that the significant effect of the 

initial conditions on the amplitude spectrum of r(t) [and e(t) ] 

must be considered in the simulation results. 

The simulation / frequency ,analysis was repeated (Run 5) with 

8 cycles of input (giving Fourier components with 100 Hz spacing). . 

The amplitude spectrum as plotted by the computer is shown inFig. 3.6. 

In order to keep within the computer's storage capacity only 5. sample 

values for computation could be taken per clock period. A clOck 

frequency of 40.1kHz was useegiving 50.125 clock periods per , input 

cycle. This gave a broader range of conditions at the start of each 

cycle, as shown in Fig. 3.4 below 

FIG 3.4  Conditions at the Start of Each Cycle for Run5  

of the Computer Simulation  

1 	2 	. . . 

Start of Cycle Alo: 

3.3 	Simulation Effectiveness. 

Despite the fluctuations of the amplitude spectra (shown in 

Figs. 3.5 and 3.6) the basic form of the spectrum can be observed 

and this is discussed in the next section. For the calculation of 

the power in a given band it would be required that the fluctuation 

of the amplitude of the frequency components be limited, so that 

the power does not depend to an undue, degree on any particular, 

components. Smoothing of the amplitude spectra could be achieved 

by assigning to each component _a magnitude determined by some 

weighted average of the component and its adjacent component 

values. Such a smoothing procedure Should not be applied where : 

discrete amplitude components are clearly present, as for. example 
- 

at the frequencies of f
+

c
-8u0Hz. Fig. 3.6 also indicates that the 

fluctuation of the amplitude Spectrum shows considerable 80011z 

periodicity, particularly in the region 2kHz to 8kHz which is of 
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particular importance in the estimation of the power in the band-

width 0 to fin . 

As a smoothing procedure, and also to investigate the effect 

of the different simulation conditions on the total power in a given 

low frequedcy band, curves of the total power of the noise function 

a
1
(t) in a frequency range 0 to fm 

are shown in Fig. 3.7 for the 

various simulations. Therefore Fig. 3.7 shows the estimated noise . 

power, N, in a frequency band, 0-f
m
, for a range of fm  where N 

given by: 

f
m 

 

EAKPL(fq  2 , ANFL(fk) im Fourier component of 
2 frequency fk. 

The noise function n
1
(t) is not merely e(t)f(t)-r(t), after 

low pass filtering, since e(t) will contain a large signal component 

as discussed in Section 2.2 and can be seen to be present in Fig. 3.5. 

The uncorrelated noise, n(t) defined by: 

n(t).,7(t)-kf(t-to), 

where k and t
o 

are such that n(t) has minimum power is, in general, 

the most meaningful noise function. However in the case of a sinusoidal 

input, n(t) will have no component at the input frequency and thus 

does not give a good representation of the situation if either a 

continuous spectrum or a more generalized input signal were being 

considered. The noise function, n
1 
 (t) , defined by only the phase 

of f(t) being varied to give a noise power minimum, gives a noise 

component at 800Hz of the same order as the adjacent components 

(see Figs. 3.5 and 3.6). Thus n 1(t) defined by; 

n
1
(t)=1(t)-f(t-t0), where to 

is such that n
1
(t) has 

minimum power. 

is considered to be more representative of the uncorrelated noise for 

the simulation and for this reason will in general be the noise function 

considered. 

The curves of N against cut off frequency, fm  (Fig. 3.7) 

provide a suitable format for smoothing the fluctuations of the 

discrete components of the Fourier analysis. These curves indicate 

that the simulations using more than one input cycle (Runs 4 to 5) 

give noise power estimates that are equal within 0.5 dB for fm  greater 

than about 3.5 kHz. The slight variation in initial conditions for 

Run 4 produced a large difference in N for low cut off frequencies, 

but for fm>1.6kHz their noise power curves are virtually identical. 

It can be seen that one input cycle (Run 3) does not provide a good 

indication of the N, f
m 

relationship due to insufficient Fourier 

components and that the use of only one set of initial conditions 

gives up to 2dB difference from the N estimated by the other 
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simulations. The large variation in the estimates of N for low f im  

would be expected,as in this region the estimate of N is under the 

.effect of the fluctuations in the Fourier components and the smoothing 

effect of the summation of the: component powers has hot taken effect. 

Good agreement for the estimation of N exists between the 

simulations when four or more input cycles are used, providing:the. 

cut-off frequency is not considerably below that normally considered 

for audio signals. (The discrepency being ldB or less for f m>1.71diz). 

It can therefore be concluded that an effective simulation of a delta 

modulation system with a sinusoidal input, for the purpose of noise 

power estimation, can be achieved using only a small number of'cycles' 

of input. The use of. four or more cycles would seem adequate with the 

system's function values at the start of each cycle spread evenly ; 
over the possible range of values. This will .alleviate the problem 

, - 
of a highly periodic noise function with a strong dependance on . the 

initial conditions. A suitable spread of conditions at the start,. 

of each cycle is obtained by selecting a clock frequency, f , which 

will give n4- /
c 
clock periods per input cycle; where n is any Integer 

and c is the number of input cycles considered. Thus f c 
should be. 

given by fc/fs  ■ n+1/c, where Es  ■ signal frequency. 
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3.4 	Noise Power and Spectral Considerations. 

The curve of the noisepower (N> against the.cut-off 4equency 

(fm) from a satisfactory simulatiOn (eg. Fig. 3.7 for Run 5) is a .  

good format for consideration of the spectrum of the noise function. 

The major contribution to the noise of .harmonics of the signal 
t 

'frequency is evident from Fig.3.7, with the 4th and 6th harmonies 

being dominant for this particular set of delta system parameters.. 

The relationship between N and fm  which would be expected 

for a more general input consisting of a range of frequencies, but 

which provides the same level Of system loading, can be estimated 

by smoothing the effect of the; discrete noise components as shown 

in Fig. 3.8. From this N Against f
m 

curve the continuous spectrum 
-- 

of N can be estimated and compared with the discrete spectrum of 

Fig. 3.6. Considering again the expression for the computation. 

, 2 of N: 	%11.1PL(fk).1 	, anestimate of the power density 

 	2 

.. 

spectrum (one sided) of the noise function, pn  

cer, 

P
n
(e))d(A) N 

. can be made from 

0 

, The spectrum, P (a)) , was estimated graphically from a curve of N against 

fm 
using linear scales by taking the instantaneous derivative at 

various points. The resulting spectrum is shown in Fig. 3.9. - 

It should be noted that this process of "smoothing" the N 

against fm  curve before graphical differentiation will give only a 

rough estimate of the noise spectrum which would result from an input 

of a more general nature than the sinusoid, with a range of component 

frequencies. However, it should provide significant information 

about the nature of the noise spectrum. This estimated continuous 

spectrum is superimposed on Fig. 3.6 (with appropriate power scale 

changes) to indicate the correlation with the computer plotted 

discrete amplitude spectrum*. °(The curve of Fig. 3.9 does not 

follow the mean of the discrete amplitude values of Fig. 3.6 since 

it represents a "smoothed" cure of the mean square value, but the 

correlation between the spectra shapes is exhibited.) 

* It should be noted that the computer plot of the discrete amplitude 

spectrum is presented by the Straight line joining of the discre te 

values,'whereas the spectrum should actually be represented by impulse 

functions at the discrete Fourier cothponent frequencies. 



U
O

Tq
.B

IT
ITI

IT
S  

-40 

-60 

-60 

1Voise 
Power. 

•Den,* 

(d8/fiz) 

-80 

FPequeney ,f 
• -77 

. 
rir 

t 

4.: 4  
li 

.n t--;:-  ---- ---- 	----- '-- t-- "7: • -  ; 	;--i- 	1 	, 	• 	• 	, 	.. 	, 	.1 	, 	.• 	. 1.; 1  
. 

. 	• , iii: 

---, 	.. 	1 . ----!- 	-- 1-  , 	- 	• . 
. 	-1.. . 1-• 	- 	, 	, 	• Tr 	• • : 	. 	; ;...: 	, . 

Hr. oft 
T-I-- 
itiT 

• 
!it,. 

,---1 H f 	Tli 7 ,:i73.-r , ,• 	ton 1 tt 	1 -1-1--Tt Tritaiti - rtithli i: , Ii .i ,  .i, I ---  , : 	; 	. I 	irLa.......,  . ■ 	; 	, 	I 	! 	I 	1 	■ 	I 	• 	. 	i 	i 	I 	I 	I 	I ! 	I '  I 	1 	I I 	1 I 	I  'MI ii i i Th i  1 	I 	i 	I 1 	i 	I 	II! 	I 	I 	I I 	ilHi l  . 1'1 . 	41. tl 	1 	: ! 	I 	, , . • ' • 	L.j-1.L. 	. 

, 	riu .;'1_ • 
! 	1 	I 	f 	1 	1 	I 	I 	; 	1 	. 	i 	I 	I 	II ' 	...I 	., ill! 	1 1 	1 i 	i 	ti i if Ji ,  I 1 	I I 	I 	1 	i 	!I 	ill I 	1 	. 1 1 ..,_.1 :Iii . I2! i 	; 	' 	I , • I  i 	' 	: 	I 	'. 	 • 	• " 	. 	• •  C-1-7; i W  I 	' 1 ii t i • V. 	I . •!11 II, II li 	rii , I I 	t :11111! r-f--9, Ji:11:i , 	.11,, ,  'Trr ',„ .. 	ii 	;.. •• . 	i 	: 	•' 	- 

' • ; 	i 	i 	1 	I 	I 	I 	I 	. 	!II I 	; . 	t 	t •I. tt 	1 ,  I 	it 
i-m- HI 

.1 
It 	WI 	1.TI 

I 	iiIiimo 
I I 	I 	I 	.; •171 i 1 	I I I 	1414,1:1 

1..,•141.4 
;,!1;;1  

.4 .• 	 , 

; 	i 	i 	t. 	t 	..t 
14.ii 	: 

. 	• ■ 
., 

....": 
. 1. 	 

LL!! 	
. 

	

i 	1 	1 	i 	. 	 .;..1••••; 

; 	I 	c%  J__Opectrurn.Es -firnated 	: 	
, , ' frorn Computer Results 	•i, ___-- 	. 

..Th------1- . .1.11 11;ii:l'• 	 

	

t 	! 	 1 	

.: 

. 	, 	. 	HI; 	LA , 
.4 	' , 4 1 	I I 4 	.• II 	41111 	II '2.172',,- 

:....;*: --Ec7/22.it 
3 I 

1 ' I i Lila 
, 	'4,,IllIcri lli4 ..... 

.. 	t 	; 	tit 

I ,.  
:, ,,,,,Iiiir , 

.1411_01. 1 ,  

I ri  ;,1  

111 71.,  
■ 4i;i4i 

:: 	!-' .. 

•,„11. 

• . 	'.; 

F-7.14„,, 
_L:11. i 

,:  , 1 	I i 11-17-t /1/ JII/C 	7T i_12:;:_ ,:., . 	._i_Lh_i_ 	• - ilci . 
ection2 1 

tI•1 	; ,i  t 1 t 	1 	1 	i 	tillt 	: ; Mrt  
, ,..,..44 

:. r  
' 	L nti 

,, 	i_,  
II hiT 
ft 

' 
i i t: . s 

Iiii 	; ,, ,i 
,,,,,,..77 1  :.:, t 

I 	! 	' 	: 	' 	1 	1 	' 	.. ' .,[ 	t 	 1 	, , • ITT 	. 4 	"I 	t 	I 	Fr; 	: 	I 	t 	i I ' 	• 	t!: 	it• T'r ; 	, 
1 	1 I 	i 

' 	'   
, 	 •'1177 4. 

I 	I 	• 	! 	t 	 • 	; 	; 	I 	: 	: 

	

; 	.  
' 
•-r - 	.1 7-  t 

2 	 j  ,://,..p 	____1_‘::. L.  4t 	i igi I 	I i i 	i Hii !! . 	•  
;(/)Ac 	- 	.:  ---'-: 	„ . 	_4:- ;!..117, 7  i 	itt 	I  ■ .-!--] ■ 	, i 1 	. 	! 	1.1 ,, , 	. 	A..  

I

: 	., 
• • 	- 	---- 	-, 	--,-, 	. 	 , , 	, 

11-ri.'N 
... _ 	 ' 	• I 	• 	I i,, , 	---, 	-,---,---- 	-I 	... .7,-, ,  • 

7-1- -.7 	• 	• 	'' 	; 	i 	- 	. : 	i " 	! i I . 	•, :-T -7.*5; II; 	i ; 	; 	I 
Ti 	. 	I 	1i . I  : t 

I 	I 	1 	1 	ITI i 	11 
	

11 i .11-r. 
'717.  

-. 	
al,. i.'7, 1  . 1 T--  • I , 

---:-,-- ■ 	
...LE.  

11T 
I 

I1 1  
I 	1 -'- ' 

iii, 	 ; •! 	.1;; , ;  . 

-, 	i 	: . 

1 	 ' 11 	1 	• 	111.1 _L1 1'111.7 1 	 
"t" 
1,7 IT 

:,pli_j____ 
I 	I 

-I-1-  1 

,till 	' i 	I 	ill! 	 i111 	, , 1 . : , : 	
1 _11, 

; 	, ; ; 	; _ 	i 	1 	:4___ 	: • 	l'..1.1!'lj 	, 	I 

	

"'"" 	• 	ri 	ri . 	ItIt 	1 	, _l_ I 	I 	I 	' 	' 	I 	t 	I 	. 	.,._• 1 1-1-1_ •7•1 717- 	!--•-' 	t I . _ 	I __L. 	_ 	1......,.._4. 	' • . : . :' 
7 71; 	t; 

.4.;; . 	.  
•••;:,1,1 	I 	. 	I 	t 	 • 	- 	' 	• 	• 	• !  . __ 	. 	L 	_•_. _ 2 	. 	.L__ . ., 	,.:i..___... I " : .i.441_441- 	! 	t 	 , _____t._-_....i. 	.___,.., ; 	; 	; _ ': 	I 	t 	• 	; 	• 	1•;:, 14,t• 	' 	■ 	Li- i 	'; ; 	i 	t 	! 	! 	: 	t I p ! . ‘______ 	_ _._ 	 _. ' 	! 	'• 	, 	: 	I ___L4 -.; , H1.!;10-1, 1 	, 	!! 	' I „ ,-- 1 1 6 I, 1_,„.. 	 ., 	 i 	• 	I s ___LL;_i_L'i_t_LL : 	; 	i i: , •1 . 	 • '11 1 1 ! 	• 	. , illTiTh 	Mu 1 if i 	i 1 	n 	1 i _1 1 	LL.1 ti 1! L1,0.1 , , J.,.. LIP II 	. 	' 	i , .  1-1  

i 	i 	 I 	 -TT 	'; 	...LI.4 , 	_____. 	 ; 	• 	4.:L: 1 	-...- il!.f 	i 	i 	!' _ 	 ...• , _-_.__ 	_______,._,____ . 	, 	, 	, 	1 	. H; 	1, ,  

	

r. 	• ....„..__,,..... 

	

,!,;.• 	. IT• ...!...;‘,.. -1 liTi L.t.t., 	• , ! 	LI.1.14,t, • 1 	. 1 	 - 	 • 	• 	' 	L 

	

_ 1,..' 	_f.• 	‘ 	...1.: 1 	I -TTI.i 1 	; TIT111 1 1; T 	'! 	-.: 1 	It 1111`!1 , . 	. ..._. 	... 	l_.. 	, 	i 	1 Li4 . 1 4  . 	' , i 	' ..... i ■ t  I 7 ' 	' 1,1 ' 
I J 	il  !.11 ; i  114 4 I ' 	 ail: ti ..., 1 	' 

..---7-1-7- 1 . 	'  	. 	' 

	

....-: 	i 	, 	. 	•1:1,1 -' • .T 	.1 	• 	,,,,, •• 	. 7 	.• - 	. 	1. 
.1 

I.0 
1.j.- 1--1 

, I 	I 
--1-Curve Predicted 

•	 ILL: 4 	..i., 	 .,...J.____..4__....____f,..4.-4. 
' 	• 	:-4. 	1  . 	' ' 

. by. 	3.  inc. 	 , 	:, 1/1C7  	_ 	• 	, 	 ,,•,  

---7,--7.--T- -r---11 1, 1-1 •,• 	;I ;  
JfiTitti 
•Ht:till 

[ I 
t. 
ii trIr 	' 	! 	i 	' 	•./L 	 ' 	• 	'1"..T1' -r-i--1, __; it ■;1; _____ 	, • k.//ii 	P,, (0) taicen 	from 	 ,  

- --7-.--"'"'-"r-7-t• ; , t ._.______+,.....„. 
. 

_ . • +4,1,1,Y .-7,,,i 
rri'.:. 

. 	. 	. 	. 	 • 1 
-ili•,'-rtt fi _ ... 	f ,  - .,T  

i 
___:'. ..---1_,.11_17Me 	Computer. 	Results . 	_ 	. 	. 	.1 	_ _, ___.,___}.._._ 

- ...,,,...,._:.___._,.......,....,..,,_._ 	.....,.„...:.•__•,...,_ 	............ 	• 	..1 	, 	7 	 1-7  _,,  
••''..t. 	:_ 	.... 	_ 	' 	__. 	_ 	__..' 	_,__;_ 	; 	' 	I 	1! 	' 	'. 	t 	1 	' 	' 	; 	'•tt 	1 	:Ittli 	, 	: 

- '' , 	• 	r 	, 	1. 	. -- t. • ,. 	, 	.• 	i 	r-7. 7-  i 	t 	1-7 -11 	; • 1 	: 	•  •, 	1 i 	.1 ; 	. •.,..., 1 	...,.t..._,II• 	....____,._. 	I 	' 	..4--,- 	  • . 	.• 	 • 	..,i 	 . 	 ...L__ 

	

: 	,t 	, 	t 	 1 	t st . 	
1 	• 	--4---P-1 	• _ 	_ 	 .. : -."- it • n 	.• 	. 	_L.,' 	L_,,.1_1. 1:1:!...4...___,•_t_ 	_ •' 	• 	' 	 ; ' 	• - ---Itiptif&g.-  . 	i 	1 	a nal 	 units 	. 	,_ 	. 	 - •

,, 	, 	,

7

. 	'-' -- =-.6.682,5in(217t5t) ..i 	• 	4 	. 	 , 	1 	, 
• •, 	. 	 -.--- --',--.-Tr-1-E- . 	, 	.. 	. 	,.•, ' - 	-4 	 ......._____,......____ 

=800llz 	f =401 

	

' 	' 

	

kilz 	 _ _ 	.• 	4 
. 

 • - 	. 	 - 	- 	- 

100112 
- -30 

0 Cl) 
B 

0
 

9S
T

O
N

  J
O

 UI
 



54. 

The most significant characteristic of the spectrum of the 

noise function, indicated by Figs. 3.5 and 3.6, is that the power 

spectrum (or more precisely the power of the discrete Fourier 

components) exhibits a distinct sin
2
(77f/f

c
) 	shape. This 

(11f/fc ) 2  

characteristic is as would be expected from a consideration of the 

autocorrelation of r(t) which would have the triangular form, 1 - ITI/Tc 

if the value Of r(t) were random between adjacent clock intervals. 

Alternatively (as discussed in Section 2.3.1) consider the error 

function sampled at a rate f c , to give e*(t). If e*(t) is random in 

nature l a power spectrum of the form, (sin x/x)
2
, will result when a 

full pulse extension of e*(t) is considered. The quantizing noise 

power spectrum shape of (sin x/x)
2 
 was assumed intuitively by Johnson

29 4 

and enters into the mathematical expressions of van de Weg
34 

The 

strong noise components as sidebands of the clocking frequency and 

its harmonics, which are evident from Figs. 3.5 and 3.6 were also 

predicted by the initial considerations of Section 2.3.1. 

The deviation of the noise spectrum from the (sin x/x)
2 

curve 

is indicated by the curves of Fig. 3.9 ( and is also indicated by the 

dashed curves of Fig. 3.6). The zero frequency value of the (sin x/x)
2 

curve is taken from the low frequency power density as estimated from 

the computer results in Fig. 3.8. Also shown in Fig. 3.9 is the power 

density spectrum anticipated by the initial considerations of the delta 

modulation quantizing noise in Section 2.3.1. This spectrum is 

indicated by the dashed line for which suitable correction for the one 

sided nature of spectra of Fig. 3.9 has been made. As indicated by 

Fig. 3.9 the computed estimate of the noise power spectrum, Pn (f), for 

the particular system conditions considered, is flat up to about 2kHz 

from where it shows considerable variation from the (sin x/x)
2 

form; 

the computed curve being up to about 10dB greater. Therefore, under 

these conditions, the quantizing noise in the frequency band 0 - fm  will 

only be proportional to the cut-off frequency, fm  up to about 2kHz. 

This contrasts with the performance analysis, for a sinusoidal input; 

of van de Weg and de Jager who predicted that N would be proportional 

to f
m 

up to about f c
/4 (10kHz in this case). The N(1  f  m  relationship 9  

of van de Weg (de Jager's being virtually identical) is indicated by 

the dashed line in Fig. 3.8. For fm  in the range 3.2 to 4.7 kHz 

(which includes the range for normal audio cut-off frequencies) van 

de Weg's predicted N is very close to that of the computer simulation.•

Elsewhere however, (in the range of fm, 0 to 10kHz) the discrepency 

is significant, being in general about 3 dB. Although de Jager's ' 

analysis was for the quantizing noise under any loading conditions 

between threshold and slope overload; van de Wees move precise 

analysis was based on a specific and relatively low level of loading. 
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Van de Weg considered a system loading given by the rms value of 

the Signal derivative being equal to 1/4 of the maximum slope capability 
 	1/4 of the delta system. 	;1 2 

i.e.fr(t)j 	hfc/4. 

As, such, van de Weg's mathematical analysis could not be expected to 

.hold under the loading conditions considered in the simulation, Which 

are tending towards slope overload (the maximum signal slope 0.8 hf ) 
c 

. The failure of the"N
q 
 proportional to f . " relationship in the 

0-40kHz region, is due to the non-uniform nature of the power. density 

spectrum of the quantizing noise over the low frequency range of 

interest. This non-uniform spectrum was anticipated in Sectiori2.1.2. 

to occur, as the result of significant correlation between adjacent 
• 

error values at the clocking instant. The power density below the 

value Of 2h2 /3f
c 
was also . anticipated for the low frequency region 

where a uniform spectrum exists: However the frequency of the 

. departure of the spectrum from a uniform spectrum was not expected to 

be at such a low frequency where it in fact affects the power in a 
. 	, 	. 

typical audio band. This point is discussed further in the following 

section; 



56. 

3.5 	Noise rower Results. 

In general, theoretical analysis has been aimed at investigating 

the effect on N or S/N of varying f
c 
while maintaining a coristant input 

signal loading of the system. To maintain a constant load with varying 

f
c 
the input signal amplitude must be varied with f

c
. This does not 

indicate the nature of the quantizing noise change with changing loading. 

Nor does it indicate the relationship of N to f
c 

for a constant signal 

amplitude; which would be of value in determining the optimum f
c 

for a, 

given signal. Noise power results were obtained from the computer 

simulation for varying f c  with . a constant input signal. 

Simulation and noise frequency analysis programmes were 

written and processed for the delta modulation system employing a 

range of 11 clock frequencies. All other parameters were kept constant 

as for previous simulations with the amplitude of the sinusoidal input 

being set of - 6.0 units. Based on the conclusions of Section 3.3 for 

the most satisfactory simulation with a limited sample length of input, 

the clock frequencies were chosen according to the formula f
c
=,(10-1 /c)fs  

where n is any integer, f s  is the sinusoidal frequency (800 Hz) and c 

is the number of cycles of input considered. Eight cycles of input 

were considered for the simulations at all clock frequencies; this being 

the maximum number readily handled by the computer storage. The use of 

eight cycles of input gave a 100 Hz spacing to the components of the 

noise as computed by the Fourier analysis section of the programme. 

The simulation analysis programme was designed to give five 

computer samplings of the noise function per clock period for clock 

frequencies below 70kHz. This .was reduced to four for clock frequencies 

• between 70 and 110 kHz and to two for clock frequencies above 110kHz. 

The reduction in the number of computations per clock period was 

. necessary to limit the storage and computation time requirement of the 

programme to a reasonable level. The Backing Store of the Elliott 503 

computer was required for the programmes which considered clocking 

frequencies of 200kHz or above. Although a low number of computer 

samplings of the noise function gives inaccuracies in the noise power 

analysis, the error will only be significant for the power at 

frequencies of the same order as the clock frequency. This is due 

to the rapid roll-off of the power density at higher frequencies as 

indicated in Section 3.3 and also in Chapter 2. Since the limitation 

in the number of computations per clock period is applied only as the 

clock frequency increases there should be no significant loss of 

accuracy in the calculation of the power in a given low frequency band. 

The computer simulation programmes were designed to give printouts' 

of the amplitude of the Fourier component6 and the corresponding froquenuy. 

(with 100Hz spacing between components) The printout aloo included the 

amplitudesquared, the sum of the squares of the amplitudes and the noise 
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FIG ,3.1 ,1 Noise Power Variation with Clock Frequency 

from Computer Simulation Results  

with: Ideal Low Pass Filter with Cut-off Frequency, f m  = 4kHz 

Input Signal = 800Hz sinusoid with 6.0 volts amplitude 
(ie 4.24 volts rms) 
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Tower in dB from zero up to each frequency. The noise power in dB 
; 
corresponding to a frequency cis given by: 

f
m • .1,11PL(fid1 2 

	where AMPL(fk) is the 

N 	10 log 
	

2 	' amplitude of the Fourier 

component at the frequency 

fk 
f
k •  

The curves of N against f derived from the computer results for 
rn 

each clock frequency were plotted and these are shown in Appendix C. The 

points show the computer analysis output and these indicate the major 
, 

Fontribution to the noise power of harmonics of the signal frequency. 

As.discussed in Section 3.4, the, curves are drawn to give a smoothing of 

the computer analysis noise power results and these are shown in Fig. 3.10. 

&ach curve gives, for a constant clock frequency, the variation of N with 
Nt 

yarying cut-off frequency fm, for an idealized low pass filter. From 

Vig. 3.10 the relationship between the noise power, N and the clock 

frequency, f
c 
as indicated by the simulation for a given idealized low 

pass filter can be determined. The curve of N against f
c 

for a typical 

audio low pass filter cut-off frequency of f = 4kHz is shown in Fig. 3.11. 

As discussed previously and anticipated in Section 2.3 the major 

'.noise power is contributed by harmonics of the signal frequency.'.:The • 

computer simulation results (Appendix C) indicate that the noise. power 

Spectrum changes with changing clock.frequency, mainly as the result • 

•of changes in the contributions Of harmonic's of the signal frequency. . 

The N against f
m 

curves of. Fig. 3.10 indicate that for f
c 
= 30kHZ and. 

;It 	 d 

above l the noise power tends to a Maximum of about -5 dB as f
m 

increases 

•tb approach fc . ie . the noise power in the frequency band 0 to f.appears 

to be constant for all f
c
, provided f is above a certain value. 

.c.. . 

Referring again to Section 2.3.1 where, based on the assumption .  

that the discrete error function e(kTc) is a random variable with. no 

*relation betweem adjacent values of e(kTc). (ie. the power spectrum of 

e(ac) is uniform) it was estimated that the quantizing error power spectrum 

w0u1d be of the 'form sinc
2 (cdTc/2), (ECn. 2.4) and hence the quantizing 

noise power in the frequency bancUO to f
m 

would be given by: 
0 	 • com  

h
2 

	

N = 	sinc
2 

(toTc/2)dCo 	2  6
• 6TTfc 

74.00yi" 

	

-Putting wm  = 	we get. 

h
2 

• 
Noise Power in the 	== TTFT:•  

frequency band 0 to f 
h
2 

= 0.92 
3. 

• 

0.92 0,..) 
Since 	sinc2  (4)Tc/2)db..)

• 	• _coc 	CLf 0.92C0c 
0.307 	 2 

(Refer: Carlson, p.33) 
=-5.13 dB 

t 
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Thus the initial quantizing noise spectral considerations of Section 2.3.1 

predict that the quantizing noise power in the band 0 to fc  is constant, 

regardless of the clock frequency. This agrees with the behaviour 

observed from the computer simulation results. Furthermore, the 

predicted constant noise power of -5.1dB shows very good agreement with 

the observed value from Fig. 3.10. This agreement is not entirely as 

expected because the validity of Eqn 2.6 was questioned in Section 2.3.2 

where the effect of error signal correlation was considered. Section 

2.3.2showed that the constant, k in the equation derived from Eqn. 2.6. 

for f ;>f ie. N = 2:fm  should be somewhat greater than 3 and has 
c 	m 

been estimated by others (refer Section 2.4) to be close to 6. This was 

described as being due to a reduction in the noise power spectral density 

in the region of f<< fc  resulting from the error signal correlation 

(See Fig. 2.4). 

A further consideration of the power spectrum of the quantizing 

noise shows why Eqn. 2.6 is reasonable for estimating the noise in the 

frequency band 0 to fc  while being inaccurate for the band 0 to fm  where 

fm <:< f
c
. From Section 2.3.2 it was expected that the discrete quantizing 

error power spectrum Pek* (GO) could be described in terms of a cos LOTC 

power series. Fig. 3.12 shows a Pek* (LO) of the nature expected and 

the quantizing noise power spectrum, PN (GO) which would result, where 

P
N
(LO) is given by: 

= Pek*(()) sine2 ((iTc/2)....Eqn. 2.4 

h2  
TTfc   Putting Pek*(G)) 	+ P(o)),then P(6)) in the region 0 toWc , = 

is an even symmetrical function about coc/2. 
Consider Pek*(G)) F(6)) ,where F(w) = F(GO) + F1 (6)), and F1 (6.)) is any 

function which is odd symmetrical about C&)/2 in the region 0 to CO . Then 
c 

	

coc 	 co,. 	wc  

fPek*(6))F(w)d4) = 6 TT f
c fF(w)do) + JP(6))F(o))dui h

2 

o 	 o 	40c. 	o 	co 

Since 	P(c4.))F(cA))dc..) - F(w) , 	P(co)dw + 	P(w)Fi (c)da) 

	

0 	 o 0 

then Pek*(w)F(W)dui :a 	°h2 	

wc, wc  

	

6 TT f 	
F(6))du) 

c  
o 

Since sinc
2 (40Tc/2) can be approximated as having the general properties 

, 
of F(G)) then'a'reasonable approximation from Eqn 2.4 is: . 	 . 

Noise power in the frequency band 0 to fc  

= 
 ..f. PN

(GO)dCAJ ... JPek*(64)) sinc2  (6.)Tc/2)d/A) 
w 

Tr-f---.f f c— sinc
l  (Tc/2)dc,) c 6J  

h
2 

0.92Wc = 0.92 h
2 /3 = -5.1dB (as before) 

6TTfc  

C`)- 	 cJc. 

(as in Eqn 2.6) 
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Fig. 3.10 indicates an N against f
m 

curve for fc 
= 20.1kHz 

1 	. 
strongly different from the curve's for f 	20.1kHz and above. 

This is due to slope overload forf c  =.20.1kHz: Under slope overload 

conditions the discrete error funCtion e(kTc) takes on values Outside the 
2 

range -h and thus the value of h /3 for the mean square value of e(kTc) 

(derived in Section 2.3.1) becomes an underestimation. For the simulation, 

the clock frequency at which the maximum sign41. slope (27TfA) equals 

the maximum reconstruction signal'slope(f c
h) is f

c 
= 30.2kHz. This is 

the point of theoretical slope ovrload and since the total noise Power 

ii' the frequency band 0 to f hasa constant value of 0.92h
2
/3 for clock 

c 
frequencies down to 30.2kHz it appears that the uniform probability density; 

fnnction of e(kTc) between -h (assumed in Section 2.3.1) holds for Clock 

frequencies down to the onset of theoretical slope overload. It would 
, 

t4erefore be expected that the cOntribution of overload noise to thetotal 

noise as theoretical slope overload is approached i (as predicted by Abate g ,  
and O'Neil; refer Section 2.4) isdue to changes in the power spectrum of 

t40 discrete error function, e(kTC) and is not due to changes in the 
i• 	 4 

uniform probability density function of e(kTc). 1,1  

'A third and most important observation from Fig. 3.10 is that. 

for a constant noise power cut-off frequency, fm  there is not a sequential 

decrease in noise power with increasing clock frequency. This resUltYis 

reflected in Fig. 3.11 of the N, f relationship for f 	4kHz where the N 
c 

against f
c
curve is drawn as what appears to be the mean of two other curves . 	” 

(Shown dotted). The dotted curve0 show a high and unsatisfactory.degree of 

variation of N which results from!ihe simulation technique. This fault in 

Ow simulation technique was discussed in Section 3.3 where it was pointed 

out that for low f
m 

there would be large variations in the estimates of N 

dug to the low number of Fourier components from the analysis. It , was 
4 

concluded in Section 3.3 that this factor, combined with a low numb,Pr of 

cycles of the input and with specific initial conditions would limitthe 

effectiveness of the noise power estimates for an fm  of less than about 

4kHz. Fig. 3.10 indicates this increasingly irregular estimation of N 

with decreasing f
m
. However Fig. 3.10 would indicate that there is still 

considerable variation in the N estimate due to the simulation technique 

above 4kHz. It can be seen from Figs. 3.10 and 3.11 that the fluctuations 

ini N resulting from the method of simulation occur predominantly in the 

middle clock frequency regions where the system is operating between theoretic-

al slope overload and clock frequency saturation*. This is because the 
P 

middle clock frequency region is where the error function pattern and 

hence the noise power spectrum is most dependant on the initial conditions 

o: 	simulation. Thus it is the region of greatest fluctuation in the 
• 

noise power spectrum due to the limited input sample length and specific 

initial conditions. 

*, Clock frequency saturation being the region where N fails to decrease 

fnrther for increasing fc. 



FIG 3.13,  Noise Power Variation with Clock Frequency from Computer  

Simulation Results for Various Low Pass Filter Cut-off  
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Other curves of N against f
c 
derived from Fig. 3.10 for 

various cut-off frequencies (f
m
) are shown in Fig. 3.13. Although 

the simulation results are not free of the effects of using a short 

sample of input,it provides useful results particularly when the 

higher values of fm  are being considered. 

If an indication of the noise spectrum is required l the 

problems with the simulation are not readily overcome without 

extremely large computer storage or the lengthy process of inter-

mediate data output. If only the N, f c  characteristic were required, 

a beter simulation process incorporating digital filtering in the 

program could be used as discussed in Section 3.3. 

A discussion of delta modulation performance as indicated 

by the computer simulation,relative to theoretical analysis and 

experimental results is included in Chapter 5. 
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CHAPTER 4 

EXPERIMENTAL DELTA MODULATOR  

	

4.1 	Introduction  

The design and construction of an experimental delta moclulator 

was undertaken for the following reasons:- 

(1) To 'have available 'n experimental system on which the , 

Computer simulation is based sothat evaluation of the simulation 

method has A more positive reference. (To this stage, evaluation of . 

the Worth of the simulation has' been based on a consideration of' the 

simulation results themselves and on how they compare with established 

theory).. In addition the construction of an experimental modulator, 

will give insight into aspects Of the system which may have been 

overlooked in the establishment 'of the simulation model. 

(ii) To enable output noise and other relevant Measurements 

to be taken, which will provide :further insight into the performance 

of delta modulation.' This will alsoprovide data on which assessments 

of existing theory can be made. 

(iii) To indicate the type of problem likely to be encountered 

in the realization of a practical delta modulation system. 

The design of the experimental modulator aims for the realiz-

ation of a simple delta modulator with a single stage of ideal 

integration feedback from an ideal impulse output. This is done in 

order to keep the experimental work in line with previous discussion 

and with the basis of the computer simulation. 

	

4.2 	Circuit Design Considerations  

The experimental system was limited to the modulator alone. 

Since the local demodulator gives a reconstructed signal, r(t) Which 

will be the same as that at a receiver (provided there is errorless 

transmission), then all performance measurements can be made without 

the construction of a receiver demodulator.' This removes the need for 

any receiver pulse regeneration' and clock synchronizing circuitry. 

Although not necessary for the performance measurements, circuitry 

for the generation of an output pulse train suitable for transmission 

was included. 
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In previous experimental systems the realization of the fel 

back integration network has been through the use of an RC network 

approximation to an ideal integrator. In the experimental delta 

modulator the effect of ideal impulse inputs into a perfect integrator 

was achieved with the use of an up-down (or reversible) counter (giving 

the function r(t) in digital form) with parallel output to a digital- 

to-analogue converter. The more complex digital circuitry for the feed-

back was employed for two reasons:- 

(i) To give feedback integration which matches as closely as 

possible the perfect integration considered in analysis and the computer 

simulation. This makes the experimental results more valid for 

comparison. 

(ii) To consider' the feasability of implementing a fully 

integrated modulator suitable for L.S.I. by the elimination of large 

capacitance requirements in the feedback network. 

A reversible counter capability of 16 output levels was used 

giving the modulator the capacity to handle signals with extreme 

values of up to 8 x step height. This capacity was used to give a 

signal handling ability comparable with that of previous discussion 

and would not necessarily be sufficient for speech or some other 

particular input signals. 

A fixed frequency pulse generator o as would be required fr 

a practical system, was not constructed. Instead, an external signal 

generator was used in order to give a variable clocking frequenc 

capability. 

A block diagram of the experimental modulator is shown in 

Fig. 4.1. Also included in Fig. 4.1 is the block diagram of the 

receiving demodulator which would be required in an actual delta 

system. 

4.3 	Circuit Realization 

Positive logic was used for the realization of digital 

circuitry. Fairchild RTilL was used for logic elements and/AK709C 

(or its equivalent) for operational amplifiers wherever suitable. The 

circuit diagram of the experimental delta modulator is shown in Fig. 4.2 

The waveforms explaining the operation of the modulator are shown in 

Fig. 4.3. 

Fairchild RTettL and/4A709C components were used as they were 

cheap and the most readily available. However, for a practical 

system design, more advanced micrologic elements having the improved 
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FIG 4.3 
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features of higher switching speed and lower power consumption would 

be used. In particular, the low leakage currents of MOSFET elements 

would be of advantage in the digital-to-analogue converter. At the' 

time of design (several years prior to the submission of this ,thesis) 

thei4A709C operational amplifier and 113aL elements were the better 

choice of available elements for the purpose required. The introduc-

tion of improved IC's in the meantime would result in a different 

circuit realization for a contemporary.  design. 

4.3.1 Reversible Counter  

- For - the reversible counter with 16 output levels, 4 JK flip-flops 

connected in the "trigger" mode were used. The gated flip-flop Outputs, 

P.(t). and P(t), were used for the count up or down control, with the 

logic conclusions after a change in P(t) being carried from each flip-

flop to the next one. This "feed-on" of the control signal,mipimizes 

the hardware and is .possible due to the delay in level change introduced 

by. the flip-f1op and gates. 
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During the development of the modulator, difficulty was 

encountered with "race" conditions arising from the delay involved 

in the logic elements. After investigating various methods of 

eliminating this problem the use of separate clocking lines for the 

reversible counter and the pulse modulator flip-flop was decided on. A 

delay of about 700 nsec was introduced into the reversible counter 

clocking line by the incorporation of the RC circuit and RTAhL 9900 

buffer. After a consideration of the delay times involved, the 700 nsec 

delay was found to be sufficient to allow time for the P(t) change to 

take effect at all the reversible counter flip-flop inputs before the ' 

onset of the clock pulse. This method was adopted as being the best 

implementation, from the aspects of minimum hardware and maximum switching 

reliability. 

The waveforms explaining the operation of the reversible counter 

are shown in Fig. 4.4, with the delay times shown being taken from the 

manufacturer's specifications of maximum delays. 

4.3.2 Digital-to-Analogue Converter  

Fairly stringent requirements are needed for the D/A converter 

as it is here that inaccuracies in the reconstucted signal, r(t), are 

most likely to arise. A step height of 1 volt was chosen, giving r(t) 

a possible range of 15 volts peak to peak, which is within the range 

of a AtA709C. The A4A709C was chosen as the operational amplifier 

because of its low bias and leakage currents relative to other 

operational amplifiers available at the time. Also, silicon diodes 

were used to reduce the current leakage problem to a minimum. 

The use of a cascade D/A converter was considered, the main 

advantage being the constant resistive load it presents to the power 

supply. However, the accuracy of the cascade D/A converter depends on 

the accuracy of the switching levels controlling it and thus a simple 

diode switch could not be readily used. The diode controlled D/A con-

verter shown in Fig. 4.2 was selected, with the accuracy being controlled 

by ensuring a well regulated power supply and the stability of the resistor 

values. All the D/A converter resistors were chosen to have power ratings 

of the order of 10 times the required minimum,in order to limit the 

resistor value variation due to resistive heating. Good tolerance 

on the resistor values is not required as it is the ratio of the 

resistance values of the various branches which is important. These 

• ratios were adjusted with the variable resistors to give the required 

operating characteristics. 

The branch resistor values were chosen so that the leakage 

curent accounts for, at the most, less than 3% of the output voltage. 

Thus any variation in the leakage current, which is one of the main 
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potential sources of unwanted output variation, can have only a very small 

effect on the output. 

The RTJAL927 inverters were used as an interface between the 

reversible counter and D/A converter to give sufficient drive for the 

diode switches. The voltage bias at the D/A converter operational 

amplifier input was set at + 1.5 volts to give an optimum voltage 

level for the diode switch operation. This gave a 6.5 volt bias to 

the output. 

Since the D/A converter gave an inverted output, the comparitor 

and summing junction could not be incorporated in a single differential 

amplifier. The use of a separate summation operational amplifier 

however, readily provided for the addition of bias to counter' the D/A 

converter output bias. The input signal and reconstructed signal 

(ie. B in Fig. 4.2) summation.junction input resistances of 2.7k11 

were matched in value to within 0.2%. This was done in order to 

provide as close to equal weighting as possible for the summation of 

the two signals. The removal of one operational amplifier could be 

achieved by inverting the logic of the reversible counter thus making 

the incorporation of the summation junction and the comparitor possible. 

A pA710C was selected, for the comparitor as it provides an 

output which is comparable with the ensuing logic circuitry. The 3.9 

volt zener diodes were inserted between the inputs as a safeguard 

' to limit the differential input voltage. Because the low input 

Impedance of.the/uA710C woul&load the summing junctionpA709C to a 

sufficient degree to significantly affect its output voltage, a buffer 

stage was added between them.; 

Considerable difficulty was encountered during the development I. 	
;'- 

ho.f,*he'.!OiOuitry.in 	fr4qUon6i, compensation for the 

AZA709C operational amplifiers. 	In particular the D/A converter ,41A709C 

was most susceptible to high frequency oscillations which had to be. 

eliminated, while maintaining a good frequency response for the output. 

The:frequency compensation shown in the circuit diagram (Fig 4.2) was 

found to be satisfactory, giving a step change in . the output,r(t),as 

indicated in Fig. 4.5. 

Two regulated modular power supplies were used for all voltage 

supply rails except the + 12 volt and.the + 3.6 volt supply required 

for the RT/4.41, elements. These supplies are indicated in the circuit 

diagram (Fig. 4.2). 
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The circuit adjustments required for correct operation were: 

(i) The D/A converter, bias resistance adjusted to give 1.5 

'volts of bias with all the inputs "off!' (le. no input current to the 

• IAA709C). 

(ii) The D/A converter feedback resistor adjusted to give , ' 

• a one volt step height. 

(iii) The D/A converter branch resistor values adjusted to 

give the correct output voltage levels. 

(iv) The summation pA709C input bias current resistor adjusted 

. to give an output (e(t) ) with zero dc content for zero input signal. 

4.4 	Practical System Considerations  

The experimental modulator developed could provide the basic 

design for a practical system,, with the number of flip-flops in the ‘t • 
reversible counter determined by the required number of output levels. 

The type of feedback network employed would allow complete I.C. 

implementation of the modulator making it suitable to realization by 

L.S.I. A practicaldemodulator however would employ a linear low-pass: 

filter unless a satisfactory and economically competitive digital,low 7  

pass filter was developed. There are three features of the experimental 

delta modulator which are of significance for practical implementation. 

(i) The digital style of the feedback integrator circuitry 

makes it highly suited to the introduction of totally digital comPanding. 

This could be achieved by the introduction of additional clock pulses to 

the reversible counter. The decision on the occurrence and number of add-

itional clocks would be determined by logic circuitry observation of the 

output pulse train (as discussed in Section 1.5). 

(ii) The digital nature of the feedback integrator eliminates 

the problem of idling noise. Idling noise results when the 1010...output 

pulse pattern varies to a more complex pattern which introduces lower 

frequency idling noise components. These idling noise components can 

become noticeable in the band of the signal frequencies. The change 

in idling pattern results from a drift in the ratio of the current feed 

to current drain in a linear feedback network (see Wang 38
) and is thus 

eliminated when a digital feedback network is employed. 

(iii) The good resistor tolerances for the D/A converter and the 

summing junction are not required on the absolute values but are required 

for the values relative to other resistors. For I.C. production 'only 

poor accuracy (to within about 5%) can be achieved for the matching of 

resistor values. This means that either adjustment potentiometers or 

accurate external resistors would be required in an I.C. D/A Converter 

implementation. 
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The considerably greater complexity of the feedback circuit 

of the experimental modulator compared with an RC "integrator' is a 

severe limitation With the design of the experimental modulator. 

Furthermore; as was discussed in Section 1.4.3, the optimum feedback trans-

fer characteristic is one that matches the spectrum of the input signal. 

Therefore for speech signals, the flat transfer characteristic over the 

lower frequencies, of the low-pass filter integrator is in fact desirable. 

Fig. 4.6 shows two types of reconstructed signal which can result from 

the use of an active RC integrator. Itwould only be with the development 

of economic L.S.I. implementation of the experimental modulator circuitry 

that the type of feedback circuit used in the experimental modulator would 

be chosen in preference to a linear filter network. 

4.5 	Noise Measurement  

4.5.1 . Method of Noise Measurement  

For the measurement of'the noise perforamance of the experimental 

delta modulatorthe noise measurement - curcuit of Fig. 4.7 was developed. 

A signal generator with two outputs, each of variable magnitude, with 

a variable• delay between each, was used to provide a sinusoidal test 

input signal with a frequency of 800 Hz. From the output signal y(t), 

one of the signal generator outputs was subtracted. By varying the 

amplitude and phase of this test signal until the power of the 

difference was a minimum, the uncorrelated noise function, n(t), as defined-

in Section 2.2 was obtained. The signal, kf(t-t
o
), which on subtraction 

from the output, y(t) gives the noise power minimum, is the output .  signal. 
- t 	_ 

The specification of the output signal and output noise gives the output 

SNR defined by:- 

Output power at the signal frequency (800 Hz ) 
Output 

Output power at all other frequencies.. 

The noise minimizing process was conducted prior to taking each noise 

power reading. 

The output, y(t), (which corresponds to the output which would 

be obtained at a distant receiver provided errorless transmission occurred) 

was obtained by passing r(t) through the RC, single stage low pass filter. 

The filter frequency characteristic, shown in Fig. 4.8, was designed to 

give a 3 dB cut-off frequency of 4kHz. The 20dB/decade attenuation roll-

off rate provided a simple filter which was considered adequate for 

measurement of the noise for the purpose of determining the system 

performance. 	In a practical system the noise power could be reduced 

further by the use of a sharp cut-off low-pass filter. 
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The offset of r(t) of • .5 volts as it comes from the experimental 

modulator was removed by applying an input bias voltage to the filter 

operational amplifier of -3.25 volts. The three 10k.n. resistances in the 

summation network were selected to have values matched to within 0.3% 

in order to proVide noise power readings which were as accurate as 	' 

reasonably possible. 

All noise and signal readings were made with a Dawe true rms 

valve voltmeter. Long term variation in the output voltage of the 

laboratory power supplies was'observed, the variation being up to 

2% in one day. For this reason the power supplies and circuit biasing were 

checked and adjusted as necessary before each set of measurements. All 

voltages were adjusted to within 0.5% of their correct value. 

4.5.2 	Results 

All measurements were made using an 800 Hz sinusoid as the test 

input signal. Initially the experimental modulator performance with a 

constant clocking frequency was determined. 

(i) Constant Clock Frequency  

For a clock frequency kept constant at 40 kHz, readings of 

the rms values of the input si.gnal f(t), total output signal y(t),' and 

the output noise and signal components, n(t) and kf(t-t ) respectively, were 

taken for a range of input signal amplitudes, from below threshold to the 

maximum capaci t y of the system. In addition the delay, to ,and the number 

of levels of r(t) employed, were determined for each value of the input 

signal. From the results, curves of output signal power, noise power and 

SNR;against input signal amplitude were drawn. These are shown (for f
c 

= 

40 kHz) in Fig 4.11 

Photographs of various .: waveforms generated during the , operation of 

the modulator were taken. These are shown in Fig. 4.9 for constant. 

parameters of f
c 
. 40 kHz and input signal 4.6 volts peak to ' peak. 

In addition, photographs illustrating the different waveforms for 

. various input signal amplitudes , with fc  = 40 kHz, are shown in Fig„4.10. 

The noise measurement readings were repeated at a clock frequency 

of 80 kHz. From these results another set of curves of output signal 

power, noise power and SNR against input signal amplitude were obtained 

for f
c 
= 80 kHz. These are given in Fig. 4.12. 

•  (ii) Constant Input Signal  

Further results ,  were taken to indicate the experimental 

modulator performance for a constant input signal with varying clock 

frequency. As in Section 3.5 for the computer simulation noise power 

results, the relationship of N to f c  for a constant input signal rather 
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than a constant signal.loading-was investigated. Constant signal 

loading has in generalbeen'most commonly considered and it provides 

easier theoretical analysis. However the N, fc  relationship for a 

constant signal amplitude is of more practical value in indicating 

the optimum fc  for a given set of signal parameters. 

The maximum input signal before the experimental modulator 

reaches amplitude overload is 15 volts peak to peak. This is an 

arbitary overload point determined by the number of levels of output . 

available in the experimental modulator. Measurements were taken to 

determine the modulator performance relative to the clock frequency 

with the input signal set at constant values of 80% (12.0 volts peak 

to peak) and 25% (3.75 volts peak to peak) of the maximum input before 

amplitude overload. Values of the uncorrelated (minimum) noise and 

output signal were measured for clock frequencies from 4 kHz to 500 kHz. 

This clock frequency range covers all levels of modulator loading. In 

addition the delay, t o , and the number of levels of r(t) employed were 

determined for each value of the clock frequency. From the results, 

a curve of the output SNR against clock frequency for each of the input 

signal amplitudes was obtained. These are shown in Fig. 4.16. Curves 

of the output noise power, N against fc  for each of the constant input 

signal amplitudes were also determined and are shown in Fig. 4.17. 

Photographs of the various waveforms generated during the 

operation of the modulator at :different clock frequencies are shown 

in Fig. 4.15 for a constant input signal amplitude of 12.0 volts peak 

to peak. 

4.6 	Observations and Discussion of Results 

4.6.1 Constant Clock Frequency  

The curves of output SNR against input signal in Fig. 4.11 and 

4.12 indicate a regular variation in SNR with each 2 volt change in the 

• Oeak to peak input signal voltage. This results from the significant 

effect on the output readings, of the introduction of two new levels of the 

reconstructed signal, r(t). The new levels occur as the peak to peak 

input signal voltage increases to reach each odd multiple of the step 

height. The effect is, principally on the noise power and to a lesser 

degree, the output signal power. 

The introduction of new levels of r(t) and the resulting sudden 

change in SNR can be seen to occur at slightly lower peak to peak input 

signal values than the 'odd integral values expected. This would be due 

to slight error in the D/A converter setting of the various voltage levels 

of r(t) and also due to error In the overall setting of the step height 

(ie. the D/A converter gain). However, the introduction of the new 
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:levOIS of r(t) at input signal values which are within about 34 of the 

expected values, indicitei that the modulator is operating within the 

tolerances that would be expected. 

The regular variation in output readings can be observed (par-

ticularly in Fig. 4.12 for fc  • 80 kHz) to take the form of an immediate 

drop in noise power and rise in output signal power which accompanies 

the introduction of new levels to the output. The noise power then 

rises, falls and then rises again according to the input signal value . 

relative to the value of the reconstructed signal, r(t). This 

variation of the noise power is considerable, varying from about 6dB 

for low levels of input to about 1 db for the higher inputs. Similarly 

the output signal power variation due to the effect of the introduction 

of new levels of r(t) is considerable, varying from about 4db at low 

levels of input to no variation for the higher inputs. Fig. 4.13 ill- 

ustrates the considerable effect on the output signal of that particular 

small change of input which causes new levels of r(t) to be introduced. 

The variation in the output SNR with each 2 volt change in the 

peak to peak value of the input signalpresults mainly from the output 

noise variation, with reinforcement from the output' signal variation. 

These variations in the observed results arise due to the use of a 

sinusoidal test signal. This phenomena would not occur for a non-deter-

ministic type of input signal. 

FT0 4.15 Photographs of Input and Output Sisnal  

Input • 800 Hz sinusoid fo  • 40 kHz. 

Scales : (approx) 'Time : 	0.2 mseo/div. 
Amplitude 2 .volts/div. 

Input : 6.8 volts 
peak topeak 

System near the limit 
of 8 levels of r(t). 

Input : 6.9 volts 
peak to peak 

System just using 10 

levels of r(t). 
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In applying previous analysis and conclusions to the constant 

clock frequency results, some'method of eliminating the variations due to 

the deterministic nature of the input is necessary. In Chapter 2 a random 

input signal with an equal probability of taking any instantaneous value ovel 

a limited range was considered for the purposes of analysis. The effect of 

an input which was random but otherwise had all the characteristics of a 

sine wave,would be to give a "smoothed" or mean line for the performance 

curves as indicated by the dashed line in Figs. 4.11 and 4.12. It , is 

these mean curves which will be given the greatest attention in discussion 

and analysis of the experimental modulator performance. 

As expected from prior consideration of the delta modulator,. 

the major contribution to th&SNR versus input characteristic for a' 

- cOnstant, clock frequency is the output signal power, for the expected 

operating range of input signal amplitudes which were considere4. It is 

when the input signal increases to the value that slope overleekefthe 

system starts to occur,that the contribution of the output noise to the 

characteristic of the SNR performance curve starts to become more 

significant. From Fig. 4.11 for f c= 40 kHz it can be seen that the mean 

noise starts to increase significantly for inputs above about 11 volts 
, 

peak to peak. It would therefore appear that this is the value at Which 

slope overload commences. However, the maximum slope of the input, , 

V(t)  max' is less than the slope capability of the modulator, (hf ) even 

for an input of 15 volts peak to peak. Thus slope overload in the 

strict sense does not occur. This increase in noise for inputs above 

about 11 volts peak to peak would be the result of the "partial" 

"instantaneous" slope overload described in the last part of Section 

2.3.2. In this Section, instantaneous slope overload was deemed to 

occur when r(t) fails to produce a change of sign in e(t) after two 

or more successive steps in the same direction. From Fig. 4.10 it can 

be seen that this situation occurs in the photographs where the input 

is greater than 11 volts peak to peak and does not occur in the 

; photographs for inputs less than about 11 volts. For an input of 10.9 

volts the photograph indicates that the waveforms are on the verge of 

the instantaneous slope overload situation and this value can be seen 

to correspond approximately to the value at which the significant rise 

in the noise power starts. 

Delay Considerations  

Delay of the output signal, y(t) behind the input, f(t) is 

introduced by both the experimental modulator and the low pass filter, 

as indicated in Fig. 4.14. This figure also indicates the theoretical . 

phase delay of the low pass filter. For the signal frequency.of 800Hz 



Theoretical Low Pass Filter Characteristic  

Ga/n 	
I , 	

lz-)hlz • 8A9/Az 
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dB 

Phase ' 
0 

/1.32 0  
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FIG 4.14 	Delay Introduced by Delta Modulator 

Input 
f(t) Experimental 

Modulator 

Re onsitsucted 	 
ign 
r(t)  Low-Pass 

Filter 

Output 
Y(t) 

Delays introduoed to 800 Hz signal 

Approximate measured values for f o  = 40 kHz 
4 = 20/aseo 	to  = 80/c sec 

Therefore delay due to low-pass filter = 60/Asec (approx.) 
1 Period of input signal = 800 Hz = 1250/use° 

Clock period, for fo  of 40 kHz = 25/sec 

80 kHz = 12.5/Aseo 

Gain at 800 Hz = 800Hz =-201og [( fife  ) 2.0] 

-10logR° •8/4) 2+1j au —0.17 dB' 

Phase lag at 800 Hz = tan7 1 f/io  = 11.32°  = 39.94.seo. 
• 

For f0=40 kRz 

Measured delay of output, ((t) = Ll(t)bebind input, (f(9 

= 22
o 22 = 366-x12501use° = 76.4/ksec. 

Therefore delay due to experimental modulator 

= (76.4 - 60) = 16.4/Asec 	= 0.66 Clock periods. 

For f0=80 kHz 

Measured delay of output behind input 
. —0 20 zu = 3.0 x1250/.4seo = 69.5A4sec 

Therefore delay due to experimental modulator 

= (69.5 - 6b) = 9.y4seo = 9'5 25 	
%* =0 76 Clo periods. 

1 . 
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the theoretical delay is 11.3 °  or 39.4 /Asec. However, as indicated in 

Fig. 4.14, approximate measurements using the C.R.O. indicate a low pass 

filter delay of about 60 //sec. This difference would result from the 

effect on the filter characteristics of the loading due to the circuitry 

following the filter. (Because the filter was emperically designed to 

give an amplitude characteristic close to the theoretical, the phase 

characteristic could not be expected to also be close to the theoretical). 

The delay of the output, y(t) behind the input, f(t) was measured 

along with the other values, fOr each set of parameters, using more 

accurate methods than direct readings from the C.R.O. The delay, t o
, 

which gave minimum noise was determined both from the dial setting of the 

-kf(t-to) output (see Fig. 4.7) and from Lissajou figures on the C.R.O. 

This gave delays of 22°  for fc  = 40kHz and 20°  for fc  = 80kHz for all 

values of the input,provided the system was not in a state of slope 

overload. As indicated in Fig', 4.14 this gives a rough value of 0.7 

clock periods for the delay introduced by the experimental modulator. 

The "mean" performance.curves of Figs. 4.11 and 4.12 show the 

output signal level to be from about 0.3 dB below the input signal . 

level for high values of input to about 0.75dB below the input signal 

level for lower inputs. This loss of power from the input to output result-

ing from the modulation/demodulation process is partly attributable to 

the loss due to the low pass filter. The theoretical loss at 800 Hz 

of 0.17 dB would be close to (better than +0.2, -0.1dB) the actual 

loss; as the filter's measured amplitude characteristic corresponds 

closely to the theoretical (refer Fig. 4.8). The remaining loss ' 

(approximately 0.1 to 0.6dB) would be due to the effect of the 

delay of r(t) behind f(t) introduced by the experimental modulator. 

The photographs comparing the input, f(t), with the output, y(t), 

indicate how the delay would prevent the output from reaching the full 

value of the input. 

4.6.2. Constant Input Signal  

From the results taken for constant input signal amplitudes of 6 

volts and 1.875 volts, the curves of the experimental modulator perform-

ance with varying clock frequency were determined. These results will 

be subject to the same error effect, due to the deterministic nature of 

the input, as the constant clock frequency results. With the constant 

input signal results, the error will be of the form of a bias of the 

results from the "mean", in one direction. This error can be estimated 

from Fig. 4.11 and 4.12 for two of the clock frequency values. The 

estimated values of the errors'are shown below the appropriate points 

in Fig. 4.16 and 4.17. From these values and from Figs. 4.11 and 4.12 

it was observed that the maximum variation from the mean due to the 

deterministic nature of the input is subject to the following 
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conditions:- 

(i) for the output signal power, the maximum variation decreases 

with increasing input but does not appear to vary with clock frequency 

in the non-overload region. 

(ii) for the output noise power,the maximum variation decreases 

with increasing input, tending to zero variation as slope overload is 

approached. The variation also decreases with decreasing clock 

frequency. 	
• 

From the above observations it appears that the fluctuation in 

the . reSults and hence the bias on the curves of Fig. 4.16 and 4.17 would:' 

taper off to zero as slope overload was approached. The dashed Curves 

of Figs. 4.16 and 4.17 indicate the estimated performance with the bias 
1. • 

taken into account. This same variation from the mean, resulting'from 

the deterministic nature of the input, would .account for the fluctuation 

in the results of Fig. 4.16, Particularly noticeable for the larger 

input. 

Fig. 4.17 showing the output signal and noise performance 

with varying clock frequency,:indicates the relative contribution of 

the signal and noise to the SNR performance curves of Fig. 4.16. 

Three distinct performance regions, for various ranges of clock 

frequency, emerge from Figs. 4.16 and 4.17. Considering the curves 

for the 12 volt peak to peak input it is observed that for clock 

frequencies above 30 kHz, the output signal is constant and thus. the 

output noise determines the characteristic of the SNR curve. :Below: 

30.kHz the output signal is attenuated due to slope overload inthe. 

modulator and both the output signal and noise contribute towards. 

the characteristic of SNR curve. 

• 

For an input of 12 volts peak to peak the three regions for 

the performance are as shown in Fig. 4.17, and they can be defined 

as follows:- 

Region I  - Slope overload and partial slope overload 

region, consisting of clock frequencies up to about 45 kHz. This 

region can be regarded as consisting of: 

(i) Region IA with clock frequencies up to a value of about 

25 kHz in which the system experiences slope overload. In this region 

the noise power appears to be constant at its maximum value of about 

-5db and the output signal power falls at approximately 20 dbidecade 

with decreasing fc . 

(ii) Region IB, between about 25kHz and 45kHz in which the 

system experiences partial slope overload. In this region the output 

signal power tends to its maximum(of about 0.4 dB below the input)and 

the noise power falls rapidly with increasing fc. 
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Region II - would be the optinlum operating range and includes 

clock frequencies from approximately 45 to 250 kHz for the 12 volt 

peak to peak input. In this region the noise power falls at a rate of 

roughly 10 db/decade with increasing fc 
and the output signal remains 

constant. 

Region III - includes: the range of clock frequencies from about 

250 kHz and above for which the noise power is at a minimum and no 

further noise reduction is achieved through increasing fc
. This 

minimum noise region was anticipated, and is discussed in Section 

2.3.4. The output signal also remains constant in this region and thus 

the SNR remains constant at its maximum value for the given input 

signal. 

The performance regions as described are most suitably 'defined 

by the approximate level of loading of the delta modulator at the 

boundary of the regions. A suitable measure of loading for single 

integration delta modulation is the value of D as used by van de Weg
34 

and later Abate
17
,where D

1 
 equals the rms value of the signal derivative. 

ie . D = 	()J 2 . (For sine wave signal D1/2  = 2Trf5AAI). This gives 

(from Fig. 4.17) the following emperically determined definitions for 

the performance regions: 

Region IA D 1/2  > 0.9hf 
1 	• 

Region IB 0.9hfc > b' > 0.4hfc  

Region II 0.4hf > D' > 0.09hfc c 
- 

Region III 	< 0•09hfc 

Arrows in Fig. 4.16 *indicate the values at which the waveform 

*photographs of Fig. 4.15 wer&taken. These photographs illustrate the 

waveforms observed and the nature of the noise signal, for the various 

clock frequencies and their associated levels of loading. FrOm the 

photographs for fc 
= 10kHz (and from observation of the waveforms for 

Other clock frequencies in Region IA) it was observed that for the 

system in total slope overload: 

(i) the output is basically triangular in shape and is , 

reduced in amplitude and considerably delayed relative to the input. 

(ii) the noise signal consists fundamentally of odd harmonics 

of the signal frequency plus components of the clock frequency and its 

harmonics. 

Observations (as noted in Fig. 4.16) of the number of levels 

of r(t) and the degree of overload of the system, also helped to define 

the boundaries of the overload regions used to describe the performance 

characteristics. 

It was observed that as the system moved further into the 

,totakslope overload condition, the output signal amplitude and the 
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output noise were determined Solely by the clock frequency and the 

.step height. It is under these conditions that the output signal 

., and noise performance become independent of the input Signal value. 

This situation As reflected in Fig: 4.16 and 4.17, where, for an f
c 

of about 8kHz and less (ie. total slope overload for both inputs) 
• 

the So' 
 N and SNR performance: curves for both input values are shown 

to coincide. :A theoretical description Of the performance in this 

region l derived from the observed waveforms, is provided in Section' 

5 .2. • 

From the photographs for f c  = 30 kHz and 40 kHz, it can be 

seen that a state of "partial" slope overload exists (as defined earlier 

by r(t) failing to produce a change of sign in e(t) after two or more 

successive steps in the same direction). Associated with the partial 

slope overload state it was also observed that the magnitude of the 

error function, e(t), reached values considerably greater than 1 volt 

at times. This observation will have an effect on the theoretical 

considerations of Section 2.3; as discussed in Chapter 5. 

Observations for the higher clock frequencies indicate that 

as the clock frequency increases, the noise signal becomes a regular 

wave shape determined by the ratio of the signal amplitude to the step 

height. Superimposed on thisYbasic shape are components of the clock 

frequency and its harmonics. As f
c 
becomes much greater than f , (the 

filter cut-off frequency) the contributionof harmonics of 	to the 

noise power falls. This ,exp,lains why in Fig. 4.17 the noise power 

stops decreasing with increasing' f c  beyond a particular value (denoted 

by Region III) (Refer Section : 2.3.4). 
• 

Delay Considerations  

For the constant input signal case, values of the delay, t o . 

of the output, y(t) behind the input, f(t) were taken over the 

range of fc 's. These are shown in Fig. 4.18. From the curves of 

Fig. 4.18 the following observations can be made:- 

(i) Over the range of f c  from 30 to 300 kHz the delay 

curves are the same for both input signal amplitudes. 

(ii) The curves exhibit sharp cut-off, points at clocic 

frequencies of about 9 kHz and 30 kHz for inputs of 3.75 volts and 

12.0 volts peak to peak respectively. 

(iii) For clock frequencies below the cut-off values the delay 

increases rapidly with decreasing f c  due to the additional and over-

riding delay effect of total slope overload. For f 's above the cut-

off value there is a gradual decrease indelay with increasing f c 
until a value of about 300 kHz is reached. 
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The delay curves; could not be expected to yield any 

information to help define the region of partial slope overload, as 

the state of partial slope overload effects the noise function but 

not the output signal. However, the cut-off value of the clock 

frequency for the delay curves does provide a good indication of the 

onset of total slope overload. Once the maximum signal slope exceeds 

the modulator slope capability, increased delay of the output behind 

the input would be expected. The theoretical values of the clock 

frequency for the on-set of slope overload (based on de Jager's 

description*) are 30.15 and 9.42 kHz for inputs of 12.0 and 3.75 

volts peak to peak respectively. These values shown good agreement 

with the observed cut-off frequencies from Fig. 4.18 for the experimen-

tal delay curves. 

It was anticipated in the delay consideration of Section 4.6.1 

that for the modulator operating in the non-overload condition, the 

delay introduced by the modulator alone would be a constant fraction 

of the clock period, regardless of the clock frequency. To test this 

hypothesis the delay results were replotted in Fig. 4.19 as delay 

against clock period, T c , for the non overload results. 

The delay introduced by the low pass filter will be constant for the 

800 Hz sinusoid signal regardless of the values of the input signal 

and the clock frequency. Fig. 4.19 indicates a straight line delay 

versus clock period characteristic for both values of input, over the 

modulator's operating range (Region II). This confirms the suggestion 

that the modulator delay,2%, is a fixed proportion of the clock period. 

An equation for the total delay between the output and input of: 

to  = 0.5T + 64,for to , Tc  in jusec,gives a good description 

of the delay, clock period characteristic for both inputs. It can be 

concluded that the delay introduced by the experimental modulator is 

about 0.5 T c' 
regardless of the input signal value or the clock 

frequency. The low pass filter delay, as indicated by Fig. 4.19, for 

an 800 Hz sinusoidal input, is about 64 iusec, (ie. 18.4°). 

There is no apparent explanation for the increase in delay 

when f
c 
exceeds 300 kHz. This increase occurs in the region of minimum 

noise operation (i.e. Region III) for both of the input signal amplitudes 

but is apparently independent of the onset of Region III. The only 

difference between the delay increase for the two inputs is that it is 

greater for the smaller input. It is not considered likely that a 

continuing increase in delay would occur for increasing f
c 

Further 

investigation would be necessary to determine the cause of this increase 

In delay for high clock frequencies. 

* For a sinusoidal signal, the maximum signal slope: - 

I 
f (t)

max 
= 2TTf

s
A, equals the modulator slope capability hf

c' 
for the 

onset of slope overload. Therefore the onset of slope overload is 

' defined by 271fsA = hfc. 
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CHAPTER 5. 

CONCLUSION 

5.1 	Introduction 

This chapter seeks to relate the results, observations and 

conclusions of the preceeding three chapters. Points of agreement 

between the analysis, the computer simulation results and the 

experimental results will be summarized to provide a description of 

the performance of delta modulation under the conditions considered. 

Explanations for points of variance between the analysis, computer 

simulation and experimental results will be given wherever possible. 

Conclusions on the nature of the noise in delta modulation will be 

made and the value of a sine wave as a test signal for more general 

inputs will be discussed. 

5.2 	Theoretical Considerations of Slope Overload  

Based on the observations of the modulator waveforms for the 

slope overload situation, the description of the output signal and 

noise power performance as outlined in Fig. 5.1 was proposed. The equat-

ion for the output signal power thus determined, combined with the non 

slope overload So  equation give the following description of the S o  

performance:- 

So = 2 
	h

2
fc

2 
- SG(6/ fs 	for f

c 
4( f

1 
7T' fs

2 

..Eqn. 5.1 

So = A
2
/2 - S

G
(GO] 

fs 
for f>  f1 

where S
G 
(6/f is the power loss of the low-pass filter at the signal 

frequency, f s ; A is amplitude of the input signal f(t);and f l  is the 

clock frequency at which the boundary of the slope overload region is 

deemed to exist, ie. f 1 
defines the transition from RegionIA to RegionIB. 

From the experimental results (refer Fig. 4.17) it' can be seen that 

Equation 5.1 provides a very good description of the output signal power 

characteristic for a simple delta modulator with a sinusoidal input. In 

addition, from Equation 5.1 an expression for the onset of slope overload 

(ie. an expression for f
1) can be defined:- 

2 	h
2
f
c
2 

= A
2 

ir4 2  

ie. hf
c 

= 

    

2 A f
s 

 

Eqn 5.2 

  

f  2 for f
c 

= f
1 
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FIG 5.1 , 	Theoreticl Model for Slope Ove:c..load 

— based on waveform observation 
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As an approXimation, consider the reconstructed signal, r(t), 

as consisting of the sum of a triangular wave at the signal frequency 

plus a sawtooth wave at the clock frequency, as shown above. 

i.e. r(t) 	fl(t) + f2(t) 

The amplitude of fl(t) is given by: hTs/4To  = hf0/4fs  

Hence as an approximation, r(t) can be written as: 

r(t) 	(cos st 4- s 	 • • • • ) 
7T fs S 	9 	25 	.49 
2h n  , 	5Wst. 	cos5Gist 	cosWAiot 

cc'  

. + 17 (8in/dot 21.12LiI sin3&bt  sin4CO0t 	• • •• 
2 	3 	I 	4 I 

2hfo 
This predicts an output signal before filtering of-757--cost 

r'f's 
with a power of 2h2fo26.0fs2 = —16.88 + 201og( hiVfS) dB. 

Applying the, experimental modulator conditions of, h = 1 volt, 

4.800 Hz and a low' pass filter loss of 0.17dB at 800 Hz. we get: 

Output signal power S o  . —75.1 + 201og 1'0  

Similarly, after applying the low pass filter characteristic 
• 

Mean square value of noise function , n(t)' 

Is 2h2f02 .11 , 
• • • 

1 	 •1  
1r 4f82  0 p + (3fs/fm)9 4.  252  [1 +;(5f8/fm)] 

+ 
 , 

, 
271 1 + (fnifm ' ) 

f 
„, + +

• h2 	1 	 1  , 	. , 
• . 

, 

2
,„ 
[1+ (2fc/fm)4]; 

+ 	• 

Applying the 'experimentalmodulator conditions of h = 1 volt, 

fs  . 800 Hz and fm  = 4 kHz this expression reduces to : 
1  n2 (t) 	3.23x10-1 °f02  + 0.0506 ( 	1  

1 + (fo/f02 4 { + (2fc/fm)2.} 



78. 

The noise power predicted from Fig. 5.1 is given by:- 

1 	1  
N = 3.23 x 10 -10 

	2 	
0.0506 +. 	I 

. 
1+(f if )

2 
4(1+4(f /f )2  ) 

c m 	c  in 

  Eqn. 5.3 

being the sum of the signal frequency components and the clock frequency 

components respectively. The resulting curve for the overload noise;, • 
- 	- 

performance with clock frequen:cy is shown dotted in Fig. 5.2. FrOm'this 

figure it can be seen that in Onstrast to the signal performance the 

predicted noise performance does not agree with the experimental results. 

Equation 5.3. predicts a noise minimum of -15.5 dB,with harmonics of the 

Clock frequency being dominant for clock frequencies up to about 4kHz 

and harmonics of the signal frequency being dominant for clock frequencies 

above about 8kHz. It is apparent that some major source of overload noise 

Is neglected by the theoretical model considered. 

1 ii 	Jpon ieconsideking ,Fig1;15aan be iseen thAt the 	Over- 
1.1 1 . +Ii•I'Ll 	• 	• 	 • d- 

aoi.Model, was based upon-  the4itUatiOn when the clock freejuencYla t an • 

even integral multiple of the signal frequency. Although interpolation 

. for clock frequencies between ihese particular values is satisfactory. 
. 	, 	 .••• 	. 

I„ 	 • 	. 
•fil?i4hdescription of 01A9,41?4qq.4.0A 14 %thiS is not SO". for the ,• 	. , - 
description of the output noise. Waveform 'observations on the C.R.O. 

indicate, that as well as the basic stepped triangular wave (as indicated 

by Fig. 5.1) there is an additional component with a frequency which is 

less than the frequency of the fundamental of the triangular wave 

(ie.<;f
s
). This additional component is illustrated in Fig. 5.3 

and results from changes in the logic levels of the triangular wave • 
by one unit. It can be regarded as a change by one step height in the 

d.c. level of the reconstructed wave and is due to f c  not bein, in 

general, an exact even multiple of fs . This prevents the establishment 

of a regular pattern of the natureconsidered for Fig. 5.1. The rate 

of the d.c. variation is lower as f
c 

tends to nf
s 

(n even) and' it :  

varies from zero when f
c 

= nf
s 

to a rate of f
s
/2 when f

c = mf , m odd. 5- 
It was observed that as well as a two level rectangular wave, the 

superimposed low frequency noise may also take the form of a level 

wave as indicated in Fig. 5.3. Under certain Conditions 4 or 5 levels 

were observed in the rectangular wave, apparently resulting from two 

different low frequency rectangular waves being superimposed. In these 

cases one of the superimposed*low frequency rectangular waves was 

observed to have a particularly low frequency (of the order of f/100). 

The effect of the low'frequency component of the noise during 

slope overload can be taken into account by considering a two level 

only rectangular wave of sufficeintly low frequency to allow it to 
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pass through the lowpass-lilter without significant attenuation. This 

would result in an additional contribution to the overload noise of 

h
2 /4. When added to Equation .5.3 this results in the overload noise 

power performance as indicated by the solid line in Fig. 5.2. The 

resulting predicted overload noise performance can be seen to show 

good agreement with the experimental results. :  Any additional noise 

due to the presence of 3 or more levels in the d.c. variation of the 

overload reconstructed signal 'does not appear to be present in the

experimental results. Thiswduld be so for two reasons:- 

(i) The infrequent appearance of more than two levels in 

the d.c. variation, and 

(ii) The low frequency - cut-off of the "true rms value" 

'vOltmeter used for the measurements, which would eliminate the lower 

frequency components resulting from a.3 or more level d.c. variation 

in the reconstructed signal. 

The foregoing slope overload noise considerations lead to the 
. 	. 

following conclusions: 

(i) The major contribution to slope overload noise is from low 

frequency components (from f 5 /2 down) which can be described as a low 

frequency variation in the d.c. level of the reconstructed signal. 

(ii) The mean square value of the low frequency component is 

given by h
2
/4. This represents about 80% of the noise power maxitum; .  

Which was empirically determined and theoretically confirmed at. ' 
•  

-5dB 0.11
2 
 /3.16). 

(iii) Significant overload noise power reduction could be 

expected by the use of a band; pass instead of a low pass filter for 

the elimination of unwanted noise from the output signal. This third 

conclusion was not experimentally confirmed and would be a good point 

for further investigation. 

5.3 	A Comparison of Experimental and Computer Simulation Results  

Fig. 5.4 shows both the experimental modulator and computer 

simulation noise power results for various clock frequencies with an 

input signal amplitude of 6.0 volts. Also shown are the resulting 

estimated performance curves. Good agreement between the results is 

exhibited over all clock frequency regions except the slope overload 

region. It should be noted that the computer simulation results will 

be subject to the same bias effect as the experimental results, 'due 

to the fluctuations with varying input amplitudes caused by the deter-; 

ministic nature of the input 'signal (as discussed in Section 4.6.2). 

Two main differences .exist for the noise measurements between 

the computer simulation and the experimental modulator. These are:- 

(1) For the computer simulation the noise power component 
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at the signal frequency was obtained by subtracting the input from the 

reconstructed signal with the phase of the input varied to give an out-

put noise power minimum. 

ie. Output noise function is given by (refer Section 3.3):-

n1 (t) = y(t) - f(t-t
o
); where t o 

is such that n
1
(t) has 

minimum power. 

For the experimental modulator results the noise power was obtained by 

. subtracting the input from the output signal with both the phase and 

amplitude of the input varied to give an output noise power minimum. 

ie . Output noise function is given by (refer Section 4.5.1) the 

uncorrelated noise function: 

n(t) = y(t) - kf(t-t o); where k and to  are such that n(t) has 

minimum power. 

(ii) For the experimental modulator the output was obtained 

by passing the reconstructed signal through a simple RC low pass filter 

with a cut-off frequency of 4kHz. (Refer Fig. 4.7). For the computer 

simulation an ideal low-pass filter with a 4kHz cut off was considered. 

The effect of (i), the;different noise function definitions 

will'only be significant whereithe contribution of the signal 

. frequency component to the results is .significant. Under such circumstan-

ces the computer simulation, results would indicate a greater noise power' 

than the experimental results. The simulation results indicated that 

the noise component at the signal frequency was significant, particul-

arly for the system operating $n slope overload and the high clock 

frequency region. The uncorreiated noise definition used for the 

experimental results will redu ce the simulation noise power curve of 

Fig. 5.4 by about 3dB at slope overload (i.e. f c 
=.20kHz); by less than 

11 dB over the partial slope overload region.and most of the operating 

region; and by about 21/2 dB in the high clock frequency region.' 

The effect of the use of the simple RC low pass filter with 

the simulation was determined from the simulation results to be most 

significant for clock frequencies from about 100 kHz and above.' A 

large increase would result for the higher frequencies (about 31/2 dB 

at fc 
= 400 kHz) due to the significant noise power components above the 

4kHz cut-off frequency. If both of the different noise power measure-

ment conditions of (i) and (ii) above were taken into account with the 

simulation results they would account for the difference from the 

experimental results in the high clock frequency region and for most 

(about 3.2 dB) of the difference between the overload (f 	20kHz) 

results. 

The uncorrelated noise function, n(t) , used for the experi-

mental modulator noise power readings,would provide the most useful .  

definition of output noise desired in considering modulator performance 

with some typical input signal. However the use of this noise 
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definition for a sinusoidal signal with the intention of indicating the 

performance characteristic of a more general signal would be unsatis-

factory as it would result in a zero noise component at the signal fre-

quency. Therefore the flat noise power curve from the experimental 

results for the slope overload region would be indicative of the 

performance for a sinusoidal input only. The computer simulation 

curve in the slope overload region would more accurately describe the 

• output noise power performance for a general input represented by the 

sinusoid. 

The estimated noise power performance for an ideal low pass 

filter with a 6 volt, 800 Hz sinusoid representing a general input 

(eg. speech) would be as indicated in Fig. 5.5. This is based on the 

computer simulation results, with the n
1
(t) = y(t) - f(t-t

o
) definition 

for the noise and with correction for the bias of the results due to the 

deterministic nature of the input (as discussed in Section 4.6.2). The 

similarly based estimated performance with a 4kHz cut off, RC low pass 

filter was estimated from the computer simulation results and is also 

indicated in Fig. 5.5. 

As discussed, the sharp cut-off between the slope overload 

and partial slope overload noise performance regions (IA and IB 

respectively) for the experimental results is unrealistic for a 

general signal represented by the sinusoidal input. Similarly the 

sharp cut-off exhibited by the output signal power at the same point 

would not represent the situation for a more general input. 

5.4 	A Comparison of Measured Results with Established Theory 

The earliest analytical description of delta modulation 

performance is that given by de Jager9 . His description of the noise 

performance (Eqn. 2.7, Section 2.4) for a sinusoidal input gives a 

pessimistic prediction over the mid clock frequency region (Region II), 

being about 2dB above the curve estimated from the measured results (see 

Fig. 5.5). In addition, de Jager's description of the noise does not 

predict the minimum noise region (Region III) of performance at high 

clock frequencies, the partial slope overload region(Region IB) or 

the noise power variation with varying input signal amplitude,which 

were observed in the measurements. De Jager's analysis was restricted 

to the quantizing noise situation and would not be relevant below his 

predicted slope overload point. His predicted clock frequency for the 

onset of slope overload, as given by D1/2 = f ell/VT, is about 30% higher 

than the value indicated by the measurements (where D = If / (03 2 , the 

mean square value of the signal derivative) 	This is shown in Fig. 4.17 

where the clock frequency for the onset of slope overload was found to 

be more accurately determined from the slope overload considerations of 
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Section 5.2 (Eqn. 5.2). De Jager's analysis does predict the 10dB/decade 

fall in noise power with clock frequency indicated in Fig. 5.5 for the 

mid clock frequency region. 

Johnson
29 predicts a quantising noise power expression for a sine 

wave input which is very close to de Jager's, Nq = 0.316 fmh2  expression. 

f
c 

One of the assumptions made by Johnston was that the noise is given by 

the output less the input delayed by one clock period. It was found ' 

(Section 4.6.2) from the experimental results that the delay of the 

output signal behind the input for a sinusoidal input is 0.5 clock 

periods. 

When the analysis of van de Weg
34 

is applied for a sine wave 

input and ideal low pass filtering, an expression which is again very 

close to de Jager's results for the quantizing noise. The additional 

limitation that the value of the signal derivative equals 1/4 of the 

overload slope (i.e. D 1/2  = hfc /4) is also imposed. 

The difference of about 2dB between the above theoretical 

predictions and the noise power performance derived from the measure-

ments (refer Fig. 5.5) for the middle range of clock frequencies 

(Region II) would be mainly due to a different output noise definition. 

Both de Jager and Johnson determined the value for the constant in their 

N expressions empirically. They did not use the uncorrelated noise 

function definition of n(t) = y(t) - f(t-t
o
) (refer Section 5.3) 

considered by the author to be the most relevant for a sine wave input. 

Therefore the output noise functions they considered would contain a 

significnat component which was coherent with the input signal. A 

similar situation for the noise signaldefinition would result from the 

application of van de Weg's analysis for a sine wave input because the 

evaluation of the van de Weg expression for N (Eqn. 2.7) assumes a 

random noise input with a uniform band-limited spectrum. 

It has been shown (refer Section 4.6.2 and Fig. 4.17) that the 

assumption that the noise is independant of the value of the input 

signal and is given by N =k fm
h2 

is valid, provided the level of 

loading of the system falls in the approximate range 0.4hfc ;>D1/2 ;>0.09hfc  

(i.e. Region II of the perforamnce curves). From the measurements made, 

a value for k in the above N expression of 0.20 has been determined for 

the ideal low pass filter, sine wave input situation. This value would 

be more suitable than the established value of 0.316 for the conditions 

considered, where the uncorrelated noise power as considered by the 

author is of interest. 

As discussed in Section 2.4', van de Weg's 34  quantizing noise 
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• power expression, as extended by O'Nea135 to remove the restriction 

of a specific level of loading, is accepted as one of the most precise 

quantizing noise power performance descriptions. This description 

• (Fig. 2.9) is for band-limited gaussian input signals. O'Neal's 

overload noise power description is not confirmed by subsequent 

measurements and for this reason the sinple, closed form equations 

of Abate17 (Eqns. 2.9, 2.10 and 2.11) are considered for comparison with 

the measured performance. Abate's description of the noise power 

performance is empirically determined, can be applied for random, 

band limited input signals with various spectra, and agrees well 

(within ldB) with the O'Neal/van de Weg description in the quantizing 

noise region. Fig. 5.5 shows Abate's estimated performance curve for 

a random input signal, bandlimited to 4kHz, with an integrated spectrum 

and an rms value of 4.24 volts (i.e. the same rms value as the sine wave 

used for the measurements). This curve is determined from the reduced 

form of the equation given is Section 2.4 by Eqns 2.12, 2.13 and 2.14. 

A comparison of Abate's curve with the comparable (i.e. ideal 

low pass filter) measured curve,indicates that both demonstrate the 

two quantizing noise states. (i.e. Regions II and III). Although,this 

feature of the quantizing noise performance is inherent in van de Weg's 

general expression and the subsequent curves of O'Neal, it is not spec-

ifically predictedby any other analysis. In particular the analyses for 

a sine wave input (e.g. de Jager 9 
and Johnson29) predict no limit to the 

- 10 dB/decade, N reduction with increasing clock frequency. 

Qualitatively the description by Abate agrees with the curves obtained 

from measurements and with the general description of the noise performance 

regions from the noise analysis of Section 2.3. Each agrees in defining 

distinct regions of performance, with the exception that the partial 

slope overload region for sinusoidal inputs as proposed by the author 

Is included in the one overload region by Abate. 

Significant variation of the noise power values exists between 

Abate and the measurements, as indicated in Fig. 5.5. For the 

quantizing noise the difference (about 21,;(113) would result mainly from 

the uncorrelated noise function definition used for the measurements 

as discussed earlier in this section. In addition, Abate's analysis, 

being for a random, wide band signal (up to fm), necessarily predicts 

the onset of the high clock frequency region (Region III) at a different 

level of loading. (i.e. D1/2 = hf
c
/8 for Abate cf. D1/2  = hfc /14 for the 

curve from the measurements in Fig. 5.4). The fundamental difference 

between the type of signal considered by Abate and the sinusoidal signal 

used for the measurements is the reaSon for the much larger overload 

noise contribution and the higher clock frequency (or lower rms input 

signal value) for the onset of overload, as estimated by Abate. This 

can be seen by comparing the rms value of the signal derivative, D. 

for the two types of signal as below: 

Sine wave used for measurements: D = 2TTf
s 

= 5,0304r 
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Integrated spectrum considered by Abate: D 1/2  457E 27Tfm0e=8,9000"- 

where O'= rms value of the input. Therefore, although the signal rms 

values are equal in Fig. 5.5, the signal derivative rms value for the 

integrated spectrum is about 80% greater than that used for the measure-

ments. 

Applying the value of D1/2  used for the measured curve of Fig. 5.5 

to Abate's expression for the overload noise for an integrated spectrum, 

an equivalent rms signal value of 2.4 volts (cf. 4.24 volts) is obtained. 

and the resulting overload performance estimate is shown by the dashed 

curve. This curve provides a far better estimate of the measured 

curve (within 3dB in general) and predicts the onset of slope overload 

at about the same level of loading (i.e. at about the same value of f c ). 

5.5 	The Value of a Sinusoid as a Test Signal  

It has been shown that the use of a sine wave input has value 

in indicating the qualitative features of the noise performance of delta 

modulation for more general types of input signal. However even for this 

purpose there is a limitation imposed by the deterministic nature of the 

input which causes an additional unwanted variation in the results, 

depending on the input amplitude relative to the closest integral multiple 

of the step height. The variation was discussed and taken into account 

in estimating performance in Section 4.6. This problem with the sine wave 

as a test signal has also been mentioned by Bennett5
, de Jager

9
, Kikkert39 

and others. The alternative method of eliminating the fluctuations by the 

addition of a small low frequency component to the test signal (refer 

Section 3.2) has been found to be satisfactory
9,24

. The definition of the 

output noise function can also have a significant effect on the basic 

characteristics of the noise performance curves(as illustrated in Section 

5.3)when a sine wave test signal is used. 

The above problems can be overcome, as has been discussed in the 

appropriate sections, to allow a sine wave test signal to be used to 

indicate the nature, and the factors affecting the noise performance 

characteristics of delta modulation for a more general input. A much 

more significant limitation exists for the measurement of the quantitative 

performance of delta modulation when a sine wave input signal is used. A 

representative sine wave signal gives noise power results which are up to 

about 3dB lower than random bandlimited signals with the same rms value, 

over the quantizing noise regions. The difference depends on the definition 

of the noise signal. This represents reasonable agreement and suitability 

of a sine.  wave as a test signal for more general inputs,for quantizing noise 

The main failure of the sine wave as a representative signal is that it 



gives very optimistic values for the onset of slope overloading, and 

gives sharper increases in noise power as slope overload increases, than 

occur with more general wide .  band signals. This was discussed in Section 

5.4, and results from the radically different spectral density properties 

of. the two types of signal which give rise to different rms values of the 

signal derivatives relative to the rms values of the signals.' 7herefore, 

since the overloading process, for delta modulation is slope and not 

amplitude determined, a comparison of quantitative values for slope over-

load performance and the onset of slope overload is not possible for 

signals with substantialy different spectral density properties. 

5.6 	Conclusions on the Nature of the Noise 

Measurements obtained from the computer simulation ancl the 

experimental modulator have indicated the following conclusions regarding 

the nature of the noise produced by a single integration delta modulator. 

The power spectrum ofthe. quantizing noise varies markedly from 

beLSincy, (WiT /2) descriptioch,WaS:assuOed ,by many i previpus:. 
1 c • 	• 	;I • 	" 	, 	ii; 
lavesbigators. It does ,  ho*/erek,hibita definite sin,(6T,/2)Ishape 

1.h,1" 1  
(or envelope characteristic) iihich results from the periodic, sampleHand 

hold, character of the output:signal, r(t). 	(The sinc2  (WT/2) 
.quantizing noise power spectrum would be expected from a consideration . 

of the autocorrelation function of the error function, e(t), which would 

have the triangular form 1-171/Tc , if the value of e(t) at any Instant 

was independent of the values in other clock intervals. ie . if the pulse 

signal to line, p(t), had a random polarity. . 

The power spectrum of the quantizing noise for the modulator 

operating in the middle region of loading (i.e. Region II) tends to be 

relatively uniform up to a frequency of roughly f /10 with a density of 
2 	 c  about h /106.)

C for a sine wave input. This density is about 2dB less than 2 
the value of about h/6(.4.)

c which would be expected from a random band 

limited, simulated speech signal. It is'approximately one third of the 

density which is indicated by the simplified model; that e(t) is uncorrel-

ated between adjacent intervalS.(which gave 'a density of h
2
/34) over the 

lower frequencies) 

It has been shown that the reduction in the noise power density 

below the theoretical value of h2
/3CO

c 
over the lower frequencies relative 

to f
c' is compensated for by an increase above this value at other . 

frequencies, provided the system is operating without slope overload,in 

the middle region of loading (le. Region II). As a result, it was found 

that the quantizing noise power in the frequency range 0 to f c  is constant 

for all fc  (in Region II of operation) and is given by: 
co  1  

h2 	sine(oJT /2)&4)= 0.9h?= 5.13dB :Nq =y-0-  3 
C. 
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The main change in the noise function associated with and 

contributing to the onset of slope overload (ie. in the partial slope 

overload region) has been shown to be a change in the shape of the 

' power density spectrum of the noise function. In the partial slope 

overload region the uniform noise power density over the lower frequencies, 

increases towards the theoretical h
2
/36U c  value for a decreasing clock 

frequency and rapidly continues increasing to exceed this value. The 

change in the noise spectrum occurs without change in the total power. 

in the band 0 to f c , but results from a shift in the noise power, from 

the high density region of the spectral distribution to the lower frequen-

cies relative to f
c  

It is not until the total slope overload region is 

approached that the total noise power in the band 0 to f c  increases. This 

change in the power density spectrum of the noise function associated with 

partial slope overload results from a decrease in the probability of a 

change in the polarity of the output pulse between successive pulses. It 

was indicated in Appendix A that as the probability of a change in the 

polarity decreases, a greater proportion of the power of the output pulse 

signal to line (and hence of the output signal, y(t)) falls within the 

lower frequency range. 

The other factor contributing to partial slope overload was observ-

ed to be the variation in the probability density function of the error 

, function, e(t). Fig, 5.6 shows the maximum range of error function values 

(and discrete error function values) for varying loading, as observed from 

the experimental modulator. The discrete error function, e(kT c) (ie. the 

function determined by the sampling of e(t) just after each clocking 

instant) has a maximum magnitude of h(= I unit) until the system has 

moved into the partial slope overload region of operation (ie. Region IB). 

With the onset of partial slope overload, 
e(kTc)max 

increases beyond 1 unit 

in magnitude for an increasing input signal. Therefore the onset of 

partial slope overload modifies the probability density fucntion of e(kT c ), 

which was assumed in the analysis of Section 2.3 be to uniform for 

-11-c(e(kT
c
)<:+h and zero elsewhere. The analysis of Section 2.3 indicates 

that as the limit on the maximum value of e(kT ) extends beyond h, the 

noise power in a given low frequency band will increase as the square 

of the extended limit on e(kT ) 	. 
c max 

5.7 	Optimum Operating Conditions 

The optimum operating conditions for simple delta modulation can 

be investigated from two viewpoints. 

1. For a given clock frequency and input signal spectrum, what 

is the input signal value (relative to the step height, h) which gives 

optimum performance? 
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2. For a given range of input signal amplitudes and frequencies, 

what is the optimum clock frequency which provides for a required, 

minimum level of performance? ie. the minimum clock frequency (in order 

to have a minimum transmission bandwidth) which will provide a required 

SNR. 

The answer to both these questions is determined by the regions 

of operation which give optimum conditions. For a given clock frequency, 

Figs. 2.9 and 4.11 indicate that the maximum SNR will be achieved for an 

input signal value which puts the system on the boundary of slope over-

load operation (ie. the boundary of regions IA and II). At this point 

the signal power is at its maximum before the noise power increases 

from its minimum (achieved in Region II) due to the onset of slope 

overload. For a broad dynamic range of inputs with maximum SNR the 

system should operate in the mid-frequency and partial slope overload 

regions (ie. Regions II and IB) Region III should be avoided 

as it is here that the noise power increases at 10dB/decade (as well as 

the signal power decreasing at 10dB/decade) with a falling input signal. 

Total slope overload (Region IA) should also be avoided as it is here 

that the rate of noise increase exceeds the rate of signal increase, 

resulting in rapid SNR degredation with increasing signal power. 

For a given range of input signals, Figs. 4.16 and 2.10 indicate 

that continual SNR improvement is available with increasing f cl until the 

system is operating in Region III for the maximum input. From here 

the performance remains unimproved with increasing fc . Therefore this 

point indicates the maximum required operating clock frequency. However, 

this maximum f
c 
could represent a waste of transmission bandwidth if the 

required maximum SNR is a lower value or if the 10dB/decade increase in 

SNR with f
c 

is an unwarrented use of bandwidth. 
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APPENDIX A 

'Consideration of the Power Spectrum, P(C0), of periodic train of  

ideal impulses, p(t).  

The periodic pulse signal shown above will result from the ideal 

sampling of the periodic binary signal, b(t), shown below. 

A b(t) 

Putting b
1 

and b
2 
as the possible values of b(t) at the times t

1 
and t

2 
respectively; where t 2).t1 , t2  - t1  = r , and 7is the displacement 
variable of the correlation function. 

Therefore the autocorrclation function of p(t) is given by; 

Rb (t1,t2) = x1 (t)x2(t) 

Assuming that the probability distribution of p(t), and hence of h(t), 

is invariant with time, then b(t) is a stationary process. Therefore 

the autocorrelntion function for b(t) is given by: act 
RI; ( ) = 

For IA >Tc  

•
Rb (T) 

For irk 
Rb (r) 

b b p(b b )db db 
.0  1 2 	l' 2 	1 2 
and b

2 
are independent and therefore: 

1
b
2
p(b

1
)p(b

2
)db

1
db

2 
 

' 
A
2
P(b

1
= )+(-A

2
)P(b

1 
b
2
) 

A
2
tP(t

1 
and t 2 are in same interval) -1-P(t 1 

and 

different intervals)xP(no value change between 

- A
2 

P(t
1 

and t
2 
are in different intervals) xP 

between intervals) 

t are in 
2 
intervals)) 

(value change 

I 
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Putting Pnc. probabiltiy of no change in polarity between successive 

intervals. 

and Pc = probability of a change in polarity between successive .  

intervals. 

Then Pnc + Pc = 1, 

and yir) . A2 f( 	4.P.) +.41 Pnc 	Pc 
c 	

T
c 

If p(t) is a random binary pulse signal then Pc , = Pnc = 	and 

b(t) = 0 and therefore: 

vo . A2 (1 1+1 ), lirls:T 
c 	c 

0 	, Ill >Tc  

Therefore the power spectrum of b(t) is given by: 

B(6)) = A
2
T 	

sin2 (
(A) Tr/2) 

c 	(T 
C
/)2 

The power spectrum of p(t)is given by the convolution of BOLO with 

the ideal sampling function spectum, S(60), and is therefore flat over 

:all frequencies. 

'ie. P(W) = B(6))08(6))'= A.Tc ,,as Shown in the adjacent diagram. 

Also shown in the diagram are the autocorrelation function 

and spectrum of b(t) and the .i. esating power spectrum of p(t) which 

. would result if the probability of no change in the polarity of p(t) 

- between successive pulses increased to 0.75 (ie. Pc ' 0.25)- 

= A2  f 1 - 2 c111- Pc} 
.c 
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APPENDIX 

The Design of a Digital Filter Simulation of an Output Low Pass  

Filter for Inclusion in the Computer Simulation of Delta Modulation. 

The audio filter design of Fowler
40 (shown below) was considered 

to be suitable for output filtering where analysis of delta modulation 

performance for typical speech transmission is being considered. 

3ov mll 	20 3 trill 
600 _it 

ea  

The analysis of this audio filter was performed on an Elliott 

503 computer using the network analysis programme of Brownell41 , 

developed at the Electrical Engineering Department of the University 

of Tasmania. The resulting frequency response is shown in the adjacent 

diagram and the Laplace transform transfer function is given by: 

6.110x10-4S4+1.238x10 6 S2+5.553x1014 
Eo (S) 
ITTE5 = 1.063x10 -6 S 5+2.425x10 - 2 S4+8.844x10 2 S 3+1.257x1o 7  S 2+1.678x10 11 S 

+1.093x1015  

The pole/zero evaluation programme of Brownell was used to give: 

(S+2.589x104 j)(S-2.589x104j)(S+3.682x10 4j)(S-3.682x104J)  

E0(S)  = 	1.740x10 -3 (S+9.425x103 )(S+5.419x10 3 -1.526x10 4J) 
E(s) (S+5.419x10 3+1.526x104j)(S+1.273x103-2.035x104j) 

(S+1.273x103  +2.035x104i) 

The "impulse invariant" method of digital filter design was 

adopted
42 , this method being based on designing discrete responses to 

impulse which are the same as the sampled impulse response of the analogue 

filter. In order to obtain a frequency response similar to that of the 

analogue filter, the sampling frequency must be greater than twice the 

highest significant frequency of response of the analogue filter. 

The Laplace transform function was simplified by partial 

fraction expansion using the residue method. The Z-transform 44 
was 

-5 then taken using a sampling frequency of 100kHz (ie. T 	10 	sec.) 
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This gives: 

F(z)c

ay. 	F
1
(z)+F

2
(z)+F

3 
 (z)+F

4
(z)+F

5
(z) . 	. 

E0 (z) 

1-b 
-1 

a 	a, 	a, 	a 
1  

1z 
	1-b2z

-1  
+ a2 
	 +  " 	1+  4 	+  5  

1-b3z
- 

1-b4z
-1 

1-b5z
-1 

where a
1 

= 5884.9 	b = 0.91006 
1 

a2  =-2772.1 + 978.26j 	b
2 
= 0.93624-0.14400j 

a3  = a2* 	 b
3 

= b
2
* 

a4  = 408.56-545.00j 	b
4 

= 0.96698-0.19955j 

a5  = a4 	 b
5 

= b
4
* 

• 	This expression can be digitally implemented using the parallel 

form as shown in the following figure. The sub-filters, F i (z), are 

readily realized by the direct form,as the partial fraction expansion 

yielded terms which are all the ratio of zero to first order polynomials 

in z-1 . 

6(z) 

a3  

+0  

Fi.(z) 
1 

Radar43 comments that the direct form of implementation for high order 

difference equations is undesirable for reasons of numerical accuracy 

and that the direct form is a lot more sensitive to quantization effects 

than the parallel form. 



c2+-cf 
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The first digital realization shown has complex coefficients, 

but as these occur in conjugate pairs the output will be real only. 

An alternative implementation without complex coefficients can be made 

as shown below. 

a + jb 	+ 
Putting F2 (z) + F3 (z) = _. 

1-(c+jd) 	1-(c-jd)z
-1 

E02+3 (z)  2a-2(ac+bd)z
-1 

Then F2
(z) + F

3
(z) = E. 	(z) 	

= 
12+3 	1-2cz

-1+(c2+d
z
)z

-2 

which can be realized as: 

(z) f3-(z) 	 

—2 cx-i-bc1)  

0 .2 4-3 

Such a representation has eliminated the need for programming the 

computer to handle complex numbers. However, it is in itself more 

complex. The above implementation can be simplified, giving an overall 

digital filter implementation as shown in the following figure, where: 

a
1 

= 5884.9, 	c
1 
 = 0.91006 

a2  = 2772.1, b 2  = 978.26,c2  = 0.93624, d2  = -0.14400 

a3 	408.56, b3  =-545.00,c3  = 0.96698, d 3  = 0.19955 
-I 	-1 and z = one sample delay = 10

-5 
sec. 

(ae2÷4(1/2) 

4P.÷  
-2(a3c343 (13) 

a -jb 

2 

203  
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