
A Methodology for the Design and
Implementation of a Functional Object Database

using Haskell

Linda Louise Dawson
(B.Sc. (Syd.), Grad Dip. (Eng. Dev.) (UNSW)

Thesis submitted in fulfilment
of the requirements of the degree of

Master of Science

Department of Computer Science
University of Tasmania

December 1993

Declaration

Except where stated herein, this thesis contains no material which has
been accepted for the award of any other degree or diploma in any
university. To the best of my knowledge and belief, this thesis contains no
copy or paraphrase of material previously published or written by another
person, except where due reference has been made in the text of the thesis.

Linda Dawson

Access to, and copying of, thesis

This thesis may be made available for loan and limited copying in
accordance with the Copyright Act 1968.

Linda Dawson

Abstract

Semantic data modelling has been a traditional abstract way of
representing data and relationships between data for database systems.
Recently database designers and developers have been looking to object
oriented modelling methods which incorporate the modelling of
behaviour as well as data and their relationships.

Databases can also be considered to be functional structures. All
operations on databases are functional in that they return values.
Transaction and update operations return a new version of the database;
queries return values contained in the database; and reports return values
from the database in some strictly formatted form.

This thesis firstly develops an extended version of the Entity-Relationship
model, called the Entity-Relationship-Object model (ERO model) that
incorporates object oriented concepts including behaviour. Secondly, a
methodology is defined for mapping this model directly to the functional. .

programminglanguage, Haskell, where all Entity and Relationship objects
are implemented as abstract data types and all attributes and methods are
implemented as functions.

The modularity and polymorphism of the proposed models and their
implementation allow for easy schema extension and modification. Lazy
evaluation in the implementation allows for a simple form of persistent
data store.

iv

Acknowledgements

I wish to express my gratitude to my supervisor, Dr Chris Keen, for his
support and encouragement in the production of this thesis, particularly
during the crucial initial and final stages.

I would also like to thank my colleagues in the Database Research Group
for their support and, in particular, Simon Milton.

Thanks also go to my colleagues, Andrew Partridge and David Wright for
their assistance with the more esoteric aspects of functional programming.

Table of Contents

Introduction 	 1
1.1 	Overview 	 1
1.2 	Aims 	 1
1.3 	Definitions 	 2
1.4 Literature Summary 	 3
1.5 Chapter Overview 	 3

2 Background 	 5
2.1 	Introduction 	 5
2.2 Semantic Data Models 	 5
2.3 Object Oriented Systems 	 13
2.4 Functional Systems 	 20
2.5 The Functional Programming Language Haskell 	23

3 Data Model Design 	 31
3.1 	Introduction 	 31
3.2 Analysis, Design and Implementation Methodology 	31
3.3 An Entity-Relationship-Object Model 	 32

4 Implementation 	 42
4.1 	Introduction 	 42
4.2 Conceptual Framework 	 42
4.3 The Haskell Environment 	 44
4.4 The Haskell Prototype 	 47
4.5 A Mapping Methodology for the Haskell Prototype 	52
4.6 An Example 	 54

5 Discussion, Conclusions and Future Work 	 62
5.1 	Advantages 	 62
5.2 	Limitations 	 63
5.3 Future Work 	 66

Appendix 	 70

References 	 76

vi

1 Introduction

1.1 Overview

This thesis investigates the design and implementation of an object-
oriented database system in a functional programming language
environment. This involves two major areas of investigation. Firstly, the
design of an object-oriented database being based on an object-oriented
data model [Dobbie, 19911. Traditionally the design of databases has been
based on semantic data models which capture the definition and meaning
of data objects and the relationships between them. Object-oriented
modelling methods add behaviour to data models so that database users
can manipulate data as well as store, retrieve and share data.

Secondly, the implementation is based on a functional programming
environment since databases may be considered to be inherently
functional structures in that all operations on databases return values.
Transaction and update operations return a new version of the database;
queries return values contained in the database; and reports return values
from the database in some strictly formatted form. The system developed
here deals with update operations and some reporting functions but not
query facilities.

Although there are two development aspects addressed in this project, the
overall methodology is based on Henderson-Sellers' [1992] general object-
oriented software development methodology. Henderson-Sellers [1992]
offers a general methodological framework that can variously incorporate
functional or object-oriented analysis and object-oriented design together
with object-oriented or imperative implementation environments. The
methodology here uses object-oriented analysis, object-oriented design and
a functional programming language implementation.

1.2 Aims

The aims of this project are twofold. Firstly, semantic data models and
object data models are investigated with a view to combining the
characteristics of both to produce a model that provides semantic

1

information about both data and its behaviour. This model should lend
itself to direct implementation in a programming language that provides a
high level of data abstraction, polymorphism and rich typing.

The second aim of this project is to investigate the properties of functional
programming languages, using a standard accessible language, Haskell
[Hudak, 19921, for the implementation of an object-oriented database.

There are several new ideas presented in this thesis. A new data model,
the ERO model, has been developed which combines the characteristics of
semantic data models and object data models and also provides a higher
level of abstraction than either of these models by treating both entities
and relationships as classes of the same polymorphic type. This model is
also directly implementable in any language which offers polymorphism,
data abstraction in the form of abstract data types (ADTs) and modularity.

This project provides a new variant of Henderson-Sellers' [1992] object-
oriented development methodology. This new methodology is applicable
to database development, incorporates the ERO model at the design stage
and provides a methodology for mapping the ERO model directly to a
functional programming language where all entities and relationships are
implemented as abstract data types and all attributes and methods are
implemented as functions.

The data abstraction, modularity and polymorphism provided in the
models and their implementation allow for easy schema extension and
modification. Lazy evaluation in the implementation allows for a simple
form of persistent data store.

1.3 Definitions

Entity-Relationship (ER) models [Chen, 1976, Hansen and Hansen, 1992]
provide semantic information about data objects, called entities, or
collections of data objects, called entity classes, and the relationships
between them, called relationships.

The Object Modelling Technique (OMT) data model [Rumbaugh et al,
19911 provides semantic information about data objects, objects, and

2

polymorphic collections of data objects, classes, and relationships between
them, called associations. OMT models also provide information about
the behaviour of objects as operations which are implemented as
methods.

1.4 Literature Summary

The Entity-Relationship Model was first proposed by Chen [1976]. This
model has been extended or enhanced by several authors including
Elmasri, Weeldreyer and Hevner [1985], Elmasri and Navathe [1989] and
Hansen and Hansen [1992]. Nijssen and Halpin [1989] have proposed a
fact-oriented data modelling technique. Object data models and notations
have been proposed by Rumbaugh et al [1991] and Henderson-Sellers
[1992]. Object-oriented design methodologies have been proposed by Beck
and Cunningham [1989], Boehm [1988], Booch [1986], Henderson-Sellers
[1992] and Shlaer and Mellor [1989]. The characteristics of object-oriented
databases have been defined by various authors including Atkinson et al
[1990], Dobbie [1991] and Fong et al [1991]. Functional databases were
proposed by Nikhil [1985] and the functional programming language,
Haskell, has been developed, and is still being upgraded, by a group of
several researchers. The most recent version is defined in the report on
Version 1.2 in Hudak et al [1992].

1.5 Chapter Overview

Chapter 2 provides background in four major areas: semantic data
modelling with particular reference to Entity-Relationship models [Chen,
1976] and Extended-Entity-Relationship models [Hansen and Hansen, 1992,
and Elmasri and Navathe, 1989]; object oriented systems including object
models, object-oriented development methodologies and object-oriented
database systems; functional systems including functional programming
languages and functional databases; and the functional programming
language, Haskell [Hudak et al, 1992] with particular reference to the
implementation of object-oriented systems.

Chapter 3 introduces a new data model called the Entity-Relationship-
Object Model. This model combines the extended ER models of Hansen
and Hansen [1992] and Elmasri and Navathe [1989] and the object models

3

of Rumbaugh et al [1991] and Henderson-Sellers [1992]. This combination
provides an ER model that incorporates behaviour for both entities and
relationships.

Chapter 4 describes the implementation of an ERO model as a simple
database system within a functional programming environment. The
conceptual framework is described for mapping an ERO model to an
integrated implementation system where every entity and relationship is
treated as a class. Considerations for mapping this conceptual framework
to a functional programming environment using the functional
programming language, Haskell are discussed and a specific Haskell
prototype is described. A detailed example is shown providing specific
program code within an implemented Haskell prototype.

Chapter 5 discusses some of the advantages and limitations associated
with the design and implementation methodology together with some
areas for future work.

4

2 Background

2.1 Introduction

This chapter provides background in four major areas. The first area is
semantic data modelling with particular reference to Entity-Relationship
models [Chen, 19761 and Extended-Entity-Relationship models [Hansen
and Hansen, 1992, and Elmasri and Navathe, 1989]. The second area
discussed is object oriented systems including object models, object-
oriented development methodologies and object-oriented database
systems. Thirdly, functional systems are discussed including functional
programming languages and functional databases. Finally, there is a
discussion of the functional programming language, Haskell [Hudak et al,
19921 with particular reference to the implementation of object-oriented
systems.

The marriage of concepts and features from all these areas may be
considered to be useful in addressing the problem that modern database
systems suffer in that they lack the rich type systems, expressive power and
data abstraction that is available in modern programming languages.
Conversely, modern programming languages deal inadequately with the
persistent (long lived) structured data that is required by modern
databases. This causes an unnecessary "semantic mismatch" [Nikhil 1985]
between programming languages and databases. This mismatch needs to
be overcome so that truly flexible and general database systems can be
developed.

2.2 Semantic Data Models

Codd's [1970] relational data model provided a model that is independent
of the details of the physical implementation. Since then a number of data
models have been developed to extend Codd's original concept so that a
model can more faithfully represent the meaning of the modelled
domain. These models, called "semantic" models, attempt to express
meaning in a model by supporting representation of relationships,
complex objects, data abstraction and inheritance.

5

Although there is no concensus on one particular model, Peckham and
Maryanski [1988] present a survey of semantic data models whose "one
unifying characteristic is that they attempt to provide more semantic
content than the relational model.".

Peckham and Maryanski [1988] discuss four main characteristics that are
represented in many of the semantic data models.

Generalisation and Specialisation - Generalisations can be formed by
considering a set of concepts and identifying common elements that
characterise the set. For example, vehicles can be considered to be a
generalisation of cars, trucks and motorcycles. Specialisation is the inverse
of generalisation and in the above example a car can be considered a
specialisation of vehicle. "Generalisation is the means by which
differences among similar objects are ignored to form a higher order type
in which the similarities are emphasised" [Peckham and Maryansld 19881.
Generalisations can be considered to be "is-a" relationships i.e. a car is-a
vehicle. Therefore, generalisation is a form of data abstraction that can be
viewed as an inheritance relationship in the object oriented paradigm
which provides a direct mapping of generalised relationships into a
system's implementation.

Aggregation according to Peckham and Maryanski [1988] "... is the means
by which relationships between low-level types can be considered a high
level type. The relational data model employs this concept by aggregating
attributes to form a relation". Aggregation supports the representation of
an abstraction from several smaller and simpler elements. In the simplest
form this may correspond to the declaration of the components within a
record but can also be seen to incorporate the concept of complex objects.
Aggregation can be considered as a "has-a" relationship. For example, a
person has-a name and a person has-a bank account.

Classification "... is a form of abstraction in which a collection of objects is
considered a higher level object class. Essentially it represents an is-
instance-of relationship." [Peckham and Maryanski 1988]. Classification
differs from specialisation in that classification defines the type of a specific
object whereas specialisation provides the derivation or inference of a type
from an existing type.

6

Association indicates that one abstraction serves as a container for
instances of other abstractions. It can be considered to represent set
membership abstractions. For example, a car-person is-a member-of-the-
set of people who drive cars.

Models surveyed by Peckham and Maryanski include SDM [Hammer and
McLeod 1981] which organises a collection of entities into classes or types
which specify member and class attributes, interclass connections and
derivations rather than relationships between classes and the functional
data model [Shipman 1981] which limits the constructs to entities and
functions providing a direct language for data definition called DAPLEX.
Nijssen and Halpin [1989] have proposed a conceptual schema design
procedure (CSDP) as part of a methodology called NIAM (Nijssen's
Information Analysis Methodology) which is also called fact-oriented
modelling. NIAM provides a method for building a system design by
starting with specific examples, a set of metaconcepts and a graphical
notation and following a well-defined design procedure of nine steps.

In 1978 the ANSI/SPARC committee proposed a three level architecture
for database systems consisting of external, conceptual and internal levels.
The external level corresponds to the user's view of the data in the
application domain. The conceptual level corresponds to a high level of
logical design representing the meanings of entities or objects and the
relationships between them. The internal level corresponds to a physical
or implementable model of the database system. In an object oriented
model these three levels represent application relationships between
classes, class specification, and class implementations, respectively.

2.2.1 The Entity-Relationship Model

The Entity-Relationship model [Chen, 1976] is a highly abstract semantic
model. It is a simple high level design tool that supports external and
conceptual modelling by identifying and describing entities that represent
the user's view of the data and can also provide mapping from these
views to the actual data structures at the internal level. This high level of
abstraction and other characteristics that are similar to the characteristics of
object-oriented models makes the Entity-Relationship model an ideal basis

7

for the development of a new model that combines the features of
semantic and object models.

The Entity-Relationship (ER) Model provides a simple diagrammatic
notation for representing the essential details of entities or objects and the
relationships between them. Its semantic modelling power comes from its
simplicity and generality. There are no limitations placed on the types of
entities or relationships that can be represented.

Entities represent "things" identified in the domain that is being
modelled. Entities can be physical or conceptual. For example, people,
vehicles and books are physical entities and transactions, skills and bank
accounts are conceptual entities. A set of entities with the same
characteristics is called an entity set or entity class. A relationship is a
linking between two entities. For example, if an employee works in a
particular department, employee and department can be considered
entities and works in is a relationship linking the two entities. An
attribute is a named characteristic of an entity. The cardinality of a
relationship between entity X and entity Y may be considered as the
number of X's associated with a single Y and the number of Y's associated
with each X. Cardinality can represent zero-to-many, one-to-many or
many-to-many associations

2.2.2 Enhanced Entity Relationship Models

There have been several proposals for enhanced or extended entity-
relationship models that incorporate additional semantic modelling
concepts such as generalisation, classification and aggregation. Elmasri
and Navathe [1989] propose an enhanced-ER or EER model based on an
earlier Entity-Category-Relationship (ECR) model [Elmasri et al 1985]. The
EER model incorporates the concepts of subclasses, superclasses,
specialisation, generalisation, categories and attribute inheritance.

Hansen and Hansen [1992] propose a model that incorporates standard ER
notation (which models 'objects' rather than 'entities') plus specialisation
and 'aggregate object sets'. There is no attempt to model behavior.
Hansen and Hansen define an object set as "... a set of things of the same
kind" and an object instance as "... a particular member of an object set".

8

Object sets are represented as rectangles with the object set name inside it
in upper case and an object instance can be represented as a point within
the rectangle with its name in lower case. Attributes are represented as
ellipses coming off a class rectangle. (see Figure 2.1)

Name

PERSON
• person Address)

Figure 2.1

The class PERSON contains an object called person. All objects of class person have the

attributes Name and Address.

Specialisation-Generalisation or inheritance is represented as a U symbol
(the same symbol is used by Elmasri and Navathe [1989]) where the open
part of the U points to the super class (see Figure 2.2).

PERSON

EMPLOYEE

Figure 22
An EMPLOYEE is a specialisation of PERSON.

Hansen and Hansen [1992] view relationships that have their own
attributes as special object sets and define them as aggregate object sets. A
simple relationship between two classes is represented as a named arc
between the two classes with an optional embedded diamond (see Figure
2.3). Aggregate object sets are represented by enclosing the participating

9

uantity

classes in a larger rectangle and the end points of arcs to attributes indicate
the semantics of attributes within the relationships. This leads to the need
for "colouring" the ER diagram (see Figure 2.4)

MANAGER PROJECT

(a)

MANAGER
	 SUPERVISES 	

PROJECT

(b)

Figure 2.3 (a) and (b) both represent the same relationship SUPERVISES

Figure 2.4 (from Hansen and Hansen, 1992, p140)
The QUANTITY attribute depends on both PRODUCT and COUNTRY and is therefore an

attribute of the relationship between PRODUCT and COUNTRY

Cardinalities or the number of instances of one object that correspond to
the instances of another object in the relationship are represented using

10

"1" and "b" (indicating 'many') at the end of a relationship arc (see Figure

2.5)

IS-MARRIED-TO
HUSBAND
	

WIFE

(a)

WORKS-IN
EMPLOYEE
	

DEPARTMENT

(b)

TAKES

STUDENT

COURSE

(c)

Figure 2.5

(a) A one-to-one relationship - a wife has one husband; a husband has one wife

(b) An employee is in one department; a department has many employees

(c) A student takes many courses; a course has many students

Figure 2.6 is an example of an EER model for a data model of an Invoice
for Manwaring Consulting Services taken from Hansen and Hansen [1992]
p 152. This model contains two relationships represented as aggregate
object sets: ENGAGED-IN and ON which is a relationship between the
entity PROJECT and the relationship ENGAGED-N. The use of
aggregation in EER models provides extra semantic expressiveness by
allowing relationships between relationships.

11

(ADDRESS

NAME

CLIENT

PERFORMED-FOR

CONSULTANT

ENGAC ED-IN

ACTIVITY

RATE

ON
PROJECT

INCURRED-ON

OTHER-
CHARGE

INVOICE NUMBER

(INVOICE DATE

(TITLE)

TOTAL

(DESCRIPTION) 	(AMOUNT)

Figure 2.6

Data Model for an Invoice for Manwaring Consulting Services, from Hansen and Hansen,

1992.

It should be noted that there are a couple of semantic problems with the
model in Figure 2.6. A CONSULTANT should have a Name attribute
and an ACTIVITY should also have a Name attribute. Otherwise, the

12

model is suitable for modelling the entities and relationship for an
invoice.

2.3 Object Oriented Systems

Although there seems to be no agreement as to exactly what constitutes an
object-oriented system, a useful definition to adopt is Wegner [1987] in
which a system which supports objects, classes and inheritance may be
considered to be object-oriented. Object-oriented systems are based on
decomposing problems to a set of objects in the problem domain. Classes
encompass the concepts of data abstraction and polymorphism in that they
provide a way of classifying objects in terms of behavioural and data
abstraction. Inheritance allows the use of existing definitions to be the
basis of new definitions.

Therefore, data abstraction rather than procedural abstraction is the core
concept in object-oriented software development. Instead of data being
passed from one procedure to another, as in the procedural paradigm, flow
of control is passed from one data abstraction to another.

The development of object-oriented systems is not just a modelling
technique and/or programming style but is based on a software
development paradigm that incorporates object-oriented analysis (00A),
object-oriented design (00D) and object-oriented programming (00P).
Traditional software development life cycles tend to be linear and
sequential, or top down, as in the waterfall model [Henderson-Sellers,
1992]. Some models provide for feedback from various stages of analysis,
design and implementation as in the spiral model [Boehm, 1988] and the
fountain model [Henderson-Sellers, 1992]. The object-oriented life cycle is
not considered to be linear. Some analysis may be carried out before the
design begins but parts of the analysis may proceed in parallel with the
design and implementation of other parts of the system. Throughout the
development cycle the concept of an object remains the same. Objects are
identified, then modelled as classes and then refined and, if possible,
reused in implementation.

Henderson-Sellers [1992] provides a number of alternative methodologies
for a complete object-oriented life cycle which includes analysis, design

13

and implementation. The choice of methodology depends on the
application environment. Methodologies proposed by Henderson-Sellers
include: Object-oriented analysis, Object-oriented design and Object-
oriented implementation (000), Functional analysis, Object-oriented
design and Object-oriented implementation (F00) and Object-oriented
analysis, Object-oriented design and Functional implementation (00F).

2.3.1 Object Models

Rumbaugh et al [1991] propose the Object Modelling Technique (OMT)
which models information in three different forms: the Object Model,
Functional Models and Dynamic Models but there is no linking between
these models. Rumbaugh et al [1991] regard OMT as an "enhanced form of
ER" although it is not presented as a object oriented database development
tool but as a tool to assist in the design of relational databases.

The main characteristics of the OMT model are as follows:

An object is a distinct concept, abstraction or thing which has its own
unique identity and can be used to model things in the real world and
"provide a basis for computer implementation" [p 21].

An object class (or class) "describes a group of objects with similar
properties (attributes), common behaviour (operations), common
relationships to other objects, and common semantics" [p 22]. For
example, Mary Smith is an object of class person.

An object diagram provides "... a formal graphic notation for modelling
objects, classes, and their relationships to one another" [p 23].

An attribute is a data value or property of every object in a class. For
example, the object Mary Smith may have an attribute containing her
address.

An operation is "... a function or transformation that may be applied to or
by objects in a class." [p 251. A polymorphic operation is an operation that
may apply to many different classes. A method is the implementation of

14

an operation for a class. For example, there may be an operation for
changing a person's address.

A link provides a physical connection between objects and an association
describes a group of links with common structure and semantics. For
example, an employee may work in a department. "Work in" is an
association between employees and departments.

Multiplicity "...specifies how many instances of one class may relate to a
single instance of an associated class" [p 30]. For example, many employees
may work in one department.

Generalisation is a relationship between a general class, called the
superclass and more refined versions of it, called subclasses. Each subclass
is said to inherit the features (attributes and operations) of its superclass.
For example, employee may be a subclass of person.

An aggregation is a strong association where an aggregate object comprises
components which are objects. Rumbaugh et al [1991] describe this more
abstractly as "[t]he aggregate is semantically an extended object that is
treated as a unit in many operations, although physically it is made of
several lesser objects" [p 57].

Apart from the concept of modelling behaviour, the OMT concepts of
objects, classes, object diagrams, associations, multiplicity, generalisation
and aggregation can be considered to be approximately equivalent to the
EER concepts of entities, entity classes, ER diagrams, relationships,
cardinality, generalisation and aggregation respectively.

Figure 2.7 shows two classes with an association between them in the
OMT model and the ER model structural equivalent.

15

Salary

Job Title

Change-Salary

Change-Job-Title

Employee

Name

Address

Dept
Works-In

Name

Address

Change-Address Change-Address

Figure 2.7(a)

An OMT model for Employees who works in Departments

1 	Dept

Employee

Figure 2.7 (b)

A structurally equivalent EER model for Employees working in Departments

Beck and Cunningham [1989] suggest a technique based on CRC cards. CRC
stands for Class, Responsibility and Collaborators. The technique was
developed for use in team sessions where entities can be identified and
behaviours can be specified for interfaces. An entity is given a descriptive
name and the responsibilities or behaviours are then listed under this
name. Other entities that will know about this entity or with which this
entity will interact, are listed as collaborators. This technique is useful for
initial or high level design where a group can brainstorm about the
overall structure of a system.

16

Other object-oriented models include those of Shlaer and Mellor [1989]
and Booth [1986]. These models are more complex. Booch diagrams
require the user to learn a new syntax as specific as any programming
language. Shlaer and Mellors's technique of capturing all information
about the states of attributes and the transitions between states leads to
extremely complex diagrams that may be difficult to read.

2.3.2 Object Oriented Databases

From the early 1970s until recently relational database systems have been
the standard model for many commercial database systems. The main
limitation of relational systems is that they only model data and the
relationships between data not the behaviour of entities or objects in the
model. Currently researchers are looking to object oriented data models as
the next generation of database systems. [Atkinson et al 19901. Hansen and
Hansen [1992] suggest that "object-oriented databases are the result of the
convergence of two research disciplines: semantic data modelling and
object-oriented languages. These disciplines developed independently but
in recent years have begun to merge with important implications for
database processing".

Another limitation of relational database systems is that there is a "... need
to translate data from a 'real world' abstract model to an 'implementable'
physical model" [Dobbie 19911. This translation can take many forms and
tends to become increasingly customised during development making
modification and maintenance difficult while maintaining semantic
integrity of the original model.

Database implementers need to perform more complex operations on
stored data than retrieving it and sharing it so that more complex software
systems can be built around database systems. This has been recognised for
some time in software engineering and the building of large software
systems. The core or base of most large systems is a database. Built around
this database are usually a number of application programs written in
some host language. The database language, which usually allows some
form of navigation around the database and explicit adding and deleting of
records, is incompatible with the application programming language

17

which must have a specific interface set up so that database records can be
explicitly transformed into the data structures of that language. The
customised nature of the interface and these programs makes the whole
system difficult to modify and maintain particularly in terms of data
integrity.

The object oriented paradigm for large software systems and now
specifically databases, allows the high level design to flow through the
development cycle without changing the basic elements. An object exists
as a conceptual entity from the abstract model through to the actual
implementation.

Although Codd [1970] gave a clear specification of relational systems and
most researchers agree that there is no clear specification for object
oriented database systems [Dobbie 1991, Atkinson et al 1990] there is some
agreement on the characteristics of object oriented database systems.

The final report of the Object-Oriented Database Task Group (00DBTG)
organised by the ASC X3/SPARC Database Systems Study Group [Fong et
al 1991] provides broad recommendations in the areas of Object
Information Management (OIM) which covers the general area of object
management in programming languages, networks, design
methodologies, user interfaces etc and Object Data Management (ODM)
which covers object models and database systems. Because of the breadth
of this report the task group does not propose any new concepts or specific
models but the part of the report most relevant to this project is that the
report has marshalled existing generally accepted ideas into a reference
model for ODM. The characteristics of the OODBTG reference model are
similar to the necessary characteristics proposed by a number of
researchers.

18

Atkinson et al [1990] differentiate between mandatory, optional and open
characteristics as summarised below.

Mandatory
complex objects
object identity
encapsulation
types or classes
class hierarchies
overloading
overriding
late binding
computational

completeness
persistence
secondary storage

management
concurrency
recovery
ad hoc querying

Optional
multiple inheritance
type checking
type inference
distribution
design transactions
versions

Open
type systems
programming

paradigms
ways of representing

objects

Dobbie [1991] differentiates between object oriented features and database
features as summarised below.

Object-Oriented Features
complex objects
object identifiers
encapsulation
inheritance
overloading
overriding
late binding

Database Features
persistence
secondary storage management
concurrent users
authorisation mechanisms
recovery procedures
efficient access methods
schema modification

The main examples given by Dobbie [1991] of currently available object-
oriented database management systems that provide complex objects,
object identity, encapsulation, types or classes inheritance, overloading,
overriding and late binding, extensibility, persistence and secondary
storage management, concurrency, recovery, ad hoc querying and schema

19

modification include 02 [Deux et al, 1990], Iris [Wilkinson et al, 1990],
ONTOS [1989] and Gemstone [Bretl et al, 19901.

2.4 Functional Systems

2.4.1 Functional Programming Languages

Functional languages are programming languages in which computations
are carried out entirely by the evaluation of expressions (functions) to
produce values. Functions and values are treated as first class entities and
functions can be recursive, higher order and polymorphic. Functional
languages have no side effects or assignment statements. That is, whereas
imperative languages '...are characterised as having an implicit state that is
modified (i.e. side effected) by constructs (i.e. commands) in the source
language.', declarative or applicative languages '...are characterised as
having no implicit state, ...[and] ... state-oriented computations are
accomplished by carrying the state around explicitly rather than implicitly,
and looping is accomplished via recursion rather than by sequencing'
[Hudak, 1989].

Nikhil [1985] advocates using functional programming languages for
developing functional databases because of their expressiveness, use of
lazy evaluation, rich type systems and opportunities for optimisation
using program transformation and parallelism.

Rich typing and polymorphism

Every value in a functional program has an associated type. Values are
"first class" in that they may be passed as arguments to functions, returned
as results and placed in data structures. Types in a functional language are
not first class and most functional languages provide a static type system
where the types of all values can be inferred by the type system at compile
time and checked for errors. Most functional languages provide built in
types for characters, integers, booleans etc but these are semantically no
different to user defined types. Polymorphic types are types that are
universally quantified over all types. For example, [1 (in Miranda) or [a]
(in Haskell) defines a list of "things" where things can be any valid type
such as integers, characters, strings or even complex types such as lists.

20

This is the first step towards data abstraction in that a set of functions can
be defined to operate over a collection of things whatever type those
things may be.

Lazy evaluation

Lazy evaluation in functional programming languages is based on the
characteristic that functions need not be evaluated strictly, ie. each value, if
computed is computed only once and no value is computed unless it is
needed. The non strictness of functions means that a function that would
have been non terminating if it was strict can return a result if evaluated
lazily because it never attempts to evaluate its non terminating argument.
Hudak [1989] argues that lazy evaluation provides expressiveness in a
language as follows, "First, lazy evaluation frees a programmer from
concerns about evaluation order ... [and second provides] ... the ability to
compute with unbounded 'infinite' data structures".

Data Abstraction

Functional languages provide data abstraction as either algebraic data types
(user defined types in other languages) and abstract data types (ADTs)
which are implemented using the keywords "abstype ... with" in Miranda
and using modules in Haskell. An abstract data type defines a collection of
data and the valid set of operations on that collection where the actual
representation of the data structures and functions is hidden from other
modules using instances of that ADT.

2.4.2 Functional Databases

Nikhil [1985] suggests a new way of looking at database systems using a
functional approach. In this new view, functional databases are databases
that are never updated but may be seen as a potentially infinite stream of
versions of the database. This is because the functional programming
approach has no side effects (i.e. there is no assignment statement and
therefore no values are ever actually changed). All values are created by
the application of functions to an existing value, however complex.

21

:Types

Current databases are characterised by the inadequacies of their type
structures. Most databases support little more than scalar types and sets of
records. This limited typing can prove inadequate for many applications
involving large amounts of data. Nikhil suggests that rather than "[u]sing
a database sublanguage embedded in an existing programming language
[e.g. EQUEL in C, SQL in PL /11 due to the semantic mismatch between the
two" that "[w]e would like to explore the opposite evolutionary path: that
of beginning with a programming language, attaching great importance to
the expressive power and semantic elegance of the language while
gradually incorporating features normally found in databases".

Nikhil [1985] suggests that the type theory of a programming language
determines the domain of definable types for that programming language
in much the same way that a data model determines the domain of
definable types for a database. Therefore a database itself could be
considered the equivalent of a data structure in a programming language.
The natural way to retrieve information from or change a data structure is
to apply an operation or a function to it. If databases are considered in this
way then the natural way to query (retrieve information from) a data base
or update a database is to apply a function to the database.

Data Abstraction

Traditional data manipulation languages for databases have no facilities
for data abstraction. Most database operations are hard-coded and
application specific. If the long held tenet of "data independence" is to be
achieved in modern databases then data abstraction must be naturally
incorporated into database programming languages. Data independence
in the form of abstract data types is a feature of most high level
programming languages. That is, an abstract data type may only be
manipulated using the functions associated with that type and because
these functions are only associated with a specific abstract data type then
the functions can be changed without affecting other applications that use
that abstract data type.

22

Updates and Queries

Queries and updates in current database systems are either done using a
specific query/update language (e.g. SQL, QUEL) which are incompatible
with programming languages, or using one of these database sublanguages
embedded in some programming language.

A functional database approach would treat queries and updates in a
different way. A query could be considered to be an expression to be
evaluated within the database domain. The answer to the query is the
value of the expression. An update could be considered to be the
application of a function to the current database and the result returned
would be a new version of the database.

2.5 The Functional Programming Language Haskell

The language chosen as the basis for this project is the functional
programming language Haskell. Haskell is a general purpose, purely
functional programming language incorporating many of the features of
other functional programming languages including higher order
functions, lazy evaluation, static polymorphic typing, user-defined data
types, pattern matching and list comprehensions. In addition it also
includes a module system, a purely functional I/O system and a rich set of
primitive datatypes, including lists, arrays, arbitrary and fixed precision
integers and floating point numbers. The latest version of Haskell was
released by Yale University in March 1992. The Haskell Committee (the
group responsible for the design of Haskell) considers that "[Haskell]
...should be suitable for teaching, research, and applications, including
building large systems." [Hudak et al, 1992]

Apart from lazy evaluation, strong typing and polymorphism, the features
of particular interest to this project are type classes, modules, abstract data
types, preludes and continuation style functional I/O.

Type Classes

One of the main additions to the type system in Haskell that is not in
other functional languages is type classes. Originally called "classes" but in

23

the new report "type classes", type classes were originally introduced to
provide a clean, flexible method of dealing with overloading of arithmetic
operators. Classes in Haskell serve a different purpose to classes in object
oriented programming languages. They provide definitions of overloaded
operations associated with a class or "...ad hoc polymorphism, better
known as overloading" [Hudak and Fasel, 1992]. For example,

class Eq a where

(==) : : a -> a -> Bool

defines a class called Eq with a single operation == (equality) in the class.
"Eq a is not a type expression, but rather it expresses a constraint on a type
... [the] declaration may be read 'a type a is an instance of the class Eq if
there is an (overloaded) operation ==, of the appropriate type, defined on
it' [Hudak and Fasel 1992]. Thus Haskell allows other functions to be
defined within the context of Eq. For example,

elem : : (Eq a) => a -> [a] -> Bool

"... expresses the fact that elem is not defined on all types, just those for
which we know how to compare its elements for equality" [Hudak and
Fasel, 1992]

Although Haskell classes offer some measure of abstraction and
inheritance, since they are mainly used for overloading existing operators
and functions where the emphasis is on the functions not data, a better
abstraction for object-oriented classes is the ADT using modules. Indeed,
Hudak and Fasel [1992] state "... modules provide the only way to build
abstract data types (ADTs) in Haskell.".

Modules and Abstract Data Types

Modules are the basic building block of all Haskell programs. Yale Haskell
allows modules to be separately compiled increasing efficiency and
allowing truly modular program development. "A module defines a
collection of values, datatypes, type synonyms, classes etc.... and exports
some of these resources, making them available to other modules"
[Hudak et al 1992]. Encapsulation and information hiding can be achieved

24

in the development of ADTs using modules. Modules can also be used to
implement inheritance (albeit a little crudely) since any resources that
should be inherited by other modules can (and must) be exported
explicitly. Modules are also important for continuation style I/O (see
below) in that "A Haskell program is a collection of modules, one of
which, by convention, must be called Main and must export the value
main. The value of the program is the value of the identifier main in

module Ma in, and main must have type Dialogue." [Hudak et al, 1992].

Preludes

Some special modules in Haskell are known as "preludes". Preludes can
be considered to be library modules containing logically associated values
and datatypes. Two special preludes, together called the "standard
prelude", PreludeCore and Prelude are part of the Haskell language
definition and are imported automatically into all Haskell programs. User
defined preludes are also permitted.

Purely Functional I/O

The Haskell I/O system is purely functional and is based on lazy
evaluation and higher order functions. Haskell I/O provides two models:
stream based I/O and continuation based I/O. Hudak [1989] states that
these "... two seemingly very different solutions ...turn out to be exactly
equivalent in terms of expressiveness". The Haskell Report actually
defines continuation based I/O in terms of stream based I/O. A Haskell
program communicates with the operating system via a stream of
messages or a lazy list and the program maps a stream of responses to a
stream of requests. The use of lazy evaluation means that a program need
not look at the responses before it issues a request. So a Haskell program
using I/O has the type:

type Dialogue = [Response] -> [Request]

Continuation-based I/O is the preferred methodology [Hudak and Fasel,
1992] for writing interactive Haskell programs. This programming
method is called Continuous Passing Style (CPS). The concept of a

25

• continuation is fundamental to this method and is best explained by
Hudak and Fasel [1992] as follows:

"A continuation is basically a (possibly nullary) function that
maps an 'intermediate value' (possibly empty) to 'the rest of the
program.' In this way, continuations are used to explicitly
manage 'flow of control', and thus we tend to define functions
that, instead of returning with an answer, will apply a
continuation (passed in as an argument) to the answer.".

A Haskell program can be thought of as communicating with the
operating system using continuations. To set up this communication the
operating system expects a top-level identifier called "main" whose type is
Dialogue. The flow of control in the program is maintained by cascading
and/or recursive calls to functions of type Dialogue. That is, every
function that interacts with user input must be of type Dialogue.

Developing Continuation-based I/O Implementations

The Haskell Report [Hudak et al, 1992] defines a program in the
continuation-based I/O model as "...a collection of transactions.. .[which
capture]...the effect of each request/response pair" as defined in type
Dialogue above. Transactions are built-in system functions. For the
purpose of developing some examples we will deal with a subset of the
available transaction functions defined as follows:

data Request =

file system requests: (file I/O)

readFile, 	String

I writeFile 	String String

channel system requests (standard I/O)

1 readChan 	String

I appendChan 	String String

All these requests work with strings.

26

data Response = Success

I Str 	String

I StrList [String]

1 Failure I0Error

"The response to a request is either Success, when no value is returned;
Str s, when a string value s is returned; or Failure e, indicating failure with
I/O error e" [Hudak et al, 1992]. That is, a response can either be a success
continuation (SuccCont), a string continuation (StrCont) or a failure
continuation (FailCont) defined by the following synonyms:

type SuccCont = 	Dialogue

type FailCont = 	I0Error -> Dialogue

type StrCont 	= 	String -> Dialogue

Note that all these possible returned values are of type Dialogue and so
can be replaced by other functions of type Dialogue which in turn have
continuations and so on. This provides the infrastructure for the
cascading calls outlined above which are the core of CPS programming.

In order to construct some small examples we will use the following
transaction functions (with their signatures):

done: :Dialogue

appendChan::String->String->FailCont ->SuccCont->Dialogue

readChan::String7>FailCont->SuccCont->Dialogue

readFile::String->FailCont->StrCont->Dialogue

and, by definition:

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

The function "appendChan" provides for writing a string to standard
output; "readChan" allows for reading a single (infinite) string from
standard input; and "readFile" allows for reading a named file as a single
string.

27

Continuation I/O is lazy and requires synchronisation. Synchronisation is
achieved by passing results back through anonymous, or lambda, variables
which can be used as input to other functions.

Examples

• Since input is read lazily as an infinite string, a useful (supplied in
PreludeList) function is lines which breaks a string up into a list of strings
at newline characters.

A simple program that writes the string "Hello world" to standard output
is:

module PrintString where

main :: Dialogue

main = appendChan stdout "Hello world\n" abort done

The failure continuation is "abort" or abnormal termination and the
success continuation is "done" or normal termination.

	A program-which-prompts-for-and-reads-a-string-from-standard input and
then prints "Hello <string>" is shown below. It replaces the success
continuation from the first example with another function.

module ReadAndPrintString where

main :: Dialogue

main = appendChan stdout "Enter your name" abort (

readChan stdin abort (\userinput ->

response (lines userinput)))

response (line:_) =

appendChan stdout ("Hello" ++ line) abort done

28

The string continuation for the "readChan" function reads whatever is
typed at the keyboard into the lambda variable "userinput" which is then
used in the function "response".

A program that prompts for a file name and the reads the contents of the
file is shown below.

module ReadAFile where

main :: Dialogue

main = appendChan stdout "Enter file name" abort (

readChan stdin abort (\userinput ->

response (lines userinput)))

response (line:_) = readFile line

(\ioerror ->

appendChan stdout ("cannot open" ++ line) abort done)

(\contents ->

appendChan stdout contents abort done)

Finally, a skeleton of a program that sets up an interactive menu is shown
below. 	

module MenuDemo where

import ...

main :: Dialogue

main = appendChan stdout "Welcome\n" abort (

readChan stdin abort (\userinput ->

processMenu (lines userinput)))

menu = 	"1. Do This \n" ++

"2. Do That \n" ++

"3. Do The Other\n\n" ++

"Select option 1, 2 or 3: "

29

processMenu 	[String] -> Dialogue

processMenu inp =

appendChan stdout menu abort

(case inp of (line:rest) ->

case line of

-> DoThis

"2" -> DoThat

"3" -> DoTheOther

-> appendChan stdout

"error - try again\n" abort

(processMenu rest))

DoThis

DoThat

DoTheOther

A further discussion of this style of programming is in Hudak and Fasel
[19921.

30

3 Data Model Design

3.1 Introduction

This chapter introduces a data model called the Entity-Relationship-Object
Model. This model combines the extended ER models of Hansen and
Hansen [1992] and Elmasri and Navathe [1989] and the object models of
Rumbaugh et al [1991] and Henderson-Sellers [1992]. This combination
provides an ER model that incorporates behaviour for both entities and
relationships. Entities and relationships are treated as classes which

- inherit methods for addition, deletion and retrieval from the generic
superclass. Instances of each of these classes are known as entity-objects
(E/Os) and relationship-objects (R/Os) respectively. The only difference
between them is that a relationship-object provides a link between two
objects (E/O or R/O) participating in that relationship.

3.2 Analysis, Design and Implementation Methodology

Object-oriented methodologies are relevant to this design and
implementation since they provide a high level of continuity due to
objects being the same from one phase to the next. The development
methodology used here is based on Henderson-Sellers [1992] 0-0-F (Object-
oriented analysis, Object-oriented design, Functional implementation)
methodology which provides a good framework for the design and
implementation of an object database in a functional programming
language. The term "functional implementation" as used by Henderson-
Sellers [1992] means implementation in one of the available procedural
languages such as Cobol, Ada, Pascal etc. For this project the 0-0-F
methodology is modified to incorporate the ERO model in design and to
provide for implementation in the functional language Haskell.

Henderson-Sellers' [1992] 0-0-F methodology has seven steps:

1. Object-oriented decomposition in analysis
2. Analysis/identification of objects
3. Identify object interactions
4. Analysis merges to design. Provide a detailed model.
5. Consideration of library classes

31

6. Reevaluate set of objects with respect to constraints of procedural
language

7.Code objects into procedural language.

The first three steps in this methodology involve Object Oriented
Analysis, an area not addressed in this thesis. It is assumed that the
designer/implementer is sufficiently experienced to be able to identify
appropriate objects, classes, relationships, associations and generalisations.

Steps 4 to 7 represent the design phase which may be considered to be
specific to a particular application area. This thesis develops specific
methodologies for the implementation of an object database within a
functional language environment and replaces steps 4 to 7 with:

4. Analysis merges to design. Produce an ERO model.

5. In a functional language provide a library that implements a
polymorphic superclass and its default methods within a suitable
interactive interface.

6. Map the classes directly from the ERO model to the functional
programming language as abstract data types which inherit the generic
superclass.

7. Link all the components of the system that have been provided in steps
5 and 6 into an integrated database system.

The consequence of this modified methodology is that it provides a single,
integrated methodology incorporating the ERO model and maintains the
continuity from design to implementation by mapping an ERO model
directly into Haskell. An implementation methodology for the new steps
5, 6 and 7 is presented in detail in chapter 4.

3.3 An Entity-Relationship-Object Model

The Entity-Relationship-Object Model (ERO model) is a semantic data
model designed to provide the highest level of abstraction possible while

32

maintaining semantic integrity. It is based on a combination of the ER
model and the OMT model.

The ER model [Chen, 1976] can be considered to be one of the most useful
of the current semantic data models. Firstly, it provides support at both
the external and conceptual modelling levels by identifying and describing
entities that represent the user's view of data in some application domain.
Secondly, the ER model can provide the mapping of this view to actual
data structures at the internal modelling level.

The OMT model [Rumbaugh et al, 19911 has many of the same
characteristics as the ER model, together with the facility for modelling
behaviour as operations that may be applied to, or by, objects in a class.

If we take the level of abstraction in these models a step further, we can
consider all components in the model, both entities/objects and
relationships/associations, as classes. The OMT model allows for this in
special cases but not all cases.

The ERO model has three major characteristics. Firstly, it represents both
entities and relationships as classes of the same polymorphic type. The
only difference between entity instances, called entity-objects or E/Os and
relationship instances, called relationship-objects or R/Os, is that the
unique identifier (uid) for an E/O is system generated and the uid for an
RIO is a composite uid made up of the uids of the E/Os participating in
the relationship. All relationships in the ERO model are binary
relationships although n-ary relationships can be modelled as binary
relationships as discussed in 3.3.3. If the same two E/Os participate in two
different relationships the composite uids in each of the relationships can
be distinguished as unique by virtue of the specific RIO to which they
belong.

Secondly, as with all object models, uids are system generated and are
therefore not explicit in the model. The polymorphic nature of entity and
relationship classes ensures that a class has only one uid and that the
composite uids necessary in relationships can only be constructed from
other existing uids. This is discussed in the example in 3.3.5 below.

33

Thirdly, the ERO model has been developed specifically for the functional
implementation methodology_ set out in 3.2, above, so operations, or
methods implemented as functions, cannot have side-effects.

The Entity-Relationship-Object (ERO) model incorporates notations from
both object oriented models and Extended-Entity-Relationship (EER)
models. It provides icons based on object oriented models for representing
objects and/or classes (or 0/Cs as Henderson-Sellers [1992] calls them).
EER notation is used for representing generalisation/specialisation,
cardinalities of relationships and aggregations.

All objects in the ERO model inherit the default methods for add, delete
and retrieve from the polymorphic superclass. Consequently it is not
necessary to represent these methods explicitly in the model.

3.3.1 Entity-Objects and Entity-Object Classes

The icons for entity-objects (E/Os) are based on Rumbaugh et al [1991] and
Henderson-Sellers [1992]. E/O classes are represented as rounded
rectangles with the class name inside it in upper case and attributes listed
under a single line within the rectangle (see Figure 3.1). Any methods
associated with the class are listed under the attributes below a double line.

/ PERSON

Name
Address

Change_Address

Figure 3.1
All entity-objects of class PERSON have the attributes Name and Address and the method

Change_Address.

3.3.2 Generalisation

Generalisation or inheritance is based on EER notations and is represented
using a U symbol where the open part of the U points to the super class

34

(see Figure 3.2). When referring to inheritance the generalised class will
be called a superclass and the specialised class will be called a subdass.

PERSON

Name
Address

Change_Address
	 1

EMPLOYEE

Salary

Change_Salary

Figure 3.2

PERSON is the superclass and EMPLOYEE is the subclass which inherits the attributes

Name and Address and the method Change_Address.

3.3.3 Relationships

Although all relationships in the ERO model are binary relationships, n-
ary relationships can be modelled as combinations of binary relationships
as discussed below. A relationship-object in the ERO model is like a link
in the OMT model in that it is the "...physical or conceptual connection
between object instances." [Rumbaugh et al, 1991]. The difference is that in
the ERO model the objects instances can be other relationship-objects not
just entity-objects. This leads to the concept of two types of relationships
in the ERO model.

Simple relationships in the ERO model are relationships that do not
participate in any other relationship and can be represented in a similar
way as in ER and OMT models.

35

Complex relationships, involve relationships between relationships as
well as entities and should be represented in a closed, coloured notation
similar to Hansen and Hansen's [1991] extended ER models.

In ERO notation a relationship between two classes is represented using a
class icon differentiated for semantic purposes using a double border
indicating that this class has a composite uid. With this notation simple
relationships can be represented linearly as in Figure 3.3 (a) and complex
relationships can be represented as in Figure 3.4(b). The rule is that if a
relationship participates in a relationship with another relationship then
it must be represented as a complex relationship. This means that a
relationship may be represented in different ways depending on the
semantic context.

r 	-■
PRODUCT

Name

Description

	 }

' IS-SOLD-IN

Quantity

■

r 	■
COUNTRY

Name

(a)

(b)

Figure 3.4 (a) and (b)
The QUANTITY attribute depends on both PRODUCT and COUNTRY and is therefore an

attribute of the relationship between PRODUCT and COUNTRY

36

Language Project

Person

The ERO model only provides for binary relationships. However, higher
order, or n-ary, relationships can be represented as nested binary
relationships. Rumbaugh et al [1991] state that "Associations may be
binary ternary, or higher order... .We have encountered a few general
ternary and few, if any, of order four or more. Higher order associations ...
should be avoided if possible." An OMT example of a ternary relationship
is given in Rumbaugh et al [1991], page 28-29 which is said to be "... an
atomic unit and cannot be subdivided into binary associations without
losing information...[since]...a programmer may know a language and
work on a project, but might not use the language on the project". This
example is reproduced in Figure 3.5

Figure 3.5 OMT Example of a ternary relationship [Rumbaugh et al, 19911

The diamond in the OMT example is the OMT symbol for general ternary
and n-ary associations. Rumbaugh et al [1991] choose not to name the
association or links in this example since "...association names are
optional and a matter of modelling judgement ... [and]... are often left
unnamed when they can be easily identified by their classes.". If the
purpose of data modelling is to provide semantically complete
information about some application domain then it should be considered
dangerous to leave components of the model unlabelled. The ERO model
does not allow any unnamed entities or relationships.

The ERO model can represent the ternary relationship from Figure 3.5
with an overhead of three binary relationships as in Figure 3.6.
Considering the rarity of higher order relationships this overhead is not
considered significant in the ERO model. Unlike the OMT version,

37

Implemented -In

Project 	 Language

explicit semantic information is contained in the names of the binary
relationships. The "Implemented-In" relationship is a relationship
between the two entities, "Project" and "Language". It is a complex object
because it participates in another relationship, "Works-On". The
relationship "Knows" is a simple relationship between the entities
"Language" and 'Person". Also, if it were participating in another
relationship in a larger data model, the "Works-On" relationship could be
a complex object encompassing the relationship "Implemented-In" and
the entity "Person". As in all ERO models the structure of the model
represents the semantics for a specific context.

Figure 3.6 ERO Version of OMT Ternary Example

3.3.4 Cardinality

As in the EER models cardinality or the number of instances of one object
that correspond to the instances of another object in a relationship are
represented using "1" and "*" (indicating 'many') at the end of a
relationship arc (see Figure 3.7)

38

CWIFE
IS-MARRIED-TO 	1 	

"HUSBAND

(a)

(b)

(c)

Figure 3.7
(a) A one-to-one relationship - a wife has one husband; a husband has one wife
(b) An employee works in one department; a department has many employees

(c) A student takes many courses; a course has many students

3.3.5 ERO Version of Hansen and Hansen's EER Example

Figure 3.8 is an ERO version of Hansen and Hansen's [1991] Manwaring
Consulting Services Invoice model previously shown in Figure 2.6.

The complex object ON is a relationship between the entity PROJECT and
the relationship ENGAGED-IN. ENGAGED-IN is a relationship between
the entities CONSULTANT and ACTIVITY. It is represented as a complex
object because it participates in the ON relationship. On the other hand,
the relationship PERFORMED-FOR is a relationship between the entities

39

CCLIENT 	9 Name
Address

((PERFORMED-FOR))

ON

Hours
Amount

ENGAGED-IN

1

Title

Invoice Number
Invoice Date

Total
\

\. 	

t INCURRED

* 1

	1

CLIENT and PROJECT and does not participate in any other relationship
and so is modelled as a simple linear relationship.

i OTHER_CHARGE
Description
Amount

\ 	 }

Figure 3.8 ERO Model of Hansen and Hansen's [1992] example as seen in Figure 2.6

40

Salary

Job Title

Employee 'N

\.Change-Address}

Change-Salary

Change-Job-Title

Name

Address

[Note that a semantic inconsistency in Hansen and Hansen's [1991]
original model has been corrected and there is now a Name attribute for
the CLIENT entity and a Name attribute for the ACTIVITY entity.]

No matter how many levels of relationships there are within a complex
relationship, the polymorphic nature of all classes means that every class
has only one uid and for relationships that uid is a composite of only two
other uids. For example, the ENGAGED-IN relationship has a composite
uid from CONSULTANT and ACTIVITY and the ON relationship has a
composite uid made up of the uids from ENGAGED-IN and PROJECT
although the uid for ENGAGED-IN is itself a composite uid.

3.3.6 ERO Version of Rumbaugh's OMT Example

The example in Figure 3.9 is an ERO equivalent to the OMT model in
Figure 2.7. If it is presumed that the relationship Works—In is part of a
larger data model where it participates in another relationship it can be
modelled as a complex object which imports the entity-objects Employee

and Department.

Figure 3.9 ERO Model of the OMT example from Figure 2.7

41

4 Implementation

4.1 Introduction

This chapter describes the implementation of an ERO model as a simple
database system in a functional programming environment. Firstly, the
conceptual framework is described for mapping an ERO model to an
integrated implementation system where every entity and relationship is
treated as a class. Secondly, considerations for mapping this conceptual
framework to a functional programming environment using the
functional programming language Haskell are discussed. Thirdly, a
specific Haskell prototype is described and finally, a detailed example is
shown providing specific program code within an implemented Haskell
prototype.

4.2 Conceptual Framework

Conceptually in this implementation every component of the simple
database system is considered to be an object. The main module imports
all the components and thus links all the components together to form a
database system.

4.2.1 The Database Subset

A database system usually includes facilities for creation and deletion of
the database; update facilities for adding, deleting and modifying records;
reporting facilities and query facilities. This implementation deals with
the update operations: create, insert and delete plus operations for
retrieving and displaying the current value of a class or object.

4.2.2 The User Interface

Because databases are usually dynamic structures the implementation uses
an interactive menu-based interface where a user can add, delete, retrieve
and display objects or classes within the system.

42

4.2.3 A Generic Superclass

This implementation adopts the view of Cardelli and Mitchell [1989] that
"Object-oriented programming is based on record structures (called objects)
intended as named collections of values (attributes) and functions

(methods). Collections of objects form classes. A subclass relation is
defined on classes with the intention that methods work 'appropriately'
on all members belonging to the subclasses of a given class ... we are
interested here in more powerful type systems that smoothly incorporate
parametric polymorphism."

Objects in a database system can be considered to be tuples or records of
key, value pairs where the key is a unique identifier for an object and the
value is the rest of the record. Using data abstraction the concept of "the
rest of the record" can be extrapolated to include both attributes and
methods. The implementation is based on the concept of a superclass
which implements classes as collections of objects and objects as key, value
pairs. This superclass is inherited by all classes in the system and provides
the default methods for the addition, deletion or retrieval of any object in
a class. Since this implementation is a prototype capable of further
development the key (or unique identifier) is system generated but is
visible to the user so that the user can access objects directly by their keys.
A query interface, which could be a development added later, would not
make use of visible keys.

4.2.4 Persistent Data

Like all database systems this implementation provides for persistent or
long-lived stored data. This data is stored in ASCII files and has to be
mapped onto the executing program in object or class form.

This is a functional implementation, so operations, or methods
implemented as functions, cannot have side-effects. Since the result of the
application of any function is a value, only the value need be stored as
persistent data not the method itself.

43

4.2.5 An Abstract Implementation Scheme

The implementation is based on the mapping of the ERO model directly to
program code in the prototype. The basic rules are as follows:

1.There should be a modularised abstract data type (ADT) to represent
each class, entity or relationship, in the specific ERO model. Each ADT
should contain definitions of all that class's attributes and methods.
Each class should inherit the superclass and in the case of relationships
also import any participating entities in that relationship since
relationships provide the links between entities.

2. There should be a main module that imports all the components of the
database thus linking all the components together.

3. A file for persistent data should be initialised for each class defined in 1.

4.3 The Haskell Environment

The power of functional languages lies in their characteristics of
polymorphism, strong typing, lack of side effects and lazy evaluation. This
implementation relies on these characteristics.

4.3.1 The Polymorphic Superclass

Haskell allows the implementer to define polymorphic types that can be
applied to any arguments of other valid types. For example, [a] refers to a
list of "things" where those things can be numbers, characters, strings or
any other valid things including user defined types.

The superclass that is inherited by all classes in this implementation must
necessarily be polymorphic so that it can be applied to any class, whether it
be entity or relationship. The implementation provides the superclass as
an ADT called Collection Of which sets up an abstract type for a collection
of key,value pairs.

The choice of data structure for any application depends on the "mix of
operations" required by that application. That is, the frequency of

44

insertions, deletions, traversals, retrievals etc. The overriding
consideration for any ordered collection of data like a database is the
efficiency of searching. Insertion depends on finding the correct place to
insert a new record; deletion requires finding the correct record and all
retrievals of information involve a search.

For this application the simplest, and possibly the most intuitive, data
structure is a list of pairs or an association list. In Haskell a list is a
dynamic data structure that can grow during execution as opposed to an
array that requires its maximum size to be set at compile time. An
association list is easy to implement and provides 0(n) operations for
insert, delete and retrieve based on a linear search algorithm.

A more efficient data structure, especially for large data sets, is a binary
search tree which, if maintained as a balanced tree, provides 0(logn)
operations for insert, delete and retrieve based on a binary search
algorithm.

The prototype provides the user with a choice of either an association list
or a binary search tree but can use any polymorphic data structure that
maintains a collection of key,value pairs and obeys the interface syntax.

Both data structures were implemented for testing purposes and to
demonstrate that the specific implementation of the superclass is
completely transparent to the rest of the program.

4.3.2 The Database Prelude

The implementation requires various utility or library functions
particularly for I/O. Using standard Haskell practice these functions are
provided in a "prelude" called DBPrelude. This also contributes to the
modularity of the implementation so that an implementer needs only the
superclass, prelude, main initialising module and a set of class definitions
reflecting a particular ERO model to set up a new database.

45

4.3.3 The Main Module

The main initialising module presented in the prototype provides the
linking mechanism for all the components of the database. It also
provides the interface between the program and the persistent data stored
on files. The main module imports all the components of the database
(superclass, prelude, and class definitions) and sets up the top level menu
and the lazy evaluated input streams from the user and the persistent data
store.

4.3.4 Persistent Data Files

Persistent data for the implementation is stored as ASCII files which are
mapped onto the program by functions in the prelude which are called by
the main module. Lazy evaluation of input streams in Haskell means
that the data files are not resident in memory for the duration of execution
of the program but are accessed on a "need to know" basis as execution
requires. This also means that updates to persistent data must be done
explicitly using a save option.

4.3.5 Flow of Control using Continuation -based I/O

The implementation uses continuation-based I/O and continuation
programming style as outlined in chapter 2. Every function that interacts
with user input must be of type Dialogue. The flow of control in the
program is maintained by cascading and/or recursive calls to functions of
type Dialogue.

4.3.6 Simulating Global Variables

Since functional programming languages do not have assignment
operators (all values are generated by the evaluation of a function) there is
no concept of a global variable. A database system that generates its own
unique identifiers (uids) needs to create a new uid for each new object in
the system. This can be done in a functional language by setting up an
infinite list of possible uids from which successive uids are retrieved or, as
in this system, each new uid is generated as the successor of the last uid.
This means that the current uid must be passed to every Dialogue

function in the system during execution so that the "global variable" is
defined for all program control functions.

In practice, each file storing an entity class has the last uid used for an
object in that class saved to it. This allows the next uid for that entity class
to be generated from that last uid.

4.4 The Haskell Prototype

Hudak and Fasel [1991] state that" ...modules provide the only way to
build abstract data types (ADTs) in Haskell." Following this philosophy,
this implementation builds all components of the system as ADTs
implemented as separately compilable modules.

4.4.1 The ADT CollectionOf

The ADT Collection Of is a separately compilable module representing the
superclass. It maintains a collection of objects as a binary search tree. The
type constructor Collection is applied to the two polymorphic variables a
and b. The default methods for insertion, deletion and retrieval are
provided by the functions insert, delete and retrieve. The function flatten
maps the tree to a list and is used for I/O and tree balancing. The
functions bal and balance provide an explicit operation for balancing the
tree and are used after any insertion or deletion that might unbalance the
tree. Figure 4.1 shows the complete module.

The implementation is based on an ADT that maintains a collection of
key,value pairs. This ADT can take any form as long as it provides the
operations: retrieve, insert, delete, empty, flatten, bal and balance and
obeys the interface syntax. Retrieve has two arguments: a collection and a
key and returns the key,value pair with that key. Insert takes three
arguments: a collection, a key and a value and returns a new collection
with that key,value pair inserted in the appropriate position. Delete takes
two arguments: a collection and a key and returns a new collection with
the pair corresponding to that key deleted. Empty defines an empty
collection. Flatten maps a collection to a list, if necessary. Bal and balance
should be do nothing for non-tree data structures.

47

module CollectionOf where
data Collection a b = Nil I Node (a,b) (Collection a b)(Collection a b)

deriving (Eq, Text, Binary)

empty = Nil

flatten Nil = (I
flatten (Node (x,y) 1 r) = flatten 1 ++ [(x,y)) ++ flatten r

retrieve Nil z = error "Node not in tree"
retrieve (Node (x,y) 1 r) z I z == x = (x,y)

I z < x = retrieve 1 z
I z > x = retrieve r z

insert Nil x y = Node (x,y) Nil Nil
insert (Node (xl,y1) 1 r) x y I x == xl = Node (x,y) 1 r

I x < xl = Node (xl,y1) (insert 1 x y) r
I x > xl = Node (xl,y1) I (insert r x Y)

delete Nil z = error "Node not in tree"
delete (Node (x,y) 1 r) z I z == x = delitem (Node (x,y) 1 r)

I z < x - Node (x,y) (delete 1 z) r
I z > x = Node (x,y) I (delete r z)

--Delete a node :
1. If node is a leaf then just delete it
2. If the node has 1 child then that node's child becomes one of that

node's parent's children (symmetric for left and right)
3. If the node has two children then replace it with its inorder

successor i.e. the leftmost node of that node's right subtree
--
delitem (Node (x,y) Nil Nil) = Nil
delitem (Node (x,y) Nil r) = r
delitem (Node (x,y) 1 Nil) = 1
delitem (Node (x,y) 1 r) = Node (leftmost r) 1 (delete r (fst(leftmost r)))

leftmost (Node (x, y) 1 r) I 1 == Nil = (x, y)
I otherwise = leftmost 1

bal [1 = Nil
bal t - Node r (bal left) (bal right)

where n = length t
left = take ((div) n 2) t
r:right = drop ((div) n 2) t

balance t = bal (flatten t)

Figure 4.1

To demonstrate that an implementation that maintains a collection of
pairs and obeys the interface syntax is valid and transparent to the rest of
the system, Figure 4.2 presents the simple association list version of
CollectionOf. . The only necessary concessions are null versions of the tree-
specific functions flatten, bal and balance.

48

module CollectionOf where
'type Collection a b = [(a,b)]

empty = []

flatten 1 - 1

bal 1 = 1

balance t = t

retrieve [] x = error "UNDEFINED"
retrieve ((x,y):t) z I z == x = (x,y)

I z < x = error "UNDEFINED"
I z > x = retrieve t z

insert tj x y = [(x,y)]
insert ((xl,y1):t) x y 	I x -= xl = (x,y):t

I x < xl = (x,y):(xl,y1):t
x > xi = (xl,y1): insert t x y

delete [I z = []
delete ((x,y):t) z I z == x 	t

z < x = (x,y):t
z > x = (x,y): delete t z

Figure 4.2

4.4.1 Types for Gasses and Objects

For Entity-Objects (E/Os), each pair in the association list represents an
object where the first item in the pair is the unique identifier (uid) for that
object and the second item in the pair is a variable length string of strings
representing the attributes of that object. Figure 4.3 shows the type
definitions for E/Os.

type Attribute - String

type Did = String

type Info = [Attribute]

type EntityObject = (Did, Info)

type EntityClass = Collection Did Info

Figure 4.3

For R/Os, there is another level of nesting using the polymorphic nature
of the superclass ADT. The first item in the RIO pair is in itself a pair
providing the link between the two E/Os participating in the relationship

49

thus producing a composite uid for the RIO. Conceptually, the type
definitions for R/Os are shown in Figure 4.4.

type Link = (Uid,Uid)

type RelationshipObject = (Link, Info)

type RelationshipClass = Collection Link Info

Figure 4.4

In practice, the type Link needs to be defined as an algebraic type to allow
the overloading of equality and ordinal operators. This can be done in
Haskell by setting up a user defined datatype and then defining instances
of that type that specifically define the relational operators needed in the
operations in the ADT Collection Of as in Figure 4.5.

data Link - Linkid (Uid, Uid)

instance Eq Link where

(Linkid (x, y)) == (Linkid (xl, yl)) 	(x == xl && y == yl)

instance Ord Link where

(Linkid (x,y)) < (Linkid (xl,y1)) = (x == xl && y 1= yl) II

(x <= xl && x /= xl)

(Linkid (x,y)) >= (Linkid (xl,y1)) = xl <= x

(Linkid (x,y)) > (Linkid (xl,y1)) 	xl < x

Figure 4.5

The data statement sets up a user-defined type called Link with a type
constructor Linkid similar to a scalar or tagged type in an imperative
language. The Haskell compiler could "infer" equality for two Links
where the first item in each pair is equal and the second item in each pair
is equal, but the system could not infer whether one pair is greater than
another pair since each contains two discrete values. The equality and
ordinal relationships of these Link pairs has to be spelled out explicitly
using instance declarations.

50

Defining the equality and orclinality of links is purely arbitrary since they
are not, by definition, part of an ordinal set. For simplicity, this
implementation has defined ordinality to be based on the first uid in the
link. Ordinality could just as easily have been defined based on the second
uid in the link or some formula involving both uids. The choice is up to
the implementer based on the specific application.

In Figure 4.5 the first instance declaration defines equality for this link type
within the inbuilt definition or Haskell class Eq for equality. That is, we
have defined two links to be equal if both items in each pair are equal.
The second instance declaration defines the relational operators (which
belong to the Haskell built in class Ord) for the type Link. This definition
takes many-to-many relationships into account where the pair is distinct
even though one of the items may be the same.

4.4.2 The DBPrelude

The DBPrelude (see Appendix) is a separately compilable module that
provides standard utility functions for all update operations on all objects
in the system. It also provides functions for the interactive, menu-based
interface for adding, deleting, retrieving (by uid) and displaying any object,
or set of objects, in the system.

The functions enterentity/enterrelationship, findentitylfindrelationship,
deleteentityldeleterelationship, and displayentity/displayrel place the
polymorphic functions from the ADT Collection Of into the appropriate
I/O environment.

The enter functions are for user entry of new E/Os and R/Os. The find
and delete functions prompt the user for a uid so that an object can be
retrieved or deleted. The display functions display the current class on
the screen. Display operations can be used by a user to find out a uid for
the delete and find operations.

Most of the other functions in DBPrelude relate specifically to mapping
ASCII strings to class types and vice versa for I/O and are of type Dialogue
or String.

51

4.4.3 Function Synonyms

Continuation-based I/O, the passing of higher order functions and the
need to carry around global variables can lead to a verbosity in functional
programs particularly in terms of long and cumbersome
parameter/argument lists. To make functions more readable this
implementation uses "function synonyms" for often used patterns in
argument lists. Figure 4.6 below shows the three synonyms used in the
DBPrelude. UserInput is the infinite lazy input stream from the keyboard.
Continuation is a synonym for the application of this input stream to a
function of type Dialogue. EntityFunction and RelationshipFunction are
synonyms for the standard set of arguments used by functions dealing
with entities or relationships.

type UserInput - [String]

type Continuation = UserInput -> Dialogue

type EntityFunction = FileName -> Titles -> EntityClass -> Uid ->

Continuation

type RelationshipFunction = FileName -> Titles -> RelationshipClass ->

Continuation

Figure 4.6

4.5 A Mapping Methodology for the Haskell Prototype

The mapping methodology is based on the abstract mapping scheme
presented in 4.2.5. Each E/O and RIO in the ERO model is mapped to an
ADT implemented as a module containing definitions of all that class's
attributes and methods. Each class inherits the superc_lass and in the case
of relationships also imports any participating entities in that relationship.

A main module imports all the components of the database thus linking
all the components together and a file for storing each class as persistent
data is set up.

The prototype implementation requires three standard Haskell source
modules:

52

collection.hs - defining the standard polymorphic ADT Collection Of
for the superclass

dbprelude.hs - defining the DBPrelude, containing all basic I/O and
utility functions

maindb.hs - the main driver program containing the mandatory
module Ma in

For any new implementation the modules collection.hs and dbprelude.hs
remain unchanged but maindb.hs needs to be edited so that the main
menu reflects the specific ERO model.

The following are the specific steps needed to set up an implementation
using the Haskell prototype for a specific ERO model.

4.5.1. Create Class modules

For each E/O in the model create a source module that imports the
generic, polymorphic ADT Collection and the DBPrelude containing the
standard functions.

For each R/O create a module that imports the generic, polymorphic ADT
Collection, the DBPrelude containing the standard library functions and
the modules for each of the E/Os that participate in the relationship.

In each module declare a type for each attribute, a filename for where the
persistent class will be stored and a list of titles, or labels, that can be used
for I/O prompts and display formatting.

4.5.2. Add Methods

For any class that has methods associated with it, set up a methods menu
and a methods driver function of similar format to the default methods
menu and menu driver in the DBPrelude.

Implement method functions for each method using appropriate
functions from the superclass and prelude.

53

4.5.3. Customise Main Menu for specific ERO Diagram

Edit the main program module, maindb.hs so that the menu contains a
case instance for each E/O or RIO module created in 4.5.1 above. Then
modify the main menu driver (i.e. the function setClass) to provide the
appropriate function calls. E/O options call the function readEntity and
RIO options call readRelationship. Each function call should pass
parameters for filename, titles, the class's method driver function, an
(empty) initialised class and the continuation for interactive input. The
remainder of maindb.hs remains unchanged.

4.5.4. Initialise Persistent Data Stores

Create a file for each of the persistent data stores (i.e. one for each E/O or
R/0). The prototype only provides for simple unique identifiers
represented as integers chosen to suit the size of the data set. For example,
for a data set not expected to exceed 99 objects in each class, seed each E/O
file by inserting some integer as a starting unique identifier, e.g. the first
E/O might be seeded with 100, the second with 200, the third with 300, and
so on. The unique identifiers for R/Os are generated from the uids of each
of the participating E/Os.

4.5.5. Compile, Link and Run

Compile and link all the modules. Execute maindb.

4.6 An Example

4.6.1 An ERO Model

The following worked example is based on the model in Figure 3.7
reproduced below. The RIO Works-In has two attributes: Salary and Job
Title and two methods: Change-Salary and Change-Job-Title. Because it
represents a relationship it also imports two E/Os: Employee and
Department. The Employee E/O has two attributes: Name and Address
and one method: Change-Address. The Dept E/O also has two attributes:
Name and Address and one method: Change Address.

Salary

Job Title

r Employee

..Change-Address j

/' 	
..\

Works-In

Change-Salary

Change-Job-Title

Name

Address

4.6.2 Step 1 of the Mapping Methodology

A module is created for each of the two E/Os: Employee and Dept
participating in the relationship. Each E/O imports the superclass module
and the prelude as shown for the E/O Employee below:

module EmployeeEntity where

import CollectionOf

import DBPrelude

Attributes, class declarations, titles and filename are added as follows:

--Attributes--

type EmpName = Attribute

type EmpAddress = Attribute

--Entity/Class Declarations--

type Employee = EntityObject

type Employees = EntityClass

--Titles--

employeeTitles = ['Employee Name", "Employee Address"]

--Filename--

employeeFile - "Employees"

55

The module for the E/O Dept would be created in a similar way.

The RIO Works-In imports the superclass, the prelude and its
participating E/Os as follows:

module WorksInRelationship where

import CollectionOf

import DBPrelude

import EmployeeEntity

import DeptEntity

Attributes, class declarations, titles and filename are added in the same
way as in the E/Os as follows:

--Attributes--

' type Salary = Attribute

type JobTitle = Attribute

--Relationship/Class Declarations--

type Worksin = RelationshipObject

type WorksIn = RelationshipClass

--Titles--

worksinTitles = ["Salary", "Job Title")

--Filename--

worksInFile = "WorksIn"

4.6.3 Step 2 of the Mapping Methodology

Add a methods menu to the module of any class that uses methods.
Below is the methods menu for the E/O Employee:

--Methods Menu--

empmenu = "\n" ++ employeeFile ++ "Operations\n" ++

"10. Change an employee's address\n\n" ++

"Hit return to return to main menu\n\n" ++

"Command: "

56

'Now, set up a driver function for the methods menu as below:

--Methods Driver--

empops :: (Continuation) -> EntityFunction

empops setClass fname titles coil lid inp =

appendChan stdout empmenu abort

(case inp of

(linel : rest) ->

case (linel) of

"10" -> appendChan stdout "Changing address\n" abort

(empchangeaddress setClass empops fname titles coil lid rest)

-> prompt setClass empops fname titles coil lid rest)

There will now be three levels of menus in the system. At the first level is
the main menu controlled by function setClass (see 4.6.4) which chooses
which class is currently being operated on. The second level menu is
controlled by the function prompt provided in DBPrelude. This level
provides functions for the default superclass methods (e.g. add, delete,
retrieve etc). Adding new methods requires a third level menu of the
form outlined above.

The main menu function setClass must be passed as a "global" function to
allow recursive calls where appropriate. There must be a case instance for
each method and an escape case instance (using the Haskell wildcard "_")
for returning to the second level menu. In all instances the calls must
carry, as parameters, the functions necessary for recursive calls - setClass
for eventual return to the main menu and em pops for recursive calls to
the driver itself so another method may be chosen.

Lastly, a function for each method in the E/O should be added as below:

--Methods--

empchangeaddress :: (Continuation) - ((Continuation) -> EntityFunction) ->

EntityFunction

empchangeaddress s ops fname titles coll lid inp

readItem "Enter Entity Id in?

inpl ->

readItem "Enter new address ' inpl

57

(\a rest ->

prompt s ops fname titles (insert coin (i f info)) lid rest

where current = retrieve coil i

colll = delete coil (retrieve coil i)

atts = snd current

empname = head atts

info = empname:[a]))

Below is the methods menu for the RIO Works In which demonstrates
that more than one method can be added to a class by adding lines to the
menu and appropriate case instances in the driver.

--Methods Menu--

worksinmenu = "\n" ++ worksInFile ++ "Operations\n" ++

"10. Change an employee's salary\n\n" ++

"11. Change an employee's job title\n\n" ++

"Hit return to return to main menu\n\n" ++

"Command: "

--Methods Driver--

worksinops :: (Continuation) -> RelationshipFunction

worksinops setClass fname titles coil inp =

appendChan stdout worksinmenu abort

(case inp of

(linel : rest) ->

case (linel) of

"10" -> appendChan stdout "Changing salary\n" abort

(workschangesalary setClass worKsinops fname titles coil rest)

"11" -> appendChan stdout "Changing job title\n" abort

(workschangejob setClass worksinops fname titles coil rest)

-> rprompt setClass worksinops fnare titles coil rest)

Below is the implementation of the two methods associated with the R/O
WorksIn. Each uses the readItem function from the prelude and passes
control back to the default methods menu in the prelude with a call to the
function rprompt.

58

--Methods--

workschangeasalary :: (Continuation) -> ((Continuation) ->

RelationshipFunction) -> RelationshipFunction

workschangesalary s ops fname titles coil inp =

readItem "Enter Owner Id " inp

(\idl inpl ->

readItem "Enter Member Id " inpl

(\id2 inp2 ->

readItem "Enter new salary " inp2

(\sal rest ->

rprompt s ops fname titles (insert coin (link,info)) rest

where link = Linkid (idl,id2)

current = retrieve coil link

colll = delete coil (retrieve coil link)

oldsal:jobtitle = snd current

empname = head atts

info = sal:jobtitle)))

workschangeajob :: (Continuation) -> ((Continuation) ->

RelationshipFunction) -> RelationshipFunction

workschange job s ops fname titles coil inp

readItem "Enter Owner Id " inp

(\idl inpl ->

readItem "Enter Member Id " inpl

(\id2 inp2 ->

readItem "Enter new job title " inp2

(\jobtitle rest ->

rprompt s ops fname titles (insert colll (link,info)) rest

where link = Linkid (idl,id2)

current = retrieve coil link

colll = delete coil (retrieve coil link)

sal:oldjobtitle = snd current

cempname - head atts

info = sal:[jobtitle])))

4.6.4 Step 3 of the Mapping Methodology

Edit the main module maindb.hs to import the modules for the ADT
Collection Of, the DBPrelude and every class in the system as follows:

59

module Main where

import CollectionOf

import DBPrelude

import EmployeeEntity

import DeptEntity

import WorksInRelationship

Edit the class menu and menu driver (the function setClass) in maindb.hs
to contain a case instance for each of the E/Os and RIO as below.

main :: Dialogue

main = appendChan stdout "Welcome\n\n" exit (

readChan stdin exit (\userInput ->

setClass (lines userInput)))

classmenu = "\n\nSelect a class as follows:\n" ++

"1. Employees\n" ++

"2. Departments\n" ++

"3. Works In \n" ++

"Class: "

setclass :: Continuation

setClass inp = appendChan stdout classmenu abort

(case inp of

(linel : rest) ->

(case linel of

"1" -> readEntity employeeFile employeeTitles empops empty rest

"2" -> readEntity departmentFile deptTitles deptops empty rest

"3" -> readRelationship worksInFile worksinTitles worksinops empty rest

-> appendChan stdout "error - try again" abort (setClass rest))

4.6.5 Step 4 of the Mapping Methodology

Create a file for the E/O Employee containing the initial uid, say, 100.
Create a file for the E/O Dept containing the initial uid, say, 200. Create an

60

empty file for the RIO Works In since R/O uids are composed of
participating E/O uids.

4.6.6 Step 5 of the Mapping Methodology

Compile and link all the modules. Execute maindb. Control is passed to
the menu based user interface.

61

5 Discussion, Conclusions and Future
Work

This chapter discusses some of the advantages and limitations associated
with the design and implementation methodology presented in this
thesis. Some areas for future work are also discussed.

5.1 Advantages

5.1.1 Integrated Methodology

The design and implementation methodology presented in this thesis is
an integrated one in that it provides a model and a methodology for
mapping that model directly to an implementation in a functional
programming language.

A designer can model a database as a set of interrelated classes using the
ERO'rn- odel. From the ERO model a system can be directly implemented
in the functional language Haskell by following the steps of the mapping
methodology as described in Chapter 4 and including the standard
database prelude and a suitable polymorphic ADT defining classes.

This direct mapping of the ERO model requires only small modifications
to the driver program and the addition of standard format modules for
each class in the ERO diagram.

5.1.2 Preservation of semantics

The ERO model provides for the preservation of the semantics of a
modelled system largely due to its derivation from the Entity-Relationship
Model [Chen,1976] and the incorporation of object oriented concepts by
adding behaviour to the model using methods. The ERO model is further
enhanced by treating not just entities as classes but also relationships
(associations in object-oriented terminology) as classes. This gives a more
abstract view of a data model than currently available semantic and object
models, where all identified components of a data model are treated as
objects.

62

5.1.3 Functionally Complete for Update

The implementation described in this thesis is functionally complete for
the basic update operations of: insert an object, retrieve an object (by uid)
and delete an object. Necessary associated operations for loading, saving
and displaying objects are also provided together with a simple menu
driven user interface. No attempt has been made to provide querying
facilities. The development of querying facilities is discussed in 5.3.2
below.

5.1.4 Ease of Schema Modification

Like the Entity-Relationship Model [Chen, 1976] the ERO model is easily
modified or extended. The implementation methodology used here also
provides for ease of modification by its modular structure. Any new entity
class or relationship class that is added to the ERO model can be
implemented as a separately compilable Haskell module using the steps of
the mapping methodology described in Chapter 4. Only the module itself
and the modules that import it need to be recompiled.

5.1.5 Advantages of using Haskell as an implementation language

The main advantages of using Haskell in this implementation lie in the
power of polymorphism, including overloading, and lazy evaluation.
Polymorphism and the ability to overload arithmetic operators allows for
the definition of a truly generic superclass that is the basis of all classes in
the system. Lazy evaluation allows for the implementation of a form of
persistence where objects are not resident in memory but retrieved from
secondary storage as needed and are explicitly updated on secondary
storage after completion of a transaction.

5.2 Limitations

5.2.1 Localisation of Methods in Object-Oriented Models

The main limitation of this database implementation is the same as that
for any object-oriented database system. Object-oriented models tend to
constrain the modelling of database systems because of the localisation of

63

methods to specific objects or classes. Many database transactions require
the participation of several entities and relationships. For example,
consider a model taken from McFadden and Hoffer [1991]. Figure 5.1
shows the complete model. Attributes have been omitted for simplicity.

Figure 5.1

McFadden and Hoffer's Enterprise data model for the Pine Valley Furniture Company.

One management requirement of the system is for a daily order log report
which would require a method covering the part of the model shown in
Figure 5.2.

64

ORDER CUSTOMER

PRODUCT

CUSTOMER ORDER

Figure 5.2

ER diagram for daily order log report for enterprise shown in Figure 5.1.

Another requirement is for a customer order query for which a method
covering the section of the diagram shown in Figure 5.3 would be
required.

Figure 5.3

ER diagram for customer order history query for enterprise shown in Figure 5.1.

In each of these examples the method to generate the report or satisfy the
query does not logically belong to any single object but to some group of
objects. This constraint needs to be addressed for object modelling to be
useful in database design. An attempt to address this is outlined in 5.3.4
below.

5.2.2 Statelessness of Functional Programming

Database systems are dynamic systems and database operations often
require knowledge of the state of the system or parts of the system. As

65

sdiscussed in 2.4.1, functional languages are stateless and any state-oriented
computations are achieved by passing the state around explicitly. The
method used in this prototype for passing state information around using
pseudo global variables is discussed in 4.3.6. This can lead to the need for
long parameter/argument lists, sometimes spreading over several lines.
This makes programs difficult to read and sometimes difficult to
maintain. Some steps have been taken in this implementation to address
this problem by incorporating "function synonyms" as discussed in 4.4.3.

Current work involving the addition of monads into functional languages
like Haskell [Wadler, 19901 may lead to the incorporation of a notion of
"state" into functional programming systems.

5.2.3 Very Large Database Management Systems

The prototype in this implemenation has only been tested on small data
sets of up to eight classes and less than 50 objects/class. The problems
associated with the design and implementation of Very Large Database
Management Systems have not yet been considered.

5.2.4 Variety of Data Types

For simplicity, the prototype implementation presented here only allows
for data to be of type String. This allows for a smooth interface between
the run time environment and the persistent data store, since Haskell
treats files as single ASCII strings. Of course, database systems should
manage data of any type including numeric, or complex combinations of
several types. In order to implement other data types, the prototype would
need to include conversion functions for mapping other types to, and
from,String types for secondary storage.

5.3 Future Work

5.3.1 A Graphical Interface Development Tool and Compiler

The integrated nature of the design and implementation method
presented here lends itself to the development of a graphical model
development interface with which a user could produce an ERO model

66

directly on the screen. The graphical tool could provide standard icons for
entity-classes and relationship classes and a system of colouring complex
relationships. A compilation system could then take the graphical model
and produce a direct implementation in Haskell code using the mapping
methodology outlined in chapter 4. Specific methods would still have to
be hand coded but all other parts of the mapping methodology should be
capable of being automated.

5.3.2 A Functional Query Interface

A functional query interface could be developed for this implementation
using some of the built-in functions already available in Haskell. Many
database queries are based on selecting objects from a class or classes which
satisfy some predicate. These kinds of operations are naturally functional.
That is, a query is the application of a function to a database that returns
some value.

A good starting point fOr -a query interface would be the Haskell function
in the style of filter. The function filter is provided in one of Haskell's
standard preludes called PreludeList and is described as follows:

--filter, applied to a predicate and a list,

--returns the list of those elements that satisfy the

--predicate; i.e.,

--filter p xs == [x 1 x <- xs, p x]

filter 	:: (a -> Boo].) -> [a] -> [a]

filter p = foldr (\x xs -> if p x then x:xs else xs) []

Functions could be developed that are applied to a predicate and a class
and return a list of all objects satisfying that predicate. This approach
would allow queries to be expressed explicitly as functions that can be
applied directly to classes of objects.

5.3.3 Private/Public Class Interfaces

This implementation has not made use of Haskell's provision for explicit
control over import/export across module boundaries. The prototype uses
modules in their simplest form where, by default, all functions within any

67

Customer-order-query

CUSTOMER tPlaced-By y ORDER

(Requested-On)

PRODUCT ■

Sort-by-date

module are exported and available to other importing modules. The
. ability to control the import/export of functions across module boundaries

could be investigated for implementing private and public operations
within classes.

5.3.4 Transaction and Report Modelling

The problem of the localisation of methods discussed above in 5.2 needs to
be addressed in terms of providing methods for complex transaction and
report modelling required by database systems. One area that could be
investigated is the extension of the ERO model to another level of
modelling for transactions and reports. At this new level transactions and
reports could be based on some form of the complex relationships already
existing in the model where a transaction or report imports all the
participating classes and can be implemented as a separate module. For
example, consider the example from McFadden and Hoffer [1991] given in
5.2. The customer order query could be modelled as in Figure 5.4.

Figure 5.4

A transaction modelling scheme for Figure 5.3

Conceptually, queries and reports like these could be considered to be
another type of class with their own unique identifiers and could be

68

implemented as separate modules that import the classes that participate
in the transaction or report.

69

Appendix - The DBPrelude

--Standard database prelude
--Must import a polymorphic ADT that provides at least the standard
--operations:
-- retrieve
-- insert
-- delete
-- Defines the standard types and methods for generic classes
--
-- Written by Linda Dawson
-- Last Modified November, 3.993

module DBPrelude where
import CollectionOf

--STANDARD TYPES

type Attribute = String
type Uid = Attribute 	-- the key or uid for an entity object
type Info = [Attribute] 	-- variable length list of attributes
type EntityObject = (Uid, Info) 	-- the entity object type
type EntityClass = Collection Uid Info -- a collection of entities
data Link = Linkid (Uid, Uid) 	-- the link for a relationship

instance Eq Link where
(Linkid (x, y)) == (Linkid (xl, yl)) = (x == xl && y == yl)

instance Ord Link where
(Linkid (x, y)) < (Linkid (xl, yl)) = (x == xl && y /= yl) II

(x <= xl && x /= xl)
(Linkid (x, y)) >= (Linkid (xl, yl)) = xl <= x
(Linkid (x, y)) > (Linkid (xl, yl)) = xl < x

type RelationshipObject = (Link, Info) 	-- the realtionship object
type RelationshipClass = Collection Link Info
type FileName = String
type UserInput = [String]
type Title = String
type Titles = [Title]

-- file names
-- input from the keyboard
-- attribute label
-- each class has a set of
-- attribute labels

--UTILITIES

--Function synonyms

type Continuation = UserInput -> Dialogue
type EntityFunction = FileName -> Titles -> EntityClass -> Uid ->
Continuation
type RelationshipFunction = FileName -> Titles -> RelationshipClass ->,
Continuat
ion

-- Null methods drivers
eops :: Continuation -> EntityFunction
eopssftcli= appendChan stdout "No methods for this class\n"
abort

(prompt s eops f t c 1 i)

rops :: Continuation -> RelationshipFunction

70

ropssftci= appendChan stdout "No methods for this class\n" abort
(rprompt s rops f t c i)

-- Field delimiters should allow spaces in attributes
fieldDelim = '*'
tab = 1 \t'
doubletab =
space ="
isDelim c = c == fieldDelim

- Formatting functions

width = 20
idwidth = 5
linkwidth = 10

rep :: Int -> a -> [a]
rep 0 x =
rep (n+1) x = x:rep n x
rep other x =

spaces .:: Int -> String
spaces n = rep n "
ljustify :: Int -> String -> String
ljustify n s = s ++ spaces (n - length s)

rjustify :: Int -> String -> String
rjastify n s = spaces (n - length s) ++ s

-- Removes field delimiters from attributes in a persistent class

makefields :: String -> Info
makefields line = case dropWhile isDelim line of

[]

linel -> field: makefields line2
where (field, line2) = break isDelim linel

-- Converts a set of attributes into a single string for output

unmakefields :: Char -> (String] -> String
unmakefields c 	=
unmakefields c fs = foldrl (\w s -> (ljustify width w) ++ c:s) fs

-- Converts an entity class into a string for output

makeopEntity H = H
makeopEntity (firstrec:rest) =

makeopEntityObject firstrec ++ makeopEntity rest

-- Converts an entity object into a string for output
--
makeopEntityObject (i, rest) =

i ++ [fieldDelim] ++ (unmakefields fieldDelim rest) ++ "\n"

-- Converts a relationship class into a string for output
--
makeopRelationship [1 = [1
makeopRelationship (firstrec:rest) =

71

makeopRel firstrec ++ makeopRelationship rest

-- Converts a relationship into a string for output

makeopRel ((Linkid (x,y)), rest) =
x ++ [fieldDelim] ++ y ++ [fieldDelim] ++

(unmakefields fieldDelim rest) ++ "\n"

-- Converts a string into an entity class

makeentityclass 	UserInput -> EntityClass -> EntityClass
makeentityclass 	e = balance e
makeentityclass (line:rest) e =

makeentityclass rest (insert e x y)
where 	eo = makeentity (makefields line)

x = fst eo
y = snd eo

-- Converts a list of attributes into an entity object

makeentity :: Info -> EntityObject
makeentity (field:fields) = (field,fields)

-- Converts a string into a relationship class

makerelationship 	UserInput -> RelationshipClass ->
RelationshipClassmakerelationship 	r = balance r
makerelationship (line:rest) r = makerelationship rest (insert r x y)

where ro = makerel (makefields line)
x = fst ro
y = snd ro

-- Converts a list of attributes into a relationship object

makerel :: Info -> RelationshipObject
makerel (fieldl:field2:fields) = (Linkid(fieldl,field2),fields)

-- Displays an entity class

showEntityclass 	=
showEntityclass (firstrec:rest) =

showentity firstrec ++ showEntityclass rest

-- Displays a relationship class

showrelationship [] = []
showrelationship (firstrec:rest) =

showrel firstrec ++ showrelationship rest

--Displays an entity object

showentity (i,rest) =
(ljustify idwidth i) ++ (unmakefields tab rest) ++ "\n"

--Displays a relationship object

72

showrel ((Linkid (x,y)), rest) =
(ljustify linkwidth link) ++
(unmakefields tab rest) ++ "\n"

where link = "(" ++ x ++ "," ++ y ++ ")"

-- Displays the current entity class

displayentity s eclass = "\n" ++ (ljustify idwidth "Uid") ++
(dispetitles s eclass)

-- Displays the current relationship class

displayrel s rclass = "\n" ++ (ljustify linkwidth "Uid") ++
(disprtitles s rclass)

-- Display entity titles

dispetitles [] coil = "\n" ++ (showEntityclass coll)
dispetitles (t:ts) coil = (ljustify width t) ++ (dispetitles ts coil)

-- Display relationship titles

disprtitles [] coil = "\n" ++ (showrelationship coil)
disprtitles (t:ts) coil = (ljustify width t) ++ (disprtitles ts coil)

--STANDARD MENUS

updatemenu = "\n\nEnter a command as follows:\n" ++
"1. insert object - inserts a.new object in the database\n" ++
"2. retrieve - returns a record\n" ++
"3. delete - deletes the record with key, id\n" ++
"4. print - displays the database\n" ++
"5. options - for current class\n" ++
"6. change to another class\n" ++
"7. save current class\n" ++
"8. quit - exit program\n\n" ++.
"Command: "

prompt :: Continuation -> (Continuation -> EntityFunction) ->
EntityFunction
prompt s ops fname titles coll lid inp =
appendChan stdout updatemenu abort

(case inp of
(linel : rest) ->

case (linel) of
"1" -> appendChan stdout "inserting\n" abort

(enterentity s ops fname titles titles [] coil lid rest)
"2" -> appendChan stdout "retrieving\n" abort

(findentity s ops fname titles coil lid rest)
"3" -> appendChan stdout "deleting\n" abort

(deleteentity s ops fname titles coil lid rest)
"4" -> appendChan stdout

(displayentity titles (flatten coll))abort
(prompt s ops fname titles coil lid rest)

"5" -> appendChan stdout "options\n" abort
(ops s fname titles coll lid rest)

"6" -> appendChan stdout "changing\n" abort
(s rest)

"7" -> appendChan stdout ("saving" ++ fname) abort

73

(writeFile fname (lid ++ "\n" ++
(makeopEntity (flatten coil))) abort

(s rest))
"8" -> appendChan stdout flgoodbye\n" abort done

-> appendChan stdout "error - try again"
abort (prompt s ops fname titles coil lid rest))

riorompt :: Continuation -> (Continuation -> RelationshipFunction) ->
RelationshipFunct ion
rprompt s ops fname titles coil inp =
appendChan stdout updatemenu abort
(case inp of

(linel : rest) ->
case linel of

"1" -> appendChan stdoUt "ins rel\n" abort
(enterrelationship s ops fname titles titlesl [1 coil rest
where titlesl = ["Enter owner id: "]

++["Enter meMber id: "] ++ titles)
"2" -> appendChan stdout "retrieving rel\n" abort

(findrel $ ops fname titles coll rest)
"3" -> appendChan stdout "deleting rel\n" abort

(deleterel s ops fname titles coil rest)
"4" -> appendChan stdout (displayrel titles (flatten coil))

abort (rprompt s ops fname titles coil rest)
"5" -> appendChan stdout floptions\n" abort

(ops s fname titles coil rest)
"6" -> appendChan stdout "changing\n" abort

(s rest)
"7" -> appendChan stdout ("saving" ++ fname) . abort

(writeFile fname
(makeopRelationship (flatten coil)) abort
(s rest))

"8" -> appendChan stdout "goodbye\n" abort done
-> appendChan stdout "error - try again"

abort (rprompt s ops fname titles coll rest))

--UPDATE OPERATIONS FOR CLASSES

-- Reads entity data typed in at the terminal
-- one attribute per Title
--
enterentity :: Continuation -> (Continuation -> EntityFunction) ->
FileName -> Titles -> Titles -> Info -> EntityClass -> Uid ->
Continuation

enterentity s ops fname ti 1] info coil lid rest =
prompt s ops fname ti (balance (insert coll nextid info)) nextid rest

where nextid = show ((read lid)+1)
enterentity s ops fname tl (t:ts) info coll lid rest =
readItem t rest
(\i restl -> enterentity s ops fname ti ts

(info ++ [i]) coil lid restl)

-- Sets up a relationship between 2 objects

enterrelationship :: Continuation -> (Continuation ->
RelationshipFunction) -> FileName -> Titles -> Titles -> Info ->
RelationshipClass -> Continuation

enterrelationship s ops fname ti [] (idl:id2:infol) coll rest =

74

rprompt s ops fname ti (balance (insert coil linkl infol)) rest
where 	linkl = Linkid (idl,id2)

enterrelationship s ops fname ti (t:ts) info coil rest =
readItem t rest
(\i restl -> enterrelationship s ops fname tl ts

(info ++ [i]) coil restl)

-- Finds an entity object
--
findentity :: Continuation -> (Continuation -> EntityFunction) ->
EntityFunction

findentity s ops fname titles coil lid inputLines =
readItem "Enter Entity Id: " inputLines

(\i rest -> appendChan stdout (showentity (retrieve coil i)) abort
(prompt s ops fname titles coil lid rest))

-- Finds a relationship object

findrel :: Continuation -> (Continuation -> RelationshipFunction) ->
RelationshipFunction

findrel s ops fname titles coil inputLines =
readItem "Enter owner id: " inputLines(\x inputLines1 ->

readItem "Enter member id: " inputLines1
(\y rest -> appendChan stdout

(showrel (retrieve coil (Linkid (x, y)))) abort
(rprompt s ops fname titles coil rest)))

-- Deletes an entity object
--
deleteentity :: Continuation -> (Continuation -> EntityFunction)->
EntityFunction

deleteentity s ops fname titles coil lid inputLines =
readItem "Enter Entity id: " inputLines

(\i rest ->
prompt s ops fname titles (delete coil i) lid rest)

-- Deletes a relationship object

deleterel :: Continuation -> (Continuation -> RelationshipFunction) ->
RelationshipFunction

deleterel s ops fname titles coll inputLines =
readItem "Enter owner id: ", inputLines

(\x inputLines1 ->
readItem "Enter member id: " inputLines1

(\y rest ->
rprompt s ops fname titles

(delete coll (Linkid (x,y))) rest))

-- Reads a single string from the keyboard

readItem :: Title -> UserInput -> (String -> [String] -> Dialogue) ->
Dialogue

readItem aprompt inputLines succ = appendChan stdout aprompt abort
(case inputLines of

(x : rest) -> succ x rest
-> appendChan stdout "EOF" abort done)

75

References

Atkinson M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., and
Zdonik, S. 1990 'The Object-Oriented Database System Manifesto' in
Deductive and Object-Oriented Databases, eds W. Kim, J.-M. Nicolas
and S. Nishio, Elsevier Science Publishers B.V. (North Holland), pp
223-240.

Beck, K. and Cunningham, W. 1989 'A laboratory for teaching object-
oriented thinking' OOPSLA '89 Proceedings, pp 1-6.

Boehm, B.W. 1988 'A spiral model of software development and
enhancement' IEEE Computer, Vol 25, No 5, pp 61 -72.

Booch, G. 1986 'Object-oriented development' IEEE Transactions on
Software Engineering,Vol 12, No 2, pp 211-221.

Bretl, R., Maier, D., Otis, A., Penney, B., Schuchardt, B., Stein, J., Williams,
E.H. and Williams, M. 1990 'The Gemstone data management
system. In Object-Oriented Concepts, Databases and Applications,
Kim, W. and Lochovsky, F.H. eds. pp 283-308. ACM Press Books.

Cardelli, L. and Mitchell, J.C. 1989 'Operations on Records.' In Proceedings
of 5th International Conference on Mathematical Foundations of
Programming Semantics, New Orleans, Louisiana, USA, March 1989.

Chen, P.P. 1976 'The Entity-Relationship Model: Toward a Unified View of
Data.' ACM Transactions on Database Systems, Vol 1, No 1, pp 9-36.

Codd, E.F. 1970 'A relational model of data for large shared data banks'
Communications of the ACM, Vol 13, No 6, pp 377-387.

Deux, 0. 1990 'The story of 02.' IEEE Transactions on Knowledge and Data
Engineering, Vol 2, No 1, pp 91-108.

Dobbie, G. 1991 'Object Oriented Database Systems: A Survey'Proceedings
of the Fourteenth Australian Computer Science Conference, Sydney,
Australia, February 6-8, 1991.

Elmasri, R. and Navathe, S.B. 1989 Fundamentals of Database Systems The
Benjamin/Cummings Publishing Company, Inc.

76

Elmasri, R., Weeldreyer, J. and Hevner, A. 1985 'The Category Concept: An
Extension to the Entity-Relationship Model', International Journal
on Data and Knowledge Engineering, Vol 1, No 1.

Fong, E., Kent, W., Moore, K. and Thompson, C. 1991
X3/SP ARC/DBSSG/OODBTG Final Report.

Hammer, M., and Mcleod, D. 1981 Database description with SDM: A
semantic database model.' ACM Transactions on Database Systems,
Vol 6, No 3, pp 351-386.

Hansen, G. W. and Hansen, J.V. 1992 Database Management and Design
Prentice-Hall.

Henderson-Sellers, B. 1992 A Book of Object-Oriented Knowledge
Prentice-Hall.

Hudak, P. 1989 'Conception, Evolution, and Application of Functional
Programming Languages' ACM Computing Surveys, Vol 21, No 3, pp
359-411.

Hudak P. and Fasel, J. 1992 'A Gentle Introduction to Haskell' ACM
SIGPLAN Notices, Vol 27, No 5, Section T.

Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J.,
Guzman, M.M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D.,
Nilchil, R., Partain, W. and Peterson, J. 1992 'Report on the
Programming Language Haskell. A Non-strict, Purely Functional
Language, Version 1.2' ACM SIGPLAN Notices, Vol 27, No 5, Section
R.

McFadden, F.R. and Hoffer, J.A. 1991 Database Management, (Third
Edition), Benjamin/Cummings.

Nijssen, G.M. and Halpin, T.A. 1989 Conceptual Schema and Relational
Database Design: A Fact Oriented Approach Prentice-Hall.

Nikhil, R. S. 1985 'Functional Databases, Functional Languages. Extended
Summary.' In Proceedings 1985 Persistence and Data Types
Workshop Appin, Scotland, August 1985.

ONTOS Object Database, Learning to use ONTOS for OS/2 Systems, 1989.

77

Peckham, J. and Maryanski, F. 1988 'Semantic Data Models' ACM
Computing Surveys, Vol 20, No 3, pp 153-189.

Rumbaugh J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. 1991
Object-Oriented Modeling and Design Prentice-Hall, Englewodd
Cliffs, NJ.

Shipman, D.W. 1981 'The functional data model and the data language
DAPLEX' ACM Transactions on Database Systems„ Vol 6, No 1, pp
140-173.

Shlaer, S. and Mellor, S.J. 1989 Object-Oriented Analysis: Modeling the
World with Data. Prentice-Hall, Englewood Cliffs, NJ.

Wadler, P. 1990 'Comprehending Monads' In Proceedings of 1990 ACM
Conference on LISP and Functional Programming, Nice, France, June
1990.

Wegner, P. 1987 'Dimensions of object-based language design.' In OOPSLA
'87 Proceedings, New York, ACM.

Wilkinson, K., Lyngboek, P. and Hasan, W. 1990 'The Iris architecture and
implementation'. IEEE Transactions on Knowledge and Data
Engineering, Vol 2, No 1, pp 63-75.

78

