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Abstract 

Semantic data modelling has been a traditional abstract way of 
representing data and relationships between data for database systems. 
Recently database designers and developers have been looking to object 
oriented modelling methods which incorporate the modelling of 
behaviour as well as data and their relationships. 

Databases can also be considered to be functional structures. All 
operations on databases are functional in that they return values. 
Transaction and update operations return a new version of the database; 
queries return values contained in the database; and reports return values 
from the database in some strictly formatted form. 

This thesis firstly develops an extended version of the Entity-Relationship 
model, called the Entity-Relationship-Object model (ERO model) that 
incorporates object oriented concepts including behaviour. Secondly, a 
methodology is defined for mapping this model directly to the functional. . 

programminglanguage, Haskell, where all Entity and Relationship objects 
are implemented as abstract data types and all attributes and methods are 
implemented as functions. 

The modularity and polymorphism of the proposed models and their 
implementation allow for easy schema extension and modification. Lazy 
evaluation in the implementation allows for a simple form of persistent 
data store. 
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1 Introduction 

1.1 Overview 

This thesis investigates the design and implementation of an object-
oriented database system in a functional programming language 
environment. This involves two major areas of investigation. Firstly, the 
design of an object-oriented database being based on an object-oriented 
data model [Dobbie, 19911. Traditionally the design of databases has been 
based on semantic data models which capture the definition and meaning 
of data objects and the relationships between them. Object-oriented 
modelling methods add behaviour to data models so that database users 
can manipulate data as well as store, retrieve and share data. 

Secondly, the implementation is based on a functional programming 
environment since databases may be considered to be inherently 
functional structures in that all operations on databases return values. 
Transaction and update operations return a new version of the database; 
queries return values contained in the database; and reports return values 
from the database in some strictly formatted form. The system developed 
here deals with update operations and some reporting functions but not 
query facilities. 

Although there are two development aspects addressed in this project, the 
overall methodology is based on Henderson-Sellers' [1992] general object-
oriented software development methodology. Henderson-Sellers [1992] 
offers a general methodological framework that can variously incorporate 
functional or object-oriented analysis and object-oriented design together 
with object-oriented or imperative implementation environments. The 
methodology here uses object-oriented analysis, object-oriented design and 
a functional programming language implementation. 

1.2 Aims 

The aims of this project are twofold. Firstly, semantic data models and 
object data models are investigated with a view to combining the 
characteristics of both to produce a model that provides semantic 

1 



information about both data and its behaviour. This model should lend 
itself to direct implementation in a programming language that provides a 
high level of data abstraction, polymorphism and rich typing. 

The second aim of this project is to investigate the properties of functional 
programming languages, using a standard accessible language, Haskell 
[Hudak, 19921, for the implementation of an object-oriented database. 

There are several new ideas presented in this thesis. A new data model, 
the ERO model, has been developed which combines the characteristics of 
semantic data models and object data models and also provides a higher 
level of abstraction than either of these models by treating both entities 
and relationships as classes of the same polymorphic type. This model is 
also directly implementable in any language which offers polymorphism, 
data abstraction in the form of abstract data types (ADTs) and modularity. 

This project provides a new variant of Henderson-Sellers' [1992] object-
oriented development methodology. This new methodology is applicable 
to database development, incorporates the ERO model at the design stage 
and provides a methodology for mapping the ERO model directly to a 
functional programming language where all entities and relationships are 
implemented as abstract data types and all attributes and methods are 
implemented as functions. 

The data abstraction, modularity and polymorphism provided in the 
models and their implementation allow for easy schema extension and 
modification. Lazy evaluation in the implementation allows for a simple 
form of persistent data store. 

1.3 Definitions 

Entity-Relationship (ER) models [Chen, 1976, Hansen and Hansen, 1992] 
provide semantic information about data objects, called entities, or 
collections of data objects, called entity classes, and the relationships 
between them, called relationships. 

The Object Modelling Technique (OMT) data model [Rumbaugh et al, 
19911 provides semantic information about data objects, objects, and 
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polymorphic collections of data objects, classes, and relationships between 
them, called associations. OMT models also provide information about 
the behaviour of objects as operations which are implemented as 
methods. 

1.4 Literature Summary 

The Entity-Relationship Model was first proposed by Chen [1976]. This 
model has been extended or enhanced by several authors including 
Elmasri, Weeldreyer and Hevner [1985], Elmasri and Navathe [1989] and 
Hansen and Hansen [1992]. Nijssen and Halpin [1989] have proposed a 
fact-oriented data modelling technique. Object data models and notations 
have been proposed by Rumbaugh et al [1991] and Henderson-Sellers 
[1992]. Object-oriented design methodologies have been proposed by Beck 
and Cunningham [1989], Boehm [1988], Booch [1986], Henderson-Sellers 
[1992] and Shlaer and Mellor [1989]. The characteristics of object-oriented 
databases have been defined by various authors including Atkinson et al 
[1990], Dobbie [1991] and Fong et al [1991]. Functional databases were 
proposed by Nikhil [1985] and the functional programming language, 
Haskell, has been developed, and is still being upgraded, by a group of 
several researchers. The most recent version is defined in the report on 
Version 1.2 in Hudak et al [1992]. 

1.5 Chapter Overview 

Chapter 2 provides background in four major areas: semantic data 
modelling with particular reference to Entity-Relationship models [Chen, 
1976] and Extended-Entity-Relationship models [Hansen and Hansen, 1992, 
and Elmasri and Navathe, 1989]; object oriented systems including object 
models, object-oriented development methodologies and object-oriented 
database systems; functional systems including functional programming 
languages and functional databases; and the functional programming 
language, Haskell [Hudak et al, 1992] with particular reference to the 
implementation of object-oriented systems. 

Chapter 3 introduces a new data model called the Entity-Relationship-
Object Model. This model combines the extended ER models of Hansen 
and Hansen [1992] and Elmasri and Navathe [1989] and the object models 
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of Rumbaugh et al [1991] and Henderson-Sellers [1992]. This combination 
provides an ER model that incorporates behaviour for both entities and 
relationships. 

Chapter 4 describes the implementation of an ERO model as a simple 
database system within a functional programming environment. The 
conceptual framework is described for mapping an ERO model to an 
integrated implementation system where every entity and relationship is 
treated as a class. Considerations for mapping this conceptual framework 
to a functional programming environment using the functional 
programming language, Haskell are discussed and a specific Haskell 
prototype is described. A detailed example is shown providing specific 
program code within an implemented Haskell prototype. 

Chapter 5 discusses some of the advantages and limitations associated 
with the design and implementation methodology together with some 
areas for future work. 
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2 Background 

2.1 Introduction 

This chapter provides background in four major areas. The first area is 
semantic data modelling with particular reference to Entity-Relationship 
models [Chen, 19761 and Extended-Entity-Relationship models [Hansen 
and Hansen, 1992, and Elmasri and Navathe, 1989]. The second area 
discussed is object oriented systems including object models, object-
oriented development methodologies and object-oriented database 
systems. Thirdly, functional systems are discussed including functional 
programming languages and functional databases. Finally, there is a 
discussion of the functional programming language, Haskell [Hudak et al, 
19921 with particular reference to the implementation of object-oriented 
systems. 

The marriage of concepts and features from all these areas may be 
considered to be useful in addressing the problem that modern database 
systems suffer in that they lack the rich type systems, expressive power and 
data abstraction that is available in modern programming languages. 
Conversely, modern programming languages deal inadequately with the 
persistent (long lived) structured data that is required by modern 
databases. This causes an unnecessary "semantic mismatch" [Nikhil 1985] 
between programming languages and databases. This mismatch needs to 
be overcome so that truly flexible and general database systems can be 
developed. 

2.2 Semantic Data Models 

Codd's [1970] relational data model provided a model that is independent 
of the details of the physical implementation. Since then a number of data 
models have been developed to extend Codd's original concept so that a 
model can more faithfully represent the meaning of the modelled 
domain. These models, called "semantic" models, attempt to express 
meaning in a model by supporting representation of relationships, 
complex objects, data abstraction and inheritance. 
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Although there is no concensus on one particular model, Peckham and 
Maryanski [1988] present a survey of semantic data models whose "one 
unifying characteristic is that they attempt to provide more semantic 
content than the relational model.". 

Peckham and Maryanski [1988] discuss four main characteristics that are 
represented in many of the semantic data models. 

Generalisation and Specialisation - Generalisations can be formed by 
considering a set of concepts and identifying common elements that 
characterise the set. For example, vehicles can be considered to be a 
generalisation of cars, trucks and motorcycles. Specialisation is the inverse 
of generalisation and in the above example a car can be considered a 
specialisation of vehicle. "Generalisation is the means by which 
differences among similar objects are ignored to form a higher order type 
in which the similarities are emphasised" [Peckham and Maryansld 19881. 
Generalisations can be considered to be "is-a" relationships i.e. a car is-a 
vehicle. Therefore, generalisation is a form of data abstraction that can be 
viewed as an inheritance relationship in the object oriented paradigm 
which provides a direct mapping of generalised relationships into a 
system's implementation. 

Aggregation according to Peckham and Maryanski [1988] "... is the means 
by which relationships between low-level types can be considered a high 
level type. The relational data model employs this concept by aggregating 
attributes to form a relation". Aggregation supports the representation of 
an abstraction from several smaller and simpler elements. In the simplest 
form this may correspond to the declaration of the components within a 
record but can also be seen to incorporate the concept of complex objects. 
Aggregation can be considered as a "has-a" relationship. For example, a 
person has-a name and a person has-a bank account. 

Classification "... is a form of abstraction in which a collection of objects is 
considered a higher level object class. Essentially it represents an is-
instance-of relationship." [Peckham and Maryanski 1988]. Classification 
differs from specialisation in that classification defines the type of a specific 
object whereas specialisation provides the derivation or inference of a type 
from an existing type. 
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Association indicates that one abstraction serves as a container for 
instances of other abstractions. It can be considered to represent set 
membership abstractions. For example, a car-person is-a member-of-the-
set of people who drive cars. 

Models surveyed by Peckham and Maryanski include SDM [Hammer and 
McLeod 1981] which organises a collection of entities into classes or types 
which specify member and class attributes, interclass connections and 
derivations rather than relationships between classes and the functional 
data model [Shipman 1981] which limits the constructs to entities and 
functions providing a direct language for data definition called DAPLEX. 
Nijssen and Halpin [1989] have proposed a conceptual schema design 
procedure (CSDP) as part of a methodology called NIAM (Nijssen's 
Information Analysis Methodology) which is also called fact-oriented 
modelling. NIAM provides a method for building a system design by 
starting with specific examples, a set of metaconcepts and a graphical 
notation and following a well-defined design procedure of nine steps. 

In 1978 the ANSI/SPARC committee proposed a three level architecture 
for database systems consisting of external, conceptual and internal levels. 
The external level corresponds to the user's view of the data in the 
application domain. The conceptual level corresponds to a high level of 
logical design representing the meanings of entities or objects and the 
relationships between them. The internal level corresponds to a physical 
or implementable model of the database system. In an object oriented 
model these three levels represent application relationships between 
classes, class specification, and class implementations, respectively. 

2.2.1 The Entity-Relationship Model 

The Entity-Relationship model [Chen, 1976] is a highly abstract semantic 
model. It is a simple high level design tool that supports external and 
conceptual modelling by identifying and describing entities that represent 
the user's view of the data and can also provide mapping from these 
views to the actual data structures at the internal level. This high level of 
abstraction and other characteristics that are similar to the characteristics of 
object-oriented models makes the Entity-Relationship model an ideal basis 
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for the development of a new model that combines the features of 
semantic and object models. 

The Entity-Relationship (ER) Model provides a simple diagrammatic 
notation for representing the essential details of entities or objects and the 
relationships between them. Its semantic modelling power comes from its 
simplicity and generality. There are no limitations placed on the types of 
entities or relationships that can be represented. 

Entities represent "things" identified in the domain that is being 
modelled. Entities can be physical or conceptual. For example, people, 
vehicles and books are physical entities and transactions, skills and bank 
accounts are conceptual entities. A set of entities with the same 
characteristics is called an entity set or entity class. A relationship is a 
linking between two entities. For example, if an employee works in a 
particular department, employee and department can be considered 
entities and works in is a relationship linking the two entities. An 
attribute is a named characteristic of an entity. The cardinality of a 
relationship between entity X and entity Y may be considered as the 
number of X's associated with a single Y and the number of Y's associated 
with each X. Cardinality can represent zero-to-many, one-to-many or 
many-to-many associations 

2.2.2 Enhanced Entity Relationship Models 

There have been several proposals for enhanced or extended entity-
relationship models that incorporate additional semantic modelling 
concepts such as generalisation, classification and aggregation. Elmasri 
and Navathe [1989] propose an enhanced-ER or EER model based on an 
earlier Entity-Category-Relationship (ECR) model [Elmasri et al 1985]. The 
EER model incorporates the concepts of subclasses, superclasses, 
specialisation, generalisation, categories and attribute inheritance. 

Hansen and Hansen [1992] propose a model that incorporates standard ER 
notation (which models 'objects' rather than 'entities') plus specialisation 
and 'aggregate object sets'. There is no attempt to model behavior. 
Hansen and Hansen define an object set as "... a set of things of the same 
kind" and an object instance as "... a particular member of an object set". 
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Object sets are represented as rectangles with the object set name inside it 
in upper case and an object instance can be represented as a point within 
the rectangle with its name in lower case. Attributes are represented as 
ellipses coming off a class rectangle. (see Figure 2.1) 

Name 

 

PERSON 
• person Address ) 

Figure 2.1 

The class PERSON contains an object called person. All objects of class person have the 

attributes Name and Address. 

Specialisation-Generalisation or inheritance is represented as a U symbol 
(the same symbol is used by Elmasri and Navathe [1989]) where the open 
part of the U points to the super class (see Figure 2.2). 

PERSON 

EMPLOYEE 

Figure 22 
An EMPLOYEE is a specialisation of PERSON. 

Hansen and Hansen [1992] view relationships that have their own 
attributes as special object sets and define them as aggregate object sets. A 
simple relationship between two classes is represented as a named arc 
between the two classes with an optional embedded diamond (see Figure 
2.3). Aggregate object sets are represented by enclosing the participating 
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uantity 

classes in a larger rectangle and the end points of arcs to attributes indicate 
the semantics of attributes within the relationships. This leads to the need 
for "colouring" the ER diagram (see Figure 2.4) 

  

MANAGER PROJECT 

  

(a)  

MANAGER 
	 SUPERVISES 	

PROJECT 

(b) 

Figure 2.3 (a) and (b) both represent the same relationship SUPERVISES 

Figure 2.4 (from Hansen and Hansen, 1992, p140) 
The QUANTITY attribute depends on both PRODUCT and COUNTRY and is therefore an 

attribute of the relationship between PRODUCT and COUNTRY 

Cardinalities or the number of instances of one object that correspond to 
the instances of another object in the relationship are represented using 
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"1" and "b" (indicating 'many') at the end of a relationship arc (see Figure 

2.5) 

IS-MARRIED-TO 
HUSBAND 
	

WIFE 

(a) 

WORKS-IN 
EMPLOYEE 
	

DEPARTMENT 

(b) 

   

TAKES 

   

STUDENT 

    

COURSE 

     

       

       

(c)  

Figure 2.5 

(a) A one-to-one relationship - a wife has one husband; a husband has one wife 

(b) An employee is in one department; a department has many employees 

(c) A student takes many courses; a course has many students 

Figure 2.6 is an example of an EER model for a data model of an Invoice 
for Manwaring Consulting Services taken from Hansen and Hansen [1992] 
p 152. This model contains two relationships represented as aggregate 
object sets: ENGAGED-IN and ON which is a relationship between the 
entity PROJECT and the relationship ENGAGED-N. The use of 
aggregation in EER models provides extra semantic expressiveness by 
allowing relationships between relationships. 
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( ADDRESS 

 

NAME 

  

CLIENT 

PERFORMED-FOR 

CONSULTANT 

ENGAC ED-IN 

ACTIVITY 

RATE 

ON 
PROJECT 

INCURRED-ON 

OTHER-
CHARGE 

INVOICE NUMBER 

(INVOICE DATE 

(TITLE  ) 

TOTAL 

(DESCRIPTION ) 	( AMOUNT ) 

Figure 2.6 

Data Model for an Invoice for Manwaring Consulting Services, from Hansen and Hansen, 

1992. 

It should be noted that there are a couple of semantic problems with the 
model in Figure 2.6. A CONSULTANT should have a Name attribute 
and an ACTIVITY should also have a Name attribute. Otherwise, the 
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model is suitable for modelling the entities and relationship for an 
invoice. 

2.3 Object Oriented Systems 

Although there seems to be no agreement as to exactly what constitutes an 
object-oriented system, a useful definition to adopt is Wegner [1987] in 
which a system which supports objects, classes and inheritance may be 
considered to be object-oriented. Object-oriented systems are based on 
decomposing problems to a set of objects in the problem domain. Classes 
encompass the concepts of data abstraction and polymorphism in that they 
provide a way of classifying objects in terms of behavioural and data 
abstraction. Inheritance allows the use of existing definitions to be the 
basis of new definitions. 

Therefore, data abstraction rather than procedural abstraction is the core 
concept in object-oriented software development. Instead of data being 
passed from one procedure to another, as in the procedural paradigm, flow 
of control is passed from one data abstraction to another. 

The development of object-oriented systems is not just a modelling 
technique and/or programming style but is based on a software 
development paradigm that incorporates object-oriented analysis (00A), 
object-oriented design (00D) and object-oriented programming (00P). 
Traditional software development life cycles tend to be linear and 
sequential, or top down, as in the waterfall model [Henderson-Sellers, 
1992]. Some models provide for feedback from various stages of analysis, 
design and implementation as in the spiral model [Boehm, 1988] and the 
fountain model [Henderson-Sellers, 1992]. The object-oriented life cycle is 
not considered to be linear. Some analysis may be carried out before the 
design begins but parts of the analysis may proceed in parallel with the 
design and implementation of other parts of the system. Throughout the 
development cycle the concept of an object remains the same. Objects are 
identified, then modelled as classes and then refined and, if possible, 
reused in implementation. 

Henderson-Sellers [1992] provides a number of alternative methodologies 
for a complete object-oriented life cycle which includes analysis, design 
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and implementation. The choice of methodology depends on the 
application environment. Methodologies proposed by Henderson-Sellers 
include: Object-oriented analysis, Object-oriented design and Object-
oriented implementation (000), Functional analysis, Object-oriented 
design and Object-oriented implementation (F00) and Object-oriented 
analysis, Object-oriented design and Functional implementation (00F). 

2.3.1 Object Models 

Rumbaugh et al [1991] propose the Object Modelling Technique (OMT) 
which models information in three different forms: the Object Model, 
Functional Models and Dynamic Models but there is no linking between 
these models. Rumbaugh et al [1991] regard OMT as an "enhanced form of 
ER" although it is not presented as a object oriented database development 
tool but as a tool to assist in the design of relational databases. 

The main characteristics of the OMT model are as follows: 

An object is a distinct concept, abstraction or thing which has its own 
unique identity and can be used to model things in the real world and 
"provide a basis for computer implementation" [p 21]. 

An object class (or class) "describes a group of objects with similar 
properties (attributes), common behaviour (operations), common 
relationships to other objects, and common semantics" [p 22]. For 
example, Mary Smith is an object of class person. 

An object diagram provides "... a formal graphic notation for modelling 
objects, classes, and their relationships to one another" [p 23]. 

An attribute is a data value or property of every object in a class. For 
example, the object Mary Smith may have an attribute containing her 
address. 

An operation is "... a function or transformation that may be applied to or 
by objects in a class." [p 251. A polymorphic operation is an operation that 
may apply to many different classes. A method is the implementation of 
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an operation for a class. For example, there may be an operation for 
changing a person's address. 

A link provides a physical connection between objects and an association 
describes a group of links with common structure and semantics. For 
example, an employee may work in a department. "Work in" is an 
association between employees and departments. 

Multiplicity "...specifies how many instances of one class may relate to a 
single instance of an associated class" [p 30]. For example, many employees 
may work in one department. 

Generalisation is a relationship between a general class, called the 
superclass and more refined versions of it, called subclasses. Each subclass 
is said to inherit the features (attributes and operations) of its superclass. 
For example, employee may be a subclass of person. 

An aggregation is a strong association where an aggregate object comprises 
components which are objects. Rumbaugh et al [1991] describe this more 
abstractly as "[t]he aggregate is semantically an extended object that is 
treated as a unit in many operations, although physically it is made of 
several lesser objects" [p 57]. 

Apart from the concept of modelling behaviour, the OMT concepts of 
objects, classes, object diagrams, associations, multiplicity, generalisation 
and aggregation can be considered to be approximately equivalent to the 
EER concepts of entities, entity classes, ER diagrams, relationships, 
cardinality, generalisation and aggregation respectively. 

Figure 2.7 shows two classes with an association between them in the 
OMT model and the ER model structural equivalent. 
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Salary 

Job Title 

Change-Salary 

Change-Job-Title 

Employee 

Name 

Address 

Dept 
Works-In 

Name 

Address 

Change-Address Change-Address 

Figure 2.7(a) 

An OMT model for Employees who works in Departments 

 

 

1 	Dept 

 

    

 

Employee 

  

   

   

 

Figure 2.7 (b) 

A structurally equivalent EER model for Employees working in Departments 

Beck and Cunningham [1989] suggest a technique based on CRC cards. CRC 
stands for Class, Responsibility and Collaborators. The technique was 
developed for use in team sessions where entities can be identified and 
behaviours can be specified for interfaces. An entity is given a descriptive 
name and the responsibilities or behaviours are then listed under this 
name. Other entities that will know about this entity or with which this 
entity will interact, are listed as collaborators. This technique is useful for 
initial or high level design where a group can brainstorm about the 
overall structure of a system. 
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Other object-oriented models include those of Shlaer and Mellor [1989] 
and Booth [1986]. These models are more complex. Booch diagrams 
require the user to learn a new syntax as specific as any programming 
language. Shlaer and Mellors's technique of capturing all information 
about the states of attributes and the transitions between states leads to 
extremely complex diagrams that may be difficult to read. 

2.3.2 Object Oriented Databases 

From the early 1970s until recently relational database systems have been 
the standard model for many commercial database systems. The main 
limitation of relational systems is that they only model data and the 
relationships between data not the behaviour of entities or objects in the 
model. Currently researchers are looking to object oriented data models as 
the next generation of database systems. [Atkinson et al 19901. Hansen and 
Hansen [1992] suggest that "object-oriented databases are the result of the 
convergence of two research disciplines: semantic data modelling and 
object-oriented languages. These disciplines developed independently but 
in recent years have begun to merge with important implications for 
database processing". 

Another limitation of relational database systems is that there is a "... need 
to translate data from a 'real world' abstract model to an 'implementable' 
physical model" [Dobbie 19911. This translation can take many forms and 
tends to become increasingly customised during development making 
modification and maintenance difficult while maintaining semantic 
integrity of the original model. 

Database implementers need to perform more complex operations on 
stored data than retrieving it and sharing it so that more complex software 
systems can be built around database systems. This has been recognised for 
some time in software engineering and the building of large software 
systems. The core or base of most large systems is a database. Built around 
this database are usually a number of application programs written in 
some host language. The database language, which usually allows some 
form of navigation around the database and explicit adding and deleting of 
records, is incompatible with the application programming language 
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which must have a specific interface set up so that database records can be 
explicitly transformed into the data structures of that language. The 
customised nature of the interface and these programs makes the whole 
system difficult to modify and maintain particularly in terms of data 
integrity. 

The object oriented paradigm for large software systems and now 
specifically databases, allows the high level design to flow through the 
development cycle without changing the basic elements. An object exists 
as a conceptual entity from the abstract model through to the actual 
implementation. 

Although Codd [1970] gave a clear specification of relational systems and 
most researchers agree that there is no clear specification for object 
oriented database systems [Dobbie 1991, Atkinson et al 1990] there is some 
agreement on the characteristics of object oriented database systems. 

The final report of the Object-Oriented Database Task Group (00DBTG) 
organised by the ASC X3/SPARC Database Systems Study Group [Fong et 
al 1991] provides broad recommendations in the areas of Object 
Information Management (OIM) which covers the general area of object 
management in programming languages, networks, design 
methodologies, user interfaces etc and Object Data Management (ODM) 
which covers object models and database systems. Because of the breadth 
of this report the task group does not propose any new concepts or specific 
models but the part of the report most relevant to this project is that the 
report has marshalled existing generally accepted ideas into a reference 
model for ODM. The characteristics of the OODBTG reference model are 
similar to the necessary characteristics proposed by a number of 
researchers. 
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Atkinson et al [1990] differentiate between mandatory, optional and open 
characteristics as summarised below. 

Mandatory 
complex objects 
object identity 
encapsulation 
types or classes 
class hierarchies 
overloading 
overriding 
late binding 
computational 

completeness 
persistence 
secondary storage 

management 
concurrency 
recovery 
ad hoc querying 

Optional 
multiple inheritance 
type checking 
type inference 
distribution 
design transactions 
versions 

Open 
type systems 
programming 

paradigms 
ways of representing 

objects 

Dobbie [1991] differentiates between object oriented features and database 
features as summarised below. 

Object-Oriented Features 
complex objects 
object identifiers 
encapsulation 
inheritance 
overloading 
overriding 
late binding 

Database Features 
persistence 
secondary storage management 
concurrent users 
authorisation mechanisms 
recovery procedures 
efficient access methods 
schema modification 

The main examples given by Dobbie [1991] of currently available object-
oriented database management systems that provide complex objects, 
object identity, encapsulation, types or classes inheritance, overloading, 
overriding and late binding, extensibility, persistence and secondary 
storage management, concurrency, recovery, ad hoc querying and schema 

19 



modification include 02 [Deux et al, 1990], Iris [Wilkinson et al, 1990], 
ONTOS [1989] and Gemstone [Bretl et al, 19901. 

2.4 Functional Systems 

2.4.1 Functional Programming Languages 

Functional languages are programming languages in which computations 
are carried out entirely by the evaluation of expressions (functions) to 
produce values. Functions and values are treated as first class entities and 
functions can be recursive, higher order and polymorphic. Functional 
languages have no side effects or assignment statements. That is, whereas 
imperative languages '...are characterised as having an implicit state that is 
modified (i.e. side effected) by constructs (i.e. commands) in the source 
language.', declarative or applicative languages '...are characterised as 
having no implicit state, ...[and] ... state-oriented computations are 
accomplished by carrying the state around explicitly rather than implicitly, 
and looping is accomplished via recursion rather than by sequencing' 
[Hudak, 1989]. 

Nikhil [1985] advocates using functional programming languages for 
developing functional databases because of their expressiveness, use of 
lazy evaluation, rich type systems and opportunities for optimisation 
using program transformation and parallelism. 

Rich typing and polymorphism 

Every value in a functional program has an associated type. Values are 
"first class" in that they may be passed as arguments to functions, returned 
as results and placed in data structures. Types in a functional language are 
not first class and most functional languages provide a static type system 
where the types of all values can be inferred by the type system at compile 
time and checked for errors. Most functional languages provide built in 
types for characters, integers, booleans etc but these are semantically no 
different to user defined types. Polymorphic types are types that are 
universally quantified over all types. For example, [1 (in Miranda) or [a] 
(in Haskell) defines a list of "things" where things can be any valid type 
such as integers, characters, strings or even complex types such as lists. 
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This is the first step towards data abstraction in that a set of functions can 
be defined to operate over a collection of things whatever type those 
things may be. 

Lazy evaluation 

Lazy evaluation in functional programming languages is based on the 
characteristic that functions need not be evaluated strictly, ie. each value, if 
computed is computed only once and no value is computed unless it is 
needed. The non strictness of functions means that a function that would 
have been non terminating if it was strict can return a result if evaluated 
lazily because it never attempts to evaluate its non terminating argument. 
Hudak [1989] argues that lazy evaluation provides expressiveness in a 
language as follows, "First, lazy evaluation frees a programmer from 
concerns about evaluation order ... [and second provides] ... the ability to 
compute with unbounded 'infinite' data structures". 

Data Abstraction 

Functional languages provide data abstraction as either algebraic data types 
(user defined types in other languages) and abstract data types (ADTs) 
which are implemented using the keywords "abstype ... with" in Miranda 
and using modules in Haskell. An abstract data type defines a collection of 
data and the valid set of operations on that collection where the actual 
representation of the data structures and functions is hidden from other 
modules using instances of that ADT. 

2.4.2 Functional Databases 

Nikhil [1985] suggests a new way of looking at database systems using a 
functional approach. In this new view, functional databases are databases 
that are never updated but may be seen as a potentially infinite stream of 
versions of the database. This is because the functional programming 
approach has no side effects (i.e. there is no assignment statement and 
therefore no values are ever actually changed). All values are created by 
the application of functions to an existing value, however complex. 
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:Types 

Current databases are characterised by the inadequacies of their type 
structures. Most databases support little more than scalar types and sets of 
records. This limited typing can prove inadequate for many applications 
involving large amounts of data. Nikhil suggests that rather than "[u]sing 
a database sublanguage embedded in an existing programming language 
[e.g. EQUEL in C, SQL in PL /11 due to the semantic mismatch between the 
two" that "[w]e would like to explore the opposite evolutionary path: that 
of beginning with a programming language, attaching great importance to 
the expressive power and semantic elegance of the language while 
gradually incorporating features normally found in databases". 

Nikhil [1985] suggests that the type theory of a programming language 
determines the domain of definable types for that programming language 
in much the same way that a data model determines the domain of 
definable types for a database. Therefore a database itself could be 
considered the equivalent of a data structure in a programming language. 
The natural way to retrieve information from or change a data structure is 
to apply an operation or a function to it. If databases are considered in this 
way then the natural way to query (retrieve information from) a data base 
or update a database is to apply a function to the database. 

Data Abstraction 

Traditional data manipulation languages for databases have no facilities 
for data abstraction. Most database operations are hard-coded and 
application specific. If the long held tenet of "data independence" is to be 
achieved in modern databases then data abstraction must be naturally 
incorporated into database programming languages. Data independence 
in the form of abstract data types is a feature of most high level 
programming languages. That is, an abstract data type may only be 
manipulated using the functions associated with that type and because 
these functions are only associated with a specific abstract data type then 
the functions can be changed without affecting other applications that use 
that abstract data type. 
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Updates and Queries 

Queries and updates in current database systems are either done using a 
specific query/update language (e.g. SQL, QUEL) which are incompatible 
with programming languages, or using one of these database sublanguages 
embedded in some programming language. 

A functional database approach would treat queries and updates in a 
different way. A query could be considered to be an expression to be 
evaluated within the database domain. The answer to the query is the 
value of the expression. An update could be considered to be the 
application of a function to the current database and the result returned 
would be a new version of the database. 

2.5 The Functional Programming Language Haskell 

The language chosen as the basis for this project is the functional 
programming language Haskell. Haskell is a general purpose, purely 
functional programming language incorporating many of the features of 
other functional programming languages including higher order 
functions, lazy evaluation, static polymorphic typing, user-defined data 
types, pattern matching and list comprehensions. In addition it also 
includes a module system, a purely functional I/O system and a rich set of 
primitive datatypes, including lists, arrays, arbitrary and fixed precision 
integers and floating point numbers. The latest version of Haskell was 
released by Yale University in March 1992. The Haskell Committee (the 
group responsible for the design of Haskell) considers that "[Haskell] 
...should be suitable for teaching, research, and applications, including 
building large systems." [Hudak et al, 1992] 

Apart from lazy evaluation, strong typing and polymorphism, the features 
of particular interest to this project are type classes, modules, abstract data 
types, preludes and continuation style functional I/O. 

Type Classes 

One of the main additions to the type system in Haskell that is not in 
other functional languages is type classes. Originally called "classes" but in 
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the new report "type classes", type classes were originally introduced to 
provide a clean, flexible method of dealing with overloading of arithmetic 
operators. Classes in Haskell serve a different purpose to classes in object 
oriented programming languages. They provide definitions of overloaded 
operations associated with a class or "...ad hoc polymorphism, better 
known as overloading" [Hudak and Fasel, 1992]. For example, 

class Eq a where 

(==) : : a -> a -> Bool 

defines a class called Eq with a single operation == (equality) in the class. 
"Eq a is not a type expression, but rather it expresses a constraint on a type 
... [the] declaration may be read 'a type a is an instance of the class Eq if 
there is an (overloaded) operation ==, of the appropriate type, defined on 
it' [Hudak and Fasel 1992]. Thus Haskell allows other functions to be 
defined within the context of Eq. For example, 

elem : : (Eq a) => a -> [a] -> Bool 

"... expresses the fact that elem is not defined on all types, just those for 
which we know how to compare its elements for equality" [Hudak and 
Fasel, 1992] 

Although Haskell classes offer some measure of abstraction and 
inheritance, since they are mainly used for overloading existing operators 
and functions where the emphasis is on the functions not data, a better 
abstraction for object-oriented classes is the ADT using modules. Indeed, 
Hudak and Fasel [1992] state "... modules provide the only way to build 
abstract data types (ADTs) in Haskell.". 

Modules and Abstract Data Types 

Modules are the basic building block of all Haskell programs. Yale Haskell 
allows modules to be separately compiled increasing efficiency and 
allowing truly modular program development. "A module defines a 
collection of values, datatypes, type synonyms, classes etc.... and exports 
some of these resources, making them available to other modules" 
[Hudak et al 1992]. Encapsulation and information hiding can be achieved 
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in the development of ADTs using modules. Modules can also be used to 
implement inheritance (albeit a little crudely) since any resources that 
should be inherited by other modules can (and must) be exported 
explicitly. Modules are also important for continuation style I/O (see 
below) in that "A Haskell program is a collection of modules, one of 
which, by convention, must be called Main and must export the value 
main. The value of the program is the value of the identifier main in 

module Ma in, and main must have type Dialogue." [Hudak et al, 1992]. 

Preludes 

Some special modules in Haskell are known as "preludes". Preludes can 
be considered to be library modules containing logically associated values 
and datatypes. Two special preludes, together called the "standard 
prelude", PreludeCore and Prelude are part of the Haskell language 
definition and are imported automatically into all Haskell programs. User 
defined preludes are also permitted. 

Purely Functional I/O 

The Haskell I/O system is purely functional and is based on lazy 
evaluation and higher order functions. Haskell I/O provides two models: 
stream based I/O and continuation based I/O. Hudak [1989] states that 
these "... two seemingly very different solutions ...turn out to be exactly 
equivalent in terms of expressiveness". The Haskell Report actually 
defines continuation based I/O in terms of stream based I/O. A Haskell 
program communicates with the operating system via a stream of 
messages or a lazy list and the program maps a stream of responses to a 
stream of requests. The use of lazy evaluation means that a program need 
not look at the responses before it issues a request. So a Haskell program 
using I/O has the type: 

type Dialogue = [Response] -> [Request] 

Continuation-based I/O is the preferred methodology [Hudak and Fasel, 
1992] for writing interactive Haskell programs. This programming 
method is called Continuous Passing Style (CPS). The concept of a 
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• continuation is fundamental to this method and is best explained by 
Hudak and Fasel [1992] as follows: 

"A continuation is basically a (possibly nullary) function that 
maps an 'intermediate value' (possibly empty) to 'the rest of the 
program.' In this way, continuations are used to explicitly 
manage 'flow of control', and thus we tend to define functions 
that, instead of returning with an answer, will apply a 
continuation (passed in as an argument) to the answer.". 

A Haskell program can be thought of as communicating with the 
operating system using continuations. To set up this communication the 
operating system expects a top-level identifier called "main" whose type is 
Dialogue. The flow of control in the program is maintained by cascading 
and/or recursive calls to functions of type Dialogue. That is, every 
function that interacts with user input must be of type Dialogue. 

Developing Continuation-based I/O Implementations 

The Haskell Report [Hudak et al, 1992] defines a program in the 
continuation-based I/O model as "...a collection of transactions.. .[which 
capture]...the effect of each request/response pair" as defined in type 
Dialogue above. Transactions are built-in system functions. For the 
purpose of developing some examples we will deal with a subset of the 
available transaction functions defined as follows: 

data Request = 

file system requests: (file I/O) 

readFile, 	String 

I writeFile 	String String 

channel system requests (standard I/O) 

1 readChan 	String 

I appendChan 	String String 

All these requests work with strings. 
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data Response = Success 

I Str 	String 

I StrList [String] 

1 Failure I0Error 

"The response to a request is either Success, when no value is returned; 
Str s, when a string value s is returned; or Failure e, indicating failure with 
I/O error e" [Hudak et al, 1992]. That is, a response can either be a success 
continuation (SuccCont), a string continuation (StrCont) or a failure 
continuation (FailCont) defined by the following synonyms: 

type SuccCont = 	Dialogue 

type FailCont = 	I0Error -> Dialogue 

type StrCont 	= 	String -> Dialogue 

Note that all these possible returned values are of type Dialogue and so 
can be replaced by other functions of type Dialogue which in turn have 
continuations and so on. This provides the infrastructure for the 
cascading calls outlined above which are the core of CPS programming. 

In order to construct some small examples we will use the following 
transaction functions (with their signatures): 

done: :Dialogue 

appendChan::String->String->FailCont ->SuccCont->Dialogue 

readChan::String7>FailCont->SuccCont->Dialogue 

readFile::String->FailCont->StrCont->Dialogue 

and, by definition: 

stdin = "stdin" 

stdout = "stdout" 

stderr = "stderr" 

The function "appendChan" provides for writing a string to standard 
output; "readChan" allows for reading a single (infinite) string from 
standard input; and "readFile" allows for reading a named file as a single 
string. 
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Continuation I/O is lazy and requires synchronisation. Synchronisation is 
achieved by passing results back through anonymous, or lambda, variables 
which can be used as input to other functions. 

Examples 

• Since input is read lazily as an infinite string, a useful (supplied in 
PreludeList) function is lines which breaks a string up into a list of strings 
at newline characters. 

A simple program that writes the string "Hello world" to standard output 
is: 

module PrintString where 

main :: Dialogue 

main = appendChan stdout "Hello world\n" abort done 

The failure continuation is "abort" or abnormal termination and the 
success continuation is "done" or normal termination. 

	A program-which-prompts-for-and-reads-a-string-from-standard input and 
then prints "Hello <string>" is shown below. It replaces the success 
continuation from the first example with another function. 

module ReadAndPrintString where 

main :: Dialogue 

main = appendChan stdout "Enter your name" abort ( 

readChan stdin abort (\userinput -> 

response (lines userinput))) 

response (line:_) = 

appendChan stdout ("Hello" ++ line) abort done 
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The string continuation for the "readChan" function reads whatever is 
typed at the keyboard into the lambda variable "userinput" which is then 
used in the function "response". 

A program that prompts for a file name and the reads the contents of the 
file is shown below. 

module ReadAFile where 

main :: Dialogue 

main = appendChan stdout "Enter file name" abort ( 

readChan stdin abort (\userinput -> 

response (lines userinput))) 

response (line:_) = readFile line 

(\ioerror -> 

appendChan stdout ("cannot open" ++ line) abort done) 

(\contents -> 

appendChan stdout contents abort done) 

Finally, a skeleton of a program that sets up an interactive menu is shown 
below. 	  

module MenuDemo where 

import ... 

main :: Dialogue 

main = appendChan stdout "Welcome\n" abort ( 

readChan stdin abort (\userinput -> 

processMenu (lines userinput))) 

menu = 	"1. Do This \n" ++ 

"2. Do That \n" ++ 

"3. Do The Other\n\n" ++ 

"Select option 1, 2 or 3: " 
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processMenu 	[String] -> Dialogue 

processMenu inp = 

appendChan stdout menu abort 

(case inp of (line:rest) -> 

case line of 

-> DoThis 

"2" -> DoThat 

"3" -> DoTheOther 

-> appendChan stdout 

"error - try again\n" abort 

(processMenu rest)) 

DoThis 

DoThat 

DoTheOther 

A further discussion of this style of programming is in Hudak and Fasel 
[19921. 
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3 Data Model Design 

3.1 Introduction 

This chapter introduces a data model called the Entity-Relationship-Object 
Model. This model combines the extended ER models of Hansen and 
Hansen [1992] and Elmasri and Navathe [1989] and the object models of 
Rumbaugh et al [1991] and Henderson-Sellers [1992]. This combination 
provides an ER model that incorporates behaviour for both entities and 
relationships. Entities and relationships are treated as classes which 

- inherit methods for addition, deletion and retrieval from the generic 
superclass. Instances of each of these classes are known as entity-objects 
(E/Os) and relationship-objects (R/Os) respectively. The only difference 
between them is that a relationship-object provides a link between two 
objects (E/O or R/O) participating in that relationship. 

3.2 Analysis, Design and Implementation Methodology 

Object-oriented methodologies are relevant to this design and 
implementation since they provide a high level of continuity due to 
objects being the same from one phase to the next. The development 
methodology used here is based on Henderson-Sellers [1992] 0-0-F (Object-
oriented analysis, Object-oriented design, Functional implementation) 
methodology which provides a good framework for the design and 
implementation of an object database in a functional programming 
language. The term "functional implementation" as used by Henderson-
Sellers [1992] means implementation in one of the available procedural 
languages such as Cobol, Ada, Pascal etc. For this project the 0-0-F 
methodology is modified to incorporate the ERO model in design and to 
provide for implementation in the functional language Haskell. 

Henderson-Sellers' [1992] 0-0-F methodology has seven steps: 

1. Object-oriented decomposition in analysis 
2. Analysis/identification of objects 
3. Identify object interactions 
4. Analysis merges to design. Provide a detailed model. 
5. Consideration of library classes 
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6. Reevaluate set of objects with respect to constraints of procedural 
language 

7.Code objects into procedural language. 

The first three steps in this methodology involve Object Oriented 
Analysis, an area not addressed in this thesis. It is assumed that the 
designer/implementer is sufficiently experienced to be able to identify 
appropriate objects, classes, relationships, associations and generalisations. 

Steps 4 to 7 represent the design phase which may be considered to be 
specific to a particular application area. This thesis develops specific 
methodologies for the implementation of an object database within a 
functional language environment and replaces steps 4 to 7 with: 

4. Analysis merges to design. Produce an ERO model. 

5. In a functional language provide a library that implements a 
polymorphic superclass and its default methods within a suitable 
interactive interface. 

6. Map the classes directly from the ERO model to the functional 
programming language as abstract data types which inherit the generic 
superclass. 

7. Link all the components of the system that have been provided in steps 
5 and 6 into an integrated database system. 

The consequence of this modified methodology is that it provides a single, 
integrated methodology incorporating the ERO model and maintains the 
continuity from design to implementation by mapping an ERO model 
directly into Haskell. An implementation methodology for the new steps 
5, 6 and 7 is presented in detail in chapter 4. 

3.3 An Entity-Relationship-Object Model 

The Entity-Relationship-Object Model (ERO model) is a semantic data 
model designed to provide the highest level of abstraction possible while 
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maintaining semantic integrity. It is based on a combination of the ER 
model and the OMT model. 

The ER model [Chen, 1976] can be considered to be one of the most useful 
of the current semantic data models. Firstly, it provides support at both 
the external and conceptual modelling levels by identifying and describing 
entities that represent the user's view of data in some application domain. 
Secondly, the ER model can provide the mapping of this view to actual 
data structures at the internal modelling level. 

The OMT model [Rumbaugh et al, 19911 has many of the same 
characteristics as the ER model, together with the facility for modelling 
behaviour as operations that may be applied to, or by, objects in a class. 

If we take the level of abstraction in these models a step further, we can 
consider all components in the model, both entities/objects and 
relationships/associations, as classes. The OMT model allows for this in 
special cases but not all cases. 

The ERO model has three major characteristics. Firstly, it represents both 
entities and relationships as classes of the same polymorphic type. The 
only difference between entity instances, called entity-objects or E/Os and 
relationship instances, called relationship-objects or R/Os, is that the 
unique identifier (uid) for an E/O is system generated and the uid for an 
RIO is a composite uid made up of the uids of the E/Os participating in 
the relationship. All relationships in the ERO model are binary 
relationships although n-ary relationships can be modelled as binary 
relationships as discussed in 3.3.3. If the same two E/Os participate in two 
different relationships the composite uids in each of the relationships can 
be distinguished as unique by virtue of the specific RIO to which they 
belong. 

Secondly, as with all object models, uids are system generated and are 
therefore not explicit in the model. The polymorphic nature of entity and 
relationship classes ensures that a class has only one uid and that the 
composite uids necessary in relationships can only be constructed from 
other existing uids. This is discussed in the example in 3.3.5 below. 
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Thirdly, the ERO model has been developed specifically for the functional 
implementation methodology_ set out in 3.2, above, so operations, or 
methods implemented as functions, cannot have side-effects. 

The Entity-Relationship-Object (ERO) model incorporates notations from 
both object oriented models and Extended-Entity-Relationship (EER) 
models. It provides icons based on object oriented models for representing 
objects and/or classes (or 0/Cs as Henderson-Sellers [1992] calls them). 
EER notation is used for representing generalisation/specialisation, 
cardinalities of relationships and aggregations. 

All objects in the ERO model inherit the default methods for add, delete 
and retrieve from the polymorphic superclass. Consequently it is not 
necessary to represent these methods explicitly in the model. 

3.3.1 Entity-Objects and Entity-Object Classes 

The icons for entity-objects (E/Os) are based on Rumbaugh et al [1991] and 
Henderson-Sellers [1992]. E/O classes are represented as rounded 
rectangles with the class name inside it in upper case and attributes listed 
under a single line within the rectangle (see Figure 3.1). Any methods 
associated with the class are listed under the attributes below a double line. 

/ PERSON 

Name 
Address 

Change_Address 

Figure 3.1 
All entity-objects of class PERSON have the attributes Name and Address and the method 

Change_Address. 

3.3.2 Generalisation 

Generalisation or inheritance is based on EER notations and is represented 
using a U symbol where the open part of the U points to the super class 
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(see Figure 3.2). When referring to inheritance the generalised class will 
be called a superclass and the specialised class will be called a subdass. 

PERSON 

Name 
Address 

Change_Address 
	 1 

EMPLOYEE 

Salary 

Change_Salary 

Figure 3.2 

PERSON is the superclass and EMPLOYEE is the subclass which inherits the attributes 

Name and Address and the method Change_Address. 

3.3.3 Relationships 

Although all relationships in the ERO model are binary relationships, n-
ary relationships can be modelled as combinations of binary relationships 
as discussed below. A relationship-object in the ERO model is like a link 
in the OMT model in that it is the "...physical or conceptual connection 
between object instances." [Rumbaugh et al, 1991]. The difference is that in 
the ERO model the objects instances can be other relationship-objects not 
just entity-objects. This leads to the concept of two types of relationships 
in the ERO model. 

Simple relationships in the ERO model are relationships that do not 
participate in any other relationship and can be represented in a similar 
way as in ER and OMT models. 
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Complex relationships, involve relationships between relationships as 
well as entities and should be represented in a closed, coloured notation 
similar to Hansen and Hansen's [1991] extended ER models. 

In ERO notation a relationship between two classes is represented using a 
class icon differentiated for semantic purposes using a double border 
indicating that this class has a composite uid. With this notation simple 
relationships can be represented linearly as in Figure 3.3 (a) and complex 
relationships can be represented as in Figure 3.4(b). The rule is that if a 
relationship participates in a relationship with another relationship then 
it must be represented as a complex relationship. This means that a 
relationship may be represented in different ways depending on the 
semantic context. 

r 	-■ 
PRODUCT 

Name 

Description 

	 } 

' IS-SOLD-IN 

Quantity 

■ 

r 	■ 
COUNTRY 

Name 

(a) 

(b) 

Figure 3.4 (a) and (b) 
The QUANTITY attribute depends on both PRODUCT and COUNTRY and is therefore an 

attribute of the relationship between PRODUCT and COUNTRY 
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Language Project 

Person 

The ERO model only provides for binary relationships. However, higher 
order, or n-ary, relationships can be represented as nested binary 
relationships. Rumbaugh et al [1991] state that "Associations may be 
binary ternary, or higher order... .We have encountered a few general 
ternary and few, if any, of order four or more. Higher order associations ... 
should be avoided if possible." An OMT example of a ternary relationship 
is given in Rumbaugh et al [1991], page 28-29 which is said to be "... an 
atomic unit and cannot be subdivided into binary associations without 
losing information...[since]...a programmer may know a language and 
work on a project, but might not use the language on the project". This 
example is reproduced in Figure 3.5 

Figure 3.5 OMT Example of a ternary relationship [Rumbaugh et al, 19911 

The diamond in the OMT example is the OMT symbol for general ternary 
and n-ary associations. Rumbaugh et al [1991] choose not to name the 
association or links in this example since "...association names are 
optional and a matter of modelling judgement ... [and]... are often left 
unnamed when they can be easily identified by their classes.". If the 
purpose of data modelling is to provide semantically complete 
information about some application domain then it should be considered 
dangerous to leave components of the model unlabelled. The ERO model 
does not allow any unnamed entities or relationships. 

The ERO model can represent the ternary relationship from Figure 3.5 
with an overhead of three binary relationships as in Figure 3.6. 
Considering the rarity of higher order relationships this overhead is not 
considered significant in the ERO model. Unlike the OMT version, 
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Implemented -In 

Project 	 Language 

explicit semantic information is contained in the names of the binary 
relationships. The "Implemented-In" relationship is a relationship 
between the two entities, "Project" and "Language". It is a complex object 
because it participates in another relationship, "Works-On". The 
relationship "Knows" is a simple relationship between the entities 
"Language" and 'Person". Also, if it were participating in another 
relationship in a larger data model, the "Works-On" relationship could be 
a complex object encompassing the relationship "Implemented-In" and 
the entity "Person". As in all ERO models the structure of the model 
represents the semantics for a specific context. 

Figure 3.6 ERO Version of OMT Ternary Example 

3.3.4 Cardinality 

As in the EER models cardinality or the number of instances of one object 
that correspond to the instances of another object in a relationship are 
represented using "1" and "*" (indicating 'many') at the end of a 
relationship arc (see Figure 3.7) 
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CWIFE 
IS-MARRIED-TO 	1 	 

"HUSBAND 

(a) 

(b) 

(c)  

Figure 3.7 
(a) A one-to-one relationship - a wife has one husband; a husband has one wife 
(b) An employee works in one department; a department has many employees 

(c) A student takes many courses; a course has many students 

3.3.5 ERO Version of Hansen and Hansen's EER Example 

Figure 3.8 is an ERO version of Hansen and Hansen's [1991] Manwaring 
Consulting Services Invoice model previously shown in Figure 2.6. 

The complex object ON is a relationship between the entity PROJECT and 
the relationship ENGAGED-IN. ENGAGED-IN is a relationship between 
the entities CONSULTANT and ACTIVITY. It is represented as a complex 
object because it participates in the ON relationship. On the other hand, 
the relationship PERFORMED-FOR is a relationship between the entities 
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CCLIENT 	9 Name 
Address 

((PERFORMED-FOR )) 

ON 

Hours 
Amount 

ENGAGED-IN 

1  

Title 

Invoice Number 
Invoice Date 

Total 
\ 

\. 	 

t INCURRED 

* 1 

	1 

CLIENT and PROJECT and does not participate in any other relationship 
and so is modelled as a simple linear relationship. 

i OTHER_CHARGE  
Description 
Amount 

\ 	 } 

Figure 3.8 ERO Model of Hansen and Hansen's [1992] example as seen in Figure 2.6 
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Salary 

Job Title 

Employee 'N 

\.Change-Address} 

Change-Salary 

Change-Job-Title 

Name 

Address 

[Note that a semantic inconsistency in Hansen and Hansen's [1991] 
original model has been corrected and there is now a Name attribute for 
the CLIENT entity and a Name attribute for the ACTIVITY entity.] 

No matter how many levels of relationships there are within a complex 
relationship, the polymorphic nature of all classes means that every class 
has only one uid and for relationships that uid is a composite of only two 
other uids. For example, the ENGAGED-IN relationship has a composite 
uid from CONSULTANT and ACTIVITY and the ON relationship has a 
composite uid made up of the uids from ENGAGED-IN and PROJECT 
although the uid for ENGAGED-IN is itself a composite uid. 

3.3.6 ERO Version of Rumbaugh's OMT Example 

The example in Figure 3.9 is an ERO equivalent to the OMT model  in 
Figure 2.7. If it is presumed that the relationship Works—In is part  of  a 
larger data model where it participates in another relationship it can be 
modelled as a complex object which imports the entity-objects Employee 

and Department. 

Figure 3.9 ERO Model of the OMT example from Figure 2.7 
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4 Implementation 

4.1 Introduction 

This chapter describes the implementation of an ERO model as a simple 
database system in a functional programming environment. Firstly, the 
conceptual framework is described for mapping an ERO model to an 
integrated implementation system where every entity and relationship is 
treated as a class. Secondly, considerations for mapping this conceptual 
framework to a functional programming environment using the 
functional programming language Haskell are discussed. Thirdly, a 
specific Haskell prototype is described and finally, a detailed example is 
shown providing specific program code within an implemented Haskell 
prototype. 

4.2 Conceptual Framework 

Conceptually in this implementation every component of the simple 
database system is considered to be an object. The main module imports 
all the components and thus links all the components together to form a 
database system. 

4.2.1 The Database Subset 

A database system usually includes facilities for creation and deletion of 
the database; update facilities for adding, deleting and modifying records; 
reporting facilities and query facilities. This implementation deals with 
the update operations: create, insert and delete plus operations for 
retrieving and displaying the current value of a class or object. 

4.2.2 The User Interface 

Because databases are usually dynamic structures the implementation uses 
an interactive menu-based interface where a user can add, delete, retrieve 
and display objects or classes within the system. 
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4.2.3 A Generic Superclass 

This implementation adopts the view of Cardelli and Mitchell [1989] that 
"Object-oriented programming is based on record structures (called objects) 
intended as named collections of values (attributes) and functions 

(methods). Collections of objects form classes. A subclass relation is 
defined on classes with the intention that methods work 'appropriately' 
on all members belonging to the subclasses of a given class ... we are 
interested here in more powerful type systems that smoothly incorporate 
parametric polymorphism." 

Objects in a database system can be considered to be tuples or records of 
key, value pairs where the key is a unique identifier for an object and the 
value is the rest of the record. Using data abstraction the concept of "the 
rest of the record" can be extrapolated to include both attributes and 
methods. The implementation is based on the concept of a superclass 
which implements classes as collections of objects and objects as key, value 
pairs. This superclass is inherited by all classes in the system and provides 
the default methods for the addition, deletion or retrieval of any object in 
a class. Since this implementation is a prototype capable of further 
development the key (or unique identifier) is system generated but is 
visible to the user so that the user can access objects directly by their keys. 
A query interface, which could be a development added later, would not 
make use of visible keys. 

4.2.4 Persistent Data 

Like all database systems this implementation provides for persistent or 
long-lived stored data. This data is stored in ASCII files and has to be 
mapped onto the executing program in object or class form. 

This is a functional implementation, so operations, or methods 
implemented as functions, cannot have side-effects. Since the result of the 
application of any function is a value, only the value need be stored as 
persistent data not the method itself. 
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4.2.5 An Abstract Implementation Scheme 

The implementation is based on the mapping of the ERO model directly to 
program code in the prototype. The basic rules are as follows: 

1.There should be a modularised abstract data type (ADT) to represent 
each class, entity or relationship, in the specific ERO model. Each ADT 
should contain definitions of all that class's attributes and methods. 
Each class should inherit the superclass and in the case of relationships 
also import any participating entities in that relationship since 
relationships provide the links between entities. 

2. There should be a main module that imports all the components of the 
database thus linking all the components together. 

3. A file for persistent data should be initialised for each class defined in 1. 

4.3 The Haskell Environment 

The power of functional languages lies in their characteristics of 
polymorphism, strong typing, lack of side effects and lazy evaluation. This 
implementation relies on these characteristics. 

4.3.1 The Polymorphic Superclass 

Haskell allows the implementer to define polymorphic types that can be 
applied to any arguments of other valid types. For example, [a] refers to a 
list of "things" where those things can be numbers, characters, strings or 
any other valid things including user defined types. 

The superclass that is inherited by all classes in this implementation must 
necessarily be polymorphic so that it can be applied to any class, whether it 
be entity or relationship. The implementation provides the superclass as 
an ADT called Collection Of which sets up an abstract type for a collection 
of key,value pairs. 

The choice of data structure for any application depends on the "mix of 
operations" required by that application. That is, the frequency of 
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insertions, deletions, traversals, retrievals etc. The overriding 
consideration for any ordered collection of data like a database is the 
efficiency of searching. Insertion depends on finding the correct place to 
insert a new record; deletion requires finding the correct record and all 
retrievals of information involve a search. 

For this application the simplest, and possibly the most intuitive, data 
structure is a list of pairs or an association list. In Haskell a list is a 
dynamic data structure that can grow during execution as opposed to an 
array that requires its maximum size to be set at compile time. An 
association list is easy to implement and provides 0(n) operations for 
insert, delete and retrieve based on a linear search algorithm. 

A more efficient data structure, especially for large data sets, is a binary 
search tree which, if maintained as a balanced tree, provides 0(logn) 
operations for insert, delete and retrieve based on a binary search 
algorithm. 

The prototype provides the user with a choice of either an association list 
or a binary search tree but can use any polymorphic data structure that 
maintains a collection of key,value pairs and obeys the interface syntax. 

Both data structures were implemented for testing purposes and to 
demonstrate that the specific implementation of the superclass is 
completely transparent to the rest of the program. 

4.3.2 The Database Prelude 

The implementation requires various utility or library functions 
particularly for I/O. Using standard Haskell practice these functions are 
provided in a "prelude" called DBPrelude. This also contributes to the 
modularity of the implementation so that an implementer needs only the 
superclass, prelude, main initialising module and a set of class definitions 
reflecting a particular ERO model to set up a new database. 
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4.3.3 The Main Module 

The main initialising module presented in the prototype provides the 
linking mechanism for all the components of the database. It also 
provides the interface between the program and the persistent data stored 
on files. The main module imports all the components of the database 
(superclass, prelude, and class definitions) and sets up the top level menu 
and the lazy evaluated input streams from the user and the persistent data 
store. 

4.3.4 Persistent Data Files 

Persistent data for the implementation is stored as ASCII files which are 
mapped onto the program by functions in the prelude which are called by 
the main module. Lazy evaluation of input streams in Haskell means 
that the data files are not resident in memory for the duration of execution 
of the program but are accessed on a "need to know" basis as execution 
requires. This also means that updates to persistent data must be done 
explicitly using a save option. 

4.3.5 Flow of Control using Continuation -based I/O 

The implementation uses continuation-based I/O and continuation 
programming style as outlined in chapter 2. Every function that interacts 
with user input must be of type Dialogue. The flow of control in the 
program is maintained by cascading and/or recursive calls to functions of 
type Dialogue. 

4.3.6 Simulating Global Variables 

Since functional programming languages do not have assignment 
operators (all values are generated by the evaluation of a function) there is 
no concept of a global variable. A database system that generates its own 
unique identifiers (uids) needs to create a new uid for each new object in 
the system. This can be done in a functional language by setting up an 
infinite list of possible uids from which successive uids are retrieved or, as 
in this system, each new uid is generated as the successor of the last uid. 
This means that the current uid must be passed to every Dialogue 



function in the system during execution so that the "global variable" is 
defined for all program control functions. 

In practice, each file storing an entity class has the last uid used for an 
object in that class saved to it. This allows the next uid for that entity class 
to be generated from that last uid. 

4.4 The Haskell Prototype 

Hudak and Fasel [1991] state that" ...modules provide the only way to 
build abstract data types (ADTs) in Haskell." Following this philosophy, 
this implementation builds all components of the system as ADTs 
implemented as separately compilable modules. 

4.4.1 The ADT CollectionOf 

The ADT Collection Of is a separately compilable module representing the 
superclass. It maintains a collection of objects as a binary search tree. The 
type constructor Collection is applied to the two polymorphic variables a 
and b. The default methods for insertion, deletion and retrieval are 
provided by the functions insert, delete and retrieve. The function flatten 
maps the tree to a list and is used for I/O and tree balancing. The 
functions bal and balance provide an explicit operation for balancing the 
tree and are used after any insertion or deletion that might unbalance the 
tree. Figure 4.1 shows the complete module. 

The implementation is based on an ADT that maintains a collection of 
key,value pairs. This ADT can take any form as long as it provides the 
operations: retrieve, insert, delete, empty, flatten, bal and balance and 
obeys the interface syntax. Retrieve has two arguments: a collection and a 
key and returns the key,value pair with that key. Insert takes three 
arguments: a collection, a key and a value and returns a new collection 
with that key,value pair inserted in the appropriate position. Delete takes 
two arguments: a collection and a key and returns a new collection with 
the pair corresponding to that key deleted. Empty defines an empty 
collection. Flatten maps a collection to a list, if necessary. Bal and balance 
should be do nothing for non-tree data structures. 
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module CollectionOf where 
data Collection a b = Nil I Node (a,b) (Collection a b)(Collection a b) 

deriving (Eq, Text, Binary) 

empty = Nil 

flatten Nil = (I 
flatten (Node (x,y) 1 r) = flatten 1 ++ [(x,y)) ++ flatten r 

retrieve Nil z = error "Node not in tree" 
retrieve (Node (x,y) 1 r) z I z == x = (x,y) 

I z < x = retrieve 1 z 
I z > x = retrieve r z 

insert Nil x y = Node (x,y) Nil Nil 
insert (Node (xl,y1) 1 r) x y I x == xl = Node (x,y) 1 r 

I x < xl = Node (xl,y1) (insert 1 x y) r 
I x > xl = Node (xl,y1) I (insert r x Y) 

delete Nil z = error "Node not in tree" 
delete (Node (x,y) 1 r) z I z == x = delitem (Node (x,y) 1 r) 

I z < x - Node (x,y) (delete 1 z) r 
I z > x = Node (x,y) I (delete r z) 

--Delete a node : 
1. If node is a leaf then just delete it 
2. If the node has 1 child then that node's child becomes one of that 

node's parent's children (symmetric for left and right) 
3. If the node has two children then replace it with its inorder 

successor i.e. the leftmost node of that node's right subtree 
-- 
delitem (Node (x,y) Nil Nil) = Nil 
delitem (Node (x,y) Nil r) = r 
delitem (Node (x,y) 1 Nil) = 1 
delitem (Node (x,y) 1 r) = Node (leftmost r) 1 (delete r (fst(leftmost r))) 

leftmost (Node (x, y) 1 r) I 1 == Nil = (x, y) 
I otherwise = leftmost 1 

bal [1 = Nil 
bal t - Node r (bal left) (bal right) 

where n = length t 
left = take ((div) n 2) t 
r:right = drop ((div) n 2) t 

balance t = bal (flatten t) 

Figure 4.1 

To demonstrate that an implementation that maintains a collection of 
pairs and obeys the interface syntax is valid and transparent to the rest of 
the system, Figure 4.2 presents the simple association list version of 
CollectionOf.  . The only necessary concessions are null versions of the tree-
specific functions flatten, bal and balance. 
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module CollectionOf where 
'type Collection a b = [(a,b)] 

empty = [] 

flatten 1 - 1 

bal 1 = 1 

balance t = t 

retrieve [] x = error "UNDEFINED" 
retrieve ((x,y):t) z I z == x = (x,y) 

I z < x = error "UNDEFINED" 
I z > x = retrieve t z 

insert tj x y = [(x,y)] 
insert ((xl,y1):t) x y 	I x -= xl = (x,y):t 

I x < xl = (x,y):(xl,y1):t 
x > xi = (xl,y1): insert t x y 

delete [I z = [] 
delete ((x,y):t) z I z == x 	t 

z < x = (x,y):t 
z > x = (x,y): delete t z 

Figure 4.2 

4.4.1 Types for Gasses and Objects 

For Entity-Objects (E/Os), each pair in the association list represents an 
object where the first item in the pair is the unique identifier (uid) for that 
object and the second item in the pair is a variable length string of strings 
representing the attributes of that object. Figure 4.3 shows the type 
definitions for E/Os. 

type Attribute - String 

type Did = String 

type Info = [Attribute] 

type EntityObject = (Did, Info) 

type EntityClass = Collection Did Info 

Figure 4.3 

For R/Os, there is another level of nesting using the polymorphic nature 
of the superclass ADT. The first item in the RIO pair is in itself a pair 
providing the link between the two E/Os participating in the relationship 
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thus producing a composite uid for the RIO. Conceptually, the type 
definitions for R/Os are shown in Figure 4.4. 

type Link = (Uid,Uid) 

type RelationshipObject = (Link, Info) 

type RelationshipClass = Collection Link Info 

Figure 4.4 

In practice, the type Link needs to be defined as an algebraic type to allow 
the overloading of equality and ordinal operators. This can be done in 
Haskell by setting up a user defined datatype and then defining instances 
of that type that specifically define the relational operators needed in the 
operations in the ADT Collection Of as in Figure 4.5. 

data Link - Linkid (Uid, Uid) 

instance Eq Link where 

(Linkid (x, y)) == (Linkid (xl, yl)) 	(x == xl && y == yl) 

instance Ord Link where 

(Linkid (x,y)) < (Linkid (xl,y1)) = (x == xl && y 1= yl) II 

(x <= xl && x /= xl) 

(Linkid (x,y)) >= (Linkid (xl,y1)) = xl <= x 

(Linkid (x,y)) > (Linkid (xl,y1)) 	xl < x 

Figure 4.5 

The data statement sets up a user-defined type called Link with a type 
constructor Linkid similar to a scalar or tagged type in an imperative 
language. The Haskell compiler could "infer" equality for two Links 
where the first item in each pair is equal and the second item in each pair 
is equal, but the system could not infer whether one pair is greater than 
another pair since each contains two discrete values. The equality and 
ordinal relationships of these Link pairs has to be spelled out explicitly 
using instance declarations. 
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Defining the equality and orclinality of links is purely arbitrary since they 
are not, by definition, part of an ordinal set. For simplicity, this 
implementation has defined ordinality to be based on the first uid in the 
link. Ordinality could just as easily have been defined based on the second 
uid in the link or some formula involving both uids. The choice is up to 
the implementer based on the specific application. 

In Figure 4.5 the first instance declaration defines equality for this link type 
within the inbuilt definition or Haskell class Eq for equality. That is, we 
have defined two links to be equal if both items in each pair are equal. 
The second instance declaration defines the relational operators (which 
belong to the Haskell built in class Ord) for the type Link. This definition 
takes many-to-many relationships into account where the pair is distinct 
even though one of the items may be the same. 

4.4.2 The DBPrelude 

The DBPrelude (see Appendix) is a separately compilable module that 
provides standard utility functions for all update operations on all objects 
in the system. It also provides functions for the interactive, menu-based 
interface for adding, deleting, retrieving (by uid) and displaying any object, 
or set of objects, in the system. 

The functions enterentity/enterrelationship, findentitylfindrelationship, 
deleteentityldeleterelationship, and displayentity/displayrel place the 
polymorphic functions from the ADT Collection Of into the appropriate 
I/O environment. 

The enter functions are for user entry of new E/Os and R/Os. The find 
and delete functions prompt the user for a uid so that an object can be 
retrieved or deleted. The display functions display the current class on 
the screen. Display operations can be used by a user to find out a uid for 
the delete and find operations. 

Most of the other functions in DBPrelude relate specifically to mapping 
ASCII strings to class types and vice versa for I/O and are of type Dialogue 
or String. 

51 



4.4.3 Function Synonyms 

Continuation-based I/O, the passing of higher order functions and the 
need to carry around global variables can lead to a verbosity in functional 
programs particularly in terms of long and cumbersome 
parameter/argument lists. To make functions more readable this 
implementation uses "function synonyms" for often used patterns in 
argument lists. Figure 4.6 below shows the three synonyms used in the 
DBPrelude. UserInput is the infinite lazy input stream from the keyboard. 
Continuation is a synonym for the application of this input stream to a 
function of type Dialogue. EntityFunction and RelationshipFunction are 
synonyms for the standard set of arguments used by functions dealing 
with entities or relationships. 

type UserInput - [String] 

type Continuation = UserInput -> Dialogue 

type EntityFunction = FileName -> Titles -> EntityClass -> Uid -> 

Continuation 

type RelationshipFunction = FileName -> Titles -> RelationshipClass -> 

Continuation 

Figure 4.6 

4.5 A Mapping Methodology for the Haskell Prototype 

The mapping methodology is based on the abstract mapping scheme 
presented in 4.2.5. Each E/O and RIO in the ERO model is mapped to an 
ADT implemented as a module containing definitions of all that class's 
attributes and methods. Each class inherits the superc_lass and in the case 
of relationships also imports any participating entities in that relationship. 

A main module imports all the components of the database thus linking 
all the components together and a file for storing each class as persistent 
data is set up. 

The prototype implementation requires three standard Haskell source 
modules: 
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collection.hs - defining the standard polymorphic ADT Collection Of 
for the superclass 

dbprelude.hs - defining the DBPrelude, containing all basic I/O and 
utility functions 

maindb.hs - the main driver program containing the mandatory 
module Ma in 

For any new implementation the modules collection.hs and dbprelude.hs 
remain unchanged but maindb.hs needs to be edited so that the main 
menu reflects the specific ERO model. 

The following are the specific steps needed to set up an implementation 
using the Haskell prototype for a specific ERO model. 

4.5.1. Create Class modules 

For each E/O in the model create a source module that imports the 
generic, polymorphic ADT Collection and the DBPrelude containing the 
standard functions. 

For each R/O create a module that imports the generic, polymorphic ADT 
Collection, the DBPrelude containing the standard library functions and 
the modules for each of the E/Os that participate in the relationship. 

In each module declare a type for each attribute, a filename for where the 
persistent class will be stored and a list of titles, or labels, that can be used 
for I/O prompts and display formatting. 

4.5.2. Add Methods 

For any class that has methods associated with it, set up a methods menu 
and a methods driver function of similar format to the default methods 
menu and menu driver in the DBPrelude. 

Implement method functions for each method using appropriate 
functions from the superclass and prelude. 
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4.5.3. Customise Main Menu for specific ERO Diagram 

Edit the main program module, maindb.hs so that the menu contains a 
case instance for each E/O or RIO module created in 4.5.1 above. Then 
modify the main menu driver (i.e. the function setClass) to provide the 
appropriate function calls. E/O options call the function readEntity and 
RIO options call readRelationship. Each function call should pass 
parameters for filename, titles, the class's method driver function, an 
(empty) initialised class and the continuation for interactive input. The 
remainder of maindb.hs remains unchanged. 

4.5.4. Initialise Persistent Data Stores 

Create a file for each of the persistent data stores (i.e. one for each E/O or 
R/0). The prototype only provides for simple unique identifiers 
represented as integers chosen to suit the size of the data set. For example, 
for a data set not expected to exceed 99 objects in each class, seed each E/O 
file by inserting some integer as a starting unique identifier, e.g. the first 
E/O might be seeded with 100, the second with 200, the third with 300, and 
so on. The unique identifiers for R/Os are generated from the uids of each 
of the participating E/Os. 

4.5.5. Compile, Link and Run 

Compile and link all the modules. Execute maindb. 

4.6 An Example 

4.6.1 An ERO Model 

The following worked example is based on the model in Figure 3.7 
reproduced below. The RIO Works-In has two attributes: Salary and Job 
Title and two methods: Change-Salary and Change-Job-Title. Because it 
represents a relationship it also imports two E/Os: Employee and 
Department. The Employee E/O has two attributes: Name and Address 
and one method: Change-Address. The Dept E/O also has two attributes: 
Name and Address and one method: Change Address. 
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4.6.2 Step 1 of the Mapping Methodology 

A module is created for each of the two E/Os: Employee and Dept 
participating in the relationship. Each E/O imports the superclass module 
and the prelude as shown for the E/O Employee below: 

module EmployeeEntity where 

import CollectionOf 

import DBPrelude 

Attributes, class declarations, titles and filename are added as follows: 

--Attributes-- 

type EmpName = Attribute 

type EmpAddress = Attribute 

--Entity/Class Declarations-- 

type Employee = EntityObject 

type Employees = EntityClass 

--Titles-- 

employeeTitles = ['Employee Name", "Employee Address"] 

--Filename-- 

employeeFile - "Employees" 

55 



The module for the E/O Dept would be created in a similar way. 

The RIO Works-In imports the superclass, the prelude and its 
participating E/Os as follows: 

module WorksInRelationship where 

import CollectionOf 

import DBPrelude 

import EmployeeEntity 

import DeptEntity 

Attributes, class declarations, titles and filename are added in the same 
way as in the E/Os as follows: 

--Attributes-- 

' type Salary = Attribute 

type JobTitle = Attribute 

--Relationship/Class Declarations-- 

type Worksin = RelationshipObject 

type WorksIn = RelationshipClass 

--Titles-- 

worksinTitles = ["Salary", "Job Title") 

--Filename-- 

worksInFile = "WorksIn" 

4.6.3 Step 2 of the Mapping Methodology 

Add a methods menu to the module of any class that uses methods. 
Below is the methods menu for the E/O Employee: 

--Methods Menu-- 

empmenu = "\n" ++ employeeFile ++ "Operations\n" ++ 

"10. Change an employee's address\n\n" ++ 

"Hit return to return to main menu\n\n" ++ 

"Command: " 
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'Now, set up a driver function for the methods menu as below: 

--Methods Driver-- 

empops :: (Continuation) -> EntityFunction 

empops setClass fname titles coil lid inp = 

appendChan stdout empmenu abort 

(case inp of 

(linel : rest) -> 

case (linel) of 

"10" -> appendChan stdout "Changing address\n" abort 

(empchangeaddress setClass empops fname titles coil lid rest) 

-> prompt setClass empops fname titles coil lid rest) 

There will now be three levels of menus in the system. At the first level is 
the main menu controlled by function setClass (see 4.6.4) which chooses 
which class is currently being operated on. The second level menu is 
controlled by the function prompt provided in DBPrelude. This level 
provides functions for the default superclass methods (e.g. add, delete, 
retrieve etc). Adding new methods requires a third level menu of the 
form outlined above. 

The main menu function setClass must be passed as a "global" function to 
allow recursive calls where appropriate. There must be a case instance for 
each method and an escape case instance (using the Haskell wildcard "_") 
for returning to the second level menu. In all instances the calls must 
carry, as parameters, the functions necessary for recursive calls - setClass 
for eventual return to the main menu and em pops for recursive calls to 
the driver itself so another method may be chosen. 

Lastly, a function for each method in the E/O should be added as below: 

--Methods-- 

empchangeaddress :: (Continuation) - ((Continuation) -> EntityFunction) -> 

EntityFunction 

empchangeaddress s ops fname titles coll lid inp 

readItem "Enter Entity Id in? 

inpl -> 

readItem "Enter new address ' inpl 
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(\a rest -> 

prompt s ops fname titles (insert coin (i f info)) lid rest 

where current = retrieve coil i 

colll = delete coil (retrieve coil i) 

atts = snd current 

empname = head atts 

info = empname:[a])) 

Below is the methods menu for the RIO Works In which demonstrates 
that more than one method can be added to a class by adding lines to the 
menu and appropriate case instances in the driver. 

--Methods Menu-- 

worksinmenu = "\n" ++ worksInFile ++ "Operations\n" ++ 

"10. Change an employee's salary\n\n" ++ 

"11. Change an employee's job title\n\n" ++ 

"Hit return to return to main menu\n\n" ++ 

"Command: " 

--Methods Driver-- 

worksinops :: (Continuation) -> RelationshipFunction 

worksinops setClass fname titles coil inp = 

appendChan stdout worksinmenu abort 

(case inp of 

(linel : rest) -> 

case (linel) of 

"10" -> appendChan stdout "Changing salary\n" abort 

(workschangesalary setClass worKsinops fname titles coil rest) 

"11" -> appendChan stdout "Changing job title\n" abort 

(workschangejob setClass worksinops fname titles coil rest) 

-> rprompt setClass worksinops fnare titles coil rest) 

Below is the implementation of the two methods associated with the R/O 
WorksIn. Each uses the readItem function from the prelude and passes 
control back to the default methods menu in the prelude with a call to the 
function rprompt. 
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--Methods-- 

workschangeasalary :: (Continuation) -> ((Continuation) -> 

RelationshipFunction) -> RelationshipFunction 

workschangesalary s ops fname titles coil inp = 

readItem "Enter Owner Id " inp 

(\idl inpl -> 

readItem "Enter Member Id " inpl 

(\id2 inp2 -> 

readItem "Enter new salary " inp2 

(\sal rest -> 

rprompt s ops fname titles (insert coin (link,info)) rest 

where link = Linkid (idl,id2) 

current = retrieve coil link 

colll = delete coil (retrieve coil link) 

oldsal:jobtitle = snd current 

empname = head atts 

info = sal:jobtitle))) 

workschangeajob :: (Continuation) -> ((Continuation) -> 

RelationshipFunction) -> RelationshipFunction 

workschange job s ops fname titles coil inp 

readItem "Enter Owner Id " inp 

(\idl inpl -> 

readItem "Enter Member Id " inpl 

(\id2 inp2 -> 

readItem "Enter new job title " inp2 

(\jobtitle rest -> 

rprompt s ops fname titles (insert colll (link,info)) rest 

where link = Linkid (idl,id2) 

current = retrieve coil link 

colll = delete coil (retrieve coil link) 

sal:oldjobtitle = snd current 

cempname - head atts 

info = sal:[jobtitle]))) 

4.6.4 Step 3 of the Mapping Methodology 

Edit the main module maindb.hs to import the modules for the ADT 
Collection Of, the DBPrelude and every class in the system as follows: 
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module Main where 

import CollectionOf 

import DBPrelude 

import EmployeeEntity 

import DeptEntity 

import WorksInRelationship 

Edit the class menu and menu driver (the function setClass) in maindb.hs 
to contain a case instance for each of the E/Os and RIO as below. 

main :: Dialogue 

main = appendChan stdout "Welcome\n\n" exit ( 

readChan stdin exit (\userInput -> 

setClass (lines userInput))) 

classmenu = "\n\nSelect a class as follows:\n" ++ 

"1. Employees\n" ++ 

"2. Departments\n" ++ 

"3. Works In \n" ++ 

"Class: " 

setclass :: Continuation 

setClass inp = appendChan stdout classmenu abort 

(case inp of 

(linel : rest) -> 

(case linel of 

"1" -> readEntity employeeFile employeeTitles empops empty rest 

"2" -> readEntity departmentFile deptTitles deptops empty rest 

"3" -> readRelationship worksInFile worksinTitles worksinops empty rest 

-> appendChan stdout "error - try again" abort (setClass rest)) 

4.6.5 Step 4 of the Mapping Methodology 

Create a file for the E/O Employee containing the initial uid, say, 100. 
Create a file for the E/O Dept containing the initial uid, say, 200. Create an 
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empty file for the RIO Works In since R/O uids are composed of 
participating E/O uids. 

4.6.6 Step 5 of the Mapping Methodology 

Compile and link all the modules. Execute maindb. Control is passed to 
the menu based user interface. 
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5 Discussion, Conclusions and Future 
Work 

This chapter discusses some of the advantages and limitations associated 
with the design and implementation methodology presented in this 
thesis. Some areas for future work are also discussed. 

5.1 Advantages 

5.1.1 Integrated Methodology 

The design and implementation methodology presented in this thesis is 
an integrated one in that it provides a model and a methodology for 
mapping that model directly to an implementation in a functional 
programming language. 

A designer can model a database as a set of interrelated classes using the 
ERO'rn- odel. From the ERO model a system can be directly implemented 
in the functional language Haskell by following the steps of the mapping 
methodology as described in Chapter 4 and including the standard 
database prelude and a suitable polymorphic ADT defining classes. 

This direct mapping of the ERO model requires only small modifications 
to the driver program and the addition of standard format modules for 
each class in the ERO diagram. 

5.1.2 Preservation of semantics 

The ERO model provides for the preservation of the semantics of a 
modelled system largely due to its derivation from the Entity-Relationship 
Model [Chen,1976] and the incorporation of object oriented concepts by 
adding behaviour to the model using methods. The ERO model is further 
enhanced by treating not just entities as classes but also relationships 
(associations in object-oriented terminology) as classes. This gives a more 
abstract view of a data model than currently available semantic and object 
models, where all identified components of a data model are treated as 
objects. 
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5.1.3 Functionally Complete for Update 

The implementation described in this thesis is functionally complete for 
the basic update operations of: insert an object, retrieve an object (by uid) 
and delete an object. Necessary associated operations for loading, saving 
and displaying objects are also provided together with a simple menu 
driven user interface. No attempt has been made to provide querying 
facilities. The development of querying facilities is discussed in 5.3.2 
below. 

5.1.4 Ease of Schema Modification 

Like the Entity-Relationship Model [Chen, 1976] the ERO model is easily 
modified or extended. The implementation methodology used here also 
provides for ease of modification by its modular structure. Any new entity 
class or relationship class that is added to the ERO model can be 
implemented as a separately compilable Haskell module using the steps of 
the mapping methodology described in Chapter 4. Only the module itself 
and the modules that import it need to be recompiled. 

5.1.5 Advantages of using Haskell as an implementation language 

The main advantages of using Haskell in this implementation lie in the 
power of polymorphism, including overloading, and lazy evaluation. 
Polymorphism and the ability to overload arithmetic operators allows for 
the definition of a truly generic superclass that is the basis of all classes in 
the system. Lazy evaluation allows for the implementation of a form of 
persistence where objects are not resident in memory but retrieved from 
secondary storage as needed and are explicitly updated on secondary 
storage after completion of a transaction. 

5.2 Limitations 

5.2.1 Localisation of Methods in Object-Oriented Models 

The main limitation of this database implementation is the same as that 
for any object-oriented database system. Object-oriented models tend to 
constrain the modelling of database systems because of the localisation of 
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methods to specific objects or classes. Many database transactions require 
the participation of several entities and relationships. For example, 
consider a model taken from McFadden and Hoffer [1991]. Figure 5.1 
shows the complete model. Attributes have been omitted for simplicity. 

Figure 5.1 

McFadden and Hoffer's Enterprise data model for the Pine Valley Furniture Company. 

One management requirement of the system is for a daily order log report 
which would require a method covering the part of the model shown in 
Figure 5.2. 
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Figure 5.2 

ER diagram for daily order log report for enterprise shown in Figure 5.1. 

Another requirement is for a customer order query for which a method 
covering the section of the diagram shown in Figure 5.3 would be 
required. 

Figure 5.3 

ER diagram for customer order history query for enterprise shown in Figure 5.1. 

In each of these examples the method to generate the report or satisfy the 
query does not logically belong to any single object but to some group of 
objects. This constraint needs to be addressed for object modelling to be 
useful in database design. An attempt to address this is outlined in 5.3.4 
below. 

5.2.2 Statelessness of Functional Programming 

Database systems are dynamic systems and database operations often 
require knowledge of the state of the system or parts of the system. As 
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sdiscussed in 2.4.1, functional languages are stateless and any state-oriented 
computations are achieved by passing the state around explicitly. The 
method used in this prototype for passing state information around using 
pseudo global variables is discussed in 4.3.6. This can lead to the need for 
long parameter/argument lists, sometimes spreading over several lines. 
This makes programs difficult to read and sometimes difficult to 
maintain. Some steps have been taken in this implementation to address 
this problem by incorporating "function synonyms" as discussed in 4.4.3. 

Current work involving the addition of monads into functional languages 
like Haskell [Wadler, 19901 may lead to the incorporation of a notion of 
"state" into functional programming systems. 

5.2.3 Very Large Database Management Systems 

The prototype in this implemenation has only been tested on small data 
sets of up to eight classes and less than 50 objects/class. The problems 
associated with the design and implementation of Very Large Database 
Management Systems have not yet been considered. 

5.2.4 Variety of Data Types 

For simplicity, the prototype implementation presented here only allows 
for data to be of type String. This allows for a smooth interface between 
the run time environment and the persistent data store, since Haskell 
treats files as single ASCII strings. Of course, database systems should 
manage data of any type including numeric, or complex combinations of 
several types. In order to implement other data types, the prototype would 
need to include conversion functions for mapping other types to, and 
from,String types for secondary storage. 

5.3 Future Work 

5.3.1 A Graphical Interface Development Tool and Compiler 

The integrated nature of the design and implementation method 
presented here lends itself to the development of a graphical model 
development interface with which a user could produce an ERO model 
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directly on the screen. The graphical tool could provide standard icons for 
entity-classes and relationship classes and a system of colouring complex 
relationships. A compilation system could then take the graphical model 
and produce a direct implementation in Haskell code using the mapping 
methodology outlined in chapter 4. Specific methods would still have to 
be hand coded but all other parts of the mapping methodology should be 
capable of being automated. 

5.3.2 A Functional Query Interface 

A functional query interface could be developed for this implementation 
using some of the built-in functions already available in Haskell. Many 
database queries are based on selecting objects from a class or classes which 
satisfy some predicate. These kinds of operations are naturally functional. 
That is, a query is the application of a function to a database that returns 
some value. 

A good starting point fOr -a query interface would be the Haskell function 
in the style of filter. The function filter is provided in one of Haskell's 
standard preludes called PreludeList and is described as follows: 

--filter, applied to a predicate and a list, 

--returns the list of those elements that satisfy the 

--predicate; i.e., 

--filter p xs == [x 1 x <- xs, p x] 

filter 	:: (a -> Boo].) -> [a] -> [a] 

filter p = foldr (\x xs -> if p x then x:xs else xs) [] 

Functions could be developed that are applied to a predicate and a class 
and return a list of all objects satisfying that predicate. This approach 
would allow queries to be expressed explicitly as functions that can be 
applied directly to classes of objects. 

5.3.3 Private/Public Class Interfaces 

This implementation has not made use of Haskell's provision for explicit 
control over import/export across module boundaries. The prototype uses 
modules in their simplest form where, by default, all functions within any 
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Customer-order-query 

CUSTOMER tPlaced-By y ORDER 

(Requested-On) 

PRODUCT ■ 

Sort-by-date 

module are exported and available to other importing modules. The 
. ability to control the import/export of functions across module boundaries 

could be investigated for implementing private and public operations 
within classes. 

5.3.4 Transaction and Report Modelling 

The problem of the localisation of methods discussed above in 5.2 needs to 
be addressed in terms of providing methods for complex transaction and 
report modelling required by database systems. One area that could be 
investigated is the extension of the ERO model to another level of 
modelling for transactions and reports. At this new level transactions and 
reports could be based on some form of the complex relationships already 
existing in the model where a transaction or report imports all the 
participating classes and can be implemented as a separate module. For 
example, consider the example from McFadden and Hoffer [1991] given in 
5.2. The customer order query could be modelled as in Figure 5.4. 

Figure 5.4 

A transaction modelling scheme for Figure 5.3 

Conceptually, queries and reports like these could be considered to be 
another type of class with their own unique identifiers and could be 
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implemented as separate modules that import the classes that participate 
in the transaction or report. 
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Appendix - The DBPrelude 

--Standard database prelude 
--Must import a polymorphic ADT that provides at least the standard 
--operations: 
-- retrieve 
-- insert 
-- delete 
-- Defines the standard types and methods for generic classes 
-- 
-- Written by Linda Dawson 
-- Last Modified November, 3.993 

module DBPrelude where 
import CollectionOf 

--STANDARD TYPES 

type Attribute = String 
type Uid = Attribute 	-- the key or uid for an entity object 
type Info = [Attribute] 	-- variable length list of attributes 
type EntityObject = (Uid, Info) 	-- the entity object type 
type EntityClass = Collection Uid Info -- a collection of entities 
data Link = Linkid (Uid, Uid) 	-- the link for a relationship 

instance Eq Link where 
(Linkid (x, y)) == (Linkid (xl, yl)) = (x == xl && y == yl) 

instance Ord Link where 
(Linkid (x, y)) < (Linkid (xl, yl)) = (x == xl && y /= yl) II 

(x <= xl && x /= xl) 
(Linkid (x, y)) >= (Linkid (xl, yl)) = xl <= x 
(Linkid (x, y)) > (Linkid (xl, yl)) = xl < x 

type RelationshipObject = (Link, Info) 	-- the realtionship object 
type RelationshipClass = Collection Link Info 
type FileName = String 
type UserInput = [String] 
type Title = String 
type Titles = [Title] 

-- file names 
-- input from the keyboard 
-- attribute label 
-- each class has a set of 
-- attribute labels 

--UTILITIES 

--Function synonyms 

type Continuation = UserInput -> Dialogue 
type EntityFunction = FileName -> Titles -> EntityClass -> Uid -> 
Continuation 
type RelationshipFunction = FileName -> Titles -> RelationshipClass ->, 
Continuat 
ion 

-- Null methods drivers 
eops :: Continuation -> EntityFunction 
eopssftcli= appendChan stdout "No methods for this class\n" 
abort 

(prompt s eops f t c 1 i) 

rops :: Continuation -> RelationshipFunction 
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ropssftci= appendChan stdout "No methods for this class\n" abort 
(rprompt s rops f t c i) 

-- Field delimiters should allow spaces in attributes 
fieldDelim = '*' 
tab = 1 \t' 
doubletab =  
space =" 
isDelim c = c == fieldDelim 

- Formatting functions 

width = 20 
idwidth = 5 
linkwidth = 10 

rep :: Int -> a -> [a] 
rep 0 x = 
rep (n+1) x = x:rep n x 
rep other x = 

spaces .:: Int -> String 
spaces n = rep n " 
ljustify :: Int -> String -> String 
ljustify n s = s ++ spaces (n - length s) 

rjustify :: Int -> String -> String 
rjastify n s = spaces (n - length s) ++ s 

-- Removes field delimiters from attributes in a persistent class 

makefields :: String -> Info 
makefields line = case dropWhile isDelim line of 

[] 

linel -> field: makefields line2 
where (field, line2) = break isDelim linel 

-- Converts a set of attributes into a single string for output 

unmakefields :: Char -> (String] -> String 
unmakefields c 	= 
unmakefields c fs = foldrl (\w s -> (ljustify width w) ++ c:s) fs 

-- Converts an entity class into a string for output 

makeopEntity H = H 
makeopEntity (firstrec:rest) = 

makeopEntityObject firstrec ++ makeopEntity rest 

-- Converts an entity object into a string for output 
-- 
makeopEntityObject (i, rest) = 

i ++ [fieldDelim] ++ (unmakefields fieldDelim rest) ++ "\n" 

-- Converts a relationship class into a string for output 
-- 
makeopRelationship [1 = [1 
makeopRelationship (firstrec:rest) = 
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makeopRel firstrec ++ makeopRelationship rest 

-- Converts a relationship into a string for output 

makeopRel ((Linkid (x,y)), rest) = 
x ++ [fieldDelim] ++ y ++ [fieldDelim] ++ 

(unmakefields fieldDelim rest) ++ "\n" 

-- Converts a string into an entity class 

makeentityclass 	UserInput -> EntityClass -> EntityClass 
makeentityclass 	e = balance e 
makeentityclass (line:rest) e = 

makeentityclass rest (insert e x y) 
where 	eo = makeentity (makefields line) 

x = fst eo 
y = snd eo 

-- Converts a list of attributes into an entity object 

makeentity :: Info -> EntityObject 
makeentity (field:fields) = (field,fields) 

-- Converts a string into a relationship class 

makerelationship 	UserInput -> RelationshipClass -> 
RelationshipClassmakerelationship 	r = balance r 
makerelationship (line:rest) r = makerelationship rest (insert r x y) 

where ro = makerel (makefields line) 
x = fst ro 
y = snd ro 

-- Converts a list of attributes into a relationship object 

makerel :: Info -> RelationshipObject 
makerel (fieldl:field2:fields) = (Linkid(fieldl,field2),fields) 

-- Displays an entity class 

showEntityclass 	= 
showEntityclass (firstrec:rest) = 

showentity firstrec ++ showEntityclass rest 

-- Displays a relationship class 

showrelationship [] = [] 
showrelationship (firstrec:rest) = 

showrel firstrec ++ showrelationship rest 

--Displays an entity object 

showentity (i,rest) = 
(ljustify idwidth i) ++ (unmakefields tab rest) ++ "\n" 

--Displays a relationship object 
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showrel ((Linkid (x,y)), rest) = 
(ljustify linkwidth link) ++ 
(unmakefields tab rest) ++ "\n" 

where link = "(" ++ x ++ "," ++ y ++ ")" 

-- Displays the current entity class 

displayentity s eclass = "\n" ++ (ljustify idwidth "Uid") ++ 
(dispetitles s eclass) 

-- Displays the current relationship class 

displayrel s rclass = "\n" ++ (ljustify linkwidth "Uid") ++ 
(disprtitles s rclass) 

-- Display entity titles 

dispetitles [] coil = "\n" ++ (showEntityclass coll) 
dispetitles (t:ts) coil = (ljustify width t) ++ (dispetitles ts coil) 

-- Display relationship titles 

disprtitles [] coil = "\n" ++ (showrelationship coil) 
disprtitles (t:ts) coil = (ljustify width t) ++ (disprtitles ts coil) 

--STANDARD MENUS 

updatemenu = "\n\nEnter a command as follows:\n" ++ 
"1. insert object - inserts a.new object in the database\n" ++ 
"2. retrieve - returns a record\n" ++ 
"3. delete - deletes the record with key, id\n" ++ 
"4. print - displays the database\n" ++ 
"5. options - for current class\n" ++ 
"6. change to another class\n" ++ 
"7. save current class\n" ++ 
"8. quit - exit program\n\n" ++. 
"Command: " 

prompt :: Continuation -> (Continuation -> EntityFunction) -> 
EntityFunction 
prompt s ops fname titles coll lid inp = 
appendChan stdout updatemenu abort 

(case inp of 
(linel : rest) -> 

case (linel) of 
"1" -> appendChan stdout "inserting\n" abort 

(enterentity s ops fname titles titles [] coil lid rest) 
"2" -> appendChan stdout "retrieving\n" abort 

(findentity s ops fname titles coil lid rest) 
"3" -> appendChan stdout "deleting\n" abort 

(deleteentity s ops fname titles coil lid rest) 
"4" -> appendChan stdout 

(displayentity titles (flatten coll))abort 
(prompt s ops fname titles coil lid rest) 

"5" -> appendChan stdout "options\n" abort 
(ops s fname titles coll lid rest) 

"6" -> appendChan stdout "changing\n" abort 
(s rest) 

"7" -> appendChan stdout ("saving" ++ fname) abort 
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(writeFile fname (lid ++ "\n" ++ 
(makeopEntity (flatten coil))) abort 

(s rest)) 
"8" -> appendChan stdout flgoodbye\n" abort done 

-> appendChan stdout "error - try again" 
abort (prompt s ops fname titles coil lid rest)) 

riorompt :: Continuation -> (Continuation -> RelationshipFunction) -> 
RelationshipFunct ion 
rprompt s ops fname titles coil inp = 
appendChan stdout updatemenu abort 
(case inp of 

(linel : rest) -> 
case linel of 

"1" -> appendChan stdoUt "ins rel\n" abort 
(enterrelationship s ops fname titles titlesl [1 coil rest 
where titlesl = ["Enter owner id: "] 

++["Enter meMber id: "] ++ titles) 
"2" -> appendChan stdout "retrieving rel\n" abort 

(findrel $ ops fname titles coll rest) 
"3" -> appendChan stdout "deleting rel\n" abort 

(deleterel s ops fname titles coil rest) 
"4" -> appendChan stdout (displayrel titles (flatten coil)) 

abort (rprompt s ops fname titles coil rest) 
"5" -> appendChan stdout floptions\n" abort 

(ops s fname titles coil rest) 
"6" -> appendChan stdout "changing\n" abort 

(s rest) 
"7" -> appendChan stdout ("saving" ++ fname) .  abort 

(writeFile fname 
(makeopRelationship (flatten coil)) abort 
(s rest)) 

"8" -> appendChan stdout "goodbye\n" abort done 
-> appendChan stdout "error - try again" 

abort (rprompt s ops fname titles coll rest)) 

--UPDATE OPERATIONS FOR CLASSES 

-- Reads entity data typed in at the terminal 
-- one attribute per Title 
-- 
enterentity :: Continuation -> (Continuation -> EntityFunction) -> 
FileName -> Titles -> Titles -> Info -> EntityClass -> Uid -> 
Continuation 

enterentity s ops fname ti 1] info coil lid rest = 
prompt s ops fname ti (balance (insert coll nextid info)) nextid rest 

where nextid = show ((read lid)+1) 
enterentity s ops fname tl (t:ts) info coll lid rest = 
readItem t rest 
(\i restl -> enterentity s ops fname ti ts 

(info ++ [i] ) coil lid restl) 

-- Sets up a relationship between 2 objects 

enterrelationship :: Continuation -> (Continuation -> 
RelationshipFunction) -> FileName -> Titles -> Titles -> Info -> 
RelationshipClass -> Continuation 

enterrelationship s ops fname ti [] (idl:id2:infol) coll rest = 
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rprompt s ops fname ti (balance (insert coil linkl infol)) rest 
where 	linkl = Linkid (idl,id2) 

enterrelationship s ops fname ti (t:ts) info coil rest = 
readItem t rest 
(\i restl -> enterrelationship s ops fname tl ts 

(info ++ [i] ) coil restl) 

-- Finds an entity object 
-- 
findentity :: Continuation -> (Continuation -> EntityFunction) -> 
EntityFunction 

findentity s ops fname titles coil lid inputLines = 
readItem "Enter Entity Id: " inputLines 

(\i rest -> appendChan stdout (showentity (retrieve coil i)) abort 
(prompt s ops fname titles coil lid rest)) 

-- Finds a relationship object 

findrel :: Continuation -> (Continuation -> RelationshipFunction) -> 
RelationshipFunction 

findrel s ops fname titles coil inputLines = 
readItem "Enter owner id: " inputLines(\x inputLines1 -> 

readItem "Enter member id: " inputLines1 
(\y rest -> appendChan stdout 

(showrel (retrieve coil (Linkid (x, y)))) abort 
(rprompt s ops fname titles coil rest))) 

-- Deletes an entity object 
-- 
deleteentity :: Continuation -> (Continuation -> EntityFunction)-> 
EntityFunction 

deleteentity s ops fname titles coil lid inputLines = 
readItem "Enter Entity id: " inputLines 

(\i rest -> 
prompt s ops fname titles (delete coil i) lid rest) 

-- Deletes a relationship object 

deleterel :: Continuation -> (Continuation -> RelationshipFunction) -> 
RelationshipFunction 

deleterel s ops fname titles coll inputLines = 
readItem "Enter owner id: ", inputLines 

(\x inputLines1 -> 
readItem "Enter member id: " inputLines1 

(\y rest -> 
rprompt s ops fname titles 

(delete coll (Linkid (x,y))) rest)) 

-- Reads a single string from the keyboard 

readItem :: Title -> UserInput -> (String -> [String] -> Dialogue) -> 
Dialogue 

readItem aprompt inputLines succ = appendChan stdout aprompt abort 
(case inputLines of 

(x : rest) -> succ x rest 
-> appendChan stdout "EOF" abort done) 
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