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ABSTRACT 

Perfused hindlimb preparations have been used to investigate vasoconstrictor-

mediated control of skeletal muscle metabolism, with particular emphasis on the 

regulation of oxygen consumption (V0 2) as an index of muscle nonshivering 

thermogenesis (NST). The ability of a group of molecules known as vanilloids to 

modulate muscle V02 was investigated using hindlimb preparations of hooded Wistar 

rats. Both naturally-occurring and synthetic vanilloids were examined. Infused 

vanilloids gave dose-dependent V02 changes in association with increased perfusion 

pressure (PP). Vanilloid V02  concentration-response curves were biphasic, lower 

concentrations stimulating and higher concentrations inhibiting V02. 

Nitrovasodilators demonstrated an association between the V0 2  changes and 

vasoconstriction, whilst a- and 13-adrenergic antagonists showed that neither 

adrenergic receptors nor secondary catecholamine release were responsible for the 

increased V02. The observed effects may have been due to specialised vanilloid 

receptors. The data in fact supported two vanilloid receptor subtypes; the putative 

higher affinity (VNI) receptor mediated increased V02 and vasoconstriction, and was 

dependent on the presence of oxygen and external Ca2+ . The putative lower affinity 

(VN2) receptor mediated an inhibition of V02  with vasoconstriction, but the 

vasoconstriction was independent of external Ca 2+  or 02 presence. 

A range of vanilloid structural analogues were synthesised and used to 

construct a structure-activity profile for hindlimb thermogenic action. A distinct set of 

structural features required for thermogenic activity (a pharmacophore) was defined. 

However, there was no clear distinction between the pharmacophore for 

thermogenesis and the structural features deduced by others to be necessary for 

antinociceptive action in sensory neurone studies. Complete separation of the 

responses attributed to the putative dual vanilloid receptors was not observed, 

although there was some evidence of partial selectivity. 

The concept of vascular metabolic control in muscle was further examined in a 

series of comparative perfusion studies. The first study established a viable technique 

for perfining bird lower limbs. Since birds are reported to be devoid of brown adipose 

tissue, the perfused chicken lower limb was an appropriate model for examining the 
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potential of skeletal muscle, via vascular metabolic control, as a major contributor to 

NST. Infused catecholamines increased PP and gave biphasic V02  concentration-

response curves. Low dose V02 stimulation was blocked by prazosin and 

nitrovasodilation, but was unaffected by propranolol. The demonstration of potential 

muscle NST in another taxon raised the possibility of vascular thermogenic control 

being a widespread and perhaps a fundamental NST mechanism. 

In a further comparative study, genetically obese (fa/fa) Zucker rats were used 

primarily to examine the hypothesis that the obesity was related to a defect in vascular 

metabolic control. Differences in basal and noradrenaline-mediatedV0 2  related to 

lower muscle content and higher fat content in the obese hindlimb. 5-HT-mediated 

V02  inhibition was significantly greater in age-matched lean (Fa/?) hindlimbs, even 

when the data were expressed in terms of muscle mass. This may indicate a reduced 

potential for vascular metabolic control with possible implications for the whole-body 

energy balance of the obese phenotype. In a separate series of experiments measuring 

glucose uptake, perfused obese hindlimbs were found to be markedly insulin-resistant 

relative to lean counterparts. The possibility of a link between the impaired insulin 

effectiveness and altered haemodynamic function is discussed. 

The studies undertaken underline the potential significance of altering regional 

nutrient and hormone access in regulating skeletal muscle metabolism, and in 

particular support a critical role for the vasculature in the control of skeletal muscle 

thermogenesis. 
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Chapter 1 

General Introduction 

1.1 Experimental Techniques Used in Muscle Metabolism Studies 

The currently favoured techniques for studying muscle metabolism are those in 

which muscle preparations are perfused or incubated. Both approaches allow strict 

control of experimental variables. However, the methods fundamentally differ in terms of 

the manner of nutrient delivery. The advantages, problems, and viability of muscle 

perfusion and incubation methods have recently been reviewed by Bonen et al., (1994). 

1.1.1 Incubated or perifused (superfused) muscle preparations 

Incubated muscle techniques are generally popular, one of the main advantages 

being the relative lack of associated technical difficulty. On the other hand, a major 

source of concern regarding incubated or perifused preparations is that nutrient delivery 

relies entirely on diffusion from the outer extremities of the tissue. Thus under some 

circumstances, adequate distribution of nutrients to the inner zones of the tissue may be 

questionable (Bonen et al., 1994). Efforts to avoid this problem have led to 

consideration of parameters such as the 'critical radius' of tissue (Segal and Faulkner, 

1985) and the careful selection of experimental muscles with regard to size and shape. 

1.1.2 Perfused muscle preparations 

Perfused preparations (unlike their incubated counterparts) have the advantage of 

being supplied with nutriment via their own vascular networks. As a result, metabolic 

effects partially or wholly governed by characteristics of presumably complex vascular 

networks are likely to be more appropriately modelled by perfusion preparations. 

Perfusion media (reviewed by Bonen et al., 1994) vary, and may or may not 

contain red cells. The ability to directly measure venous P02 represents a distinct 

advantage of cell-free media, given that the venous P02 is linearly related to total oxygen 

content under such circumstances. However, in the absence of red cells the adequacy of 

oxygen delivery becomes an issue which is best resolved by determining the perfusate 
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lactate/pyruvate ratio and measuring the concentrations of high energy phosphate 

compounds within the tissue (Bonen et aL, 1994). 

Since the early use of perfused rat hindlimb preparations described by Ruderman 

et al. (1971), the technique has become widespread. The preparation has been used to 

investigate a wide range of physiological phenomena: from the metabolism of glucose 

(Ploug et al., 1987), to mechanisms of capillary exchange (Paaske and Sejrsen, 1989), 

physiological pharmacolcinetics of solutes (Wu et al., 1993), and exercise physiology 

(Cote et al., 1985). There are a number of variations of the hindlimb perfusion technique, 

and the flow distribution may vary markedly depending on the particular method chosen 

(Gorski et aL, 1986). As a consequence, the comparison of results between research 

groups generally requires caution as the data may quantitatively differ. 

There is a growing body of compelling evidence that the vasculature of skeletal 

muscle plays a critical role in controlling its metabolic behaviour (reviewed by Clark et 

aL, 1995). Such evidence suggests that the use of incubation and perifusion techniques 

may be inappropriate under many circumstances and points to an increasing use of 

perfusion to address questions relating to the metabolism of skeletal muscle. 

Indeed, three constant-flow perfused skeletal muscle models were chosen for the 

present studies. Previous research in this laboratory has identified a number of 

vasoconstrictors capable of influencing perfused - but not incubated - skeletal muscle 

metabolism, both in terms of stimulation and inhibition (reviewed by Clark et al., 1995). 

This work has given rise to the proposal that the skeletal muscle vasculature in fact plays 

a key role in the controlling the metabolism of the organ as a whole. This concept of 

vascular control was investigated using a comparative approach in the present work. The 

primary metabolic parameter examined was muscle oxygen consumption (V02), an 

indirect index of muscle heat production. However, other parameters such as lactate 

release and glucose uptake were also examined at various stages. 

One agent originally identified as being able to alter perfused skeletal muscle V02 

was capsaicin (Cameron-Smith et al., 1990), the pungent principle of hot peppers 

(discussed in section 1.7). The present work involved an extended study of the capsaicin-

like (vanilloid) molecules as a unique group of agents capable of enforcing vascular 

metabolic control. Metabolic (particularly V02) effects, mechanisms of action, and 

structure-activity relationships of both naturally-occurring and synthetic molecules were 
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studied in perfused skeletal muscle. Preliminary studies of vanilloid thermogenic actions 

in intact rats were also undertaken. 

1.2 Skeletal Muscle Contribution to Nonshivering Thermogenesis 

1.2.1 Thennogenesis 

This study examined skeletal muscle metabolism primarily from a thermogenesis 

viewpoint. The ability to modulate the facultative nonshivering thermogenesis of skeletal 

muscle emerges as a recurrent theme. Nonshivering thermogenesis (NST) may be briefly 

defined as heat production by processes not involving the contraction of skeletal 

muscles. Facultative NST refers to heat production over and above the obligatory 

component required to maintain the metabolic integrity of the animal at thermoneutrality. 

More expansive thermogenesis definitions are given in Appendix 1. 

1.2.1.2 Measurement of thermogenesis 

Heat production is measured by calorimetry. In thermal physiology, calorimetry 

measures the heat transfer between a tissue, organ, or an organism and its environment 

(Bligh and Johnson, 1973). Direct calorimetry physically measures heat whilst indirect 

calorimetry measures the rate of transfer of a material involved in the transformation of 

chemical energy into heat. The technique involves using an empirically established 

relation between the material transfer and the heat transfer to calculate the actual heat 

transfer (Bligh and Johnson, 1973). 

The most common method of indirect calorimetry is to measure the uptake of 

oxygen and/or the elimination of carbon dioxide. In the present study, the measurement 

of oxygen uptake was used as an index of heat production. 

1.2.2 Importance of brown adipose tissue in mammalian facultative NST 

Brown adipose tissue (BAT) is a specialised tissue found in eutherian mammals. 

Richly vascularised and highly innervated by sympathetic fibres, the metabolic processes 

of BAT are centred on the production of heat. The tissue possesses large mitochondria 

of high cristae density. BAT is generally found in immediate contact with major blood 

vessels (Nechad, 1986). 
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BAT appears to be widely distributed within, but restricted to, eutherian 

mammals (Trayhurn, 1989). Within this taxon, the tissue is particularly prevalent in 

hibernators, cold-adapted or overfed rodents, and in the newborn and young of a number 

of species. (Trayhurn and Nicholls, 1986). 

Whilst it is clear that BAT makes a large thermogenic contribution in some 

species (around 60% of total thermogenesis in rats, Foster and Frydman, 1978), a 

number of workers using various species conclude that BAT is unable to account for the 

entire cold-induced thermogenic response. These species (reviewed by JanskSr, 1995) 

include adult rats, gerbils, mice (40% contribution to cold-induced thermogenesis), 

Djungarian hamsters (20-45%) and hamsters (28-61%). The lack of congruence between 

BAT presence and observed NST applies especially to larger species such as adult 

humans (Astrup, 1986). Indeed, a growing body of evidence suggests that substantial 

facultative NST is possible in the complete absence of BAT. Marsupials and monotremes 

(Haywood and Lisson, 1992), pigs (Jamieson et al., 1984), and birds (Saarela et al., 

1989) represent large groups of endotherms in which BAT is most likely absent. 

However, facultative NST has been demonstrated to exist in both young pigs (Dauncey 

and Ingram, 1979; Heath and Ingram, 1983; Jamieson et aL, 1984;) and birds (Duchamp 

et al., 1993a), and may well comprise part of the facultative response in marsupials (Ye 

etal., 1995). 

1.2.3 Skeletal muscle 

Skeletal muscle constitutes a substantial proportion of whole body mass in 

mammals (e.g. around 40% in adult male humans, Snyder et al., 1975) and therefore has 

the potential, even with relatively low metabolic increases per gram of tissue, to make a 

substantial contribution to whole body thermogenesis. The facultative heat produced by 

skeletal muscle may be derived from exercise, shivering, or nonshivering processes. 

Whilst the heat produced during muscular contractions is well understood, that due to 

nonshivering processes is not as well defined - and is in fact disputed in some species. 

Although consensus has not yet been reached regarding the mechanisms responsible for 

facultative heat generation in the absence of contraction, compelling evidence for muscle 

NST has been outlined for fish, birds, and mammals (reviewed by Block, 1994). 
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A number of studies involving end otherms suggest that skeletal muscle may make 

an important contribution to overall NST under varying circumstances (Table 1.1). 

Amongst the ectotherms, swordfish and other related billfish species have been found to 

possess a specialised thermogenic organ derived from extraocular skeletal muscles 

beneath the brain (Carey, 1982). The cells of this organ are characterised by numerous 

mitochondria, extensive smooth endoplasrnic reticula, and the absence of contractile 

elements and thermogenin (Block, 1987). Block (1994) has reviewed the literature 

dealing specifically with the thermogenic mechanisms associated with the billfish heater 

organ, and with muscle NST in other animal groups and concludes that ATP-cycling of 

Ca2+  between the sarcoplasmic reticulum and the cytosol is emerging as a common key 

pathway for muscular thermogenesis. 

1.3 Other Possible Sources of Facultative NST 

1.3.1 Liver 

The literature contains conflicting accounts regarding the possible contribution of 

the liver to facultative heat production. Depocas (1958, 1960) reported that functionally 

eviscerated rats responded no differently to cold exposure or infused noradrenaline than 

intact animals. In addition, noradrenaline infusions did not increase the metabolic rate of 

the isolated rat liver (JanskSt et al., 1964). Later studies, on the other hand, recorded 

increases in liver thermogenesis both in cold-exposed dogs (Bacconier et al., 1979) and 

rats (Stoner, 1973). 



Table 1.1 Quantitative estimates of skeletal muscle contribution to NST in vivo in various endotherms. 

species NST acclimation estimated NST skeletal 
stimulus status muscle contribution• 

rat noradrenaline CA 48% of NOR response 

rat cold 
exposure 

CA up to 50% 
of NST response 

+(1978) 

rat increased TN 25% of 
P02  NST response 

chicken cold 
exposure 

CA 155% increase in total 
metabolic rate, 

no shivering 

duckling cold 
exposure 

CA 71% of cold- 
induced thermogenesis 

duckling glucagon 
induced 

CA 53% of thermogenesis 
increase 

duckling glucagon 
induced 

TN 28% of 
thermogenesis increase 

experimental method 	reference 

perfiised muscle V02 	Grubb & Folk (1977) 

	

cytochrome oxidase activity 	Jansk5r (1963; 1971), 
and muscle blood flow 

perfused gracilis muscle 	Chinet & 
V02  and heat production 	Mejsnar (1989) 

EMG and 
	

El-Halawani et al. 
indirect calorimetry 	 (1971) 

muscle blood flow 	 Duchamp & 

	

and blood oxygen content 
	Barre (1993) 

muscle blood flow 
	Duchamp et al. 

	

and blood oxygen content 
	(1993a) 

muscle blood flow 	Duchamp et al. 

	

and blood oxygen content 
	(1993a) 

CA, cold-acclimated; WA, warm-acclimated; TN, thermoneutral acclimation; EMG, electromyography 
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1.3.2 Kidney, heart, intestine, and brain 

In this laboratory, perfused rat kidney and intestine preparations were capable 

of increasing their oxygen uptake by 45% and 15% respectively in response to 

vasopressin stimulation. Noradrenaline induced similar V02 stimulation in perfused 

kidney preparations. These increases were accompanied by elevated perfusion 

pressure (Ye et al., 1990a; see section 1.4.5.1). The remaining literature contains 

relatively little support for these organs being significant contributors to facultative 

NST (reviewed by Jans14,, 1995), although the metabolic rate of the brain 

(MacKenzie et aL, 1976) and the gastrointestinal heat production of dogs (Durotoye 

et al., 1976) have been observed to increase after noradrenaline and cold exposure 

respectively. 

1.4 Role of the Vasculature in Skeletal Muscle Metabolism 

1.4.1 Perfusion heterogeneity in skeletal muscle 

It has long been recognised that the relationship between bulk muscle blood 

flow and the distribution of capillary flow within the muscle is complex; it is possible 

for bulk flow to increase whilst local perfusion of some regions simultaneously 

decreases (Duling, 1983). Vetterlein and Schmidt (1975) observed that vasodilation 

was able to increase bulk muscle blood flow whilst simultaneously reducing capillary 

red cell velocity in some vessels. Schroeder and Rathscheck (1973) noted that 

acetylcholine increased bulk flow but decreased tissue P02. Raising arterial P02 led to 

increased P02  variability yet the overall rise in tissue P02 was insignificant (Lund et 

aL 1980). These studies illustrate the complex nature of microcirculatory perfusion. 

The use of radioactive microspheres (Iversen and Nicolaysen, 1995 and references 

therein) have revealed flow heterogeneity within single skeletal muscles of a number 

of species, both in conscious and anaesthetised animals. These studies conclude that 

such uneven perfusion patterns represent genuine physiological phenomena. 
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1.4.2 Actions of vasoconstrictors in perfused skeletal muscle 

1.4.2.1 Stimulation of basal metabolism 

A number of perfused rat hindlimb studies, both in this laboratory (Colquhoun 

etal., 1990; Dora et al., 1992a) and elsewhere (Grubb and Folk, 1977; Richter et al., 

1982a; Cote et al., 1985), have demonstrated the ability of catecholamines to induce 

increased V02  in conjunction with vasoconstriction via an a-adrenergic receptor-

mediated mechanism. A range of other agents examined in this laboratory (reviewed 

by Clark et aL, 1995) have been observed to increase hindlimb V02 in association 

with vasoconstriction. In addition to increasing V02, vasoconstrictors in this category 

(termed 'type A' vasoconstrictors, Table 1.2) appear capable of stimulating 

metabolism in general; various members of the group have been shown to accelerate 

the efflux of urate and uracil (Clark et aL, 1990), lactate (Hettiarachchi et al., 1992), 

and glycerol (Clark et aL, 1994), as well as to elevate glucose uptake (Richter et aL, 

1982b). 

The metabolic and vascular effects of type A vasoconstrictors would appear to 

be closely associated. Neither the use of various types of vasodilator (e.g. 

nitrovasodilators, Ye etal., 1990b, Colquhoun etal., 1990; Cal' channel blockers and 

0-adrenergic agonists, Colquhoun et al., 1990) nor metabolic poisons (Dora et aL, 

1992a; Richards et al., 1992) have succeeded in breaking the apparent link between 

the two. Furthermore, the results obtained when skeletal muscle preparations do not 

receive nutrients and hormones via the vasculature fail to correspond with those 

outlined above. That is, when incubated or perifused with noradrenaline, isolated 

skeletal muscle shows no increase in VO2, heat flux nor lactate efflux (Dubois-Ferriere 

and Chinet, 1981; Hettiarachchi et al., 1992). In contrast, incubated in vitro 

preparations of BAT (Girardier and Stock, 1983) and liver (Binet and Claret, 1983) 

show increased thermogenesis in response to noradrenaline, although the effect in the 

latter tissue is attributed to increases in a diverse range of metabolic processes. Taken 

together, these observations form the nucleus of the argument supporting a critical 

role of the vasculature in controlling skeletal muscle metabolism. 
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Table 1.2. Type A and type B vasoconstrictor stimuli in the perfused rat 

hindlimb (modified from Clark et aL, 1995). 

Change From Control at 
Maximum Dose of Agonist, % 

Reference 

  

Agonist 	Perfusion 	Oxygen 
Pressure 	Uptake 

Type A 

46 
52 
77 
25 
67 
50#  
57 
25 
28 
10 
18 
64 
66 
22 
18 

6 

Type B 

-11 
-3.0 
-15 
-10 
-30.3 
-35 

Noradrenaline 	52 
130 
NR 

Adrenaline 	 67 
NR 

Phenylephrine 	160" 
NR 

Methoxamine 	 167 
Amidephrine 	 24 
Ephedrine 	 70 
Norephedrine 	 57 
Angiotensin II 	133 
Vasopressin 	 121 
Capsaicin 	 54.5 
Dihydrocapsaicin 	49 
Low frequency 
sympathetic nerve 
stimulation 
(0.5-4 Hz) 	 6 

Noradrenaline 	190 
(1 uM) 	 206 

200 
380 

Serotonin 	 76 
Capsaicin (>1 uM) 	110 
Dihydrocapsaicin (>1 uM) + 
High-frequency 
sympathetic nerve 
stimulation (>4 Hz) 	37 

Colquhoun et al., 1988 
Cote etal., 1985 
Grubb & Folk, 1977 
Richter et al., 1982a 
Grubb & Folk, 1977 
Shiota & Mastuni, 1988 
Grubb & Folk, 1977 
Hettiarachchi et al., 1992 
Clark etal., 1994* 
Clark etal., 1994* 
Hettiarachchi etal., 1991 
Colquhoun etal., 1988 
Colquhoun et al., 1988 
Cameron-Smith et al., 1990 
Cameron-Smith et al., 1990 

Hall et al., 1996 

T.P.D. Eldershaw, unpublished 
Dora etal., 1994 
Cote eta!, 1985 
Grubb & Folk, 1976 
Dora etal., 1994 
Chapter 3 
Clark etal., 1994 

-16 	 Hall etal., 1996 

Hindlimbs were perfused at 25°C with constant flow. NR, not reported. 'Cold-acclimated rats. 

*Actual values appear in M. Hettiarachchi PhD Thesis, University of Tasmania 1991. + and -, 

indicate an increase or decrease, respectively, when compared with control (vehicle only) perfusions. 
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It is important to address the possibility of type A metabolic effects being 

artefacts of the hindlimb perfusion technique. Many of the observations described 

above have been made using cell-free perfusates under fully dilated conditions, the 

resultant low vascular resistance raising the possibility of artefactual heterogeneity 

within the preparation. In basal preparations peifused for three hours, measurements 

of high energy phosphate concentrations and the ratio of creatine phosphate to 

creatine (a sensitive index of muscle hypoxia; Ye et al., 1996), were similar to 

measurements made using freshly sampled muscle. Comparable increases in V0 2  have 

been observed using noradrenaline and vasopressin in preparations at higher flow 

rates with basal perfusion pressures approaching in vivo values (Ye et aL, 1990b). In 

addition, experiments conducted at 37°C with red blood cell perfusates and 

concomitant basal perfusion pressures of 90 mm Hg demonstrated marked increases 

in V02  in response to angiotensin II (Rattigan et al., 1996). The fact that several 

groups (Grubb and Folk, 1977; Richter etal., 1982a; Cote et al., 1985; Colquhoun et 

al., 1988) have reported catecholamine-induced increases in perfused rat hindlimb 

V02  under a variety of conditions (i.e. with or without red blood cells, differing 

arterial P02, temperatures of 25, 32 or 37°C) implies that the results represent a 

genuine biological effect. Interestingly, studies in this laboratory suggest that the 

phenomenon is not confined to skeletal muscle, but may also be present in perfused 

rat kidney, intestine, and mesenteric arcade (Ye etal., 1990a). 

1.4.2.2 Inhibition of basal metabolism 

A second group of stimuli that vasoconstrict but inhibit basal metabolism have 

been identified ('type B' vasoconstrictors, Table 1.2). In addition to depressing basal 

V02, the metabolic effects induced by type B agents in perfused rat hindlimb 

preparations are generally the opposite of type A agents. Thus such agents act to 

decrease lactate, glycerol, urate and uracil efflux (Clark et al., 1994), as well as 

inhibiting insulin-mediated glucose uptake (Rattigan et al., 1993, 1995). Serotonin (5- 

HT) acts as a type B agent at all effective concentrations (Dora et al., 1991, 1992a). 

Others agents such as noradrenaline (Dora et al., 1992a) and vanilloids (Chapters 2a 

and 2b) display bell-shaped VO2  dose-response curves, acting as type A agents at 

lower concentrations and type B agents at higher concentrations. Perfusion pressure, 
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on the other hand, shows dose-dependent increases over the full concentration range. 

As noted for type A vasoconstrictors, vasodilation opposes both the vasoconstricting 

and metabolic actions of type B agents (Rattigan et al., 1993). 

Interestingly, the effects of noradrenaline at concentrations thought to occur at 

sympathetic nerve synapses on vascular smooth muscle (i.e. 1 AM, Esler et al., 

1990) are negatively thermogenic (Table 1.2). Actual sympathetic stimulation of the 

hindlimb preparation results in qualitatively similar type B responses at high 

frequencies (Table 1.2), whilst lower frequencies towards the left of the bell-shaped 

dose response curve (Hall et al., 1996) produce type A V02 effects. Analogous 

frequency-dependent changes in oxygen extraction have been reported during 

sympathetic nerve stimulation of the auto-perfused dog hindlimb (Pappenheimer et 

al., 1941; Duran and Renlcin, 1976). 

The actions of type B agents on glucose metabolism in the perfused rat 

hindlimb have been of particular interest (refer to section 1.5.2). 5-HT (Rattigan et 

aL, 1993), high-dose noradrenaline (Rattigan et aL, 1995) and high doses of vanilloids 

(T.P.D. Eldershaw, unpublished preliminary data from this laboratory) are all capable 

of markedly inhibiting insulin-mediated glucose uptake. Once again, it is noteworthy 

that these metabolic alterations only manifest when the hindlimb nutrients are supplied 

via the vascular route. In the studies with both 5-HT and high-dose noradrenaline, 

isolated incubated muscles gave no indication of similar metabolic depression when 

exposed to matching agonist concentrations (Rattigan et al., 1993, 1995). 

1.4.3 Nutritive and non -nutritive flow patterns 

The concept of two circulatory patterns being present in skeletal muscle is not 

new. Indeed, the notion of circulatory systems within skeletal muscle being either 

nutritive or non-nutritive has been discussed at length in a number of communications 

(Barlow et al., 1961; Grant and Payling Wright, 1970; Lindbom and Arfors, 1984; 

Saltzman et aL, 1992). These investigations have reported no evidence of 

thoroughfare channels (shunts) within the fibre-containing tissue which might act to 

short circuit the respiring tissue. Nevertheless, a general consensus was that the 

vessels within the associated connective tissue may serve a non-nutritive function. In 

addition to the proposal that the circulation in cat inter-muscular septa and tendons 
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was essentially non-nutritive, Barlow et aL (1961) noted that the two circulatory 

patterns responded differently to i. v. noradrenaline. Lindbom and Arfors (1984) 

observed that transverse arterioles fed circulatory systems in rabbit tenuissitnus 

muscle connective tissue after branching into the muscle fibres. The two systems were 

thought to be controlled by their relative contributions to vascular resistance; it was 

hypothesised that sensitivity differences to stimuli may be a functional basis for the 

control of blood supply and capillary perfusion within the muscle. The same research 

group subsequently described the connective tissue microcirculation as representing a 

significant functional red-cell shunt (Ley et al, 1988). 

Although the work of Hamrnersen (1970) found no evidence for anatomical 

arteriovenous anastamoses in skeletal muscle, studies in this laboratory have 

postulated the presence of functional vascular shunting to explain the observed type B 

metabolic effects (Dora et al., 1991, 1992a; Rattigan et al., 1993). More recent 

experiments using 8-16 gm microspheres (Newman et al., 1996) in perfused rat 

hindlimb preparations have resulted in low microsphere clearance and an unchanged 

distribution, indicating that any shunting (if occurring at all) must be within the 

microcirculation. 

A recent study has successfully demonstrated differing vascular flow routes in 

perfused rat hindlimbs subjected to type A or type B stimulation (Newman et aL, 

1996). The measurement of post-equilibration red blood cell efflux and the 

entrapment of fluorescent dextran, as well as corrosion casting of the 

microvasculature revealed that type A stimulation recruited a new vascular space. 

This space was not recruited by type B stimulation, despite higher perfusion pressure. 

Type B stimulation in fact restricted perfusate distribution, producing corrosion casts 

of lower mass than control. Casts for type A stimulation revealed a greater number of 

filled vessels, although the cast mass did not differ from control. 

Taken together, the contemporary evidence for flow redistribution together 

with the longer standing suggestions of nutritive and non-nutritive circulation systems 

within skeletal muscle comprise a strengthening argument in support of vascular 

involvement in skeletal muscle metabolic control. 
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1.4.5 Possible mechanisms to account for increased V0 2  

1.4.5.1 Working vascular smooth muscle 

There is no doubt that the process of vasoconstriction involves a thermogenic 

component, given that vascular smooth muscle (VSM) contraction by definition 

involves an energy conversion. However, the proposal that working VSM of the 

resistance vessels may significantly contribute to facultative NST ('vascular 

thermogenesis'; Colquhoun and Clark, 1991) represents a new and interesting 

addition to the group of proposed NST effector tissues. The wide distribution of 

VSM throughout the body, and the close proximity of this putative thermogenic tissue 

to the blood are certainly amongst the more attractive features associated with this 

concept. Furthermore, much of the vasculature is highly innervated by sympathetic 

nerve fibres (Burnstock, 1975), a property shared with BAT. 

The evidence in support of VSM being a potential thermogenic effector is 

centred on the observations that a range of vasoactive agents were able to stimulate 

oxygen uptake (V02) in close association with vasoconstriction in perfused rat 

hindlimb preparations (Colquhoun et al., 1988, 1990). This relationship also applied 

in other perfused systems such as the rat kidney and intestine (Ye et al., 1990a), as 

well as the mesenteric arcade (Ye et al., 1990a; Dora et al., 1991). The 

vasoconstrictor-induced V02 in hindlimb preparations was additive to that induced by 

muscle contraction (Colquhoun et al., 1990). Furthermore, V02 increases induced by 

higher flow rates were enhanced by vasoconstriction and reduced by vasodilation (Ye 

et al., 1990b). Studies with isolated small arteries (approximately 500 pm) from the 

rat indicate that the presence of mitochondria and cytochrome c oxidase activity in the 

VSM are consistent with a potential for a significant thermogenic contribution (Z.-C. 

Peng, unpublished data from this laboratory). A series of calculations based on these 

data, and the estimated 3.4% presence of VSM in the human whole body (Paul, 1980) 

indicated that this potential VSM thermogenic contribution was around 30% of basal 

metabolism (Z.-C. Peng, opp. cit.). 

However, the proposed high economy of VSM tension maintenance (e.g. the 

'latch' hypothesis of Murphy et al., 1988) presents some problems for this theory. 

Nevertheless, knowledge of the energetics of VSM remains incomplete (reviewed by 
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Paul et al., 1989). The possibility of the energetic tension costs of the 

microvasculature being higher than previously estimated, particularly if components of 

the microcirculation maintain active tension (Colquhoun and Clark, 1991) should not 

be dismissed. Similarly, the estimated 3.4% presence VSM (Paul, 1980) may not be 

reliable, since it is an indirect measurement based on calculations involving projections 

of the metabolic cost of maintaining the tension required for vascular regulation of 

circulation, and the fraction of total metabolism estimated to be attributable to the 

maintenance of tone. 

Given the current technical hurdles associated with isolating resistance vessels, 

direct evidence for this hypothesis is difficult to obtain. Whilst a substantial 

thermogenic contribution by VSM remains possible, further supporting evidence is 

required for this notion to be regarded as being of physiological importance. 

Nevertheless, the vasculature is increasingly being viewed as exerting a major 

influence on tissue metabolism, regardless of the magnitude of the direct thermogenic 

contribution of vascular smooth muscle. 

1.4.5.2 Proposed paracrine signalling 

The observed increases in perfused muscle V0 2  are unlikely to be the result of 

increasing the hormone and nutrient access within skeletal muscle per se. It has 

recently been postulated that the release of a paracrine (or endocrine) signaling agent 

may activate the calorigenic mechanism (Clark et aL, 1995). Speculation regarding 

such an agent has centred on the hypothesis that site-specific vasoconstriction and the 

resultant flow increase to the nutritive circulation causes a shear-stress activated 

release of an endothelial autacoid substance which subsequently acts either in a 

paracrine role to increase muscle fibre metabolism, or an autacoid role to relax vessels 

distal to the impending flow. 

1. 4.5.3 Supply limitation 

In the absence of endocrine/paracrine signals or specialised effector 

mechanisms for increasing metabolism within skeletal muscle, the concept of localised 

supply limitation (Duling, 1983) may account for modest increases in metabolism. 

Indeed, it has been demonstrated that oxygen supply can be limiting if the flow rate or 
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arterial P02 is sufficiently reduced relative to the muscle metabolic rate (Horstman et 
al., 1976). If heterogeneity of muscle nutrient supply exists, as outlined in previous 

sections, it is reasonable to postulate that localised zones within the muscle may have 

sufficiently low P02 to inhibit oxidative phosphorylation. Type A actions to reduce 

such heterogeneity would result in the removal of the supply limitation and a 

concomitant V02 increase. 

Use of the Krogh equation (Krogh, 1919) to predict oxygen supply to tissue 

assumes relative homogeneity of spatial oxygen distribution. Heterogeneity, be it due 

to vessel geometry, flow pattern, red cell distribution, or tissue type (e.g. fibre type 

distribution) influences the overall level of tissue oxygenation (Duling, 1983) and 

creates potential for supply limitation independent of bulk tissue flow. A number of 

more contemporary physiological models now recognise the roles of diffusion 

limitation and heterogeneity of blood flow (reviewed by Piiper, 1994). In the perfused 

rat hindlimb model, physiological pharmacokinetics of solutes under varied perfusion 

conditions have been described by Wu etal. (1993). 

The notion of supply limitation within skeletal muscle is, on the other hand, 

not supported by the findings of Gayeski, Honig, and colleagues concerning the role 

of myoglobin in facilitating oxygen difflision within myocytes (Gayeski et aL, 1985; 

Honig and Gayeski, 1993). Indeed these authors conclude that the facilitation effect of 

myoglobin is such that the principal resistance to oxygen diffusion in fact lies outside 

the myocyte (Honig and Gayeski, 1993). Furthermore, myoglobin is reported to 

buffer myocyte intracellular P0 2  above the tension found to limit cytoclirome turnover 

(Gayeski etal., 1985). This oxygen buffering proposal was supported by the apparent 

lack of anoxic regions (using cryomicrospectroscopy) in working dog gracilis muscle 

- even at high V02 (Gayeslci etal., 1988). 

In light of the magnitude of some type A-induced thermogenic increases (e.g. 

77% increase with noradrenaline, Table 1.2), it is difficult to rationalise that such a 

large amount of oxygen could be coupled to ATP synthesis in resting skeletal muscle 

preparations. It therefore becomes necessary to consider specialised energy-

dissipating mechanisms or uncoupled respiration. 
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1.4.5.4 Substrate cycling 

Shiota and Masumi (1988) reported that ouabain was capable of blocking 

NOR-induced V02 in perfused rat hindlimb preparations, suggesting that active 

transport of sodium and potassium ions across the plasma membrane was the primary 

energy-dissipating mechanism. Recent data from this laboratory (A.C.Y. Tong, S. 

Rattigan, K.A. Dora, and M.G. Clark, submitted) support this interpretation. On the 

other hand, other studies (Clausen et al., 1991) have dismissed Nat-IC transport as a 

major contributor to NST. 

Calcium ion cycling between the cytoplasm and the sarcoplastnic reticulum 

(SR) has been proposed as the primary energy-dissipating mechanism in billfish heater 

organs (Block, 1994). Central to the cycling process is an increase in the permeability 

of the SR membrane. However, it appears likely that this mechanism is relatively 

specialised, and indeed makes no contribution to resting V02 in perfused hindlimb 

preparations (Chinet and Mejsnar, 1989). 

1.4.5.5 Uncoupling of oxidative phosphoglation 

Uncoupling of oxidative phosphorylation in brown adipose tissue is widely 

recognised as a specialised thermogenic mechanism (Trayhurn, 1994). BAT 

uncoupling protein (UCP) acts as a proton conductance pathway across the inner 

mitochondrial membrane. Thus protons generated from substrate oxidation through 

the respiratory chain are able to return through the inner membrane allowing the 

bypass of ATP synthesis. The energy of substrate oxidation is therefore expressed as 

heat. 

It is conceivable that the increased V02  observed during type A stimulation is 

associated with specialised uncoupling subsarcolemmal mitochondria situated within 

the capillary recruitment areas. Such "loose-coupled" mitochondria have been 

reported to be present in the skeletal muscle of birds (Barre et al., 1989) where the 

glucagon-mediated liberation of free fatty acids may be implicated in the uncoupling 

process (Barre et al, 1986). 

Recent studies have suggested the presence of atypical P-adrenoreceptors 

(presumed to be 133-adrenoreceptors, the receptors responsible for activation of BAT 

thermogenesis) in rat skeletal muscle (Roberts et al., 1993; Abe et al, 1993; Liu and 
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Stock, 1995). Accordingly, 13 3-adrenoreceptor messenger RNA (mRNA) has recently 

been detected in rat skeletal muscles (Summers et al., 1995; Evans et al., 1996). 

However, the substantial adipsin mRNA relative to the low levels of 133- 

adrenoreceptor mRNA suggested that these receptors may only have been present in 

associated white fat cells and not associated with UCP. Nevertheless, Evans et al. 

(1996) did report a weak signal for UCP mRNA in a single rat gastrocnemius muscle 

preparation. 

1.4.5.6 Passive proton leakage 

Studies in the United Kingdom (Brand et al., 1994; Rolfe and Brand 1996a, 

1996b) have suggested that a substantial proportion (up to 52%) of the perfused rat 

hindlimb V02 may be associated with maintaining the mitochondrial proton motive 

force in the presence of passive proton leak across the inner mitochondrial membrane 

(as opposed to facilitated proton leak associated with uncoupling mechanisms). This 

mechanism has therefore been postulated as a major contributor to whole body 

thermogenesis. In addition, small changes in membrane potential can markedly affect 

the rate of proton leakage and therefore cellular thermogenesis (Brand et al., 1994). 

In this laboratory, Steen et aL (1996) have duplicated the data of Brand et al. 

(1994), using oligomycin (ATP synthase inhibitor) in the perfused rat hindlimb to 

provide preliminary support to the notion that 50% of basal respiration is unlikely to 

be coupled to ATP synthesis, and may be attributable to the aforementioned inner 

mitochondrial membrane proton leak. Furthermore, the use of type A and type B 
vasoconstrictors in the presence of oligomycin results in significant alterations of the 

remaining respiratory component (Steen et al., 1996) in the established pattern (Table 

1.2). 

It seems feasible that the initial alteration in perfusate access induced by 

vasoconstrictor-associated flow redistribution may act to modulate the inner 

mitochondrial membrane potential which in turn changes the rate of proton leak. 

The involvement of an endothelium-derived paracrine signal substance to 

initiate a change in membrane potential of muscle mitochondria, or simple supply-

limitation of oxygen to the location of specialised thermogenic (proton leaking) 

mitochondria are both possibilities which at present cannot be excluded. However, 
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the concept of passive proton leak being responsible for marked changes in muscle 

V02  remains just one of a number of possible mechanisms. 

1.5 Possible Physiological Correlates of Vascular Metabolic Control 

1.5.1 Control of muscle contractility 

Type A and type B vasoconstriction have been demonstrated to have opposite 

effects on the contractile performance of constant-flow perfused muscle (reviewed by 

Clark et al., 1995), in similar fashion to the opposing effects noted for the metabolic 

parameters discussed thus far. Again, matching treatments of non-perfused 

preparations had little or no effect on contractile performance. The type B 

vasoconstrictors serotonin (Dora et al., 1994) and high doses of noradrenaline (Clark 

et al., 1995) act to decrease the aerobic phase of contractile performance, reinforcing 

the argument for reduced nutritive flow under such circumstances. Indeed the 

contractile performance of skeletal muscle is dependent on oxygen supply (Walker et 

al., 1982) and similar reductions in tetanic tension can be achieved by imposing 

conditions of anoxia, ischaemia, or anaemia on skeletal muscle (Dodd et al., 1993; 

Walker et al., 1982). Vasodilators represent another group of agents capable of 

reducing aerobic contractility, as demonstrated by experiments in autoperfused (i.e. 

variable flow) muscle preparations in cats (Hirvonen et aL, 1964). Significantly, 

vasodilation has been shown to induce microcirculatory perfusion heterogeneity in 

variable flow models (Vetterlein and Schmidt, 1975), although bulk tissue perfusion 

actually increases. 

The type A vasoconstrictors adrenaline, low dose noradrenaline, and 

angiotensin II all improve skeletal muscle tension development (Richter et al., 1982a; 

Clark et al., 1995; and Rattigan et al., 1996 respectively). In the most recent study, 

infusion of angiotensin II improved aerobic tetanic tension by 80%; the improvement 

was attributed to flow redistribution, either to nutritive circulation or from type I to 

type II contracting muscles (Rattigan etal., 1996). 

1.5.2 Control of insulin-mediated glucose uptake 

Skeletal muscle is the major site of insulin-mediated glucose uptake (IMGU, 

Baron et al., 1994). Data indicate that the degree of skeletal muscle perfusion can be 
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an important determinant of IMGU (reviewed by Baron, 1994). Parallel (but separate) 

research in this laboratory has centred on the vasoconstrictor-induced haemodynamic 

responses of perfused skeletal muscle as they relate to IMGU. 

Consistent with the hypothesis of vasoconstrictor-induced flow redistribution, 

perfusion experiments have confirmed a role for vasoconstrictors in the control of 

IMGU. Such control was not apparent in parallel incubation studies. 

Serotonin infusion was capable of inducing an acute state of insulin resistance 

in perfused preparations, with IMGU being inhibited by 30%. Furthermore, the 

uptake of 2-deoxy-D41-3I-liglucose in individual muscles was inhibited by 32%-80% 

(Rattigan et al., 1993). The infusion of type B doses of noradrenaline (10 gM) 

identified an a-adrenergic inhibition of IMGU (Rattigan et cd., 1995). This 

concentration of noradrenaline is similar to those thought to occur at sympathetic 

synapses (Ester et al., 1990). 

Type A vasoconstrictor-induced stimulation of IMGU in the perfused rat 

hindlimb preparation was demonstrated using 1 gM noradrenaline which markedly 

increased IMGU in perfusion preparations at 37°C (Clark etal., 1996). 

The experiments outlined above provide compelling evidence for a 

haemodynamic basis of skeletal muscle insulin resistance. Indeed, insulin itself has 

been recently reported to include a haemodynamic component in its spectrum of 

pharmacological activity (reviewed by Baron, 1994). The dilatory actions of insulin in 

human skeletal muscle vasculature, apparently via nitric oxide release, are reportedly 

impaired in insulin-resistant disease states. The dilatory behaviour is therefore 

increasingly being recognised as an important part of the overall action of insulin 

(Baron, 1994). 

1.6 Possible Link Between Impaired Flow Distribution and Disease States 

Based on the observation that the disease states of hypertension, 

hyperlipidaemia, and diabetes mellitus often cluster in the same individuals, a 

metabolic syndrome ("Syndrome X") has been proposed (Reaven, 1988). It has been 

suggested that increased sympathetic nerve activity (Lind et al., 1988) and a decrease 
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in peripheral blood flow (reviewed by Lind and Lithe11, 1993) may have pathogenic 

importance for the development of the syndrome. 

Certainly the data obtained using the perfiised rat hindlimb preparation suggest 

that increased sympathetic nerve activity and the resultant increase in noradrenaline 

concentrations may manifest in restricted perfusate flow within skeletal muscle (J.L. 

Hall, unpublished data from this laboratory). Such impaired flow distribution in vivo 

could ultimately lead to vascular rarefaction (Zeman et al., 1988) and therefore a 

permanent state of reduced nutritive flow within the skeletal muscle, potentially 

presenting an individual with an impaired ability to clear plasma glucose and lipids, as 

well as a diminished capacity for regulatory skeletal muscle thermogenesis (Fig. 1.2). 

Perfusion studies with obese and insulin-resistant animal models (e.g. obese 

Zucker rats) may provide insights regarding the relationship of skeletal muscle 

vascular control mechanisms to the expression of the obesity and insulin-resistance. 

Evidence of impaired vascular control would strengthen the case for a causal 

relationship between skeletal muscle dysfunction and the development of 

hypertension, obesity, and diabetes. 

Increased Sympathetic 
Nerve Activity 

Non-Nutritive 
Flow Predominates 

Vessel Rarefaction 
and Hypertrophy 

Decreased Peripheral 
Blood Flow 

1 
Hyperinsulinaemia 	Hypertension 	Hyperlipidaemia 

Fig. 1.2. Possible chain of events leading to the development of metabolic 

"Syndrome X" (redrawn and modified from Lind and Lithell, 1993). 
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1.7 Potential Role for Vanilloid Agents in Controlling Muscle Metabolism 

1.7.1 Vanilloid molecules 

Vanilloids are a family of molecules bearing a structural resemblance to 

capsaicin (8-methyl-N-vanilly1-6-nonanamide, Chapter 2a, Fig. 2a.1), a pungent 

ingredient of hot peppers and chillies from the genus Capsicum (family Solanaceae). 

The group is distinguished by a homovanillyl structural moiety (Chapter 2a, Fig. 

2a.1), and naturally-occurring members include the pungent compounds 

dihydrocapsaicin (reduced form of capsaicin), resiniferatoxin (RTX, an ultrapotent 

vanilloid present in the latex of some members of the genus Euphorbia), the gingerol 

and shogaol homologues (ginger), and piperine (black pepper). 

1.7.2 Capsaicin actions in the perfused rat hindlimb 

Cameron-Smith et aL (1990) identified capsaicin and dihydrocapsaicin as 

vasoconstrictors capable of modulating the V02 of perfused rat hindlimb preparations. 

Both agents induced type A V02 effects at concentrations less than 1 RM (20%-23% 

above basal). At higher concentrations, type B V02 effects were apparent. The 

stimulatory V02 actions were not mediated by a l  nor 1342 adrenergic receptors, 

thereby identifying the vanilloids as a potential novel group of vasoconstrictors 

capable of influencing perfused muscle metabolism. 

1.7.3 Vanilloid neuropharmacological activity 

Since the early work by the Hungarian group of Jansco postulating the 

existence of a capsaicin-sensitive "pain receptor" (Jansco, 1968), vanilloids have 

attracted increasing interest (Bevan and Szolcsanyi, 1990; Szallasi and Blumberg, 

1990b; Dray, 1992; Craft and Porreca, 1992; Maggi, 1992), particularly with respect 

to their neuropharmacological activity (Bevan and Szolcsanyi, 1990; Szallasi and 

Blumberg, 1990b; Dray, 1992). Much attention has centred on the well known 

excitatory, desensitising, and toxic effects of capsaicin on subsets of unmyelinated or 

thinly myelinated sensory nerves (Wood et al., 1988). The role of vanilloids in the 

depolarisation of nerves and in the mediation of pain has been extensively reviewed 

(Wood, 1993). Vanilloid antinociceptive activity, the result of an ability to desensitise 



23 

a subset of primary afferent neurones (Buck and Burks, 1986), has led to the 

development of synthetic analogues as prototype analgesic agents (e.g. Park et al., 
1995). 

/. 7.4 Vanilloid actions in peripheral tissues 

Whilst vanilloids generally are found to have a wide range of pharmacological 

activities, there are few accounts of vanilloid effects on oxygen consumption in 

individual tissues, although capsaicin and synthetic analogues have been found to 

interfere with mitochondria' enzymes (Satoh et al, 1996). Reported actions on non-

neuronal systems include cardiac muscle excitability and inhibition of visceral smooth 

muscle activity (Holzer, 1991 and references therein), as well as biological responses 

in the liver and uterus (Szallasi, 1994 and references therein). Many types of 

peripheral smooth muscle are documented as being vanilloid-sensitive, including rat 

urinary bladder (Szallasi et al., 1993), colon (Goso et al., 1993), urethra (Parlani et 

al., 1993) as well as human and guinea pig airways (Szallasi et aL, 1995b). 

In terms of vascular smooth muscle stimulation, capsaicin is reported to have 

both contractile and endothelium independent dilatory influences (Saito et al., 1988; 

Duckles, 1986). It seems probable that both are components of acute in vitro 

treatment within a complex vascular system (Duckles, 1986). 

1.7.5 Vanilloid receptors 

The selectivity of capsaicin action and the defined set of structural 

requirements for capsaicin-like activity provided early evidence for a specific ligand-

receptor interaction (reviewed by Szallasi and Blumberg, 1990b). Following indirect 

evidence obtained using capsaicin-like photoaffinity probes to inhibit the capsaicin 

response (James et al., 1988), attempts to detect putative receptors with radiolabelled 

dihydrocapsaicin were thwarted by the highly lipophilic nature and relatively low 

potency of this agent (James et aL, 1988). However, the discovery that resiniferatoxin 

acted as an ultrapotent capsaicin analogue was significant since the use of CHATX 

has resulted in direct identification of a specific vanilloid receptor (Szallasi and 

Blumberg, 1990a, 1990b). Vanilloid receptors have subsequently been identified in a 

number of species, including humans (Acs et al., 1994a). However, some species are 
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noteworthy due to their reported insensitivity to vanilloids. The chicken, for example, 

is reported to be practically insensitive to capsaicin (Pierau et al., 1986) and 

accordingly CHPITX does not bind to chicken dorsal root ganglia neurones (Szallasi 

and Blumberg, 1990b). Vanilloid actions on perfused chicken skeletal muscle have not 

been investigated. 

The notion of a specific vanilloid recognition site intimately associated with 

the vanilloid-operated cation channel (James et aL, 1993) has been reinforced by the 

development of a competitive• antagonist, cap sazepine. This agent is selective for the 

actions of capsaicin on central nerve endings in the rat (Urban and Dray, 1991; 

Dickenson and Dray, 1991), in functional studies on capsaicin-mediated ion uptake in 

the same neurones (Bevan etal., 1992), and on contraction of smooth muscle (Maggi 

etal., 1993). 

The presence of a vanilloid recognition site suggests the likely existence of 

endogenous ligands. However, this notion remains a topic of debate, and the current 

experimental evidence is inconclusive (reviewed by Szallasi, 1994). Nevertheless, 

recent studies have suggested that protons (i.e. low pH) may be the endogenous 

ligands (Szallasi et al., 1995a), based on inhibited binding of [ 3H]RTX to spinal cord 

receptors. 

1.7.6 Vanilloid receptor subtypes 

Following the discovery of the vanilloid receptor, evidence has emerged to 

support the existence of vanilloid receptor subtypes, as well as interspecies receptor 

heterogeneity (reviewed by Szallasi, 1994). In particular, differences between central 

and peripheral vanilloid receptors in terms of binding affinity and cooperativity have 

been noted, but there is also heterogeneity amongst peripheral receptors (Szallasi, 

1994). However, receptors on differing parts of primary afferent neurones appear to 

be a uniform population (Acs etal., 1994b). 

The observed thermogenic effects of capsaicinoids in the perfused rat hindlimb 

system (Cameron-Smith et al., 1990) are conceivably due to interactions with 

peripheral vanilloid receptors within skeletal muscle. Furthermore, the duel V02 

effects may be linked to the presence of receptor subtypes within the hindlimb 

preparation. If specific subtypes were responsible for the thermogenic perturbations, 
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then vanilloid agents - both natural and synthetic - warrant further investigation as 

lead compounds for a new class of thermogenic drug, particularly if selectivity for the 

peripheral activity within skeletal muscle, and more particularly the positive 

thermogenic actions, can be attained. 

1.8 Objectives of the Present Study 

In light of the evidence presented linking the vascular system to the metabolic 

control of skeletal muscle, and the potential of vanilloids as a new group of agents 

capable of enforcing such control, the aims of the present study were as follows: 

1. To chemically isolate and subsequently assess the ability of naturally-occurring 

vanilloid compounds to modulate the oxygen consumption of perfused rat 

hindlimb preparations. 

2. To investigate and characterise mechanisms of vanilloid action in the perfused rat 

hindlimb model, including the possibility of specific receptor interactions. 

3. To use information obtained from experiments with natural vanilloids to develop 

synthetic vanilloid analogues in order to effectively study the structure-activity 

relationships of vanilloids in the perfused rat hindlimb model. 

4. To develop a viable method for perfusing bird skeletal muscle in order to conduct 

further comparative studies addressing firstly the reported lack of vanilloid 

receptors in chickens, and secondly the potential of skeletal muscle as a source of 

NST in endothermic animals without detectable BAT. 

5. To conduct comparative studies using an obese, insulin-resistant animal model 

(the genetically obese Zucker rat) in order to explore possible links between 

impaired skeletal muscle vascular control and the phenotypic expression of obesity 

and insulin-resistance. 

6. To address the possibility, in view of the experimental results, of vasoconstrictor-

controlled skeletal muscle thermogenesis being a general biological NST 

mechanism. 
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Chapter 2a 

Ginger Vanilloid Principles: Direct-acting Thermogenic Agents in the Perfused 

Rat Hindlimb 

2a.1 Introduction 

Ginger, the rhizome of Zingiber officinale Roscoe, is extensively used as a 

flavouring additive in foods, beverages, and confectionery. A herbaceous perennial 

belonging to the family Zingiberaceae, it has medicinal qualities of importance in 

traditional Chinese medicine. Legendary Chinese herbalist Shen Nung (3000 B.C.) 

recommended ginger for colds, fever, chills, tetanus and leprosy (Castleman, 1991). 

The crude drug continues to be widely used for the treatment of a number of ailments: 

these include colds and influenza, motion sickness, digestive problems, and irregular 

menstruation (Castleman, 1991). Ginger is noted for its apparent ability to 

subjectively warm the body (Ou Ming, 1989). 

This laboratory has previously demonstrated (Cameron-Smith et aL, 1990) 

that capsaicin and dihydrocapsaicin, the vanilloid spice principles present in hot 

chillies and capsicums, increase oxygen uptake in the isolated perfused rat hindlimb; 

the oxygen effects being associated with vasoconstriction. These findings may help to 

explain those of Henry and Emery (1986) who reported that human consumption of a 

meal containing chilli and mustard sauces resulted in a 25 per cent greater increase in 

diet-induced thermogenesis over a three hour period than a similar meal without 

spices. In addition, the response of the hindlimb to the capsaicinoids was consistent 

with the hypothesis that vascular smooth muscle directly consumed oxygen during 

sustained vasoconstriction (Colquhoun etal., 1988, 1990; Ye etal., 1990a, 1990b). 

Diet-induced thermogenesis may contribute significantly to the regulation of 

body temperature and energy balance (Landsberg and Young, 1981; Rothwell and 

Stock, 1979). The magnitude of this phenomenon is influenced both by caloric intake 

(Rothwell and Stock, 1983) and dietary composition (Moore, 1987; Swick and 

Gribskov, 1983; Rothwell et al., 1983). 
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Pungency, a feature of chillies and capsicums, is also an important 

characteristic of ginger. The pungent principles of ginger are present as two 

phenylalanine-derived (Denniff et al., 1980) homologous series, the gingerols and 

shogaols (Connell and Sutherland, 1969). The shogaols are formed via an alkyl chain 

dehydration reaction from gingerols (Fig. 2a.1), hence they are usually present in 

dried rather than fresh rhizomes. Gingerols and shogaols primarily consist of the [6]-, 

[8]-, and [10]-homologues (Connell and McLachlan, 1972; Fig. 2a.1), although trace 

amounts of other homologues have been reported following gas chromatographic 

studies (Harvey, 1981; Chen et al., 1986). Trace amounts of gingerols with methyl 

side chains have been described (Chen et al., 1986). Zingerone, a pungent hydrolysis 

product of gingerols and shogaols (Connell and Sutherland, 1969) is present in many 

heat treated or roasted ginger preparations. 

Recent studies have reported that both ginger and its isolated pungent 

principles exhibit a range of pharmacological effects. Suekawa et al. (1986a, 1986b) 

have found [6]-shogaol to have a triphasic effect on blood pressure in rats in vivo. It 

was suggested that this response was a complex phenomenon involving both CNS and 

peripheral activity. Other studies have found ginger principles to exhibit cardiac 

effects (Shoji et al., 1982; Suekawa et al., 1984), mutagenicity (Nakamura and 

Yamamoto, 1983; Nagabhushan et al., 1987), gastro-intestinal and analgesic activity 

(Nagabhushan et al., 1987), inhibition of human neutrophil 5-lipoxygenase activity 

(Flynn et al., 1986), and inhibition of serotonin-induced hypothermia and diarrhoea 

(Huang etal., 1990). 

The gingerols and shogaols bear some similarities to the capsaicinoids in terms 

of both structure and function. All contain the 4-methoxy, 3-hydroxy phenyl (vanilly1) 

moiety, as well as a carbonyl-containing alkyl side chain. Each group of homologues 

is responsible for the pungent taste of the parent plant (Connell and Sutherland, 

1969). As an on-going search for thermogenic dietary components, this study 

investigated the actions of ginger and its pungent principles in the isolated perfused 

rat hindlimb. 
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text. 



29 

2a.2 Methods 

2a.2.1 Animals 

All procedures adopted and experiments undertaken were approved by the 

University of Tasmania Ethics Committee under the Australian Code of Practice for 

the Care and Use of Animals for Scientific Purposes (1990). Male hooded Wistar rats 

(180-200 g) were raised on a commercial diet containing 21.4 per cent protein, 4.6 

per cent lipid, 68 per cent carbohydrate, and 6 per cent crude fibre with added 

vitamins and minerals (Gibsons, Hobart) together with water ad libitum at a constant 

temperature of 21 ± 1°C in a 12 h/12 h light/dark cycle. 

2a.2.2 Materials and instrumentation 

Bovine serum albumin (fraction V, Boehringer Mannheim, Germany) was 

dialysed 5 times against distilled water before use. NAD +  (free acid) and lactate 

dehydrogenase were purchased from Boehringer Mannheim (Germany). Prazosin 

hydrochloride and DL-propranolol hydrochloride were obtained from Sigma (USA) 

whilst glyceryl trinitrate (GTN) was from G Pohl-Boskamp GmbH and Co. 

(Germany). Fresh ginger was purchased locally whilst ground dried ginger was 

supplied by Buderim Ginger (Australia) and Superior Rate Corporation (Taiwan). 

Preparative TLC plates were prepared using a moving hopper slurry spreader 

over glass backing (Merck silica gel 60G, Germany). Short column chromatography 

was performed using Fluka (Switzerland) silica gel H for TLC (dry packed). A 

Cluomatotron apparatus (Harrison Research, USA) was used for radial 

chromatography. Plates were prepared using Merck (Germany) silica gel 60 PF254 on 

a glass backing. 

HPLC was performed using a Waters (Millipore, USA) system, incorporating 

6000A pumps, a U6K injector, a model 440 UV absorbance detector, and a 

differential refractometer model R401. A Dynamax-60A C18 column (model no. 83- 

221C, 21.4 mm i.d. x 25 cm, Rainin Instruments, USA) was used for preparative 

separations whilst analytical work was carried out using a Waters Radial-Pak C18 

column (8NVC184). The isocratic mobile phase was 80:20 methanol/water. 
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Solvents were all AR grade (Ajax Chemicals, Australia). Those used for 

HPLC were filtered (0.45 gm) and degassed prior to use. 

2a.2.3 Surgical and perfusion procedures 

The surgical and perfusion procedures were performed as described previously 

(Ruderman et al., 1971; Colquhoun et al., 1988). Briefly, following anaesthesia 

(sodium pentobarbital 60 mg.kg -I  i.p.) the tail, left tarsus, epigastric vessels and 

iliolumbar vessels were all ligated. An incision was made along the mid line of the 

abdomen. Ligatures were placed around the duodenum and the rectum, and the gut 

was excised. Heparin (2000 IU•kg -1  body weight) was injected into the vena cava 

prior to cannulation of the abdominal aorta and vena cava. The right common iliac 

artery and vein were ligated to ensure that flow was restricted to the left hindlimb. A 

further ligature was placed around the abdomen (L3-L4 vertebrae region) to prevent 

access of perfusate to the muscles of the back. Following commencement of perfusate 

flow, the rat was given a lethal cardiac injection of sodium pentobarbital. 

Perfusion was performed at 25°C in a temperature-controlled cabinet with 

constant flow (4 ml•nin1 ; 0.27 ml.miri l .g muscle-I) of an erythrocyte-free modified 

Krebs-Ringer bicarbonate buffer containing 2% dialysed bovine serum albumin, 8.3 

mM glucose, and 1.27 mM calcium chloride (prepared according to Cote et al., 

1985). The buffer reservoir was kept on ice and continuously, stirred, whilst the 

surface was gassed with 95% 02 - 5% CO2. Perfusate was pumped by a peristaltic 

pump (Masterflex, Cole Palmer, USA) to a 25°C heat exchanger prior to passing 

through a silastic lung, also gassed with 95% 0 2  - 5% CO2. Venous oxygen tension 

was continuously monitored with an in-line Clark-type electrode of 0.5 ml capacity. 

Water jackets maintained the heat exchanger and the oxygen electrode at 25°C. 

Perfusion pressure was monitored continuously at a bubble trap proximal to the 

arterial cannula using a gas-filled pressure transducer. The perfusion apparatus is 

shown in Fig. 2a.2. 
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Fig. 2a.2. Constant-flow rat hindlimb perfusion apparatus. 

2a.2.4 Agent infusions 

Crude extracts, fractions, and pure ginger principles were infused as 25% 

ethanol (AR grade) solutions using a glass syringe with teflon tubing in a Sage 

Instruments Syringe pump (model 355). GTN was also infused using this apparatus, 

given its propensity for sorption by components of drug delivery systems (Roberts et 

al., 1980). Other compounds were infused using LKB (Sweden) peristaltic pumps in 

water or saline solutions. Infusion rates were between 10 and 40 1.11.min 4 . Vehicle 

infusions (e.g. 25% ethanol/75% water, saline, and water) were shown not to perturb 

basal conditions. Solutions were infused into a bubble trap prior to the arterial 

cannula. The perfusate in this trap was subject to continual stirring. Oxygen uptakes 

and perfusion pressures were calculated from steady state values, usually attained 

within 5 minutes after applying the agent. 

2a.2.5 Calculation of oxygen uptake 

The oxygen electrode was calibrated before and after each experiment with 

pure oxygen and air. Arterial P0 2  (Pa02) was determined by joining the arterial and 
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venous cannulae to bypass the perfused tissue. V0 2  of perfused tissue was calculated 
from the difference between Pa02 and venous P0 2  (Pv02), the flow rate, and the 
perfused hindlimb muscle mass according to the following equation: 

V02 	= [1.508 x (Pa02-Pv02) x flow rate]/[perfused muscle mass] 

where 1.508 (gmol•L-1 .mm Hg-') is the Bunsen coefficient for oxygen solubility in 

human plasma at 25°C (Christoforides et a, 1969); Pa02 and Pv02  are in mm Hg; 

flow rate is in L•hr-1 ; and perfused muscle mass is in g (assumed to be 1/12 of body 

mass in 180-200 g rats, Ruderman etal., 1971). 

2a. 2.6 Lactate assay 

The lactate assay using neutralised perchlorate samples was based on the 

method of Gutman and Wahlefeld (1974). Samples for lactate analysis were taken at 

times corresponding to steady state oxygen consumption and perfusion pressure 

(usually 5 minutes after applying the agent). Lactate release was calculated as follows: 

lactate efflux = 	LSE x 1000 x cell volume x total volume x perfusion flow rate x 60 
(ilmol.g-1 .11 1 ) 
	

6220 x neutralised volume x perfiisate volume x muscle weight 

where AE is the net change in absorbance due to lactate dehydrogenase; 6220 

(ml.mmor l .cm-1) is the extinction coefficient for NADH at 340 nm; perfusion flow 

rate is in ml•min4 ; volumes are in ml; and muscle weight is in g. 

2a. 2.7 Statistics 

The data are expressed as means ± standard errors. Curves were fitted using 

the Sigma-Plot program (Jandel Scientific). Significance of differences (P 0.05) was 

assessed using Student's unpaired two-sided t test. In general, a minimum of five 

animals were used to determine a single data point. 
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2a. 2.8 Preparation of extracts and isolation of ginger principles 

Crude extracts of both fresh ginger and ground dried ginger were prepared by 

percolation (x4) in methanol (1-1PLC grade Ajax). Fresh ginger was chopped and 

blended with methanol to a slurry prior to extraction. Percolation periods were 

generally 8-12 hours after each fresh addition of methanol. Following extraction the 

methanol was removed under vacuum at temperatures no greater than 30°C. A 

typical fractionation procedure used to isolate principles from fresh ginger is shown in 

Fig. 2a.3. 

Fresh Ginger (Bulk) 

1. extraction (methanol) 

Crude Me0H Extract 

/ 2. solvent removal 
Oleoresin 

I 3. extraction (ether/hexane 1:1) 

	

I 	 I 

	

Solute 	 Residue 

I 4. short column chromatography (Si ge1,2:1 ether/hexane) 

I 	I 	I 	I 	 1 
n fractions 

	

(monitored by TLC) 
	 5. activity screening (hindlimb perfusions) 

Active Fractions 
1 6. preparative TLC (Si gel, 5:2 ether/hexane) 

multidevelopment (3X) 

Discrete Bands (visible under UV) 

[6]-gingerol 
	 [8]-4101-gingerols 

Fig. 2a.3. Typical extraction, isolation and testing procedure for active 

principles of fresh ginger (gingerols). Dried ginger, the source of shogaols, was 

treated in a similar fashion except that an additional radial chromatography 

stage was used between stages 5 and 6 and step 7 was omitted. 
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The fractionation procedure for dry ginger was similar to that outlined in Fig. 

2a.3, except that the active material following testing at stage 5 (Rf 0.65-0.8) was 

subjected to radial chromatography using silica gel of layer thickness 4 mm (5:2 

ether/hexane). The combined active fractions were subjected to preparative TLC 

(Fig. 2a.3, step 6) and the resultant active band (Rf 0.75-0.80) was subjected to 

HPLC (Fig. 2a.3, step 8) to yield [6]- and [8]-shogaol. 

The most abundant principle isolated from fresh ginger, [6]-gingerol, was 

identified by gas chromatography-mass spectroscopy (GC-MS) and proton nuclear 

magnetic resonance spectroscopy. Subsequent principles were identified by GC-MS. 

The purity of isolated principles was confirmed by TLC, HPLC, GC-MS and direct 

insertion mass spectroscopy. 

2a.3 Results 

The perfused hindlimb was initially allowed to reach steady state perfusion 

pressure and venous P02 (Colquhoun et aL, 1988). The mean arterial and venous P02 

values were 688 ± 4 mm Hg (n = 22) and 413 ± 8 mm Hg (n = 22) respectively. The 

mean basal oxygen uptake was therefore 6.6 ± 0.2 lArnol•e•h -1  (n = 22). The mean 

basal perfusion pressure was 26.0 ± 0.6 mm Hg, whilst the mean lactate efflux was 

5.4 ± 0.3 Amol.g4 .11-1  (n = 19). These values are similar to those obtained during 

other studies from this laboratory (Cameron-Smith et al., 1990; Colquhoun et al., 

1988, 1990; Ye et al., 1990a, 1990b). 

Exhaustive methanolic extracts of both fresh rhizomes and commercially 

peeled, dried and ground rhizomes were found to cause both an increase in oxygen 

uptake and perfusion pressure when infused into the perfused rat hindlimb. Hindlimb 

oxygen uptake was stimulated over final concentration ranges of 0.05-0.15 mg.mt l  

(fresh ginger extract) and 0.005-0.01 mg•m1 -1  (dried ginger extract). Similar extracts 

of other spices including garlic, gin seng, horseradish and yellow mustard had no 

effect when infused at final concentrations of up to 25 mg•m1 -1 . 

Fractionation of the crude methanolic extracts from both fresh and dried 

ginger resulted in the isolation of the principles responsible for the observed 
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thermogenic activity (Fig. 2a.1, structures I-V). Fig. 2a.4 shows typical oxygen and 

pressure traces produced by a series of increasing [6]-shogaol doses. The order of 

dose infusion did not affect the observed dose responses. Fig. 2a.5 illustrates the 

increases in steady state oxygen uptake, perfusion pressure and corresponding lactate 

efflux of the perfused hindlimb as a function of [6]-, [8]- and [10]-gingerol, and [6]- 

shogaol concentration. Increasing alkyl chain length leads to decreased potency, 

although maximal stimulated oxygen consumption appears to increase. In addition, 

Fig. 2a.5 shows the effect of alkyl chain dehydration on the potency and maximal 

oxygen stimulation of [6]-gingerol, the major principle of fresh ginger, by comparison 

with responses obtained using [6]-shogaol, the major principle of dried ginger. 

Experimental results using [8]-shogaol (data not shown) found the half-maximal dose 

to be around 20 g1■4, indicating that the molar potency relationship between the 

shogaol homologues is similar to that existing between the gingerol homologues. 
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Fig. 2a.4. Typical dose response tracing of changes in venous P02 and perfusion 

pressure in perfused rat hindlimb preparations subjected to increasing 

concentrations of [6]-shogaol (10-20 itM, n = 5). Other ginger principles 

(discussed in the text) gave qualitatively similar response profiles. Randomising 

the order of addition did not alter the observed responses. 
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Fig. 2a.5. Dose response curves for changes in V0 2, perfusion pressure, and 

lactate efflux in response to [61-gingerol (n = 7), [6]-shogaol (n = 5), [8]-gingerol 

(n = 3) and [10]-gingerol (n = 3). Basal VO2  was 6.6 ± 0.2 gmol•g -1 •11 1  (n = 22) 

and basal perfusion pressure was 26.0 ± 0.6 mm Hg (n = 22). Basal lactate efflux 

rate was 5.4 ± 0.3 pmol•g -1 .11 -1  (n = 19). Each value is the mean ± SE. Where 

error bars are not visible they are within the symbol. 
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Increasing the doses of all the ginger principles beyond the levels shown in 

Fig. 2a.5 led to a progressive inhibition of steady-state oxygen consumption (Fig. 

2a.6). In the extreme case (Fig. 2a.6, 45 1.1M [6]-gingerol), oxygen consumption was 

inhibited to sub-basal levels following initial transient stimulation. Perfusion pressure 

continued to increase towards a plateau. Removal of ginger principles during high 

dose treatment resulted in large dose-dependent transient increases in oxygen 

consumption (Fig. 2a.6), whilst perfusion pressure (Fig. 2a.6) and lactate production 

(data not shown) levels returned to basal. 
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Fig. 2a.6. Typical dose response tracing of changes in venous P02 and perfusion 

pressure in perfused rat hindlimb preparations subjected to increasing high 

concentrations of [61-gingerol (9-45 gM). 

A half-maximal dose of [6]-shogaol (13.2 gM) was chosen to investigate the 

effects of specific nitrovasodilation, a—adrenergic blockade, and 13—adrenergic 

blockade on the stimulated hindlimb (Fig. 2a.7). Neither 5 1AM prazosin nor 5 gM 
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propranolol (supramaximal effective concentrations as determined by previous 

perfusion experiments, data not shown) inhibited the [6]-shogaol-induced response. 

The slight potentiation induced by each antagonist were not statistically significant. 5 

pM GTN (maximal effective concentration) significantly (P < 0.05) inhibited the 

increases in oxygen uptake (56%) and perfusion pressure (72%) induced by [6]- 

shogaol (Fig. 2a.7). Typical oxygen and pressure traces shown in Fig. 2a.8 illustrate 

the effect of direct addition of 5 pM GTN to a half-maximal dose of [6]-shogaol. 

• > 

Fig. 2a.7. Effects of propranolol (PROP, 5 gM), prazosin (PRAZ, 5 gM) and 

glyceryl trinitrate (GTN, 5 gM) on steady state (5 min) changes in V0 2  and 

perfusion pressure in perfused rat hindlimb preparations stimulated with 13.2 

111■1 [6]-shogaol. Results are shown as the mean ± SE percentages of the 

responses relative to those using [61-shogaol alone. Statistically significant (P < 

0.05) effects are indicated (*). None of the antagonists alone had any effect on 

basal (unstimulated) hindlimb preparations. 
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Fig. 2a.8. Typical tracing of the effect of glyceryl trinitrate (GTN, 5 gM) on 

changes in venous P02 and perfusion pressure in perfused rat hindlimb 

preparations stimulated with 13.2 1.1M [6]-shogaol. 

Since the gingerols, shogaols, and capsaicinoids all bear the 4-methoxy, 3- 

hydroxy phenyl moiety, experiments were conducted to evaluate the thermogenic 

potential of other compounds bearing this vanillyl group. The structures selected 

(Fig. 2a.9) were vanillin, curcumin (from turmeric) and eugenol (cloves). Infusion of 

each over the range 0-10 mg.m1 -1  had no effect on perfusion pressure nor V02. 
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Fig. 2a.9. Structures of natural vanilloid molecules found to be inactive in the 

hindlimb perfusion model. 

2a.4 Discussion 

In general, perfused hindlimb tissue has proved to be responsive to 

thermogenic agents and hormones (Colquhoun et al., 1988, 1990; Ye et al., 1990a, 

1990b; Janslcy and Hart, 1963; Mejsnar and Jansky, 1971; Ruderman et al., 1971; 

Grubb and Folk, 1976; Richter et at, 1982a; Cote et aL, 1985). For the perfused rat 

hindlimb, the use of a non-erythrocyte perfusate at 25°C (Colquhoun et al., 1988; 

Cote et aL, 1985) is comparable to constant flow perfusion with erythrocyte-

containing medium at 37°C (Mejsnar and Janslcy, 1971; Grubb and Folk, 1976; 

Richter et aL, 1982a) for assessing noradrenaline-induced oxygen uptake; the 

technique has allowed the identification of vasopressin and angiotensin (Colquhoun et 

aL, 1988) and also the capsaicinoids (Cameron-Smith et al., 1990) as potential 

thermogenic substances. 
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In the present study, the gingerols and shogaols were found to stimulate the 

hindlimb in a manner similar to that reported for the capsaicinoids (Cameron-Smith et 

al., 1990). The observed responses were not related to the order of dose infusion 

(data not shown). Although the ginger principles do not possess an acylamide 

linkage, they bear two major structural similarities to the capsaicinoids, a 4-hydroxy, 

3-methoxy phenyl (vanilly1) 'head' and a carbonyl-containing alkyl 'tail'. The failure 

of eugenol and vanillin, structures possessing only the vanillyl moiety (Fig. 2a.1), to 

induce a response in the perfused hindlimb suggests that both features are necessary 

for thermogenic activity. Curcumin, containing two vanillyl groups with a bridging, 

rather than a tailing, alkyl section was also inactive. Szolcsanyi and Jansco-Gabor 

(1975) investigated the effect of altering the aromatic ring substituents, as well as the 

length and nature of the alkyl chain, on relative pungency of a range of vanillyl-

derived compounds. The aromatic substituents - particularly the hydroxyl group - 

were of critical importance, whilst the chain length affected pungency in a more subtle 

manner. The overall trend was that relative pungency increased with chain length to a 

maximum at around 8-10 carbon atoms. Subsequent increases in chain length led to 

progressive pungency decreases. In the present study, the latter trend was expressed 

by the gingerol homologues, [6]-gingerol (10 carbon chain) having the highest molar 

potency. Maximal oxygen uptake, however, increased with alkyl chain length (Fig. 

2a.5). [4]-gingerol (8 carbon chain) may have still greater molar potency, but its 

effect is of little consequence to the overall activity of ginger due to its trace presence 

(Harvey, 1981). 

Although the reported ratios of the principles in ginger are somewhat variable, 

the [6]-homologue is consistently found to be the major compound. Connell and 

Sutherland (1969) found the [6]-, [8]-, [10]-gingerol ratio to be 53:17:30 

respectively, whilst Chen et al. (1986) reported the same ratio to be 119:17:24. The 

[6]-gingerol content in ginger varies as a function of growth time, location, and 

storage period - a typical value being 1.5% of dry weight (Baranowslci, 1986). 

Dehydration of the alkyl chain (conversion of gingerol to shogaol) resulted in 

a small decrease in molar potency whilst maximal oxygen uptake was not significantly 

affected. Relatively few studies have directly compared the magnitude of the 

physiological effects induced by gingerols with those induced by shogaols. Suekawa 
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et al. (1984) found [6]-gingerol to have a lower LD5 0  in rats, yet [6]-shogaol was 

reported to be more active on both the CNS and the digestive system. 

It has previously been demonstrated that noradrenaline-induced oxygen uptake 

and perfusion pressure increases in the rat hindlimb are blocked both by phentolarnine 

and high dose propranolol (Grubb and Folk, 1977). In the present study the effects of 

[6]-shogaol were not significantly altered by either of these antagonists (Fig. 2a.7), 

suggesting that the ginger principles were not acting directly via adrenergic receptors, 

nor by secondary catecholamine release. This latter phenomenon has been reported to 

be activated in vivo by a number of pungent principles including capsaicin (Watanabe 

et aL, 1987) and, to a lesser extent, zingerone (Kawada etal., 1988). 

In the present study, GTN (a specific nitrovasodilator) was used to inhibit 

both the oxygen and pressure responses to [6]-shogaol. This implies that the 

mechanism of action is closely related to the vascular system. Szallasi and Blumberg 

(1990a, 1990b) have reported the existence of a specific "vanilloid" receptor 

following studies using cultured nerve cells and radiolabelled ligands. The possibility 

of the presence of such a receptor on vascular smooth muscle cannot be overlooked 

since work from this laboratory has provided strong evidence of a link between the 

vascular system and hindlimb thermogenesis. Increases in perfusion pressure and 

oxygen uptake induced by vasopressin, angiotensin II and noradrenaline were 

inhibited by sodium nitroprusside (Colquhoun et aL, 1988), another specific 

nitrovasodilator. In addition, oxygen consumption by electrically stimulated skeletal 

muscle was found to be additive to that associated with vasoconstriction (Colquhoun 

et al., 1990), whilst variable flow experiments showed that all flow-induced increases 

in oxygen uptake were enhanced by noradrenaline infusion but blocked by sodium 

nitroprusside (Ye et al., 1990b). 

Previous studies from this laboratory have reported that the vasoconstrictors 

norephedrine (Hettiarachchi et al., 1991), vasopressin, angiotensin II and 

methoxamine (Hettiarachchi et al., 1992) increase lactate release from perfused 

hindlimb preparations in association with increases in oxygen consumption and 

perfusion pressure. The present study has found that ginger principles induce similar 

dose-related lactate release concomitant with vasoconstriction and oxygen uptake. If 

such lactate production occurs in vivo, it could be part of a significant long-loop 
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thermogenic mechanism due to the high energy phosphates required for the 

resynthesis of lactate back to glucose in the liver (Cori cycle). In the case of [6]- 

gingerol, for example, the mean increase in lactate release associated with the mean 

maximal V02  is 4.7 grnol•e•h-1 . This rate of production would require an increase of 

2.4 pinol•g4 •h-1  in oxygen consumption for full conversion to glucose in the liver. 

Experiments using both [6]-gingerol and [6]-shogaol found that there was no increase 

in lactate release associated with the large transient increases in V0 2  following 

removal of high doses of ginger principles (data not shown). This indicated that these 

transient periods of greater V0 2  were not associated with the reperfusion of hypoxic 

tissue. 

Studies from this laboratory have found that serotonin (an endogenous 

vasoconstrictor) inhibited perfused hindlimb V0 2  in a dose-dependent manner, but 

stimulated isolated mesenteric artery 02 (Dora et al., 1991). It was proposed that 

serotonin-induced vascular shunting was masking vascular thermogenesis. In the 

present study high doses of ginger principles, after initial stimulation, led to sub-basal 

V02  (Fig. 2a.6), regardless of the order of dose infusion (data not shown). This 

phenomenon may also be due to vascular shunting. However, unlike serotonin the 

removal of high doses of ginger principles is followed by pronounced (but temporary) 

periods of low venous P02 (i.e. increased V02) not associated with vasoconstriction 

(Fig. 2a.6). 

Chudapongse and Janthasoot (1976) studied the effects of the analogous 

principle capsaicin on the energy-linked functions of isolated rat liver mitochondria. 

At lower doses with glutamate as substrate, capsaicin inhibited oxidative 

phosphorylation. At higher doses with succinate as substrate, capsaicin uncoupled 

mitochondrial respiration. High doses of capsaicinoids and ginger principles may be 

inducing similar effects within the hindlimb. Experiments performed in this laboratory 

have shown that hindlimb oxygen consumption induced by the known metabolic 

uncoupler sodium azide was inhibited by serotonin (Dora et al, 1992b). High doses 

of ginger principles may have caused perfusate to be shunted away from uncoupled 

tissue associated with microvasculature, thereby masking net oxygen uptake by the 

hindlimb as a whole. Removal of the shunting might allow the oxygen-depleted 
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perfusate to depart the microvascular beds, resulting in the observed apparent increase 

in V02. Testing these hypotheses will require further experimentation. 

Henry and Piggott (1987) have examined the effect on human subjects of 

consuming a ginger sauce (containing unspecified amounts of ginger principles) with a 

meal. They concluded that metabolic rate was not significantly enhanced relative to 

subjects who consumed a control meal. Although little is known about the passage of 

ginger principles across the gut wall, the gingerol analogues capsaicin and 

dihydrocapsaicin are rapidly absorbed from the rat stomach and small intestine - both 

in vivo and in vitro (Kawada et al., 1984). Results of phannacolcinetic studies (Ding 

et al., 1991) have reported the half life of [6]-gingerol in rat plasma to be relatively 

short (7.2 minutes). The hindlimb perfusion results of this study found that the final 

concentration range of [6]-gingerol required for thermogenic responses was relatively 

narrow (7-15 1.1M). Concentrations below this range had no effect, whilst 

concentrations above this range gave either a reduced effect, or a negative 

thermogenic effect (Fig. 2a.6). In comparison, the concentration range for 

noradrenaline to increase oxygen consumption in this system is approximately 1-100 

nM (Colquhoun et aL, 1988). Thus the ginger dose used by Henry and Piggott 

(1987) may have resulted in final in vivo concentrations outside any thermogenic 

range. 

If ginger principles are subsequently found to have whole body thermogenic 

effects, the mechanism of action will be a moot point. The pressor response to [6]- 

shogaol in the whole rat body has been related to both central and autonomic 

(sympathetic) nervous system activity (Suekawa et al., 1984, 1986a, 1986b). 

Similarly, postprandial thermogenesis in dogs has been decisively linked to autonomic 

activation due to oropharangeal sensory inputs (Diamond et al., 1985; Diamond and 

LeBlanc, 1987). In the rat, similar sensory input increased brown adipose tissue 

thermogenesis except when sympathetic innervation was deactivated (Saito et al., 

1989). Thus any thermogenic effect of ginger principles in vivo may be attributable to 

central or autonomic nervous system activity, or a combination of both. 

The present study, however, has shown that the perfused hindlimb 

thermogenic responses were intimately involved with the vasculature, and were not 

significantly altered by a— and 13-adrenergic receptor blockade. These findings 
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therefore warrant future investigations of the actions of ginger and its principles in 

alternative vascular beds and ultimately in vivo with rats and humans in order to 

assess the potential of ginger as a dietary anti-obesity agent. 
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Chapter 2b 

Resiniferatoxin and piperine: further direct-acting natural vanilloids. 

2b.1 Introduction 

Resiniferatoxin (RTX) and piperine are further members of the vanilloid family 

of naturally-occurring capsaicin-like compounds. Of these molecules, resiniferatoxin 

and capsaicin have in particular attracted escalating interest in recent years (Bevan 

and Szolcsanyi, 1990; Szallasi and Blumberg, 1990b; Dray, 1992; Craft and Porreca, 

1992; Maggi, 1992). Recent work with vanilloid molecules has increasingly focused 

on the neuropharmacological aspects of their activity (Bevan and Szolcsanyi, 1990; 

Szallasi and Blumberg, 1990b; Dray, 1992). 

RTX (Fig. 2b.1) is a diterpene present in the latex of some members of the 

genus Euphorbia (E. resinifera, E. poissonii and E. unispina; Hergenhalm et al., 

1975; Schmidt and Evans, 1976). The compound was first isolated after plant 

extracts were found to have unusually high activity in a mouse ear irritant assay 

(Hecker et al., 1966). RTX has structural similarities to the phorbol esters, a group 

of compounds which act chiefly via their ability to stimulate protein ldnase C 

(Castagna et al., 1982). However, the mechanism of RTX-induced irritation has 

subsequently been shown to differ from that of the phorbol esters, such as phorbol 12- 

myristate 13-acetate (PMA; Evans and Taylor, 1983). Structurally, RTX is 

distinguished by the presence of a 4-hydroxy 3-methoxy phenyl acetate moiety in the 

20 position. This homo vanillyl group has been shown to be essential for the potent, 

yet transient (Hergenhahn et al., 1975), irritant activity exhibited by RTX (Adolf et 

al., 1982; Schmidt and Evans, 1979). A number of studies have reported that RTX 

acts as an ultra potent capsaicin analogue (reviewed by Bevan and Szolcsanyi, 1990; 

Szallasi and Blumberg, 1990b), its potency generally ranging from 10 to 10,000 times 

that of capsaicin for responses such as induced hypothermia, neurogenic 

inflammation, and stimulation (followed by desensitisation) of specific sub populations 

of sensory neurons. 
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Piperine (Fig. 2b.1) is best known as the pungent principle of black pepper 

(Piper nigrum). Both piperine and RTX have been found to stimulate some 

capsaicin-sensitive afferent neurons (Mlyauchi et al., 1988, 1989; Szolcsanyi, 1983). 

In a relatively wide spectrum of pharmacological activity, other noteworthy actions of 

piperine include the stimulation of serotonin synthesis in the rat brain (Liu et al., 

1984), inhibition of smooth muscle nerve stimulation (Cole, 1985), anticonvulsant 

activity (Pei and Tas, 1974), and modulation of glucuronidation activity (Singh etal., 

1986). 
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Fig. 2b.1. Structures of capsaicin and the capsaicin-like (vanilloid) agents 

discussed in the text. 
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Previous studies using neural tissue (reviewed by Szallasi and Blumberg, 

1990b) have reported cross-tolerance of RTX and cap saicin, as well as piperine and 

capsaicin (Patacchini et al., 1990). Such findings are consistent with a common 

mechanism of action. In addition, receptor-binding experiments using [ 31{J-RTX have 

provided direct evidence of specific binding by sensory ganglion membranes not 

associated with protein lcinase C (Szallasi and Blumberg, 1990a). Furthermore, 

alternative vanilloid compounds have been shown to inhibit the binding of [ 311]-RTX 

(reviewed by Szallasi and Blumberg, 1990b). The putative vanilloid receptor on 

specific subsets of afferent neurons is thought to be a ligand-gated non-specific cation 

channel (Marsh et al., 1987). 

In Chapter 2a it was demonstrated that vanilloid principles in ginger, the 

gingerol and shogaol homologues, were responsible for the direct-acting thermogenic 

activity of ginger extracts in the perfused rat hindlimb. The effects were similar to 

those mediated by capsaicin and dihydrocapsaicin (Cameron-Smith etal., 1990) but of 

less magnitude than those mediated by infusion of catecholamines, angiotensin (I-III), 

or vasopressin in the same system (Colquhoun etal., 1988). Prazosin and propranolol 

infusion showed that the responses to the vanilloid principles were not due to 

stimulation of adrenoreceptors, However, the responses were significantly impeded by 

nitrovasodilators. These findings highlighted the possibility of direct stimulus of 

vascular smooth muscle via vanilloid receptors on the smooth muscle itself, or 

alternatively via the release of non-adrenergic vasoactive agents by autonomic 

neurons embedded in the vessel walls. 

In the present chapter, the investigation of thermogenesis mediated by 

vanilloid agents is extended by examining the effects of both RTX and piperine in the 

perfused rat hindlimb model. 
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2b.2 Methods 

The methods used were essentially those described in Chapter 2a. Variations 

are listed below. 

2b.2.1 Materials 

Piperine was purchased from Sigma (St. Louis, Missouri, USA), whilst RTX 

was a generous gift from Dr D.J. de Vries, Australian Institute of Marine Science, 

Townsville, Australia. 

2b.2.2 Agent infusion 

Agents were infused using glass syringes with teflon tubing in a Sage 

Instruments syringe pump (model 355, USA). Ethanolic piperine solutions were 

infused at 5 	RTX, in 20% ethanol solutions, was infused at rates between 10 

1.11.tnin-1  and 40 	Stock ethanolic GTN solutions were diluted with saline and 

infused at 5 	Vehicle infusions had no effect on basal conditions. 

2b.2.3 Statistics 

The data are expressed as means ± standard errors. Regression curves were 

fitted using the Sigma-Plot program (Jandel Scientific, USA). Significance of 

differences (P 0.05) was assessed using Student's unpaired two-sided 1-test. In 

general, a minimum of five animals were used to determine a single data point. 

2b.3 Results 

The isolated perfused rat hindlimb was initially allowed to reach steady state 

perfusion pressure and venous P02. The mean arterial and venous P02 values were 

666 ± 11 mm Hg (n = 24) and 375 ± 19 mm Hg (n = 24) respectively. The mean 

basal V02  was therefore 7.1 ± 0.4 ilmol.e.h -1  (n = 24). The mean basal perfusion 

pressure was 23.6 ± 0.9 mm Hg (n = 24). These values are consistent with those 

reported in Chapter 2a and those observed during other studies performed in this 
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laboratory (Cameron-Smith et al., 1990; Colquhoun et al., 1988, 1990; Ye et al., 

1990a, 1990b). 

The perfusion pressure and V02  responses were rapid for both piperine (Fig. 

2b.4, V02-stimulatory dose) and RTX (data not shown) with steady state conditions 

being attained within 5 minutes of commencing infusion of each agent. Similarly, basal 

conditions were re-established rapidly, within 10 minutes of agent removal. The traces 

for both V02  and perfusion pressure were similar to those of the ginger vanilloids 

featured in Chapter 2a for both V0 2-stimulatory doses (Chapter 2a, Fig. 2a.4) and 

V02-inhibitory doses (Chapter 2a, Fig. 2a.6) As previously noted for other vanilloid 

molecules (Chapter 2a and Cameron-Smith et al., 1990), blockade of al and 131/132 

adrenoreceptors using 5 1.1.M prazosin and 5 1.1.M propranolol respectively had no 

inhibitory effects on the increased V0 2  caused by either RTX or piperine (data not 

shown). 

The effects of RTX and piperine on steady state V0 2  and perfusion pressure as 

a function of concentration are shown in Fig. 2b.2. Concentration-response curves 

for capsaicin (Cameron-Smith et al., 1990) and [6]-gingerol (Chapter 2a) are also 

included. RTX was clearly the most potent, and piperine the least potent agent used 

in this study. The molar potency of RTX was approximately 500-fold that of 

capsaicin, which in turn was 150-fold more potent than piperine (Fig. 2b.2). 

The effects of glyceryl trinitrate (GTN) on stimulation of V0 2  and perfusion 

pressure at steady state are shown using time course plots (all n = 3) in Fig. 2b.3. 

Values immediately prior to GTN infusion were significantly different (P <0.05) from 

those at the end of the GIN infusion period in which V0 2-stimulatory concentrations 

of either RTX or piperine were used. Higher concentrations of GTN resulted in no 

further inhibitory effects (data not shown). 

The effects of a series of prolonged infusions with V0 2-stimulatory 

concentrations of piperine are shown in Fig. 2b.4. There were no apparent changes in 

magnitude of the stimulated V0 2  nor the increase in perfusion pressure throughout the 

series of infusions. 
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Fig. 2b.2. Dose-response curves for changes in oxygen uptake (AV0 2) and 

perfusion pressure in response to RTX (n = 8), capsaicin (CAP, n = 5-13, data 

taken from Cameron-Smith et al., 1990), [61-gingerol ([61-GING, n = 7, data 

taken from Chapter 2a), and piperine (PIP, n = 8). The basal V0 2  was 7.1 ± 0.4 

(n = 24) and the basal perfusion pressure was 23.6 ± 0.9 mm Hg (n = 

24). Each value represents the mean ± SE Where error bars are not visible they 

are within the symbol. 
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Fig. 2b.3. Time course plots showing the effect of 5 pM GTN on changes in 

oxygen uptake (AV0 2) and perfusion pressure (AP) induced by V0 2-stimulatory 

concentrations of RTX (0, 1 nM, n = 3) and piperine (0, 75 RM, n = 3). 
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Fig. 2b.4. Time course tracings showing the effects of a series of prolonged 

infusions of piperine (75 AM) on venous P02 and perfusion pressure. 

2b.4 Discussion 

Both RTX and piperine stimulated the hindlimb to consume oxygen and the 

vascular bed to constrict in a manner similar to that of other active vanilloid 

compounds in this system (Chapter 2a, this study; Cameron-Smith et al., 1990). 

However, the molar potencies of RTX and piperine were vastly different. RIX, 

containing a classical vanillyl (3-methoxy 4-hydroxy phenyl) group (Fig. 2b.1), was 

around 500-fold more potent than capsaicin, a result consistent with other studies 

which report RTX to be an ultra potent capsaicin analogue (reviewed by Szallasi and 

Blumberg, 1990b). Piperine, on the other hand, contains a vanillyl-like moiety in 

which the substituent groups form a secondary ring, giving a benzodioxolane fused 

ring system (Fig. 2b.1). The lower potency of piperine (approximately 150-fold less 

potent than capsaicin) may reflect the altered structure of this group. 

High concentrations of both agents resulted in a steady-state inhibition of V0 2  

associated with increased perfusion pressure (type B effects). Such effects have 

previously been noted for the endogenous vasoconstrictors serotonin (Dora et aL, 
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1991) and high concentrations of noradrenaline (Dora et al., 1992a). It has been 

proposed that type B effects for these agents are the result of a redistribution of 

vascular flow by functional flow shunts in the microvasculature (Dora et al., 1991, 

1992a). The vanilloid-induced effects may be due to the operation of a similar 

mechanism. 

Concurrent infusion of GTN significantly blocked the V0 2  and pressure 

increases induced by low doses of both RTX and piperine, indicating that the VO2  is 

somehow related to the vasoconstriction. This result is consistent with previous work 

in this laboratory which has repeatedly demonstrated such an association (Colquhoun 

etal., 1988, 1990; Ye et al, 1990a, 1990b). 

RTX and cap saicin are known to stimulate a specific group of primary afferent 

neurons to release the vasodilatory neuropeptides substance P and calcitonin gene-

related peptide (CGRP) from their peripheral endings (Szolcsanyi et al., 1990). 

However, in the perfused rat hindlimb active vanilloid compounds cause net 

vasoconstriction. Other studies have found capsaicin to have either contractile or 

relaxing endothelium-independent effects on vascular smooth muscle (Saito et al., 

1988; Duckles, 1986). The likely explanation is that constriction and relaxation are 

both components of acute in vitro capsaicin treatment (Duckles, 1986) Chronic pre 

treatment with capsaicin in vivo (thereby ablating capsaicin-sensitive sensory neurons) 

has resulted in isolated guinea pig vessels constricting rather than dilating when 

subsequently challenged with capsaicin in vitro (Duckles, 1986). This suggested that 

contraction was the result of a direct action on vascular smooth muscle, whilst 

relaxation was due to the release of neuropeptides (Saito et aL, 1988). The 

stimulatory responses induced by RTX and piperine in the present study are not 

subject to changes in magnitude following prolonged stimulation nor by repeated 

stimulation (Fig. 2b.4). Such changes might be expected if afferent nerve fibres in the 

vessel walls were being subject to progressive depletion of vasodilatory 

neuropeptides. 

Although the participation of receptors has yet to be unequivocally 

established, the relative potencies of the vanilloid compounds in the perfused rat 

hindlimb are consistent with those reported in neuropharmacological studies 

(reviewed by Szallasi and Blumberg, 1990b) where direct evidence of a vanilloid 
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receptor has been obtained. Furthermore, the rapid kinetics of the responses (Fig. 

2b.2) is consistent with a receptor-mediated mechanism in the hindlimb vasculature. 

Previous work using the perfused rat hindlimb model has shown that noradrenaline-

induced increases in oxygen uptake and perfusion pressure were blocked by 

adrenoreceptor antagonists (Grubb and Folk, 1977). The use of specific al (prazosin) 

and 131/132-(propranolol) adrenoreceptor antagonists did not result in any diminution of 

the responses to RTX and piperine (data not shown), the ginger-derived vanilloids 

(Chapter 2a), nor the capsaicinoids (Cameron-Smith et al., 1990). These findings 

suggest that vanilloids do not act directly on adrenoreceptors, nor via the secondary 

release of catecholamines. 

Despite the thermogenic activity of capsaicin-like compounds in vitro, many 

such agents are reported to cause hypothermia in vivo in a variety of species 

(reviewed by Szolcsanyi, 1982). The hypothermic response is thought to be the due to 

stimulation of the warm-sensors of the preoptic/anterior hypothalamic area, thus 

impairing body temperature regulation (reviewed by Szolcsanyi, 1982). However, 

desensitisation of these warm-sensors is readily achieved; a single subcutaneous dose 

of capsaicin (50-75 mg.kg-i) in the rat results in the absence of capsaicin-induced 

hypothermia for several months. Furthermore, such desensitisation results in pyrexia 

at room temperature and long periods of hyperthennia at high ambient temperatures. 

In addition, desensitised rats showed a pyrogen-induced increase in core temperature 

associated with increased V0 2  and vasoconstriction. Attempts to synthesise analogues 

with antinociceptive but not hypothermic properties have met with some success 

(Hayes et al., 1984), suggesting that hypothermia need not necessarily be a feature of 

all active capsaicin analogs. 

Studies in the human in the absence of any prior desensitisation procedures 

have found that meals containing capsaicin caused elevated body temperature during 

the first sleep cycle (Edwards etal., 1992) and an increase in metabolic rate relative to 

a non-spicy control meal (Henry and Emery, 1986). 

The notion of a vanilloid-sensitive thermogenic mechanism in the rat hindlimb 

raises the intriguing possibility of developing capsaicin analogs without hypothermic 

actions as anti-obesity agents in vivo. Such selectivity may be possible given that the 
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afore-mentioned hypothermic effects are both readily desensitised and separable from 

other actions by means of structural manipulations. 
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Chapter 3 

Evidence for Vanilloid Receptor Subtypes (VN I/VN2) in Perfused Rat Hindlimb 

3.1 Introduction 

Most research interest into capsaicin and other vanilloids has centered on their 

well known actions on unmyelinated sensory nerves in the periphery as well as in the 

spinal cord and the brain. Recently, the role of vanilloid or capsaicin-like molecules in 

the depolarisation of these nerves and the mediation of pain and other effects has been 

extensively reviewed (Wood, 1993). The ability of capsaicin to desensitise a 

subpopulation of primary sensory neurones has led to its therapeutic use for the 

treatment of neuropathic pain (reviewed by Carter, 1991). Moreover, there is 

currently a great deal of interest in the potential of vanilloids as non-narcotic, non-

steroid antiinflammatory and analgesic agents (reviewed by Szolcsanyi, 1991; Maggi, 

1992; Szallasi and Blumberg, 1993). 

Capsaicin-sensitive primary afferent neurones release a number of 

neuropeptides when stimulated by capsaicin or other active vanilloids. These include 

substance P, neurolcinin A, calcitonin gene-related peptide, galanin, dynorphin, 

cholecystolcinin, vasoactive intestinal peptide and somatostatin (Holzer, 1991). These 

peptides all appear to play a role in the communication of primary sensory neurones 

with other neuronal and non-neuronal cells. 

The sensitivity of the capsaicin-sensitive neurones to vanilloids is most likely 

due to the presence of a cation channel which, when stimulated by capsaicin, allows 

the influx of calcium and sodium ions and the efflux of potassium ions (Bevan and 

Szolcsanyi, 1990). Capsaicin and other vanilloids are relatively lipophilic molecules 

and it is suggested that capsaicin may have a binding site on the surface of the cation 

channel proteins within the lipid bilayer (James et al., 1993). The binding of capsaicin 

then results in the opening of the channel and the initiation of an impulse, the release 

of neuropeptides and ultimately the acute, painful, burning sensation associated with 

capsaicin (Buck and Burks, 1986). 
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The acute actions of capsaicin are not restricted to neurones; there are a 

number of reports of capsaicin influencing non-neuronal systems. These effects of 

capsaicin and functional analogues include inhibition of cardiac muscle excitability, 

inhibition of visceral smooth muscle activity, and contraction of vascular smooth 

muscle (Holzer, 1991). 

In contrast to the findings of Kawada et al. (1988) and Watanabe et al. (1991) 

in whole rats, neither a- nor 0-adrenergic antagonists significantly altered the 

vanilloid-induced effects in the perfused rat hindlimb (Chapters 2a and 2b; Cameron-

Smith etal., 1990). However, the vanilloid actions were largely - but not completely - 

blocked by the vascular smooth muscle relaxants nitroprusside and glyceryl trinitrate 

(GTN). Thus it appears that the vanilloids may act via a non-adrenergic mechanism, 

perhaps similar to their actions on the cation channel in sensory nerves. Such an action 

might be directly on smooth muscle or alternatively by the release of tachylcinins from 

perivascular nerves which then cause vasoconstriction and produce either a 

stimulation of oxygen consumption at lower doses, or an inhibition of VO2  at higher 

doses. 

The bidirectional effect on V0 2  found with each vanilloid (Chapters 2a and 2b; 

Cameron-Smith et al., 1990) suggests that two different vanilloid receptors might be 

present on or near vascular smooth muscle, or that the same receptor could be located 

on different responsive cell types having different post-receptor events. This chapter 

presents further functional and metabolic evidence showing two distinctly different 

sets of actions of capsaicin in the perfused rat hindlimb. 

3.2 Methods 

Methods are largely described in Chapter 2a. Variations are outlined below. 

3.2.1 Materials 

Cap saicin, ethylene-glycol-bis(13-aminoethyl-ether) N,N-tetraacetic acid 

(EGTA), xylazine, polyoxyethylene sorbitan monooleate (Tween 80) were supplied by 

Sigma (USA); sodium azide was from Merck (Germany); potassium cyanide from 

B.D.H. Laboratory Chemicals Division (England); paracetamol drops from Mead 

Johnson (Australia) and ketamine from Aldrich Chemical Co. (USA). 
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3.2.2 Rat hindlimb perfusion 

During hypoxic perfusions, 95% N2-5% CO2  replaced the 95% 02-5% CO2 

mixture after initial steady state conditions were obtained using 95% 02-5% CO 2 . 

Calcium-free ("zero calcium") perfusions were performed by omitting calcium from 

the perfusate and adding 0.1 InM Na 2EGTA. 

When required, oxygen and perfusion pressure data were calculated from both 

peak and steady state values on the chart recorder. 

The infusion of the various agents into the rat commenced only after the 

hindlimb had reached steady state V0 2  and pressure values (approximately 30 min). 

Agents infused during the perfusion were freshly prepared prior to use. Due to the 

lipophilic nature of vanilloids and their apparent affinity for silastic tubing, capsaicin 

was dissolved in 50% ethanol and infused using a syringe pump (Model 355, Sage 

Instruments, Orion Research Inc., USA) driving a 1.0 ml glass syringe equipped with 

teflon tubing. All other agents were dissolved in isotonic saline and infused using a 

LKB 2132 Microperpex peristaltic pump (Bromma, Sweden) at rates between 5 and 

40 ml•rnid i . Controls were conducted using vehicle alone. 

3.2.3 Statistical analysis 

The statistical significance of differences between groups of data was assessed 

by Student's unpaired t test. Significant differences were recognised at P 0.05 and P 

0.01. All values given are the mean ± SE and are generally determined from a 

minimum of five animals. 

3.3 Results 

After perfusions had reached steady state, the mean arterial P02 was 672.5 ± 

8.0 mm Hg = 31) and the unstimulated mean venous P02 was 372.7 ± 7.9 mm Hg 

(n = 31) with a basal V02  of 7.0 ± 0.2 innol•g.1 •h-1  (n = 31) and a mean perfusion 

pressure of 24.5 ± 0.6 mm Hg (n = 31). Infusion of capsaicin over its effective range 

yielded similar data to that of Cameron-Smith et al. (1990). At the lower end of the 

dose range (0.125 pM), capsaicin showed a monophasic stimulation of oxygen 

consumption (Fig. 3.1A.) and the expected vasoconstriction-induced rise in perfusion 
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pressure (Fig. 3.1B). Infusion of higher doses of capsaicin (> 0.5 i.i.M) led to further 

vasoconstriction (Fig. 3.1B). However, the effects on V0 2  became triphasic with an 

initial stimulation followed by a steady state inhibition and a third phase of transient 

stimulation of V02  upon cessation of the infusion of capsacin (Fig. 3.2A) as 

previously observed by Cameron-Smith et al. (1990). Steady state values for the high 

dose inhibition are shown in Fig. 3.1A. Other vanilloids show similar triphasic effects 

at high dosage (Chapters 2a and 2b). 

-7 	 -6 	 -5 

Log [capsaicin] (M) 

Fig. 3.1. Dose response curve for changes in steady state V0 2  (panel A), plateau 

perfusion pressure (panel B) and lactate efflux (panel C) in response to capsaicin 

in perfused rat hindlimbs perfused with medium containing 1.27 mM calcium or 

with medium containing 0.1 mM EGTA and no added calcium (Ca2+-free 

medium). Points are the mean * SE of 3-5 observations. Where error bars are 

not visible they are within the symbol. *P < 0.05 **P < 0.01 
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Fig. 3.2. Time courses of the oxygen and pressure responses exhibited by 2 11M 

capsaicin in the hindlimb perfused with: medium containing 1.27 mM calcium 

(n = 5) (A,B) or medium containing 0.1 mM EGTA and no added calcium (n = 

3) (C,D). Values are the mean ± SE. Resting values of venous 1 302 were (A) 395.9 

± 24.7 mm Hg and (C) 394.4 ± 21.9 mm Hg. Basal perfusion pressures were (B) 

21.6 ± 0.9 mm Hg and (D) 23.7 ± 0.9 mm Hg. 

Infusion of large concentrations (2 IAM) of capsaicin increased the perfusion 

pressure (Fig. 3.2B) by a maximum of 39.1 ± 2.4 mm Hg (173.4 ± 12.3% above 

basal, n = 5) followed by a steady change of 29.4 ± 1.1 mm Hg (130.1 ± 6.2% above 

basal, n = 5). In association with the rise in perfusion pressure, 2 1.1.M capsaicin 

exhibited a triphasic oxygen consumption response. Initially V0 2  increased (PV02 

decreased) transiently above basal oxygen consumption during Phase 1, and was then 
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inhibited to below basal (Pv02 increased) by 1.9 ± 0.5 gmols -1 -h-1  (27.3 ± 5.3%, n = 
5) during steady state (Phase 2). High dose capsaicin-induced effects approached 

steady state V0 2  inhibition within 5 mm of infusion and remained constant provided 

capsaicin was not withdrawn. The removal of capsaicin resulted in a period of 

increased oxygen uptake (Phase 3). The V0 2  transiently increased above basal by 1.5 

± 0.1 innol.e.h-1  (22.2 ± 2.3%, n = 5), while perfusion pressure rapidly fell to resting 

values. The steady state dose response curves for V0 2, perfusion pressure and lactate 

efflux in response to capsaicin are shown in Fig. 3.1. In general, the pattern of lactate 

efflux (Fig. 3.1C) followed the oxygen consumption; efflux was increased during 

stimulatory phases and inhibited in Phase 2 in which steady state V0 2  was inhibited. 

The infusion of capsaicin in the presence of an effectively zero external 

concentration of Ca 2+  (0.1 mM EGTA) led to marked diminution of the perfusion 

pressure (Figs. 3.1B and 3.2D) and changes in the V0 2  (Figs. 3.1A and 3.2A, C) and 

lactate efflux responses (Fig. 3.1C). Vasoconstriction was less at all effective 

concentrations of capsaicin, and the steady state V0 2  (normally either Phase 1 for low 

dose capsaicin, or Phase 2 for higher inhibitory doses in the presence of Ca l* ions, 

Fig. 3.2A) was either zero at low doses, or inhibited (Pv02 increased) at higher doses 

(see Fig. 3.1), However the inhibition was less in magnitude than the inhibition of V02  

observed in the presence of Ca 2+  ions. Zero Ca2+  reduced the steady-state efflux of 

lactate during infusion of 2 gM capsaicin (Fig. 3.1C) followed by a transient increase 

after capsaicin removal (data not shown). 

The effects of hypoxia, cyanide, and azide on resting hindlimb V0 2  and 

perfusion pressure are summarised in Fig. 3.3 and Table 3.1. Changes in V0 2  were 

calculated from the basal values of those perfusions before additions. No significant 

effect on basal perfusion pressure was observed for any of these treatments. Infusion 

of 1 tiM potassium cyanide inhibited V0 2  by 4.6 1 0.4 gmols -1 .11-1  (77.9 ± 5.2%, n = 

5) below the basal value. Infusion of sodium azide increased V0 2  by 4.4 ± 0.1 !moll" 

1 •h"` (73.2 ± 7.1%, n = 5) above theV0 2  basal value. Gassing the perfusion medium 

with 95% N2-5% CO2  decreased the arterial partial pressure of oxygen (P02) from 

652 mm Hg to 18.5 ± 2.6 mm Hg. Representative traces for the action of high dose 

capsaicin in the rat hindlimb when mitochondrial respiration was impaired are shown 

in Fig. 3.3. 
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When steady state inhibition of oxygen consumption was reached with 1 mM 

potassium cyanide, shown in Fig. 3.3C as an increase in venous P0 2 , 2 JAM capsaicin 

was infused. This resulted in a transient and rapid increase in perfusion pressure of 

approx. 19.2 ± 1.1 mm Hg before falling by approx. 14 mm Hg to be maintained at 

4.8 ± 0.3 mm Hg above the basal value (see Table 3.1). In addition, there was a small 

increase in oxygen consumption of 0.3 ± 0.1 gmol.e.h' t  (n = 5) that was not 

sustained but rapidly returned to the level existing prior to the infusion of capsaicin. 

Upon removal of capsaicin, the perfusion pressure returned to the basal value. 

At the peak stimulation of V0 2  (deepest trough in venous P02) achieved by 1 

mM sodium azide (Fig. 3.3E), subsequent infusion of 2 gM capsaicin similarly 

resulted in a rapid and transient increase in perfusion pressure of 24.9 ± 1.9 mm Hg. 

As with the cyanide experiments, the pressure was not sustained and fell by approx. 

12 mm Hg to a steady state of 12.5 ± 1.5 mm Hg above basal (n = 5). Capsaicin 

clearly induced a biphasic inhibition of azide-stimulated oxygen consumption. In the 

first rapid phase, V0 2  was inhibited by 0.9 ± 0.2 p.rnol.e•h -1  before the second phase 

of inhibition of V02  which was decreased by 1.0 ± 0.4 pmol.g -1 -11-1 . Removal of 

capsaicin resulted in the pressure returning to the basal value and the V0 2  returning to 

the azide-alone stimulated value observed prior to capsaicin infusion. 

Under hypoxic conditions achieved by gassing with 95% 14 2-5% CO2, 2 jiM 

capsaicin induced a maximal perfusion pressure increase of 19.2 ± 3.2 mm Hg above 

basal, as indicated in Table 3.1 and Fig. 3.3H. The pressure fell back to be maintained 

for the remainder of the infusion period at a value of 40.9 ± 2.7 mm Hg or 15 ± 2.7 

mm Hg above basal. Once the capsaicin was removed, pressure again returned to 

resting values. In all three methods of disturbing mitochondrial action in the perfused 

hindlimb, the infusion of a low dose of capsaicin (0.25 pM) had no discernible effect 

on perfusion pressure nor oxygen uptake (data not shown). 
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Table 3.1. Effects of 2 AM capsaicin on oxygen uptake and perfusion pressure 

during cyanide, azide and hypoxia. 

Treatment phase Arterial 
P°2 
(nun Hg) 

Venous 
P02 
(mm Hg) 

V02 

(.unol•g-1 •11-1) 

Perfusion 
pressure 
(mm Hg) 

(n) 

Vehicle only control 662.1±10.9 359.8±15.6 7.20.4 23.1±1.2 (8) 
+2uM Capsaicin phase 1 7.81-0.5 58.6±2.1 (8) 

phase 2 5.3±0.4 50.8±1.7 (8) 
phase 3 8.60.5 24.6±1.8 (8) 

control 710.5±17.6 414.4±16.6 5.94.3 26.90.6 (5) 
Cyanide (1mM) alone 670.7±4.7 613.3±12.2 1.30.3 25.3±0.8 (5) 
+212M Capsaicin phase 1 1.6±0.3 48.5±2.5 (5) 

phase 2 1.00.3 34.1±2.9 (5) 

control 681.3±14.1 396.3±16.4 6.30.6 24.9±1.8 (5) 
Azide (1mM) alone 680.7±14.5 239.3±13.9 10.1±0.5 26.10.5 (5 ) 
+2uM Capsaicin phase 1 9.14.6 54.0-11.9 (5) 

phase 2 9.11-0.8 42.1±3.9 (5) 
phase 3 9.9±0.5 35.8±4.3 (5) 

control 666.6±26.1 359.2±I2.5 6.80.8 25.51-0.8 (5) 

N2:CO2 (95%:5%)alone 18.5±2.6 5.8±1.5 0.34.1 25.9±1.1 (5) 
+211M Capsaicin phase 1 0.34.1 45.1±3.5 (5) 

phase 2 0.30.1 40.9±2.7 (5) 

Values are means ± SE; n = number of hindlimb perfusions. The effects of cyanide, azide and 
hypoxia on basal venous and arterial oxygen tension, V02, and perfusion pressure are shown. A gas 
mixture of 95% N2-5% CO2 was used to induce hypoxia. Control values are basal levels before 
treatment with cyanide, azide or nitrogen. Phase 1 is the initial stimulatory phase of oxygen uptake 
associated with peak pressure development. Phase 2 is steady state. Phase 3 is following the removal 
of capsaicin. (See also Fig. 3.3.) 
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Fig. 3.3. Representative tracings of changes in venous P0 2  and perfusion 

pressure in response to infusion of 2 1.1M capsaicin (CAP) in the presence of 

potassium cyanide (1 mM), sodium azide (1 mM) or hypoxia. Perfusion 

medium, initially equilibrated against 95% 02-5% CO2, was either maintained 

(A-F) or switched to one equilibrated against 95% N 2-5% CO2 (G,H) as shown. 

Capsaicin was infused for varying times until apparent steady state conditions 

of oxygen consumption were obtained. Phases of oxygen consumption and 

pressure change are labelled as follows: initial response, phase 1; steady-state 

response, phase 2; recovery phase, phase 3. Mean values from all experiments 

are given in Table 3.1. 

3.4 Discussion 

3.4.1 Hindlimb vanilloid receptor heterogeneity 

The findings reported in this chapter have extended the findings of previous 

work with vanilloids in the perfused rat hindlimb model (Chapters 2a and 2b; 

Cameron-Smith et aL, 1990; ) by examining the responses to both high and low dose 

vanilloid stimulation under conditions of metabolic challenge. These included low 
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external calcium concentration, hypoxia, and disruption to mitochondrial function 

using both cyanide and azide. The main finding to emerge from the data outlined in 

the present chapter is that the stimulation of V02  at low concentrations of capsaicin 

and the inhibition of V0 2  at high concentrations of capsaicin appear to result from 

activation of two different mechanisms. Both responses are independent of secondary 

release of catecholamines (Chapters 2a and 2b; Cameron-Smith et al., 1990). It is 

conceivable that these different actions of capsaicin are activated through two 

receptor types (presumptive VN I  and VN2). The key reasons for the proposed 

classification into VNI and VN2  receptors are summarised in Table 3.2 and discussed 

in the remainder of this section. 

Table 3.2. Proposed classification criteria for VNI and VN2 vanilloid receptors in 
perfused muscle. 

Receptor type VNI VN2 

Oxygen consumption increased decreased 

Vasoconstrictor strong moderate 

Affinity for vanilloid high low 

Dependent on 
external Ca2+  

yes no '  

Dependent on 02 yes no 

Lactate production 
(steady state) 

increased decreased2  

1  Independent of [Ca21 but may require some Ca2+  for full agortist effect as inhibition of V02 is less 
than in the presence of Ca2+ . 
2  After removal of capsaicin there is a "wash-out" peak of lactate. 

Both mechanisms of vanilloid action are vasoconstrictive and appear to be 

additive because the perfusion pressure continues to rise with increasing capsaicin 

concentrations despite V0 2  becoming inhibitory (Fig. 3.1). Similar patterns are seen 

with other active vanilloids such as gingerols and shogaols (Chapter 2a) and piperine 

and resiniferatoxin (Chapter 2b). The two oxygen consumption responses of 
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stimulation and inhibition occur at low and high doses respectively, suggesting 

differing affinities of the two presumptive receptors for capsaicin. Thus the receptors 

stimulated by lower concentrations of capsaicin (high affinity) and which stimulate 

V02  are nominated as VN1 and the receptors stimulated by higher concentrations of 

capsaicin (low affinity) and which inhibit V0 2  are nominated as 'VN2. The generation 

of bell-shaped response curves or related curves by the overlapping actions of both 

stimulatory and inhibitory receptors has been reviewed recently by Rovati and Nicosia 

(1994) and previously by Szabadi (1977). Such ideas are consistent with the premise 

of two vanilloid receptors acting in concert in the hindlimb to firstly stimulate, and 

then inhibit oxygen consumption with increasing dose of vanilloid. 

The absence of external calcium inhibited the observed maximal capsaicin-

induced vasoconstriction and shifted the dose curve markedly to the right (Figs. 3.1 

and 3.2). Remarkably, the absence of external Ca 2+  ions led only to an inhibition 

(Phase 2) of both V0 2  and lactate efflux in response to capsaicin. Neither Phase 1 nor 

Phase 3 stimulation of V0 2  were observed. However, inhibition of V02  at high doses 

of capsaicin was less pronounced than observed with equivalent doses of capsaicin in 

the hindlimb perfused with buffer containing 1.27 mM Ca 2+. Thus, this 

vasoconstriction effect was substantially independent of Ca2+  but required external 

calcium for full agonist effect. 

The proposed VN I  site appears to be calcium dependent and to stimulate 

increases in V0 2  and lactate production, whilst the proposed VN2 receptor inhibits 

V02  and lactate efflux and is largely independent of the need for external calcium ions. 

The simultaneous increase in lactate and V0 2  without hypoxia has been seen 

previously in the perfized rat hindlimb in response to a number of different 

vasoconstrictors (Hettiarachchi et aL, 1992) 

Hypoxia (N2 gas), cyanide (cytochrome cocidase inhibitor), and azide each 

block some (but not all) of the perfusion pressure. Azide at 1 mM acts as though it is 

an uncoupler of mitochondria in the perfused hindlimb (Dora et al., 1992a). These 

data, taken together, suggest that the inhibitory receptor or site for V0 2  (VN2) is not 

functionally dependent on 02, even in the presence of 02. 
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3.4.2 Other reports of vanilloid receptor/mechanism heterogeneity 

Radioligand binding experiments with CHATX have not only permitted the 

biochemical characterisation of the vanilloid receptor (Szallasi and Blumberg, 1990a, 

1990b, 1993), but have demonstrated species receptor heterogeneity, as well as 

possible intraspecies receptor subtypes (Szallasi, 1994). More recently, parallel assays 

for cooperative binding and functional potency (Acs et al., 1995b) have yielded data 

which can be interpreted in terms of vanilloid receptor heterogeneity (see section 

3.4.3). Lou etal. (1992) have described two mechanisms of action of capsaicin in the 

perfused lung which depend on the concentration of capsthcin present. Low dose 

effects (10-8  M capsaicin) were blocked by tetrodotoxin (TTX) whereas high dose 

effects (10-6 M capsaicin) were not. These authors modified an earlier suggestion that 

there were two mechanisms of action of capsaicin in which low concentrations of 

capsaicin stimulated the influx of limited amounts of Na +  or Ca2+  ions which then 

triggered voltage sensitive Na+  channels to conduct depolarisation to other 

varicosities or collaterals (Maggi et al, 1989) whereas high dose capsaicin stimulated 

sufficient influx of ions to cause depolarisation without the need for Na+-induced 

depolarisation. Recently, using patch-clamp methods, rat trigeminal cells have been 

shown to exhibit two different capsaicin-induced currents - one being fast and the 

other, slow (Liu and Simon, 1994). 

Implicit in these observations is the premise that there may be two receptor 

types, one of which has a higher affinity for capsaicin and the other with lower affinity 

for capsaicin. Alternatively, there may be only one receptor type which is coupled to 

two post receptor mechanisms. However, differing affinities of a single receptor type 

requires that the receptors be situated in differing microenvirorunents. Such conditions 

result in alternative receptor protein conformations, giving affinity differentiation. 

3.4.3 Cooperative binding of vanilloid ligands 

The vanilloid receptor associated with neural tissue is reported to contain a 

non-selective, ligand-gated cation channel (reviewed by Bevan and Szolcsanyi, 1990; 

James et al., 1993). All such ion channels possess a multisubunit structure. The 

radiation inactivation size of the neural vanilloid receptor (Szallasi and Blumberg, 

1991) is consistent with an oligomeric structure, a prerequisite for positive or negative 
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cooperative binding behaviour. Indeed neural preparations have been found to bind 

vanilloid ligands in a cooperative fashion (Szallasi et al., 1993b; Acs et al., 1995a), 
although the cooperative binding appears to be ligand-induced as opposed to being an 

inherent property of vanilloid receptors (Szallasi etal., 1996). 

Cooperative vanilloid binding can be demonstrated by monitoring [ 3HATX 

binding in the presence of vanilloid ligands (e.g. RIX, capsaicin, and capsazepine; 

Szallasi et al., 1993b; Acs et al., 1995a; Szallasi et al., 1996). Positive binding 

cooperativity is characterised by an initial enhancement of [ 3H]RTX binding, followed 

by inhibition with increased ligand concentrations. The resultant binding curves bear a 

remarkable resemblance to vanilloid V02 dose-response curves outlined in this and 

previous chapters, raising the possibility of such cooperative binding behaviour, and 

not receptor heterogeneity, being implicated in the biphasic V02 dose-response 

curves. However, experiments in this laboratory with PPAHV (phorbol 12- 

phenylacetate 13-acetate 20-homovanillate), a vanilloid ligand demonstrated to 

abolish positive binding cooperativity in neural preparations (Szallasi et al., 1996), 

give qualitatively similar biphasic VO2  dose-response curves to those noted for other 

vanilloid agents (unpublished observations by C.D. Griffiths). It is postulated that 

PPAHV acts to block the conformational changes leading to positive cooperativity 

(Szallasi et aL, 1996). Thus if the putative peripheral vanilloid receptors of the rat 

hindlimb are assumed to be related to those found in the CNS, cooperative binding 

effects seem an unlikely explanation for the biphasic nature of the vanilloid V02 dose-

response curves. Indeed, other workers have found that an absence of binding 

cooperativity, in addition to lower binding affinities, associated with peripheral 

vanilloid receptors distinguishes these binding sites from central vanilloid receptors in 

the rat (reviewed by Szallasi, 1994). 

Acs et al. (1995b) have directly compared vanilloid binding affinities with 

functional potencies (in Ca 2+  uptake assays) in neural tissue. The stimulation of Ca 2+  

uptake was reported to be non-cooperative, whilst binding behaviour was 

cooperative. The favoured explanation for the differing kinetics was that the two 

assays were detecting responses mediated by two distinct receptor classes, with 

differing structure-activity profiles, on primary sensory neurons (Acs et al., 1995b; 

Szallasi et cd., 1996). Such vanilloid receptor heterogeneity has been previously 
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proposed to account for the diverse relative potencies of vanilloids (Szallasi and 

Blumberg, 1990b; Szallasi, 1994). 

3.4.4 Parallel subtype/mechanism heterogeneity in other receptor systems 

The use of alterations in external Ca2+  ions to discriminate between a-

adrenergic receptor subtypes has been used by Minneman (1988) and by Han et al. 

(1987, 1990). They have suggested that the al, subtype is coupled to external Ca 2+  

ions and that the a lb subtype is coupled to internal Ca2+  stores. Similarly, studies in 

this laboratory have shown that the presence or absence of external Ca 2+  can 

distinguish between two presumptive a radrenoceptor subtypes in the control of 

oxygen uptake by noradrenaline in the perfused rat hindlimb (Dora et al., 1992a). 

On the other hand, Ruffolo and coworkers (1991) have argued strongly that 

the same a-adrenoceptor may be present, but coupled to different effector 

mechanisms. Were a similar arrangement to underlie the present study, with one post 

receptor mechanism stimulating V0 2  and another inhibiting VO2, it is hard to reconcile 

how such receptors could exist simultaneously on the same cell. It would thus seem 

more appropriate to postulate the presence of the same receptor on two different 

smooth muscle cell types. As both sites are associated with vasoconstriction, the 

receptors may thus be on different calibre arteries or arterioles. Supporting this idea is 

the general correlation between artery size and dependency on external calcium ions 

for contraction, with smaller vessels showing the greatest dependency (Tayo and 

Bevan, 1987). This is also true in the rat hindlimb (Sutter et al., 1977). 

The notion of presumptively different VINT' and VN2 recognition sites being 

distributed on vessels of different calibre, is consistent with reports by others of 

different anatomical distribution of 5HT 1  and 5HT2 receptors (Blackshear etal., 1985; 

Lamping et al., 1989) and of a l  and a2  (Ruffolo et al., 1991; Dora et al., 1992b) 

adrenoceptors on the arterial vasculature. 

3.4.5 Implications of potential vanilloid receptor subtype selectivity 

The presence of an inhibitory receptor for the vanilloids may explain why the 

consumption of such spice principles has not uniformly shown a thermogenic or 

weight-loss effect, despite the peripheral thermogenic activity demonstrated in this 



71 

and previous chapters. The data suggest that it might be possible to synthesise agents 

that selectively stimulate VNI or inhibit VN2  putative subtypes which would thus have 

important thermogenic or weight loss potential, particularly if central neurological 

effects can be avoided. The results of a structure-activity study conducted using a 

range of vanilloid agents modelled and synthesised at this University are presented in 

Chapter 4. 
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Chapter 4 

Structural Requirements of Synthetic Vanilloid Agents for Hindlimb 

Thermogenesis 

4.1 Introduction 

Vanilloids possess a wide spectrum of pharmacological activity, particularly 

with respect to both central and peripheral neural tissue (reviewed by Holzer, 1991; 

Buck and Burks, 1986). As a result of their ability to desensitise a subset of small 

diameter unmyelinated sensory neurones, vanilloids have been identified as a new 

group of non-narcotic, non-steroidal analgesic and antiinflammatory agents (reviewed 

by Szolcsanyi, 1991; Maggi, 1992; Szallasi and Blumberg, 1993). This potential 

therapeutic application has provided the major impetus for investigations of vanilloid 

receptor(s) and structure-activity relationships of vanilloid agents. 

The results outlined in Chapters 2a and 2b identify naturally-occurring 

vanilloids as agents capable of stimulating thermogenic responses under controlled 

conditions in vitro. Evidence presented in Chapter 3 supported the postulate that 

specific receptor subtypes may be mediating the observed responses. Present vanilloid 

structures possess an inherent lack of pharmacological selectivity. If, for example, the 

positive and negative thermogenic actions reported in Chapters 2a, 2b and 3 are to be 

separated from each other and from the CNS-mediated effects on thermoregulatory 

control (e.g. hypothermia) resulting from in vivo vanilloid administration (reviewed by 

Buck and Burks, 1986), a detailed knowledge of the range of vanilloid receptor 

subtypes and the structure-activity relationships of vanilloid ligands is required. 

The earliest vanilloid structure-activity studies linked pungency and structure 

(Jones and Pyman, 1925). However the first proposal of a capsaicin receptor followed 

the evaluation of a series of capsaicin analogues using eye-wipe assays (Szolcsanyi 

and Jansco-Gabor, 1975). More recently, resiniferatoxin (Szallasi and Blumberg, 

1990a) and the competitive antagonist capsazepine (Bevan et al., 1992) were 

introduced as tools to characterise the neural vanilloid receptor. Studies performed 

using [3H]ITX have not only succeeded in demonstrating the existence of vanilloid 
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receptors, believed to be ligand-gated cation channels (James et aL, 1993), but have 

implied that the receptor system is heterogeneous, with receptor types, subtypes and 

marked species-related differences (reviewed by Szallasi, 1994). 

Recent vanilloid structure-activity investigations have centred on refining the 

pharmacophore for anti-nociceptive activity (Janusz et al., 1993; Walpole et al., 

1993a-c). The general approach has been to consider vanilloid molecules in terms of 

three regions (Fig. 4.1), each of which plays an important part in determining the 

structure-activity profile of this group of agents. Using this regional classification, 

systematic structural changes have been confined to a single region of a given 

synthetic molecule, the structure of the remaining two regions being conserved. 

Me0 

HO 
A Region 	B Region 	C Region 

Fig. 4.1. Structure of capsaicin showing the three regions generally considered 

when examining structure-activity relationships of vanilloid molecules. 

Chapter 3 presented evidence for the presence of two vanilloid receptor 

subtypes in the perfused rat hindlimb preparation. It has already been noted that 

natural vanilloid molecules differ in terms of maximal V02  responses (e.g. [6]- 

gingerol and [10]-gingerol, Chapter 2a). Such differences may be due to receptor 

subtype selectivity. Given that evidence exists for vanilloid receptor heterogeneity 

(Chapter 3; Szallasi, 1994; Acs etal., 1995b), an improved understanding of receptor-

ligand interactions may in future enable pharmacological selectivity for a number of 

vanilloid responses. The existing literature contains some evidence to support such 

selectivity. Attempts to separate antinociceptive and hypothermic properties by Hayes 

et al. (1984) were partially successful using a range of synthetic capsaicin analogues. 
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Structure-activity studies by Brand et al. (1987) found that certain long chain C-

regions reduced or abolished activity in pungency assays, whilst antinociceptive and 

'desensitising' properties were retained. 

The broad objective of the studies reported in this chapter was to conduct a 

systematic structure-activity investigation of synthetic vanilloid molecules in order to 

determine the structural features and configurations required for thermogenic activity, 

as measured by increased oxygen consumption, in perfused rat hindlimb preparations. 

Comparison of such a structure-activity profile with those developed in alternative 

bioassays may allow the identification of structural features unique to in vitro 

thermogenic activity, thereby enhancing the possibility of developing agents as 

selective anti-obesity drugs. 

4.2 Methods 

4.2.1 Materials 

Synthetic vanilloid analogues were synthesised in the Department of 

Chemistry, University of Tasmania. The synthetic methods used are outlined by 

Mackey (1992), Reardon (1994), and Clippingdale (1995) [Honours theses, 

University of Tasmania]. HPLC purification of synthetic compounds, when required, 

was performed in the author's laboratory using the preparative HPLC apparatus and 

methods given in Chapter 2a. Compound purity was assessed by GC-MS, and 

compounds were characterised by 'II nuclear magnetic resonance (NMR) 

spectroscopy, 13C NMR, GC-MS, and high resolution direct-insertion mass 

spectroscopy. Spectroscopic analyses were performed by the Central Science 

Laboratory and the Department of Chemistry, University of Tasmania. 

Ethanol and dimethyl sulphoxide used as solvents for synthetic vanilloid 

infusions and subcutaneous injections respectively were both AR grade (Ajax, 

Australia). Other materials used for perfusion experiments are outlined in Chapter 2a. 

4.2.2 Perfusion experiments 

The protocols for the perfusion experiments were the same as those given in 

Chapter 2a. 
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4.2.3 Infusion of synthetic vanilloid compounds 

Synthetic vanilloids were infused as concentrated ethanol solutions. Infusions 

of vehicle alone up to a final concentration of 0.25% ethanol had no effect on basal 

perfusion conditions. In the rare instances that the ethanol final concentration did 

exceed 0.25% during the infusion of synthetic agents (due to low agent solubility), 

comparable vehicle alone infusions were performed to confirm the vehicle plus 

vanilloid result. Synthesised compounds were considered inactive if concentrations of 

300 AM did not alter basal perfusion pressure or oxygen consumption. The isolated 

perfused hindlimb has been well established as a reliable preparation in this laboratory. 

As a result, compounds found to be inactive were generally not re-tested in a further 

perfusion experiment, but were assessed using a number of concentrations (generally 

5-8 concentrations up to 300 AM) in a single perfused preparation. Capsaicin (0.5 

AM) was used to confirm the vanilloid-responsiveness of a hindlimb preparation 

following a series of negative results. Active compounds, on the other hand, were 

assessed in 2-5 hindlimb preparations. The construction of concentration-response 

curves allowed the determination of half-maximal concentrations and maximal V02 

increases (given in the Figures). 

4.2.4 Rat whole body calorimetric measurement 

Whole body calorimetry was performed using the apparatus and methods 

similar to those described by Ye et al. (1995). Male hooded Wistar rats 

(approximately 250 g) were anaesthetised with Saffan (9 mg.m1 -1  alphaxalone, 3 

mg.m1 -1  alphadolone acetate, Pitman-Moore, Australia; 830 Al.kg-1  i. v. bolus, followed 

by continuous i. v. administration of 83 Al.kg -1  via the tail vein). Vanilloid analogues 

were injected subcutaneously as 100% dimethyl sulphoxide solutions. Whole body 

heat production was calculated from measured V0 2  according to the method of Weir 

(1949). 
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4.3 Results and Discussion 

4.3.1 Phenyldeccme derivatives 

A series of phenyldecane derivatives (Fig. 4.2) with 3,4- A-region substitution 

and carbonyl or hydroxyl chain substitution were assessed for hindlimb thermogenic 

activity. 

2A ( - , oedema) R = OH 
2B ( - )R= OCH3  

2C ( - ) 

2D (160, 14.6%) 

Fig. 4.2. Phenyldecane derivatives tested for thermogenic activity. Numbers in 

brackets represent the concentration required for a half-maximal V0 2  response 

(AM), followed by the maximal V0 2  response above basal (AVO2 max, %). Lack of 

activity (no change in V0 2  or perfusion pressure at concentrations 300 p.M) is 

indicated by (-). Where 'oedema' is indicated, compound activity could not be 

fully assessed due to the induction of tissue oedema (i.e. swelling due to an 

abnormal accumulation of fluid in extracellular spaces). 

The activity of 2D, although lower than that of the natural vanilloids (Chapters 

2a, 2b and 3), demonstrates that the vanillyl A-region of the natural vanilloids is not 

an absolute prerequisite for activity. The lack of activity of 2C suggests that the 

carbonyl substitution in the chain cannot simply be replaced by another oxygen-

containing moiety. Comparison of 2B and 2D reveals that positioning the carbonyl 

group adjacent to the aromatic ring abolishes activity. 
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4.3.2 Ester B-regions 

A series of compounds with ester B-regions replacing the amide linkage of the 

capsaicinoids were examined (Fig. 4.3). A similar ester linkage is a feature of RTX 

(Chapter 2b, Fig. 2b.1), the most potent of the natural vanilloids in this (Chapter 2b) 

and the majority of other vanilloid bioassays (Bevan and Szolcsanyi, 1990; Szallasi 

and Blumberg, 1990b). 

Me0 	 OR 

HO 

Me0 

HO 

Me0 

Ac0 

Me0 	 n-octyl 
0 

HO 

3A (50, 15.3%) R = n-octyl 

3B (65, 16.5%) R= H2c 

3C ( - ) R = H2c  

3D ( - ) 

3E ( - ) 

3F (oedema) 

Fig. 4.3. Ester-linked vanilloids tested for thermogenic activity. Figures in 

brackets refer to the same parameters given in Fig. 4.2. 

Structures 3A and 3B have A and B-regions identical to those of RTX 

(Chapter 2b, Fig. 2b.1), but are around 50 000 times less potent. Clearly the C-region 

is an important determinant of overall thermogenic activity. The n-octyl C-region 
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(3A) conferred a higher potency than either phenylethyl (3B) or phenylmethyl (3C, 

inactive) moieties. If the phenyl ring of the C-region is considered to contribute 3 

carbon atoms to the overall length, the relative lengths of the C-region in 3A, 3B and 

3C are 8, 5, 4 carbon atoms respectively. Using a similar approach with RTX 

(Chapter 2b, Fig. 2b.1), the length of the C-region is 7 carbon atoms. Taken together, 

these conclusions are consistent with those of Walpole et al. (1993c) who found that 

the optimal chain length in neural tissue, regardless of B-region structure, was 8-10 

carbon atoms. 

Placement of the carbonyl group adjacent to the A-region ring (3D) abolishes 

activity, as noted for 2A and 2B. It appears likely that the inactivity of 3E is due to 

the 4-acetoxy substituent in the A-region rather than the unsaturated A-region/B-

region bridge, since similar unsaturation in the 'reverse amide' structures given in Fig. 

4.4 has not removed activity. 

4.3.3 'Reverse amides' with an unsuturated A-region/B-region bridge 

The series of structures shown in Fig. 4.4 are referred to as 'reverse amides' 

(Walpole et al., 1993b) due to the reversed positioning of the nitrogen atom and the 

carbonyl group relative to the A-region when compared to the capsaicin structure 

(Fig. 4.1). 

4A (150, 18.1%) RI = OH, R2 = n-octyl 

4B (280, 16.8%) RI = OH, R2 = H2c 

4C (350, 16.8%) RI = OH, R2 = H2  

4D ( - ) R1 = AcO, R2 = H2c 

4E ( - ) R1 = AcO, R2 = n-octyl 

R2 

Fig. 4.4. Reverse amides with an unsaturated A-region/B-region bridge. Figures 

within the brackets refer to the same parameters as given for Fig. 4.2. 



5A ( - ) R = H2c 

,R 	5B(-)R= HC 
N 
H 

5C ( -) R = n-octyl 

5D ( - ) R = H2c 

Me0 

Ac0 

n-octyl 
N 
H 5G (3.2, 20%) 
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Structures 4A-C have the same series of C-regions as 3A-C (Fig. 4.3). The 

same order of potency is observed for each set of structures, whilst the differences in 

AVO2 r,„„ are negligible. The unsaturated bridge configuration appears to markedly 

reduce potency, but does not entirely abolish activity. Walpole et al. (1993b) reported 
a similar phenomenon in neural tissue structure-activity studies, and suggested that sp 2  
hybridisation of the carbon adjacent to the aromatic ring always resulted in little or no 

activity. As noted with 3E (Fig. 4.3), 4-acetoxy substitution of the A-region abolishes 

activity (4D and 4E). 

4.3.4 Reverse amides 

A further series of reverse amides with variations to A-region sub stituents, the 

A-B-region bridge, and the C-region is presented in Fig. 4.5. 

Me0 

HO 

,R 
N 	5E(-)R= 
H 	 H2c 

5F ( - ) R = n-octyl 

Me0 

Ac0 

Fig. 4.5. Structure variations of reverse amide vanilloids. Figures within the 

brackets refer to the same parameters as given for Fig. 4.2. 
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Positioning the carbonyl group on the carbon adjacent to the A-region ring 

removes activity (5A-C), as noted for 2A and 2B (Fig. 4.2) as well as 3D (Fig. 4.3). 

This observation is again consistent with the notion that any marked activity requires 

the carbon adjacent to the A-region ring to be sp 3  hybridised. Compound 5G not only 

fulfills this criterion, but is in fact substantially more potent with a higher V02 than 

the synthetic agents thus far considered. This activity is despite the presence of 4- 

acetoxy substitution of the A-region, which eliminated activity in compounds 3E (Fig. 

4.3) and 4D and 4E (Fig. 4.4). However, it is possible that esterase enzyme activity 

promotes rapid hydrolysis of the acetoxy moiety within the hindlimb preparation, 

giving a 3-methoxy-4-hydroxy configuration, despite the single pass (non-

recirculating) perfusion protocol. Acetylcholine has been shown to be relatively 

ineffective vasodilator in perfised hindlimb preparations for similar reasons (data not 

shown). 

4.3.5 Dimethoxyphenyl reverse amides 

Conserving the A and B-region structure in a dimethoxyphenyl reverse amide 

configuration (Fig. 4.6) enabled a series of C-region structures to be assessed. 

6A (103, 23%) R = ti2c 

6B ( - ) R = H2c  

6C (17, 7.5%) R = n-octyl 

6D ( - ) R = H2c „O 

6E(350, 12%) R = it c 

Me0 

Me0 

H 
N, 

R 

OMe 

OMe 

Fig. 4.6. Dimethoxyphenyl reverse amides with a number of C-region structural 

variations. Figures within the brackets refer to the same parameters as given for 

Fig. 4.2. 



7B (34, 10.5%) R = n-heptyl 

HC 
7C(198, 15.5%) R = 

(trans) 

Me0 

Me0 
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The potency of the compounds with n-octyl, phenylethyl, and phenylmethyl C-

regions (6C, 6A and 6B respectively) followed the same order as the other synthetic 

agents with the corresponding series of C=regions (3A-C, Fig. 4.3; 4A-C Fig. 4.4). 

However, efficacy in terms of AVO2 appeared to be more variable. Compounds 

3A, 3B and 4A-C all had AV02 .values in the range 15-18%, whereas the values for 

6A and 6C were 23 ± 3% at 125 gM (n = 3) and 7.5% at 60 gM respectively. One 

possible explanation for such variation in AVO 2  „„,, is differing selectivity for the 

putative VNi and VN2  receptors discussed in Chapter 3. 

The remaining C-region variations examined showed little (6E) or no activity 

(6D). The poor responses may be related to the presence of electronegative 

heteroatoms in a C-region requiring a highly lipophilic nature for optimal activity at 

the recognition site. 

4.3.6 Dimethoxyphenyl amides 

In order to compare amides with reverse amides, a series of compounds with 

the same B-region as capsaicin (Fig. 4.1) were assessed for hindlimb thermogenic 

activity (Fig. 4.7). 

7A ( - ) R = H2c 

7D(75, 13.8%) R = 
HC 

(trans) 

CI 

Me0 
7E ( - ) 

Me0 

Fig. 4.7. Dimethoxyphenyl amides tested for hindlimb thermogenic activity. 

Compounds 7C and 7D have trans stereochemistry. Figures within the brackets 

refer to the same parameters as given for Fig. 4.2. 
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The amide 7B (n-heptyl side chain) and the analogous reverse amide 6C (Fig. 

4.6, n-octyl side chain) were approximately equipotent, a result matching findings 

with amide and reverse amide analogues in neural tissue (Walpole et al., 1993b). The 

phenylmethyl C-region of 7A again resulted in the abolition of activity, as was 

observed for 3C, 4D, 5B, 5E and 6B. The 4-C1 phenyl substitution of 7D increased 

potency by nearly 3-fold over 7C. Similar substitution by Walpole et al. (1993c) 

increased the EC50  for calcium influx into neural tissue around 9-fold. Replacing the 

3,4-substitution pattern of the A-region with 3,5-substitution abolished activity (7E). 

4.3. 7 Reverse amides with a vanillyl A-region 

A number of C-region variations were examined in structures with a vanillyl 

reverse amide A and B-region configuration (Fig. 4.8). 

Me0 

HO 

Me0 

HO 

Me0 

HO 

8A(10, 23.0%) R = H2c  

8B (3.3, 9.8%) R = H 

8C (0.8, 31.1%) R = n-octyl 

8D ( - ) R = H2C10 

H 
N, 

R 

Fig. 4.8. Reverse amide vanillyl compounds assessed for hindlimb thermogenic 

activity. Figures within the brackets refer to the same parameters as given for 

Fig. 4.2. The structure of a recently-described potent analgesic agent, KR-25003 

(Park et A , 1995) is also shown. 
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8A is around 10-fold more potent with a comparable A902 . (23 ± 2% at 18 

1.1M, n = 5) than the dimethoxy analogue 6A. Similarly, 8C has around 20-fold higher 

potency than the dimethoxy analogue 6C. Interestingly, 8C (31.1%) has a 4-fold 

higher AVO2 . than 6C (7.5%). This value is also markedly higher (around 50%) 

than the AVO2  . for the structurally analogous capsacin and dihydrocapsaicin 

molecules (23% and 20% respectively, Cameron-Smith et aL, 1990). Similarly, the 

increased C-region length of 8B increases potency but reduces efficacy relative to 8A. 

The greatest AV02 was achieved by 8E (35.5%), the increased A-region/B-region 

bridge length giving lower potency but greater efficacy than 8C. Walpole et aL 

(1993b) report that the optimal length of the bridge between the A-region and the 

dipolar part of the B-region is a single carbon atom in neural tissue. The present 

results suggest a similar trend if potency is used as the activity index. 

It is noteworthy that structures 8A-E (Fig. 4.8) are structurally similar to KR-

25003 (Fig. 4.8, Park etal., 1995), a potent analgesic agent. KR-25003 (N-[3-(3,4- 

dimethylphenyl)propylli4-hydroxy-3-methoxyphenypacetamide) has similar A- and B-

regions to structures 8A-E, but is distinguished by a 3,4-dimethylphenyl C-region. 

Park et aL (1995) suggest that the overall conformation of KR-25003 is somewhat 

different to other vanilloids in the crystalline state. 

4.3.8 A -region halogen substitution 

Halogen groups were substituted in the 3- and/or 5- positions of the A-region 

ring whilst conserving the 4-hydroxyl substitution (Fig. 4.9). 

9A (63, 24.7%) X = Cl, R = H 2c 

H 
N, 

R 	9B (56, 20.8%) X = Br, R = H2c  

9C (250, 29.3%) X = Cl, R = n-octyl 

9D(118, 12.5%) 

Br 

Fig. 4.9. Halogen substitution of the A-region. Figures within the brackets refer 

to the same parameters as given for Fig. 4.2. 
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Replacement of the 3-methoxy substituent with either a chloride or bromide 

substituent reduces the potency around 6-fold in the case of 9A and 9B relative to the 

3-methoxy analogue 8A. Efficacy in terms of AVO2 is not altered. Interestingly, 

replacing the 3-methoxy substituent with chlorine in reverse amides with n-octyl C-

regions (9C and 8C) results in a 300-fold potency reduction without a change in 

AV02 .. In light of the relatively minor potency differences between 9A and 8A, this 

result is difficult to explain. Adding a further halogen substituent in the 5- position of 

the A-region (9D) halved both the potency and the efficacy relative to 9A. 

4.3.9 Reverse amides with single-substituent A-regions 

Reverse amides with substitution only in the 4- position of the A-region were 

generally active with relatively low A902„„„ efficacy (Fig. 4.10). 

10A (107, 10.6%) RI = HO, R2 = H2c 

10B (21, 11.9%) RI = HO, R2 = n-octyl 

10C (83, 17.4%) RI = AcO, R2 = 

10D (27, 14.2%) RI = AcO, R2 = n-octyl 

10E ( - ) R1 = WO, R2 = H,C 

N, 
R2 

Fig. 4.10. Single 4- substituent reverse amides. Figures within the brackets refer 

to the same parameters as given for Fig. 4.2. 

Structures with both hydroxyl (10A, 10B) and acetoxy 4- substituents (10C, 

10D) were active. However it is conceivable that esterase enzyme activity in the 

hindlimb preparation results in hydrolysis of acetoxy groups to hydroxyl groups. Such 

activity renders acetylcholine virtually inactive in the hindlimb preparation (data not 

shown). As noted for previous analogues (e.g. 4A and 4B), an n-octyl C-region 
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confers greater potency than a phenylethyl C-region (10A and 10B; 10C and 10D). 4- 

Methoxy substitution abolished activity. 

4.3.10 Pharmacophore for the rmogenesis 

A molecular pharmacophore represents a set of common features which 

characterise active molecules. It is derived from the common geometry's of a number 

of active compounds and therefore, in theory, acts as a template for activity. 

Phannacophore determination is generally achieved by performing conformer searches 

on known active agents. Specialised computer software compares common geometric 

elements of these structures to allow calculation of the three-dimensional template. 

The pharmacophore concept can improve the efficiency of drug development 

programs, since improving structural features to comply with a known 

pharmacophore reduces both the time and expense associated with synthesis and 

bioassay procedures. 

In the present study, the program PHARM, developed at this University 

(Martin, R.J., 1993; Marks, C. J. , 1995, Honours theses, University of Tasmania) was 

used to compare the 16 most active synthetic conformers from the structures 

presented in Figs. 4.2 - 4.10 and calculate a pharmacophore for oxygen consumption 

in the perfiised rat hindlimb model (Fig. 4.11). 

Previous work by Klopman and Li (1995) has resulted in the development of a 

partial pharmacophore for receptor binding in neural tissue, based on the structure-

activity data of Walpole and colleagues (1993a-c). However this study was unable to 

report the distance and angle of the C-region relative to the remaining regions due to 

difficulties associated with the recognition of this region by the software. 

The synthesis of a number of analogues with aromatic groups (recognised as 

anchor groups by PHARM) in the C-region enabled PHARM to calculate a 

pharmacophore encompassing the geometry of the entire molecule in the present 

study. The calculated angle between of the A- and C-region planes is 57°-87°, 

confirming that the C-region is bent back over the A-region in active vanilloid 

structures. Consequently, the distance between the A- and C-region aromatic ring 

centres (in structures with aromatic C-regions) was calculated to be only 4.7 ± 0.2A. 

This conformation is clearly illustrated by the 3-D global minimised structure of 
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compound 9C shown in Fig. 4.12. The work of Klopman and Li (1995) calculated 
distances of 7.78A and 8.71A from the B-region (thiourea sulfur atom) to the A-region 
oxygen atoms. The pharmacophore of the present work places the single oxygen atom on 
the aromatic ring only 7.1 ± 0.1A from the B-region, indicating a greater angle between 
the A- and B-region planes. Whilst this result supports the previous findings in neural 
tissue which suggest a requirement for non-coplanarity of the regions (Klopman and Li, 
1995; Walpole and Wrigglesworth, 1993), the finding nevertheless provides further 
indications that alternative pharmacophores may exist for different vanilloid recognition 
sites. 

Fig. 4.11. Pharmacophore for oxygen consumption. Redrawn from 
Eldershaw et al., (1995) and Clippingdale (1995, Honours thesis, 
University of Tasmania). Colour identification: red, oxygen; grey, carbon; 
blue, hydrogen. Distance from A- to C-region is from aromatic ring 
centres. Full details of the calculation are reported in Clippingdale (1995, 
op. cit.). Note that the pharmacophore angle of the A- and C-region planes 
only applies to structures with aromatic ring-containing C-regions. 
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i 

Clik  

0 

Iiir 
;3 11.1"  

0 	0 
Fig. 4.12. Global minimum conformer of compound 9C (steric energy = 

29.5134 la.mo1 -1 ) redrawn from Clippingdale (op. cit.). Conformational 

analysis was performed using PCMODEL 5.0, PKM, PKIN (all Serena 
software, Bloomington, USA, 1994), and MM3 (N.L. Allinger, University 
of Georgia, 1992). Full details are reported in Clippingdale (1995, op. 
cit.). Note that the angle of the A- and C-region planes is reduced due to 
the absence of the aromatic C-region. 

4.3.11 Dose-response curves of synthetic analogues in pelfused hindlimb preparations 
At the appropriate concentrations, all active synthetic analogues were capable of 

inducing the triphasic V02  response (data not shown) noted for the natural vanilloid agents 
(e.g. capsaicin, Chapter 3, Fig. 3.2) in association with increased perfusion pressure. No 
active analogue was able to demonstrate exclusive selectivity for stimulatory or inhibitory 

V02  responses, although the marked variation of the AV0 2. values could be interpreted 

as preliminary evidence for differential receptor selectivity. The V0 2  and perfusion 
pressure dose-response curves (Fig. 4.13) were therefore  both  qualitatively and 
quantitatively similar to those for the natural vanilloids in the perfused rat hindlimb model 
(Chapters 2a, 2b, and 3). The V0 2  dose-response curves were typically biphasic, 

possessed narrow concentration ranges, and typically gave AV0 2„. values of between 1.0 

and 1.5 mmol.g"' .h -  ' (Fig. 4.13). 
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A 8A,n=5 
0 6A,n=3 
• 2D,n=3 

50 	100 
	150 
	

200 

Analogue concentration (.1M) 

Fig. 4.13. Change in V0 2  and perfusion pressure (AP) dose-response curves for a 

selection of synthetic vanilloid analogues (8A, 6A and 2D). Data points are 

means ± SE. 
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4.3.12 Preliminary in vivo thennogenic testing 

Following encouraging results in the perfused rat hindlimb preparation in 

terms of AVO2  ,,,,x, compound 6A (Fig. 4.6) was selected for preliminary in vivo 

thermogenic testing. Using anaesthetised rats, positive thermogenic effects were 

observed following subcutaneous injection of 6A (Fig. 4.14). 

I 	I 	I 	I 	I 	I 
0 	20 	40 	60 	80 	100 	120 	140 

Time after injection (min) 

Fig. 4.14. Effect of subcutaneous injection of analogue 6A (116 mg-kg -1 ) on 

metabolic heat production (relative to the pre-injection period) in 250 g 

anaesthetised hooded Wistar rats. Each data point represents the mean ± SE for 

a 20 minute period. The control injection was 100% dimethyl sulphoxide (0.5 

ml). *Significantly greater than the 40 min control data point (P < 0.05, 

Student's unpaired two-tailed t-test). Experiments were performed in 

conjunction with Dr S.J. Edwards in this laboratory. 
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Although analogue 6A gave a significant thermogenic response in the 

anaesthetised whole rat (Fig. 4.14), similar experiments in conscious whole rats 

(performed in conjunction with Dr S.J. Edwards in this laboratory) failed to show any 

increase in metabolic rate. The effects shown in Fig. 4.14 may therefore be artefacts 

occurring as a result of a reduction in the degree of anaesthesia. However, previous 

experiments in this laboratory (data not shown) using cap saicin and extracts of ginger 

did not result in similar in vivo thermogenic responses using anaesthetised rats. A 

comprehensive in vivo thermogenic testing program is required to fully assess the 

potential of vanilloid analogues as lead thermogenic agents. 

4.3.13 Relationship between thermogenic and analgesic structural requirements 

The studies of Walpole et al. (1993a-c), Chen et al. (1992) and Park et al. 

(1991) combine to build a comprehensive structure-activity picture for the analgesic 

actions of vanilloid analogues. However, the present study is the first to examine the 

structural requirements for thermogenic activity in muscle. 

Walpole and Wrigglesworth (1993) have noted that there is good correlation 

between the 45Ca2+  influx assay used with cultured dorsal root ganglion neurones to 

indicate potential analgesic activity, and the ability to induce contraction of guinea-pig 

ileum. The parallel structural requirements for activity dictated by the present data 

suggests that the same correlation may exist between these two indices and the 

vasoconstrictor actions in perfused rat hindlimb. As noted in this and previous 

chapters, vanilloid-induced V02 is associated with increased perfusion pressure, and 

the blockade of vasoconstriction with nitrovasodilators (Chapters 2a and 2b) 

simultaneously reverses VO2 increases. 

On the evidence presented in this chapter, it must be concluded that there are 

no major differences in the pharmacophores for analgesic activity and hindlimb 

thermogenesis. Given that the increases in thermogenesis may be mediated by a 

putative VI•l i  receptor (Chapter 3), it must be assumed that this is the same or similar 

recognition site as that which appears on sensory neurones. Alternatively, the 

thermogenic effects may be the direct result of stimulating neurones associated with 

the hindlimb vascular bed, possibly via the release of neurolcinins. However, it must be 

taken into account that despite the evidence presented for a Ca2+-independent VN2 
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receptor (Chapter 3), the synthetic analogues failed to effectively separate the actions 

attributed to these putative subtypes. It remains possible, therefore, that different 

vanilloid recognition sites do exist on various tissues and that separation of the 

various pharmacological actions of these agents may be achievable given further 

refinements of the current structure-activity picture. 
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Chapter 5 

Vascular Control in Comparative Perfusion Models. 

A. Perfused Chicken (Gallus domesticus) Muscle Thermogenesis. 

5.1 Introduction 

When exposed to the cold, endotherms increase their facultative heat 

production (see Appendix 1) by either shivering thermogenesis, nonshivering 

thermogenesis, or a combination of both. Whilst shivering is a function of skeletal 

muscle, the site(s) and mechanism(s) of NST are less certain. In many eutherian 

mammals, a large proportion of the NST is thought to occur in brown adipose tissue 

(BAT) but increasingly, skeletal muscle is seen as an important NST effector tissue 

(Chapter 1). Studies in this laboratory have led to the proposal that skeletal muscle 

NST is regulated by its own microcirculation, and that the vascular smooth muscle 

itself may even significantly contribute to the observed thermogenesis (reviewed in 

Chapter 1 and by Clark et al., 1995). The vanilloid group of molecules have been 

identified as a new group of vasoconstrictors capable of controlling skeletal muscle 

thermogenesis, as measured by the oxygen uptake of perfised rat hindlimb 

preparations (Chapters 2a, 2b, 3 and 4). Whilst this vascular control phenomenon has 

been demonstrated to exist in representatives of both eutherian mammals (rat, Chapter 

1) and metatherian mammals (i.e. marsupials, Tasmanian bettong, Ye et al., 1995), 

there have been no attempts to identify similar vascular control mechanisms in the 

skeletal muscle of birds, the remaining major endothermic taxon. 

Birds are a large Class of effective endothermic animals in which BAT is most 

likely absent. Indeed, although cold-acclimated birds have a multi-locular fat tissue, 

this tissue does not have the numbers of mitochondria, the Krebs cycle enzymes, the 

cytochromes (Barre et al., 1987a), the uncoupling protein (Saarela et al., 1991), nor 

the sympathetic innervation of true BAT (Saarela et aL, 1989) to provide the 

observed NST. Due to the absence of BAT, the capacity for true NST in birds 

remains in dispute (Marsh, 1993). Nevertheless, a growing body of evidence supports 

the existence of avian NST (Duchamp et al., 1993a). The ability of birds to raise their 
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metabolic rate in a facultative manner without shivering in the face of a rapid or acute 

fall in temperature has been established in long-term cold-acclimated or -acclimatized 

birds such as chickens (El-Halawani et aL, 1970), muscovy ducklings (Barre et al., 
1986) and king penguin chicks (Duchamp et aL, 1989). In the absence of BAT, 

skeletal muscle has emerged as a major potential site of NST in view of 

catecholamine-induced stimulation of muscle V0 2  in vitro (Hissa et al., 1975b) and 

more recent measurements of muscle blood flow and arteriovenous differences in V0 2  

in vivo (Duchamp and Barre, 1993). However, the signal molecules, receptors, and 

the exothermic reactions of avian NST remain contentious or unknown. 

In eutherian mammals, the stimulus for NST in many species appears to be the 

activation of the sympathetic nervous system (SNS) and its stimulation of BAT, which 

can be mimicked by exogenous noradrenaline (NOR; Girardier and Stock, 1983). By 

contrast, exogenous catecholamines usually induce little if any thermogenesis in birds. 

For example, Hissa (1988) concluded that exogenous NOR led to either no change or 

a fall in core body temperature, a fall in oxygen consumption, and a decrease in 

shivering in cold-exposed birds. Nevertheless, there are some reports of in vivo 

calorigenic effects of catecholamines in birds (Freeman, 1966; Hissa et al., 1975a; 

Barre and Rouanet, 1983). These effects are small (10-40% above basal), and are 

usually observed only at or above thermoneutral ambient temperatures, although 

significant effects in king penguin chicks have been noted in the cold (Barre and 

Rouanet, 1983). Below thermoneutrality, catecholamine-induced inhibition of 

shivering (Hissa, 1988 and references therein) may be masking underlying (if any) 

calorigenic effects. However, if catecholarnines are detrimental in the cold, it is 

puzzling to observe increased plasma catecholamine levels in cold-acclimated chickens 

(Lin and Sturkie, 1968), and increased sympathetic nervous system activity and 

catecholamine turnover in a number of cold-exposed birds (El-Halawani et aL, 1970; 

Saarela and Hissa, 1977; Koban and Feist, 1982). Furthermore, the NOR-induced 

calorigenesis is more pronounced in cold- than in warm-acclimated pigeons above 

thermoneutrality (Hissa et al., 1975a), although this effect is not invariably found 

(reviewed by Chaffee and Roberts, 1971). Taken together, these apparently 

conflicting data may be related to species differences, animal ages, ambient 

temperatures, catecholamine doses, method of injection, or to the combined effects of 
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several hormonal actions in vivo. There could presumably also be major interactions 

between the vascular and metabolic actions of catecholamines, but neither this aspect, 

nor the thermogenic site has been directly addressed in birds. 

The potential of glucagon as a calorigenic agent in birds has been disputed in 

the literature. Workers such as Hohtola et al. (1977, pigeon) and Palokangas et al. 

(1973, chicken) found no evidence of any in vivo thermogenic responses. However, 

others have identified glucagon as a potential thermogenic enhancer (Barre and 

Rouanet, 1983; Keller, 1980; Krimphove and Opitz, 1975). Barre et al. (1987) have 

shown that chronic injection of twice daily glucagon into ducklings induces 

physiological changes similar to those of cold-acclimation, and that the injection of 

glucagon into cold-acclimated ducklings stimulates increased oxygen consumption 

(the latter also reported by Duchamp et al., 1993b). A marked increase in oxygen 

consumption in response to exogenous glucagon was also observed in vivo in young 

chickens (Barre, 1983; Keller, 1980), as well as in three-month-old Japanese quail 

(Krimphove and Opitz, 1975). Skeletal muscle may be a site of such glucagon-

induced calorigenesis in vivo (Duchamp et al., 1993b) although it is not known 

whether the observed actions of glucagon are direct or indirect. There are apparently 

no reports of glucagon-induced calorigenesis in adult birds. 

In view of the controversy surrounding the existence of NST in birds, and the 

fact that resting perfused skeletal muscle preparations from both eutherians (Chapter 

1) and marsupials (Ye et al., 1995) can show significant potential for thermogenesis, 

the primary aims of the present chapter were firstly to examine whether perfused 

resting chicken muscle would respond to putative thermogenic hormones such as 

NOR and glucagon, or other known vasoactive agents (e.g. vanilloids), and secondly 

to examine the possibility of a link between thermogenic and vascular effects in a 

comparative perfusion model. 

5.2 Methods 

5.2.1 Animals 

Birds were cared for under the Australian Code of Practice for the Care and 

Use of Animals for Scientific Purposes (1990) and the experimental protocols were 

approved by the University of Tasmania Ethics Committee (Animals). 
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Chickens (male and female) of local Hyline and Leghorn strains were obtained 

from a commercial hatchery and kept for 2-14 days in a retaining pen at 21 ± 1 °C 

with ad libitum access to commercial pellets and water. At experiment, body masses 

were in the range of 400-800 g. The supply of birds was variable and limited over the 

period of the study, hence the strain, sex and age of chickens used was not necessarily 

uniform for any series of experiments. Although the hatchery employed mechanisms 

to control temperature, seasonal influences could not be discounted as birds were 

hatched at various times throughout the year. 

5.2.2 Materials 
Bovine serum albumin fraction V was from Boehringer (Australia); 

noradrenaline bitartrate, adrenaline bitartrate, arginine vasopressin, human angiotensin 

II, prazosin hydrochloride, d,/-propranolol hydrochloride, capsaicin, oleic acid, 

serotonin creatinine sulfate, d-tubocurarine chloride and Evans blue were from Sigma 

(USA); porcine glucagon hydrochloride (with lactose) and porcine insulin (Actrapid 

MC, 100 units.m1 -1) were obtained from Novo-Nordisc (Denmark); heparin sodium 

was from David Bull Laboratories (Australia); and sodium nitroprusside was from 

Merck (Germany). All other chemicals and solvents were AR grade from Ajax 

(Australia). Drug solutions for infusion were prepared daily using 0.1% ascorbic acid 

in isotonic saline. Capsaicin solutions were prepared from a stock solution of 5 

mg•m1 -1  in ethanol using 0.1% ascorbic acid in isotonic saline. 

5.2.3 Surgical procedures 

After a number of preliminary experiments with differing anaesthetic agents, 

birds were satisfactorily anaesthetised with 60 mg•kg -1  of intraperitoneal sodium 

pentobarbitone. During induction of anaesthesia, particular care was taken to cover 

the cage and keep the birds in a warm and quiet environment. 

Once anaesthetized, the leg was plucked free of feathers, the major skin 

vessels of the lower limb were ligated, and the popliteal fossa incised to expose the 

popliteal artery and vein. The popliteal nerve was divided and the hamstring muscles 

were ligated and resected proximal to the fossa to give good access for cannulation of 

the popliteal artery and vein with teflon cannulae (Terumo 20G, 1.25") which were 
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bent to approximately 60° for better access to the vessels in the fossa. Heparin (2000 

IU-kg-1) was administered intravenously into the brachial vein prior to cannulation. 

After cannulation, tight ligatures were placed around the ankle and the lower thigh 

just above the cannulation site in order to prevent flow to other tissues. Evans blue 

dye (1%) was infused to confirm that perfusate flow was confined to the lower limb in 

both hormone-stimulated and non-stimulated preparations. During perfusion, the 

animal was laid on its back and the limb supported partially aloft. Exposed muscle was 

covered in plastic cling wrap. Where nerve stimulation was performed, the distal end 

of the divided popliteal nerve was positioned in a suction electrode. This involved 

drawing the nerve through an annulus formed in one platinum electrode into plastic 

tubing containing the other platinum electrode. Negative pressure supplied by a 

syringe held the nerve in the tubing. The stimulation was a continuous train of 5 ms 

pulses at 5 V and 1 Hz. After commencement of perfusion, the other leg was ligated 

similarly and then excised and the muscles removed and weighed to allow calculation 

of required perfusate flow to the perfused limb. This method of estimating perfused 

muscle mass was validated by infusing 1% Evans blue dye followed by removxal and 

weighing of stained muscle to determine the mass of muscle perfused, generally in the 

range 14-17 g. 

5.2.4 Perfusion protocols 

The perfusion system was similar to that described previously for the rat 

(Chapter 2a). The non-recirculating constant flow system was maintained at 25°C for 

all experiments. The perfusate was the same composition as outlined in Chapter 2a. 

Agent infusions were made continuously at 5_ 1% of the total flow directly into a 

combined mixing chamber/bubble trap. In each series of experiments, infusion of 

vehicle alone had no effect on oxygen uptake nor perfusion pressure. 

Perfusions were conducted at flow rates of 0.27 ml.rnin -l .g.1  or 0.33 ml.miri 

The responses to NOR alone were determined at both flow rates. The 

experiments with 5-HT were conducted at 0.27 ml-min -1 1-1, whilst all other 

experiments were conducted at the higher flow rate. The data for perfusion pressure 

and VO2 represent the mean ± SE of steady-state values, generally attained within five 

minutes of agent infusion. V02 calculations were performed as previously described 
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for the rat (Chapter 2a). Perfused muscle mass was estimated by the method outlined 

in section 5.2.3. 

Experiments to determine NOR dose-response curves in the presence or 

absence of glucagon were performed as paired comparisons in the same preparation at 

0.33 The order of treatment was reversed in each experiment. When 

glucagon was present, it was infused prior to the NOR treatment. Washout periods of 

25-30 minutes were included in experiments where the NOR + glucagon treatment 

preceded the NOR alone treatment. These experiments were conducted around 12 

months after the previous set of experiments to determine responses to NOR at 0.33 

The birds were supplied from a different hatchery which employed 

upgraded temperature control mechanisms. 

5.2.5 Metabolite assays 

Muscle metabolite concentrations were determined in samples which were 

freeze-clamped with liquid nitrogen-cooled aluminium tongs, powdered under liquid 

nitrogen, and stored at -85°C prior to rapid perchloric acid extraction and 

neutralization with K 2CO3 . Precipitates were removed by centrifugation at 4°C prior 

to analysis by HPLC. Creatine compounds (Cr and CrP) and adenine nucleotides 

(ATP, ADP, AMP) were measured simultaneously by using a modified reverse-phase 

isocratic HPLC method of Sellevold et al. (1986). In brief, the aqueous mobile phase 

contained KH2PO 4  (215 mM), tetrabutylammonium phosphate (2.3 mM) and CH 3CN 

(3.5% v/v) and the pH adjusted to 6.25. A Waters Radial-Pak C18 radial compression 

column was used with a flow rate of 2 Creatine compounds were detected 

by absorbance at 214 nm, adenine moieties by absorbance at 254 nm. The specific 

detection limits of CrP and ATP were 1.5 gM and 2.0 gM respectively (Sellevold et 

al., 1986). Similar detection limits applied to the other phosphagen compounds. 

The HPLC method of Sellevold et al. (1986) gave distinct peak separation, 

allowing specific identification of single pure peaks. The total run time was less than 

10 minutes. Repeated trials using muscle extracts gave identical peak heights (data 

not shown). Similar reproducibility and stability were reported by Sellevold et al. 

(1986) for heart extracts. 
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Wet weight/dry weight ratios were determined using separate powdered 

muscle samples dried at 80°C to a constant weight. 

5.2.6 Statistical analysis 

Statistical significance was determined using Student's unpaired t-test or 

repeated measures analysis of variance (ANOVA). Significant differences were 

recognised for P 0.05. In general, 3-7 animals were used to determine individual 

data points. 

5.3 Results 

5.3.1 Perfusion validation 

Perfusions at both flow rates (0.27 ml.min -l •g.1  and 0.33 ml.min-l .e) were 

stable with respect to resting oxygen consumption (6.3 ± 0.3 umol.e•h -1 , n =17 and 

7.4 ± 0.3 umol• -1 .1.1 1 , n = 31 respectively) and perfusion pressure (44.0 ± 3.6 mm Hg, 

n = 17 and 44.8 ± 2.2 mm Hg, n = 42 respectively) for periods up to 3 hours or 

greater after reaching an initial steady state. Muscle phosphagens were determined on 

freeze-clamped samples taken at the end of the perfusions or immediately after 

anaesthesia without perfusion ("in vivo" samples). Muscle energy charge of the 

adenylate system (Atkinson, 1968), defined as {[ATP] + 0.5 [ADP]) / {[ATP] + 

[ADP] + [AMP]), remained at the in vivo value regardless of the perfusion flow rates, 

duration or presence of hormonal stimulation (Fig. 5.1A). The CrP:Cr ratio was 

significantly reduced after both 60 minute and 180 minute perfusion periods under 

basal conditions at 0.27 ml•min -1 •8-1  (Fig. 5.1B). However, preparations perfused for 

180 minutes and stimulated with vasoconstrictors did not show a reduction in CrP:Cr 

ratio (Fig 5.1B). Increasing the flow by 20% to 0.33 was sufficient to 

maintain CrP:Cr ratio after 180 minutes under basal conditions (Fig. 5.1B). 

Muscle wet weight/dry weight ratios increased slightly from in vivo values 

(4.32 ± 0.06, n = 8) over 3 hours without stimulation to 5.55 ± 0.15 (n = 3) at 0.27 

ml.miti l s-1  and 4.77 ± 0.09 (n = 4) at 0.33 indicating some oedema 

formation although this was not visible to the naked eye. Basal VO2 and perfusion 

pressure were not altered over the 3 hour perfusion period. 
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Fig. 5.1. Energy charge (A) and creatine phosphate:creatine ratio (B) of freeze 

clamped in vivo and perfused muscle samples. Data are the mean ± SE. * P < 

0.0005. 

5.3.2 Agonist infusions 

Inthsion of NOR gave similar effects at both 0.27 ml.min -ls-1  (Fig. 5.2, high 

dose data not shown) and 0.33 ml•min-1 • -1  (Fig. 5.3). The agent induced a rapid onset 

of sustained vasoconstriction accompanied by a sustained increase in oxygen 

consumption at lower doses (1-333 nM) as shown by a fall in the monitored venous 

P02 (Fig. 5.2). Both effects were rapidly reversed on cessation of NOR infusion. The 

changes were significant at low concentrations of NOR (10 nM, Fig. 5.3). Basal 

values of VO2 and perfusion pressure were unaffected by prolonged periods of NOR 

stimulation (Fig. 5.2). The maximal NOR-stimulated increase in 02 at 0.33 ml.min" 
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Fig. 5.3. Concentration-response curves for (A) change in V02  and (B) change 

in perfusion pressure in response to infusion of NOR, ADR and 5-HT. The flow 

rate was 0.33 ml•min -l -g-i  for the NOR and ADR experiments, and 0.27 ml-min -

-g-1 for the 5-HT experiments. All points are the mean ± SE. Perfusion pressure 

and VO2 increases were significant (P < 0.05) at 10 nM concentrations of both 

NOR and ADR (Student's unpaired 1-test). Repeated measures analysis of 

variance (ANOVA) showed that for all values up to 1 pM (all n = 6) there was a 

significant effect of 5-HT on V0 2  (P 0.05). 



 

** 
*** 

A 

   

   

    

    

    

 

*** 

  

   

   

    

102 

5.3.3 Agonist blockade 

The effects of adrenergic antagonists and nitrovasodilation on responses to 

low-dose NOR (50 TIM) are shown in Fig. 5.4. Propranolol (10 p.M) had no 

significant effect, but prazosin (10 ilM) and nitroprusside (0.5 mM) significantly 

blocked the induced changes in 'c'ø 2  and perfusion pressure. Nitroprusside blocked 

both parameters to below commencing steady-state values, indicating the presence of 

basal vascular tone with associated VO2. 
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Fig. 5.4. Effects of adrenergic antagonists and nitrovasodilatation on (A) V02 

and (B) perfusion pressure induced by 50 nM (V0 2-stimulatory) NOR in 

preparations at 0.33 ml-min -1 • 1 . Data are the mean ± SE. Significantly different 

to 50 nM NOR alone, **P < 0.01; *** P <0.005; **** P < 0.001. 

5.3.4 Glucagon infusions 

Infusion of glucagon alone (100 TIM - 1 pM) had no significant effect on basal 

V02  nor perfusion pressure (Fig. 5.5). However when glucagon was infused 

following establishment of NOR-induced V02 inhibition (2 p.M NOR), there was a 
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dose-dependent fall in perfusion pressure and, at 1 gM glucagon, a reversal (to 

varying extents) of the inhibited VO2 induced by the infusion of high dose NOR alone 

(Fig. 5.5). When glucagon (1 gM) was infused continuously prior to and during the 

full concentration range of NOR (3 nM - 10 p.M), the observed effects were more 

consistent. Increases in VO2 were significantly greater than those mediated by NOR 

alone, and the V02-stimulatory concentration range was increased (Fig. 5.6A). The 

changes in perfusion pressure were significantly lower in the NOR + glucagon 

experiments at the corresponding NOR concentrations (Fig. 5.6B). 

0.8 

..-- 	0.4 7 
7 
co 	0.0 

7::■ 
E a 	-0.4 
ON  
.> 

-1.2 

120 

100 

80 x 
E 	60 E 

ta. 	40 <ri 
20 

o 
O 2gM NOR alone (n=4) 
EM22 21.iM NOR + 100nM glucagon (n=4) 
ESSS5 211M NOR + 1gM glucagon (n=4) 
•:•:•:•: 1gM glucagon alone (n=5) 

Fig. 5.5. Effects of glucagon on (A) change in V02  and (B) change in perfusion 

pressure in basal preparations and NOR (2 ii,M, V02  inhibitory)-treated 

preparations. When co-infused with NOR, glucagon was infused after steady-

state responses to NOR had been attained. Data are the mean ± SE. ** 

Significantly different to 2 tiM NOR alone, P < 0.01. 
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Fig. 5.6. Concentration-response curves for (A) change in V0 2  and (B) change 

in perfusion pressure in response to NOR alone, and NOR in the presence of 1 II 

M glucagon. NOR responses both with and without glucagon were determined 

in each perfusion preparation. The order of treatment was alternated between 

experiments. Glucagon infusion, when present, was continuous and commenced 

prior to NOR infusions. Points are means ± SE. Significantly different to NOR 

alone, * P <0.05; ** P <0.01. Experiments were conducted around 12 months 

after those used for Fig. 5.3, using birds from an upgraded hatchery with 

improved temperature control. 
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5.3.5 Other stimuli 

The qualitative effects of a range of other agents and stimuli on the perfused 

chicken muscle preparation are shown in Table 5.1. Of these, only motor nerve 

stimulation produced a response, giving marked vasodilatory effects in addition to 

large increases in V02 associated with muscle contraction. 

Table 5.1. Effects of other potentially active agents and stimuli. 

Agent 	Vasoconstriction 	Dilatation 
(NOR preconstricted*) 

V02  effects 	Remarks 

Angiotensin II co-infused with 
(0.01-5 nM) 

Vasopressin 

0 0 333 nM NOR 

co-infused with 
(0.3-5 nM) 0 0 333 nM NOR 

Capsaicin 
(2.5-5 JAM) 

Insulin 

0 not tested 

tested with high (0.5-1.2 1AM) 
(15-100 nM) 0 0 and low (5-50 tiM) dose NOR 

Popliteal Nerve 
Stimulation 

(1Hz, 5V, width 5ms) 

Tubocurarine 

0 -H-+ contracting skeletal muscle 

neuromuscular blockade 

-H-+ 

(1p.M) 

Oleic acid 

0 0 0 does not change 5-HT- 
induced V02 

no effects alone or 
(11.jM-1.3 inM) 0 not tested 0 in combination with 

glucagon (100 nM-1 

* preconstriction with V0 2  -stimulatory doses of NOR 

5.4 Discussion 

The present studies examining the constant flow perfused chicken popliteal 

muscle bed extend the previous findings using the perfused hindlimb muscle beds of 

two other endothermic taxonomic groups: eutherians (rats, Chapter 1) and marsupials 

(Tasmanian bettong, Bettongia gaimardi; Ye et al., 1995). These perfused 

preparations have been shown to be positively thermogenic in response to NOR and a 
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number of other vasoconstricting agents in this laboratory. The present study 

represents the first report of both vasoconstrictor-induced thermogenesis and dose-

dependent dual effects of catecholamines in avian skeletal muscle. 

The decision to perfuse at 25°C was taken in order to be consistent with 

previous work and to eliminate the need for erythrocytes in the perfusate. This avoids 

potential problems associated with high flow rates such as the need - for economic 

reasons - to recirculate perfusate which results in the accumulation of lactate and 

other metabolites. The lower flow rate of 0.27 ml.mirc l -g-1  wet weight of muscle 

perfiised in the popliteal bed was chosen in view of micro sphere studies of blood flow 

to the chicken pectoral muscle of 0.15 ml.mirc l •g.1  (Wolfensen et aL, 1978) and to 

duckling limb muscles of 0.3 to 0.36 (Duchamp and Barre, 1993). 

However, the decline in CrP:Cr ratio at this flow rate, despite the maintenance of 

energy charge (Fig. 5.1A) prompted an increase of 20% to 0.33 ml•mirl is-1  in all 

subsequent experiments. Studies in this laboratory using the rat have shown the 

CrP:Cr ratio to be an effective early index of muscle hypoxia (Ye et al., 1996). At the 

higher flow rate, the ratio remained at the in vivo value for at least three hours. The 

experiments using NOR were repeated and a similar response pattern observed. The 

fact that the increases in VO2  were still observed in a preparation with a well 

maintained CrP:Cr ratio strongly discounts the possibility that the V02 increases are 

due to vasoconstrictors artefactually redirecting flow to zones of regional skeletal 

muscle hypoxia in the perfused vascular bed. 

The oxygen consumption of resting perfused chicken muscle at 25°C (6.3 ± 

0.3 and 7.4 ± 0.3 lAmol.g -1 .11 1  at 0.27 and 0.33 ml-min-11-1  respectively) is similar to 

that of the rat (6.4 ± 0.2 Amol.g -1 .11-1  at 0.27 Colquhoun et al., 1988), but 

greater than that of the bettong (4.18 ± 0.35 at 0.28 Ye et 

al., 1995). The maximal NOR-induced increase in VO2 in the chicken hindlimb (35% 

to 9.9 pmols-1 -11-1  at 0.33 ml.min-1 1-1  in the absence of glucagon) occurred in a 

perfused muscle bed with surgically divided somatic motor and sensory nerve 

connections (via the popliteal nerve). These nerve connections therefore cannot be 

responsible. Nor is it likely that the observed responses are related to sympathetic 

outflow as the popliteal artery and hence the sympathetic fibres in its wall is crushed 

by two ligatures in the cannulation procedure. Such damage to sympathetic nerve 
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fibres effectively halts nerve transmission (Cowen et aL, 1982). Furthermore, 

experiments performed with tubocurarine (1 AM, Table 5.1) demonstrated that 5-HT-

induced V02  and perfusion pressure increases were unaffected by neuromuscular 

junction blockade. These findings eliminate the possibility of any form of shivering 

being implicated in the observed thermogenesis. 

Nitroprusside (0.5 mM, Fig. 5.4) blocked the NOR-induced stimulatory 

effects, thereby demonstrating a relationship between VO2 and vasoconstriction 

similar to that observed in the rat (Chapters 2a, 2b, and Colquhoun et al., 1988). 

However, an effect of nitroprusside to lower both VO2 and perfusion pressure to 

below commencing steady-state values is generally not observed in the rat, indicating 

the presence of higher basal tone with associated VO2 in perfused chicken muscle. 

Prazosin (10 AM, Fig. 5.4) inhibited the NOR stimulation to near basal levels, 

indicating that this stimulation was largely due to a radrenergic receptors. However, 

the failure of prazosin to reduce the VO2 and pressure to the sub-basal levels seen 

with nitroprusside suggested that the basal tone is not mediated by release of 

endogenous catecholamines acting on a radrenergic receptors. Since 10 AM 

propranolol did not significantly alter the observed responses (Fig. 5.4), the role of 0- 
adrenergic receptors in the NOR-induced effects appears to be minimal. 

5-HT infusion resulted in vasoconstriction associated with small VO2 increases 

at the lower end of the concentration-response curve (Fig. 5.3). The VO2 response is 

therefore different to that observed in perfused rat hindlimb and bettong hindlimb 

where 5-HT inhibited 02 at all effective doses. This behaviour has previously been 

suggested to be due to the operation of functional flow shunts in the 

microvasculature, effectively short-circuiting the respiring tissue (discussed in Chapter 

1). This reasoning can be extended to suggest that the inhibitory effects of high 

catecholamine doses in perfused chicken muscle (Fig. 5.3) may also be due to flow 

redistribution caused by vascular shunting as proposed in the rat (Chapter 1) and in 

the bettong (Ye et al., 1995). However, the biphasic VO2  responses to 5-HT suggest 

that the control of these flow patterns may be quite different to that of the mammalian 

models. 

Angiotensin II (alone and with NOR), vasopressin and capsaicin, all potent 

vasoconstrictors in perfused rat muscle (reviewed by Clark et al., 1995), were inactive 



108 

in the present study (Table 5.1). Previous studies using birds have suggested that a 

variety of responses to capsaicin are absent or substantially reduced relative to the rat 

(Pierau et al., 1987), presumably due to the absence of vanilloid receptors. This 

conclusion is supported by other studies in which no specific CH]resiniferatoxin 

binding to chicken dorsal root ganglia was reported (Szallasi and Blumberg, 1990b). 

However, given that angiotensin II is reported to have vasodepressor effects in 

chickens in vivo and induce relaxation of chicken aortic rings (Yamaguchi and 

Nishimura, 1988) and that chickens possess the vasopressin-like hormones arginine 

vasotocin and arginine vasopressin (Choy and Watkins, 1986), the inactivity of these 

hormones in either pre-constricted or unstimulated preparations was somewhat 

surprising. In intact pigeons, intravenous administration of vasotocin and angiotensin 

II have been reported to respectively reduce and enhance oxygen consumption 

(Hassinen et al, 1994). However, these effects occurred in parallel with changes in 

shivering intensity. 

The effect of glucagon on perfused muscle oxygen consumption may be 

related to its vasodilatory action. Fig. 5.5 shows that 1 11M glucagon alone has little 

effect, regardless of the presence of a suitable substrate (oleic acid, Table 5.1). 

However both 100 nM and 1 !AM glucagon exhibit a marked vasodilatory action in the 

presence of NOR (Figs. 5.5 and 5.6). Furthermore, when infused against a 

concentration of NOR that induces a type B (V02-inhibitory) effect, glucagon not 

only reduces the perfusion pressure, but increases the oxygen consumption from a 

sub-basal to a basal or stimulated state (Fig. 5.5). NOR dose curves determined in the 

presence of 1 1.1M glucagon (Fig. 5.6) gave more consistent data and illustrate the 

potential of glucagon to enhance catecholamine-induced resting muscle oxygen 

uptake in vitro. Under the influence of glucagon, the concentration range of the 

positive phase of NOR-induced V0 2  change is extended and is greater in magnitude. 

Consequently, higher NOR concentrations are required to induce the negative VO2 

phase. Thus glucagon may be selectively opposing the onset of type B activity, 

resulting in a simultaneous enhancement of type A (stimulatory) V0 2, given that the 

net effect is likely to be the combination of simultaneous type A and type B 

contributions. Parallel experiments conducted with insulin (Table 5.1) gave no 
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evidence of this hormone having a similar potential thermoregulatory role in chicken 

muscle. 

The biphasic actions of NOR demonstrated in this in vitro study may explain why 

the administration of exogenous NOR in vivo is generally not found to be thermogenic 

in birds (Chaffee and Roberts, 1971). Paradoxically, however, the sympathetic nervous 

system is activated during cold exposure (Reviewed by Hissa, 1988). Fujita et al. 

(1992) have shown that the plasma values of NOR and ADR in chronically 

catheterised chickens after feeding are 9.9 ± 4.6 and 1.8 ± 0.2 nM respectively. 

These values are within the range of the concentrations which give enhanced muscle 

oxygen uptake in the present study. However, local concentrations near sympathetic 

nerve cell terminals may be significantly greater than reported plasma concentrations. 

Thus if catecholamine concentrations were to rise due either to external 

administration, or increased endogenous release from an activated sympathetic 

nervous system, muscle bed oxygen consumption may in fact be inhibited. Equally, 

reports that exogenous glucagon is thermogenic in vivo via an unknown mechanism of 

action (Barre, 1983; Duchamp et al., 1993b) may be explained, at least in part, by the 

interaction of glucagon with the thermoregulatory effects of catecholamines resulting 

in a shift to the right of the inhibitory phase of the dose response curves for V02, 

thereby restoring increased VO2 . Thus nonshivering thermogenesis in birds could 

conceivably require the simultaneous presence of catecholamines and glucagon. 

The results presented in this chapter suggest that the chicken (and perhaps 

birds generally) has the potential to effect muscle NST in vitro. It is therefore 

surprising that birds do not usually exhibit this potential for regulatory NST in vivo 

except after long-term cold-acclimation. It is plausible that the vasoconstrictive effects 

of catecholamines usually inhibit thermogenesis by opening functional vascular shunts 

or reducing muscle perfusion in vivo. The ability to use this potential muscle NST 

might therefore depend on adaptive mechanisms aimed at reducing the negative 

vascular effects of catecholamines possibly in conjunction with increased secretion of 

vasodilatory agents such as glucagon and/or with altered vascular responses. 

Alternatively, small contractions of skeletal muscle might also act to delay the onset 

of catecholamine-induced V02  inhibition in the cold on account of the contraction-

induced vasodilatation of the NOR-stimulated preparation (Table 5.1). Such an effect 
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could conceivably account for the potentiated shivering thermogenesis exhibited by 

young birds in the first stage of cold-acclimation (Bane et al., 1985) and could be a 

link between shivering thermogenesis and catecholamine-induced NST in birds and 

other endotherms. These possibilities require further investigation. 
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Chapter 6 

Vascular Control in Comparative Perfusion Models. 

B. Obese Zucker Rats: Models of Impaired Vascular Metabolic Control? 

6.1 Introduction 

Major differences exist between the obese Zucker (fa/fa) rat and its lean 

counterpart (Fa!?). The obese animals exhibit hyperphagia (Cleary et al., 1980), 

decreased whole body oxygen consumption at ambient temperatures of 10-30°C 

(Kaplan, 1979), decreased low-protein diet-induced thermogenesis (Young et al., 

1980), and a lower maintenance energy requirement (Mowrey and Hershberger, 

1982). At the tissue level, the fa/fa rat has defective brown adipose tissue (Levin et 

al., 1984), but differences in the metabolic properties of other tissues, including 

muscle, may also exist. 

In terms of glucose homeostasis the fa/fa animals exhibit hyperinsulinemia 

(Tukenkopf et al., 1982), decreased sensitivity to insulin in vivo (Jeanrenaud, 1979), 

decreased ability of various tissues to bind insulin (Kobayashi and Olefsky, 1978; Le 

Marchand-Brustel et aL, 1978), and various effects distal to the insulin receptor 

interaction (Assimacopoulos-Jeannet and Jeanrenaud, 1976; Crettaz et al., 1980). In 

addition, skeletal muscle of the fa/fa rat is insulin resistant with decreased insulin 

binding (Crettaz et al., 1980; Czech et al., 1978), rate of glycogen synthesis (Crettaz 

et al., 1980, 1983; Ivy etal., 1986; Kemmer et al., 1979), rate of glycolysis (Crettaz 

etal., 1980, 1983), and rate of glucose transport (Sherman etal., 1988). Perfusion 

studies (Kemmer etal., 1979) indicate that the hindlimb of thefalfa rat has diminished 

basal glucose uptake, markedly diminished insulin-mediated glucose uptake, 

diminished lactate oxidation, and exaggerated lactate release when compared to that 

of the lean counterparts. Perfused hindlimb studies (Sherman etal., 1988) show that 

the impaired insulin-mediated glucose uptake is common to all skeletal muscle fibre 

types. 

BRL 49653 (5-(442-(N-Methyl-N-(2-pyridypamino)ethoxy]-benzyl)thiazolidine-

2,4-dione, Fig. 6.1) is a new potent insulin sensitiser agent with the ability to improve 
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glycaemic control in fa/fa Zucker rats as well as other animal models of NIDDM. 

Chronic oral administration of BRL 49653 (3 ttmolle•day' l  for 21 days) normalises 

Zucker fa/fa rat glucose tolerance and reduces fasting plasma insulin concentrations 

by 50% (Smith et al., 1993; Cawthorne et al., 1993). In hyperinsulinaemic (600 

gU.m1-1) euglycaemic clamped fa/fa Zucker rats, the same BRL 49653 treatment 

increases glucose infusion rates, resulting in both enhanced insulin suppression of 

hepatic glucose output and increased glucose disposal by peripheral tissues, 

principally skeletal muscle (Smith et al., 1993). Increased skeletal muscle glucose 

disposal under euglycaemic clamp conditions has also been reported in high-fat-fed 

insulin resistant rats (but not controls) after oral BRL 49653 administration (10 

pmol-kg-I .day-1  for 4 days, Kraegan et al., 1993). It is conceivable that these reported 

actions of BRL 49653 to normalise glucose tolerance may be due in part to a 

haemodynatnic effect allowing improved muscle nutrient delivery. 

Fig. 6.1. Structure of BRL 49653. The agent is a member of the glitazone family 

of thiazolidinedione analogues currently being developed for the treatment of 

insulin resistance and non-insulin-dependent diabetes. 

A systematic assessment of the thermogenic properties of perfused hindlimb 

from obese Zuckers has not been made, despite the marked responses to 
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catecholamines by perfused hindlimbs from non-obese strains demonstrated in this 

laboratory (Clark et al., 1995) and by others (Cote et al., 1985; Grubb and Folk, 

1976; Richter et al., 1982a). Since previous work from this laboratory on non-obese 

strains has led to the proposal that muscle metabolism is regulated by vasoconstrictors 

that act to alter the distribution of nutritive flow (discussed in Chapter 1), skeletal 

muscle in the obese Zucker rat was identified as being a potential model of impaired 

nutritive flow. 

Chapter 1 proposed a link between impaired vascular control of skeletal 

muscle and the pathogenesis of disease states referred to as syndrome X 

(hyperinsulinaemia, hypertension and hyperlipidaemia; Chapter 1, Fig. 1.2) 

Accordingly, phenotypic differences in Zucker rat perfused hindlimb metabolism may 

also be linked to impaired microcirculatory function. The studies outlined in this 

chapter were thus governed by two primary objectives. The first was to determine if a 

phenotypic difference existed in perfused Zucker rat hindlimb thermogenic response 

to type A and type B vasoconstrictors, allowing a comparative assessment of the total 

nonshivering thermogenic capacity of the hindlimb controlled by the vascular system. 

The second intention was to confirm that perfused fa/fa Zucker rat hindlimb 

demonstrated impaired insulin-mediated glucose uptake, and to subsequently examine 

the effect of chronic pre-treatment with BRL 49653 on the insulin sensitivity of such 

preparations, and also on preparations from non-obese strains. 

6.2 Methods 

Experiments involving Zucker rats were performed in the laboratories of the 

Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, The Frythe, 

Welwyn, Hertfordshire, United Kingdom during July and August, 1993. Experiments 

with hooded Wistar rats were performed in Hobart, Australia. 

6.2.1 Animal care 

Animals were housed and cared for in accordance with the principles of the 

Guide to the Care and Use of Experimental Animals, Vol. 1 (Canadian Council on 

Animal Care, 1980). 
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Experiments were performed using mature (20 and 27 week old) male Zucker 

genetically obese (fa/fa), 500-600 g rats, when the obesity and insulin resistance were 

well established, and age-matched lean male animals (Fan, 340-365 g). Rats were 

obtained from Harlan Olac Ltd, Bicester, Oxfordshire, UK and housed in groups 

under climate-controlled conditions (20 ± 2°C, 12 h light : 12 h dark cycle) and 

provided with R&M 1 (rat and mouse diet) made by SDS, Manea, Cambridgeshire, 

UK, and water ad libitum. Details concerning the non-obese hooded Wistar rats can 

be found in Chapter 2a. 

In experiments involving BRL 49653 treatment, rats were dosed once daily by 

oral gavage for 7 days with either BRL 49653 (3 umol.kg -1) or vehicle (water). 

6.2.2 Materials 

6.2.2.1 Zucker experiments (United Kingdom) 

Bovine serum albumin (fraction V), noradrenaline bitartrate, serotonin 

hydrochloride, (-)-isoproterenol hydrochloride, and Evans blue were obtained from 

the Sigma Chemical Company (UK). Heparin sodium (5000 U.m1 -1 ) was obtained 

from CP Pharmaceuticals Ltd (UK), sodium pentobarbitone from RMB Animal 

Health Ltd (UK), AR grade sodium nitroprusside from BDH chemicals (UK) and 

bovine soluble insulin (25 U.mg -I ) from Calbiochem (USA). BRL 49653 as the maleic 

acid salt was synthesised by SmithKline Beecham (UK). 

6.2.2.2 Hooded Wistar experiments (Australia) 

Both 2-Deoxy-D[1- 3H]glucose (10 pCi.m1 -1) and [U-"C] sucrose (552 

mCi.mmor l) were supplied by Amersham Australia Pty Ltd, porcine insulin (Actrapid 

MC, 100 U.m1 -1) by Novo Nordisk (Denmark), and serotonin creatine sulfate by 

Sigma (USA). BRL 49653 was synthesised by SmithKline Beecham (UK). The 

remaining materials used are as listed in Chapter 2a. 

6.2.3 Isolated hindlimb preparation (United Kingdom) 

Animals were given an intraperitoneal injection of heparin sodium (25 Us -1) 

and then anaesthetized with an intraperitoneal injection of pentobarbitone sodium (60 
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mg-kg-1). Rats were then pithed and maintained on a respirator via a tracheal tube. 

Surgery was subsequently performed as described in Chapter 2a. 

6.2.4 Perfusion medium 

The perfusion medium for the experiments at 25°C was the same as described 

in Chapter 2a. For the experiments at 32°C, the amounts of bovine serum albumin and 

calcium were increased to 4% and 2.5 mM respectively. 

The bovine serum albumin (Sigma, USA) used for the experiments with 

Zucker rats was used as supplied. The bovine serum albumin (Boehringer, Australia) 

used for experiments involving hooded Wistar rats was dialysed prior to use as 

outlined in Chapter 2a. 

6.2.5 Perfusion procedures 

The perfusion procedures using hooded Wistar rats are given in Chapter 2a. 

The perfusion cabinet and heat exchanger thermostat temperatures were set to 25°C 

or 32°C as specified. 

The perfusion procedures for Zucker rats were similar to those for hooded 

Wistars, although there were some differences in equipment used. Perfusion medium 

was pumped at a fixed flow rate by a peristaltic pump (Gilson Minipuls 3 with 3.90 

cm3 -m-1  tubing) adjusted at the start of each experiment to give comparable venous 

P02  values [nominally set at a minimum of 350 mm Hg to ensure adequate 02 supply, 

as established in previous studies (Ye et al., 1990b)]. The temperature of the 

perfusate was raised to 25°C or 32°C in a heat exchanger prior to passing through a 

silastic lung gassed with 95% 02-5% CO 2. In the absence of an enclosed perfusion 

cabinet, homeothermic blankets (Harvard, USA) and water jackets ensured that the 

hindlimb preparation, the surrounding perfusate-containing tubing, and the oxygen 

electrode remained at 25°C or 32°C. A temperature probe positioned beneath the 

skin adjacent to the perfused muscle controlled the operation of the homeothermic 

blankets. When required, agonists were infused continuously (Gilson Minipuls 3 with 

microbore tubing) into a small stirred bubble trap proximal to the arterial cannula. 

The infusion rates gave 1 in 200 dilutions. Infusion of vehicle (0.1% ascorbic acid in 
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isotonic saline) had no apparent effect on V02 or perfusion pressure in any of the 

experiments. 

6.2.6 Oxygen uptake and perfusion pressure determinations 

Oxygen tension in the venous perfusate was monitored continuously as 

described in Chapter 2a. Oxygen consumption was calculated (Chapter 2a) using the 

appropriate Bunsen coefficient for 25°C or 32°C (Christoforides et al., 1969). The 

oxygen electrode was calibrated before and after each experiment using recirculating 

buffer gassed with 95% 02 and then air. Perfusion pressure was monitored 

continuously using a fluid-filled transducer (CEC Instrumentation Ltd). 

6.2.7 Determination of perfused hindlimb tissue in Zucker rats 

In the final stages of perfusion experiments, all agonists were removed and the 

preparation was allowed to return to an unstimulated steady state. The flow was 

stopped and a 1% solution of Evans blue dye was injected into the arterial cannula at 

the same flow rate to that used throughout the experiment. The resultant stained 

tissue was then excised, blotted dry, dissected into muscle and fat and weighed to 

determine the amounts of tissue perfused. 

6.2.8 Glucose uptake determinations 

6.2.8.1 Arteriovenous glucose uptake 

Arteriovenous (A-V) glucose uptake for experiments involving Zucker rats 

was determined using a glucose analyser (YSI 2300 STAT, Yellow Springs 

Instruments, USA) using inflow and outflow glucose samples. Perfusate glucose for 

the experiments with hooded Wistar rats was determined by manual colourimetric 

assay (GOD-Perid method, Boehringer Mannheim, Germany). The glucose uptake 

was calculated by multiplying the A-V difference in glucose concentration by the 

perfusate flow rate and dividing by the weight of tissue perfused. 
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6.2.8.2 Uptake of 2-Deoxy-D-11-31-11glucose (2DG) by individual muscles 

Based on the method of Ferre et al., (1985), tracer amounts of 2DG (10 

gCi.m1-1 ; 15 Ci.mmo1-1) and [U- 14C]sucrose (3.14 gCi•m.1 .1 ; 552 mCi•mmorl  in 2 mM 

sucrose/0.9% NaC1 were infused at 40 gl•min-1  during the final 16.0 mm. of the 

perfusion period. Since the hindlimb preparations were non-recirculating, the ratio of 

2DG remained constant, allowing a quantitative determination of 2DG uptake without 

the need to monitor 2DG removal from the perfusate. Muscles of the perfused 

preparation: the soleus, plantaris, gastrocnemius red, gastrocnemius white, extensor 

digitorum longus, tibialis anterior, and all of the anterior and posterior muscles of the 

thigh were subsequently dissected apart and then frozen and powdered under liquid 

N2. Samples of powder were taken for dry weight determination (48 h at 80°C). 

Separate samples were homogenised in water, centrifuged (8000 g, 15 min) and the 

supernatants used for radioactive counting. The muscle glucose uptake (R'g, ilmol.g-

1 .h-1 ) was calculated as follows: 

2 x [3H d.p.m. in muscle - ( 14C d.p.m. in muscle x  3H d.p.m./14C d.p.m. ratio  in perfusate)] 
dry wt muscle (g) x (moles glucose per ml perfusate / 3H d.p.m. per ml perfiisate) 

6.2.9 Statistical analysis 

Data are given as means ± SE. Statistically significant differences (P 0.05 and 

P 0.01) were determined using Student's unpaired t-test or analysis of variance 

(ANOVA). In general, 3-6 animals were used to determine individual data points. 

6.3 Results 

6.3.1 Vasoconstrictor effects in perfused Zucker preparations 

6.3.1.1 Differences between obese and lean Zuckers 

Progeny of the Zucker strain display two phenotypes which manifest as obese 

homozygotes (fa/fa) and a mixture of lean animals which are either homozygotes for 
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leanness (Fa/Fa) or heterozygotes (FaIfa). Significant differences for the male age-

matched Zucker rats used in this study included body weight, heart weight, and the 

tissue composition of the hindlimb (Table 6.1). The perfused tissue of the hindlimb of 

the obese (falfa) animals (deduced by dye distributions) was comprised of 

significantly less muscle, significantly more fat and, in total, weighed significantly 

more than the hindlimb of the lean (Fa!?) animals (Table 6.1). The proportion of fat : 

muscle of the lean Zucker rat hindlimb (10.6 ± 0.7% fat) was slightly higher than that 

for 6-8 week old non-obese hooded Wistar rats (4.3 ± 0.1% fat). Differences in the 

proportion of hindlimb fat : muscle between falfa and Fan were taken into account in 

expression of the data (see below); some apparent differences were not significant 

when muscle was assumed to be the sole tissue responsible for hindlimb V02. 

Table 6.1. Body mass, heart mass, and perfused hindlimb analysis of obese and 

non-obese Zucker rats. 

Phenotype 	n 	Body mass 	Heart mass 
(g) 	 (g) 

Perfused hindlimb 

 

Muscle 	Fat 	Total 
(g) 	(g) 	(g) 

Obese 6 566.7±15.5 1.80±0.08 22.03±0.72 12.18±0.82 34.22±0.84 

Lean 6 350.8±4.5a 1.45±0.09c 25.94±1.08c 2.79±0.25a 28.73±1.04b 

Note: Values are means ± SE for 20 week old male obese and lean rats. 'Total' is 
defined as the sum of dye-containing perfused muscle and fat dissected from the 
hindlimb following perfusion with Evans blue and excludes skin and bone. aP < 
0.0001, bp < 0.01, cP < 0.05, significantly different from obese. 

Table 6.2 shows basal (pre-noradrenaline and pre-serotonin) properties of the 

perfused hindlimbs of the obese and lean rats. The flow rate, which was constant 

throughout each perfusion, determined the resting or basal parameters of perfusion 

pressure, venous P0 2  and thus V02. Table 6.2 shows that V02 for the obese hindlimb 

was significantly less than that for the lean hindlimb when expressed in terms of total 

tissue perfused, but not so when expressed in terms of the mass of muscle perfused. 
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Basal V02  for the whole hindlimb (V02 per g, Table 6.2 x total mass, Table 6.1) was 

also significantly less (P <0.05; n = 6) for the obese (151.2 ± 10.3 gmol-h-l .hindlimb-
1) than the lean (183.3 ± 7.2 Ilmol.h -l .hindlimb-1) animals. 

Table 6.2. Basal perfusion pressure and rate of oxygen uptake by hindlimbs of 

obese and non-obese Zucker rats. 

Flow rate 
(ml.min414) 

Pressure 
(mm Hg) 

Venous P02  
(mm Hg) 

V02 

Obese 

Lean 

6 

6 

0.200±0.012 

(0.312±0.016) 

0.230±0.015 

(0.257±0.017) 

28.3±1.6 

25.4±1.7 

419.1±12.6 

360.0±7.8a 

4.42±0.30 

(6.80±0.34) 

6.38i-0.25b 

(7.07±0.32) 

Note: Values are means ± SE and have been calculated on the basis of the perfused 
mass of muscle plus  fat of the hindlimbs as shown in Table 6.1. Values shown in 
parentheses are expressed in terms of the perfused mass of muscle only. Arterial P02 
was 663.7 ± 3.3 (n = 12). aP <0.01, b13  < 0.05, significantly different from obese. 

6.3.1.2 Effects of noradrenaline in perfused obese and lean hindlimbs 

Noradrenaline caused a marked vasoconstriction in the perfused rat hindlimb 

of both phenotypes. Fig. 6.2 shows dose-dependent rises in pressure to greater than 

200 mm Hg for perfused hindlimbs from obese and lean Zuckers. Dose curves for 

each hindlimb were constructed using step-wise increasing doses of infused 

noradrenaline. At each dose, the increase in pressure remained constant provided the 

dose remained constant (data not shown). Fig. 6.2 shows that at each dose of 

noradrenaline the pressure development by the obese hindlimb tended to be greater 

than that of the lean hindlimb. The difference was significant statistically at 32 tiM 

noradrenaline. 
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Fig. 6.2. Effect of noradrenaline on perfusion pressure of constant-flow 

hindlimbs of obese and lean Zucker rats (both n = 3). Basal (pre-noradrenaline) 

values for perfusion pressure were as given in Table 6.2. When not visible, SE 

bars are within the symbol. *P < 0.05, significantly different from obese. 

The dose-dependent rise in perfusion pressure due to noradrenaline contrasts 

with the effect of this catecholamine on V02. Fig. 6.3 shows that the steady-state 

V02  response has essentially two components, both of which were present in the 

obese as well as the lean hindlimb. These components comprise a steady-state 

stimulatory phase evident over a concentration of 3.2 to 100 nM noradrenaline, and a 

steady-state inhibitory phase commencing at concentrations greater than 100 TIM 

noradrenaline and extending to the maximum concentration used (3.2 1.1M). It is 

important to note that at concentrations greater than 1 1.1M noradrenaline, the value 
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for V02  was less than basal (pre-noradrenaline). In Fig. 6.3A the results are 

expressed in terms of the total perfused tissue. The upper trace shows absolute values 

and significant differences between the obese and lean hindlimbs are readily apparent. 

Hindlimbs from obese Zuckers have lower basal values and are significantly less 

responsive to noradrenaline in terms of increased V02, reaching only 72% of the 

absolute values for V02  obtained by the lean hindlimbs. In addition, the inhibitory 

effect of noradrenaline over the range 100 nM to 3.2 ja.M is less pronounced with the 

V02  of the obese hindlimb decreasing from a maximum of 8.03 ± 0.45 to 3.53 ± 0.21 

gmol•h-t •g-1  of total perfused tissue. Over the same concentration range of 

noradrenaline, 'O2 by the lean hindlimb decreased from 11.03 ± 0.71 to 4.20 ± 0.22 ti 

mo1.11-1 .g-1  of total perfused tissue. Thus the obese hindlimb response was 

approximately 66% of that of the lean. Normalising the data to the basal (pre-

noradrenaline) rate shows that the shape of the dose curves are indistinguishable 

except for the greater inhibitory effect of noradrenaline in lean hindlimb at maximal 

doses (Fig. 6.3A, lower trace). 

When the data for VO2 were expressed in terms of the mass of muscle 

perfused none of the differences noted above for the hindlimbs were statistically 

significant (Fig. 6.3B). 

6.3.1.3 Vasodilator blockade of the noradrenaline-mediated thermogenesis 

A time course for the effect of isoproterenol and sodium nitroprusside on 

noradrenaline-mediated decrease in venous P02  and increase in perfusion pressure for 

the obese hindlimb is shown in Fig. 6.4. The vasoconstrictor action of noradrenaline 

was associated closely with an increase in V0 2  as seen by the decrease in venous P02. 
Infusion of a maximal dose of isoproterenol partially blocked, and a maximal dose of 

sodium nitroprusside completely blocked, both effects mediated by noradrenaline (Fig. 

6.4). The increases in V02  and perfusion pressure due to noradrenaline were 

completely reversible and returned to basal values when the catecholamine was 

removed (data not shown). 



122 

- V Lean 

-
V Obese 

- 

_ 

- 0 Lean 
• Obese 

* A 

1 1 1 I 

- 0 Lean 
• Obese 

-9 	-8 	-7 	-6 	-5 
log [Noradrenaline] (M) 

Fig. 6.3. Effect of noradrenaline on oxygen uptake by constant-flow perfused 

hindlimbs of obese and lean Zucker rats (both n = 3). (A) Absolute V02 values 

(V, V) and changes in VO2  (0, 0), calculated as a function of the total mass of 

perfused tissue (Table 6.1). (B) Changes in VO2  expressed as a function of the 

mass of perfused muscle. When not visible, SE bars are within the symbol. *P < 

0.05, **P < 0.01, significantly different from obese. 
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Fig. 6.4. Effect of vasodilators, isoproterenol and sodium nitroprusside, on 

noradrenaline-mediated decreases in venous P0 2  and perfusion pressure by 

perfused hindlimbs of obese Zucker rats. The data were obtained after the 

dose-response curve for noradrenaline had been completed. The trace shown is 

a selection from three similar experiments. • 

6.3.1.4 Effects of serotonin in perfused obese and lean hindlimbs 

Fig. 6.5 shows the effect of serotonin on perfusion pressure in constant-flow 

hindlimbs of the obese and lean Zucker rats. The concentration-response curves were 

similar with each reaching a maximum pressure of approximately 190 mm Hg over 

basal at 3.2 1.1M serotonin. This contrasts with the effect of serotonin on V02 by these 

hindlimbs (Fig. 6.6). For both obese and lean hindlimbs, serotonin (10 nM-3.2 1AM) 

reduced V02. When expressed as a function of the total mass of perfiised tissue the 

obese hindlimb response was only 48% of that of the lean (Fig. 6.6A) decreasing from 

3.93 ± 0.28 to 2.30 ± 0.37 wriol.h -11-1  of total perfused tissue. Over the same 

concentration of serotonin (10 nM-3.2 1AM), V02 by the lean hindlimb decreased from 

5.83 ± 0.26 to 2.67 ± 0.48 ilmol•h .1 -g4  of total perfused tissue. 
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Fig. 6.5. Effect of 5-HT on perfusion pressure of constant-flow hindlimbs of 

obese and lean Zucker rats (both n = 3). Basal (pre-5-HT) values for perfusion 

pressure were as given in Table 6.2. When not visible, SE bars are within the 

symbol. 

Fig. 6.6B shows that when expressed on the basis of the mass of perfined 

muscle the differences in response to serotonin remained significant. Thus, over the 

concentration range of 10 nM-3.2 jiM serotonin, the decrease in V02 by the obese 

hindlimb was approximately 70% of that of the lean. 
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Fig. 6.6. Effect of 5-HT on V0 2  by constant-flow perfused hindlimbs of obese 

and lean Zucker rats (both n = 3). (A) Absolute V02  values (V, V) and changes 

in V02  (•, 0), calculated as a function of the total mass of perfused tissue 

(Table 6.1). (B) Changes in V02  expressed as a function of the mass of perfused 

muscle. When not visible, SE bars are within the symbol. *P <0.05, **P < 0.01, 

significantly different from obese. 
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6.3.2 Insulin-mediated glucose uptake experiments in petfused Zucker preparations 

Table 6.3 shows body weight, heart weight, and perfused hindlimb muscle and 

fat content of lean and obese Zucker rats, and obese Zucker rats treated with BRL 

49653 for 7 days. At 27 weeks of age, the obesity was pronounced and the 

homozygote (fa/fa) rats showed significant differences from the age-matched lean 

(Fa/?) rats in terms of body weight, hindlimb muscle and hindlimb fat content (Table 

6.3). Treatment of obese animals with BRL 49653 for one week lowered significantly 

the amounts of hindlimb muscle and fat when compared with age-matched obese 

animals given vehicle alone, although overall body weight did not differ significantly. 

The proportion of muscle to fat in the hindlimb was not affected by BRL 49653 

treatment. 

Table 6.3. Body weight, heart weight, and perfused hindlimb analysis of non-

obese and obese Zucker rats treated with BRL 49653. 

Age Phenotype 	n 	Body wt. Heart wt. 	Perfused Hindlimb 
(wk) and 	 (g) 	(g) 

treatment 
Muscle 

(g) 
Fat 
(g) 

27 Lean 5 438.0±11.4 1.61±0.05 31.47±1.15 3.83±0.59 

27 Obese 4 587.5±5.5a 1.70±0.09 21.62±0.57a 10.69±2.53a 

20 Obese 5 579.0±24.4 1.90±0.09 20.28±1.36 10.37±0.41 
+ BRL 49653 

20 Obese 5 584.0±12.20 2.05±0.08 24.43±0.82b 14.49+1.38b 
+ vehicle 

Note: Values are means ± SE for 27 week old male lean and obese rats, and for two 
groups of 20 week old male obese rats that had received BRL 49653 or vehicle for 7 
days. aP < 0.05, significantly different from lean. 1313  < 0.05, significantly different 
from BRL 49653-treated. Differences between groups of differing age (and therefore 
litter) have not been identified as being significant. 
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Fig. 6.7. Insulin dose-response curves for A-V glucose uptake by perfused 

hindlimbs from obese and lean Zucker rats. Values are means ± SE for five lean 

and four obese animals all of 27 weeks of age, and are expressed in terms of 

perfused mass of muscle + fat. *P <0.05, **P < 0.01, significantly different from 

obese. 

Fig. 6.7 shows the insulin dose-response curves for A-V glucose uptake at 

32°C by perfused hindlimbs of 27-week old lean and obese Zucker rats. Basal (pre-

insulin) values for glucose uptake tended to be greater in the lean hindlimbs relative to 

the obese hindlimbs, as reported by Kemmer et al. (1979). Hindlimbs from lean rats 

were more responsive than those from obese rats (consistent with the observations of 
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Kemmer et al., 1979 and Sherman et aL, 1988) and the trend became significant at 

10 nM insulin. The half maximal effect of insulin for both lean and obese hindlimbs 

was 40 nM insulin but the obese hindlimb showed only approx. 50% of the glucose 

uptake capacity of the lean hindlimb (Fig. 6.7) at all insulin concentrations. 

6.3.2.2 Thiazolidinedione (BRL 49653) treatment of obese Zucker rats 

-10 	-9 	-8 	-7 	-6 	-5 

log [Insulin] (M) 

Fig. 6.8. Insulin dose-response curves for A-V glucose uptake by perfused 

hindlimbs from 20-week old obese Zuckers that were treated with BRL 49653 (3 

gmol.kg-1 ,p.o.) or vehicle for 7 days. Values are means ± SE for five animals in 

each group, and are expressed in terms of perfused mass of muscle + fat. *P < 

0.05, **P < 0.01, significantly different from vehicle treated. 
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Fig. 6.8 shows the effect of 7 days of treating 20-week old obese animals with 

BRL 49653 on insulin-mediated A-V glucose uptake by the perfused hindlimbs. 

Vehicle-treated age-matched fa/fa rats had a lower basal (pre-insulin) glucose uptake 

rate, as well as a smaller insulin response (Fig. 6.8) than hindlimbs from the older 

obese animals (Fig. 6.7). However, treatment with BRL 49653 significantly increased 

the basal rate of glucose uptake and, at maximal doses of insulin 1 1.1M), there was 

a 50% increase in glucose uptake. The sensitivity to insulin remained unaltered by 

BRL 49653 treatment with the half maximal concentration remaining at 40 nM. 

6.3.3 Thiazolidinedione (BRL 49653) treatment of hooded Wistar rats 

In a further set of experiments, hooded Wistar (non-obese) rats were treated 

according to an identical protocol with BRL 49653 or vehicle. Hindlimbs were 

perfused in order to investigate the effect of treatment on glucose uptake in the 

presence and absence of insulin, and the effect on thermogenic responses to 5-HT 

vasoconstriction. 

6.3.3.1 Glucose uptake in perfused hooded Wistar hindlimb preparations 

Fig. 6.9 shows the basal (no insulin) and the insulin-stimulated (15 nM) A-V 

glucose uptake of hooded Wistar hindlimb preparations following treatment with BRL 

49653 or vehicle. 15 nM insulin was chosen to give a maximal effect on glucose 

uptake (data not shown; Chiasson et al., 1981). Treatment with BRL 49653 had no 

significant effect on either basal or insulin-stimulated A-V glucose uptake in this non-

obese model (Fig. 6.9). 
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Fig. 6.9. A-V glucose uptake at 32°C in perfused hindlimbs of control (n = 4) 

and BRL 49653-treated (n = 4) hooded Wistar rats under basal, maximal insulin 

(15 nM), and acute insulin resistant conditions (10 p.M 5-HT + 15 nM insulin, 

Rattigan et al., 1993). Significant differences (all P < 0.05): 'from control basal; 

bfrom control 15 nM insulin; `from BRL 49653 15 nM insulin. 

The insulin-mediated (15 nM) 2DG uptake (R'g) into individual muscles of 

the lower leg and muscle groups of the thigh for the two treatment groups is given in 

Fig. 6.10. These data correspond to a period when the overall A-V glucose uptake 

was constant. Although there was a general trend for the BRL 49653 treatment group 

to have higher R'g values, none of these differences were found to be significant by 

one-way analysis of variance (ANOVA). 
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Fig. 6.10. Insulin-mediated (15 nM) 2DG uptake (R'g) in individual muscles and 

muscle groups of control (n = 4) and BRL 49653-treated (n = 4) hooded Wistar 

rats at 32°C. The muscles examined were the soleus (SOL), plantaris (PLAN), 

gastrocnemius red (GR), gastrocnemius white (GW), extensor digitorum longus 

(EDL), anterior tibialis (TEB), and the combined muscles of the thigh (THIGH). 

Values are means ± SE. One-way ANOVA testing indicated that there were no 

significant differences between control and BRL 49653 mean R'g values. 

6.3.3.2 Serotonin effects in perfused hooded Wistar hindlimb preparations 

Insulin-mediated glucose uptake was significantly inhibited by 10 pM 5-HT in 

both the control experiments (Fig. 6.9, in accordance with the findings of Rattigan et 

aL, 1993) and the experiments with BRL 49653 treated animals (Fig. 6.9). However, 

there was no significant difference between the two treatment groups in the 

magnitude of the 5-HT-mediated acute insulin resistance (Fig. 6.9). 
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Fig. 6.11. 5-HT dose-response curves for AVO 2  and perfusion pressure changes 

(AP) in perfused hindlimbs of control (n = 4) and BRL 49653-treated (n = 4) 

hooded Wistar rats. Values are means ± SE. Where not visible, SE bars are 

within the symbol. 
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5-HT dose-response curves for V0 2  and perfusion pressure in the two 

treatment groups are given in Fig. 6.11. Despite the responses being consistently 

larger in the BRL 49653 treatment group, no pairs of data points were significantly 

different (repeated-measures ANOVA). 

6.4 Discussion 

6.4.1 Vasoconstrictor regulation of thermogenesis 
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Fig. 6.12. 	Vasoconstrictor-controlled thermogenesis by the perfused rat 

hindlimb. Data are shown for lean (n = 3) and obese (n = 3) Zucker rats (Table 

6.2, Figs. 6.3 and 6.6), as well as for 6-8 week old non-obese hooded (H.) Wistar 

rats (n = 5, Dora et aL,. 1991, 1992a). The hatched bars indicate the maximum 

increase in V02  due to noradrenaline and the open bars indicate the maximum 

decrease in V02  due to serotonin; the basal V0 2  is indicated by the boundary. 

Values are means ± SE. Rates have been calculated in terms of total tissue 

perfused and includes muscle and fat but not skin or bone. 



134 

Two findings emerge from the present study that have implications for whole 

body thermogenesis of the obese Zucker rat. Firstly, the constant-flow perfused 

hindlimb of the obese animal - when compared to that of the lean - has a lower basal 

V02  and lower maximal V02 mediated by noradrenaline (Fig. 6.12). These 

differences appear to result directly from the lower content of muscle mass in the 

obese hindlimb and do not reflect intrinsic differences between muscle from lean and 

obese phenotypes. However the findings imply that for lean and obese Zuckers of 

equal body mass, the basal and fully stimulated thermogenic potential of muscle is less 

in the obese phenotype, and in proportion to the mass of muscle present. Secondly, 

the constant-flow perfused hindlimb of the obese animal has a diminished inhibitory 

response to high concentrations of noradrenaline and to serotonin in terms of V0 2  and 

this effect appears to be intrinsic to the muscle. Taken together, the similar response 

to low concentrations of noradrenaline and decreased response to high dose 

noradrenaline and to serotonin by obese muscle when compared to that of the lean, 

suggests that vasoconstrictor-regulated thermogenesis in the obese Zucker is altered. 

Data from Figs. 6.3 and 6.6 as well as our previous studies using various 

vasoconstrictors and vasodilators (reviewed by Clark et aL, 1995) can be used to 

illustrate the magnitude and significance of the altered thermogenesis of the obese 

hindlimb (Fig. 6.12). Thus values from Fig. 6.3 reflect the maximum thermogenic 

capacity of the hindlimb that can be activated by noradrenaline or other type A 

vasoconstrictors that increase V02 by the rat hindlimb (Clark et al., 1994). Fig. 6.12 

shows that whilst the values for the lean hindlimb and that of the non-obese hooded 

Wistar strain are in close agreement, the value for the obese hindlimb is markedly 

lower. Given that the perfusion conditions were similar for the lean and obese 

hindlimbs, this suggests that the latter would have markedly less capacity to respond 

to vascular thermogenic stimuli, either in response to cold, or to over-eating. A 

difference in V0 2  of 3-4 jimol.h4 -g-1  between the obese hindlimb and those of lean 

animals, would correspond to a reduction of 0.95-1.27 W.kg -I  hindlimb at 37°C 

assuming a standard average energy value of 4.83 kcal.1: 1  02  at STP (1 kcal = 4.1855 

kJ) (Brown and Brengelmann, 1965) and a Q 10  of 2.5 (Paul, 1980). Previous 

estimates from this laboratory (Ye et al., 1990b) suggest that hindlimb (which is 

largely muscle in non-obese strains) has the potential to contribute up to 0.28 W in a 



135 

200 g, warm-acclimated, non-obese rat. The absence of 0.95-1.27 W-kg -1  hindlimb 

would thus represent an absence of 0.09 W or 34% of the potential thermogenic 

capacity of this hindlimb tissue. 

Since serotonin produced a dose-dependent inhibition of V0 2  that reached a 

plateau, data from Fig. 6.6 can be used to define the apparent lower limit of 

vasoconstrictor controlled thermogenesis. Fig. 6.12 shows that the values for obese 

and lean Zucker hindlimbs do not differ significantly, nor do they differ from the value 

for the non-obese hooded Wistar strain. 

Fig. 6.12 also shows that in the obese phenotype the basal V0 2  (without 

noradrenaline or serotonin) is significantly lower (P < 0.05) than in either the lean or 

the non-obese strain. This finding suggests that under similar perfusion conditions the 

basal thermogenic output by the obese hindlimb is diminished. If this occurred in vivo 

it might reflect a decreased thermogenic need in response to the increased insulating 

capacity of the hindlimb fat. Alternatively the diminished thermogenesis under basal 

conditions might be contributory to the development of obesity by altering the energy 

balance. 

It is important to note that the diminished response to noradrenaline of the 

obese hindlimb is not apparent when striated muscle is assumed to be the sole tissue 

of the hindlimb responsible for 0 2  consumption. Thus expression of the data for 

obese and lean hindlimbs in terms of the mass of muscle perfused (Table 6.2) yields 

dose-response curves for noradrenaline (Fig. 6.3B) and basal (pre-noradrenaline) 

values for V02 (Table 6.2) that are similar. Indeed such observations are consistent 

with those of other workers who found no difference in basal VO2 of perfused obese 

and lean hindlimbs when expressed on the basis of mass of muscle perfilsed (Kemmer 

et al., 1979) or between V0 2  of isolated incubated solei from obese and lean Zuckers 

(Crettaz et al., 1980). Thus, taken together, our present findings and those of others 

(Kemmer et al., 1979; Crettaz et al., 1980) suggest that the change in tissue 

composition of the hindlimb associated with the obese phenotype (Table 6.2) plays a 

predominant role in the diminished response to both stimulatory as well as inhibitory 

effects of noradrenaline on V02. However the fact that the diminished response to 

serotonin by the obese hindlimb was still evident when muscle was assumed to be the 

sole thermogenic tissue of the hindlimb implies that the obese phenotype is associated 
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also with an intrinsic defect in the hindlimb muscle or its vasculature. This defect may 

have additional implications for the thermogenic capacity of obese skeletal muscle. 

Thus the propensity to develop obesity (Zucker, 1975) and the poor response to cold 

exposure (Trayhurn et al, 1976; Levin et al., 1980; Kraul et al, 1985) may derive 

from a lower contribution to thermogenesis from muscle as well as impaired brown 

adipose tissue (Levin et al., 1984). 

As pressor effects were similar for obese and lean hindlimbs (Fig. 6.5), an 

impaired response by the obese hindlimb to serotonin, in terms of inhibition of muscle 

V02  (Fig. 6.6B), suggests that there is a lower proportion of nutritive vessels relative 

to functional shunts (discussed in Chapter 1). Thus an impaired response by the obese 

hindlimb to serotonin does not result from relatively fewer functional shunts, but 

rather is consistent with the presence of less capacity for nutritive 02 delivery. Such a 

reduction in the availability of nutritive delivery may also diminish glucose and insulin 

access and contribute to the insulin resistance of obese Zucker hindlimbs (Fig. 6.7, 

discussed below). The obese phenotype is not associated with major changes in 

muscle specific enzyme activities including cytochrome oxidase (Wardlaw and 

Kaplan, 1984) nor is there a decrease in the proportion of oxidative fibres (Pujol et 

al., 1993). 

6.4.2 Insulin-mediated glucose uptake in perfused Zucker rat hindlimb 

The obese Zucker hindlimb was significantly insulin resistant compared to lean 

Zuckers (Fig. 6.7). However, lean Zucker hindlimbs were in turn significantly insulin 

resistant relative to hooded Wistar hindlimb preparations (Fig. 6.9) under the same 

conditions (A-V glucose uptake of 14.1 ± 1.0 t.tmols-1 .1i 1  at 1 AM insulin in fa/fa 

Zuckers was significantly lower than 21.4 ± 1.9 timols -1 .11-1  at 15 nM insulin in 

hooded Wistars, P <0.01). 

Oral treatment with BRL 49653 at 3 grnol.kg-1 .day' l  for 7 days was found to 

significantly increase insulin-mediated glucose uptake of perfused Zucker rat 

hindlimbs. The effect was manifest as an increased responsiveness to insulin without a 

change in EC50 (Fig. 6.8). It is also important to note that the basal (pre-insulin) was 

also enhanced following BRL 49653 treatment making it unlikely that the 

thiazolidinedione was simply enhancing the effect of insulin. It is possible that as in 
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adipose tissue of ob/ob mice, treatment with BRL 49653 increases the tissue content 

of glucose transporters (Young et al., 1993). However, since these are the first 

studies with this agent in perfused hindlimb preparations, the mechanism of action and 

the target tissue(s) remain unresolved. 

6.4.3 Hindlimb perfusions of BRL 49653-treated hooded Wistar rats 

Identical chronic pre-treatment of a lean strain of rats (hooded Wistars) with 

BRL 49653 did not result in improved basal (pre-insulin) nor insulin-mediated 

perfused hindlimb A-V glucose uptake (Fig. 6.9) as noted in the obese Zucker rat. 

Individual muscles and muscle groups from treated rats showed no significant 

improvement in R'g values (Fig. 6.10). These results are consistent with the notion 

that BRL 49653 will only improve glycaemic control in animal models with 

established insulin resistance. 
Given that experiments with 5-HT have identified a potential defect in obese 

Zucker vascular control (Fig. 6.6), there exists the possibility of the demonstrated 

insulin resistance being linked to such a defect, and that the chronic action of BRL 

49653 is related to a reduction in its effect. 5-HT dose-response curves were 

determined in BRL 49653-treated hooded Wistar rats. However, as expected in a 

non-obese and non-insulin resistant strain, these curves were not significantly altered 

from the V02  and perfusion pressure control curves (Fig. 6.11). Further exploration 

of any link between impaired vascular control and insulin resistance in perfused obese 

Zucker hindlimbs would commence with the determination of 5-HT dose-response 

curves in BRL 49653-treated obese Zucker rats and comparison to the curves in Fig. 

6.6. 
Acute 5-HT-mediated hindlimb insulin resistance was not significantly altered 

in treated hooded Wistar rats (Fig. 6.9). Such 5-HT-mediated insulin resistance is not 

apparent in unperfused incubated muscles, raising the possibility of a role for the 

vascular system in glycaemic control (Rattigan et al., 1993; discussed in Chapter 1). If 

BRL 49653 were acting to restore impaired nutritive capacity in some manner, it 

would be unlikely to promote any improvement in glucose uptake or magnitude of 

responses to 5-HT in a perfusion model already possessing full nutritive capacity (Fig. 

6.12). Using similar reasoning, 5-HT-induced acute insulin resistance which may be 
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the result of vascular shunting away from nutritive regions within muscle (Dora et al., 

1991, 1992a), would not be altered in magnitude by BRL 49653 in a hindlimb 

preparation with full nutritive capacity. 

6.4.4 Evidence for thiazolidinedione vascular effects 

The thiazolidinedione family of compounds (which includes BRL 49653) have 

been found to ameliorate hypertension, both in rodents (Buchanan et. al., 1995; 

Kaufman et aL, 1995; Zhang et al., 1994; Pershadsingh et al., 1993) and in humans 

(Ogihara et al, 1995). The basis of the antihypertensive activity is not fully 

understood. Many authors assume the effect to be related to the lowering of plasma 

insulin concentrations in vivo (Ogihara et al., 1995). However, Zhang and colleagues 

(1994) maintain that the antihypertensive actions of thiazolidinedione agents are not 

specifically related to the amelioration of insulin-mediated glucose uptake. This 

conclusion was reached on the basis of experiments showing that pioglitazone 

reduced hypertension in the one-kidney, one clip rat, a hypertension model not 

associated with insulin resistance. Buchanan et al. (1995) have published evidence for 

a direct vascular effect of pioglitazone in rats to reduce blood pressure in vivo. It was 

argued that the extent of this reduction could not be explained by alterations in insulin 

concentrations, insulin sensitivity or free magnesium levels. In further experiments in 

vitro, Buchanan et al. (1995) demonstrated that pioglitazone reduced the 

vasoconstrictor-induced contractility of aortic rings, a direct effect due, at least in 

part, to inhibition of agonist-mediated calcium uptake by vascular smooth muscle. 

Similarly, Pershadsingh et al. (1993) have noted that ciglitazone may be modifying the 

cell calcium response to pressor agents. 

It is therefore possible that the actions of chronic BRL 49653 reported in this 

chapter are related to modified vascular function. It is tempting to speculate that part 

of the improved glycaemic control in treated rats might be the result of restored 

nutritive/non-nutritive flow distribution. 
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Chapter 7 

Final Discussion and Conclusions 

7.1 Summary of Major Findings 

7.1.1 Mechanisms of vcmilloid activity 

A series of isolated naturally-occurring vanilloid compounds were found to be 

capable of modulating perfused rat hindlimb V02 and lactate efflux in close 

association with increases in perfusion pressure. These effects were similar to those 

previously reported for capsaicinoid agents (Cameron-Smith et al., 1990). Although 

the effective concentration ranges of these compounds varied markedly, it became 

apparent that the vanilloid compounds could be classified as a unique group of non-

adrenergic, non-endogenous vasomodulators capable of modulating perfused rat 

hindlimb metabolism. 

The relative potencies of the naturally-occurring vanilloids in the hindlimb 

model were consistent with those reported in neuropharmacological studies where 

receptor interactions have been firmly established. Furthermore, the rapid kinetics of 

vanilloid effects in the hindlimb model were indicative of receptor-mediated activity. 

The failure of vanilloids to induce any responses in similar isolated perfusion 

preparations of chicken muscle suggested that direct non-specific cellular effects were 

unlikely. The ability of vanilloids to either stimulate or inhibit V02 raised the 

possibility that two vanilloid receptor subtypes (VN I/VN2) may be involved. 

Experiments with PPAHV, a new vanilloid found to abolish positive binding 

cooperativity in neural preparations (Szallasi -et al., 1996), gave preliminary 

indications that such cooperative binding is not the cause of the biphasic nature of the 

V02 dose-response curves. The generation of bell-shaped V02 dose-response curves 

was, however, consistent with the notion of overlapping receptors with opposite 

actions, as reviewed by Szabadi (1977) and also Rovati and Nicosia (1994), acting in 

accordance with their staggered affinities to firstly stimulate and then inhibit V02. 

Subsequent experiments under various states of metabolic challenge produced further 

evidence supporting the notion of vanilloid receptor duality in the rat hindlimb model. 
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Removal of external Cal' eliminated the stimulation of increased V02  and lactate 

production, responses attributed to the putative VN 1  receptor. The inhibition of VO2  
and lactate production, responses hypothesised to be mediated by the putative VN 2  

receptor, were largely unaffected by the absence of external Ca 2+ . The infusion of 

cyanide, azide, or the application of hypoxia all suggested that the putative VN2 

(inhibitory) receptor was not functionally dependent on oxygen. 

The notion of vanilloid receptor heterogeneity has also emerged in studies 

undertaken elsewhere involving neural tissue. Indeed, studies examining the binding of 

[311IRTX (reviewed by Szallasi, 1994), vanilloid cooperative binding and functional 

potency assays (Acs et al., 1995b), and differing capsaicin-induced currents in rat 

trigeminal cells (Liu and Simon, 1994) have all yielded evidence supporting some 

form of functional heterogeneity. 

7.1.2 Vanilloid structure -activity relationships 

The present study is the first to examine the structural requirements for 

vanilloid molecules acting to modulate muscle V0 2  in vitro. Given that bell-shaped 

V02  dose curves were a characteristic of the natural vanilloid agents, it was 

hypothesised that structural modifications might enable selectivity for putative VN 1  

receptors, thus resulting in agents with potential in vivo thermogenic activity. 

Although systematic structural modifications did not achieve clear separation of the 

putative \TN' and VN2 effects on V02, the maximal increases in V0 2  were variable, 

suggesting some degree of selectivity. One synthetic vanilloid compound, selected on 

the basis of its strong V0 2-stimulatory activity in vitro, was found to be thermogenic 

in preliminary studies using anaesthetised whole rats. 

The structure-activity profile developed for the synthetic vanilloid molecules in 

the perfused rat hindlimb system was relatively similar to that which emerged from 

neuropharmacological studies (Walpole et al., 1993a-c; Chen et aL, 1992; Park et al., 

1991). It must be concluded, therefore, that the putative VN 1  receptor is similar to 

those described on sensory neurones and in the CNS. Alternatively, the effects 

observed in the perfused rat hindlimb model may be mediated by neurolcinins released 

by neurones associated with the vascular bed. Possible neurolcinin interactions are 

currently under investigation in this laboratory. 
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7.1.3 Further evidence for dual vcmilloid receptors 

Very recent data emerging from this laboratory have provided additional 

support for the involvement of dual vanilloid receptors in the responses observed in 

the perfused rat hindlimb system (Griffiths et al., 1996). Capsazepine, a known 

competitive vanilloid antagonist, has been shown to competitively inhibit capsaicin-

induced VO2 and perfusion pressure changes in the perfused rat hindlimb model. 

Capsazepine has been previously shown to competitively inhibit the actions of 

capsaicin in a number of experimental systems (Urban and Dray, 1991; Dickenson and 

Dray, 1991; Bevan et al., 1992; Maggi et al., 1993). In the perfused hindlimb model 

(Griffiths et al., 1996), capsazepine was apparently specific for vanilloid actions; 

capsazepine infusion had no effect on the actions of the non-vanilloid agonists. A 

more detailed analysis of the inhibitory actions of capsazepine in the perfused hindlimb 

model (Griffiths et al., 1996) revealed that low concentrations of capsazepine 

selectively inhibited the increased V02 attributed to the putative VNI receptor. 

The same study (Griffiths et al., 1996) found ruthenium red to be a specific 

but non-competitive inhibitor of the capsaicin-induced hindlimb responses. This result 

was similar to those described by others using isolated rat vas deferens and urinary 

bladder preparations (Maggi et al., 1993). Again, ruthenium red was not effective in 

blocking the actions of non-vanilloid agonists in the hindlimb. At low concentrations, 

ruthenium red selectively inhibited the high dose capsaicin effects attributed to the 

putative VN2 receptor. 

The final section of this recent study (Griffiths et al., 1996) involved prior and 

co-infusion of the neurotoxin tetrodotoxin with a view to disrupting any possible 

influences exerted by sensory neurones in response to capsaicin. Previous studies have 

suggested that the responses of capsaicin-sensitive sensory neurones are linked to dual 

cellular mechanisms (Lou et al., 1992). The evidence for these mechanisms, one 

proposed to be tetrodotoxin-sensitive (low capsaicin concentrations), and their role in 

the release of sensory transmitters has been summarised by Maggi (1993). However, 

in the perfused rat hindlimb the capsaicin-mediated changes were tetrodotoxin-

resistant (Griffiths et al., 1996). This observation raised the possibility that the cellular 

mechanisms induced by capsaicin at low concentrations may differ from those of other 
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tissues, given that low concentrations of capsaicin result in tetrodotoxin-sensitive 

bronchoconstriction in the perfused guinea-pig lung (Lou et al., 1992). 

7.1.4 Comparative perfusion studies - perfused chicken muscle 

The present study included the first report of vasoconstrictor-induced 

thermogenesis and dose-dependent dual effects of catecholamines in avian skeletal 

muscle. The perfusion preparation developed for the study was demonstrated to be 

viable primarily by the comparison of muscle high energy phosphate metabolite 

concentrations with those of in vivo muscle samples. In particular, the measurement 

of creatine phosphate concentrations proved to be a sensitive index of muscle oxygen 

supply. 

The vasoconstrictor-induced changes in V0 2  occurred in perfused chicken 

muscle beds with surgically divided somatic and sensory nerve connections, 

eliminating the possibility of motor neurone involvement. Similarly, the crushing of 

sympathetic nerve fibres associated with the popliteal artery effectively ruled out any 

sympathetic mediation. Furthermore, responses induced in the presence of 

tubocurarine illustrate that the thermogenic actions were independent of any form of 

skeletal muscle contraction and that they represented true nonshivering thermogenesis 

in vitro. 

As observed in perfused rat hindlimb preparations, changes in V02 were 

always associated with vasoconstriction; nitrovasodilation blocked both effects. The 

catecholamine-mediated increases in V02 were blocked by a radrenergic antagonism, 

but the role of 13-adrenergic receptors in the V0 2  changes was apparently minimal. 

The ability of serotonin to both stimulate and inhibit V02 in the perfitsed chicken 

muscle preparation was different to the responses seen in rat hindlimb preparations, 

where 5-HT inhibits V0 2  at all effective concentrations (Dora et al., 1991, 1992a). 

This result was indicative of differing vasoconstrictor-mediated patterns of vascular 

control in chicken muscle, possibly reflecting variations in the distribution of 5-HT 

receptors. However, the observed V02  responses to vasoconstrictors in the chicken 

preparation suggested that these agents were altering the balance of flow distribution 

between nutritive and non-nutritive vascular networks in a comparable fashion to that 

postulated in perfused rat skeletal muscle (discussed in Chapter 1). 
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The characteristic bell-shaped V02  dose curves produced by catecholamine 

infusion may provide an explanation for the conflicting data of others concerning the 

thermogenic effects of exogenous noradrenaline in birds. The finding that g,lucagon 

acted to increase the stimulatory concentration range of noradrenaline in perfused 

chicken muscle may have implications for reports of calorigenic glucagon activity in 

vivo. The data obtained in vitro in the present study not only suggests that birds have 

the potential to enact muscular nonshivering thermogenesis in vivo, but raises the 

possibility that such NST may be due to the combined actions of catecholamines and 

glucagon. 

7.1.5 Comparative muscle perfusion studies - perfused Zucker rat hindlimbs 

Perfused obese Zucker rat hindlimbs served as a comparative model for 

investigating potential relationships between altered haemodynamic function and the 

expression of obesity and insulin resistance. Thus the initial aim was to define the 

upper and lower limits of V02 in hindlimbs of obese animals using type A and type B 

vasoconstrictors, enabling the resultant hindlimb window of vasoconstrictor-

controlled thermogenesis (Chapter 6, Fig. 6.12) to be compared to that in lean rat 

models: the lean Zucker littermates and the hooded Wistars. 

Several of the differences found in the obese Zucker vasoconstrictor-

controlled 02 window were the direct result of a lower proportion of muscle relative 

to fat in the total amount of tissue perfused. Nevertheless, it was apparent that these 

tissue proportion differences resulted in reduced obese Zucker thermogenic potential 

per hindlimb. On the other hand, a diminished obese Zucker type B response was 

evident regardless of the calculation method. Thus the diminished type B effect was 

apparently due to an intrinsic defect in the obese Zucker skeletal muscle. This was 

interpreted in terms of a lower nutritive capacity; a lower proportion of nutritive 

vasculature resulting in impaired muscle metabolic responses. It was postulated that 

the development of obesity in the Zucker rat may derive in part from a lower muscle 

contribution to overall thermogenesis as well as defective brown adipose tissue (Levin 

etal., 1984). 

It is interesting to note, however, that the magnitude of the type A response of 

obese Zucker hindlimbs was essentially no different to those of either of the lean 
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hindlimb models. If the magnitude of the type A response is assumed to reflect the 

capacity for nutritive vascular recruitment (as discussed in Chapter 1) then the 

argument that a diminished type B response is indicative of emaciated nutritive 

capacity inevitably leads to a conundrum. An alternative explanation requires a 

consideration of the distribution of flow between putative nutritive and non-nutritive 

vascular networks under basal conditions. If one accepts the arguments supporting the 

presence of dual circulatory systems within skeletal muscle (Barlow et al., 1961; 

Grant and Payling Wright, 1970; Lindbom and Arfors, 1984; Saltzman et al., 1992; 

Newman et al., 1996), it follows that a reduced capacity for lowering basal 

metabolism (type B response) may be the result of an altered balance of nutritive/non-

nutritive flow under basal conditions. Thus it might be hypothesised that the obese 

Zucker rat may not have rarefied nutritive vascular networks, but rather has an 

increased component of non-nutritive flow under basal conditions. Should this be the 

case, it would be expected that basal V02 of muscle alone would be lower in obese 

animals. This interpretation is not supported by the data. Thus whilst the data lend 

substantial support to the proposal that differences may exist in the vascular control of 

metabolism in perfused obese Zucker muscle, a satisfactory explanation based on the 

redistribution of flow between nutritive and non-nutritive vascular networks (as 

discussed in Chapter 1) remains elusive. 

Experiments examining perfised Zucker hindlimb glucose uptake confirmed 

previous reports (Kemmer et aL, 1979; Sherman et aL, 1988) that obese hindlimbs 

were insulin resistant relative to lean controls. Chronic treatment of obese Zucker rats 

with the thiazolidinedione insulin sensitising agent BRL 49653 resulted in a significant 

increase in both basal and insulin-mediated glucose uptake of obese Zucker hindlimbs. 

However, similar chronic BRL 49653 treatment of hooded Wistar rats did not result 

in improved arteriovenous glucose uptake, nor was the uptake of 2-deoxyglucose into 

individual muscles increased. These results imply that thiazolidinedione treatment was 

effective only in models of established insulin resistance; glycaemic control was not 

altered in an experimental model which, based on arguments presented in Chapter 1, 

can be predicted to possess near-maximal nutritive flow capacity. 

It is tempting to postulate that the observed insulin resistance of the perfiised 

obese Zucker hindlimb is directly related to the haemodynamic defect identified using 
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vasoconstrictors. If such a link exists, chronic actions of BRL 49653 to ameliorate the 

impaired state of glycaemic control may, following further experimentation, be 

interpreted as further evidence supporting the vascular actions already attributed to 

this class of agents (Buchanan etal., 1995; Kaufman etal., 1995; Zhang et aL, 1994; 

Pershadsingh etal., 1993; Ogihara etal., 1995). 

7.2 Relationship Between In Vitro Oxygen Consumption and Regulatory NST 

In Vivo 

Regulatory nonshivering thermogenesis is a common adaptive response to 

cold found in a number of mammalian species (Chaffee and Roberts, 1971) as well as 

several species of birds, including chickens, ducklings, and penguins (Barre et al., 

1986; Duchamp etal., 1989; El Halawani etal., 1970). A potentially effective method 

of demonstrating an association between changes in V0 2  observed in vitro and 

regulatory NST in intact animals is to establish that the in vitro effect is in fact 

potentiated in animals with laboratory-induced NST. A collaborative study involving 

this laboratory (F. Marmonier, C. Duchamp, F. Cohen-Adad, T.P.D. Eldershaw, and 

H. Barre, submitted) has investigated V0 2  responses induced by noradrenaline in 

perfused muscle preparations (using a method based on that described in Chapter 5) 

of cold-acclimated and glucagon treated ducklings, models previously reported to 

exhibit muscle NST in vivo (Barre et al., 1986, 1987b; Duchamp and Barre, 1993; 

Duchamp et al., 1993b). These experiments were able to demonstrate that ducklings 

exhibiting in vivo NST, as a result of either cold-acclimation or chronic glucagon 

treatment, did in fact show significantly higher V02  responses to noradrenaline when 

perfused in vitro relative to control thermoneutral ducklings. A similar relationship 

was found by Shiota and Masumi (1988) using thermoneutral and cold-acclimated 

rats. Grubb and Folk (1976) reported that sustained V02 responses were markedly 

enhanced in perfused muscle of cold-acclimated rats, although initial responses were 

unchanged. These results taken together, particularly the relationship found in 

ducklings in view of the absence of brown adipose tissue (Barre et aL, 1986; Saarela 



146 

et al., 1989, 1991), suggest that a thermogenic effect at the perfused muscle level is 

indeed indicative of the potential for skeletal muscle NST in vivo. 

The proposed relationship between vasoconstrictor-induced perfused muscle 

V02  increases and regulatory NST in vivo is further underlined by descriptions of 

marked noradrenaline-mediated a-adrenergic thermogenic effects both in vivo (J.-M. 

Ye, PhD thesis, University of Tasmania, 1995) and in constant-flow perfused muscle 

(Ye et al., 1995) of Tasmanian bettongs. As established inx birds, marsupials such as 

the bettong have no detectable BAT (Haywood and Lisson, 1992), hence skeletal 

muscle emerges as the most likely effector tissue for the observed regulatory NST. 

It may be argued that muscle perfusion using constant pressure (rather than 

constant flow) experimental regimes more closely approximate physiological 

conditions. Despite additional technical difficulties, studies in this laboratory (Ye et 

aL, 1995) have attempted to demonstrate vasoconstrictor-induced V02 under 

constant pressure perfusion conditions. The results show that noradrenaline does 

indeed stimulate increased V0 2  via an aradrenergic mechanism in rat hindlimb 

perfusion preparations at a constant pressure of 80 mm Hg. Although true 

physiological conditions are neither constant pressure nor constant flow (as muscle 

autoregulates flow), the fact that vasoconstrictor-mediated V0 2  - a phenomenon 

examined at length in the present study - is observed under both sets of experimental 

conditions is supportive of the physiological relevance of data obtained using 

constant-flow hindlimb perfusion techniques. 

7.3 Vascular Control of Muscle Thermogenesis : A General Biological 

Mechanism? 

A number of species including the rat (Chapter 1), and also the chicken 

(Chapter 5), bettong (Ye et al., 1995) and toad (J.-M.Ye, PhD thesis, University of 

Tasmania, 1995) have been used to demonstrate increased perfused skeletal muscle 

V02  in response to infused noradrenaline (Fig. 7.1). The basal and maximal NOR-

stimulated V02  values for these species are given in Table 7.1. 
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Fig. 7.1. AV02  (A) and A perfusion pressure (B) concentration-response curves 

for NOR in perfused chicken (n = 4-7), bettong (n = 5), rat (n = 5), and toad (n = 

3) muscle preparations. All data points are means ± SE. Toad data points are 

significantly different (P < 0.05) to basal values at all NOR concentrations 

greater than 104. Data sources are the same as listed in Table 7.1. Redrawn 

from Eldershaw et al. (1996). 
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Table 7.1. Basal and maximal NOR-stimulated V0 2  values for perfused muscle 

preparations of the chicken, rat, Tasmanian bettong, and cane toad at 25°C. 

species basal V02  max. NOR- • ercentage Ref. 
(n) (junol-g-l -h-1 ) stimulated V02 V02  increase 

(i.tmol•g-1 .h -1 ) 

Chicken (4-7) 7.4 9.9 35 Chapter 5, Fig. 5.3 
Rat (5) 6.1 10.1 57 Dora etal., 1992a 

Bettong (5) 4.5 8.5 110 Ye etal., 1995 
Toad (3) 1.36 1.74 28 J.-M. Ye* 

* Values from J.-M. Ye, PhD thesis, University of Tasmania, 1995. 

The species featuring in Table 7.1 and Fig. 7.1 are representative of a range of 

vertebrate taxa, giving rise to the hypothesis that vascular control of resting muscle 

thermogenesis is an underlying nonshivering thermogenic mechanism, common to the 

skeletal muscle of all vertebrate species. The relatively minor V0 2  change observed in 

the toad at physiological temperature and perfusion pressure (J.-M. Ye, opp. cit.) is 

consistent with the relative inability of ectotherms to respond to thermal challenge. By 

contrast, the greater effects in the endothermic species - at temperatures and perfusion 

pressures markedly lower than considered physiological - highlight the potential 

contribution of skeletal muscle to NST in these species. The lack of a type B 

component in the toad NOR dose curve (using concentrations up to 3.2 1..tM) is 

perhaps indicative of a less complex system of vascular control. Nevertheless, the 

observation that the perfused amphibian preparation does possess the capacity to 

increase V02  is evidence that the vascular control mechanism may have existed over 

an extended evolutionary period (Fig. 7.2). Thus the mechanism may have been the 

primary means of regulatory NST prior to the evolution of brown adipose tissue in 

eutherian mammals. The enhanced ability, relative to the toad, of the avian (chicken) 

and metatherian mammal (bettong) perfusion preparations to respond to NOR 

engenders speculation that such augmented thermogenic capacity may have been 

implicated in the phylogenetic branching of the endotherms (mammals and birds) from 

ectothermic (reptilian and amphibian) ancestry (Fig. 7.2). 
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Fig. 7.2 Vertebrate phylogeny. An approximation of the evolutionary pathway taken by the 

vertebrates over geological time (redrawn from King and Custance, 1982). The identification of 

vascular control mechanisms in avian and amphibian representatives implies that the 

mechanism may have existed over an extended evolutionary period. 



150 

7.4 Defective Muscle Vascular Control: Pathogenic Implications 

One of the stated aims of this study was to explore the possibility of an 

association between defective muscle vascular control and the phenotypic expression 

of obesity and insulin resistance in the obese Zucker rat. The use of vasoconstrictors 

in perfusion preparations implied that obese Zucker skeletal muscle was defective in 

terms of vascular control relative to lean counterparts. In terms of glucose 

homeostasis, skeletal muscle is regarded as being a major site of insulin-mediated 

glucose uptake (Baron et al, 1994). Previous studies in this laboratory have 

demonstrated that vasoconstrictors are capable of markedly influencing IMGU in 

perfused, but not incubated, isolated muscle preparations (Rattigan et al., 1993, 1995, 

1996). Many authors now accept that insulin resistance in vivo may have a 

haemodynamic basis. In particular, the association of hypertension with poor glucose 

tolerance in humans (discussed in Chapter 1; Julius and Jamerson, 1994 and 

references therein) has been interpreted by some in terms of hypertension playing a 

causative role, although others argue that hyperinsulinaemia leads to hypertension 

(Anderson and Mark, 1993). Amongst those subscribing to the theory that 

hypertension is likely to precede insulin resistance, a popular hypothesis is that 

vascular changes associated with hypertension may ultimately lead to vascular 

rarefaction (Henrich etal., 1988), resulting in defective distribution of insulin to target 

cells within skeletal muscle (Wiernsperger, 1994). 

In the obese Zucker rat model, although manifestations of obesity and insulin-

resistance are clearly recognisable, the existence of hypertension has been the subject 

of some debate. Zemel et al. (1992) have claimed that obese Zucker rats are 

hypertensive, and that the condition is independent of sympathetic input. This finding 

lends support to the proposal that obese Zucker rats may possess intrinsic alterations 

in skeletal muscle vascular architecture. The data for the basal perfusion pressures of 

lean and obese animals (Table 6.2) are supportive of increased peripheral resistance in 

obese animals; the basal perfusion pressure is 28% greater in obese hindlimbs when 

flow rates are normalised. The demonstration of an impaired vascular response in the 

present study was interpreted in terms of altered nutritive flow capacity, although 

there was some difficulty in rationalising all of the observed responses in terms of the 
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flow distribution models outlined in Chapter 1 (discussed in section 7.1.5). In view of 

the evidence supporting likely vascular actions of BRL 49653 (Chapter 6), it is 

conceivable that the ameliorated glucose uptake displayed by hindlimb preparations of 

BRL 49653-treated obese animals was related to haemodynamic changes. 

7.5 Therapeutic Potential of Vanilloids 

The ability of vanilloid molecules to modify oxygen uptake in the perfused rat 

hindlimb model (Chapters 2a, 2b, 3, 4) identifies these compounds as a new class of 

vasoactive agents apparently capable of altering haemodynamic control in perfused 

skeletal muscle. The experimental results support the presence of dual vanilloid 

receptors, one enhancing (VN I), the other diminishing (VN2) nutritive perfusate flow. 

Agents capable of putative VN I  receptor selectivity may have potential as whole body 

thermogenic drugs. Preliminary investigations using a synthetic vanilloid agent with 

favourable in vitro activity (compound 6A, Chapter 4) for in vivo experiments 

support this proposal. No synthetic vanilloid agent (described in Chapter 4), was able 

to demonstrate exclusive selectivity for either positive or negative V02 effects. 

Nevertheless, certain compounds displayed enhanced V02 stimulatory activity, a 

result perhaps indicative of partial selectivity. More rigorous pharmacological analyses 

than the screening procedures applied in this study are required to satisfactorily assess 

this possibility. Recent studies in this laboratory (Griffiths et al., 1996) have adopted a 

pharmacological approach in assessing the potential of capsazepine and ruthenium red 

as vanilloid antagonists in the perfused hindlimb preparation (see section 7.1.3). The 

apparent subtype selectivity achieved using these antagonists reinforces the possibility 

of achieving agonist selectivity for VO2 stimulation. 

The primary mechanism of action of vasoconstrictors controlling perfused 

skeletal muscle metabolism is proposed to be a redistribution of perfusate flow within 

the perfusion preparation (discussed in Chapter 1). The agents used in experiments 

directly examining this proposal have been the endogenous hormones noradrenaline 

and serotonin (Newman et al., 1996), due to their respective efficacies in inducing 

type A and type B responses. The actions of the vanilloids are presumed to occur as a 

result of similar flow redistribution, since the high and low dose alterations in perfiised 
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hindlimb V02, lactate efflux, perfusion pressure, and erythrocyte efflux (data not 

shown) are parallel to those induced by 5-HT and type A NOR respectively. It would 

be expected, therefore, that insulin-mediated glucose uptake would also be influenced 

by both high and low vanilloid concentrations, as has been observed for other 

vasoconstrictors (Rattigan et al., 1993, 1995, 1996). Preliminary data from this 

laboratory (T.P.D. Eldershaw, E.Q. Colquhoun, and C.G. Griffiths) suggests that 

perfused rat hindlimb IMGU is acutely influenced by vanilloid infusion as predicted. 

The potential for type A vasoconstrictors to stimulate LMGU in humans has recently 

been confirmed by Jamerson etal. (1996). In these experiments, infused angiotensin IT 

(type A vasoconstrictor) was observed to enhance insulin-mediated glucose uptake by 

human forearm. In accordance with the notion of vascular control of skeletal muscle 

metabolism, Jamerson et a/. (1996) concluded that haemodynamic rather than direct 

angiotensin II effects were responsible for the improved glucose tolerance. 

Phannacokinetic studies indicate that capsaicinoids are able to freely cross the 

blood-brain barrier (Donnerer et aL, 1990). Consequently, vanilloid agents ultimately 

developed for therapeutic use in enhancing peripheral thermogenesis and glucose 

tolerance may need to be selective for peripheral rather than central receptors, as well 

as putative VN I  receptors. Central vanilloid actions, such as the in vivo hypothermic 

response associated with capsaicin-mediated CNS stimulation (reviewed by 

Szolcsanyi, 1982), would be a highly undesirable property of any peripheral 

thermogenic agent. Taken together, a number of studies (reviewed by Szallasi, 1994) 

imply that differences exist between peripheral and central vanilloid recognition sites 

in the rat. Central (sensory ganglia and spinal cord) receptors bind cooperatively with 

high affinity, whereas peripheral (urinary bladder, urethra, airways, and colon) 

receptors bind noncooperatively with relatively low affinity. Furthermore, the order of 

capsaicin and capsazepine binding affinity is reversed in central and peripheral 

receptors. Accordingly, partial success has been reported in separating vanilloid 

antinociceptive and hypothermic actions (Hayes et al., 1984), implying that peripheral 

specificity may yet be achieved given further structure-activity insights. 
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7.6 Pharmacokinetics of Vanilloids In Vivo 

Current evidence suggests that vanilloid bioavailability is low following oral 

administration. Despite rapid absorption of capsaicinoids from the gut in rats (Kawada 

et al., 1984; Monsereenusorn, 1980), studies suggest that capsaicin and 

dihydrocapsaicin (Donnerer et al., 1980), as well as olvanil (a synthetic vanilloid, N-

(3-methoxy-4-hydroxy-benzy1)-oleamide, Sietsema et al., 1988) are markedly 

metabolised before entering the systemic circulation (first-pass effect) following oral 

administration. However, intravenous or subcutaneous doses of the same compounds 

resulted in higher plasma concentrations (Donnerer et al., 1980; Sietsema et al., 

1988). Nevertheless, vanilloid clearance from the plasma is likely to be rapid given the 

expeditious hepatic breakdown of [ 3H]dihydrocapsaicin noted by Donnerer et al. 

(1990) in rats. Indeed, the terminal half-life of [6]-gingerol after intravenous injection 

was reported to be only 7.23 minutes in rats (Ding etal., 1991, Fig. 7.3). 

Thus it appears likely that problems associated with poor oral and intravenous 

bioavailability, as well as receptor selectivity, will need to be overcome if vanilloid 

agents are to be successfully developed as therapeutic pharmaceuticals. The major 

mechanisms of metabolic degradation of capsaicinoids appear to be hydrolysis of the 

amide bond (Sietsema et al., 1988; Kawada et al., 1984), 13-oxidation of the side 

chain (Sietsema et al., 1988), and ring hydroxylation (Kawada and Iwai, 1985). 

Consequently, synthetic vanilloids with altered A-region substituents, no amide bond, 

and C-region substitution may possess greater bioavailability in vivo. These findings 

may explain the in vivo activity of compound 6C (Chapter 4, altered A-region and no 

amide bond) relative to the inactivity of capsaicinoids and ginger principles in the 

same system (data not shown). However, such structural modifications have thus far 

resulted in markedly attenuated potency in vitro. 
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Fig. 7.3. Plasma concentration-time profile of [6]-gingerol after bolus 

intravenous administration (3 mg-kg -1) to rats (redrawn from Ding et al, 1991). 

7.7 Target Areas for Future Studies 

7.7.1 Vanilloid studies 

The presence of vanilloid receptors in rat hindlimb preparations has not been 

directly established. Autoradiography studies using radiolabelled potent vanilloids 

such as 3H[RTX] are required confirm the involvement of specific vanilloid 

recognition sites. However, studies with vanilloid antagonists (capsazepine and 

ruthenium red) have already commenced (Griffiths et al., 1996). In terms of the 

synthesis and modelling of synthetic vanilloids, further work is required to define 

separate structure-activity profiles of the putative VNI and VN2 receptors. Extending 

these studies may lead to agonists, or indeed antagonists, capable of full selectivity of 
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one or both of the subtypes. Agents suspected of displaying partial subtype selectivity 

(Chapter 4) require detailed pharmacological evaluation; such analysis may lead to 

divergent structure-activity profiles. 

In view of the positive result obtained with preliminary whole body testing of 

synthetic vanilloid agents (Chapter 4, section 4.3.12), further trials in vivo are 

warranted to confirm the potential of vanilloids as pharmacological thermogenic 

agents. Trials in human subjects would be the logical extension of successful in vivo 

rat studies. In view of reported rapid capsaicinoid metabolic degradation in vivo 

(discussed in section 7.6) structural design with regard to maximising in vivo 

bioavailability of synthetic agents emerges as an important part of future studies. 

Given the triphasic V0 2  effects associated with periods of constant vanilloid infusion 

(followed by removal) in vitro (Chapter 3, Fig. 3.2A), hindlimb perfusion experiments 

designed to simulate the pharmacokinetics of bolus vanilloid doses in vivo may yield 

useful data, particularly in terms of likely net effects of vanilloids on metabolic 

parameters such as V02  and glucose uptake. Since the perfusion experimental design 

used in the present study incorporates a single-pass flow regime, bolus doses are not 

appropriate for simulating in vivo drug exposure. Instead, variable infusion rates 

designed to match predicted plasma concentration-time profiles (e.g. Fig. 7.3) are 

required. 

It is proposed that the vanilloid effects are the result of rnicrovascular flow 

redistribution, as appears to be the case for other type A and type B agents (Clark et 

al., 1995; Newman et al., 1996). Confirmation of this hypothesis necessitates the 

specific analysis of muscle flow distribution under vanilloid influence. Previous studies 

in this laboratory have used the results of vascular corrosion casting, fluorescein-

labelled dextran entrapment, and post equilibration erythrocyte efflux as evidence for 

vasoconstrictor control of differing vascular flow routes (Newman etal., 1996). 

7.7.2 Comparative investigations 

The proposal that vascular control of skeletal muscle metabolism is potentially 

a general biological mechanism warrants an extended investigation. Perfusion studies 

of further species, particularly those representing phylogenetic groups such as fish and 

reptiles, would be a logical extension of the current findings. A further area of interest 
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is the potential differences in muscle vascular control of species endemic to regions 

with markedly differing mean ambient temperatures. It might be predicted that 

perfused muscle preparations of species adapted to cold environments would display 

enhanced vasoconstrictor-induced oxygen consumption. A collaborative study based 

on the effects of cold-acclimation on vascular control in ducklings (discussed in 

section 7.2) has recently been completed (F. Marmonier, C. Duchamp, F. Cohen-

Adad, T.P.D. Eldershaw, and H. Barre, submitted). 

The notion of nonshivering and shivering thermogenic processes being 

complementary in birds was raised in Chapter 5. Electrical stimulation of muscle 

contraction was found to induce marked vasodilation in the present study (Chapter 5, 

Table 5.1). Vasodilatory effects accompanying the muscular contractions of shivering 

may result in potentiated noradrenaline-mediated increases in V02  in a manner similar 

to that observed with glucagon. Preliminary perfusion experiments examining the 

effects of simultaneous muscle contraction and catecholamine infusion are currently in 

progress. 

Perfusion studies using alternative models of obesity and insulin-resistance 

could conceivably strengthen the proposed link to impaired haemodynamic control. 

Disease models such as spontaneously hypertensive (SH) rats, genetically diabetic 

(db/db) and genetically obese (ob/ob) mice, high fat-fed rats, and chronically 

denervated rat hindlimbs (insulin-resistance) emerge as suitable subjects for such 

experiments. Studies using chronically denervated hindlimbs and SH rats are currently 

in progress. 

The proposal that the actions of BRL 49653 arguably have a haemodynamic 

basis remains unresolved. In view of the data obtained in the present study, it might be 

predicted that thiazolidinedione agents act to alter the vasoconstrictor-controlled 

window of metabolism (Chapter 6, Fig. 6.12). Thus comparison of vasoconstrictor-

mediated responses in hindlimbs of BRL 49653-treated obese Zuckers with the results 

obtained in non-treated obese animals (Chapter 6) may clarify the suggestion that the 

differences in vascular control noted in perfused obese hindlimbs were related to the 

impaired glycaemic control. 

The ability to diagnose the relative proportions of nutritive and non-nutritive 

flow in vivo remains a longer-term objective if such microvascular phenomena are to 
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be associated with obese, diabetic, and hypertensive disease states in the human. 

Methods based on vasculature-specific enzymatic substrate conversion are currently 

being developed in this laboratory. 

7.8 Conclusion 

Vascular control of skeletal muscle metabolism has been identified in 

vertebrate taxa other than mammals. This mechanism may have implications for avian 

NST, since the data are consistent with claims that muscle is the major site of in vivo 

regulatory NST in birds. Defective vascular control in the muscle of a rodent disease 

model may be related to impaired energy balance and glucose tolerance 

manifestations. Vanilloid molecules have emerged as a new group of agents capable 

of influencing microvascular haemodynamics in perfused rat muscle. These actions, 

apparently mediated by specific peripheral vanilloid receptors, identify vanilloids as 

lead compounds for pharmacological enhancement of muscle metabolic performance 

in vivo. The studies underline the potential significance of altering the distribution of 

nutrient and hormone access in regulating skeletal muscle metabolism, and in 

particular support fundamental vascular involvement in the control of skeletal muscle 

thermogenesis. 
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Appendix 1 

Thermogenesis Definitions 

Nonshivering thermogenesis (NST) is defined as "heat production due to 

metabolic energy transformation by processes that do not involve the contraction of 

skeletal muscles, i.e., tone, microvibrations tremor (shivering), or tonic or voluntary 

contractions" (Simon, 1987). Janslo;,  (1995) has expanded this definition with the 

statement that NST is an effector thermoregulatory mechanism based on the 

thermogenic action of neuronally-released noradrenaline. Jans14 ,  (1995) goes on to 

point out that NST may have a non-uniform physiological background, and that 

various mechanisms and effectors may be involved. 

NST may be subdivided into obligatory and facultative (regulatory, adaptive) 

categories. The obligatory component is defined as the basal heat production at 

thermoneutrality; the energy required to maintain the integrity of the cell and the 

steady-state condition of the animal (Jans4, 1995). Obligatory NST is thus common 

to both endotherms and ectotherms. The facultative component is additive to 

obligatory NST and represents further heat production by processes not involving 

skeletal muscle contraction in response to ambient temperatures falling below the 

thermoneutral zone of homeothermic animals (Rothwell and Stock, 1980; Trayhurn, 

1994). 

Other subdivisions of thermogenesis include diet-induced thermogenesis 

(DIT), a form of facultative NST which occurs in some animals (especially rodents) 

when transferred from standard food to a highly palatable 'cafeteria' diet. The extra 

caloric intake is dissipated in part by enhanced heat production (Rothwell and Stock, 

1979; 1980). Postprandial (extra) heat production (obligatory diet-induced 

thermogenesis or heat increment of feeding) is defined as "an increase in metabolic 

heat production, relative to the postabsorptive resting level, in the hours following 

food intake" (Jans1c5/, 1995). 

Total facultative thermogenesis represents the combined heat production of 

nonshivering and shivering mechanisms. However this study was primarily concerned 

with the nonshivering component of facultative thermogenesis. The use of the term 
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thermogenesis in the present work refers to facultative nonshivering thermogenesis 

unless otherwise stated. 
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Pungent principles of ginger (Zingiber officinale) are 
thermogenic in the perfused rat hindlimb 

Tristram P.D. Eldershaw, Eric Q. Colquhoun, Kim A. Dora, 
Zhan-Cong Peng and Michael G. Clark 

Department of Biochemistry, Faculty of Medicine, University of Tasmania, Hobart, Tasmania, 
Australia 7000 

Sununary 	  

Crude extracts of both fresh and dry ginger induced the perfused rat hindlimb to 
consume oxygen in association with increases in perfusion pressure and lactate 
production. The principles responsible for these observations, the gingerols and 
shogaols, were isolated and tested for relative thermogenic activity. The gingerol 
homologues possessed greater molar potency than their shogaol counterparts. 
(6)-Gingerol was the most potent principle isolated, causing a mean maximal increase 
in oxygen consumption of 1.4 ± 0.1 p.moUg/h (21%), an increase in lactate efflux of 4.7 
± 0.6 u.mol/g/h (87%) with a perfusion pressure increase of 7.7 ± 0.7 mmHg (30%). 
Increases in alkyl chain length within each homologous series led to decreased molar 
potency. Specific nitro-vasodilation using glyceryl trinitrate demonstrated that 
thermogenesis was at least partly associated with vasoconstriction. Concurrent 
infusion of a or 13 antagonists showed that neither adrenergic receptors nor secondary 
catecholamine release were responsible for the observed effects. Increasing doses of 
the ginger principles ultimately led to inhibition of steady state oxygen consumption, 
although perfusion pressure continued to increase. Removal of high ginger principle 
doses was followed by apparent increases in oxygen uptake unaccompanied by 
elevated perfusion pressure. As a consequence. the effective concentration ranges of 
the ginger principles were relatively narrow. The cause of high dose effects is as yet 
undetermined but may have been due in part to disruption of mitochondrial function. 

Keywords: gingerols, shogaols. spices, oxygen consumption, vasoconstriction. 
metabolic rate 

Introduction 
Ginger, the rhizome of Zingiber officinale 
Roscoe. is extensively used as a flavouring 
additive in foods, beverages and confectionery. 
A herbaceous perennial belonging to the family 
Zingiberaceae. it has medicinal qualities of 
importance in traditional Chinese medicine. 
Legendary Chinese herbalist Shen Nung (3000 
BC) recommended ginger for colds, fever, chills. 
tetanus and leprosy.' The crude drug continues 

Correspondence to: Eric Q. Colquhoun 

to be widely used for the treatment of a number 
of aiiments. including colds and tlu. motion 
sickness, digestive problems and irregular men-
struation.' Ginger is noted for its apparent ability 
to subjectively warm the body. -  

We have previously demonstrated 3  that cap-
saicin and dihvdrocapsaicin. the capsaicinoid 
spice principles present in hot chillies and 
capsicums. are thermogenic in the isolated 
perfused rat hindlimb: the increase in oxygen 
uptake being associated with vasoconstriction. 
These findings may help to explain those of 
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Henry and Emery' who reported that human 
consumption of a meal containing chilli and 
mustard sauces resulted in a 25% greater 
increase in diet-induced thermogenesis over a 
three hour period than a similar meal without 
spices. In addition, the response of the hindlimb 
to the capsaicinoids was consistent with the 
hypothesis that vascular smooth muscle directly 
consumed oxygen during sustained vasoconstric-
tion. 5-8  

Diet-induced thermogenesis may contribute 
significantly to the regulation of body tempera-
ture and energy balance. 9 . 10  The magnitude of 
this phenomenon is influenced both by caloric 
intake" and dietary composition. 12-14  

Pungency, a feature of chillies and capsicums, 
is also an important characteristic of ginger. The 
pungent principles of ginger are present as two 
phenylalanine-derived 15  homologous series, the 
gingerols and shogaols. 16  The shogaols are 
formed via an alkyl chain dehydration reaction 
from gingerols (Figure 1), hence they are usually 
present in dried rather than fresh rhizomes. 
Gingerols and shogaols primarily consist of the 
(6)-, (8)-, and (10)-homologues 17  (Figure 1), 
although trace amounts of other homologues 
have been reported following gas chromato-
graphic studies. 18.19  Trace amounts of gingerols 
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Figure II Structures of vanillyl-containing compounds 
discussed in the text. 

with methyl side chains have been described. 19  
Zingerone, a pungent hydrolysis product of 
gineerols and shogaols. 16  is present in many heat 
treated or roasted ginger preparations. 

Recent studies have reported that both ginger 
and its isolated pungent principles exhibit a range 
of pharmacological effects. Suekawa et a/. 20 . 21  
have found (6)-shogaol to have a tri-phasic effect 
on blood pressure in rats in vivo. It was suggested 
that this response was a complex phenomenon 
involving both CNS and peripheral activity. 
Other studies have found ginger principles to 
exhibit cardiac effects, 22 . 23  mutagenicity, 24,25  
gastro-intestinal and analgesic activity, 23  inhibi-
tion of human neutrophil 5-lipoxygenase activ-
ity, 26  and inhibition of ,serotonin-induced hypo-
thermia and diarrhoea. -7  

The gingerols and shogaols bear some similar-
ities to the capsaicinoids in terms of both 
structure and function. All contain the 4- 
methoxy, 3-hydroxy phenyl (vanillyl) moiety, as 
well as a carbonyl-containing alkyl side chain. 
Each group of homologues is responsible for the 
pungent taste of the parent plant. 16  As part of 
our continuing search for thermogenic dietary 
components, we have investigated the actions of 
ginger and its pungent principles in the isolated 
perfused rat hindlimb. 

Methods 
Rat hindlimb perfusions 
Male hooded-Wistar rats (180-200g) were raised 
on a commercial diet containing 21.4% protein, 
4.6% lipid, 68% carbohydrate. and 6% crude 
fibre with added vitamins and minerals (Gibsons, 
Hobart. Australia) together with water ad 
libitum. at a temperature of 21 ± 1°C. The 
surgical and perfusion procedures were per-
formed as described previously. One hindlimb 
was perfused at 25°C with constant flow (4 mit/ 
min) of a modified Krebs-Ringer bicarbonate 
buffer containing 2% dialysed bovine serum 
albumin. 8.3 mm glucose and 1.27 mm calcium 
chloride. The methods of oxygen consumption 
calculation have been previously described? 
Oxygen uptakes and perfusion pressures were 
calculated from steady state values, usually 
attained within 5 min after applying the agent. 
Bovine serum albumin (fraction V. Boehringer 
Mannheim. North Ryde. Australia) was dialysed 
five times against distilled water before use. The 
lactate assay using neutralized perchlorate sam-
ples was based on the method of Gutmann and 
Wahlefeld. -8  Samples for lactate analysis were 
taken at times correspondine to steady state 
oxveen consumption and perfusion pressure 

IV. n = 4. :6 , — shogaol 
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(usually 5 min after applying the agent). NAD +  
(free acid) and lactate dehydrogenase were 
purchased from Boehringer Mannheim. Prazosin 
hydrochloride and D.L.-propranolol hydrochlor-
ide were obtained from Sigma (St Louis, 
Missouri, USA) whilst glyceryl trinitrate (GTN) 
was from G Pohl-Boskamp GmbH (Hohenlock-
stedt, Germany). 

Crude extracts, fractions and pure ginger 
principles were infused as 25% ethanol (AR 
grade) solutions using a glass syringe with teflon 
tubing in a Sage Instruments Syringe pump 
(model 355). Other compounds were infused 
using LKB peristaltic pumps in water or saline 
solutions. Infusion rates were between 10 and 40 
jil/min. Vehicle infusions were shown not to 
perturb basal conditions. Solutions were infused 
into a bubble trap prior to the arterial cannula. 
The perfusate in this trap was subject to 
continual stirring. 

The data are expressed as means ± standard 
errors. Curves were fitted using the Sigma-Plot 
program (Jandel Scientific, Sausalito, California, 
USA). Significance of differences was assessed 
using the unpaired two-sided Student's t test. 

Preparation of extracts and isolation of ginger 
principles 
Crude extracts of both fresh ginger (purchased 
locally) and ground dried ginger (Buderim 

Fresh ginger (bulk) 

1 1. Extraction 

Crude Me0H extract 

1 2. Solvent removal 

Oleoresin 

1 3. Extraction : ether/hexane 1:1 
1  

Solute 	Residue 

1 4. Short column fractionation 
(Si gel, 2:1 ether/hexane) 

n fractions 
monitored by TLC) 5. Hindlimb perfusions 

Active fractions 

1 6. Preparative TLC (Si gel, 5:2 ether/hexane) 
multi-development - 

Discrete bands ;u.v. active) 

7. Recrystallizations 	 8. Preparative HPLC 
(n-hexane( 	 (reverse phase) 

6.gingerol 
	

6.. 8-, 10-gingerols 

Figure 2 Typical extraction, isolation and testing 
procedure for active principles of fresh ginger (ging-
erols). Dried ginger. the source of shogaols. was 
treated in a similar fashion except that an additional 
radial chromatography stage was used between stages 5 
and 6 and step 7 was omitted. 

Ginger. Yandina, Queensland, Australia and 
Superior Rate Corporation. Taipei. Taiwan) 
were prepared by percolation (x4) in methanol 
(HPLC grade Ajax). Fresh ginger was chopped 
and blended with methanol to a slurry prior to 
extraction. Percolation periods were generally 
8-12 h after each fresh addition of methanol. 
Following extraction the methanol was removed 
under vacuum at temperatures no greater than 
30°C. A typical fractionation procedure used to 
isolate principles from fresh ginger is shown in 
Figure 2. 

The fractionation procedure for dry ginger was 
similar to that outlined in Figure 2 except that the 
active material following testing at stage 5 (Rf 
0.65-0.8) was subjected to radial chromato-
graphy using silica gel of layer thickness 4 mm 
(5:2 ether:hexane). The combined active frac-
tions were subjected to preparative TLC (Figure 
2, step 6) and the resultant active band (Rf 
0.75-0.80) was subjected to HPLC (Figure 2, 
step 8) to yield (6)- and (8)-shogaol. 

The most abundant principle isolated from 
fresh ginger, (6)-gingerol, was identified by gas 
chromatography—mass spectroscopy (GC—MS) 
and proton nuclear magnetic resonance spectro-
scopy. Subsequent principles were identified by 
GC—MS. The purity of isolated principles was 
confirmed by TLC, HPLC. GC—MS and direct 
insertion mass spectroscopy. 

Preparative TLC plates were prepared using a 
moving hopper slurry spreader over glass backing 
(Merck silica gel 60G). Short column chromato-
graphy was performed using Fluka silica gel H for 
TLC (dry packed). A Chromatotron apparatus 
(TC Research, Norwich. UK) was used for radial 
chromatography. Plates were prepared using 
Merck silica gel 60 PF254 on a glass backing. 

HPLC was performed using a Waters system. 
incorporating 6000A pumps, a U6K injector, a 
model 440 u.v. absorbance detector, and a 
differential refractometer model R401. A Dyna-
max-60A C18 column (model no. 83-221C. 
21.4 mm id. x 25 cm) was used for preparative 
separations whilst analytical work was carried out 
using a Waters Radial-Pack C18 column 
(8NVC184). The isocratic mobile phase was 
80:20 methanol:water. 

Results 
The perfused hindlimb was initially allowed to 
reach steady state perfusion pressure and venous 
P0-.= The mean arterial and venous PO, values 
were 688 ± 4 mmHg (n = 22) and 413 ± 8 mmHg 
(n = 22) respectively. The mean basal oxygen 
uptake was therefore 6.6 ± 0.2 umol/g/h (n = 
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22). 5  The mean basal perfusion pressure was 26.0 
± 0.6 mmHg, whilst the mean lactate efflux was 
5.4 ± 0.3 u.moUg/h (n = 19). These values are 
similar to those obtained during other studies 
from this laboratory. 3.'8  

Exhaustive methanolic extracts of both fresh 
rhizomes and commercially peeled, dried and 
ground rhizomes were found to cause both an 
increase in oxygen uptake and perfusion pressure 
when infused into the perfused rat hindlimb. 
Hindlimb oxygen uptake was stimulated over the 
final concentration ranges of 0.05-0.15 mg/ml 
(fresh ginger extract) and 0.005-0.01 mg/ml 
(dried ginger extract). Similar extracts of other 
spices including garlic, gin seng, horseradish and 
yellow mustard had no effect when infused at 
final concentrations of up to 25 mg/ml. 

Fractionation of the crude methanolic extracts 
from both fresh and dried ginger resulted in the 
isolation of the principles responsible for the 
observed thermogenic activity (Figure 1, struc-
tures I-V). Figure 3 shows typical oxygen and 
pressure traces produced by a series of increasing 
(6)-shogaol doses. The order of dose infusion did 
not affect the observed dose responses. Figure 4 
illustrates the increases in steady state oxygen 
uptake, perfusion pressure and corresponding 
lactate production of the perfused hindlimb as a 
function of (6)-, (8)-and (10)-gingerol. and 
(6)-shogaol concentration. Increasing alkyl chain 
length leads to decreased potency. although 
maximal stimulated oxygen consumption appears 
to increase. In addition, Figure 4 shows the effect 
of alkyl chain dehydration on the potency and 
maximal oxygen stimulation of (6)-gingerol. the 
major principle of fresh ginger, by comparison 
with responses obtained using (6)-shogaol, the 
major principle of dried ginger. Experimental 
results using (8)-shogaol (data not shown) found 
the half-maximal dose to be around 20 um, 
indicating that the molar potency relationship 

• ■•■ 5.! obi 7.,111 

1' 	30C - 

: a 

20 	,0 60 SC ' :C , 20 

Th-re (min) 

Figure 3 	Typical dose response tracing of changes in 
venous PO :  and perfusion pressure in perfused rat 
hindlimb preparations subjected to increasing concen-
trations of (6)-shogaol (10-20 I.LM. n = 5). 

:050 ',u.r.4) 

Figure 4 Dose response curves for changes in oxygen 
consumption, perfusion pressure and lactate efflux in 
response to (6)-gingerol (O. n = 7), (6)-shogaol (E, n 
= 5), (8)-gingerol (•. n = 3) and (10)-gingerol • n = 
3). Basal VO, was 6.6 ± 0.2 umoUg/h (n = 22) and 
basal perfusion pressure was 26.0 ± 0.6 mmHg (n = 
22). Basal lactate efflux rate was 5.4 ± 0.3 umolielh (n 
= 19). Each value is the mean ± s.e. Where error bars 
are not visible they are within the symbol. 

between the shoeaol homologues is similar to 
that existing between the gingerol homologues. 

Increasing the doses of all the ginger principles 
beyond the levels shown in Figure 4 led to a 
progressive inhibition of steady state oxygen 
consumption (Figure 5). In the extreme case 
(Figure 5. 45 um (6)-gingerol). oxygen consump-
tion was inhibited to sub-basal levels following 
initial transient stimulation. Perfusion pressure 
continued to increase towards a plateau. Remov-
al of ginger principles during high dose treatment 
resulted in large dose-dependent transient in-
creases in oxygen consumption (Figure 5). whilst 
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Figure 5 Typical dose response tracing of changes in 
venous P02  and perfusion pressure in perfused rat 
hindlimb preparations subjected to increasing high 
concentrations of (6)-gingerol (9-45 tad). 

Figure 7 Typical tracing of the effect of glyceryl 
trinitrate (Gm, 51.1..+4) on changes in venous PO2  and 
perfusion pressure in perfused rat hindlimb prepara-
tions stimulated with 13.2 tat (6)-shogaol. 
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perfusion pressure (Figure 5) and lactate produc-
tion levels (data not shown) returned to basal. 

A half-maximal dose of (6)-shogaol (13.2 pi) 
was chosen to investigate the effects of specific 
nitro-vasodilation. a blockade. and 13 blockade 
on the stimulated hindlimb (Figure 6). Neither 
prazosin (a blocker) nor propranolol blocker) 
inhibited the (6)-shogaol induced response. The 
slight potentiation effects induced by each 
antagonist were not statistically significant. GTN 
significantly (P < 0.05) inhibited the increases in 
oxygen uptake (56%) and perfusion pressure 
(72%) induced by (6)-shogaol (Figure 6). Typical 
oxygen and pressure traces shown in Figure 7 
illustrate the effect of direct addition of 5 i.ot 
GTN to a half-maximal dose of (6)-shogaol. 

Since the gingerols. shogaols and capsaicinoids 

200 — 

150 — 

IOC — 

SC 

0 
GTN 

Figure o Effects of propranolol (PROP, 5 um). 
prazosin (PRAZ. 5P4). and glyceryl trinitrate (GTN, 
5 um) on changes in venous P0 2  (C1) and perfusion 
pressure (0) in perfused rat hindlimb preparations 
stimulated with 13.2 pi (61-shogaol. Results are shown 
as the mean percentages (±s.e.) of the responses 
relative to those using (6)-shogaol alone. Statistically 
significant effects (P < 0.05). 

all bear the 4-methoxy. 3-hydroxy phenyl moiety. 
experiments were conducted to evaluate the 
thermogenic potential of other compounds bear-
ing this vanillyl group. The structures selected 
(Figure 1, VII— IX) were vanillin. curcumin (from 
turmeric) and eugenol (cloves). Infusion of each 
over the ranee 0-10 mg/ml had no effect on 
perfusion pressure nor oxygen consumption. 

Discussion 

In general. perfused hindlimb tissue has proved 
to be responsive to thermogenic agents and 
hormones.>-8 . 29-34  For the perfused rat hindlimb 
the use of a non-erythrocyte perfusate at 25°C 4  
is comparable to constant perfusion with erythro-
cytes at 37°C 30. = -. "3  for assessing noradrenaline-
induced oxygen uptake and has allowed the 
identification of vasopressin.' angiotensin 5  and 
the capsaicinoids as potential thermoeenic sub-
stances. 

In the present study. the gineerols and 
shogaols were found to stimulate the hindlimb in 
a manner similar to that reported for the 
capsaicinoids. 3  The observed responses were not 
related to the order of dose infusion (data not 
shown). Although the ginger principles do not 
possess an acylamide linkaee, they bear two 
major structural similarities to the capsaicinoids. 
a 4-hydroxy. 3-methoxy phenyl (vanillyl) 'head' 
and a carbonyl-containing alkyl 'tail'. The failure 
of eugenol and vanillin. structures possessing 
only the vanillyl moiety (Figure I). to induce a 
response in the perfused hindlimb suggests that 
both features are necessary for thermogenic 
activity. Curcumin. containing two vanillyl 
groups with a bridging, rather than a tailing alkyl 
section, was also thermogenically inactive. Szolc-
sanyi and Janscti-Gabori's investigated the effect 
of altering the aromatic ring substituents. as well 
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as the length and nature of the alkyl chain on 
relative pungency of a range of vanillyl-derived 
compounds. The aromatic substituents, particu-
larly the hydroxyl group. were of critical 
importance. whilst the chain length affected 
pungency in a more subtle manner. The overall 
trend was that relative pungency increased with 
chain length to a maximum at around 8-10 
carbon atoms. Subsequent increases in chain 
length led to progressive pungency decreases. In 
the present study, the latter trend was expressed 
by the gingerol homologues with (6)-gingerol (10 
carbon chain) having the highest molar potency. 
Maximal oxygen uptake, however, increased 
with alkyl chain length (Figure 4). (4)-Gingerol 
(8 carbon chain) may have still greater molar 
potency, but its effect is of little consequence to 
the overall activity of ginger due to its trace 
presence. 18 

Although the reported ratios of the principles 
in ginger are somewhat variable, the (6)- 
homologue is consistently found to be the major 
compound. Connell and Sutherland 16  found the 
(6)-, (8)-, (10)-gingerol ratio to be 53:17:30, 
whilst Chen et al.' reported the ratio to be 
119:17:24. The (6)-gingerol content in ginger 
varies as a function of growth time, location and 
storage period, a typical value being 1.5% of dry 
weight. 36  

Dehydration of the alkyl chain (conversion of 
gingerol to shogaol) resulted in a small decrease 
in molar potency whilst maximal oxygen uptake 
was not significantly affected. Relatively few 
studies have directly compared the magnitude of 
the physiological effects induced by gingerols 
with those induced by shogaols. Suekawa et al. 
found (6)-gingerol to have a lower LD 50  in rats, 
yet (6)-shogaol was reported to be more active on 
both the CNS and the digestive system. 23  

It has previously been demonstrated that 
noradrenaline-induced oxygen uptake and perfu-
sion pressure increases in the rat hindlimb are 
blocked both by phentolamine and high dose 
propranoloI. 37  In the present study the effects of 
(6)-shogaol were not significantly altered by 
either of these antagonists (Figure 6). suggesting 
that the ginger principles were not acting directly 
via adrenergic receptors. nor by secondary 
catecholamine release. This latter phenomenon 
has been reported to be activated in vivo by a 
number of pungent principles including cap-
saicin38  and, to a lesser extent. zingerone -. 39  

In the present study, GTN (a specific nitro-
vasodilator) was used to inhibit both the oxygen 
and pressure responses to (6)-shogaol. This 
implies that the mechanism of action is closely 
related to the vascular system. Szallasi and 

Blumberg' have proposed the existence of a 
putative 'vanilloid' receptor following studies 
using cultured nerve cells. The possibility of the 
presence of such a receptor on vascular smooth 
muscle cannot be overlooked since work from 
this laboratory has provided strong evidence of a 
link between the vascular system and hindlimb 
thermogenesis. Increases in perfusion pressure 
and oxygen uptake induced by vasopressin, 
angiotensin II and noradrenaline were inhibited 
by sodium nitroprusside, 5  another specific nitro-
vasodilator. In addition, oxygen consumption by 
electrically stimulated skeletal muscle was found 
to be additive to that associated with vasocon-
striction, 6  whilst variable flow experiments 
showed that all flow-induced increases in oxygen 
uptake were enhanced by noradrenaline infusion 
but blocked by sodium nitroprusside. 7  

Previous studies from this laboratory have 
reported that the vasoconstrictors norephe-
drine, 42  vasopressin, angiotensin H and methox-
amine (unpublished results) increase lactate 
release from perfused hindlimb preparations in 
association with increases in oxygen consumption 
and perfusion pressure. It was concluded that the 
lactate was released from working vascular 
smooth muscle during active vasoconstriction, 
and was not associated with hypoxia. 7 • 42-4 ' The 
present study has found that ginger principles 
induce similar dose-related lactate release con-
comitant with vasoconstriction and oxygen up-
take. If such lactate production occurs in vivo, it 
could be part of a significant long-loop thermo-
genic mechanism due to the high energy phos-
phates required for the resynthesis of lactate 
back to glucose in the liver (Cori cycle). In the 
case of (6)-gingerol, for example. the mean 
increase in lactate release associated with the 
mean maximal VO, is 4.7 umol/g/h. This rate of 
production would require an increase of 
2.4 umol/eJh in oxygen consumption for full 
conversion to glucose in the liver. 

Experiments using both (6)-gingerol and (6)- 
shogaol found that there was no increase in 
lactate release associated with the large transient 
increases in oxygen consumption following re-
moval of high doses of ginger principles (data not 
shown). This indicated that these transient 
periods of oxygen consumption were not associ-
ated with the reperfusion of hypoxic tissue. 

Studies from this laboratory have found that 
serotonin. an  endogenous vasoconstrictor. in-
hibited perfused hindlimb oxygen uptake in a 
dose-dependent manner, but stimulated isolated 
mesenteric artery oxygen consumption. 43  It was 
proposed that serotonin-induced vascular shunt-
ing was masking vascular thermogenesis. 43  In the 
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present study high doses of ginger principles. 
after initial stimulation, led to sub-basal oxygen 
consumption (Figure 5). regardless of the order 
of dose infusion (data not shown). This pheno-
menon may also be due to vascular shunting. 
However, unlike serotonin. the removal of high 
doses of ginger principles is followed by pro-
nounced (but temporary) periods of low venous 
P02  (i.e. increased oxygen consumption) not 
associated with vasoconstriction (Figure 5). 

Chudapongse and Janthasoot 44  studied the 
effects of the analogous principle capsaicin on the 
energy-linked functions of isolated rat liver 
mitochondria. At lower doses with glutamate as 
substrate, capsaicin inhibited oxidative phos-
phorylation. At higher doses with succinate as 
substrate. capsaicin uncoupled mitochondrial 
respiration. High doses of capsaicinoids and 
ginger principles may be inducing similar effects 
within the hindlimb. Experiments performed in 
this laboratory have shown that hindlimb oxygen 
consumption induced by the known metabolic 
uncoupler sodium azide was inhibited by sero-
tonin. 45  High doses of ginger principles may have 
caused perfusate to be shunted away from 
uncoupled tissue associated with microvascula-
ture, thereby masking net oxygen uptake by the 
hindlimb as a whole. Removal of the shunting 
might allow the oxygen-depleted perfusate to 
depart the microvascular beds, resulting in the 
observed apparent increase in oxygen uptake. 
Testing these hypotheses will require further 
experimentation. 

Henry and Piggott46  have examined the effect 
of consuming a ginger sauce (containing unspeci-
fied amounts of ginger principles) with a meal on 
human subjects and found that metabolic rate 
was not significantly enhanced relative to sub-
jects who consumed a control meal. Although 
little is known about the passage of ginger 
principles across the gut wall, the gingerol 
analogues, capsaicin and dihydrocapsaicin, are 
rapidly absorbed from the rat stomach and small 
intestine, both in vivo and in vitro.' Results of 
pharmacokinetic studies' s  have reported the half 
life of (6)-gingerol in rat plasma to be relatively 
fast (7.2 min). The hindlimb perfusion results of 
this study found that the final concentration 
range of (6)-aingerol required for thermogenic 
responses was relatively narrow (7-15 jim). Con-
centrations below this range had no effect, whilst 
concentrations above this range gave either a 
reduced effect, or a negative thermogenic effect 
(Figure 5). In comparison, the concentration 
range of noradrenaline required to increase 
oxygen consumption in this system is approxi-
mately 1-100 rim.' Thus the ginger dose used by 

Henry and Piggott 46  may have resulted in final in 
vivo concentrations outside any thermogenic 
range. 

If zinger principles are subsequently shown to 
have whole body thermogenic effects, the mech-
anism of action will be a moot point. The pressor 
response to (6)-shogaol in the whole rat body has 
been related to both central and autonomic 

. 2 23 (sympathetic) nervous system activity.' O 1.  

Similarly, postprandial therrnogenesis in dogs has 
been decisively linked to autonomic activation 
due to oropharangeal sensory inputs. 49 ''0  In the 
rat, similar sensory input increased brown 
adipose tissue thermogenesis except when sym-
pathetic innervation was deactivated. 51  Thus any 
thermogenic effect of ginger principles in vivo 
may be attributable to central or autonomic 
nervous system activity. or a combination of 
both. 

The present study. however, has shown that 
the perfused hindlimb thermogenic responses 
were intimately involved with the vasculature. 
and were not significantly altered by a and p 
adrenergic receptor blockade. These findings 
therefore warrant future investigations of the 
actions of ginger and its principles in alternative 
vascular beds and ultimately in vivo with rats and 
humans in order to assess the potential of ginger 
as a dietary anti-obesity agent. 
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Summary 

The naturally occurring capsaicin-like molecules, resiniferatoxin (RTX, Euphorbia 
spp.) and piperine (Piper nigrum), each stimulated oxygen uptake (V0 2) in 
association with increased vascular resistance in a concentration-dependent manner 
when infused into the perfused rat hindlimb. 5 p.M glyceryl trinitrate (GTN, a nitro-
vasodilator) significantly blocked the oxygen and pressure responses to both RTX 
and piperine, indicating a close relationship between changes in Vo2  and the 
vasoconstriction. Concentrations greater than those required for maximal Vo l  
resulted in an inhibition of Va.,, although perfusion pressure continued to increase. 
Time course studies showed that both RTX and piperine at high doses resulted in a 
tri-phasic response. An initial phase of transient V0 2  stimulation was followed by a 
second phase of inhibition. A third phase involving an often larger but transient 
stimulation of Vo2  followed removal of the agents and continued after the pressure 
returned to basal. The actions of RTX and piperine were similar to those of other 
active capsaicin-like molecules tested previously in this system, including 
capsaicinoids (Capsicum spp.), gingerols (Zingiber officinale), and shogaols 
(Zingiber officinale). RTX was the most potent, and piperine the least potent of this 
series. Although receptor involvement has yet to be unequivocally established, the 
data are consistent with the presence of a functional capsaicin-like (vanilloid) 
receptor in the vasculature of the rat hindlimb that mediates vasoconstriction and 
oxygen uptake. These findings may have implications for the future development of 
thermogenic agents. 

Key Words: resiniferatoxin, piperine, thermogenesis, capsaicin - like vasoconstriction 

Resiniferatoxin (RTX) and piperine belong to a family of capsaicin-like compounds which have 
attracted escalating interest in recent years (1-5). Such compounds are sometimes known as 
'vanilloids' as they are distinguished by the presence of a group based on the structure of vanillin 
(Fig. 1, I). Capsaicin (Fig. 1, II). the pungent principle of members of the genus Capsicum (chillies 
and capsicums). has been the subject of the majority of investigations involving this class of 
molecules. Recent work with capsaicin-like molecules has increasingly focused on the 
neuropharmacological aspects of their activity (1-3). 

Correspondence to Eric Q. Colquhoun. 
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RTX (Fig. 1, V) is a diterpene present in the latex of some members of the genus Euphorbia (E. 
resinifera, E. poissonii and E. unispina) (6.7). The compound was first isolated after plant extracts 
were found to have unusually high activity in a mouse ear irritant assay (8). RTX has structural 
similarities to the phorbol esters, a group of compounds which act chiefly via their ability to 
stimulate protein kinase C (9). However, the mechanism of RTX-induced irritation has subsequently 
been shown to differ from that of the phorbol esters, such as phorbol 12-myristate 13-acetate (PMA) 
(10). Structurally, RTX is distinguished by the presence of a 4-hydroxy 3-methoxy phenyl acetate 
moiety in the 20 position. This homo vanillyl group has been shown to be essential for the potent, 
yet transient (6), irritant activity exhibited by RTX (11,12). A number of studies have reported that 
RTX acts as an ultra potent capsaicin analogue (reviewed in 1 and 2), its potency generally ranging 
from 10 to 10,000 times that of capsaicin for responses such as induced hypothermia, neurogenic 
inflammation, and stimulation (followed by desensitisation) of specific sub populations of sensory 
neurons. 

Piperine (Fig. 1, IV) is best known as the pungent principle of black pepper (Piper nigrum). Both 
piperine and RTX have been found to stimulate some capsaicin-sensitive afferent neurons (13-15). 
In a relatively wide spectrum of pharmacological activity, other noteworthy actions of piperine 
include the stimulation of serotonin synthesis in the rat brain (16), inhibition of smooth muscle nerve 
stimulation (17), anticonvulsant activity (18), and modulation of glucuronidation activity (19). 

Previous studies using neural tissue (reviewed in 2) have reported cross-tolerance of RTX and 
capsaicin, as well as piperine and capsaicin (20). Such findings are consistent with a common 
mechanism of action. In addition, receptor-binding experiments using [41]-RTX have provided 
direct evidence of specific binding by sensory ganglion membranes not associated with protein 
kinase C (21). Furthermore, alternative capsaicin-like compounds have been shown to inhibit the 
binding of [41]-RTX (see review 2). The putative vanilloid receptor, found on specific subsets of 
afferent neurons, is thought to be a ligand-gated non-specific cation channel (22). 

In this laboratory, we have shown that capsaicinoids (23) and also the ginger (Zingiber officinale) 
capsaicin-like principles: gingerols (24, Fig. 1) and shogaols (24). stimulate oxygen consumption 
(V0,) in association with vasoconstriction in the isolated perfused rat hindlimb. The effects were 
similar to, but of less magnitude, than those mediated by infusion of catecholamines, angiotensin (I-
III) or vasopressin in the same system (25). The responses to the capsaicin-like principles were not 
due to stimulation of adrenoreceptors, since full doses of prazosin (a 1  blocker) and propranolol 
(131/132 blocker) had no inhibitory actions (23,24). However, the responses were significantly 
impeded by nitro-vasodilators (23,24). These findings highlighted the possibility of direct stimulus 
of vascular smooth muscle via vanilloid receptors on the smooth muscle itself, or alternatively via 
the release of non-adrenergic vasoactive agents by autonomic neurons embedded in the vessel walls. 

In the present study, we have extended our investigation of thermoeenesis mediated by capsaicin-
like agents by examining the effects of both RTX and piperine in the perfused rat hindlimb model. 

Methods 

Male hooded-Wistar rats (180-200 g) were raised on a commercial diet (Gibsons. Hobart. Australia) 
containing 21.4% protein, 4.6% lipid. 68% carbohydrate, and 6% crude fibre with added vitamins 
and minerals together with water ad libitum. The environmental temperature was maintained at 21 ± 
1°C. The surgical and perfusion procedures were performed as described previously (25). One 
hindlimb was perfused (25°C) at constant flow (4.0 ml/min) with a modified Krebs-Ringer 
bicarbonate buffer containing 2% dial),sed bovine serum albumin. 8.3 ml\il glucose. and 1.27 mM 
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calcium chloride. The perfusion medium was continuously gassed with carbogen (02:CO3 95:5). 
The methods for calculating V02  have been previously described (25). Viability of the hindlimb 
preparation as used in this study, has also been documented previously (25-28). 

H,C0 

HO 
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CH, 
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0 

 

 

IV. PU'EltINE 

V. RES INIFERATOXLN 

Fig. I. 

Structures of vanillin and the capsaicin-like (vanilloid) agents discussed in the text. 

Bovine serum albumin (fraction V Boehringer Mannheim, North Ryde, Australia) was dialysed five 
times against distilled water before use. Glyceryl trinitrate (GTN) was purchased from G Pohl-
Boskamp GmbH & Co. (Hohenlockstedt. Germany), piperine was purchased from Sigma (St. Louis, 
Missouri, USA), whilst RTX was a generous gift from Dr. D.J. de Vries, Australian Institute of 
Marine Science, Townsville, Australia. 

Agents were infused using glass syringes with teflon tubing in a Sage Instruments syringe pump 
(model 355). Ethan°lic piperine solutions were infused at 5 i.tl/min. RTX, in 20% ethanol solutions, 
was infused at rates between 10 pi/min and 40 1.11/min. Stock ethanolic GIN solutions were diluted 
with saline and infused at 5 u.1/min. Vehicle infusions had no effect on basal conditions. Solutions 
were infused into a stirred bubble trap immediately prior to the arterial cannula. 

The data are expressed as means ± standard errors. Regression curves were tined using the Sigma-
Plot program (Jandel Scientific, Sausalito, California, USA). Significance of differences was 
assessed using the unpaired two-sided Student's t-test. 

Results 

The isolated perfused rat hindlimb was initially allowed to reach steady state perfusion pressure and 
venous p02. The mean arterial and venous p02 values were 666 ± 11 mmHg (n=24) and 375 ± 19 
mmHg (n=24) respectively. The mean basal VO, was therefore 7.1 ± 0.4 pimol/g/h (n=24). The 
mean basal perfusion pressure was 23.6 ± 0.9 mmHg (n=24). These values are consistent with those 
observed during other studies performed in this laboratory (23-28). 
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Figure 2 shows typical perfusion tracings of the effects of Voi-stimulatory doses of RTX (1 nNf) 
and piperine (75 4M). The stimulation of perfusion pressure and Voi was rapid in both cases with 
steady state conditions being attained within 5 minutes of commencing infusion of each agent. 
Similarly, basal conditions were re-established rapidly, within 10 minutes of agent removal. As 
noted previously for other capsaicin-like molecules (23,24), blockade of a l  and I3 1 /13/ 
adrenoreceptors using 5 IAN1 prazosin and 5 I.LNI propranolol, respectively, had no inhibitory effects 
on the increased VO, caused by either RTX or piperine (data not shown). 

0 	10 	20 	30 	40 
	

50 	60 

time (min) 

Fig. 2. 

Typical time courses resulting from the infusion of RTX (1 niNI) or piperine (75 P/1). 
Tracings for venous PO, and perfusion pressure (P) are shown. 

The effects of RTX and piperine on steady state VO, and perfusion pressure as a function of 
concentration are shown in Figure 3. Dose curves for capsaicin (23) and [6]-gingerol (24) are also 
included. RTX was clearly the most potent, and piperine the least potent, agent used in this study. 
The molar potency of RTX was approximately 500-fold that of capsaicin, which in turn was 150- 
fold more potent than piperine (F12. 3). 

The effects of glyceryl trinitrate (GTN, a nitro-vasodilator) on stimulation of oxygen uptake and 
perfusion pressure at steady state are shown using time course plots (all n=3) in Figure 4. Values 
immediately prior to GIN infusion were significantly different (P<0.05) from those at the end of the 
GTN infusion period in which VOi -stimulatory concentrations of either RTX or piperine were used. 
Higher concentrations of GTN resulted in no further inhibitory effects (data not shown). 

Typical traces of the tri-phasic oxygen responses of the vanilloids at high concentrations are shown 
in Figure 5. Both piperine (150 uNI) and RTX (5 nNI) caused inhibition of VO, to sub-basal levels 
following initial transient stimulation. Removal of either agent during high concentration infusions 
resulted in large transient increases in Vo-, whilst perfusion pressure returned to basal (Fig. 5).The 
magnitude of the inhibition and of the final transient Voi were concentration-dependent (data not 
shown) in a fashion similar to that observed for other capsaicin-like molecules (24). 
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Fig. 3. 

Dose response curves for changes in oxygen uptake (V0.,) and perfusion pressure in 
response to RTX (0, n=8), capsaicin (•, n=5-13, data taken from 23), (6)-gingerol (A, 
n=7, data taken from 24), and piperine n=8). The basal Vol  was 7.1 ± 0.4 4mol/g/h 
(n=24) and the basal perfusion pressure was 23.6 ± 0.9 mmHg (n=24). Each value 
represents the mean ± S.E. Where error bars are not visible they are within the symbol. 
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Fig. 4 
Time course plots showing the effect of 5 1.LNI . GTN on changes in oxygen uptake (A 
Voi) and perfusion pressure (AP) induced by V02 -stimulatory concentrations of RTX 
(D, 1 ruM. n=3) and piperine (0, 75 p.M. n=3). 
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Fig. 5. 

Typical time course tracings for the tri-phasic changes in venous PO, and perfusion 
pressure (P) induced by supra-maximal concentrations of RTX (5 niM) and piperine (150 
p.N1. PIP). 

The effects of a series of prolonged infusions with V0,-stimulatory concentrations of piperine are 
shown in Figure 6. There were no apparent changes in magnitude of the stimulated Vo l  nor the 
increase in perfusion pressure throughout the series of infusions. 

cn 

time (min) 

Fig. 6. 

Time course tracings showing the effects of a series of prolonged infusions of piperine 
(751.1M) on venous p01 and perfusion pressure. 
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Discussion 

Both RTX and piperine stimulated the hindlimb to consume oxygen and the vascular bed to constrict 
in a manner similar to that of other active capsaicin-like compounds in this system (23,24). 
However, the molar potencies of RTX and piperine were vastly different. RTX, containing a 
classical vanillyl (3-methoxy 4-hydroxy phenyl) group (Fig. 1, V), was around 500-fold more potent 
than capsaicin, a result consistent with other studies which report RTX to be an ultra potent 
capsaicin analogue (reviewed in 2). Piperine, on the other hand, contains a vanillyl-like moiety in 
which the substituent groups form a secondary ring, giving a benzodioxolane fused ring system (Fig. 
1, IV). The lower potency of piperine (approximately 150-fold less potent than capsaicin) may 
reflect the altered structure of this group. 

High concentrations of both agents resulted in a steady-state inhibition of Vol associated with 
increased perfusion pressure. We have previously found that the endogenous vasoconstrictors 
serotonin (29) and high concentrations of norepinephrine (30) also cause inhibited V0. 7  with elevated 
perfusion pressure in the same perfusion model. It has been proposed that these effects are the result 
of a redistribution of vascular flow. Studies are currently in progress to elucidate the mechanism by 
which capsaicin-like agents cause V01 inhibition. 

Concurrent infusion of GTN significantly blocked the VO, and pressure increases induced by low 
doses of both RTX and piperine, indicating that the oxygen uptake is associated with the 
vasoconstriction. This result is consistent with previous work in this laboratory which has 
repeatedly demonstrated a relationship between the vascular system and increases in hindlimb 
(25-28). 

RTX and capsaicin are known to stimulate a specific group of primary afferent neurons to release the 
vasodilatory neuropeptides substance P and calcitonin gene-related peptide (CGRP) from their 
peripheral endings (31). However, in the perfused rat hindlimb active capsaicin-like compounds 
cause net vasoconstriction. Other studies have found capsaicin to have either contractile or relaxing 
endothelium-independent effects on vascular smooth muscle (32,33). The likely explanation is that 
constriction and relaxation are both components of acute in vitro capsaicin treatment (33) Chronic 
pre treatment with capsaicin in vivo (thereby ablating capsaicin-sensitive sensory neurons) has 
resulted in isolated guinea pig vessels constricting rather than dilating when subsequently challenged 
with capsaicin in vitro (33). This suggested that contraction was the result of a direct action on 
vascular smooth muscle, whilst relaxation was due to the release of neuropeptides (32). The 
stimulatory responses induced by RTX and piperine in the present study are not subject to changes 
in magnitude following prolonged stimulations nor by repeated stimulations (Fig. 6). Such changes 
might be expected if afferent nerve fibres in the vessel walls were being subject to progressive 
depletion of vasodilatory neuropeptides. 

Although the participation of receptors has yet to be unequivocally established, the relative potencies 
of the capsaicin-like compounds in the perfused rat hindlimb are consistent with those reported in 
neuropharrnacological studies (reviewed in 2) where direct evidence of a vanilloid receptor has been 
obtained. Furthermore, the rapid kinetics of the responses (Fig. 2) is consistent with a receptor-
mediated mechanism in the hindlimb vasculature. Previous work using the perfused rat hindlimb 
model has shown that noradrenaline-induced increases in oxygen uptake and perfusion pressure are 
blocked by adrenoreceptor antagonists (34). The use of specific a 1  (prazosin) and 1303, 
(propranolol) adrenoreceptor antagonists did not result in any diminution of the responses to the 
agents in this study (data not shown) nor in previous work with other capsaicin-like molecules 
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(23,24). These findings suggest that they were not acting directly on adrenoreceptors, nor were the 
actions due to secondary release of catecholamines. 

Despite the thermogenic activity of capsaicin-like compounds in vitro, many such agents are 
reported to cause hypothermia in vivo in a variety of species (reviewed in 35). The hypothermic 
response is thought to be the due to stimulation of the warm-sensors of the preoptic/anterior 
hypothalamic area, thus impairing body temperature regulation (reviewed in 35). However, 
desensitization of these warm-sensors is readily achieved; a single subcutaneous dose of capsaicin 
(50-75mg/kg) in the rat results in the absence of capsaicin-induced hypothermia for several months. 
Furthermore, such desensitization results in pyrexia at room temperature and long periods of 
hyperthennia at high ambient temperatures. In addition, desensitized rats showed a pyrogen-induced 
increase in core temperature associated with increased V02 and vasoconstriction. Attempts to 
synthesize analogs with antinociceptive but not hypothermic properties have met with some success 
(36), suggesting that hypothermia need not necessarily be a feature of all active capsaicin analogs. 

Studies in the human in the absence of any prior desensitization procedures have found that meals 
containing capsaicin caused elevated body temperature during the first sleep cycle (37) and an 
increase in metabolic rate relative to a non-spicy control meal (38). 

The notion of a vanilloid-sensitive thermogenic mechanism in the rat hindlimb raises the intriguing 
possibility of developing capsaicin analogs without hypothermic actions as anti-obesity agents in 
vivo. Such selectivity may be possible given that the afore-mentioned hypothermic effects are both 
readily desensitized and separable from other actions by means of structural manipulations. 
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Summary 

Perfused, but neither incubated nor perifused, hindlimb muscle responds to a variety of 
vasomodulators, including noradrenaline, by rapidly altering the rate of oxygen consumption 
and metabolite release. The vascular tissue of muscle is identified as highly energetic and may 
be the major contributor to hindlimb thermogenesis. In addition, vasomodulators may control 
the delivery of nutrients to specialized skeletal muscle mitochondria by altering the 
microvascular distribution of flow. We propose that resting skeletal muscle contributes to 
whole body thermoaenesis of endotherrns and that it is controlled by total, as well as zonal 
(within muscle), nutrient delivery. 

Introduction  
Endothermic animals invoke heat producing mechanisms often referred to as facultative 

thermogenesis, in response to either cold or (over)eating. The mechanisms appear separate 
from shivering and involve, in many cases, an increase in sympathoadrenal activity. A starting 
point for unravelling the processes of facultative thermogenesis has been the observation that 
noradrenaline when injected in vivo, rapidly (within seconds or minutes) stimulates whole body 
oxygen uptake. In rats, oxygen uptake (and therefore thermogenesis) increases by up to 100 
per cent when noradrenaline is injected [1]. In addition it has been assumed that the effect of 
noradrenaline in vivo can be effectively mimicked in vitro by exposing individual tissues to 
noradrenaline. For brown adipose tissue this is certainly the case and all preparations (tissue 
fragments, isolated cells and slices) respond markedly to the addition of catecholamine with 
values for oxygen uptake and heat production consistent with estimates for this tissue in vivo 

[2]. Other tissues such as liver [3] also respond positively to noradrenaline but in this case the 
hormone has a general effect to increase a diverse range of metabolic interconversions. 
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Skeletal muscle has been an enigma to researchers who study thermogenesis. It constitutes 
over 40 per cent of the body's mass and when working has the potential to be markedly 
thermogenic. Unlike brown adipose tissue, isolated muscles when incubated or perifused in 
vitro with noradrenaline do not respond by showing an increase in oxygen uptake or heat flux 
0,51 However several research groups have reported that infused sympathomimetic 
substances increased oxygen uptake in non-contracting skeletal muscle receiving its nutrient 
supply by the normal vascular route. These groups included Lundholm and Svedmar in 1965; 
Sutherland and Robison in 1966; and Schmitt, Meunier, Rochas, and Chatonnet in 1973 
Mejsnar and Jansky in 1973;.Grubb and Folk in 1977; Chapler, StainsbY, and Gladden in 1980; 
Richter, Rudennan, and Galbo in 1982 and co-ti, Thibault and Vallieres in 1985 (cited in Ref. 6, 
or references therein). For the perfused rat hindlimb the effects produced by noradrenaline were 
marked, showing rapid increases of 39 to 111% over basal oxygen uptake. Calculations from 
these figures indicate that oxygen uptake from the skeletal muscle would be at least 40% of the 
total oxygen uptake that could be contributed by brown fat. In addition data of Foster and 
Frydman in 1979 (cited in Ref. 6), which focused particular attention in the whole animal on 
BAT,also indicated a substantial role for skeletal muscle especially in warm-adapted and normal 
rats. These animals showed a 30% increase in skeletal muscle blood flow and a 60% increase in 
muscle oxygen consumption after noradrenaline administration, suggesting that muscle could 
produce an equal amount of heat to BAT in the whole animal, even though oxygen consumption 
was much less per gram of tissue. 

Since the effects of noradrenaline and adrenaline on oxygen uptake by perfused rat hindlimb 
were mediated by cc-adrenergic receptor mechanisms, and were associated with increased 
perfusion pressure (Grubb and Folk 1977; Richter et al. 1982a; Richter etal. 1982b; C6te etal. 
1985, cited in Ref 6, or references therein) it appeared possible that the increased oxygen 
uptake was controlled by the vascular system. Thus this communication presents our findings 
on the effects of various vasomodulators on perfUsed hindlimb, not only from the rat but from 
the chicken and a small Australian marsupial Bettongia gaimardi (bettong). 

Materials and Methods  
The rat hindlimb was perfused as described previously (see Ref 6 and references therein). 

The lower hindlimb (16.8 z. 0.6 g) of 3-8 week old chickens (598 ± 26g body wt) was perfused 
via the popliteal artery using conditions identical to that used for the rat. Similar procedures 
were used for the perfusion of the lower hindlimb (24.7 ± 2.8 g) of bettongs (1,130 ± 0.13 g 
body wt). For each preparation, perfusion pressure and venous PO2 were continuously 
monitored using in-line arterial pressure transducer and venous 02 electrode, respectively. 
Details for stimulation of the lower calf muscles in the perfused rat hindlimb are given elsewhere 
[7]. Venous samples were collected for lactate and glycerol assays. Lactate was determined 



Figure 1. 	a-Adrenergic 
stimulation 	of glycerol 
production by the perfused 
rat hindlimb. Perfusions 
were conducted at 25°C 
and contained 20 pM DL-
propranolol. 

z 

o. 

Resting Muscle: A source of thennogenesis 	 317 

Table 1. Vasomodulator effects on perfused rat hindlimba 

Vasoconstrictors 
Type Ab 	: . Type Be 

Parameter: 
Perfusion pressure 
Oxygen uptake 
Lactate efflux 
Glycerol efflux 
Urate efflux 
Uracil efflux 
Insulin mediated glucose uptake 	 n.t.d 	 4. 
Skeletal muscle contraction 	 n.t. d 	 4. 
Perfusate distribution volume 	 4. 

Effect of the following on vasoconstriction 
and associated changes: 

Removal of external Ca 2+ 	 Be 	 NBe 
Replacement of 02 by N2 	 B 	 NB 
Addition of N3', CN 	 B 	 NB 
Addition of vasodilators 	 Bf 	 Bg 

a. Hindlimb perfused at 25°C with constant flow. Data is from references 6-10 or references 
therein, or is unpublished. 

b. Includes a adrenergic agonists:  noradrenaline, adrenaline, phenylephrine, methoxamine, 
amidephrine, norephedrine, ephedrine; peptides:  vasopressin, angiotensins I, II, III, 
oxytocin, neuropeptide Y. "vanilloid"  .agonists: capsaicin, dihydrocapsaicin, gingerols, 
shogaols, piperine, resiniferatoxin. Also low frequency sympathetic nerve stimulation. 

c. Includes serotonin 	pM), noradrenaline at high doses (1 1.IM), high dose vanilloids 
and high frequency sympathetic nerve stimulation. 

d. Not tested. 
e. B = blocked; NB = not blocked. 
f. Includes nitroprusside, nifedipine, isoprenaline, adenosine, AMP, ADP, ATP and UT?. 
g. Includes nitroprusside, carbamyl choline and isoprenaline (partial blockade). 
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spectrophotometrically and glycerol spectrofluorometrically using standard enzymatic 
procedures. 

Results and Discussion 
Table 1 summarizes our findings and shows that the perfused rat hindlimb responds to 

many different vasoconstrictors that fall into two categories which we have called Type A and 
B. Type A vasoconstrictors stimulate a marked increase in oxygen consumption simultaneously 
with a rise in perfusion pressure in the rat hindlimb perfused. it constant flow [6,10 and 
references therein]. The Type A category is associated with other changes including increased 
lactate [5], glycerol (Figure 1), urate [7], and uracil [7] efflux as well as increased perfusate 
distribution volume (unpublished). The vascular sites responsible for Type A vasoconstriction 
require external Ca2+  and oxygen; in the absence of either moiety or with respiratory poisons 
present, the pressor effect of Type A vasoconstrictors does not occur [9]. Table 1 also shows 
that vasodilators with differing modes of action block the vasoconstrictors, inhibiting the 
increases in perfusion Pressure and oxygen uptake as well as the metabolic changes. It is 
important to note that the effect of the Type A vasoconstrictors to increase oxygen uptake is 
additive to the oxygen uptake due to skeletal muscle contraction and that the nitrovasodilators 
are selective, having no effect on the latter. Alpha and a l -antagonists block sympathomimetic 
stimulation of oxygen and pressure but not the actions of other vasoconstrictors such as 
angiotensin II or capsaicin. Beta antagonists augment the action of most sympathomimetic 
vasoconstrictors especially those recognized as having significant beta actions. The increased 
glycerol release mediated by noradrenaline in the presence of propranolol (Figure I) relates 
closely to the cc i -adrenergic effect of this catecholamine to cause vasoconstriction and oxygen 
uptake and implies that both of these may be supported in part by fatty acid oxidation. 

Recently our hindlimb experiments have included species where the presence of brown 
adipose tissue is doubtful. Table 2 shows that constant-flow perfused hindlimbs from either the 
chicken or the bettong, respond positively to noradrenaline with increased pressure and oxygen 
uptake. This implies that resting muscle thermogenesis may be widely used amongst the 
endotherms regardless of the presence, or absence, of brown fat. The data of Tables 1 and 2 
and Figure 1, together with rat hindlimb perfusions at varying but fixed flows and fixed 
pressures (Ye et al 1990, cited in Ref. 6) suggests that working vascular tissue may be 
responsible for the Type A vasoconstrictor-induced increase in oxygen uptake. However for 
this to be so, the vascular smooth muscle cells responsible must be capable of high rates of 
oxygen consumption under load and be present in sufficient quantity in the hindlimb to account 
for the rates of oxygen consumption noted. 
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Finally Table 1 also identifies a group of vasoconstrictors (Type B) that lead to decreased 

oxygen consumption with increased vascular resistance in the constant-flow perfusecl rat 

hindlimb. This group includes serotonin, noradrenaline at high doses (similar to predicted 

concentrations at vascular smooth muscle synapses), high frequency sympathetic nerve 

stimulation and high dose vanilloids. In all respects the metabolic effects of the Type B 

vasoconstrictors are the opposite to those of Type A and are therefore potentially negatively 

thermogenic. We have proposed that Type B vasoconstrictors result in functional vascular 

shunting which coincides with reduced nutritive flow even* thotfgh overall flow through the 

hindlimb remains unaltered [9]. The sites (vessels) controlling vascular shunting appear to be 

distinguishable in terms of their fuel and Ca2+  requirements (Table 1). Neither serotonin nor 

high dose noradrenaline require oxygen for vasoconstriction if glucose is present [9] and 

vasoconstriction is reduced but still present if Ca2+  is omitted from the buffer [9]. 

Table 2. Effects of noradrenaline on perfused hindlimbsa 

Species 

Perfusion pressure 
(mm Hg) 

Oxygen uptake 
(gmolig per h) 

Basal Noradrenalineb Basal Noradrenalineb 

Rat 29±1 454-1C 6.4 -±0.2 9.6±0.3c 
(n) (19) (3) (19) (3) 
Chicken 39±4 56±3c 7.2±0.3 8.9±0.3C 
(n) (6) (6) (6) (6) 

Bettong 31±2 83:.:10c 4.6±0.4 9.5±0.8c 
(n) ( 5 ) (5) ( 5 ) (5 ) 

a. All perfusions were conducted with constant-flow of approx. 0.28 mUg per min at 25°C 
with medium containing 2% serum albumin and 1.27 rruM CaC1 2  (Ref 6. and references 
therein). Data for rat from Colquhoun et al. 1988 in Ref. 6. 

b. Maximum oxygen uptake occurred at 50, 20 and 1000 riM noradrenaline for rat, chicken 
and bettong hindlimbs, respectively. 

c. Significantly greater (P<0.05) than companion "basal" values. 

We propose that resting muscle has the potential to contribute to whole body 
thermogenesis in endotherms and its contribution, in either a positive or negative manner, is 
controlled by the vascular system and cannot be observed with isolated incubated preparations. 
In addition to the effects of noradrenaline to increase oxygen uptake by constant-flow perfused 
muscle mediated by ct radrenergic receptors, increases in total flow to muscle in vivo e.g. 
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resulting from increased cardiac output (13-adrenergic receptor-mediated) have the potential to 
increase the thermogenic contribution by skeletal muscle. 

Overall the results are consistent with our earlier proposals that work performed during 
constriction and resting flow [6] by the vascular smooth muscle (*hot pipes") of the hindlimb 
may account for the increase in oxygen consumption. The release of lactate, and to a lesser 
extent glycerol, during vasoconstriction have the potential to add further to thermogenesis in 
vivo. If vascular tissue does not consume sufficient oxygen, the data still suggest that it plays a 
key role in controlling thermogenesis by neighbouring skeletal niuscle mitochondria. Thus 

• increased oxygen uptake may be the result of vasoconstrictor-induced change in the distribution 
of flow so as to supply oxygen to previously unaccessed regions of muscle that contain 

• specialized mitochondria adapted for thermogenesis. Vasoconstrictors that act to inhibit muscle 
oxygen uptake might do so by opening functional vascular shunts diverting flow away from 
thermogenic vasculature on thermogenic skeletal muscle mitochondria. 

Acknowledgements: Supported in part by NH&IvIRC and ARC of Australia. 
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E LDE RS H AW, T. P. D.. RATTIGAN. S.. DORA, K A.. COLQUHOUN. E .Q.. CLARK. M.G., C.AWTHORNE. M.A.. and BUCKINGHAM. 
R.E. 1994. Potential defect in the vascular control of nonshivering thermogenesis in the obese Zucker rat hind limb. 
Can. J. Physiol, Pharmacol, 72: 1567-1573. 

Vascular control of nonshivering thermogenesis in the perfused hind limb of obese and lean Zucker rats was compared 
using two vasoconstrictors, norepinephrine and serotonin. For hind limbs of both phenotypes. norepinephrine infusions 
resulted in a dose-dependent uninterrupted increase in perfusion pressure and a biphasic change in oxygen uptake (Vo 2 ). 
characterized by a stimulation at low concentrations, and an increasing inhibition at higher concentrations that gradually over-
came the stimulation in a dose-dependent manner. At concentrations of norepinephrine greater than I AM, the inhibitory effect 
predominated and gave rise to values for Vo z  less than basal. The obese hind limb had a lower basal Vo 2  and a lower maxi-
mal Vor:  mediated by norepinephrine than the lean rat. but these differences appeared to relate largely to the lower muscle 
mass and higher content of fat of the obese hind limb. Serotonin infusions resulted in a dose-dependent increase in perfusion 
pressure and an accompanying decrease in Vo 2 . Pressure changes were identical for the obese and lean hind limbs, but the 
decrease in Vo :  due to serotonin was greater in the hind limbs from the lean rats, and this difference remained when the 
data were expressed in terms of muscle mass perfused. It is concluded that the relatively lower content of muscle of the obese 
hind limb accounts for its lower basal and lower maximal norepinephrine-mediated thermogenesis. In addition, an intrinsic 
defect in obese hind limb muscle response to serotonin is present. which may be indicative of a decrease in the potential 
for vasoconstrictor-regulated thermogenesis that could have implications for whole-body energy balance by the obese 
phenotype. 

Key words: muscle thermogenesis. muscle oxygen uptake. genetically obese rat. norepinephrine. serotonin. 

ELDERSHAW. T.P.D.. RATTIGAN. S., DORA. K.A.. COLQUHOUN. E.Q.. CLARK, MC.. CAWTHORNE. M..A.. et BUCKINGHAM. 
R.E. 1994. Potential defect in the vascular control of nonshiverin2 thermogenesis in the obese Zucker rat hind limb. 
Can. I. Physiol. Pharmacol. 72 : 1567- 1573. 

On a compare le contrOle vasculaire de la thermogenese sans frisson dans le membre posterieur perfuse de rats Zucker 
maigres et obeses en utilisant deux vasoconstricteurs. la nordpinephrine et la serotonine. Dana les membres posterieurs des 
deux phenotypes. la perfusion de nordpinephrine a provoqud use augmentation continue dose-dependante de la pression de 
perfusion et uric variation biphasique de la capture d'oxygene I Vo : ). caracterisees par une stimulation a faibles concentra-
tions, en plus de provoquer uric inhibition croissante aux concentrations plus elevees, qui a elimine graduellement la stimula-
tion en fonction de la dose utilisee. Aux concentrations de norepinephrine superieures a I M. l'effet inhibiteur a predomine. 
donnant lieu a use augmentation aux valeurs de Vo :  inferieures aux valeurs de base. La norepinephrine a induit une Vo :  
basale et une Vo :  maximale plus faibles dans les membres posterieurs obeses que dans les membres posterieurs maieres. 
mais ces differences ont semble Etre reliees en grande partie it la plus faible masse musculaire et it la plus haute teneur en 
gras des membres posterieurs obeses. La perfusion de serotonine a provoque une augmentation dnse-dependante de Ia pres-
sion de perfusion et une diminution concomitante de Is V0 2 . Les variations de pression ont ete identiques pour les membres 
posterieurs maigres et obeses. mais la diminution de Vo :  induite par la serotonine a ete superieure Cans les membres poste-
hears des rats maigres: de plus. cette difference s'esi maintenue lorsque les donnees ont ete exprimees en termes de la masse 
musculaire perfusee. On conclut que la teneur musculaire relativement plus faible du membre posterieur obese explique sa 
thermogenese maximale et basale plus faible en presence de norepinephrine. De plus. la presence dune anomalie intrinseque 
de la reponse du muscle du membre posterieur obese it la serotonine pourrait etre un indice de diminution du pouvoir Ce 
regulation de la thermogenese par lea vasoconstricteurs. cc  qui pourrait avoir des repercussions sun l'equilibre energetique 
total Cu phenotype obese. 

Mats cles : thermogenese musculaire, capture d'oxygene par le muscle, rats genetiquernent obeses. norepinephrine. sero-
tonine. 

Fraduit par la Redaction] 
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Introduction 

Major differences exist between the obese Zucker (fclifio rat 
and its lean counterpart (Pal?). The obese animals exhibit 
hyperphagia (Cleary et al. 1980). hyperinsulinemia (Tukenkopf 
et al. 1982). decreased whole-body Vo2  at ambient tempera- 

'Author for correspondence.  

tunes of 10 -30°C (Kaplan I979). decreased low protein diet 
induced thermogenesis (Young et al. 1980). and a lower energy 
requirement (Nlowrey and Hershberger 19821. 

At the tissue level, the 	rat has defective brown adipose 
tissue Levin et al. 1984). but differences in the metabolic 
properties of other tissues, including muscle. may also exist. 
Perfusion studies (Kemmer et al. 19791 indicate that the hind 
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limb of the fa/fa rat has diminished basal glucose uptake. 
markedly diminished insulin-mediated glucose uptake. dimin-
ished lactate oxidation, and exaggerated lactate release com-
pared with that of the lean counterparts. However, the 
thermogenic properties of perfused hind limb from obese 
Zucker rats have not been systematically assessed. even 
though perfused hind limbs from nonobese strains show 
marked responses to norepinephrine in terms of increased oxy-
gen uptake (Cote et al. 1985; Grubb and Folk 1976: Richter 
etal. 1982; Colquhoun et al. 1988; Dora et al. 1992). Previous 
work from this laboratory on nonobese strains has led to the 
proposal that muscle thermogenesis is regulated by vasocon-
strictors that act to alter the distribution of nutritive flow 
(Clark et al. 1994). Vasoconstrictors were of either of two 
types. Type A vasoconstrictors, which included norepineph-
rine at low dose, vasopressin, angiotensin II. and several 
others, increased oxygen consumption of the constant flow 
perfused rat hind limb of a nonobese strain (Clark etal. 1994). 
Type B vasoconstrictors, which included norepinephrine at 
high dose ( 1 AM). serotonin. and others, decreased oxygen 
consumption in the same preparation. Thus type A or type B 
vasoconstrictors were proposed to increase or decrease. 
respectively, the extent of nutritive flow within muscle (Clark 
et al. 1994). 

The objectives of the present study were thus twofold. The 
first objective was to determine whether a phenotypic differ-
ence existed in perfused muscle thermogenic response to 
norepinephrine. The second was to determine the response to 
serotonin by perfused hind limbs, which in conjunction with 
the data from norepinephrine perfusions would allow a com-
parative assesssment of the total nonshivering thermogenic 
capacity of the hind limb controlled by the vascular system. 

Methods 
Animal care 

Animals were housed and cared for in accordance with the princi-
ples of the Guide to the Care and Use of Erperimental Animals. 
Vol. ((Canadian Council on Animal Care (980). Experiments were 
performed using 20-week-old male Zucker genetically obese (fa/fa). 
500- to 600-g rats, when the obesity and insulin resistance were well 
established, and age-matched lean male animals (Pal?. 340-365 g). 
Rats were obtained from Harlan Olac Ltd., Bicester. Oxfordshire. 
U.K.. and housed in groups under climate-controlled conditions 
(20 + 2°C. 12 h light : 12 h dark cycle) and provided with R&M 1 
(rat and mouse diet), made by SDS. Manea. Cambridgeshire. U.K.. 
and water ad libitum. Details concerning the nonobese hooded Wistar 
rats can be found elsewhere (Dora et al. 1991. 1992). 

Materials 
Bovine serum albumin (fraction V). norepinephrine bitartrate. 

serotonin hydrochloride. and Evans blue were obtained from the 
Sigma Chemical Company (U.K.). Heparin sodium (5000 U/mL) 
was obtained from CP Pharmaceuticals Ltd. (U.K.). and sodium pen-
tobarbitone was obtained from RN1B Animal Health Ltd. (U.K.). 

Isolated hind limb preparation 
Animals were given an intraperitoneal injection of heparin sodium 

(250 11/100 g) and then anesthetized with an intraperitoneal injection 
of pentobarbitone sodium (6 mg/100 g body weight). Rats were then 
pithed and maintained on a respirator via a tracheal tube. Surgery was 
performed as described previously (Colquhoun et al. 1988). Flow 
was restricted to one hind limb by ligating the contralateral common 
iliac artery. 

Perfitsion medium 
The perfusion medium was an erythrocyte-free modified Krebs — 

Ringer bicarbonate buffer, essentially as described previously  

(Colquhoun et al. (988). containing 1.27 mNt CaCI : . 3.3 mM glu-
cose. and 2% undialysed bovine serum albumin. 

Perfusion procedures 
The perfusion buffer reservoir was kept on ice and gassed with 

95% 0 :  — 5% CO :  while stirring. Perfusate was pumped at a fixed 
flow rate by a peristaltic pump adjusted at the start of each experiment 
to give comparable venous Po :  values (nominally set at a minimum 
of 350 mmHg (I mmHg = 133.3 Pa) to ensure adequate 02  supply. 
as established in previous studies (Ye et al. 1990)). The temperature 
of the perfusate was raised to 25°C in a heat exchanger prior to pass-
ing through a silastic lung gassed with 95% 0:  — 5% CO : . 
Homeothermic blankets (Harvard. South Natick. Mass.) and water 
jackets ensured that the hind-limb preparation. the surrounding 
perfusate-containing tubing, and the oxygen electrode remained at 
25°C. A temperature probe positioned beneath the skin adjacent to 
the perfused muscle controlled the operation of the homeothermic 
blankets. When required. agonists were infused continuously (Gilson 
Minipuls 3 with microbore tubing) into a small stirred bubble trap 
proximal to the arterial cannula. The infusion rates gave 1 in 200 dilu-
tions. Infusion of vehicle (0.1% ascorbic acid in isotonic saline) had 
no apparent effect on Vo :  or perfusion pressure. 

‘..1  02  and perfusion pressure determinations 
Oxygen tension in the venous perfusate was monitored continu-

ously using an in-line Clark-type oxygen electrode of 0.5-mL capac-
ity. The oxygen electrode was maintained at 25°C. The arterial Po :  
remained constant throughout each experiment. The oxygen electrode 
was calibrated before and after each experiment, using recirculating 
buffer gassed with 95g 0 2  and then air. Calculation of Vo :  was per-
formed as previously described (Colquhoun et al. 1988). Perfusion 
pressure was monitored continuously at the bubble trap proximal to 
the arterial cannula using a fluid-tilled transducer (CEC Instrumenta-
tion Ltd.. U.K.). 

Determination of perfused hind limb tissue 
Upon completion of a perfusion. all agonists were removed, and 

after conditions returned to basal. a 1% solution of Evans blue was 
injected into the arterial cannula at a tlow rate similar to that used 
throughout the experiment. The resultant stained tissue was then 
excised, blotted dry, dissected into muscle and fat, and weighed to 
determine the amounts of tissue perfused. 

Statistics 
Significance of difference between lean and obese perfused hind 

limbs was assessed by using the unpaired Student's r test. Values are 
means + SE for n = 3 for each group of lean + norepinephrine. lean 

serotonin. obese — norepinephrine. and obese + serotonin. For 
the nonobese hooded Wistar rats n = 5 for norepinephrine. n = 
for 4- serotonin. and n = 24 for control (basal conditions). 

Results 

Differences between obese and lean Zucker rats 
Progeny of the Zucker strain display two phenotypes. which 

manifest as obese homozygotes (fa/fu) and a mixture of lean 
animals, which are either homozygotes for leanness (Fa/FA) 
or heterozygotes (Fa,fa). Significant differences for the male 
age-matched Zucker rats used in this study included body 
weight, heart weight, and the tissue composition of the hind 
limb (Table It. The perfused tissue of the hind limb of the 
obese (fit/fl:) animals (deduced by dye tilling) was composed 
of significantly less muscle and significantly more fat and, in 
total, weighed significantly more than the hind limb of the lean 
(Fill?) animals (Table I ). The proportion of fat to muscle of 
the lean Zucker rat hind limb (10.6 ± 0.7% fat) was slightly 
higher than that for 0- to 8-week-old nonohese hooded Wistar 
rats (4.3 ± 0.1%. fat). Differences in the proportion of hind-
limb fat to muscle between jalfir and Far.' were taken into 
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TABLE 1. Body mass, heart mass, and perfused hind limb analysis of obese and nonobese Zucker rats 

Body mass Heart mass 

Perfused hind limb 

Muscle Fat Total 
Phenotype n (g) (g) (g) g ) (g) 

Obese 6 566.7+15.5 1.80+0.08 22,03±0.72 12.18±0.82 34.22±0.84 
Lean 6 350.8+4.5" 1.45±0.09" 25.94+1.08' 2.79=0.25° 28.73+1.046  

NOTE: Values are means ± SE for 20-week-old male obese and lean rats. Total is defined as the sum of dye-
containing perfused muscle and fat dissected from the hind limb following perfusion with Evans blue, and excludes 
skin and bone. °p < 0.0001. bp < 0.01. "p < 0.05, significantly different from obese. 

TABLE 2. Basal perfusion pressure and rate of oxygen uptake by hind limbs of obese and 
nonobese Zucker rats 

Flow rate 	Pressure 	Venous P02 	1./o:  
Phenotype n 	(mL 	 (mmHg) 	(mmHg) 	(Amol •11 - ' • g - , ) 

Obese 	6 	0.200=0.012 	28.3=1.6 	419.1+12.6 
	

4.42+0.30 
(0.312+0.016) 
	

(6.80±0.34) 
Lean 	6 	0.230+0.015 	25.4=1.7 	360.0=7.8° 

	
6.38+0.25' 

(0.257 +0.017) 
	

(7.07+0.32) 

NOTE: Values are means ± SE and have been calculated on the basis of the perfused mass of mus-
cle plus fat of the hind limbs, as shown in Table I. Values in parentheses are expressed in terms 
of the perfused mass of muscle only. Arterial Po, was 663.7 ± 3.3 (n = < 0.01. p < 
0.05. significantly different from obese. 

account in expression of the data (see below): some apparent 
differences were not significant when muscle was assumed to 
be the sole tissue responsible for hind-limb Vo2 . 

Table 2 gives basal (pre-norepinephrine and pre-serotonin) 
properties of the perfused hind limibs of the obese and lean 
rats. The flow rate, which was constant throughout each perfu-
sion, determined the resting or basal parameters of perfusion 
pressure. venous Pa, and thus Vo2 . Table 2 shows that Vo 2  
for the obese hind limb was significantly less than that for the 
lean hind limb when expressed in terms of total tissue per-
fused. but not so when expressed in terms of the mass of mus-
cle perfused. Basal Vo2  for the whole hind limb was also 
significantly less (p < 0.05: n = 6) for the obese (151.2 ± 
10.3 Amol h - I per hind limb) than the lean (183.3 ± 
7.2 ktmol • h -  I per hind limb) animals. 

Effects of norepinephrine in perfused obese and lean hind 
limbs 

Norepinephrine caused a marked vasoconstriction in the 
perfused rat hind limb of both phenotypes. Figure 1 shows 
dose-dependent rises in pressure to greater than 200 mmHg for 
perfused hind limbs from obese and lean Zucker rats. Dose—
response curves for each hind limb were constructed using 
stepwise increasing doses of infused norepinephrine. At each 
dose, the increase in pressure remained constant provided the 
dose remained constant (data not shown). Figure 1 shows that 
at each dose of norepinephrine the pressure development by 
the obese hind limb tended to be greater than that of the lean 
hind limb. The difference was statistically significant at 32 nM 
norepinephrine. 

The dose-dependent rise in perfusion pressure due to 
norepinephrine contrasts with the effect of this catecholamine 
on Vo2 . Figure 2 shows that the steady-state Vo :  response has 
essentially two components. both of which were present in the 
obese as well as the lean hind limb. These components com-
prise a steady-state stimulatory phase evident over a concen- 

tration of 3.2-100 nN1 norepinephrine. and a steady-state 
inhibitory phase commencing at concentrations greater than 
100 nM norepinephrine and extending to the maximum con-
centration used (3.2 ALNI). It is important to note that at concen-
trations greater than 1 AM norepinephrine. the value for Vo 2  
was less than basal (pre-norepinephrine). In Fig. 2A the 
results are expressed in terms of the total perfused tissue. The 
upper trace shows absolute values, and significant differences 
between the obese and lean hind limbs are readily apparent. 
Hind limbs from obese Zucker rats have lower basal values 
and are significantly less responsive to norepinephrine in 
terms of increased Vo: . reaching only 72% of the absolute 
values for Vo:  obtained by the lean hind limbs. In addition, 
the inhibitory effect of norepinephrine over the range 100 nNI 
to 3.2 ALM is less pronounced with the Vo 2  of the obese hind 
limb, decreasing from a maximum of 8.03 4- 0.45 to 3.53 + 
0.21 urnol • h - I • g -  I of total perfused tissue. Over the same 
concentration range of norepinephrine. Vo2  by the lean hind 
limb decreased from 11.03 + 0.71 to 4.20 4- 0.22 Amid • 
h - I g. -1  of total perfused tissue. Thus the obese hind limb 
response was approximately 66% of that of the lean. Nor-
malizing the data to the basal (pre-norepinephrine) rate shows 
that the shape of the dose —response curves are indistinguish-
able except for the greater inhibitory effect of norepinephrine 
in lean hind limb at maximal doses (Fig. 2A. lower trace). 
When the data for 12o:  were expressed in terms of the mass of 
muscle perfused none of the differences noted above for the 
hind limbs was statistically significant (Fig. 2B). 

Vasodilator blockade of the norepinephrine-metliated thenno-

genesis 
A time course for the effect of isoproterenol and sodium 

nitroprusside on norepinephrine-mediated decrease in venous 
Po:  and increase in perfusion pressure for the obese hind 
limb is shown in Fig. 3. The vasoconstrictor action of norepi-
nephrine was associated closely with an increase in Vo :  as 
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FIG. I. Effect of norepinephrine on perfusion pressure of constant-
flow hind limbs of obese and lean Zucker rats. Basal (pre-norepineph-
rine) values for perfusion pressure were as given in Table 2. When 
not visible, error bars are within symbol. *p < 0.05. significantly 
different from obese. 

seen by the decrease in venous Po.. Infusion of a maximal 
dose of isoproterenol partially blocked, and a maximal dose of 
sodium nitroprusside completely blocked, both effects medi-
ated by norepinephrine (Fig. 3). The increases in Vo2  and 
perfusion pressure due to norepinephrine were completely 
reversible and returned to basal values when the catechola-
mine was removed (data not shown). 

Effects of serotonin in perfitsed obese and lean hind limbs 
Figure 4 shows the effect of serotonin on perfusion pres-

sure in constant-flow hind limbs of the obese and lean Zucker 
rats. The concentration—response curves were similar, with 
each reaching a maximum pressure of approximately 190 mmHg 
over basal at 3.2 f..LM serotonin. This contrasts with the effect 
of serotonin on Vo, in these hind limbs (Fig. 5). For both 
obese and lean hind limbs. serotonin (10 nN1 — 3.2 gM) 
reduced Vo2 . When expressed as a function of the total mass 
of perfused tissue, the obese hind limb response was only 48% 
of that of the lean (Fig. 5A). decreasing from 3.93 + 0.28 to 
2.30 + 0.37 Arno! • h -1  l of total perfused tissue. Over 
the same concentration of serotonin (10 nM — 3.2 AM). Vo2  
by the lean hind limb decreased from 5.83 + 0.26 to 2.67 + 
0.48 Amol • h - I • g -  l of total perfused tissue. 

Figure 5B shows that when expressed on the basis of the 
mass of perfused muscle, the differences in response to sero-
tonin remained significant. Thus, over the concentration range 
of 10 nN1 — 3.2 ANt serotonin. the decrease in Vo 2  by the 
obese hind limb was approximately 70% of that of the lean. 

Discussion 

Two findings emerge from the present study that have impli-
cations for whole-body thermogenesis of the obese Zucker rat. 
Firstly, the constant flow perfused hind limb of the obese 
animal, when compared with that of the lean, has a lower basal 
V02  and lower maximal Vo 2  mediated by norepinephrine 
(Fig. 6). These di ffen.:nces appear to result directly from the 

log 1Norepinephrinel (1) 

FIG. 2. Effect of norepinephrine on oxygen uptake by constant flow 
perfused hind limbs of obese and lean Zucker rats. (A) Absolute Vo, 
values (• 7) and changes in VU :  (I. ). calculated as a function 
of the total mass of perfused tissue (Table I). (B) Rates expressed as 
a function of the mass of perfused muscle. When not visible, error 
bars are within symbol. *p < 0.05. -*p < 0.0 l. significantly differ-
ent from obese, 

lower content of muscle mass in the obese hind limb and do 
not reflect intrinsic differences between muscle from lean and 
obese phenotypes. However. the findings imply that for lean 
and obese Zucker rats of equal body mass the basal and fully 
stimulated thermogenic potential of muscle is less in the obese 
phenotype and in proportion to the mass of muscle present. 
Secondly, the constant flow perfused hind limb of the obese 
animal has a diminished inhibitory response to high concentra-
tions of norepinephrine and to serotonin in terms of Vo,. and 
this effect appears to be intrinsic to the muscle. Taken 
together. the similar response to low concentrations of 
norepinephrine and decreased response to a high dose of 
norepinephrine and to serotonin by obese muscle, compared 
with that of the lean. suggests that vasoconstrictor-regulated 
thermogenesis in the obese Zucker rat is altered. 

Data from Figs. 1 and 5 as well as our previous studies using 
various vasoconstrictors and vasodilators (Clark et al. 1994) 
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Flo. 3. Effect of vasodilators, isoproterenol, and sodium nitroprusside on norepinephrine-mediated decreases in venous P02  and perfusion 
pressure by perfused hind limbs of obese Zucker rats. The data were obtained after the dose-response curve for norepinephrine had been 
completed. The trace shown is a selection from three similar experiments. 
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FIG. 4. Effect of serotonin on perfusion pressure of constant-flow 	A 
hind limbs of obese and lean Zucker rats. Basal (pre-serotonin) values 
for perfusion pressure were as given in Table 2. When not visible. 
error bars are within symbol. 

	

can be used to illustrate the magnitude and significance of the 	 -2 
altered thermogenesis of the obese hind limb (Fig. 6). Thus 
values from Fig. 2 reflect the maximum thermogenic capacity 
of the hind limb that can be activated by norepinephrine or 
other membes of the type A group of vasoconstrictors that 
increase Vo 2  by the rat hind limb (Clark et al. 1994). Figure 6 
shows that although the values for the lean hind limb and that 
of the nonobese hooded Wistar strain are in close agreement. 
the value for the obese hind limb is markedly lower. Given 
that the perfusion conditions were similar for the lean and 
obese hind limbs, this suggests that the latter would have 
markedly less capacity to respond to vascular thermogenic 
stimuli. Other in response to cold or to overeating. A differ-
ence in Vo 2  of 3-4 gmol •hg between the obese hind 
limb and those of lean animals would correspond to a loss of 
0.95-1.27 W/kg hind limb at 37°C. assuming a standard 
average energy value of 4.83 kcal/L 02 at standard tempera- 
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Flu. 5. Effect of serotonin on oxygen uptake by constant flow per-
fused hind limbs of obese and lean Zucker rats. Absolute Vo :  values 
(•. 7) and changes in Vo :  (•, calculated as a function of the 
total mass of perfused tissue (Table 11. 101 Changes in Vo :  
expressed as a function of the mass of perfused muscle. When not 
visible, error bars are within symbol. "p < 0.05. °°17 < 0.01, sig-
nificantly different from obese. 
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Flo. 6. Vasoconstrictor-controlled thermogenesis by the perfused 
rat hind limb. Data are shown for lean and obese Zucker rats (Table 
2. Figs. 2 and 3), as well as for 6- to 8-week-old nonobese hooded 
(H.) Wistar rats (Dora et al. 1991. 1992). The closed bar indicates 
the maximum increase in Vo, due to norepinephrine. and the open 
bar indicates the maximum decrease in Via, due to serotonin: the 
basal lio 2  is indicated by the boundary. Values are means + SE. 
Rates have been calculated in terms of total tissue perfused and 
includes muscle and fat but not skin or bone. 

ture and pressure (1 kcal = 4.1855 Id) (Brown and Brengel-
mann 1965) and a Q 10  of 2.5 (Paul 1980). Our previous 
estimates (Ye et al. 1990) suggest that hind limb (which is 
largely muscle in nonobese strains) has the potential to con-
tribute up to 0.28 W in a 200-g. warm-acclimated. nonobese 
rat. The absence of 0.95-1.27 W/kg hind limb would thus 
represent an absence of 0.09 W or 34% of the potential ther-
moeenic capacity of this hind-limb tissue. 

Since serotonin produced a dose-dependent inhibition of 
Vo2  that reached a plateau, data from Fig. 5 can be used to 
define the apparent lower limit of vasoconstrictor-controlled 
thermogenesis. Figure 6 shows that the values for obese and 
lean Zucker hind limbs do not differ significantly, nor do they 
differ from the value for the nonobese hooded Wistar strain. 

Figure 6 also shows that in the obese phenotype the basal 
Vo2  (without norepinephrine or serotonin) is significantly 
lower ( p < 0.05) than in either the lean or the nonobese 
strain. This finding suggests that under similar perfusion con-
ditions the basal thermoeenic output by the obese hind limb iS 
diminished. If this occurred in vivo. it might reflect a 
decreased thermogenic need in response IO the increased 
insulating capacity of the hind-limb fat. Alternatively, the 
diminished thermogenesis under basal conditions might be 
contributory to the development of obesity by altering the 
energy balance. 

It is important to note that the diminished response to 
norepinephrine of the obese hind limb is not apparent when 
striated muscle is assumed IO be the sole tissue of the hind limb 
responsible for 0 :  consumption. Thus expression of the data 
for obese and lean hind limbs in terms of the mass of muscle 
perfused (Table 2) yields dose —response curves for norepi-
nephrine (Fig. 2B) and basal (pre-norepinephrine) values for 
Via. (Table 2) that are similar. Indeed, such observations are 
consistent with those of other workers, who found no differ-
ence in basal Vo :  of perfused obese and lean hind limbs when  

expressed on the basis of mass of muscle perfused ( Kemmer 
et al. 1979) or between Vol  of isolated incubated sold i from 
obese and lean Zucker rats (Crenaz et al. 1980). Thus. taken 
together. our present findings and those of others (Kemmer 
et al. 1979: Crettaz et al. 1980) suggest that the change in tis-
sue composition of the hind limb associated with the obese 
phenotype (Table 2) plays a predominant role in the dimin-
ished response to both stimulatory as well as inhibitory 
effects of norepinephrine on Vo2 . However, the fact that the 
diminished response to serotonin by the obese hind limb was 
still evident when muscle was assumed to be the sole thermo-
genic tissue of the hind limb implies that the obese phenotype 
is associated also with an intrinsic defect in the hind-limb mus-
cle or its vasculature. This defect may have additional implica-
tions for the thermogenic capacity of obese skeletal muscle. 

Previous studies using constant flow perfused hind limbs 
from a nonobese strain have shown that vasoconstrictor con-
centrations of serotonin, similar to those used here. inhibited 
Vo2  (Dora et al. 1991: 1992). decreased perfused space (Dora 
et al. 1991), impaired insulin-mediated glucose uptake (Rani-
ean et al. 1993), and impaired skeletal muscle contractility 
(Dora et al. 1994). Based on those findings and the knowledge 
that serotonin has no direct effect on isolated incubated skele-
tal muscle (Rattigan et al. 1993: Dora et al. 1994: Sasson 
1990). we have proposed that serotonin acts to constrict rela-
tively large vessels, diverting flow away from nutritive vessels 
(supplying 0.-consuming tissue) to functional vascular shunts 
(non-nutritive) (Dora et al. 1991. 1992. 1994: Rattiean et al. 
1993), while maintaining constant flow. Similar proposals 
have been made by others (Rippe and Folkow 1980). and there 
is evidence that the action of serotonin has been located 
predominantly on large. rather than small. arteries (Hollen-
bent 1985). Since pressor effects were similar for obese and 
lean hind limbs (Fie. 4). an impaired response by the obese 
hind limb to serotonin. in terms of inhibition of muscle Vo 2  
(Fie. 5B). suggests that there is a lower proportion of nutritive 
vessels relative to functional shunts. Thus an impaired 
response by the obese hind limb to serotonin does not result 
from relatively fewer functional shunts but. rather, is consis-
tent with the presence of less capacity for nutritive 0 2  deliv-
ery. Such a reduction in the availability of nutritive delivery 
may also diminish glucose and insulin access and contribute to 
the insulin resistance of obese Zucker hind limbs ( Kemmer 
et al. 1979). The obese phenotype is not associated with major 
changes in muscle specific enzyme activities. including 
cytochrome oxidase (Wardlaw and Kaplan 198.4). nor is there 
a decrease in the proportion of oxidative fibres i Pujol et al. 
1993). 

In conclusion, altered regulation of thermoeenesis by the 
obese Zucker hind limb has been identified. Lower muscle 
content may be the major cause, although there is some evi-
dence supporting the concept of diminished nutritive delivery. 
Calculations suggest that the implications for whole-body cher-
mogenesis are considerable. Thus the propensity to develop 
obesity (Zucker 1975) and the poor response to cold exposure 
(Trayhurn et al. 1976: Levin et al. 1980: Kraul et al. 1985) 
may derive from a lower contribution to thermog.enesis from 
muscle as well as impaired brown adipose tissue I Levin et al. 
1984). 
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Treatment with the Thiazolidinedione (BRL 49653) 
Decreases Insulin Resistance in Obese Zucker Hindlimb 

T. P. D. Eldershaw', S. Rattigan', M. A. Cawthome 2, R. E. Buckingham', E. Q. Colquhoun' and M. G. Clark' 
Department of Biochemistry, University of Tasmania. Hobart, Tasmania, Australia 

= Diabetes Unit. Department of Vascular Biology, Smith Kline Beecham Pharmaceuticals. The Frythe. Welwyn. HERTS, United Kingdom 

Hindlimbs of mature age obese fa/fa Zucker rats were per-
fused and found to be markedly insulin-resistant when compared 
to the hindlimbs of age-matched lean Fa/7 animals. Hindlimb 
analysis also showed a greater content of fat and a lower content 
of muscle in the obese. Treatment of the obese animals for 7 days 
with the thiazolidinedione, BRL 49653 (3 umolikg/day) signifi-
cantly decreased the insulin resistance of the hindlimb and sig-
nificantly increased the rate of weight gain in the whole rat. How-
ever, the decreased insulin resistance due to BRL 49653 could not 
be accounted for by an increase in the proportion of hindlimb 
muscle to fat or by an increase in the hindlimb muscle mass per-
fused. 

Key words: Hindlimb Perfusion - Muscle Insulin-Resistance - 
NIDDM - Genetic Obesity 

Introduction 

Genetically obese Zucker (fa/fa) rats exhibit major metabolic 
differences compared with their lean (Fa/?) counterparts. In 
terms of glucose homeostasis the fa/fa animals exhibit hyper-
insulinemia (Turkenkopf Johnson and Greenwood 1982), 
decreased sensitivity to insulin in vivo (Jeanrenaud 1979), 
decreased ability of various tissues to bind insulin (Kobayashi 
and Olefsky 1978: Le Marchand-Brustel. Jeanrenaud and Frey-
cher 1978) and various defects distal to the insulin receptor in-
teraction (Assimacopoulos-Jeannet and Jeanrenaud 1976: Cret-
raz. Prentki. Zaninetti and Jeanrenaud 1980). In addition. 
skeletal muscle of the fa/fa rat is insulin resistant with 
decreased insulin binding (Crettaz et al. 1980: Czech, Richard-
son. Becker. Walters. Gitomer and Heinrich 1978). rate of glyco-
gen synthesis (Crettaz et al. 1980: Crettaz, Horton. Wardzala. 
Horton and Jeanrenaud 1983: Ivy. Sherman, Cutler and Katz 
1986: Kemmer. Berger. Herberg, Gries, Wirdeier and Becker 
1979). rate of glycolysis (Crettaz et al. 1980: Crettaz et al. 1983). 
and rate of glucose transport (Sherman. Katz. Cutler. Withers 
and Ivy 1983). Perfused hindlimb studies (Sherman et al. 1988) 
show that the rate of glucose uptake by the obese hindlimb is 
reduced to around 60% of the rate of the lean over the range 
0 to 15 mU • mi . ' insulin and the impairment is common to all 
skeletal muscle fibre types. 

BRL 49653 (5-(4-[2-(N-Methyl-N-(2-pyridyl)amino)ethoxyl-
benzyl)thiazolidine-2.4-dione), is a new, potent insulin sensi-
tizer agent that when administered chronically to animal mod-
els of NIDDM improves glycaemic control. In the Zucker fa/fa 
rat, oral administration of BRL 49633 (3 mmol/kg body weight 
for 21 days) normalises glucose tolerance and produces a 50% 
reduction in fasting plasma insulin concentrations (Smith. 
Cawthome. Coyle. Holder, Kirkham. Lister. Murphy and Young 
1993). Under hyperinsulinaemic ;600 !Wimp euglycaemic 
clamp conditions. BRL 49653-treatment increases glucose in-
fusion rates resulting in both an enhanced insulin suppression 
of hepatic glucose output and an increased glucose disposal by 
peripheral tissues, principally skeletal muscle (Smith et al. 
1993). BRL 49653 (10 umol/kg body weight for 4 days) has been 
reported also to increase significantly muscle glucose disposal 
under euglycaemic clamp conditions in high-fat-fed insulin re-
sistant rats but it has no effect in control rats (Kraegan. Oakes, 
Kennedy, Sader. Laybutr and Chisholm 1993). 

In the present study, we have investigated further the effect of 
BRL 49653 on insulin sensitivity of the obese fa/fa insulin-
resistant rat, by measuring the insulin sensitivity of the per-
fused hindlimb. 

Materials and Methods 

Mature (20 and 27 week old) male genetically obese (Ia/fa)and 
lean (Fa/? Zucker rats were obtained from Harlan Olac Ltd., 
Bicester, Oxfordshire. U.K. The effect of BRL 49653 on glucose 
uptake was determined in the 20 week old male fa/fa rats. The 
differences in glucose uptake between obese and lean animals 
were determined in the 27 week old male rats. Animals were 
housed in groups under climate-controlled conditions (20± 
2'C. 12 h light/dark cycle) and provided with R&M  1 (rat and 
mouse diet) made by SDS. Nlanea. Cambridgeshire. U.K.. and 
water ad libitum. Rats were dosed once daily by oral gavage 
for 7 days with either BRL 49653 as the maleic acid salt 
(3 umol/kg body weight) or water (vehicle). 

For isolated hindlimb perfusion. animals were given an injec- 
tion (i.p.) of heparin sodium (2500 U/kg) and then anaesthe- 
tised with an injection (i.p.) of pentobarbitone sodium (60 

- 	• - 
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Table 1 Body weight. 
heart weight and perfu-
sed hindlimb analysis of 
non-obese and obese 
Zucker rats treated with 
SRI 49653. 

Age Phenotype Body wt. Heart wt. Perfused Hindlimb 
(wk) and (9) (9) 

Muscle Fat treatment 
(9) (9) 

27 Lean 5 438.0 ± 11.4 1.61±0.05 31.47=1.15 3.83=0.59 
27 Obese 4 587.5= 	5.5' 1.70:0.09 21.62=0.57' 10.69: 2.53' 
20 Obese 	PL. 49653 5 579.0 ±- 24.4 1.90t0.09 20.28± 1.36 10.37:0.41 

20 Obese 	vehicle 5 584.0 ± 12.20 2.05±0.08 24.43=0.82' 14.49:1.38' 

Values are means =S.E. for 27 week old male lean and obese rats, and for two groups of 20 week old male obese rats that had 
received SRI 49653 or vehicle for 7 days. 
p <0.05. significantly different from lean 

3 p < 0.05, significantly different from SRI 49653-treated 

mg/kg). Rats were then pithed and maintained on a respirator 
via a tracheal tube. Hindlimb perfusion was conducted as de-
scribed previously (Colquhoun. Hettiarachchi, Ye, Richter, Hniat, 
Rattigan and Clark 1988). Flow was diverted to one hindlimb 
by ligating the concralateral common iliac artery. Perfusion 
was conducted at constant-flow and 32'C using an erythro-
cyte-free modified Krebs-Ringer bicarbonate buffer containing 
2.5 mM CaC1 2 , 8.3 mM glucose and 4% undialysed bovine serum 
albumin (Sigma, fraction V). The flow rate was adjusted at the 
start of each perfusion to give comparable venous P02  values 
(nominally set at a minimum of 350 mmHg to ensure 
normoxia, as established in previous studies (Ye, Colquhoun, 
Hettiarachchi and Clark 1990)). Perfusion of the hindlimb was 
conducted at 32'C to both ensure normoxia in the absence of 
red blood cells and to allow a sufficient rate of glucose uptake. 
Insulin (Calbiochem, bovine soluble insulin, 25 U/mg) was in-
fused into a small stirred bubble trap proximal to the arterial 
cannula. Glucose uptake across the hindlimbs was determined 
by glucose analyser (YSI 2300 STAT, Yellow Springs Instru-
ments. U.S.A.) using samples of the inflow and outflow perfu-
sates. Upon completion of the perfusion. a 1% solution of Evans 
blue was infused into the arterial cannula at a similar flow rate 
to that used throughout the experiment. The resultant stained 
tissue was subsequently dissected out, blotted dry and 
weighed. Perfusion was largely confined to the muscle and fat; 
other tissues (bone and skin) contained very little dye. 

Results are given as means.: S.E. The significance of differences 
between means was analysed using Student's t-test. 

Results 

Table 1 shows body weight, heart weight and perfused hind-
limb muscle and fat content of lean, obese and obese Zucker 
rats treated with BRL 49653 for 7 days. At 27 weeks of age, the 
obesity was pronounced and the homozygote (fa/fa) rats 
showed significant differences from the age-matched lean 
(Fa/?) rats in terms of body weight. hindlimb muscle and hin-
dlimb fat content (Table 1). Treatment of the 20-week old 
obese animals with BRL 49653 for one week lowered signifi-
cantly the amounts of hindlimb muscle and fat when compared 
with age-matched obese animals given vehicle alone. The pro-
portion of muscle to fat in the hindlimb was not affected by 
treatment with BRL 49653. 

Treatment of the obese rats with BRL 49653 resulted in a sig- 
nificant increase in weight gain of approximately log over 7 
days (Fig. I). However comparison with the data of Table 1 
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Fig. 1 Effect of BRL 49653 on body weight gain of 20 week 
old male obese Zucker rats. SRI 49653 (3 umolikg) (•) or 
vehicle (A) was administered daily as an oral gavage. In-
dividual weight gains were used to calculate the mean 

S.E. p <0.05: "p <0.01, significantly different from BRL 
49653 'treated 

show that this effect was not apparent when body weights 
were averaged and that the weight gain was not reflected by 
changes in hindlimb far or muscle mass. 

Fig.2 shows the insulin dose-response curves for glucose up-
take by perfused hindlimbs of 27-week old obese and lean 
Zucker rats. Basal (pre-insulin) values for glucose uptake 
tended to be greater in the lean hindlimbs relative to the obese 
hindlimbs. Hindlimbs from lean rats were more responsive 
than those from obese rats and the trend became significant 
at 2 10 ntvl insulin. The half maximal effect of insulin for both 
lean and obese hindlimbs was 40 0/1 insulin but the obese 
hindlimb showed only approx. 50 % of the glucose uptake 
capacity of the lean hindlimb iFig.2 at all insulin concentra-
tions. 

Fig. 3 shows the effect of 7 days of treatment of 20-week old 
obese animals with BRL 49653 on insulin-mediated glucose 
uptake by the perfused hindlimbs. Hindlimbs from vehicle-
treated 20-week old la/fa rats had a lower basal (pre-insulin) 
glucose uptake rate as well as a smaller insulin response 
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Fig.? Insulin dose-response curves for glucose uptake by 
perfused hindlimbs from obese and lean Zucker rats. 
Details for perfusion and determination of glucose uptake 
are given in the text. Values are mean ±S.E. for five lean(•) 
and four obese (C) animals all of 27 weeks of age, and are 
expressed in terms of perfused mass of muscle * fat. 
"p <0.05, • 'p <0.01, significantly different from obese. 

Fig. 3 Insulin dose-response curves for glucose uptake by 
perfused hindlimbs from 20-week old obese Zuckers that 
were treated with BRL 49653 (3 umol/kg, p.o.) (•) or ve-
hicle (0) for 7 days. Valaues are means = S.E. for five ani-
mals in each group, and are expressed in terms of perfused 
mass of muscle fat. 'p <0.05; "p <0.01, significantly 
different from vehicle treated. 

(Fig. 3) than hindlimbs from the older obese animals (Fig. 2). 
However treatment with BR! 49653 increased significantly the 
basal rate of glucose uptake and, at maximal doses of insulin 
(?. 1 uM), there was a 50% increase in glucose uptake. The sen-
sitivity to insulin remained unaltered by BRL 49653 treatment 
with the half maximal concentration remaining at 40 nM. 

Discussion 

BRL 49653 is a new potent insulin sensitizer. In two models of 
genetic obesity, the ob/ob mouse and the fa/fa rat (Smith et al. 
1993; Cawthorne. Lister. Holder. Kirkham, Young Cantello. 
Hindley and Smith 1993). one of diet-induced obesity (Kraegen 
et al. 1993). and one diabetic strain (db/db: Cawthorne et al. 
1993) all of which are insulin resistant, BRL 49653 has been 
found to normalize oral glucose tolerance (Smith et al. 1993; 
Ca wthorne et al. 1993) and reduce the serum levels of insulin 
(Smith et al. 1993: Cawthorne et al. 1993). An improved whole 
body insulin sensitivity under euglycaemic clamp conditions 
has also been reported (Smith et al. 1993; Kraegen et al. 1993: 
Cawthorne et al. 1993), and there is indirect evidence to suggest 
that glucose uptake by muscle has been increased. In the pre-
sent study oral treatment with BRL 49653 at 3 umol/kg/day for 
7 days was found to increase significantly insulin mediated 
glucose uptake of the hindlimb of the obese Zucker rat. 

The effect of BRL 49653 on the hindlimb of the obese rat was 
manifest as an increased responsiveness to insulin without a 
change in EC,0. It is also important to note that the basal pre-
insulin) rate of glucose uptake was also enhanced following 
BRL 49653 treatment making it unlikely that the thiazolidine-
dione was simply enhancing the effect of insulin. It is possible 
that as in adipose tissue of ob/ob mice, treatment with BRL 

49633 increases the tissue content of glucose transporters 
(Young, Cawthorne, Coyle, Holder. Holman, Kozka. Kirkham and 
Smith 1993). Further studies will be needed to assess not only 
this but also which tissue(s) within the hindlimb is affected by 
the agent. 
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Vascular and endocrine control of muscle metabolism 
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Clark, Michael G., Eric Q. Colquhoun, Stephen Rattigan, Kim 
A. Dora, Tristram P. D. Eldershaw, Jenny L. Hall, and Jiming Ye. 
Vascular and endocrine control of muscle metabolism. Am. J. Physic!. 268 
(Endocrinol. Metab. 31): E797–E812, 1995.—Important differences exist 
between perfused and incubated (or perifused) skeletal muscle prepara-
tions with regard to their metabolism and control. A growing body of 
evidence suggests that the differences may be due to the role played by the 
vascular system. In the constant-flow perfused rat hindlimb preparation. a 
group of vasoconstrictors has been identified that enhance muscle metabo-
lism and aerobic contractility. Another group of vasoconstrictors decrease 
muscle metabolism and aerobic contractility even though perfusate flow 
remains constant. All effects of both groups of vasoconstrictors are 
opposed by vasodilators. Because none of the vasoconstrictor effects is 
evident when isolated muscles are incubated or perifused, involvement of 
an active vascular system is indicated. Although some hormones may act 
directly on muscle by purely endocrine effects, a vascular component of 
their actions is now emerging. Mechanisms to account for vascular control 
of perfused skeletal muscle metabolism may involve 1) functional vascular 
shunts where the proportion of flow processed by these is regulated by 
site-specific vasomodulators, 2) a direct response to a change in the rate of 
supply of nutrients and removal of products. and 3) a signal substance 
released by vascular tissue in association with vasoconstriction that 
interacts with surrounding skeletal muscle cells. Impaired control at the 
level of the vascular system may have implications for long-term access of 
nutrients and hormones and therefore the control of skeletal muscle 
metabolism and contractile performance. 
hemodynamic effects of hormones: functional vascular shunts: vascular 
system control of muscle metabolism: nutritive flow; nonnutritive flow: 
paracrine relationship between vasculature and skeletal muscle 

WHEN CONSIDERING FACTORS controlling the metabolism 
of skeletal muscle, use of preparations isolated from 
central, neural, and hormonal influences allows the 
investigator to obtain a clearer understanding of indi-
vidual treatments. This review will focus on the differen-
tial effects of vasoconstrictor agents that are apparent in 
perfused, but not incubated, muscle systems. An emerg-
ing theme will be the role of the vasculature. which in 
conjunction with endocrine effects acts to control the 
metabolism and performance of muscle. 

HISTORICAL ASPECTS 

Two systems have largely been used to explore factors 
controlling skeletal muscle metabolism. These are the 
perfused hindlimb preparation (77) and the isolated 
incubated (or perifused) muscle preparation. Many meta-
bolic controlling influences have been identified with the 
perfused hindlimb system, but because most of these 
could be more readily studied with the simpler isolated  

incubated muscle preparation workers have favored this 
latter approach [see recent review evaluating the two 
systems ( 5)1. However, an important omission in compar-
ing perfused with incubated muscle preparations is the 
possible role played by the vascular system, which would 
show little, if any, involvement in studies with isolated 
incubated muscles. 

Initially, vascular effects of various agents were stud-
ied independently of metabolic effects. For example. 
Folkow and his associates (74) developed the perfused 
hindlimb system especially to study vascular effects. 
including capillary filtration capacity. In this respect. 
the isolated perfused rat hindlimb was seen as a logical 
extension of the autoperfused (essentially in vivo) prepa-
rations of hindlimbs of dogs extensively studied by 
Pappenheimer and Soto-Rivera t 63) and Stainsby and 
Renkin (84). It was Folkow's laboratory (74) that noted 
that the isolated perfused rat hindlimb was largely fully 
dilated, and this was based on the observation that very 
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high flow rates of perfusate could be obtained at remark-
ably low perfusion pressures even when viscous perfus-
ates containing red blood cells were used. 

By the mid-1980s use of the perfused hindlimb prepa-
ration was widespread. and there was interest in carbo-
hydrate metabolism. thermogenesis, exercise physiology 
(see Ref. 5 and references therein), vascular pharmacol-
ogy (49), and vascular properties (74) using this experi-
mental model. Although there had been three reports of 
stimulatory effects of norepinephrine (NE) and epineph-
rine on oxygen uptake associated with increased perfu-
sion pressure (18, 35, 72), not one of the groups had 
identified a relationship between the vascular and meta-
bolic changes. 

VASOCONSTRICTORS OF PERFUSED HLNDLIMB THAT 
STIMULATE BASAL METABOLISM 

Findings from this laboratory in 1988 (17) linking the 
vasoconstrictor effects of angiotensin and vasopressin to 
increased oxygen uptake by the constant-flow perfusecl 
rat hindlimb were unexpected. Up to that point in time, 
we and others might have predicted that vasoconstric-
tors, such as angiotensin and vasopressin, would have 
strong vasoconstrictor activity with little or no effect on 
hindlimb metabolism. This led to a detailed study of 
effects of vasoconstrictors on hindlimb metabolism. 
Table 1 summarizes the findings and shows that the 
constant-flow perfused rat hindlimb responds to many 
different vasoconstrictors that stimulate basal oxygen 
uptake. Although not all of these vasoconstrictors have 
been examined in detail, all that have showed changes 
consistent with increased metabolism. The changes 
observed with the nonrecirculating perfusion system 
included increased lactate efflux by angiotensin (44), 
vasopressin (44). NE (up to 10 - ' M; see Ref. 44), 
methoxamine (44), [6]-gingerol (28), and [6]-shogaol 
(28), increased glycerol efflux by NE (12) and by NE plus 
propranolol, and increased urate and uracil efflux by NE 
(13), vasopressin (13), and angiotensin (13). An a-adren-
ergic effect of catecholamines to increase glucose uptake 
by the perfused rat hindlimb was first observed by 
Richter and colleagues (72) and was also accompanied by 
increases in perfusion pressure and oxygen uptake. 

In general, we have perfused the rat hindlimb at 25°C 
under conditions of constant flow with 95% 0 2-5% CO2  
as the gas phase (Table 1). However, qualitatively 
similar changes occur when the hindlimb is perfused at 
37°C under constant flow with medium containing 
bovine red blood cells and with 95% air-5% CO 2  as the 
gas phase ( Fig. 1). 

The close association between the increase in perfu-
sion pressure and change in oxygen uptake by vasocon-
strictors acting on the constant-flow perfused rat hind-
limb is readily evident if flow rate, temperature, and rat 
size remain constant ( Fig. 2). Vasopressin, angiotensin 
II, and NE each increased oxygen uptake and lactate 
efflux in a dose-dependent manner following closely the 
rise in perfusion pressure (44). In addition, the vasocon-
strictor effects of these agents are inseparable from the 
metabolic changes as evidenced by the findings that 
vasodilators. regardless of mode of action. block both the 

Table 1. Vasoconstrictor stimuli that increase 
(type A) or decrease (type B) oxygen uptake 
in perfused rat hindlinzb 

Change From Control at Maximum 
Dose of Agonist. 

AgonisE 
Perfusion 
pressure 

Oxygen 
uptake 

Ref. No. 

Norepinephrine 
Epinephrine 
Phenylephrine 
Methoxamine 
Arnidephrine 
Ephedrine 
Norephedrine 
Angiotensin II 
Vasopressin 
Capsaicin 
Dihydrocapsaicin 
[61-pingerol 
[61-Shogaolt 

Low-frequency sympa-
thetic nerve stimula-
tion (0.5-4 Hzi 

Norepinephrine 
I a 1 uNI) 

Serotonin 
Capsaicin ( > 1 !...M1 
Dihydrocapsaicin 

(61-Gingerol i a 20 n.Ml 

High-frequency sym-
pathetic nerve 
stimulation > 4 Hz 

Type A 
52. 130. NA 
67. NA 
160. NA 
167 
24 
70 
57 
133 
121 
54.5 
49 
30 
30 

6 
Type B 

700, 200. 380 
76 
110 

+ 
96 

37 

46, 52. 
25,67 
5250,* 57 

28 
10 
18 
64 
66 
22 
18 
21 
21 

6 

—22.7. 
—30.3 
—35 

— 
—21.2 

—16 

77 

—15. —10 

17. 18,35 
72,35 
81,35 448 

12, 42a 
12.42a 
43 
17 
17 
8 
8 
28 
28 

12* 

24, 18.34 
24 
§ 

12 
28 

12t 

Hindlimbs were perfused at 25'C with constant flow. * Cold-
acclimated rats. ', 1-(4'-hyciroxy-3'-rnethoxyphenyl )dec-4-en-3-one. *See 
also Fig. 3. § Unpublished. NA. not available. +and—. indicative of an 
increase or a decrease, respectively, when compared with control 
(vehicle only perfusions. 

metabolic and vasoconstrictor effects of the vasoconstric-
tors (44). The list of vasodilators includes nitrovasodila-
tors (16), nifedipine (Ca2-  channel blocker: see Ref. 16), 
isoproterenol (131,139-adrenergic agonist; see Ref. 17), 
adenosine, AMP, ADP, ATP, and UTP 

A further link between the vascular and metabolic 
effects of vasoconstrictors was noted when metabolic 
poisons were used (24. 69). As shown by Richards et al. 
(69), 1 mM cyanide totally blocked the pressor effect of 5 
nM angiotensin II as well as the increases in oxygen 
consumption and lactate efflux. Contrary to expectation. 
cyanide was slower than angiotensin II at inducing an 
increase in lactate efflux under the perfusion conditions 
used of constant flow at 25°C (69). Cyanide or hypoxia 
(95% N 2-5% CO 2 ) also blocked the pressor effect of 30 
nM NE (24). 

The association between increased lactate efflux and 
increased oxygen uptake by the perfused rat hindlimb 
during vasoconstriction might at first appear puzzling. 
The first report of lactate release by the perfused rat 
hindlimb in association with vasoconstriction was by 
Richter et a1.172) using the a-adrenerg,ic combination of 
epinephrine plus propranolol in a recirculating perfu- 
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sion system. Lactate release is more commonly the 
result of exercise, hypoxia, high K - , and 13-adrenergic 
action of catecholamines (see Ref. 44 and references 
therein) where in each case high rates of glycolysis in 
hindlimb skeletal muscle cells would be expected. The 
magnitude of the release can also be affected by the 
perfusate concentration of lactate. In our studies, oxy-
gen uptake and lactate efflux have been jointly moni-
tored in a nonrecirculating perfusion system with no 
added lactate, and reciprocity between the two does not 
occur unless poisons such as cyanide are present (69). 

In addition to the vasoconstrictor-induced increases 
in oxygen uptake, lactate, and glycerol output (Table 1), 
many of the more potent members of this group have 
been found to increase the release of breakdown prod-
ucts of both purine and pyrimidine nucleotides (13, 69). 
Uric acid and uracil are the most prominent of the 
products released, and although the origins and precur-
sors are unknown their time course of release is similar 
to that of lactate (69). 

VASOCONSTRICTORS OF PERFUSED HINDLIMB THAT 
INHIBIT BASAL METABOLISM 

Vasoconstriction of the constant-flow perfused rat 
hindlimb is not always a stimulus for increased oxygen 
uptake. Indeed several vasoconstrictors (which we now 
categorize as type B) lead to decreased oxygen consump-
tion with increased vascular resistance. This group 
includes serotonin (5-HT; 22, 24, 67), NE at high doses 

•F-
c? 

7.c E

• 

40 

25 

-10 	0 	10 	20 	30 	40 	50 
Time (min) 

Fig. 1. Time course for effect of angiotensin II on perfusion pressure 
and oxygen uptake by constant-flow (0.97 ml min g -  '1 perfused rat 
hindlimb. Perfusion media contained 49 bovine serum albumin, 
bovine red blood cells (32.5% hematocrit). 2.5 niM CaCl 2 , and 5 mM 
glucose in Krebs-Ringer bicarbonate buffer. pH 7.4 at 37°C, and was 
gassed with 95% air-5% CO2 . Bar indicates period of infusion of 
angiotensin 1• or vehicle (" 1...). Values shown are means = SE for 4 
perfusions. Data are similar to those previously published (171 using 
different condition of perfusion. 

A Perfusion Pressure (mmHg) 
Fig. 2. Relationship between change in oxygen uptake and perfusion 
pressure for constant-flow perfused rat hindlimb. Values are from the 
following perfusions: angiotensin II IL. vasopressin (•1. and norepi-
nephrine (41) dose curves. 180-200 g rats. 25°C. 0.27 ml•ming, 
with no red blood cells 02 = 4-5 for each) from Ref. 17: circle with plus 
inside, norepinephrine dose curve. 180-200 g rat. 37°C, 0.27 
ml • min -  • g -1 , with red blood cells (n = 1) and norepinephrine dose 
curve, 70-80 g rat, 37°C. 0.34 m1-min - '-g. with no red blood cells 
In = 3-4) from Ref. 68. 

(18, 24, 34, 68), high frequency sympathetic nerve 
stimulation (Fig. 3), and high-dose vanilloids (Table 1). 
Overall, the metabolic effects of the type B vasoconstric-
tors are the opposite to those of type A and are therefore 
potentially negatively thermogenic. 

The absence of a single simple direct relationship 
between the increase in perfusion pressure and change 
in oxygen uptake by vasoconstrictors acting on the 
constant-flow perfused rat hindlimb is readily evident. 
Figure 2 shows that, for relatively little pressure change 
[e.g., NE in young 170-80 g) rats], a large increase in 
oxygen uptake occurs. This contrasts with the effects of 
higher concentrations of NE in slightly older (180-200 
g) rats where very high pressures occur and there is a 
relatively small increase in oxygen uptake. Further-
more, at high doses. NE further increases pressure in 
rats of either age. but oxygen uptake shows a net 
inhibition (24. 68). 

Figure 4 shows the time courses for low-dose NE (type 
A) and 5-HT (type B) vasoconstrictors on perfusion 
pressure, oxygen uptake, lactate, and glycerol release. 
Although each agent produces a similar increase in 
perfusion pressure, there are opposite changes in oxy-
gen uptake and release of metabolites. 

The effects of NE at high concentrations [e.g., > lp.M 
is the concentration that is thought to occur at vascular 
smooth muscle synapses (29)1 are similar to those of 
5-HT. In fact the dose-response curve for NE-mediated 
changes in oxygen uptake is bell-shaped even though the 
corresponding dose-dependent rise in pressure contin-
ues over the full range of concentrations (24). At least 
two other groups I 18. 34) have noted the bell-shaped 
nature of the NE dose curve for oxygen uptake. In 
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Time (min) 
	

Time (min) 
Fig. 3. Time course for effect of sympathetic nerve stimulation on oxygen uptake and perfusion pressure of 
constant-flow (0.27 ml. L•g - ' I rat hindlimb. See Colquhoun et al. (17) for perfusion details. Paravertebral 
sympathetic chain of rat was cut at level of 4th lumbar vertebra and was electrically stimulated with pair of electrodes 
at 5 V at either 2 or 8 Hz. Stimulation was given for 1-s duration every 2 s to preserve nerve integrity. Tubocurarine 
was included in perfusate to prevent any skeletal muscle contraction during hindlimb perfusion. A: typical trace; B: 
n = 5 (Hall, Clark. and Colquhoun, unpublished data). 

addition, there is analogous evidence from sympathetic 
nerve stimulation studies in the autoperfused dog hind-
limb that frequency-dependent changes in oxygen extrac-
tion occur. Thus, at low frequency, sympathetic nerve 
stimulation leads to increased oxygen uptake in associa-
tion with mild vasoconstriction, but at higher frequen-
cies the increase changes to inhibition even though the 
vascular resistance continues to rise (26, 62). Similar 
observations have been made using the perfused rat 
hindlimb (Fig. 3). 

As with type A vasoconstrictors, known vasodilator 
substances act to oppose type B vasoconstrictor-medi-
ated increases in pressure and metabolism although, in 
some cases, with considerably less efficacy (12. 67). 
Thus, again, an association between vasoconstriction 
and metabolism is evident even though the effects of 
type B vasoconstrictors are the opposite to those of type 
A. It follows therefore that vasodilators that oppose type 
B vasoconstrictors revert the hindlimb to a more thermo-
genic state than that existing when type B constrictors 
are acting alone. 

Several lines of evidence suggest that both 5-HT and 
NE 1 p.M at 25°C (24) or 10 ii.N1 at 37°C (68)1 
inhibit metabolism in perfused hindlimb by similar 
vascular mechanisms but involving distinctly different 
receptors. First. 5-HT and high-dose NE each inhibit 
oxygen uptake (22, 24), lactate output (12). and uracil 
and uric acid output (12). Second, 5-HT and high-dose 
NE each inhibit aerobic muscle contraction and the 
associated increase in contraction-induced oxygen up- 
take (23 and see CORRELATION BETWEEN VASCULAR EF- 
FECTS TO ALTER METABOLISM AND VASCULAR EFFECTS TO 
ALTER CONTRACTILITY OF PERFUSED HINDLINIB MUSCLE). 

Third, high-dose NE, like 5-HT, exerts a vasoconstrictor 
effect at sites on the vasculature of the hindlimb system 
that are independent of extracellular Ca2-  (12) and that 
are largely unaffected by anoxia or respiratory poisons 
(24). Finally, NE effects are blocked by prazosin, but 
5-HT effects are not (24). 

POSSIBLE MECHANISMS TO ACCOUNT FOR 
THE OBSERVED CHANGES LN PERFUSED 
HLNDLIMB METABOLISM 

The fact that several groups (17, 18, 35, 72) have 
noted marked effects of NE acting via cu-adrenergic 
mechanisms (17, 35, 72) to increase oxygen uptake in 
the perfused rat hindlimb (30-100% over basal) under a 
variety of perfusion conditions (i.e., with and without 
red blood cells, carbogen. or air-0O 2  as gas phase and 
perfusion temperature at 25, 32, or 37°C) is indicative of 
a thermogenic mechanism that is activated. However, 
the mechanism by which site-specific vasoconstriction 
leads to changes in metabolism and thermogenesis 
(either increases or decreases) remains unknown. At 
present, there appear to be four possibilities that could 
account for the alterations in metabolism. 

Direct Effects on Skeletal Muscle 

One possibility that we have argued (17) is that the 
pressure increase is unrelated to the change in oxygen 
uptake (and other metabolism) and that receptors for all 
type A and B vasoconstrictors (see VASOCONSTRICTORS OF 
PERFUSED HINDLIMB THAT STIMULATE BASAL METABOLISM 
and VASOCONSTRICTORS OF PERFUSED HINDLIMB THAT IN- 
HIBIT BASAL METABOLISM), in addition to those on the 
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Fig. 4. Time course of effect of norepinephrine 
(Al and of serotonin (B) in constant-flow per-
fused rat hindlimb. See Colquhoun et al. (17) 
for perfusion details. Values are shown as 
means ± SE for 4-5 perfusions. Increase in 
lactate efflux after serotonin removal is tran-
sient and returns to preinfusion values. Data 
are similar to those previously published (24. 
441 and include some unpublished data for 
lactate and glycerol release. Praz, prazosin. 
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vasculature, are present on skeletal muscle and act 
directly to alter skeletal muscle fiber oxygen uptake and 
metabolism. However, if this were the case. it would be 
difficult to explain why direct effects of NE or other type 
A vasoconstrictors have no effect on oxygen uptake or 
metabolism by isolated incubated muscles ( Table 2 and 
Ref. 44). 

In rats. whole body oxygen uptake (and therefore 
thermogenesis) increases by up to 100% when NE is 
injected (12 and references therein). It follows therefore 
that an effective procedure to address the question of 
which tissue(s) is involved in this response has been to 
assume that the effects of NE in vivo can be effectively 
mimicked in vitro by exposing individual tissues to NE. 
For brown adipose tissue, this is certainly the case, and 
all preparations ( tissue fragments. isolated cells, and 
slices) respond markedly to the addition of catechol-
amine with values for oxygen uptake and heat produc- 

tion consistent with estimates for this tissue in vivo (31). 
However, unlike brown adipose tissue, isolated skeletal 
muscles incubated or perifused in vitro with NE plus 
propranolol (or angiotensin II; Table 2) do not respond 
by showing an increase in oxygen uptake, heat flux, or 
lactate output. These findings contrast markedly with 
our own observations (12, 16, 17. 94) and those of other 
groups (see Ref. 15 and references therein) who reported 
that infused sympathomimetic substances increased 
oxygen uptake in noncontracting skeletal muscle receiv-
ing its nutrient supply by the vascular route. 

Vascular Thermogenesis 

A second possibility that we have considered ( see Ref. 
15 and references therein) is that the increased metabo-
lism (including oxygen uptake) is due to the work 
performed by the vascular smooth muscle itself as it 
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Table 2. Effects of norepinephrine and other 
vasoconstrictors on metabolism by isolated 
incubated muscles 

Muscle Addition Oxygen 
Uptake 

Lactate 	Ref. 
Output 	No. 

Rat soleus None 13=2 10=2 44 
Norepinephrine (100 n1M) 12=2 7=3 44 
Angiotensin II (100 old) 18 = 4 8 = 2 44 

Rat epitrochlearis None 27 = 2 44 
Angiotensin II (5 old) 28 = 1 44 
Vasopressin (0.5 old) 29 = 2 44 

Mouse soleus None 2.6=0.2 25 
Norepinephrine (11154) 2.7 = 0.2 25 

Values are means = SE. Units for rat soleus and epitrochlearis 
muscles are dmol-g -1 •11 - t. Units for mouse soleus muscle are 
I.LW;mg wet wt. See also conclusions by Eaton (27). 

contracts to increase and hold perfusion pressure (i.e., 
hot pipes). Indeed, the close association between type A 
vasoconstriction and increased hindlimb oxygen uptake 
for animals of similar weight and age (Fig. 2) and the 
release of lactate have led us to propose that both 
aerobically and anaerobically generated ATP may be 
consumed by the working vascular tissue as it constricts 
(15) or as it resists an increase in pressure due to flow 
increase (15). The dependence of type A vasoconstrictors 
on coupled oxidative phosphorylation to mediate rises in 
perfusion pressure (24, 69) supports the notion of 
vascular thermogenesis. 

Attempts in this laboratory to demonstrate high rates 
of oxygen consumption by the isolated perfused rat tail 
artery have shown that mitochondrial content and 
cytochrome oxidase activity may be high enough to 
allow for the predicted high rates of oxygen consump-
tion (i.e., of the order of 800 p.mol • h -  • g wet wt - ' ). If 
rates of oxygen consumption of this order were attain-
able by the vascular elements, 3.4% by weight of the 
skeletal muscle would need to be vascular smooth 
muscle, and both arterial and venous structures would 
need to be involved in responding to the vasoconstrictors 
that increase oxygen consumption. However, the poten-
tial for oxidative metabolism appears to rise with a 
decrease in vessel size, and thus the values for perfused 
rat tail artery may underestimate rates for arterioles. 
Hence, metabolic studies using small-resistance vessels 
will be beneficial. 

It is of interest that selected vasoconstrictors increase 
oxygen uptake by perfused intestine, kidney, and mesen-
teric artery in association with increases in perfusion 
pressure 93). Thus the thermogenic mechanism associ-
ated with vasoconstriction is not restricted to skeletal 
muscle, whether it derives from working vascular tissue 
( i.e., "hot pipes") or another unidentified process. 

The obvious lack of a positive relationship between 
perfusion pressure and metabolism observed upon infu-
sion of type B vasoconstrictors into the perfused hind- 
limb 'see VASOCONSTRICTORS OF PERFUSED HINDLIMB THAT 
INHIBIT BASAL METABOLISM) is difficult to explain simply 
according to vascular thermogenesis. Despite marked 
rises in perfusion pressure upon infusion of 0.1 uN1 NE 
or 0.25 1.3,15-I-IT (Fig. 4). the effects on metabolism were 

opposite with NE stimulating 02  but 5-HT inhibiting 
02 . It has been proposed that, in these situations, 
site-specific vasoconstriction, perhaps of larger vessels, 
reduces the pressure load on the metabolically active 
working resistance vasculature and/or reduces the deliv-
ery of nutrients to working vascular smooth muscle 
(22). 

Heterogeneity of Perfusion 

An alternative possibility to the notion of hot pipes 
stems from the observation that all type A vasoconstric-
tors in the constant-flow perfused rat hindlimb induce 
an efflux of red blood cells on initial infusion(s) after 
equilibration with perfusate not containing red blood 
cells (unpublished observations). This coincides with the 
early efflux of lactate, purines, and pyrimiclines and may 
reflect pressure-induced clearance of regions and vessels 
not accessed during equilibration. The vasoconstricting 
agents may act at specific sites on terminal arterioles to 
increase perfusion pressure resulting in perfusion of 
regions of the hindlimb that were previously underper-
fused, eliminating a prexisting state of microheterogene-
ity. Such heterogenous perfusion has been noted in the 
autoperfused tenuissimus muscle of the rabbit (55). 
When perfusion pressure was decreased <50 mmHg 
using an occluder, decreases in both blood flow and the 
number of perfused capillaries resulted (55). The con-
stant-flow hindlimb perfusion system used in the au-
thor's laboratory is characterized by a minimal or 
nonfunctional neural component, and equilibration leads 
to the washout of humoral vasoconstrictive agents. 
Thus basal perfusion pressures are low. However, the 
overall flow through the hindlimb skeletal muscle is 
kept at a constant high rate (0.27 ml min -  g - 1 ). Fur-
thermore, the effects of NE to cause vasoconstriction-
associated increases in oxygen uptake are evident across 
a full range of flow rates from 0.13 to 1.2 ml min -1 . g -
(94). Thus, if heterogeneity is an issue, then the degree 
of heterogeneity is not decreased by simply increasing 
flow. Indeed, studies by Grubb and Snarr (36) led them 
to conclude that high perfusate flow rates preferentially 
increased heterogeneity by increasing nonnutritive flow 
in the rat hindlimb. 

A consequence of the isolated perfused rat hindlimb 
being fully dilated is that flow rates, which are supra-
physiological, fail to achieve basal perfusion pressures 
approaching those in vivo. Thus it could be argued that 
vasoconstrictors that act to increase metabolism do so 
by decreasing heterogeneity. Although this cannot be 
entirely ruled out, constant-flow perfusions at pressures 
approaching in vivo values ( i.e.. 90 mmHg) respond 
similarly to those at lower pressures and flow rates with 
marked responses to NE or vasopressin in terms of 
increased oxygen uptake (94). Furthermore, perfusions 
with red blood cells at 37'C. constant flow, and 60 
mmHg, under basal conditions, show marked increases 
in oxygen uptake with angiotensin II ( Fig. 1). Overall, 
the results are qualitatively similar regardless of the 
conditions of perfusion. 

Our explanation to account for the type B effects of 
5-HT '67). and the recent findings for high-dose NE as a 
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type B agent (68), focuses on the notion of functional 
vascular shunting in the hindlimb in which agonists are 
proposed to mediate a marked constriction in large 
arterioles (92) downstream from branch points for 
functional shunts leading to the venous circulation (22). 
As a result. 5-HT- or NE-mediated partial closure at 
these points returns perfusate to the venous circulation, 
allowing constant flow while decreasing access of the 
perfusate to significant areas of the microvasculature. 
Consistent with this notion, Saltzman et al. (79) have 
suggested that constriction at the transverse arteriole 
root restricts perfusion of muscle transverse arterioles 
and capillaries while still allowing flow through the 
arcade arterioles to connective tissue. These effects 
would not be evident when unperfused muscle is incu-
bated where access is governed by diffusion alone but 
would markedly affect nutrient delivery in perfused 
hindlimb. We would propose therefore that sites in the 
muscle vasculature where low doses of NE ( 1 p.M) 
mediate an increase in oxygen uptake are compromised 
by high-dose effects to divert flow to functional shunts 
thus giving rise to a marked inhibition of oxygen uptake 
at higher doses of NE. Hence a bell-shaped curve for 
oxygen uptake, as a function of NE concentration, 
results even though perfusion pressure continues to rise 
in proportion to the concentration of catecholamine 
(24). In addition, the parallels between 5-HT and high-
dose NE-mediated effects suggest that the proposed 
sites for 5-HT on arterioles larger than 90 p.m (50) are 
probably near the sites for high-dose NE-mediated 
vasoconstriction but are anatomically and pharmacologi-
cally distinct from those constricted by low-dose NE, 
which increase oxygen uptake. 

The anatomy of the so-called functional vascular 
shunts is an important issue for which there is very little 
hard information. Early studies reporting on changes in 
oxygen consumption of resting muscle during stimula-
tion by vasoconstrictor (62) or by vasodilator (75) inner-
vations ascribed the findings to a shunting of blood into 
areas of low metabolic rate or through arteriovenous 
anastomoses that were considered to be nonfunctional 
in nutritional exchange with the muscle tissue itself. 
The anatomy of' these structures was not defined even 
though clearance studies for certain effects of vasomotor 
innervation and epinephrine injection as well as micro-
particle injection studies and anatomical procedures 
suggested their presence in muscle (see Ref. 46 and 
references therein). Such findings provided the basis for 
discussions of "nonnutritional" flow during the 1960s. 
However by 1970 it was clear that anatomical arteriove-
nous shunts of the kind found in other tissues were not 
present in skeletal muscle (37). Work in our laboratory 
has confirmed that passage of 12-pm microspheres 
through rat hindlimbs is minimal (0.7 ± 0.3%; see Ref. 
21). Thus recent argument by ourselves and others 
focuses on the notion of functional vascular shunts 
which, although still undefined, involve vessels of <15 
p.m in diameter, possibly capillaries. Chinet 1 1 ) has 
argued for a microscale heterogeneity of blood flow to 
muscle that is controlled predominantly by flow and 
favors the view that part of the physiological control of  

muscle respiration would be by intraorgan control of O. 
availability to cells. This general line of reasoning is also 
adopted by Harrison et al. (38) in their attempt to 
explain intravenous hydrogen clearance measurements 
before and during femoral nerve stimulation. These 
workers propose two sets of capillaries with a small 
population of capillaries of relatively large diameter that 
carry a disproportionately large amount of flow. Argu-
ments along these lines might also be applicable to the 
findings of Vetterlein and Schmidt (89) who noted that 
the increase in total blood flow in autoperfused cat and 
rat hindlimbs induced by the intra-arterial infusion of 
vasodilating agents appeared to be associated with a 
reduced perfusion of certain parts of the striated muscles. 
Potter and Groom (66) using corrosion casts in rat 
gastrocnemius muscle revealed a bimodal distribution of 
capillary diameter with modes at 5.5 and 7.5 p.m. 
Despite the population of large-diameter capillaries rep-
resenting only 13%, Harrison et al. (38) argue, according 
to the Hagen-Poiseuille law, that they would carry 71% 
of the flow. The remaining 29% would flow through 87% 
of the capillaries. During motor nerve stimulation, it 
was proposed that oxygenated blood was probably di-
verted from the high flow (albeit functional shunts) to 
the normal capillaries to meet the increased local oxygen 
demand (38). Monitoring of the intravenous hydrogen 
clearance kinetics indicated that, during motor nerve 
stimulation, the slope of the fast component of the curve 
was reduced and that of the slower component increased 
until, in almost all cases, they became indistinguishable 
from each other (38). Kinetics of sodium fluorescein 
under similar experimental conditions also supported 
the shift in flow from shunts to nutritive capillaries (39). 
The hypothesis put forward by Harrison et al. (38) also 
encompasses the notion of differing capillary length. 
Thus the longer narrower capillaries contribute more 
toward gas (nutrient) exchange than the shorter wider 
ones. 

Paracrine Control of Skeletal Muscle Metabolic Rate 

Increasing the supply of oxygen and nutrients to 
muscle is not, in itself, a stimulus for increased metabo-
lism [e.g.. red blood cell vs. nonred blood cell perfusions 
(5], and there is now reason to suspect that site-specific 
vasoconstriction within the hindlimb, and possibly other 
tissues, leads to the release of a signal molecule. Thus 
the fourth possibility involves an endocrine relationship 
between the vasculature and the skeletal muscle fibers. 
This is based on a growing body of' evidence that 
vasoconstriction and increased flow are two principal 
mechanisms of shear stress-dependent endothelial auta-
coid release. For example, Hecker et al. (40) have shown 
that either addition of acetylcholine to or increasing flow 
through isolated endothelium-intact rabbit femoral ar-
teries increased nitric oxide and prostaglandin I 2  re-
lease. Moreover Suarez and Rubio 86) have shown that 
increases in coronary flow in guinea pig hearts resulted 
in a linear increase in glycolytic flux of the underlining 
parenchymal heart cells. Although the endothelial-
derived signals were not identified, disruption of the 
endothelial cell membrane intravascular glycocalyx by 
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heparinase inhibited the coronary flow-induced increase 
in cardiac glycolysis (86). 

For the skeletal muscle vasculature, a similar relation-
ship may exist (Fig. 5). Thus vasoconstriction by type A 
constrictors at site A decreases flow through nonnutri-
tive capillaries and redirects flow to nutritive regions. 
Increased flow at sites along the nutritive capillary 
network leads to autacoid( s) release. These could have 
the following two functions: 1) an autacoid role to relax 
vessels distal to the impending flow and 2) a paracrine 
role to increase metabolism in underlining muscle fi-
bers. Likely metabolic changes in muscle include uncou-
pling or decoupling of mitochondria and substrate cy-
cling (including ion pumping). Because concentrations 
of high-energy phosphates and the redox ratio do not 
change significantly before and after addition of type A 
vasoconstrictor (16), it appears unlikely that metabo-
lism increases without an accompanying energy-dissipat-
ing process. Further studies are needed to identify the 
proposed paracrine substance(s) and to show whether 
they directly alter skeletal muscle metabolism (e.g., by 
uncoupling of mitochondria) or act via receptor-medi-
ated signal-transducing systems. In any event, all ob-
served metabolic changes would need to be accounted 
for, including the sustained steady-state increases in 
oxygen uptake, glucose uptake, and lactate, glycerol, 
purine, and pyrimidine catabolite release. 

Type B vasoconstrictors may act at the level of larger 
vessels to either redirect flow away or reduce the load 
from the vessels responsible for the autacoid release. 

ENDOCRINE EFFECTS OF VASOACTIVE AGENTS 
ON MUSCLE METABOLISM 

Isolated Incubated Skeletal Muscle 

A consideration of direct endocrine influences on 
skeletal muscle assumes that the effects seen are exclu-
sively the result of the hormone, neurotransmitter. or 
related substance reacting with receptors on the skeletal 
muscle sarcolemma and that an intermediate involve-
ment by the vasculature has not occurred. Thus discus-
sion in this section is directed at studies where effects on 
skeletal muscle have been observed with muscle(s) s ) that 
have been removed from the animal and incubated or  

perifused with buffer containing the proposed agent. 
Under these conditions, the vasculature receives no flow 
and cannot distribute hormone or substrate. Similarly, 
the release and distribution of a signal substance arising 
from the vasculature due to changes in flow or vasocon-
striction are minimized. It is also assumed that the 
hormone, neurotransmitter, or related substance as 
well as substrate has reached the muscle sarcolemma by 
diffusion from the bathing incubation buffer. Thus data 
for observed metabolic effects are considered in conjunc-
tion with evidence for the corresponding receptors on 
skeletal muscle sarcolemma. 

Table 3 lists the metabolic effects of several vasoactive 
agents observed with isolated skeletal muscle prepara-
tions. Relatively few agents produce unequivocal effects. 
These include insulin, which has been shown with a 
variety of incubated muscles to increase glucose trans-
port and glycogen synthesis (see Ref. 5 and references 
therein). Other insulin-sensitive processes include gly-
colysis I 53), amino acid uptake (42), and lactate forma-
tion (51J. There seems little doubt that insulin's effect to 
alter these parameters is a direct result of insulin 
interacting with insulin receptors located on the skeletal 
muscle sarcolemma. Support for this notion comes from 
binding studies for insulin to intact isolated mouse and 
rat soleus muscles (Table 4). Closely related insulin-like 
growth factor I receptor mechanisms may also be pre-
sent as effects of this growth factor have been reported 
on amino acid uptake by isolated epitrochlearis (42) and 
on glucose transport. glycolysis, glycogen synthesis. and 
glucose oxidation by isolated soleus muscles indepen-
dent of the effects of insulin 19). 

Catecholamine effects can be broken down into those 
arising from the p-adrenergic receptor mechanisms and 
into those arising from a-adrenergic receptor mecha-
nisms. I3-Adrenergic effects demonstrable with isolated 
muscles include the production of adenosine 3'.5'-cyclic 
monophosphate IcAMP 1. activation of phosphorylase 
30), stimulation of glycogen breakdown 95), stimula-

tion of lactate formation, and an inhibition of alanine 
and glutamine release as a consequence of an inhibition 
of proteolysis (Table 3). Glucose transport appears to be 
inhibited by isoproterenol (951. although there is a 
recent report 1.1 that the 0,-adrenergic agonist BRL 
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Table 3. Endocrine effects of vasoactive hormones, neurotransmitters, and related substances 
on isolated skeletal muscle metabolism 

Addition Muscle Preparation Effects Ref. No. 

Insulin 

IGF-I 

B-Adrenergic agonists 

Soleus, soleus strips 
Epitrochlearis 
EDL, EDL strips 

Epitrochlearis 
Soleus 
Soleus 

Glucose transport 
Glycogen synthesis 
Lactate formation 
Glycolysis 
Amino acid uptake 
Amino acid uptake 
Glucose transport & metabolism 
Glycogen breakdown 

Table 6 of Ref. 5 
Table 7 of Ref. 5 
51 
53 
42 
42 
19 
48. 60, 95 

Lactate formation 44, 48 
Inhibition of 2—DG uptake phosphorylation 48 
Increased Na/K transport and membrane 

potential 
14 

Epitrochlearis Alanine + glutamine release, cAMP produc- 
tion, phosphorylase a formation 

30 

53-Adrenergic agonist Soleus 2-DG uptake increased 1 
a-Adrenergic agonists Rat diaphragm Glucose uptake 78 

BC3H1 muscle cell lines Mobilization of intracellular 6 
Adenosine (or adenosine receptor 

agonist) 
Soleus Decreases sensitivity to insulin for glucose 

uptake 
51 and Refs. therein 

Serotonin Epitrochlearis Alanine + glutamine release, cAMP produc- 
tion. phosphorylase a production, depletion 
of glycogen 

30 

IGF-I. insulin-like growth factor I; EDL. extensor digitorum longus: 2-DO. 2-deoxy-o-glucose. 

37344 increased 2-deoxyglucose uptake by 30% at 100 
pM in isolated soleus muscles from young rats. 

It is generally assumed that so-called "skeletal muscle 
membrane preparations" predominantly contain mem-
branes from skeletal muscle; however, contamination by 
membranes from the vascular elements cannot be 
avoided. Thus, if the density of a receptor for a particu-
lar hormone or neurotransmitter is rich on the vascula-
ture. even a small contamination of "skeletal muscle 
membranes" by vasculature elements can confuse the 
picture. For example, the relative density of P-adrener-
gic receptors on skeletal muscle vasculature may be 
higher than the surrounding muscle fibers (cf. Refs. 52 
and 57), and it is therefore possible that the presence of 
P-adrenergic receptors of vascular origin could signifi-
cantly affect data for 3-receptor binding or adenylyl 
cyclase activity measurements with isolated membrane 

Table 4. Hormone and neurotransmitter receptors 
identified by binding to isolated skeletal muscle, 
skeletal muscle plasma membrane preparations, 
or skeletal muscle nuclear fractions 

Muscle Preparation 	Ref. No. 

Mouse soleus 	 53 
Rat soleus 	 96 

Rat muscle membranes 	52,57.39 
Rat muscle membranes 	91 
Human muscle membranes 	54 
Cultures of neonatal rat skeletal 

muscle 	 20 
Rat soleus muscle membranes 	82 
Rat skeletal muscle 	 58 
Rabbit intrafusal muscle spindle 

fibers 	 33 
Rabbit intrafusal muscle spindle 

fibers 	 :13 

For brevity, only sample references are given.  

preparations. The purported status of a-adrenergic recep-
tors on skeletal muscle is even more precarious because 
the relative densities strongly favor the vasculature. 
Autoradiographic analysis after long exposure times to 
[3H]prazosin (-±phentolamine) showed a low but signifi-
cant level of specific binding in muscle fibers (58). No 
difference in a l -receptor density was observed among 
types I, Ha. and lib fibers. However, small blood vessels 
have a high a t -receptor density, with resistance arteri-
oles (20-100 am diameter) and small arteries (100-500 
p.m diameter) containing 6- and 32-fold more binding 
sites per unit section area, respectively, than surround-
ing muscle fibers. 

To date, there have been relatively few reports of 
a-adrenergic metabolic effects on isolated muscle prepa-
rations. Saitoh et al. (78) reported an a-adrenergic 
receptor-mediated stimulation of glucose utilization by 
isolated rat diaphragm. However, Young et al. (95) were 
unable to find an a-adrenergic effect of phenylephrine to 
stimulate 3-0-methylglucose uptake by isolated epitroch-
learis despite a report by Richter et al. (72) of an 
a-adrenergic effect to increase arteriovenous glucose 
uptake by the perfused hindlimb (see POSSIBLE MECHA- 
NISMS TO ACCOUNT FOR THE OBSERVED CHANGES IN PER- 
FUSED HINDLIMB METABOLISM for our proposed explana- 
tion). There has been no follow-up of a report of a l - and 
a2-adrenergic receptors on rabbit intrafusal muscle 
spindle fibers (33). It is also important to note that the 
glycogenolytic effects of either epinephrine or NE with 
isolated rat soleus or epitrochlearis muscles are com-
pletely blocked by propranolol and are not affected by 
phentolamine (60. 95). Thus a role of a-adrenoceptors in 
muscle metabolism is not evident. A second important 
point is that the BC 3 H1 muscle cell line, although 
possessing a 1 -adrenergic receptors and mechanisms, is 
considered to be more representative of smooth rather 
than striated muscle (6). Finally, the functional role of 

Receptor 

Insulin 

Catecholamines 
I3 general 
0'2 

Putative i33 

cr, 
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the atypical sites labeled by [ 125I]iodocyanopindolol (pu-
tative 33-sites; see Ref. 82) in membranes from rat 
soleus muscle or evenly distributed over gastrocnemius, 
plantaris, and soleus (richest in soleus) remains un-
known (59). 

Another candidate substance that may directly affect 
skeletal muscle metabolism is adenosine. In a series of 
experiments, Langfort et al. (51 and references therein) 
have shown that the local hormone adenosine modu-
lates the sensitivity to insulin of the rate of glucose 
transport in isolated incubated skeletal muscle. Addi-
tion of adenosine deaminase or an adenosine receptor 
antagonist to incubated skeletal muscle preparations 
caused an increase in the sensitivity, whereas addition 
of an adenosine receptor agonist decreased the sensitiv-
ity to insulin. Even though adenosine is a strong vasodi-
lator in perfused skeletal muscle vasculature (70), for 
the various reasons given above, it is unlikely that the 
insulin-antagonistic effects of adenosine indirectly re-
sult from receptor-mediated changes initiated at the 
vasculature. Indeed Challiss et al. (10) concluded that 
the effects of adenosine to oppose insulin-mediated 
glucose uptake were mediated at a "postreceptor" level. 
Although binding studies have not been conducted, 
various selective agonists and antagonists suggest that 
the receptor mechanism involved is of the A 1  adenosine 
type (10). A recent study (88) involving perfused rat 
hindlimb concluded that stimulation of sarcolemmic 
adenosine receptors during contractions was involved in 
the synergistic stimulation of muscle glucose transport 
by insulin and by contractions. Again, contrasting find-
ings between incubated isolated muscle and perfused 
hindlimb could imply a vascular involvement. Clearly, 
further studies are required to resolve these questions. 

Serotonergic receptor mechanisms appear to be pre-
sent on rat epitrochlearis muscles (30). 5-HT inhibited 
alanine and glutamine release, increased cAMP and 
phosphorylase levels, and promoted the depletion of 
glycogen; all of these effects were blocked by methyser-
gide or cyproheptadine (30). Although unconfirmed by 
binding studies, it would appear likely that 5-HT acts via 
5-HT 1  receptors coupled to adenylyl cyclase. 

COORDINATED VASCULAR AND ENDOCRINE EFFECTS 

Catecholamines 

This subsection attempts to draw together observa-
tions from in vivo as well as in vitro studies to present an 
overview of the likely coordinated effects of catechol-
amines on skeletal muscle metabolism. To account for 
the full range of physiological states, two concentration 
levels of NE and/or the equivalent intensity of sympa-
thetic nerve stimulation need to be addressed. Thus low 
to moderate levels of circulating NE are considered to be 
between 0.1 and 100 nM and at the lower end are in the 
physiological range (41). Low-frequency sympathetic 
nerve stimulation is from Ito 6 Hz and, for this range of 
frequencies, gives rise to data similar to the low levels of 
NE (12). Higher levels of NE are those exceeding 100 
nM and up to 10 u.NI and those are believed to be 
approximately the levels likely to occur at vasoconstric- 

tor synapses (29). Frequencies of the sympathetic ner-
vous system (SNS) >6 Hz are considered intense and 
may occur in some states of hypertension (56). 

At low to moderate levels of NE and/or low levels of 
SNS stimulation, the final effects on skeletal muscle 
metabolism can be broken down into four separate 
aspects. First, increased cardiac output mediated by a-
and 0-adrenergic (61) mechanisms may lead to net 
increased blood flow to muscle if unconstrained by 
increased total vascular resistance within the muscle 
beds. Any net increase in flow could predictably increase 
the net recruitment of nutritive capillaries without a 
change in heterogeneity and, through mechanisms un-
known, could lead in turn to increased metabolism. 
Flow-dependent increases in oxygen uptake in perfused 
hindlimb preparations have been noted by several labo-
ratories (see Ref. 5 and references therein), although 
there has been one exception (36). Increased flow also 
leads to increased lactate (94). Second, and as discussed 
in VASOCONSTRICTORS OF PERFUSED HINDLIMB THAT STIMU-
LATE BASAL METABOLISM, low concentrations of NE lead 
to marked increases in metabolism, including oxygen 
uptake, lactate, glycerol. purine, pyrimidine efflux. glu-
cose uptake, and insulin-mediated glucose uptake. Un-
der some conditions (e.g., hindlimbs from young rats), 
the increase in perfusion pressure resulting from the 
vasoconstriction is remarkably small (5-10 mmHg) 
even though the increase in metabolism is large. We and 
others (75) have proposed that the effects of vasoconstric-
tors to increase metabolism result from site-specific 
vasoconstriction to change flow patterns within muscle. 
The nature of high-capacity nonnutritive flow in ana-
tomical terms is discussed in POSSIBLE MECHANISM TO 
ACCOUNT FOR THE OBSERVED CHANGES IN PERFUSED HIND- 
LIMB METABOLISM. For low-dose NE, the sites of vasocon-
striction are Ca.2-  dependent. have a 100-fold higher 
sensitivity to prazosin than yohimbine (21), and may fall 
in the category of putative a iL-receptors (7). Third, 
p-adrenergic receptor mechanisms of a vasodilatory 
nature may also operate on the skeletal muscle vascula-
ture. Indeed isoproterenol, when added with low-dose 
NE, completely opposes the NE-mediated vasoconstric-
tion and associated metabolic effects (16). Thus vasodila-
tors, in general, appear to oppose the changes in nutri-
tive and nonnutritive flow brought about by putative 
ct tradrenergic receptor activation involving low-dose 
NE and return metabolism to pre-NE values. Despite 
this possible scenario. the P-adrenergic vascular activity 
of NE in the rat hindlimb appears remarkably weak. 
Fourth, NE exerts a strong 32-adrenergic effect directly 
on skeletal muscle leading to the activation of adenylyl 
cyclase and the various cAMP-dependent processes. 
Although the role may be to support the energetic 
requirements of working skeletal muscle, the action on 
resting muscle is less clear. Overall, the coordinated 
response resulting from low-level NE and.' or low-
frequency SNS stimulation is increased basal metabo-
lism. resulting partly from increased blood flow to 
muscle and site-specific vasoconstriction within the 
muscle vasculature to increase the proportion of nutri-
tive nonnutritive flow and hence metabolism. This may 



INVITED REVIEW 	 E807 

have benefits by increasing nutrient delivery putative 
OIL) and mobilization of endogenous fuel reserves I 8,1 in 
anticipation for future work by the muscle fibers or for a 
thermogenic intent, presumably to warm muscle or the 
body generally. 

At higher levels of NE and/or intense SNS stimula-
tion, the positive metabolic effects of increased blood 
flow to muscle and site-specific a u_ vasoconstriction are 
overridden by a strong putative a m  vasoconstriction (7) 
to open functional vascular shunts (nonnutritive). The 
consequence of this is to dramatically decrease nutritive 
flow, and the coordinated response of high-level NE 
and/or intense SNS stimulation is decreased metabo- 
lism (see VASOCONSTRICTORS OF PERFUSED HINDLIMB THAT 
INHIBIT BASAL METABOLISM and POSSIBLE MECHANISMS TO 
ACCOUNT FOR THE OBSERVED CHANGES IN PERFUSED HIND- 
LIMB METABOLISM) with nonnutritive flow predominat-
ing. This scenario would have decidedly negative effects 
on nutrient and hormone delivery (68), metabolic end 
product efflux, and contractility of skeletal muscle (see 
CORRELATION BETWEEN VASCULAR EFFECTS TO ALTER ME-
TABOLISM AND VASCULAR EFFECTS TO ALTER CONTRACTILITY 
OF PERFUSED HINDLIMB MUSCLE). 

A major difficulty in this consideration is the set point 
of the ratio of nutritive/nonnutritive flow in muscle in 
vivo. The reasoning put forward above is based on the 
assumption that, under basal conditions, the extent of 
nonnutritive flow is relatively low. If this is the case, 
then the positive metabolic effects of putative au:  
adrenergic vasoconstriction would be relatively small, 
and the negative metabolic effects of putative aix-
adrenergic vasoconstriction would be profound. Alterna-
tively, if the extent of nonnutritive flow is relatively high 
in skeletal muscle in vivo, the opposite conclusion would 
prevail with ct ivadrenergic vasoconstriction having a 
marked effect to increase metabolism. There are reason-
able grounds to predict (71) that lack of physical activity 
and/or aging may cause a shift from predominantly 
nutritive to predominantly nonnutritive flow. 

Insulin 

Recent interest in the cardiovascular actions of insu-
lin has highlighted the possible effect of this hormone to 
increase its own access to skeletal muscle by hemody-
namic effects (see Ref. 4 and references therein). Al-
though there is some controversy as to whether insulin 
increases blood flow to skeletal muscle (4j, it is quite 
possible that it does so. A correlation between the 
increase in cardiac output and leg blood flow suggests 
that the increase in cardiac output is a major contribu-
tor to the increased flow. Insulin-mediated vasodilation 
and lowering of leg vascular resistance by a nitric 
oxide-dependent mechanism is believed to partially ac-
count for the increase in leg blood flow and to act as an 
amplifier of insulin action (4). However, questions arise 
concerning the mechanisms by which insulin increases 
cardiac output. Whereas previous explanations have 
focused on a putative activation of the SNS by insulin 
with the assertion that mean arterial blood pressure 
would rise (76), recent findings suggest that this may 
not be so simple. Thus Anderson et al. (2) reported that  

systemic hyperinsulinemia produced a marked increase 
in muscle sympathetic neural outflow with a simulta-
neous reduction of forearm vascular resistance and a 
small fall in blood pressure. Data from Baron (4) would 
suggest that the combined effect of increased cardiac 
output and vasodilation within skeletal muscle vascula-
ture improves insulin (and glucose?) access. It is too 
soon to speculate whether insulin directly, or indirectly, 
improves access by modulating the proportion of nutri-
tive/nonnutritive flow. Clearly the potential is there for 
a coordinated response involving the combination of a 
vascular effect of insulin with actions through the 
insulin receptors located on skeletal muscle fibers. 

In perfused hindlimb studies, insulin has been re-
ported to cause a small vasodilatory effect without SNS 
involvement (68), and there have been some reports that 
insulin appears to lower intracellular Ca2-  concentra-
tion of vascular smooth muscle cells in culture (85). 

CORRELATION BETWEEN VASCULAR EFFECTS 
TO ALTER METABOLISM AND VASCULAR EFFECTS 
TO ALTER CONTRACTILITY OF PERFUSED 
HLNDLIMB MUSCLE 

Although the inotropic effect of epinephrine on con-
tracting skeletal muscle has been known for some time 
(see Ref. 90 and references therein), the effects seen 
were invariably the result of systemic injection of ex-
tracts of the adrenal gland or epinephrine itself. Thus 
the cardiovascular effects of epinephrine, including 
changes in cardiac output, peripheral vascular resis-
tance, and within-muscle redistribution of flow (see 
below), could not be separated from direct effects on 
muscle. Furthermore, it was clear that not all skeletal 
muscle types were alike in their response to the inotro-
pic action of epinephrine. In fast-contracting muscles, 
twitch tension and the degree of subtetanic fusion were 
increased, the rate of relaxation was slowed, and tetanic 
tension was unaltered by epinephrine. Conversely, in 
slow-contracting muscles. epinephrine reduced twitch 
tension and increased the rate of relaxation while it 
decreased unfused tetanic contraction tension and the 
degree of fusion (see Ref. 90 and references therein). 
The question of concentration of catecholamine used 
and hence its action as type A or type B vasoconstrictor 
also seems to be important, and in previous studies this 
issue may not have been considered. Thus recent find-
ings show that low- and high-dose NE have opposite 
effects on the contractility performance of working 
skeletal muscle (Table 51. 

Rather surprisingly, there are only a few reports 
where the specific effects of vasomodulators (vasocon-
strictors or vasodilators) on skeletal muscle contractility 
have been explored. Most information in this general 
area has been concerned with effects of sympathetic 
vasoconstriction. At the whole body level, the redistribu-
tion of cardiac output from inactive areas to exercising 
muscle is controlled by sympathetic vasoconstriction of 
the vasculature supplying the gut and kidneys (see Ref. 
80 and references therein 1. Curtailment of blood flow to 
muscles generally is mediated by the SNS acting on the 
resistance vasculature with preferential flow to acti- 
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Table 5. Effects of vasomodulators on contractile 
performance by striated muscle 

Preparation Addition 

Aerobic 
Phase 

Tension 
Development. 
'1 of control 

Ref. 
No. 

Autoperfused cat Acetylcholine (2 o.g/min) 50 45 
gastrocnemius- Histamine (5 p.gimin) 75 45 
soleus prepara- Isozsuprine (500 o.g/min) 45 45 
tion at constant 
flow 

Bradylcinin (3.5 ccg/rnin) 45 

Autoperfused 
canine dia-
phragm strip at 
constant flow 

Norepinephrine 
(20 (4/ min/ 

100 87 

Autoperfused 
canine dia-
phragm strip 
without flow 
constraint 

Norepinephrine (20 ccemini 177 87 

Isolated perfused Norepinephrine (1 casi) 155 
rat hindlimb at Norepinephrine (101.cM) 36 
constant flow Angiotensin 11 (1 riN) 187 

Serotonin (0.25 p.M)• 58 23 
Epinephrine (24 167 73 

Isolated perifused Epinephrine (10 ci.Ml 125 60 
rat epitrochle-
aris muscle 

Norepinephrine (10 04) 115 60 

*Anaerobic phase contraction was not inhibited by 0.25 p.M seroto-
nin (23). t Unpublished observations. 

voted muscle facilitated by the release of unknown 
vasodilator substances produced by the working muscle. 

There is histochemical evidence for the presence of 
adrenergic nerves throughout the skeletal muscle arte-
riolar network, excluding capillaries and venules. How-
ever, adrenergic receptors are present on venules, and 
thus control of blood flow can be manifest at various 
sites by blood-borne catecholamines as well as those 
diffusing upon release from nerve endings on nearby 
arterioles (for review see Ref. 85 and references therein). 
Anderson and Faber (3) have noted a differential loca-
tion of a l- and a2-adrenoceptors on large and small 
arterioles, respectively, with differential sensitivity to 
metabolic inhibition during muscle contraction. A fur-
ther control of nutrient supply may occur at the level of 
the feed arteries although these may be less susceptible 
to the influence of the vasoactive products of muscle 
contraction, as they are external to the muscle paren-
chyma (80). 

Studies using the constant-flow perfused rat hindlimb 
(23. 731 and earlier observations from the autoperfused 
dog and cat muscle preparations lend support to the 
notion that vasomodulators exert a marked regulatory 
influence on contractility performance of skeletal muscle. 
Table 5 shows the effects of several vasomodulators 
(neural and blood borne) on contractile performance of 
skeletal muscle. Data for the diaphragm are included 
because differences between types of striated muscles 
may occur. For example, Supinski et al. (87) noted that 
NE had little or no effect on tension development at 
constant flow but increased contractility when NE was 
able to increase blood flow. Thus a simple relationship 
between oxygen supply and tension development may  

apply to the diaphragm. For hindlimb skeletal muscle, a 
more complex relationship appears to occur even though, 
for an individual, muscle changes in total blood flow 
(delivery) result in a proportional change in contractile 
performance 32). 

Infused agents that act to reduce aerobic tension 
development thus far would appear to fall into two 
categories. In the first category are the vasodilators 
(Table 5), which when used in the constant-flow autoper-
fused cat gastrocnemius-soleus preparation led to de-
creased tension (45). The second category includes the 
type B vasoconstrictors described above (see Table 1). Of 
these, 5-HT and high-dose NE ( > 10 ii.M) were most 
prominent. Thus, under the already fully vasodilated 
conditions of constant flow, infusion of each of these 
markedly reduced aerobic tension development and 
tension-dependent oxygen consumption while raising 
perfusion pressure (12, 23). Of particular importance 
were the additional findings that the inhibitory effects 
on contractility were blocked by vasodilators and that 
the inhibitory effect could not be observed when repre-
sentative muscles were isolated and tested in vitro (23). 
Such findings suggest that the inhibitory effects of 5-HT 
(23) or high doses of NE (12) are due to a vascular effect. 

More recent observations, again using the isolated 
constant-flow perfused rat hindlimb. have confirmed 
that epinephrine (73) and other vasoconstrictors belong-
ing to the type A group improve contractility of working 
muscle (Table 5). Again, these vasoconstrictors have 
little or no effect on tension development when muscles 
are isolated and stimulated to contract as incubated 
preparations in vitro. Indeed, the metabolic control of 
isolated incubated muscle exerted by endocrine effects 
may be reduced in the perfused muscle preparations 
because of vascular effects. Thus p-agonists enhance 
contractility of isolated perifused rat epitrochlearis 
muscles by 25% (Table 5); these effects are also visible in 
constant-flow perfused rat hindlimb when a-antagonists 
are present (72) but additivity of the a- and P-adrenergic 
effects in perfusion may not be quantitative, as )3-ago-
fists oppose the constrictor effects of type A vasoconstric-
tors (16), including NE. 

Attempts to explain the basis by which vasomodula-
tors affect muscle contractility have in the past consid-
ered the possibility that there is a distribution of flow 
within skeletal muscle into two components of "nutri-
tional" and "nonnutritional" (46 ,  that are altered by 
various procedures as outlined in POSSIBLE MECHANISM 
TO ACCOUNT FOR THE OBSERVED CHANGES IN PERFUSED 
HINDLIMB METABOLISM. 

Data supporting a functional nonnutritional) shunt 
of 30-40g in the dog gastrocnemius muscle, both at rest 
and during stimulation, have been observed using the 
local xenon clearance method (91 and by the inert gas 
washout 1651. and Piiper and Haab 164) have proposed 
an unequal blood flow model for muscle without diffu-
sion limitation that allows adaptation when blood flow. 
arterial Q content. or 0. ;  requirement are changed. 
Thus, according to these authors I 64). unequal distribu-
tion of blood flow and shunt are important factors 
limiting Q uptake in the tissues when the ratio 02 
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delivery/02  requirement is reduced. Such a proposal 
may account for the findings of Hogan et al. (47) that 
maximal 0 2  uptake decreased in proportion to venous 
Po, of the muscle under conditions of reduced 02 
delivery. In addition, the proposal is consistent with the 
data of Stainsby et al. (83) where blood flow through 
muscle was well correlated with the development of 
fatigue and was decreased as fatigue developed in a 
manner that kept the blood arteriovenous oxygen differ-
ence nearly constant. 

A VASCULAR BASIS FOR ACUTE INSULIN RESISTANCE 
AND OBESITY ARISING FROM SITE-SELECT WE 
VASOCONSTRICTION 

As indicated earlier in this review, the effects of 
vasoconstrictors can be divided into two types. In all 
respects, the metabolic effects of the type A vasoconstric-
tors were the opposite to those of type B (compare 
VASOCONSTRICTORS OF PERFUSED HINDLIMB THAT STIMU-
LATE BASAL METABOLISM with VASOCONSTRICTORS OF PER-
FUSED HINDLIMB THAT INHIBIT BASAL METABOLISM). 

The possibility that type B vasoconstrictors inhibit 
nutrient delivery and end-product efflux by the constant-
flow perfused rat hindlimb was taken a stage further by 
a series of experiments that focused on glucose uptake 
(Table 6). In these experiments, rat hindlimbs were 
perfused with medium containing glucose and a tracer 
amount of 2-deoxy-o-[1- 3H]glucose with and without 
5-HT, insulin, and a combination of the two (67). 5-HT 
was found to inhibit insulin-mediated stimulation of 
glucose uptake by - 30%. In addition, 5-HT inhibited 
insulin-mediated 2-deoxy-o-[1- 3H]glucose uptake by per-
fused muscles with an inhibition ranging from 32% 
(soleus) to 80% [extensor digitorum longus 
Furthermore, the effects of 5-HT on insulin-mediated 
glucose uptake were partially opposed when the vasodi-
lator carbachol was coinfused with 5-HT (67). 

To examine the possibility that 5-HT might directly 
affect glucose uptake/metabolism in skeletal muscle, 
isolated soleus and EDL muscles were incubated with 
5-HT. In contrast to the results for the hindlimb, 5-HT 
had no significant effect on either basal glucose uptake 

Table 6. Effects of serotonin and high-dose t 10 
norepinephrine on glucose uptake and 2-deoxyglucose 
uptake by isolated perfused rat hindlimb 

.Additions 
Hindlimb 

A-V Glucose Uptake. 
;Amu!' h -, •g - . 

R; for Thigh 
Muscle Group. 
p.mol • h"'•g - ' 

None 8.5 = 1.0 15.0 = 1.0 
5-HT (10 p.M( 10.0 = 1.5 11.0 = 0.5 
Insulin (15 n(M 22.4 = 1.8 67.0 = 7.0 
5-HT (10 (4N( I - insulin (15 nM 16.2 = 0.8 30.0 = 3.0 

None' l6.04.2 20.0 = 5.0 
NE (10 p.M) 16.0 = :3.0 3.8 = 1.5 
Insulin (15 riMi 42.0 = 5.0 86.0 = 7.0 
NE '10 (.‘Mi + insulin (15 nNli 24.0 = 4.0 22.0 = 3.0 

Values are from constant-flow perfusions at 32'C using 240- to 
270-g animals or at 37°C using 72-g animals .4 ( and are means = SE 
for z = 4-5 animals in each group (67. 68i. A.V. arteriovenous: 5-HT. 
serotonin: NE. norepinephrine: R. 2-deoxyglucose uptake.  

or the stimulation of glucose uptake mediated by insulin 
with either muscle (67). These findings, overall, suggest 
that 5-HT acting via the vasculature is able to control 
glucose and insulin access, thus imposing a vascular 
effect on the endocrine effect of insulin to stimulate 
skeletal muscle glucose uptake. 

Parallels between the effect of 5-HT and of a high 
concentration of NE to inhibit oxygen uptake during 
vasoconstriction in the perfused rat hindlimb (24) led to 
an exploration of the effects of NE on insulin-mediated 
glucose uptake (68). In that study (68), the effects of 
low- and high-dose NE and adrenergic blockers on 
insulin-mediated 2-deoxyglucose uptake by muscles and 
muscle groups of the perfused rat hindlimb were investi-
gated. In general. the inhibitory effects of the low- and 
high-dose NE on insulin-mediated glucose uptake were 
present in all three muscle preparations but were most 
marked in EDL and the thigh muscles where complete 
inhibition occurred with 10 p.Ail NE. At low-dose NE the 
less marked inhibitory effect was blocked by either a 
( soleus)- or 13 (soleus, EDL, and thigh)-blocker. At the 
higher dose of 10 ;.1.N1 NE the more marked inhibitory 
effect on insulin-mediated uptake of 2-deoxyglucose was 
again partly blocked by either propranolol ( EDL and 
thigh) or prazosin (thigh) and was totally blocked by a 
combination of the two (soleus, EDL, and thigh: see Ref. 
68. Thus this recent study 168) identifies an a-adrener-
gic effect of NE to inhibit insulin-mediated glucose 
uptake in perfused rat hindlimb. The inhibitory effect is 
evident at doses thought to occur at sympathetic vasocon-
strictor synapses ( 101.t.M; see Ref. 29) and is similar in 
character to that seen for 5-HT (67; see Table 6). In 
addition, the a-adrenergic-mediated effect was undetect-
able when muscle was incubated rather than perfused. 

On the basis of these findings, we propose that there is 
a hemodynamic basis for insulin resistance in skeletal 
muscle. Our hypothesis is that a high proportion of 
functional vascular shunting occurs early in the develop-
ment of insulin resistance as a result of hypertension-
associated site-specific vasoconstriction in skeletal muscle 
vasculature to reduce access for glucose, insulin, other 
nutrients, and hormones. As the hypertension-associ-
ated site-specific vasoconstriction persists with time, the 
impaired access for nutrients and hormones leads to 
permanent changes to both the vasculature (rarefac-
tion: see Ref. 97) and skeletal muscle (alterations to the 
expression of proteins for insulin signal transduction. 
glucose metabolism, and contraction), characteristic of 
long-term insulin resistance. A key issue in this hypoth-
esis is the presence within skeletal muscle of functional 
vascular shunts of small diameter along the lines dis- 
cussed in POSSIBLE MECHANISMS TO ACCOUNT FOR THE 

OBSERVED CHANGES IN FEHR:5ED HINDLIMB METABOLISM 

and different from the large anatomical arteriovenous 
shunts of other tissues. 

CONCLUSION 

Recent data have led to a revision of some of the older 
concepts of nutritive and nonnutritive flow functional 
vascular shunts) in muscle, reinforcing the view that 
metabolism and hemodynamics are interdependent. 



E810 
	

INVITED REVIEW 

A major advance is the discovery that site-specific 
vasomodulators control muscle metabolism and perfor-
mance by apparently regulating the proportion of nutri-
tive to nonnutritive flow within muscle. Imperfections 
in the control of flow distribution within muscle may 
arise in hypertension and may have implications for 
insulin, glucose, and 02  access. 
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Summary 

Vanilloid spice principles, including capsaicin, stimulate vasoconstriction in the rat 
hindlimb perfused at constant flow and, depending on dose, either stimulate or inhibit 
oxygen consumption by this vascular bed. We now present metabolic and functional 
evidence for two different vanilloid (VN*1  and VN2) receptor types. These receptors can 
be distinguished on the basis of their differing agonist affinity for capsaicin, their 
different calcium and oxygen dependencies for inducing vasoconstriction, and whether 
they stimulate, or inhibit, oxygen consumption. The higher affinity vanilloid receptor, 
VN 1  can be distinguished on the basis of initiating vasoconstriction at low doses of 
capsaicin and simultaneously stimulating oxygen consumption. Its apparent biological 
function is dependent on the presence of oxygen and external calcium. In contrast, the 
lower affinity receptor, VN 2  induces vasoconstriction associated with inhibition of 
oxygen consumption. Its vasoconstriction action can occur independently of either 
external calcium ions, or the presence of oxygen in the perfusate. 

Key Words: vanilloid, capsaicin, vasoconstriction, oxygen consumption, calcium 

The active pungent ingredients of hot peppers and chillies from the genus Capsicum (family 
Solanaceae) are the capsaicinoids, a family of closely related acid amides of vanillylamide (1). The 
major naturally occurring capsaicinoids, capsaicin (8-methyl-N-vanillyl-6-nonanamide) and its 
reduced form, dihydrocapsaicin, both appear to increase in concentration in proportion to the 
increase in 'hotness' or pungency of fruits (2). Other spices such as ginger and black pepper contain 
chemically related compounds, each characterised by a homovanillyl moiety so that the general class 
of molecules may be called vanilloids (3). 

Most research interest into capsaicin and other vanilloids has centered on their well known actions 
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on unmyelinated sensory nerves in the periphery as well as as in the spinal cord and the brain. 
Recently, the role of vanilloid or capsaicin-like molecules in the depolarisation of these nerves and 
the mediation of pain and other effects has been reviewed extensively (4). 

Capsaicin-sensitive primary afferent neurones release a number of neuropeptides when stimulated 
by capsaicin or other active vanilloids. These include substance P, neurokinin A, calcitonin gene-
related peptide, galanin, dynorphin, cholecystokinin, vasoactive intestinal peptide and somatostatin 
(1). These peptides all appear to play a role in the communication of primary sensory neurones with 
other neuronal and non-neuronal cells. 

The sensitivity of the capsaicin-sensitive neurones to vanilloids is most likely due to the presence of 
a cation channel which when stimulated by capsaicin, allows the influx of calcium and sodium ions 
and the efflux of potassium ions (5). Capsaicin and other vanilloids are relatively lipophilic 
molecules and it is suggested that capsaicin may have a binding site on the surface of the cation 
channel proteins within the lipid bilayer (6). The binding of capsaicin then results in the opening of 
the channel and the initiation of an impulse, the release of neuropeptides and ultimately the acute, 
painful, burning sensation associated with capsaicin (7). 

The acute actions of capsaicin are not restricted to neurones and there are a number of reports of 
capsaicin influencing non-neuronal systems. These effects of capsaicin and functional analogues 
include inhibition of cardiac muscle excitability, inhibition of visceral smooth muscle activity and 
contraction of vascular smooth muscle (1). 

Capsaicin and dihydrocapsaicin (8), gingerols and shogaols (9) and resiniferatoxin and piperine (10) 
have been shown in our laboratory to directly stimulate oxygen uptake at low concentrations when 
infused into the perfused iliac bed of the rat hindlimb. The vanilloids stimulated a maximum increase 
of approximately 20-25% in oxygen consumption, and a concomitant increase of approximately 
50% in perfusion pressure. At higher doses of vanilloid, the perfusion pressure continued to rise, 
but the oxygen consumption fell with increasing dose to reach frank inhibition relative to the 
starting oxygen consumption. 

In contrast to the findings of Kawada et al. (11) and Watanabe et al. (12) in whole rats, neither a-
nor 13-adrenergic antagonists significantly altered the vanilloid-induced effects in the perfused rat 
hindlimb (8,9,10). However, the vanilloid actions were largely, but not completely, blocked by the 
vascular smooth muscle relaxants nitroprusside and glyceryl trinitrate (GTN). Thus it appears that 
the vanilloids may act via a non-adrenergic mechanism, perhaps similar to their actions on the 
cation channel in sensory nerves. Such an action might be directly on smooth muscle or 
alternatively by the release of tachykinins from perivascular nerves which then cause 
vasoconstriction and produce either a stimulation of oxygen consumption at lower doses, or an 
inhibition of V02  at higher doses. 

The bidirectional effect on oxygen consumption found with each vanilloid (8,9,10) suggests that 
two different vanilloid receptors might be present on or near vascular smooth muscle, or that the 
same receptor could be located on different responsive cell types having different post-receptor 
events. This communication presents further functional and metabolic evidence showing two 
distinctly different sets of actions of capsaicin in the perfused rat hindlimb. 

Methods 

Chemicals: 
Bovine serum albumin (Fraction V), N.A.D+ (free acid) and lactate dehydrouenase (5 maim]) were 
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purchased from Boehringer Mannheim (Australia); capsaicin, ethylene-glycol-bis(13-aminoethyl-
ether) N,N-tetraacetic acid (EGTA), xylazine, polyoxyethylene sorbitan monooleate (Tween 80) 
from Sigma (USA); sodium azide from Merck (Germany); potassium cyanide from B.D.H. 
Laboratory Chemicals Division (Poole, England); pentobarbitone sodium (Nembutal, 60 mg/ml) 
from Bomac Laboratories Pty. Ltd. (Australia); heparin sodium from David Bull Laboratories 
(Australia); paracetamol drops from Mead Johnson (Australia) and ketamine from Aldrich Chemical 
Co. (USA). All other chemicals were of analytical grade and were purchased from Ajax Chemicals 
Ltd (Australia). 

Rat Hindlimb Perfusion: 
All anaesthetic, surgical and subsequent experimental procedures were approved by the University 
of Tasmania Animal Ethics Committee under the Australian code of practice for the care and use of 
animals for scientific purposes (13). 

Experiments were performed using male, 180 to 200 g hooded Wistar rats raised on a commercial 
rat chow diet containing 21.4% protein, 4.6% lipid, 68% carbohydrate and 6% crude fibre with 
added vitamins and minerals (Gibson's, Hobart) together with water ad libitum. Animals were 
housed in groups at 21±1°C under a 12 h:12 h light/dark cycle. Anaesthesia, surgery and perfusion 
procedures were performed as described previously (14). One hindlimb was perfused at a constant 
flow rate of 4 mUmin, at 25 C. The perfusion medium was a modified Krebs-Ringer bicarbonate 
buffer containing 8.3 nuM glucose, 1.27 mM CaCll and 2% (w/v) dialyzed bovine serum albumin 
(Fraction V). 

The perfusion buffer reservoir was gassed with 95% 0 2-5% CO2  at 4°C and the perfusate was 
further oxygenated by pumping it through a silastic lung gassed with 95% 0 2-5% CO2 . This 
ensured constant arterial P02  levels. During hypozcic perfusions, 95% N 2-5% CO2  replaced the 
95% 02-5% CO2  mixture. Calcium-free ("zero calcium") perfusions were performed by omitting 
calcium from the perfusate and adding 0.1 [TIM Na 2EGTA. 

The oxygen content of venous effluent was measured continuously via an in-line 0.5 ml capacity 
Clark-type oxygen electrode. The method of calculation of oxygen uptake has d been described 
previously (14). When required, oxygen consumption and perfusion pressures were calculated from 
both peak and steady state values on the chart recorder. 

The infusion of the various agents into the rat commenced only after the hindlimb had reached 
steady state oxygen uptake and pressure values (approximately 30 min). Agents infused during the 
perfusion were freshly prepared prior to use. Due to the lipophilic nature of vanilloids and their 
apparent affinity for silastic tubing, capsaicin was dissolved in 50% ethanol and infused using a 
syringe pump (Model 355, Sage Instruments, Orion Research Inc., USA) driving a 1.0 ml glass 
syringe equipped with teflon tubing. All other agents were dissolved in isotonic saline and infused 
using a LICB 2132 Microperpex peristaltic pump (Bromma, Sweden) at rates between 5 and 40 
mUmin. Controls were conducted with vehicle alone. 

Lactate assay was based on that of Gutman and Wahlefeld (15). Perfusate samples were kept on ice 
and centrifuged at 3000 g, 5°C for 5 min to sediment any remaining red blood cells and the 
supernatant transferred to a new tube and stored at -20°C until assay. 

Statistical Analysis: 
The statistical significance of differences between groups of data was assessed by the unpaired 
Student's t test. Significant differences were recognised at P<0.05 All values given are the mean ± 
standard error (SE). 
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Results 

After perfusions had reached steady state, the mean arterial P0 2  was 672.5±8.0 mm Hg (n=31) and 
the unstimulated mean venous P0 2  was 372.7±7.9 mm Hg (n=31) with a basal V02 of 7.0-10.2 
gmoi.g-1.h-1 (n=31) and a mean perfusion pressure of 24.510.6 mm Hg (n=31). Infusion of 
capsaicin over its effective range gave similar but slightly more potent data to that of Cameron-
Smith et al. (8). At the lower end of the dose range (0.125 ilM), capsaicin showed a monophasic 
stimulation of oxygen consumption (Fig. 1A.) and the expected vasoconstriction-induced rise in 
perfusion pressure (Fig. 1B). Infusion of higher doses of capsaicin (>0.5 p.M) led to further 
vasoconstriction (Fig. 1B). However, the effects on oxygen consumption became triphasic with an 
initial stimulation followed by a steady state inhibition and a third phase of transient stimulation of 
oxygen consumption upon cessation of the infusion of capsacin (Fig. 2A) as previously observed by 
Cameron-Smith et al. (8). Steady state values for the high dose inhibition are shown in Fig. 1A. 
Other vanilloids show similar triphasic effects at high dosage (9,10). 

-7 	 -6 	 -5 
Log [capsaicin] (M) 

Fig. 1 

Dose response curve for changes in steady state oxygen consumption (panel A), plateau 
perfusion pressure (panel B) and lactate efflux (panel C) in response to capsaicin in 
perfused rat hindlimbs perfused with medium containing 1.27 rnM calcium (0) or with 
medium containing 0.1 rnM EGTA and no added calcium (0). Points are the 
mean±S.E. of 3-5 observations. Where error bars are not visible they are within the 
symbol. *P<0.05 "P<0.01 
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Infusion of large concentrations (2 1.1M) of capsaicin increased the perfusion pressure (Fig. 2B) by a 
maximum of 39.1±2.4 mm Hg (173.4±12.3% above basal, n=5) followed by a steady change of 
29.4±1.1 mm Hg (130.1±6.2% above basal, n=5). In association with the rise in perfusion 
pressure, 2 I.LM capsaicin exhibited a triphasic oxygen consumption response. Initially V0 2  
increased (Pv02 decreased) transiently above basal oxygen consumption during Phase 1, and was 
then inhibited to below basal (P v02 increased) by 1.9-10.5 gmol.g -1 .11-1  (27.3±5.3%, n=5) during 
steady state (Phase 2). High dose capsaicin-induced effects approached steady state V02  inhibition 
within 5 min of infusion and remained constant provided capsaicin was not withdrawn. The removal 
of capsaicin resulted in...a period of increased oxygen uptake (Phase 3). The V02  transiently 
increased above basal by 1.5±0.1 gmol.g-1 .11-1  (22.2±2.3%, n=5), while perfusion pressure rapidly 

10 
	

20 
	0 	10 

	
20 

Time (min) 

Fig. 2 

Time courses of the oxygen and pressure responses exhibited by 2 p.M,capsaicin in the 
hindlimb perfused with: medium containing 1.27 nuM calcium (n=5) (A,B) or medium 
containing 0.1 rnM EGTA and no added calcium (n=3) (C,D). Values are the mean ± 
S.E.. Resting values of venous P01 were (A) 395.9±24.7 mm Hg and (C) 394.4±21.9 
mm Hg. Basal perfusion pressures were (B) 21.6±0.9 mm Hg and (D) 23.7±0.9 mm 
Hg. 

fell to resting values. The steady state dose response curves for V0 2 , perfusion pressure and lactate 
efflux in response to capsaicin are shown in Fig. 1. In general, the pattern of lactate efflux (Fig. IC) 
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followed the oxygen consumption; it being increased during stimulatory phases and inhibited in 
Phase 2 in which steady state V0 2  was inhibited. 

The infusion of capsaicin in the presence of an effectively zero external concentration of Ca 2+ (0.1 
inM EGTA) led to marked diminution of the perfusion pressure (Figs. 1B and 2D) and changes in 
the V02  (Figs. IA and 2A,C) and lactate efflux responses (Fig. IC). Vasoconstriction was less at 
all effective concentrations of capsaicin, and the steady state VO2 (normally either Phase 1 for low 
dose capsaicin, or Phase 2 for higher inhibitory doses in the presence of Ca 2+  ions, Fig. 2A) was 
either zero at low doses, or inhibited (P v02 increased) at higher doses (see Fig. 1), However the 
inhibition was less in magnitude than the inhibition of V02 observed in the presence of Ca 2+  ions. 
Zero Ca2+ reduced the steady-state efflux of lactate during infusion of 2 ptM capsaicin (Fig. 1C) 
followed by a transient increase after capsaicin removal (data not shown). 

The effects of hypoxia, cyanide and azide on resting hindlimb V0 2  and perfusion pressure are 
summarised in Fig. 3 and Table 1. Changes in V02 were calculated from the basal values of those 
perfusions before additions. No significant effect on basal perfusion pressure was observed for any 
of these treatments. Infusion of 1 ptM potassium cyanide inhibited V0 2  by 4.6=0.4 prnol.g-1 .11-1  
(77.9=5.2%, 'n=5) below basal value. Infusion of sodium azide increased V02 by 4.4=0.1 limol.g -
1 1-1  (73.2=7.1%, n=5) above basal value. Gassing the perfusion medium with 95% N2-5% CO2 
decreased the arterial partial pressure of oxygen (P02) from 652 mm Hg to 18.5±2.6 mm Hg. 
Representative traces for the action of high dose capsaicin in the rat hindlimb when mitochondrial 
respiration was impaired are shown in Fig. 3. 

When steady state inhibition of oxygen consumption was reached with 1 mM potassium cyanide, 
shown in Fig. 3C as an increase in venous P0 2 , 2 4M capsaicin was infused. This resulted in a 
transient and rapid increase in perfusion pressure of approx. 19.2=1.1 mm Hg before falling by 
approx. 14 mm Hg to be maintained at 4.8=0.3 mm Hg above the basal value (see Table 1). In 
addition, there was a small increase in oxygen consumption of 0.3=0.1 ptmol.g -1 .11 -1  (n=5) that was 
not sustained but rapidly returned to the level existing prior to the infusion of capsaicin. Upon 
removal of capsaicin, the perfusion pressure returned to the basal value. 

At the peak stimulation of oxygen consumption (deepest trough in venous P02) achieved by 1 niM 
sodium azide (Fig. 3E), subsequent infusion of 2 1AM capsaicin similarly resulted in a rapid and 
transient increase in perfusion pressure of 24.9=1.9 mm Hg. As with the cyanide experiments, the 
pressure was not sustained and fell by approx. 12 mm Hg to a steady state of 12.5=1.5 mm Hg 
above basal (n=5). Capsaicin clearly induced a biphasic inhibition of azide-stimulated oxygen 
consumption. In the first rapid phase, VO 2  was inhibited by 0.9=0.2 pmol.g- I.h -1  before the second 
phase of inhibition of VO2  which was decreased by 1.0±0.4 Removal of capsaicin 
resulted in the pressure returning to the basal value and the VO, returning to the azide-alone 
stimulated value observed prior to capsaicin infusion. 

Under hypoxic conditions achieved by gassing with 95% N 2 -5% CO 2  , 2 1.1M capsaicin induced a 
maximal perfusion pressure increase of 19.2=3.2 mm Hg above basal, as indicated in Table 1 and 
Fig. 3H. The pressure fell back to be maintained for the remainder of the infusion period at a value 
of 40.9=2.7 mm Hg or 15=2.7 mm Hg above basal. Once the capsaicin was removed, pressure 
again returned to resting values. In all three methods of disturbing mitochondria' action in the 
perfused hindlimb, the infusion of a low dose of capsaicin (0.25 1AM) had no discernible effect on 
perfusion pressure nor oxygen uptake (data not shown). 
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Fig. 3 

Representative tracings of changes in venous P02 and perfusion pressure in response to 
infusion of 2 jiM capsaicin (CAP) in the presence of potassium cyanide (1 rnM), sodium 
azide (1 mM) or hypoxia. Perfusion medium, initially equilibrated against 95% 0 2-5% 
CO2, was either maintained (A-F) or switched to one equilibrated against 95% N2-5% 
CO2 (G,H) as shown. Capsaicin was infused for varying times until apparent steady 
state conditions of oxygen consumption were obtained. Phases of oxygen consumption 
and pressure change are labelled as follows: initial respose, phase 1; steady-state 
response, phase 2; recovery phase, phase 3. Mean values from all experiments are given 
in Table 1. 

Discussion 

This study has extended the findings of previous work with vanilloids in the perfused rat hindlimb 
model (8-10) by examining the responses to both high and low dose vanilloid stimulation under 
conditions of metabolic challenge. These included low external calcium concentration, hypoxia, and 
disruption to mitochondrial function using both cyanide and azide. The main finding to emerge from 
these present studies is that the stimulation of VO 2  at low concentrations of capsaicin and the 
inhibition of VO2  at high concentrations of capsaicin appear to result from activation of two 
different mechanisms. Both responses are independent of secondary release of catecholamines 
(8,9,10). We propose that these different actions of capsaicin are activated through two receptor 
types (presumptive VN 1  and VN2). 1  The key reasons for the proposed classification into VN I  and 
VN2  receptors are summarised in Table 2 and discussed below. 

I We have followed the suggestion of Szallasi and Blumberg (3) that the receptors for capsaicin and its structural 
analogues be called vanilloid receptors. Since V is used to denote vasoprcssin receptors we have used VN with 
subscripts I and 2 as the appropriate abbreviation. 
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Both mechanisms of vanilloid action are vasoconstrictive and appear to be additive because the 
perfusion pressure continues to rise with increasing capsaicin concentrations despite V0 2  becoming 
inhibitory (Fig. 1). Similar patterns are seen with other active vanilloids such as gingerols and 
shogaols (9) and piperine and resiniferatoxin (10). The two oxygen consumption responses of 
stimulation and inhibition occur at low and high doses respectively, suggesting differing affinities of 
the two presumptive receptors for capsaicin. Thus the receptors stimulated by lower concentrations 
of capsaicin (high affinity) and which stimulate V0 2  are nominated as VNI and the receptors 
stimulated by higher concentrations of capsaicin (low affinity) and which inhibit V0 2  are nominated 
as VN2 . The generation of bell-shaped response curves or related curves by the overlapping actions 
of both stimulatory and inhibitory receptors has been reviewed recently by Rovati and Nicosia (16) 
and previously by Szabadi (17). Such ideas are consistent with the premise of two vanilloid 
receptors acting in concert in the hindlimb to firstly stimulate, and then inhibit oxygen consumption 
with increasing dose of vanilloid. 

TABLE II 

Proposed Classification Criteria for VNI and VN2 Vanilloid Receptors 
in Perfused Muscle 

Receptor type VN1 VN2 

Oxygen consumption increased 	. decreased 

Vasoconstrictor strong moderate 

Affinity for vanilloid high low 

Dependent on 
external Ca2+  

yes nol 

Dependent on 02 yes no 

Lactate production 
(steady state) 

increased decreased 2  

1  Independent of [Ca 2+] but may require some Ca 2+  for MI agonist effect as inhibition of V02 is less 
than in the presence of Ca2+. 
2  After removal of capsaicin there is a "wash-out" peak of lactate. 

The absence of external calcium inhibited the observed maximal capsaicin-induced vasoconstriction 
and shifted the dose curve markedly to the right (Figs. 1 and 2). Remarkably, the absence of 
external Ca2+  ions led only to an inhibition (Phase 2) of both VO, and lactate efflux in response to 
capsaicin. Neither Phase 1 nor Phase 3 stimulation of VO, were observed. However, inhibition of 
VO2  at high doses of capsaicin was less pronounced than observed with equivalent doses of 
capsaicin in the hindlimb perfused with buffer containing 1.27 mM Ca 2+. Thus, this 
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vasoconstriction effect was substantially independent of Ca 2+ but required external calcium for full 
agonist effect. 

The proposed VN 1  site appears to be calcium dependent and .  to stimulate increases in V0 2  and 
lactate production, whilst the proposed VN 2  receptor inhibits VO2  and lactate efflux and is largely 
independent of the need for external calcium ions. The simultaneous increase in lactate and oxygen 
consumption without hypoxia has been seen previously in the perfused rat hindlimb in response to a 
number of different vasoconstrictors (18) 

A recent, preliminary communication has suggested the presence of two capsaicin receptors in cells 
from the rat dorsal root ganglion based on the different ability of capsazapine (a new competitive 
vanilloid inhibitor) to block the actions of capsaicin and the highly potent vanilloid agonist, 
resiniferatoxin (19). Lou et al. (20) have described two mechanisms of action of capsaicin in the 
perfused lung which depend on the concentration of capsaicin present. Low dose effects (10 -8  M 
capsaicin) were blocked by tetrodotoxin (TTX) whereas high dose effects (10 -6  M capsaicin) were 
not. These authors modified an earlier suggestion that there were two mechanisms of action of 
capsaicin in which low concentrations of capsaicin stimulated the influx of limited amounts of Na+ 
or Ca2+ ions N;vhich then triggered voltage sensitive Na+ channels to conduct depolarisation to other 
varicosities or collaterals (21) whereas high dose capsaicin stimulated sufficient influx of ions to 
cause depolarisation without the need for Natinduced depolarisation. Recently, using patch-clamp 
methods, rat trigeminal cells have been shown to exhibit two different capsaicin-induced currents, 
one being fast and the other, slow (22). 

Implicit in these observations is the premise that there may be two different receptor sites, one of 
which has a higher affinity for capsaicin and the other with lower affinity for capsaicin. 
Alternatively, there may be only one receptor type which is coupled to two different post receptor 
mechanisms. However, to explain the different affinities that we have observed for the stimulation 
and inhibition of oxygen consumption would require that the microenvironments of the receptors 
and hence their protein conformations to be different, to produce the different affinities for 
capsaicin. 

The use of alterations in external Ca 2+ ions to discriminate between a-adrenemic receptor subtypes 
has been used by Minneman (23) and by Han et al. (24,25). They have suggested that the a ia  
subtype is coupled to external Ca 2 + ions and that the a lb  subtype is coupled to internal Ca 2+  stores. 
Similarly, studies in this laboratory have shown that the presence or absence of external Ca 2+  can 
distinguish between two presumptive a radrenoceptor subtypes in the control of oxygen uptake by 
noradrenaline in the perfused rat hindlimb (26). 

On the other hand Ruffolo and coworkers have argued strongly (27) that the same a-receptor may 
be present, but coupled to different effector mechanisms. Were a similar arrangement to underlie 
the present study, with one post receptor mechanism stimulating VO 2  and another inhibiting V0 2 , 
it is hard to reconcile how such receptors could exist simultaneously on the same cell. It would thus 
seem more appropriate to postulate the presence of the same receptor on two different smooth 
muscle cell types. As both sites are associated with vasoconstriction, the receptors may thus be on 
different calibre arteries or arterioles. Supporting this idea is the general correlation beween artery 
size and dependency on external calcium ions for contraction, with smaller vessels showing the 
greatest dependency (28). This is also true in the rat hindlimb (29). 

Such an idea of the presumptive differently VN 1  and VN2  being distributed on vessels of different 
calibre, is consistent with the different anatomical distribution of 5HT1 and 5HT, (30, 31) receptors 
and of a l  and a2  (32, 33) receptors on the arterial vasculature that has been suggested by others. 
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The present data shows that each of: hypoxia (N 2  gas); cyanide (cytochrome oxidase inhibitor) and 
azide block some, but not all, of the perfusion pressure. Azide at 1 mM acts as though it is an 
uncoupler of mitochondria in the perfused hindlimb (33). These data taken together, suggest that 
the inhibitory receptor or site for V0 2  (VN2) is not functionally dependent on 0 2, even in the 
presece of 02. 

The presence of an inhibitory receptor for the vanilloids may explain why the consumption of such 
spice principles has not uniformly shown a thermogenic or weight-loss effect. The data suggest that 
it might be possible to synthesise drugs that selectively stimulate VN 1  or inhibit VN2  receptors 
which would have important thermogenic or weight loss potential. We are currently examining the 
effects of known vanilloid antagonists and newly synthesised agonists to further test these 
possibilities. 

Acknowledgements 

Supported in part by the National Health and Medical Research Council of Australia and the 
Australian Research Council. 

References 

1. P. HOLZER, Pharmacol. Rev. 42 143-201 (1991). 
2. V.S. GOVINDARAJAN, D. RAJALAKSFLMI and N. CHAND, Capsicum - production, 

technology, chemistry, and quality. Part IV. Evaluation of quality. In: Critical Reviews in  
Food Science and Nutrition  Vol. 25 CRC Press pp. 185-283 (1987). 

3. A. SZALLASI and P.M. BLLTMBERG, Life Sci. 47 1399-1408 (1990). 
4. J.N. WOOD (Ed.), Capsaicin in the study of pain.  Academic Press, London (1993). 
5. S. BE VAN and J. SZOLCSANYI, Trends in Pharmacol. Sci. 11 330-333 (1990). 
6. F. JAMES, N. NIKINA and J. N. WOOD, The capsaicin receptor. In: J. N. Wood (Ed.), 

Capsaicin in the study of pain.  Academic Press, London (1993). 
7. S.H. BUCK and T.F. BURKS, Pharmacol. Rev. 38 179-226 (1986). 
8. D. CAMERON-SMITH, E.Q. COLQUHOUN, J-M. YE, M. HETTIAR1-1.CHCHI and 

M.G. CLARK, Int. J. Obesity 14 259-270 (1990). 
9. T.P.D. ELDERSHAW, E.Q. COLQUHOUN, K.A. DORA, Z-C. PENG and M.G. 

CLARK, Int. J. Obesity 16 755-763 (1992). 
10. T.P.D. ELDERSHAW, E.Q. COLQUHOUN, K.L. BENNETT, K.A. DORA. and M.G. 

CLARK, Life Sci. 55 389-397 (1994). 
11. T. KAWADA, S-I. SAKABE, T. WATANABE, M. YAMAMOTO and K. IWAI, Proc. 

Soc. Exp. Biol. Med 188 229-233 (1988). 
12. T. WATANABE, T. KAWADA, M. KUROSAWA, A. SATO and K. IWAI, 

Therrnogenic action of capsaicin and analogs. In: D.R. ROMSOS (Ed.) Obesity: Dietary  
factors and control.  Japan Scientific Societies Press, Tokyo pp. 67-77 (1991). 

13. Australian code of practice for the care and use of animals for scientific purposes.  
Australian Government Publishing Service, Canberra (1990). 

14. E.Q. COLQUHOUN, M. HETTIARACHCHI, J-M. YE, E.A. RICHTER, A.J. HNIAT, 
S. RATTIGAN and M.G. CLARK, Life Sci. 43 1747-1754 (1988). 

15. I. GUTMANN and A.W. WAHLEFELD, L-(+)-Lactate: Determination with lactate 
dehydrogenase and NAD. In: H.U. BERGMEYER (Ed.), Methods of enzymatic analysis. 
2nd Ed. Vol.3 pp. 1464-1468 (1974). 

16. G.E. ROVATI and S. NICOSIA, Trends Pharmacol. Sci. 	140-144 (1994). 
17. E. SZABADI, J. Theor. Biol. 69 101-112(1977). 



102 
	

Capsaicin in Perfused Rat Hindlimb 	 Vol. 57, No. 2, 1995 

18. M. HETTIARIACHCHI, K.M. PARSONS, S.M. RICHARDS, K.A. DORA, S. 
RATTIGAN, E.Q. COLQUHOUN and M.G. CLARK, J. Appl. Physiol. 73 2544-2551 
(1992). 

19. I.F. JAMES, S.K. HOTHI, I.J. SLACK, S. BEVAN, J. DONOGHUE, G.S.J. 
WALPOLE and J. WINTER, Soc. For Neurosci. Abs. 18 130 (1992). 

20. Y-P. LOU, A. FRANCO-CERCEDA and J.M. LUNDBERG, Acta Physiol. Scand. 146 
119-127 (1992). 

21. C.A. MAGGI, P. SATICIOLI, P. GEPPETTI, M. PARLANI, M. ASTOLFI, E. DEL 
BIANCO, R. PATACCHINI, S. GIULIANI and A. MELL Gen. Pharmacol. 20 445-456 
(1989). 

22. L. LIU and S.A. SIMON, Proc. Natl. Acad. Sci. 91 738-741 (1994). 
23. K.P. MINNEMAN, Pharmacol. Rev. 40 87-119 (1988). 
24. C. HAN, P.W. ABEL and K.P. MINNEMAN, Nature 329 333-335 (1987). 
25. C. HAN, J. LI and K.P. MINNEMAN, Eur. J. Pharmacol. 190 97-104 (1990). 
26. K.A. DORA, S. RATTIGAN, S.J. EDWARDS, M.G. CLARK and E.Q. COLQUHOUN, 

Proc. Australian Soc. Biochem. and Mol. Biol. 24 Col 3-4. (1992). 
.27. 	R.R. RUFFOLO, A.J. NICHOLS and M.A. ORIOWO, Blood Vessels 28 122-128 

(1991), 
28. F.M. TAY° and J.A. BEVAN, J. Pharmacol. Expt. Therap. 240 594-601 (1987). 
29. M.C. SUTTER, M. HALLBACK, J.V. JONES and B. FOLKOW, Acta Physiol. Scand. 

99 166-172 (1977). 
30. J.L. BLACKSHEAR, C. ORLANDI, J.D. GAR_NIC and N.K. HOLLENBERG, J. 

Cardiovasc. Pharmacol. 7 42-49 (1985). 
31. K.G. LAMPING, H. KANATSUKA, C.L. EASTHAM, W.M. CHILIAN and M.L. 

MARCUS, Circ. Res. 65 343-351 (1989). 
32. R.R. RUFFOLO, A.J. NICHOLS, J.M. STADEL and J.P. HIEBLE, Pharmacol. Rev. 43 

475-505 (1991). 
33. K.A. DORA, S.M. RICHARDS, S. RATTIGAN, E.Q. COLQUHOUN and M.G. CLARK, 

Am. J. Physiol. 262 H698-H703 (1992). 



Adaptatiom to the Cold: Tenth International Hibernation Symposium. 
Edited by Geiser F., Hulbat A.J. & Nicol S.C. University of New England Pros, Armidale, 1996 

Vasoconstrictor-induced 
thermogenic switching in endotherm 
and ectotherm muscle 

Tristram P.D. Eldershaw, liming Ye, Michael G. Clark, and 
Eric Q. Colquhoun 
Division of Biochemishy, University of Tasmania, Hobart, 7001, 
Australia 

Introduction 
The perfused rat hindlimb preparation has proven to be a reliable model for the 
investigation of muscle metabolism (Bonen et al. 1994). Studies in this laboratory, 
reviewed by Clark et al. (1995), have refined this technique for use at 25°C without red 
blood cells. A major thrust of this work has been to demonstrate that rat skeletal muscle 
has the potential to regulate whole body thermogenesis, as measured by oxygen 
consumption (MO2) changes, via a non-shivering thermogenic mechanism controlled by 
site-specific vascular switching. However, assessing the influence of such a mechanism on 
overall non-shivering thermogenesis is clouded by the presence in the rat of brown adipose 
tissue (BAT), a highly active non-shivering thermogenic tissue. 

Although endothermy has been a major evolutionary progression, the non-shivering 
component of facultative thermogenesis (NS1) is relatively poorly understood. Shivering is 
clearly a function of skeletal muscle, but the site(s) and mechanism(s) of NST are less 
certain. BAT makes a large contribution to facultative thermogenesis in some species, yet a 
growing body of evidence suggests that BAT is not essential for endothermy. Marsupials 
(Hayward and Lisson, 1992) and birds (Saarela et aL 1989) represent large groups of 
endotherms in which BAT is most likely absent. Furthermore, in many species such as 
adult humans (Astrup, 1986), BAT presence is too limited to account for the magnitude of 
the observed NST. 

The evidence for NST in marsupials is limited. However, Nicol (1978) and Ye et al. 
(unpublished) have demonstrated in vivo NST upon noradrenaline (NOR) infusion in the 
potoroo and Tasmanian bettong respectively. In birds, a growing body of evidence supports 
claims that skeletal muscle is a major non-shivering thermogenic site (Duchamp et al. 
1993). Representatives from these groups are therefore potentially good models for 
investigating the presence and magnitude of alternative mechanisms of NST. 

The present investigation aims to extend the findings made using perfused rat muscle 
by examining and comparing the effects of vasoconstrictors on perfused muscle from birds 
(chickens, Gallus domesticus) and marsupials (Tasmanian bettongs, Bettongia gaimardi), 
and from an ectotherm group, the cane toad (Bufo marinus). 
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Material and Methods 
Animals 
All procedures adopted and experiments undertaken were approved by the University of 
Tasmania Ethics Committee under the Australian Code of Practice for the Care and Use of 
Animals for Scientific Purposes (1990). Male hooded Wistar rats (180-200 g at 
experiment) and bettongs (male and female, 1.2 * 0.11 kg at experiment) were housed as 
described by Colquhoun et al. (1988) and Ye et al. (1995) respectively. Chickens (male 
and female, 400-800 g at experiment) of local Hyline and Leghorn strains were obtained 
from a commercial hatchery and kept for 2-14 days in large cages at 21±1°C with ad 
libitum access to commercial pellets and water. Cane toads (male and female, 129.4 t 16.6 
g at experiment) from Queensland, Australia were housed for 1-2 months at 21t1°C in a 
12h light/12h dark cycle prior to experiment Toads were fed beetles during this period. 

Hindlimb Perfusions 
The endotherm (rat, chicken and bettong) hindlimb vascular beds were perfused at 25°C in 
similar fashion to that previously described for the rat (Colquhoun et al. 1988). Perfusion 
flow rates were constant and set to maintain satisfactory muscle phosphagen concentrations 
relative to in vivo values. Thus the flow rates used were 0.27 ml.min -1 .‘ 1  in the rat 
(Colquhoun et aL 1990); 0.33 ml.min' I .g-1  in the chicken; and 0.28 ml.mirf l .g' l  in the 
bettong (Ye et al. 1995). 

The ectotherm (cane toad) hindlimb vascular bed was also perfused at 25°C and 
constant flow. The perfusion medium was a modified amphibian Hepes-buffer solution, 
gassed with 100% 02  at pH 7.4 (Pelster et a/. 1993). The constant perfusate flow was 
initially set to give a basal perfusion pressure of 15 mmHg, reported to be the approximate 
physiological value in vivo (Pelster et al. 1993). 

Surgical Procedures 
The surgical protocols used in rats and bettongs are described by Colquhoun et aL (1988) 
and Ye et a/. (1995) respectively. 

Chickens were anaesthetised using 60 mg.kg -I  i.p. sodium pentobarbital. The major 
skin vessels of the lower leg were ligated, and the popliteal fossa incised to expose the 
popliteal artery and vein. The popliteal nerve was divided and the hamstring muscles were 
ligated and resected proximal to the fossa to give good access for cannulation of the 
popliteal artery and vein. Heparin (2 IU.g -1 ) was administered i. v. (brachial vein). Tight 
ligatures were positioned around the ankle and the lower thigh above the cannulation site 
in order to restrict flow to other tissues. Following commencement of perfusate flow, the 
bird was killed with a lethal cardiac injection of sodium pentobarbital. Infusion of 1% 
(w/v) Evans blue dye confirmed that perfusate flow was confined to the lower limb in both 
hormone-stimulated and non-stimulated preparations. The perfused muscle mass and 
hence appropriate flow rate was estimated by similarly ligating and subsequently excising 
the contralateral limb, enabling removal and weighing of the muscles (generally 14-17 g). 

Toads were anaesthetised (sodium pentobarbital, 100 mg.ke  i.p.). and two incisions 
were made parallel to the abdominal mid line leaving a strip of the anterior abdominal wall 
with the inferior abdominal vein intact. The upper part of the strip was ligated and cut to 
expose the abdominal cavity. After removal of the abdominal contents, vessels crossing cut 
edges were ligated. A suture ligation was performed around the middle of the ilium and 
pubis bones. Following heparin administration (i.v. 200 RI, renal portal vein), both renal 
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portal veins were ligated. The dorsal artery and the anterior abdominal vein were 
cannulated, both hindlimbs receiving perfusate. Pcrfused muscle mass was 18.4 ± 3.2 g 
(Evans blue dye). 

Results and Discussion 
All species studied were able to demonstrate increased MO 2  (type A) in response to infused 
NOR. Basal perfusion parameters and the magnitude of the type A NOR responses are 
shown in Table 1. 

In perfused rat muscle, vasoconstrictors were capable of both increasing MO2 (type A 
response, e.g. low NOR concentrations, angiotensin II, and vasopressin; Clark et aL 1995) 
and decreasing MO2 (type B response, e.g. serotonin and high NOR concentrations; Clark 
et aL 1995) in association with increased perfusion pressure. Fig. 1 shows dose-response 
curves for NOR and serotonin (5-HT) in the rat, illustrating both type A (< 1 AM NOR) 
and type B (> 1 gM NOR and all 5-HT concentrations) MO2  responses. 

Fig. 1. A MO2 (A) and A perfusion pressure (B) concentration-response curves for NOR 
and 5-HT in perfused rat hindlimb. Basal values for MO2  and perfusion pressure are given 
in Table 1. Data points are means ± SE and are all n =5. 

Similarly, perfused chicken muscle gave a biphasic MO2 curve in response to NOR 
and adrenaline (Fig. 2), both of which are present in significant concentrations in chicken 
plasma (9.9 ± 4.6 nM and 1.8 ± 1.2 nM respectively, Fujita et al. 1992). The actions of 5- 
HT were qualitatively similar but quantitatively less than those of NOR in perfused chicken 
muscle. The biphasic MO2  response to 5-11T is different to the actions of this agonist in 
perfused rat and bettong (data not shown, Ye et al. 1995) hindlimbs where MO2 is 
inhibited at all effective doses. We have suggested that this type B behaviour was due to the 
operation of functional flow shunts in the microvasculature, effecting at least a partial 
bypass of perfusate flow from actively respiring tissue (Dora et al. 1991, 1992). Although 
anatomically defined large diameter arterio-venous shunts are rarely seen by histological 
means in mammalian muscle beds (Hanunersen, 1970), capillary based non-nutritive 
vasculature may exist within intermuscular septa (Lindbom & Arfors, 1984). We have 
extended this reasoning to propose that the inhibitory effect of high dose NOR may also be 
due to functional vascular shunting in the rat (Clark et al. 1995) and in the bettong (data 
not shown, Ye et aL 1995). The biphasic nature of the MO 2  curves in the chicken (Fig. 2) 
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show that simiLir type B effects can occur, although the differing response pattern to 5-HT 
suggests that the control of such flow patterns may be quite different to that in mammalian 
models, possibly reflecting differing distributions and/or relative abundancies of 5-HT 
receptor subtypes. 

Table 1. Basal and NOR-stimulated perfusion data for the four species studied. 

Species Flow rate Basal MOi 
(pnoLg-1.11-1) 

Basal perfusion 
pressure (mm Hg) 

Max. NOR-stimulated 
AM% (pasoi41.11-1) 

rat l  0.27 6.6 ± 0.1 29.1 ±0.6 4.4 ± 0.2 (67%) 
(Rattus mtru.$) (n = 23) (n = 23) (n = 5) 

chicken 0.33 7.4 ±0.3 44.8 ± 2.2 2.6 ± 0.3 (35%) 
(Gallus 

domesticus) 
bettong2  0.28 

(n =31) 

4.18 ± 0.35 

(n = 44) 

32.0 ± 2.3 

(n = 5) 

4.7 ± 0.4 (112%) 
(Bettongia 
gaimardi) 
cane toad 0.20 

(n =8) 

1.36 ±0.10 

(n =8) 

15.8 ± 3.2 

(n = 5) 

0.35 ± 0.06 (26%) 
(Bufo marinus) (n = 3) (n = 3) (n = 3) 

'Data taken from Dora etal. (1992); 2data taken from Ye etal. (1995). Data are means ± SE. 

-10 	-8 	-6 	-4 

log [Agonist] 

Fig. 2. A MO2 (A) and perfusion pressure (B) concentration-response curves for NOR, 5- 
HT, and adrenaline (ADR) in perfused chicken lower limb. All data are means ± SE and 
represent 4-7 experiments. Basal values are as shown in Table 1. A  Significant MO2  
increase (P <0.05). Perfusion pressure and MO2  increases were significant (P < 0.05) at 
10 nM concentrations of both NOR and ADR 

The actual tissue(s) responsible for, and the mechanism(s) underlying type A 
vasoconstrictor-induced MO2 are still not certain. We have previously proposed that 
vascular smooth muscle (VSM) may be at least partially responsible for the increased MO 2  
(Colquhoun & Clark, 1991). However, the possibility of a substantial VSM contribution 
hinges on sufficient VSM being present in muscle to account for the size of the responses 
recorded, particularly in the mammalian models. Further, this proposal cannot easily 
explain type B (inhibitory) MO 2  effects without invoking flow redistribution away from a 
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large number of small vessels (Dora et a/. 1992) or other respiring tissue. An alternative 
hypothesis is that type A vasoconstrictors act in a site-specific fashion to switch flow to 
actively respiring skeletal muscle whilst maintaining overall normoxia. A variation of this 
scenario may be site-specific release of a local second messenger which induces a 
temporary state of mitochoncirial uncoupling in skeletal muscle (Clark et aL 1995). 

200 
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2 

100 

50 

0 
-9 	-8 	-7 	 -5 

log [No rad ren aline] 

Fig. 3. A MO2  (A) and A perfusion pressure (B) concentration-response curves for NOR in 
perfused chicken (n = 4-7, Eldershaw et al. unpublished), bettong (n = 5), rat (n = 5), 
and toad (n = 3, J-M. Ye, PhD thesis, University of Tasmania, 1995) muscle preparations. 
All data points are means ± SE. Toad data points are significantly different (P <0.05, 
paired t test) to basal values at all concentrations greater than le M NOR. 

Given that all four species show a similar response to catecholamines, it seems likely 
that vascular control of resting muscle thermogenesis is an underlying non-shivering 
thermogenic mechanism, common to all vertebrate species. The relatively minor MO 2  
effect in the toad at physiological temperature and perfusion pressure is consistent with the 
relative inability of ectotherrns to respond to thermal challenge. Nevertheless, the response 
to NOR in this species, although indicative of a less complex system of vascular control, 
suggests that this mode of thermogenesis may have evolved prior to the occurrence of BAT 
in eutherians. The evolutionary appearance of BAT may have been due to the requirement 
of a supplementary thermogenic mechanism in juvenile and smaller mammals. 
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Fig. 4. Representative perfusion tracing of the effect of infused NOR on venous oxygen 
partial pressure (Pv0 2) and perfusion pressure in the constant-flow perfused toad hindlimbs 
(Ye, 1995). 

References 
Astrup A. (1986) Thermogenesis in human brown adipose tissue and skeletal muscle 

induced by sympathornimetic stimulation. Acta EndocrinoL 112, 7-32. 
Bonen A., Clark M.G. & Henriksen E.J. (1994) Experimental approaches in muscle 

metabolism: hindlimb perfusion and isolated muscle incubations. Am. J. PhysioL 
266, E 1 -E16 

Clark M.G., Colquhoun E.Q., Rattigan S., Dora K.A., Eldershaw T.P.D., Hall J.L. & Ye J-
M. (1995) Vascular and endocrine control of muscle metabolism. Am. J. PhysioL 
268, E797-E812. 

Colquhoun E.Q. & Clark M.G. (1991) Open question: has thermogenesis in muscle been 
overlooked and misinterpreted? News PhysioL Sci. 6, 256-259. 

Colquhoun E.Q., Hettiarachchi M., Ye J-M., Rattigan S., & Clark M.G. (1990) Inhibition 
by vasodilators of noradrenaline and vasoconstrictor-mediated, but not skeletal 
muscle contraction-induced oxygen uptake in the perfused rat hindlimb: 
implications for non-shivering thermogenesis in muscle tissue. Gen. PharmacoL 
21, 141-148. 

Colquhoun E.Q., Hettiarachchi M., Ye J-M., Richter E.A., Hniat J., Rasttigan S. & Clark 
M.G. (1988) Vasopressin and angiotensin H stimulate oxygen uptake in the 
perfused rat hindlimb. Life Sci. 43, 1747-1754. 

Dora K.A., Colquhoun E.Q., Hettiarachchi M., Rattigan S. & Clark M.G. (1991) The 
absence of 5-HT-mediated vascular thermogenesis in perfused rat hindlimb may 
result from vascular shunting. Life Sci. 48, 1555-1564. 

316 



Thertnogenic switching in andotherm and ectotherm rausck 

Dora K.A., Richards S.M., Ftattigan S., Colquhoun E.Q. & Clark M.G. (1992) Serotonin 
and norepinephrine vasoconstriction in rat hindlimb have different oxygen 
requirements. Ant. J. PhysioL 262, H698-H703. 

Duchamp C., Cohen-Mad F., Rouanet J-L., Dumonteil E. & Barre IL (1993) Existence of 
nonshivering thermogenesis in birds. In Life in the Cold: Ecological, 
Physiological, and Molecular Mechanisms (Edited by Carey C., Florant G.L., 
under B.A. & Horwitz B.), pp. 529-533. Westview Press, Boulder. 

Fujita M., Nishibori M. & Yamamoto S. (1992) Changes in plasma catecholamine, free 
fatty acid, glucose concentrations, and plasma monoamine mddase activity before 
and after feeding in laying hens. Poultry Sc!. 71, 1067-1072. 

Hammersen F. (1970) The terminal vascular bed in skeletal muscle with special regard to 
the problem of shunts. In Capillary permeability: the tranfer of molecules and 
ions between capillary blood and tissue (Edited by Crone C. & Lassen NA.), pp. 
351-365. Munksgard, Copenhagen. 

Hayward J.S. & Lisson P.A.(1992) Evolution of brown fat: its absence in marsupials and 
monotremes. Can. J. Zoo!. 70, 171-179. 

Lindbom L. & Arfors K-E. (1984) Non-homogeneous blood flow distribution in the rabbit 
tenuissimus muscle; differential control of total blood flow and capillary perfusion. 
Acta PhysioL Scand 122, 225-233. 

Nicol, S.C. (1978) Oxygen consumption and nitrogen metabolism in the potoroo, Potorous 
tridactylus. Comp. Biochem. PhysioL 55C, 33-37. 

Pelster B., Burg,gren W.W., Petrou S. & Wahlqvist I. (1993) Developmental changes in the 
acetylcholine influence on heart muscle of Rana catesbeiana: In situ and In vitro 
effects. J. Exp. Zoo!. 267, 1-8. 

Saarela S., Hissa R., Pyiimila A., Harjula R., Ojanen M. & Orell M. (1989) Do birds 
possess brown adipose tissue? Comp. Biochem. Physia 92A, 219-228. 

Ye J-M., Edwards S., Rose R.W., Rattigan S., Clark M.G. & Colquhoun E.Q. (1995) 
Vasoconstrictors alter oxygen, lactate and glycerol metabolism in the perfused 
hindlimb of a rat kangaroo. Am. J. Physiot 268, R1217-R1223. 

Ye J-M. (1995) Vasoconstrictor-mediated control of thermogenesis. Ph.D. Thesis. 
University of Tasmania, Hobart. 

317 


