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ABSTRACT 

The southern and western rock lobsters (Jasus edwardsii and Panulirus 

cygnus, respectively) form the basis of two of the major seafood export industries 

in Australia; between them earning over $500 M export dollars yearly. Although a 

major portion of the catch is exported as 'whole-cooked' or 'tailed' products, an 

increasing share of the catch is exported live. The majority of lobsters arrive at the 

processing sheds as live lobsters. However, a lack of basic physiological 

information has impeded advances in the design and management of transport and 

holding systems, often resulting in a deterioration of the physiological condition 

of some lobsters. Such physiological deterioration may result in the final product 

choice for the processors being limited, leading to a reduced value of the catch. 

The aim of this study was to develop an understanding of the physiology of 

lobsters, especially in relation to factors the lobsters may be subjected to during 

post-capture handling practices. This information could be used to redefine post-

capture handling practices and holding system design and management. 

Standard oxygen consumption of both species increased in response to 

increases in temperature and body weight. Activity had the greatest effect on 

oxygen consumption rates, causing an approximate 3-fold increase above standard 

rates. The increase in oxygen consumption due to activity decreased at 

temperatures approaching the upper and lower extremes of each species. After a 

period of activity and emersion oxygen consumption remained elevated for up to 8 

hours. A marked diurnal rhythm was evident, with a 48% and 87% (J. edwardsii 

and P. cygnus, respectively) increase in oxygen consumption at night. This was 

largely related to increased activity at night. Feeding resulted in a substantial 

(greater than 2-fold in P. cygnus) and sustained (up to 48 hours) increase in 

oxygen consumption. Both species were essentially oxygen regulators, able to 

maintain standard rates of oxygen consumption down to around 30% water 

oxygen saturation. Below that oxygen level the lobsters became oxygen 

conformers. Activity resulted in an approximate doubling of the water oxygen 

level at which lobsters acted as oxygen conformers. 

The total ammonia nitrogen (TAN) excretion rates of both species 

increased with increases in temperature and body weight. Activity had minor 



influence on the TAN excretion rate. A diurnal rhythm was evident in J. edwardsii 

but not in P. cygnus. Feeding had a large affect on the TAN excretion rate, with an 

approximate 6-fold increase occurring in each species. The excretion rates 

remained high for over 24 hours post-prandial. 

The effect of the dissolved oxygen level on recovery of P. cygnus from a 

period of activity/emersion was investigated. Based on the rate of recovery of 

various physiological parameters (oxygen consumption, haemolymph ammonia, 

lactate, glucose, and pH), the maintenance of water oxygen levels close to 100% 

saturation is recommended. Water oxygen levels less than 60% saturation slowed 

the rate of recovery. All lobsters recovering in water with oxygen levels less than 

20% saturation died. 

Carrying P. cygnus out of water imposes physiological disturbances to the 

lobsters. The severity of the disturbances increased when the relative humidity 

was lower and when wind was present. Spraying water over the lobsters prevents 

some of the physiological consequences of emersion, such as decreases in pH and 

haemolymph ammonia buildup, however it does not prevent haemolymph lactate 

increases. Therefore, lobsters still rely on anaerobic metabolism when emersed in 

sprays. There was no evidence that failure of lobsters to recover from a period of 

emersion was caused by gill damage. 

A half hour period of emersion/handling at 23°C caused large 

physiological disturbances of P. cygnus. Halving the emersion/handling time did 

not decrease the extent of the physiological disturbances. Slow-chilling the 

lobsters to 11°C prior to emersion/handling, was an effective means of decreasing 

the physiological disturbances associated with emersion. 

This study has developed our understanding of the physiological responses 

of the southern and western rock lobsters to factors affecting them during post-

capture processes, and will allow the design and management of rock lobster 

holding facilities to be based on a sound scientific basis. It also represents a major 

contribution to knowledge on respiration and nitrogen metabolism of large 

decapod crustaceans. 
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General introduction 

1.1 INTRODUCTION 

The southern rock lobster, Jasus edwardsii (Hutton, 1875), and the western 

rock lobster, Panulirus cygnus (George, 1962) form the basis of two of the largest 

and most lucrative fisheries in Australia. South Australia (approx. 2500 tonnes 

annually), Tasmania (1500 tonnes) and Victoria (900 tonnes) all have major fisheries 

based on J. edwardsii, with some commercial fishing for the species occurring in 

southern Western Australia and southern New South Wales. The southern rock 

lobster fishery is worth around $150 million annually. J. edwardsii is also the target 

species for the major rock lobster fishery in New Zealand. P. cygnus is only caught 

commercially off the west coast of Western Australia. It supports the second largest 

rock lobster fishery in the world (Brown and Phillips, 1994) with an annual catch of 

between 9000 and 12000 tonnes, worth over $300 million. 

Fig 1.1: The distribution of J. edwardsii and P. cygnus in Australian waters. 

J. edwardsii inhabits temperate waters and ranges from Coffs Harbour in 

northern New South Wales (30°18'S) to Geraldton in Western Australia 

(28°45'S)(Brown and Phillips, 1994), including Tasmania (Fig 1.1). It also inhabits 
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New Zealand waters. Research has shown that the Australian and New Zealand 

populations are the same stocks (Booth et al., 1990). J. edwardsii is found in depths 

ranging from 1 to 200m, and in water temperatures ranging from 6°C in southern 

New Zealand (McKoy, 1985) to 23°C at the northern extremity of its range. 

Mature adults usually move into the deeper offshore waters to breed. Females 

are fertilised externally by the male depositing a spermatophore on their sternal 

plates (MacDiarmid, 1988), between April and July (Brown and Phillips, 1994). The 

eggs are carried on the pleopods until hatching, which generally peaks in October. 

The larvae (called phyllosoma) develop at sea for between 9 and 24 months, before 

being carried back to the coast and settling out as pueruli. The puerulus is the 

transitional stage between the planktonic phyllosoma and the bottom-living juvenile 

(Kennedy, 1990). It resembles the adult form, but is completely clear and has 

enlarged pleopods for active swimming. Puerulus moult to the juvenile stage within 

two weeks after settling. Juveniles inhabit inshore waters and are generally found 

associated with reefs. Lobsters are foraging feeders and ontogentic changes in the 

diet of J. edwardsii have been found (Edmunds, 1995). Small juveniles feed 

predominantly on ophiuroids, isopods and bivalves, whereas older juveniles and 

adults feed predominantly on bivalves, crabs and other crustaceans, urchins and 

gastropods (Fielder, 1965; Edmunds, 1995). J. edwardsii can take anything from 5- 

11 years to reach legal size, with locality and sex significantly impacting on the 

time frame (Booth and Breen, 1994). 

P. cygnus inhabits the tropical/temperate waters off the western coast of 

Western Australia and ranges from Northwest Cape (21°48'S) to Hamelin Harbour 

(34°30'S)(Holthuis, 1991) (Fig. 1.1). Adults and juveniles are found throughout the 

limestone and coral reefs, from shallow inshore areas to the edge of the continental 

shelf (at depths of around 80 metres). The water temperature ranges from 27°C at 

Northwest Cape to 16°C near Cape Leeuwin in the south (Grey, 1992). 

Mature adults usually move into deeper waters to breed. Females are 

fertilised externally by the male depositing a spermatophore on their sternal plates, 

between July and December. The eggs are carried on the pleopods until hatching, 

which generally occurs from late October through to February (Brown and Phillips, 

1994). The phyllosome larvae develop offshore over 9-12 months, before moving 

back towards the coast and settling as pueruli on the shallow limestone reefs (<40m). 

The pueruli moult to post-puerulus juveniles which are solitary in nature. As they 
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develop into juveniles they become more gregarious in nature (Jernakoff, 1990), 

eventually existing in social groups. They are basically opportunistic feeders, feeding 

on a wide variety of material, including seaweed, coralline algae, echinoderms, 

molluscs, crustaceans and polycheate worms (Jo11 and Phillips, 1984). The juveniles 

take 3-4 years to reach the minimum legal size for the fishery. 

Both rock lobster fisheries have focussed on the live lobster trade in recent 

years. Almost 90% of the J. edwardsii catch and between 40 and 50% of the P. 

cygnus catch were exported live during the 1996/97 fishing season. In comparison 

during the 1991/92 season only 10% of the P. cygnus catch was exported live (Marec 

Pty Ltd., 1994). The methods required to maintain lobsters so they are suitable for 

live export are completely different to the methods used when the fisheries were 

predominantly reliant on products such as whole cooked and frozen tails. The care of 

live lobsters begins the moment they are taken from the traps, and the percentage of 

weak and dead lobsters that subsequently develops may be considerably diminished 

by giving the lobsters due care from this time on (Chaisson, 1932). Additionally, the 

delivery of good quality live lobsters to processors will help to ensure that any non-

live products are also of premium quality. The aim of the industry should be for each 

lobster to be delivered to the processor in a condition which gives the processor 

maximum choice as to how to process (Harvie, 1993). 

The holding and transport of live crustaceans has been practiced since early 

this century, although only a relatively small volume of literature has been published 

on the topic. Much of the research has been conducted on northern hemisphere 

species such as the American lobster, Homarus americanus, and the European 

lobster, H. gammarus. In 1932, Chaisson outlined and discussed many of the 

problems faced during the holding and shipment of H americanus. During the 

1950s, '60s and '70s research focused on the aerial transport of crustaceans, with the 

aim of increasing the survival rate of the animals (McLeese, 1958; McLeese and 

Wilder, 1964; McLeese, 1965; Witham, 1971). Recently, the increased commercial 

importance of marketing crustaceans alive has led to a significant amount of research 

being conducted on many European species (see Whyman et al., 1985; Spicer et al., 

1990; Whiteley etal., 1990; Beard and McGregor, 1991; Whiteley and Taylor, 1992; 

Schmitt and Uglow, 1997a). In Australia, the development of the live crustacean 

trade has also spawned research into methods for improving the live transport and 
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holding of several crustacean species (Varley and Greenaway, 1992; Morrissy et al., 

1992; Paterson, 1993a,b; Paterson etal., 1994a). 

In parallel with specific studies on live holding/transport, there has been a 

large number of studies investigating respiratory and acid-base responses to a wide 

variety of internal and environmental perturbations - including temperature, 

dissolved oxygen level, carbon dioxide level, emersion, exercise, salinity, and acid-

base state of the water (see Waldron, 1991 for a review). These studies have 

developed an understanding of the biochemical and physiological changes crustacea 

undergo when exposed to various factors, including those which commonly occur 

during post-harvest procedures such as exposure to hypoxic conditions and handling 

stress. 

Studies on the physiology and biochemistry of J. edwardsii and P. cygnus, 

particularly in relation to live holding and transport, have been limited. The 

physiology of J. edwardsii has not been studied in depth. Binns and Petersen (1969) 

studied the form and origin of nitrogen excretion. Waldron (1991) investigated the 

respiratory and acid-base physiology of lobsters subjected to handling and emersion. 

Waldron (1991) suggested that accurate knowledge of its response to environmental 

perturbations would be invaluable in ensuring higher survivorship and quality of 

exported animals. 

The physiology of P. cygnus was extensively investigated during the 1970's 

(Dall, 1974a,b; Dall, 1975; Dall and Smith, 1978) however, these studies were not 

directly related to the physiological processes imposed during post-capture handling. 

Some studies relating to the handling of lobsters after capture (Anon., 1980b; Brown 

and Caputi, 1986) shed some light on the stress imposed on lobsters by the handling 

practices immediately post-capture. Recently studies directly related to the holding 

and transport of P. cygnus have been undertaken. Spanoghe (1997) studied the 

physiological and biochemical responses elicited by P. cygnus to the various post-

capture processes. Tod and Spanoghe (1997) investigated the physiological effects of 

truck transport of lobsters, with the aim of developing improved onshore storage and 

transportation protocols. These studies have enabled the identification of protocols 

by which post-harvest handling techniques could be modified to reduce the 

occurrence of morbidity and mortality (Spanoghe, 1997). 

It is apparent that the physiological and biochemical responses of both the 

southern and western rock lobster to the conditions imposed on them during post- 
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capture processes are very similar to those observed in many other species of subtidal 

crustaceans (Waldron, 1991; Spanoghe, 1997). For instance, emersion results in 

significant changes to the biochemistry and physiology of crustaceans (internal 

acidosis, hypoxia, hyperglycaemia, hypercapnia); thus, it should be avoided wherever 

possible. Many of the recommendations on post-capture handling made for other 

crustacean species (eg. Whyman et al., 1985; Harvie, 1993) can be adopted, albeit 

cautiously, for either the J. edwardsii or P. cygnus fishery. For example, suggestions 

made by Chaisson (1932), such as the need for lobsters to be handled gently and for 

well designed holding crates/containers, have been highlighted as being important 

issues for the J edwardsii industry (Harvie, 1993). 

The ability of fishermen and processors to hold and transport live lobsters has 

improved significantly since the establishment of the live lobster trade. 

Improvements have generally been developed through empirical approaches (Evans 

and Spanoghe, 1993). However, obstacles still remain due to a lack of information 

regarding species-specific lobster physiology. 

1.2 THE POST -CAPTURE PROCESS 

The specific areas researched in this study are discussed below, but first it is 

necessary to develop a clear understanding of the processes a lobster may go through 

after capture. Lobsters are caught in baited pots (or traps) that are usually pulled at 

least once daily. The lobsters will be stressed because for the first time they have 

been subjected to air exposure, bright sunlight and handling. They are held for 

between a few hours and two weeks in tanks on board the fishing boat before being 

landed. There are two main methods of holding lobsters on boats, viz: (a) below 

deck tanks and (b) on deck storage facilities (usually fish bins). The ability of each 

particular on-board holding system to successfully hold lobsters will depend on 

factors such as water flow rate, stocking density and tank design. 

After landing, the lobsters may be transported on trucks for a period of 

several hours before reaching the processing facilities. Truck transport methods are 

highly variable. The western rock lobster industry has made extensive use of 

controlled temperature water sprays in insulated trucks to transport lobsters from 

isolated sites (Tod and Spanoghe, 1997). Some companies rely on the use of 
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controlled temperature trucks, and others are transporting lobsters fully submerged in 

seawater tanks Similar methods are used in the southern rock lobster industry. 

However, the use of trucks which have no insulating properties, or have open or 

partly enclosed carrying compartments is not uncommon. Such methods can cause 

additional stress to the lobsters as they may be subjected to wind and/or high 

temperatures. 

The lobsters are usually held submerged in tanks at the processing facilities 

for 2-3 days. This period of time in tanks helps the lobsters to recover from the 

stresses of capture and transport, and allows them to purge their gut contents, thus 

improving their chances of surviving the export process. In an attempt to take 

advantage of seasonal price fluctuations, many processors are now holding 

significant quantities of lobsters for extended periods (several weeks/months) prior to 

export. The design of holding facilities is highly variable and ranges from sea cages 

(mostly used for J edwardsii in South Australia) to high technology recirculating 

systems. By far the majority of lobsters are being held in tank/raceway systems using 

flow-through water. That is, water is being pumped from the ocean into the tanks and 

then exits the tanks and flows back into the ocean. These are quite simple systems 

but their success can be variable if the tank design, water flow and stocking density 

criteria are not met. Setting those criteria relies on a detailed understanding of the 

lobsters physiological requirements. 

Lobsters may be subjected to many factors (poor water quality, emersion, 

temperature extremes, exposure to sunlight/wind, handling, overcrowding) during the 

post-capture process which may result in their health being compromised. For 

example, P. cygnus undergoes at least eight periods of handling between the time 

they are delivered to coastal depots until they leave the processing facility packed in 

export cartons (Spanoghe, 1997). Reducing the impact of any of these factors on 

lobster health would appear to be an obvious method of improving the overall quality 

of the lobsters. 

1.3 OVERALL AIMS AND STRUCTURE OF THE THESIS 

The quality of water provided in holding tanks for live lobsters has to be 

optimal in order to achieve minimal losses (Spanoghe, 1997). Specific information 

on which to base the design and maintenance of holding and transport systems are 
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limited. To optimise the quality of the water it is necessary to understand the 

physiological requirements of the lobsters. Techniques used to hold and transport live 

lobsters have mostly been developed on a trial and error basis without any knowledge 

of those physiological requirements. Therefore, scientifically based protocols for 

holding and transporting rock lobsters need to be established. This study focuses on 

obtaining information which will contribute to the further development of the live 

rock lobster industry, with the aim of increasing post-capture survival of both the 

western and southern rock lobsters. 

Investigations on oxygen consumption and ammonia excretion of both lobster 

species are presented (Chapters 3, 4 and 5). Further investigations on optimising the 

dissolved oxygen levels, aerial transport and the relationship between temperature 

and stress were undertaken only on P. cygnus (Chapters 6, 7 and 8). Concentration of 

the research on P. cygnus has resulted from the greater need to establish handling 

protocols for that species. The exponential increase in the tonnage of P. cygnus being 

handled live has not been matched with the development of such protocols. In a 

review of the research and development needs of the Australian rock lobster 

industries, Phillips (1995) recommended that physiological studies which assisted 

post-capture handling of P. cygnus should be given the highest priority. 

The general materials and methods are outlined in Chapter 2, however 

materials and methods specific to each Chapter are outlined in the Materials and 

Methods section of that Chapter. An overview of the results, and their implications to 

the industry, is given in the final chapter (Chapter 9). 

1.4 STRESS 

Much of this research focuses on lobsters which are stressed. It is necessary 

to define the word stress when it is used in the context of lobsters. Stress is a general 

term which indicates a change in biological condition beyond the normal range of 

resting conditions; the change challenges homeostasis and, as such, represents a 

threat to an animals well being (Barton and Iwama, 1991). Stress can be either 

readily reversible, a change that lies within the homeostatic capability of the lobsters, 

or it can be non-reversible, ultimately leading to death (Taylor et al., 1997). Possible 

stressors for lobsters include, the capture process, handling, excessive activity 

associated with the escape response, crowding, poor water quality, emersion, and 

7 



Chapter 1 

exposure to sunlight and wind. Stress itself cannot be measured, and only the 

responses to stimuli can be quantitatively determined to reflect the degree or severity 

of stress experienced (Barton and Iwama, 1991). In crustaceans, many indicators of 

stress have been used; these include haemolymph lactate, pH, glucose, and ions (see 

Taylor et al., 1997 for a discussion). 

The time taken for both J. edwardsii and P. cygnus to recover homeostasis 

after a period of stress can be lengthy (>8 hours)(Waldron, 1991; Spanoghe, 1997), 

although the length of the recovery period varies depending on the stressor. Some of 

the primary aims of transport and holding systems are, to decrease the extent of the 

stress response (ie. try to limit it to readily reversible changes), and to minimise the 

period of time required to recover homeostasis after a stress response. Such 

approaches have been recognised as important steps to help alleviate the detrimental 

effects of stress in fish populations (Barton and Iwama, 1991). 

1.5 OXYGEN CONSUMPTION 

Spiny lobsters are aerobic animals which rely on the uptake of oxygen from 

water to drive their metabolic processes. In order to respire efficiently an animal 

must: (a) possess means of moving the respiratory medium across the gas exchange 

surfaces, (b) be able to take up oxygen from the medium, and (c) transport oxygen to 

the tissues and the carbon dioxide produced to the gas exchange surface (Waldron, 

1991). 

The gas exchange surfaces of spiny lobsters are gills, which are situated 

within the gill chambers on either side of the head under the carapace. The gills of 

lobsters are filamentous, consisting of simple filaments (trichobranchiate). The flow 

of water past the gills is generated by the beating of the scaphognathites, or gill 

bailers, which are the exopodites of the second maxilliped. The flow of water across 

the gills is countercurrent (Rogers, 1982; McMahon and Wilkens, 1983) although 

Rogers noted that because of the direction of haemolymph flow within the gill 

filament, countercurrent exchange will be less effective than in fish and in those 

crustaceans with lamellate gills. 

The arrangement of the gills within the branchial chamber of f. edwardsii has 

been described by Rogers (1982)(Rogers described the gills of J. novaehollandiae 

which was concluded to be the same species as J. edwardsii by Booth et al. (1990)). 
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Understandably, Waldron (1991) found that J. edwardsii from New Zealand waters 

had the same gill arrangement as described by Rogers (1982). The gills of both the 

southern and western rock lobsters used in this study also had the same number, 

position and gross morphology. That is, there are 21 gills within each cavity and the 

length of the individual gills varies to fit within the shape of the cavity, but each 

tapers at the tip, with the distal filaments shorter than those at the base. Rogers 

(1982) also noted that some gill filaments in J. edwardsii had 2 septa, which divided 

the filaments into 3 channels instead of the usual 2. The same arrangement was also 

observed in P. cygnus. Rogers (1982) postulated that the middle channel acted as a 

pressure relief system. 

Oxygen is one of the major water quality parameters determining the health 

of aquatic animals. It is essential that water flow and aeration are sufficient to 

provide adequate oxygen for the number of lobsters being held (Beard and 

McGregor, 1991). Low levels of oxygen in the water caused by coral spawnings have 

been postulated to be the cause of death of western rock lobsters held in cages at the 

Abrolhos Islands (Anon, 1993). Oxygen needs to be supplied to the animals at a rate 

that meets their metabolic requirements. However, there are many factors (both 

extrinsic and intrinsic) which affect the rate of oxygen consumption of crustaceans 

(Cockcroft and Wooldridge, 1985). Temperature, body weight, sex, activity, water 

oxygen tension, feeding, daily rhythms, moulting stage, and salinity have all been 

shown to affect oxygen consumption (Thomas, 1954; Halcrow and Boyd, 1967; 

Anse11, 1973; Rice and Armitage, 1974; Spoek, 1974; Laird and Haefner, 1976; 

Schembri, 1979; Bridges and Brand, 1980a; Penkoff and Thurberg, 1982; Taylor, 

1981; Da11, 1986; Winkler, 1987; Houlihan etal., 1990; Whiteley et al., 1990). A full 

understanding of how oxygen consumption of J. edwardsii and P. cygnus is affected 

by such factors is essential to ensure that transport and holding systems are 

appropriately designed to minimise the impact of post-capture processes on the 

health of lobsters. 

Studies on oxygen consumption of large decapod crustaceans have been 

limited and have centred on species such as the crab Cancer magister and the clawed 

lobsters Homarus spp. (McLeese and Watson, 1968; Spoek, 1974; McMahon et al., 

1979; Whiteley et al., 1990). Considering their economic importance the palinurids, 

or spiny lobsters, have been poorly researched. Winget (1969) reported on the effects 

of dissolved oxygen levels, body weight, temperature and activity on oxygen 
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consumption of Panulirus interruptus. Buesa (1979) investigated the effects of body 

weight, dissolved oxygen levels, salinity and temperature on oxygen consumption by 

P. argus and the effect of body weight on oxygen consumption by P. guttatus. 

Zoutendyk (1989) studied the effects of temperature and body weight on oxygen 

consumption by J. lalandii. 

Some information is available on oxygen consumption by J. edwardsii 

through the study by Waldron (1991). J edwardsii had a 25% higher oxygen 

consumption rate at 17°C than at 15°C, but the oxygen consumption rates at those 

temperatures were comparatively low compared to other crustaceans of similar size. 

When lobsters were exposed to air the oxygen consumption rate fell to approximately 

2/3 of the resting rate in water. However, upon re-immersion the oxygen 

consumption rate was more than 2.5 times the resting rate and it remained elevated 

for more than 8 hours. J. edwardsii only had a limited ability to maintain its resting 

rate of oxygen consumption in the face of decreasing dissolved oxygen levels; below 

50% saturation oxygen consumption by J. edwardsii became dependent on the 

ambient oxygen level. Waldron (1991) concluded that the lack of oxygen 

independence exhibited by J. edwardsii may prove limiting to its distribution. 

Waldrons' study provides a basis for understanding the oxygen requirements of J. 

edwardsii and will allow an intra-species comparison of lobsters separated by a 

considerable distance (approx. 2000 km). No previous studies on oxygen 

consumption by P. cygnus were found in the literature. 

This study investigates the oxygen consumption response of J. edwardsii and 

P. cygnus to intrinsic and extrinsic factors which are commonly associated with post-

capture processes - temperature, body weight, activity, feeding, handling, daily 

rhythm and dissolved oxygen level. 

1.6 AMMONIA EXCRETION 

A characteristic of aquatic crustacea is ammonotelism. Ammonia makes up 

60 to 100% of the total excreted nitrogen in crustacea (Regnault, 1987). Ammonia 

excretion occurs either via active ion exchange (Na +/N114+) or by passive diffusion 

through the gill epithelium (Regnault, 1987). Ammonia can be toxic to crustaceans if 

allowed to accumulate to too high a concentration in the water (Tomasso, 1994), and 

even at low levels can inhibit growth (Chen and Lin, 1992). This is particularly 
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evident where other factors such as low dissolved oxygen levels, low salinity levels, 

or low pH also interact (Wajsbrot et al., 1989; Chen and Lin, 1992; Russo and 

Thurston, 1991). No information is available on the toxic levels of ammonia for 

either J. edwardsii or P. cygnus; in fact, there are very limited ammonia toxicity data 

available for large decapod crustaceans. Cornick and Stewart (1977) found that the 

30-day LC 50  of adult Homarus americanus was 88 mg/1 total ammonia nitrogen 

(TAN). Young-Lai et al. (1991) found that the 96-h LC 50  of H. americanus increased 

with decreases in temperature, being 377 mg/1 TAN at 5°C and 219 mg/1 TAN at 

20°C. The authors calculated that "safe" concentrations of ammonia for adult lobsters 

at 20°C was 21.9 mg/1 TAN. Such levels are much higher than those recommended as 

safe for other aquatic species, such as fish, where levels of less than 0.5 mg/1 TAN 

are recommended (Forteath et al., 1993b). Even so, it is generally recommended that 

total ammonia levels of less than 0.5 mg/1 be maintained in lobster holding tanks 

(Bunter, 1992; Harvie, 1993). 

Ammonia accumulation in the water of flow through holding systems, can 

easily be prevented by ensuring that the water flow rates are high enough and that 

good water mixing prevails. However, where water re-use systems are in place 

ammonia can increase to significant levels. Trucks used to transport lobsters on land 

generally rely on cooled seawater sprays to maintain the health of the lobsters. Water 

is re-used and the concentrations of waste products can reach very high levels (25 

mg/1 Kris Carlberg, Geraldton Fishermens Co-op., pers. comm.). Land based 

recirculating holding systems are commonly used for holding southern rock lobsters, 

J. edwardsii, and are being increasingly used for holding western rock lobsters, P. 

cygnus. Recirculating systems rely on the establishment of bacteria in the biofilter to 

treat the water and decrease the concentrations of toxic nitrogenous substances. With 

poor biofilter design and/or management ammonia levels may rise and compromise 

the quality of the lobsters. 

Empirical information on ammonia excretion would be helpful in determining 

the water flow rates or biological filter size necessary to maintain safe ammonia 

concentrations (Forsberg and Summerfelt, 1992). The rate of ammonia excretion can 

be influenced by many factors including temperature (Regnault, 1987; Chen and Lai, 

1993; Chen and Kou, 1996), body weight (Needham, 1957; Carvalho and Phan, 

1997), nutritional level (Dall and Smith, 1986; Regnault, 1987), diurnal rhythms 

(Dall and Smith, 1986), salinity (Chen and Nan, 1993; Chen and Lai, 1993), moult 
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stage (Regnault, 1979), and ambient ammonia concentration (Chen and Lin, 1995; 

Schmitt and Uglow, 1997b). 

Very little information is available on the ammonia excretion rates of large 

decapod crustaceans. Wickins (1985) studied the effect of feeding on ammonia 

excretion by European lobsters, Homarus gammarus. Zoutendyk (1987) investigated 

the effect of feeding on ammonia and urea excretion by Jasus lalandii. In both of 

these studies the lobsters exhibited a significant increase in ammonia excretion after 

feeding. The form and origin of nitrogenous excretion by J edwardsii was 

investigated by Binns and Peterson (1969). They determined that ammonia 

represented 72% of nitrogenous excretion and that very little of the ammonia was 

excreted via the urine. In crustaceans the major portion of ammonia is excreted via 

the gill epithelium (Regnault, 1987). 

The importance of urea as a nitrogenous excretory product for crustaceans is 

being increasingly recognised (Quarmby, 1985). Urea was thought to comprise only 

a small percentage (1-5%) of the nitrogenous end-products of Crustacea (Regnault, 

1987). However, more recent studies have shown that it may comprise almost 1/4 of 

the nitrogen excreted by some species (Quarmby, 1985; Zoutendyk, 1987; Wajsbrot 

et al., 1989). If all of the excreted urea was oxidised to ammonia then it would 

represent a significant increased nutrient load on the water quality in holding 

systems. 

Knowledge of the ammonia excretion responses of J. edwardsii and P. cygnus 

to culture conditions are required to optimise the design and management of transport 

and holding systems. Therefore, the aim of this study is to determine the effect of 

several intrinsic and extrinsic factors on the ammonia excretion of J. edwardsii and 

P. cygnus, and to determine the endogenous urea excretion rate of both species. 

1.7 DISSOLVED OXYGEN LEVEL AND RECOVERY FROM STRESS 

The characteristic physiological responses of subtidal crustaceans to 

emersion/exercise is internal hypoxia, a mixed respiratory and metabolic acidosis, 

hyperglycaemia, a rapid depletion of energy pools in the muscle tissue, and an 

accumulation of metabolic waste products (Telford, 1968; Onnen and Zebe, 1983; 

Head and Baldwin, 1986; Vermeer, 1987; Whiteley et al., 1990; Waldron, 1991; 

Regnault, 1994). A variety of processes take place during re-immersion - energy 
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pools (phosphagen and ATP) are recharged, anaerobic end-products are cleared from 

the tissues, and pH disturbances are corrected. An organism-level manifestation of all 

of the above, essentially cellular processes of recovery, is a period of supranormal 

oxygen consumption (the oxygen debt)(Ellington, 1983). Oxygen consumption (M O2) 

is normally elevated upon re-immersion, with MO2  levels 3 to 10-fold greater than 

resting MO2  levels (Booth et al., 1982). Increased oxygen consumption is achieved by 

a number of factors including increased oxygen supply (via increased gill ventilation 

rate), increased oxygen transport away from the gills (increased heart rate and hence 

gill perfusion rate), and by an increase in oxygen binding to haemocyanin (McMahon 

and Wilkens, 1983). These changes also ensure the excretion of metabolic waste 

products, such as CO2, is optimised. 

During post-harvest handling P. cygnus may undergo a series of procedures 

during which the lobsters are emersed for periods of between 2 and 30 minutes. 

During the emersion periods they are often handled and the general response of the 

lobsters to handling is to try and escape, which is achieved by strong beats of the tail 

(tail flicks). Therefore, the post-harvest procedures generally result in disturbances to 

their physiology and biochemistry (ie. stress)(Spanoghe, 1997) and the development 

of an oxygen debt. It would appear beneficial to ensure complete recovery from each 

episode of stress so that the lobsters are in the best possible condition to handle any 

further periods of stress. When fish are not able to fully recover from an episode of 

stress the physiological responses to further episodes are generally cumulative 

(Pickering, 1992; Waxing et al., 1997). American lobsters, Homarus gammarus, 

which were deprived of the opportunity to recover after an episode of stress, were in 

a significantly worse state after a period of air travel than lobsters which had been 

allowed to recover (Whiteley and Taylor, 1992). Whiteley and Taylor suggested that 

the non-recovered lobsters could be more vulnerable to stressful situations occurring 

during air travel, since further reductions in haemolymph pH could prove fatal to 

individuals already suffering from a marked internal acidosis. The recovery from 

anaerobic metabolism must be sufficiently rapid and complete for the organism to 

cope with the next period of air exposure (Ellington, 1983). Unfortunately, time 

between episodes of stress is often limited during post-capture handling of P. cygnus, 

therefore optimising the speed of recovery becomes important. 
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The recovery from periods of exercise, handling, and emersion has been 

intensively studied in crustaceans (McDonald et al., 1979; Omien and Zebe, 1983; 

Head and Baldwin, 1986; Taylor and Whiteley, 1989; Waldron, 1991). However, the 

effect of the dissolved oxygen level of the water on the rate of recovery and the 

recovery response has not been evaluated. Minimum dissolved oxygen levels 

recommended in the literature for lobster holding systems vary from 40 to 80% 

saturation (Anon., 1980a; Beard and McGregor, 1991; Forteath et al., 1993a; 

Boothroyd, 1994) although it is unsure where the values were derived from. Oxygen 

supersaturation has been suggested as possible tool to aid the recovery of lobsters 

(Forteath, 1995). 

The dissolved oxygen level in the water can affect factors such as growth in 

lobsters. Chittleborough (1975) noted that the growth increments of P. cygnus was 

significantly affected at oxygen levels of 60-70% saturation. In Jasus lalandii there 

was a general decrease in growth and ingestion and an increase in intermoult period, 

with decreasing levels of oxygen saturation (Beyers et al., 1994). It appears that even 

slightly decreased levels of oxygen saturation appear to have serious effects on the 

physiological processes of unstressed lobsters. Therefore, the aim of this study was to 

determine the effect of dissolved oxygen level on the recovery of lobsters, P. cygnus, 

after they were exposed to an episode of stress. 

1.8 AERIAL TRANSPORT 

Western rock lobsters are subjected to post-capture practices which may 

result in emersion for periods of up to 6 hours (transport by truck or carrier boat). 

Although western rock lobsters are able to handle up to 48 hours emersion under 

export conditions (Spanoghe, 1997), emersion is generally regarded as a stress which 

jeopardises the condition and/or life of crustaceans (Whyman et al., 1985). For 

example, the mortality rate of P. cygnus, recovering after a period of emersion, 

increases in proportion to the amount of time they were emersed (Brown and Caputi, 

1986). 

Emersion also leads to weight loss in crustaceans (Herreid, 1969). Survival in 

air may be limited by the progressive loss of mass and an accompanying reduction in 

the volume of the haemolymph, which in turn is likely to limit the effectiveness of 

the circulation and oxygen delivery systems (Taylor et al., 1987). However, 
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crustaceans may be able to tolerate substantial reductions in haemolymph volume 

because the relatively large volume and low pressures of the open circulation system 

(Taylor, 1982) render it less likely to failure following reductions in volume (Taylor 

et al., 1987). Wind and low relative humidity (RH) can increase the rate of 

desiccation of crustaceans (Ahsanullah and Newell, 1977; Vermeer, 1987) and are 

factors which must be considered in the western rock lobster industry. Western rock 

lobsters are transported from the Abrolhos Islands to Geraldton, Western Australia, 

on carrier boats. Although lobsters on the carrier boats are protected from the wind as 

much as possible, a proportion are still exposed to some extent (pers. observation). 

Atmospheric RH around Geraldton can be as low as 34% during the months when 

the carrier boats are in operation (Steve Summers, Geraldton Meteorological Office, 

pers. comm.). 

On board the carrier boats lobsters are held above deck in crates and seawater 

is continuously sprayed over them whilst they are in transit, which can be for a 

period of around 6 hours. Spray systems are also used in transport trucks which carry 

lobsters to Geraldton from depots up and down the coast, and are increasingly in use 

at short-term holding depots. Therefore, spray systems have evolved in the industry 

as a method which can decrease the effects of emersion on the health of the lobsters. 

The benefits of spray systems to emersed crustaceans has never been clearly 

demonstrated, however there is some evidence that they help in the excretion of 

carbon dioxide and may reduce reliance on anaerobiosis (Paterson et al., 1994b). 

Although the gills of the decapod crustaceans are covered with chitin, they 

are presumably still sensitive to desiccation (Grant and MacDonald, 1979) and must 

therefore be kept moist (Burnett, 1988). It has been suggested that gill damage 

caused by dehydration may contribute to the mortality of western rock lobsters 

(Anon, 1980b; Spanoghe, 1997). Morrissy et al. (1992) stated that actual desiccation 

of gill filaments causes irreversible membranous damage in crustaceans. There is no 

evidence to support either of these statements. The period of time that the American 

lobster, H. americanus, was able to survive out of water did not extend when it was 

kept wet with sea water sprays, suggesting that drying of the gills is not a cause of 

death in moist air (McLeese, 1965). 

This study examines the affects of two environmental factors (humidity, 

wind) on the physical and physiological health of emersed lobsters as well as 

determining the benefits of using a seawater spray system to maintain the health of 
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the emersed lobsters. One of the pivotal aims was to examine the role gill damage 

played in reducing the ability of lobsters to recover from a period of emersion. 

1.9 THE RELATIONSHIP BETWEEN TEMPERATURE AND STRESS 

The live export of western rock lobsters, Panulirus cygnus, involves chilling 

the lobsters, and placing them into a packaging material (usually wood shavings or 

wood wool) in foam cartons, before they are air-freighted to the final destination. The 

packaging material serves to insulate the lobsters and helps to maintain a constant 

low temperature. It also acts as a shock absorber and thus minimises physical damage 

to the lobsters. Packaged in this manner lobsters are able to survive extended periods 

of emersion, with minimal losses occurring over a 30 hour export period. Similar 

methods are used worldwide to export lobsters (Richards-Rajadurai, 1989; Harvie, 

1993; Kaleemur Rahman and Srikirishnadhas, 1994). 

Chilling of the lobsters prior to packing is designed to achieve several 

objectives. Importantly lobsters are less active at cooler temperatures, therefore they 

are easier to handle and the effects of handling stress are minimised. Winlder (1987) 

outlined how handling increased the oxygen consumption rate of lobsters (Homarus 

americanus), principally by increasing their activity. The effect of handling on the 

oxygen consumption rate was minimised in the prawn, Penaeus japonicus, by 

decreasing the temperature (Paterson, 1993a). Lobsters require less oxygen to meet 

their metabolic requirements at colder temperatures. As crustaceans have a limited 

ability to uptake oxygen in air (Taylor and Whiteley, 1989), reducing their basal 

metabolic rate will aid in allowing their oxygen requirements to be satisfied by aerial 

oxygen consumption rates. The European lobster, H. gammarus, is able to supply 

most of its oxygen requirements when held in air at a temperature of 10°C: however, 

at higher temperatures its ability to supply its oxygen requirements is reduced, 

mainly because of the temperature dependent increase in oxygen consumption 

(Whiteley et al., 1990). Finally, low transport temperatures should reduce the build 

up of metabolic waste products, such as CO, and ammonia, and decrease the reliance 

on anaerobic metabolism, and thus the accumulation of lactate, thereby reducing 

disturbances to the acid-base balance. 

Two methods are used to chill crustaceans in preparation for live transport. 

The method most commonly used in lobster fisheries is called the slow-chill method. 
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This involves chilling the lobsters slowly over time from an ambient temperature to 

the desired temperature for export. The final temperature depends on the ambient 

temperature and, in some cases, on the time period of export (Kaleemur Rahman and 

Srilcirishnadhas, 1994). In general, lobsters are acclimated to a system for at least 24 

hours before chilling commences. They are chilled to the preferred temperature at a 

designated rate, and then held at that temperature for around 12 hours before packing 

commences. The other chilling method used, and the one most commonly used in the 

western rock lobster fishery, is termed the quick-chill (or dip-chill) method. This 

involves dipping the lobsters into chilled water for a period of time before packing. 

Generally lobsters are dipped into 11°C water for around 3 minutes (the time period 

can be size dependent with larger lobsters requiring more time) although there are 

many industry variations of this protocol. In the export of J. edwardsii dip-chilling is 

not recommended as the recovery time is short and lobsters are found to be very 

active or dead on reaching their destination (Anon, 1980a). 

Observations at a P. cygnus processing shed showed that lobsters may be 

emersed for up to 30 minutes before being dip-chilled in preparation for packing into 

export cartons. During the emersion period the lobsters were very active (much tail-

flicking occurred) and were subjected to handling. In some cases they were also 

exposed to sunlight and to high air temperatures. Such treatment would not ensure 

the lobsters are in the best possible physiological and biochemical condition to 

survive the transport period. This study examines the effect of those conditions on P. 

cygnus and investigates the use of alternative strategies which aim to minimise the 

physiological and biochemical disturbances imposed on lobsters during pre-export 

conditioning. 
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CHAPTER 2 

General Materials and Methods 

This Chapter outlines the General Materials and Methods used. Specific 

details applying only to a particular Chapter are in the Materials and Methods 

section of that Chapter, as are the statistical analyses used in each Chapter. 

2.1 EXPERIMENTAL ANIMALS 

Southern rock lobster, Jasus edwardsii. 

Lobsters were obtained from commercial holding facilities and from the 

Tasmanian Department of Primary Industries, Taroona. They were maintained in 

600 1 recirculating seawater tanks for a minimum of 2 weeks prior to 

experimentation. Each tank had 14-16 concrete building blocks in it to serve as 

refuges for the lobsters. These were arranged so that the lobsters had shaded cover 

and so that multiple den openings were available (Lipcius and Cobb, 1994). Each 

tank was equipped with airstones to provide oxygen and ensure good mixing of 

the water. A maximum of thirty lobsters was kept in each tank. A trickle biofilter 

consisting of BioBalls and oyster shells was connected to each tank. To further 

cleanse the water a protein skimmer (or foam fractionator) was connected to each 

tank. The water temperature was maintained at 13 ± 1°C, pH 8.0-8.3 and salinity 

35 ± 1°Ao. Only lobsters judged to be in intennoult were used for experiments. The 

moult index of Turnbull (1989) for Panulirus ornatus was used as a guide in 

determining the moult stage. Lobsters were fed twice weekly with either squid 

(Nototodarus gouldii) or blue mussels (Mytilus edulis planulatus). Lobsters were 

deprived of food for three days prior to experiments. Light was controlled to 

provide a 12-h light and 12-h dark photoperiod. 

Western rock lobster, Panulirus Cygnus. 

Lobsters were obtained from commercial holding facilities (Geraldton 

Fishermen's Co-op and Batavia Coast Fisheries, Geraldton, Western Australia) 
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and were maintained in 600 1 recirculating seawater tanks for a minimum of 2 

weeks prior to experimentation. The water temperature was maintained at 23 ± 

1°C, pH 8.0-8.3 and salinity 35 ± 1°/00. Other details on the holding system are as 

described for J. edwardsii. Only lobsters judged to be in intermoult were used for 

experiments. The moult index of Turnbull (1989) for P. ornatus was used as a 

guide in determining the moult stage. Lobsters were fed twice weekly with either 

squid (N. gouldii) or blue mussels (M. edulis planulatus) but were deprived of 

food for three days prior to experiments. Light was controlled to provide a 12-h 

light and 12-h dark photoperiod. 

2.2 MEASUREMENT OF OXYGEN CONSUMPTION 

The respirometers (Appendix 1) used in the experiments were primarily 

used in the intennittent flow mode. In this system a measurement phase (closed 

system) is separated from a flushing phase (open-flow system) thus providing 

some of the advantages of closed respirometers (simplicity) and open-flow 

respirometers (stable water conditions). The periodicity of the whole cycle can be 

chosen so that during the closed measuring phase, the oxygen tension does not fall 

below a given level (Kaufmann et al., 1989). The respirometers could be used in 

the closed mode when required. 

Three respirometry chambers were made from PVC pipe. They had 

perspex dome shaped lids which were attached to the chamber by bolts. Rubber 

"o" rings were used to provide a seal. The total volume of each chamber was 18.3 

1. A submerged powerhead pump (AquaClear - Powerhead 201) was used to 

ensure there were both good water mixing within each chamber and sufficient 

water flow past the membrane of each oxygen electrode. Dall (1986) outlined the 

inherent problems associated with measuring standard oxygen consumption where 

crustaceans are placed into smooth walled respirometers. Therefore, attachment 

points were built into the respirometers so that lobsters had a grasping surface and 

could remain quiescent; in the wild, lobsters normally remain immobile in caves 

and crevices during daylight hours (Lewis, 1981). 

Water flow through the chamber was controlled by 24V AC solenoid 

valves (Burkert - Series 55135). The solenoids were operated via a datalogger 

(Datataker 50) which was programmed to a timing schedule that was suitable for 
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the particular sized lobster and water temperature being studied. For example, at 

5°C it was necessary to stop water flow for 50 minutes before a significant decline 

in the water oxygen content was recorded. The normal cycle was 20 minutes 

closed (measuring) and 10 minutes open (re-oxygenating). Under normal 

circumstances the oxygen tension of the chambers did not fall below 80% of 

saturation at the end of the measuring period. Initial testing showed that resting 

lobsters are able to maintain a constant rate of oxygen consumption down to 

oxygen saturation levels of 40%. The chambers were submerged in a water bath 

which maintained the water temperature within 0.2°C of the designated 

temperature. Oxygen tensions were recorded with WTW (Wissenschaftlich-

Technische Werkstatten) oxygen sensors (EO 96) and meters (0X1 96) connected 

to the datalogger. Calibration of the probes was carried out in water saturated air, 

within a calibration sleeve, following the manufacturers' instructions. The probe 

was calibrated at the appropriate temperature, although that is not necessary as the 

meter had a built in temperature compensation. It was found, however, that the 

response time was increased if the probe was calibrated at different temperatures 

to that of the water being measured. Because little drift was apparent, the 

calibration procedure was usually only carried out every three to four days. 

Calibration is a one point procedure therefore no zero % saturation point is 

required. However, occasionally the calibration of the probe was checked in 

oxygen deficient water (obtained via the addition of sodium metabisulphite - 

Na2S205). Oxygen consumption (MO2  - mg02/g/h) was determined from the 

equation: 

where P02i is the initial oxygen tension in the respirometer (mg/1); P02f is the 

oxygen tension after the measuring period (mg/1); V is the volume of water in the 

respirometer adjusting for lobster volume (1); W is the weight of the lobster (g); 

and t is the time of the measuring period (minutes). 

The system was thoroughly cleaned with sodium hypochlorite between 

runs to reduce bacterial oxygen consumption and tests with a blank chamber 

showed that there was no need to correct for respirometer oxygen consumption. 

20 



Chapter 2 

Lobsters were acclimated to the experimental chambers for 36 hours prior to the 

commencement of experiments. 

Standard and active oxygen consumption 

Standard oxygen consumption is defined as the minimum oxygen 

consumption for an unfed, resting fish (Fry, 1971). During the daytime lobsters 

usually remained motionless in the chambers unless disturbed by movement in the 

room. The standard oxygen consumption rate of a particular animal was 

determined when three identical and consecutive 20 minute measurements of 

oxygen consumption were recorded. 

Active oxygen consumption was determined by taking lobsters from the 

respirometers and forcing them to be active (by handling) over a period of 5 

minutes. The lobsters were replaced into the respirometers and the active oxygen 

consumption was measured, usually over a 15 minute period. This is essentially a 

measurement of post-exercise oxygen consumption. However, I think the results 

can be used as active rates and compared against other measurements of active 

rates for a number of reasons, as outlined below. 

Active oxygen uptake should be maintained over a significant period, 

generally 1 hour (Brett, 1972). However, there was difficulty in forcing lobsters to 

be active for significant periods of time. A similar problem was also noted by 

Rutledge and Pritchard (1981) when estimating active oxygen uptake of 

Pacifastacus leniusculus. Active tail flicking of lobsters usually stopped after 5 

minutes. Usual methods to induce activity, such as water stirrers (limes, 1985), 

were not possible due to design of the respirometer. Another method was 

attempted using a system similar to that used by Dall (1986). The lobsters were 

tied into a bracket and the tail left hanging free. The idea was to induce active tail 

flicking for an extended period, however after a few flicks the lobsters usually 

stopped. Also it was not possible to handle lobsters and do oxygen consumption 

measurements at the same time. 

Active oxygen consumption is basically a measure of the maximal level of 

oxygen consumption (Bennett, 1978). Lobsters will be repaying an accumulated 

oxygen debt after a short period of handling and air exposure. Therefore 

measuring the oxygen consumption during the period after handling and air 
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exposure should be a reasonably accurate approximation of active oxygen 

consumption. The time period used (15 minutes) is the same as used by Rutledge 

and Pritchard (1981) and significantly longer than used by limes (1985)(2 

minutes). Maximum oxygen consumption values of J. edwardsii were similar 

after exercise and handling in water and after a period of air exposure and 

handling (Waldron, 1991). The author argued that the maximum oxygen 

consumption rate measured was an accurate determination of the maximum 

oxygen consumption rate of J. edwardsii. In this study it was decided to use 5 

minutes of air exposure and handling to determine active oxygen consumption as 

it was also indicative of post-capture processes the lobsters are subjected to. 

Active rates are usually determined on animals which are fully acclimated 

to each experimental temperature (Rutledge and Pritchard, 1981). However, 

lobsters are undergoing a series of acute temperature fluctuations during post-

capture processes. Therefore, data on the effect of acute temperature fluctuations 

would be more pertinent in this study. Vemberg (1983) also questioned the 

physiological/ecological value of undertaking temperature-metabolic studies 

where animals are subjected to constant temperature for various periods of time 

before oxygen consumption rates are determined. 

The data were examined to determine if sex of the lobsters influenced 

oxygen consumption. 

Temperature 

The effects of acute temperature changes on the oxygen consumption of 

lobsters were investigated. Lobsters were acclimated to the respirometers at the 

holding temperature before the temperature was raised or lowered to the required 

temperature at a rate of 2°C per hour. Lobsters were kept at each temperature for 

24 hours. Standard and active oxygen consumption rates were established as 

above. 

Log10  transformed linear regressions of oxygen consumption versus 

temperature (T) were expressed by the general equation: 

Logic, MO2  =a+bT 
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where MO2  = the weight-specific oxygen consumption (mg 021g/h); and T = the 

temperature (°C). 

The aerobic scope for activity was calculated as the difference between 

standard and active oxygen consumption (Fry, 1947). Scope for activity (SFA) 

represents the amount of energy available to an organism through aerobic 

metabolism beyond that needed for maintenance (Fry, 1947). Aerobic 

expansibility is a measure of the ratio of the two oxygen consumption levels 

(Active/Standard). Q 10  values were determined using the following equation: 

, 	 10/T2 — T  = L"-9 MI 

where M, and M2  are oxygen consumption at temperatures T, and T2, respectively. 

Lobster weight 

Standard and active oxygen consumption of lobsters over a large body 

weight range (J. edwardsii, 186-2180 g; P. cygnus, 417-3000 g) were determined. 

Log10  transformed linear regressions of the standard and active oxygen 

consumption versus weight (W) were expressed by the general equation: 

Logi°  MO2  = a + b log10 W 

where MO2  = total oxygen consumption (mg 02/h), a = intercept on the Y-axis, b = 

the slope of the regression, and W = wet weight (g) of the lobster. 

Diurnal rhythm 

Oxygen consumption of lobsters was recorded over a minimum of 48 

hours to establish if a diurnal rhythm was present. This allowed the establishment 

of routine oxygen consumption, which is the oxygen consumption of fasting 

lobsters over 24 hours including that resulting from spontaneous activity (Becker 
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and Fishelson, 1986). Night-time oxygen consumption was calculated on all 

readings taken between 6PM and 6AM. Standard oxygen consumption was used 

as oxygen consumption during daylight hours as some disturbance (resulting in 

increased oxygen consumption) during the day was unavoidable. A video camera 

and infrared light (Javelin Electronics 0S-4511R-121N) were used to examine 

lobster activity during the night. 

Handling and recovery 

Lobsters were removed from the respirometer and emersed for 30 minutes. 

Continual disturbance (handling) for the first 5 minutes was followed by 

disturbance every 5 minutes. Lobsters showed a strong escape behaviour (tail 

flicking) during the initial period of disturbance. The response diminished as the 

emersion time increased and the tail flicking response was usually not evident 

after 30 minutes emersion. The lobsters were returned to the respirometers and 

their recovery monitored. A 30 minute period was selected as this is a typical 

maximum emersion time lobsters are subjected to during post-capture practices. 

For example, the period of time between when water is drained from a tank on a 

boat and when the lobsters are placed into a holding tank in the processing shed. 

Feeding 

The effect of feeding on oxygen consumption was determined by 

introducing a piece of squid (wet weight 3% of lobster wet weight) to each 

chamber. All lobsters used in the experiments were fed at the same time of day so 

that any effects of diurnal rhythm on oxygen consumption could be taken into 

account. Experiments where lobsters did not eat all of the squid were 

discontinued. To determine if an initial large increase in oxygen consumption in 

fed lobsters was due to increased activity, three lobsters (of each species) were 

subjected to the smell of feed by wafting squid in the water near the inlet to the 

respirometers. Their oxygen consumption rate was monitored for several hours 

after that treatment. 
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Dissolved oxygen level 

The relationship between the dissolved oxygen level (P 02) and standard 

oxygen consumption was determined by closing the water flow off and following 

the response of settled lobsters to self-induced hypoxia. High dissolved oxygen 

levels were obtained by bubbling oxygen through the water. Oxygen consumption 

was averaged over each decade of change down to 40% saturation and each 5% 

saturation change below that. 

The relationship between active oxygen consumption and P 02  was 

determined by exposing emersed and handled (see above) lobsters to water with 

known oxygen levels. Oxygen consumption was measured over a 20 minute 

period after returning lobsters to the respirometers. Oxygen consumption was 

determined at six P02  levels (15, 35, 55, 75, 95, 115% saturation) and the 

dissolved oxygen levels were kept within 5% saturation of those designated levels. 

Dissolved oxygen levels were initially adjusted to the correct level by adding 

either oxygen or nitrogen to the water. After the animal was returned to the 

respirometer the oxygen level was continuously monitored. When the level fell 

(due to oxygen uptake by the lobster) to a 5% saturation value below the set level, 

oxygenated or aerated water was added (solenoid valve switched on). When the 

level reached 5% saturation above the set level, the flow of water into the 

respirometer was switched off. Therefore, a reading at 75% saturation represents 

the average oxygen consumption over the 70-80 % saturation range. 

The critical oxygen level (P a) was determined by calculating regression 

lines for the two distinctly different parts of the relationship between oxygen 

consumption and P02 , the horizontal high P02  segment and the sharply sloped low 

P02  segment. The critical P02  (Ps) was designated as the intersection point of the 

two lines (Cochran and Burnett, 1996). 

2.3 MEASUREMENT OF AMMONIA EXCRETION 

During the experimental periods the lobsters were kept individually in 40 

litre plastic experimental chambers. Five chambers were used to hold lobsters, 

while a sixth was used as a control to test for background ammonia and urea 
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production or consumption. As in the oxygen consumption experiments the 

lobsters had attachment points in the chambers to grasp onto. This helps to ensure 

that activity during the daylight periods was minimised; activity can have a 

significant effect on metabolic rate (Dall and Smith, 1986). The volume of water 

in each chamber could be varied, and was regulated according to the requirements 

of each experiment, but generally was between 20 and 30 litres. Water was 

recirculated, with the water being treated with a biological filter. Water pH was 

maintained at 8.0-8.4 and salinity 32-36°/00. Total ammonia nitrogen (TAN = NH 3  

+ NE14+) in the sump tank was maintained at less than 0.05 mg/l. The experimental 

system was in a temperature controlled room which maintained the temperature 

within 0.5°C of the experimental temperature. Light was controlled to provide a 

12-h light and 12-h dark photoperiod. To ensure that dissolved oxygen levels in 

the water did not compromise the experiments, the containers were aerated. 

Volatilisation of ammonia from aerated tanks is negligible (Gerking, 1955; 

Forsberg and Summerfelt, 1992). Aeration also acted to mix the water thus 

ensuring the water samples were representative of the experimental chamber. 

Water flow through each experimental chamber was able to be stopped, 

thus allowing an evaluation of the rate of ammonia excretion as its concentration 

increased within the chamber over time. Ammonia excretion rates were based on 

the difference between the concentrations of two consecutive (timed) samples 

(Schmitt and Uglow, 1997a). After a pre-determined period a large percentage 

(usually around 66%) of the water in the chambers was siphoned out and replaced 

with water of the same temperature from the sump tank. High ambient water 

ammonia concentrations can inhibit ammonia excretion (Needham, 1957; 

Regnault, 1987). Minimum concentrations have not been determined, however 

ammonia excretion of the shrimp Crangon crangon was not influenced by 

ammonia concentrations of the overlying water up to 1.2 mg/1 (Regnault, 1986 in 

Regnault, 1987). Water changes were timed to ensure that maximum levels of less 

than 0.5 mg TAN/1 were maintained. Ammonia excretion (TAN - mg TAN/g/h) 

was determined from the following equation: 

TAN — Weight * Time 
(TANf - TAN) * Volume 
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where TANf  is the ammonia as nitrogen in the sample at the end of the measuring 

period in mg/1; TAN ;  is the ammonia as nitrogen in the sample at the beginning of 

the sampling period in mg/1; Volume is the volume of water in the container in 

litres; Weight is the weight of the lobster in grams; and Time is the duration of the 

measuring period in hours. The effect of several intrinsic and extrinsic factors on 

ammonia excretion was determined. The effect of the factors (except for 

temperature) was investigated at 13°C for J. edwardsii and 23°C for P. cygnus. 

Lobsters were starved for 36 hours prior to undertaking experiments (except when 

determining the effect of feeding). 

Temperature 

The acute response of ammonia excretion to temperature was investigated. 

Lobsters were acclimated (13°C and 23°C, J. edwardsii and P. cygnus 

respectively) before the temperature was changed at a rate of approximately 1°C 

every hour to the other test temperatures. The mean weight (±SE) of J. edwardsii 

was 680±34 (n=11) and of P. cygnus was 440±10 (n=10). The lobsters were kept 

at each experimental temperature for 24 hours. Lobsters were left overnight before 

evaluating ammonia excretion during daylight hours. Q 10  values were determined 

using the following equation: 

101T2— 

where AN, and AN 2  are ammonia excretion rates at temperatures T 1  and T2, 

respectively. 

Log10  transformed linear regressions of the ammonia excretion versus 

temperature (T) were expressed by the general equation: 

Log10  AN =a+bT 

where T is the temperature in °C. 
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Body weight 

The effect of body weight on ammonia excretion was measured over the 

weight ranges of 241-1625g for J. edwardsii and 400-3022 g for P. cygnus. 

Logic, transformed linear regressions of the ammonia excretion versus 

weight (W) were expressed by the general equation: 

Logic, AN = a + b logio  W 

where AN = the ammonia excretion (mg TAN/g/h), a = intercept on the Y-axis, b 

= the slope of the regression, and W = wet weight (g) of the lobster. 

Diurnal rhythm 

A diurnal rhythm of oxygen consumption was apparent for both species 

(see Chapters 3 and 4), therefore ammonia excretion was investigated to 

determine if a diurnal rhythm was present. Ammonia excretion was measured over 

the periods from 6AM to 6PM (light period) and from 6PM to 6AM (dark period). 

Handling and recovery 

The effect of emersion and handling over a 1/2 hour period was also 

investigated to see if increased rates of ammonia excretion were maintained for an 

extended period after the disturbance. Ammonia excretion was measured every 

hour for three hours prior to the disturbance period and then every hour for eight 

hours after returning the lobsters to the experimental chambers. 

Feeding 

The effect of feeding on ammonia excretion was investigated. Lobsters 

were fed squid (Nototodarus gouldii - approximately 3% of wet body weight) at 

8AM and were allowed two hours to consume it. Any lobster which did not 

consume the squid within that time period was not included in the experiment. 
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Most lobsters consumed the squid within 15 minutes. The water was changed and 

water samples were taken after the 2 hour feeding period. Ammonia excretion was 

monitored for the next two to three days. For J. edwardsii water samples were 

taken every 2 hours for the first 14 hours and then four hourly for another 12 

hours. Thereafter, samples were taken at 24-h intervals for two days. For P. 

cygnus water samples were taken every hour for 16 hours, four hourly for another 

12 hours and 6 hourly for another 24 hours. A water change was carried out after 

10 hours, after 24 hours and then every 24 hours. Endogenous ammonia excretion 

was determined on the day prior to the feeding experiments. 

Urea 

Duplicate water samples were taken during the diurnal rhythm study and 

these were used to determine the urea excretion rate of each species. A 

comparison was made between the level of ammonia and urea excretion of unfed 

lobsters. 

Water sampling and analysis 

Duplicate 15 ml water samples were taken at each sampling period and 

when these could not be analysed immediately, they were frozen at -15°C for a 

maximum of 1 week; a time period which is well within the recommended 

maximum storage time of 2 weeks (Parsons et al., 1984). Ammonia was analysed 

by the phenol-hypochlorite method of Solarzano (1969) as adapted by Parsons et 

al., (1984) and Frith (1993)(Appendix 3). In this method the ammonia reacts with 

phenol and hypochlorite in alkaline solution to form indophenol blue. Sodium 

nitroprusside is used to intensify the colour at room temperature. The intensity of 

the colour produced is proportional to the concentration of ammonia present and is 

measured spectrophotometrically (GBC UVNIS 916). Urea was analysed by the 

urease method of McCarthy (1970) as modified by Carter and Brafield 

(1991)(Appendix 3). This method involves the enzymatic hydrolysis of urea, by 

urease, to carbon dioxide and ammonia (Price and Harrison, 1987). The liberated 

ammonia is assayed by the ammonia method outlined above. This method also 

measures ammonia present prior to hydrolysis. Therefore, the difference between 
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the ammonia concentration before and after urease treatment gives a calculation of 

the ammonia attributable to urea. 

2.4 HAEMOLYMPH SAMPLING AND ANALYSIS 

In view of the relationship between lobster body weight and oxygen 

consumption of P. cygnus (Chapter 4), a restricted weight range (367-515 g) was 

used in the experiments conducted in Chapters 6, 7 and 8. Lobsters were randomly 

selected from the holding tank. Randomisation was achieved by numbering the 

concrete blocks and using random number tables to select the block and therefore 

the lobster. To ensure the lobsters could be sampled as quickly as possible they 

were always caught by hand. This served to also minimise the escape behaviour 

(characterised by a tail flick response). 

Haemolymph sampling 

Prebranchial haemolymph was sampled (1 ml) from the infrabranchial 

sinus via an athrodial membrane at the base of a walking leg (usually the 3rd or 

4th pair). The samples was withdrawn with an ice-chilled 1 ml syringe (Luer - 

Tuberculin) using a 21 gauge (Luer -21G*1Y2) needle. Care must be taken to 

minimize hemolymph air contact since changes in CO 2  equilibrium can alter pH 

values (Vermeer, 1986). Truchot (1975) reported the pH of crustacean blood 

exposed to air without mixing varies little from anaerobically obtained samples. 

However, haemolymph samples were obtained anaerobically to ensure minimum 

mixing with air. A small amount of haemolymph was taken into the syringe and 

expelled to displace the dead space in the syringe (Waldron, 1991). The 

haemolymph sample was then taken; samples were obtained within 20 seconds of 

lobster capture. The haemolymph was immediately placed into an ice-chilled 1 ml 

Eppendorf tube. Truchot (1975) reported the pH of crustacean blood exposed to 

air without mixing varies little from =aerobically obtained samples. Aliquots 

(1500 and 250111) were pipetted into Eppendorf tubes containing either 150 of 

distilled water or 500 gl of perchloric acid (PCA). The addition of haemolymph to 

PCA causes the blood to deproteinise. The first tube (water diluted sample) was 

kept on ice for measurement of haemolymph ammonia and the second tube 
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(deproteinised sample) was snap-frozen in liquid nitrogen and stored at -86°C for 

later measurement of lactate and glucose. The haemolymph remaining in the 

original tube was used for testing pH (and osmolality when required). 

Haemolymph analyses 

Haemolymph pH was measured using a calomel electrode (Activon Semi-

Micro AEP336) connected to a pH meter (WTW pH 323). The probe was 

calibrated in buffer solutions chilled to the same temperature as the haemolymph 

samples (0°C). Haemolymph pH at 0°C varies from in vivo pH at ambient 

temperatures, but this was an essential concession to retard clot formation 

(Vermeer, 1987). Lobster haemolymph clotted within 5 minutes if it remained at 

ambient temperature. Using the above method the pH of P. cygnus haemolymph 

was 0.49 units higher than the pH of haemolymph measured at ambient 

temperature (23°C)(Appendix 2). The haemolymph pH of P. cygnus at 23°C was 

7.85, within the range of pHs (7.7 - 8.0) measured in other aquatic crustaceans 

(Wheatly and Henry, 1992), and very similar to that measured previously in P. 

cygnus (Spanoghe, 1997). 

Haemo lymph ammonia concentrations were measured using a Sigma test 

kit (No. 640) for urea nitrogen which is based on the phenol/hypochlorite method 

of Solorzano (1969)(Appendix 3). The absorption was measured at 640 nm with a 

GBC UVNIS 916 spectrophotometer. Ammonium chloride standards (0 to 8 

mg/1) and a distilled water blank were used. The addition of distilled water to the 

sample, in conjunction with keeping it ice-cold, prevented clotting of the 

haemolymph sample for over 3 hours. In comparison, ice-cold haemolymph 

remained unclotted for a maximum of only one hour. Dilution of the sample also 

ensured that the ammonia reading stayed within the range of the standards. 

The deproteinised haemolymph samples were centrifuged at 8000 g for 3 

minutes. The supernatant (600 121 was generally obtained) was neutralised with 3 

mo1/1 KOH (6.4 p1 per 600 p.1). The samples were stored on ice for 15 minutes 

before centrifuging at 8000 g for 3 minutes so that the perchlorate precipitate 

could be removed. The supernatant (approx. 550 IA remaining) was either frozen 

(-86°C) for later analysis or analysed immediately for lactate and glucose. 
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Lactate concentrations were determined enzymatically using the 

Boehringer-Mannhein analysis kit (Cat. No. 139084) which does not suffer from 

the copper interference as reported for other lactate test procedures (Brian 

Paterson, QDPI, pers. comm.)(Appendix 3). The absorption was measured at 340 

nm on a GBC UV/VIS 916 Spectrophotometer. Determinations were on 100 1.1.1 

samples; where appropriate the samples were diluted to bring the sample values 

within range of the standard curve. Glucose concentrations were determined using 

a Sigma glucose test kit (No. 510), which is based on the glucose-oxidase method 

(Appendix 3). The absorption was measured at 450 nm on a GBC UV/VIS 916 

spectrophotometer. All assays were run in duplicate. 
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CHAPTER 3 

The effect of intrinsic and extrinsic factors on oxygen 

consumption by the southern rock lobster, Jasus 

edwardsii 

3.1 INTRODUCTION 

The southern rock lobster, Jasus edwardsii, is the basis of a $150 M 

fishing industry in southern Australia. Over the last 10-15 years the industry has 

focused increasingly on the live export of the lobsters with up to 90% of the catch 

now being exported. Oxygen is one of the most important water quality 

parameters determining the health of aquatic animals. A full understanding of the 

effect of intrinsic and extrinsic factors affecting oxygen consumption during post-

capture processes is essential if the health of lobsters is to be optimised. This 

study investigates the oxygen consumption response of J. edwardsii to 

temperature, body weight, activity, feeding, handling, daylight/darkness and 

dissolved oxygen levels. 

3.2 MATERIALS AND METHODS 

General Materials and Methods used to determine oxygen consumption 

and the effect of the various intrinsic and extrinsic factors are outlined in Chapter 

2, with the following species specific methods. All experiments (except for those 

examining the effect of temperature) were conducted at the acclimation 

temperature of 13°C. 

Temperature 

Twelve lobsters (635 g to 897 g) were used to investigate the effect of 

acute temperature changes on the oxygen consumption. Lobsters were acclimated 

to the respirometers at 13°C before the temperature was raised or lowered to the 

required temperature at a rate of 2°C per hour. 
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Lobster weight 

Standard and active oxygen consumption of 47 lobsters ranging in size 

from 186 g to 2180 g were determined. 

Diurnal rhythm 

Oxygen consumption of 22 lobsters (380 g to 2140 g) was recorded over a 

minimum of 48 hours to establish if a diurnal rhythm was present. 

Statistical analyses 

Linear regressions were obtained by the least squares method and were 

tested for significance of regression by analysis of variance of the regression. 

Covariance analysis was used to test for differences of oxygen consumption with 

sex and activity, using lobster weight as the covariate. Students t-tests (paired 

where necessary) were used to evaluate differences in standard and active oxygen 

consumption rates at each experimental temperature. Paired student t-tests were 

used to evaluate when post-prandial and post-handling oxygen consumption had 

returned to standard levels. Where appropriate a Students t-test for samples with 

unequal variances was used. Paired t-tests were also used to evaluate if there was 

daily rhythm to oxygen consumption by comparing the average night-time rate to 

the standard rate. All analyses were performed on the SPSS statistical package 

with the a set at 0.05. All means are expressed as mean±SE. 

3.3 RESULTS 

3.3.1 Effect of temperature on oxygen consumption 

Sex of the lobsters did not have a significant effect on either standard 

(F=1.01, P=0.321) or active (F=0.02, P=0.880) oxygen consumption. Therefore, 

the data for both sexes have been pooled. Standard and active oxygen 

consumption increased significantly (F=139.58, P=0.001; F=22.46, P=0.018 

respectively) with increases in temperature (Fig. 3.1). Active oxygen consumption 
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was significantly higher (P<0.01) than standard oxygen consumption at each 

temperature. Standard oxygen consumption increased exponentially and is 

described by the equation: 

Log Mo, = 0.047T - 2.25 (r2=0.94) 

Active oxygen consumption increased greatly between 5°C and 13°C. At 

17°C and 21°C active oxygen consumption rates increased, but they were not • 

significantly higher (F=3.07, p=0.06) than at 13°C. The response is described by 

the equation: 

MO2 =- 3 . 3* 1 0-4T2  + 0.013T - 0.044 (r2=0.89) 

The quadratic model suggests a decline in oxygen consumption beyond 

21°C, but more data points are required to confirm that presumption. 

The aerobic scope for activity increases as temperature increases from 5°C, 

with a maximum SFA recorded at 13°C (Fig. 3.1). The increase in the scope for 

activity over that range was largely due to the increase in active oxygen 

consumption. At higher temperatures (17 and 21°C) the scope for activity 

decreases due to the decrease in the rate of increase of active MO2 , associated with 

the exponential increase in standard MO2 . Aerobic expansibility (Table 3.1) was 

highest at 9 and 13°C (2.79 and 3.00 respectively) and was lowest at the extremes 

of the temperature range, being 1.52 at 5°C and 1.68 at 21°C. 

35 



Chapter 3 

Temperature 
(°C) 

Aerobic 
expansibility 

Temperature aw 
range (°C) Standard 

MO2  
Active MO2  

5 1.52 5-9 4.3 19.4 
9 2.79 9-13 3.0 3.6 
13 3.00 13-17 2.6 1.1 
17 2.13 17-21 2.3 1.3 
21 1.68 

Average 5-21 3.0 6.4 

Table 3.1: The aerobic expansibility of the southern rock lobster Jasus 
edwardsii at each experimental temperature (n=12). The Q10  values of 
standard and active oxygen consumption for each temperature range are 
shown along with the average Q 10  values over the whole temperature 
range. 

* Aerobic expansibility = Active M O2/Standard M O2  
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Figure 3.1: The effect of temperature on oxygen consumption (mean ± 
SE)(mg 02/g/h) of the southern rock lobster, Jasus edwardsii (n = 12). 
Standard (A) and active (0) oxygen consumption rates both increased 
with temperature. The aerobic scope for activity (mg 0 21g/h) at each 
temperature is also shown (0). 

The Q 10  of standard oxygen consumption decreased as the temperature 

increased (Table 3.1) ranging from 4.3 (Q, 0(5 .9)) to 2.3 (0 , -1007-21)). The Q 10  for the 

active lobsters showed a very different pattern. Between 5°C and 9°C active 
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oxygen consumption increased markedly which resulted in a Q100.9) of 19.4. Q 10  

values above 13°C are close to unity. 

3.3.2 Effect of body weight on oxygen consumption 

A log-log plot of total oxygen consumption (mg 0 21h) over wet body 

weight is shown in Fig. 3.2. Standard and active rates of total oxygen 

consumption (MO2, mg 02/h) were positively correlated to the wet weight (W, g) 

of the lobsters. The regression equations describing the relationships are: 

Standard oxygen consumption: 

Log ic, MO2  = 0.595 log10  W - 0.396 (r2  = 0.83, F = 215.9, p < 0.001) 

Active oxygen consumption: 

Logic)  MO2  = 0.690 log10  W - 0.238 (r2  = 0.77, F = 148.3, p < 0.001) 

Figure 3.2: A log-log plot of total oxygen consumption (M O2  - mg 021h) 

against body weight (g) of the southern rock lobster, Jasus edwardsii. 
Standard (0) and active (0) oxygen consumption rates over the weight 
range 186-2180 g are shown. 
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There was no significant difference between the slopes of the regressions 

for standard and active oxygen consumption (F=1.77, P=0.186), although there 

was a significant increase in oxygen consumption with activity (t=23.8, p<0.001). 

The weight-specific aerobic scope for activity decreased significantly (F=8.19, 

P=0.006) with weight (Fig. 3.3), and for a 700 g lobster was approximately 0.05 

mg 02/g/h. As indicated by the similarity between the b values, there was no 

significant difference (F=0.20 , P=0.65) in aerobic expansibility with weight. The 

mean aerobic expansibility was 2.72±0.08 (±SE) with a range between 2 and 4. In 

view of the relationship between body weight and oxygen consumption, a 

restricted weight range (600-900 g) was used in experiments where body weight 

was not a factor. 

200 
	

500 	1000 
	

2000 

Weight (g) 

Figure 3.3: A log-log plot of weight-specific aerobic scope for activity (mg 
02/g/h) against body weight (g) of the southern rock lobster, Jasus 
edwardsii. 

3.3.3 Effect of diurnal rhythm on oxygen consumption 

Lobsters consumed significantly (t=7.916, P<0.001) more oxygen at night, 

with consumption up to four times the daytime rates being recorded. The oxygen 

consumption of an undisturbed 728 g lobster over a period of 48 hours is shown in 

Fig. 3.4. Average night-time consumption was 48.3±6.1% higher than standard 
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oxygen consumption. Using standard oxygen consumption as a measure of 

oxygen consumption during the entire 12 hour daylight period, and the recorded 

night-time rates, routine oxygen consumption was calculated to be 24.2% higher 

than the standard rate. In most night-time recordings two peaks of oxygen 

consumption were observed (Fig. 3.4); one lasting several hours immediately after 

the onset of darkness and the other for several hours prior to the lights coming 

back on. Infra-red video recordings established that periods of increased oxygen 

consumption correlated with periods of increased activity. 

6PM 
	

6AM 	6PM 
	

6AM 

Time (h) 

Figure 3.4: Oxygen consumption (mg 0 2/g/h) of an undisturbed 728 g 
southern rock lobster (Jasus edwardsh) over a 48 h period. Each symbol 
represents oxygen consumption over a 20 minute measuring period. The 
lobster was in complete darkness between 6PM and 6AM. The line is 
drawn for ease of viewing. 

3.3.4 Effect of emersion and handling on oxygen consumption 

Handling and emersion caused a significant (t=6.75, P<0.001) increase in 

oxygen consumption upon re-immersion (Fig. 3.5). From the initial high level 

after re-immersion, oxygen consumption declined slowly until it was not 

significantly different (t=1.67, P=0.13) from the pre-emersion level at 4.5-5 hours. 
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Figure 3.5: The effect of handling and emersion on oxygen consumption 
(mean ± SE)(mg 0g/h) of the southern rock lobster, Jasus edwardsii 
(n=10). Pre-handling (0) and recovery (•) oxygen consumption rates are 
shown. The break represents the 1/2 hour emersion and handling period. 
The asterisk indicates when oxygen consumption of recovering lobsters is 
not significantly different to the pre-handling level. Each reading 
represents the oxygen consumption rate measured over a 20 minute 
period after the time noted. 

3.3.5 Effect of feeding on oxygen consumption 

Oxygen consumption increased after feeding, reaching a maximum 10-13 

hours post-prandial (Fig. 3.6). The maximum oxygen consumption was 1.72 times 

the pre-prandial level. From this maximum level, oxygen consumption slowly 

declined until it was not significantly different (P<0.05) from the pre-prandial 

level after 42 hours. The effect of diurnal rhythm on oxygen consumption during 

the post-prandial period did not appear to be strong, although it seems to become 

an influence on the second night after feeding. The influence of normal night-time 

activity may have prevented oxygen consumption from returning to standard M O2  

earlier than recorded. However, oxygen consumption during the daylight, one day 

after feeding was still 1.42 times the pre-prandial level. 
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6PM 
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Time 

Figure 3.6: Oxygen consumption (mg 021g/h) of the southern rock lobster, 
Jasus edwardsii, over a 48 hour period (n=11). The lobsters were fed 
squid, Nototodarus gouldii, (3% of the lobsters body weight) at 9.00 AM on 
the first day. Pre-prandial (0) and post-prandial (•) oxygen consumption 
rates are shown. Each symbol represents the average oxygen 
consumption over 1 hour (ie. 2 measuring periods). For ease of viewing 
lines are drawn between succeeding data points and standard errors are 
not shown. The asterisk indicates when post-prandial oxygen is not 
significantly different to the pre-prandial level. 

An initial large increase in MO2  was observed in all lobsters used in 

feeding trials. The increase only lasted a maximum of 2 measuring periods (ie. 60 

minutes)(Fig. 3.6) before returning to the relatively steady increase in M O2  

associated with feeding. It appeared to be associated with increased activity 

activated by the introduction of food. Lobsters subjected only to the smell of food 

in the water showed a very similar response but their M O2  returned to standard 

rates within 1.5 hours. 

3.3.6 Effect of the dissolved oxygen level on oxygen consumption 

Settled lobsters were able to maintain a constant rate of M O2  as the 

dissolved oxygen level of the water decreased (Fig. 3.7). Standard M O2  was 
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maintained down to a critical oxygen level (P a) of 36.7% saturation. Below P c  MO2  

decreased linearly with the dissolved oxygen level. MO2  of active lobsters 

decreased with decreasing dissolved oxygen levels but the rate did not become 

significantly different until the dissolved oxygen level was 55% saturation. P c  for 

active lobsters was calculated to be 59.4% saturation. The aerobic scope for 

activity reduces with the dissolved oxygen level and is controlled by the active 

MO2 . The scope at 55% saturation is 73% of that of the maximum, however at 

35% saturation the scope is only 25% of the maximum aerobic scope. 

	

.08 	 

c• zr. cr. .06 — 
E 
co c N 
0 0 	.04 - 
o en  

E 
a) 	.02 - 

0 

	

0.00 	 

 

15 	35 	55 	75 	95 
	

115 

Dissolved oxygen (%) 

Figure 3.7: The relationship between dissolved oxygen level (%) and 
oxygen consumption (mean±SE)(mg 0 2/g/h) of settled (0)(n=15) and 
active (A)(n=12) southern rock lobsters, Jasus edwardsii. The aerobic 
scope for activity (mg 0 2/g/h)(•) is also plotted as a function of the 
dissolved oxygen level. 

3.4 DISCUSSION • 

3.4.1 Body weight 

The dependence of oxygen consumption on body weight is well 

documented for most eumetazoans including crustaceans (Wolvekamp and 
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Waterman, 1960). Bridges and Brand (1980a) summarised the relationship for a 

series of decapod crustaceans and found scaling exponents (b) ranging from 

0.286-0.877 for a temperature range of 8.5°C - 17.8°C. The b values obtained in 

this study for both the standard and active oxygen consumption rates (0.595 and 

0.690 respectively) fall within this range and are close to 0.75: the b value 

evaluated for a wide variety of organisms (Hemmingsen, 1960). Bridges and 

Brand (1980a) noted that crustaceans in the large weight ranges tend towards a b 

value > 0.75 which suggests that oxygen consumption is more dependent on mass 

in larger crustaceans. However, the upper size range of crustaceans reported in 

Bridges and Brand (1980a) is limited (max. 770 g). Zoutendyk (1989) also 

obtained b values of 0.68 and 0.65 (at 8 and 10°C respectively) for J. lalandii 

ranging in weight from 20 g to 2500 g (at higher temperature b values of 0.8-0.9 

were obtained). This suggests that oxygen consumption may be more dependent 

on surface area (b of around 0.67) in larger crustaceans, as hypothesised by 

Zeuthen (1953). Other factors such as temperature may have a modulating effect 

on the measured b value. More studies on the effect of body weight on oxygen 

consumption of large decapod crustaceans are required to help clarify the trends. 

Standard rates of oxygen consumption vary widely with species even 

under a similar temperature regime (Table 3.2). Waldron (1991) obtained a lower 

value for J. edwardsii even though the study was carried out at a slightly higher 

temperature (15°C). As similar procedures were used for the studies the reason for 

the differences are uncertain but it may highlight intra-species variations of 

lobsters found at different locations (ie. Tasmania vs New Zealand). However, in 

common with Waldron (1991), this study found that oxygen consumption was 

lower than that reported for most other species at similar temperatures. Panulirus 

cygnus oxygen consumption rates were also low at similar temperatures (Table 

3.2). However, animals from cold environments normally have oxygen 

consumption/temperature curves displaced to the left of those animals from warm 

environments (Vernberg, 1983) thus, P. cygnus would be expected to have 

comparatively low oxygen consumption rates at the lower temperatures. In some 

cases the extremely high rates obtained in other studies appear to be artefacts of 

experimental procedures (eg. insufficient acclimation time), as outlined by 

McMahon and Wilkens (1983) and Waldron (1991). In this study, the time taken 

for handled lobsters to return to standard rates of oxygen consumption are 
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protracted, even when the lobsters had been acclimated to the respirometry 

chamber before handling. 

Species Wet mass (g) Temperature 
(°C) 

MO2  (mg/kg/h) Reference 

Jasus edwardsii 729 5 9 This study 
9 16 
13 25 
17 37 
21 52 

500  13  32  
J. edwardsii 300-730 15 20 Waldron, 1991 

17  27  
J. lalandii 500 8 27 Zoutendyk, 1989 

10 31 
13 37 
16 66 
19  73  

Panulirus 200-600 13 49 Winget, 1969 
interruptus 16 69 

20  94  
P. cygnus 400-500 11 12 Chapter, 4 

15 20 
19 31 
23 46 
27 67 
31  96  

P. argus  417  27  106 Buesa, 1979  
P. guttatus  157  27  119  Buesa, 1979  
Homarus 380-520 12 63 McLeese, 1964 

americanus 15 80 
20 114 
25  126  

H. americanus z 500 5 43 McLeese and 
Watson, 1968  

H. americanus 180-320 10 34 Penkoff and 
 	Thurberg, 1982  

H. gammarus  675-680  15  22-27  Spoek, 1974  
H. gammarus 

_ 
230-600 10 

15 
11 
31 

Whiteley et al., 
1990 

20  44  
Cancer magister 700-1150 10 25-45 Johansen etal., 

1970 in Spoek, 
1974  

C. magister 551-960 8 31 McMahon etal., 
1979  

Callinectes 
sapidus  	

200 20-28 87 Batterton and 
Cameron, 1978  

Homarus 
vulgaris 

220-510 15 33 Butler et al., 
1978 

Table 3.2: Comparison of standard rates of oxygen consumption of the 
southern rock lobster, Jasus edwardsii, and the western rock lobster, P. 
cygnus (Chapter 4), with published values for some other large decapod 
crustaceans. 
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Scope for activity (SFA) represents the amount of energy available to an 

organism through aerobic metabolism beyond that needed for maintenance; for 

most metazoans this a good indication of their capacity for sustained work (Fry, 

1947). When lobsters were active, either due to disturbance/handling/emersion or 

during normal night-time rhythms, there was a large increase in oxygen 

consumption. The increase in respiratory rates of active C. maenas was taken to be 

due to increased muscular activity (Wallace, 1972). The maximum aerobic 

expansibility of I edwardsii (3.0) is lower than that of most fish, which are 

usually in the range of 3-7 (Jobling, 1994). The oxygen consumption increase and 

the weight-specific aerobic SFA for lobsters of 700 g 0.05 mg 0 2/g/h) are 

similar to that measured for other large decapod crustaceans (Spoek, 1974; 

McMahon et aL, 1979; Booth et al., 1982; Waldron, 1991) and compares closely 

to values obtained for sluggish fish species (McMahon and Wilkens, 1983). J. 

edwardsii only has limited ability to carry out sustained aerobic work, as would be 

expected for a benthic, relatively inactive animal. 

3.4.2 Temperature 

The response to temperature of I edwardsii was typical of that seen in 

many crustaceans (Cockcroft and Wooldridge, 1985, Da11, 1986), with standard 

oxygen consumption decreasing with decreases in temperature and increasing with 

increases in temperature (Vemberg, 1983). Active oxygen consumption also 

increased with temperature, however a maximal rate was attained at an 

intermediate, non-lethal temperature and it remained constant at higher 

temperatures, a response typical to that seen in many poildlotherms (Bennett, 

1978). The freshwater crayfish, Pacifastacus leniusculus, exhibited a very similar 

response (Rutledge and Pritchard, 1981). The lowest temperature at which 

maximal oxygen consumption is attained is often the same as the preferred body 

temperature (Bennett, 1978). Maximum oxygen consumption by J. edwardsii was 

attained at 13°C which was the temperature of acclimation and a typical water 

temperature in their natural environment. Active oxygen consumption of 

Panulirus interruptus varied little with temperature over the range 16-20°C 

(Winget, 1969), suggesting a similar upper limit of M O2  exists. 
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The question arises as to why active MO2  does not increase at the higher 

temperatures. Active MO2  of J. edwardsii at 13°C increased as the dissolved 

oxygen concentration became supersaturated. Although it was not a significant 

increase above that in normoxic water, it does add further evidence to the 

argument that delivery and diffusion systems limit active M O2  (McMahon and 

Wilkens, 1983). The dissolved oxygen level decreases as water temperature 

increases, thus limiting the availability of oxygen. The decreased diffusion 

gradient may limit the uptake of oxygen. Environmental oxygen availability also 

appeared to limit the ability of sockeye salmon, Oncorhynchus nerka, to increase 

MO2  at temperatures above 15°C (Brett, 1964). Also, oxygen uptake at the gills 

could be reduced as the oxygen affinity of haemocyanin decreases as temperature 

increases (Taylor, 1981). 

In general Q 10  values for standard MO2  of crustaceans have been found to 

vary between 2 and 3; the values usually decrease with increasing temperature 

(Wolvekamp and Waterman, 1960). In some species a zone of temperature 

independence occurs, where standard M O2  remains constant over a wide 

temperature range (Zoutendyk, 1989). This zone usually occurs at temperatures 

around the preferred temperature. No zone of independence was evident in the 

present study; it would be expected that a zone of temperature independence 

would occur in animals that are fully acclimated to the experimental temperatures. 

Studies of other large decapods have found Q 10  values similar to J. edwardsii 

(3.0), eg. 
, 

lalandii - 0 10(8-19)  2.5 (Zoutendyk, 1989), Panulirus interruptus - 

Q1003-20= 2 - 5  
unusual for crustacean species at the lower end of their temperature range, eg. 

Penaeus monodon - 3.6 (Liao and Murai, 1986), P. esculentus - 4.7 (Da11, 1986), 

and P. californiensis - 4.8 (Villareal and Rivera, 1993). In the crab, C. sapidus, 

there was also a large drop in MO2  at low temperatures (Q 0=4.9)(Mauro and 

Mangum, 1982). The decreased MO2  was associated with a sharp decrease in the 

heart rate, ventilation, and the intrinsic oxygen demand of the muscle. The authors 

suggested the crabs may go into metabolic "hibernation" because the high oxygen 

affinity of haemocyanin limits the ability of the tissues to use oxygen and they 

become hypoxic. Thus at 5°C J. edwardsii may have undergone a cold coma and 

(Winget, 1969). In J. edwardsii the Qi0(5.9) of 4.3 is high, but not 
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were reaching the extremes of their range of thermal tolerance; a point where the 

scope for activity is zero (Newell, 1979). Alternatively, the Q10.15 of H. 

americanus was 8.9 (Whiteley et al., 1990) and the authors suggested that they 

were witnessing the respiratory responses to acute changes in temperature, as the 

lobsters were not acclimated to the lower temperature. The same basic methods 

used by Whiteley et al. (1990) to calculate the effect of temperature on M O2 were 

used in the present study, indicating similar responses may have occurred. 

Active Q 10  values of close to 1.0 were measured at temperatures above 

13°C. Similar values have been recorded as temperature increases above the 

"preferred" body temperature in many species of lower vertebrates (Bennett, 

1978). The Q 10  value for active oxygen consumption between 5 and 9°C was 

extremely high. An equivalent literature value could not be found although Q, os of 

8.9 and 7.7 were measured for non-temperature acclimated H gammarus and 

Penaeus japonicus, respectively (Whiteley et al., 1990; Paterson, 1993a). Lobsters 

remain very inactive when handled at 5°C. As activity is one of the major factors 

causing increases in oxygen consumption (Halcrow and Boyd, 1967; Newell, 

1979), active MO2  would not be expected to increase greatly at that temperature. 

The aerobic expansibility at 5°C was very small (1.52), but at 9°C when lobsters 

were much more active in response to handling, their aerobic expansibility 

increased substantially to 3.0. Therefore, the high active Qi0(5_9) value appears to be 

due to the inability of lobsters to increase activity at the lower temperature. Q 10  

values are as much reflections of changed activity as of the temperature 

dependence of the metabolic reactions underlying the activity (Halcrow and Boyd, 

1967). 

The pattern of the SFA at different temperatures was similar to that seen in 

many fish species (Brett, 1964; Brett, 1972), and for the freshwater crayfish, P. 

leniusculus (Rutledge and Pritchard, 1981). SFA is generally highest at the 

preferred temperature decreasing at temperatures above and below that point. 

Active and standard MO2  usually come together at the upper and lower lethal 

temperature of the species. Lower and upper lethal temperatures have not been 

determined for J. edwardsii but the results of this study show it is below 5°C and 

above 21°C for lobsters acclimated to 13°C. Below the "preferred" temperature 

active MO2 decreased more steeply with temperature than standard MO 2 , causing 
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SFA to decrease as temperature decreased. Above the "preferred" temperature 

SFA decreased because active MO2  remained constant while standard MO2 

continued to increase. 

3.4.3 Emersion and handling 

The extended time period taken to return to standard MO2  after handling 

and emersion suggests that a large oxygen debt was incurred. The oxygen debt is 

due to two factors: (i) the increased activity of the lobsters caused by handling and 

emersion; oxygen consumption of f. edwardsii increases up to 3 times the settled 

level with activity. (ii) the decreased ability to uptake oxygen with emersion; 

emersed J. edwardsii have the ability to only take up about 1/2 of their settled 

oxygen requirements (Waldron, 1991). Therefore, the lobsters are only able to 

access approximately 1/6th of their oxygen requirements during the emersion 

period. Their metabolic requirements will probably be funded by anaerobic 

metabolism. Increases in MO2  upon re-immersion are achieved by a rapid increase 

in oxygen supply to the gills (increased gill ventilation), an increase in oxygen 

transport away from the gills (increased cardiac output) and an increase in the 

oxygen gradient across the gills (increased participation of 

haemocyanin)(McMahon et al., 1979; McMahon and Wilkens, 1983). Suggested 

uses for the excess oxygen include: (1) metabolising anaerobic end products; (2) 

re-establishing resting oxygen levels in body tissues; (3) replenishing high energy 

phosphate reserves; and (4) meeting energy costs associated with increased 

branchial chamber ventilation and haemolymph circulation (Herreid, 1980; Head 

and Baldwin, 1986). Large decapod crustaceans typically take around 8 hours to 

return to pre-exercise levels of oxygen consumption after a period of exercise 

and/or emersion (McMahon et al., 1979; Waldron, 1991; Chapters 4 and 6). The 

slightly shorter timeperiod in this study may be a reflection of the low water 

temperature. Whiteley and Taylor (1990) found that lobsters, H. gammarus, took 

longer to recover from the effects of aerial exposure at 20°C compared to 10°C, 

and the timeperiod of recovery of P. cygnus increased as temperature increased 

(Chapter 4). 
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3.4.4 Diurnal rhythm 

The increase in oxygen consumption and activity at night matches that 

observed in other subtidal species of decapods which typically show a diurnal 

rhythm in their behaviour patterns (Anse11, 1973; Naylor, 1988; Hammond and 

Naylor, 1977; Lipcius and Herrnkind, 1982; Du Preez, 1983; Da11, 1986). The 

routine MO2  of 24% above standard MO2  is comparable with the routine rate 

calculated by Da11 (1986) for the prawn Penaeus esculentus of 8-12% above the 

standard rate. Such a small increase above standard rates is probably appropriate 

for benthic animals with limited activity (Da11, 1986). Carvalho and Phan (1997) 

suggested that the routine rate may be an underestimate of that found in the 

environment because the animal could not swim or develop normal behavioural 

patterns in the respirometers. J edwardsii may have been able to exhibit more 

normal patterns in the respirometers because they could still freely walk, which is 

their prevalent means of locomotion in nature, therefore the calculated routine rate 

may be close to that found in the environment. The routine M O2  of many fish 

species are typically 30-60% higher than standard M O2  (Becker and Fishelson, 

1986; Sims et al., 1993). Even the largely sessile plaice, Pleuronectes platessa, 

has a routine MO2  30-45% above standard (Jobling, 1982). Zoutendyk (1991) did 

not observe any diurnal rhythms in oxygen consumption of the lobster J. lalandii, 

a species that would be expected to have similar activity patterns to J. edwardsii. 

Where diurnal rhythms are present, light is the prime entraining factor 

(Naylor, 1988; Arechiga and Rodriguez-Sosa, 1997). In the wild, J. edwardsii 

commences foraging just before dusk and continues through the night, ceasing at 

dawn (Fielder, 1965). Peak feeding activity occurs one to two hours after sunset 

(Lewis, 1981). The oxygen consumption response observed in the present study 

highlights another peak in MO2  just prior to sunrise. Such secondary peaks are not 

unusual: Ansell (1973) observed two periods of increased oxygen consumption at 

night in Cancer pagurus, Kubo and Ishiwata (1964) observed a sunset and sunrise 

peak in activity by the Japanese spiny lobster, P. japonicus and Lipcius and 

HerrnIcind (1982) also found that P. argus displayed secondary peaks. The second 

peak may be a consequence of the lobsters being unfed (therefore they are again 

on the search for food). Fielder (1965) found that the activity pattern of unfed J. 
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edwardsii remained at a much higher level through the hours of darkness, than 

does feeding activity. The author suggested that the fed lobsters had no need for 

further foraging after their initial feeding activity in the early hours of darkness. If 

the lobsters in the present study were unusually active due to being starved then 

the routine MO2 would be somewhat lower than calculated above (24% above 

standard M0 . Alternatively, the second Mo2  peak may reflect the normal activity 2  
pattern of lobsters which may be generally returning to hides at that time of the 

night. 

The night-time increase in oxygen consumption highlights the need to take 

diurnal changes in MO2  into account when designing or interpreting studies of 

MO2 . For example, when investigating the metabolic response to food it is 

imperative that the lobsters are fed at the same time of the day to ensure that the 

influence of diurnal rhythms can be accounted for. Also, many researchers have 

kept their study animals in the dark to ensure that the animals are not disturbed by 

movement in the room (eg. Batterton and Cameron, 1978). Such procedures may 

result in the calculation of elevated standard oxygen consumption rates due to the 

effect of light/darkness on activity. 

3.4.5 Feeding 

Post-prandial increases in oxygen consumption have been well studied in 

fish (see Jobling, 1981 for a review), however relatively few studies have been 

conducted on crustaceans. The general term for the response is specific dynamic 

action (SDA). The increase in oxygen consumption is associated with the extra 

energy produced for transportation of food in the alimentary tract, its digestion, 

absorption and post absorptive metabolic processes related to the ingested food 

(Hepher, 1988). Food elicited a strong locomotor response in J. edwardsii; the 

increased activity would probably account for the rapid rise in oxygen 

consumption after feeding. Similarly, a large increase in oxygen consumption 

immediately after feeding was also observed in Penaeus monodon (Du Preez et 

al., 1992); the authors concluded that the initial rise was due to increased activity 

and feeding processes, whilst the later peak was due to the absorptive and 

digestive processes. 
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Many factors affect the size of the SDA (see Jobling, 1981), but in fish the 

general response is a peak level of between 2 and 3 times standard M O2, with the 

peak occurring within 12 hours post-prandial, and a duration of 24-36 hours. 

Therefore, J. edwardsii displayed a classic post-prandial increase in oxygen 

consumption. Similarly, oxygen consumption by the crab Carcinus maenas was 

2.3-fold higher 3 h after a meal (2.6% wet weight to wet weight), and had returned 

to its previous value within 24 h (Houlihan et al., 1990). Oxygen consumption by 

Cancer pagurus took 6-9 hours to reach maximum post-prandial levels (3.8-fold 

increase) and 24 hours to return close to pre-prandial levels (Ansell, 1973). 

Oxygen consumption of the American lobster, H. americanus almost doubled 

after feeding (McLeese, 1964). A SDA has also been clearly demonstrated for the 

land crabs, Cardisoma guanhumi and Ocypode quadrata, with peaks and 

durations of very similar magnitude to in the present study (Burggren et al., 

1993). In J. edwardsii the maximum increases in MO2  after feeding was over 1/3 

of the lobsters aerobic expansibility at 13°C. Thus, their aerobic scope for activity 

would appear to be severely reduced for an extended period after feeding. 

3.4.6 Dissolved oxygen level 

J. edwardsii were able to maintain its standard level of oxygen 

consumption down to a relatively low P02  (36.7%), below which MO2  varied in 

proportion to water P02 . The dissolved oxygen tension where MO2  becomes 

dependent is termed the critical oxygen level (P c), and is used as the standard 

against which organisms are compared for hypoxic tolerance (Reiber, 1995). The 

Pc  of J. edwardsii is similar to that evaluated for many other crustaceans living in 

well oxygenated environments. Values between 20 and 50% saturation are typical: 

Homarus gammarus 22% (Spoek, 1974), H. americanus 20-25% (McMahon and 

Wilkens, 1975), Austropotamobius sp. 25-32% (Wheatly and Taylor, 1981), 

Penaeus esculentus 25% (Dall, 1986), and Carcinus maenas 40-50% (Taylor, 

1976, Truchot, 1975 in Morris and Taylor, 1985). Waldron (1991) obtained a P c  

for J. edwardsii of 51%, a figure which was considerably higher than found in this 

study. The reason for the difference is unclear but the results of this study do not 
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support the view that a low degree of oxygen independence may limit the 

distribution of J. edwardsii (Waldron, 1991). 

The critical oxygen tension for a given species is not constant (Reiber, 

1995). The P, of J. edwardsii increased by over 20% when the lobsters were 

active. Only a few studies have looked at the P, of active crustaceans and it has 

generally been found that P, is close to 100% saturation (H. gammurus, Spoek, 

1974; C. maenas, Taylor, 1976; Ebalia tuberosa, Schembri, 1979; Cmystes 

cassivelaunaus and Galathea strigosa, Bridges and Brand, 1980a; P. esculentus, 

Da11, 1986). Animals which are normally oxygen independent down to quite low 

P02  levels become oxygen dependent when active. However, the active P, 

evaluated for J. edwardsii was much lower than seen in such studies. A similar 

result was obtained for Heterosquilla tricarinata (Innes, 1985). Similar methods 

were used in evaluating P, in the two studies, with the ability of animals to uptake 

oxygen at specific P02  values being examined, rather than using the normal 

method of placing active animals into water and monitoring the depletion of 

oxygen. The purported lack of ability of crustaceans to remain oxygen 

independent when active may therefore be an artefact of experimental procedures, 

and requires further investigation. 

H. tricarinata can maintain a reasonably high aerobic SFA over a wide 

range of dissolved oxygen levels, as would be expected of an animal which may 

experience prolonged periods of low environmental oxygen levels in its natural 

environment (limes, 1985). The relatively low active P, value of J. edwardsii 

means that it can also maintain a reasonably high aerobic SFA over a wide range 

of dissolved oxygen levels. However, the 27% reduction in aerobic SFA 

capability of J. edwardsii at 55% saturation may limit its ability to maintain 

physiological processes, such as oxygen consumption increases related to feeding. 

By way of illustration, when the closely related species I lalandii was grown at 

various levels of dissolved oxygen, there was a general decrease in growth and 

ingestion and an increase in intermoult period, with decreasing levels of oxygen 

saturation (Beyers et al., 1994). Such results would seem likely if the SFA 

response of J. lalandii to decreasing oxygen levels, was similar to J. edwardsii. 
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Conclusion: a clear understanding of factors affecting oxygen consumption 

by J. edwardsii has been developed. This information can assist in the 

development of procedures which ensure that the health of J. edwardsii is 

maximised through all processes of the fishery and export industry. The 

implications of these results for the southern rock lobster industry will be 

discussed in the General Discussion (Chapter 9). 
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CHAPTER 4 

The effect of intrinsic and extrinsic factors on oxygen 

consumption by the western rock lobster, Panulirus 

cygnus 

4.1 INTRODUCTION 

The western rock lobster, Panulirus cygnus, is the basis of a $500 M 

fishing industry in Western Australia. Live export of lobster constituted 40-50% 

of the total catch during the 1996/97 fishing season. Maintaining rock lobsters in 

prime condition in holding tanks on board boats or in processing sheds requires 

the provision of high quality water. One of the major water quality parameters is 

oxygen. It is essential that water flow and aeration are sufficient to provide 

adequate oxygen for the number of lobsters being held (Beard and McGregor, 

1991). Unfortunately very little information is available on the oxygen 

consumption rates of P. cygnus and its response to various extrinsic and intrinsic 

factors. The design of rock lobster holding tanks has developed in response to 

results obtained, rather than being designed to meet the lobsters biological 

requirements, based on sound scientific information. Therefore, this study 

determines the oxygen consumption response of P. cygnus to various extrinsic and 

intrinsic factors; temperature, body weight, feeding, handling, daylight/darkness 

and dissolved oxygen levels. 

4.2 MATERIALS AND METHODS 

General Materials and Methods used to determine oxygen consumption 

and the effect of the various intrinsic and extrinsic factors are outlined in Chapter 

2 with the following species specific methods. All experiments (except for those 

examining the effect of temperature) were conducted at the acclimation 

temperature of 23°C. 
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Water temperature and lobster weight 

The effect of acute temperature changes on the oxygen consumption of 

lobsters were investigated. Lobsters were acclimated to the respirometers at 23°C 

before the temperature was raised or lowered to the required temperature at a rate 

of 2°C per hour. 

Oxygen consumption of lobsters under the following experimental 

procedures were examined: 

(i) The effect of lobster weight and water temperature on standard oxygen 

consumption was determined with lobsters ranging in weight from 417 g to 

3000 g. The lobsters were subjected to temperatures ranging from 11°C to 

31°C (4°C steps). 

(ii) The effect of lobster weight and activity on oxygen consumption at 23°C. 

(iii) The effect of temperature and activity on the oxygen consumption of 400- 

500 g lobsters. 

Diurnal rhythm 

Oxygen consumption of 21 lobsters (417 g to 2900 g) was recorded over a 

minimum of 48 hours to establish if a diel rhythm was present. 

Handling 

This experiment was conducted at 15°C, 23°C and 31°C. The upper and 

lower temperatures were obtained by altering the temperature from 23°C at a rate 

of 2°C per hour. Lobsters were held at those temperatures for 24 hours prior to 

determining the response to handling. 
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Oxygen saturation level 

This experiment was conducted at 15°C, 23°C and 31°C. The upper and 

lower temperatures were obtained by altering the temperature from 23°C at a rate 

of 2°C per hour. Lobsters were held at those temperatures for 24 hours prior to 

determining the response to the oxygen saturation level. The response of active 

lobsters at 23°C was also investigated. 

Statistical analyses 

Linear regressions were obtained by the least squares method and were 

tested for significance of regression by analysis of variance of the regression. 

Covariance analysis was used to test for differences of oxygen consumption with 

sex, activity and temperature, using lobster weight as the covariate. Students t-

tests (paired where necessary) were used to evaluate differences in standard and 

active oxygen consumption rates at each experimental temperature. Paired student 

t-tests were used to evaluate when post-prandial and post-handling oxygen 

consumption had returned to standard levels. Where appropriate a Students t-test 

for samples with unequal variances was used. Paired t-tests were also used to 

evaluate if there was daily rhythm to oxygen consumption by comparing the 

average night-time rate to the standard rate. All analyses were performed on the 

SPSS statistical package with the a set at 0.05. All means are expressed as 

mean±SE. 

4.3 RESULTS 

4.3.1 The effect of temperature and body weight on oxygen consumption 

Sex of the lobsters had no influence on oxygen consumption (t=0.22, 

P=0.85). Therefore the data from both sexes have been pooled. Log-log plots of 

total oxygen consumption (MO2) against body weight are shown in Fig. 4.1. Total 

oxygen consumption rates of P. cygnus increased significantly (P<0.001) with 

body weight at each of the experimental temperatures. The equations describing 
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the relationship at each temperature are shown in Table 4.1. Analysis of 

covariance showed that there were no significant differences (F.52, P=0.763) 

between the slopes (b) of the linear regressions (data for lobsters at 11°C were not 

included in this analysis due to a lack of data for intermediate weight lobsters at 

that temperature). The slope of the pooled regressions was 0.814. All intercepts 

(a) were significantly different (F=225, P<0.001) and increased significantly 

(F=194, P<0.001) with temperature (T). The relationship between the intercepts 

(a) and temperature was able to be described by the linear equation: 

a = 0.051T - 2.075 (12  = 0.98) 	 Equation (1) 

By substituting the value of the pooled regression (0.814) and the value of 

a from Equation (1) into the general form of the regression of total oxygen 

consumption against body weight (Log lo  MO2  = a + b log io  W), body weight and 

temperature can be related to oxygen consumption: 

Log ioM = 0.814 log loW + 0.051T - 2.075 

In view of the relationship between body weight and oxygen consumption, 

a restricted weight range (380-520 g) was used in experiments where body weight 

was not a factor. 
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Figure 4.1: A log/log plot of total oxygen consumption (M O2  - mg 02/h) 
against wet body weight (g) of the western rock lobster, Panulirus Cygnus. 
Standard oxygen consumption rates over the temperature range 11°C to 
31°C and weight range 417 g to 3000 g were investigated. 

Temperature (°C) Linear regression equation n F r2 

11 Logic> Mo2  = -1.705 + 0.918 ioglow 10 69 0.90 

15 Log ic, MO2  = -1.355 + 0.850 logloW  15 151 0.92 

19 Log i()  MO2  = -1.040 + 0.812 log loW 15 101 0.89 

23 Log i°  MO2  = -0.900 + 0.830 log loW 17 218 0.94 

27 Log ic, MO2  = -0.698 + 0.817 logloW  17 121 0.89 

31 Log ic, M O2  = -0.504 + 0.805 logloW  13 80 0.82 

Table 4.1: Linear regression equations describing the relationship 
between total oxygen consumption (M O2  - mg 02/h) and body weight (W - 
g) at each of the experimental temperatures. The total number of lobsters 
(n), the F value for the ANOVA, and the r 2  of the equation for each 
temperature are also shown. 
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Figure 4.2: A log-log plot of total oxygen consumption (M O2)(mg 02/h) 
against body weight (g) of the western rock lobster, Panulirus Cygnus. 
Standard (0) and active (A) rates of oxygen consumption at 23°C are 
shown. 

4.3.2 The effect of activity and body weight on oxygen consumption 

The relationship between standard and active rates of oxygen consumption 

was investigated over a range of body weights. Standard and active MO2  (mg 02/h) 

at 23°C increased significantly (F=88.2, P<0.001; F=85.84, P<0.001 respectively) 

with body weight (Fig. 4.2). The regression equations describing the relationships 

are: 

Standard oxygen consumption: 

Log 10  MO2  = 0.834 log lo  W - 0.881 (12  = 0.831) 

Active oxygen consumption: 

Log 10  MO2  = 0.550 log lo  W + 0.411 (e= 0.755) 
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Activity caused a significant increase (t=11.95, P<0.001) in oxygen 

consumption. There was a significant difference (F=6.05, P=0.019) between the 

slopes of the regressions with the b value for active lobsters being much lower 

than for settled lobsters. This indicates that the aerobic expansibility decreased 

with weight (Fig. 4.3). Analysis of variance showed that the slope of the 

regression was significantly different (F=6.20, P=0.023) to zero and that the 

aerobic expansibility did decrease with weight. Larger lobsters had a decreased 

ability to increase their oxygen consumption with activity in comparison to 

smaller lobsters. 

Weight (g) 

Figure 4.3: The aerobic expansibility of the western rock lobster Panulirus 
cygnus plotted against log weight. Aerobic expansibility = Active 
MO2/Standard MO2 . 
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Figure 4.4: The effect of temperature on the standard ( ) and active (o) 
weight-specific oxygen consumption (mean±SE)(mg 02/g/h) of the 
western rock lobster, Panulirus cygnus (n=12). The aerobic scope for 
activity (mg 02/g/h) at each temperature is also shown (s). 

4.3.3 The effect of activity and temperature on oxygen consumption 

It has already been shown above that temperature has a significant effect 

on the standard MO2  of P. cygnus. This relationship is further highlighted in Fig. 

4.4 which plots the effect of temperature on standard and active M O2  for 445.6±3.8 

g (mean±SE) P. cygnus. There is a significant relationship between temperature 

and Mo  for settled and active lobsters (F=284.6, P<0.001; F=351.6, P<0.001 
2 

respectively). The exponential relationship between standard M O2  and temperature 

(T) can be described by the equation: 

Loglo  MO2  = 0.045T - 2.38 (r2=0.90) 

At each experimental temperature the active MO2  was significantly higher 

than the standard MO2  (P<0.001 at all temperatures). Active MO2  decreased greatly 

at temperatures below 23°C but at higher temperatures there was no significant 
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(F=1.68, P.19) increase in active MO2 . The relationship was able to be described 

by the equation: 

MO2  = -4.02e4  1.2  + 0.024 T - 0.201 (r2 .83) 

The quadratic model suggests a decline in oxygen consumption beyond 

31°C, but more data points are required to confirm that presumption. 

The aerobic scope for activity decreased at temperatures above and below 

23°C (Fig. 4.4). The decrease below 23°C is primarily due to the decrease in 

active MO2. Above 23°C the decrease is due to the active M O2  remaining relatively 

constant and to the exponential increase in standard M O2. The aerobic 

expansibility was highest (3.33) at 23°C (Table 4.2). It was maintained at a similar 

level at 19 and 15°C (3.06 and 3.0 respectively) but decreased to 2.33 at 11°C. At 

higher temperatures the aerobic expansibility decreased until a level of 1.73 was 

obtained at 31°C. 

The Q10  values for standard MO2  decreased as the temperature increased, 

falling from 3.59 (0 . ,100 1-10 to 2.46 (Q10(27-31))  (Table 4.2). The Q 10  values for active 

MO2  also showed a general decrease as temperature increased but ranged from 

6.72 (5-9°C) to 1.07 (23-27°C). The active Q 10  values above 23°C were close to 

unity. The average Q 10  values over the temperature range 11-31°C were very 

similar for both active and standard M O2 . 

Temperature 
(°C) 

Aerobic 
expansibility* 

Temperature Q10 
range (°C) Standard MO2 Active MO2 

11 2.33 11-15 3.59 6.72 
15 3.00 15-19 2.99 3.15 
19 3.06 19-23 2.68 3.29 
23 3.33 23-27 2.56 1.07 
27 2.34 27-31 2.46 1.15 
31 1.73 

Average (11-31) 2.86 3.08 

Table 4.2: The aerobic expansibility of the western rock lobster, Panulirus 
cygnus, at each experimental temperature (refer Fig. 4.5). The Q 10  values 
of standard and active oxygen consumption for each temperature range 
are shown along with the average C2 10  values over the whole temperature 
range. 

* Aerobic expansibility = Active M O2/Standard M O2 . 
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Time (h) 

Figure 4.5: The effect of handling and emersion on oxygen consumption 
(•)(mean ±SE)(mg 0 2/g/h) of the western rock lobster Panulirus Cygnus. 
Pre-handling oxygen consumption (0) was quantified before lobsters were 
removed from the respirometers for 1/2 hour (indicated by the break). The 
response to emersion at different temperatures (A = 15°C; B = 23°C; C = 
31°C) was investigated. The asterisks indicate the time when the oxygen 
consumption of recovering lobsters is not significantly different to the pre-
handling level. Each reading represents the oxygen consumption rate 
measured over a 20 minute period after the time noted. 
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4.3.4 Effect of handling and emersion on oxygen consumption 

Lobsters needed an extended period of time to return to their standard MO2  

after handling and emersion (Fig. 4.5). They required 5-5.5 hours to return to 

oxygen consumption levels that were not significantly different (t=0.92, P=0.37) 

to standard rates after handling and emersion at 15 °C. The time period increased 

to 7-7.5 hours (t=1.808, P=0.096) and 8-8.5 hours (t=1.62, P=0.125) at 23°C and 

31°C respectively. The total amount of oxygen consumed above standard oxygen 

consumption during the recovery period was 0.074 mg 0 2/g at 15°C, increasing to 

0.277 mg 02/g at 23°C and 0.302 mg 0 2/g at 31°C. The oxygen consumed during 

recovery did not increase greatly at 31°C when compared to 23°C. 

6PM 6AM 6PM 6AM 6PM 6AM 

Time 

Figure 4.6: Oxygen consumption (mg 0 2/g/h) of the western rock lobster, 
Panulirus cygnus (n=7), over a 72 hour period. The lobsters were fed 
squid, Nototodarus gouldii, (3% of the lobsters body weight) at 8.30 AM on 
the second day. Pre-prandial (0) and post-prandial (•) oxygen 
consumption rates are shown. The effect of daylight/darkness on oxygen 
consumption can be observed in the pre-prandial section. The lobsters 
were in complete darkness between 6PM and 6AM. Each symbol 
represents the average oxygen consumption over 30 minutes (ie. two 
measuring periods). For ease of viewing lines are drawn between 
succeeding data points and standard errors are not shown. 
4.3.5 Effect of diurnal rhythm on oxygen consumption 
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Oxygen consumption increased significantly (t=5.154, P>0.001) at night 

(Fig. 4.6). The mean night-time increase was 87±18% (±SE) with a range from 

4% to 338%. A large increase in MO2  was generally observed in the measuring 

period immediately after the onset of darkness, with a return to standard M O2  rates 

immediately after the lights came back on. Using the standard M O2  rate as a 

measure of oxygen consumption during the entire 12 hour daylight period, and the 

recorded night-time rates, routine MO2  was calculated to be 43.5% higher than the 

standard MO2  Infra-red recordings showed that increases in oxygen consumption 

were correlated to increases in activity of the lobsters. 

4.3.6 Effect of feeding on oxygen consumption 

An increase in oxygen consumption was observed post-prandially. 

However, the influence of a diurnal rhythm was still evident (Fig. 4.6). A large 

increase in MO2  (up to 3 times standard M0) was observed immediately after 

feeding which took three measuring periods (ie. 1.5 hours) to return to the 

relatively steady increase associated with feeding. The initial surge in M O2  

appeared to be due to increased activity associated with the procurement of the 

feed. Lobsters subjected only to the smell of food in the water showed a very 

similar response but their M O2  returned to standard rates within 1.5 hours. 

Oxygen consumption peaked 7 hours post-prandial at 0.094±0.008 mg 

02/g/h (mean±SE) and slowly declined after that time. The peak M O2  was 2.19 

times the standard Mo 2  . MO2  returned to pre-prandial levels 46 hours post-prandial 

(t=1.12, P=0.28) and may have returned earlier except for the influence of the 

diurnal rhythm. 

The average night-time MO2  prior to feeding was 0.064±0.002 mg 02/g/h 

(mean±SE) which was 49% higher than the standard M O2  of 0.043±0.001 mg 

02/g/h (mean±SE). The post-prandial oxygen consumption during the second 

night after feeding was 0.061±0.002 mg 0 2/g/h (mean±SE). Both night-time 

readings were significantly higher (Pre t=9.42, P<0.001, Post -t=8.97, P<0.001) 

than the standard MO2  but were not significantly different (t=1.04, P=0.30) to each 

65 



0.07 
0.06 — 

0.05 — 

0.04 — 

0.03 — 

0.02 — 

0.01 — 

00.00 1 	1 	I1 
0 20 	40 	60 	80 100 

D - Activity 
0.18 

0.14 — 

0.10 — 

0.06 — 

0.02 	1 1 	1 	1 	1 	1 
15 35 	55 	75 	95 	115 

0 
0.014 

0. 
E z 0.012 

in CA 	0.010 
C 
0 0 0.008 

g 	
0.006 

Co 	0.004 

X 	0.002 
0 

0.10 

2." 

	
0.08— 

ch C., EE  
0 0 

 g E co - >,  

0 20 	40 	60 

C -31 °C 
80 	100 

1 	1 	1 
0 
	

20 	40 	60 	80 	100 

Chapter 4 

other. Average MO2  during the day-time on the day after feeding (0.057±0.001 mg 

02/g/h - mean±SE) was 33% higher than the standard M O2  (significantly higher - 

t---9.32, P<0.001). Post-prandial increases in M O2  still appeared to influence MO2  

21-33 hours after feeding, but the M O2  increases associated with normal diurnal 

activity become apparent during the second night after feeding (33+ hours). 

A -15°C 
	

B - 23°C 

Dissolved oxygen (%) 
	

Dissolved oxygen (%) 
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Figure 4.7: The relationship between dissolved oxygen level (%) and 
oxygen consumption (mg 0 2/g/h) of Panulirus cygnus under various 
conditions. A. Oxygen consumption of settled lobsters (ie. standard 
oxygen consumption rates) at 15°C (n=6-9). B. Oxygen consumption of 
settled lobsters at 23°C (n=8). C. Oxygen consumption of settled lobsters 
at 31°C (n=8). D. Oxygen consumption of active lobsters at 23°C (n9-
12). E. Plot of the dissolved oxygen level at the critical oxygen tension (P c) 
against oxygen consumption at P. 
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4.3.7 Effect of dissolved oxygen level on oxygen consumption 

The critical oxygen tension (P s) varied depending on the experimental 

condition the lobsters were maintained under (Fig. 4.7 A-D). P, for settled lobsters 

increased as temperature increased, increasing from 23.7% dissolved oxygen 

saturation at 15°C to 37.9% at 31°C. P, for the temperature of acclimation (23°C) 

was 29.4% saturation. The P, for active lobsters at 23°C increased to 62.8% 

saturation. There was a significant (F=56.7, P=0.017) increase in P, with increases 

in MO2  (calculated from the point of intersection of the lines used to evaluate 

13,)(Fig. 4.7E). The relationship could be described by the following linear 

equation: 

Pc (% saturation) = 305.4 M O2(ing 02/g/1) + 16.66 (r2=0.97) 

When the P, values are expressed as mg/1, then P, is close to 2 mg/1 for 

each temperature (15°C - 1.93 mg/1; 23°C - 2.06 mg/1; 31°C - 2.26 mg/1). 
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Figure 4.8: The aerobic scope for activity (mg 0 2/g/h)(•) of the western 
rock lobster, Panulirus cygnus, at 23°C, plotted as a function of the 
dissolved oxygen level (calculated from data displayed in Fig. 4.7 B & D). 
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The aerobic scope for activity of lobsters at 23°C reduces as the dissolved 

oxygen level decreases (Fig. 4.8). The SFA is controlled by the response of active 

MO2  to dissolved oxygen level, with the decrease in SFA at 55% saturation 

mirroring the decrease in active Mo, at the same saturation. At 35% saturation the 

SFA had reduced to only 36% of the maximum SFA. 

4.4 DISCUSSION 

Unless referenced otherwise all discussion regarding 1 edwardsii refers to 

the results outlined in Chapter 3. 

4.4.1 Sex 

As in the present study, no significant differences in oxygen consumption 

between sexes have been recorded in other studies (Laird and Haefner, 1976; 

Cockcroft and Wooldridge, 1985; Dall, 1986; Villarreal, 1990; Carvalho and 

Phan, 1997; Chapter 3, J. edwardsii). Sexual differences in oxygen consumption 

are not common in crustaceans (Laird and Haefner, 1976). 

4.4.2 Body weight and activity 

The slope of the pooled regression of oxygen consumption against body 

weight is within the range of 0.286-0.877 summarised by Bridges and Brand 

(1980a) for a series of decapod crustaceans. However, unlike J. edwardsii, the 

slope is >0.75; Bridges and Brand (1980a) noted that crustaceans in the large 

weight ranges tend towards high b values, which suggests that oxygen 

consumption is more dependent on body weight. In J. edwardsii oxygen 

consumption was more closely related to surface area. In J. lalandii the b value 

increased to 0.8-0.9 as temperature increased, suggesting that temperature may 

change the relationship. However, there was no decrease in b values as the 

temperature decreased in this study. The present studies of P. cygnus and J. 

edwardsii, provide no clearcut evidence about whether surface area dependency or 

body weight dependency determines the slope of the relationship between body 
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weight and oxygen consumption by large decapods. It may be that species specific 

differences are one of the largest factors determining the relationship. 

One of the interesting features of the body weight and temperature 

response of oxygen consumption was the constancy of the slopes of the 

regressions at the various temperatures. Similar patterns have been observed by 

Dall (1986) for the prawn, Penaeus esculentus and by Carvalho and Phan (1997) 

for the seabob, Xiphopenaeus kroyeri. In this study the temperature range over 

which the constant relationship was maintained was 16°C, which suggests that P. 

cygnus can handle a wide temperature range; water temperatures in their natural 

habitat can vary from 16°C to 27°C (Gray, 1992). Van Donk and de Wilde (1981) 

found that the relationship between body weight and oxygen consumption broke 

down at temperatures outside of the temperature range within which Crangon 

crangon is usually found. The body weight/oxygen consumption relationship 

appears to be changing in P. cygnus held at 11°C, a temperature well below its 

natural range. 

Activity resulted in a significantly higher oxygen consumption rate. 

Handling, emersion and exercise have all been shown to increase oxygen 

consumption of crustaceans (Booth et al., 1982; Cockcroft and Wooldridge, 1985; 

Winkler, 1987; Patterson, 1993a; Carvalho and Phan, 1997), which is regarded as 

being an organism-level manifestation of all of the cellular processes that take 

place during recovery from a period of stress (Ellington, 1983). Processes include 

the recharging of energy pools (phosphagen and ATP), the clearing of anaerobic 

end-products from the tissues, and the correction of pH disturbances. 

The mass exponent of oxygen consumption against body weight was 

smaller in active lobsters than resting lobsters, and is a reflection of the decreased 

aerobic expansibility of the larger lobsters. It is unclear why larger lobsters have a 

decreased aerobic expansibility in this study when there was no evidence of it in J. 

edwardsii. It may be species specific or it may be a result of the methods. The 

largest P. cygnus were about 1000 g heavier than the largest J. edwardsii and they 

did not easily fit into the respirometers. Space restrictions may have limited their 

ability to be fully active. However, as they were always handled and emersed out 

of the respirometers before oxygen consumption was measured over a short period 

after re-immersion they had extensive opportunities to be active. 
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4.4.3 Temperature and activity 

Standard oxygen consumption of P. cygnus increased exponentially with 

temperature, as is the general response of poikilotherms to temperature 

(Wolvekamp and Waterman, 1960). Standard oxygen consumption rates of large 

decapods are summarised in Table 3.2 and highlight the paucity of information on 

oxygen consumption of large tropical and sub-tropical species. Even so, it is 

evident that P. cygnus has a much lower standard MO2  than that measured for other 

species from similar temperature regimes. As for J. edwardsii this result has 

probably as much to do with the experimental procedures used in evaluating the 

rates, as it does to real differences between the species. Buesa (1979), for 

example, only allowed lobsters one hours adaptation to the respirometers prior to 

determining MO2 . 

The pattern of increase in standard M O2  with temperature is similar to that 

recorded for .1 edwardsii, with the Q 10  being highest at the low temperatures and 

decreasing as the temperature increases. No zone of temperature independence 

was recorded and (2 10  values were generally between 2 and 3 as recorded in many 

Crustacea (Wolvekamp and Waterman, 1960). The higher Q lo  at low temperatures 

is probably a reflection of a "hibernation" response or a response to the acute 

temperature change as discussed in Chapter 3. 

A reduction in standard oxygen consumption rates towards the upper 

temperature limit of a particular species has been recorded in Crustacea (Varo et 

al., 1991). The standard oxygen consumption of C. crangon and Muninda rugosa 

declined at higher temperatures (Van Donk and de Wilde, 1981 and Zainal et al., 

1992 respectively). Oxygen consumption of P. cygnus continued to increase at 

temperatures up to 31°C suggesting that the upper limit has not yet been reached. 

Chittleborough (1975) found that juvenile P. cygnus were able to survive 

temperatures of 34°C, at least for an short duration. 

The oxygen consumption response of active lobsters to temperature is 

similar to that observed for J. edwardsii and for the crayfish Pacifastacus 

leniusculus (Rutledge, 1981), with increases up to a maximum at an intermediate 

temperature and no further increases at higher temperatures. The lowest 
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temperature at which maximal oxygen consumption is attained is often the same 

as the preferred body temperature (Bennett, 1978), and in this study it was the 

temperature of acclimation. The mean annual temperature of inshore waters 

inhabited by juvenile lobsters is 20°C but optimum growth is attained at 25-26°C 

(Chittleborough, 1975), which suggests that 23°C is close to the preferred body 

temperature of P. cygnus. Also, the maximum scope for activity, which occurs at 

23°C for P. cygnus, generally occurs at the preferred temperature of a species 

(Brett, 1956). 

Oxygen consumption of active lobsters at 11°C probably reflects the 

general energy demand of the tissues, with lobsters displaying very little response 

to handling. Limitations within the somatic muscle fibres as to how much work 

can be performed could determine the active M O2  by limiting demand at 11°C 

(Rutledge, 1981), resulting in the high Q1001-15)* Increased activity and extra 

demand by the muscle tissues for oxygen would drive an increase in oxygen 

consumption at 15°C. It would appear that the effect of temperature on 

thermochemical reactions is not the only factor controlling the increase in active 

oxygen consumption over the temperature range. At temperatures higher than 

23°C active oxygen consumption does not increase. As discussed in Chapter 3 the 

limiting factor is probably the oxygen delivery and diffusion system. 

Although the aerobic expansibility of P. cygnus is slightly higher than 

edwardsii, it is still at the low end of the spectrum of 3-7 evaluated for many fish 

species (Jobling, 1994). The aerobic scope for activity is slightly higher than that 

determined for other large decapod crustaceans (Spoek, 1974; McMahon et al., 

1979; Booth et al., 1982; Waldron, 1991; Chapter 3 J. edwardsii), but that is a 

reflection of the higher standard oxygen consumption at the temperature of 

maximum aerobic scope of each species. The temperature range over which P. 

cygnus are able to maintain a high aerobic expansibility was much greater than in 

I edwardsii. At 8°C below the "preferred" temperature the aerobic expansibility 

of P. cygnus had decreased by only z1/10, whereas in I edwardsii it had 

decreased by almost a half. The ecological significance of such a phenomenon is 

unclear. 
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4.4.4 Handling and recovery 

The recovery response was the same as recorded for many large decapod 

crustaceans (see Chapter 3 for discussion) and follows a typical Type V pattern; 

oxygen consumed during recovery exceeds the predicted oxygen deficit (Herreid, 

1980). Such a pattern would be noted if the animals showed increased stress or 

physical activity in hypoxia (Herreid, 1980), as has occurred in this study. 

The duration of recovery and amount of oxygen consumed during recovery 

increased with temperature. Similarly, Whiteley and Taylor (1990) found that 

lobsters, H. gammarus, took longer to recover from the effects of aerial exposure 

at 20°C compared to 10°C. The duration of recovery at 23°C and 31°C was 

similar to that for other decapod crustaceans (Chapter 3). The amount of oxygen 

consumed during the recovery period may be a reflection of the reliance on 

anaerobic metabolism during emersion. Lactate concentrations in emersed P. 

cygnus increased in relation to increases in temperature (Chapter 8). As one of the 

suggested uses for the excess oxygen is for metabolising anaerobic end products 

(Herreid, 1980), then the extra oxygen consumption at 23°C and 31°C compared 

to at 15°C can be, at least partly, explained by the higher lactate concentrations 

after emersion. However, in I edwardsii the calculated lactate portion of the 

oxygen debt accounted for only 5-20% of the total oxygen debt (Waldron, 1991). 

In the freshwater crayfish, Cherax destructor, half of the total oxygen debt was 

required for replenishing ATP and arginine phosphate reserves (alactic debt) in the 

tail muscle (Head and Baldwin, 1986) which are usually depleted by exercise 

(Head and Baldwin, 1986). The ability of P. cygnus to be active was severely 

reduced at 15°C suggesting that the alactic debt at that temperature may also have 

been considerably smaller than at the higher temperatures. 

4.4.5 Diurnal rhythm 

The increase in oxygen consumption of P. cygnus at night was associated 

with increased activity of the lobsters. Lobsters have been shown to move up to 

700 metres during night-time foraging activity (Gray, 1992). As in I edwardsii 

(Chapter 3) light again appears to be the main entraining factor, with oxygen 

consumption increasing immediately after the onset of darkness and decreasing 
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immediately the lights came back on. Tank studies showed that daily locomotor 

activity rhythms in individual P. cygnus are of a non-crepuscular nature, with peak 

activity occurring immediately after the onset of darkness; activity then remains at 

a lower level throughout the remainder of the night (Morgan, 1978). However, in 

tracking studies on reefs, foraging was found to be at its peak early in the evening, 

declined during the night and picked up again just before dawn, with minimal 

activity immediately after dawn, and little during the day (Jemakoff, 1987). In the 

present study several peaks in M O2  occurred throughout the night. These appear to 

match the observations by Morgan (1978), which showed fluctuating rates of 

activity throughout the night. 

The 87% increase in MO2 of P. cygnus at night is much greater than 

recorded for J. edwardsii (48% increase), indicating that P. cygnus is a much more 

active animal than J. edwardsii during night-time activity. The aerobic 

expansibility of P. cygnus at 23°C is slightly higher than J. edwardsii at 13°C 

which may account for some of the increase. The routine MO2  of P. cygnus (43.5% 

above standard) is within the range of routine rates (30-60% above standard) 

normally measured for fish (Becker and Fishelson, 1986; Sims et al., 1993). The 

very large increases in night-time activity in this study emphasises the importance 

of accounting for diurnal changes when designing/interpreting M O2  experiments in 

some species. 

4.4.6 Feeding 

The SDA response of P. cygnus was very similar to that of J. edwardsii. 

The peak MO2  level obtained was slightly higher (2.19 compared to 1.72 times 

standard MO2) and comprises over 50% of the aerobic expansibility of P. cygnus at 

23°C. As in J. edwardsii the aerobic scope for activity of P. cygnus is severely 

reduced for an extended period after feeding. Comparatively, the maximum 

increase in MO2 by C. maenas after feeding was 2.3-fold above the resting rate, 

much less then the 5-14-fold increase found during activity (Houlihan et al., 

1990). The post-prandial peak in M O2 was reached in approximately the same time 

by P. cygnus (7 hours) as by J. edwardsii (10-13 hours). The effect of diurnal 
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rhythm on MO2 became evident the second night after feeding and indicates that 

SDA was not a strong modulator of MO2  at that stage. Factors other than SDA, 

such as tidal or other biological rhythms, exerted a powerful influence on M O2  in 

Cancer pagurus and Maia squinado (Aldrich, 1975). The results in the present 

study further highlight the need to ensure biological rhythms are accounted for 

when determining SDA in crustaceans. 

The duration of SDA was 46 hours in P. cygnus and 42 hours in J. 

edwardsii, although the effect of the diurnal rhythm may have artificially 

increased the duration in both species. The average increases in MO2  above 

standard MO2  during daylight hours, the day after feeding, were also very similar 

(33% in P. cygnus and 42% in J. edwardsii). Both of these results indicate that 

there was very little difference between the species in the duration of SDA, when 

they were fed at 3% of their body weight. However, given the warmer 

experimental temperature in this study it would be expected that the duration of 

SDA in P. cygnus would be much less than in J. edwardsii. Decreased 

temperature has been shown to increase the duration of the SDA in fish (Jobling 

and Davies, 1980). Considerably more research on SDA, and the factors affecting 

it (temperature, ration size, body size), is required in order to develop a better 

understanding of the effects of feeding on oxygen consumption by large decapods. 

4.4.7 Dissolved oxygen level 

Many crustaceans are able to maintain M O2  constant in the face of 

decreasing water oxygen tensions due to a hypoxia-induced gill hyperventilation, 

along with an increase in haemocyanin oxygen affinity and an improvement in the 

ability of the respiratory surfaces to transfer oxygen (Reiber, 1995). Below P c  they 

must reduce MO2  and switch to anaerobic metabolism (Reiber, 1995) although 

there is considerable interspecific differences in the extent of anaerobiosis below 

Pc  (Herreid, 1980). Pc  varies with many intrinsic and extrinsic factors (Herreid, 

1980) but is usually at its lowest in quiescent animals, well acclimated to their 

experimental conditions, and neither disturbed nor exposed to environmental 

stress (McMahon and Wilkens, 1983). P. cygnus was able to maintain standard 
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MO2  rates down to 23.7% oxygen saturation at 15°C. Temperature increased the P, 

level, with lobsters held at 31°C only able to maintain standard MO2  rates down to 

37.9% saturation. The P, values are within the range typically evaluated for 

crustaceans living in well oxygenated environments (20-50%)(see Chapter 3.4). A 

decrease in oxygen-independence with increasing temperature has also been noted 

by Taylor et al. (1977) for C. maenas and by Bridges and Brand (1980a) for 

Galathea strigosa. 

The P, also increased with activity with a value of 62.8% saturation being 

obtained for active lobsters at 23°C. The active P, of P. cygnus is well below the 

active P, calculated for many crustaceans of close to 100% saturation, but is 

similar to that evaluated for J edwardsii (Chapter 3). Pc is a variable parameter 

dependent on metabolic demands (Herreid, 1980), as highlighted in this study. In 

P. cygnus there is a linear relationship between MO2  and P. The relationship 

allows the calculation of Pc when Mo  of the lobsters is known, without resorting 
2 

to hypoxia experiments. 

At all temperatures the amount of oxygen in the water at the P, was around 

2 mg/l. This contrasts with the value for J. edwardsii which was calculated to be 

3.11 mg/l. The lower P, level is probably an adaptation to the low environmental 

oxygen levels the P. cygnus would find in a natural situation. The usual 

temperature range of P. cygnus is some 10°C above the usual temperature range 

for J. edwardsii, thus the amount of oxygen in fully saturated water is some 20% 

lower. Bridges and Brand (1980a) also found that crustaceans which are usually 

subjected to low environmental oxygen tensions had lower P, levels. However, the 

P, levels calculated for both species fall within the P, levels calculated for large 

species of Macrura and Bracyura, which usually vary from 1-3 mg/1 (Spoek, 

1974). The P, of active J. edwardsii was also slightly higher (5.03 mg/1) than the 

P, for active P. cygnus (4.39 mg/1). 

As in J. edwardsii the scope for activity decreases as the dissolved oxygen 

tension decreases below the active P. Therefore, P. cygnus are also able to 

maintain a high aerobic scope for activity down to reasonably low levels of 

dissolved oxygen tension (at least 70-80%). Chittleborough (1975) noted that the 

growth increments of P. cygnus were significantly effected at oxygen levels of 60- 
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70% saturation. The decreasing SFA may start to impact on physiological 

processes at that dissolved oxygen level. 

Conclusion: the response of oxygen consumption by P. cygnus to various 

extrinsic and intrinsic factors has been evaluated. The implications of these 

results to the western rock lobster industry will be discussed in the General 

Discussion (Chapter 9). 
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CHAPTER 5 

The effect of intrinsic and extrinsic factors on ammonia 

excretion by the southern rock lobster, Jasus edwardsii, 

and the western rock lobster, Panulirus cygnus. 

5.1 INTRODUCTION 

A characteristic of aquatic Crustacea is ammonotelism. Ammonia makes 

up 60% to 100% of the total excreted nitrogen in Crustacea (Regnault, 1987). 

Ammonia can be toxic to crustaceans if allowed to accumulate to too high a 

concentration (Tomasso, 1994), and even at low levels can inhibit growth (Chen 

and Lin, 1992). To optimise the design and management of transport and holding 

systems, the ammonia excretion responses of the culture animal to culture 

conditions are required. Therefore, this study investigates the effect of several 

intrinsic and extrinsic factors on ammonia excretion by the southern (Jasus 

edwardsii) and the western (Panulirus cygnus) rock lobsters, and investigates the 

endogenous urea excretion rate of both species. 

5.2 MATERIALS AND METHODS 

General Materials and Methods are outlined in Chapter 2. All experiments 

(except for those examining the effect of temperature) were conducted at 13°C for 

J. edwardsii and 23°C for P. cygnus. 

Statistical analyses 

Regressions were obtained by the least squares method and the 

significance of regression slopes, b, was tested by ANOVA. Students t-tests 

(paired) were used to test for differences in the diurnal rhythm (night-time Vs 

daytime rates), feeding (post-prandial Vs pre-prandial rates) and 

handling/emersion (re-immersion Vs endogenous rates) data. All analyses were 

performed on the SPSS statistical package with the a set at 0.05. All means are 

expressed as mean±SE. 
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5.3 RESULTS 

5.3.1 The effect of temperature on ammonia excretion 

Ammonia excretion (TAN - mg TAN/g/h) of J. edwardsii and P. cygnus 

increased significantly (F=143.2, P.001; F=302.2, P<0.001 respectively) with 

temperature (T - °C)(Fig. 5.1). The relationships were exponential and were able 

to be described by the following equations: 

Jasus edwardsii 

Log i()  TAN = 0.041T - 3.57 (r2=0.979) 

Panulirus cygnus 

Log i()  TAN = 0.057T - 3.90 (r 2=0.987) 

5 
	

10 	15 	20 	25 
	

30 

Temperature (°C) 

Figure 5.1: The effect of temperature on ammonia excretion (mean ± 
SE)(pg TAN/g/h) of the southern rock lobster, Jasus edwardsii (0)(n=11) 
and the western rock lobster, Panulirus cygnus (o)(n=10). Ammonia 
excretion increased exponentially with temperature. 
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Temperature 
range 

Jasus edwardsii 
Q10 

Panulirus 
Temperature 

range 

cygnus 
Q10 

5-9 3.37 11-15 7.42 
9-13 3.33 15-19 2.69 
13-17 1.64 19-23 2.71 
17-21 2.50 23-27 3.56 

27-31 5.60 

5-21 2.61 11-31 4.05 

Table 5.1: The Q 10  values of ammonia excretion over each temperature 
range for both Jasus edwardsii and Panulirus Cygnus. The average Q 10  
values over the whole temperature range are shown in bold. 

The go  values for J. edwardsii were highest at the lower temperature 

ranges and lowest at the higher temperature ranges (Table 5.1). The Q 100.21)  value 

over the whole temperature range was 2.61. Q 10  values for P. cygnus were very 

_ 	 1 high at the extremes of the temperature range (Q10(1115)=7 .42 , Q 10(27-3 )=5.60). These 

high values resulted in a Q100131)  value over the whole temperature range of 4.05. 

5.3.2 The effect of body weight on ammonia excretion 

A log-log plot of total ammonia excretion (TAN - mg TAN/h) over lobster 

body weight (W - g) is shown in Fig. 5.2. Ammonia excretion by both J. 

edwardsii and P. cygnus were positively correlated to body weight. The regression 

equations describing the relationship are: 

Jasus edwardsii: 

Log10  TAN = 0.473 log 10  W - 1.704 (r2  = 0.42, F = 14.05, p = 0.001) 

Panulirus cygnus: 

Log10  TAN = 0.499 log 10  W - 1.346 (r2  = 0.69, F = 44.18, p < 0.001) 
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In view of the relationships between body weight and ammonia excretion, 

restricted weight ranges (600-900 g, J. edwardsii; 380-520 g, P. cygnus) were 

used in experiments where body weight was not a factor. 
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Figure 5.2: A log-log plot of total ammonia excretion (mg TAN/h) against 
lobster body weight (g) for Jasus edwardsii (V)(n=21)and Panulirus 
cygnus (•)(n=22). Ammonia excretion was determined for lobsters over 
the weight ranges of 241-1625 g (J. edwardsii) and 400-3022 g (P. 
cygnus). 

5.3.3 The effect of diurnal rhythm on ammonia excretion 

A diurnal rhythm was evident for J. edwardsii with a significant (t=3.05, 

P=0.016, n=10) increase in ammonia excretion at night. Night-time ammonia 

excretion was 39.6% higher than daytime. There was no significant difference 

(t=1.30, P=0.22, n=10) between night-time and daytime ammonia excretion by P. 

cYgnus. 
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5.3.4 The effect of handling and emersion on ammonia excretion 

There was a significant (J. edwardsii, t=11.3, P<0.001; P. cygnus; t=6.7, 

P<0.001) increase in ammonia excretion after re-immersion following handling 

and emersion for both species (Fig. 5.3). However, the increase was only evident 

for the first hour after re-immersion; ammonia excretion was not significantly 

different (J. edwardsii, t=1.91, P=0.11; P. cygnus, t=0.255, P=0.80) to the pre-

emersion levels by the second hour. Only ammonia excretion for the first three 

hours after re-immersion is shown here as it was constant for the remainder of the 

measurement period (5 hours). 

P. cygnus 
J. edwardsii 

8.0 
7.0 
6.0 
5.0 
4.0 
3.0 
2.0 
1.0 
0.0 

 

1 
	

2 	3 	1 
	

2 	3 

Time (h) 

Fig. 5.3: Ammonia excretion (pg TAN/g/h) by Jasus edwardsii (n=6) and 
Panulirus cygnus (n=11) 3 hours before and after a 1/2 hour period of 
emersion and handling. The asterisks (*) denote significantly different 
values to the pre-emersion/handling values for each species. 

81 



Chapter 5 

5.3.5 The effect of feeding on ammonia excretion 

Ammonia excretion increased after feeding in both species (Fig. 5.4 & 

5.5). Ammonia excretion by J. edwardsii peaked twice over the 24 hour period 

after the commencement of feeding: peaks occurring 7 and 18 hours after feeding. 

Ammonia excretion declined after the second peak and was not significantly 

different (t=0.779, P=0.471) to the pre-prandial level 26 hours after feeding. 

Maximum ammonia excretion was 6.28 times pre-prandial levels. 
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Figure 5.4: The ammonia excretion response to feeding of the southern 
rock lobster, Jasus edwardsii (n=5). The lobsters were fed at 8AM and 
allowed to feed for two hours (indicated by the break) before water 
sampling began. The dotted line indicates the pre-prandial level of 
ammonia excretion. The time period when post-prandial ammonia 
excretion becomes not significantly different to pre-prandial ammonia 
excretion is indicated by the asterisk (*)• The arrows denote midnight. 

Ammonia excretion by P. cygnus also showed a double peak over the 24 

hour period after the commencement of feeding (Fig. 5.5). A large peak occurred 

after 8 hours (5.60 times the pre-prandial rate) and a second smaller peak (2.82 

times the pre-prandial rate) after 15 hours. Ammonia excretion declined after the 
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second peak and was not significantly different (t=1.047, P.33) to pre-prandial 

levels after 30 hours. 
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Figure 5.5: The ammonia excretion response to feeding of the western 
rock lobster, Panulirus cygnus (n=12). The lobsters were fed at 8AM and 
allowed to feed for two hours (indicated by the break) before water 
sampling began. The dotted line indicates the pre-prandial level of 
ammonia excretion. The time period when post-prandial ammonia 
excretion becomes not significantly different to pre-prandial ammonia 
excretion is indicated by the asterisk (*)• The arrows denote midnight. 

5.3.6 The relationship between ammonia excretion and urea excretion 

Urea excretion was 21.25 ± 7.85% (mean±SE) of the total rate of ammonia 

and urea excretion off. edwardsii and 17.42 ± 3.16% (mean±SE) of P. cygnus. 
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5.4 DISCUSSION 

5.4.1 Temperature 

Ammonia excretion by J. edwardsii and P. cygnus increases exponentially 

in response to increases in temperature. Temperature has long been recognised as 

one of the main exogenous factors affecting ammonia excretion by crustaceans. 

The relationship between ammonia excretion and temperature differs according to 

the species and the temperature range considered, although generally ammonia 

excretion increases as temperature increases (Regnault, 1987). Few observations 

have been reported for decapods (Regnault, 1987) and most of these have been for 

small species (Needham, 1957; Quarmby, 1985) or juveniles (Chen and Lai, 1993; 

Chen and Nan, 1993; Chen and Kou, 1996). No comparable information on the 

effect of temperature on the ammonia excretion of other large decapods was found 

in the literature. 

The average Q 10  of J edwardsii falls within the normal range (2-3) for 

biological processes (Schmidt-Nielsen, 1990), although the g o 's are higher at 

lower temperatures. Similarly, the Q 0 's of oxygen consumption typically increase 

at lower temperatures (Chapters 3 and 4). However, the average Q 10  of P. cygnus 

was high (4.05) with the Q 10  values at the extremes of the temperature ranges 

being very high. The Q 10  of Carcinides maenas was also very high (12.4) at the 

lower end of the temperature range (Needham, 1957). The author suggested it may 

reflect the general slowing of metabolic processes at low temperature. However, 

as outlined in Chapters 3 and 4 the high Q 10  probably reflects the affect of low 

temperature on physical activity of the animals as well as on metabolic processes. 

Additionally, the composition of the nitrogenous excretory products may differ 

with temperature, resulting in Q 10  values which are not truly reflective of the effect 

of temperature on the physiological process being studied. For example, the 

percentage of nitrogen excreted as ammonia, varied with temperature in the 

prawn, Macrobrachium rosenbergii, with concomitant changes in the level of 

amino acids and urea excreted (Chen and Kou, 1996). Quarmby (1985) also found 

that temperature varied the ratio of ammonia to urea excretion by Pandalus 

platyceros but the change was dependent on the development stage of the prawn. 
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5.4.2 Body weight 

The relationship between body size and metabolic rate is a classic 

physiological subject extensively discussed in the literature (Carvalho and Phan, 

1997). However, the relationship between body size and ammonia excretion in 

crustaceans has been poorly investigated. Nevertheless, studies have shown that 

ammonia excretion per unit weight decreases as body weight increases (Needham, 

1957; Wajsbrot et al., 1989; Marangos et al., 1990; Carvalho and Phan, 1997). 

The value for the weight exponent, b, for total ammonia excretion would be 

expected to be around 0.75, the weight exponent of total oxygen consumption for 

a wide variety of organisms (Henuningsen, 1960). However, weight exponents 

close to 0.5 were obtained for both J. edwardsii and P. cygnus. Weight exponents 

of 0.47-0.95 have been found in ammonia excretion experiments conducted for a 

range of fish species (Jobling, 1994) and a similar wide range of exponents have 

been calculated for decapod crustaceans. The weight exponent of Xiphopenaeus 

kroyeri was 0.88 (Carvalho and Phan, 1997), Penaeus japonicus 0.75 (Marangos 

et al., 1990), P. semisulcatus 0.66 (Wajsbrot et al., 1989), and C. maenas 0.39 

(Needham, 1957). Table 5.2 Runmarises the ammonia excretion rates of decapod 

crustaceans over a wide range of body weights (0.08-800 g). A log-log plot of 

total ammonia excretion against body weight for the data is shown in Fig. 5.6. The 

weight exponent of the relationship was calculated to be 0.65 which is similar to 

that which relates the relationship between weight and oxygen consumption to 

body surface area (0.67). The relationship between ammonia excretion and body 

weight of decapod crustaceans is similar to that for oxygen consumption but 

studies on more species over a wide range of weights is required in order to clarify 

the subject. Factors such as the rate of ammonia excretion as a percentage of total 

nitrogenous excretion can change with body size (Quarmby, 1985), and would 

severely affect the ammonia excretion/body weight relationship. 
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Species Body Weight TAN (gig Reference 
(9) TAN/g/h) 

Penaeus brasiliensis 1.0 16.8 Romero, 1983 
P. japonicus 42.8 6.3 Marangos et al., 1990 

32.7 7.1 
0.08 30.5 

P. japonicus 0.22 16.8 Chen and Lai, 1993 
P. japonicus 5-7 428 Spaargaren et aL, 1982 
P. esculentus 17.7 9.6 DaII and Smith, 1986 
P. chinensis 0.32 19.2 Chen and Nan, 1993 
P. chinensis 26.9 19.2 Chen etal., 1993 
P. indicus 5.0 43.75 Gerhardt, 1980 
P. indicus 8.0 25.1 Wickins, 1976 
P. aztecus 5.0 10.5 Wickins, 1976 
P. monodon 1.6 32.9 Wickins, 1985 
P. monodon 27.0 10.6 Wickins, 1985 
P. semisulcatus 0.6 90.4 Wajsbrot et aL, 1989 

1.3 60.6 
10.4 28.0 
43.8 21.0 

Macropetasma africanus 1.0 55.2 Cockcroft and McLachlan, 
1987 

Crangon franciscorum 0.91 14.4 Nelson etal., 1979 
Palaemonetes varians 1.0 27.0 Snow and Williams, 1971 
Xiphopenaeus kroyeri 1.0 31.2 Carvalho and Phan, 1997 

10.0 24 
Jasus edwardsii 680.0 2.2 This study 
J. edwardsii ,.-200.0 4.2 Binns and Peterson, 1969 
Panulirus cygnus 440.0 2.6 This study 
J. lalandii -.4.-800.0 1.1 Zoutendyk, 1987 

Table 5.2: Routine endogenous weight-specific ammonia nitrogen (TAN) 
excretion (pg TAN/g/h) of decapod crustaceans at 25°C and salinity higher 
than 25%0 (after Carvalho and Phan, 1997, and Wajsbrot et al., 1989). Q 10  
= 2 was used to convert ammonia excretion rates to 25°C. 
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Figure 5.6: A log-log plot of total ammonia excretion against body weight 
of a variety of decapod crustaceans (see Table 5.2). The excretion rate of 
P. japonicus recorded by Spaargaren et al. (1982) was not included as it 
was unusually high. The relationship is exponential and described by the 
relationship: 

Log i°  TAN (ug TAN/h) = 0.65 log io  W (g) + 1.50 (r2=0.86). 

There have been few studies of ammonia excretion by large decapod 

crustaceans. The endogenous ammonia excretion rates of several species are 

compared in Table 5.3. Given the temperature and size differential the ammonia 

excretion rates are very similar. Ammonia excretion rates of large decapod 

crustaceans appear to be similar to that of fish in the same weight range. For 

example, the Japanese flounder, Paralichthys olivaceus, excreted 2.0 lag TAN/g/h 

for fish of around 500 g at 20°C (Kikuchi, 1995). The excretion rate of 900 g 

rainbow trout, Oncorhynchus mykiss, varied with temperature and rose from 1.3 to 

3.6 gg TAN/g/h as temperature rose from 10 to 20°C (Jobling, 1994). 

87 



Chapter 5 

Species Weight Temp. Ammonia excretion Reference 
(9) (°C) (rig TANIg/h) 

Jasus edwardsii 680 13 1.04 This study 
Panulirus cygnus 440 23 2.37 This study 

Jasus lalandii 800 12 0.46* Zoutendyk, 1987 
Jasus edwardsii z-z 200 14 2.0 Binns and Peterson, 1969 

Table 5.3: Ammonia excretion of Jasus edwardsii and Panulirus cygnus 
compared with other large decapod crustaceans. 

this figure is based on the calculated moisture content of the 
lobsters being 71.3% (Chapter 7). 

5.4.3 Diurnal rhythm 

Lobsters exhibit activity rhythms, being more active at night than day, a 

phenomenon in common with many other subtidal crustaceans (Lipicus and 

Herrnkind, 1982). Light appears to be the main factor controlling activity patterns 

in J. edwardsii and P. cygnus; they usually remain inactive during daylight. 

Increased levels of oxygen consumption have been measured in conjunction with 

the increased night-time activity (Chapters 3 and 4). A night-time increase in 

ammonia excretion would therefore be expected. A daily pattern of ammonia 

excretion, with increases during the night, has been noted in several other 

crustacean species (Da11 and Smith, 1986; Marangos et al., 1990; Carvalho and 

Phan, 1997). The ammonia excretion pattern of J. edwardsii showed the expected 

response to daily rhythm and the increase at night was similar to the increase 

recorded for oxygen consumption (39.6% c/f. 48.3%). The lack of a night-time 

increase in ammonia excretion for P. cygnus is not easily explained and needs 

further investigation. However, the response of J. edwardsii confirms the 

existence of a rhythm associated with light, possibly controlled endogenously 

(Subralunanyam, 1976 in Carvalho and Phan, 1997). 

5.4.4 Handling and emersion 

Ammonia is released to the external environment through the gills by 

diffusion and Ne/NI-1 4+  exchange across the epithelium (Kormanik and Cameron, 

1981; Regnault, 1987). In the absence of water, such mechanisms may be greatly 
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impaired, and accumulation of ammonia in the haemolymph may occur (Regnault, 

1994; Schmitt and Uglow, 1997a; Chapters 6, 7 and 8). The reduction of ammonia 

excretion by both I edwardsii and P. cygnus to endogenous rates after 1 hour of 

re-immersion following a period of emersion and handling, indicates that the 

accumulated ammonia is released very quickly after re-immersion. The rapid 

decrease is probably a reflection of the higher ventilatory and circulatory activities 

resulting from emersion and handling, which would maintain a large gradient 

across the gills for ammonia excretion (Waldron, 1991). Similarly, the ammonia 

excretion rate of the crab, Cancer pagurus, had returned to its pre-emersion value 

within 1 hour of being re-immersed (Regnault, 1994). Most of the accumulated 

ammonia was excreted within 5 minutes of being re-immersed The ammonia 

excretion rate of the prawn, Penaeus monodon, the seabob, XzPhopenaeus kroyeri, 

and the prawn, Nephrops norvegicus, quickly attained a steady state after a short 

period of disturbance (Almendras, 1994b; Carvalho and Phan, 1997; Schmitt and 

Uglow, 1997a respectively). However, when N. norvegicus was emersed for 8 

hours, it continued to excrete increased levels of ammonia even after 6 hours re-

immersion. It is possible that some other nitrogenous metabolic end-products (eg. 

urate) are formed and stored during extended periods of emersion and that they are 

released slowly upon re-immersion (Schmitt and Uglow, 1997a). 

If pre-immersion ammonia excretion rates were maintained during 

emersion then approximately 0.5 and 1.2 ug TAN/g would be expected to 

accumulate in the haemolymph of J. edwardsii and P. cygnus, respectively. In 

both species the amount of excess ammonia (above basal rates) excreted during 

the first hour after re-immersion was approximately 4 times greater than that 

calculated to accumulate in the haemolymph. As in the present study, Schmitt and 

Uglow (1997a) also measured excess levels of ammonia excretion after re-

immersion and suggested it was caused by the large number of tail-flips and a 

high activity rate during emersion. Elevated ammonia excretion rates due to 

handling have been measured in X kroyeri (Carvalho and Phan, 1997). Similarly, 

in the present study it is probable that the excess ammonia excreted upon re-

immersion was due to activity and handling during emersion. 
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5.4.5 Feeding 

The ammonia excretion response to feeding was similar to the oxygen 

consumption response to feeding (Chapters 3 and 4), with a rapid increase up to a 

peak, followed by a slow decline over time. The major difference in the responses 

was the double peak occurring in ammonia excretion. The size of the ammonia 

excretion peak and the duration was similar to that of other large decapods. 

Ammonia excretion by J. lalandii after feeding increased 7.7-fold (peaks at 4 and 

8 hours post-prandial) and returned to pre-prandial values after 10 hours 

(Zoutendyk, 1987). For 300 g Homarus americanus the peak level after feeding 

was approximately 4 times the pre-prandial level (Wicicins, 1985), although it 

could have been higher as the endogenous rate was not clearly established. Peaks 

occurred 6 and 12 hours after feeding and ammonia excretion was close to the pre-

prandial levels after 18 hours. Peak values in fish after feeding vary from 4 to 10 

times the endogenous excretion rate (Almendras, 1994a) and usually occur 

between 5 and 10 hours post-prandial before returning to pre-feeding levels within 

24 hours. The length of time required for the rise and fall of ammonia excretion in 

fish is determined by the size of the meal, its composition and water temperature 

(Jobling, 1994). The results of this study confirm the need to maintain lobsters for 

a minimum of 36 hours before endogenous ammonia excretion rates can be 

accurately determined. 

The double peak in ammonia excretion after feeding has been observed in 

other crustaceans (Wickins, 1985; Hawkins et al., 1986; Zoutendyk, 1987). 

Hawkins et al. (1986) suggested that the peaks may be related to endogenous 

cycles influencing physical activity, digestive processes, hormonal secretions, or 

their combinations. In both J. edwardsii and P. cygnus the second peak (6-fold 

and 1.8-fold for J. edwardsii and P. cygnus respectively) occurred during the night 

which means the peak could be correlated to normal daily activity rhythms. 

However, the diurnal rhythm data indicate that there is little chance of peaks of 

such magnitude occurring due to increased activity. Also, no peak was observed 

during the second night after feeding in P. cygnus. Therefore, although 

endogenous cycles may be causing the peaks it does not appear to be related to a 

diurnal cycle of activity. Another possibility is that the two peaks represent 
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metabolically produced ammonia in the first instance and excretory (faeces and 

urine) losses in the second. Faeces was first noted 6 and 7 hours after feeding in J. 

edwardsii and P. cygnus, respectively. This fact does not preclude the above 

possibility as the time period when the majority of the faeces is excreted may be 

much later. Further work on these aspects of ammonia excretion in crustaceans is 

required. 

5.4.6 Urea excretion 

Urea has usually been reported to comprise 1-5% of the nitrogen excreted 

by crustaceans (Regnault, 1987). If ammonia excretion is taken to be 70% of 

nitrogen excreted then the ammonia:urea ratio would be a minimum of 14:1. 

Many of the studies that have determined both ammonia and urea excretion values 

have been with small crustaceans. In studies of large crustaceans, the ratio appears 

to be much smaller, indicating that a comparatively high percentage of the 

nitrogen is being excreted as urea. The ratio in this study was 3.7:1 for J. 

edwardsii and 4.7:1 for P. cygnus. The ratio for Jasus lalandii was 6.0:1 

(Zoutendyk, 1987). The ammonia:urea ratio of P. semisulcatus decreased as body 

weight increased - 8.3:1 at 0.6 g to 2.7:1 at 43.8 g (Wajsbrot et al., 1989). The 

ammonia:urea ratio of flounder, P. olivaceus, also decreased with body weight 

(Kikuchi, 1995). Quarmby (1985) highlighted the need to further investigate 

forms of nitrogen excretion other than ammonia. The apparent high rate of urea 

excretion of crustaceans with higher body weights requires additional 

investigation. 

Conclusion: ammonia excretion of both J. edwardsii and P. cygnus is 

influenced by a number of exogenous and endogenous factors. As in fish, 

temperature and body weight were found to have large influences on the rate 

of ammonia excretion. However, feeding displayed the largest effect on the 

rate of ammonia excretion (at least in the short to medium term). 

Implications to the live holding of lobsters will be discussed in Chapter 9. 
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CHAPTER 6 

Recovery from stress of the western rock lobster, 

Panulirus cygnus: the effect of dissolved oxygen level 

6.1 INTRODUCTION 

The characteristic physiological responses of subtidal crustaceans to 

emersion/exercise is internal hypoxia, a mixed respiratory and metabolic acidosis, 

hyperglycaemia, rapid depletion of energy pools in the muscle tissue, and 

accumulation of metabolic waste products (Telford, 1968; Onnen and Zebe, 1983; 

Head and Baldwin, 1986; Whiteley et al., 1990; Waldron, 1991). A variety of 

processes take place during re-immersion - energy pools (phosphagen and ATP) 

are recharged, anaerobic end-products are cleared from the tissues, and pH 

disturbances are corrected. 

As reduced dissolved oxygen levels can seriously effect the physiological 

processes of even unstressed lobsters, the aim of this study was to determine the 

effect of dissolved oxygen level on the recovery of the western rock lobster, P. 

cygnus, after it was exposed to an episode of emersion and handling. 

6.2 MATERIALS AND METHODS 

General Materials and Methods are as outlined in Chapter 2 with the 

following specific Materials and Methods. 

The study was performed in two experimental series. The first series 

studied the oxygen consumption (M0) of lobsters recovering from a period of 

stress. Lobsters were removed from the holding tank and emersed for 30 minutes. 

Continual disturbance (handling) for the first 5 minutes was followed by 

disturbance every 5 minutes. Lobsters showed a strong escape behaviour (tail 

flicking) during the initial period of disturbance. The response diminished as the 

emersion time increased and after 30 minutes emersion the lobsters were normally 

unresponsive to disturbance. Six to twelve lobsters were trialed at each of six 

oxygen levels (115, 95, 75, 55, 35, 15%). The dissolved oxygen in the water was 

controlled as outlined in Section 2.2. This resulted in the maintenance of dissolved 

92 



Chapter 6 

oxygen levels within 5% of the designated level. As a diurnal rhythm of oxygen 

consumption was evident in P. cygnus (Chapter 4) all experiments were 

commenced prior to 9 AM to ensure that none of the measurement periods fell 

during the night. Rates of MO2  were calculated immediately after placing the 

disturbed lobsters in the respirometers (0 hours) and at 1, 2, 4, 6, 8, and 24 hours. 

Ten lobsters were used to determine the standard M O2 . 

The second series of experiments consisted of measuring the haemolymph 

parameters of lobsters over the same time period and under the same dissolved 

oxygen levels as above. Lobsters were removed from the holding tank and 

disturbed for 30 minutes before placing them into water of known oxygen level. 

Haemolymph samples were obtained immediately after the disturbance period, 

and after 1, 2, 4, 8 and 24 hours re-immersion. Dissolved oxygen was maintained 

within 5% of the designated level. Lobsters were only sampled once during each 

experimental run. They were replaced into the holding tank for a minimum of 48 

hours before being subjected to another disturbance and recovery regime. 

Twelve lobsters were used to determine the pre-disturbance haemolymph 

parameters (control). The haemolymph was sampled from 4 lobsters taken directly 

from the holding tank at 9 AM. Two further groups of 4 lobsters were tested 8 and 

24 hours later, respectively. 

Statistical analyses 

The Students t-test was used to test for differences between pre-

disturbance and post-disturbance values. Where appropriate a Students t-test for 

samples with unequal variances was used. The one-way ANOVA was used to test 

for differences between treatments at each time period. The Levene test was used 

to test for homogeneity of variance and where necessary an appropriate 

transformation was performed before further analysis. Comparisons of means 

following ANOVA was done using the Tukey-HSD test. Correlation analysis was 

used to measure the intensity of association of dissolved oxygen levels and lactate 

changes. All analyses were performed on the SPSS statistical package with the a 

set at 0.05. All means are expressed as mean±SE. 

93 



Chapter 6 

6.3 RESULTS 

Survival was 100% in all treatments except for the 10-20% oxygen 

saturation. At 10-20% saturation no animals survived for more than 12 hours, so 

only results up to the 8 hour time period were obtained. There was no significant 

difference (P>0.05) between the control lobsters tested at 0, 8 and 24 hours. 

Therefore, the data were pooled for analyses. Also, there was no significant 

difference (P<0.05) between the treatment data at the 0 hour measuring period so 

the data were pooled. 

In most treatments MO2  was significantly higher (P<0.05) than resting MO2  

after re-immersion, with the M O2  reducing slowly over time (Fig. 6.1). The MO2  of 

lobsters recovered in 90-100% and 110-120% oxygen saturated water was not 

significantly different (P>0.05) to the control M O2  after 8 hours re-immersion (Fig 

6.1). The MO2  of lobsters in the 70-80% treatment was not significantly different 

(P>0.05) to the controls after 24 hours. It was significantly higher (P<0.05) than 

the control MO2  after 8 hours, however it was not significantly different (P>0.05) 

to lobsters in the 90-100% or 110-120% treatments (Table 6.1). The M O2  of 

lobsters in the 50-60% treatment remained high (P<0.05) after 8 hours re-

immersion, but was not significantly different (P>0.05) to the controls after 24 

hours. Oxygen consumption of lobsters in 30-40% oxygen also remained high and 

was still significantly higher (P<0.05) than the control MO2  after 24 hours re- 

immersion. The lobsters in this treatment maintained a constant state of MO2  (at 

around 0.070 mg 0 2/g/h) during the first 8 hours of recovery. Lobsters in the 10- 

20% oxygen treatment had significantly lower MO2  (P<0.05) than the control M O2  

at each measurement period. 
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Figure 6.1: Oxygen consumption (mg 0 2/g/h)(mean±SE) of the western 
rock lobster, Panulirus cygnus, over a 24-hour period during "recovery" 
from disturbance (n=6-12). The lobsters were disturbed (emersed and 
handled) for 30 minutes prior to re-immersion in water containing different 
concentrations of dissolved oxygen. The dissolved oxygen levels are 
shown in the upper right-hand corner of each graph. The dotted lines 
show the standard oxygen consumption of the lobsters (n=10). Values 
which are not significantly different to the standard oxygen consumption 
are indicated by an asterisk (*). The lines are drawn for ease of viewing. 

Upon re-immersion, lobsters in the 110-120% and 90-100% oxygen 

saturation treatments, had significantly higher M O2  (P<0.05) than lobsters in all 

other treatments (Table 6.1). At lower oxygen saturation M O2  decreased 

significantly (P<0.05) with decreases in the dissolved oxygen level. Large 
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decreases in the MO2  of lobsters in the 110-120%, 90-100% and 70-80% 

treatments during the first hour meant that their M O2  was not significantly different 

to the 50-60% treatment after the first hour. After 6 hours recovery lobsters in the 

50-60% treatment had a significantly higher MO2  (P<0.05) than lobsters in the 

higher oxygen saturation treatments. After 24 hours recovery lobsters in 50-60% 

and 30-40% oxygen saturation had significantly higher MO2  (P<0.05) than all 

other treatments. Lobsters in the 10-20% oxygen saturation had significantly 

lower MO2  (P<0.05) than all other treatments at each time period. 

Oxygen 
saturation (%) 

Recovery time (hours) 
0 i 1 	i 2 	i 4 	i 6 	i 	8 	24 

110-120 a a a ab b bc b 
90-100 a a a ab b c b 
70-80 b a a ab b bc b 
50-60 c a a a a a a 
30-40 d b b b ab oh a 
10-20 e c c c c d NIA  

Table 6.1: The results of the ANOVAs comparing the oxygen 
consumption of the lobsters in each oxygen saturation treatment at a 
given measurement time during the 24 hour recovery period. 

NIA  - the lobsters in this treatment did not survive for 24 hours. 

Lobsters recovered in water containing 70-80% dissolved oxygen or 

higher consumed the least amount of oxygen during the recovery period (Table 

6.2). In comparison, lobsters in the 50-60% treatment consumed 1.3 times as 

much oxygen during the initial 8 hour recovery period and approximately twice as 

much oxygen in achieving full recovery (see Note b in Table 6.2). Lobsters in the 

30-40% treatment consumed 0.75 times as much oxygen during the initial 8 hour 

recovery period, but had consumed 1.6 times as much oxygen after 24 hours even 

though they had still not achieved full recovery. 
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Time Dissolved oxygen saturation (%)  
10-20 	i 	30-40 	i 	50-60 	i 	70-80 	i 	90-100 	i 	110-120 

8 hours N/A 0.184 0.334 0.251` 0.253 0.266 
24 hours N/A 0.425' 0.593' N/A N/A N/A 

Table 6.2: The total amount of oxygen consumed (mg 0 2/g) above 
standard oxygen consumption during the recovery period. 
N/A not applicable to this time period at that particular dissolved oxygen 
saturation 
a 	Oxygen consumption was still significantly higher than standard 

after 24 hours so the total oxygen consumed during recovery would 
be slightly higher than this value. 

• Oxygen consumption may have returned to standard prior to the 24 
hour period so this value may be an overestimation. 

• Although the oxygen consumption was still significantly higher than 
standard after 8 hours it was not significantly different to either the 
110-120% or 90-100% rate. Therefore, the total level of M O2  was 
only calculated up to the 8 hour mark. 

Lobster haemolymph pH decreased significantly (P<0.05) during the 30 

minute disturbance period, from control levels of 8.36±0.01 to 7.66±0.03. The 

changes noted in the first hour of re-immersion showed two distinct patterns: (a) 

at oxygen levels of 70-80% and higher the pH remained at the low level measured 

after the emersion period, whilst (b) at lower oxygen levels the pH increased 

markedly (Fig. 6.2, Table 6.3). 

The pH of lobsters in 90-100% oxygen saturation increased rapidly after 

the initial hour and was not significantly different to the controls after 4 hours. 

The pH remained at that level for the remainder of the experiment. Lobsters in 

110-120% oxygen saturation showed a similar response, however there was a 

slight overshoot (not significant) of the pH after 4 hours. The pH then reduced 

until it was significantly lower (P<0.05) than the control and all other treatments 

after 24 hours. The pH of the 70-80% treatment recovered more slowly than either 

the 90-100% or 110-120% oxygen saturation so that after 4 hours the pH was still 

significantly lower (P<0.05) than normal pH. After 8 hours recovery the pH had 

increased to a level which was significantly higher (P<0.05) than the controls, 

however by 24 hours the pH had returned to the controls (P>0.05). 

The pH of lobsters in the 50-60% and 30-40% treatments increased rapidly 

after re-immersion. The pH overshot the control levels in both treatments (50-60% 

- by 4 hours; 30-40% - by 8 hours). After 24 hours re-immersion, the pH of both 
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treatments was not significantly different (P>0.05) to normal, although the pH of 

the 30-40% treatment remained high. 

The pH of lobsters in the 10-20% treatment also increased rapidly during 

the first hour of re-immersion. After 4 hours re-immersion it was still significantly 

lower (P<0.05) than the control, however after 8 hours it was significantly higher 

(P<0.05). 

Time (hours) 

Figure 6.2: Haemolymph pH (mean±SE) of the western rock lobster, 
Panulirus Cygnus, over a 24-hour period during "recovery" from 
disturbance (n=6-12). The lobsters were disturbed (emersed and handled) 
for 30 minutes prior to re-immersion in water containing different 
concentrations of dissolved oxygen. The dissolved oxygen levels are 
shown in the lower right-hand corner of each graph. The dotted lines show 
the pre-disturbance haemolymph pH of the lobsters (n=12). Values which 
are not significantly different to the pre-disturbance concentration are 
indicated by an asterisk (*)• The lines are drawn for ease of viewing. 
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Oxygen 
saturation (%) 

Recovery time (hours) 
0 	i 1 2 	4 	i 8 	24 

110-120 a bc abc a c b 
90-100 a c bc a c a 
70-80 a bc c b a a 
50-60 a a ab a b a 
30-40 a b ab a b a 
10-20 a a a b b N/A 

Table 6.3: The results of the ANOVAs comparing the haemolymph pH of 
the lobsters in each oxygen saturation treatment at a given measurement 
time during the 24 hour recovery period. 

NIA  - the lobsters in this treatment did not survive for 24 hours. 

Haemolymph ammonia increased significantly (P<0.05) during the 30 

minute disturbance period, from control levels of 4.53±0.45 mg/1 to 5.85±0.26 

mg/l. Ammonia concentrations decreased after re-immersion and were either not 

significantly different (P>0.05) to, or were significantly lower (P<0.05) than the 

controls after 1 hour. The concentration in most treatments remained similar to 

control levels during the remainder of the re-immersion period. However, after 8 

hours re-immersion the ammonia concentration of lobsters in the 50-60%, 90- 

100% and 110-120% treatments was significantly higher than the controls and all 

other treatments (Fig. 6.3, Table 6.4). 
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Figure 6.3: Haemolymph ammonia concentration (mg/I)(mean±SE) of the 
western rock lobster, Panulirus cygnus, over a 24-hour period during 
"recovery" from disturbance (n=6-12). The lobsters were disturbed 
(emersed and handled) for 30 minutes prior to re-immersion in water 
containing different concentrations of dissolved oxygen. The dissolved 
oxygen levels are shown in the upper right-hand corner of each graph. 
The dotted lines show the pre-disturbance haemolymph ammonia 
concentration of the lobsters (n=12). Values which are not significantly 
different to the pre-disturbance concentration are indicated by an asterisk 
(*)• The lines are drawn for ease of viewing. 
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Oxygen 
saturation (%) 

Recovery time (hours) 
0 	1 	2 	1 4 	1 8 	1 24 

110-120 a a a bc b a 
90-100 a a a a a a 
70-80 a b a c d a 
50-60 a a a bc b a 
30-40 a a a c cd a 
10-20 a a a ab c NIA 

 

Table 6.4: The results of the ANOVAs comparing the haemolymph 
ammonia concentration (mg/I) of the lobsters in each oxygen saturation 
treatment at each measurement time during the 24 hour recovery period. 

NIA  - the lobsters in this treatment did not survive for 24 hours. 

Haemolymph lactate increased significantly (P<0.05) during the 30 minute 

disturbance period (Fig. 6.4), from a resting level of 0.05±0.02 mmo1/1 to 

2.44±0.37 mmo1/1. The lactate concentration increased further during the first hour 

of re-immersion with the largest increases occurring in at the lower dissolved 

oxygen saturations (Table 6.5; Fig. 6.5). In the 110-120%, 90-100%, and 70-80% 

treatments the lactate concentration then decreased until it was not significantly 

different to the control after 8 hours re-immersion. In the 50-60% treatment the 

lactate concentration was significantly higher (P<0.05) than the control after 8 

hours, however it was not significantly different (P>0.05) to any of the above 

treatments (Table 6.5). Lobsters re-immersed into 30-40% and 10-20% oxygen 

saturation had very large increases in lactate during the first hour. After 2 hours 

re-immersion they had significantly higher lactate (P<0.05) than all other 

treatments. The lactate concentration of lobsters in the 30-40% treatment 

decreased slowly but it remained significantly higher (P<0.05) than the control 

after 24 hours. The lactate concentration of lobsters in the 10-20% treatment 

remained high during the 8 hours of measurements and was significantly higher 

(P<0.05) than all other treatments after 4 hours. 
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Figure 6.4: Haemolymph lactate concentration (mmo1/1)(mean±SE) of the 
western rock lobster, Panulirus Cygnus, over a 24-hour period during 
"recovery" from disturbance (n=6-12). The lobsters were disturbed 
(emersed and handled) for 30 minutes prior to re-immersion in water 
containing different concentrations of dissolved oxygen. The dissolved 
oxygen levels are shown in the upper right-hand corner of each graph. 
The dotted lines show the pre-disturbance haemolymph lactate 
concentration of the lobsters (n=12). Values which are not significantly 
different to pre-disturbance concentration are indicated by an asterisk (*). 
The lines are drawn for ease of viewing. 
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Oxygen 
saturation 
(%) 

Recovery time (hours) 
0 1 2 4 8 24 

110-120 
90100 
70-80 
50-60 
30-40 
10-20 

a 
a 
a 
a 
a 
a 

c 
c 
c 

bc 
ab 
a 

b 
b 
b 
b 

a 
a 

d 
d 

c 
cd 

b 
a 

c 
c 
c 
c 

b 
a 

b 
b 
b 
b 

a 
N/A 

Table 6.5: The results of the ANOVAs comparing the haemolymph lactate 
concentration (mmo1/1) of the lobsters in each oxygen saturation treatment 
at a given measurement time during the 24 hour recovery period. 

- the lobsters in this treatment did not survive for 24 hours. 
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Figure 6.5: Increase in haemolymph lactate (mmo1/1)(•) during the first 
hour of recovery after re-immersion of lobsters, P. cygnus, in water at the 
different dissolved oxygen levels. 

The increase in haemolymph lactate during the first hour after re-

immersion was correlated (P=0.005) with the water oxygen level (Fig. 6.5). 

However, the rate of lactate removal between the first and fourth hours of re-

immersion showed no correlation (P=0.28) with oxygen level (Table 6.6). 
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Oxygen level (%) 10-20 30-40 	50-60 70-80 90-100 110-120 
Recovery -0.19 0.73 1.10 0.51 1.30 0.62 
(mmolNh) 

Table 6.6: The rate of recovery (mmol/l/h) of P. cygnus from the first to the 
fourth hour of re-immersion at the different oxygen levels. 

Haemolymph glucose increased during the 30 minutes disturbance period 

from 0.35±0.06 mmo1/1 to 0.44±0.06 mmo1/1, but it was not a significant increase 

(P>0.05) (Fig. 6.6). After 1 hours re-immersion the glucose concentration was 

significantly higher (P<0.05) than the controls in all treatments. The largest 

increases were measured in the low oxygen saturation treatments (Table 6.7). In 

general, the high glucose concentrations were maintained for between 2 and 4 

hours before they decreased; most were not significantly different (P>0.05) to the 

controls after 8 hours re-immersion. Lobsters in the 110-120% and 50-60% 

treatments still had significantly higher concentrations (P<0.05) than the controls 

after 8 hours re-immersion, however the concentrations were not significantly 

different to those in all other treatments except for the 10-20% treatment. 

The glucose concentrations of lobsters in the 10-20% treatment was 

significantly higher (P<0.05) than in all other treatments after 4 hours re-

immersion (Table 6.6). After 8 hours re-immersion the concentration had 

decreased until it was significantly lower (P<0.05) than all other treatments except 

for the 30-40% treatment. 
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Figure 6.6: Haemolymph glucose concentrations (mmo1/1)(mean±SE) of 
the western rock lobster, Panulirus cygnus, over a 24-hour period during 
"recovery" from disturbance (n=6-12). The lobsters were disturbed 
(emersed and handled) for 30 minutes prior to re-immersion in water 
containing different concentrations of dissolved oxygen. The dissolved 
oxygen levels are shown in the upper right-hand corner of each graph. 
The dotted lines show the pre-disturbance glucose concentration of the 
lobsters (n=12). Values which are not significantly different to the pre-
disturbance concentration are indicated by an asterisk (*)• The lines are 
drawn for ease of viewing. 
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Oxygen 
saturation (%) 

Recovery time (hours) 
0 	1 	i 2 	i 4 	8 	i 24 

110-120 a cd bcd b a b 
90-100 a bc abc b a c 
70-80 a d d b a c 
50-60 a cd cd b a a 
30-40 a b a b ab b 
10-20 a a ab a b WA 

Table 6.7: The results of the ANOVAs comparing the haemolymph 
glucose concentration (mmo1/1) of the lobsters in each oxygen saturation 
treatment at a given measurement time during the 24 hour recovery 
period. 

" - the lobsters in this treatment did not survive for 24 hours. 

6.4 DISCUSSION 

Disturbance induced a decrease in the haemolymph pH, and increases in 

the haemolymph lactate, glucose and ammonia concentrations of P. cygnus. 

Similar responses have been observed in other crustaceans (Vermeer, 1987; deFur 

et al., 1988; Santos and Keller, 1993; Zou et al., 1996). Recovery from these 

physiological disturbances, although essentially showing similar patterns to other 

species (McDonald et al., 1979; Waldron, 1991), was influenced by the dissolved 

oxygen level of the re-immersion water. 

The aerobic response of P. cygnus during recovery follows a typical Type 

V pattern. That is, the oxygen consumed during recovery exceeds the predicted 

aerobic oxygen deficit (Herreid, 1980). Such a pattern would be noted if the 

animals showed increased stress or physical activity in hypoxia (Herreid, 1980), 

as has occurred in this study. If it is assumed that the emersed lobsters can take up 

approximately 50% of the oxygen that they are able to take up in water (Whiteley 

and Taylor, 1990; Waldron, 1991) and that they were fully active over the 30 

minute period of disturbance, then the maximum oxygen deficit would be 

approximately 0.06 mg 02/g. In fact, this is less than 1/4 of the oxygen debt 

incurred at high dissolved oxygen levels. 

Increases in Mo, after re-immersion are achieved by a rapid increase in 

branchial water flow and cardiac output, increases in both the 0 2  diffusion 

gradient and the rate of diffusion of 0 2  across the gill epithelium, and by greater 
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participation of haemocyanin in oxygen delivery (McMahon et al., 1979; Booth et 

al., 1982; Waldron, 1991). Suggested uses for the excess oxygen include: (1) 

metabolising anaerobic end products; (2) re-establishing resting oxygen levels in 

body tissues; (3) replenishing high energy phosphate reserves; and (4) meeting 

energy costs associated with increased branchial chamber ventilation and 

haemolymph circulation (Herreid, 1980; Head and Baldwin, 1986). In Jasus 

edwardsii the calculated lactate portion of the oxygen debt was only 5-20% of the 

total debt (Waldron, 1991). However, that calculation was based on the 

haemolymph lactate concentration, and does not take into account the possibility 

that intracellular lactate concentrations may be many times higher than the 

haemolymph concentration, as seen in other crustaceans (Phillips et al., 1978; 

Greenaway et al., 1992). Re-calculation based on a predicted whole body lactate 

concentration means the lactate portion may constitute 50% of the total oxygen 

debt (Waldron, 1991). Hill et al. (1991a) also showed that only part of the 

increased oxygen uptake associated with recovery from anoxia is concerned with 

the removal of lactate. In the freshwater crayfish, Cherax destructor, half of the 

total oxygen debt was required for replenishing ATP and arginine phosphate 

reserves (alactic debt) in the tail muscle (Head and Baldwin, 1986). The energy 

reserves in the shrimp, Crangon crangon, and the crayfish, C. destructor, were 

severely depleted after short periods of exercise (Onnen and Zebe, 1983; Head and 

Baldwin, 1986). The level of exercise induced in the present study suggests that a 

large amount of the increased oxygen debt would be used in the repayment of the 

accumulated alactic debt as the energy reserves would be severely depleted. 

The recovery period at high dissolved oxygen levels was similar to that 

observed for other crustaceans (McMahon et al., 1979; Waldron, 1991). However, 

the recovery period increased as the oxygen level decreased, indicating that the 

lobsters were either (a) not accessing sufficient oxygen to repay the debt as 

quickly (as discussed previously) or (b) were increasing the size of the debt due to 

the processes involved in repaying the debt or both. Thus: 

(a) 	The ability of lobsters to uptake oxygen upon re-immersion was dependent 

on the dissolved oxygen level. The critical oxygen tension (P c) for active 

P. cygnus was calculated to be 62.8% saturation (Chapter 4). Calculation 
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of Pc  from the data in this study gives a value of 63.1% saturation, which is 

close to the above value. The aerobic scope for activity of P. cygnus 

increased as oxygen levels increased up to P c  (Chapter 4). In this study, the 

MO2  increased with increases of dissolved oxygen above P c  which means 

the aerobic scope for activity would also continue to increase. The amount 

of oxygen available to the lobsters above normal maintenance 

requirements (ie. aerobic scope for activity), increases as the dissolved 

oxygen level in the water increases. Lobsters with a large aerobic scope for 

activity should be able to increase the speed of repayment of oxygen debts 

when they do occur. Lobsters in the 30-40% treatment were very limited in 

the amount of oxygen they were able to extract from the water (.150% of 

maximum MO2); total oxygen usage over the first 8 hours of re-immersion 

is r-t,25% lower than in the higher oxygen treatments. Therefore, access to 

oxygen is a major problem with these lobsters and would explain (at least 

partly) the slow recovery rates. Similarly, in response to an injection of 

lactate C. maenas increased MO2 , but the response was smaller, and lasted 

longer, under hypoxic conditions compared with normoxic conditions (De 

Wachter et al., 1997). The authors suggested the response was due to the 

larger aerobic scope at the higher oxygen level. In crustaceans, it appears 

that active oxygen consumption is limited by the delivery and diffusion 

systems (McMahon and Wilkens, 1983), especially as the oxygen 

saturation level decreases (Rutledge, 1981). The results here also indicate 

that the movement of oxygen from the water to the haemolymph was 

diffusion limited and that an increased diffusion gradient allowed an 

increase in oxygen uptake. 

(b) 	The total amount of oxygen consumed in the 50-60% treatment during the 

first 8 hours of re-immersion was some 30% higher than the treatments 

with higher oxygen levels. Although the oxygen consumed was high they 

still had not paid off the oxygen debt, which indicates that there were 

increased energetic costs associated with recovery at that oxygen level. 

Thus, the energetic costs of obtaining oxygen also appear to play a part in 

extending the time period of recovery. 
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The question arises as to why the total oxygen debt is greater at lower 

dissolved oxygen levels. The increased oxygen debt could be due to one or a 

combination of reasons. These include: (a) increased cost of branchial chamber 

ventilation and haemolymph circulation; (b) increased activity of the lobsters; (c) 

increased reliance on anaerobic respiration, together with production of lactate and 

associated energetic costs of resynthesising the substrate: 

(a) Branchial chamber ventilation costs 30% of total M O2 in resting crabs, C. 

maenas and it is expected that the cost would increase with activity 

(Wilkens et al., 1984). The diffusion of oxygen from the external medium 

to the haemolymph via an oxygen gradient would be minimal at the lower 

oxygen levels. To optimise the uptake of oxygen, lobsters would need to 

continuously renew the branchial chamber water. In J. edwardsii the 

ventilation frequency increased to near maximum levels in unstressed 

lobsters when the oxygen level was around 50% saturation (Waldron, 

1991). As P. cygnus continues high rates of oxygen consumption for 

extended periods during recovery at the lower oxygen levels then the 

energetic cost of obtaining that oxygen could be high. Energy used for 

branchial chamber ventilation would limit the aerobic capability of 

repaying the oxygen debt. 

(b) Lobsters re-immersed in low oxygen water may expend energy as they try 

to find more oxygenated areas. Newman and Pollock (1971) noted that J. 

lalandii actively try to avoid water with low oxygen levels. However, no 

increased activity was noticed in this study when lobsters were re-

immersed in water containing low oxygen levels. 

(c) The energetic costs of gluconeogenesis, if it is occurring (see discussion 

below), would further add to the oxygen cost of recovery. If glucose is 

resynthesised from lactate via a procedure such as the Cori cycle then 

approximately 1/6th of the energy able to be produced from glucose would 

be used during the process (Stryer, 1988). With 18 or 19 times as much 
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substrate being used to produce the same amount of energy anaerobically 

as aerobically (Schmidt-Nielsen, 1990) the energetic cost of resynthesising 

the substrate would be significant. 

The pH response of crustaceans to the combination of stressors used in this 

study (emersion, exercise and handling) have not often been investigated. 

Spanoghe (1997) recorded a similar large change (0.7 pH units) in P. cygnus after 

one hour of emersion and handling. In other studies, crustaceans have usually 

been subjected to only one of the above stressors but similar haemolymph pH falls 

have been recorded (McMahon et al., 1979; Booth et al., 1982; Vermeer, 1987; 

Regnault, 1992; Paterson et al., 1994a). A pH change of that magnitude must be 

considered a large physiological perturbation (Vermeer, 1987). However, P. 

cygnus exposed to air for 6 hours recorded a pH change of close to 1.0 unit with 

100% survival upon re-immersion (see Chapter 7). The pH change observed in 

this study appears to be well within the range of pH disturbances which P. cygnus 

is able to endure without causing severe disruptions to their physiology. The time 

period taken to return to normal pH values after re-immersion was similar to that 

measured in other crustaceans (McDonald et al., 1979; Waldron, 1991; Whiteley 

and Taylor, 1992). 

Recovery of acid-base status was complicated by the appearance of high 

concentrations of lactate in the haemolymph on re-immersion. McDonald et al. 

(1979) suggested that the post-exercise depression (ie. 1 hour post re-immersion) 

of haemolymph pH was due to increases in lactate, however, the pH in P. cygnus 

only remained low after re-immersion at the higher dissolved oxygen levels. The 

increase in haemolymph lactate was lowest in these lobsters. The high M O2  of 

lobsters held at the higher oxygen levels may result in CO 2  levels remaining 

elevated in the haemolymph, thus helping to maintain a low pH during the initial 

stages of recovery. Elimination of accumulated CO 2  is usually rapid, presumably 

due to the high initial concentration gradient across the gills, the relatively high 

capacity coefficient for CO2  in water (Dejours, 1981) and the occurrence of 

hyperventilation (Taylor and Whiteley, 1989). However, haemolymph CO 2  partial 

pressure remained significantly elevated for 2 hours during re-immersion after a 

period of emersion and exercise in J. edwardsii (Waldron, 1991). After the initial 
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period of recovery the observed increases in haemolymph pH at the higher oxygen 

levels are probably due to two reasons. Firstly, there were substantial decreases in 

M0 , and hence decreases in the production of CO 2 . Secondly, there is probably a 
2 

continuing rapid elimination of CO 2 . 

Lobsters at low oxygen levels (50-60%, 30-40%, 10-20%) had large 

increases in lactate during the first hour of re-immersion, however their 

haemolymph pH showed significant increases over that time period. Taylor and 

Wheatly (1981) noted that the potential acidosis which the increase in lactate 

represents was overridden by a respiratory alkalosis due to the washout of CO2  

during the period of hyperventilation. In Nephrops norvegicus the haemolymph 

pH also increased following re-immersion despite high lactate levels still being 

present (Schmitt and Uglow, 1997a). The authors concluded that CO 2  

accumulation was mainly responsible for the emersion-induced acidosis. In this 

study, oxygen consumption upon re-immersion decreased with the oxygen level, 

meaning less CO2  would have been produced. Also, the high ventilation and 

perfusion activities would promote the excretion of CO 2  across the gills. These 

two factors combined may have resulted in the large pH increase in lobsters after 

1 hour of re-immersion into poorly oxygenated water. 

The low pH of lobsters after 24 hours recovery in 110-120% oxygen 

saturation indicates a respiratory acidosis is occurring. Ventilation rates typically 

return to pre-stress levels within 24 hours (McMahon et al., 1979; Waldron, 

1991). The large oxygen diffusion gradient occurring due to the high 

environmental dissolved oxygen level would favour a decrease in the rate of 

ventilation. In all aquatic animals that have been studied, environmental hyperoxia 

results in a decrease in breathing (Sinha and Dej ours, 1980) and leads to new 

steady states in metabolic CO2  excretion, with modified internal CO2  partial 

pressures (Po02)(Truchot, 1993). Thus, acid-base disturbances of respiratory origin 

are induced, resulting in increased P o02  and decreased pH (hypercapnic 

acidosis)(Truchot, 1993). However, the effect of hyperoxia on crustacean 

haemolymph pH have normally been investigated with very high dissolved 

oxygen levels (400% Dejours and Armand, 1980; 400% Sinha and Dejours, 1980; 

400%, Massabuau et al., 1984). The effect of concentrations just above saturation 

has not been studied, although Dejours and Armand (1980) found that there was a 
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pH decrease of approximately 0.1 units in Astacus leptodactylus when it was 

subjected to 200% saturation. The results in this study tend to suggest that P. 

cygnus reacts by reducing their ventilatory drive with a concomitant change in 

acid-base balance. The pH change of 0.3 units was large compared to the pH 

change in A. leptodactylus of 0.13 units (Sinha and Dejours, 1980) or in Cancer 

irroratus of 0.15 units (Wheatly, 1987). 

A haemolymph alkalosis was measured during the recovery period in 

lobsters subjected to water which was not fully oxygen saturated (ie. 70-80% 

oxygen saturation and lower). Crustaceans generally hyperventilate in response to 

hypoxia, leading to hypocapnic alkalosis due to an increase in the rate of excretion 

of CO2  (Hagerman and Uglow, 1985; Truchot, 1993). The pH of A. leptodactylus 

increased by 0.16 units when they were exposed to oxygen levels of 30% 

saturation (Sinha and Dejours, 1980). Similar overshoots in pH have been noted in 

other studies of crustaceans undergoing recovery (Truchot, 1975; Whiteley and 

Taylor, 1992; Spanoghe, 1997), which indicates that the oxygen levels in the 

recovery tanks may have been lower than optimal. 

Respiratory alkalosis causes an increase in haemocyanin oxygen affinity 

(Bohr shift)(Morris and Taylor, 1985; Reiber, 1995) which would enhance the 

uptake of oxygen at the gills. In Orconectes rusticus the increase in haemocyanin 

oxygen affinity due to the Bohr shift allowed 60% post-branchial saturation as 

opposed to 20% saturation under normoxic conditions (Wilkes and McMahon, 

1981a,b). Lactate also serves to increase the oxygen affinity of haemocyanin 

(Booth et al., 1982; Graham et al., 1983; Morris et al., 1986; Greenaway et al., 

1992); lactate appears to exert a direct allosteric effect on the oxygen binding site 

of haemocyanin (Graham et al., 1983). The increase in haemocyanin oxygen 

affinity plays a major role in increasing the rate of diffusion of oxygen across the 

gills by removing oxygen from solution, thereby aiding maintenance of MO2  

(Reiber, 1995) although it does not appear to function in conserving the oxygen 

venous reserve at the tissues (Graham et al., 1983). During the early stages of 

recovery, the acidosis will initially reduce oxygen affinity, but the associated 

production of lactate will at least partially compensate for such an effect (Morris 

and Taylor, 1985). In A. pallipes increases in oxygen affinity due to Ca2+ , lactate 

and HCO3 -  may have even increased the affinity above that found in resting 

112 



Chapter 6 

crayfish under normoxia (Morris etal., 1986). Thus, oxygen delivery to the tissues 

during periods of low oxygen availability appear to be optimised due to the 

physiological changes occurring during the recovery period. 

Resting levels of haemolymph lactate (0.05 nuno1/1) were very low but are 

similar to those measured in some other crustacean species (0.14 mmo1/1, 

Waldron, 1991; 0.14 mmo1/1, Paterson et al., 1994a; 0.09 mmo1/1, De Wachter et 

al., 1997). However, the resting lactate levels of P. cygnus in a study by Spanoghe 

(1997) varied from 0.5 to 2.5 mmo1/1. The differences in levels in P. cygnus 

between the two studies may indicate differences in the state of the lobsters in the 

respective holding systems. The lobsters in this study were at low density in a 

recirculating system, with individual hides, and were acclimated to the holding 

system for at least two weeks prior to experiments. The lobsters in Spanoghe's 

study were generally at high density, usually subject to disturbance during day to 

day activities at the holding depot (Spanoghe, 1997), in a flow through system, 

with communal hides, and lobsters were regarded as being rested after 24-72 

hours in the system. There have been few reports on the haemolymph lactate 

levels of crustaceans which have been emersed and exercised. However, in J. 

edwardsii after a short period of exercise followed by 1 hour of emersion the 

lactate levels increased by 1.0 mmo1/1 (Waldron, 1991) and in P. cygnus the 

lactate increased by 2 mmo1/1 after 40 minutes of emersion and disturbance 

(Spanoghe, 1997); increases which were similar to this study. 

Lactate is the main end-product of anaerobic metabolism in decapod 

crustaceans (Gade, 1983; Gade, 1984; Hill et al., 1991a). The increase in 

haemolymph lactate concentration of P. cygnus indicates that the species was 

unable to maintain an adequate supply of oxygen to the tissues during the period 

of disturbance and needed to rely, at least partially, on anaerobic metabolism to 

supply its energy requirements (Spicer et al., 1990). The rise in lactate 

concentration after re-immersion has also been noted in other crustaceans 

subjected to periods of exercise and/or emersion (McDonald et al., 1979; Taylor 

and Wheatly, 1981; Whiteley and Taylor, 1992). Increased haemolymph lactate 

concentrations after re-immersion may be due to the release of lactate previously 

stored in the tissues during the disturbance period, as suggested by Taylor and 

Wheatly (1981) and Waldron (1991). In C. destructor it appears that a steady state 
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between tail muscle and haemolymph lactate pools is reached quite rapidly (Head 

and Baldwin, 1986), hence lactate release may not fully explain the increased 

levels. Another possible explanation is that lactate production may have increased 

on re-immersion due to a high energy demand requiring a contribution from both 

aerobic and anaerobic metabolism (Grieshaber, 1978; Head and Baldwin, 1986; 

Gruschczyk and Kamp, 1990; Whiteley and Taylor, 1992). Onnen and Zebe 

(1983) suggested that the use of anaerobic metabolism during the recovery process 

may ensure that the muscle function is restored as soon as possible. They 

concluded that aerobic processes could not provide the energy necessary for a 

rapid restitution of recovering muscles either because the supply of oxygen by the 

haemolymph is limited or the muscles lack sufficient capacity for aerobic energy 

production. In this study, the relative increase in the lactate concentration during 

the first hour was dependent on the dissolved oxygen level in the water. When 

oxygen could not fully fuel the aerobic portion of the energy requirements of 

recovery, the shortfall was made up via anaerobic metabolism, with the 

concomitant increase in haemolymph lactate. This suggests that the observed 

increase in haemolymph lactate is probably due to the continued use of anaerobic 

energy sources after re-immersion, rather than the release of sequestered lactate. 

During recovery in the 110-120% treatment, metabolism appears to be mainly 

aerobic as shown by the absence of further accumulation of lactate. 

The increase in haemolymph lactate levels during the first hour of re-

immersion is correlated to the Water oxygen level. The rate of lactate elimination 

over the 3 hours from 1 to 4 hours re-immersion is similar to the rates of removal 

in some other crustaceans (Taylor and Spicer, 1987; Paterson, 1994a; Spanoghe, 

1997). The fact that the rate is similar at all oxygen levels (except 10-20%) 

indicates that the removal of lactate from the haemolymph is not dependent on the 

oxygen level, and that the timeperiod of removal is controlled by the initial rise in 

lactate during the first hour of re-immersion. However, the rate of lactate removal 

in C. maenas appeared to be faster under normoxia than under hypoxia (De 

Wachter et al., 1997). Crustaceans generally lack the ability to rapidly remove 

lactate (see discussion below). The continued high level of lactate in the 10-20% 

treatment could be due to a lack of oxygen to help metabolise the lactate or due to 

the continued production of lactate during theY recovery process. As that 
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concentration of oxygen is well below the P c  value for P. cygnus it is highly likely 

that anaerobic metabolism would be utilised to at least partially fund the 

metabolic requirements. The scallop, Chlamys opercularis, when exposed to air 

after a period of exercise (ie. anaerobic recovery), also maintained a high octopine 

(the =aerobic end-product) level (Grieshaber, 1978). However, when it was 

recovered in oxygen saturated seawater the octopine concentration initially 

increased and then quickly decreased; a similar response to lactate in P. cygnus 

when it was recovered in oxygen saturated water. 

There appears to be considerable interspecific differences in the processes 

used by crustaceans to remove lactate. For example, Hervant et al. (1995) outlined 

the differences in the ability of two amphipods to excrete and resynthesis the 

lactate during hypoxia and recovery. Removal of the lactate during recovery is 

achieved by one or a combination of three processes - (a) excretion of lactate into 

the external medium (b) oxidisation of lactate for energy once normoxic 

conditions return, or (c) conversion of lactate back into storage products such as 

glycogen (gluconeogenesis) at the cost of increased oxygen utilisation once the 

aerobic state is restored (Herreid, 1980). In general decapods do not appear to 

excrete lactate (Phillips et al., 1977; Bridges and Brand, 1980b; Hill etal., 1991b), 

however some studies have found evidence of lactate excretion (Zebe, 1982; Head 

and Baldwin, 1986; Hervant et al., 1995). Oxidation of the lactate and/or 

gluconeogenesis appear to be the main processes involved in lactate removal in 

crustaceans (Phillips et al., 1977; Gade et al., 1986; Hill et al., 1991b; Hervant et 

al., 1995). 

The slow rate of lactate removal from the haemolymph indicates that P. 

cygnus, like other crustaceans, lack the means for rapid removal of lactate 

(McDonald et al., 1979; Booth et al., 1982; Ellington, 1983; Albert and Ellington, 

1985; Lowery and Tate, 1986). The rate of clearance has been correlated with the 

oxygen characteristics of the environment exploited by the species; those species 

which are more likely to encounter hypoxia in their natural environment are 

physiologically better adapted for rapidly removing the accumulated lactate when 

aerobic conditions return (Bridges and Brand, 1980b). As spiny lobsters live 

subtidally, generally in well oxygenated environments, throughout their life cycle 
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there has been no selective pressure to evolve behavioural, anatomical, or 

physiological adaptations to aerial exposure (Vermeer, 1987) or hypoxia. 

In crustaceans, the timecourse for the elimination of haemolymph lactate is 

generally much slower than the recovery time for M O2  (McDonald et al., 1979; 

Booth et al., 1982). In this study both haemolymph lactate and MO2  returned to 

normal levels after 8 hours at the higher dissolved oxygen levels. At 50-60% 

oxygen saturation lactate returned to resting levels quicker than M O2 , whereas at 

30-40% saturation neither lactate nor M O2 returned to resting levels after 24 hours. 

Lactate elimination and increased oxygen consumption appear to be more tightly 

coupled in this species than in other crustacean species studied. 

The haemo lymph ammonia concentration of P. cygnus increased over the 

disturbance period, as has been noted in several other crustacean species 

(Waldron, 1991; Regnault, 1994; Schmitt and Uglow, 1997a). The ammonia 

concentration in the control lobsters (4.53 mg/1) was similar to that measured in 

other decapod crustaceans (7.2 mg/1, Vermeer, 1987; 5.7 mg/1, Young-Lai et al., 

1991; 4.0 mg/1, Regnault, 1994; 5.4 mg/1, Spanoghe, 1997; 2.0-3.0 mg/1, Schmitt 

and Uglow, 1997b). Ammonia is released to the external environment through the 

gills by diffusional movement and Na+/NH4+  exchange across the epithelium 

(Kormanik and Cameron, 1981; Regnault, 1987). In the absence of water, such 

mechanisms may be greatly impaired, and the accumulation of ammonia in the 

haemolymph may occur (Schmitt and Uglow, 1997a). As observed in this study, 

ammonia clearance from the haemolymph occurs very rapidly upon re-immersion 

(Regnault, 1994). In P. cygnus this is also indicated by the rapid decrease in the 

rate of excretion of ammonia into the external water after a period of emersion 

(Chapter 5). The rapid decrease is probably a reflection of the higher ventilatory 

and circulatory activities which would maintain a large gradient across the gills 

for ammonia excretion (Waldron, 1991). The reason for the increase in ammonia 

concentration in several treatments after around 8 hours of recovery is unclear. 

Haemolymph glucose concentrations of control lobsters are similar to 

those measured in other studies; 0.4-0.5 mmo1/1 for Homarus americanus (Telford 

1968); 0.2-0.3 mmo1/1 for Nephrops norvegicus (Spicer et al., 1990; Schmitt and 

Uglow, 1997a); 0.4-0.5 mmo1/1 for Carcinus maenas (Santos and Keller, 1993); 

0.2-0.4 mmo1/1 for P. cygnus (Tod and Spanoghe, 1997). The maximum levels of 
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haemolymph glucose measured in this study (1.0 to 4.5 mmo1/1) also covered the 

range of maximum levels measured by those researchers. As has been noted in 

other studies (Onnen and Zebe, 1983; Gnischczyk and Kamp, 1990; Tod and 

Spanoghe, 1997), there was a marked hyperglycaemia in the haemolymph of P. 

cygnus one hour after re-immersion. In this study, the hyperglycaemia was more 

severe in lobsters subjected to a low concentrations of dissolved oxygen, 

suggesting that more energy substrate was required because the lobsters were 

performing increased levels of anaerobic metabolism. Glucose may appear due to 

the mobilisation of energy stores as a source of fuel for anaerobic metabolism 

(Spicer et al., 1990). When aerobic mechanisms of energy production are 

impaired, in order to provide a given amount of energy, more glucose must 

undergo anaerobic glycolysis (Storey and Storey, 1990), as anaerobic glycolysis 

produces only about 1/20th of the energy produced via aerobic glycolysis (Eckert 

et al., 1988). During recovery in this study, anaerobic glycolysis (as indicated by 

lactate concentration), increases as oxygen saturation decreases. Therefore, the 

observed increases in glucose concentration would be expected. 

The time period of recovery from hyperglycaemia has not been well 

studied, but it was similar to that for P. cygnus in Spanoghe's (1997) study, and to 

that recorded for Palaemon serratus and P. elegans after a period of emersion 

(Taylor and Spicer, 1987). However, in the shrimp C. crangon, haemolymph 

glucose levels had not returned to pre-exercise levels after 10 hours of recovery 

(Onnen and Zebe, 1983). Also, in the freshwater crab, Eriocheir sinensis, glucose 

concentrations had not returned to pre-anoxic conditions after 12 hours of 

normoxic exposure (Zou et al., 1996). 

The haemolymph glucose concentration in the 10-20% treatment remained 

'high after 4 hours re-immersion, and then decreased rapidly so that after 8 hours 

re-immersion the concentration 0.19±0.04 mmo1/1. Due to the high lactate 

concentration it would appear that the lobsters energy requirements were still very 

high at that time, as they were providing much of their energy anaerobically. The 

sudden decrease in glucose levels suggests that the lobsters were running out of 

energy supplies to fund their requirements. Death of the lobsters occurred after 

approximately 12 hours re-immersion. In Callianassa califomiensis marked 

hyperglycaemia through the first 13 hours of anoxic exposure was followed by a 
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slow decrease in haemolymph glucose coinciding with the decrease in glycogen 

reserves (Hawkins, 1970 in Taylor and Spicer, 1987). Under completely anoxic 

conditions, energy production in P. elegans can only occur using anaerobic 

pathways which appear unable to meet the energy demands of the prawns for long 

periods, so that survival under those conditions was limited (Taylor and Spicer, 

1987). The haemolymph glucose concentration of Liocarcinus puber was very 

low after 24 hours emersion and almost 80% of the animals had died by that time 

(Johnson and Uglow, 1985). Therefore, death of the lobsters in this study may 

have been due to the loss of energy substrate. The reason for the low haemolymph 

glucose concentrations in the 70-80% and 90-100% oxygen saturation treatments 

after 24 hours re-immersion is unclear. 

Conclusion: the duration and the effectiveness of the recovery process are of 

great functional importance. Recovery from anaerobic metabolism should be 

sufficiently rapid and complete for the organism to cope with further periods 

of stress. In the case of muscles powering escape responses, this process of 

recovery must be sufficient to allow the organism to evade predators 

(Ellington, 1983). Using speed of recovery as the criteria for evaluating the 

effectiveness of the oxygen levels, the results indicate that oxygen levels of 90- 

100% or 110-120% saturation optimise recovery. 

Oxygen has a considerable effect on the recovery response of P. 

cygnus. Physiological responses such as respiratory alkalosis appear to occur 

only when oxygen levels are less than optimal. There is little doubt that in 

other crustaceans similar effects would occur. However, most authors discuss 

water as being "oxygenated" or "well aerated", and the actual oxygen 

saturation level is rarely reported in the literature. This study highlights the 

importance of accounting for factors such as oxygen saturation if 

comparisons between species or between studies of the same species are to be 

valid. The results of this study, in relation to the maintenance of western rock 

lobsters in holding systems will be discussed in Chapter 9. 

118 



Chapter 7 

CHAPTER 7 

Carrying lobsters (Panulirus cygnus) out of water - the effect 

of environmental factors on health of lobsters 

7.1 INTRODUCTION 

Western rock lobsters (Panulirus cygnus) are subjected to post-capture 

practices which result in emersion. Subtidal crustaceans subjected to emersion suffer 

internal hypoxia, a mixed respiratory and metabolic acidosis, hyperglycaemia, and an 

accumulation of metabolic waste products (Telford, 1968; Whiteley and Taylor, 

1990; Regnault, 1994). Western rock lobsters are able to handle up to 48 hours 

emersion under export conditions (Spanoghe, 1997). Emersion, however, must be 

regarded as a stress which jeopardises the condition and/or life of crustaceans 

(Whyman et al., 1985). For example, the mortality rate of re-immersed P. cygnus 

increased in proportion to the amount of time they were emersed (Brown and Caputi, 

1986). It has been suggested that gill damage caused by dehydration may contribute 

to the mortality of re-immersed western rock lobsters (Anon, 1980b; Spanoghe, 

1997). Systems which spray seawater over the lobsters when they are emersed, have 

evolved as a means of decreasing the effects of emersion on the health of the lobsters. 

This study examined the affects of two environmental factors (humidity, 

wind) on the physical and physiological health of emersed lobsters, as well as 

determining the benefits of using a seawater spray system to maintain the health of 

the emersed lobsters. One of the pivotal aims was to examine the role gill damage 

played in reducing the ability of lobsters to recover from a period of emersion. 

7.2 MATERIALS AND METHODS 

General Materials and Methods are as outlined in Chapter 2. Lobsters 

weighing between 367 and 515 grams, of both sexes, were used in this series of 

experiments. 

The condition of the lobsters was assessed on a quantitative measure of 

lobster response to handling as devised by Tod (1995) for P. cygnus (Table 7.1). 

Twelve lobsters were used for each experiment. To allow enough time for the 
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sampling and testing procedures to be completed lots of 3 lobsters were selected at 

one hour intervals. Body markings were used to identify the lobsters through the 

experimental stages. 

The lobsters were weighed to 0.1 g (Mettler - Toledo PB3001) after excess 

water was removed from the gill chamber, and the animal was dried. The lobsters 

were held around the carapace in a head down position and moved gently through a 

downward arc six times (Vermeer, 1987). External water was wiped off with a towel. 

After weighing they were placed into mesh boxes (20 mm mesh), which were then 

set up according to each treatment as outlined below: 

Treatment 1: Held at 23°C in 40% relative humidity (RH) with dim light 

measuring 0 RE ni 2  sec- 1 . 

Treatment 2: As in Treatment 1 but with a fan blowing wind into the mesh 

boxes at the rate of 2-4 km/h. 

Treatment 3: Held at 23°C in 92% RH with dim light measuring 0 1.1E rri 2  sec" 
1 

Treatment 4: As in Treatment 3 but with a fan blowing wind into the mesh 

boxes at the rate of 2-4 km/h. 

Treatment 5: As in Treatment 3 but with water being sprayed over the lobsters 

at 30 1/h. A constant stream of water rather than a fine mist was 

maintained. 

Tests on board a lobster carrier boat transporting lobsters from the Abrolhos 

Islands to Geraldton in Western Australia had shown that a wind speed of the above 

magnitude was appropriate. The windspeed in exposed sections of the boat was 16 

km/hour but due to the nature of the carrying system (wind breaks and sheer density 

of lobsters) much of that wind did not penetrate to the lobsters. Wind speeds varying 

between 0 and 6 km/hour were measured within the lobster crates. Wind speed was 

measured with a Davis "Wind Wizard" Wind Speed Indicator. 

The 40% RH treatment was obtained by running the experiment in an air-

conditioned room. The 92% RH treatment was obtained by running the experiment in 

a room containing large quantities of water in aquaria. Both of these systems 

maintained very constant humidities over the course of the experiment. The RH and 

light intensity were measured with a LI-COR Steady State Porometer LI 1600 
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(Vaisala HUIVIICAP and LI-190s-1 Quantum Sensor, respectively) at the beginning 

and end of each experimental treatment. The RH at Geraldton during April and May 

averages 47% with readings as low as 34% (Steve Summers, Geraldton 

Meteorological Office, pers. comm.,). 

Six hours after exposing the lobsters to the treatments the lobsters were 

sampled for condition, haemolymph, weight (after removing excess water from the 

branchial chamber and drying in the case of Treatment 5), and oxygen consumption. 

After measuring oxygen consumption rates the lobsters were re-immersed into 

oxygen saturated water for 24 hours before sampling again for condition, 

haemolymph and weight. The oxygen consumption rates of lobsters in Treatment 2 

were also tested at that time period. Survival was recorded. 

I Condition Lobster behaviour 

0
  

N
-  C

NI 	
V

) 	
d

*
 	

U
,  

Dead, no discernible response  
No tail response, but will respond to eye squeeze, bailer moving in gill chamber  
Weak tail response, tail dislocated and sagging away from thorax, incapable of 
holding tail in normal position  
Moderately active lobster, tail response and position normal but lacking capacity 
for several rapid flicks, legs may or may not be extended, antennal movement 
generally not strong  
Active lobster, strong tail flick response with gradual weakening, legs extended, 
strong antennal movement  
Extremely active, tail arched back past horizontal line with thorax, antennae 
swept back, legs extended and stiff, often numerous spontaneous rapid tail 
flicks with little discernible weakening 

Table 7.1: Criteria used for determining the condition of lobsters during the 
experiment (after Tod, 1995). 

Four lobsters were used as controls, and tested immediately for haemolymph 

parameters. A further six control lobsters were treated as per the experimental 

lobsters but they were placed in a holding box in the main tank. The lobsters were 

sampled initially (condition and weight), replaced into water and sampled 6 hours 

later (condition, weight, haemolymph) and replaced into water for re-sampling 24 

hours later (condition, weight, haemolymph). Only lobsters which had been caught at 

the first attempt (and could therefore be sampled within 20 seconds of first 

disturbance) were used as controls because tail flips caused a depression of 

haemolymph pH (unpub. data), as also noted for Panulirus argus (Vermeer, 1987). 
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Oxygen consumption 

Oxygen consumption was determined by the depletion method as outlined in 

Chapter 2. This consisted of placing the lobsters into closed respirometers and 

measuring the amount of oxygen used by them over a 10-15 minute interval (the time 

period was dependant on the rate of oxygen uptake). The level of oxygen in the 

respirometers did not fall below 80% saturation. 

Haemolymph 

Haemolymph samples were used for measuring pH, lactate, glucose and 

ammonia as outlined in Chapter 2. 

Haemolymph osmolality 

Haemolymph osmolality was measured with an Advanced Instruments 

MiniOsmometer using 101.11 samples of the haemolymph used to determine pH. The 

samples were kept on ice until the osmolality was analysed (always completed within 

1 hour). 

Haemolymph ions 

The haemolymph used to determine pH and osmolality was frozen at -86°C 

for later determination of haemolymph ions (calcium, magnesium, potassium and 

sodium) by Atomic Absorption Spectrophotometry (Spectra AA 300 Varian). The 

haemolymph samples were prepared for analysis by adding 1 ml of 1000 ppm 

strontium solution to 100 pi of each sample. Each sample was then further diluted to 

10 ml using a 1% nitric acid solution. 

Body water content and water loss 

The body water content of four lobsters was calculated by weighing them 

before and after they were freeze dried (Dynavac Freeze Drier FD3) for 4 days. The 
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rate of water loss during the experiments was calculated from the change in body 

weight (Herreid, 1969). 

Gill histology 

The podobranch and anterior arthrobranch gills of the third pereiopod were 

used for gill histology. Gill tissues were processed in an automatic tissue processor 

(Tissue Tek II) for 24 hours before being embedded in wax. They were sectioned at 5 

pm and stained with haemotoxylin and eosin in a staining machine (Shandon 

Linistain GLX). Morphological changes to the gills were examined under light 

microscope. 

Statistical analyses 

Analysis of variance (ANOVA) was used to test for differences between 

treatments. Separate ANOVAs were carried out on the 6 hour emersion data and the 

24 hour re-immersion data. A Students t-test was used to test for differences between 

the initial and 6 hour controls, and to test for differences between the control and 

treatment oxygen consumption rates. Where there were no significant differences 

between them, the data were pooled for the ANOVA analyses. The Levene test was 

used to test for homogeneity of variance and where necessary an appropriate 

transformation (usually logarithmic) was performed before further analysis. Where 

transforms failed to correct heterogeneity of variance, data were still analysed, 

however a was set at 0.01 for these analyses. Comparisons of means following 

ANOVA was done using the Tukey-HSD test. 

Paired t-tests were used to determine significant differences in weight at the 

6-h emersion and the 24-h re-immersion time compared to the initial weight. A 

Mann-Whitney non-parametric test was used to test for significant differences in 

condition. All analyses were performed on the SPSS statistical package with a set at 

0.05 except for the situation described above. All means are expressed as mean±SE. 
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7.3 RESULTS 

Decreases in haemolymph parameters, such as pH, with repeated sampling 

have been noted (Waldron, 1991). However, the haemolymph parameters of the 

control lobsters after the 24 hour re-immersion period were not significantly different 

to the parameters at the end of the emersion period. It was concluded that the 

sampling procedure itself did not influence haemolymph parameters in the 

experimental animals. 

7.3.1 Body weight changes and survival 

The body water content of the lobsters was 71.3±0.9% (n=4). Wind increased 

the desiccation rate of lobsters (Table 7.2). The rate of water loss of lobsters held in 

wind at low RH was over 4 times greater than that of lobsters with no wind at low 

RH (Table 7.3). Lobsters which had been emersed in low RH and wind (Treatment 2) 

were significantly lighter (P<0.001) and had lost 13.35% of the initial weight over 

the 6 hour period. Lobsters which had been kept in a humid environment with wind 

(Treatment 4) had also lost a significant (P<0.001) amount of weight but had only 

suffered a 6.24% weight loss. Lobsters in Treatment 1 (low RH, no wind) also lost a 

significant (P<0.001) amount of weight (3.14%). Lobsters placed under a spray 

(Treatment 5) gained a significant (P=0.025) amount of weight (0.46%) during the 

emersion period. The weight of lobsters in all treatments were not significantly 

different from the initial weight after being re-immersed for 24 hours 
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Treatment 
condition 

Initial Wgt (g) 6 h Wgt (g) % difference to 
initial weight 

24 h Wgt(g) % difference to 
initial weight 

Control 434.4 433.5 -0.19 433.3 -0.25 
(5.8, n=6)  (5.6, n=6)  (0.19)  (5.7, n=6)  (0.24)  

Treatment 1 440.4 426.4°  -3.14 433.6 -0.03 
Low RH  (10.0, n=12)  (9.3, n=12)  (0.3)  (17.5, n=6)  (0.16)  

Treatment 2 426.0 369.2°  -13.35 431.5 -0.26 
Low RH, wind  (5.5, n=10)  (6.6, n=10)  (0.76)  (9.4, n=5)  (0.42)  
Treatment 3 412.5 411.1 -0.33 413 -0.35 

High RH  (6.9, n=12)  (7.2, n=12)  (0.21)  (8.3, n=8)  (0.23)  
Treatment 4 427.8 401.0° -6.24 426.2 -0.18 

High RH, wind  (4.3, n=12)  (3.7, n=12)  (0.41)  (4.5, n=6)  (0.28)  _ 
Treatment 5 428.5 430.5 0.46 429.1 0.14 

High RH, 
spray 

(12.8, n=9) (12.9, n=9) (0.18) (12.8, n=6) (0.11) 

Table 7.2: Weights and percentage weight changes (mean ± SE) of lobsters, 
Panulims Cygnus, subjected to various treatments during a 6 hour period of 
emersion and a 24 hour re-immersion period. The 6 hour and 24 hour 
weights were compared to the initial weight within each treatment. The 
number of lobsters (n) at each time period is also shown in brackets. Letters 
denote significantly different results (a = >0.01<0.05; b = <0.001). 

Survival was 100% in all groups apart from the lobsters in Treatment 2. Two 

lobsters died during the 6 hour emersion period and another four during the 24 hour 

re-immersion period. Thus, there was a 50% mortality. An analysis of the Treatment 

2 results reveals that lobsters which survived had an average weight loss of 11.88% 

(SE=0.53, n=5) with none of the lobsters having a weight loss greater than 13.75% 

during the initial emersion period. Of the lobsters that died within the 24 h re-

immersion period, the average weight loss was 15.57% (SE=0.95, n=4) with no 

lobsters having a weight loss less than 14.05% during the initial emersion period. 

The two lobsters that died during the 6 hour emersion period had weight losses of 

17.37% and 22.15% at the time of weighing. 

Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5 
Rate of water 
loss (%/h) 

0.52 2.20 
2.60 1  

N/A 1.04 -0.08 

Table 7.3: The rate of water loss or gain (%/h) of lobsters, Panulirus cygnus, 
during 6 hours of emersion under various experimental treatment. It is 
assumed that the rate of water loss was constant over the emersion period. 

N/A There was negligible water loss in the lobsters in those 
treatments. 

The rate of water loss for lobsters which died during the re-
immersion period. 
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Figure 7.1: The effect of various experimental treatments on the 
haemolymph pH (mean±SE)(A) and osmolality (mmol/kg)(mean±SE)(B) of 
Panulirus cygnus after 6 hours under various experimental treatments, 
followed by 24 hours re-immersion in normoxic water. The number of 
lobsters tested is shown above each bar. Different letters denote significantly 
different results. 

7.3.2 Haemolymph pH 

Haemo lymph pH (Fig. 7.1) of all treatments except for Treatment 5 (spray) 

was significantly lower (P<0.001) than the control after 6 hours emersion. All 

treatments except Treatment 2 (low RH, wind) recovered during the re-immersion 

period. However, the pH of lobsters in Treatment 2 (low RH, wind) was not 

significantly different (P>0.05) to any of the other Treatments after 24 hours re-

immersion. In Treatment 5 (spray), two lobsters moved position and were not sitting 

directly under the spray. Although they were being kept wet, it was the result of 
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peripheral spray and splashing. The haemolymph pH of these 2 lobsters were 7.71 

and 7.29; these results were not used in the calculations and no other haemolymph 

parameters were obtained from the two animals. 

7.3.3 Osmolality 

The haemolymph osmolality of control lobsters was 1062.1 mmol/kg (Fig. 

7.1). Haemolymph osmolality of lobsters emersed in wind increased significantly 

(P<0.0001) to 1149.7 mmol/kg and 1337.0 mmolikg, for lobsters held at high and 

low RH respectively. The haemolymph osmolality of lobsters held in the spray 

decreased significantly (P<0.001) to a value of 1010.0 nunol/kg. Animals in 

Treatment 1 (low RH, no wind) had a weight loss of 3.14% however their osmolality 

did not increase significantly over the 6 hour emersion period. After 24 hours re-

immersion lobsters which had been emersed in wind (Treatments 2 and 4) had 

significantly lower (P<0.001) osmolality than all other treatments. The osmolality of 

the water in the holding tank was 1079.0 ± 8.2 mmol/kg (n=4). There was no 

significant difference (P>0.05) between the haemolymph osmolality of the controls 

and the osmolality of the water in the holding tank. 

Treatment 
conditions 

Haemolymph 
osmolality 

change (%) 

Weight change 
(0/0) 

Possible change 
in haemolymph 

volume (%) 

Possible change 
in water content 

volume (%) 
Treatment 2 
low RH, wind 

+25.88 -13.35 -70.26 -18.72 

Treatment 4 
high RH, wind 

+8.25 -6.24 -32.84 -8.75 

Treatment 5 
spray 

-4.5 +0.46 +2.42 +0.65 

Table 7.4: Percentage change in haemolymph osmolality and body weight of 
Panulirus cygnus over a 6 hour emersion period. The comparison is 
restricted to treatments which resulted in a significant change in both 
haemolymph osmolality and body weight (ie. Treatments 2, 4 & 5). The 
results are compared to the theoretical changes in haemolymph volume and 
water body content if the haemolymph volume was taken to compose 19% of 
wet body weight (Dall, 1974b) and body water content 71.3% of wet body 
weight. 
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An evaluation of the percentage change in body weight compared to the 

percentage change in osmolality is shown is Table 7.4. The relative change in 

haemolymph osmolality was greater than the relative change in body weight, whether 

there was an increase or decrease in osmolality. Calculations for Treatments 2 and 4, 

where lobster weight decreased and osmolality increased, show that if the change of 

body weight was only restricted to the haemolymph then the resulting change in 

haemolymph volume would be much higher than the change in osmolality recorded. 

However, if the change in body weight is calculated as a percentage of total body 

water then the body weight changes are very similar to the osmolality changes. In 

contrast, in Treatment 5 where lobsters increased in weight and decreased in 

osmolality, similar comparisons suggest that the change in body weight is more 

closely related to a possible change in haemolymph volume than to a change in body 

water content. 

% decrease in body weight 

Fig. 7.2: The increase in osmolality of P. cygnus haemolymph (expressed as 
% of control value) plotted against the decrease in body weight (expressed 
as % of initial weight) for each of the four treatments (t) which resulted in 
decreased body weight after the emersion period. The data for Treatment 2 
(low RH, wind) were broken down into lobsters which survived the 24 h re-
immersion period (t2a) and lobsters which died (t2b). 
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Haemolymph osmolality increased little until approximately 3% of the body 

weight had been lost, showing a substantial and linear increase above that point (Fig. 

7.2). 
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Figure 7.3: The oxygen consumption rates (mg 0 21g/h)(mean±SE) of 
Panulirus cygnus after 6 hours emersion exposure to various experimental 
treatments. Lobsters exposed to Treatment 2 (low RH, wind) were tested 
again after 24 hours re-immersion. The number of lobsters tested is shown 
above each bar. Different letters denote significantly different results. 
• the oxygen consumption of Treatment 2 lobsters after the 24 hour 

recovery period was still significantly lower than the control (Students t-
test). 

7.3.4 Oxygen consumption 

Lobsters exposed to low RH and wind (Treatment 2) during the 6 hour 

emersion period had significantly lower (P<0.001) oxygen consumption rates upon 

re-immersion (Fig. 7.3). After re-immersion in oxygen saturated water for 24 hours 

their oxygen consumption rate was still significantly lower (P<0.001) than the 

controls, although it was significantly higher (P=0.04) than the rate after the 

emersion period. The oxygen consumption rates of lobsters in other treatments did 

not differ significantly from the control. The pooled rate of oxygen consumption of 

lobsters recovering from emersion (0.160mg 0 2/g/h - excluding Treatment 2) was not 
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significantly different (P=0.11) from the maximum rate of oxygen consumption of 

lobsters at 23°C (0.153 mg 0 2/g/h - Chapter 4). 

Figure 7.4: Haemolymph lactate (A) and glucose (B) concentrations 
(mmo1/1)(mean±SE) of Panulirus cygnus exposed to 6 hours emersion under 
various experimental treatments, followed by 24 hours re-immersion in 
normoxic water. The number of lobsters tested is shown above each bar. 
Different letters denote significantly different results. There was no significant 
difference in either parameter after 24 hours re-immersion. 

7.3.5 Lactate and glucose 

Haemolymph lactate concentrations increased significantly (P<0.03) in all 

treatments after 6 hours emersion (Fig. 7.4). Haemolymph glucose increased in all 

treatments during emersion although it was not significant (P>0.05) in Treatment 1 

(low RH/no wind). After 24 hours re-immersion both parameters had returned to 

control concentrations in all treatments. 

130 



Control 
	1 
	

2 	3 
	

4 
	

5 

Treatment 

''''t•- •••,-  •-•11k411-11V 

r41174■7401 

CI I VAT:111.14 
47■10,10,1P 

t•-•-•-4 TA WI P.A. 
111■747■117411i' 
:"...7■■•21 

20 
18 
16 
14 
12 
10 

8 
6 
4 
2 

A
m

m
o

ni
a  

(m
g

/I)
  

Chapter 7 

Figure 7.5: The ammonia (mg/I)(mean±SE) concentration in the 
haemolymph of Panulinis cygnus after 6 hours emersion to the experimental 
treatments. The number of lobsters tested is shown above each bar. 
Different letters denote significantly different results. 

7.3.6 Ammonia 

Haemolymph ammonia concentrations (Fig. 7.5) increased significantly 

(P<0.02) in all treatments during the 6 hour emersion period, apart from lobsters 

under the spray (Treatment 5). 

Time Control Treatment 
1 

Low RH 

Treatment 
2 

Low RH, 
wind 

Treatment 
3 

High RH 

Treatment 
4 

High RH, 
wind 

Treatment 
5 

Spray 

Initial 5(6) 5(12) 5(12) 5(12) 5(12) 5(12) 
6-hour 5(6) 3.3*(12) 0.7*(12) 3.4*(12) 2.5*(12) 4.5*(11) 
24-hour 5(6) 4.6*(6) 2.6*(5) 5(12) 3.5*(10) 5(11) 

Table 7.5: The condition of lobsters, Panulirus cygnus, before and after 6 
hours emersion under various experimental treatments. The condition of the 
lobsters after 24 hours re-immersion in normoxic water is also shown. The 
number of lobsters tested is shown in brackets. Lobsters which were 
significantly different to their initial condition are denoted by an asterisk (*). 
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7.3.7 Condition 

Initially all lobsters were assessed as being in excellent condition, and the 

control lobsters remained so throughout the trial period (Table 7.5). The condition of 

all of the treatment lobsters was significantly lower (P<0.05) after the 6-hour 

emersion period. Lobsters exposed to wind were in the poorest condition, with 

Treatment 2 lobsters (low RH, wind) showing no response to handling at all. The 

lobsters in the spray treatment were still in good condition after emersion although 

they could not sustain their tail flicking response for an extended period. After re-

immersion for 24 hours the condition of lobsters in Treatments 1, 2 & 4 were still 

significantly lower (P<0.01) than the controls. Treatment 2 lobsters remained limited 

in basic defence strategies such as antennal movement. 

7.3.8 Haemolymph ions 

Haemolymph sodium increased in all treatments after 6 hours emersion (Fig. 

7.6), except for Treatment 5 (spray), although only significant increases were 

recorded for Treatments 2 and 3 (Fig. 7.6). There was no clear correlation between 

the changes in [Na'] compared to changes in osmolality (Table 7.5). In Treatment 2 

they were closely correlated but in Treatment 3 the [Na] increased by 20% in 

contrast to osmolality which did not change. The [Na] decreased in Treatment 5 and 

was significantly lower than all other treatments, but not the control. After 24 hours 

re-immersion it had returned to control levels in all treatments. 

Magnesium concentrations increased significantly (P<0.05) in all treatments 

except for Treatment 5 (spray)(Fig. 7.6). The % increases in magnesium were much 

greater than expected based on changes in haemolymph osmolality (Table 7.5). After 

24 hours re-immersion the [Mr] had still not returned to control levels in Treatment 

2. 
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Figure 7.6: Haemolymph sodium (A) and magnesium (B) concentrations 
(mmo1/1)(mean±SE) of Panulirus cygnus exposed to 6 hours emersion under 
various experimental treatments, followed by 24 hours re-immersion in 
normoxic water. The number of lobsters tested at each point is the same as 
in Figure 7.4. Different letters denote significantly different results. There is 
no significant difference between the Na +  values after 24 hour re-immersion. 
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Figure 7.7: Haemolymph potassium (A) and calcium (B) concentrations 
(mmo1/1)(mean±SE) of Panulirus cygnus exposed to 6 hours emersion under 
various experimental treatments, followed by 24 hours re-immersion in 
normoxic water. The number of lobsters tested at each point is the same as 
shown in Figure 7.4. Different letters denote significantly different results. 
There is no significant difference between the K+ and Ca ++ values after 24 
hour re-immersion. 

Treatment 1 	Treatment 2 Treatment 3 i Treatment 4 Treatment 5 
Osmolality  
Sodium  

Potassium  
Calcium 

Magnesium  	 

--- 
---- 

54.50 
-- 
---- 

25.88 
32.30 
107.00  
---- 

29.59 
 	1 

. 

---- 
20.13 
40.64 

30.13 

. 	 

. 	 
4 	

8.25 
-- 

79.68 
— 

. 

. 
+ 

-4.50 
---- 
--- 

-37.2 
---- 19.01 

Table 7.6: Proportional changes in osmolality, [Nal, [Mg], [K+] and [Cal of 
the haemolymph of the western rock lobster, P. cygnus, after 6 hours of 
emersion under various treatments. The results are expressed as a 
percentage of the control levels. 
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Haemolymph potassium decreased significantly in Treatment 5 (spray)(Fig. 

7.7) and the % change was much larger than predicted on the basis of osmolality 

change (Table 7.6). The calcium concentration increased significantly (P<0.05) in 

Treatments 2, 3 and 4. Although there appeared to be some correlation between the 

% increases and the osmolality changes in Treatments 2 and 4, there was no 

osmolality increase in Treatment 3 but the [CC] increased by 30% (Table 7.5). After 

24 hours re-immersion both the [IC] and [CC] returned to control concentrations in 

all Treatments. 

7.3.9 Gill structure and histology 

There was no obvious gross morphological changes in the gills of lobsters 

which had been severely dehydrated (Treatment 2) compared to lobsters which had 

been emersed but did not lose body weight (Treatment 3). In dehydrated lobsters 

superficial water was still present around the gill filaments. The gills were clumped 

(Fig. 7.8) resulting in the exposure of large areas of gill surface to air. Gill clumping 

was also evident in lobsters in Treatment 3, which had been emersed in high RH, so 

it appears as if clumping was specifically the result of emersion, rather than other 

factors such as desiccation. 

Gill filaments of severely dehydrated lobsters (Treatment 2) had a wrinkled 

appearance compared to the gill filaments from an immersed lobster (Fig. 7.9 A and 

B). Gills from lobsters in all other treatments did not appear morphologically 

different to the immersed lobsters gills. 
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Figure 7.8: A photo of the mid-section of a gill of a western rock lobster, 

Panulirus cygnus, which had been exposed to 6 hours emersion in low RH 

and wind (Treatment 2). Clumping of the gill filaments is evident, resulting in 

the exposure of large areas of the gill surface to air. Residual branchial water 

is also visible. This lobster survived the emersion period despite losing 

11.3% of its body weight. G, gill filaments; L, lateral surface  of  the central gill 

axis. 
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Figure 7.9: A transverse section of a gill filament of a lobster which had 

been severely dehydrated (A)(Treatment 2) compared to that from an 

immersed lobster (B). Note the wrinkled appearance of the exterior surface 

of the gill filament of the dehydrated lobster. A, afferent channel; E, efferent 

channel; LL, lateral lacuna; LS, longitudinal septum. 
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7.4 DISCUSSION 

Spraying seawater over the lobsters during emersion reduced the physical, 

physiological and biochemical disturbances associated with holding crustaceans in 

air for extended periods. When subtidal crustaceans are emersed they usually suffer 

from a combined respiratory and metabolic acidosis, resulting from the failure of the 

gills to maintain gaseous exchange in air (Taylor and Innes, 1988). An acidosis was 

not apparent in lobsters sprayed with seawater even though high levels of lactate 

were measured after the emersion period. The respiratory component of the acidosis 

appears to have been almost completely dispersed due to the use of sprays. CO 2  

accumulation has been shown to be mainly responsible for emersion-induced 

acidosis in other crustaceans (Taylor and Wheatly, 1981; Schmitt and Uglow, 

1997a). Lobsters in the other treatments showed typical responses to emersion and 

their condition was adversely affected when wind and/or low relative humidity were 

introduced as factors, probably because of the increased desiccation rate. 

7.4.1 Water loss/gain 

The rate of loss of water from crustaceans is influenced by many factors 

including body size and shape, initial water content, humidity, habitat preference and 

temperature (Herreid, 1969; Young, 1978). The maximum rate of water loss in this 

study was close to that measured in other subtidal crustaceans such as P. argus 

(Vermeer, 1987) and Callinectes sapidus (Herreid, 1969) held under similar 

environmental conditions. Subtidal crustaceans suffer 3-5 times the rate of water loss 

of crustaceans from semiterrestrial or terrestrial environments (Herreid, 1969). It has 

been proposed that the greater gill surface area of subtidal crustaceans increases the 

rate of water loss (Ahsanullah and Newell, 1977), however other factors such as 

increased integument permeability also appear to play a part (Herreid, 1969). 

Lobsters held in low RH suffered much greater rates of water loss than lobsters held 

at high RH. Similarly, decreases in RH resulted in significant increases in the rate of 

water loss from two species of crabs (Ahsanullah and Newell, 1977). However, wind 

was the major factor determining the rate of water loss in P. cygnus; lobsters in wind 

at low RH had 4 times the weight loss of lobsters not subjected to wind. Vermeer 

(1987) noted that wind speed increased the rate of water loss in P. argus. 
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Water may be lost in the following ways during emersion: (a) by discharging 

water from the gill chamber (ii) by faecal losses, (c) by urination, (d) by evaporation 

from the gills and gill chamber and (e) by other integumentary losses (Herreid, 

1969). Methods (d) and (e) are generally regarded as the most likely routes of water 

loss. Although urine excretion can comprise up to 10% body weight/day, it generally 

decreases with emersion and does not contribute substantially to weight loss (Tyler-

Jones and Taylor, 1986). Herried (1969) suggested that the integument may be the 

major route of water loss because dead crabs lost water at the same rate as live crabs. 

Other studies have also observed similar rates of water loss in dead and live crabs 

(Ahsanullah and Newell, 1977; Imes et al., 1986) suggesting that water loss is a 

passive process. However, Ahsanullah and Newell (1977) proposed that it occurred 

principally via the gills and gill chamber. As 90% of the total external surface of 

crustaceans is contained in the gills (Cameron and Mangum, 1983) they are likely to 

be one of the major sites of water loss. 

Significant loss of body water causes death in crustaceans. In this study no 

lobsters survived the loss of more than 14% of their body weight and no lobsters died 

if they lost less than 14% of their body weight. Prawns (Penaeus japonicus) died 

after approximately 16% of their initial body weight was lost (Samet et al., 1996) 

whilst the subtidal crabs, Menzppe mercanaria and Arenaeus cribarius, died after 

losing 12 and 14% of their body weight, respectively (Herreid, 1969). It appears that 

subtidal crustaceans can handle the loss of approximately 12-16% of their initial 

body weight before death occurs, a figure much lower than for most intertidal or 

terrestrial crustaceans (Jones and Greenwood, 1982; limes et al., 1986). The rate of 

loss of the water would also play a significant part in determining the amount of 

body water able to be lost before death. Death occurred in Leocarcinus puber after 

the loss of only approximately 5% of the body weight (Johnson and Uglow, 1985), 

however the rate of loss was slow and other physiological disturbances over the 

emersion period, such as increasing levels of lactate, were probably the cause of 

death rather than weight loss. 

Water loss could occur either from the haemolymph or from the whole body 

or from a combination of both. In the freshwater crayfish, Austropotamobius 

palhpes, a 10% decrease in body weight was associated with a 75% reduction in 

haemolymph volume, as well as a slight decrease in muscle water content (Taylor et 

al., 1987). The authors proposed that during dehydration A. pallipes protects the 
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intracellular fluid volume whilst preferentially losing water from the haemolymph 

and the extra-cellular fluid volume. The extent of the calculated reduction in 

haemolymph volume was far greater than the measured increase in haemolymph 

osmolality in P. cygnus. Some of the weight loss used in the calculations was 

probably due to evaporation of surface water, with approximately 3% weight loss 

occurring before haemolymph osmolality was significantly affected. Taking into 

account that 3% and recalculating the data in Table 7.3 still means that the calculated 

haemolymph volume change was approximately double the haemolymph osmolality 

change. The concentration effects of the haemolymph may have promoted the 

movement of water to the blood from the tissues (Johnson and Uglow, 1985) and 

negated the possible rise in haemolymph osmolality. The other possibility is that the 

movement of blood ions from the haemolymph to other body tissues or vice versa 

may have contributed to the observed changes. This possibility will be discussed 

below. 

7.4.2 Survival 

Death of crustaceans as the result of weight loss is probably due to increases 

in the viscosity of the haemolymph causing problems with circulation and oxygen 

delivery (Taylor et al., 1987; Samet et al., 1996). In prawns, a low haemolymph 

viscosity helps to reduce tissue and gill resistance and ensure the circulatory system 

remains efficient (Anderson, 1989). 

7.4.3 Osmolality 

The relationship between increase in osmolality and decrease in body weight 

suggests that the weight loss in treatments which lost little weight (less than 3.5 % of 

body weight) was due to water loss from the exterior of the lobsters rather than from 

haemolymph. This weight loss component could be either superficial water adhering 

to the lobsters or water in the branchial chambers (Morrissy et al., 1992). The authors 

suggest that the water lost from the branchial chambers is presumably lost by seepage 

due to gravity and that it occurs very rapidly (within two hours). The procedures used 

in this study meant that most of the branchial water was initially removed, thus 

restricting it as a source of the initial weight loss component. The increase in 

140 



Chapter 7 

osmolality may have been delayed as water from tissues was sequestered to maintain 

a constant osmolality during the initial stages of dehydration. 

Lobsters held in the spray increased in weight. There is evidence that this 

situation occurs in commercially held lobsters; after a period in a seawater spray 

swelling of lobsters has been reported (W. Hosking, Geraldton Fishermens Co-op; R. 

Bailey, Batavia Coast Fisheries, pers. comm.). The increase in weight could only 

occur due to an increase in the water content of the lobsters and only if they were 

actively or passively taking up water whilst emersed. The decrease in blood 

osmolality is another indication that water uptake is occurring. The change in 

osmolality is closely correlated to the calculated change in haemolymph volume of 

lobsters held under the spray, which suggests that the water was being taken-up into 

the haemolymph. Being totally subtidal crustaceans, P. cygnus would be expected to 

be an osmoconformer; the controls in this study had the same osmolality as seawater. 

Da11 (1974a) found that P. cygnus was an osmoconformer and was able to maintain 

its osmoconformity over the salinity range 25-45%0. Osmoconforrnity is one of the 

most direct means of minimising the diffusive movements of ions and water between 

the haemolymph and the external medium (Mantel and Farmer, 1983). Water is taken 

up via passive osmosis through the body surface, generally via absorption through 

the gills (Mantel and Farmer, 1983). In sonie instances, such as just prior to the 

moult, water may also be taken up via the gut (Dall and Smith, 1978; Mykles, 1980), 

however it is unlikely that this occurred in this study as it is doubtful that water could 

have entered the gut under the experimental conditions. It also appears that the onset 

of drinking is triggered by a significant reduction in haemolymph volume in 

dehydrating crabs (Greco et al., 1986); reduction of haemolymph volume did not 

occur in the lobsters which gained weight during emersion. Drinking accounted for 

only a minor portion of the uptake of water required to balance estimated urine 

production in P. argus (Malley, 1977). 

As discussed below it appears that P. cygnus was able to move water into the 

branchial chamber when emersed under the water spray, thereby providing a pathway 

for water uptake. Water uptake would normally occur at a rate which would match 

water loss, and in aquatic crustaceans water loss would occur via urine production 

and excretion (Mantel and Farmer, 1983). The rate of urine production in crustaceans 

varies between species from about 1% body weight (BW)/day to about 10% BW/day 

(Mantel and Farmer, 1983; Tyler-Jones and Taylor, 1986). The spiny lobster, Jasus 
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edwardsii, had a urine production rate of 4.8% BW/day (Binns and Peterson, 1969). 

If the same urine production rate was assumed for P. cygnus, then over the 6 hour 

emersion period 1.2% BW of urine would be excreted. However, during emersion the 

urine excretion rate was significantly reduced in the freshwater crayfish, A. palhpes, 

and over a 24 hour period it was only about half of the value recorded when the 

crayfish were immersed (Tyler-Jones and Taylor, 1986). If a similar situation 

occurred in P. cygnus then the lobsters may not have been able to excrete urine at a 

sufficient rate to equal the passive inflow of water. Therefore, lobsters appear to be 

able to uptake water but not excrete it at a sufficient rate when emersed under 

seawater sprays, resulting in increased body weight and decreased haemolymph 

osmolality. 

There is evidence that crustacean urine flow rates can be controlled and 

adjusted to the minimum compatible with osmoregulatory requirements (Tyler-Jones 

and Taylor, 1986). Changes in the rate of urine flow could be produced by decreased 

osmolality of haemolymph, by changes in internal volume or pressure, or by 

chemical mediation operating in direct response to the external medium (Mantel and 

Fanner, 1983). Precise control of haemolymph volume implies a mechanism for 

sensing changes in this parameter (Greco et al., 1986). It has been suggested that 

stretch receptors on muscles in the posterior cephalothorax of the subtidal crab, C. 

borealis, might serve as sensors for changed haemolymph volume, resulting in 

decreasing urine flow with decreases in haemolymph volume (Greco et al., 1986). 

However, it appears that urine flow is decreased in P. cygnus even though there is no 

decrease in haemolymph volume. Either different mechanisms are in control in P. 

cygnus or the mechanism changes in response to emersion. 

After 24 hours of re-immersion lobsters which had increased in osmolality 

during the emersion period had osmolality values which were lower than the 

controls. This may indicate a slight "overshoot" mechanism was being used, similar 

to outlined by Dall (1974a), resulting in a slight hypo-osmolality which had not been 

corrected as yet. 
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7.4.4 Branchial chamber water stores 

Crustaceans retain some water in the branchial chamber when they are 

emersed. Terrestrial crustaceans have the ability to retain the water in the chamber 

for an extended period (McMahon and Wilkens, 1983), whereas in subtidal 

crustaceans the water usually drains away within the first few hours (Taylor and 

Innes, 1988; Morrissy et al., 1992). In this study, most of the branchial water was 

removed in the initial experimental procedure. It is generally believed that gills must 

be kept moist during emersion to ensure that oxygen uptake is optimised (McMahon 

and Wilkens, 1983), however no data are available to support this view (deFur, 

1988). Varley and Greenaway (1992) argued that during emersion oxygen uptake is 

impaired because water trapped between the gill lamellae rapidly becomes depleted 

of oxygen. Although, deFur and McMahon (1984) suggested that clumping of the gill 

filaments leads to a reduction in the effective surface area for gas exchange, which 

could restrict adequate ventilation and perfusion of the gills, a few studies have 

indicated that gill clumping increases oxygen uptake as more gill surface area is 

exposed (Taylor and Wheatly, 1981; limes et al., 1986; deFur, 1988; Varley and 

Greenaway, 1992). Oxygen uptake could also be perfusion limited during emersion 

due to bradycardia (deFur and McMahon, 1984) and increased resistance to 

haemolymph flow through the gill lamellae (deFur et al., 1988). Waldron (1991) 

noted an increase in heart rate of J. edwardsii as emersion time increased and 

suggested that it was due to the drying out of the gills and hence a decrease in the 

external pressure on the gills. Increased heart rate will increase gill perfusion and in 

the study by Waldron (1991) it was associated with a slight increase in oxygen 

uptake with emersion time. The internal hypoxia associated with emersion often 

leads to anaerobic metabolism and consequently a progressive accumulation of 

lactate (Taylor and Irmes, 1988). The haemolymph lactate and glucose of lobsters 

held under the spray was similar to that measured in lobsters in the other treatments, 

suggesting that oxygen uptake was not improved in lobsters held under a spray. 

Aquatic crustaceans, in general, have trouble excreting carbon dioxide while 

in air (Samet et al., 1996). In terms of the evolution of air-breathing, branchial gas 

exchange is not an effective means of aerial oxygen transfer, but as long as the 

animal can maintain a reservoir of water in contact with the gills it is an effective 

means of maintaining a low haemolymph CO 2  content (Taylor and limes, 1988). 
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Haemolymph CO, accumulation appears to be mainly responsible for emersion-

induced acidosis (Taylor and Wheatly, 1981; Schmitt and Uglow, 1997a), therefore 

having a suitable method to dispose of CO, would be an important step in decreasing 

the effect of emersion on acid-base disturbances. Intertidal crustaceans have made 

use of the method by retaining branchial water for an extended time after emersion. 

Although it does appear to eventually drain (Burnett and McMahon, 1987; Taylor 

and Innes, 1988) water is used as a CO, sink in several species while available 

(Burnett and McMahon, 1987). The intertidal red rock crab, Cancer productus, has 

the ability to access interstitial seawater to ensure there is always a branchial water 

store during emersion (deFur et al., 1983). The role of the seawater sprays in 

offsetting the physiological disturbance in emersed subtidal crustaceans is not clear. 

In emersed spanner crabs, Ranina ranina, the effect of sprays was to decrease the 

extent of the acidosis compared to crabs held in humid air, probably by increasing 

CO, excretion (Paterson et al., 1994b). Periodical wetting of the stone crab, Menippe 

mercenaria, during emersion improved survival (Simonson and Hochberg, 1986). 

However, mud crabs, Scylla serrata, exposed to sprays did not have reduced 

haemolymph CO, levels (Varley and Greenaway, 1992). Maintenance of a normal 

haemolymph pH in P. cygnus when they were held in spray systems, indicates that 

CO, excretion is occurring. Water was present in the branchial chamber after the 

emersion period which suggests the lobsters managed to take-up water into the gill 

chamber. Due to the position of the lobsters and the direction of the spray it would 

have been impossible for the water to enter the chambers via gravitation or via the 

flow of the water. In intertidal species the uptake of interstitial water is accomplished 

by the production of a substantial vacuum in the branchial chamber, which draws 

water into the branchial chamber via setae (Wolcott, 1976; deFur and McMahon, 

1984; Thompson et al., 1989). Whether a similar mechanism is able to be used by 

subtidal crustaceans is unknown. Alternatively, Regnault (1994) proposed that C. 

pagurus could possibly collect seawater with the setae of its appendages and convey 

it to the branchial chambers. Whatever mechanism is used by P. cygnus, it appears 

that it does have some ability to move water into the branchial chamber. 

Lobsters not subjected to the spray would not have had access to any 

branchial water stores because of the experimental procedures. However, the effect of 

removing the branchial water stores on the acid-base disturbances of those lobsters 

would be expected to be minimal, due to the limited ability of subtidal crustaceans to 
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retain branchial water stores (Taylor and Imes, 1988; Morrissy et al., 1992). 

Lobsters without the branchial water route for preventing the accumulation of CO 2  
need to rely on an internal source to buffer the increase in CO 2 . The major source of 

calcium carbonate accounting for the compensation of emersion acidosis is probably 

the shell (Henry et a/., 1981). This is indirectly indicated by reports showing that the 

calcium concentration increases in the haemolymph during the compensatory phase 

(Truchot, 1990). Lobsters in this study, in all treatments other than the spray 

treatment, showed increases in the haemolymph calcium concentrations, which 

indicates the mobilisation of carbonate buffers (this finding will be discussed below). 

7.4.5 Haemolymph pH 

Respiratory acidosis appears to be responsible for most of the pH decrease 

observed during the emersion period. Lobsters in the water spray maintained a high 

pH despite increases in haemolymph lactate of similar magnitude to the other 

treatments. Although metabolic acidosis can occur, respiratory acidosis is the most 

typical response of emersed aquatic animals (Truchot, 1990). It has been shown to be 

the cause of pH decreases in decapod crustaceans (Whiteley and Taylor, 1990; 

Schmitt and Uglow, 1997a) and was the suggested cause of pH decreases observed in 

P. cygnus (Chapter 6). The capacity of sprays to reduce a pH decrease was also found 

by Paterson et al. (1994b) for R. ranina, although the effect was not as strong. 

However, the periodic wetting method used by Schmitt and Uglow (1997a) did not 

prevent a decrease in pH associated with emersion. The pH decreases in the present 

study of 0.8 to 1.0 units are some of the largest decreases recorded for crustaceans 

(c/f. Booth et a/., 1982; Vermeer, 1987; Schmitt and Uglow, 1997a) and indicate 

significant physiological disturbances. Metabolic processes require the blood and 

tissues to remain within a certain physiological range of pH (Paterson et al., 1993); 

acidosis is commonly postulated as being a cause of death in crustaceans (Taylor and 

Whiteley, 1989; Whiteley and Taylor, 1990). However, Whiteley and Taylor (1992) 

suggested that acid-base status could be symptoms of the deteriorating condition of 

the animals rather than the causal agent. In this study most lobsters had recovered 

after 24 hours re-immersion. Lobsters which died during re-immersion had a mean 

pH decrease of 0.8 units during emersion, which is at the lower end of the decreases 
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measured. Haemolymph pH does not appear to be a reliable indicator of the ability of 

lobsters to recover from a physiological disturbance. 

7.4.6 Lactate 

It is quite obvious from the large increases in haemolymph lactate observed in 

all treatments, that emersed lobsters were unable to supply all of their energy 

requirements via aerobic metabolism. The calculated decrease in haemolymph 

volume due to desiccation could not account for the 50-100 times increases in 

haemolymph lactate measured. Although there is a fair degree of interspecies 

variation in lactate accumulation in subtidal crustaceans (Table 7.7), in general there 

is a large increase within a relatively short period of emersion. Spicer et al. (1990) 

postulated that there was a general relationship between the rate of accumulation of 

lactate and the ability to tolerate emersion. Intertidal species such as C. maenas and 

Scylla serrata, do not accumulate lactate or accumulate it at very slow rates during 

emersion (Johnson and Uglow, 1985; Varley and Greenaway, 1992). Such fast rates 

of lactate accumulation would therefore suggest that P. cygnus, like many other 

subtidal crustaceans, have limited ability to handle emersion. Seawater sprays 

reduced the rate of accumulation of lactate in Ranina ranina (Paterson et al., 1994b) 

and periodic wetting reduced the rate in Nephrops norvegicus (Schmitt and Uglow, 

1997a), but it did not effect the rate of accumulation in P. cygnus. Schmitt and 

Uglow suggested that the decreased rate in their study was due to the decreased 

activity of the periodically wetted lobsters, however the spray system did not appear 

to affect the level of activity of P. cygnus. Spray systems would not be expected to 

reduce the rate of anaerobic glycolysis in emersed crustaceans (Paterson et al., 

1994b), therefore the results of this study are not surprising. 

Although the elimination of lactate is generally slow in crustaceans (Bridges 

and Brand, 1980b), it would be expected to be completed during the 24 hour re-

immersion period as it only took 8 hours for the haemolymph lactate of P. cygnus to 

return to control levels after a period of stress (Chapter 6). 
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Species [lactate] Conditions Reference 
Liocarcinus puber 6.1 8 hours at 15°C Johnson and Uglow, 1985 
Panulirus argus 5.5 2 hours at 22-30°C Vermeer, 1987 
Nephrops norvegicus 10 9 hours at 10°C Spicer etal., 1990 
Jasus edwardsii 7 8 hours at 17°C Waldron, 1991 
Ranina ranina 15 3 hours at 25°C Paterson etal., 1994a 
R. ranina 3 3 hours at 19°C Paterson etal., 1994b 
Cancer pa gurus 4.5 8 hours at 16-18°C Regnault, 1994 
N. norvegicus 12 8 hours at 12°C Schmitt and Uglow, 1997a 
Panulirus cygnus 6-10 6 hours at 23°C This study 

Table 7.7: Haemolymph lactate concentrations (mmo1/1) of subtidal decapod 
crustaceans after a period of emersion. 

7.4.7 Glucose 

Hyperglycaemia has been shown to occur as a result of handling stress 

(Telford, 1968), and has been observed in P. cygnus as the result of such stress (Dall, 

1974b). It has also been associated with crustaceans subjected to anoxia or emersion 

induced asphyxiation (Johnson and Uglow, 1985; Taylor and Spicer, 1987). 

Haemolymph glucose is produced during the mobilisation of energy stores in 

anaerobic metabolism (Spicer et al., 1990). Anaerobic metabolism requires an 

increased supply of substrate due to the low levels of energy produced compared to 

aerobic metabolism (Eckert et al., 1988). The effect on P. cygnus of handling and 

emersion for 30 minutes was to increase glucose concentrations up to twice that of 

controls (Chapters 6 and 8). Haemolymph glucose in emersed subtidal crustaceans 

tends to increase steadily over time, with levels of 1.3 mmo1/1 reached after 4 hours 

in Liocarcinus puber (Johnson and Uglow, 1985), 1.5 mmo1/1 after 18 hours in 

Nephrops norvegicus (Spicer et al., 1990), 1.5-2.5 mmo1/1 after 6-8 hours in P. 

cygnus (Spanoghe, 1997), and 1.6 mmo1/1 after 8 hours in N. norvegicus (Schmitt and 

Uglow, 1997a). The absolute levels in this study after 6 hours emersion of 2-3.5 

mmo1/1 were comparatively high but probably reflect the elevated temperature and 

resultant, higher metabolic rate. The high glucose concentration in lobsters subjected 

to spray again suggests that lobsters in the spray did not maintain oxygen uptake and 

they relied on anaerobic processes for much of their energy requirements. Glucose 

concentrations decreased to control levels within 24 hours as would be expected 

based on the time period of recovery recorded in Chapter 6 and by Spanoghe (1997). 

147 



Chapter 7 

7.4.8 Ammonia 

There was no increase in the haemolymph ammonia concentrations of 

lobsters in the spray treatment. Ammonia is released to the external environment via 

the gills by diffusion and by Na'/NH 4+  exchange across the epithelium (Kormanik 

and Cameron, 1981; Regnault, 1987). In the absence of water, such mechanisms may 

be impaired, and the accumulation of ammonia in the haemolymph may occur 

(Schmitt and Uglow, 1997a). Ammonia is able to be excreted into the branchial 

water of Cancer pagurus during emersion, although only in small amounts 

(Regnault, 1994); ammonia still accumulated in the haemolymph (Regnault, 1992). 

There was no water being sprayed over the crabs during that study, and branchial 

water had no chance of being renewed. Therefore, the branchial water may have 

become saturated with ammonia and the resulting concentration barrier may have 

limited the excretion of ammonia from the haemolymph. Although the excretion of 

ammonia against a concentration gradient has been shown to occur in crustaceans 

(Kormanik and Cameron, 1981), it generally cannot match the inward diffusion of 

ammonia from environments with high ammonia concentrations (Young-Lai et al., 

1991; Chen etal., 1993). In this study the use of a spray system may have resulted in 

the continuous renewal of branchial water, thus permitting the removal of ammonia 

from the haemolymph during the emersion period. This is in direct contrast to the 

other treatments where haemolymph ammonia increased significantly during the 

emersion period indicating that ammonia was unable to be excreted. 

The concentration of ammonia in the haemolymph after the emersion period 

(10-14 mg/1) was similar to that in P. argus after only 2 hours of emersion at rz 26°C 

(Vermeer, 1987) and in C. pagurus after 18 hours of emersion at 17°C (Regnault, 

1992). Although there are considerable interspecific differences in haemolymph 

ammonia concentrations (Florkin, 1960) much of the variation in the rate of 

ammonia accumulation observed in the three species can probably be explained by 

the environmental conditions in each of the studies (ie. temperature variations). 

The effect of the high ammonia concentration on P. cygnus is unknown, but 

crustaceans, in general, appear to have a high tolerance to high haemolymph 

ammonia levels. The American lobster, H. americanus, was able to tolerate 

environmental ammonia concentrations of 100 mg/1, which equate to blood ammonia 

concentrations of 35 mg/1 (Young-Lai et al., 1991), significantly higher than 
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recorded in this study. The land crab, Cardisoma camifex, was able to tolerate 

haemolymph ammonia levels of 100 mg/1 during dehydration (Wood et al., 1986). 

Nitrogenous end products also appear to have a negligible role in blood acid-base 

balance (Regnault, 1992). 

7.4.9 Oxygen consumption 

The significant decrease in haemolymph pH and increases in haemolymph 

lactate and glucose indicate that the lobsters were suffering from hypoxia during 

emersion. Upon re-immersion, oxygen consumption by lobsters in all treatments 

(except for low RH/wind) was the same as the active rate of P. cygnus at 23°C 

(Chapter 4). This suggests they were servicing a significant "oxygen debt" (Herreid, 

1980) during the initial stages of re-immersion. However, lobsters exposed to low 

RH/wind had limited ability to uptake oxygen after re-immersion or after 24 hours of 

recovery. Although the lobsters were not able to uptake maximum rates of oxygen, 

they did not show any reliance on anaerobic metabolism 24 hours after re-immersion. 

The decreased ability to uptake oxygen may have resulted from: 

(a) a limited supply of oxygen to the gills - although not recorded, the 

scaphognathite rate 'appeared' to be much slower than normally observed in 

lobsters actively uptaking oxygen, which indicates that the supply of oxygen 

to the gills may have been reduced. Decreased pumping rate would probably 

be associated with the poor condition of the lobsters. 

(b) limited diffusion of oxygen across the gills - it has been suggested that gill 

damage caused by dehydration contributes to the documented mortality in 

emersed P. cygnus (Anon., 1980b). Such damage would act to limit the 

diffusion of oxygen across the gills. There was no evidence that damage to 

the gills had occurred in this study. The gills of severely dehydrated lobsters 

were wrinkled, probably because the volume of haemolymph flowing through 

them was severely reduced. However, the gills were still reasonably moist 

after the emersion period, even when the lobsters were close to death. Other 

soft tissue parts of the lobsters had a similar wrinkled appearance after the 

emersion period but were very dry to touch. Gills surfaces appear to retain 

149 



Chapter 7 

some moisture even when lobsters are very desiccated. Additional gill 

functions, such as ionic exchange with the medium, which appear to have 

been maintained after re-immersion, also indicate that gill damage may not 

have occurred. 

(c) 	limited perfusion of the gills with haemolymph - as mentioned previously, 

death of crustaceans due to weight loss is probably the result of increases in 

the viscosity of the haemolymph causing problems with circulation and 

oxygen delivery (Taylor et al., 1987; Samet et al., 1996). Upon re-immersion 

the high haemolymph osmolality could have limited the ability of lobsters to 

perfuse the gills with haemolymph. However, this possibility would not 

explain the oxygen consumption being reduced after 24 hours re-immersion, 

when the haemolymph osmolality was low. 

The above lobsters were in very poor condition after the emersion period and 

continued to die during the re-immersion period. Those which survived were still in 

poor condition 24 hours after re-immersion. Vermeer (1987) found that the escape 

behaviour (tailflick response) of P. argus was impaired 24 hours after a 2 hour period 

of emersion. Tailflicicing is a basic reflex required by lobsters as it is an important 

survival tool. Any treatment which affects the basic tail flick response may also 

affect integrated nervous system functions such as feeding, locomotion, and social 

and sexual behaviour (Vermeer, 1987). The moult increments of lobsters (P. cygnus) 

which had been subjected to emersion, decreased in accordance with the time period 

of emersion (Brown and Caputi, 1986). Nervous tissue of subtidal osmoconformers 

appears particularly sensitive to fluctuations in osmotic and/or ionic concentrations 

of body fluids (Treheme, 1980). 

Lobsters needed to be in very poor condition before there was a reduction in 

the ability to uptake oxygen. Some lobsters (high RH/wind and low RH/no wind 

treatments) could uptake oxygen at maximal rates upon re-immersion yet still had not 

recovered full condition 24 hours later, which suggests that emersion was creating 

problems unassociated with the respiration process. Vermeer (1987) suggested that 

nervous system damage induced by hypoxia, acidosis, and perhaps osmotic 

imbalances is likely the cause of the behavioural aberrations in immersed spiny 
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lobsters after a period of exposure. Lobsters showing a reduced ability to uptake 

oxygen may have suffered from such nervous system damage. 

7.4.10 Haemolymph ions 

The haemolymph ion concentrations were very similar to concentrations 

measured in P. cygnus by Da11 (1974a). Regulation of the haemolymph ion 

concentrations appears to occur to a similar extent in P. cygnus as in most subtidal 

crustaceans: sodium and calcium have slightly elevated concentrations compared to 

the external medium, potassium has the same or slightly elevated concentration and 

magnesium has between 20 and 80% of the concentration (Mantel and Farmer, 

1983). In active crustaceans, magnesium is usually maintained at concentrations less 

than 50% of that found in the medium (Mantel and Farmer, 1983). Magnesium 

concentrations of P. cygnus in this study were about 25% of normal seawater 

concentrations. 

Lobsters emersed in spray had [r] levels far lower than predicted due to the 

dilution effect of decreased haemolymph osmolality. The potassium ions may have 

been shifted into other tissues or excreted. Burnett and McMahon (1987) found that 

base (eg., Na+, Mr, CC and IC) was excreted into the branchial water stores of 

three littoral crab species when they were emersed and suggested that it was an 

important method of removing CO2  from the haemolymph. However, the process 

only appears available to species which are osmoregulators and thus have branchial 

ion pumps (Burnett and McMahon, 1987). Branchial ion-exchange mechanisms may 

be responsible for maintaining haemolymph acid-base status (Burnett, 1988). Such 

mechanisms are not generally available to emersed subtidal crustaceans, but 

emersion in a water spray may create the possibility for these mechanisms to occur. 

The large (but not significant) decrease in Na+ concentration in these lobsters also 

suggests that base excretion may be occurring. 

Magnesium concentration increases were large and were independent of the 

degree of dehydration in all non-spray treatments. Magnesium has been used for 

decades as a narcotising agent in the immobilisation of marine invertebrates (Morritt 

and Spicer, 1993). It is an anaesthetic that depresses neuromuscular transmission by 

competing with CC for binding sites (Sartoris and Portner, 1997b). For crustaceans 

to achieve a high level of activity, [Mr] is usually held at low levels in the 
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haemolymp.h, which requires active regulation (Sartoris and Portner, 1997a). In 

decapod crustaceans, Mr is excreted via the antennal gland (Cornell, 1979). There 

are several potential benefits to the lobsters for actively increasing [Me]. Elevated 

[Mr] may be an adaptation in crustaceans allowing them to undergo prolonged 

periods of inactivity or to recover from environmental or metabolic stress (Sartoris 

and Portner, 1997a). Also, a high concentration of Me increases the affinity of 

haemocyanin for oxygen (Mangum, 1983) and could therefore improve oxygen 

uptake in emersed lobsters. Magnesium is found at high concentrations 

intracellularly (Morritt and Spicer, 1993), which is the most likely source for the 

extra Mr found in emersed lobsters. Lobsters in the spray treatment were in the best 

condition after the emersion period, displaying high levels of activity when handled. 

This finding correlates well with the low haemolymph [Mr] measured in these 

lobsters. After 24 hours re-immersion lobsters which had been subjected to low 

RH/wind were in the worst condition, and maintained the highest [Mr]. These 

results further highlight the clear relationship between haemolymph [Mg] and the 

level of activity in crustaceans (Morritt and Spicer, 1993). 

Calcium concentration increases also occurred in all non-spray treatments. It 

is unclear whether the increases in [CC] are due to physiological processes or 

osmolality changes associated with desiccation. However, when lobsters were 

subjected to high RH/no wind there was no osmolality increase which could account 

for the observed increase in [CC]. Similar [CC] increases have been noted in 

various subtidal crustaceans subjected to emersion (deFur et al., 1980; Taylor and 

Whiteley, 1989; Waldron, 1991), and have been used as an indication of the 

mobilisation of bicarbonate from the calcified exoskeleton to counteract respiratory 

acidosis (Truchot, 1990). Spanoghe (1997) observed an increase in the [CC] of 

emersed P. cygnus and also suggested that a compensation process was occurring. In 

the present study, the observed acidosis after 6 hours of emersion was only slightly 

lower than that occurring after 30 minutes of emersion (Chapters 6 and 8), indicating 

that some mechanism is being used to arrest the acidosis. Lobsters in the spray 

treatment did not suffer from acidosis or [CC] increase. Cameron (1985) found that 

external seawater was a much greater source of acidosis compensation than carapace 

carbonate in the blue crab, Callinectes sapidus. Similarly, when emersed P. cygnus 

was able to access an external seawater source it did not need to rely on the 
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mobilisation of bicarbonate from the calcified exoskeleton to counteract a respiratory 

acidosis. 

Haemolymph ions had, in general, returned to control levels after 24 hours re-

immersion, indicating that ionic exchange mechanisms were functioning correctly. 

Conclusions: the benefits of spraying water over emersed crustaceans has not 

been clearly demonstrated in the literature (Paterson etal., 1994b). In this study, 

there was considerable improvement in the condition of the lobsters in the spray 

treatment. Acidosis, which is a common feature of subtidal crustaceans exposed 

to air, was abated, and ammonia buildup and desiccation were prevented. These 

factors are considered to be major determinants of the health of emersed 

crustaceans and the prevention of such physiological changes would probably 

ensure that the lobsters would, at least in the short term, maintain their 

condition. However, the spray did not prevent an increase in lactate or glucose 

and it resulted in the uptake of water, a decrease in osmolality and significant 

changes in haemolymph ions. The short term changes in these factors may not 

be health threatening, however continuous emersion in a spray may increase 

their importance. Thus, although sprays would appear to be "common sense" 

(Paterson et al., 19946) they may be creating "secondary" physiological changes 

which are causing health problems. McLeese (1965) found that seawater sprays 

did not improve survival of H. americanus during an experiment run over an 

extended time. Survival may have been compromised as the result of 

"secondary" physiological changes. The benefits and problems associated with 

holding lobsters in spray systems for extended periods need to be further 

addressed. 

Another reason for the observed differences between studies (McLeese, 

1965; Varley and Greenaway, 1992; Paterson et al., 1994b; Schmitt and Uglow, 

1997a) in determining the usefulness of sprays may relate to the amount of 

water actually passing over the crustaceans (Paterson et al., 1994b). This point 

was clearly demonstrated during this study when two lobsters in the spray 

treatment moved out of the spray system. Although kept damp, they did not 

have the full impact of the spray and the pHs recorded indicate that these two 
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lobsters did not benefit. It appears for a spray system to be effective the water 

needs to impact directly on the lobsters. 

The implications of these results for the western rock lobster industry 

will be discussed in Chapter 9. 
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CHAPTER 8 

The use of time and temperature to control emersion and 

handling stress in the western rock lobster, Panulirus 

cygnus 

8.1 INTRODUCTION 

The live export of western rock lobsters, Panulirus Cygnus, involves 

chilling the lobsters, and placing them into a packaging material (usually wood 

shavings or wood wool) in foam cartons, before they are air-freighted to the final 

destination. Chilling of the lobsters prior to packing is designed to achieve several 

objectives: lobster activity decreases, oxygen consumption decreases, and 

physiological disturbances associated with emersion decrease. Two methods are 

used to chill crustaceans in preparation for live transport - the slow-chill method 

and the quick-(or dip) chill method, which is the one most commonly used in the• 

western rock lobster industry. 

Observations at a P. cygnus processing shed showed that lobsters may be 

emersed for up to 30 minutes before being dip-chilled in preparation for packing 

into export cartons. During the emersion period the lobsters were very active 

(much tail-flicking occurred) and were subjected to handling. In some cases they 

were also exposed to sunlight and to high air temperatures. Such treatment would 

not ensure the lobsters are in the best possible physiological and biochemical 

condition to survive the transport period. This study examines the effect of pre-

packing conditions on lobsters and investigates the use of alternative strategies 

which aim to minimise the physiological and biochemical disturbances imposed 

on lobsters during pre-export conditioning. 

8.2 MATERIALS AND METHODS 

General Materials and Methods are as outlined in Chapter 2. Lobsters 

weighing between 383 and 506 grams, of both sexes, were used in this series of 

experiments. All lobsters were starved for 36 hours prior to being used in an 

experiment. The lobsters were subjected to three experiments: 
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(i) The effect of a three minute dip in 12°C on blood parameters was tested on 

lobsters immediately after moving them from the holding tank at 23°C and 

after a 30 minute period of stress (emersion and handling). Six control 

lobsters (haemolymph sampled without subjecting the lobsters to stress) 

were sampled. 

(ii) The effect of a 15 minute and a 30 minute stress on blood parameters of 6 

lobsters. Six control lobsters (haemolymph sampled without subjecting the 

lobsters to stress) were sampled. 

(iii) The effect of a 30 minute stress at 6 different temperatures (11, 15, 19, 23, 

27, and 31°C) on the blood parameters of 6-11 lobsters. The lobsters were 

placed into a chilling tank at 23°C and the temperature was increased or 

decreased to the appropriate temperature at a rate of 2°C per hour. The 

lobsters were left overnight at the test temperature before testing the 

following morning. Six control lobsters (haemolymph sampled without 

subjecting the lobsters to stress) were sampled at each temperature. 

Statistical analyses 

The Students t-test was used to test for differences between the control 

lobsters and the treatment lobsters. Where appropriate a Students t-test for 

samples with unequal variances was used. One-way ANOVAs were used to test 

for differences where multiple treatments were used (eg. between the control 

lobsters at each temperature or the effect of emersion time on haemolymph 

parameters). The Levene test was used to test for homogeneity of variance and 

where necessary an appropriate transformation was performed before further 

analysis. Comparisons of means following ANOVA was done using the Tukey-

HSD test. Differences were considered significant if P<0.05. 

Linear regressions were obtained by the least squares method and were 

tested for significance of regression by analysis of variance of the regression. All 
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analyses were performed on the SPSS statistical package with the a set at 0.05. 

All means are expressed as mean±SE. 

8.3 RESULTS 

After 30 minutes of stress and 3 minutes dip-chilling the lobsters had 

significantly higher (P<0.05) haemolymph lactate and glucose concentrations and 

significantly lower (P<0.001) haemolymph pH than the controls(Fig. 8.1). Most of 

the changes in these blood parameters occurred during the 30 minute stress period 

although all blood parameters continued to digress further from the control levels 

during the 3 minute dip-chilling period. Removing lobsters from a 23°C holding 

tank and placing them directly into a 12°C dip-chilling tank for 3 minutes did not 

result in any significant changes in the blood parameters (Fig. 8.2). 
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Figure 8.1: The effect of stress followed by 3 minutes dip-chill (dip) in 
12°C water on the haemolymph pH, and haemolymph ammonia, lactate 
and glucose concentrations of the western rock lobster, Panulirus cygnus 
(n=6). The lobsters were in 23°C water prior the 1/2 hour emersion period. 
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Figure 8.2: Haemolymph pH and haemolymph ammonia, lactate and 
glucose concentrations of the western rock lobster, Panulirus Cygnus, 
before and after a 3 minute dip-chill (Dip) in 12°C water (n=6). The 
lobsters were transferred from a 23°C holding tank directly into the chilled 
water. 

After 15 minutes stress the haemo lymph pH and haemolymph lactate 

concentration were significantly different (P<0.05) to the control levels (Fig. 8.3). 

After 30 minutes stress all of the blood parameters were significantly different 

(P<0.05) to control values. However, none of the 30 minute blood parameters had 

changed significantly from the 15 minute stress values. Haemolymph ammonia 

and glucose concentrations increased steadily over the 30 minute emersion period, 

while pH and lactate showed the greatest changes in the first 15 minute emersion 

period. 
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Figure 8.3: The effect of 15 and 30 minutes emersion and handling on the 
pH, and ammonia, lactate, and glucose concentrations of the haemolymph 
of the western rock lobster, Panulirus cygnus (n=6). 

Temperature (°C) 

Figure 8.4: The effect of emersion and handling at various temperatures 
(slow-chill) on haemolymph pH of the western rock lobster, Panulirus 
cygnus (n=6-11). Control (•), Post-stress (0). The letters denote 
significantly lower pH values for the stressed lobsters compared to the 
control lobsters. 
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The haemolymph pH of lobsters subjected to 30 minutes stress after a 

period of slow-chilling, was significantly (P<0.001) lower than that of the control 

lobsters at all temperatures except for 11°C (Fig. 8.4). The maximum decrease in 

pH occurred at 23°C; the magnitude of the change reduced at higher and lower 

temperatures. The pH at 23°C was significantly lower (P<0.05) than all other pH 

values after the stress period. The pH of lobsters prior to the stress period was 

significantly lower (P<0.05) at 11°C and significantly higher (P<0.05) at 31°C. 

I 	I 	I 	I 
	1 

15 	19 	23 	27 
	

31 

Temperature (°C) 

Figure 8.5: The effect of emersion and handling at various temperatures 
(slow-chill) on haemolymph ammonia of the western rock lobster, 
Panulirus cygnus (n=6-11). Control (•), Post-stress (0). 

Haemolymph ammonia concentrations after 30 minutes stress were not 

significantly different (P>0.05) to the control concentrations in any of the 

treatments (Fig. 8.5). 
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Figure 8.6: The effect of a period of stress at various temperatures (slow-
chill) on haemolymph lactate of the western rock lobster, Panulirus cygnus 
(n=6-11). Control, (•) Post-stress (0). The letters denote significantly 
lower pH values for the stressed lobsters compared to the control lobsters. 

Haemolymph lactate of the lobsters increased significantly (P<0.01) after a 

period of stress at all temperatures except for at 11°C (Fig. 8.6). There was a 

significant (F=137.2, P<0.001) correlation between temperature and lactate 

concentration after stress. The relationship could be described by the following 

equation: 

Lactate (mmo1/1) = 0.145 Temperature (°C) - 1.14 (e=0.97) 

The lactate concentration of the control lobsters was significantly higher 

(P<0.001) at 31°C than at all other temperatures. 
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Figure 8.7: The effect of a period of stress at various temperatures (slow-
chill) on haemolymph glucose of the western rock lobster, Panulirus 
cygnus (n=6-11). Control, (•) Post-stress (p). The letters denote 
significantly lower pH values for the stressed lobsters compared to the 
control lobsters. 

Haemolymph glucose was significantly higher (P<0.05) after a period of 

stress at 19, 23 and 27°C (Fig. 8.7). 

8.4 DISCUSSION 

Emersion and exercise in crustaceans are generally reflected by internal 

hypoxia (deFur et al., 1988; Varley and Greenaway, 1992), a pronounced 

respiratory and metabolic acidosis due to a rise in haemolymph CO2  and lactate 

(Truchot, 1975; Taylor and Wheatly, 1981), hyperglycaemia (Telford, 1968; 

Santos and Keller, 1993) and a build-up of metabolic by-products such as 

ammonia (Schmitt and Uglow, 1997a). The simulated live export procedure in 

this study elicited similar responses in P. cygnus and indicated that they were in a 

stressed condition after being dip-chilled. Most of the physiological disturbances 
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occurred during the initial 30 minute emersion period prior to dip-chilling. 

Therefore, the use of alternative strategies to minimise the disturbances to the 

lobsters physiology and biochemistry would appear necessary. 

Reducing the time period over which the lobsters are emersed prior to dip-

chilling is a logical method of decreasing the stress on the lobsters. However, 

halving the emersion time to 15 minutes did little to reduce the physiological and 

biochemical disturbances. Disturbances to the physiology and biochemistry occur 

rapidly in response to disturbance in crustaceans. In the blue crab, Callinectes 

sapidus, large haemolymph pH and lactate disturbances were observed after 2 

minutes of exercise (Booth et al., 1982). Lactate in the tail muscle of Crangon 

crangon increased significantly after only 10 seconds of exercise (Onnen and 

Zebe, 1983). Also, Vermeer (1987) noted a very quick decrease in the pH of the 

lobsters, P. argus, which escaped initial capture and performed tail-flicks and 

Truchot (1973) found that blood pH dropped rapidly 1-3 minutes after emersion. 

It was apparent in the present study that the control lobsters needed to be caught 

quickly and haemolymph samples taken immediately (within 20 seconds) to 

ensure pH and lactate levels were representative of resting lobsters. If the lobsters 

escaped the initial attempt at capture and performed 2 or 3 tail-flicks in their 

escape response then lactate levels generally measured between 0.5 and 1.0 

mmo1/1 and the pH decreased by approximately 0.3 units (Crear, unpub. data). It 

appears that if the effects of emersion time on the physiology of P. cygnus are to 

be minimised then emersion time needs to be severely reduced. In the present 

study, the removal of lobsters from the holding tank and placement directly in the 

dip-chilling tank greatly decreased the extent of the physiological disturbances 

imposed on the lobsters. 

The quick changes in haemolymph parameters suggests that (a) energy 

requirements are, at least partially, satisfied by anaerobic metabolism, and (b) 

there is a very quick release of lactate from the muscle tissue into the 

haemolymph. The use of anaerobic metabolism to satisfy the energy requirements 

during the escape response (rapid tail-flicking) or during the initial recovery 

period has been demonstrated in various crustaceans (Booth et al., 1982; Onnen 

and Zebe, 1983; Head and Baldwin, 1986). There appears to be considerable 

interspecific differences in the fate of lactate produced in the muscle tissue. In C. 
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crangon very little of the lactate produced was secreted into the haemolymph 

(Onnen and Zebe, 1983). In Leptograpsus variegatus haemolymph lactate was 

considerably lower than total body lactate after a period of exercise (Greenaway et 

al., 1992). However, in Cherax destructor a steady state between tail muscle and 

haemolymph lactate pools is reached quite rapidly (Head and Baldwin, 1986). 

There also appears to be a close correlation between the muscle lactate and 

haemolymph lactate levels in P. cygnus (Spanoghe, 1997). This study indicates 

that lactate is released from the tissues into the haemolymph rapidly in P. cygnus. 

Lobsters recover quite quickly from handling stress (A-, 8 hours - Chapter 6) 

so the experimental protocol used to test the effectiveness of temperature (slow-

chill method) at reducing emersion and handling stress, should have ensured that 

they were in a non-stressed condition, at least in terms of handling stress. 

However, stress created due to the temperature change is unknown. Complete 

acclimation to a change in temperature in decapod crustaceans may take weeks 

(McLeese, 1956; Rutledge, 1981). The responses to acute changes in temperature 

described in this study exclude any adaptive physiological changes that may have 

occurred following temperature acclimation. 

Temperature affects the physiology of the lobsters even before they are 

emersed. The haemolymph pH and lactate increased in rested lobsters held at 

31°C. The pH of crustaceans generally decreases in response to increases in 

temperature; it is postulated that the changes ensure the maintenance of a constant 

relative alkalinity (Howell et al., 1973). The metabolic rate of P. cygnus increases 

with temperature (Chapter 4), whilst the availability of oxygen in the water 

decreases due to the temperature dependent decrease in the capacity of water to 

dissolve oxygen. Therefore, to supply sufficient oxygen to meet requirements, 

increased ventilation volumes are necessary. In Homarus gammarus the gill 

ventilation rate increased between 10 and 20°C to match the increase in M O2  

(Whiteley et al., 1990). In Muninda rugosa, both the gill ventilation rate and the 

heart rate (and hence gill perfusion rate) increased as the temperature increased 

(Zainal et al., 1992). Such increases in the gill ventilation and perfusion rates 

would assist the excretion of CO 2  across the gills, thus driving increases in 

haemolymph pH. Observations of the lobsters showed them to be very restless 

when held at 31°C. The aerobic scope for activity of P. cygnus is limited at that 
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temperature (Chapter 4) which probably means that there is a greater reliance on 

anaerobic metabolism to fund energy requirements, leading to the higher levels of 

lactate measured in resting lobsters at 31°C. The increased pH and lactate levels 

would both increase the oxygen affinity of haemocyanin (Taylor, 1981; 

Greenaway et al., 1992), resulting in an increased uptake of oxygen at the gills. 

These changes would help to alleviate the decreased oxygen affinity of 

haemocyanin caused by the high temperature (Truchot, 1975) and help to maintain 

oxygen levels in the lobsters. 

The pH of rested lobsters decreased at 11°C, which contrasts to that 

measured in various crustaceans where decreased temperature caused increases in 

pH (Truchot, 1983). The M O2  of P. cygnus at 11°C is approximately 30% of the 

MO2  at 23°C. This fact, together with the temperature dependent increase in 

oxygen availability at that temperature, should allow a significant reduction in the 

gill ventilation and gill perfusion rates. In M rugosa both the heart rate and 

ventilation rate decreased as the temperature decreased (Zainal et al., 1992). Thus, 

in P. cygnus held at low temperatures, excretion of CO 2  may not be optimised, and 

its concentration may increase in the haemolymph accounting for the decreased 

pH. 

The physical response to handling at the various temperatures differed 

widely. At 19 and 23°C the lobsters could maintain the tail-flick response for an 

extended period. After about 3-5 minutes (> 50 tail-flicks) they were generally 

exhausted but could recover enough so that when they were handled some time 

later (5-10 minutes) could perform another extended period of tail-flicking. At 27 

and 31°C the lobsters responded strongly to handling but were exhausted within a 

couple of minutes (<30 tail-flicks). They did not appear to recover from the initial 

exhaustion and further handling could generally elicit only a poor tail-flick 

response. At 15°C the lobsters were able to show quite an extended response to 

handling although the tail-flicks were not strong. At 11°C the lobsters only 

responded very weakly to handling (very weak tail-flicks if they did occur) and 

basically appeared to be in a state of immobilisation. 

The physiological response of P. cygnus to emersion varied with the 

temperature. Chilling the lobsters to 11°C resulted in only minor physiological 

disturbances after the 30 minute period of stress. Although there was a slight 

165 



Chapter 8 

increase in lactate, pH remained high, which indicates that there was very little 

increase in the level of CO, in the haemolymph. The M O2  of resting or active 

lobsters at 11°C is low (30% and 20% of resting and active M O2  of lobsters at 

23°C, respectively - Chapter 4) so the rate of CO, production over the stress 

period would be low. In lobsters held at 15, 19 and 23°C the physiological 

disturbances increased as the temperature increased. The level of CO, in the 

haemolymph of H. gammarus increased as the emersion temperature increased 

(Whiteley and Taylor, 1990; Whiteley et al., 1990) probably due to the 

temperature dependent increase in aerial oxygen uptake (Thomas, 1954). 

Increased activity at the higher temperatures could also be influencing the 

physiological disturbances. The capacity of lobsters to be active at lower 

temperatures is limited. Similarly, there was no increase in the haemolymph 

lactate of the velvet swimming crab, Liocarcinus puber, when it was exposed to 

hypoxia at 10°C, although there was a significant increase at 13°C (Whyman et 

al., 1985). The (2 10  of active P. cygnus is 4.4 over the temperature range 11-23°C 

(Chapter 4). This value is well above the Q 10  values of 2 to 3 normally expected in 

thermochemical reactions (Eckert et al., 1988). Therefore, increased activity and 

extra demand by the muscle tissues for energy, as well as the direct effects of 

temperature on energy requirements and oxygen uptake capacity, probably 

account for increases in the physiological disturbances over the 11-23°C 

temperature range. 

At 27 and 31°C the effect of the period of stress on acid-base balance 

decreased and the pH of the lobsters was higher than that measured at 23°C. This 

is despite the fact that haemolymph lactate levels are higher at these temperatures. 

Lactate decreases the haemolymph pH in crustaceans (McDonald et al., 1979) but 

it does not appear to be the main component controlling the pH of P. cygnus. 

When P. cygnus are re-immersed after a period of emersion, the pH increases 

significantly even though lactate levels remain high, indicating that the excretion 

of CO, is crucial in determining the pH (Chapter 6). The relatively high pH in this 

study after emersion at 27 and 31°C indicates that the level of CO, in the 

haemolymph decreased at these temperatures. There are a number of factors which 

could explain the result. 
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(a) The ability to uptake oxygen at the higher temperatures may have 

decreased. The aerial oxygen consumption of Petrolisthes eriomerus 

decreased significantly at 30°C compared to lower temperatures although 

it had risen as the temperature increased from 10°C to 25°C (Stillman and 

Somero, 1996). Waldron (1991) noted a progressive decrease in the 

scaphognathite rate of J. edwardsii after a period of exercise during 

emersion, and suggested that it may have been related to the breakdown of 

acid-base regulation or to excess lactate accumulation. Lobsters which had 

been exercised during emersion could not maintain the same rate of 

oxygen consumption as lobsters which had not been exercised (Waldron, 

1991). In the present study, the lobsters became exhausted much faster at 

the higher temperatures and did not appear to recover from the initial 

exhaustion during the stress period. Their ability to maintain a high gill 

ventilation rate may have been limited, resulting in a reduced oxygen 

uptake. Also, oxygen uptake at the gills would be reduced due to the high 

temperature and low pH, which decrease the oxygen affinity of 

haemocyanin (Taylor, 1981; Greenaway et al., 1992). Part of the reduction 

in oxygen affinity would be offset by the high level of lactate which serves 

to increase the affinity (Booth et al., 1982). Additionally, in subtidal 

crustaceans such as Cancer productus, cardiac output, and hence the gill 

perfusion rate, is considerably decreased in air (deFur and McMahon, 

1984). Exhaustion at 27 and 31°C may further serve to decrease the 

cardiac output, thus limiting the rate of oxygen uptake at the gills. 

(b) Oxygen demand by the lobsters may have been reduced. Although the 

general activity of the lobsters decreases after the initial period of escape 

behaviour, this appears to be due to exhaustion, rather than being an 

attempt to reduce oxygen demand. The very high lactate levels after the 

period of stress at 27 and 31°C also indicate that the lobsters are 

maintaining high energy requirements. 

(c) Buffering of the acidosis may have been achieved at the high temperatures 

at a faster rate than at 23°C. In decapod crustaceans the major source of 
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bicarbonate used to buffer the blood pH is probably the calcified 

exoskeleton (deFur and McMahon, 1984; Truchot, 1990). The period of 

time this buffering system works over is extended, with only partial 

compensation for the acidosis occurring over 24 hours in Carcinus maenas 

(Truchot, 1975) and Austropotamobius pallipes (Taylor and Wheatly, 

1981). In P. cygnus, some recovery of haemolymph pH occurred after 27 

hours of emersion (Spanoghe, 1997). However, a continuous decline in pH 

was observed in P. cygnus during a 60 minute period of emersion 

(Spanoghe, 1997). Therefore, compensation would not be expected to have 

had a significant impact on the acidosis during the 30 minutes period of 

stress in this study. 

Glucose probably increases as the result of the mobilisation of energy 

stores as a source of fuel for anaerobic metabolism (Spicer et al., 1990), and it is 

well known that aerial exposure evokes a hyperglycaemic response in crustaceans 

(Johnson and Uglow, 1985). Norwegian lobsters, Nephrops norvegicus, kept on 

ice (0°C) had a much reduced glucose increase than lobsters maintained at 10°C 

(Spicer et al., 1990). The authors suggested it may be due to the reduced activity 

and handling stress of lobsters maintained at the lower temperature. Similarly, in 

the present study, increases in haemolymph glucose levels were not observed at 

the lower temperatures, which indicates that the reduced activity of the lobsters 

may have reduced the requirement for additional energy during the period of 

stress. 

Conclusion: it has been recognised for many years that the ability of lobsters 

to handle live transport is affected by their condition prior to the transport 

period (Chaisson, 1932). Whiteley and Taylor (1992) suggested that lobsters 

in poor condition will be more vulnerable to stressful situations occurring 

during transit, since further reductions in haemolymph pH could prove fatal 

to individuals already suffering a marked internal acidosis. Evans and 

Spanoghe (1993) suggested that post-harvest procedures which reduce 

haemolymph lactate levels of lobsters should prolong survival during 

transport. The results of this study indicate that the dip-chill method 
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effectively minimises the physiological disturbances imposed on P. cygnus 

only when the lobsters are taken directly from the holding tank and placed in 

the dip tank. The slow-chill method was very effective at reducing the 

physiological perturbations of handling when the lobsters were chilled down 

to 11°C. The implications to industry of the results of this study will be 

discussed in the General Discussion (Chapter 9). 
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CHAPTER 9 

General discussion, conclusions and future studies 

This study has examined in detail the effect of extrinsic and intrinsic factors 

on the rates of oxygen consumption and ammonia excretion of both the southern rock 

lobster, J. edwardsii, and the western rock lobster, P. cygnus. Further studies 

focussed on P. cygnus and examined the effect of temperature on the extent of 

physiological disturbances imposed by emersion and activity, as well as the level of 

oxygen required in the water to optimise recovery from those physiological 

disturbances. Finally, how the physiological disturbances caused by emersion were 

influenced by relative humidity and exposure to wind were investigated, along with 

the physiological benefits of using seawater sprays during emersion. The major 

findings in each area are discussed below, with emphasis on their application to the 

rock lobster fishing and processing industry. 

9.1 OXYGEN CONSUMPTION (Chapters 3 and 4) 

9.1.1 Temperature 

Oxygen consumption of lobsters increases with water temperature, which is 

in direct contrast to the capacity of oxygen to dissolve in water. For example, at 

21°C, resting J edwardsii requires 137% more oxygen than at 13°C, however there 

is 16% lower capacity of water for oxygen at the higher temperature. Thus, a 183% 

higher water flow rate must be maintained at 21°C than at 13°C to ensure the water 

oxygen level is maintained at an adequate level (>80% saturated). Other problems, 

such as lobsters being more active and aggressive, and thus harder to handle at higher 

temperatures, mean that maintaining the water temperature at the lower end of the 

range for the particular species would be beneficial when holding lobsters. 

Future studies: In this study the effect of acute temperature changes on 

oxygen consumption was investigated. However, crustaceans can take 

an extended period to acclimate fully to a new temperature regime. 
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Determining the oxygen consumption rates of lobsters as they acclimate 

to different temperatures would be of interest. 

9.1.2 Body weight 

Total oxygen consumption increases with body weight, however on a per 

weight basis, larger lobsters consume less oxygen than smaller lobsters. Lobster 

weight is commonly used as a means of separating lobsters at holding facilities. 

Based on oxygen requirements large lobsters can be maintained at a higher stocking 

weight than smaller lobsters. For example, a tank which could maintain 1000 kg of 

450 g P. cygnus would be able to maintain 1289 kg of 2000 g P. cygnus. Where 

space limitations exist stock management procedures should ensure that larger 

lobsters are stocked at a higher weight density then smaller lobsters. 

9.1.3 Diurnal rhythm 

The oxygen consumption rate of lobsters increases during the night due to 

increases in the level of activity. On the other hand, the level of oxygen in water can 

decrease overnight as plants consume oxygen during darkness. This natural decrease 

in the dissolved oxygen concentration, coupled with an increase in oxygen 

consumption of the culture organism may decrease the dissolved oxygen 

concentration to levels at which ihe cultured organism may be stressed or even die 

(Du Preez et al., 1992). Management practices should ensure that oxygen does not 

become limiting overnight. 

9.1.4 Activity/handling/emersion 

Lobsters can display maximum oxygen consumption rates even during 

routine activity, such as that associated with darkness. Once the activity ceases, for 

example, when the lights come on, oxygen consumption quickly returns to standard 

rates. However, the high oxygen consumption rates associated with excessive 

activity, such as that resulting from emersion and/or handling, are maintained for an 

extended period. High levels of oxygen need to be supplied to the animals over that 
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period. As lobsters will go through many post-capture processes which result in 

emersion, handling, and/or increased activity, then for much of the post-capture 

period they would have high oxygen consumption rates. To ensure that the supply of 

oxygen is not limited at any time during the post-capture process it needs to be 

delivered at a rate which would satisfy the lobsters active rate of oxygen 

consumption. Special attention should be given to minimising the periods of 

emersion/disturbance/handling that lobsters are subjected to. 

9.1.5 Feeding 

As baited pots are used to capture lobsters, there is every possibility that 

lobsters will have eaten just prior to being brought on board fishing boats. Only 12- 

15% of J. lalandii delivered to the processing plants had completely empty guts, 

indicating that the most of the animals had recently eaten (van Wyk et al., 1986). It is 

therefore likely that the post-capture oxygen consumption rate of lobsters will be 

significantly higher than standard, due to the effects of specific dynamic action. This 

does not even account for the effects on oxygen consumption of increased activity, 

handling and/or emersion. The higher oxygen consumption rate associated with 

feeding would result in a lowering of the scope for activity of lobsters. Thus, there 

would be a slower repayment of any oxygen debts accumulated during the post-

prandial period and a decreased portion of the energy budget would be available to 

cope with stressors imposed during the post-prandial period. American lobsters, 

Homarus americanus, held out of the water after being fed, survived for a 

considerably shorter period than lobsters which had been starved (McLeese, 1965). 

The higher oxygen consumption rate of the fed lobsters would certainly have 

contributed to the result. This further highlights the need to minimise the post-

capture periods of emersion/disturbance/handling that lobsters are subjected to. 

If lobsters are to be fed whilst they are being held then the holding facility 

managers need to ensure that sufficient water oxygen is supplied to meet the high 

rate of oxygen consumption associated with feeding. 
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Future studies: determine how the high oxygen consumption rate during 

the post-prandial period influences the extent of physiological 

disturbances caused by emersion/activity during that period. 

9.1.6 Dissolved oxygen level 

The high critical oxygen tension of active lobsters means that the oxygen 

tension of the water needs to be maintained at a high level to ensure that oxygen 

supply is not limiting the ability of lobsters to uptake oxygen. Measurements on 

board lobster boats showed that in certain situations the lobsters are being maintained 

in water where the oxygen tension is well below the critical oxygen tension. Such a 

situation would retard the rate of recovery of the lobsters from post-capture 

physiological disturbances, increasing the likelihood that lobsters will be subjected to 

further periods of disturbance before they have completely recovered from the 

original disturbance. 

9.1.7 Species specific differences/similarities 

In general, the oxygen consumption response of J. edwardsii and P. cygnus to 

the extrinsic and intrinsic factors examined in this study is similar. However, some 

species-specific differences were found. These include: (a) the standard Mo, of P. 

cygnus is almost twice as high as J. edwardsii at each species "preferred" 

temperature. This is probably mostly a reflection of the higher "preferred" 

temperature of P. cygnus. (b) The aerobic expansibility of each species is similar 

which means that the aerobic scope for activity is twice as great for P. cygnus. (c) A 

high aerobic scope for activity of P. cygnus was able• to be maintained over a 

significantly wider temperature range than for J. edwardsii. (d) The rate of oxygen 

consumption at night (ie. the increase above standard) of P. cygnus was almost twice 

that of J. edwardsii. The above differences probably indicate that P. cygnus is a more 

active animal than J. edwardsii. The higher oxygen consumption rate of P. cygnus 

needs to be taken into account when designing holding systems. However, in general, 

practices which seek to maintain the health of lobsters during post-capture processes 

do not need to be significantly different for each species. 
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9.1.8 Summary 

Such a thorough understanding of how extrinsic and intrinsic factors affect 

oxygen consumption has not been evaluated for any other species of large decapod 

crustacean. Activity has the largest influence on oxygen consumption rate; holding 

systems which are designed to supply sufficient oxygen to satisfy the active rate of 

oxygen consumption will guarantee that environmental oxygen availability does not 

compromise the ability of lobsters to survive and maintain health in the post-capture 

environment. An industry application of some of the above information on J. 

edwardsii is shown in Appendix 4. 

9.2 AMMONIA EXCRETION (Chapter 5) 

Increasingly lobsters are held in systems which re-use the water (re-

circulating systems). The successful design and operation of suitable water treatment 

units depends upon knowledge of the cultured animals' feeding behaviour, excretion 

patterns and tolerance to recycled water (Wickins, 1985). Ammonia is one of the 

most common pollutants found in intensively managed aquaculture systems, and can 

be toxic to crustaceans (Colt and Armstrong, 1981). In re-circulating systems 

ammonia is removed by the actions of bacteria living in a biological filter; if the filter 

cannot handle the ammonia load then ammonia can accumulate to dangerous levels. 

Feeding has the greatest influence on the ammonia excretion rate of J. edwardsii and 

P. cygnus. Live lobster holding systems are unique, in that lobsters are usually not 

fed during the time they are held. Therefore, during the period lobsters are held most 

would only be excreting endogenous levels of ammonia. This is especially true for 

the southern rock lobster where fishermen are at sea for up to ten days prior to their 

catch being transferred to live holding systems. If animals are delivered to the 

holding system soon after capture, then the use of a purging tank prior to placement 

in the recirculating system will ensure that overloading of the biological filter will be 

minimised, as ammonia excretion rates take less than 30 hours to return to 

endogenous levels after feeding. 
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The results show the similarity the ammonia excretion response of the two 

species to the various extrinsic and intrinsic factors examined in this study. As for 

oxygen consumption, the ammonia excretion of P. cygnus was generally twice as 

high as that of J. edwardsii under any particular factor. Eg. the ammonia excretion 

rate at the "preferred" temperature of each species. 

The data for the ammonia excretion rate of J. edwardsii has been used to 

calculate the biological filter unit required to handle the load from 1000 kg of 

lobsters (Appendix 5). 

Future studies: the determination of toxic levels of ammonia to lobsters 

and the effect of ambient ammonia concentration on oxygen 

consumption of lobsters. 

9.3 RECOVERY (Chapter 6) 

The maintenance of oxygen levels close to saturation have been shown to 

increase the ability of lobsters to rapidly recover from physiological disturbances. It 

is imperative that holding systems should be designed so that oxygen levels do not 

fall below 70-80% saturation at any time. This is relatively simple and inexpensive to 

achieve. The physiological problems associated with holding disturbed lobsters in 

water with low levels of oxygen were apparent, with slow recovery rates, and in the 

extreme case, death. Similar low oxygen levels are frequently measured in industry 

situations. 

Future studies: determine the effect of further episodes of 

activity/emersion/handling during the recovery period on the extent of 

physiological disturbance and on the timecourse of recovery. 

9.4 AERIAL TRANSPORT (Chapter 7) 

The results of this study highlight that the best method of holding lobsters 

during transportation is to leave them fully immersed in top quality water. Tod and 

Spanoghe (1997) came to a similar conclusion when they investigated truck transport 
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of P. cygnus. Similarly, Schmitt and Uglow (1997a) suggested that the use of a 

system which kept Nephrops norvegicus at least partially immersed in running 

seawater was likely to improve its nitrogen excretion and reduce the occurrence of 

anaerobiosis and was to be strongly recommended. However, keeping lobsters 

immersed is not always practical from an industry perspective, therefore carrying 

them emersed but with seawater sprays appears to be a reasonably good alternative, 

and is a method which has been extensively used within the western rock lobster 

industry. Spray systems provide many benefits to P. cygnus, compared to being 

emersed without them. Although they serve to prevent the occurrence of some 

physiological changes associated with emersion, and decrease the rate at which some 

other physiological parameters decline, the lobsters still suffer physiological 

disturbances, which may be detrimental over an extended period of emersion. 

It was obvious that the seawater spray had to impact directly on the lobsters 

to be beneficial. Some lobsters which had moved out of the direct path of the spray 

(still subject to splashing) showed physiological changes similar to lobsters which 

had been emersed without seawater sprays. Lobsters being transported on carrier 

boats from the Abrolhos Islands to Geraldton in Western Australia, are generally 

carried on the decks with seawater sprays. Although huge volumes of seawater are 

sprayed over the lobsters much of the water is channelled so that it not actually 

impacting in the lobsters. Channelling occurs partly due to the design of the basket 

lids, which commonly do not have enough void space, and partly due to the shear 

numbers of lobsters within each basket. The baskets are stacked on top of one 

another resulting in only the top one or two baskets of lobsters actually receiving 

large amounts of spray. To ensure the sprays are reaching the optimum numbers of 

lobsters, the density of lobsters needs to be decreased, and the design of the basket 

lids needs to be such that it does not impede the flow of water. 

Future studies: the physiological effect of the longterm emersion of 

lobsters under spray systems. The effect of activity/disturbance whilst 

the lobsters are emersed. 
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9.5 TEMPERATURE AND STRESS (Chapter 8) 

The capture and preparation process immediately prior to the chilling and 

packing steps induces an extraordinary amount of stress on the lobsters, making it 

questionable whether the animals would be in optimal physiological condition to 

endure being exported (Spanoghe, 1997). It has been shown in this study that the dip-

chill method of preparing lobsters can effectively minimise the physiological 

disturbances imposed on P. cygnus prior to export, but only when the lobsters are 

placed directly in the dip tank from the holding tank. The requirement of getting 

lobsters out of a storage tank, sorted and weighed, and into the chill tank would 

preclude the process occurring quickly. Even a 15 minute period of emersion and 

handling results in large physiological disturbances. Furthermore, lobsters at ambient 

temperature are very active and difficult to handle, meaning the process of sorting 

and weighing can be difficult. 

The benefit of cooling prawns (Penaeus japonicus) before preparing them for 

live export appears to be to allow them to be handled more conveniently due to a 

physiological shock (Paterson, 1993a). Similarly, P. cygnus was very easy to handle 

after a period of chilling, meaning the chances of lobsters being physically damaged 

during the handling process would be minimised. Additionally, the use of a slow-

chilling decreased the extent of the physiological disturbances imposed on the 

lobsters by a period of emersion and handling, thus they were in the best possible 

physiological and biochemical condition to survive the transport period. In this study, 

slow-chilling lobsters to 11°C minimised the physiological disturbances resulting 

from emersion and handling, however the optimum temperature of chilling would 

probably change depending on the ambient temperature. 

The possible physiological benefits brought about by alternative methods of 

pre-transport preparation, such as slow chilling, need to be weighed up against the 

economic costs of executing the processes. The benefits of slow-chilling may be 

minor compared to other factors causing major physiological disturbances during the 

export process. It must be noted that the export of live western rock lobsters is 

normally carried out successfully, with minimal losses, using the present dip-chill 

method of preparing the lobsters. This study outlines some possible problem areas of 
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the present dip-chilling practice and highlights methods which could be used to 

overcome those problems if they are found to become industry concerns. 

Future studies: determine if the physiological benefits of slow chilling 

are able to be sustained throughout the export process. 

9.6 CONCLUSION 

This study has developed our understanding of the physiological responses of 

the southern and western rock lobsters to factors affecting them during post-capture 

processes, and will allow the design and management of rock lobster holding 

facilities to be based on a sound scientific basis. It also represents a major 

contribution to knowledge on respiration and nitrogen metabolism of large decapod 

crustaceans. 
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APPENDIX 1 

The respirometer system 

Three respirometers were setup in parallel. The respirometers were 

primarily used in the intermittent flow mode however they could be used in the 

closed mode when required. The total volume of each chamber was 18.3 1. A 

submerged powerhead pump was used to ensure there was both good water 

mixing within each chamber and sufficient water flow past the membrane of the 

oxygen electrode. 

Oxygen consumption (M0) was determined from the equation: 

(Pozi — Po2f)*V *60 
Mo2(mg02 I g I h) — 

W* t 

where P02 i is the initial oxygen tension in the respirometer (mg/1); P02f is the 

oxygen tension after the measuring period (mg/1); V is the volume of water in the 

respirometer adjusting for lobster volume (1); W is the weight of the lobster (g); 

and t is the time of the measuring period (minutes). 

To datalogger 

Water 
outlet Water 

Inlet 

Respirometers 

Heat/chill 
\ system / 
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Ambient (23°C) Temperature 0°C 
pH 7.79 

7.84 
7.60 
7.87 
8.00 
7.91 
7.84 
7.90 

8.38 
8.30 
8.31 
8.34 
8.41 
8.37 
8.24 
8.33 

Average (± SE) 8.34 ± 0.02 7.85 ± 0.04 

APPENDIX 2 

Haemolymph pH measurements 

Comparison of the measurement of haemolymph pH of P. cygnus at 0°C to 

measuring it at ambient temperature (23°C)(Table 1). Lobsters were held at 23°C 

prior to taking the haemolymph samples. A 2 ml haemolymph sample was taken 

from each lobster: 1 ml was placed into an ice-cold eppindorf tube and 1 ml was 

placed into an eppindorf tube at 23°C. The chilled tube was placed into an ice-cold 

bath and the other tube was Maintained at 23°C. The pH of the haemolyrnph at 

23°C was measured immediately (with the pH electrode calibrated at 23°C). The 

pH of the chilled haemolymph was measured after the pH electrode was calibrated 

in ice-cold buffers. 

Table 1: The haemolymph pH of P. cygnus measured at 0°C compared to 

measurement at ambient temperature (23°C). 
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APPENDIX 3 

Biochemical methodology 

The procedures used for the analysis of haemolymph lactate, glucose and 

ammonia and water ammonia and urea are outlined below. 

1. LACTATE ANALYSIS 

Lactate concentrations were determined enzymatically using the Boehringer-

Marmhein analysis kit (Cat. No. 139084). L-lactic acid is oxidised by 

nicotinamide-adenine dinucleotide (NAD) in the presence of L-lactate 

dehydrogenase (L-LDH) to pyruvate. The equilibrium of this reaction lies almost 

completely on the side of L-lactate. However, by trapping pyruvate in a 

subsequent reaction catalysed by the enzyme glutamate-pyruvate transaminase 

(GPT) in the presence of L-glutamate, the equilibrium can be displaced in favour 

of pyruvate and NADH. The amount of NADH formed in the above reaction is 

stoichiometric to the amount of L-lactic acid. The increase in NADH is 

determined spectrophotometrically as absorbance at 340 nm. The absorbance 

measured is compared against a calibration curve to determine the concentration 

of lactate present in the samples. All samples are run in duplicate. 

REAGENTS 

1. 0.6 M perchloric acid (PCA) - 50.8 ml of 70% PCA in 1litre deionised water 

2. 3 M KOH 

3. Reagents from Boehringer Mannheim test kit (No 139084) (Solution 1) 

Glycylglycine buffer, (Solution 2) NADH, (Solution 3) GPT suspension, and 

(Solution 4) LDH solution. Use the solutions to make the following two 

solutions (make to volume depending on the number of samples to be done). 

Solution A - 1000 ul buffer (Sol. 1 - bring to 25°C before use)+ 200 

ul NADH (Sol. 2)+ 20 ul GPT (Sol. 3)+ 600 ul DDW 
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Solution B -20 ul LDH (Sol. 4) + 400 ul DDW 

4. Standards (using supplied standard solution) 

Standard Dilution Conc (mmo1/1) 
1 1:19 0.111 
2 1:9 0.222 
3 1:5 0.37 
4 1;3 0.555 
5 1:1 1.11 
6 no dilution 2.22 

PROCEDURE 

Extraction 

(a) Add 250 pi haemolymph to 500 pl 0.6 M PCA, Vortex in Eppendorf Can 

freeze (liquid nitrogen then at -86°C) at this time if haven't got time to do the 

runs. 

(b) Sit on ice for 10 minutes. 

(c) Centrifuge at 8000g for 3 minutes - stand on ice. 

(d) Neutralise supernatant with 6.4 ul of 3 M KOH to 150 ul of supernatant. 

(e) Vortex thoroughly and sit on ice for 15 minutes. 

(f) Centrifuge at 8000g for 3 minutes and separate the supernatant (this settles out 

the precipitated perchlorate which interferes with the reading). 

Assay 

1. Add 900 ul of Solution A. 

2. Add 100 ul of blank, standard or test solution. 

3. Read at 340nm after 5 min (reading at this time was found to be unnecesary). 

4. Add 200 ul of Solution B. 

5. Read at 340 nm after 30 min. 

The samples may need to be diluted to fall within the range of the standard curve. 
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CALIBRATION CURVE 

A new calibration curve was made up for each sample run. A typical 

calibration curve is shown in Figure 1. 

Figure 1: Lactate calibration curve obtained from standards 

y = 0.472 x + 0.004 (r2  = 0.998) 

0 
	

1 
	

2 
	

3 

Lactate (mmo1/1) 

CALCULATIONS 

Average blanks and subtract this value from all readings. Calculate the 

sample lactate concentration using the calibration curve. Multiply the result by 3 

(for dilution with PCA) and by 156.4/150 (for addition of KOH). All samples are 

run in duplicate. 

2. GLUCOSE ANALYSIS 

Glucose concentrations were determined enzymatically using a Sigma 

glucose test kit (No. 510), which is based on the glucose-oxidase method. The 

sample is added to a mixture containing glucose-oxidase, peroxidase and o- 
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dianisidine. The final colour intensity is proportional to the glucose concentration. 

The absorption was measured at 450 nm on a GBC UV/VIS 916 

spectrophotometer. 

REAGENTS 

1. Enzyme solution - add contents of 1 capsule of PG0 enzymes (Sigma No. 

510-6) to 100 ml distilled water in an amber bottle. 

2. Colour reagent solution - reconstitute 1 vial of o-Diansidine Dihydrochloride 

(Sigma No. 510-50) with 20 ml distilled water. 

3. Combined enzyme-colour reagent solution - combine 100 ml of enzyme 

solution with 1.6 ml of colour reagent solution. 

4. Standards (using supplied standard solution) 

Standard 
	

Dilution 	 Conc (mmoUl) 
1 
	

1:99 
	

0.0556 
2 
	

3:97 
	

0.1668 
3 
	

6:94 
	

0.3336 
4 
	

10:90 
	

0.556 

PROCDURE 

The supernatant obtained from the extraction procedure outlined in the 

lactate procedure (see above) is tested for glucose. 

1. Add 100 ul of blank, standard and sample solution 

2. Add 2 ml of combined enzyme-color reagent solution 

3. Incubate at 37°C for 30 mins or at room temperature (18-26°C) for 45 minutes. 

(Avoid exposure to bright light) 

4. Read at 425-475 nm using blank as a reference 

CALIBRATION CURVE 

A new calibration curve was made up for each sample run. A typical 

calibration curve is shown in Figure 2. 

206 



Figure 2: Glucose calibration curve obtained from standards 
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CALCULATIONS 

Average blanks and subtract this value from all readings. Calculate the 

sample glucose concentration using the calibration curve. Multiply the result by 3 

(for dilution with PCA) and by 156.4/150 (for addition of KOH). 

3. WATER AMMONIA ANALYSIS 

Ammonia was analysed by the phenol-hypochlorite method of Solarzano 

(1969). The following methods were adapted from Parsons et al. (1984) and Frith 

et al. (1993). Ammonia reacts with phenol and hypochlorite in alkaline solution to 

form indophenol blue. Sodium nitroprusside is used to intensify the colour at 

room temperature. The intensity of the colour produced is proportional to the 

concentration of ammonia present and is measured spectrophotometrically as 

absorbance. The absorbance measured is compared against a calibration curve to 

determine the concentration of ammonia present in the samples. 
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REAGENTS 

(1) Phenol solution: 20g of phenol in 200m1 of 95% ethanol. 

(2) Sodium nitroprusside solution: Dissolve 1.0 g sodium nitropmsside in 200 ml 

of deionised water. Store in an amber bottle in the refrigerator. The solution is 

stable for at least one month. 

(3) Alkaline reagent: Dissolve 100g tri-sodium citrate and 5 g NaOH in 500 mL 

deionised water. 

(4) Sodium hypochlorite solution: Commercially available hypochlorite which 

should be about 1.5N. Keep in the dark. 

(5) Oxidising solution: Mix a 4:1 ratio of solution of Reagent 3 and Reagent 4. 

This solution should be made up fresh before use and is stable for less than 

one day. 

(6) Standards: To prepare a 100 mg/1 as N standard (stock solution), add 0.0382 g 

reagent grade NH4C1 to 50 ml distilled water in a 100 ml volumetric flask. Stir 

to dissolve and dilute to volume with distilled water. Prepare a 10 mg/1 

standard by pip etting 10 ml of the stock solution into a 100m1 standard flask 

and making the solution up to mark with deionised NaC1 (3.5%) solution. 

Prepare 0.3, 0.6, 1.0 and 2.0 mg/1 standards by pipetting 1.5, 3, 5 and 10 ml of 

the 10 mg/1 standard into 50 ml standard flasks and making up to the mark 

with deionised NaC1 solution. A blank solution is comprised of the deionised 

NaC1 solution. Use 0.0, 0.3, 0.6. 1.0 and 2.0 mg/1 standards to create the 

calibration curve. 

SAMPLES 

Duplicate 15 ml water samples were taken at each sampling period and 

when these could not be analysed immediately, they were frozen at -15°C for a 
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maximum of 1 week; a time period which is well within the recommended 

maximum storage time of 2 weeks (Parsons etal., 1984). 

PROCEDURE 

Take 15 ml of each standard and sample and add to the test tubes. To each 

of the standards and samples add the following. 

(a) 0.6 ml of phenol solution 

(b) 0.6 ml of sodium nitroprusside solution 

(c) 2.0 ml of oxidising solution 

Mix the tube after each addition. Cover the tops of each tube and keep 

them in the dark for one hour at room temperature. The colour is stable for approx. 

24 hours after the reaction period. At the end of this time measure the absorbance 

against a blank at 640 nm, using a 1 cm cuvette. Calculate the sample ammonia 

concentration using the calibration curve. 

CALIBRATION CURVE 

A new calibration curve was made up for each sample run. A typical 

calibration curve is shown in Figure 3. 
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Figure 3: Calibration curve obtained from standards 
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CALCULATIONS 

Calculate the sample ammonia concentration using the calibration curve. 

This procedure estimates the total ammonia concentration. This is comprised of 

ionised (NH  and unionised (NH 3) ammonia. The proportion of 

unionised ammonia present depends on the pH and temperature of the water at the 

time of sampling. A table is available that allows you to calculate the level of 

unionised ammonia present in the sample. 

RANGE AND PRECISION 

Frith et al. (1993) recommends a range of 0.005-1.0 mg/1 although 

concentrations of up to 2 mg/1 still maintained a good calibration curve. Samples 

with higher concentrations were diluted to less than 2 mg/l. Frith et al. (1993) 

suggests that the precision (as relative standard deviation) is about 2.5% at 50 

pig/I. 
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4. HAEMOLYMPH AMMONIA ANANYSIS 

Ammonia needs to be determined on haemolymph samples that are not de-

proteinised. Haemolymph ammonia concentrations were measured using a Sigma 

test kit (No. 640) for urea nitrogen which is based on the phenol/hypochlorite 

method of Solorzano (1969)(as outlined above). The addition of distilled water to 

the sample, in conjunction with keeping it ice-cold, prevented clotting of the 

haemolymph sample for over 3 hours. In comparison, ice-cold haemolymph 

remained unclotted for a maximum of only one hour. Dilution of the sample also 

ensured that the ammonia reading stayed within the range of the standards. The 

absorption was measured at 640 rim with a GBC UVNIS 916 spectrophotometer. 

REAGENTS 

(1) Phenol nitroprusside solution 

(2) Alkaline hypochlorite solution (Sodium hypochlorite 0.2%) 

(3) Standards - make up 1, 2, 4 and 8 ug/ml standard with NH 4C1 (as outlined 

above in Water Ammonia Analysis). 

PROCEDURE 

1. Add 1 ml phenol nitroprusside solution to each blank, standard and sample 

(mix the tube). 

2. Add 1 ml alkaline hypochlorite solution (mix the tube). 

3. Allow tubes to develop colour at room temperature for 20-30 minutes and 

measure at 640 nm (colour is stable for 1 hour). 

CALIBRATION CURVE 

A new calibration curve was made up for each sample run. A typical 

calibration curve is shown in Figure 4. 
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Figure 4: Haemolymph ammonia calibration curve for standards 
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CALCULATIONS 

Calculate the sample ammonia concentration using the calibration curve. 

Multiply the result by two to allow for the dilution of ammonia by water. 

5. WATER UREA ANALYSIS 

Urea was analysed by the urease method of McCarthy (1970) as modified 

by Carter and Brafield (1991). This method involves the enzymatic hydrolysis of 

urea, by urease, to carbon dioxide and ammonia (Price and Harrison, 1987). The 

liberated ammonia is assayed by the ammonia method outlined above. This 

method also measures ammonia present prior to hydrolysis. Therefore, the 

difference between the ammonia concentration before and after urease treatment 

gives a calculation of the ammonia attributable to urea. 

REAGENTS 

1. Citrate buffer: 0.5M sodium citrate (to pH 7). 14.705 g in 100m1 of distilled 

water. 
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2. Urease: 0.18 g/100 ml 0.5 M citrate buffer (100 1U/rap. 

3. Other reagents for calculation of ammonia as outlined above 

PROCEDURE 

(a) Add 1 ml of buffered urease per 10 ml of sample 

(b) Gently shake tube 

(c) Incubate at 50°C for 50 minutes 

(d) Let cool to room temperature 

(e) Measure the ammonia concentration as outlined above. Use standards that 

have urease added and follow the same procedure as for the samples. 

CALCULATIONS 

The nitrogen present due to urea is obtained by subtracting the nitrogen 

present due to ammonia from the total nitrogen present due ammonia and urea. 

6. REFERENCES 

Frith, M., Forteath, N. and Wee, L., 1993. Appendix II. Chemical determination of 

selected water quality parameters. In: P. Hart and D. O'Sullivan (Editors), 

Recirculation systems: Design, construction and management. Aquaculture 

Sourcebook, Tasmania. pp. 111-128. 

Parsons, T.R, Maita, Y. and Lali, C.M., 1984. A manual of chemical and 

biological methods for seawater analysis. Permagon Press, Oxford. 173 pp 

Solorzano, L., 1969. Determination of ammonia in natural waters by the 

phenolhypochlorite method. Liinnol. Oceanogr., 14:799-801. 
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APPENDIX 4 

Oxygen consumption - application of the results to 
industry 

The following is an abbreviated section of an article which appeared in 

Austasia Aquaculture (Crear, 1997). Some additional parts have also been added. 

It demonstrates how the information obtained on J. edwardsii oxygen 

consumption can be used in industry. 

Temperature 

The equation describing standard rates of oxygen consumption of J. 

edwardsii (Section 3.3) is able to be used to calculate the amount of oxygen 

required at any particular temperature (Table 1). The equation is: 

Log MO2  (mg 02/kg/h) = 0.047T - 2.25 (where T is temperature) 

Temperature (°C) MO2 (mg 02/g/h) 
5 0.010 
9 0.015 
13 0.023 
17 0.035 
21 0.055 

Table 1: The oxygen requirements (mg 0 2/g/h) of J. edwardsii at various 
temperatures (°C). 

Oxygen consumption increases as the temperature of the water increases. 

Many holding systems are recirculating systems. Each operator has a preferential 

temperature but most systems are maintained between 9 and 13°C. Lobsters 

maintained at 13°C will require 50% more oxygen than lobsters maintained at 

9°C. Some systems are flow-through and the temperature of the water can become 

considerably higher than 13°C. Lobsters consume over 50% more oxygen at 17°C 

than at 13°C. 

The amount of oxygen able to be dissolved in water varies with the 

temperature: as the temperature increases the amount of oxygen decreases. When 

water has as much oxygen present as it is normally able to contain (that is, it is in 
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equilibrium with atmospheric oxygen), the water is defined as being 100% oxygen 

saturated. At 9°C fully saturated seawater contains 9 2 mg/1 of oxygen whereas at 

17°C it contains only 7.8 mg/l. Therefore, an increase in temperature causes both 

an increase in the oxygen requirements of lobsters and a decrease in the 

availability of oxygen. Cooler water has obvious advantages regarding supplying 

oxygen to the lobsters. Also, lobsters are less active and aggressive at cooler 

temperatures making them easier to handle. 

Weight 

Lobsters are usually graded, stored and exported on weight basis. Weight 

has a large influence on the requirements of lobsters for oxygen. Larger lobsters 

consume more oxygen; a 2000 g lobster requires over twice the amount that a 500 

g lobster requires (Table 2). However, on a weight basis they consume less. Table 

1 shows that 100 kg of 2000 g lobsters consume only 3/5th of the oxygen that 100 

kg of 500 g lobsters consume. Therefore, you can maintain a higher total weight 

of larger lobsters in a tank compared to smaller lobsters. 

Weight 
(g) 

Total oxygen cons. 
(Ingi11) 

Total oxygen cons. 
(mg/100kg/h) 

500 
2000 

16.6 
38.1 

3320 
1905 

Table 2: Oxygen consumption of 500 g and 2000 g lobsters on a per lobster and a 

per weight basis. 

Handling 

Handling and air exposure of lobsters are unavoidable parts of the fishing 

and processing procedure. The usual response of lobsters to such activities is to 

adopt an escape behaviour which is highlighted by the tail-flicking response. The 

increased activity causes an increase in oxygen consumption; lobsters will 

consume almost 200% more oxygen during periods of activity then when they are 

inactive. They can recover quickly from short periods of activity, however if there 

is prolonged activity and air exposure, it can take over 7 hours to return to normal 

consumption levels. It is important that sufficient oxygen is available to cover 
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periods of increased requirements. More importantly, practices need to be adopted 

which minimise  the amount of handling and air exposure lobsters are subjected to. 

Water oxygen level 

The level of oxygen present in the water is a major factor in determining 

the ability of lobsters to use that oxygen. Lobsters are able to maintain their 

consumption rates as the oxygen level decreases via several physical and 

biochemical mechanisms. To do that efficiently there must be a certain level of 

oxygen present in the water. Our research has shown that there needs to be greater 

than 60% oxygen saturation to ensure that oxygen itself is not limiting the amount 

of oxygen being consumed by the lobsters. 

Lobsters are able to survive much longer in air than in stagnant water. 

They have some ability to uptake oxygen from air, although this constitutes only 

about a third to a half of their requirements under normal conditions. Therefore, if 

they are exposed to air they will build up an oxygen debt but they are able to 

survive. However, once the oxygen is depleted in a tank of water then the lobsters 

aren't able to access any oxygen at all. If 100 kg of 700 g lobsters are being held 

in a static, un-aerated 1000 1 tank at 13°C they would deplete the oxygen reserves 

in just over 3 hours. Therefore, alarms need to be present to provide a warning in 

the case of a electrical/mechanical failure of the pumping/aeration system. If 

alarms are not fitted then the tank should be self-draining to ensure the lobsters do 

not remain in stagnant water. 

Information on lobsters oxygen requirements will assist in the design and 

management of holding systems, both on board boats and in processing sheds. 

Water flow rate requirements based on our information is outlined in Table 3. To 

ensure oxygen levels are nearly always adequate aeration should also be provided. 

Aeration is an easier and cheaper option compared to increasing water flow rates 

It has the added advantage of ensuring good water mixing which ensures that there 

are no dead spots into which weak lobsters can get shunted. 

9°C 13°C 17°C 13°C + activity 
, 

Water flow 435 735 1186 2000 
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(litres/100kg/hr) 

Table 3: The water flow requirements of 100 kg of 700 g lobsters at various 
temperatures when a minimum oxygen level of 60% is maintained. The 
calculations assume that there is no aeration and that the incoming water is 100% 
saturated. The requirement of active lobsters at 13°C is also shown. 

Reference 

Crear, B.J., 1997. Oxygen - an important requirement for holding live southern 

rock lobsters. Austasia Aquaculture, March/April 1997, pp. 69-70. 
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APPENDIX 5 

Calculations on biological filter size 

Lobsters are generally not fed when they are held in recirculating systems. 

Therefore, the endogenous rate of ammonia excretion can be used to calculate the 

necessary volume of a biological unit. 

The total ammonia nitrogen excretion (TAN) rate of 500 g J. edwardsii at 

13°C is 11.1.g/g/h. Therefore, 1000 kg of lobster will excrete 24 g of TAN per day. 

The specific nitrification surface area (SSA) refers to the total exposed surface 

area of the substrate in the filter or the area on which the bacteria can grow. The 

SSA is calculated by the following formula: 

SSA = ammonia production rate / nitrification rate 

The daily ammonia oxidation rate of a well conditioned submerged filter at 

20°C is 0.55 g TAN/m2/day (Kikuchi et al., 1994). At 13°C the rate would be 

expected to be considerably lower than that. Therefore, a rate of 0.40 g 

TAN/m2/day is presumed. 

The SSA based on the above data is calculated to be 60 m 2  (ie. 24/0.04). 

Now the volume of substrate required to give the SSA can be calculated. 

Required biofilter volume = SSA / Specific surface area of filter medium 

It is assumed that the specific surface area of the filter medium is 200 

m2/m3 . Therefore, the required biofilter volume is 0.3 in 3  (ie. 60/200). However, 

this calculation does not take into account the contribution of urea to the ammonia 

nitrogen. If it is assumed that all of the urea was oxidised to ammonia nitrogen 

then there would be approximately 20% more TAN in the system. Thus the 

biofilter would need to be 0.36 m3  to be able to nitrify all of the TAN. 

If the lobsters were to fed in such a system the biofilter would be far too 

small to handle the TAN load because of the large increase in TAN excretion 

associated with feeding. 
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