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Abstract:

This thesis investigates the hybrid application of stochastic and heuristic algorithms, in particular
genetic algorithms (GA), simulated annealing (SA) and Greedy search algorithms for the design of
linear and nonlinear control systems. We compare the rate of convergence, computational effort
required (FLOPS) and ease of implementation. Where possible, results are compared with the
more traditional control system design methodologies. Two specific practical applications include
aircraft flight control systems, and a nonlinear example of an industrial bioreactor fermentation

process.

Stochastic algorithms (GA) and heuristic algorithms (SA, Greedy, Tabu search) are powerful
search methods, capable of locating the global minimum or maximum (extremum) of multimodal
functions. They operate without the need for function gradients and are robust to noisy data. The
current research trend is directed towards the solution to constrained multiobjective optimization
problems of multimodal functions which may result in a family of optimal solutions (i.e Pareto

optimal set) and game theoretic approaches such as Nash and Stackelberg Equilibria.

Genetic algorithms suffer from one particular drawback, the rate of convergence can be
unacceptably slow if accurate solutions are sought. To overcome this deficiency, hybridization of
genetic algorithms with fast local search procedures are often used. Two heuristic based search

procedures are: greedy search and fast simulated annealing.

We investigate three types of Hybrid algorithms: (i) genetic algorithms (GA), (ii) hybrid GA +
simulated annealing (SA), and (iii) hybrid GA + greedy search. These methods are applied to
solving off-line linear and nonlinear control problems which may otherwise have no direct
analytical solution. In cases where solutions are obtainable using conventional methods, results are
compared with hybrid algorithms. Robustness against modeling errors, nonlinearities, disturbances

and parametric uncertainty will also be discussed.

We investigate five specific design applications, these include: training radial basis function (RBF)
neural networks, robust eigenstructure assignment (ESA), model reference adaptive control

(MRAC), robust mixed H,/H.. design, and lastly fault detection and isolation (FDI).

We show that hybrid algorithms can perform better, can handle a broader class of problems, and
have fewer restrictions than conventional methods. Furthermore, stochastic and heuristic methods

can directly deal with constraints.
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Preface:

Ever since the inception of evolutionary programming and genetic algorithms by Holland in 1962,
genetic algorithms have found wide acceptance in many fields such as combinatorial optimization,
artificial intelligence, system identification and control. Genetic algorithms are a robust
optimization technique capable of locating the global extremum of complex multimodal functions.
Current research in genetic algorithms include constrained and unconstrained optimization, and
multiobjective optimization. In many instances, single solutions to multiobjective optimization
problems do not exist, and instead a family of solutions exists, this is known as a Pareto optimal
set. Genetic algorithms do not require function gradients, but rather deal directly with the cost
function to be optimized. This has the added advantage of being able to handle complex nonlinear
cost functionals, or where the gradients are discontinuous or undefined, for instance: image

classification problems.

Genetic algorithms can be applied to either on-line or off-line control problems. Off-line design of
control systems can be applied to a wider range of optimization problems, for instance mixed
Hy/H., Multi Input Multi Output (MIMO) designs using reduced order compensators in which no
direct design method currently exists, and other applications such as partial eigenstructure
assignment with constraints. With genetic algorithms, there are no restrictions, the plant may be
nonlinear, the controller may be linear, nonlinear, fuzzy or neural control based. Self tuning of
controller parameters can be realized by a genetic algorithm which attempts to optimize some
performance function (e.g. Linear Quadratic Regulator cost function) from the plant input and
output measurements. This leads to several important issues of how to ensure internal plant
stability and convergence of the genetic algorithm. There are two serious limitations which need to

be resolved when dealing with genetic algorithms:

1. Because a genetic algorithm search is stochastic, there is no method currently available to
guarantee their convergence. This is a serious limitation which needs to be addressed if genetic

algorithms are to gain wider acceptance in on-line control applications.

2. Genetic Algorithms constitute a family of powerful global search and optimization algorithms
which can deal with multimodal functions containing many local minima. Nevertheless, genetic
algorithms can become excessively slow in their final stages of convergence, once a minimum

has been found.
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To obtain accurate solutions (with many decimal places), the genetic algorithm is inefficient.
One way to overcome this problem would be to combine the genetic algorithm with a fast local
search procedure. Once the minimum has been found by the GA search, the fast local search is

then used to quickly converge the solution to the desired accuracy.

In this thesis, we address the second issue, combining genetic search with a fast local search to
improve convergence properties of the hybrid algorithm. Fast local search procedures are also
known as hill-climbing methods. Thus hybrid methods (also known as genetic local search)
combine the reliability and robustness properties of the genetic algorithm and their original search

heuristics with the accuracy and fast convergence of local search methods.

We investigate three types of Hybrid algorithms: (i) genetic algorithms (GA), (ii) hybrid GA +
simulated annealing (SA), (iii) hybrid GA + greedy search. These methods are applied to solving
off-line linear and nonlinear control problems which may otherwise have no direct analytical
solution. In cases where solutions are obtainable using conventional methods, results are compared

with hybrid algorithms.

The full potential of genetic algorithms is yet to be realized in the area of control, and in particular
intelligent control and expert systems. In this thesis we investigate some applications of genetic
algorithms in control. Each chapter deals with one specific area of control and where possible,

comparison is made between conventional methods with solutions using genetic algorithms.
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Organization of Thesis:

Chapter 1: Begins with an introduction to optimization, including evolutionary computation,
genetic algorithms, simulated annealing, greedy algorithms, Tabu search; constrained optimization
and multiobjective optimization using calculus based techniques as well as genetic algorithm based

techniques.

Chapter 2: Discusses applications of genetic algorithms in training radial basis function
networks. The example used is a model matching problem of a nonlinear system, often found in

control system applications.

Chapter 3: Discusses applications of genetic algorithms in the design of robust eigenstructure
controllers with partial eigenstructure specifications. Simulation results comparing conventional
methods with GA are discussed. Simulation results including full state feedback and measurement

feedback using dynamic compensators are given.

Chapter 4. We apply GA to solving model reference adaptive control problems, with constraints
and multiple objectives. As seen by the results, genetic algorithms perform better than

conventional MIT and Lyapunov based methods and require fewer assumptions to implement.

Chapter 5: We apply GA to solving mixed H, / H_ control problems, results are compared with
conventional state space solutions. Full order dynamic compensators and reduced order
compensators are described. The objective function is to minimize sensitivity norms (from
disturbance to performance outputs) and maximize robustness against model uncertainties.

Simulation results using the linear aircraft model is provided.

Chapter 6: This is a survey chapter on different types of fault detection and isolation. We show
that fault detection based on GA outperforms conventional fault detection methods such as the
widely accepted parity space technique. We also show that fault detection in linear and nonlinear

systems is also possible with GA.
Chapter 7: Discussion and Conclusion.
Chapter 8: Appendix.

Each chapter is self contained, comprising of an introduction, theoretical background, simulation
results, discussion, conclusion, and references. This individual chapter format should hopefully

facilitate reading.
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Abbreviations:
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1.1 Introduction:

This introductory chapter provides an initial background to the subject of optimization. Topics
covered include: calculus based (or conventional optimization), heuristic and stochastic search,

hybrid search methods, constrained and multiobjective optimization.

For the first part of the chapter, a brief discussion of conventional calculus based optimization is
provided. Calculus based optimization falls into three main categories: (i) derivative free or
pattern search methods such as the Nelder-Mead Simplex method [42], (i) first derivative or
gradient based methods such as gradient descent or conjugate gradient in which the gradient of the
function must be known or estimated, and (i) second derivative or variable metric (also known as
Newton or Quasi-Newton) methods in which the Hessian matrix must be known or approximated.
All three methods differ in complexity and convergence. Derivative free methods are the simplest
to implement, but result in unacceptably slow rates of convergence. Second derivative methods
have a greater rate of convergence, however at the expense of computational complexity. All these

methods can only locate the local extremum of a function (local convergence characteristics).

The second part discusses stochastic and heuristic search techniques. Stochastic methods are
probabilistic based search methods which include evolutionary computation [1]: evolutionary
programming, evolutionary strategies, genetic programming, genetic algorithms and simulated
annealing {72]. Heuristic search methods include: greedy algorithms [52] and Tabu search [56].
Stochastic search methods have global convergence characteristics, but can suffer from slow final

convergence, while greedy algorithms and Tabu search have rapid final convergence.

In the third part, hybrid search methods are discussed. Hybrid methods generally combine two or
more individual search techniques such that the resulting algorithm has superior convergence
properties when compared to either individual methods. For instance, evolutionary computation
has been combined with gradient based optimization to utilize the global search capability of

evolutionary computation with the fast local convergence properties of the gradient based method.

Lastly, a discussion of multiobjective optimization and constrained optimization is briefly outlined.
Multiobjective optimization using genetic algorithms, Pareto optimality, population Niching
methods and Nash equilibria are discussed. Constrained optimization using penalty and repair

functions are also described.
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1.1.1 Objectives:

Before proceeding any further, a brief summary of the main objectives of this thesis is provided
below:

1. '_I‘o investigate potential applications of genetic and hybrid genetic algorithms to the design and
synthesis of control systems, and to compare with the more traditional and conventional
control system design methods. In particular, the following areas are investigated: (i) training
neural networks to model nonlinear systems, (ii) robust eigenstructure assignment, (iii) model
reference adaptive control, tiv) robust H, and H.,, and compensators with mixed Hy/H.,

design objectives, and lastly (v) fault detection and isolation.

2. To show that genetic algorithms can converge rapidly, have fewer restrictions and can solve a
wider range of control problems, including constrained and multiobjective problems, which

may otherwise have no direct solution with conventional control design techniques.

3.  Whilst genetic algorithms have powerful global search capability, they can sometimes suffer
from slow final convergence once a solution is found. To overcome this problem, hybrid
methods have been developed. To investigate hybrid GA methods by combining the global
search capability of genetic algorithms with the convergence properties of a fast local search
heuristic, without resorting to gradient or Hessian matrix computation. These methods can
include: derivative free techniques, see chapter 1.2.1, or heuristic based such as Tabu search
(section 1.3.7), Greedy search (section 1.3.6) or a fast Simulated Annealing (section 1.3.5).
The three methods chosen are: (i) conventional genetic algorithms, (ii) genetic algorithms and

simulated annealing, (iii) genetic algorithms and greedy search.

4. To show that hybrid genetic algorithms are more effective stochastic based search and

optimization methods compared to conventional genetic algorithms.

5. To show that the use of floating point chromosomal codification can be readily and directly

applied to control system applications.

6. To investigate adaptive control using hybrid genetic algorithms, and to compare results with

traditional Lyapunov based stability and gradient based (MIT-rule) methods.
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1.2 Conventional Optimization

Conventional optimization, also known as calculus based optimization, approximates the function
to be minimized (or maximized) by a first or second order Taylor series expansion. Derivative free
methods do not require a Taylor series approximation. Note that all these methods discussed are

also known as hill-climbing methods.

1.2.1 Derivative Free Methods:

Derivative free methods, also known as direct search or pattern search techniques, do not require
knowledge nor approximation of the function gradient. The most popular is the Nelder-Mead
Simplex method [42] in which a simplex (tetrahedron) is defined consisting of (n+1) vertices, where
n is the number of dimensions of the function. At each iteration, the shape of the simplex changes
according to the shape of the local landscape, gradually moving down towards into the valley of the
function to be minimized. This adaptation process is achieved by three steps: reflection, expansion
and contraction. Only several function evaluations are required for each iteration, however
convergence is slow, requiring many iterations. This method is very robust and works well if the
number of variables n does not exceed five or six. Convergence properties of the Nelder and Mead
simplex have been described in [43]. Implementations in MATLAB®© (optimization toolbox) and
Numerical Recipes is also available.

Another effective method is Powell's Method [44, 45, 49]. Powell's method starts with a single
initial point and search direction. At each iteration, n line minimizations must be performed, one
for each direction, and a new search direction is obtained. A new (better) point is obtained by
summing the old point and the search direction thus: x,; = x¢ + di. Line minimization using a
golden search or quadratic fit search is often used. Powell's method converges in fewer iterations
compared to Nelder and Mead Simplex, works well with functions of up to twenty variables, but
requires a line search minimization.

The last method known as the Hooke and Jeeves algorithm [46] starts with a single initial point
and a search span range A.. At each iteration, it operates in two steps or moves: exploratory and
pattern moves, whereby the span range A, is gradually reduced. A better point is then given by
X1 = % + Ar. The algorithm terminates when the magnitude of Ay is below a predefined value.
Several other derivative free optimization methods exist including: Rosenbrock's algorithm [47],
and Fletcher [48]. All these methods are limited to local search (local extrema) of a function, and

convergence is generally slow and dependent on the initial starting point and shape of the function.
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1.2.2 First Derivative Methods:

First derivative methods require the knowledge of the function gradient. The simplest, although
generally not recommended, is the method of steepest descent, also known as gradient descent.
Given an initial estimate x,, the next iteration x,; gives a better estimate from: xy,; = X, - 0..0fI0x,
where o is a step size and dffox; is the gradient vector. The step size o can be a constant or can be
found by a line minimization procedure by minimizing: f(x, - 0.df7dx,) using a golden section or a
quadratic fit search. The problem with steepest descent is that it will perform many small steps in
going down a long, narrow valley even if the valley is a quadratic function. A more effective
procedure however is to use the method of conjugate gradients [49]. This procedure also requires
a line minimization and gradient calculation at each iteration. The method avoids the pitfalls of
gradient descent by ensuring that at each new iteration, the next direction is conjugate to the
previous. Thus for a quadratic function, only two steps are necessary to reach the minimum. There
are two variants of the conjugate gradient: Polak-Ribiere and Fletcher-Reeves formula. These

methods suffer from poor convergence where the gradient is near zero.

1.2.3 Second Derivative Methods:

Second derivative methods also known as variable metric or Quasi-Newton methods require a
knowledge of the function's Hessian matrix. These methods attempt to approximate the function
flx) as a quadratic by Taylor series expansion at the given point x,. By minimizing the quadratic
approximation, a better solution can be found xy.,. This procedure is then repeated at the new
point xy,;. The iterative formula known as the Newron-Raphson method is: x,,, = x, — H, g,
where g, is the function gradient, Hy is the functioﬁ Hessian matrix. The difficulty of such a
method is in computing the inverse of the Hessian matrix, which may be numerically ill conditioned
(poor condition number). This drawback leads to a new class of Quasi-Newton methods in which
the matrix inverse H;‘ is replaced (i.e. approximated) by a positive definite symmetric matrix G.
At each iteration, the matrix G, is updated such that as x, approaches x* (optimum), then Gy
approaches H;'. There are two main algorithms implementing this concept: Davidon-Fletcher-
Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [3]. These methods are the
preferred having very fast convergence properties, and are generally available in off-the-shelf

numerical optimization software packages.
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1.3 Stochastic and Heuristic Search Methods:

Stochastic search methods include Evolutionary Computation (EC) and Simulated Annealing (SA).
Heuristic search methods include Greedy Algorithms and Tabu Search. Evolutionary computation
(EC) is broadly classified into four categories: evolutionary programming (EP), evolution
strategies (ES), genetic programming (GA) and genetic algorithms (GA). Whilst different, they
all share one fundamental principle: reproduction, random variation, and selection. Of these four
methods, genetic algorithms have found widest acceptance in the field of optimization,
identification and control. Excellent sources of reference on evolutionary computation can be
found in [1, 2, 4, 5, 6]. The four Evolutionary methods described above share the same
characteristics and similarity in many respects. They all operate on a population of individuals,
and have each individual represented by an encoded string (chromosome) using some alphabet such
as binary, floating point etc. The definition of individual performance or fitness based on some
objective function to be optimized, and the application of genetic operators (selection, crossover,
mutation) recursively to arrive at the solution. A good introduction to evolutionary computation is
provided by Fogel [1].  Greedy algorithms [50] and Tabu search [54] operate on a single
individual (solution) and use rule-of-thumb heuristics to produce a better solution based on
previous solutions. Solutions found using heuristic and metaheuristic methods are not necessarily

globally optimal.

1.3.1 Evolutionary Programming (EP):

Evolutionary programming techniques work with a population of finite state machines (FSM).
Each individual FSM (chromosome) represents a potential solution. The inputs are a sequence of
symbols: a;, a,, .. a. (belonging to a finite alphabet), and the fitness value is a measure of how
accurately the individual is able to predict the next output a’s.;, which is then compared with the
next observed symbol a,,;. Transition diagrams are used to represent the behavior. for which
nodes correspond to each state, and arrows, indicate transition from one state to another. Concepts
of reproduction, mutation, crossover and selection are applied at each generation. Evolutionary

programming is not suitable for numerical optimization problems.

1.3.2 Evolution Strategies (ES):
This technique has been developed to solve parameter optimization problems. Each chromosome
consists of two float-vectors: {x, o}, where the x vector represents a single point in the search

space (potential solution) and o represents a vector of standard deviations associated with x.
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Only one genetic operator is used: mutation, the next population of offspring is generated by the
expression: X,,, =X, +N(0,0), where N(0,0) is a vector of independent random gaussian

numbers with zero mean and ¢ standard deviation. The offspring then replaces the parent if its
fitness value is higher than that of the parent. This is in effect a random search, and convergence is

slower when compared with genetic algorithms.

1.3.3 Genetic Programming (GP):

This is a relatively new approach in which the objective is to find the best algorithm to solve a
particular problem rather than using an evolution program to solve a problem. In other words,
each chromosome in a population represents a particular computer algorithm. The search space is
then a hyperspace of all valid computer programs which can be viewed as a space or rooted trees.
This in effect results in an evolving computer program. Genetic operatdrs such as crossover and
mutation swap and modify sub-branches of parent trees. These have applications in artificial

intelligence, but are not suitable for continuous function optimization problems.

1.3.4 Genetic Algorithms (GA):

Genetic algorithms (GA), first proposed by John Holland [2], attempt to mimic the process of
natural evolution and survival-of-the-fittest by processes of genetic operators and natural selection.
It is this process of evolution (or natural adaptation) which enables a population to evolve and to
solve complex optimization problems. There are four features which define the concept of GA:
(1) codification of solution space by bit-strings also referred to as chromosomal representation, (2)
genetic operations which include crossover and mutation, (3) evaluation and selection, and (4) a
population solutions rather than a single solution. Genetic Algorithms operate on a bit-string
representation of the solution variables rather than the variables themselves, furthermore, GA do
not operate on a single solution but on a population of individuals (chromosomes), this concept is
known as intrinsic parallelism. The average fitness of the population of individuals is improved
with each iteration (or generation) by genetic operators of selection, crossover and mutation. The
general workings of the original GA proposed by Holland [2] is as follows: an initial population N
is created with random values which span the solution space or the search space. Two or more
parents are chosen via a selection scheme, this selection is based on relative fitness of the
individuals. The higher the fitness the more likely the individual is to be selected, this is known as

proportional selection.
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The parents are combined probabilistically using the genetic process of crossover to produce either
a single or two offspring.  Mutation is then applied with a small probability to the resulting
offspring, which are then used to create a new population of individuals. This process is repeated
usually N times, where N is the population size. Crossover is the main search operator, with
mutation as a background operator which is applied with much lower probability. Whilst
crossover allows the solution to work it's way down to a minimum (or maximum), it can get stuck
within a local minimum, and mutation overcomes this by enabling search to continue over a wide
solution space. The basis of GA search is embedded within the concept of the building block
hypothesis. This states that a better individual (offspring) can be created by combining substrings
or blocks from two (or more) parent individuals. Holland's original work on the schema theorem
[2] provides a formal analysis and convergence properties of the GA. The schema theorem was
based on binary string codification, currently the trend however is towards floating point

representation.

1.3.5 Simulated Annealing (SA):

Strictly speaking, simulated annealing (SA) is not an evolutionary programming method, however
it owes its basis to natural phenomena and is also applied probabilistically as in GA. Simulated
annealing, first proposed by Kirkpatrick [3] is an optimization technique analogous to the thermal
process of annealing. The SA algorithm starts with a high temperature To and initial states x
(solution), a random perturbation & is applied to the states with magnitude dependent on the
temperature &=f(T), and new solutions are evaluated at x+dx. If the energy level (or fitness) is
less than the energy level at x, then this solution is accepted. If it is greater however, it will only be
accepted with a finite probability which decreases with temperature. In the next iteration, the
temperature is reduced (annealiné schedule) and the process is repeated again. This continues
until equilibrium is reached or the temperature is below a specified value (termination criterion).

This algorithm is also known as the Metropolis algorithm.

The key to achieving good performance with simulated annealing and global convergence is that a
stationary distribution must be reached at each temperature and the cooling schedule must proceed
very slowly. The SA algorithm is not as effective as the GA algorithm at finding global minimum,
however it has very fast convergence properties near the solution. Note that SA operates on a

single candidate solution rather than a population of solutions.
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1.3.6 Greedy Search (GS):

A greedy algorithm is a heuristic search algorithm which looks for the best immediate solution
without considering many other alternatives. In this sense, a greedy search generally quickly finds
local rather than global optimal solutions. A typical greedy search algorithm would be as follows:

iterate
- look for adjacent solution(s) within a predefined search span/range.
- if adjacent solution is better, accept as the current solution.

- increase or decrease the search span/range accordingly.

end

Fig.1.1
Typical Greedy Search Algorithm

While there is no one single generic form of the greedy search algorithm, the above is typical and
can be applied to both combinatorial optimization problems, discrete and continuous function
optimization. Examples of greedy search can be found in [50] in discrete function optimization,
continuous function optimization [51], combinatorial optimization [52], and applications to radial
basis function networks [53]. Because greedy search algorithms have good local convergence
properties, applications usually involve a hybrid approach with an algorithm having global

convergence (e.g.: Genetic Algorithm) and a greedy local search algorithm.

1.3.7 Tabu Search:

Tabu search operates on the premise that some moves (from the current position) are forbidden or
Tabu. Forbidden moves are those recently visited which did not yield an optimal solution. Tabu
search requires a Tabu list which is a record of forbidden moves. At each iteration, Tabu search
chooses a non-Tabu feasible move. After each step, a collection of moves that includes any
returning immediately to the previous point is added to the Tabu list. This move is then forbidden
for several iterations. After many iterations, the Tabu list is cleared and the procedure is repeated
from the new current position. Tabu search is currently becoming an active area of research in
many diverse fields. For instance Tabu search can be applied to optimization of functions in
continuous domains [54], topological and combinatorial optimization [55, 61], introductory papers
can be found in [56,57,58], applications to vehicle routing [59], comparison with simulated
annealing and genetic algorithms [60]. The main strength of Tabu search is in combinatorial and

topological optimization problems.
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1.4 Genetic Algorithms and Hybrid Methods:

Conventional genetic algorithms and hybrid genetic algorithms comprise the core of all simulations
contained within this dissertation. Genetic algorithms were introduced in section 1.3.4. In this
next section, detailed aspects on genetic algorithms and hybrid genetic algorithms is presented.

1.4.1 Conventional Genetic Algorithms:

Genetic Algorithms, originally developed by John Holland [2], are based on the Darwinian
biological evolutionary principle of survival of the fittest strategy. The concept is to mimic the
mechanisms of biological evolution using mathematical abstractions of genetic operators. Genetic
algorithms operate on a population of individuals (or chromosomes) in order to search for a
solution. Each individual consists of a potential solution and its associated fitness value. This
fitness value represents the individual’s performance upon the solution of the problem. For
example the fitness value could indicate the inverse of the RMS error between the simulated model
output compared with actual plant output, or some optimization function to be minimized. Higher
fitness values denote better solutions. Each individual in the population is represented by a bit
string or chromosome (also known as codification) . Historically binary representation was used.
This has the advantage of being more generalized, but has limited accuracy. Currently floating
point representation is used [12]. Figure 1.2 below illustrates the traditional binary representation
of a chromosome:

Chromosome

3
Gene N ]
l+-11011101 [realx,|...... [+-]1011101 Jreal x, [Fitness |
T
sign
bit binary x; binary x,
Fig.1.2

Original Binary Representation of a Chromosome

For instance, the above chromosomal representation can be used to encode the solution to the
following unconstrained minimization problem: min { f(x)}, where x=[x;, x,,.. x,], and the fitness
value can be defined simply to be the inverse of the function thus: fitness=1/ f(x).

Referring to figure 1.2, the chromosome is subdivided into genes, and a gene encodes a particular
function e.g.: node weights for a neural network. The complete string refers to a chromosome.

The biological equivalent would be a DNA sequence.
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Binary bit strings are no longer used and real number representation is more common, however
binary representation is more domain independent, but is slow and factors of accuracy and finite
length approximations result in problems with precision. The original Schema theorem developed
by Holland [2] for the convergence analysis of GA used binary representation. Unfortunately it is
difficult to see how the schema theorem is applicable to floating point representation. A
comparison of floating point and binary representation is provided in [12]. The genetic algorithm
in its simplest form is illustrated in the flowchart form below (Fig 1.3), noting that there are many
other variations to this algorithm.

Initialize
Population N

POLD

repeat
forj=1to N

|

Select Parents: A,B from Poyp
A=Po.,()
B=PoLo()

!
Crossover Operator Probability = P, one generation
C=AeB
!
Mutation Operator: Probability = Py,
D=mut{C}
:

Compute fitness for D chromosome
Insert into new population

D—oPrew(j)

copy to old population
POLn(fPNEw

NO

terminate
?

YES
exit

Fig. 1.3
The Genetic Algorithm
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A new population is created with each generation, by using the genetic operators of selection,
crossover and mutation, the average population fitness increases. Eventually the population
converges whereby the majority of the population will have near-identical chromosomal values.
Genetic algorithms have been applied successfully in training Multi Layer Perceptrons (MLP) and
radial basis function neural networks [14]. Some excellent introductory textbooks on GA can be
found in references [1, 2, 4, 5, 6]. Figure 1.3 illustrates a typical genetic algorithm. This is the
traditional GA, sometimes also referred to as the simple genetic algorithm. The genetic algorithm
uses no problem specific information, except when calculating the fitness value of a chromosome.
The lack of gradient information however can result in slow convergence in regions where the
objective function has nearly zero gradient. We next look at the four main genetic operators:

selection, crossover, mutation and population inversion.

(i) The Selection Operator: The selection operator is used to choose parent individuals from the
current population based on the individual's fitness. Holland's original work used the probability of
selection proportional to the fitness value. This is known as the roulette wheel selection operator.
With each generation step, the fitter individuals obtain more copies, thus producing a near identical
population. This reduces the convergence rate, and selection becomes ineffective, the crossover
operator also becomes ineffective due to lack of genetic diversity. Also, the possibility of creating
a single super-individual which will quickly proliferate throughout the population and result in
premature convergence possibly to a local minimum. Therefore the selection operator must be a
careful balance between preventing premature convergence and maintaining adequate genetic
diversity. There are two main groups of selection operators: Fitness proportional selection and

Rank based selection.

Fitness Proportional Selection: This selection operator chooses parents with a probability directly
proportional to the individual's fitness value. The most common is roulette wheel selection,
similar in principle to a roulette wheel. Each member is represented as a slot of a roulette wheel,
the width of the slot is proportional to its fitness. To select an individual, we simply spin the wheel
(i.e. choose a uniform random number) and the slot where the random number ends up is the
individual selected. This can result in premature convergence for super-fit individuals. To
overcome this problem, fitness scaling can sometimes be applied to the population before
selection. Many types of fitness scaling are available: linear static scaling, linear dynamic scaling,

exponential scaling, logarithmic scaling, sigma truncation and Boltzman scaling.
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Rank Selection: The individuals are ordered (sorted) by fitness values, only the relative fitness is
important, and not absolute fitness. This method reduces the possibility of premature convergence,
but ignores the actual fitness values of the individuals.

After sorting, several selection schemes may be applied including: tournament selection, stochastic
universal sampling, and truncation selection. Tournament Selection selects m individuals randomly
with uniform probability from the population, and the fittest (from m subpopulation) is then
selected to be the parent. Generally m is two. A high value of m can produce premature
convergence, a low number may result in a too slow convergence. Trial and error may be required
in the choice of m. Variations of tournament selection can be found in reference [28] for
multiobjective problems. Stochastic Universal Sampling is an optimal sampling algorithm with
zero bias and minimal spread. It is also possible to scale and compute new fitness values
according to the relative position of the individual in the rank, and then apply fitness proportional

selection methods discussed above.

The selection operator can have a critical influence on the convergence properties of the GA.
Tournament selection and stochastic universal sampling are currently the most popular, however
some trial and error may be required in order to ascertain which selection operator works best for a
particular application. An important quantity is the selection pressure, this is a measure of how
strongly the fitter individuals are selected over the less fit individuals. For instance the ratio:
increase in average fitness/standard deviation of the population can be used to quantify selection
pressure. Fuzzy selection schemes have also been developed, for instance see [14B].

(ii) The Crossover Operator: The crossover operator (or recombination operator) takes two or
more parents and recombines them to produce either one or more offspring. This is illustrated
below in fig.1.4 for a binary string chromosome using single point crossover and producing a
single offspring:

crossover site

.

A-parent: |101101(001000

B-parent: (001001{101100

! 3

Offspring: (001001001000

Fig. 1.4
The Single Point Crossover Operator
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There are a number of variations of the crossover operator, these are: two point crossover,
multipoint crossover, uniform crossover, diagonal crossover, and weighted average crossover.
Two point crossover is more effective than single point. Uniform crossover simply swaps single
bits chosen at random and not entire segments. Weighted average crossover only works with real
numbers and simply averages the two parents thus: offspring = atx ParentA + (I-Q)x ParentB,
where 0. is a random number [0,1] chosen with uniform probability. We also found that sometimes
a constant 0=0.5 can produce rapid convergence. For the crossover operator to be effective, a
diverse population is required, because this is the main GA search operator. Once the population
has converged, crossover becomes ineffective. When this occurs, the only search operator is
mutation, at which point the genetic algorithm degenerates to a pure random search algorithm.
This substantially reduces the rate of convergence. Crossover is applied statistically, with high
probability values, typical probability: Pc=0.7 to 0.9. Diagonal crossover is used in multi-parent

(more than two parents) recombination.

(iii) The Mutation Operator: The mutation operator plays a secondary role to the genetic
algorithm. Subsequently it is applied with low probability typically: Pm=0.0/. Mutation changes

bits of the chromosome at random. This is illustrated below for a binary string:

oldstring: [101101]0/010001 |

new string: [101101/1(010001 |

mutated bit—T

Fig. 1.5
The Mutation Operator

For floating point numbers, the mutation operator becomes: x; = x; + kx rand, where x; is an
individual element of the chromosome, k=mutation intensity (or gain), and rand has a uniform
normal or gaussian distribution. The purpose of mutation is to prevent the GA from getting stuck
in a local minima, to provide prolonged genetic diversity, and increased search space. The
mutation intensity k or mutation gain, may be set with a value that should ideally decrement as the
algorithm gradually converges. A high mutation intensity should be used near the start of the
simulation, and gradual decrease with generation thus: k=k(z). Another form of mutation is: x; = x;
x (14 kx rand) which has a narrower search range, and the random function rand is a gaussian
distribution. As a rule of thumb, the probability of mutation P,, should be chosen to be the inverse
of the dimension of the parameter space. Thus if 10 parameters are to be sought, then set the

mutation probability to: P, = 0.1.
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(iv) The Population Inversion Operator: With each generation, a new population of offspring is
created from the old parent population. Sometimes a new population is created by a combination
of the best offspring and best parents. When generating a new population, it must be ensured that
identical individuals are not duplicated reducing genetic diversity. Two methods which we have
used are: (i) combine the N parents and N offspring into one 2N population, and choose the N
fittest ones for the mew population, or (ii) simply replace the old population with the new
population. However, whichever method is chosen for generating a new population from the old,
the concept of elitism in which the best individual from the old population is preserved into the new

population unmodified, is found to be essential.

1.4.2 Hybrid Genetic Algorithms:

Genetic Algorithms constitute a family of powerful global search and optimization algorithms
which can deal with multimodal functions containing many local minima. Nevertheless, genetic
algorithms can become excessively sldw in the final stages of convergence, once a global minimum
has been found. To obtain accurate solutions (with many decimal places), the genetic algorithm is
inefficient. This deficiency is in part due to population convergence, in which the crossover
operator becomes ineffective. Also, the genetic algorithm does not exploit local landscape features
such as function gradients. One way to overcome this problem would be to gradually reduce the
mutation intensity or gain (see 1.4.1 part iii) once the population has reached steady state. The
genetic algorithm then becomes a purely random search algorithm with an annealing schedule on

the mutation operator. However, pure random searches are also unacceptably slow.

(i) Hybridization of Genetic Algorithms: Another method is to combine the genetic algorithm with
a fast local search procedure. Once the minimum has been found by the genetic algorithm, the fast
local search is used to quickly converge the solution to the desired accuracy. Fast local search
procedures are also known as hill-climbing methods. Thus hybrid methods (also known as genetic
local search) combine the reliability and robustness properties of the genetic algorithm and their

original search heuristics with the accuracy and fast convergence of local search methods.

(ii) Examples: Examples of hybrid genetic algorithms which include nonlinear system
identification [61] hybrid methods which combine genetic algorithms with Quasi-Newton (see
1.2.3) local search and Nelder-Mead Simplex (see 1.2.1) methods are discussed.
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Again, in [62], variable metric methods using the BFGS (see 1.2.3) have been combined with
genetic algorithms in multiobjective optimization applications. Hybrid genetic algorithms coupled
with steepest descent methods can be found in [63, 65] in a seismic data imaging application.
Combining genetic algorithms with heuristic local search methods can be found in [64] in which a
greedy multi-start local search is used.

Applications to combinatorial optimization problems for the classicai traveling salesman problem
can be found in {66] using a simulated annealing local search procedure. Greedy local search
algorithms have also been used to hybridize genetic algorithms, for instance [67, 70} describe an
application in a continuous function domain.

Hybrid genetic algorithms using a fast simulated annealing local search procedure have been
investigated, for instance in [68] where neural netwérks have been trained using hybrid GA+SA
methods. In another application, genetic algorithms have been combined with Tabu search (see
1.3.7) to solve nonlinear continuous function optimization problems [69]. From the above list,
many methods in diverse fields have been investigated.

Alternatively, it is also possible to hybridize the genetic operators, such that some local search is
featured into either crossover of mutation operators. For instance, the pattern search method used
by the Hooke-Jeeves algorithm described in section 1.2.1 can easily be incorporated into the
crossover operator. This is described in more detail on the following section.

As a general rule however, it is impossible to accurately and reliably locate the global minimum of
a multimodal function. This conflict is referred to as the exploitation-exploration trade-off, and

must be borne in mind when attempting to hybridize or implement any optimization algorithm.

(iii) Combining genetic algorithms and metaheuristic searches: The aim of this thesis is to
develop and compare hybrid methods with conventional genetic algorithms, and in particular apply
these methods to a number of control system design problems. The objective is also to see how
well hybrid genetic algorithms compare with conventional control system design methodologies.

Some of the desirable properties required of the hybrid GA method are:

1. Use a fast local search procedure which does not require gradient computation. For instance,

the methods discussed in 1.2.1 such as Nelder-Mead Simplex or Powell's method can be used.

2. We also wish to retain the stochastic and heuristic nature of the overall algorithm. Thus the
genetic algorithm can be coupled to a fast greedy local search, fast simulated annealing, or a

Tabu search. These methods also have some weak global search capability.
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3. The hybrid genetic algorithm must also be able to deal with constrained optimization and

multiobjective optimization problems.

The two hybrid genetic algorithms chosen are: (i) genetic algorithm coupled with a fast simulated
annealing local search and (ii) genetic algorithm coupled with a fast greedy local search. These are
chosen because constraints may be included and also have some global search capability. A
multistart procedure is implemented for the local search algorithm. Note that Tabu search can also
be used, however its application is more suited for combinatorial optimization problems than in

continuous function domains. The two local search algorithms are detailed below.

(iv) Hybridization with greedy search algorithm: A greedy algorithm has no specific structure
other than that illustrated by figure 1.1. However a typical greedy heuristic algorithm would use
the following concepts: a variable search step size which contracts when convergence is slow, and
expands when convergence is rapid. It must also keep track of the direction of recent success, so
that the search is conducted over the direction of most rapid descent. This algorithm is outlined in
figure 1.6 below. Referring to figure 1.6, the two vectors are best_vec and best_sum, where
best_vec is the direction vector of most recent success, the magnitude of this vector expands and
contracts according to rate of convergence. The vector: best_sum is a camulative sum of best_vec
and helps to search (i.e. exploratory move) in previous successful directions using long jumps. The
function random_vector() simply returns a vector with the same magnitude (norm) as the input
vector. A similar greedy local search algorithm can be found in reference [51]. Note that figure
1.6 is only a single iteration loop of the greedy algorithm, which must be repeated to obtain

convergence.

(v) Hybridization with Fast simulated annealing algorithm: A faster variation of the classical
conventional simulated annealing algorithm is used. Simulated annealing is comprised of three
components: a temperature annealing schedule, a gaussian-like function for random state
generation (generating function) and an acceptance function based on a boltzman probability
distribution. Fast simulated annealing [71] is a semi-local search with occasional long jumps to
overcome any local minimum. This version has a faster annealing schedule (exponential), while
the generating function has a wider spread, and with a modified acceptance function. The

algorithm is illustrated in figure 1.7.
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[ mimimize f{x) )
compute:
y =fx)
y1= fix+best_vec)
NO
n<y
for k=1..N
Y best_vec = random_vector(best_vec)
X=X + best_vec 1= fix+best_vec)
best_sum = best_sum + best_vec if (y1 <) break
best_vec = 2xbest_vec end
same direction as before,
do a cumulative update. a new direction has been
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YES| x = x + best_vec
best_sum =0 N
best_vec = 2xbest_vec
exploratory search
compute:
yi1= flx+best_vec + best_sum)
same direction as before, but
further away
YES|y=x+ best_vec + best_sum
best_sum = best_sum + best_vec

reduce search range

best_vec = 2xbest_vec

failed to find better solution,  NO

best_vec = 0.5xbest_vec

v
repeat

Fig.1.6

Typical Greedy Search Algorithm
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( mimimize f(x) J
J
>

generating function
6x = Tyxrandom _vector()

compute:

Sy = f(x+8x) - f(x)

NO
By <0/ 1
YES acceptance function:
h(x) = 1/(1+e%7TF)
YES and<h(x)
x=x+ 6x
NO

annealing schedule
Tk = aka

repeat

Fig.1.7
Typical Simulated Annealing Search Algorithm

(iv) Pattern Search Crossover operator: To further aid in convergence, we also hybridize the
crossover operator by applying local search heuristics borrowed from the Hooke-Jeeves algorithm
(see 1.2.1), and appendix. This heuristic is applied within the crossover operator with a finite

probability. Given two parents, A and B, the pattern-search crossover operator is:

if (fitnessA > fitnessB) then
offspring = 2.xs - xs

else
offspring = 2.xg - xa

where x, and x represent the components of parent A and parent B chromosome. A flowchart of

the Hooke-Jeeves algorithm is also provided in the appendix.
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1.5 Constrained and Multiobjective Optimization:

Genetic Algorithms described earlier can be applied directly in solving unconstrained optimization
problems. However in practice, most optimization problems are constrained, therefore the genetic
algorithm must be modified to deal with such problems. Constrained optimization [15-28]
problems can have linear or nonlinear constraints. The constrained optimization problem can be
defined in several ways, for instance the Equality Constrained Problem (ECP): is defined as:
minimize f(x) subject to h(x)=0, and the Inequality Constrained Problem (ICP): minimize f(x)
subject to h(x)<0, where: f: R" - R, h:R" — R™. Itis possible to transform an ECP problem
into an ICP and vice versa by the addition of slack variables. Thus the two problems are

interchangeble and can be solved in the same fashion.

The field of constrained optimization using calculus based methods is well established, however
with genetic algorithms this is a relatively new topic of research. Genetic algorithms can also be
extended to these standard methods, or alternatively, we could modify the genetic rules to deal
specifically with constrained optimization problems. An excellent survey of constrained
optimization using evolutionary algorithms can be found in [18-23]. A brief summary of calculus

based methods and genetic algorithm based methods is outlined below.

1.5.1 Calculus Based Constrained Single Objective Optimization:

(i) Linear Programming Methods: If we are dealing with only simple linear constrained
problems, then there are techniques which are very effective, known as the simplex method. When
the problem is of the form: minimize: f(x)=c.x, subjectto: A.x=>b, x=0, it can be
directly solved by matrix manipulation. Other forms include two-phase simplex methods and
duality methods. A solution via the MATLAB® Optimization Toolbox is straightforward. We

will not deal with these optimization problems.

(@) Penalty Function Methods: The penalty function method transforms a constrained
optimization problem into an unconstrained one. The minima of both the constrained and
unconstrained functions is the same. There are many variations to the penalty function method,
such as nonquadratic penalty functions, Fletcher's method, Powel's method, quadratic penalty

functions.
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For instance the following is a typical quadratic penalty function in which the penalty: p, is

progressively increased with each generation k thus: L(x)= f(x)+ pk.2|h ; (J\:)I2 . Perhaps the
simplest penalty function is the Static Penalty Function [27), this is given by:

L(x) = f( x)+i p:5; where §;=1 if constraint ; is violated, else §=0 if constraint ; is not

i=1
violated. This penalty function makes no use of a distance metric for the feasible region. The
dynamic penalty function increases the severity of the penalty parameter with each generation.
Adaptive penalty functions modify the penalty parameter p; depending on the distance from the

feasible solution (see reference [27]).

Penalty function methods have been successfully appliéd to constrained optimization with genetic
algorithms. An excellent summary of the penalty function method is found in reference [23, 27],
adaptive penalty methods in [19], and a more extensive discussion on static penalty, dynamic

penalty, annealing penalties, and adaptive penalty methods can be found in reference [27].

(iii) Lagrangian Function Methods: All Lagrangian functions have the following general

structure L(x,A)= f (x)+z}{ jh j(x) , where 4 jare the lagrange multiplier vectors or matrices
j

which also need to be solved for. The lagrangian function is similar to the penalty function method
and has been successfully applied to constrained optimization problems in genetic algorithms. This
is a very popular method, in which the solution can be found by computing partial derivatives:
dL/9dx=0 and dL/9A =0 and solving a simultaneous set of equations. The above method only

applies to equality constraints. This is also a very popular technique.

(iv) Barrier Function Methods: The barrier functions apply to inequality constraints and are also

similar to the penalty function, a typical inverse barrier function and log barrier function is given

by: L(x)= f(x)+p,- O [h;(x)]"" and log barrier function: L(x)= f(x)+ Pe- 3, In(h;(x)) with
J J

k increasing with time. Currently Barrier functions have had no application in genetic algorithms.

Calculus based methods can also be implemented with genetic algorithms. However, genetic

algorithms offer potentially new and novel possibilities for the solution to constrained optimization

problems.
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1.5.2 Genetic Algorithm - Single Objective Constrained Optimization:

Rather than transforming the constrained problem into an equivalent unconstrained one, we can
modify the genetic operators of crossover, mutation and selection to directly deal with the
constraint. Specialized GA methods exist when dealing with constrained optimization problems.
There are essentially three methods of handling constraints with genetic algorithms (not counting
the calculus based ones above). The methods are: Decoders, Penalty functions, and repair

algorithms.

(i) Decoders: Decoders process instructions incorporated into the chromosome, which are used
to construct a feasible solution. Essentially, a decoder is a mapping 7 from a representation space
d (binary strings, vectors, integers) into a feasible part of the solution space s. Thus with a
decoder, illegal chromosomes (infeasible solutions) cannot occur. The method is problem specific,
can be computationally intensive to implement the transformation 7. Further, there must be a
unique mapping between the representation space d and solution space s. One criticism is that not

all problems can be solved using this method.

(ii) Penalty Functions: Discussed above, a penalty function is used, with a gradually increasing
penalty parameter, the penalty parameter is initially small, and gradually increases with each

generation.

(iii) Repair Algorithms: A repair algorithm simply corrects an infeasible solution by mapping any
infeasible individual into a feasible one. The repaired individual can be used for evaluation
purposes or can be used to replace the original one (with some finite probability).

Repair algorithms are very popular in the area of evolutionary computation, due to their relative
ease by which an infeasible individual can be repaired. This algorithm is problem dependent. A
discussion can be found in reference [1]. We use repair algorithms and penalty functions in our

simulations.

1.5.3 Genetic Algorithm Multiobjective Optimization:

Currently there are two methods of multiobjective optimization using genetic algorithms: Pareto
dominance principle and Nash Equilibria [29]. A good review on multiobjective optimization
(MOP) using genetic algorithms is found in [38]. A third less popular method known as

Stakelberg equilibria exists, a brief discussion is given on these methods below.
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(i) Pareto Dominance Principle: When dealing with multiple objectives, ie the function F(x) is a
vector function, then a single solution may not exist. Instead multiple solutions or a set of
solutions may exist. In this case, the problem may be stated as follows, given the vector function:
min {F(x)}, where is defined as: F(x)=[fi(x), fu(x),... fs(x)], there are i=]..N functions to
minimize, and j=/..r constraints. In general the solution is not unique, and a family of solutions

may exist. The pareto dominance principle provides an efficient means to find optimal solutions.

Defn.3.1: A solution x; is said to dominate x; if the following condition holds: f,(x,)< f,(x,)

for all values of i=1,2,...N:

Defn.3.2: The Pareto Optimum is defined as follows: a solution x* € X is Pareto optimal if and
only if there exists no x € X such that f,(x)< f,(x*) for i=1,2...N with f,(x)< f,(x*) for at
least one i. Thus intuitively, the point x* is optimal if no criterion can be improved without

worsening at least one other criterion.

The group of nondominated solutions is called the Pareto set. This is illustrated graphically for
two criteria f;(x) and f>(x) to clarify the concept:
fa(x)

k-1
. rank-2 rank-3

Pareto Front

fi(x)

Fig.1.8
Pareto Front and Ranking Scheme
From figure 1.8, the Pareto front is the set of all nondominated solutions, this is assigned rank-1,
this is then removed from the population, and the next front is determined and assigned rank-2.
The procedure repeats until all individuals are accounted for. There are many references

discussing Pareto optimality applications with genetic algorithms, see: [29 - 33].

Classical gradient based optimization algorithms are capable of finding the optimal value of only a

single objective. Consequently the multiple objectives may be combined into one weighted sum:
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U(x)=iW,..f,(x) Eqn.1.1
i=1

The function U(x) is sometimes referred to as a utility or composite function.

(ii) Nash Eguilibria: This is a relatively new concept of game theory in genetic algorithms,
which is more robust and has faster convergence properties. Nash equilibria which originated in
1951 [34], is inspired from Games Theory and economics, and only produces a single solution
rather than a family of solutions. Also referred to as Non-Cooperative approaches, the Nash
strategy [29] consists of having N players, each optimizing its own criterion. However each player
has to optimize his criterion given that all the other criteria are fixed by the rest of the players.
When no player can further improve his criterion, the system has reached an equilibrium called the
Nash Equilibrium. A good introduction to Nash equilibria is given by [35].

To understand Nash game theory, assume there are two players A, B, and there are two functions to
minimize: f,(x,y) and fy(x,y). Player A minimizes the first function with respect to x while keeping
y fixed by player B, conversely player B minimizes the second function f,(x,y) with respect to y
while keeping x fixed by player A. This means that two populations are required, one for each
player. Figure 1.9 below illustrates how Nash equilibria is applied with each generation to genetic
algorithms.

Let x;.; be the best value found by player-A at generation k-1, and y;.; the best value found by
player-B at generation k-/. Then at generation k, player-A optimizes x;, while using y;.;, at the
same time player-B optimizes y, while using x;.,. After this, player-A sends the best value x; to
player-B, and player-B sends the best value y, to player-A. This is repeated until neither player-A
or B can further improve their criteria, this is the Nash equilibrium.

Simulation studies [29] have shown that exchanges between player-A and B must be as frequent as
possible, low exchange leads to low convergence rates.

From an evolutionary perspective, Nash equilibria can be viewed as an independent evolution of
different species leading to the optimization or adaptation for each species to the natural
environment. This can occur even when the behavior of one species has a direct influence on the
others. A new genetic operator referred to as exchange is introduced to simulate the transfer of

genetic material from one population to the other population.
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U= W, £.(x) Eqn.1.1

i=1

The function U(x) is sometimes referred to as a utility or composite function.

(ii) Nash Equilibria: This is a relatively new concept of game theory in genetic algorithms,
which is more robust and has faster convergence properties. Nash equilibria which originated in
1951 [34], is inspired from Games Theory and economics, and only produces a single solution
rather than a family of solutions. Also referred to as Non-Cooperative approaches, the Nash
strategy [29] consists of having N players, each optimizing its own criterion. However each player
has to optimize his criterion given that all the other criteria are fixed by the rest of the players.
When no playér can further improve his criterion, the system has reached an equilibrium called the
Nash Equilibrium. A good introduction to Nash equilibria is given by [35].

To understand Nash game theory, assume there are two players A, B, and there are two functions to
minimize: f,(x,y) and fi(x,y). Player A minimizes the first function with respect to x while keeping
y fixed by player B, conversely player B minimizes the second function f,(x,y) with respect to y
while keeping x fixed by player A. This means that two populations are required, one for each
player. Figure 1.9 below illustrates how Nash equilibria is applied with each generation to genetic
algorithms.

Let x;.; be the best value found by player-A at generation k-1, and y,.; the best value found by
player-B at generation k-/. Then at generation k, player-A optimizes x, while using y,,, at the
same time player-B optimizes y, while using x;.;. After this, player-A sends the best value x, to
player-B, and player-B sends the best value y, to player-A. This is repeated until neither player-A

or B can further improve their criteria, this is the Nash equilibrium.

Simulation studies [29] have shown that exchanges between player-A and B must be as frequent as
possible, low exchange leads to low convergence rates.

From an evolutionary perspective, Nash equilibria can be viewed as an independent evolution of
different species leading to the optimization or adaptation for each species to the natural
environment. This can occur even when the behavior of one species has a direct influence on the
others. A new genetic operator referred to as exchange is introduced to simulate the transfer of

genetic material from one population to the other population.
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Player-A Player-B
Population-1 Population-2
Generation k-1 l l
optimize f(x,y) optimizé fxy)
Xk-1 Yi-1
y is fixed by player 2 x is fixed by player 2

Generation k

optimize f>(x,y)

Yi
x is fixed by player 2

optimize f;(x,y)
Xk
y is fixed by player 2

Generation k+1/

optimize f(x,y) optimize fy(x,y)

Xi+1 Yi+1
y is fixed by player 2 x is fixed by player 2

Fig.1.9
Nash Equilibria with two players applied to Genetic Algorithms

(iii) Stackelberg Equilibria: A similar strategy using asynchronous (less frequent) exchange of

data exists, which is called the Stackelberg Equilibria [36] in which one player plays before the

other, taking into account its reaction. All these techniques are part of evolutionary game theory,

and offer new avenues of research in genetic algorithms. Refer to [35].
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1.6 Chapter Summary and Conclusion:

This chapter has provided an introduction to concepts of evolutionary computation theory in which
genetic algorithms are but just one area which have found wide acceptance in the control systems
research community.  Furthermore, a brief discussion on constrained optimization and
multiobjective optimization was provided. It must be emphasized that the field of evolutionary
computation is extensive and that many other concepts such as fuzzy-evolutionary computation
[4,5], neuro-evolutionary and other hybrid approaches exist, too numerous to give adequate

consideration. .

This thesis focuses primarily on the design and synthesis of control systems using conventional
genetic algorithms and hybrid genetic algorithms. Genetic algorithms have recently been applied
successfully to many control applications, in which conventional design methodologies are difficult
to apply, or may not exist. Currently, the design trend is towards control systems which have a
high level of autonomy, and are capable of dealing with plant changes, unknown environments,
faults, nonlinearities, external disturbances, and systems capable of learning. In the field of control
theory, such systems are generally termed robust, self tuning, adaptive, and reconfigurable control
systems. [Each one belonging to a particular area of control theory. Whilst self tuning and
adaptive control can deal with a limited amount of plant changes, a broader class of autonomous
control systems would generally embrace concepts of artificial intelligence, knowledge bases and
expert systems, and are implemented using fuzzy and neural control. In such cases, the process of
learning and adaptation can only be accomplished as a set of goal-oriented tasks rather than
traditional control methodologies. In this instance, the objective may not necessarily be a single
continuous mathematical function, but instead some abstract goal to be achieved. This goal can
subsequently define the quality of the solution (i.e. fitness level).

In this thesis, we look at how genetic algorithms and hybrid genetic algorithms can be applied
directly in a number of areas of control system design, and show that results are comparable and in

some cases superior to the more traditional methods.
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2.1 Introduction:

The purpose of this chapter is to apply hybrid genetic algorithm concepts developed in chapter 1 to
the training of radial basis function (RBF) networks [8]. This is illustrated by way of an example
of a model matching problem often found in control system applications. In this example, a radial

basis function (RBF) network is trained to model a nonlinear bioreactor fermentation process.

Heuristic and stochastic search algorithms which include: genetic algorithms, simulated annealing,
greedy and Tabu search are currently active areas of research in many diverse fields such as:
combinatorial optimization, neural network training, industrial design, economics, image
processing, system identification, machine learning, adaptive algorithms, pattern recognition,
artificial intelligence, nonlinear and robust control system design. One of the main applications of
stochastic search algorithms is in the area of optimization theory. When compared to traditional
optimization methods based on calculus and enumerative strategies, these algorithms are found to
be robust, globally converging, less influenced by noise and initial conditions, and relatively simple
to apply to any problem domain. Additionally, stochastic algorithms do not require gradient or
higher order derivative information for convergence, only a single cost functional (i.e. fitness
function) is needed. Cost functionals need not necessarily be linear or continuous, for instance
discontinuous cost functions can be used for pattern or classification problems when applied to

neural network training.

The purpose of this chapter is to apply and compare the three hybrid genetic algorithms discussed
in chapter 1 to training radial basis function networks, the algorithms are: Conventional Genetic
Algorithms (GA), Genetic Algorithms with Fast Simulated Annealing (GA+SA) and Genetic
Algorithms with Greedy Search (GA+GS). Rate of convergence, computational effort (FLOPS)
and ease of implementation are compared. Results are also compared with more conventional RBF

training algorithms.

Initially, a brief overview of radial basis function networks and current means of training is
provided. Also included is a mathematical description on bioreactors. Simulation results follow in
section 2.2. A good introduction to Genetic Algorithms is given by Davis [2], Mitchell [4], and
practical industrial applications by Karr [3]. An introduction to simulated annealing can be found

in [22], and greedy algorithms in [23] and [24], see also chapter 1 for many additional references.
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2.1.1. The Radial Basis Function Network:

Radial basis function networks (RBF) are a class of feed-forward neural networks which are
characterized by their topological simplicity and ease of training compared to other neural
networks. Because of this, radial basis functions have been widely applied to signal processing
applications, system identification, function interpolation and curve fitting. However, radial basis
functions generally require an excessive number of nodes for accurate operation. The original
RBF model required an equal number of hidden nodes as data points. This is clearly unacceptable
because the number of data points is generally very large. It is possible however, to synthesize
RBF networks with fewer nodes by applying globally converging training and optimization

routines. This is the objective of this chapter.

The radial basis ‘function network consists of three layers: the input layer is made up of source
nodes, the second layer (hidden layer) performs some arbitrary basis for the input patterns, the
output layer has adjustable weights and a single summation node. The hidden units (or nodes)
consist of nonlinear elements which enable the RBF to perform nonlinear mappings and also enable

effective separation of input vectors for pattern classification problems.

Training a radial basis function network in off-line system identification problems requires the
selection of the gaussian function centers, variances and weights. The original paper by
Broomhead and Lowe [11] suggested that the centers be selected randomly from the data. The
variances (or spread of centers) can be estimated from a histogram plot of the data, and the weights
calculated by least squares. This is by far the simplest and quickest method, but generally

produces less than satisfactory results unless the number of hidden nodes is large.

Referring to figure 2.1 below, a radial basis function network comprises of three layers. The first
layer is the input layer which is fully connected to the hidden layer, there are no (adjustable)
connection weights between the input and hidden layers. The hidden layer consists of a non linear
activation function or basis function. In each hidden layer node, the Euclidean distance between
the centers and the input vector is calculated. The activation function uses the Euclidean distance in
order to calculate the hidden node output. The output layer consists of a single output. The output
layer is connected to the hidden layer via a set of adjustable synaptic weights. The topology is

illustrated in figure 2.1 below:
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Fig. 2.1
The Radial Basis Function Network

Notation (for node-1 only):

wi: output weight associated with node 1, scalar.
V: node 1 centers, this is a vector: g(') = {tfl)....tf,{)}

Bi: node 1 spread of centers, also called standard deviations (sd), or widths, this is a scalar.

A RBF network implements the input-output mapping R™ — R' according to:
y=woxbias+2wj.¢j(“g—£") Eqn.2.1
j=1

Where: {w,,w,,...w,} refers to the connection weights, for each hidden node a center ¢ is defined

which is a vector R™, the Euclidean distance is given by the expression: V' =1l x; - &; N? for

i=1...m. Several activation functions ¢)) are possible, the more common ones are:

Thin plate spline function | O(v)=v>.log(v)

Gaussian function o(v)= e“’2 1p?

Multiquadric function o(v)= (v2 + BZ)IIZ

Inverse multiquadric function | ¢(v) = (v2 + Bz )"’ 2

Table 2.1
Typical Basis Functions for RBF Network.

In this thesis, the Gaussian function will be used throughout all simulations. The B parameter
which represents a standard deviation (width or spreading quantity) must also be determined during
training. The RBF contains only a single output, for multi-output applications, the network is
duplicated for each output, but the weights, centers and spread of centers must be determined for
each individual network. To train a RBF network (or any other neural network), training data is
required, the training data set is usually obtained from the actual respon'se from the plant, using

some known input function.
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Referring to figure 2.1, the RBF has only a single output, therefore when dealing with multi-output
systems, then multiple RBF networks are required. For instance, the bioreactor (section 2.2) has
two outputs (x,, s,), and one input (s;), therefore we require two individual RBF networks, see
figure 2.2A,B. In this case, each RBF network may be trained separately.

si(k)
RBF #1 —» Xolk)
sk
x(k-1) RBF#1 x{k)
Solk-1)— RBF #2 > So(k)
RBF#2 sdk) slel) o
Xo(k-1) 1
1z
Figure 2.2.A Figure 2.2.B
Training Setup for a RBF Network. Operating Setup for a RBF Network

The output error is the difference between the RBF and actual bioreactor plant outputs, this is
calculated for each sample j, and this is repeated for each individual RBF network thus:

N 1/2

Error= [Z(RBF = biareactorj )2:| Eqn.2.2

j=1
Figure 2.2A illustrates the training configuration, and figure 2.2B illustrates the operating
configuration in which the neural network simulates the bioreactor. In this setup, the outputs are
fed back into the inputs via a 7/ delay operator. It is assumed that the forward propagation delay
through the RBF network is negligible compared with the sampling time.

2.1.2. Training Radial Basis Function Networks:

The simplest method to train a RBF network is to choose the centers from the input data randomly
[S]. The node widths can be estimated by analyzing the spread of centers from a histogram plot of
Euclidean distances, the weights can then be computed by least squares. However, arbitrary
selection of centers from the data often results in poor performance, requiring excessive number of
hidden nodes. Since the performance of the RBF critically depends on the chosen centers, a better
method is needed. A number of methods exist which address this problem, for example Chen [12,
13] uses a method of Orthogonal Least Squares to train a RBF, in another paper, Chen et al [15]
uses a Hybrid Clustering algorithm for non linear system identification. These methods are more

tailored for on line training and identification.
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Another popular training method is the k-means clustering algorithm [25]. The k-means
clustering algorithm first computes the node centers, it then estimates the node widths, and lastly
the node weights. This is described in detail below.

(i) Node Centers: The node centers are determined by clustering or partitioning the training data
set into n equal subclusters, where n is the number of hidden nodes of the RBF network. The
average of each subcluster is then calculated. From this initial estimate, a better estimate can be
obtained by computing the Euclidean distance between each training data point and the node
centers for each node. The training data point is then placed into a bin (there are n bins) belonging
to the node center closest to it. After all training points have been binned, the average in each bin
is computed. This gives a better estimate of the centers for each particular node. The process is
repeated until the centers have converged. From simulations, this can take 10-20 iterations, and is

generally very fast.

(ii) Node Widths: The node widths are computed using a p-nearest neighbor heuristic, generally
p=2 as suggested in [26]. Using only the node centers, each node width can be estimated by

looking for 2 nearest node centers to it, and then computing:

|55kt | Bn23

where f3 is the width of the j node, #; is it's center, and #; are the nearest centers to it.

(iii) Node Weight: The node weight is computed using least squares. All node weights are
computed simultaneously. A regularization parameter is often introduced to prevent the weights
from becoming too excessive and avoiding overtraining the network. Note also that the node
weights are calculated in the same fashion when genetic algorithms are used to train the RBF

network.

2.2 Training RBF Networks With Hybrid Genetic Algorithms

This simulation example involves training a Radial Basis Function (RBF) Network to model a
bioreactor fermentation process, this is a model matching problem for a nonlinear system. We
briefly describe the bioreactor nonlinear equations. We then compare training the RBF using
conventional methods with hybrid genetic algorithms. References to bioreactors can be found in

[5, 6, 7], and using RBF to model bioreactors [7B]. See also appendix section 8.3.
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2.2.1. Bioreactor Mathematical Model:

The bioreactor consists of a tank containing water, nutrients (or substrate) and biomass (or cells).

Nutrients and biomass are added to the tank (via the inlet), the nutrients are consumed by the

biomass thereby increasing the overall biomass concentration in the tank. Furthermore, biomass is

removed from the tank via an outlet, at the same flow rate as the inlet. The overall volume of the

liquid in the tank remains constant. The bioreactor is illustrated in figure 2.3 below:

Where:

X

S

F,‘I

X

s.

Xo:
So-

Y O

o

Fi; x; 8

Fy X So

Fig.2.3
Schematic Diagram of a Bioreactor

Input biomass concentration=0

Input nutrient concentration.

Input flowrate (constant).

Biomass concentration inside the tank — output biomass
Nutrient concentration inside the tank — output concentration
Output biomass concentration

Output nutrient concentration

Output flowrate

Let x,=x, x,=s, u=s; then together with the above assumptions we can write in more conventional

control system form, the dynamics is a second order nonlinear system. Referring to equation.2.4

below: x;=output biomass, x,=output nutrient concentration, ¥=input nutrient concentration:

PRI R
1 um' Ks+x2 V'l

Eqn.2.4

. e F;

X, =—K,. ﬂmm L X, +7.(u—x2)
s 2
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In continuous operation, the bioreactor runs at some steady state operating point, we assume that

the flow rates are constant and identical i.e.: F; = F,, therefore the volume of liquid inside the tank

is also constant. We assume that the output biomass and nutrient is the same as the biomass and

nutrient within the tank i.e.: x, =x, s, =s, assume the input has no biomass x; =0.
Typical values for the saturation constant and growth rate coefficients are: u,, =03 and x; =01
to 0.4, x; =125, the initial conditions: s(0)=10,x(0)=02. The bioreactor open loop step

response is illustrated below:

' id s(t)

x(t) 1 :

08f------ e he s teeee -

06f------ Fovwsuss g i 8w

0.4 |= 8 efsamani 5o Fs mi o §

0.2

0 200 400 600 0 200 400 600
Fig.2.4.A Fig.2.4.B

Open Loop Step Response: x(t): Biomass Output Open Loop Step Response: s(2): Nutrient Output

When a step input (in nutrient) is added to the tank, assuming perfect and instantaneous mixing,
the nutrient in the tank and hence output nutrient is initially high, but the nutrient is gradually
consumed by the biomass (fig. 2.4.B) reducing with time. At the same time, the biomass
concentration increases as a nonlinear function i.e. fig.2.4.A due to nutrient uptake. Because the
bioreactor has two outputs, we require two separate radial basis function networks, this is
illustrated in figure 2.2 above. In the next section, simulation results using conventional training

methods is provided.

2.2.2. Training With Conventional Methods:

From the mathematical model of the bioreactor, three sets of responses are initially generated, the
first response is used to train the RBF using a random input function, the other two responses are
used to verify the network using a different random and step input function.

The dynamics of the bioreactor are intrinsically slow, a time step typically of 0.5 seconds is

required in the simulation.
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(i) Results Using Conventional Training: Simulation results with conventional training using
MATLAB® running on a Pentium III/750MHz PC, with 300 training samples is given in following
pages. Simulation results using 20 and 40 hidden nodes is shown in figures 2.5 and 2.6
respectively. Matlab includes a neural network toolbox which can be used to train the RBF
networks. The Matlab functions are: newrb(), which is used for training, and sim() which is used
for simulation and verification purposes. When using Matlab's newrb() function, the value of node
widths (spread) mﬁst be specified. The value of node widths can be estimated from the training
data set. Our training data set suggests that this value can be anywhere between 0.2 and 4.0. The

choice of spread may require some trial and error before the optimum value can be found.

Table 2.2 below summarizes the results obtained using the conventional matlab neural network
toolbox. Results are for 20 and 40 nodes in the first column, the value of spread in the second
column, and computational effort (megaflops) in the third column. The last two columns give
values for the training error (equation 2.2) for the configuration shown in figure 2.2A, and

verification error for the configuration shown in figure 2.2B.

Training Error Verification Error

Nodes | Spread| MFP | Figure RBF#1 RBF#2 random step

20 0.8 41 Fig.2.5 0.01514 0.02343 0.9526 1.3504
40 1.4 105 Fig.2.6 0.00460 0.00844 0.6998 0.9409

Table 2.2
Training results using conventional matlab neural network toolbox

The training error is shown for each individual network as the sum square difference between the
RBF output and bioreactor output. The verification error however is the RMS sum of both

networks, using random input and step input test data.

The choice of node spread B has a significant influence on the outcome of the training. The larger
that spread is the smoother the function approximation will be. Too large a spread means a lot of
neurons will be required to fit a fast changing function. Too small a spread means many neurons
will be required to fit a smooth function, and the network may not generalize well. Figures 2.5 and
2.6 on the following page compare the RBF output (blue) with the actual bioreactor output (red)
using random test data (first row) and step test data (second row) for 20 and 40 nodes.
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Matlab NNET Toolbox: Verification (RAND): Error: 0.9526 Nodes: 20
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2.2.3. Training With Hybrid Genetic Algorithms:

The RBF can also be trained using hybrid genetic algorithms. The three methods compared are:
Conventional Genetic Algorithms (GA), Genetic algorithms + Simulated Annealing (GA+SA) and
Genetic algorithms + Greedy Search (GA+GS).

(i) Genetic Algorithms: Before discussing the results, the chromosomal representation used for
this simulation is illustrated in figure 2.7 below, where: w,=bias weight, [w, £ 1 £" sd, | =node-
1 weight, centers and standard deviation (widths) respectively. The same is repeated to the
remaining nodes 2 to n. The error is the Euclidean norm of the difference of the RBF output and
Bioreactor output (equation 2.2), the fitness is then computed as the inverse of the error thus:
fitness=1/(error).

node-1 node-n

wo | wi | tP{tP |60 [sdi| oo oo e e wn [t |67 6] sdn| error | finess

Fig. 2.7
Chromosomal Representation of RBF Network with GA

In this simulation, the GA maintains two separate populations, the first population is used to train
the first radial basis function RBF#1, and the second is used to train RBF#2. Consequently both
RBF networks can be trained simultaneously. The weights are computed using least squares. For
this simulation we set: population=30, maximum generations=200, crossover probability=0.6 and
mutation probability=0.1, binary tournament selection and floating point codification was used.
Several simulation results are listed to illustrate the stochastic nature of the convergence. Results

are tabulated using 20 and 40 nodes:

Training Error Verification Error

Nodes| Time MFP |Gen RBFi#1 RBFi#2 random step
20 10:43 10540 140 0.00233 0.00650 0.33975 0.59029
10:43 10550 140 0.00269 0.00435 0.64191 0.79235
10:56 10551 140 0.00426 0.00339 0.91685 0.26338
10:49 10557 140 0.00192 0.00361 0.57244 0.81601
10:55 10536 140 0.00214 0.00800 0.53976 0.83718
40 37:33 39917 160 0.00188 0.00176 0.33477 0.22392
37:32 39908 160 0.00227 0.00263 0.32801 0.32676
37:33 39866 160 0.00232 0.00252 0.34336 0.41723
37:47 39832 160 0.00227 0.00276 0.32069 0.14259
37:43 39836 160 0.00278 0.00367 0.34063 0.19805

Table 2.3

Training results using conventional genetic algorithms
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(ii) Genetic Algorithms+Simulated Annealing (GA+SA): Simulated annealing requires a search
vector and a temperature annealing schedule. The search vector is defined in a similar manner to

that of genetic algorithms, and is illustrated in figure 2.10 below:

node-1 node-n

Wo | Wi t?) t(zl) tgl) sdl EEEEEX Wh tfn) t(zn) tgn) sdn

Fig. 2.10
Search vector for GA+SA algorithm

There are two search vectors, one for each RBF network. Again, both networks are trained
simultaneously. The temperature annealing schedule is defined as: initial temperature: To, final
temperature: T the temperature at the K iteration is given by: Ty=0..T}.;, this is an exponential

annealing schedule where alpha is computéd from:
1
(= log(Tf /To))
o =107"*" Eqn.2.5

giving values of alpha typically between 0.9-0.98, N=number of iterations. Results for this
simulation using 20 and 40 nodes is tabulated below, values are: To=1 (normalized), T#=0.001,
iterations=200 (20 nodes) and 240 (40 nodes)

Training Error Verification Error

Nodes| Time MFP |[Gen RBFi#1 RBFi#2 random step
20 9:41 10409 200 0.00297 0.00464 0.41078 0.25718
9:42 10406 200 0.00294 0.00362 0.43302 0.44228
9:36 10409 200 0.00264 0.00342 0.67604 0.18233
9:47 ‘10408 200 0.00285 0.00365 0.48328 0.17402
9:44 10407 200 0.00288 0.00367 0.41093 0.40195
40 35:35| 41360 240 0.00178 0.00353 0.35444 0.21236
35:28 | 41362 240 0.00182 0.00313 0.37063 0.19034
35:39 | 41372 240 0.00212 0.00342 0.31717 0.28021
35:17 | 41377 240 0.00189 0.00298 0.30040 0.24368
35:24 | 41341 240 0.00201 0.00237 0.28266 0.33288

Table 2.4

Training results using genetic algorithms and simulated annealing

Typical plots for 20 and 40 nodes are illustrated on the following page Fig.2.11 and Fig.2.12.
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GA+Simulated Annealing: - Verification (RAND) Error.: 0.4311976 Nodes: 20

1.5 1.5

Xo(t) biomass out So(t) nutrient out

0 . - 0 = o -
0 100 200 300 400 500 0 100 200 300 400 500
GA+Simulated Annealing: - Verification (STEP) Error: 0.26988 Nodes: 20
Xo(t) biomass out So(t) nutrient out
T T T T | T T T
0.8 OB | = 2 T TONE = 30 s s = ) o o
0.6 ‘ - Bioreactor
71 £ SR Tl Lo R EE R
°" _ RBF :
0.2 B o
0 0.2 .
0 100 200 300 400 500
Fig. 2.11

GA+Simulated Annealing: - Verification (RAND) Error.: 0.3247598 Nodes: 40

Xo(t) biomass out So(t) nutrient out
1.4
1.2

1
0.8
0.6
0.4

0.2

0 s ’ a i 0 ; . " .
0 100 200 300 400 500 0 100 200 300 400 500

GA+Simulated Annealing: - Verification (STEP) Error: 0.2217 Nodes: 40

” Xo(t) biomass out 3 So(t) nutrient out

T T T T T T T T

08 --- /- N -t

P B LRS- TS AR

el < o 8 e e e

0 100 200 300 4;)0 500 0 100 200 300 400 500



Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms P2.15

(iii) Genetic Algorithms+Greedy Search (GA+GS): The greedy algorithm uses a search vector
which is identical to that of simulated annealing (Fig.2.10). The performance of the greedy
algorithm strongly depends upon the initial value. Typical results are tabulated below:

Training Error Verification Error
Nodes | Time MFP RBF#1 RBF#2 random step

20 4:50 4785 0.003160 0.005724 0.45574 0.4244s8
4:52 4849 0.003453 0.004171 0.35973 0.44323

5:46 5750 0.003258 0.005203 0.45351 0.38673

5:25 5348 0.004603 0.003598 0.62629 0.26401

6:35 6566 0.002091 0.005390 0.43774 0.45490

40 6:49 8158 0.002064 0.001980 0.31679 0.24220
9:39 11830 0.001946 0.003705 0.26691 0.22193

17:58 21789 0.001235 0.001946 0.28643 0.20710
19:21 23347 0.001707 0.001740 0.44539 0.13030
25:13 30777 0.001135 0.001781 0.28535 0.15008

Table 2.5

Training results using genetic algorithms and greedy search

The combined GA+GS converges in about half the time/flops when compared with the standard
genetic algorithm. Results for 20 and 40 nodes are illustrated in figures 2.13 and 2.14 below.
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2.2.4 Comparison of Results:

From the previous results, all three GA methods yield a network with superior performance when
compared with a RBF network trained using conventional methods. However the results provide
no indication of the actual convergence rate for each of the three GA methods. In figure 2.15
below, the network performance (i.e. training error) is plotted as a function of the training time (or
FLOPS) for a network with 20 nodes. The conventional GA is plotted in red, hybrid
GA+simulated annealing in green, and hybrid GA+greedy search in blue. Both hybrid methods
converge slightly faster than the conventional GA. The same is repeated for the RBF network with
40 nodes, this is illustrated in figure 2.16 below.

Table 2.6 below summarizes the training and verification errors obtained after a fixed number of

computations: 10,000 MFP for the 20 node RBF, and Table 2.7 for 40 nodes after 40,000 MFP

computations.
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Training and verification error comparison after 10,000 MFP computations, for 20 node RBF

network:
Training Errors: Verification Errors
METHOD: RBF#1 Error RBF#2 Error | Errorl+Error2 | Train time RBF#1 Error | RBF#2 Error
MATLAB 0.015140 0.023430 0.038570 00:20 0.95300 1.35000
GA: 0.003535 0.007448 0.010984 11:10 0.44301 0.37189
GA+SA: 0.002625 0.003251 0.005877 9:50 0.43120 0.26988
GA+GREEDY: 0.003618 0.003011 0.006630 9:40 0.44312 0.11502
Table 2.6

Typical convergence rates for conventional genetic algorithms and hybrid genetic algorithms versus
the computational effort for 20 node RBF network:

Convergence Rate: GA:red GA+SA: green GA+GS: blue (20 nodes)

RBF#1 Error RBF#2 Error RBF#1 + RBF#2 Sum Error
107 T T 107 T T 10°
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Training and verification error comparison after 40,000 MFP computations, for 40 node RBF

network:
Training Errors: Verification Errors
|
METHOD: RBF#1 Error RBF#2 Error | Errorl+Error2 | Train time RBF#1 Error [ RBF#2 Error
MATLAB 0.004600 0.008440 0.013040 141 0.9473 ‘w 0.4495
GA: 0.002771 0.003924 0.006695 35:02 0.4183 0.2348
SA: 0.001572 0.001693 0.003265 32:05 0.3247 | 0.2217
GREEDY: 0.001269 0.002175 0.003444 30:47 0.2232 J 0.1478

Table 2.7



Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms P.2.18

Typical convergence rates for conventional genetic algorithms and hybrid genetic algorithms versus
the computational effort for 40 node RBF network:

Convergence Rate: GA:red GA+SA:green GA+GS: blue (40 nodes)

, RBF#1 Error ., RBF#2 Error , RBF#1 + RBF#2 Sum Error
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Fig. 2.15

2.3 Chapter Summary and Conclusion:

From the simulation results, it is clear that training RBF using genetic algorithms can produce a
network with superior performance and fewer nodes when compared with conventional training
schemes. However training times using GA are excessive. Even hybrid GA methods still require a
high computational effort compared with the more traditional methods. Thus it is unlikely that
applications requiring on-line training of RBF networks using these methods is appropriate.
However, in applications where the smallest number of nodes is desirable, then off-line training

using GA and hybrid GA may be more feasible.

We have investigated two different methods of crossover: swapping and weighted average. From
simulation results, the averaging crossover converges quicker but looses genetic diversity more
rapidly. The swapping crossover has slower convergence but retains diversity. The results above

are for weighted average crossover only.
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Some key points regarding GA are outlined next.

(i) Population Initialization:
The initialization of a population is an important factor. Two points to consider are: to ensure that
the initial population spans the entire possible search space in which the solution is contained. And

secondly, if the approximate solution is known, to initialize the population near the solution .

(if) Mutation Operator:
Two forms of mutation operators are used:
x;=xj+ kxrand Eqn.2.10a
and
x;=x; X(1 + kxrand) Eqn.2.10b

the first (Eqn.2.10a) allows a wide search space to be analyzed, the second works well near the
solution (narrower search space). The two methods are used with a probability of 0.5, and & is a
mutation gain parameter which can be user selected or gradually decreases over time. Mutation is
applied uniformly over the components of the chromosome. For instance, given the following
chromosomal representation (Fig.2.16) with parameters (x;, x;...x,) to solve for, the mutation
operator is applied to each element of the chromosome in sequence, beginning from x, to x, with

probability Pm:

Xl x2]eeeeeennenn. X, |err| Fitness

Figure 2.16

A typical mutation algorithm would be:

%BIASED MUTATION:
for j=1:n
if (rand < Pm)
r = fix(3*rand);
gain = mutationGain*104(-r);

if (rand<0.5)
%wide search space:
GeneB(j) = GeneB(j) + gain*randn;

else
%narrower search space:
GeneB(j) = GeneB(j)*(1l + gain*randn/10);

end;

end
end

Note that either one of the two mutation equations (Eqn.2.10a) and (Eqn.2.10b) is chosen

randomly.
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(iii) Crossover Operator:
A uniform crossover operator is used. This means that for each parameter x; of the chromosome
(Fig.2.16), the resulting offspring is the weighted average of the two parents. This is applied

uniformly for j=1..n, and probability Pc to each parameter x;, the crossover algorithm used is:

%SWAPPING CROSSOVER OPERATOR:

for j=l:n
if (rand < Pc}
eta = rand;
GeneB(j) = eta*GeneAl(j) + (l-eta)*Gened2(j);
end;
end;

%HOOKE-JEEVES CROSSOVER OPERATOR:
if (rand<0.25)

fitl GeneAl(cols);

fie2 GeneA2(cols) ;

if (£fitl>£it2)
GeneB = 2*GeneAl - GeneA2;
else
GeneB = 2*GeneA2 - GeneAl;
end
end

If the swapping crossover method is used, the value of alpha is simply set to zero. A value of
a=0.5 can sometimes produce rapid convergence. Furthermore, the addition of the Hooke-Jeeves

crossover operator discussed in chapter 1 is applied with a low probability of 0.25.

(iv) Population Inversion:

Two methods which we have used are: (i) combine the parents and offspring into one population,
and then choose the fittest N chromosomes from this population, or (ii) simply replace the old
population with the new population. We found that the first method can lead to premature
convergence and loss of genetic diversity. The second method retains genetic diversity, but can also
be inefficient because offsprings with very poor fitness can remain in the population. Trial and

error may be required depending on the application.

(v) Future work:
1. As a topic of interest, compare genetic algorithms with orthogonal least squares in training

radial basis function networks.

2. Use genetic algorithms and hybrid genetic algorithms to train multilayer perceptrons (MLP)

neural networks, compare with backpropagation.

3. Hybridize genetic algorithms using Tabu local search, and compare with results using Greedy

search and simulated annealing.
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3.1 Eigenstructure Assignment:

3.1.1 Introduction:

The aim of this chapter is to apply hybrid genetic algorithms, and concepts of constrained
optimization theory discussed in chapter 1, to the design of control systems based on eigenstructure
assignment (ESA). Three different designs are considered: (i) Full state static feedback, (ii)
Output feedback using a dynamic compensator, and (iii) Robust eigenstructure assignment.
Results are verified with conventional eigenstructure assignment methods. An introduction to

eigenstructure assignment is briefly outlined below.

Eigenstructure assignment is a powerful design technique which has developed over the last twenty
years. The objective of eigenstructure assignment is to determine the feedback gain matrix K such
that the closed loop eigenvalues and eigenvectors (eigenstructure) are as close as possible to some
design specifications. . This method allows the designer to directly satisfy damping, settling time
and mode decoupling specifications by the proper choice of eigenvalues and eigenvectors. The
behavior of a linear dynamic system can be completely characterized by its eigenstructure. The
eigenvalues determine the stability of the system while the eigenvectors determine the contribution
of each system mode to the overall system outputs or states. More specifically, the output for a

linear discrete time system x(k + 1) = ®.x(k) with zero input, is given by [1]:

x(k)=V.A*.V'.x(0) Eqn.3.1

Where V=a matrix of eigenvectors of ®, A* =diagonal matrix of corresponding eigenvalues, and
x(0) initial condition.

There are essentially three types of feedback: full state feedback, output feedback, and constrained
output feedback [1, 2]. Full state feedback [7] allows greater design freedom in the choice of
eigenstructure placement, but may require an observer for state estimation. The more popular
method is output feedback, this method has more restrictions on the placement of eigenvectors, but
does not require a state observer. The third method of constrained output feedback sets some
entries of the output feedback gain matrix to zero, reducing controller complexity and increasing
reliability, however it is not always evident which entries should be zero. One obvious method [3,
4] would simply be to choose those entries which have the smallest influence upon the eigenvalues

and eigenvectors of the closed loop system.
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Note in particular that pole placement (i.e. Ackerman's formula) and optimal-LQR (matrix Riccati
equation) controller designs are simply a special instance of eigenstructure assignment where only

the eigenvalues are taken into consideration.

One popular method of computing the feedback gain matrix K for MIMO systems is by Moore's
method [6], and is described in section 3.1.2 below. Other methods include parameterization of
controllers [5] for full state feedback. Extensions to improve design freedom of parametric
approaches include [7] in which all combinations of allowable subspaces is computed.
Eigenstructure assignment has been used in reconfigurable control systems [8] in which the
operating conditions of the plant change and new feedback gain matrix K is re-computed to
maintain the eigenvalues and vectors as close as possible to the original design specifications.
Applications to aircraft control using partial eigenstructure assignment in which not all eigenvalues
are prescribed [9] uses minimum norm to ensure stability of the remaining unspecified
eigenstructure. In [10], eigenstructure is used to achieve mode decoupling and desired
damping/rise time for a high performance (F-15) aircraft using output feedback. Applications to a
commercial transport (Boeing 767) using eigenstructure to design a lateral autopilot are discussed
t12]. More recently, the area of robust eigenstructure assignment including reconfigurable control
has received considerable attention. The task of reconfigurable control is twofold: first to
guarantee performance and stability whenever possible, and secondly, to recover control
effectiveness under changing or failed conditions. Reconfiguration is performed on-line, in the
event of a failure the fault detection and isolation system (see chapter 6) should provide accurate
isolation and identification of the fault. This chapter will investigate the application of hybrid

genetic algorithms for solving general and robust eigenstructure problems.

3.1.2 Full Eigenstructure Assignment by Moore's Method

Eigenstructure assignment by Moore's method is presented below, this method can be later used as
a comparison with solutions obtained using hybrid genetic algorithms. Moore's method [1]
requires that all the eigenvalues and eigenvectors are specified at the design stage. In [9], partial
eigenstructure assignment using Moore's method is discussed. Moore's method requires full state
feedback, however the solution can be obtained without iteration. The procedure below is
presented in algorithmic form rather than giving a complete derivation of Moore's method. Given a

linear time invariant (LTI) system in state space and continuous time:
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x=A.x+B.u Eqn.3.2
and a full state feedback control law:
u=—K.x Eqn.3.3

for xeR", ueR"™ we require that the closed loop eigenvalues and eigenvectors correspond as
closely as possible to those specified, thus the eigenvalue problem becomes:

(A-B.K)v,=\,.v; Eqn.3.4

where: {4;,v;};~; , » are the desired eigenvalues and eigenvectors respectively. The algorithm is

given below, note the necessary condition: n=rank(A). Moore's method requires full speciﬁcation

of all eigenvalues and eigenvectors:

Procedure for Moore's Method:

Repeat j=1 TO n (for each eigenvalue)
setup the matrix:
S=[A;.I-A|B]

Compute the right nullspace of the above matrix — M,N:

M p—
NI null(S)

Compute the column vectors V and W by least squares solution
a=(M".M)Y". M.y,
v,=M.«x
w;=N.ua«a

Construct matrices V,W from column vectors v, W;thus:

V=_[.v;.]
W = [...w}....]

end

Fig.3.1

The full state feedback gain can then be computed from the matrices thus: K = -w.v~'. Note that
Moore's method gives the best match (in the least squares sense) to the specified eigenvectors. In
fact, the user specified eigenvectors may be unrealizable or unachievable, and Moore's method
gives the closest best match to the specified eigenvectors. As we shall see later, the achievable
eigenvectors must belong to the subspace spanned by the columns of S; = (4,.1 - A)"'.B. If this

is the case, Moore's method will then yield a precise match to the specified eigenstructure.
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There have been many variations to this method with partial eigenstructure and output feedback
instead of state feedback. When dealing with partial eigenstructure assignment where only some of
the eigenvalues/eigenvectors have been specified, the question of how best to allocate the remaining

ones is the subject of robust eigenstructure assignment.

Note also that Moore's method fails when one or more closed loop eigenvalues are required to be
identical to the open loop eigenvalues. When dealing with partial eigenstructure assignment, this
method can be modified to deal with eigenvalues/vectors which are not specified or are not critical

in the design.

3.1.3 Partial Eigenstructure Assignment:

In many practical situations, the full specification of the eigenstructure is not known (or not
necessarily required), but only certain elements of the eigenstructure are specified. Thus the
problem is to find the best possible eigenstructure which matches the specified components of the
required eigenstructure as closely as possible without regard to the other remaining unspecified
components. This is the partial eigenstructure assignment problem. The conventional solution [1]

is outlined below, for each single eigenvalue and desired eigenvector v

@

T
v=[v,xxvjxkax]

where x=don't care (represents unspecified components) and v; are the specified components. A

simple re-ordering operation is used to rearrange the above vector into two subvectors:

n
reorder:{v(d)} - 79 = |:d:| Eqn.3.5

where n=subvector of specified components, and d=subvector of unspecified components. The

achievable eigenvectors must be selected from the subspace spanned by: S =(A.I—- A)'B.

Thus all achievable eigenvectors are given by: v@ = §. g . The S matrix is also reordered in the

same sequence as previously in equation 3.5:

— |N
reorder:{S} — S = [D] Eqn.3.6
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In order to minimize the norm of the difference between the actual and desired eigenvectors the g

vector can be estimated by least square thus:
g =(NT.N)-|.NT.n Eqn.3.7
If however the dimension dim{n} < m, where m=number of inputs (u € R™), then the solution

can be found given by:

g=N"(N.N")".n Eqn.3.8

The feedback gain K can be computed from the g vector. A full detailed description of the partial
eigenstructure algorithm we implemented is provided in the appendix (see 8.2). This will be used
for comparison with solutions obtained using genetic algorithms. If only partial eigenstructure
specification is given, then the question of how best to choose the remaining unspecified

eigenvalues/eigenvectors becomes the next topic of discussion: robust eigenstructure assignment.

3.1.4 Robust Eigenstructure Assignment:

More recently, robust eigenstructure assignment has been a topic of research interest including
areas of reconfigurable control systems [18]. The objective is to design a feedback control law in
which the eigenstructure of the closed loop system is unaffected, or minimizing the effects caused
by changes in the operating conditions (or failures) of the nominal system. Some examples of
robust eigenstructure assignment include [15] in which the attempt is to minimize the difference

(norm) between the desired and achievable eigenvalues/vectors.

This chapter outlines the general framework in which the robust eigenstructure problem can be
defined and solved using hybrid genetic algorithms. Other methods of robust eigenstructure
formulation include the minimization of sensitivity and complimentary sensitivity function norms
[17], which also appear to be a popular techniques. Some other examples with genetic algorithms

[16, 19] have recently emerged.

~ From the previous chapter, we discussed optimization problems in which hybrid genetic algorithms
can be readily applied to. Genetic algorithms require that the robust eigenstructure problem first
be formulated in a generalized multiobjective constrained optimization framework. This

formulation is developed below.
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The eigenstructure assignment problem starts with the definition of the desired closed loop
eigenvalues and eigenvectors, and then computes the feedback gain matrix K to meet these
requirements. In general, not all eigenvalues and eigenvectors are specified, the question is then
of how best to choose the remaining (unspecified eigenvalues/eigenvectors) so that the system is
stable, robust and the closed eigenvectors are as close to those specified. Consider the following

linear time-invariant and completely controllable system:

x(t)=A.x(t)+ B.u(t)

(1) = C.x(t) Eqn.3.9

Where x € R”", is the state vector, and u € R™ is the control vector, using full state feedback:

u(t)=—K.x(t) the closed loop system becomes:

x(t)=(A- B.K).x(t) Eqn.3.10

Where the closed loop eigenstructure of (A - B.K) must match as closely as possible to those
specified. It is assumed that the controllability condition is satisfied i.e. rank of the controllability
matrix=n. Given this condition, all eigenvalues can be placed, and up to m entries in each
eigenvector can be placed in specified locations. The robust eigenstructure assignment problem

can be stated as follows: determine the feedback gain matrix K such that:

Robust Eigenstructure Problem Definition:

1. The eigenvectors of the closed loop gain (A - B.K) are as close as possible to the specified
eigenvectors v =[v,,V,,...v ].

2. The eigenvalues of the closed loop system (A - B.K) contain the specified eigenvalues
A=Ayl

3. The remaining (n-q) unspecified eigenvalues and eigenvectors are stable.

4. The stability margin is maximized to account for robustness against uncertainties in the state-

space matrices.

The four requirements can be stated mathematically as a constrained multiobjective optimization
problem. The eigenvector problem is defined as finding K such that for each

eigenvalue/eigenvector: (A—B.K)v; = 4;.v;.
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Requirement-1:

Requirement-2:

Requirement-3:

Requirement-4:

Match the eigenvectors as close as possible to the desired eigenvectors: let v, be

the desired eigenvectors, and v,* the achievable eigenvectors, then this is

equivalent to minimizing the norm:

2 2
fr=min Xy —v)| Eqn.3.11
i=1
All achievable closed loop eigenvectors v,“ must belong to the subspace spanned
by the columns of §; = (/'li.I—A)_‘.B see [1], in other words the vector v,°

must correspond to the subspace: v,” = §,.g, where g;is a vector to be solved
for, the minimization now becomes ( where H=complex conjugate transpose):
q
. H
fi=min Y (S8 -v:) (Si-8-v) Eqn.3.12

Match the actual eigenvalues to the specified eigenvalues, from equation 3.4, the
following condition must be zero:
q .
h=Y(A+BK-AI).S.g =0 Eqn.3.13
i=1

This defines a first constraint. Since A, is a vector, we can minimize its trace.

The remaining (n-g) unspecified eigenvalues and eigenvectors must be stable. It

is sufficient to satisfy the Lyapunov equation:

h,=A".P+P.A,+Q=0 Eqn.3.14
where A.=(A+B.K) is the closed loop gain, and Q is positive definite symmetric

matrix. This defines a second constraint. Since h, is a matrix, we can minimize

its trace.

The stability margin is maximized to account for robustness against
uncertainties in the state-space matrices. For unstructured perturbations, this
translates to minimizing the quantity:

f, =trace(P*) Eqn.3.15

the smaller this value, the more robustly stable the closed loop system will be to

unstructured perturbations.



Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms P39

The robust eigenstructure assignment problem can be formulated as a multiobjective optimization

problem with two objectives and two constraints:

minimize:
f, =min i(S,..g,.—-v,.)H(S,..g,.—v,.) ' Eqn.3.16
per
f» = min{trace(P*)} Eqn.3.17
constraints:
h, =i(A,+K—l,~I)-S,--g,-=0 | Eqn.3.18
hz=ZT-P+P-AC+Q =0 Eqn.3.19

Fig.3.2

This is the generalized framework for robust eigenstructure assignment. This can be solved by

calculus based constrained optimization using Lagrange multiplier methods [15].

3.1.5 Response of LTI Systems from Eigenstructure Information:

The eigenvalues and eigenvectors of a matrix can be used to completely characterize the dynamic
behavior of a LTI system. Refer to [1] and [22] (pp. 342-345). Given an unforced system with
full state feedback K:

x(t)=A.x(t) Eqn.3.20

with eigenvalues of the closed loop system A.=A-B.K at: A, =diag[\,A,,...A,] and the

eigenvectors V, = [v,,v,,...v,]. The system is transformed to discrete time thus:

x(k+1)=®.x(k) Eqn.3.21

where the matrix ® =¢*” =T.A, and T=step size. Since the transformation involves only a
€p

scaling by T, then the eigenvectors of @ are identical to those of (A-B.K) ie: V, =V,, but the
eigenvalues are scaled by T, thus: A, =T.A,. It can be shown that the response at time step k of

this systern is completely described by relation:
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x(k)=V,.A% .V, x(0) Eqn.3.22
thus equating parts, we get:
A* =V, ALV Eqn.3.23

From the above relation, the eigenstructure of the system can be used to fully describe its dynamic
response. Note that if a system has unique nonzero eigenvalues, then the eigenvectors will be

linearly independent.

3.2 Partial Eigenstructure Assignment for Static Compensators

3.2.1 Theory:

We now look at how hybrid genetic algorithms can be used to design a full state feedback static
compensator K for the partial eigenstructure assignment problem. In this simulation, all
eigenvalues have been specified, but only partial specification is provided for the corresponding
eigenvectors. This problem can be solved by conventional methods described earlier. We can
compare the solution obtained using genetic algorithms with conventional methods (see appendix

8.2). Two individual simulations are considered:

(a) In the first part, the eigenvalues have been fully specified, and partial specification is provided
for the eigenvectors. We can verify the solution obtained by GA as this problem can also be

solved by conventional eigenstructure assignment.

(b) In the second part, the upper and lower range of the allowable eigenvalues is given, for

instance: Ao < A < Agen, and partial specification is provided for the eigenvectors as

described above. This second method cannot be directly solved by conventional

eigenstructure assignment. This is a constrained optimization problem.

The linearized lateral aircraft model is used for these two simulations (appendix 8.1). A
description of the simulation setup is outlined next. Consider the following linearized dynamic

system:

x(t) = A.x(t) + B.u(t) } Eqn.3.24

y(1) = C.x(1)
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Where x € R”, is the state vector, and u€ R"™ is the control vector, assuming full state feedback:
u(t) =—K.x(t) the closed loop system becomes:
x(t)=(A-B.K).x(t) Eqn.3.25

Where the closed loop eigenvalues and eigenvectors of (A - B.K) must match as closely as possible
to those specified. It is assumed that the controllability condition is satisfied i.e.: rank of the
controllability matrix=n. Given this condition, using full state feedback, up to n eigenvalues (i.e.:

all) can be placed in specified locations.

(i) Assignability Conditions:
With full state feedback: x € R" ‘is the state vector, and u € R™ is the control vector, the

maximum possible assignability of eigenvalues and eigenvectors are:

(i). a maximum of n of closed loop eigenvalues can be assigned, i.e. all eigenvalues may be
arbitrarily assigned.

(ii). a maximum of nxm total eigenvector entries can be arbitrarily assigned,

(iii) no more than m entries in any one eigenvector can be chosen arbitrarily, with n

eigenvectors, gives a total of nxm entries.

For our system, n=4, m=2, giving a total of 4 maximum allowable eigenvalues which may be
arbitrarily placed, and 4 eigenvectors, with only 2 entries in each eigenvector column arbitrarily

assigned.

(ii) Objectives:
For this first simulation, the problem is to minimize the eigenvector assignment error given by the
objective function 2.26 below:
q
f, =min Z(Si.gi—vi)H(Si.gi—v,.) Eqn.3.26
i=1

where S, =(A.1~A)"'.B, the feedback gain can be calculated from the g; vectors, i.e:

K =—G.V™'. V=achievable eigenvector matrix nxn, and G=[g,.g2,..g.] matrix of g; column
vectors mxn. The above equation attempts to minimize the difference between the desired

eigenvectors v; with the achievable eigenvectors S;.g;.
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Thus the achievable eigenvectors must belong to the subspace spanned by S, =(A,./— A).B.

Since full state feedback is used, all eigenvalues are assignable.

(7ii) Required eigenstructure:

Eigenstructure assignment is applied to the linearized aircraft lateral model, with roll mode and
Dutch roll modes at: A=-2+1j and A=-1.5£1.5j respectively. This is illustrated in figure 3.3 below,
and the eigenstructure specification is tabulated in figure 3.4. Note that the don't care states are
denoted in red by an x symbol. The given eigenstructure provides partial decoupling between the
roll and Dutch roll modes. The aircraft lateral dynamics, with full state feedback is illustrated in
figure 3.3 below:

: » x(t)=p(t) - roll rate deg/sec.
. '[ = *0 r(t) - yaw rate deg/sec.

B(t) - sideslip angle deg.
A &t) - roll angle deg.

K
u(t)=344(t) -aileron angle deg.
&(t) -rudder angle deg.

Fig. 3.3
Lateral Dynamics Used for Simulation

for the linearized lateral model, the required eigenstructure may be written in the form (see
reference [39]), for each column, the first row is the eigenvalue and corresponding eigenvector

below:

Roll Mode: Dutch Roll Mode:

-2.0 + j1.0 -2.0 - j1.0 -1.5 + ji1.5 -1.5 - j1.5
X1 + j1.0 x3 - j1.0 0.0 + j0.0 0.0 - 0.0
0.0 + j30.0 0.0 - 30.0 1.0 + 3X6 1.0 - 3x8
0.0 + 0.0 0.0 - 30.0 x5 + j1.0 x? - 31.0
1.0 + 3jx2 1.0 - jix4 0.0 + j0.0 0.0 - 0.0

Fig. 3.4

Eigenstructure Used in Lateral Aircraft Simulation

Where x1,x2 .xs represent don't care values (unspecified values). Note that because complex
conjugate pairs are present, then we have the condition: X1=X3, X2=X4, X5=X7, X6=X8, there
are essentially only 4 parameters to solve for. Note that in this instance, the g vectors must also be

complex conjugate pairsi.e.. g, =g,, 8, = &;-
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(iv) Chromosomal representation:
The chromosomal representation of this problem is illustrated in figure 3.5 below, where the error

function (error) is given by equation 3.26 and the fitness is simply the inverse of the error function.

nim Xl Xz X3 X4 X5 X6 X7 x,g error | Fitness

Fig. 3.5
Chromosomal Structure of Partial ESA Problem: Simulation-1

This is a generalized chromosomal representation which can be used for complex conjugates as
well as purely real eigenvalues. There are several ways in which to encode the chromosome
(Fig.3.5), one way would be to do a GA search on the g; vectors (see equation 3.26) but this would

require solving for 8 values, to see why, consider each g vector for each eigenvalue/eigenvector

a, + jb,
&= a, + jb,

Since there are 2 x g vectors to solve for (g;, g3) as the other two (g, g4) are simply complex

value consisting of 4 elements thus:

conjugates of the first two, this gives a total of 8 parameters to solve for.

The second method would simply be to do a GA search on the unspecified parameters: X1, X2
..X8, giving a total of only 4 parameters to solve for since: X1=X3, X2=X4, X5=X7, X6=X8.
We can then estimate the g; vectors from these values by least squares, and compute the fitness
function 3.26. This second method is considerably more efficient and converges very rapidly.

Results are given below.

3.2.2 Simulation 3.1: Fixed Eigenvalues:

(i) Objective: For this first simulation, we use the required eigenstructure described above, and
compute the achievable eigenvectors. The aircraft lateral dynamics are given by the following

matrices (refer to appendix 8.1)

A = -3.9330 0.1260 -9.9900 0 B = -45.8300 -7.6400
0.0020 -0.2350 5.6700 0 -0.9210 -6.5100
0.0262 -0.9997 -0.1960 0.0345 0.0071 0
1.0000 0 0 0 0 0

The results from the first simulation are shown on the following page. Results using genetic
algorithms and conventional eigenstructure assignment give identical results. Note the rapid

convergence ( within 40 generations) of the genetic algorithm.
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Given the objective below, find the gain K such that the eigenstructure matches as closely as
possible to the following specification, where x=don't care (can take any value):

Roll Mode: Dutch Roll Mode:

-2.0 + j1.0 -2.0 - j1.0 -1.5 + ji.5 -1.5 - j1.5
X1l + j1.0 X3 - j1i.0 0.0 + jo.o0 0.0 - jo.o
0.0 + jo.o0 0.0 - jo.o 1.0 + 3jx6 1.0 - 3jxs8
0.0 + jo.o 0.0 - jo.o X5 + ji.0 x7 - ji.0
1.0 + jx2 1.0 - x4 0.0 + jo.o 0.0 - jo.o

Fig.3.6

(ii) Solution by Genetic Algorithms: For this GA simulation, we use: Population: 60, Pc=0.6,
Pm=0.1, max generations=200, binary tournament selection, objective: to match eigenvectors only

(equation 3.26). The chromosomal representation as shown in figure 3.3. Results are given below:

match error: £,=0.0137
Achievable Eigenvectors
-1.9996 + 1.0000j  -1.9996 - 1.00003 0.0000 - 0.00003 0.0000 + 0.00003
-0.0033 + 0.0050  -0.0033 - 0.00503 1.0000 + 1.87753 1.0000 - 1.87753
0.0109 - 0.00573 0.0109 + 0.00573 -0.3838 + 1.00003 -0.3838 - 1.00003
0.9998 - 0.00013 0.9998 + 0.00013 -0.0000 + 0.00003  -0.0000 - 0.00003
The feedback gain K is found as:
_[-0.0020576a 0.06450822L 0.26848854  -0.11163450
0.00357382 -0.403457113  -0.3029882Q 0.01521065

Typical convergence rate of the genetic algorithm:

Error convergence fi

0.0} ... LS U Y S T S - SO W

0 20 40 60 80 100 120 140 160 180 200
Generation

Fig. 3.7
Genetic Algorithm Error Convergence
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(iii) Solution by Conventional Methods: (see appendix for algorithm): Using Moore's method

discussed in section 3.1.2:

match error: f; =0.0183

Achievable Eigenvectors

-1.9995 + 1.0000j  -1.9995 - 1.0000j -0.0000 + 0.00003  -0.0000 - 0.00003
-0.0033 + 0.0050j  -0.0033 - 0.00503 1.0000 + 1.87763 1.0000 - 1.87763
0.0109 - 0.0057j 0.0109 + 0.00573 -0.3839 + 1.0000j  -0.3839 - 1.00003
0.9998 - 0.00015 0.9998 + 0.00013 0 + 0.00003 0 - 0.00003

The feedback gain K is found:

_|-0.002057691 0.06450823 0.268488541 -0.11163450
"] 0.00357382 -0.403457114 -0.3029881% 0.0152106%

A comparison of the two methods is tabulated below:

Method: fi0O MFLOPS: Time:
Genetic Algorithms: 0.0137 50 28 sec
Moore’s Method: 0.0183 0.01 <1 sec

Fig.3.8

Comparing Genetic Algorithms with Conventional Partial Eigenstructure Assignment

Whilst the genetic algorithm gives a slightly better match, the solution is almost identical to the
conventional method. The GA however requires almost 50 MFLOPS of computational effort
compared with only 0.01 using conventional (Moore’s) method. This simulation illustrates that
while the GA converges rapidly, its computationally inefficient when compared with direct ESA
design methods. The usefulness of the GA however can be demonstrated in the next ESA design
application (simulation 3.2) in which no direct design method exists.

3.2.3 Simulation 3.2: Domain Constrained Eigenvalues:

(i) Objective: This second simulation is a constrained optimization problem, slightly more
difficult to solve than the first. In this simulation, the upper and lower allowable range of the first

eigenvalue is given, thus for the roll mode: A, we allow the following valid range of eigenvalues:

-25 < real(A)) < -15
0.5 < imag(A,) £ 15

IA

Eqn.3.27

} constraint

The eigenvalues of the roll mode are allowed to be in the specified range as above, the Dutch roll

mode eigenvalues are fixed. Match the eigenstructure as closely as possible to:
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2.5 <real(A,) <-1.5 .
0.5 <imag(Ah) < 1.5 A,=conjugate(A,)

i

/Roll Mode: A~ Duich Roll Mode:

¥ «

M A ~1 8338 S35 =31
X1 + j1.0 X3 - ji1.0 0.0 + jo.o 0.0 - jo.o
0.0 + jo.o 0.0 - jo.0 1.0 + 3jXxé 1.0 - jxs
0.0 + jo.o 0.0 - jo.o X5 + j1.0 X7 - j1.0
1.0 + 3jx2 1.0 - 3jx4 0.0 + jo.o 0.0 - jo.o

Fig.3.9

Find the gain K such that the closed loop eigenvalues and eigenvectors are as close to those above,

where x=don't care (can take any value).

(ii) GA solution: This is a constrained (domain constraint) optimization problem which is solved
using repair algorithms. Simulation results are given in the following pages. The chromosomal

representation for this problem is shown below (Fig.3.10) again using floating point codification:

nim|X; | Xy | Xs| Xe|Xs|Xe|X7| Xg| A | A2 | A3 | Ag | error | Fitness

Fig. 3.10
Chromosomal Representation of Partial Eigenstructure Assignment Problem: Simulation-3.2

For this GA simulation, we use: Population: 60, Pc=0.6, Pm=0.1, maximum generations=200,
binary tournament selection, objective: to match eigenvectors only (equation 3.26).

All eigenvalues are complex numbers, and the GA search only applies to A,, the remaining
eigenvalues are simply: A, =X, ,and A3 =-1.5 +jl.5, Ag=-1.5 - j1.5 (fixed). Convergence is
within 500 generations, this is illustrated in figure 3.11 below. The convergence of the eigenvalue
A, is also shown in figure 3.11. Convergence is initially very rapid for the first 50 generations.
Similarity, convergence for the eigenvalue A, is also initially rapid. The slow convergence is due to

the fitness function being nearly flat near the optimum.

match error: f;=0.0084

-1.3351 + 1.00003 -1.3351 - 1.00003 0.0000 - 0.00003 0.0000 + 0.00003
0.0000 + 0.00493 0.0000 - 0.00493 1.0000 + 1.87763 1.0000 - 1.87763
0.0024 - 0.00643 0.0024 + 0.00647 ~0.3839 + 1.00003 -0.3839 - 1.00003
0.9999 - 0.33303 0.9999 + 0.33303 -0.0000 - 0.00003 -0.0000 + 0.00003
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The eigenvalues are given by:

-1.5017 + 0.5000i -1.5017 - 0.5000i -1.5000 + 1.5000i -1.5000 - 1.5000i

The feedback gain K is found:

_|0.0195 0.0645 0.2685 -0.0574
0.0046 -0.4035 -0.3030 0.0165

Typical convergence plots, including convergence of the eigenvalue A, are illustrated below:

Eigenvector error f; Convergence
0.5 — - T T

0 100 200 300 400 500
Generation

Genetic Algorithm convergence (simulation 3.2)

(iii) Conventional Solution: There is no direct solution using conventional methods, however we
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