
Control System Design Applications 

With Hybrid Genetic Algorithms 

By: 

Vito Dirita (BE, MESc, Electrical Engineering) 

School of Engineering, 

Department of Electrical and Electronic Engineering 

Submitted in fuffillment of the requirements for the degree of: 

Doctor of Philosophy. 

University of Tasmania 

November 2002 



Preface ii 

Statement of Originality: 

This thesis contains no material which has been accepted for a degree or diploma by the University 

or any other institution, except by way of background information and duly acknowledged in the 

Thesis, and to the best of my knowledge and belief no material previously published or written by 

another person except where due acknowledgment is made in the text of the Thesis. 

Vito Dirita. 

Authority of Access: 

This Thesis may be made available for loan and limited copying in accordance with the Copyright 

Act 1968. 

Vito Dirita. 



Preface iii 

Abstract: 

This thesis investigates the hybrid application of stochastic and heuristic algorithms, in particular 

genetic algorithms (GA), simulated annealing (SA) and Greedy search algorithms for the design of 

linear and nonlinear control systems. We compare the rate of convergence, computational effort 

required (FLOPS) and ease of implementation. Where possible, results are compared with the 

more traditional control system design methodologies. Two specific practical applications include 

aircraft flight control systems, and a nonlinear example of an industrial bioreactor fermentation 

process. 

Stochastic algorithms (GA) and heuristic algorithms (SA, Greedy, Tabu search) are powerful 

search methods, capable of locating the global minimum or maximum (extremum) of multimodal 

functions. They operate without the need for function gradients and are robust to noisy data. The 

current research trend is directed towards the solution to constrained multiobjective optimization 

problems of multimodal functions which may result in a family of optimal solutions (i.e Pareto 

optimal set) and game theoretic approaches such as Nash and Stackelberg Equilibria. 

Genetic algorithms suffer from one particular drawback, the rate of convergence can be 

unacceptably slow if accurate solutions are sought. To overcome this deficiency, hybridization of 

genetic algorithms with fast local search procedures are often used. Two heuristic based search 

procedures are: greedy search and fast simulated annealing. 

We investigate three types of Hybrid algorithms: (i) genetic algorithms (GA), (ii) hybrid GA + 

simulated annealing (SA), and (iii) hybrid GA + greedy search. These methods are applied to 

solving off-line linear and nonlinear control problems which may otherwise have no direct 

analytical solution. In cases where solutions are obtainable using conventional methods, results are 

compared with hybrid algorithms. Robustness against modeling errors, nonlinearities, disturbances 

and parametric uncertainty will also be discussed. 

We investigate five specific design applications, these include: training radial basis function (RBF) 

neural networks, robust eigenstructure assignment (ESA), model reference adaptive control 

(MRAC), robust mixed H 2/H_ design, and lastly fault detection and isolation (FDI). 

We show that hybrid algorithms can perform better, can handle a broader class of problems, and 

have fewer restrictions than conventional methods. Furthermore, stochastic and heuristic methods 

can directly deal with constraints. 
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Preface: 

Ever since the inception of evolutionary programming and genetic algorithms by Holland in 1962, 

genetic algorithms have found wide acceptance in many fields such as combinatorial optimization, 

artificial intelligence, system identification and control. Genetic algorithms are a robust 

optimization technique capable of locating the global extremum of complex multimodal functions. 

Current research in genetic algorithms include constrained and unconstrained optimization, and 

multiobjective optimization. In many instances, single solutions to multiobjective optimization 

problems do not exist, and instead a family of solutions exists, this is known as a Pareto optimal 

set. Genetic algorithms do not require function gradients, but rather deal directly with the cost 

function to be optimized. This has the added advantage of being able to handle complex nonlinear 

cost functionals, or where the gradients are discontinuous or undefined, for instance: image 

classification problems. 

Genetic algorithms can be applied to either on-line or off-line control problems. Off-line design of 

control systems can be applied to a wider range of optimization problems, for instance mixed 

H2/110., Multi Input Multi Output (MIMO) designs using reduced order compensators in which no 

direct design method currently exists, and other applications such as partial eigenstructure 

assignment with constraints. With genetic algorithms, there are no restrictions, the plant may be 

nonlinear, the controller may be linear, nonlinear, fuzzy or neural control based. Self tuning of 

controller parameters can be realized by a genetic algorithm which attempts to optimize some 

performance function (e.g. Linear Quadratic Regulator cost function) from the plant input and 

output measurements. This leads to several important issues of how to ensure internal plant 

stability and convergence of the genetic algorithm. There are two serious limitations which need to 

be resolved when dealing with genetic algorithms: 

I. Because a genetic algorithm search is stochastic, there is no method currently available to 

guarantee their convergence. This is a serious limitation which needs to be addressed if genetic 

algorithms are to gain wider acceptance in on-line control applications. 

2. Genetic Algorithms constitute a family of powerful global search and optimization algorithms 

which can deal with multimodal functions containing many local minima. Nevertheless, genetic 

algorithms can become excessively slow in their final stages of convergence, once a minimum 

has been found. 
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To obtain accurate solutions (with many decimal places), the genetic algorithm is inefficient. 

One way to overcome this problem would be to combine the genetic algorithm with a fast local 

search procedure. Once the minimum has been found by the GA search, the fast local search is 

then used to quickly converge the solution to the desired accuracy. 

In this thesis, we address the second issue, combining genetic search with a fast local search to 

improve convergence properties of the hybrid algorithm. Fast local search procedures are also 

known as hill-climbing methods. Thus hybrid methods (also known as genetic local search) 

combine the reliability and robustness properties of the genetic algorithm and their original search 

heuristics with the accuracy and fast convergence of local search methods. 

We investigate three types of Hybrid algorithms: (i) genetic algorithms (GA), (ii) hybrid GA + 

simulated annealing (SA), (iii) hybrid GA + greedy search. These methods are applied to solving 

off-line linear and nonlinear control problems which may otherwise have no direct analytical 

solution. In cases where solutions are obtainable using conventional methods, results are compared 

with hybrid algorithms. 

The full potential of genetic algorithms is yet to be realized in the area of control, and in particular 

intelligent control and expert systems. In this thesis we investigate some applications of genetic 

algorithms in control. Each chapter deals with one specific area of control and where possible, 

comparison is made between conventional methods with solutions using genetic algorithms. 
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Organization of Thesis: 

Chapter 1: Begins with an introduction to optimization, including evolutionary computation, 

genetic algorithms, simulated annealing, greedy algorithms, Tabu search', constrained optimization 

and multiobjective optimization using calculus based techniques as well as genetic algorithm based 

techniques. 

Chapter 2: Discusses applications of genetic algorithms in training radial basis function 

networks. The example used is a model matching problem of a nonlinear system, often found in 

control system applications. 

Chapter 3: Discusses applications of genetic algorithms in the design of robust eigenstructure 

controllers with partial eigenstnicture specifications. Simulation results comparing conventional 

methods with GA are discussed. Simulation results including full state feedback and measurement 

feedback using dynamic compensators are given. 

Chapter 4: We apply GA to solving model reference adaptive control problems, with constraints 

and multiple objectives. As seen by the results, genetic algorithms perform better than 

conventional MIT and Lyapunov based methods and require fewer assumptions to implement. 

Chapter 5: We apply GA to solving mixed H2  / H., control problems, results are compared with 

conventional state space solutions. Full order dynamic compensators and reduced order 

compensators are described. The objective function is to minimize sensitivity norms (from 

disturbance to performance outputs) and maximize robustness against model uncertainties. 

Simulation results using the linear aircraft model is provided. 

Chapter 6: This is a survey chapter on different types of fault detection and isolation. We show 

that fault detection based on GA outperforms conventional fault detection methods such as the 

widely accepted parity space technique. We also show that fault detection in linear and nonlinear 

systems is also possible with GA. 

Chapter 7: Discussion and Conclusion. 

Chapter 8: Appendix. 

Each chapter is self contained, comprising of an introduction, theoretical background, simulation 

results, discussion, conclusion, and references. This individual chapter format should hopefully 

facilitate reading. 
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1.1 Introduction: 

This introductory chapter provides an initial background to the subject of optimization. Topics 

covered include: calculus based (or conventional optimization), heuristic and stochastic search, 

hybrid search methods, constrained and multiobjective optimization. 

For the first part of the chapter, a brief discussion of conventional calculus based optimization is 

provided. Calculus based optimization falls into three main categories: (i) derivative free or 

pattern search methods such as the Nelder-Mead Simplex method [42], (ii) first derivative or 

gradient based methods such as gradient descent or conjugate gradient in which the gradient of the 

function must be known or estimated, and (iii) second derivative or variable metric (also known as 

Newton or Quasi-Newton) methods in which the Hessian matrix must be known or approximated. 

All three methods differ in complexity and convergence. Derivative free methods are the simplest 

to implement, but result in unacceptably slow rates of convergence. Second derivative methods 

have a greater rate of convergence, however at the expense of computational complexity. All these 

methods can only locate the local extremum of a function (local convergence characteristics). 

The second part discusses stochastic and heuristic search techniques. Stochastic methods are 

probabilistic based search methods which include evolutionary computation [1]: evolutionary 

programming, evolutionary strategies, genetic programming, genetic algorithms and simulated 

annealing [72]. Heuristic search methods include: greedy algorithms [52] and Tabu search [56]. 

Stochastic search methods have global convergence characteristics, but can suffer from slow final 

convergence, while greedy algorithms and Tabu search have rapid final convergence. 

In the third part, hybrid search methods are discussed. Hybrid methods generally combine two or 

more individual search techniques such that the resulting algorithm has superior convergence 

properties when compared to either individual methods. For instance, evolutionary computation 

has been combined with gradient based optimization to utilize the global search capability of 

evolutionary computation with the fast local convergence properties of the gradient based method. 

Lastly, a discussion of multiobjective optimization and constrained optimization is briefly outlined. 

Multiobjective optimization using genetic algorithms, Pareto optimality, population Niching 

methods and Nash equilibria are discussed. Constrained optimization using penalty and repair 

functions are also described. 



Chapter 1. Introduction To Optimization 	 P.1.3 

1.1.1 Objectives: 

Before proceeding any further, a brief summary of the main objectives of this thesis is provided 

below: 

1. To investigate potential applications of genetic and hybrid genetic algorithms to the design and 

synthesis of control systems, and to compare with the more traditional and conventional 

control system design methods. In particular, the following areas are investigated: (i) training 

neural networks to model nonlinear systems, (ii) robust eigenstructure assignment, (iii) model 

reference adaptive control, (iv) robust H2 and 1-1_, and compensators with mixed HAL 

design objectives, and lastly (v) fault detection and isolation. 

2. To show that genetic algorithms can converge rapidly, have fewer restrictions and can solve a 

wider range of control problems, including constrained and multiobjective problems, which 

may otherwise have no direct solution with conventional control design techniques. 

3. Whilst genetic algorithms have powerful global search capability, they can sometimes suffer 

from slow final convergence once a solution is found. To overcome this problem, hybrid 

methods have been developed. To investigate hybrid GA methods by combining the global 

search capability of genetic algorithms with the convergence properties of a fast local search 

heuristic, without resorting to gradient or Hessian matrix computation. These methods can 

include: derivative free techniques, see chapter 1.2.1, or heuristic based such as Tabu search 

(section 1.3.7), Greedy search (section 1.3.6) or a fast Simulated Annealing (section 1.3.5). 

The three methods chosen are: (i) conventional genetic algorithms, (ii) genetic algorithms and 

simulated annealing, (iii) genetic algorithms and greedy search. 

4. To show that hybrid genetic algorithms are more effective stochastic based search and 

optimization methods compared to conventional genetic algorithms. 

5. To show that the use of floating point chromosomal codification can be readily and directly 

applied to control system applications. 

6. To investigate adaptive control using hybrid genetic algorithms, and to compare results with 

traditional Lyapunov based stability and gradient based (MIT-rule) methods. 
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1.2 Conventional Optimization 
Conventional optimization, also known as calculus based optimization, approximates the function 

to be minimized (or maximized) by a first or second order Taylor series expansion. Derivative free 

methods do not require a Taylor series approximation. Note that all these methods discussed are 

also known as hill-climbing methods. 

1.2.1 Derivative Free Methods: 

Derivative free methods, also known as direct search or pattern search techniques, do not require 

knowledge nor approximation of the function gradient. The most popular is the Nelder-Mead 

Simplex method [42] in which a simplex (tetrahedron) is defined consisting of (n+1) vertices, where 

n is the number of dimensions of the function. At each iteration, the shape of the simplex changes 

according to the shape of the local landscape, gradually moving down towards into the valley of the 

function to be minimized. This adaptation process is achieved by three steps: reflection, expansion 

and contraction. Only several function evaluations are required for each iteration, however 

convergence is slow, requiring many iterations. This method is very robust and works well if the 

number of variables n does not exceed five or six. Convergence properties of the Nelder and Mead 

simplex have been described in [43]. Implementations in MATLAB© (optimization toolbox) and 

Numerical Recipes is also available. 

Another effective method is Powell's Method [44, 45, 49]. Powell's method starts with a single 

initial point and search direction. At each iteration, n line minimizations must be performed, one 

for each direction, and a new search direction is obtained. A new (better) point is obtained by 

summing the old point and the search direction thus: xki.i = xk + d k. Line minimization using a 

golden search or quadratic fit search is often used. Powell's method converges in fewer iterations 

compared to Nelder and Mead Simplex, works well with functions of up to twenty variables, but 

requires a line search minimization. 

The last method known as the Hooke and Jeeves algorithm [46] starts with a single initial point 

and a search span range Ak. At each iteration, it operates in two steps or moves: exploratory and 

pattern moves, whereby the span range Ak  is gradually reduced. A better point is then given by 

xk .„. 1  = xk + Ak. The algorithm terminates when the magnitude of A k  is below a predefined value. 

Several other derivative free optimization methods exist including: Rosenbrock's algorithm [47], 

and Fletcher [48]. All these methods are limited to local search (local extrema) of a function, and 

convergence is generally slow and dependent on the initial starting point and shape of the function. 
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1.2.2 First Derivative Methods: 

First derivative methods require the knowledge of the function gradient. The simplest, although 

generally not recommended, is the method of steepest descent, also known as gradient descent. 

Given an initial estimate xk, the next iteration xk+i  gives a better estimate from: xk+, = xk - a.aflaxk, 

where a is a step size and aflaxk  is the gradient vector. The step size a can be a constant or can be 

found by a line minimization procedure by minimizing: f(xk - a.)flaxk) using a golden section or a 

quadratic fit search. The problem with steepest descent is that it will perform many small steps in 

going down a long, narrow valley even if the valley is a quadratic function. A more effective 

procedure however is to use the method of conjugate gradients [49]. This procedure also requires 

a line minimization and gradient calculation at each iteration. The method avoids the pitfalls of 

gradient descent by ensuring that at each new iteration, the next direction is conjugate to the 

previous. Thus for a quadratic function, only two steps are necessary to reach the minimum. There 

are two variants of the conjugate gradient: Polak-Ribiere and Fletcher-Reeves formula. These 

methods suffer from poor convergence where the gradient is near zero. 

1.2.3 Second Derivative Methods: 

Second derivative methods also known as variable metric or Quasi-Newton methods require a 

knowledge of the function's Hessian matrix. These methods attempt to approximate the function 

fix) as a quadratic by Taylor series expansion at the given point x k. By minimizing the quadratic 

approximation, a better solution can be found xk +1. This procedure is then repeated at the new 

point xk.o . The iterative formula known as the Newton-Raphson method is: xk+, = xk  — H 1  gk , 

where gk  is the function gradient, Hk is the function Hessian matrix. The difficulty of such a 

method is in computing the inverse of the Hessian matrix, which may be numerically ill conditioned 

(poor condition number). This drawback leads to a new class of Quasi-Newton methods in which 

the matrix inverse 11 1  is replaced (i.e. approximated) by a positive definite symmetric matrix Gk. 

At each iteration, the matrix Gk is updated such that as xk approaches x* (optimum), then Gk 

approaches Hi'. There are two main algorithms implementing this concept: Davidon-Fletcher- 

Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [3]. These methods are the 

preferred having very fast convergence properties, and are generally available in off-the-shelf 

numerical optimization software packages. 
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1.3 Stochastic and Heuristic Search Methods: 
Stochastic search methods include Evolutionary Computation (EC) and Simulated Annealing (SA). 

Heuristic search methods include Greedy Algorithms and Tabu Search. Evolutionary computation 

(EC) is broadly classified into four categories: evolutionary programming (EP), evolution 

strategies (ES), genetic programming (GA) and genetic algorithms (GA). Whilst different, they 

all share one fundamental principle: reproduction, random variation, and selection. Of these four 

methods, genetic algorithms have found widest acceptance in the field of optimization, 

identification and control. Excellent sources of reference on evolutionary computation can be 

found in [1, 2, 4, 5, 6]. The four Evolutionary methods described above share the same 

characteristics and similarity in many respects. They all operate on a population of individuals, 

and have each individual represented by an encoded string (chromosome) using some alphabet such 

as binary, floating point etc. The definition of individual performance or fitness based on some 

objective function to be optimized, and the application of genetic operators (selection, crossover, 

mutation) recursively to arrive at the solution. A good introduction to evolutionary computation is 

provided by Fogel [1]. Greedy algorithms [50] and Tabu search [54] operate on a single 

individual (solution) and use rule-of-thumb heuristics to produce a better solution based on 

previous solutions. Solutions found using heuristic and metaheuristic methods are not necessarily 

globally optimal. 

1.3.1 Evolutionary Programming (EP): 

Evolutionary programming techniques work with a population of finite state machines (FSM). 

Each individual FSM (chromosome) represents a potential solution. The inputs are a sequence of 

symbols: al, az, .. a. (belonging to a finite alphabet), and the fitness value is a measure of how 

accurately the individual is able to predict the next output 	which is then compared with the 

next observed symbol 	Transition diagrams are used to represent the behavior for which 

nodes correspond to each state, and arrows, indicate transition from one state to another. Concepts 

of reproduction, mutation, crossover and selection are applied at each generation. Evolutionary 

programming is not suitable for numerical optimization problems. 

1.3.2 Evolution Strategies (ES): 

This technique has been developed to solve parameter optimization problems. Each chromosome 

consists of two float-vectors: lx, a}, where the x vector represents a single point in the search 

space (potential solution) and a represents a vector of standard deviations associated with x. 



Chapter 1. Introduction To Optimization 	 P.1.7 

Only one genetic operator is used: mutation, the next population of offspring is generated by the 

expression: x i+, = x + N(0,a), where N(0,a) is a vector of independent random gaussian 

numbers with zero mean and a standard deviation. The offspring then replaces the parent if its 

fitness value is higher than that of the parent. This is in effect a random search, and convergence is 

slower when compared with genetic algorithms. 

1.3.3 Genetic Programming (GP): 

This is a relatively new approach in which the objective is to find the best algorithm to solve a 

particular problem rather than using an evolution program to solve a problem. In other words, 

each chromosome in a population represents a particular computer algorithm. The search space is 

then a hyperspace of all valid computer programs which can be viewed as a space or rooted trees. 

This in effect results in an evolving computer program. Genetic operators such as crossover and 

mutation swap and modify sub-branches of parent trees. These have applications in artificial 

intelligence, but are not suitable for continuous function optimization problems. 

1.3.4 Genetic Algorithms (GA): 

Genetic algorithms (GA), first proposed by John Holland [2], attempt to mimic the process of 

natural evolution and survival-of-the-fittest by processes of genetic operators and natural selection. 

It is this process of evolution (or natural adaptation) which enables a population to evolve and to 

solve complex optimization problems. There are four features which define the concept of GA: 

(1) codification of solution space by bit-strings also referred to as chromosomal representation, (2) 

genetic operations which include crossover and mutation, (3) evaluation and selection, and (4) a 

population solutions rather than a single solution. Genetic Algorithms operate on a bit-string 

representation of the solution variables rather than the variables themselves, furthermore, GA do 

not operate on a single solution but on a population of individuals (chromosomes), this concept is 

known as intrinsic parallelism. The average fitness of the population of individuals is improved 

with each iteration (or generation) by genetic operators of selection, crossover and mutation. The 

general workings of the original GA proposed by Holland [2] is as follows: an initial population N 

is created with random values which span the solution space or the search space. Two or more 

parents are chosen via a selection scheme, this selection is based on relative fitness of the 

individuals. The higher the fitness the more likely the individual is to be selected, this is known as 

proportional selection. 
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The parents are combined probabilistically using the genetic process of crossover to produce either 

a single or two offspring. Mutation is then applied with a small probability to the resulting 

offspring, which are then used to create a new population of individuals. This process is repeated 

usually N times, where N is the population size. Crossover is the main search operator, with 

mutation as a background operator which is applied with much lower probability. Whilst 

crossover allows the solution to work it's way down to a minimum (or maximum), it can get stuck 

within a local minimum, and mutation overcomes this by enabling search to continue over a wide 

solution space. The basis of GA search is embedded within the concept of the building block 

hypothesis. This states that a better individual (offspring) can be created by combining substrings 

or blocks from two (or more) parent individuals. Holland's original work on the schema theorem 

[2] provides a formal analysis and convergence properties of the GA. The schema theorem was 

based on binary string codification, currently the trend however is towards floating point 

representation. 

1.3.5 Simulated Annealing (SA): 

Strictly speaking, simulated annealing (SA) is not an evolutionary programming method, however 

it owes its basis to natural phenomena and is also applied probabilistically as in GA. Simulated 

annealing, first proposed by Kirkpatrick [3] is an optimization technique analogous to the thermal 

process of annealing. The SA algorithm starts with a high temperature To and initial states x 

(solution), a random perturbation etx is applied to the states with magnitude dependent on the 

temperature Ex=f(T), and new solutions are evaluated at x+ox. If the energy level (or fitness) is 

less than the energy level at x, then this solution is accepted. If it is greater however, it will only be 

accepted with a finite probability which decreases with temperature. In the next iteration, the 

temperature is reduced (annealing schedule) and the process is repeated again. This continues 

until equilibrium is reached or the temperature is below a specified value (termination criterion). 

This algorithm is also known as the Metropolis algorithm. 

The key to achieving good performance with simulated annealing and global convergence is that a 

stationary distribution must be reached at each temperature and the cooling schedule must proceed 

very slowly. The SA algorithm is not as effective as the GA algorithm at finding global minimum, 

however it has very fast convergence properties near the solution. Note that SA operates on a 

single candidate solution rather than a population of solutions. 
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1.3.6 Greedy Search (GS): 

A greedy algorithm is a heuristic search algorithm which looks for the best immediate solution 

without considering many other alternatives. In this sense, a greedy search generally quickly finds 

local rather than global optimal solutions. A typical greedy search algorithm would be as follows: 

iterate 

- look for adjacent solution(s) within a predefined search span/range. 

- if adjacent solution is better, accept as the current solution. 

- increase or decrease the search span/range accordingly. 

end 

Fig.!.! 
Typical Greedy Search Algorithm 

While there is no one single generic form of the greedy search algorithm, the above is typical and 

can be applied to both combinatorial optimization problems, discrete and continuous function 

optimization. Examples of greedy search can be found in [50] in discrete function optimization, 

continuous function optimization [51], combinatorial optimization [52], and applications to radial 

basis function networks [53]. Because greedy search algorithms have good local convergence 

properties, applications usually involve a hybrid approach with an algorithm having global 

convergence (e.g.: Genetic Algorithm) and a greedy local search algorithm. 

1.3.7 Tabu Search: 

Tabu search operates on the premise that some moves (from the current position) are forbidden or 

Tabu. Forbidden moves are those recently visited which did not yield an optimal solution. Tabu 

search requires a Tabu list which is a record of forbidden moves. At each iteration, Tabu search 

chooses a non-Tabu feasible move. After each step, a collection of moves that includes any 

returning immediately to the previous point is added to the Tabu list. This move is then forbidden 

for several iterations. After many iterations, the Tabu list is cleared and the procedure is repeated 

from the new current position. Tabu search is currently becoming an active area of research in 

many diverse fields. For instance Tabu search can be applied to optimization of functions in 

continuous domains [54], topological and combinatorial optimization [55, 61], introductory papers 

can be found in [56,57,58], applications to vehicle routing [59], comparison with simulated 

annealing and genetic algorithms [60]. The main strength of Tabu search is in combinatorial and 

topological optimization problems. 
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1.4 Genetic Algorithms and Hybrid Methods: 
Conventional genetic algorithms and hybrid genetic algorithms comprise the core of all simulations 

contained within this dissertation. Genetic algorithms were introduced in section 1.3.4. In this 

next section, detailed aspects on genetic algorithms and hybrid genetic algorithms is presented. 

1.4.1 Conventional Genetic Algorithms: 

Genetic Algorithms, originally developed by John Holland [2], are based on the Darwinian 

biological evolutionary principle of survival of the fittest strategy. The concept is to mimic the 

mechanisms of biological evolution using mathematical abstractions of genetic operators. Genetic 

algorithms operate on a population of individuals (or chromosomes) in order to search for a 

solution. Each individual consists of a potential solution and its associated fitness value. This 

fitness value represents the individual's performance upon the solution of the problem. For 

example the fitness value could indicate the inverse of the RMS error between the simulated model 

output compared with actual plant output, or some optimization function to be minimized. Higher 

fitness values denote better solutions. Each individual in the population is represented by a bit 

string or chromosome (also known as codification) . Historically binary representation was used. 

This has the advantage of being more generalized, but has limited accuracy. Currently floating 

point representation is used [12]. Figure 1.2 below illustrates the traditional binary representation 

of a chromosome: 

Chromosome 
Gene 

       

+/- 1 0 1 1 1 0 1 real x i  

signt 	 
bit 	binary x i  

	 1+/- 1 0 1 1 1 0 1 Ireal xn'Fitness 

   

 

binary x„ 

 

Fig. 1.2 
Original Binary Representation of a Chromosome 

For instance, the above chromosomal representation can be used to encode the solution to the 

following unconstrained minimization problem: min{ f (x)} , where x= 	x2,.. xd, and the fitness 

value can be defined simply to be the inverse of the function thus: fitness =11 f (x). 

Referring to figure 1.2, the chromosome is subdivided into genes, and a gene encodes a particular 

function e.g.: node weights for a neural network. The complete string refers to a chromosome. 

The biological equivalent would be a DNA sequence. 
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Binary bit strings are no longer used and real number representation is more common, however 

binary representation is more domain independent, but is slow and factors of accuracy and finite 

length approximations result in problems with precision. The original Schema theorem developed 

by Holland [2] for the convergence analysis of GA used binary representation. Unfortunately it is 

difficult to see how the schema theorem is applicable to floating point representation. A 

comparison of floating point and binary representation is provided in [12]. The genetic algorithm 

in its simplest form is illustrated in the flowchart form below (Fig 1.3), noting that there are many 

other variations to this algorithm. 

Initialize 	) 
Population N 

POLD 

one generation 

repeat 
for k t to N 

Select Parents: A,B from POLD 

A=POLDO 

B=POLDO 

Crossover Operator Probability = 
C=A0B 

Mutation Operator: Probability = P 
D=mut{C} 

Jr 
Compute fitness for D chromosome 

Insert into new population 
D-->PNEw(j) 

copy to old population 

PoLD<--PNEw 

NO 

exit 

Fig. 1.3 
The Genetic Algorithm 
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A new population is created with each generation, by using the genetic operators of selection, 

crossover and mutation, the average population fitness increases. Eventually the population 

converges whereby the majority of the population will have near-identical chromosomal values. 

Genetic algorithms have been applied successfully in training Multi Layer Perceptrons (MLP) and 

radial basis function neural networks [14]. Some excellent introductory textbooks on GA can be 

found in references [1, 2, 4, 5, 6]. Figure 1.3 illustrates a typical genetic algorithm. This is the 

traditional GA, sometimes also referred to as the simple genetic algorithm. The genetic algorithm 

uses no problem specific information, except when calculating the fitness value of a chromosome. 

The lack of gradient information however can result in slow convergence in regions where the 

objective function has nearly zero gradient. We next look at the four main genetic operators: 

selection, crossover, mutation and population inversion. 

(i) The Selection Operator: The selection operator is used to choose parent individuals from the 

current population based on the individual's fitness. Holland's original work used the probability of 

selection proportional to the fitness value. This is known as the roulette wheel selection operator. 

With each generation step, the fitter individuals obtain more copies, thus producing a near identical 

population. This reduces the convergence rate, and selection becomes ineffective, the crossover 

operator also becomes ineffective due to lack of genetic diversity. Also, the possibility of creating 

a single super-individual which will quickly proliferate throughout the population and result in 

premature convergence possibly to a local minimum. Therefore the selection operator must be a 

careful balance between preventing premature convergence and maintaining adequate genetic 

diversity. There are two main groups of selection operators: Fitness proportional selection and 

Rank based selection. 

Fitness Proportional Selection: This selection operator chooses parents with a probability directly 

proportional to the individual's fitness value. The most common is roulette wheel selection, 

similar in principle to a roulette wheel. Each member is represented as a slot of a roulette wheel, 

the width of the slot is proportional to its fitness. To select an individual, we simply spin the wheel 

(i.e. choose a uniform random number) and the slot where the random number ends up is the 

individual selected. This can result in premature convergence for super-fit individuals. To 

overcome this problem, fitness scaling can sometimes be applied to the population before 

selection. Many types of fitness scaling are available: linear static scaling, linear dynamic scaling, 

exponential scaling, logarithmic scaling, sigma truncation and Boltzman scaling. 
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Rank Selection: The individuals are ordered (sorted) by fitness values, only the relative fitness is 

important, and not absolute fitness. This method reduces the possibility of premature convergence, 

but ignores the actual fitness values of the individuals. 

After sorting, several selection schemes may be applied including: tournament selection, stochastic 

universal sampling, and truncation selection. Tournament Selection selects m individuals randomly 

with uniform probability from the population, and the fittest (from m subpopulation) is then 

selected to be the parent. Generally m is two. A high value of m can produce premature 

convergence, a low number may result in a too slow convergence. Trial and error may be required 

in the choice of m. Variations of tournament selection can be found in reference [28] for 

multiobjective problems. Stochastic Universal Sampling is an optimal sampling algorithm with 

zero bias and minimal spread. It is also possible to scale and compute new fitness values 

according to the relative position of the individual in the rank, and then apply fitness proportional 

selection methods discussed above. 

The selection operator can have a critical influence on the convergence properties of the GA. 

Tournament selection and stochastic universal sampling are currently the most popular, however 

some trial and error may be required in order to ascertain which selection operator works best for a 

particular application. An important quantity is the selection pressure, this is a measure of how 

strongly the fitter individuals are selected over the less fit individuals. For instance the ratio: 

increase in average fitness/standard deviation of the population can be used to quantify selection 

pressure. Fuzzy selection schemes have also been developed, for instance see [14B]. 

(ii) The Crossover Operator: The crossover operator (or recombination operator) takes two or 

more parents and recombines them to produce either one or more offspring. This is illustrated 

below in fig. 1.4 for a binary string chromosome using single point crossover and producing a 

single offspring: 

A-parent: 

B-parent: 

Offspring: 

crossover site 

101101 001000 

001  0 0 1 1 0 11 0 0 

001  001 0 0 1 0 0 0 

Fig. 1.4 
The Single Point Crossover Operator 
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There are a number of variations of the crossover operator, these are: two point crossover, 

multipoint crossover, uniform crossover, diagonal crossover, and weighted average crossover. 

Two point crossover is more effective than single point. Uniform crossover simply swaps single 

bits chosen at random and not entire segments. Weighted average crossover only works with real 

numbers and simply averages the two parents thus: offspring = ax ParentA + (1-a) x Pare ntB, 

where a is a random number [0,1] chosen with uniform probability. We also found that sometimes 

a constant a=0.5 can produce rapid convergence. For the crossover operator to be effective, a 

diverse population is required, because this is the main GA search operator. Once the population 

has converged, crossover becomes ineffective. When this occurs, the only search operator is 

mutation, at which point the genetic algorithm degenerates to a pure random search algorithm. 

This substantially reduces the rate of convergence. Crossover is applied statistically, with high 

probability values, typical probability: Pc=0.7 to 0.9. Diagonal crossover is used in multi-parent 

(more than two parents) recombination. 

(iii) The Mutation Operator: The mutation operator plays a secondary role to the genetic 

algorithm. Subsequently it is applied with low probability typically: Pm=0.01. Mutation changes 

bits of the chromosome at random. This is illustrated below for a binary string: 

old string: 1101101  0 0 1 0 0 0 1 

   

new string: 1101101  1 0 1 0 0 0 1 

   

mutated bit--I 

Fig. 1.5 
The Mutation Operator 

For floating point numbers, the mutation operator becomes: xi = xi + k x rand, where xi  is an 

individual element of the chromosome, k=mutation intensity (or gain), and rand has a uniform 

normal or gaussian distribution. The purpose of mutation is to prevent the GA from getting stuck 

in a local minima, to provide prolonged genetic diversity, and increased search space. The 

mutation intensity k or mutation gain, may be set with a value that should ideally decrement as the 

algorithm gradually converges. A high mutation intensity should be used near the start of the 

simulation, and gradual decrease with generation thus: k=k(t). Another form of mutation is: xi  = xi  

x (1+ kx rand) which has a narrower search range, and the random function rand is a gaussian 

distribution. As a rule of thumb, the probability of mutation P m  should be chosen to be the inverse 

of the dimension of the parameter space. Thus if 10 parameters are to be sought, then set the 

mutation probability to: P m  = 0.1. 



Chapter 1. Introduction To Optimization 	 P.1.15 

(iv) The Population Inversion Operator: With each generation, a new population of offspring is 

created from the old parent population. Sometimes a new population is created by a combination 

of the best offspring and best parents. When generating a new population, it must be ensured that 

identical individuals are not duplicated reducing genetic diversity. Two methods which we have 

used are: (i) combine the N parents and N offspring into one 2N population, and choose the N 

fittest ones for the new population, or (ii) simply replace the old population with the new 

population. However, whichever method is chosen for generating a new population from the old, 

the concept of elitism in which the best individual from the old population is preserved into the new 

population unmodified, is found to be essential. 

1.4.2 Hybrid Genetic Algorithms: 

Genetic Algorithms constitute a family of powerful global search and optimization algorithms 

which can deal with multimodal functions containing many local minima. Nevertheless, genetic 

algorithms can become excessively slow in the final stages of convergence, once a global minimum 

has been found. To obtain accurate solutions (with many decimal places), the genetic algorithm is 

inefficient. This deficiency is in part due to population convergence, in which the crossover 

operator becomes ineffective. Also, the genetic algorithm does not exploit local landscape features 

such as function gradients. One way to overcome this problem would be to gradually reduce the 

mutation intensity or gain (see 1.4.1 part iii) once the population has reached steady state. The 

genetic algorithm then becomes a purely random search algorithm with an annealing schedule on 

the mutation operator. However, pure random searches are also unacceptably slow. 

(i) Hybridization of Genetic Algorithms: Another method is to combine the genetic algorithm with 

a fast local search procedure. Once the minimum has been found by the genetic algorithm, the fast 

local search is used to quickly converge the solution to the desired accuracy. Fast local search 

procedures are also known as hill-climbing methods. Thus hybrid methods (also known as genetic 

local search) combine the reliability and robustness properties of the genetic algorithm and their 

original search heuristics with the accuracy and fast convergence of local search methods. 

(ii) Examples: Examples of hybrid genetic algorithms which include nonlinear system 

identification [61] hybrid methods which combine genetic algorithms with Quasi-Newton (see 

1.2.3) local search and Nelder-Mead Simplex (see 1.2.1) methods are discussed. 
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Again, in [62], variable metric methods using the BFGS (see 1.2.3) have been combined with 

genetic algorithms in multiobjective optimization applications. Hybrid genetic algorithms coupled 

with steepest descent methods can be found in [63, 65] in a seismic data imaging application. 

Combining genetic algorithms with heuristic local search methods can be found in [64] in which a 

greedy multi-start local search is used. 

Applications to combinatorial optimization problems for the classical traveling salesman problem 

can be found in [66] using a simulated annealing local search procedure. Greedy local search 

algorithms have also been used to hybridize genetic algorithms, for instance [67, 70] describe an 

application in a continuous function domain. 

Hybrid genetic algorithms using a fast simulated annealing local search procedure have been 

investigated, for instance in [68] where neural networks have been trained using hybrid GA+SA 

methods. In another application, genetic algorithms have been combined with Tabu search (see 

1.3.7) to solve nonlinear continuous function optimization problems [69]. From the above list, 

many methods in diverse fields have been investigated. 

Alternatively, it is also possible to hybridize the genetic operators, such that some local search is 

featured into either crossover of mutation operators. For instance, the pattern search method used 

by the Hooke-Jeeves algorithm described in section 1.2.1 can easily be incorporated into the 

crossover operator. This is described in more detail on the following section. 

As a general rule however, it is impossible to accurately and reliably locate the global minimum of 

a multimodal function. This conflict is referred to as the exploitation-exploration trade-off, and 

must be borne in mind when attempting to hybridize or implement any optimization algorithm. 

(iii) Combining genetic algorithms and metalteuristic searches: The aim of this thesis is to 

develop and compare hybrid methods with conventional genetic algorithms, and in particular apply 

these methods to a number of control system design problems. The objective is also to see how 

well hybrid genetic algorithms compare with conventional control system design methodologies. 

Some of the desirable properties required of the hybrid GA method are: 

1. Use a fast local search procedure which does not require gradient computation. For instance, 

the methods discussed in 1.2.1 such as Nelder-Mead Simplex or Powell's method can be used. 

2. We also wish to retain the stochastic and heuristic nature of the overall algorithm. Thus the 

genetic algorithm can be coupled to a fast greedy local search, fast simulated annealing, or a 

Tabu search. These methods also have some weak global search capability. 
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3. The hybrid genetic algorithm must also be able to deal with constrained optimization and 

multiobjective optimization problems. 

The two hybrid genetic algorithms chosen are: (i) genetic algorithm coupled with a fast simulated 

annealing local search and (ii) genetic algorithm coupled with a fast greedy local search. These are 

chosen because constraints may be included and also have some global search capability. A 

multistart procedure is implemented for the local search algorithm. Note that Tabu search can also 

be used, however its application is more suited for combinatorial optimization problems than in 

continuous function domains. The two local search algorithms are detailed below. 

(iv) Hybridization with greedy search algorithm: A greedy algorithm has no specific structure 

other than that illustrated by figure 1.1. However a typical greedy heuristic algorithm would use 

the following concepts: a variable search step size which contracts when convergence is slow, and 

expands when convergence is rapid. It must also keep track of the direction of recent success, so 

that the search is conducted over the direction of most rapid descent. This algorithm is outlined in 

figure 1.6 below. Referring to figure 1.6, the two vectors are best_vec and best_sum, where 

best_vec is the direction vector of most recent success, the magnitude of this vector expands and 

contracts according to rate of convergence. The vector: best_sum is a cumulative sum of best_vec 

and helps to search (i.e. exploratory move) in previous successful directions using long jumps. The 

function random_vectoro simply returns a vector with the same magnitude (norm) as the input 

vector. A similar greedy local search algorithm can be found in reference [511 Note that figure 

1.6 is only a single iteration loop of the greedy algorithm, which must be repeated to obtain 

convergence. 

(v) Hybridization with Fast simulated annealing algorithm: A faster variation of the classical 

conventional simulated annealing algorithm is used. Simulated annealing is comprised of three 

components: a temperature annealing schedule, a gaussian-like function for random state 

generation (generating function) and an acceptance function based on a boltzman probability 

distribution. Fast simulated annealing [71] is a semi-local search with occasional long jumps to 

overcome any local minimum. This version has a faster annealing schedule (exponential), while 

the generating function has a wider spread, and with a modified acceptance function. The 

algorithm is illustrated in figure 1.7. 



x = x + best_vec 
best_sum = best_sum + best_vec 
best_vec = 2xbest_vec 

for k=1..N 
best_vec = random_vector(ben_vec) 
y I = ftx+best_vec) 
if (y, < y) break 

end 

YES 

same direction as before, but 
further away 
x = x + best_vec + best_sum 
best_sum = best _sum + best _vec 
best_vec = 2xbest_vec 

failed to find better solution, 
reduce search range 
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same direction as before, 
do a cumulative update. 

x = x + best_vec 
best_sum = 0 
best_vec = 2xbest_vec 

a new direction has been 
found, reset sum vector 

exploratory search NO 

• 

repeat 

Fig. 1.6 
Typical Greedy Search Algorithm 

	H 



if (fitnessA > fitnessB) then 
offspring = 2.xA  - xB 

else 
offspring = 2.xB - xA 

- 	  I 
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m im mil ize f( ) 

	.i 
generating function 
Sx = T k x random _vector() 

I 
compute: 

Sy = f(x + 8 x) - f(x) 

annealing schedule 
Tk = axT k  

I 
repeat  

	1 
acceptance function: 

h(x) = 1 /(11-e 3Yfrk  ) 

YES 

keep x 

NO 

NO 

Fig. 1.7 
Typical Simulated Annealing Search Algorithm 

(iv) Pattern Search Crossover operator: To further aid in convergence, we also hybridize the 

crossover operator by applying local search heuristics borrowed from the Hooke-Jeeves algorithm 

(see 1.2.1), and appendix. This heuristic is applied within the crossover operator with a finite 

probability. Given two parents, A and B, the pattern-search crossover operator is: 

where xA  and xB  represent the components of parent A and parent B chromosome. A flowchart of 

the Hooke-Jeeves algorithm is also provided in the appendix. 
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1.5 Constrained and Multiobjective Optimization: 

Genetic Algorithms described earlier can be applied directly in solving unconstrained optimization 

problems. However in practice, most optimization problems are constrained, therefore the genetic 

algorithm must be modified to deal with such problems. Constrained optimization [15-28] 

problems can have linear or nonlinear constraints. The constrained optimization problem can be 

defined in several ways, for instance the Equality Constrained Problem (ECP): is defined as: 

minimize f(x) subject to h(x)=O, and the Inequality Constrained Problem (ICP): minimize f(x) 

subject to h(x)<O, where: f: R n 	R, h: R" 	Rin . It is possible to transform an ECP problem 

into an ICP and vice versa by the addition of slack variables. Thus the two problems are 

interchangeble and can be solved in the same fashion. 

The field of constrained optimization using calculus based methods is well established, however 

with genetic algorithms this is a relatively new topic of research. Genetic algorithms can also be 

extended to these standard methods, or alternatively, we could modify the genetic rules to deal 

specifically with constrained optimization problems. An excellent survey of constrained 

optimization using evolutionary algorithms can be found in [18-23]. A brief summary of calculus 

based methods and genetic algorithm based methods is outlined below. 

1.5.1 Calculus Based Constrained Single Objective Optimization: 

(i) Linear Programming Methods: If we are dealing with only simple linear constrained 

problems, then there are techniques which are very effective, known as the simplex method. When 

the problem is of the form: minimize: f(x)= c.x, subject to: A.x = b, x 0, it can be 

directly solved by matrix manipulation. Other forms include two-phase simplex methods and 

duality methods. A solution via the MATLAB ©  Optimization Toolbox is straightforward. We 

will not deal with these optimization problems. 

(ii) Penalty Function Methods: The penalty function method transforms a constrained 

optimization problem into an unconstrained one. The minima of both the constrained and 

unconstrained functions is the same. There are many variations to the penalty function method, 

such as nonquadratic penalty functions, Fletcher's method, Powel's method, quadratic penalty 

functions. 
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For instance the following is a typical quadratic penalty function in which the penalty: Pk  is 

progressively increased with each generation k thus: L(x) = f (x)+ pk .Elhi (x)1
2  . Perhaps the 

simplest penalty function is the Static Penalty Function [27], this is given by: 

L(x) = f (x)+ I pi8; where Si=1 if constraint i is violated, else 5i=0 if constraint i is not 
i= 

violated. This penalty function makes no use of a distance metric for the feasible region. The 

dynamic penalty function increases the severity of the penalty parameter with each generation. 

Adaptive penalty functions modify the penalty parameter pi  depending on the distance from the 

feasible solution (see reference [27]). 

Penalty function methods have been successfully applied to constrained optimization with genetic 

algorithms. An excellent summary of the penalty function method is found in reference [23, 27], 

adaptive penalty methods in [19], and a more extensive discussion on static penalty, dynamic 

penalty, annealing penalties, and adaptive penalty methods can be found in reference [27]. 

Lagrangian Function Methods: All Lagrangian functions have the following general 

structure L(x, 2,) = f (x)+ E Ai . h i (x) , where A.i  are the lagrange multiplier vectors or matrices 

which also need to be solved for. The lagrangian function is similar to the penalty function method 

and has been successfully applied to constrained optimization problems in genetic algorithms. This 

is a very popular method, in which the solution can be found by computing partial derivatives: 

aL/ ax = 0 and aL/ a.= 0 and solving a simultaneous set of equations. The above method only 

applies to equality constraints. This is also a very popular technique. 

(iv) Barrier Function Methods: The barrier functions apply to inequality constraints and are also 

similar to the penalty function, a typical inverse barrier function and log barrier function is given 

by: L(x)= f (x)+ pk .E[hi (x)F 1  and log barrier function: L(x)= f (x)+ pk .E—ln(hi (x)) with 

k increasing with time. Currently Barrier functions have had no application in genetic algorithms. 

Calculus based methods can also be implemented with genetic algorithms. However, genetic 

algorithms offer potentially new and novel possibilities for the solution to constrained optimization 

problems. 
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1.5.2 Genetic Algorithm - Single Objective Constrained Optimization: 

Rather than transforming the constrained problem into an equivalent unconstrained one, we can 

modify the genetic operators of crossover, mutation and selection to directly deal with the 

constraint. Specialized GA methods exist when dealing with constrained optimization problems. 

There are essentially three methods of handling constraints with genetic algorithms (not counting 

the calculus based ones above). The methods are: Decoders, Penalty functions, and repair 

algorithms. 

(i) Decoders: Decoders process instructions incorporated into the chromosome, which are used 

to construct a feasible solution. Essentially, a decoder is a mapping T from a representation space 

d (binary strings, vectors, integers) into a feasible part of the solution space s. Thus with a 

decoder, illegal chromosomes (infeasible solutions) cannot occur. The method is problem specific, 

can be computationally intensive to implement the transformation T. Further, there must be a 

unique mapping between the representation space d and solution space s. One criticism is that not 

all problems can be solved using this method. 

(ii) Penalty Functions: Discussed above, a penalty function is used, with a gradually increasing 

penalty parameter, the penalty parameter is initially small, and gradually increases with each 

generation. 

(iii) Repair Algorithms: A repair algorithm simply corrects an infeasible solution by mapping any 

infeasible individual into a feasible one. The repaired individual can be used for evaluation 

purposes or can be used to replace the original one (with some finite probability). 

Repair algorithms are very popular in the area of evolutionary computation, due to their relative 

ease by which an infeasible individual can be repaired. This algorithm is problem dependent. A 

discussion can be found in reference [1]. We use repair algorithms and penalty functions in our 

simulations. 

1.5.3 Genetic Algorithm Multiobjective Optimization: 

Currently there are two methods of multiobjective optimization using genetic algorithms: Pareto 

dominance principle and Nash Equilibria [29]. A good review on multiobjective optimization 

(MOP) using genetic algorithms is found in [38]. A third less popular method known as 

Stakelberg equilibria exists, a brief discussion is given on these methods below. 
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(i) Pareto Dominance Principle: When dealing with multiple objectives, ie the function F(x) is a 

vector function, then a single solution may not exist. Instead multiple solutions or a set of 

solutions may exist. In this case, the problem may be stated as follows, given the vector function: 

min (F(x)}, where is defined as: F(x)=[.fi(x), 12(x),... fv(x)], there are i=1..N functions to 

minimize, and j=1..r constraints. In general the solution is not unique, and a family of solutions 

may exist. The pareto dominance principle provides an efficient means to find optimal solutions. 

Defm3.1: A solution x 1  is said to dominate x 2  if the following condition holds: fi (x i )< 1(x2 ) 

for all values of i=1,2,...N: 

Defn.3.2: The Pareto Optimum is defined as follows: a solution x* E X is Pareto optimal if and 

only if there exists no X E X such that f; (x) f(x*) for i=1,2...N with f, ( x)< ( x*) for at 

least one i. Thus intuitively, the point x* is optimal if no criterion can be improved without 

worsening at least one other criterion. 

The group of nondominated solutions is called the Pareto set. This is illustrated graphically for 

two criteria fi (x) and f2(x) to clarify the concept: 

12(X) 
rank-1 rank-2 

	rank-3 

Pareto Front 

11(1 ) 

Fig. 1.8 
Pareto Front and Ranking Scheme 

From figure 1.8, the Pareto front is the set of all nondominated solutions, this is assigned rank-1, 

this is then removed from the population, and the next front is determined and assigned rank-2. 

The procedure repeats until all individuals are accounted for. There are many references 

discussing Pareto optimality applications with genetic algorithms, see: [29 - 33]. 

Classical gradient based optimization algorithms are capable of finding the optimal value of only a 

single objective. Consequently the multiple objectives may be combined into one weighted sum: 
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U(x)=1W,. f1 (x) Eqn.1.1 

The function U(x) is sometimes referred to as a utility or composite function. 

(ii) Nash Equilibria: This is a relatively new concept of game theory in genetic algorithms, 

which is more robust and has faster convergence properties. Nash equilibria which originated in 

1951 [34], is inspired from Games Theory and economics, and only produces a single solution 

rather than a family of solutions. Also referred to as Non-Cooperative approaches, the Nash 

strategy [29] consists of having N players, each optimizing its own criterion. However each player 

has to optimize his criterion given that all the other criteria are fixed by the rest of the players. 

When no player can further improve his criterion, the system has reached an equilibrium called the 

Nash Equilibrium. A good introduction to Nash equilibria is given by [35]. 

To understand Nash game theory, assume there are two players A,B, and there are two functions to 

minimize: fa(x,y) and fdx,y). Player A minimizes the first function with respect to x while keeping 

y fixed by player B, conversely player B minimizes the second function fh(x,y) with respect to y 

while keeping x fixed by player A. This means that two populations are required, one for each 

player. Figure 1.9 below illustrates how Nash equilibria is applied with each generation to genetic 

algorithms. 

Let xk., be the best value found by player-A at generation k-1, and yk., the best value found by 

player-B at generation k-1. Then at generation k, player-A optimizes xk  while using yk. i , at the 

same time player-B optimizes yk  while using xk./. After this, player-A sends the best value xk  to 

player-B, and player-B sends the best value yk  to player-A. This is repeated until neither player-A 

or B can further improve their criteria, this is the Nash equilibrium. 

Simulation studies [29] have shown that exchanges between player-A and B must be as frequent as 

possible, low exchange leads to low convergence rates. 

From an evolutionary perspective, Nash equilibria can be viewed as an independent evolution of 

different species leading to the optimization or adaptation for each species to the natural 

environment. This can occur even when the behavior of one species has a direct influence on the 

others. A new genetic operator referred to as exchange is introduced to simulate the transfer of 

genetic material from one population to the other population. 
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Eqn.1.1 

The function U(x) is sometimes referred to as a utility or composite function. 

(ii) Nash Equilibria: This is a relatively new concept of game theory in genetic algorithms, 

which is more robust and has faster convergence properties. Nash equilibria which originated in 

1951 [34], is inspired from Games Theory and economics, and only produces a single solution 

rather than a family of solutions. Also referred to as Non-Cooperative approaches, the Nash 

strategy [29] consists of having N players, each optimizing its own criterion. However each player 

has to optimize his criterion given that all the other criteria are fixed by the rest of the players. 

When no player can further improve his criterion, the system has reached an equilibrium called the 

Nash Equilibrium. A good introduction to Nash equilibria is given by [35]. 

To understand Nash game theory, assume there are two players A,B, and there are two functions to 

minimize: fa(x,y) and fb(x,y). Player A minimizes the first function with respect to x while keeping 

y fixed by player B, conversely player B minimizes the second function fb(x,y) with respect to y 

while keeping x fixed by player A. This means that two populations are required, one for each 

player. Figure 1.9 below illustrates how Nash equilibria is applied with each generation to genetic 

algorithms. 

Let xk., be the best value found by player-A at generation k-I, and yk., the best value found by 

player-B at generation k-1. Then at generation k, player-A optimizes xk  while using yk.i, at the 

same time player-B optimizes yk  while using xk_/ . After this, player-A sends the best value xk  to 

player-B, and player-B sends the best value yk  to player-A. This is repeated until neither player-A 

or B can further improve their criteria, this is the Nash equilibrium. 

Simulation studies [29] have shown that exchanges between player-A and B must be as frequent as 

possible, low exchange leads to low convergence rates. 

From an evolutionary perspective, Nash equilibria can be viewed as an independent evolution of 

different species leading to the optimization or adaptation for each species to the natural 

environment. This can occur even when the behavior of one species has a direct influence on the 

others. A new genetic operator referred to as exchange is introduced to simulate the transfer of 

genetic material from one population to the other population. 
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Fig. 1.9 
Nash Equilibria with two players applied to Genetic Algorithms 

Stackelberg Equilibria: A similar strategy using asynchronous (less frequent) exchange of 

data exists, which is called the Stackelberg Equilibria [36] in which one player  plays  before the 

other, taking into account its reaction. All these techniques are part of evolutionary game theory, 

and offer new avenues of research in genetic algorithms. Refer to [35]. 
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1.6 Chapter Summary and Conclusion: 
This chapter has provided an introduction to concepts of evolutionary computation theory in which 

genetic algorithms are but just one area which have found wide acceptance in the control systems 

research community. Furthermore, a brief discussion on constrained optimization and 

multiobjective optimization was provided. It must be emphasized that the field of evolutionary 

computation is extensive and that many other concepts such as fuzzy-evolutionary computation 

[4,5], neuro-evolutionary and other hybrid approaches exist, too numerous to give adequate 

consideration.. 

This thesis focuses primarily on the design and synthesis of control systems using conventional 

genetic algorithms and hybrid genetic algorithms. Genetic algorithms have recently been applied 

successfully to many control applications, in which conventional design methodologies are difficult 

to apply, or may not exist. Currently, the design trend is towards control systems which have a 

high level of autonomy, and are capable of dealing with plant changes, unknown environments, 

faults, nonlinearities, external disturbances, and systems capable of learning. In the field of control 

theory, such systems are generally termed robust, self tuning, adaptive, and reconfigurable control 

systems. Each one belonging to a particular area of control theory. Whilst self tuning and 

adaptive control can deal with a limited amount of plant changes, a broader class of autonomous 

control systems would generally embrace concepts of artificial intelligence, knowledge bases and 

expert systems, and are implemented using fuzzy and neural control. In such cases, the process of 

learning and adaptation can only be accomplished as a set of goal-oriented tasks rather than 

traditional control methodologies. In this instance, the objective may not necessarily be a single 

continuous mathematical function, but instead some abstract goal to be achieved. This goal can 

subsequently define the quality of the solution (i.e. fitness level). 

In this thesis, we look at how genetic algorithms and hybrid genetic algorithms can be applied 

directly in a number of areas of control system design, and show that results are comparable and in 

some cases superior to the more traditional methods. 
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2.1 Introduction: 

The purpose of this chapter is to apply hybrid genetic algorithm concepts developed in chapter 1 to 

the training of radial basis function (RBF) networks [8]. This is illustrated by way of an example 

of a model matching problem often found in control system applications. In this example, a radial 

basis function (RBF) network is trained to model a nonlinear bioreactor fermentation process. 

Heuristic and stochastic search algorithms which include: genetic algorithms, simulated annealing, 

greedy and Tabu search are currently active areas of research in many diverse fields such as: 

combinatorial optimization, neural network training, industrial design, economics, image 

processing, system identification, machine learning, adaptive algorithms, pattern recognition, 

artificial intelligence, nonlinear and robust control system design. One of the main applications of 

stochastic search algorithms is in the area of optimization theory. When compared to traditional 

optimization methods based on calculus and enumerative strategies, these algorithms are found to 

be robust, globally converging, less influenced by noise and initial conditions, and relatively simple 

to apply to any problem domain. Additionally, stochastic algorithms do not require gradient or 

higher order derivative information for convergence, only a single cost functional (i.e. fitness 

function) is needed. Cost functionals need not necessarily be linear or continuous, for instance 

discontinuous cost functions can be used for pattern or classification problems when applied to 

neural network training. 

The purpose of this chapter is to apply and compare the three hybrid genetic algorithms discussed 

in chapter 1 to training radial basis function networks, the algorithms are: Conventional Genetic 

Algorithms (GA), Genetic Algorithms with Fast Simulated Annealing (GA+SA) and Genetic 

Algorithms with Greedy Search (GA+GS). Rate of convergence, computational effort (FLOPS) 

and ease of implementation are compared. Results are also compared with more conventional RBF 

training algorithms. 

Initially, a brief overview of radial basis function networks and current means of training is 

provided. Also included is a mathematical description on bioreactors. Simulation results follow in 

section 2.2. A good introduction to Genetic Algorithms is given by Davis [2], Mitchell [4], and 

practical industrial applications by Karr [3]. An introduction to simulated annealing can be found 

in [22], and greedy algorithms in [23] and [24], see also chapter 1 for many additional references. 
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2.1.1. The Radial Basis Function Network: 

Radial basis function networks (RBF) are a class of feed-forward neural networks which are 

characterized by their topological simplicity and ease of training compared to other neural 

networks. Because of this, radial basis functions have been widely applied to signal processing 

applications, system identification, function interpolation and curve fitting. However, radial basis 

functions generally require an excessive number of nodes for accurate operation. The original 

RBF model required an equal number of hidden nodes as data points. This is clearly unacceptable 

because the number of data points is generally very large. It is possible however, to synthesize 

RBF networks with fewer nodes by applying globally converging training and optimization 

routines. This is the objective of this chapter. 

The radial basis function network consists of three layers: the input layer is made up of source 

nodes, the second layer (hidden layer) performs some arbitrary basis for the input patterns, the 

output layer has adjustable weights and a single summation node. The hidden units (or nodes) 

consist of nonlinear elements which enable the RBF to perform nonlinear mappings and also enable 

effective separation of input vectors for pattern classification problems. 

Training a radial basis function network in off-line system identification problems requires the 

selection of the gaussian function centers, variances and weights. The original paper by 

Broomhead and Lowe [11] suggested that the centers be selected randomly from the data. The 

variances (or spread of centers) can be estimated from a histogram plot of the data, and the weights 

calculated by least squares. This is by far the simplest and quickest method, but generally 

produces less than satisfactory ,  results unless the number of hidden nodes is large. 

Referring to figure 2.1 below, a radial basis function network comprises of three layers. The first 

layer is the input layer which is fully connected to the hidden layer,, there are no (adjustable) 

connection weights between the input and hidden layers. The hidden layer consists of a non linear 

activation function or basis function. In each hidden layer node, the Euclidean distance between 

the centers and the input vector is calculated. The activation function uses the Euclidean distance in 

order to calculate the hidden node output. The output layer consists of a single output. The output 

layer is connected to the hidden layer via a set of adjustable synaptic weights. The topology is 

illustrated in figure 2.1 below: 
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Fig. 2.1 
The Radial Basis Function Network 

Notation (for node-1 only): 

wi: output weight associated with node 1, scalar. 
tw : node 1 centers, this is a vector: t (I)  =  
Si: node I spread of centers, also called standard deviations (sd), or widths, this is a scalar. 

A RBF network implements the input-output mapping R m  R I  according to: 

y = Wo  X bias +Ew j .4) j (111 — di) 	 Eqn.2. 1 
J=1 

Where: Iwo , 	wn  } refers to the connection weights, for each hidden node a center t is defined 

which is a vector R m, the Euclidean distance is given by the expression: v 2  = 11 xi  - t, 11 2  for 

i= I ...m. Several activation functions 4) are possible, the more common ones are: 

Thin plate spline function 4)(v)= V 2 .10g(V) 

Gaussian function 4)(v)=e—v21132 

Multiquadric function o( v ) =  ( v 2 + p2)1/2 

Inverse multiquadric function co(v).„ (v 2 + 02 )--1/2 

Table 2.1 
Typical Basis Functions for RBF Network. 

In this thesis, the Gaussian function will be used throughout all simulations. The 13 parameter 

which represents a standard deviation (width or spreading quantity) must also be determined during 

training. The RBF contains only a single output, for multi-output applications, the network is 

duplicated for each output, but the weights, centers and spread of centers must be determined for 

each individual network. To train a RBF network (or any other neural network), training data is 

required, the training data set is usually obtained from the actual response from the plant, using 

some known input function. 



x(k) 

so(k) 

RBF #2 

	Fri 	 

Error = I(RBFi  — bioreactori )2
112  [ N 

 

j.I 

Eqn.2.2 
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Referring to figure 2.1, the REF has only a single output, therefore when dealing with multi-output 

systems, then multiple REF networks are required. For instance, the bioreactor (section 2.2) has 

two outputs (x,„, 4), and one input CO, therefore we require two individual REF networks, see 

figure 2.2A,B. In this case, each REF network may be trained separately. 

so(k) 

Figure 2.2.A 	 Figure 2.2.B 
Training Setup for a RBF Network. 	 Operating Setup for a RBF Network 

The output error is the difference between the REF and actual bioreactor plant outputs, this is 

calculated for each sample j, and this is repeated for each individual RBF network thus: 

Figure 2.2A illustrates the training configuration, and figure 2.2B illustrates the operating 

configuration in which the neural network simulates the bioreactor. In this setup, the outputs are 

fed back into the inputs via a z- ' delay operator. It is assumed that the forward propagation delay 

through the REF network is negligible compared with the sampling time. 

2.1.2. Training Radial Basis Function Networks: 

The simplest method to train a REF network is to choose the centers from the input data randomly 

[5]. The node widths can be estimated by analyzing the spread of centers from a histogram plot of 

Euclidean distances, the weights can then be computed by least squares. However, arbitrary 

selection of centers from the data often results in poor performance, requiring excessive number of 

hidden nodes. Since the performance of the REF critically depends on the chosen centers, a better 

method is needed. A number of methods exist which address this problem, for example Chen [12, 

13] uses a method of Orthogonal Least Squares to train a RBF, in another paper, Chen et al [15] 

uses a Hybrid Clustering algorithm for non linear system identification. These methods are more 

tailored for on line training and identification. 
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Another popular training method is the k-means clustering algorithm [25]. The k-means 

clustering algorithm first computes the node centers, it then estimates the node widths, and lastly 

the node weights. This is described in detail below. 

(i) Node Centers: The node centers are determined by clustering or partitioning the training data 

set into n equal subclusters, where n is the number of hidden nodes of the REF network. The 

average of each subcluster is then calculated. From this initial estimate, a better estimate can be 

obtained by computing the Euclidean distance between each training data point and the node 

centers for each node. The training data point is then placed into a bin (there are n bins) belonging 

to the node center closest to it. After all training points have been binned, the average in each bin 

is computed. This gives a better estimate of the centers for each particular node. The process is 

repeated until the centers have converged. From simulations, this can take 10-20 iterations, and is 

generally very fast. 

(ii) Node Widths: The node widths are computed using a p-nearest neighbor heuristic, generally 

p=2 as suggested in [26]. Using only the node centers, each node width can be estimated by 

looking for 2 nearest node centers to it, and then computing: 

k=1 

	 1 1/2 	Eqn.2.3 

where is the width of the th  node, ti  is it's center, and tk  are the nearest centers to it. 

(iii) Node Weight: The node weight is computed using least squares. All node weights are 

computed simultaneously. A regularization parameter is often introduced to prevent the weights 

from becoming too excessive and avoiding overtraining the network. Note also that the node 

weights are calculated in the same fashion when genetic algorithms are used to train the RBF 

network. 

2.2 Training REF Networks With Hybrid Genetic Algorithms 
This simulation example involves training a Radial Basis Function (RBF) Network to model a 

bioreactor fermentation process, this is a model matching problem for a nonlinear system. We 

briefly describe the bioreactor nonlinear equations. We then compare training the RBF using 

conventional methods with hybrid genetic algorithms. References to bioreactors can be found in 

[5, 6, 7], and using RBF to model bioreactors [7B]. See also appendix section 8.3. 
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2.2.1. Bioreactor Mathematical Model: 

The bioreactor consists of a tank containing water, nutrients (or substrate) and biomass (or cells). 

Nutrients and biomass are added to the tank (via the inlet), the nutrients are consumed by the 

biomass thereby increasing the overall biomass concentration in the tank. Furthermore, biomass is 

removed from the tank via an outlet, at the same flow rate as the inlet. The overall volume of the 

liquid in the tank remains constant. The bioreactor is illustrated in figure 2.3 below: 

Fi xi si 

oariL 
V x s 

X0 SO 

Fig.2.3 
Schematic Diagram of a Bioreactor 

Where: 
x,: 	Input biomass concentration=0 

s,: 	Input nutrient concentration. 

F,: 	Input flowrate (constant). 

x: 	Biomass concentration inside the tank —> output biomass 

s: 	Nutrient concentration inside the tank —> output concentration 

x0 : Output biomass concentration 

so : 	Output nutrient concentration 

Fo : Output flowrate 

Let x1  =x, x2=s, u=s„ then together with the above assumptions we can write in  more  conventional 

control system form, the dynamics is a second order nonlinear system. Referring  to  equation.2.4 

below: x i=output biomass, x2=output nutrient concentration, u=input nutrient concentration: 

Eqn.2.4 

x2  
i l  — po,. 	 F" ).x, ics  — 	ç+ x2  V 

1 	
x2  j 	Ft , 

K 1- X2  •X  +—• U— X2)  I  V 



s(t) 
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Fig.2.4.B 

Open Loop Step Response: s(t): Nutrient Output 
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In continuous operation, the bioreactor runs at some steady state operating point,  we  assume that 

the flow rates are constant and identical i.e.: F, = Fo  , therefore the volume of liquid inside the tank 

is also constant. We assume that the output biomass and nutrient is the same as  the  biomass and 

nutrient within the tank i.e.: xo  = x, so  = s , assume the input has no biomass x,  =0. 

Typical values for the saturation constant and growth rate coefficients are: Pm  =03  and Ks  = 0.1 

to 0.4, K 1  = 1.25, the initial conditions: s(0) =1.0, x(0) = 0.2. The bioreactor open loop step 

response is illustrated below: 

0.8 

0.6 

0.4 

0.2 
0 	200 	400 

	
600 

Fig. 2.4.A 
Open Loop Step Response: x(t): Biomass Output 

When a step input (in nutrient) is added to the tank, assuming perfect and instantaneous mixing, 

the nutrient in the tank and hence output nutrient is initially high, but the nutrient is gradually 

consumed by the biomass (fig. 2.4.B) reducing with time. At the same time, the biomass 

concentration increases as a nonlinear function i.e. fig.2.4.A due to nutrient uptake. Because the 

bioreactor has two outputs, we require two separate radial basis function networks, this is 

illustrated in figure 2.2 above. In the next section, simulation results using conventional training 

methods is provided. 

2.2.2. Training With Conventional Methods: 

From the mathematical model of the bioreactor, three sets of responses are initially generated, the 

first response is used to train the RBF using a random input function, the other  two  responses are 

used to verify the network using a different random and step input function. 

The dynamics of the bioreactor are intrinsically slow, a time step typically of  0.5  seconds is 

required in the simulation. 
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(i) Results Using Conventional Training: Simulation results with conventional training using 

MATLABc  running on a Pentium III/750MHz PC, with 300 training samples is given in following 

pages. Simulation results using 20 and 40 hidden nodes is shown in figures 2.5 and 2.6 

respectively. Matlab includes a neural network toolbox which can be used to train the RBF 

networks. The Matlab functions are: newrb0, which is used for training, and sim0 which is used 

for simulation and verification purposes. When using Matlab's newrb0 function, the value of node 

widths (spread) must be specified. The value of node widths can be estimated from the training 

data set. Our training data set suggests that this value can be anywhere between 0.2 and 4.0. The 

choice of spread may require some trial and error before the optimum value can be found. 

Table 2.2 below summarizes the results obtained using the conventional matlab neural network 

toolbox. Results are for 20 and 40 nodes in the first column, the value of spread in the second 

column, and computational effort (megaflops) in the third column. The last two columns give 

values for the training error (equation 2.2) for the configuration shown in figure 2.2A, and 

verification error for the configuration shown in figure 2.2B. 

Training Error Verification Error 

Nodes Spread MFP Figure RBF#1 	RBF#2 random 	step 

20 0.8 41 Fig.2.5 0.01514 	0.02343 0.9526 	1.3504 

40 1.4 105 Fig.2.6 0.00460 	0.00844 0.6998 	0.9409 

Table 2.2 
Training results using conventional matlab neural network toolbox 

The training error is shown for each individual network as the sum square difference between the 

RBF output and bioreactor output. The verification error however is the RMS sum of both 

networks, using random input and step input test data. 

The choice of node spread 13 has a significant influence on the outcome of the training. The larger 

that spread is the smoother the function approximation will be. Too large a spread means a lot of 

neurons will be required to fit a fast changing function. Too small a spread means many neurons 

will be required to fit a smooth function, and the network may not generalize well. Figures 2.5 and 

2.6 on the following page compare the RBF output (blue) with the actual bioreactor output (red) 

using random test data (first row) and step test data (second row) for 20 and 40 nodes. 
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Matlab NNET Toolbox: Verification (RAND): Error: 0.9526 Nodes: 20 
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2.2.3. Training With Hybrid Genetic Algorithms: 

The RBF can also be trained using hybrid genetic algorithms. The three methods compared are: 

Conventional Genetic Algorithms (GA), Genetic algorithms + Simulated Annealing (GA+SA) and 

Genetic algorithms + Greedy Search (GA+GS). 

(i) Genetic Algorithms: Before discussing the results, the chromosomal representation used for 

this simulation is illustrated in figure 2.7 below, where: wo=bias weight, [w, t 	4') sdj =node- 

1 weight, centers and standard deviation (widths) respectively. The same is repeated to the 

remaining nodes 2 to n. The error is the Euclidean norm of the difference of the RBF output and 

Bioreactor output (equation 2.2), the fitness is then computed as the inverse of the error thus: 

fitness=1/(error). 

node-1 

  

node-n 

 

4 	 

   

    

(I) 
WO I WI I t1 

 

,(I) 
L2 

(I) 
t3 1 

   

(n) 
Wn I t  

(n) 
t2 

(n) 
t3 sdn  

 

error fitness 

     

               

Fig. 2.7 
Chromosomal Representation of RBF Network with GA 

In this simulation, the GA maintains two separate populations, the first population is used to train 

the first radial basis function RBF#1, and the second is used to train RBF#2. Consequently both 

RBF networks can be trained simultaneously. The weights are computed using least squares. For 

this simulation we set: population=30, maximum generations=200, crossover probability=0.6 and 

mutation probability=0.1, binary tournament selection and floating point codification was used. 

Several simulation results are listed to illustrate the stochastic nature of the convergence. Results 

are tabulated using 20 and 40 nodes: 

Training Error Verification Error 

Nodes Time MFP Gen RBF#1 	RBF#2 random 	step 

20 10:43 10540 140 0.00233 	0.00650 0.33975 	0.59029 
10:43 10550 140 0.00269 	0.00435 0.64191 	0.79235 
10:56 10551 140 0.00426 	0.00339 0.91685 	0.26338 
10:49 10557 140 0.00192 	0.00361 0.57244 	0.81601 
10:55 10536 140 0.00214 	0.00800 0.53976 	0.83718 

40 37:33 39917 160 0.00188 	0.00176 0.33477 	0.22392 
37:32 39908 160 0.00227 	0.00263 0.32801 	0.32676 
37:33 39866 160 0.00232 	0.00252 0.34336 	0.41723 
37:47 39832 160 0.00227 	0.00276 0.32069 	0.14259 
37:43 39836 160 0.00278 	0.00367 0.34063 	0.19805 

Table 2.3 
Training results using conventional genetic algorithms 
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Genetic Algorithm: - Verification (RAND) Error.: 0.4430147 Nodes: 20 
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(ii) Genetic Algorithms+Simulated Annealing (GA+SA): Simulated annealing requires a search 

vector and a temperature annealing schedule. The search vector is defined in a similar manner to 

that of genetic algorithms, and is illustrated in figure 2.10 below: 

node-1 

 

node-n 

   

wo I WI I ein 

 

t 	I 

  

wn It  4'1) sd. 

   

        

Fig. 2.10 
Search vector for GA+SA algorithm 

There are two search vectors, one for each RBF network. Again, both networks are trained 

simultaneously. The temperature annealing schedule is defined as: initial temperature: To, final 

temperature: Tfi  the temperature at the kth  iteration is given by: Tk=a.Tk.i, this is an exponential 

annealing schedule where alpha is computed from: 
1 

a =10
(-log(Tf ITo)) 
 " Eqn.2.5 

giving values of alpha typically between 0.9-0.98, N=number of iterations. Results for this 

simulation using 20 and 40 nodes is tabulated below, values are: To=1 (normalized), T f=0.001, 

iterations=200 (20 nodes) and 240 (40 nodes) 

Training Error Verification Emu.  

Nodes Time NI:FP Gen RBF#1 	RBF#2 random 	step 

20 

Irl  C
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 ts.
 

“
 gm,
 ea
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0
1
 0

1
 0

1
 0

1
 0

1 

10409 200 0.00297 	0.00464 0.41078 	0.25718 
10406 200 0.00294 	0.00362 0.43302 	0.44228 
10409 200 0.00264 	0.00342 0.67604 	0.18233 
10408 200 0.00285 	0.00365 0.48328 	0.17402 
10407 200 0.00288 	0.00367 0.41093 	0.40195 

40 35:35 41360 240 0.00178 	0.00353 0.35444 	0.21236 
35:28 41362 240 0.00182 	0.00313 0.37063 	0.19034 
35:39 41372 240 0.00212 	0.00342 0.31717 	0.28021 
35:17 41377 240 0.00189 	0.00298 0.30040 	0.24368 
35:24 42.341 240 0.00201 	0.00237 0.28266 	0.33288 

Table 2.4 
Training results using genetic algorithms and simulated annealing 

Typical plots for 20 and 40 nodes are illustrated on the following page Fig.2.11 and Fig.2.12. 
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GA+Simulated Annealing: - Verification (RAND) Error.: 0.4311976 Nodes: 20 
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(iii) Genetic Algoritinns+Greedy Search (GA+GS): The greedy algorithm uses a search vector 

which is identical to that of simulated annealing (Fig.2.10). The performance of the greedy 

algorithm strongly depends upon the initial value. Typical results are tabulated below: 

Training Error Verification Error 

Nodes Time MEP RBF#1 	RBF#2 random 	step 

20 4:50 4785 0.003160 	0.005724 0.45574 	0.42448 
4:52 4849 0.003453 	0.004171 0.35973 	0.44323 
5:46 5750 0.003258 	0.005203 0.45351 	0.38673 
5:25 5348 0.004603 	0.003598 0.62629 	0.26401 
6:35 6566 0.002091 	0.005390 0.43774 	0.45490 

40 6:49 8158 0.002064 	0.001980 0.31679 	0.24220 

9:39 11830 0.001946 	0.003705 0.26691 	0.22193 
17:58 21789 0.001235 	0.001946 0.28643 	0.20710 

19:21 23347 0.001707 	0.001740 0.44539 	0.13030 
25:13 30777 0.001135 	0.001781 0.28535 	0.15008 

Table 2.5 
Training results using genetic algorithms and greedy search 

The combined GA+GS converges in about half the time/flops when compared with the standard 

genetic algorithm. Results for 20 and 40 nodes are illustrated in figures 2.13 and 2.14 below. 
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GA + Greedy Search: - Verification (RAND) Error.: 0.2853458 Nodes: 40 
Xo(t) biomass out 
	

So(t) nutrient out 

GA + Greedy Search: - Verification (STEP) Error: 0.15008 Nodes: 40 
Xo(t) biomass out 
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2.2.4 Comparison of Results: 

From the previous results, all three GA methods yield a network with superior performance when 

compared with a RBF network trained using conventional methods. However the results provide 

no indication of the actual convergence rate for each of the three GA methods. In figure 2.15 

below, the network performance (i.e. training error) is plotted as a function of the training time (or 

FLOPS) for a network with 20 nodes. The conventional GA is plotted  in  red, hybrid 

GA+simulated annealing in green, and hybrid GA+gyeedy search in blue. Both hybrid methods 

converge slightly faster than the conventional GA. The same is repeated for the RBF network with 

40 nodes, this is illustrated in figure 2.16 below. 

Table 2.6 below summarizes the training and verification errors obtained after a fixed number of 

computations: 10,000 MFP for the 20 node RBF, and Table 2.7 for 40 nodes after 40,000 MFP 

computations. 
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Training and verification error comparison after 10,000 MFP computations, for 20 node RBF 

network: 

Training Errors: Verification Errors 

METHOD: RBF#1 Error RBF#2 Error Errorl+Error2 Train time RBF#1 Error RBF#2 Error 

MATLAB 0.015140 0.023430 0.038570 00:20 0.95300 1.35000 
GA: 0.003535 0.007448 0.010984 11:10 0.44301 0.37189 
GA+SA: 0.002625 0.003251 	' 	0.005877 9:50 0.43120 0.26988 
GA+GREEDY: 0.003618 0.003011 i 	0.006630 9:40 0.44312 0.11502 

Table 2.6 

Typical convergence rates for conventional genetic algorithms and hybrid genetic algorithms versus 

the computational effort for 20 node RBF network: 

Convergence Rate: GA: red GA+SA: green GA+GS: blue (20 nodes) 

Training and verification error comparison after 40,000 MFP computations, for 40 node RBF 

network: 

Training Errors: Verification Errors 
f 

METHOD: RBFV1Error RBF#2 Error Errorl+Error2 , Train time RBF#1 Error RBF#2 Error 

MATIAB 0.004600 0.008440 0.013040 	 :41 0.9473 0.4495 
GA: 0.002771 0.003924 0.006695 	35:02 0.4183 0.2348 
Si.: 0.001572 0.001693 0.003265 	32:05 0.3247 0.2217 
GREEDY: 0.001269 0.002175 0.003444 	30:47 0.2232 0.1478 

Table 2.7 
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Typical convergence rates for conventional genetic algorithms and hybrid genetic algorithms versus 

the computational effort for 40 node RBF network: 

Convergence Rate: GA: red GA+SA: green GA+GS: blue (40 nodes) 
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2.3 Chapter Summary and Conclusion: 

From the simulation results, it is clear that training RBF using genetic algorithms can produce a 

network with superior performance and fewer nodes when compared with conventional training 

schemes. However training times using GA are excessive. Even hybrid GA methods still require a 

high computational effort compared with the more traditional methods. Thus it  is  unlikely that 

applications requiring on-line training of RBF networks using these methods  is  appropriate. 

However, in applications where the smallest number of nodes is desirable, then off-line training 

using GA and hybrid GA may be more feasible. 

We have investigated two different methods of crossover: swapping and weighted average. From 

simulation results, the averaging crossover converges quicker but looses genetic diversity more 

rapidly. The swapping crossover has slower convergence but retains diversity. The results above 

are for weighted average crossover only. 
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Some key points regarding GA are outlined next. 

(i)Population 

The initialization of a population is an important factor. Two points to consider are: to ensure that 

the initial population spans the entire possible search space in which the solution is contained. And 

secondly, if the approximate solution is known, to initialize the population near the solution. 

(ii)Mutation Operator: 

Two forms of mutation operators are used: 

= x + kx rand 
and 

Eqn.2.10a 

x;  = x;  x(1 + kxrand) 	 Eqn.2.10b 

the first (Eqn.2.10a) allows a wide search space to be analyzed, the second works well near the 

solution (narrower search space). The two methods are used with a probability of 0.5, and k is a 

mutation gain parameter which can be user selected or gradually decreases over time. Mutation is 

applied uniformly over the components of the chromosome. For instance, given the following 

chromosomal representation (Fig.2.16) with parameters (x i , x2 ....x.) to solve for, the mutation 

operator is applied to each element of the chromosome in sequence, beginning from x 1  to x. with 

probability Pm: 

Xj X2 
	

Xn  err Fitness 

Figure 2.16 

A typical mutation algorithm would be: 

%BIASED MUTATION: 
for j=1:n 

if (rand < Pm) 
= fix(3*rand); 

gain = mutationGain*10*(-r); 

if (rand<0.5) 
%wide search space: 
GeneB(j) = GeneB(j) + gain*randn; 

else 
%narrower search space: 
GeneB(j) = GeneB(j)*(1 + gain*randn/10); 

end; 
end 

end 

Note that either one of the two mutation equations (Eqn.2.10a) and (Eqn.2.10b) is chosen 

randomly. 
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(iii) Crossover Operator: 

A uniform crossover operator is used. This means that for each parameter .z .;  of the chromosome 

(Fig.2.16), the resulting offspring is the weighted average of the two parents. This is applied 

uniformly for j=1..n, and probability Pc to each parameter xj, the crossover algorithm used is: 

?SWAPPING CROSSOVER OPERATOR: 
for j=1:n 

if (rand < Pc) 
eta 	. rand: 
GeneB(j) = eta*GeneAl(j) + (1-eta)*GeneA2(j): 

end; 
end; 

%1ZOOKE-JENVES CROSSOVER OPERATOR: 
if (rand<0.25) 

fitl = GeneAl(cols): 
fit2 = GeneA2(cols): 

if (fitl>fit2) 
GeneB = 2*GeneAl GeneA2; 

else 
GeneB = 2*GeneA2 GeneAl; 

end 
end 

If the swapping crossover method is used, the value of alpha is simply set to zero. A value of 

a=0.5 can sometimes produce rapid convergence. Furthermore, the addition of the Hooke-Jeeves 

crossover operator discussed in chapter 1 is applied with a low probability of 0.25. 

(iv) Population Inversion: 

Two methods which we have used are: (i) combine the parents and offspring into one population, 

and then choose the fittest N chromosomes from this population, or (ii) simply replace the old 

population with the new population. We found that the first method can lead to premature 

convergence and loss of genetic diversity. The second method retains genetic diversity, but can also 

be inefficient because offsprings with very poor fitness can remain in the population. Trial and 

error may be required depending on the application. 

(v) Future work: 

1. As a topic of interest, compare genetic algorithms with orthogonal least squares in training 

radial basis function networks. 

2. Use genetic algorithms and hybrid genetic algorithms to train multilayer perceptrons (MLP) 

neural networks, compare with backpropagation. 

3. Hybridize genetic algorithms using Tabu local search, and compare with results using Greedy 

search and simulated annealing. 
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3.1 Eigenstructure Assignment: 

3.1.1 Introduction: 

The aim of this chapter is to apply hybrid genetic algorithms, and concepts of constrained 

optimization theory discussed in chapter 1, to the design of control systems based on eigenstructure 

assignment (ESA). Three different designs are considered: (i) Full state static feedback, (ii) 

Output feedback using a dynamic compensator, and (iii) Robust eigenstructure assignment. 

Results are verified with conventional eigenstructure assignment methods. An introduction to 

eigenstructure assignment is briefly outlined below. 

Eigenstructure assignment is a powerful design technique which has developed over the last twenty 

years. The objective of eigenstructure assignment is to determine the feedback gain matrix K such 

that the closed loop eigenvalues and eigenvectors (eigenstructure) are as close as possible to some 

design specifications. This method allows the designer to directly satisfy damping, settling time 

and mode decoupling specifications by the proper choice of eigenvalues and eigenvectors. The 

behavior of a linear dynamic system can be completely characterized by its eigenstructure. The 

eigenvalues determine the stability of the system while the eigenvectors determine the contribution 

of each system mode to the overall system outputs or states. More specifically, the output for a 

linear discrete time system x(k +1) = 40.x(k) with zero input, is given by [1]: 

x(k)= V. . 	x(o) 	 Eqn.3.1 

Where V=a matrix of eigenvectors of (I), A" =diagonal matrix of corresponding eigenvalues, and 

x(0) initial condition. 

There are essentially three types of feedback: full state feedback, output feedback, and constrained 

output feedback [1, 2]. Full state feedback [7] allows greater design freedom in the choice of 

eigenstructure placement, but may require an observer for state estimation. The more popular 

method is output feedback, this method has more restrictions on the placement of eigenvectors, but 

does not require a state observer. The third method of constrained output feedback sets some 

entries of the output feedback gain matrix to zero, reducing controller complexity and increasing 

reliability, however it is not always evident which entries should be zero. One obvious method [3, 

4] would simply be to choose those entries which have the smallest influence upon the eigenvalues 

and eigenvectors of the closed loop system. 
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Note in particular that pole placement (i.e. Ackerman's formula) and optimal-LQR (matrix Riccati 

equation) controller designs are simply a special instance of eigenstructure assignment where only 

the eigenvalues are taken into consideration. 

One popular method of computing the feedback gain matrix K for MIMO systems is by Moore's 

method [6], and is described in section 3.1.2 below. Other methods include parameterization of 

controllers [5] for full state feedback. Extensions to improve design freedom of parametric 

approaches include [7] in which all combinations of allowable subspaces is computed. 

Eigenstructure assignment has been used in reconfigurable control systems [8] in which the 

operating conditions of the plant change and new feedback gain matrix K is re-computed to 

maintain the eigenvalues and vectors as close as possible to the original design specifications. 

Applications to aircraft control using partial eigenstructure assignment in which not all eigenvalues 

are prescribed [9] uses minimum norm to ensure stability of the remaining unspecified 

eigenstructure. In [10], eigenstructure is used to achieve mode decoupling and desired 

damping/rise time for a high performance (F-15) aircraft using output feedback. Applications to a 

commercial transport (Boeing 767) using eigenstructure to design a lateral autopilot are discussed 

[12]. More recently, the area of robust eigenstructure assignment including reconfigurable control 

has received considerable attention. The task of reconfigurable control is twofold: first to 

guarantee performance and stability whenever possible, and secondly, to recover control 

effectiveness under changing or failed conditions. Reconfiguration is performed on-line, in the 

event of a failure the fault detection and isolation system (see chapter 6) should provide accurate 

isolation and identification of the fault. This chapter will investigate the application of hybrid 

genetic algorithms for solving general and robust eigenstructure problems. 

3.1.2 Full Eigenstructure Assignment by Moore's Method 

Eigenstructure assignment by Moore's method is presented below, this method can be later used as 

a comparison with solutions obtained using hybrid genetic algorithms. Moore's method [1] 

requires that all the eigenvalues and eigenvectors are specified at the design stage. In [9], partial 

eigenstructure assignment using Moore's method is discussed. Moore's method requires full state 

feedback, however the solution can be obtained without iteration. The procedure below is 

presented in algorithmic form rather than giving a complete derivation of Moore's method. Given a 

linear time invariant (LTI) system in state space and continuous time: 
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.i= A.x+ B.0 	 Eqn.3.2 

and a full state feedback control law: 

u= —K.x 	 Eqn.3.3 

for x E 9", U E 91 m  we require that the closed loop eigenvalues and eigenvectors correspond as 

closely as possible to those specified, thus the eigenvalue problem becomes: 

(A — B.K)v i  Eqn.3.4 

where: {2.i , v i 	, are the desired eigenvalues and eigenvectors respectively. The algorithm is 

given below, note the necessary condition: n=rank(A). Moore's method requires full specification 

of all eigenvalues and eigenvectors: 

Procedure for Moore's Method: 

Repeat j=1 TO n (for each eigenvalue) 
setup the matrix: 

S =[A j .1 — Al 13] 
Compute the right nullspace of the above matrix —› M,N: 

[M] 
= null(S) 

Compute the column vectors V and W by least squares solution 
a =(mT.m)-1 .mT.v j  
v„ = m.a 

= N.a 
Construct matrices V,W from column vectors v i,w; thus: 

V = [...v j ...] 

W = [...w j ...] 
end 

Fig.3.1 

The full state feedback gain can then be computed from the matrices thus: K = —W .V ' . Note that 

Moore's method gives the best match (in the least squares sense) to the specified eigenvectors. In 

fact, the user specified eigenvectors may be unrealizable or unachievable, and Moore's method 

gives the closest best match to the specified eigenvectors. As we shall see later, the achievable 

eigenvectors must belong to the subspace spanned by the columns of S = (A1 .! — 	 B. If this 

is the case, Moore's method will then yield a precise match to the specified eigenstructure. 
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There have been many variations to this method with partial eigenstructure and output feedback 

instead of state feedback. When dealing with partial eigenstructure assignment where only some of 

the eigenvalues/eigenvectors have been specified, the question of how best to allocate the remaining 

ones is the subject of robust eigenstructure assignment. 

Note also that Moore's method fails when one or more closed loop eigenvalues are required to be 

identical to the open loop eigenvalues. When dealing with partial eigenstructure assignment, this 

method can be modified to deal with eigenvalues/vectors which are not specified or are not critical 

in the design. 

3.1.3 Partial Eigenstructure Assignment: 

In many practical situations, the full specification of the eigenstructure is not known (or not 

necessarily required), but only certain elements of the eigenstructure are specified. Thus the 

problem is to find the best possible eigenstructure which matches the specified components of the 

required eigenstructure as closely as possible without regard to the other remaining unspecified 

components. This is the partial eigenstructure assignment problem. The conventional solution [1] 

is outlined below, for each single eigenvalue and desired eigenvector 

(d) 
V —[Vi X X Vj X X Vk Xr 

where x=don't care (represents unspecified components) and v i  are the specified components. A 

simple re-ordering operation is used to rearrange the above vector into two subvectors: 

reorder:{v(d)} ___> vd) . [ n 
d 

E,qn.3.5 

 

where n=subvector of specified components, and d=subvector of unspecified components. The 

achievable eigenvectors must be selected from the subspace spanned by: S = (A. I — 	 B. 

Thus all achievable eigenvectors are given by: v 	S. g. The S matrix is also reordered in the 

same sequence as previously in equation 3.5: 

reorder: {s} 	[D] 	 Eqn.3.6 
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In order to minimize the norm of the difference between the actual and desired eigenvectors the g 

vector can be estimated by least square thus: 

g = (N T 	.N T  .n 	 Eqn.3.7 

If however the dimension dim {n} < m, where m=number of inputs (14E 9r), then the solution 

can be found given by: 

g = NT  (N.NT ) '  .n 	 Eqn.3.8 

The feedback gain K can be computed from the g vector. A full detailed description of the partial 

eigenstructure algorithm we implemented is provided in the appendix (see 8.2). This will be used 

for comparison with solutions obtained using genetic algorithms. If only partial eigenstructure 

specification is given, then the question of how best to choose the remaining unspecified 

eigenvalues/eigenvectors becomes the next topic of discussion: robust eigenstructure assignment. 

3.1.4 Robust Eigenstructure Assignment: 

More recently, robust eigenstructure assignment has been a topic of research interest including 

areas of reconfigurable control systems [18]. The objective is to design a feedback control law in 

which the eigenstructure of the closed loop system is unaffected, or minimizing the effects caused 

by changes in the operating conditions (or failures) of the nominal system. Some examples of 

robust eigenstructure assignment include [15] in which the attempt is to minimize the difference 

(norm) between the desired and achievable eigenvalues/vectors. 

This chapter outlines the general framework in which the robust eigenstructure problem can be 

defined and solved using hybrid genetic algorithms. Other methods of robust eigenstructure 

formulation include the minimization of sensitivity and complimentary sensitivity function norms 

[17], which also appear to be a popular techniques. Some other examples with genetic algorithms 

[16, 19] have recently emerged. 

From the previous chapter, we discussed optimization problems in which hybrid genetic algorithms 

can be readily applied to. Genetic algorithms require that the robust eigenstructure problem first 

be formulated in a generalized multiobjective constrained optimization framework. This 

formulation is developed below. 
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The eigenstructure assignment problem starts with the definition of the desired closed loop 

eigenvalues and eigenvectors, and then computes the feedback gain matrix K to meet these 

requirements. In general, not all eigenvalues and eigenvectors are specified, the question is then 

of how best to choose the remaining (unspecified eigenvalues/eigenvectors) so that the system is 

stable, robust and the closed eigenvectors are as close to those specified. Consider the following 

linear time-invariant and completely controllable system: 

i(t)= A.x(t)+ B.u(t) 
y(t)= C.x(t) 

Eqn.3.9 

Where x E 9", is the state vector, and u E 
9m  is the control vector, using full state feedback: 

u(t)= —K .x(t) the closed loop system becomes: 

i(t)= (A— B.K).x(t) 	 Eqn.3.10 

Where the closed loop eigenstructure of (A - B. K) must match as closely as possible to those 

specified. It is assumed that the controllability condition is satisfied i.e. rank of the controllability 

matrix=n. Given this condition, all eigenvalues can be placed, and up to m entries in each 

eigenvector can be placed in specified locations. The robust eigenstructure assignment problem 

can be stated as follows: determine the feedback gain matrix K such that: 

Robust Eigenstructure Problem Definition: 

1. The eigenvectors of the closed loop gain (A - B. K) are as close as possible to the specified 

eigenvectors v = [v i  , v2  ,...vg  . 

2. The eigenvalues of the closed loop system (A - B. K) contain the specified eigenvalues 

3. The remaining (n-q) unspecified eigenvalues and eigenvectors are stable. 

4. The stability margin is maximized to account for robustness against uncertainties in the state-

space matrices. 

The four requirements can be stated mathematically as a constrained multiobjective optimization 

problem. The eigenvector problem is defined as finding K such that for each 

eigenvalue/eigenvector: (A — B. K)v , = 
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Requirement-1:  Match the eigenvectors as close as possible to the desired eigenvectors: let v i  be 

the desired eigenvectors, and v i a  the achievable eigenvectors, then this is 

equivalent to minimizing the norm: 

fi m n 	— ' , 11 2 	
Eqn.3.11 

i=1 

All achievable closed loop eigenvectors v ia  must belong to the subspace spanned 

by the columns of S = (41 — .B see [1], in other words the vector v i a  

must correspond to the subspace: v i a  = S i .g i  where g i  is a vector to be solved 

for, the minimization now becomes ( where H=complex conjugate transpose): 

= min y(s i .gi 	-v,) 	Eqn.3.12 
,=1 

Requirement-2:  Match the actual eigenvalues to the specified eigenvalues, from equation 3.4, the 

following condition must be zero: 

h, = (A + B.K — 	i .g =O 	 Eqn.3.13 

This defines a first constraint. Since h i  is a vector, we can minimize its trace. 

Requirement-3:  The remaining (n-q) unspecified eigenvalues and eigenvectors must be stable. It 

is sufficient to satisfy the Lyapunov equation: 

h2  = 	.P + A, + Q = 0 	 Eqn.3.14 

where AMA+B.K) is the closed loop gain, and Q is positive definite symmetric 

matrix. This defines a second constraint. Since h 2  is a matrix, we can minimize 

its trace. 

Requirement-4:  The stability margin is maximized to account for robustness against 

uncertainties in the state-space matrices. For unstructured perturbations, this 

translates to minimizing the quantity: 

12  = trace(P2 ) 	 Eqn.3.15 

the smaller this value, the more robustly stable the closed loop system will be to 

unstructured perturbations. 



minimize: 

A = min E(s i • g i  —10 h' 

f2  = mirtftrace(P 2  )1 

constraints: 

111 =E(A, + K — Ail).S g =0 

h2  = Ac T  .P+ P.Ac +Q =0 

Eqn.3.16 

Eqn.3.17 

Eqn.3.18 

Eqn.3.19 
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The robust eigenstructure assignment problem can be formulated as a multiobjective optimization 

problem with two objectives and two constraints: 

Fig.3.2 

This is the generalized framework for robust eigenstructure assignment. This can be solved by 

calculus based constrained optimization using Lagrange multiplier methods [15]. 

3.1.5 Response of LTI Systems from Eigenstructure Information: 

The eigenvalues and eigenvectors of a matrix can be used to completely characterize the dynamic 

behavior of a LTI system. Refer to [1] and [22] (pp. 342-345). Given an unforced system with 

full state feedback K: 

±(t)= A.x(t) 	 Eqn.3.20 

with eigenvalues of the closed loop system A=A -B.K at: A A  = diag[A,,, 	and the 

eigenvectors VA  = 	Vg  . The system is transformed to discrete time thus: 

x(k +1)= x(k) 	 Eqn.3.21 

where the matrix c1 = eAT .-=T.A, and T=step size. Since the transformation involves only a 

scaling by T, then the eigenvectors of (Dare identical to those of (A-B. K) ie: V4, = VA, but the 

eigenvalues are scaled by T, thus: Ao  = T. AA.  It can be shown that the response at time step k of 

this system is completely described by relation: 
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thus equating parts, we get: 

x(k)=V4) .Ak..V4; 1 .x(o) 

Ak  = 	.1/4; 1  

Eqn.3.22 

Eqn.3.23 

From the above relation, the eigenstructure of the system can be used to fully describe its dynamic 

response. Note that if a system has unique nonzero eigenvalues, then the eigenvectors will be 

linearly independent. 

3.2 Partial Eigenstructure Assignment for Static Compensators 

3.2.1 Theory: 

We now look at how hybrid genetic algorithms can be used to design a full state feedback static 

compensator K for the partial eigenstructure assignment problem. In this simulation, all 

eigenvalues have been specified, but only partial specification is provided for the corresponding 

eigenvectors. This problem can be solved by conventional methods described earlier. We can 

compare the solution obtained using genetic algorithms with conventional methods (see appendix 

8.2). Two individual simulations are considered: 

(a) In the first part, the eigenvalues have been fully specified, and partial specification is provided 

for the eigenvectors. We can verify the solution obtained by GA as this problem can also be 

solved by conventional eigenstructure assignment. 

(b) In the second part, the upper and lower range of the allowable eigenvalues is given, for 

instance: Acjiower) < < jupper) and partial specification is provided for the eigenvectors as 

described above. 	This second method cannot be directly solved by conventional 

eigenstructure assignment. This is a constrained optimization problem. 

The linearized lateral aircraft model is used for these two simulations (appendix 8.1). A 

description of the simulation setup is outlined next. Consider the following linearized dynamic 

system: 

1(0= A.x(t)+ B.u(t) 
y(t)= C.x(t) 

Eqn.3.24 
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Where x E 9I n  , is the state vector, and u 9r is the control vector, assuming full state feedback: 

u(t) = —K.x(t) the closed loop system becomes: 

.i(t)= (A— B.K).x(t) 	 Eqn.3.25 

Where the closed loop eigenvalues and eigenvectors of (A - B. K) must match as closely as possible 

to those specified. It is assumed that the controllability condition is satisfied i.e.: rank of the 

controllability matrix=n. Given this condition, using full state feedback, up to n eigenvalues (i.e.: 

all) can be placed in specified locations. 

(i) Assignability Conditions: 

With full state feedback: x E 9in  is the state vector, and u E 91'n is the control vector, the 

maximum possible assignability of eigenvalues and eigenvectors are: 

(i). a maximum of n of closed loop eigenvalues can be assigned, i.e. all eigenvalues may be 

arbitrarily assigned. 

(ii). a maximum of nxm total eigenvector entries can be arbitrarily assigned, 

(iii) no more than m entries in any one eigenvector can be chosen arbitrarily, with n 

eigenvectors, gives a total of nxm entries. 

For our system, n=4, m=2, giving a total of 4 maximum allowable eigenvalues which may be 

arbitrarily placed, and 4 eigenvectors, with only 2 entries in each eigenvector column arbitrarily 

assigned. 

(II) Objectives: 

For this first simulation, the problem is to minimize the eigenvector assignment error given by the 

objective function 2.26 below: 

= minI(Si •g i —v i )ff  (Si •g i —v i ) Eqn.3.26 
i=1 

where Si  = (A7 . I — AY I .B, the feedback gain can be calculated from the gi  vectors, i.e: 

K = —G.V -I  V=achievable eigenvector matrix nxn, and G=,r042,..gn] matrix of gi  column 

vectors mxn. The above equation attempts to minimize the difference between the desired 

eigenvectors v i  with the achievable eigenvectors 
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Thus the achievable eigenvectors must belong to the subspace spanned by S i =  Ar I-  A 1 1 .B. 

Since full state feedback is used, all eigenvalues are assignable. 

(iii) Required eigenstructure: 

Eigenstructure assignment is applied to the linearized aircraft lateral model, with roll mode and 

Dutch roll modes at: A,=-2±1j and A„=-1.5±1.5j respectively. This is illustrated in  figure  3.3 below, 

and the eigenstructure specification is tabulated in figure 3.4. Note that the don't care states are 

denoted in red by an  x  symbol. The given eigenstructure provides partial decoupling between the 

roll and Dutch roll modes. The aircraft lateral dynamics, with full state feedback  is  illustrated in 

figure 3.3 below: 

PLANT 

  

    

x(0.p(t) - roll rate deg/sec. 
r(t) - yaw rate deg/sec. 
/3(t) - sideslip angle deg. 
it(t) - roll angle deg. 

u(t)= 4(t) -aileron angle deg. 
4(t) -rudder angle deg. 

Fig. 3.3 
Lateral Dynamics Used for Simulation 

for the linearized lateral model, the required eigenstructure may be written in the form (see 

reference [39]), for each column, the first row is the eigenvalue and corresponding eigenvector 

below: 

Roll Mode: Dutch Roll Mode: 

-2.0 4. j1.0 -2.0 - j1.0 -1.5 4. 	j1.5 -1.5 - j1.5 

xi 4. j1.0 X3 - j1.0 0.0 + 10.0 0.0 - j0.0 
0.0 +  10.0 0.0 - 10.0 1.0 + 	jX6 1.0 - 	jX8 

0.0 + 10.0 0.0 - 10.0 X5 + j1.0 X7 - j1.0 
1.0 + 	jX2 1.0 - 	jX4 0.0 + j0.0 0.0 - 10.0 

Fig. 3.4 
Eigenstructure Used in Lateral Aircraft Simulation 

Where  xi, X2 ...X8  represent don't care values (unspecified values). Note that because complex 

conjugate pairs are present, then we have the condition: X1=X3 , X2=X4 , X5=X7, X6=X8, there 

are essentially only 4 parameters to solve for. Note that in this instance, the g vectors must also be 

complex conjugate pairs i.e.: g2  = g4  = k3  . 
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(iv) Chromosomal representation: 

The chromosomal representation of this problem is illustrated in figure 3.5 below, where the error 

function (error) is given by equation 3.26 and the fitness is simply the inverse of the error function. 

 

x , I x2 1 x3 1 x4 J  x, 
X6 1 X7  IX81 error Fitness 

   

Fig. 3.5 
Chromosomal Structure of Partial ESA Problem: Simulation-1 

This is a generalized chromosomal representation which can be used for complex conjugates as 

well as purely real eigenvalues. There are several ways in which to encode the chromosome 

(Fig.3.5), one way would be to do a GA search on the gi  vectors (see equation 3.26) but this would 

require solving for 8 values, to see why, consider each g vector for each eigenvalue/eigenvector 

value consisting of 4 elements thus: 

[a, + jb,] 
g1= n  

ile2 

Since there are 2 x g vectors to solve for (g i , g3) as the other two (g2, g4) are simply complex 

conjugates of the first two, this gives a total of 8 parameters to solve for. 

The second method would simply be to do a GA search on the unspecified parameters: Xl, X2 

...x8, giving a total of only 4 parameters to solve for since: X1=X3 , X2=X4 , X5=X7 , X6=X8 . 

We can then estimate the g i  vectors from these values by least squares, and compute the fitness 

function 3.26. This second method is considerably more efficient and converges very rapidly. 

Results are given below. 

3.2.2 Simulation 3.1: Fixed Eigenvalues: 

(i) Objective: For this first simulation, we use the required eigenstructure described above, and 

compute the achievable eigenvectors. The aircraft lateral dynamics are given by the following 

matrices (refer to appendix 8.1) 

A . -3.9330 0.1260 -9.9900 0 Et . -45.8300 -7.6400 
0.0020 -0.2350 5.6700 0 -0.9210 -6.5100 
0.0262 -0.9997 -0.1960 0.0345 0.0071 o 
1.0000 0 0 0 0 0 

The results from the first simulation are shown on the following page. Results using genetic 

algorithms and conventional eigenstructure assignment give identical results. Note the rapid 

convergence ( within 40 generations) of the genetic algorithm. 
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Given the objective below, find the gain K such that the eigenstructure matches as closely as 

possible to the following specification, where x=don't care (can take any value): 

FkAl Mode: Dutch Roll Mode: 

-2.0 + 	j1.0 -2.0 - 	j1.0 -1.5 + j1.5 -1.5 - 	j1.5 

+ 	j1.0 - 	j1.0 0.0 + 	j0.0 0.0 - 	j0.0 
0.0 + 	j0.0 0.0 - 	j0.0 1.0 + 1.0 - 	jX8 
0.0 + 	j0.0 0.0 - j0.0 + 	j1.0 - j1.0 
1.0 + 1.0 - 	jX4 0.0 + 	j0.0 0.0 - j0.0 

Fig.3.6 

(ii) Solution by Genetic Algorithms: For this GA simulation, we use: Population: 60, Pc=0.6, 

Pm=0.1, max generations=200, binary tournament selection, objective: to match eigenvectors only 

(equation 3.26). The chromosomal representation as shown in figure 3.3. Results are given below: 

match error: f=0.0 137 

Achievable Eictenvectors 

+ 	1.0000j - 	1.0000j 0.0000 - 0.0000j 	0.0000 + 0.0000j 
-0.0033 	+ 	0.0050j -0.0033 	- 	0.0050j 1.0000 + 1.8775j 	1.0000 - 	1.8775j 
0.0109 	- 	0.0057j 0.0109 + 0.0057j -0.3838 + 1.0000j 	-0.3838 - 1.0000j 
0.9998 	- 0.9998 	+ 	0.0001j -0.0000 + 0.0000j 	-0.0000 	- 	0.0000j 

The feedback gain K is found as: 

0 .064508221 0 .268488544 -0.1116345G1 [-0.002057691 
K= 

0 .003573822 -0.403457113 -0.302988201 0.015210675_ 

Typical convergence rate of the genetic algorithm: 
Error convergence ji 

035 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

20 	40 	60 	80 	100 	120 	140 	160 	180 	200 

Generation 

Fig. 3.7 
Genetic Algorithm Error Convergence 



-2.5 	real(X 1 ) 
constraint 

0.5 	imag(k) 15 
Eqn.3.27 
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(iii) Solution by Conventional Methods: (see appendix for algorithm): Using Moore's method 

discussed in section 3.1.2: 

match error: fi  = 0.0183 

Achievable Eigenvectors 

-1.9995 + 1.0000j -1.9995 - 1.0000j -0.0000 + 0.0000j -0.0000 - 0.0000j 
-0.0033 + 0.0050j -0.0033 - 0.0050j 1.0000 + 1.8776j 1.0000 - 	1.8776j 
0.0109 - 0.0057j 0.0109 + 0.0057j - 0.3839 4. 1.0000j -0.3839 - 1.0000j 
0.9998 -  0.0001j 0.9998 +  0.0001j 0 + 0.0000j 0 - 0.0000j 

The feedback gain K is found: 

K- 
-0.002057621. 	0.064508233 	0.268488541 -0.111634503 

0.0035738M -0.403457114 -0.302988193 	0.0152106'5 

A comparison of the two methods is tabulated below: 

Method: flO MFLOPS: Time: 
Genetic Algorithms: 

Koore's Method: 

0.0137 

0.0183 

50 

0.01 

28 sec 

<1 sec 

Fig.3.8 
Comparing Genetic Algorithms with Conventional Partial Eigenstructure Assignment 

Whilst the genetic algorithm gives a slightly better match, the solution is almost identical to the 

conventional method. The GA however requires almost 50 MFLOPS of computational effort 

compared with only 0.01 using conventional (Moore's) method. This simulation illustrates that 

while the GA converges rapidly, its computationally inefficient when compared  with  direct ESA 

design methods. The usefulness of the GA however can be demonstrated in the  next  ESA design 

application (simulation 3.2) in which no direct design method exists. 

3.2.3 Simulation 3.2: Domain Constrained Elgenvalues: 

(i) Objective: This second simulation is a constrained optimization problem, slightly more 

difficult to solve than the first. In this simulation, the upper and lower allowable  range  of the first 

eigenvalue is given, thus for the roll mode: A,, we allow the following valid range of eigenvalues: 

The eigenvalues of the roll mode are allowed to be in the specified range as above, the Dutch roll 

mode eigenvalues are fixed. Match the eigenstructure as closely as possible to: 
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-2.5 .5 real( i ) 5-1.5 
0.5 5 imag(?4 ) 5 1.5 

  

 

=conjugate( 1 ) 

  

/Roll Mode: --7.  Dutch Roll Mode: 

Ai 4 -1.5 + 11.5 -1.6 - j1.5 

x1 + j1.0 X3 - j1.0 0.0 + 10.0 0.0 - 10.0 
0.0 + 10.0 0.0 - j0.0 1.0 • jx6 1.0 - 	jX6 
0.0 + 10.0 0.0 - j0.0 X5 • 11.0 x7 - j1.0 
1.0 + 	jX2 1.0 - 	jX4 0.0 + 10.0 0.0 - 10.0 

Fig.3.9 

Find the gain K such that the closed loop eigenvalues and eigenvectors are as close  to  those above, 

where x=don't care (can take any value). 

(ii) GA solution: This is a constrained (domain constraint) optimization problem which is solved 

using repair algorithms. Simulation results are given in the following pages.  The  chromosomal 

representation for this problem is shown below (Fig.3.10) again using floating point codification: 

n ImIX, X2 x3  I x, I x, I x6 I x7 I  xi  I x i I k Ix, I x, error I Fitness 

    

Fig. 3.10 
Chromosomal Representation of Partial Eigenstructure Assignment Problem: Simulation-3.2 

For this GA simulation, we use: Population: 60, Pc=0.6, Pm=0.1, maximum generations=200, 

binary tournament selection, objective: to match eigenvectors only (equation 3.26). 

All eigenvalues are complex numbers, and the GA search only applies to X I , the remaining 

eigenvalues are simply: A. 2  = X I , and X3 = -1.5 + j1.5, X.4 = -1.5 - j1.5 (fixed). Convergence is 

within 500 generations, this is illustrated in figure 3.11 below. The convergence  of  the eigenvalue 

X1 is also shown in figure 3.11. Convergence is initially very rapid for the first  50  generations. 

Similarity, convergence for the eigenvalue X I  is also initially rapid. The slow convergence is due to 

the fitness function being nearly flat near the optimum. 

match error: /1=0.0084 
Achievable Eigenvectors 

-1.3351 + 1.0000j -1.3351 - 1.0000j 0.0000 - 0.0000j 0.0000 + 0.00001 
0.0000 + 0.0049j 0.0000 - 0.0049j 1.0000 +  1.8776j 1.0000 -  1.8776j 
0.0024 - 0.0064j 0.0024 + 0.0064j -0.3839 + 1.00001 -0.3839 - 1.0000j 
0.9999 - 	0.3330j 0.9999 +  0.3330j -0.0000 - 0.0000j -0.0000 + 0.0000j 



Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.17 

The eigenvalues are given by: 
-1.5017 + 0.50001 	-1.5017 - 0.50001 	-1.5000 + 1.50001 	-1.5000 - 1.5000i 

The feedback gain K is found: 

K - 

	0.0645 	0.2685 	-0.0574 
= 

0.0046 	-0.4035 	-0.3030 	0.0165 

Typical convergence plots, including convergence of the eigenvalue 	are illustrated below: 

Eigenvector error fi Convergence 
0.5 

0.4 

0.3 

0.2 

0.1 

o o 

1 
0.5 

0 
-0.5 

-1 
-1.5 

-2 
-2 5 

100 
	

200 
	

300 
	

400 	500 
Generation 

Eigenvalue A.; Convergence: 

	

.7,....1,••••••••••■•4 	 

	 'maga ' )  	

zreal(X I) 

0 	100 	200 	300 	400 
	500 

Fig. 3.11 
Genetic Algorithm convergence (simulation 3.2) 

(iii) Conventional Solution: There is no direct solution using conventional methods, however we 

can still check the validity of our results by simply plotting the value offi for a whole range of Xi. 

i.e. given the range constraint: 

-2.5 	real(),) 	-1.51 
0.5 5_ imag(A,) 5 15 f 

The algorithm would simply be: 

constraint 

for a=-1.5 TO -2.5 
for b=0.5 TO 1.5 

= a + jb 
= conjugate(X 1 ) 
= solve by conventional eigenstructure assignment. 

end 
end 

Fig.3.12 
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This would result in a 3D surface plot of the value fl  for a whole range of Xi along the two 

horizontal x axes, the results are illustrated below in figure 3.13. From this plot, we can in fact see 

that the minimum value of fl  over the specified range of k given above occurs when A., 1  = -1.5 + 

0.5j. This is the same result which we obtained previously with genetic algorithms. Comparing 

results from simulations 3.1 and 3.2, in both instances the genetic algorithm  and  conventional 

method give identical results. Note that whilst the GA takes longer to converge,  it  can be used to 

solve more complex eigenstructure assignment constrained optimization  problems,  whereas the 

conventional ESA method is restricted to solving only specific problems. 

match error: 11 = 0.0117 

Achievable Eigenvectors 

-1.3332 + 1.0000j -1.3332 - 1.0000j -0.0000 + 0.0000j -0.0000 - 0.0000j 
0.0001 + 0.0049j 0.0001 - 0.0049j 1.0000 +  1.8776j 1.0000 -  1.8776j 
0.0024 - 0.0064j- 0.0024 + 0.0064j -0.3839 + 1.0000j -0.3839 - 1.0000j 
0.9999 -  0.3333j 0.9999 +  0.3333j 0 + 0.0000j 0 - 0.0000j 

The feedback gain K is found: 

K 

 = [

0.019592379 0.064508233 0.268488541 -0.057304768] 
0.004591785 -0.403457114 -0.302988199 0.016528473 

The match error fl  as a function of the eigenvalue A., :is plotted below in  figure  3.11: 

0.025 

8 

0.02, 

 

(t)  

8 
1 0015 

0.01 
15 

 

minimum fi 
over the allowed 
range of Xi 

  

-15 

imag(A.l ) 	05 -25 	real (A, 1 ) 

Fig. 3.13 
Solution by conventional methods 
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Figure 3.11 above illustrates how the matching error f i  is affected by the eigenvalue X i  as the real 

part of the eigenvalue spans the range - 2.5 < rea1(2,) —15, and the imaginary part spans the 

range: 0.5 	imag(2,) 1.5. The value of fl is calculated at each grid point on the surface using 

conventional eigenstructure assignment algorithm used previously in simulation 3.1. 

Method: fl() MFLOPS: Time: 
Genetic Algorithms: 

Moore's Method: 

0.0084 

0.0117 

120 

7 

60 sec 

4 sec 

Fig.3.14 
Comparing Genetic Algorithms with Conventional Partial Eigenstructure Assignment 

The computational effort required by the GA has increased from 50 to 120 MFP (factor of 2.5). 

However the computational effort by conventional methods requiring a search over the full range 

of lambda A. 1  has increased from 0.01 to 7 MFP, representing an increase of about 700. This 

simulation illustrates how the incorporation of constraints on the GA has only a small effect on the 

computational effort. 

In these simulations, we have assumed the existence of full state feedback. In practice only 

measurement feedback may be available. In this case, a dynamic compensator is necessary. This 

is the topic of our next discussion. 

3.3 Eigenstructure Assignment for Dynamic Compensators: 

3.3.1 Theory: 

When full state feedback is not available, then a dynamic compensator may be used to provide the 

additional design freedom. These simulations illustrate the design of dynamic compensators using 

genetic algorithms with only output feedback. The order of the compensator is generally chosen to 

be p=n-r where n=number of states of system, and t=number of measured outputs. In these next 

set of simulations, genetic algorithms are applied to the design of dynamic output feedback 

compensators, the results are compared with conventional design methods. This simulation is 

divided into two parts: 
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(i) The first part, eigenstructure assignment is used with only a fixed compensator, and output 

feedback to illustrate the limitations present. 

(ii) The second part, eigenstructure assignment is used with dynamic output feedback control to 

increase the number of degrees of freedom, and to overcome the limitations present in (i) 

above. We compare results obtained with both genetic algorithms and conventional methods. 

The theory of dynamic output feedback control [2, 38] is outlined next. Given the linear time 

invariant system: 

1 i= A.x+ B.0 
y=C.x 

Eqn.3.28 

Where x E 9r , is the state vector, and u E 9r1  is the control vector, y E 9i r  is the measurement 

vector, it is assumed that n> r, using a dynamic compensator of the form: 

E. y 1 
u= F.z+G.y f 

Eqn.3.29 

The order p of the dynamic compensator z E 9V should be 0 p n — r, generally p=n - r. This 

is illustrated in figure 3.15 below. When p=0, this results in a static feedback gain matrix (section 

3.2). The two equations can be combined into a composite system which can be solved in a similar 

fashion to the previous eigenstructure simulations. The composite system is given by: (see 

reference [2]) equation 3.30: 

= 	00][1 +  [Bo  0][ui  
u2 ] 

] r y, i ic 0 x 
Ly2i'Lo / z 

I u, 1 r G F yi  
Lu2 i = LE D

i 
y2  

Eqn.3.30 



COMPENSATOR 
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Which may be written more compactly in matrix form similar to the expression used in 

eigenstructure assignment for static compensators: 

y=C•..7 	 Eqn.3.3 1 

u = T. y 

This can now be solved in a similar manner as in section 3.2 above. The composite matrices for 

equation 3.31 are: 

x _ [x] 
z 

[ 
u 

_ 
y  . [ y i  I 	a= 	l  

Y2 	U, _ 
. i= 

0 
[A oi 

0 

	

= [B 	o 

	

0 	/ 
c,  = [

0  

C 01 
I 

	

i,  = [G 	F 

	

LE 	D- 
- 

In particular, note that: y i =y and u i =u. Solving for the feedback gain matrix T, the individual 

submatrices: G,F,E,D may be extracted. The plant and controller systems are illustrated in figure 

3.15 below: 

Fig. 3.15 
Eigenstructure assignment using dynamic output feedback 

The eigenstructure may be specified as before in the previous simulation with the addition of one 

eigenvalue (for the compensator: z) and one additional eigenvector entry for each,  the  don't care 

entries are shown in red below: 
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Roll Mode Dutch Roll Mode Compensator 

-2.0 + 11.0 -2.0 - J1.0 
ekr  

x
x
x
x

x 
-1.5 + J1.5 -1.5 - j1.5 

x  + J1.0 x - j1.0 0.0 + j0.0 0.0 - j0.0 
0.0 + J0.0 0.0 - j0.0 1.0 + 	jx 1.0 - 	3x 
0.0 + j0.0 0.0 - J0.0 x + j1.0 x - j1.0 
1.0 + 	jx 1.0 - 	jx 0.0 + j0.0 0.0 - j0.0 
1.0 + 	JO 1.0 - 	JO 1.0 + 	JO 1.0 - 	JO 

* 

additional eigenvector 
components due to 
compensator dynamics 

Fig. 3.16 
Eigenstructure assignment using dynamic output feedback 

Note the choice of additional eigenvector entry for the roll mode and Dutch roll mode (last row), 

they must be carefully selected to avoid the modal matrix from becoming numerically singular. The 

eigenstructure used above is taken from reference [2] and is commonly used for ESA in lateral 

dynamics for aircraft control studies. 

As in the previous simulations, we note that the solution to the ESA problem with dynamic 

feedback requires the solution to: 

+ T3FC).v i 	 Eqn.3.32 

which can be rearranged thus: 

vi =01 .1-Tly'R.T.C%vi  

if we define the g vectors as: 

g,=F v, 

Then the eigenvectors must belong to the subspace spanned by: 

Eqn.3.33 

Eqn.3.34 

- 	 Eqn.3.35 

Solving for all the g vectors gives the matrix G=[g i ...g,], and the achievable eigenvector matrix 

V= [v] ... v„], then the dynamic compensator can be computed from: 

Eqn.3.36 

In which the individual submatrices may then be extracted, i.e. 
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= FG Fl 
LE Di Eqn.3.37 

Simulation results are provided in the following pages and compared with conventional solutions, 

using the previous values of the A and B matrices, with the addition of an output matrix C: 

	

A . -3.9330 	0.1260 -9.9900 	0 

	

0.0020 -0.2350 	5.6700 	0 
0.0262 -0.9997 -0.1960 0.0345 

	

1.0000 	 0 	 0 	0 

B = -45.8300 -7.6400 
-0.9210 -6.5100 

	

0.0071 	 0 

	

0 	 0 

C=1 0 0 0 
0100  
0010 

A quick note about matrix dimensions used in this simulation: 
A  E  9I4x4 B  9I4x2 	E  913x4 D  E  911x1 E 9 1x3 F  E  912x1 G  E  9t2x3 Eqn.3.38 

and for the composite system: 

A E 9I5x5 	E 915x3  r E 91 4)(5 	E 9t3x4  

3.3.2 Simulation 3.3: Static Output Feedback: 

Eqn.3.39 

The first simulation illustrates the problems associated with eigenstructure assignability when only 

output feedback is available using only a static feedback compensator, i.e. constant feedback gain 

matrix K. This method can be used for later comparison with dynamic compensation. Thus given 

the system: 

i= A.x+ B.0 
y = C. x 

Eqn.3.40 

Where x E 91 4  , is the state vector, and u E 91 m  is the control vector, y E 9i r  is the measurement 

vector, find the feedback gain matrix K: u=K.y such that the eigenstructure matches that specified 

in simulation-3.1. Eigenstructure assignability is now severely restricted due to the presence of the 

output matrix C. Conventional methods can be used to find the output matrix K, results are 

provided on the following pages (see simulation 3.4). See fig.3.17 below: 
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Fig. 3.17 
Eigenstructure assignment using a static output feedback compensator 

It can be shown that the maximum number of assignable eigenvalues is r, where  y  E 9, in this 

case 	assuming that the pair (A,B) is controllable, see [39]. In general however, it is assumed 

that: m < r < n. 

(i) Assignability Conditions: With output feedback, the following restrictions apply: 

(i). a maximum of max(r,m) of closed loop eigenvalues may be assigned. 

(ii). a maximum of max(r,m) eigenvectors can be partially assigned with min(r,m) entries in 

each vector arbitrarily chosen. 

For our system, n=4, m=3, r=2, giving a total of 3 maximum allowable eigenvalues which may be 

arbitrarily, and 3 eigenvectors, with only 2 entries in each eigenvector arbitrarily chosen. 

Simulation results are given on the following page. Results indicate that using output feedback 

fails to allocate all specified eigenvalues, and only the second conjugate pair is assigned. This is a 

limitation of output feedback with constant feedback gain K. A summary of the simulation results 

is given below. 

(ii) Objective: Find the gain K such that the closed loop eigenvalues and eigenvectors are as close 

to those above, where x=don't care (can take any value) using only output measurement feedback 

and static compensator K: 

Roll Mode: Dutch Roll Mode: 

-2.0 + j1.0 -2.0 - 11.0 -1.5 + 11.5 -1.5 - j1.5 

x1 + j1.0 x3 - j1.0 0.0 + j0.0 0.0 - j0.0 
0.0 + j0.0 0.0 - j0.0 1.0 + 	jx6 1.0 - 	jx8 
0.0 + j0.0 0.0 - j0.0 x5 + j1.0 x7 - j1.0 
1.0 + 	jx2 1.0 - 	jx4 0.0 + j0.0 0.0 - j0.0 

Fig.3.18 
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Eigenstructure by Conventional Method: The solution to the above problem using only 

static output feedback gives the following achievable eigenstructure : 

Achievable eigenvalues: 

-2.0000 	0.0000 	-1.5000 + j1.5000 	-1.5000 - j1.5000 

Achievable eigenvectors: 

0.8944 -0.0000 0.0000 - 0.0000i 0.0000 + 0.0000i 
-0.0038 -0.0302 1.0000 +  1.8776i 1.0000 - 	1.87761 
-0.0064 -0.0215 -0.3839  + 1.00001 -0.3839 	- 1.0000i 
-0.4472 -0.9993 0.0001 + 0.00011 0.0001 - 0.0001i 

Note that whilst the algorithm is able to match the last two of the eigenvalues and eigenvectors at 

-1.5+/-1.5j perfectly, it fails at assigning the first two. If however the first two eigenvalues are 

purely real, then the algorithm would allocate one of the two eigenvalues in addition to the second 

pair of complex conjugate. 

We can clearly see the limitations of using output feedback when eigenstructure assignment is used 

as a design tool. Consequently dynamic feedback is required. This is the topic of discussion in the 

next two simulations which follow. Genetic algorithms are used to design the dynamic 

compensators. This will be compared to conventional eigenstructure assignment methods. 

3.3.3 Simulation 3.4: Dynamic Control Output Feedback: 

Looking at the previous results, output feedback presents serious limitations when all eigenvalues 

must be assigned. These problems may be overcomed by using dynamic feedback or dynamic 

control. In this simulation, eigenstructure assignment for dynamic compensators is implemented 

using genetic algorithms, this is then compared with results obtained using conventional methods. 

Using dynamic feedback control, the composite equations may be written in the form: 

= 	+ T3. t7 

= Eqn.3.4 1 

  

This is in the same form as previously required for eigenstructure assignment. Where the 

composite variables are: 
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,7=rx] 	 01 	0] 	01 	[G F] 

Lz] 
5 = [] 
	[142] 	L0 0]  Lo i] 	L0 i] 

1(7 _ - E  D 
Eqn.3.42 

- We note that the C matrix has now rank( C )=4, in other words, we can use the augmented system 

to assign all four eigenvalues and eigenvectors. The composite system matrices now become: 

	

A  = -3.9330 	0.1260 	-9.9900 	0 

	

0.0020 -0.2350 	5.6700 	0 
0.0262 -0.9997 -0.1960 0.0345 

	

1.0000 	0 	0 	0 

-45.8300 -7.6400 
-0.9210 -6.5100 

0.0071 

1 

c = 1 0 0 0 
0100  
0010 

1 0000 

Since only up to four eigenvalues may be assigned, then the compensator A, 5  eigenvalue cannot be 

arbitrarily assigned, however it must be stable. For our system, n=5, m=4, r=3, giving a total of 4 

maximum allowable eigenvalues which may be placed, and 4 eigenvectors, with only 3 entries in 

each eigenvector arbitrarily chosen. Simulation results are given on the following page. 

Compensator eigenvector specification is not required. 

(i) Objectives: Find the dynamic compensator gain K such that the closed loop eigenvalues and 

eigenvectors are as close to those above, where x=don't care (can take any value) using output 

feedback: 

Roll Mode: Dutch Roll Mode: Compensator 

-2.0 + 	j1.0 -2.0 - 	j1.0 -1.5 +  j1.5 -1.5 - j1.5 

..4  
x
x
x
x
x
 

xi + 	j1.0 - 	j1.0 0.0 + j0.0 0.0 - j0.0 
0.0 + 	j0.0 0.0 - 	j0.0 1.0 + 	jx6 1.0 -  3x.8 

0.0 + j0.0 0.0 - 	j0.0 x + j1.0 - j1.0 
1.0 + 	3x2 1.0 - 	jX4 0.0 4- 	j0.0 0.0 - j0.0 
1.0 4. 	j0 1.0 - 	JO 1.0 + 	j0 1.0 - 	JO 

Fig.3.20 

(ii) Simulation Results using Conventional Methods: 

Achievable Eigenvalues: 

-2.0 + j1.0 -2.0 - j1.0 	-1.5 + j1.5 -1.5 - j1.5 	-0.0378 
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Achievable Eigenvectors: 
-1.9995 	+ 	1.0000i 	-1.9995 - 	1.0000i 0.0000 + 0.00001 0.0000 - 	0.0000i 0.0377 
-0.0033 + 	0.00501 -0.0033 - 	0.0050i 1.0000 + 	1.8776i 1.0000 - 	1.8776i -0.0301 
0.0109 - 	0.00571 0.0109 + 	0.0057i -0.3839 + 	1.0000i -0.3839 - 	1.0000i -0.0213 
0.9998 - 	0.0001i 0.9998 + 	0.00011 -0.0000 - 	0.0000i -0.0000 + 0.0000i -0.9983 
1.0000 1.0000 1.0000 1.0000 -0.0243 

Dynamic Compensator Matrices: G, F, E, D can be found from the terms of  the  K matrix: 

K=G 

Results from the simulation gives: 

K 	0.003074418 -0.129655514 -0.146167328 
- 0.003712355 	0.412333707 	0.286321415 

0.112103407 
-0.015274564 

1.017115088 -0.539781790 	2.513499919 0.004653040 

(ii) Simulation Results using GA: 

The simulation is repeated using genetic algorithms, the chromosomal structure is illustrated 

below, note that the dynamic compensator is not included as part of the search. Thus any 

compensator eigenvalue/eigenvector is acceptable as long as A.5 < 0. Once a solution is 

obtained, the compensator eigenvalue and eigenvector is simply obtained by using the eig() 

matlab functon thus: eig(A-  + . FTC-  ) of the closed loop system. 

Xi x2 	 x, x„ error Fitness 

Fig.3.2 1 

AzhievableEigenvalues: 

-2.0000 + J1.0000 	-2.0000 - j1.0000 -1.5000 + j1.5000 -1.5000 - 	j1.5000 -0.0378 

Achievable Eigenvectors: 
-1.9995 	+ 1.00001 	-1.9995 - 	1.00001 0.0000 + 0.00001 0.0000 - 	0.00001 0.0377 
-0.0033 	+ 	0.00501 	-0.0033 - 	0.00501 1.0000 + 1.87761 1.0000 - 	1.8776i -0.0301 
0.0109 	- 	0.00571 	0.0109 + 0.00571 -0.3839 + 1.00001 -0.3839 - 	1.00001 -0.0213 
0.9998 	- 	0.00011 	0.9998 + 0.0001i -0.0000 - 	0.00001 -0.0000 + 	0.00001 -0.9983 
1.0000 	 1.0000 1.0000 1.0000 -0.0243 

Dynamic Compensator Matrices: G, F, E, D can be found from the terms of the  K  matrix: 

K=G 

Results from the simulation gives: 
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K = 	0.003074193 -0.129655002 -0.146168284 	0.112102533 
-0.003712325 	0.412333637 	0.286321545 -0.015274445 

1.017114982 -0.539776031 	2.513489097 	0.004643255 

Convergence properties of the genetic algorithm are illustrated below Fig.3.22, the genetic 

algorithm converges very rapidly, within the first 40 generations. We can also see that all 

eigenvalues and eigenvectors are assigned as required. 

Eigenvector Error Convergence f. 

0
0 	 20 	40 	60 	80 	100 

Generation 
Fig. 3.22 

Convergence properties of genetic algorithm: 

(iii) Notes on Simulation: 

1. This simulation is essentially identical to the first (simulation 3.1), with the exception that we 

use the composite system matrices instead of the original plant matrices. When the feedback 

gain matrix K is found, the dynamic compensator terms: D,E,F,G, can be extracted using 

equation 3.42. 

2. Note that with dynamic feedback, all four eigenvalues (roll mode, Dutch roll mode) can be 

assigned arbitrarily. Note also that the compensator eigenvalue cannot be assigned, however 

any stable compensator eigenvalue is allowed. Using conventional ESA methods, the stability 

of the compensator eigenvalue cannot be guaranteed and difficult to impose constraints to 

ensure its stable. With genetic algorithms however, the stability of the compensator eigenvalue 

can be guaranteed by using constrained optimization such as penalty functions or repair 

algorithms. 

3. Both the conventional method and genetic algorithm method produce identical results. The 

convergence of the GA is shown in figure 3.16. 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 



minimize: 

fi
\if  

= minI(Si •g i — vo 
i=1 

f2 = minirace(P 2  )1 

constraints: 

hi 	+ K — 	= 0 
i=1 

h2= 	.P+P.Ac -FQ =0 
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3.4 Robust Eigenstructure Assignment: 

3.4.1 Theory: 

This last simulation involves solving the robust eigenstructure assignment problem defined earlier 

in section 3.1.4. Full state feedback using a static compensator is assumed. There is no 

conventional design method presently available to solve this type of eigenstructure assignment 

problem. Our results can be verified by comparing three methods: (i) Conventional Genetic 

Algorithms (GA), (ii) Genetic Algorithms and Simulated Annealing (GA+SA), and (iii) Genetic 

Algorithms and Greedy Search (GA+GS). Convergence rates and computational effort are 

compared. From section 3.1.4, the robust eigenstructure assignment problem is defined as a 

multiobjective optimization problem, in which the functions to minimize f l  and 12  and constraints 

h 1 =0 and h2=0 are given by: 

Fig.3.23 

A simpler problem would be to minimize a composite cost functional defined as a weighted sum of 

the two cost functionalsf, and f2  and thus: 

f(x) = fgx) + 13,f2(x) Eqn.3.43 

where 13 is varied from=0.1, 1, 10 to show the effects of adding more emphasis on one function 

against the other function. The second constraint h2=0 is dealt with by defining the Q matrix 

(positive definite symmetric) as the identity matrix, and solving this constraint by solving the 

lyapunov function directly. The matlab (yap() function can be used to solve for P. Note that the 

solution P must also be a positive definite symmetric matrix. 
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Since h 1  and h2  both represent matrices, we can compute the matrix norm or trace for each 

constraint. The matrix: Ac=(A+B.K) is the closed loop gain. This problem is effectively identical 

to section 3.2, with the addition of two constraints and a composite functional to minimize. 

3.4.2 Simulation 3.5: Hybrid Genetic Algorithms: 

(i) Objective: The required eigenstructure is defined as follows Fig.3.24 with the roll mode 

identical to the originally defined eigenstructure in section 3.2. However, the Dutch roll mode is 

replaced by two decoupled modes: the first has a pole at —1, the second pole is at ks and is 

unspecified. Further, we constrain the unspecified pole to be within the range: —2.5 <  A.4 < -0.5. 

Roll Mode: Decoupled Modes 

-2.0 + j1.0 -2.0 - j1.0 -1 X41 

xi + j1.0 x3 — j1.0 x5 0 
0.0 + j0.0 0.0 — j0.0 X6 1 
0.0 4. 	j0.0 0.0 — j0.0 1 x7 
1.0 + 	jx2 1.0 — 	jx4 0 x8 

Fig. 3.24 

The values of A,B matrices remain the same. The search is over the parameters: { X1,  X2, X5, X6, 

X7, X8, A4 with X3=X 1  and X4=X2 . 

(ii) Genetic algoritluns: the chromosomal representation for this problem is illustrated in figure 

3.25 below, again floating point codification is used: 

XI X2 x3 1- x4 1x, X6 

 

1 I f2 1 hi 

 

Fitness 

        

Fig. 3.25 
Chromosomal Representation of Partial Eigenstructure Assignment Problem: Simulation-4 

The fitness is the inverse of the composite cost functional Eqn.3.43. Additionally, a penalty is 

introduced such that if A.4 is not within the desired range : —2.5 < A,4 < -0.5 then the fitness is set to 

zero. Similarly, if constraints h 1*0 or h2*0 then the fitness is also set to zero. The solution to the 

lyapunov equation (Eqn.3.19) must also exist, and the P matrix must be positive symmetric, if a 

solution does not exist then the fitness is set to zero. A chromosome with zero fitness is said to be 

infeasible and produces zero offspring. Simulation results using: Population=30, crossover 

probability Pc16, mutation probability Pm3.02, Generations=200 and binary tournament 

selection are tabulated below in Fig.3.26 for values of beta: 0.1, 1, 10: 
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gen: 	Xl: 	12: 	15: 	16: 	17: 	XII: X4: /10: PO: Time: MFP: 

200 	-2.00 	-0.00 	0.00 	0.80 	0.43 	0.00 -2.50 0.0004 2.3846 0:31 75 

Closed loop eigeurvalnes (A-13.1i): -2.0000 + 1.0000i 
-2.0000 - 1.0000i 

0.1 -1.0000 
-2.5000 

Feedback Compemmator gain X: 	-0.0018 	0.0776 0.3235 -0.1117 
0.0021 	-0.4821 -0.6334 0.0155 

200 	-2.00 	-0.00 	0.01 	0.80 	0.43 	0.00 -2.50 0.0004 2.3844 0:35 75 

Closed loop eigenvalues (M-B.X): 	-2.0000 + 1.0000i 
1 -2.0000 - 1.0000i 

-1.0000 
-2.5000 

' 

Feedback Compensator gain X: 	-0.0018 	0.0778 0.3232 -0.1117 
0.0021 	-0.4821 -0.6334 0.0155 

200 	-2.00 	-0.00 	0.04 	0.80 	0.44 	0.00 -2.50 0.0012 2.3842 0:34 76 

Closed loop eigenvalues (M-B.X): 	-2.0000 • 1.00001 
-2.0000 - 1.0000i 10 -1.0000 
-2.5000 

Feedback Compensator gain X: 	-0.0018 	0.0782 0.3222 -0.1117 
0.0021 	-0.4821 -0.6333 0.0155 

Fig. 3.26 
Simulation results using conventional genetic algorithms 

In all instances, the GA converges within 200 generations, and the solution is independent of the 

value of beta. The closed loop eigenvalues of (A-B.K) can be verified using Matlab's eig0 

function. In all cases, the unspecified pole A.4 is at -2.5. 

GA+Simulated Annealing: The search vector used is identical to genetic algorithms without 

the function and fitness entries, this is illustrated below: 

XI xdx3 1x4 ixdx6 I xdx8 ix, 
Fg. 3.27 

Chromosomal Representation of Partial Eigenstructure Assignment Problem: Simulation-4 

The temperature annealing schedule is given by: T(k+1)=a.T(k) where alpha is given by: 

10(1/Nlog(Tf/To)) 	 FAin.3.44 

To=initial temperature normalized to 1.0, and Tf is the final temperature 0.001, N is the number of 

iterations set to 200. The value of alpha is generally = 0.8-0.95. 
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Simulation results using three values of beta: 0.1, 1, 10 are summarized below, the SA algorithm 

converges within 200 iterations: 

gen: 	Xl: 	X2: 	X5: 	86: 	X7: 	XII: X4: Time: WY.: 

200 	-2.00 	-0.00 	-0.00 	0.80 	0.44 	-0.00 -2.50 00:17 51 

Closed loop eigenvalues (a-B.X): -2.0000 + 1.00001 
-2.0000 - 1.00001 

0.1 -1.0000 
-2.5000 

Feedback Compensator gain X: 	-0.0018 	0.0776 0.3235 -0.1117 
0.0021 	-0.4821 -0.6334 0.0155 

200 	-1.99 	-0.00 	0.02 	0.80 	0.44 	-0.00 -2.50 00:17 51 

Closed loop eigenvalues (A-B.X): 	-2.0000 + 1.0000i 

1 -2.0000 - 1.00001 
-1.0000 
-2.5000 

Feedback Compensator gain X: 	-0.0018 	0.0778 0.3231 -0.1117 
0.0021 	-0.4821 -0.6334 0.0155 

200 	-1.99 	0.00 	0.04 	0.80 	0.44 	0.01 -2.50 00:17 51 

Closed loop eigenvalues (h-B.R): 	-2.0000 + 1.0000i 
-2.0000 - 1.0000i 10 -1.0000 
-2.5000 

Feedback Compensator gain X: 	-0.0018 	0.0782 0.3223 -0.1117 
0.0021 	-0.4821 -0.6333 0.0155 

Fig. 3.28 
Simulation results using Hybrid genetic algorithms + simulated annealing 

The hybrid GA+SA converges faster than conventional genetic algorithms, and yielding an 

identical compensator and eigenvalue A.,4 is at -2.5. 

(iii) GA+Greedy Search : The search vector used is identical to simulated annealing, results for 

greedy search are summarized below in figure 3.29. Results show that the hybrid GA+greedy 

search converge more rapidly than either conventional genetic algorithms or hybrid GA+simulated 

annealing. Computation time is approximately 7 seconds for the hybrid GA+greedy search, 17 

seconds for the hybrid GA+simulated annealing, and 35 seconds for the conventional genetic 

algorithm. 

A true indication of convergence rates for the three methods can be obtained by plotting the error 

(inverse of equation 3.43) as a function of computation time. This is illustrated in figure 3.30 on 

the following page. Results obtained using hybrid GA + greedy search: 



Convergence Rates of the Three GA Methods: 
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pen: 	Xl: 	X2: 	X5: 	X6: 	X7: 	X8: -44: Time: KM, : 

500 	-2.00 	0.00 	0.00 	0.80 	0.43 	-0.00 -2.50 7 19 

Closed loop eigenvalues (A-B.K): -2.0000 • 1.0000i 
-2.0000 - 	1.0000i 

0.1 -1.0000 
-2.5000 

Feedback Compensator gain K: 	-0.0018 	0.0776 0.3235 -0.1117 
0.0021 	-0.4821 -0.6334 0.0155 

500 	-2.00 	0.00 	0.01 	0.79 	0.43 	-0.00 -2.50 7 19 

Closed loop eigenvalues 	(A-B.K): 	-2.0000 + 1.0000i 

1 -2.0000 - 	1.0000i 
-1.0000 
-2.5000 

Feedback Compensator gain K: 	-0.0018 	0.0779 0.3230 -0.1117 
0.0021 	-0.4821 -0.6334 0.0155 

500 	-2.02 	0.00 	0.02 	0.80 	0.41 	0.00 -2.50 7 18 

Closed loop eigenvalues 	(A-B.K): 	-2.0000 + 1.00001 
-2.0000 - 	1.00001 10 -1.0000 
-2.5000 

Feedback Compensator gain K: 	-0.0018 	0.0782 0.3223 -0.1117 
0.0021 	-0.4821 -0.6333 0.0155 

Fig. 3.29 
Simulation results using hybrid genetic algorithms + greedy search 

Figure 3.30 below is a typical convergence plot comparing the three methods. Conventional GA is 

plotted in red, hybrid GA+SA is plotted in green and hybrid GA+GS is plotted in blue. All 

methods converge to the same value, however the hybrid methods converge more rapidally when 

compared with conventional genetic algorithms. In particular, the hybrid GA+greedy search has 

superior convergence compared to the other two methods. All methods yield identical 

compensators. 

5 
	

10 	15 	20 	25 	30 
Computation Time (MFP) 

Fig. 3.30 
Simulation results comparing convergence rates for the three GA methods 
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3.4 Chapter Summary and Conclusion: 
From simulation results, clearly genetic algorithms can be used to synthesize controllers both static 

and dynamic for a variety of different eigenstructure assignment applications. Convergence is 

generally very rapid. Genetic algorithms have fewer restrictions and can directly deal with 

constraints. The simulations have been kept relatively simple for the purpose of verification with 

conventional partial eigenstructure assignment methods. The robust eigenstructure assignment 

problem can also be directly solved with conventional and hybrid genetic algorithms. 

Simulation results show that hybrid genetic algorithms converge more rapidly than conventional 

genetic algorithms, in particular the greedy search converges by a factor of four compared with 

conventional GA. 

(i) Additional Notes: 

1. When dealing with a control distribution matrix B which has a very small minimum singular 

value, then the application of pseudocontrol may be required. In our simulations, the singular 

values of B are: [46.5053, 6.2642], this is not an issue in the design. 

2. Most of the examples chosen for the simulations have been relatively simple for the purpose of 

being able to verify the results with conventional eigenstructure assignment methods. 

With genetic algorithms, there are fewer restrictions and thus a wider range of problems can be 

solved, including nonlinear and reconfigurable control. 

3. Doing a search on the X ;  (don't care) components results in a faster convergence compared to 

searching the gi  vectors directly. 

(ii) Future Work: 

1. The robust eigenstructure problem can be formulated using lagrange multiplier (calculus based) 

methods. However this method has local rather than global search characteristics. Genetic 

algorithms can be used to solve the robust eigenstructure assignment problem by combining a 

GA start to find the global minimum, then using lagrange multipliers to quickly find the 

minimum. This method requires the calculation of gradients. It also requires the calculation of 

additional auxiliary variables: i.e. the lagrange multiplier matrix. 
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2. Other conventional methods are available for solving robust eigenstructure assignment 

problems in which the performance indices are given in terms of sensitivity and complementary 

sensitivity functions [16], [19]. Eigenstructure for gain suppression in which selected entries in 

the output feedback gain matrix are removed [4]. Robust eigenstructure assignment for 

systems dealing with state space uncertainty [21]. Modeling errors and uncertainty can be 

included as part of the GA optimization search. 

3. Eigenstructure assignment using radial basis function networks as a feedback control for 

nonlinear systems. Training using conventional and genetic algorithms. 

4. Areas of reconfigurable control have been investigated [18] in which the objective is to 

implement a compensator that results in a closed loop eigenstructure invariant under plant 

changes (A,B matrices). Genetic algorithms can be potentially used for such off-line 

compensator design. 
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4.1 Model Reference Adaptive Control: 

4.1.1 Introduction 

The objective of this chapter is to apply hybrid genetic algorithms optimization to the 

implementation of model reference adaptive control systems (MRAC). Results from conventional 

MRAC methods (i.e. MIT-gradient rule, and Lyapunov stability theory) are compared with genetic 

algorithms. In this chapter, we investigate the following two applications: 

(i) Model reference adaptive control applied to simple linear Single Input Single Output (SISO) 

systems. Simulation results compare: MIT-rule, Lyapunov stability methods, and hybrid 

genetic algorithms. 

(ii) Model reference adaptive control extended to more complex linear Multi Input Multi Output 

(MIMO) second order systems. Simulation using the lateral aircraft dynamics is used. 

Again, we compare: MIT-rule, Lyapunov methods, and hybrid genetic algorithms. 

A brief introduction to MRAC is outlined below. 

Model Reference Adaptive Control (MRAC) theory is well established, originally developed to deal 

with aircraft adaptive control in a changing environment and changing operating conditions. 

Unfortunately, early applications in the 1950's failed to stimulate interest due to lack of hardware 

and nonexistent stability theory [2]. Renewed interest in adaptive control emerged in the 1960's 

following the development of state space techniques and Lyapunov based stability theory were 

introduced. The availability of rudimentary computer hardware made physical realizability 

possible. 

Presently, theory on MRAC control has matured, providing a systematic procedure to control 

linear systems with partially known or changing parameters. Currently, MRAC has been extended 

to include variables structure control with only input-output measurements [5, 6], nonlinear 

systems [1, 8], and adaptive sliding mode [9], and fuzzy logic control [12]. 

A typical MRAC system is illustrated below in figure 4.1. The goal of MRAC is to modify the 

controller (parameters AO such that the closed loop input/output response of the plant and 

controller is the same as the reference model. Thus the error between the plant and model outputs 

must be made to approach zero asymptotically. 
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Fig.4.1 
Typical (Direct) MRAC Scheme Configuration 

From figure 4.1, notice the two loops: the regular feedback control loop and the parameter 

adjustment loop. The dynamics of this closed loop system combined with the parameter 

adjustment law actually constitute a nonlinear system. Additionally, the feedback controller 

C(s,0,) must be designed such that all signals are bounded. The problem is generally simplified by 

defining a fixed controller structure. The controller incorporates some adjustable parameters O c, 

these are modified by some adaptive rule such that global asymptotic stability of the error equation 

e(t) is guaranteed. Thus the objective is to determine the adaptive law which is a function of the 

error e(t).y(t)-y„,(t), whilst ensuring stability, thus: 

kw= adaption_law(e(t),r(t)): such that: e(t) 0 asymptotically 

Almost all literature on MRAC control involves specifying the controller structure and the manner 

by which the controller parameters are to be adjusted (adaptive law). The two commonly used 

parameter adjustment methods are: (i) gradient based (or MIT rule), sometimes commonly referred 

to as the sensitivity function, and (ii) Lyapunov stability methods. Both methods are described in 

detail in this chapter, with specific reference to state-space solutions. Other techniques such as 

small gain theorem and passivation theory have also been used in conjunction with nonlinear 

adaptive control. Note that the controller may be a simple PIO with adaptable gain { K, KJ, Ka) 

parameters [10], or a more complex neural network such as a radial basis function for nonlinear 

systems ] 1 1 ]. 

Model reference adaptive control systems fall under two main categories: (i) Direct MRAC and (ii) 

Indirect MRAC: 
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(i) Direct MRAC: Consists of only one step, the error e(t) and the input r(t), these feed into the 

adaptive rule block which is used to directly estimate the controller parameters O e  such that 

the error reduces to zero asymptotically. There is no system identification block. This is 

illustrated in figure 4.1. 

(ii) Indirect MRAC: There are two steps to indirect MRAC, the first is to estimate online the 

plant unknown (or changing parameters) Op from the error e(t) and the input r(t), this is also 

known as system identification. This information is then used to compute or adjust the 

controller parameters O c  using some relationship or function: ec=F(ep). This is illustrated in 

fig.4.2 below: 

Fig.4.2 
Indirect MRAC Scheme Configuration 

This second method is generally more involved, but has the added advantage of estimating some 

useful plant parameters, for instance payload mass of a robotic manipulator. Adaptive control 

schemes also fall under other categories of self tuning regulators (STR), self organizing control 

(SOC), gain scheduling (also known as open loop adaptive control), dual control, stochastic self 

tuning control, and embody concepts of system identification, real time parameter estimation, such 

as recursive least squares. 

Applications include: robotic manipulators [9], disk drive control, aircraft stability augmentation, 

aircraft reconfigurable control [4,7]. Industrial applications are also emerging, due to availability 

of software and hardware. The subject of adaptive control is extensive, as seen in [3], and this 

chapter will only attempt to deal with a small subset i.e.: direct MRAC. 
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4.2 Model Reference Adaptive Control: SISO Systems: 

For this first set of simulations, a simple SISO system to illustrate and compare hybrid genetic 

algorithms with conventional model reference adaptive control schemes. Three different methods 

are compared: 

(i) Generation of parameter update rules using Lyapunov stability theory, section 4.2.1. 

(ii) Generation of parameter update rules using the MIT-rule, section 4.2.2. 

(iii) Generation of parameter update rules using hybrid genetic algorithms, section 4.2.3 

A summary and discussion on relative performance and merit of each method is found at the end of 

this section. Most of the theory presented below is based on reference [11], with greater detail for 

simulation implementation purposes. Mathematical derivations are provided in each section. In all 

simulations, it is assumed that full state feedback is available. 

4.2.1 Simulation-4.1: Lyapunov Stability Method: 

(i) Theory: 

In this section, parameter update rules are derived for a simple SISO system using the Lyapunov 

stability method. The final configuration is illustrated in figure 4.3 below. Consider a simple 

SISO system in state variable form: 

-Plant: 
= a.x + b.0 	 Eqn.4.1 

in which the scalar coefficients a and b are time varying or unknown, a feedback controller is 

sought with the general structure: 

-Controller: 
u = 	— g.x 	 Eqn.4.2 

where the controller parameters to be solved for are defined by the vector: 0c=fd,g). Substituting 

equation 4.2 into 4.1 gives the following closed loop system: 

-Closed loop system: 

= (a — b. g).x + b.d.u, 	 Eqn.4.3 

The above closed loop system is required to follow the reference model given by the expression: 

-Reference Model: 

Xm  = am .x„,+ 	tic 	 Eqn.4.4 
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Comparing equation 4.3 with 4.4, the models are perfectly matched when the controller coefficients 

are the same as the model coefficients: 

g° = 	— am ) and d° 	 Eqn.4.5 

Perfect model following occurs when the coefficients in equation 4.3 are: g=g° and d=d). 

Obviously, we cannot simply substitute equations 4.5 into the controller 4.2 because the plant 

coefficients a and b are unknown or time varying. The error (time derivative) equation between the 

closed loop plant and the reference model is: 

e = — 	 Eqn.4.6 

Substituting equations 4.3 and 4.4 into equation 4.6, we get: 

e = ((a — b.g) — am ).x +(b.d — 	 + a„,.e 	 Eqn.4.7 

Substituting the equations for perfect model following equation 4.5 into equation 4.7 , we get a 

simplified form: 

e=w,.(g— g°) + 2 (d — d°) + a,,,.e 	 Eqn.4.8 

where the terms are: v i  = —b.x , and: v2  = bat. Note that this equation requires that the 

coefficient b is known. As we will see later, the coefficient b can simply be replaced by bm  under 

some mild conditions. To get the adaptive rules for g and d, define a Lyapunov function of the 

form: 

1 	1 	 1 
V (e, g,d)._rer . p.e + _ (g  _ g o )T (g  _ g o )+ _ (d  _ d o ) 7. (d  _ do) 	Eqn.4.9 

2 	2 	 2 

The Lyapunov function has been written in vector/matrix form for generalization to MIMO 

systems. The two conditions required to be satisfied by a Lyapunov function are: V>0 for all 

values of e,g,d; which is clearly satisfied by equation 4.9, and V=0 when: e=0, g=t, d=d°. The 

matrix P must be positive symmetric, and the coefficient y can be used to control the parameter 

update rate. Differentiating equation 4.9 with respect to time, and noting that e(t),g(t),d(t) are also 

functions of time, we get: 

reT pe 	 (g gOST • ) g + (d — d°)T  
2 	2 

Eqn.4.10 

substituting the error function given by equation 4.8 into 4.10, and simplifying to a scalar system, 

the equation becomes: 
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V =y.P.a n,e2  + (g— g ° ).(T.P.e.lit l + g) +(d— d°).(y.P.e.tv 2 +il) 	Eqn.4. 1 1 

Clearly, the necessary conditions for convergence require that V < 0 , which can easily be satisfied 

by choosing: 

P.a„,=—q 

:g = -i-P.e.lifi 
il =-y.P.e.v2  

} 

Eqn.4.12 

where y>0, substituting N'1 = —b.x , and: N'2 = b. u, into equation 4.12 gives the adaptive 

equations thus: 

Eqn.4. 13 

Converting to discrete time for computer simulation, the values for g and d at each  time  step can be 

updated with the simple numerical integration rule: gn+r=g,,  + AT.dg/dt,  and:  444=4 + 

AT.dd/dt. Note also that whilst the update equation is independent of the coefficient a, it depends 

on b. The general approach is to replace b by b.. This approach is valid as long  as  both b and bm  

have the same sign, i.e.: sign(b)=sign(b.). If this condition is not satisfied,  then  the adaptive 

equation fail to converge (as seen later from simulations). The complete adaptive system is 

illustrated in figure 4.3 below: 

dd 
dt = -

y.P.e.b.u, and 
dg 

= y. P.e.b.x 
dt 

uc(t) 

Fig.4.3 
MRAC Scheme Using Lyapunov stability (SISO system) 
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(ii)Simulation Setup: 

Given the following plant and reference model coefficients: a=-1.13, b=2.0, am=-0.2, 13,=0.5. 

Plant: 	 = a. x + b. u 
Controller: 	 u = d.0 — g.x 

Closed Loop System: 	x = (a — b. g).x + 

Reference Model: 	X m  = a m .xm  + 

If the values of a and b are known in advance, then to compute the feedback gains: g=(a-a„,)/b = - 

0.4 and d=b„,/b = 0.25. However since a and b are not known or can change, we cannot calculate 

the d and g values, the following simulation shows convergence of the d and g values to their 

correct values of g=-0.4 and d=0.25. 

(iii)Simulation Results: 

Simulation results for the setup illustrated in figure 4.3 are given in simulation 4.1 below. The 

coefficients used in the simulation are: a=-1.0, b=2.0, am=-0.2, b„,=0.5. The controller gains 

should converge to: g=(a-a„,)/b = -0.4, and d=b„,/b = 0.25. Results are illustrated in figure 4.4 

below. 

1. The first (topmost) plot illustrates the convergence of the d parameter, this correctly 

converges to 0.25. 

2. The second plot illustrates the convergence of the g parameter, this also correctly converges 

to -0.4. 

3. The third graph illustrates the convergence of the (a-b.g)--)a„„ this also correctly converges 

to the value of a m, i.e.: -0.2. 

4. The fourth graph illustrates the convergence of the b.d—>b„„ this also correctly converges to 

the value of bm, ie: 0.5. 

The rate of convergence strongly depends upon the value of y. Table 4.1 below summarizes the 

results obtained after 3000 iterations with different values of y. With a high value of y, such as 1, 

the convergence is very rapid, within the first 1000 iterations. Note also that increasing the value 

of y increases the oscillatory behavior of the convergence. Further increases in y will result in 

instability. 
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y Iterations d—>0.25 g—>-0.4 error Flops 

0.01 3000 0.2492 -0.4111 0.0506 104817 

0.05 3000 0.2500 -0.4000 -0.0000 104817 

0.20 3000 0.2500 -0.4001 0.0001 104817 

Table 4.1 
Convergence as a function of y 

Since there are two parameter update equations, we could also use a different  value  of y in each 

equation, thus: 

dd 
—
dg 

= y,.P.e.b.x and  
dt 	' 

in order to get the best convergence for each parameter. Figure 4.5, illustrates the problem 

associated when sign(b)* sign(b), in this simulation the value of b=2.0 and b„,=-0.1, and the 

adaptive algorithm actually fails to converge. 

d Convergence ( should converge to: (125): 

g Convergence (should commie to: -0.4): 
-0.1 
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The simulation shows convergence of the d and g values to their correct values of g=-0.4 and 

d=0.25, using different values of gamma. Note that the estimated value of am  given by: (a-b.g) 

must remain negative (i.e. eigenvalue) for the closed loop system to remain stable. 

(iv) Failure To Converge: 

The above simulation shows that convergence is possible. However the assumption is made that 

sign(b)=sign(bm) in the derivation of the update rule for the adaptive control scheme. In some 

instances this may not be valid, and the algorithm fails to converge. For instance consider the 

following situation: b n,=-0.1, the results now illustrate the adaptive algorithm failing to converge. 

0.13 

0.12 

0.11 

0.1 

d Convergence (should converge to 0.25): 

	)=0-05 	  

500 	10(X) 	1503 	2003 	2503 	3003 

g Convergence (should converge to: -0.4): 
0.13 

• • 
0.12 

0.11 

0.1 
500 	1003 	1500 	2000 	2500 	3300 

0.13 
an„) Convergence should canerge to: -0.2): 

0.12 

0.11 

0.1 
500 	1000 	1500 	2000 	2500 	300(3 

(b.d 	bn,) Convergence (should converge to: 0.5): 
0.13 

0.12 

0.11 

0.1 0 
1000 	1500 	2000 	2503 	3003 

Fig.4.5 
MRAC Scheme Using Lyapunov stability (SISO system) Failure to Convergence 

Another cause for failure to converge is the choice of gamma, if chosen too small, convergence can 

be slow, if chosen too large, instability may result. 
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4.2.2 Simulation-4.2: MIT-Gradient Based Method: 

(i) Theory: 
In this section, the parameter update equations are derived for the same SISO system using the 

MIT-rule method. This method is also known as gradient based, steepest descent or sensitivity 

based method. The final configuration is illustrated in figure 4.6 on the following page. Consider 

the SISO system previously defined: 

Plant: 	 i=a.x+b.0 

Controller: 	 u = d.0 - g.x 

Closed Loop System: 	i = (a — b.g).x+ 

Reference Model: 	 Xm  = a m . + bm .u, 
Eqn.4.14 

The MIT rule is defined as the negative of the cost function gradient, similar to gradient based 

optimization, an example of this method is: backpropagation when training multi-layer-

perceptrons neural networks. The MIT rule is given by the general expression: 

de _ DJ 
dt 	ae Eqn.4.15 

where t:-parameters to update, for the SISO problem this is simply 6{d,g }, and J is some error 

related cost function to minimize. Typically, J is given by the output error function: 

1 
J (0) = — e2  (0) 	 Eqn.4.16  

2 

Computing partial derivatives: 

a.i _ ae 
ae e.  ae 

Substituting equation 4.17 into equation 4.15 gives the parameter update rule: 

de _ 	ae 
dt —Y.e.  DO 

Thus for the SISO system given above, for each component, the update rule is: 

dd 	ae 
dt 	ad 
dg _ 	De 

Eqn.4. 1 7 

Eqn.4.18 

Eqn .4. 1 9 
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Note that any cost function can be used instead of equation 4.15, for instance another choice would 

be to use J(0) =le(0)I. The choice of cost function affects the final outcome of the parameter 

update equations and their rate of convergence. Referring to equation 4.19, the parameter update 

equations require both the error and the error derivative functions. To obtain the error function, as 

in section 4.3.1, write: 

e=x — x„, 	 Eqn.4.20 

where x and x, are obtained by taking Laplace transform of equations 4.14 thus: 

x = (s –(a – b. g)) -1  .b.d.u, 
x„,= (s – 

Eqn.4.21 

note the slight abuse in notation used in equation 4.21 for the new variables x and x„. The error is 

then given by: 

e = (s — (a — b. g))- 1 .b.d.uc  — (s — an,)- 1 	 Eqn.4.22 

where s=Laplace operator. Computing the error gradients with respect to each parameter gives: 

ae 
= (s – (a – b. g)) -1  .b.uc  

ae 
ag = –(s – (a – b. g))-2 .b2 

Eqn.4.23 

 

Substituting equations 4.23 into equations 4.19, and after some simple manipulation giving the 

following parameter update equations: 

dd 
–y.e. 

y.e. 

b 
.0 

x. 
 

Eqn.4.24 
dt 

dg 

s  _ (a  _ 	g)  

s – (a – b. g)) dt 

Note the similarity of these update equations with those derived using Lyapunov stability theory in 

the previous section (equations 4.13). Note also that since both a and b are unknown, the 

following approximations are often made: b bm  and: (a-b.g) am . The update equations are: 

dd b„, 
	 .u, 

dt 	s – 

dg b„, 
—= y.e. 	 .x dt 	s – 

Eqn.4.25 

 



t„/1 ) 
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As a further observation, when comparing with the Lyapunov derived update equations (Eqn.4.13), 

is that the above expressions for &Mt and dg/dt define a first order dynamical system instead of a 

constant (Eqn.4.13). The rate of convergence is dependent on y, which may be chosen differently 

for each parameter update equation in 4.25 above. The entire MRAC setup is illustrated in figure 

4.6 below. 

Ur(t) 

PLANT 

	

u(t) 		 

d 	4;;Fp—* 	 

REFERENCE 

• • • 

 

.e. 
	b„, 
	 .x 

s — a 

 

      

.e. 
	bm  

s — a 

Fig.4.6 
MRAC Scheme Using the MIT rule (SISO system) 

Implementation issues: for MATLAB simulation purposes, equations 4.25 are better handled in 

state space form, thus if we define (1 1 = d and d2  = d1 , then it can be re-written as: 

	

, 	 ro 1 y d, )+r  0 

	

,d2 	0 a,,, d, ) (— y.e.b„, ) 
.0 	 Eqn.4.26a 

This can then be treated the same way as a state-space problem. The same applies to the g 

parameter update equation, if we define g i  = g 

(k 1 ) =io 
g 2 	0 	am  

and g2  = 

g i j +  
g 2  

, then: 

0 
.x 	 Eqn.4.26b 

dg/dt update 

4 	 

&I/di update 
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(ii)Simulation Setup: 

Identical to 4.2.1 above. 

(iii)Simulation Results: 

Simulation results for the setup illustrated in figure 4.6 are given in simulation 4.2 below. The 

coefficients used in the simulation are as before: a=-1.0, b=2.0, am=-0.2, bm=0.5. Therefore the 

controller gains should converge to: g=(a-a.)/b = -0.4, and d=b„,/b= 0.25. Simulation results are 

illustrated in figure 4.7 below: 

1. The first (top figure) plot illustrates the convergence of the d parameter, this correctly 

converges to 0.25. 

2. The second plot illustrates the convergence of the g parameter, this also correctly converges 

to -0.4. 

3. The third graph illustrates the convergence of the (a-b.g)a., this also correctly converges 

to the value of am, i.e.: -0.2. 

4: The fourth graph (bottom) illustrates the convergence of the b.db., this also correctly 

converges to the value of b., i.e.: 0.5. 

The rate of convergence depends on the value of y, the table 4.2 below summarizes the results 

obtained after 6000 iterations with different values of y. 

y Iterations d—>0.2500 g—>-0.4000 error Flops 

0.01 6000 0.2525 —0.4007 0.0124 336201 

0.02 6000 0.2514 —0.3996 —0.0044 336201 

0.04 6000 0.2803 —0.4041 0.0719 336201 

Table 4.2 
Convergence as a function of y 

From table 4.2, convergence is slower when compared with the Lyapunov method in simulation 

4.1. Large values (0.04) produce an oscillatory behavior which actually reduces convergence. 

Thus a small value of gamma results in a too-slow convergence due to low update, a high value of 

gamma can also result in a too-slow convergence due to oscillation. Hence the proper selection of 

gamma is essential. 
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d Canergence (should emerge to: 015): 
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Fig.4.7 

MRAC Scheme Using the MIT-rule (SISO system) Convergence 

Note that the solution (a -bg) is always negative indicating that the closed loop system remains 

stable during the adaptive process. Convergence is slower than the first method, refer to table 4.2. 

In general the MIT (or gradient based) methods require a small value of gamma to avoid 

instability. 

(iv) Failure To Converge: 

The above simulation shows that while convergence is possible, the assumption is made that b=b,„, 

and the approximation: a-bg=a„, in the derivation of the update rule for the adaptive control 

scheme. In some instances this is not always valid and the algorithm fails to converge. Thus, this 

scheme also suffers from the same problem as the first simulation, when sign(b) *  sign(b) , it 

fails to converge. A further drawback, the MIT method produces a second order update law when 

compared with the Lyapunov method which produces only a first order update law. 
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4.2.3 Simulation 4.3: Hybrid Genetic Algorithms: 

In this section, the parameter update rules are derived for the same SISO system using hybrid 

genetic algorithms. The three methods used are: (i) conventional genetic algorithms (GA), (ii) 

GA+simulated annealing, and (iii) GA+greedy search. Computational effort and convergence rates 

are compared. The final configuration is illustrated in figure 4.9 below. The same SISO system 

is used in the simulations: 

Plant: 	 = a.x + b.0 

Controller: 	 u = d.0 — g.x 

Closed Loop System: 	x = (a — b.g).x + b. d.u, 

Reference Model: 	 im  = a m . + bm •u, 
Eqn.4.27 

 

(i) Conventional Genetic Algorithms: The fitness function is defined to be the inverse of the 

error function. The error is computed as the RMS value, of the output difference x(t)-x,„(t) sum: 

e2  =/(xj (0—xm  (0) 2  Eqn.4.28 

Where n=number of sample points, the chromosomal representation for this problem is illustrated 

in figure 4.8 below. The controller parameters to solve for are: d, and g. The error err is defined 

by equation 4.28 above, and the fitness is the inverse of the error: fitness = 1/error. 

I dig  lerrlfitness 

Fig.4.8 
MRAC Scheme Using the Genetic Algorithm (SISO system) 

This problem represents an unconstrained optimization problem which is relatively straightforward 

to solve with genetic algorithms. The problem is solved essentially off-line, thus from past n 

measurements of x and x„„ the genetic algorithm computes the d, and g values which minimize the 

error function 4.28. 

Simulation results for the setup illustrated in figure 4.9 are given in simulation 4.3 below. The 

coefficients used in the simulation are: a=-1.0, b=2.0, b„,=0.5. Therefore the controller 

gains should converge to: gqa-and/b = -0.4, and d=b„/I, = 0.25. 
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For the genetic algorithm, the following setup was used: mutation and crossover probability tested 

over a range of values, selection type: binary tournament, population size: 20, sample points 

n=200, convergence results are summarized in table 4.3 below: 

Ur 1) 	•  V() 

REFERENCE MODEL 

	• bm -4 

g update 

d update 
Genetic 

Algorithm u(t) 

Fig.4.9 
MRAC Scheme Using the Genetic Algorithm (SISO system) 

Table 4.3 below summarizes the convergence results obtained using the genetic algorithm. 

Because genetic algorithms are a stochastic search based algorithms, the simulation was conducted 

ten times with different values of mutation probability Pm and crossover probability Pc to observe 

the variation in convergence. In all cases, the GA converges within 60 generations (3.9 Mflops) 

irrespective of crossover or mutation probability. The fast convergence rate is due to the fact that 

this is a SISO system and only two parameters are searched for: {cl,g}. Consequently this is a 

relatively simple problem to solve using a GA. Convergence plots are illustrated in fig. 3.10. 

Sim: Generations Pc: Pm: d-0.25 Error: MFP: 

1 60 0.40 0.02 0.2553 -0.3961 0.06495 3.9 
2 60 0.50 0.02 0.2500 -0.4000: 0.00001 3.9 
3 60 0.60 0.02 0.2500 -0.4000 0.00000 3.9 
4 60 0.70 0.02 0.2500 -0.4000 0.00000 3.9 
5 60 0.80 0.02 0.2500 -0.4000 0.00002 3.9 

6 60 0.40 0.20 0.2500 -0.4000 0.00016 3.9 
7 60 0.50 0.20 0.2515 -0.3989 0.01722 3.9 
8 60 0.60 0.20 0.2500 -0.4000 0.00000 3.9 
9 60 0.70 0.20 0.2500 -0.4000 0.00001 3.9 

10 60 0.80 0.20 0.2500 -0.4000 0.00000 3.9 

Table 4.3 
Conventional Genetic Algorithm 
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Typical convergence of the d and g parameters are plotted below. The first (topmost) plot is the 

error convergence, the middle graph shows the d parameter convergence, and the last (bottom) 

graph is the g parameter convergence. After only 60 generations, the GA has fully converged. 
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MRAC Scheme Using Genetic Algorithms (SISO system) Convergence 

Note that unlike the previous two simulations (Lyapunov and MIT methods), the genetic algorithm 

does not update the values of d and g progressively i.e. at each time step, but the update is made 

after the genetic algorithm has converged, or after a finite number of generations. Note also that 

whilst both Lyapunov and MIT methods converge, the actual convergence is gradient based and 

may be only local. Furthermore, unlike the other two methods, the genetic algorithm uses all past 

output data of x„,(t) simultaneously when running a search. Instead both the Lyapunov and 

gradient based methods, greater weight is placed upon current measurements. 

Failure To Converge Issues: 

Genetic algorithms can take unusually long time to converge or even fail to converge altogether 

when loss of genetic diversity occurs. Because the search is primarily dependent on crossover, to 

maintain effective search, variation is necessary. Premature convergence can lead to local minima 

and convergence thereafter is significantly reduced. Advantages of genetic algorithms is that no 

assumption is required as seen previously in the Lyapunov method (in which b is replaced by bni) 
and the MIT method in which (a-g.b) is replaced by am. 
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In the following simulation, where both the MIT and Lyapunov methods failed to converge when 

the value of b„,=-0.1 we see that the genetic algorithm has successfully converged after 100 

generations: convergence is: d=-0.0498, g=-0.4003, the actual values should be: d=-0.05 and 

g=-0.4, refer to figure 4.11 below: 
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MRAC Scheme Using Genetic Algorithms (SISO system) Convergence 

(ii) Genetic Algoritiuns+Simulated annealing: The fitness function is defined to be the inverse of 

the error function Eqn.4.28. The search vector is shown below: 

d 1 g 

Fig.4.12 
Search Vector for Genetic Algorithm+SA (SISO system) scheme 

The temperature annealing schedule is given by: T(k+ 1)=a. T(k), where alpha is given by: 

a =10(""*Tf /To)) Eqn.4.29 

Where: Tc=initial temperature normalized to 1.0, and T f  is the final temperature 0.001, N is the 

number of iterations set to 100. The value of alpha is generally ...-- 0.8-0.95. Simulation results are 

illustrated below for 10 simulations, running time is approximately 23 seconds, using 200 data 

samples. 
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Sim: d-,0.25 Error: 

1 0.2503 -0.3997 0.00662 3.2 
2 0.2500 -0.4001 0.00325 3.2 
3 0.2499 -0.4001 0.00234 3.2 
4 0.2500 -0.4000 0.00096 3.2 
5 0.2500 -0.4000 0.00447 3.2 
6 0.2504 -0.3997 0.00632 3.2 
7 0.2494 -0.4005 0.00693 3.2 
8 0.2501 -0.3999 0.00092 3.2 
9 0.2501 -0.3999 0.00210 3.2 

10 0.2501 -0.4000 0.00222 3.2 

Table 4.4 
Hybrid Genetic Algorithms + Simulated Annealing 

The hybrid GA+simulated annealing gives marginally better convergence results compared with the 

conventional genetic algorithm. Figure 4.13 below illustrates the { d,g} parameter and error 

convergence of the hybrid genetic algorithm. 
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Typical convergence of the hybrid genetic algorithm + simulated annealing 
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(iii) Genetic Algorithins+Greedy Search: The search vector is identical to simulated annealing 

(fig.4.12). Results from the hybrid GA and greedy search are summarized below  in  table 4.5 for 

10 simulation runs. Convergence time is approximately 7 seconds, samples=200. 

Sim: d-0.25 g--4 - 0.4 Error: MEP: 

1 0.2500 -0.4000 0.00060 1.2 
2 0.2501 -0.3999 0.00098 1.2 
3 0.2500 -0.4000 0.00081 1.2 
4 0.2500 -0.4000 0.00005 1.2 
5 0.2500 -0.4000 0.00034 1.2 
6 0.2500 -0.4000 0.00002 1.2 
7 0.2487 -0.4008 0.01768 1.2 
8 0.2501 -0.3999 0.00205 1.2 
9 0.2499 -0.4001 0.00113 1.2 

10 0.2500 -0.4000 0.00053 1.2 

Table 4.5 
Hybrid Genetic Algorithms + Greedy Search 

Typical convergence plots for the hybrid GA and greedy search are illustrated below, convergence 

is better than either conventional genetic algorithms or hybrid genetic algorithms + simulated 

annealing. 
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Fig 4.14 
Typical convergence of the hybrid genetic algorithm + greedy search 
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4.2.4 Comparison of Results: 

(i) Summary .  A summary of the three simulations is tabulated below, this is by no means 

comprehensive, as there are many variations to the conventional Lyapunov and MIT rule to 

overcome some of the problems and improve convergence rates. 

Lyapunov's Method: 

Advantages Disadvantages 
- Easy and simple to implement, - Requires the assumption: sign(b)=sign(bm) 

- Fast convergence, - In deriving the update rules, the assumption is 
made: b=bm  

- Many possible adaptive algorithms possible by 
choice of Lyapunov functions. 	Theory well - Difficult to apply to nonlinear systems. 
developed 

- Convergence is local. 
- Derivations are relatively straightforward, can be 

easily extended to MIMO systems. 

- Produces simple first order update equations. 

MIT rule 

Advantages Disadvantages 
- Easy and simple to implement, - Requires the assumption: sign(b)=sign(bm) 

- Derivations are relatively straightforward, can be - Slow Convergence, can become easily unstable 
easily extended to MIMO systems. even at low values of y, critically depends on y. 

- Theory well developed. - Produces second order update equation. 

.-In deriving the update rules, the assumption is 
made: b=bm , and (a-6.0=am. 

- Difficult to apply to nonlinear systems. 

Hybrid Genetic Algorithms 

Advantages Disadvantages 
- Easy and simple to implement. - Slow convergence, not really a on-line adaptive 

system. 
- No mathematical derivations necessary. 

- Equal weight is assigned to all sample points. 
- Easily extended to nonlinear systems. 

- No proof of stability, 	rate of convergence not 
- Can deal with constraints. guaranteed. 

- Does not require y parameter. 

- No 	assumptions 	necessary 	such as: 
sign(b)=sign(b m). 

- Search is global. 
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(ii) Convergence Rates: Table 4.6 below summarizes the convergence properties of the 5 methods 

used. Lyapunov method is the most efficient in terms of convergence time, the GA is the least 

efficient. Simulated annealing gives similar convergence results. Greedy algorithms converge 

faster than both GA and hybrid GA+SA, but slower than the MIT rule based method, and retains 

the global search feature of a full heuristic algorithm. Whilst the hybrid genetic algorithm require 

a computational effort greater than either the Lyapunov or MIT rule algorithms, this is attributed 

to the calculations being conducted with 200 samples per iteration compared with only one sample 

per iteration of the Lyapunov and MIT-rule methods. If we however compare the computational 

effort in flops per sample per iteration, then a more accurate comparison emerges. The hybrid 

GA+greetly search method is now comparable with both Lyapunov and MIT-rule methods. This 

can be seen from the plot shown in figure 4.15 below. 

Method Iterations: FLOPS/sample/iteration: Total FLOPS: Factor: 

Lyapunov 3000 35 104,000 1.0 
MIT rule 6000 56 336,000 3.2 
GA 	(pop=20) 60 326 3,920,000 37.7 
GA+SA 100 163 3,277,000 31.0 
GA+Greedy 120 50 1,200,000 11.0 

Table 4.6 
Comparison of Convergence Rates and computational effort 

Figure 4.15 below compares the error convergence as a function of computational effort for the 

five methods investigated. 
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Typical convergence of the hybrid genetic algorithm + greedy search 
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4.3 Model Reference Adaptive Control: MIMO Systems: 

In these next set of simulations, we repeat the procedures developed in section 4.2 and apply model 

reference adaptive control to multivariable multi-input multi-output (MIMO) systems. This 

section consists of the following simulations: 

(i) Generation of parameter update rules using Lyapunov theory for MIMO systems, section 4.3.1 

(ii) Generation of parameter update rules using the MIT-rule for MIMO systems, section 4.3.2. 

(iii) Generation of parameter update rules using hybrid GA for MIMO systems, section 4.3.3 

Systems are in state variable form, and full state feedback is assumed to be available. Parameter 

update equations are derived for each simulation. While the methodology essentially follows on 

from section 4.2, the equations are more slightly more involved. 

4.3.1 Simulation 4.4: Lyapunov Stability Method: 

(i) Theory: 

The parameter update rules for the MIMO system using Lyapunov stability theory are derived 

below. The final configuration is illustrated in figure 4.16. Consider a MIMO system in state 

variable form: 

Process Dynamics: 	 i = A.x + B.0 	 Eqn.4.29.a 

Controller: 	 u = D.uc  — G.x 	 Eqn.4.29.b 

Closed Loop System: 	.k=(A—B.G).x+B.D.uc 	 Eqn.4.29.c 

Reference Model: 	 .k. = Am .xm + Bm •ue 	 Eqn.4.29.d 

Where: X E 91, Xm  E 91 4  , U E 91'n , tic  E 91 m  . comparing equations 4.29.c and 4.29.d, the plant 

and reference models are perfectly matched when: 

A. = (A - B.G) 	G° = B -1  .(A - Am  ) 
Eqn.4.30 

Bm  = B.D 	= D° = B -1  .Bm  

Note that while the inverse /3-1  may not exist, a solution to the matrices G and D can still be found. 

The state error and its time derivative is given by: 

e = x — xm  
Eqn.4.3 1 

= X — Xm 
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Substituting the two equations for the plant (4.29.c) and the reference model (4.29.d) into the 

above error equation, and after some manipulation gives: 

e = ((A— B.G)— An ).x + (B.D — Bni )•uc  + kr e 	Eqn.4.32 

Substituting into equation 4.32 the equations for perfect model following (equation 4.30), we get a 

simplified form: 

e = Am .e+ B.(D — D°).tic  — B.(G — G°).x 	 Eqn.4.33 

The above error expression must be written in the same format as equation 4.8 (SISO system) so 

that the Lyapunov function (Eqn.4.9) can be applied in the same fashion. Additionally the matrices 

(D-D°) and (G-C) must be vectorized (i.e. convert to single column vector) because when 

multiplied, it must result in a scalar Lyapunov function, refer to equation 4.9. Therefore, we can 

re-write the term: 
T 

Uc 	0 . 0 
0 /4 7: . 0 

o 	o . 
B.(D — D ° ).tic  = B.AD.0 = B. 

Ad i , 

Ad„,„, 

Eqn.4.34.a 

The Acl vector is simply a vectorized version of the AD matrix, i.e. the columns of 413 stacked on 

top of one another with the first column of AD placed at the top, and AD=D-D°  . The same applies 

to the third term of Eqn.4.33: 
XT 0 . 0 
0 X T  . 0 

— B.(G — G ° ).x = — B.AG.x = — B. 

Agl I 

Eqn.4.34.b 

Ag„,„ 

We can now write the error function in a simplified and more compact format: 

e = Am .e + v i .Ad + Wv Ag 	 Eqn.4.35 

where: 

li = B. 

UcT  

0 

0 

0 
UcT  

0 

0 
. 	0 

. 	Uc  

NI = — B. 

X
T 

0 

0 

0 
X T  

0 

. 	0 

. 	0 

. 	X T  

Ad = 
Ad l I 

Ad mm  _ 
Ag = 

Ag„ 

_Ag, 

Eqn.4.36 
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This equation requires that the matrix B is known. As previously seen (SISO simulation 4.2), the 

matrix B can simply be replaced by Bm  under some mild conditions. To get the adaptive rules for 

Ag and Ad, define a Lyapunov function in a similar form to Eqn.4.9: 

1 	1 	1 
V (e, g,d)=—y.er  .P.e +— Ag T  46,g +AdTAd  

2 	2 	2 
Eqn.4. 

We follow the same procedure and compute the time derivative of the Lyapunov function to get the 

adaptive parameter update rules: 

1 	 1 
= —

2

y.er  P.e + —

2

y.eT  P.e + MT .&1 + Ag T  Eqn.4.38 

Insert the error expression Eqn.4.35 into Eqn.4.38, and after some manipulation gives: 

= —1  y.er (A.P + P. A,„ )e + 	.(y.wr .P.e + Ail)+ Ag T  .(y.111 72.  .P.e + Ag) Eqn.4.39 
2 

The first term of equation 4.39 can be replaced by -Q where Q is strictly positive real. 

Q.e + Ad T 	.P.e + 6,(.1)+ Ag T 	4 .P.e + 6,0 	Eqn.4.40 

A negative Lyapunov function requires that the following conditions are satisfied by equation 4.40: 

= 

Ag = —Y-W 2T  -Re 
Eqn.4.41 

This gives the two adaptive update equations, note that since g° and d° are constant, then Ad = d 

and Ak = : 

dd 
—" 71. 

 .P .e 

dg 
= 	P  e  

Eqn.4.42 

 

Where: w and tv2  are defined by equations 4.36 above. Note the similarity of the two adaptive 

update equations obtained for the MIMO system when compared with the SISO system given by 

equations 4.13. The only difference is that the MIMO system requires solving for P given Q and 

A., the Lyapunov Equation: — Q = AnT  .P + P. 4,, which can be directly solved with MATLAB. 
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The setup is illustrated in figure 4.16 below, simulation results are given on the following page. 

PLANT 

u(t) 

e( t ) 

REFERENCE MODEL 

	• 	• x-.”(t) 

dg/dt update 
- Y. 1.112. Re 

V T) 

t) dd/dt update P.e 4- 

Fig.4.16 
MRAC Scheme Using Lyapunov stability (M1M0 system) 

(ii) Simulation Setup: 

For this simulation, the lateral aircraft model from chapter 1 is again used. The open loop 

dynamics is given by the matrices: 

A = -3.9330 0.1260 -9.9900 0 B = -45.8300 -7.6400 
0.0020 -0.2350 5.6700 0 -0.9210 -6.5100 
0.0262 -0.9997 -0.1960 0.0345 0.0071 o 
1.0000 0 0 o o o 

The reference model is chosen such that the closed loop response contains desired eigenvalues at 

the locations 1.5±j1.5 (roll mode) and 2.0±j1.0 (Dutch roll mode). This is essentially the 

eigenstructure assignment problem which was solved in chapter 3, where only the poles are 

assigned (i.e. a pole placement problem): 

Am = -4.0000 -0.0000 0.0000 -5.0000 Bm = -22.9150 -11.460 
0.0234 -2.8021 3.9448 -0.0038 -0.4605 -9.765 
0.0262 -1.0002 -0.1979 0.0353 0.0036 0 
1.0000 0 0 0 0 0 

	 D 
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The values of G°  and D°  can be estimated only if we know in advance the matrices A and B, this 

information can be used only for verification purposes: 

= -0.002057691 0.064508221 0.268488544 -0.111634509 
0.003573822 -0.403457113 -0.302988201 0.015210675 

D° = 0.5 	0.0 
0.0 	1.5 

(iii) Simulation Results: 

(a) G-Matrix Convergence: The graph below (Fig.4.17) shows the convergence  of  the feedback 

gain matrix G as a function of time, after 10,000 iterations, and computation: 14 MFP convergence 

is: 
G = -0.00194 	0.06410 	0.26843 -0.11162 

0.00245 -0.40076 -0.30272 	0.01498 

This agrees with the value G°  above. Note that the choice of gamma y need not be  a  scalar value, 

but a matrix diagonal may also be used. In this simulation gamma was manually adjusted for each 

element of the G matrix until good convergence was obtained for each element of the G matrix. 

GAMMA = 0.133*cliag([1, 10, 10, 1, 10, 10, 10, 10]) 

Figure 4.17 below illustrates the convergence of the individual elements of the G matrix, 

convergence can be increased by increasing gamma. 

Fig.4.17 
MRAC Scheme Using Lyapunov stability (MIMO system) G matrix Convergence 
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(b) D-Matrix Convergence: Figure 4.18 below shows the convergence of  the  feedback gain 

matrix D as a function of time, after 10,000 iterations, and computation: 14MFP, convergence 

is: 
D 	0.50000 0.00000 

-0.00001 1.49999 

0.52 

0.5 

0.48 

0.48 

0.44 

d, 1 Convergence 
• • • • • • • • • • 

0 	2000 	4000 	8000 	8000 	10000 

d21 Convergence 

2000 	4000 	8000 	8000 	10000 

(112 Convergence 

0.2 

0.15 

OA 

0.05 

0 

-0.05 

Fig.4.18 
MRAC Scheme Using Lyapunov stability (MIMO system) D matrix Convergence 

This agrees with the expected value of D° above. In this simulation, the choice of gamma was: 

y=3, a scalar was used rather than a diagonal matrix. 

(c) Eigenvalues of (A-B.G) Matrix During Convergence: Figure 4.19 below illustrates the 

convergence of the closed loop eigenvalues: 

Convergence to: -2+1j 
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Fig.4.19 
MRAC Scheme Using Lyapunov stability (MIMO system) Closed Loop Eigenvalues Convergence 
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During convergence, the eigenvalues of the closed loop system (A-B. G) should remain stable, a 

plot of the four (two complex conjugate pairs) is shown below during convergence. It can be seen 

that the eigenvalues remain stable and that they reach the desired values of L2=1.5±j1.5 (roll 

mode) and 2‘3 ,4=2.0±j1.0 (Dutch roll mode) after approximately 10,000 iterations. Legend: blue = 

real part of eigenvalue, and red = imaginary part of eigenvalue: 

4.3.2 Simulation 4.5: MIT-Gradient Based Method: 

(i) Theory: 

In this section, parameter update rules for the MIMO system described in 4.3.1 are derived using 

the MIT-rule. Whilst the derivation is simpler compared to the Lyapunov method, the resulting 

parameter update equations are slightly more complex. Consider a MIMO system in state variable 

form as previously described: 

Plant: 	 = A. x + B.0 

Controller: 	 u = D.u, — G. x 

Closed Loop System: 	x = (A — B.G).x + B.D.u, 

Reference Model: 	X m  = Am .X m  + B..u, 
Eqn.4.43 

 

Where: x E ER", Xm  E 9I n  , U E 91 m  , tic  E 9m  . comparing equations 4.43, the plant and reference 

models are perfectly matched when: 

A„, = (A - B.G) = G 0 =B i .(AAm ) 
Eqn.4.44 

Bm  = B.D 	D° =B •B,„ 

Following the same arguments used in section 4.3.2, the parameter update equations are derived 

for the MIMO system. The MIT rule is: 

dd 
dt 	ad 
dg 	JJ 
dt 	7.  ag 

Where d and g are vectorized forms (column vectors) of the D and G matrices respectively, not to 

be confused with the scalar variables used earlier in the SISO simulations. The cost function J is 

given by: 

Eqn .4 .45 



dt 	• e  • sl — A. • IC  

dg
= y.er  .

1  B,,, 
sl — A

. x 
dt 	 „, 
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1 
J(d, g)= —2 eT  (d, g).e(d, g) 

Computing partial derivatives, gives the following update equations: 

dd 

 

-— = —? 
pr (ae) 

dt 	ad ) 
dg 	ae 
— = l —y.er  . — dt 	ag) 

Eqn.4.46 

Eqn.4.47 

Note that the partial derivatives in brackets represent Jacobian matrices. The error function is 

computed from: 

e=x — x„, 	 Eqn.4.48 

where x and ;cm  are obtained by taking Laplace transform of the last two equations of 4.43. The 

error is then given by: 

e = (sl — (A — B.G)) -1  . B. 	— (sl — Am ) -1 	 Eqn.4.49 

Computing partial derivatives (Jacobians) with respect to the G and D matrices gives: 

ae 
ap 	- (A — 

ae — — 	 .x ac 	- (A — B.G) 

Eqn.4.50 

Again, since the A and B matrices are unknown, the approximation is made that: B B., and (A-

B. G) A m. The parameter update equations then become: 

Eqn.4.51 

Implementation Issues: The final implementation is illustrated in figure 4.20 below, note that the 

actual MATLAB implementation is split into two parts, the computation of the Jacobian matrices: 

ae aG and ae al) equations 4.50, -  and the computation the parameter update equations from 

4.47. 
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Note also that equations 4.51 represent a first order dynamical system which also requires 

numerical integration. This results in a second order dynamical system. The most practical way to 

handle this problem is to simply re-write equations 4.50 as a first order differential equation thus: 

ae 	(ae 
ap . A,,,. T-D j- Bm .(8 ;Jac  

ae 	iae = A . — aG 	aG)- B  m 

Eqn.4.52 

where the terms k in the first equation is 1 for the if entry of the D matrix, and zero for all other 

entries, similarly for the second expression applying to the G matrix. The simulation then would 

proceed as follows, for instance for the G matrix: 

Akorithm: G matrix: 

step-1: first compute 
ae  

aG = Am. —aG ) Brnu).x  

step-2: update the Jacobian ae / aG at the kth  time step by numerical integration: 

rae) = rae) AT rae) 
aG )„,, 	aG 	) 

step-3: compute the G update equation: 
dG  
dt = 	aG ) * e  

step-4: update the G matrix by numerical integration: 
dG) 

Gk+
' 
 = Gk  + AT .1— dt 

Eqn.4.53.a 

Eqn.4.53.b 

Eqn.4.53.c 

Eqn.4.53.d 

The same applies for the D matrix. As can be seen, the actual implementation is slightly more 

complex compared to the Lyapunov method, however the derivation is much simpler. The complete 

simulation setup is illustrated in figure 4.20. Simulation results are provided below. Again, any 

cost function could have been used instead of equation 4.46, which must be a function of the error 

e(t). 



Fig.4.20 
MRAC Scheme Using MIT rule (MIMO system) 

(ii) Simulation Results: 

(a) G-Matrix Convergence: The graph below shows the convergence of the feedback gain matrix 

G as a function of time for three different values of gamma. Convergence is within the first 20,000 

iterations. The initial value of the G matrix at t=0 is set to zero: 
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PLANT 

u(t) —e—• • 	• 

e(t) 

dG/dt 

REFERENCE MODEL 
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—7.(f r  De  ).e 17e/ at) 
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MRAC Scheme Using MIT rule (MIMO system) G matrix Convergence 



Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.34 

Convergence of the G matrix after 20,000 iterations for the three different values of gamma 

(gamma is a diagonal matrix thus: Txdiag[1,2,1,1,2,2,2,1]) 

-0.0021 0.0645 0.2685 -0.1116 
0.0036 -0.4035 -0.3030 0.0152 

G matrix convergence, with 1M.).01 

0.0002 0.0435 0.2350 -0.1185 
-0.0099 -0.2906 -0.1240 0.0517 

G matrix convergence with -y4.05 

-0.0014 0.0621 0.2677 -0.113.7 
-0.0001 -0.3913 -0.2986 0.0157 

G matrix convergence with y:).10 

-0.0020 0.0644 0.2685 -0.1116 
0.0034 -0.4029 -0.3028 0.03.52 

The diagonal entries were chosen by manually tuning each entry until reasonably good convergence 

was obtained for each G matrix element. 

(b) D-Matrix Convergence: Similarly, for the D matrix, convergence is plotted in figure 4.22 

below for three different values of gamma, in this instance gamma is a simply a scalar and not a 

diagonal matrix. 
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Fig.4.22 
MRAC Scheme Using Mn' rule (MIMO system) D matrix Convergence 
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After 10,000 iterations the actual value of D matrix for the three gammas is: 

0.5000 
0.0000 

0.0000 
1.5000 

D matrix Convergence: y112 
0.4889 0.0499 
0.0613 1.2237 

D matrix Convergence: 7.1 
0.5000 0.0001 
0.0002 1.4996 

D matrix Convergence: T=5 
0.5000 -0.0000 

-0.0000 1.5000 

As can be seen, the D matrix also converges to the correct value of D°, however convergence is 

also slow, but faster than the G matrix. 

(e) Eigenvalues of (A-B.G) Matrix During Convergence: The eigenvalues of the closed loop (A-

B.G) matrix are plotted during convergence, it can be seen that the closed loop system remains 

stable, and that they converge to the required closed loop eigenvalues of the reference model. 
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4.3.3 Simulation 4.6: Hybrid Genetic Algorithms: 

In this section, the same MIMO problem is solved using hybrid genetic algorithms. Simulation 

results compare: (i) conventional genetic algorithms, (ii) genetic algorithms + simulated annealing 

and (iii) genetic algorithms + greedy search. Computational effort and convergence rates are 

compared. The final configuration is illustrated in figure 4.24 below. 

14(t) 

PLANT 

• 	• 

HA H 
x(t) 

REFERENCE MODEL 

	■ 

rn 

G update 
Genetic 

Algorithm D update 

Fig.4.24 
MRAC Scheme Using Genetic Algorithms (MIMO system) 

(i) Genetic Algorithms: Again, the fitness function is chosen to be the inverse of the error 

function. The error is computed as the RMS value of the output difference x(t)-x„,(t), refer to 

equation 4.28. The chromosomal representation for this problem is illustrated in figure 4.25 

below. The controller parameters to solve for are: D, and G matrices. The fitness is the inverse of 

the error function: fitness = 1/error. 

d 12  d21  d22 IgH g12 g13 g14 g21 g22 g23 g24 I err I fitness 

Fig.4.25 
MRAC Scheme Using the Genetic Algorithm (MIMO system) 
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Fig.4.26 
MFtAC Scheme Using Genetic Algorithms (NM° system) G matrix Convergence 

Computational effort: 300 generations approximately 300 MFP. From table  4.4,  results from 

the first simulation (first row 1) are illustrated in figure 4.26 above. Whilst the genetic algorithm 

is capable of converging near the solution, the final convergence is generally slow. To overcome 

this, the two hybrid methods discussed earlier are used in the next set of simulations and iii). 

Figure 4.27 below shows the error convergence as a function of generation for the simulation 

above: 

error convergence 

Fig.4.27 
Error convergence 
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D matrix convergence: Table 4.5 below summarizes the convergence results obtained for the D 

matrix. Again the simulation ran ten times to illustrate the stochastic nature of the convergence: 

I 	d" I 	cl dv d22 	I 	error 	I  fitness 
0.0000 1.5000 

, 

150 0.5003 0.0001 -0.0008 1.4992 	0.0013 	764 

150 0.5001 0.0002 -0.0006 1.4992 	0.0013 	783 

150 0.5007 0.0007 -0.0025 1.4964 	0.0035 	288 

150 0.5027 0.0007 -0.0113 1.4980 	0.0101 	98 

130 0.4963 0.0028 0.0152 1.4679 	0.0160 	62 

150 0.4994 0.0001 0.0023 1.4998 	0.0023 	441 

150 0.4978 0.0014 0.0090 1.4941 	0.0103 	96 

150 0.4994 0.0006 0.0043 1.4966 	0.0051 	197 

150 0.4999 -0.0006 -0.0009 1.5018 	0.0026 	386 

150 	0.5002 0.0011 -0.0016 1.4955 	0.0048 	210 

Table 4.5 
D matrix convergence after 150 Generations 

The D matrix converges more rapidly than the G matrix, due to the fewer parameters to solve for. 

Figure 4.28 below illustrates the convergence of the D matrix. 
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After 150 generations, the D matrix has converged. Again, convergence is initially very rapid 

(first 50 generations), and thereafter considerably reduced. 



g11 912 gl 3 914 

g23 924 

-0.9 
1000 	2000 	3000 	0 

-0.4 

-0.5 

-0.8 

-0.7 

-0.8 

1000 	2000 	3000 

g21 g22 
1000 	2000  3000 

-0.1 

0.3 

0.2 

0.1 

0 	1000 	2000 	3000 

-0.5 

-1.5 
0 

0.5 

0 

1000 	2000 	3000 

-0.1 

-0.2 

-0.3 

-0.4 
V 

-0.5 	 
1000 

0 

2000 	3000 

0 

-0.2 

-0.3 

-0.4 

1000 	2000 	3000 	0 	1000 	2000 	3000 

0.4 

0.2 

-0.2 

-0.4 

0.4 

0.2 

-0.2 

-0.4 

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.40 

(ii) Genetic Algorithms + Simulated Annealing: The search vector is similarly defined as in 

conventional genetic algorithms without the error and fitness entries thus: 

A 11  d12  d21 d22 Igli gI2 g13 gl4 g21 g22 g23 g24 

Fig.4.29 
MRAC Scheme Using the Hybrid Genetic Algorithm + Simulated Annealing 

The temperature annealing schedule is defined identically as in the SISO case (see 4.2.3 part ii). 

Results for this simulation are summarized below. 

G matrix convergence: Table 4.6 below summarizes the G matrix convergence for 10 simulation 

runs using 100 samples and 3000 SA iterations: 

gll: g12: g13: g14: 
, 

g21: 	g22: g23: g24: 	error 	G-Go: N1FF 

0021 0.0645 0.2615 -0.1116 0.0036 	-0.4034 -0.3029 0.01S- 

-0.0021 0.0645 0.2685 -0.1116 0.0036 1 	-0.4034 -0.3029 0.0153 	0.00012 0.00015 737 

-0.0020 0.0645 	0.2684 	-0.1117 0.0035 	-0.4033 -0.3024 0.0154 	0.00032 0.00061 737 

-0.0021 0.0645 	0.2685 -0.1116 0.0036 	-0.4034 	-0.3027 0.0152 	0.00022 0.00026 737 

-0.0021 0.0645 	0.2685 -0.1116 0.0036 	-0.4034 	-0.3028 0.0152 	0.00014 0.00019 737 

-0.0021 0.0645 	0.2685 -0.1117 0.00361 	-0.4035 	-0.3029 0.0154 	0.00026 0.00025 737 

-0.0021 0.0645 	0.2685 -0.1116 0.0036 	-0.4035 	-0.3032 0.0152 	0.00025 0.00022 737 

-0.0020 0.0645 	0.2684 -0.1117 0.0035 	-0.4034 	-0.3024 0.0154 	0.00021 0.00061 737 
-0.0021 0.0645 	0.2684 -0.1117 0.0036 	-0.4034 	-0.3024 0.0154 	0.00035 0.00062 737 

-0.0021 0.0645 	0.2685 -0.1116 0.0036, 	-0.4035 	-0.3030 0.0152 	0.00006 0.00005 737 

-0.0020 0.0645 	0.2685 -0.1117 0.0035 	-0.4035 	-0.3027 0.0154 	0.00023 0.00038 	737 

Table 4.6 
G matrix Convergence after 3000 SA Iterations 

A typical matrix convergence plot is illustrated below: 

Fig.4.30 
MRAC Scheme Using Genetic Algorithms (MEMO system) G matrix Convergence 
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D matrix convergence: Table 4.7 below summarizes the G matrix convergence for 10 simulation 

runs: 

dll 	d12 d21 d22 Error: EI-Do: NIFP: 

0.0000 0.0000 1.5000 

0.5000 0.0000 0.0001 1.4999 0.00011 0.00017 74 
0.5000 -0.0001 -0.0002 1.5002 0.00026 0.00026 74 
0.5000 -0.0001 -0.0002 1.5000 0.00025 0.00023 74 
0.5000 -0.0001 -0.0001 1.5002 0.00025 0.00024 74 
0.5000 0.0000 -0.0000 1.4997 0.00017 0.00026 74 
0.5000 0.0000 0.0000 1.4998 0.00011 0.00017 74 
0.4999 0.0000 0.0002 1.4999 0.00017 0.00025 74 
0.5001 -0.0000 -0.0002 1.5001 0.00018 0.00024 74 
0.5000 -0.0000 0.0002 1.5000 0.00026 0.00017 74 
0.5000 -0.0000 -0.0002 1.5000 0.00018 0.00018 74 

Table 4.7 
D matrix Convergence 

Typical matrix convergence plots, convergence is within the first 100 iterations. 
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Fig.4.3 1 
MRAC Scheme Using Genetic Algorithms (MIMO system) D matrix Convergence 

This hybrid genetic algorithm converges considerably more rapidly when compared with the 

conventional genetic algorithm in (i). 

(iii) Genetic Algorithms + Greedy search: The search vector is similarly defined as in simulated 

annealing, see figure 4.29. Below, results of the G and D matrix convergence are given. 
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G matrix convergence: Table 4.8 below summarizes the G matrix convergence for 10 simulation 

runs using 100 samples, and 3000 greedy search iterations: 

gll: g12: g13: g14: 	g21: g22: g23: g24: Error: 	IG4Go: MFP: 

-0.0021 0.0645 0.2685 -0.1: 	0.0036 -0.4034 -0.3029 0.0152 
1 
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0.0645 0.2684 -0.1118 	0.0035 -0.4032 	.0.3023 0.0164 0.00067 	0.00141 

0.0645 0.2685 -0.1115 	0.0036 -0.4033 	,-0.3033 0.0145 0.00034 	0.00079 

0.0645 0.2684 -0.1117 	0.0036 -0.4032 	1-0.3027 0.0158 0.00032 	0.00069 

0.0645 0.2684 -0.1116 	0.0036 -0.4034 	1-0.3026 0.0152 0.00025 	0.00045 

.-I 
N

 
0

 
°
  

°
  0.0645 0.2684 	-0.1116 	0.0036 -0.4034 	-0.3026 0.0153 0.00024 	0.00041 

0.0645 0.2684 	-0.1116 	0.0036 -0.4035 	.0.3028 0.0152 0.00020 	0.00024 

0.0645 0.2684 	-0.1117 	0.0035 -0.4033 	.3026 0.0154 0.00018 	0.00046 

0.0645 0.2684 	-0.1116 	0.0036 -0.4035 	-0.3028 0.0153 0.00016 	0.00022 

0.0645 0.2685 	-0.1116 	0.0036 -0.4035 	.0.3030 0.0152 0.00001 	0.00001 

0.0645 0.2685 	-0.1116 	0.0036 -0.4035 	.0•3030 0.0152 	0.00001 	0.00000 

Table 4.8 
G matrix convergence 

The figure below illustrates typical convergence properties of the hybrid algorithm: 
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Fig.4.32 
MRAC Scheme Using Hybrid Genetic Algorithms + Greedy Search(MIMO system) G matrix Convergence 

D matrix convergence: Table 4.9 below summarizes the D matrix convergence for 10 simulation 

runs with 100 samples and 220 iterations. The D matrix converges very quickly compared with 

both conventional GA and hybrid GA+simulated annealing methods. 
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dll d12 d21 d22 Error: 130-floo: 	NIFP: 

.5000 0.0000 0.0000 1.5000 

0.5000 0.0000 0.0002 1.5001 5334 0.00024 	17 
0.5000 0.0000 -0.0002 1.5000 	6136 0.00025 17 
0.5000 0.0000 -0.0001 1.4998 	6330 0.00025 17 
0.5000 0.0000 0.0000 1.5000 	29718 0.00004 	17 
0.5000 -0.0000 0.0000 1.5000 30531 0.00003 18 
0.5000 0.0000 0.0000 1.5000 46518 0.00004 18 
0.5000 -0.0000 -0.0000 1.5000 70323 0.00002 17 
0.5000 -0.0000 -0.0000 1.5000 126538 0.00001 18 

Table 4.9 
D matrix convergence 

The figure below illustrates typical convergence properties of the hybrid algorithm, note that 

convergence is within the first 200 greedy search iterations. 

100 	200 	300 100 	200 	300 

Fig.4.33 
MRAC Scheme Using Hybrid Genetic Algorithms + Greedy Search(MIMO system) D matrix Convergence 

4.3.4 Convergence Rates: 

Greedy algorithms give on average the fastest convergence when compared with both conventional 

GA and hybrid SA methods. However the convergence of the greedy algorithm is not as consistent 

as the GA. In many cases the greedy algorithms can converge very rapidly, and in others very 

slowly. This depends on the initial solution, if the initial value is near the optimum, then 

convergence is very rapid. One advantage of the genetic search algorithms is that we do not need 

to specify the gamma parameter as used by both the Lyapunov and MIT rule methods. 
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The following figures illustrate the convergence properties of the five methods compared: 
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4.4 Discussion and Conclusion: 
From these simulations, we can see that hybrid genetic algorithms can easily be applied to adaptive 

control applications and convergence is generally very rapid. For simple SISO systems, 

convergence results within 50 generations. For multivariable 2 th  order MIMO systems, the genetic 

algorithm converges within 200 generations. However, despite the rapid convergence, the 

computational effort required at each generation is approximately 1 MFP, compared with only 20- 

30 operations at each time step with conventional Lyapunov or MIT rule based methods. 

Furthermore, there is no guarantee on the rate of convergence of a hybrid genetic algorithm. This 

is a critical issue if genetic algorithms are to be accepted as an alternative method of generating 

parameter update rules in adaptive control applications. On the other hand however, genetic 

algorithms have fewer restrictions and can also be applied to nonlinear systems. Some key 

differences are summarized below. 

Key Points and Differences: 

1. GA is not really recursive, whereas both the Lyapunov method and MIT rule generate new 

parameters at each sample interval with only the current measurement, the genetic algorithm 

requires knowledge of past historical data as well as current data. This means that its response 

is delayed if an abrupt change occurs in the plant A and B matrices. Whilst the genetic 

algorithm may not be recursive, it can however still operate online. 

2. Because the GA works with historical data, it is more immune to the presence of noise in the 

current measurement. GA method puts equal weights on all samples, whereas the MIT and 

Lyapunov methods place more emphasis on current data. 

3. Constrained problems can also be easily dealt with using genetic algorithms, but more difficult 

to solve using the conventional MIT and lyapunov methods. 

4. Higher computational effort is required with genetic algorithms, typically 20 times or more 

compared with conventional methods. Hybrid genetic algorithms give comparable performance, 

in particular the hybrid GA + greedy search converge very rapidly. 
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5. From the results, we can see that genetic algorithms work well, and have fewer restrictions 

when compared with more traditional methods such as the MIT gradient based rule and 

lyapunov stability theory. The GA can easily be extended to more unconventional controller 

configurations without any change to the genetic algorithm. 

6. Convergence is generally faster than our results indicate because not all parameters of the A and 

B matrices change simultaneously, but only a few matrix parameters change for instance: 

payload mass of robotic manipulator. This can be encoded into the chromosome, and search 

conducted for several rather than all matrix parameters. 

7. Genetic algorithms are easily extended to solving nonlinear MRAC systems, with any controller 

structure e.g.: neural networks, fuzzy logic, linear dynamic compensators etc. 

Future Work: 

Much work needs to be done in order for GA to be accepted in adaptive and MRAC control 

applications. Currently there are very few papers which address the application of GA to MRAC 

control. This chapter addresses only the basic concepts of MRAC and attempts to obtain some 

preliminary results. Some future work would involve: 

1. Use measurement feedback instead of full state feedback, and a dynamic compensator (see 

section 3.2). 

1. Modify the GA to act like an online recursive algorithm, rather than searching the entire 

solution space, use the previous results to generate a narrower search range which would 

improve convergence. This type of online genetic algorithm can be a topic of future research 

and is beyond the scope of this thesis. 

2. Apply GA to indirect method of MRAC. Only the direct method was used in the simulation, 

with output feedback instead of full state feedback, including gaussian noise in the output. 

3. Applications of GA to nonlinear systems with robustness properties using variable structure 

model reference adaptive control. Variable structure MRAC is currently an active area of 

research. 

4. Model reference adaptive control problem can also be formulated in a robust control 

framework, for instance the model matching problem may be written as: 
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MRAC Control for nonlinear systems with neurocontrol 
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error = mink 

here T1  is a model (reference model) and T2 is the plant, Q is a cascade controller such that the 

error of the transfer functions is minimized. For linear systems, this may be solved using the 

Nevanlinna's algorithm. Again this can be easily handled with GA, in which the fitness function 

can be the inverse of the error. 

5. Applications of radial basis function networks for nonlinear systems. For instance consider the 

following setup, in the figure below, a radial basis function is used to control a nonlinear plant. 

A linear model is used as a reference. Again, training using genetic algorithms as in chapter 2 

can be applied to this problem. We could also use fuzzy logic control to replace the neural 

network. Genetic algorithms can be used for adjusting the fuzzy rules. For instance see [18]. 

Nonlinear Plant 
neural 

network  / 

An interesting paper dealing with nonlinear reconfigurable adaptive flight control using genetic 

algorithms [19], using neural networks/dynamic inversion [20], more general papers [21], adaptive 

PID control and genetic algorithms [22]. In summary, genetic algorithms can be applied to model 

reference adaptive control, resulting in good convergence properties. There are clearly many 

applications including nonlinear neurocontrol and others such as variable structure adaptive 

control, and fuzzy variable structure control, which offer new and interesting possibilities for 

research. 
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5.1 Introduction: 

In this chapter, we look at how hybrid genetic algorithms can be applied to the sythesis of robust 

H2, FL, mixed H2111_ linear full order, and reduced order compensators. The results are compared 

with conventional MATLAB h2 lqg and hinf functions, including standard model reduction 

techniques for the reduced order compensators. 

State space solutions to the H2 and IL problem for linear systems are well established, requiring 

only the solution to two Riccati equations. However, this results in compensators with the same 

order (or higher if shaping filters are used) as the plant, making implementation impractical. The 

use of Model reduction techniques often leads to suboptimal controllers. A further complication is 

that most specifications are given as multiple or mixed objectives, for instance minimizing the H2 

performance measure of one closed loop transfer matrix, whilst ensuring the H., < y norm bound of 

another closed loop transfer matrix is also satisfied. As yet, there is currently no direct design 

method to deal with mixed H 2/H_ objectives. In this chapter, we investigate the application of 

hybrid genetic algorithms to three separate optimal control problems: 

(i) Robust H2 (linear quadratic gaussian LQR) controllers. Simulation results comparing 

conventional MATLAB h2 lqg function with hybrid genetic algorithms is given. The direct 

implementation of reduced order compensators using genetic algorithms is compared with 

conventional model reduction techniques. 

(ii) The above procedure is repeated for an FL controller. 

(iii) Parts (i) and (ii) are combined for the implementation of a mixed H 2/H,., controller. 

A simple linear state-space example is used to illustrate the above concepts. The chapter is divided 

into four parts: the first part discusses basic concepts of H2 and FL control theory including 

standard state space solutions, methods for dealing with mixed H 2/FL problems, fixed order 

controllers which includes homotopy theory, and genetic algorithms. In the second part, a robust 

H2 controller is implemented using genetic algorithms, and compared with conventional state space 

solutions, the design of reduced order compensators is also included. The same applies for the 

third part involving a robust FL controller. And lastly, a robust H 2/H,,,, controller with mixed 

design objectives is implemented. 
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5.1.1 Robust Control Theory: 

The modern robust control paradigm combines the performance and robustness specifications into 

a single design framework. Thus all the information about a system including plant, external 

disturbances, noise, plant uncertainties and nonlinearities, can be combined into one single design 

framework. Robust control theory provides a systematic means of synthesizing controllers within 

this framework. Additionally, filters and frequency weights can be included into the design. 

Frequency weights can be used to shape the input noise over some frequency, and can also be used 

to emphasize the frequency range over which the effects of disturbances are to be minimized. For 

instance, if we wish to reduce the effects of external disturbances at some frequency range, then the 

frequency weights are emphasized more over this range. Nonlinearities and unstructured dynamics 

can be described as a magnitude bounded by some transfer function. For instance, in aircraft 

control, the airframe deformation produces unmodelled dynamics which can be captured by a norm 

bound frequency dependent transfer function. Figure 5.1 below illustrates the generalized plant P 

which includes a nominal plant transfer function, frequency dependent weights, uncertainty models, 

actuator and sensor dynamics. 

T 	  	  

Fig.5.1 
Generalized Plant and Controller 

The inputs to the plant are: exogenous inputs w, which consist of disturbances, sensor noise, 

reference commands, and the controlled inputs u to the actuators. The outputs include z, consisting 

of performance measures, tracking errors, the measured outputs y from the sensors, generally 

corrupted by noise. The objective is then to minimize the size of the transfer function from w to z 

denoted by 71„(s) by the appropriate choice of the controller K, whilst ensuring internal stability of 

the closed loop system. The size of a transfer function can be represented by a norm. There are 

two types of norms which are of particular interest in control engineering: the H2 and the norm. 

Each has a different interpretation and application. The H2 norm is simply the RMS output at Z if 

W is an independent, zero mean unit intensity white noise source. Thus the H2 controller is simply 

an extension (or generalization) of the linear quadratic gaussian (LQG) controller. The IL, norm 

however is defined as the maximum gain (singular value) of the transfer function over all 

frequencies of interest. Its application is mostly found in dealing with plant uncertainty. 
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Standard state-space solutions are available for these two types of problems, discussed further in 

sections 5.1.2 and 5.1.3. These solutions yield controllers which are the same order as the 

augmented plant P. This sometimes leads to controllers which are physically unrealistic to 

implement in practice. The application of model reduction techniques can result in sub-optimal 

controllers. Furthermore, in many practical situations, mixed design objectives are given such as 

minimizing the norm of: Il7 z22 (s)02  , whilst bounding the norm: IlTze.w..(s)O .  < y . This effectively 

is a constrained optimization problem. 

w 2 
	

Z 2 

w 	 I 

K 	 

Fig.5.2 
Mixed Hz/H. Controller Specifications 

At present, there are no direct design methods available to deal with multiobjective H 2/H,,, control 

problems. There are a number of iterative numerical schemes available, some are briefly discussed 

in section 5.1.4. Some excellent introductory references to robust control theory include: [1, 3, 4, 

5], a good tutorial paper on control can be found in [2], a seminal paper by Zames 1979 [6], 

and later in which state space solutions where found by Doyle in 1989 [7]. In [8], Doyle 

demonstrated that H2 controllers do not necessarily guarantee robustness. Conventional state space 

solutions to the H2 and FL, are outlined next.. 

5.1.2 H2 Control Theory and State Space Solutions: 

(i) Definition of the H2 norm: 

Given the following generalized plant and controller (fig 5.3), the H2 problem is as follows: solve 

for K such that the H2 norm of IT 11 is  minimized' whist providing internal stability of the closed 

loop system. Internal stability is defined as follows: when the input is zero w=0, then both the 

states of the plant and controller should approach zero asymptotically: x—>0 and xe-->0 

m i nit z„ 2  

Fig.5.3 
Generalized Plant and Controller 
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The H2 norm of a transfer function T„,, is defined by equation 5.1 below: 

HTZW II .1 2-f-  trace [T,(jw).T( jw)Ww12  Eqn.5.1 

(ii) Compensator using Conventional state Space Methods: 

The optimal compensator K which minimizes the above H2 norm may be computed by the 

following procedure. Given the following generalized LTI plant in state space form: 

= A. x + w + B2 . U 

Z 	w + D12 . u 	 Eqn.5.2 

y = C2 .X D21 . w+ D22 .0 

assuming D11=D22=0 with no loss of generality, the compensator is given by: 

Eqn.5.3 

where F2 and L2  are given by: 
F2  = —R(Rxru + B2T  X2) } 

L2 = 	C2T  Vxy  ).V;y1  

and X2, Y2 are the positive semidefinite solutions to the two Riccati equations: 

} R,Tu — X 2  B2 R:.' B2T  X2  

 22 V )73,1  C2  Y2  

Eqn.5.4 

Eqn.5.5 

and 
Ar  = (A — B2R/C ) 
A, = (A — lc' C2  ) 

Eqn.5.6 

The compensator has the structure of a full order optimal state estimator and a full state optimal 

controller, expanding equation 5.3 we get the dynamic form of the compensator structure: 

= (A + B2  F2  + L2C2  L2D22F).; (— L2). y 

u =(F2 ).xc  + (0).y 
Eqn.5.7 

The solution to the Riccati equations can be found without iteration. The above implementation is 

also available using MATLAB's robust control toolbox function h21gg. Results using this 

method are compared with hybrid genetic algorithms. 
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(iii) Solution by Genetic Algorithms: 

We now outline the method used for solving the H2 problem using genetic algorithms and a pre-

defmed (fixed order) compensator. The generalized compensator K is given by (compare this with 

equation 5.7 above): 

= Ac .x, + Bc . y 

= 
Eqn.5.8 

The above compensator can be of any order, and need not necessarily be the same as that of the 

plant. The closed loop system is obtained by combining equations 5.2 with 5.8 into one single 

augmented system [9], similar in principle to chapter 3: 

Eqn.5.9 
z = 

The system is now in input w output z form, where the composite matrices are: 

ri A. F A 	— B2  . Cc 	B, 
Lx 	LBc . C2 	Ac 	LBc .D21  = [c, D12 CC Eqn.5.10 

The closed loop transfer function from w to Z is given by the Laplace transform of equation 5.9, 

thus: T = col- A yi B. If the disturbance w is a zero mean unit intensity white noise, then the 
— 

H2 norm from w to Z is given by the expression [7]: 
2 

IlTzw 
= trace(Q.b.h 

= trace(P.E 

where Q and P are the observability and controllability gramians, found by solving either one of 

the following Lyapunov equations: 

A.P + P. + 	T = 0 
TQ + Q. A + E' T  =0 

}

constraints Eqn.5.12 

This is essentially a constrained optimization problem with one optimization function and one 

constraint. This offers an alternative method for solving the H2 problem using genetic algorithms, 

in which the order of the compensator can be constrained. This problem has been solved using 

genetic algorithms [9], homotopy theory methods [10,11], and quasi-Newton/continuation methods 

[12]. Homotopy methods described in 5.1.4, are essentially a gradient based optimization requiring 

the calculation of a gradient of a lagrangian function (see also chapter 1.5). Note the addition of 

further constraints such as Q>0 and P>0, which will be discussed in greater detail in section 5.2. 

}minimize 	 Eqn.5.11 
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5.1.3 H.. Control Theory and State Space Solutions: 

(i)Definition of the H., norm: 

Given the following generalized plant and controller figure 5.4, the 1-1., problem is as follows: solve 

for K such that the 11., norm of the transfer function IIT,Il is minimized, whilst ensuring internal 

stability of the closed loop plant and controller. This problem is conceptually more difficult to 

solve compared with the previous H2 norm problem: 

minHT, 11  - 

w 
P 

U 
	 Y 

K 

Fig.5.4 
Generalized Plant and Controller 

The 1-1., is defined by the following equation 5.13 below: 

IIT, IL = sup a.[T(j())1 	 Eqn.5.13 
w 

Thus the H,, is simply the maximum value of the singular value plot: a.[Tm (j())] over all 

frequencies co, and sup is the least upper bound of the function (i.e. supremum). 

(ii)Compensator using Conventional state Space Methods: 

The optimal compensator K which minimizes 1-1., is given by the following expression, in packed 

matrix notation: 

K - [FA: 	 Eqn.5.14 

where the individual matrices are given by: 

il., = A + (B1  + L., D21 )147., + B2 F., + Z .L.. C2  + Z..L.,D22 F., 
F.,= -R(R:+ B27' .X.,) 

1 
W.0 =—T2 BIT  X,, 

L...-(Y C2T  +V.,),)Vy-y1  

1 
Z ..=11- 

Y 

i l 

Eqn.5.15 
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and where X., and Y. are the solutions to the following two Algebraic Riccati equations: 

1 0 = X _A, + ArT  X., + R R.,„Ic: Rxr. — X.(B2 R;„1  B2T  — AK I y2)X., 
0 = Ae t + Y_AeT  +lc., —KyV 1 11xyr  — Y.,(CN 1 C2  — CiT  C1  I y2)Y 

Eqn.5.16 

Note the presence of the y parameter. Consequently, the solution to the IL, problem requires an 

iterative search over y in which y is minimized and equations 5.16 are satisfied, furthermore, we 

also require that X.>0, Y.>0 and the solution to 2 Hamiltonian matrices must contain no 

eigenvalues on the jo) axis (see reference. 3 pp.654). The H. is then given by: Il Tav < 

(iii) Solution by Genetic Algorithms: 

In a similar fashion to the H2 formulation, the 	problem can also be stated as follows: given the 

generalized dynamic compensator K: 

I, =•+B. y 
= Cc .xc  

Eqn.5.17 

— 
Where the composite matrices A, B ,C are given by equation 5.10. The R. compensator can be 

found from the solution to the following minimization problem: 

I I 112. = trace(Q.,.11.11 T  ) 
= trace(P...C.C T  ) 

}

minimize Eqn.5.18 

where Q., and P.,, are the observability and controllability gramians, given by the solution to the 

following Riccati equations 

+PA T + -14 	+ 7 -- 2  R.E.  .C-7. 	= 0 
AT,,., .4_ 	+ 	.E. +y _2 Q.)-3. -AT 	0  

This is essentially a constrained optimization problem with one optimization function and one 

constraint. In summary, to find the compensator, we require to find the minimum value of y which 

will minimize equation 5.18 subject to the constraint given by equation 5.19. The is then given 

by:  1lTzw <y. This problem has been solved using homotopy theory methods [10, 11], and quasi-

Newton/continuation methods [12] using a Lagrangian function formulation, and Linear Matrix 
Inequalities methods [21]. Genetic algorithms have not yet been applied to this problem. Note 

also the presence of further constraints: Q., > 0, P,„ >0, and stability of closed loop system which 

are discussed in section 5.3. 

}  constraint 	Eqn.5.19  
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5.1.4 Mixed H 2/H,.. Control Theory: 

(i) Conventional Methods: 

When dealing with mixed H2/K., control objectives, there are no direct design methods available to 

finding the compensator K. As most specifications are given as multiobjective optimization 

problems, then solving this type of problem becomes important. There are currently two methods 

of dealing with mixed H2/H., control objectives: homotopy algorithms [16] and Linear Matrix 

Inequalities (LMI) in [21]. Both methods are based on numerical optimization techniques and 

require iterative search algorithms. 

-Homotopy algorithms: or continuation methods, are based on algebraic and differential topology 

theory [15] which can be used as a global search technique for nonlinear problems. Homotopy 

algorithms can be used to solve complex optimization functions by first solving a simpler and 

similar function in which a solution can easily be obtained, and then gradually distorting the 

simpler function back into the original more complex function. At the same time also distorting the 

solution of the simpler function into the original more complex function. A good introduction can 

be found in [16]. Applications to H2 fixed order compensators using homotopy methods can be 

found in [11, 17, 18], and to mixed H2/1-1., problems in [19], and more specifically for H c., problems 

in [20]. Homotopy theory can also be used to solve nonlinear constrained and unconstrained 

optimization problems. These methods are globally convergent for many complex optimization 

problems, but can suffer ill-conditioning due to roundoff errors in numerical solution. 

Convergence is strongly dependent on the ability to accurately track the solution curve which 

depends on the deformation function. 

-Linear Matrix Inequalities (LMI): has gained considerable popularity over the last few years. 

Currently the theory of robust control is dealt with concepts of Linear Matrix Inequalities (LMI) 

and convex optimization. Multiobjective H2 and control problems can be cast into a single 

LMI framework which can be solved numerically with great efficiency using interior point or 

cutting-plane methods. An excellent introduction to LMI applications and convex optimization in 

control theory can be found in [23, 24, 30, 31, 43]. Applications using LMI dealing specifically 

with only H2/LQG problems can be found in [21], and to FL, problems [27, 33]. Applications to 

mixed H2 / Ho. control objectives using LMI's and convex optimization can be found in [22, 25, 34, 

35 40, 44, 45, 46], for SISO systems [48], and discrete time systems [49, 50]. 
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Because LMI uses a finite sum to approximate an infinite dimensional optimization variable (i.e. 

Ritz approximation), the accuracy of the solution depends on the number of parameters used to 

approximate the function. 

Other variations to the mixed H2 / FL control problem includes a modified Riccati method [26] in 

which the inputs w2  and 	are the same, a state space solution to the mixed H2/FL control 

problem is given in [36, 39] under some mild assumptions, and using Lagrange multiplier methods 

are given in [38]. Necessary and sufficient conditions for the solution to the IL/Hz problem can be 

found in [47], applications to nonlinear FL control can be found in [29, 51,52, 53, 54, 55]. 

(ii) Solution by Genetic Algorithms: 

Genetic algorithms have also been applied to the mixed HAL problem. Examples of applications 

to robust control using genetic algorithms can be found in [13, 14], in particular for EL fixed 

order compensators [56, 57]. Some examples specific to H2 control can be found in [9] dealing 

with fixed order compensators, the mixed H 2/FL control problem has also been investigated using 

a two-player Nash differential game theory [32], and genetic algorithms for SISO systems in 

polynomial (/-1  form [37], and multiobjective applications [42]. 

The method we use is to combine the results obtained in sections 5.1.2 and 5.1.3 into one single 

multiobjective optimization problem. Then the problem is to minimize the two functions: 

subject to the constraints: 

II 112 
DTA: = trace(Q2 .i3.13' 

}minimize 
DTA1 = trace(a..B.B T  

Eqn.5.20 

constraint 	Eqn.5.21 
- T 	 -T - 	-2 	-**-'7' A Q,„ + Q.,. A + C .0 + y Q.B.B 	0 

Where: T2 is the transfer function from w2-9z2, and 71., is the transfer function from 	This 

is described in more detail in section 5.4. A more relaxed approach would be to minimize the H2 

norm subject to the constraint: fl_< y. Note also the necessary conditions of closed loop internal 

stability and positive definite solutions to the Lyapunov and Riccati equations 5.21. To our 

knowledge, this method has never been investigated using genetic and hybrid algorithms. 

A T Q2 + Q2.71 + E T .E.  = 0 
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5.2 H2 Controller Synthesis: 
5.2.1 Simulation Setup: 

For the first simulation, we synthesize a full order H2 compensator using conventional state space 

methods, and compare with solutions obtained using hybrid genetic algorithms. For the second 

part of the simulation, a reduced order compensator is synthesized using hybrid genetic algorithms, 

and the result is compared with conventional (MATLAB) model reduction techniques on a full 

order compensator. Convergence rates and computational effort for three hybrid genetic 

algorithms are compared: (1) conventional genetic algorithms, (2) genetic algorithms and simulated 

annealing, and (3) genetic algorithms and greedy search. 

(i) Plant Model: For this simulation, the plant model is taken from reference [45] and is illustrated 

below: 

i = A.x + Bi .w + B2 .0 
z2  = Cpx + Dir w + D12 .0 

Z., =c2 •x+ D21 •W + D22  • U 

y = C3 . X + D31 . W + D32 . u 

The setup is depticted in Figure.5.5 below: 

Eqn.5.22 

 

1 	■ z2 
P 	■ z. 

Y 

K 

Fig.5.5 
Simulation Setup Plant/Compensator 

Thus we have a single disturbance input w and two performance output z2  and z>,. For this part, 

the z..... is ignored and only the transfer function from w—>z 2  is considered. Note that one of the 

conditions required for computing the H2 norm is that D 11 =0. The plant matrices are given by: 

A = 
0 

— 1 
[ 0 

10 
— 1 
2 

2 
0 

—5 ]  

C, = 
0 	1 
0 	0 
0 	0 

0 
I 
0 

B 1 =[1 	0 1] B2 = [0 	1 0] 

D„ =[0 0 0] 	D 12 = [0 	0 1] 

D 2 ,=[0 0] D„ =[0 	1] 
D,,= [2] D„ = [0] 

C, = [01 00  Cid C, 	= [0 1 0] 
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(ii) Compensator: The above system represents a 3 111  order linear dynamical system, for the 

simulation we ignore any frequency dependent weights. Thus, the full order compensator would 

then also be a 3rd  order system. The compensator in state space is given by: 

ic  = Ac .xc  + Bc . y 

u = Cc .xc  
Eqn.5.23 

For the given plant model above, the compensator matrix sizes are: Ac  E 913x3 , Bc  E 9t3xl  , and 

Cc  E 91 1x3  . Alternatively, the compensator may be written in input/output transfer function form, 

for a 3rd  order system, the transfer function from y to u is given by: 

C S2 
K(s) — 	3 	 Eqn.5.24 

s +a 2 .s 2  +ar s+ao  

The compensator given by equation 5.23 consists of a total of: 9+3+3=15 parameters, whilst the 

second compensator of only 6 parameters. Clearly the first compensator is overparameterized. 

The second compensator is in effect a minimal realization, which can be transformed into either 

reachable or observable canonical forms, (see reference [59] pp.67) thus: 

Ac  = 
0 
0 [

—a0 

1 
0 

—a 1 

0 
1 

—a 2 

Bc = 0 
01 

1 
Cc =[co  c, cd Eqn.5.25 

Furthermore, note that the B, compensator matrix remains a constant, and only the A c  and Cc 

matrices are affected. 

(iii) Closed Loop System: The closed loop system is obtained by combining equations 5.22 with 

5.23 into one single (augmented) system: 
— 

Z2 = 

zo  = 

 

Eqn.5.26 

The system is now in input/output: w --> { z2, z.} form, where the matrices are: 

 

[ A 	B2 •Cc1 i. 3 	 _lc  
Bc.q 	Ac 	13c.D31  

D12 . Cc I C = [C2  D22 . Cc] Eqn.5.27 

For the H2 simulation, only output z2  is considered. Simulation results are given in the following 

pages. 
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5.2.2 Conventional State Space Solution: 

(i) Full order Compensator: The above H2 problem can be readily solved using MATLAB's 

h2lqr function. The full order compensator which minimizes the H2 norm from input w to output 

Z2 is given by (shown both in pole-zero and polynomial forms): 

—0.023046(s + 4.618)(s —13.99) 
K(s)— 	  

(S + 5.095)(s
2 

+ 1.383s + 9.912) full order compensator 

— 0.02305s 2 + 0.2159s + 1.488 

s

- 	

3 
+ 6.478s

2 
+ 16.96s + 50.5 

The open loop H2 norm is 0.43390, and the closed loop: 0.40957. The presence of zero in the 

positive half plane (13.99) results in a minimum phase compensator. The compensator eigenvalues 

from K(s) above are given by: -0.6916 ± p.0714, -5.0948. Open and closed loop singular value 

plots of 0.(7',24j())) are plotted in figure 5.6 below: 

H, Singular value plots: w 	z2  

	

3 	 1 

	

10 	10 	10 	10 

Fig.5.6 
Open loop and closed loop singluar value plot of T,2,..,(s) 

(ii) Reduced order Compensator: Model reduction can be used to obtain a reduced order 

compensator (rd  order). To perform model reduction the MATLAB function balreal is first 

applied to the compensator which produces a balanced realization of the compensator. In this case, 

the diagonal entries of the joint gramian are: 0.0450, 0.0300, 0.0003. Since the last state is weakly 

coupled to the input/output, this state can be removed by using the MATLAB model reduction 

function modred. This yields the following second order compensator: 

1 0 0  

10 1  

10 

10 -3  

10 1 
	

10 2 
	10 3 
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- 0.019745(s -15.34) 
2 	  

(s +1.383s + 10.06) reduced order compensator 

- 0.01975s + 0.3029 

s2 + 1.383s + 10.06 

With the reduced order compensator, the H2 norm of the closed loop system is 0.40958. In this case 

the effect of model reduction does not degrade the performance of the closed loop transfer function 

Taw . This can be seen from the singular value plot of the open loop, closed loop using full order 

and reduced order compensator is shown in figure 5.7 below: 

H, Singular value plots: w z2  

■ 	 I  

0 	 1 	 2 
10 	 10 

	
10 

Fig.5.7 
Open loop and closed loop using full order and reduced order compensator. 

The singular value plot of the closed loop system with a full order compensator (plotted in blue) is 

overlapped by the closed loop plot using the reduced order compensator (plotted  in  green). In this 

instance, the model reduction works well due to the presence of a very weakly coupled state 

(0.0003). A summary of the three H2 norms for each instance is tabulated below: 

System: 1.16 
Open Loop: 0.43390 

Closed Loop (Full order compensator): 0.40957 

Closed Loop (Reduced order compensator): 0.40958 

10 

-1 
10 

-2 
10 	A 

10 

Table 5.1 



Objective: 

The objective of the genetic algorithm then is to find the compensator 

parameters (a0021,a2,co,c1,c21 which will minimize the following function: 

11 7  1 2  2 = trace(Q2.1-3.h T  

Subject to the following constraints: 

1. The existence of the solution to the lyapunov equation: 
— T 	 —*T — A Q2 + 2 . A+ C .0 = 0, where Q2 is positive definite symetric ie: Q2 

>O. 

2. The closed loop system must be internally stable, ie: eigenvalues of 
A must be stable. Controller must be stable, eigenvalues of /l c  must be < 
0. No eigenvalues on the j00 axis (ie marginally stable closed loop system). 
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5.2.3 Solution Using Genetic Algorithms: 

The above H2 problem will now be solved using hybrid genetic algorithms as described earlier in 

section 5.1.2. Both full order and reduced order compensators will be implemented and results 

compared with those obtained using conventional methods above. 

(i) Full order Compensator: Solution using genetic algorithms to the H2 problem was described 

in section 5.1.2, this is briefly summarized below. The full order compensator is given by the 

following dynamical system: 

.t, = A,. x, + Be  y 
= 

where the compensator matrices are given by the minimal realization in canonical form: 

Eqn.5.28 

1 0 0 
Ac  = 	0 

[0 

—a0  

0 
—a 1  

1 
—a2 

 1 
Bc  = 0 

1 
Cc  = [co  c, cd Eqn.5.29 

Combining with the plant model given by equation 5.22, we get the following closed loop transfer 
— function from w to z2: thus: Taw (s) = C-2  (S/ — 	B , where the composite matrices are: 

    

-62 =[q Divcc] Eqn.5.30 

 

Bc .c3 	Ac 	B1 . D31  

The H2 genetic algorithm is summarized below: 
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The chromosomal representation for this problem is illustrated in figure 5.8 below: 

a21 al I ao I c2 I Cl I co I I, 'Fitness 

Fig.5.8 
Chromosomal Representation for the H2 problem 

where real number codification is used for { ao,a l ,a2,co,c 1 ,c2 ), the H2 value is computed as above, 

and the fitness is the inverse of H2. Note that if any of the constraints are violated, then the 

solution is infeasible and the fitness is set to zero. We chose to discard infeasible solutions rather 

than attempting to use a repair algorithm because an infeasible solution results in an unstable 

closed loop system. There are no direct repair algorithms which would directly produce a feasible 

solution from an unfeasible one. Subsequently attempting to repair the infeasible solution would 

instead require a second search using the infeasible chromosome as a starting point which would 

not be as efficient. The solution to the Lyapunov function is found using a Hamiltonian matrix 

approach. Because this problem is essentially a constrained optimization problem, a second 

method for solving it would be to minimize the a Lagrangian function (see section 1.5.1), for 

instance: 

L(A„ Ac  , Cc  ) = trace{(Q2.iiiiT)+Ax -AT -62  + 	 Eqn.5.31 

Where L is the Lagrangian function to minimize, and is the multiplier matrix. This approach 

however also requires solving for Q2 and X, matrices. Given that both Q2 and A, are symmetric and 

size 6x6, a total of 21+21 parameters in addition to the 6 controller parameters. Equation 5.31 can 

also be solved using gradient based optimization techniques or homotopy theory, see references [9, 

10,19,28]. However Homotopy or gradient based optimization requires the computation of 

gradients, for equation 5.28 we have: aL/ aA = 0, aLI ak= o, JL / aa, = o, 3L / aQ2  = 0 , a 

total of 48 simultaneous equations. Furthermore, the computation of a Hessian of size 48x48 is 

also required which could be numerically ill-conditioned. Simulation results using the GA 

algorithm-1 from the previous page are tabulated below. For this algorithm we used: binary 

tournament selection, crossover probability Pc=0.5, mutation probability Pm=0.2, full order 

compensator, population size= 100, uniform weighted average crossover. We ran the simulation 5 

times due to illustrate the probabilistic nature of the GA, results are tabulated in table 5.2 below. 

Each simulation runs for 250 generations, the first (red) row is the solution obtained with 

conventional matlab methods from section 5.2.1. Computational effort is approximately 370MFP 

for 250 generations. 



• Geinetic Algorithms 

• Conventional Matla 
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a2: a l : 	a.: b 2 : b i : 	60 : II,: 

f  4395 7 -. 

7.165 	17.90 	57.3 -0.0232 0.2034 1.693 0.409574 
6.592 17.12 51.6 -0.0231 0.2144 1.522 0.409574 
7.030 17.71 56.0 -0.0233 0.2062 1.652 0.409574 
6.948 17.60 55.2 -0.0232 0.2071 1.629 0.409574 
7.105 17.81 56.7 -0.0233 0.2044 1.675 0.409574 

Table 5.2 

Results from table 5.1 indicate that some of the controller parameters have a less influential effect 

upon the outcome of the computation of the H2 norm. For instance the parameter b2  is nearly 

always the same, whilst the a 2  parameter is more variant. For the second row in table 5.2, the 

compensator transfer function obtained with genetic algorithms may be written as for comparison 

withconventional MATLAB solutions: 

-0.023222(s+ 5.217)(s-13.98) 

(s+5.784)(s 2 +1.382s + 9.914) 

-0.02322s
2 +0.2034s +1.693 

s3 +7.165s 2 +17.9s + 57.34 

GA full order compensator 

The compensator eigenvalues from K(s) above are given by: -0.6908 ± j3.0719, -5.7836. Figure 

5.9 below compares the singular value plot of the closed loop system vv-9z2 for the solution 

obtained with genetic algorithms and conventional methods. The curves are identical and overlap. 

closed loop singluar value plot w->z2 

1 0 

-3 
10 

-3 
10 

	

2 	3 
10 	10 	100 	10 	10 	10 

Fig.5.9 
Comparing singular value plots: GA and Conventional Methods 

(ii) Reduced order Compensator: A reduced order compensator (2nd order) can be implemented 

directly by defining the compensator structure as: 
jc, = Ac .xc  +Bc y 

= 	
1 Eqn.5.32 

u Cc.xc 
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Where the matrices for the reduced order compensator are given by: 

0 	1 	0 
A, = au 	B, =[ 1 1 C, = [c„ c,1

-aj 
Eqn.5.33 

Again, the simulation is repeated for this system, and results are tabulated in Table.5.3 on the 

following page. From table 5.3, we can see that the results using genetic algorithms agree well 

with the results obtained using conventional methods (shown in red in the first row of table 5.3). 

For this algorithm we used: binary tournament selection, crossover probability Pc=0.5, mutation 

probability 13,,=0.2, population size=100, uniform weighted average crossover, generations=300. 

We repeated the simulation 5 times to illustrate the probabilistic nature of the GA. In this case, 

there is less variation in convergence when compared to the full order compensator (table 5.1), i.e.: 

the GA algorithm converges to the same solution in all cases. 

a2 a l  ao b2 b 1  bo 112 

1.383 10.06 -0.0197 0.3029 0.40958 

0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579 
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579 
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579 
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579 
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579 

Table 5.3 

Figure 5.10 below illustrates a typical convergence plot of the genetic algorithm. Convergence is 

generally within the first 50 generations, after which the population has nearly converged to a 

single solution. Note that this is a plot of H 2-H2 , where H2 is the fittest value in the population, 

currently found by the GA and H 2„,,„ is the target value = 0.4096. 

Convergence Plot: H 2-H2r. (H2. = 0.4096) 
0.018 
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Fig.5.10 
GA Typical Convergence Plot 
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Computational effort: conventional state space solution requires approximately 0.25MFP, and 

several seconds of computational time (Pentium BI/750MHz). Genetic algorithms however require 

780MFP and approximately 100 seconds of computation time for 300 generations. Thus whilst 

genetic algorithms can give a direct solution to fixed and reduced order compensators, the 

computational overheads are very high. Table 5.2 illustrates the convergence properties of the 

genetic algorithm. The variation of the compensators found is attributed to the presence of the 

wealdy coupled state (0.0003). This means that the solution has a weak global minimum within a 

wide global minimum. The figure below illustrates this concept: 

compensator parameters 

Fig.5.11 

This problem is no longer present for the reduced order compensator as seen from table 5.3. The 

poor gradient prohibits the GA from locating the weak global minimum. Table 5.2 shows that the 

H2 is nearly identical in different compensators, and therefore the function minimum is nearly flat. 

5.2.4 Convergence Rates for Hybrid Genetic Algorithms: 

This last set of simulations compare the convergence rates of the three different hybrid genetic 

algorithms: (a) conventional genetic algorithms, (b) genetic algorithms and simulated annealing, 

and (c) genetic algorithms and greedy search. Figure 5.12 below compares the convergence rate of 

the three algorithms for the full order compensator. Both hybrid methods converge much more 

rapidly compared with the conventional genetic algorithm. Computational effort compared with 

conventional matlab H2 design is summarized in table 5.4 below with accuracy set at 10 -7  (i.e.: H2- 

H2nun  < 

Method: MFLOPS Design Time: 

Conventional matlab: 0.25 < 1 sec 
GA: 80 10 sec 
GA + Simulated annealing 30 4 sec 
GA + Greedy Search: 25 3 sec 

Table.5.4 
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10 
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Fig.5.12.A 

Convergence rates for: GA, GA+SA, GA+GS (full order compensator) 

.1 h2-h2min 
Reduced Order Compensator: Red:GA Green:SA Blue::Greedy 
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Fig.5.12.B 
Convergence rates for: GA, GA+SA, GA+GS (reduced order compensator) 
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5.3 lico  Controller Synthesis: 

5.3.1 Simulation Setup: 

For these next set of simulations, we apply hybrid genetic algorithms to the design of full order and 

reduced order compensators. Results are compared with conventional state space solutions and 

model reduction techniques. 

(i) Plant Model: For this simulation, the same plant model as used in the previous section 5.2 is 

applied to the FL, compensator design: 

= A.x+Brw+B2 .0 

z2  = Cr x + 	+ D12 .0 

= 	X + D21 .W + D22 ./4 

y = q•x+ Dm  • W + D32  • U 

This is illustrated in figure 5.13 below: 

Eqn.5.35 

 

Z 2 

	 z 

  

K  

Fig.5.13 
Simulation Setup Plant/Compensator 

In this instance, we wish to minimize the transfer function from the exogenous input w to the 

performance output zo.,. For this part, the z2 is ignored and only the transfer function from 

is considered. The transfer function is denoted by: T(s), and plant matrices are identical to 

the ones in the previous section. 

(ii) Compensator: Again, a compensator in state-space is sought with the form: 

In transfer function form: 

= A,. x + Bc . y 

= 
Eqn.5.36 

2 
K(s) — 	3 	 Eqn.5.37 

S +a2" S 2 +a1 - s+ao  

Where equations 5.32 and 5.33 are related using a minimal realization in reachable canonical form 

as previously described in section 5.2. 
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(iii) Closed Loop System: The closed loop system is obtained by combining equations 5.22 with 

5.23 into one single augmented system: 

} 

Eqn.5.38 

The system is now in input/output form, where the matrices are given by equations 5.27. For the 

}1., simulation, only output z,.. is considered. Simulation results are given in the following pages. 

5.3.2 Conventional State Space Solution: 

(i) Full order Compensator: The above 1-1,. problem can be readily solved  using  MATLAB's 

hinf() function. The full order compensator which minimizes the 11„. norm from input w to output 

Z2 is given by (both in pole-zero and polynomial forms): 

K(s) - 
- 0.36083(s - 3.124)(s + 5.387) 

(s + 5.118)(s2 + 3.372s + 14.66) 

-0.3608s2 -0.8165s+ 6.073 
- s3  +8.4982 +31.92s + 75.04 

full order compensator 

The open loop BL„, norm is 1.52705, and the closed loop: 0.58021. The presence of zero in the 

positive half plane (3.124) results in a minimum phase compensator. The compensator eigenvalues 

from K(s) above are given by: -1.6862 ± j3.4379, -5.118. Open and closed loop singular value 

plots of a(Tz24 j co)) are plotted in figure 5.14 below: 

H.. Singular value plots: w -, z_ 
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Fig.5.14 
Open loop and closed loop singular value plot of '4..(s) 
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(ii) Reduced order Compensator: Model reduction can be used to obtain a reduced order 

compensator (2nd  order). To perform model reduction the MATLAB function balreal is first 

applied to the compensator which produces a balanced realization of the compensator. In this case, 

the diagonal entries of the joint gramian are: 0.1082, 0.0682, 0.0005. Since the last state is weakly 

coupled to the input/output, this state can be removed by using the MATLAB function modred. 

This yields the following second order compensator: 

- 0.3665(s - 3.114) 
K(s) - 	2  

(s + 3.303s +14.3) reduced order compensator 

 

-0.36658+1.141 

  

 

s2 + 3.303s +14.3 

  

With the reduced order compensator, the 1-1.. norm of the closed loop system is 0.58124. In this 

case the effect of model reduction only mildly degrades the performance of the closed loop transfer 

function Tz.„,. A singular value plot of the open loop, closed loop using full order and reduced 

order compensator is shown in figure 5.15 below: 

Fig.5.15 
Open loop and closed loop using full order and reduced order compensator. 

The singular value plot of the closed loop system with a full order compensator (plotted in blue) is 

overlapped by the closed loop plot using the reduced order compensator (plotted in green). In this 

instance, the model reduction works well due to the presence of a very wealdy coupled state 

(0.0005). 
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Table 5.5 below summarizes the results with conventional Ho., design: 

System: II... 
Open Loop: 1.52705 

Closed Loop (Full order compensator): 0.58021 

Closed Loop (Reduced order compensator): 0.58124 

Table 5.5 

5.3.3 Solution Using Genetic Algorithms: 

The above H.. problem is now solved using hybrid genetic algorithms as described earlier in section 

5.1.3. Both full order and reduced order compensators will be implemented and results compared 

with those obtained using conventional methods above. 

(i) Full order Compensator: Solution using genetic algorithms to the H.. problem was described 

in section 5.1.3, this is briefly summarized below. The full order compensator is given by equation 

5.29 above, the objective is to minimize the H.. norm of the following closed loop transfer function: 

&(s1 — 

where the composite matrices are: 

A — B2 .Cc
1— 13 =[ 4  LBc . 	Ac 	Bc. D31  

This can be accomplished by minimizing the trace of the matrix: 

11 1/112... = 

subject to the constraint: 

Eqn.5.39 

=[c D22  . Cc 	Eqn.5.40 

Eqn.5.41 

Eqn.5.42 

where Q., is the observability gramian, given from the solution to the Riccati equation. This is 

essentially a constrained optimization problem with one optimization function and one constraint. 

Thus to find the solution, we require to find the minimum value of y which will minimize equation 

5.41 subject to the constraint given by equation 5.42. The H.. is then given by: °TZJ <y. Note 

also the presence of further constraints such as Q..> 0, and stability of closed loop system which 

are discussed in section 5.2. 
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Unlike the H2 problem, the FL is not truly optimal, this is because we are attempting to minimize 

both y and equation 5.41. This can be viewed as a multiobjective problem, and as such may lead 

to a family of solutions. This problem can be solved in a number of ways, using Pareto optimality, 

Nash equilibria or composite cost function method (see chapter 1.5). 

The simplest is to use a composite function as follows: f;=(hx+axy), where 

hx = trace(a..h.hT ), with alpha being made to vary to see the effects of adding more emphasis 

on one parameter agaist the other. 

The complete genetic algorithm is summarized below, there are two possible alternative 

simulations: single objective and multiobjective: 

Single - Objective: 

The single objective genetic algorithm is to find the compensator parameters 

(ao,alia2,co,ci,c2) which will minimize the following function: 

minimize: 2 
OHL = 

subject to 'Y<Yo, where yo  is a user specified design goal 

Multi - Objective: 

The multi-objective genetic algorithm is to find the compensator parameters 

{ao,ci i ,a2,co,cbc2) which will minimize the following function: 

minimize: IHE = trace(Q,..ji.FI T  ) -F a.y 

Subject to the additional following constraints: 

1. The existence of the solution to the Riccati equation: 

A 	+ Q.,.A+ET 	y -2 aji = 0 , where Q., is positive 

definite symetric ie: Q ,.  >0. 

2. The closed loop system must be internally stable, ie: eigenvalues of A must 
be stable. Controller must be stable, eigenvalues of 	/lc  must be < 0. No 
eigenvalues on the jo3 axis (ie marginally stable closed loop system). 

""'  3. Verify the stability of the Riccati Solution thus: A. = A +  
where A, must be positive definite. 

Fig.5.16 
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Thus, the problem can be defined and solved in several different ways, simulation results are given 

in the following pages. The chromosomal representation for this problem is illustrated below. 

a2 la1 I an I e2 Cl 

  

hi  A I Fitness 

      

Fig.5.17 
Chromosomal Representation for the 1-1.., problem 

The genetic algorithm conducts a search over (ao,al,a2,co,chc2,y) using real number codification, 

and where: hx = trace(Q„..h.h r ), the composite cost functional: fAh„-i-(xxy),  and the fimess is 

the inverse: Fitness=1Ifi. The presence of the parameter a can be used to see the effects on rate of 

convergence and final solution by varying alpha. Note that if any of the constraints are violated, 

then the solution is infeasible and the fitness is made zero. The solution to the Riccati equation Q.. 

is found using a Hamiltonian matrix approach. Because this problem is essentially a constrained 

optimization problem, a second method for solving it would be to define a Lagrangian function, 

similar to the H2 problem discussed in section 5.2.3. Alternatively, rather than attempting to find 

the minimum value of y which will minimize equation 5.41, we could simply set a constraint on y 

(design goal), for instance y0.7, and only minimize equation 5.41. This problem then becomes a 

single objective rather than multiobjective constrained optimization problem. Simulation results 

using the GA algorithm-2 from the previous page are tabulated below. For this algorithm we used: 

binary tournament selection, crossover probability P=0.5, mutation probability P.=0.2, full order 

compensator, population siz60, uniform weighted average crossover. 

(a) Sinale Objective: design aoal: aamma50.7:  

In this simulation, we minimize equation 5.37 and set a constraint on gamma thus: y0.7. We ran 

the simulation 5 times due to illustrate the probabilistic nature of the GA, results are tabulated in 

Table-5.6 below: 

gen: az a 1  a() C2 Ci Co He. 

8.49 31.92 75.04 -0.36 -0.816 6.073 0.5802 

500 8.62 34.13 75.25 -0.447 -0.893 6.650 0.5511 
500 8.69 34.42 76.41 -0.447 -0.928 6.754 0.5510 
500 8.47 33.64 73.20 -0.445 -0.839 6.488 0.5515 
500 8.43 33.46 72.49 -0.446 -0.816 6.420 0.5513 
500 8.40 33.28 71.81 -0.447 -0.791 6.349 0.5511 

Table 5.6 
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Figure 5.18 below compares the singular value plot of Tz_„. using conventional state space and 

genetic algorithms for the design goal: gamma<0.7. Results are nearly identical. 

closed loop singluar value plot w —> z_ 
10 

             

             

       

4—*-00 NVENTI0 NAL 
SOLUTION 

 

              

              

              

10 

  

GA p:)LUTION I  

      

             

             

             

10 

-3 
10 

             

             

             

             

             

1 0 -3  1 02 	1 0 	 10 ° 	10 1 	 1 0 

Fig.5.1 8 
Comparing singular value plots: GA and Conventional Methods 

This next plot illustrates the effects of decreasing the value of gamma. Values of gamma are: 1, 

0.9, 0.8, 0.7, 0.6. The green plot is for y=1, with the red plot furthest away at y=0.6. 

Closed loop singular value plot of w 
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Fig.5.19 

Because of the weakly coupled state (0.0005), a family of compensators can be implemented which 

will satisfy the requirements for y0.7 or any other value of gamma. For gamma -y0.5, no 

solution exists. 



• a=0.1 CA solution 

111  a=1.0 GA solution 

• a=10 GA solution 

conventional solution 
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(b) Multiobiective: minimize fx=(h)r+axyl 

In this simulation, we minimize the composite cost functional which defines a multiobjective 

problem. We ran the simulation for different values of a to see the effects of  a  on the final 

solution. Note the additional constraint of gamma<1. Results after 500 generations are tabulated 

in Table-5.7 below: 

a2 at ao c2 Cl co H.. Alpha. 

8.49 31 75.04 -0.36 -0.816 6.073 0.5802 

8.00 32.32 64.54 -0.48 -0.588 5.902 0.5406 1.0 

8.33 33.11 71.10 -0.44 -0.779 6.301 0.5501 0.1 

8.01 37.51 59.75 -0.72 -0.600 7.166 0.4865 10 

Table 5.7 

From table 5.7, in the first simulation, the value of a=1 places equal emphasis on both minimizing 
— 
A l'— the function hx = Cc.,(s1 — ) B and gamma. In the second simulation less emphasis is placed 

on gamma, and in the third simulation greater emphasis is placed on minimizing gamma. The 

singular value plots of the three simulations is shown in figure 5.20 below: 

10 2  

10 2 10 	10 0 	10 1 	10 2 	10 
Fig.5.20 

Comparing singular value plots: GA and Conventional Methods 

Whilst all solutions give an almost identical singular value plots, some shaping can be achieved by 

the choice of a. In particular, larger values of a=10 give a flatter response (green curve). Values 

of a<I have little influence on the response. 
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Figure 5.21 on the following below illustrates a typical convergence plot, convergence is generally 

within the first 100 generations of the GA. 
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Fig.5.21 
Convergence of the genetic algorithm 

(ii) Reduced order Compensator: A reduced order compensator (2nd order) can also be 

implemented directly by defining the compensator matrices as: 

= L- ° 	1 	[°1 ] Ce  = [co  Eqn.5.43 

Again, the simulation is repeated for this system, and results are given on the following pages. 

(a) Single Objective: design goal: gamma<0.70:  

In this simulation, we minimize equation 5.41 and set a constraint on gamma thus: -10.7, results 

are tabulated in Table-5.8 below. From table 5.8, we can see that the results using genetic 

algorithms agree with the results obtained using conventional methods (shown in red in the first 

row of table 5.8). For this algorithm we used: binary tournament selection, crossover probability 

Pc=0.5, mutation probability P m=0.2, population siz60, uniform weighted average crossover, 

generations=1000. We ran the simulation 5 times to illustrate the probabilistic nature of the GA. 

In this case, there is less variation in convergence when compared to the full order compensator 

(table 5.7), i.e. the GA algorithm converges to the same solution in all cases. The red values in 

table 5.8 are the compensator coefficients obtained using MATLAB's FL design and model 

reduction. The results obtained using genetic algorithms produce a compensator with a lower FL, 

values. 



-2 
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gen: a2 a 1  ao C2 C1 Co H._ 
3.303 14.3 -0.366 1.141 0.58124 

1000 0.000 3.863 15.5 0.000 -0.462 1.364 0.55130 
1000 0.000 3.822 15.4 0.000 -0.456 1.352 0.55098 
1000 0.000 3.849 15.5 0.000 -0.460 1.360 0.55160 
1000 0.000 3.858 15.5 0.000 -0.461 1.362 0.55102 
1000 0.000 3.861 15.5 0.000 -0.461 1.364 0.55113 

Table 5.8 

Figure 5.22 below compares the singular value plot of the reduced order compensator obtained 

using genetic algorithms with conventional model reduction techniques: 

0 
	 reduced order ccopensator. red=GA, green=cawentional 

10 

10 

10 

10 -2  10 -1  10 0  10 1  10 2  

Fig.5.22 
Comparing singular value plots: GA and Conventional Methods Reduced order compensator 

Figure 5.22 shows that whilst the genetic algorithm compensator has a slightly  lower  peak (Flo. 

norm), it has a higher singular value over most of the frequency range from 10 -2  to  10+ 2 . 

(b) Multiobiective: minimize fx=(hx+ccxy) 

In this simulation, we minimize the composite cost functional for 3 different values of a: (1, 0.1, 

10). Results for this simulation after 1000 generations are tabulated in table-5.9  below: 

az a l  ao C2 CI Co Y FL a 
3.303 14.3 -0.366 - 0.58124 

0.000 4.032 15.9 0.000 -0.494 1.441 0.6485 0.54139 a=1.0 

0.000 3.337 14.3 0.000 -0.369 1.146 1.0000 0.58123 a=0.1 

0.000 6.599 22.4 0.000 -0.991 2.477 0.4931 0.48132 a=10 

Table 5.9 
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Comparing the results of the simulation from table-5.9, we can clearly see that when alpha=0.1, the 

compensator obtained with genetic algorithms is identical to that obtained with conventional model 

reduction techniques. This indicates that the choice of alpha should be less than one if 

implementing reduced order compensators with genetic algorithms. 

Figure 5.23 below is a singular value plot of the results obtained using genetic algorithms for the 

reduced order compensator for the 3 different values of alpha: 

reduced order compensator: alpha: red=0.1 blue.] green=10 

10 
-2 	 -1 	 0 	 1 

	
2 

10 	 10 	 10 	 10 
	

10 
Fig.5.23 

Comparing singular value plots for different alphas. 

From figure 5.23, increasing the value of alpha simply places more emphasis or penalty on gamma, 

thus it would be expected that for large values of alpha, the peak of the singular value plot is 

lowered at the expense of raising the rest of the curve. 

In summary, implementing FL compensators with genetic algorithms, there are two possible 

scenarios, the first would be to minimize equation 5.41 subject to the constraint given by equation 

5.42. The compensator would then have the property: 11., < y. Note that if y is chosen too small, a 

solution may not exist. A second method is to minimize the composite cost functional: 

fx=(hx+axy), where hx  = trace(Qc...h.h T )
, with alpha set to less than one. 
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5.3.4 Convergence Rates for Hybrid Genetic Algorithms: 

This last set of simulations compares the convergence rates of the three different hybrid genetic 

algorithms: (a) conventional genetic algorithms, (b) genetic algorithms and simulated annealing, 

and (c) genetic algorithms and greedy search. In all cases, the convergence rates differ 

significantly. 

Figure 5.24 below compares the convergence rate of the three algorithms for the full order 

compensator. The red plot is the conventional genetic algorithm, the green plot is the hybrid 

genetic algorithm + simulated annealing, and the blue plot is the hybrid genetic algorithm + greedy 

search strategy. Both hybrid methods converge much more rapidly compared with the 

conventional genetic algorithm. 

Full order compensator: 
Red:GA Gmen:SA Blue::Greedy 

MFP computational ettor (MFP) 

Fig.5.24 

Figure 5.25 below shows the convergence properties of the 3 genetic algorithm methods for the 

reduced order compensator. 
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Fig.5.25 

5.4 Mixed H2/1-10,3  Controller Synthesis: 

5.4.1 Simulation Setup: 

For the last set of simulations, we apply genetic algorithms to the design of full order and reduced 

order compensators with mixed H2/FL specifications. This is in essence a combination of the two 

previous methods, and represents a multiobjective optimization problem. Currently there is no 

direct design solution to this problem. The only two iterative numerical optimization methods are 

Homotopy theory, and linear matrix inequalities (a convex optimization approach). These were 

discussed earlier in section 5.1.4. 

(i) Plant Model: For this simulation, the same plant model as used in the previous section 5.2 is 

used for 1-1,„, design: 

A.x -1-131 .w B2 .0 

z2  = Crx + Dir w+ 4 2 .0 

z. = C2 • X + D2i • W D22  • u 
y = cy x + D31 . w+ D32•U 

Eqn.5.45 
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This is illustrated in figure 5.26 below: 

Fig.5.26 
Simulation Setup Plant/Compensator 

The objective is to minimize the H2 norm from the exogenous input w to the performance output z2. 

Additionally, we wish to either minimize the IL from w to z„,,, or a more relaxed approach would 

be to satisfy the constraint: H., < y, where y is some design goal. Again, to minimize the H2 norm 

we simply minimize the function: 

f2 = Q2. F3. h T  

and to minimize the , norm we minimize the function: 

Eqn.5.46 

= trace(a..h.li)+ a. y 	 Eqn.5.47 

(ii)Compensator: Again, a compensator in state-space is sought with the form: 

In transfer function form: 

= Ac . x +B. y 
= Cc .; 

Eqn.5.48 

K(s)- 
C2 .S

2 
1-C1 .S+ Co  

Eqn.5.49 
s3 + a2 .s 2 + ap s-F a o  

Where equations 5.43 and 5.44 are related using a minimal realization in reachable canonical form 

as previously described in section 5.2 (equations 5.28). 

(iii) Closed Loop System: The closed loop system is obtained by combining equations 5.22 with 

5.23 into one single (augmented) system: 

+ h.w 

Eqn.5.50 Z2 = crx 

= co..x 
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The system is now in input/output: w -->f z2, 	I form, where the matrices are given by equations 

5.27. In the mixed H 2/FL, simulation, both z.., and z2  outputs must be considered. 

5.4.2 Solution Using Genetic Algorithms: 

Both full order and reduced order compensators will be implemented and results compared with 

those obtained using conventional methods above. The complete genetic algorithm is summarized 

below: 

Multi-Objective: 

The multi-objective genetic algorithm is to find the compensator parameters: 
fao,a i ,a2,co,c1,c2,y1 which will minimize the following functions: 

f2 = 

f = trace(Q,...h.i3 T )+oc.? 

Subject to the additional following constraints: 

1. The existence of the solution to the Riccati equation, where 	is positive definite 
symetric: Q,.  > 0. 

ATa. 	 T -6..+7_2 a,..idire",  . 09  

2. The existence of the solution to the Lyapunov equation: where Q2 is positive definite 
symetric: Q2> 0. 

A TQ2 62. A + .e.12 7. • =0 

3. The closed loop system must be internally stable, ie: eigenvalues of A must be 
stable. Controller must be stable, eigenvalues of Ac must be <0. No eigenvalues on 
the jce axis (ie: marginally stable closed loop system). 

4. Verify the stability of the Riccati solution, where Ar must be positive definite: 

Ar = A  

Fig.5.27 

(i) Full order Compensator: The chromosomal representation for this problem is illustrated 

below: 
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Fig.5.28 
Chromosomal Representation for the mixed Hz/H. problem 

The genetic algorithm conducts a search over (ao,al,a2,co,c1,c2,TI using real number codification, 

and where: the fitness is given by the inverse of the composite cost functional: 

Fitness — 	 
12+ 1c. 

Eqn.5.51 

If the solution is feasible, however if any of the constraints are violated, then the solution is 

infeasible and the fitness is made zero. Note the additional constraint y<1. The presence of the 

parameter K (>0) can be used to see the effects of the final solution by varying relative emphasis on 

the H2 or FL components. In the following simulations, the value of K is set to: 0.1, 1, 10, the 

value of alpha is fixed c0.1. For this algorithm we used: binary tournament selection, crossover 

probability Pc=0.5, mutation probability P„,=0.2, population siz50, uniform weighted average 

crossover, generations=1000. Results are tabulated in Table-5.10, 5.11, 5.12 for values of x-=0.1, 

1, 10 respectively below: 

v=0-1: In this simulation, more emphasis is placed upon minimizing the H2 norm of the w—>z2  

transfer function by choosing K=0.1. Subsequently, the results would give a compensator 

which is closer to the H2 compensator obtained in section 5.2. Looking at figure 5.29, the 

top graph compares the response of the mixed H2/FL compensator with that of only the H2 

compensator obtained in section 5.2, the bottom graph compares the response of the mixed 

H21FL compensator with that of only the FL compensator obtained in section 5.3. We can 

see that the closed loop response matches the H2 response better as more emphasis was 

placed on minimizing the 12  function. Note the additional constraint that .-)11. Total 

iterations=400. 

x=1.0: In this simulation, equal emphasis is placed on both minimizing the H2 norm of the w-3z2 

transfer function and the H., norm of the w—n,„,, transfer function by choosing ic=1. 

Subsequently, the results would give a compensator which is a compromise between the H2 

compensator obtained in section 5.2, and the H., compensator obtained in section 5.3. 
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Looking at figure 5.30, the top graph compares the response of the mixed H2/H., 

compensator with that of only the H2 compensator obtained in section 5.2, the bottom 

graph compares the response of the mixed H 2/11., compensator with that of only the H., 

compensator obtained in section 5.3. We can see that the closed loop response is an 

attempt to simultaneously match both the H2 response and FL Total iterations=400 in 

each simulation. 

x=10: In this simulation, more emphasis is placed upon minimizing the H.. norm of the w—n.. 

transfer function by choosing x=10. Subsequently, the results would give a compensator 

which is closer to the Ho. compensator obtained in section 5.3. Looking at figure 5.31, the 

top graph compares the response of the mixed H2/11., compensator with that of only the H2 

compensator obtained in section 5.2, the bottom graph compares the response of the mixed 

H2/11„. compensator with that of only the H.. compensator obtained in section 5.3. We can 

see that the closed loop response matches the 1-1., response better as more emphasis was 

placed on minimizing the f.. function. Total iterations=400. 

Table 5.10 below gives the compensator coefficients for the three values of K.  Note that as the 

value of x increases from 0.1 to 10, more emphasis is placed on reducing the H., norm, 

subsequently this value is smallest when x=10. However as the value of H., decreases, the value 

of H2 invariably increases. The choice of K determines the compensator coefficients. 

Consequently, when synthesizing a mixed H 2/H., compensator, first select the desired upper value 

of H., < y, and then compute the compensator coefficients to minimize the H2 norm. 

The red values of H2 and H., in table 5.10 are computed from individual H2  and H.. designs 

(section 5.2 and 5.3) and do not represent a mixed HAI_ design. However as ic-40, then 

H2-30.4096, however as )c—>00, then H.,—>0.5802. 

ic a2 ai a() c2 c1 co H2 H.. 

0.4096 0.5802 

0.1 8.782 21.570 74.957 -0.054 0.034 3.357 0.4161 1.0000 

0.8798 1 8.272 26.675 71.140 -0.179 -0.346 5.111 0.4556 

10 7.949 30.786 68.717 -0.319 -0.688 5.802 0.5020 0.8591 

Table 5.10 
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(ii) Reduced order Compensator: A reduced order compensator (2nd order) can be implemented 

directly by defining the compensator matrices as before: 

Again, the simulation is repeated for this system, and results are tabulated in Table.5.13 on the 

following page. For this algorithm we used: binary tournament selection, crossover probability 

P=0.5, mutation probability P m=0.2, population size=60, uniform weighted average crossover, 

generations=400. 

K az al ao C2 C1 Co H 2  H., 

0.4096 0.5802 

0.1 0.000 1.544 10.311 0.000 •-0.057 0.458 0.4161 1.0000 

1 
_ 

10 

0.000 2.477 12.009 0.000 -0.194 0.846 0.4560 0.8796 

0.000 3.207 13.957 0.000 -0.340 1.103 0.5014 0.8591 

Table 5.11 

Table 5.11 above summarizes the results obtained with genetic algorithms for the reduced order 

compensator with values of K=0.1, 1, 10 respectively. For each value of K, the simulation was 

conducted 5 times to observe any variation in convergence, and in each instance the results were 

identical, consequently only one result is given for each K. Figures 5.32, 5.33, 5.34 below compare 

the reduced order mixed H211-1_ compensator obtained using genetic algorithms with the 

conventional H2 and Hoo  compensator obtained using state space solutions. Again, with K=0.1, the 

compensator is much like the H2 compensator. With K=1, the compensator is an in-between 

compromise between the H2 and Hoo  compensator, and finally when K=10, the compensator 

becomes much more like the Ho., compensator. 
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5.5 Chapter Summary and Conclusion: 
(i)Summary: 

Simulation results indicate that genetic algorithms can be successfully applied to the design of full 

order and reduced order H2, H.„ and mixed HAI_ compensators. Results agree well with those 

obtained using conventional state space solutions, and conventional model reduction techniques. In 

most cases, the GA converged within 400 generations. In all simulations we used: binary 

tournament selection, crossover probability 13,.9.5, mutation probability P m=0.2, population 

siz50 to 100, uniform weighted average crossover. The mutation gain was gradually reduced 

over the simulation run for the conventional genetic algorithm. Genetic algorithms are 

conceptually elegant, simple and applicable to a wide range of robust control and multiobjective 

constrained optimization problems. In this applications, solution to the H2 or H., problem required 

only a single objective constrained optimization. The solution to the mixed H2/1-I., is a 

multiobjective constrained optimization problem which leads to a family of solution. By proper 

selection of the scalar weight K, more or less emphasis can be placed on the optimization of either 

the H2 or H., specifications. This gives the user some design freedom in implementation. Note as a 

further extension, the scalar weight x can be frequency dependent x(jw). 

(ii)future work: 

1. Replace the H2 or H., compensator with a RBF network trained using genetic algorithms, the 

figure below illustrates a typical setup for a H2 optimal controller: 

minimize r  2 1lTzw 0 Mg  

G(s) 	 z  

RBF I:iiij train with 
genetic 
algorithms 

Fig.5.34 
Using a RBF H2 and Ha., compensator 

2. For the mixed H2/11., simulation, use linear matrix inequalities and convex optimization 

comparing solutions with genetic algorithms. 

3. Addition of frequency dependent weights which can also be designed using hybrid genetic 

algorithms. 
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6.1 Fault Detection and Isolation: 

6.1.1 Introduction: 

This chapter examines the subject of fault detection and isolation (FDI). Its purpose is twofold: (1) 

to provide an initial outline and summary on a number of traditional and active areas of research 

involving fault detection and isolation, and (2) the application of hybrid GA and neural networks to 

the detection and identification of faults. Simulation results comparing genetic algorithms and 

conventional fault detection methods is presented. A comprehensive survey on FDI can be found in 

reference [1]. 

The objectives of fault detection and isolation can range from simple diagnosis of non critical 

components, to more complex life critical systems such as aircraft, nuclear power plants, and 

medical equipment. Faults, when detected early can be used to prevent major damage to 

equipment, loss of operation or income, or loss of human lives. Faults which occur gradually over 

a long period of time (incipient), generally indicate equipment or component mechanical wear, 

deterioration and contamination. Sudden (abrupt) faults on the other hand are generally easier to 

detect, but can be more damaging if not detected quickly. When a fault has been detected, various 

contingencies can be initiated from simple manual component replacement to more complex control 

reconfiguration. Nowadays, fault detection and isolation has become an integral part of the 

operation of ships, submarines, aircraft, spacecraft and industrial plants. Fault detection and 

isolation has evolved from simple limit checking, to more sophisticated analytical methods 

involving plant models and state estimators, knowledge databases, expert diagnostic systems, and 

artificial intelligence. Fault detection and isolation can be broadly classified into three main 

categories: signal based, model based (qualitative and quantitative), and observer based. 

(1) Signal based: These methods are the simplest and generally the more commonly used in 

industry. For example comparing readings from a multiply-redundant sensor system, limit and 

threshold checking, trend checking, and spectrum checking. Suitable for manual inspection and 

operation. 

(2) Model based: Model based methods fall into two categories: qualitative and quantitative. 

(i) Qualitative: A model is required, however not necessarily a mathematical one. This includes 

Artificial Intelligence (Al), Artificial Neural Networks (ANN) black box models, Expert Systems, 

Fuzzy Logic Systems (FLS), fault trees, topological and rule-based methods are generally a 

combination of the above. 
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For instance, neural networks can be trained to classify data into healthy or faulty. Neural network 

methods have been slow to emerge in the area of FDI due to the long training times involved. 

There is ample and varied literature on these methods (see section 6.14 below for references) . 

(ii) Quantitative: These methods are well established for linear systems, and all require an 

accurate mathematical model of the process. Methods include fault detection filters (FDF), parity 

space and optimally robust parity methods, unknown input observers (UIO's), eigenstructure 

assignment, influence matrix methods and robust H„., (formed spaces) methods. All these methods 

use the concept of analytical redundancy in which the output of any one sensor can be 

reconstructed from measurements of the other (healthy but dissimilar) sensors, and a-priori 

knowledge of the plant. Analytical redundancy requires no extra hardware (i.e. sensors/actuators) 

when compared to hardware redundancy (or parallel redundancy), in which sensors/actuators are 

physically duplicated. All these methods (excluding He.,) suffer from model uncertainties, 

disturbances and noise. 

(3) Observer based: these methods include: Kalman filters and Luenberger observers. Newer 

techniques include: robust sliding mode Variable Structure System (VSS) observers, nonlinear 

observers such as extended Kalman filters (EICF) for stochastic systems, and extended Luenberger 

observers for deterministic systems, Lie-algebraic methods, robust 11., methods, and 

pseudolinearization methods. The advantages include robustness to disturbances and model 

uncertainties, and ability to deal directly with the nonlinearities of the systems. In many cases, the 

nonlinearity is treated as an unknown bounded disturbance. Observer based methods are also 

affected by model uncertainties and disturbances, however robustness issues can be included in the 

overall part of the observer design. The application of nonlinear and variable structure observers 

to FDI is presently an active area of research. 

There are three stages to detecting faults: (i) Fault Detection: knowing that a fault has occurred 

and generating an alarm condition, (ii) Fault Isolation: locating the fault i.e. deciding which sensor 

or component has failed, and (iii) Fault Identification: estimating the extent or size of the fault, and 

any time dependent behavior. The first part is the simplest, detecting a fault condition. This is 

accomplished by calculating a residual vector, which is the difference between the measured and 

calculated outputs (from a mathematical model) of the system. 
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In the absence of faults, the residual is zero, when a fault occurs, the residual is nonzero. Problems 

arise when external disturbances, model uncertainties and noise exist, resulting in a nonzero 

residual for the fault-free condition. Robust, adaptive thresholding, and statistical techniques have 

been developed to address this problem. The concept of residuals is described in more detail in 

section 6.1.6. The second part is more difficult, to locate (i.e. isolate) the faulty sensor or 

component. Presently the method of Multiple Hypothesis Testing and Maximum Likelihood ratio 

testing are used. These are all statistical methods requiring multiple models to be tested 

simultaneously, each model assumes a specific fault, including one model which is fault free. The 

residual from each model is statistically tested against the actual process output to infer the cause 

of the fault. The third part (size of fault) can be estimated once the fault has been located. Note 

that both model based and observer based methods involve the calculation of a residual vector. 

The prompt detection of faults is becoming more vital, as the complexity and interdependence on 

automation is increasing, and in many cases becoming more life-critical such as nuclear power 

plants, medical equipment, and aircraft control. For instance, control system failures have 

contributed to a number of aircraft incidents: blocked pressure ports which produced erroneous air 

data leading to a crash [2], a false stall warning because of a stuck angle-of-attack detector leading 

to damage to the aircraft [3], and separation of an engine pylon caused loss of power, loss of 

hydraulic systems, and asymmetrical flap settings leading to a crash [4], failed inertial reference 

unit (gyro) caused the ARIANE-5 (Flight-501, June 1996) to crash [2]. 

This chapter is primarily concerned with detecting and isolating faults occurring in the plant 

sensor and actuator part of the control loop. Both linear and nonlinear systems are investigated. 

Simulations using genetic algorithms are compared with more traditional methods of parity space. 

This chapter is not intended to be a comprehensive survey of fault detection and isolation, however 

a brief introduction and overview will be provided, and many references are also provided at the 

end of the chapter for the interested reader on this subject. 

6.1.2 Fault Detection and Isolation - Survey: 

A large number of survey papers have been published on fault detection and isolation, refer to [5, 

6, 7, 8, 9, 10, 11, 12] dealing with parity space and dedicated observers, fault detection filters, 

residual generation, robust observers for linear systems, expert systems, artificial intelligence, 

fuzzy logic and neural network based methods, and statistical methods are discussed in [80]. 
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An excellent introductory textbook is by Chen and Patton [1]. Before discussing techniques for 

fault detection and isolation, some definitions are provided which are used throughout the FDI 

literature: 

Fault: An unpennitted deviation of at least one characteristic property or parameter of the system 

from the acceptable/usual/standard condition. 

Failure: A permanent interruption of a system's ability to perform a required function under 

specified operating conditions. 

Residual: A fault indicator, based on a deviation between measurements and mode-equation based 

computations. Residuals can be computed from either states or measured outputs. 

Analytical Redundancy: Use of two or more (but not necessarily identical) ways to determine a 

variable, where one way uses a mathematical process model in analytical form. As opposed to 

physical/hardware redundancy in which sensors/actuators are duplicated, and a voting scheme is 

required. 

As indicated earlier, fault detection and isolation methods can be broadly classified into three 

categories: (i) Signal Based, (ii) Model Based (qualitative, quantitative), and (iii) Observer 

Based. Figure 6.1 on the following page illustrates this classifications. 

A failure detection and identification scheme must posses certain fundamental characteristics in 

order to reliably detect faults, and minimize false alarms: (i) Robustness to modeling uncertainties. 

(ii) Robustness to disturbances and noise. (iii) Ability to isolate faults. (iv) Ability to detect 

incipient (gradual) and abrupt (sudden) faults. (v) Detection of both additive and multiplicative 

faults. (vi) Applicability to non-linear systems. 

Both linear and nonlinear observer (variable structure) methods offer the greatest potential to fault 

detection and isolation due to the robustness properties. Although model based and observer based 

methods require a-priori knowledge of the plant dynamics, and the concept of analytical 

redundancy, the main difference is that model based methods do not require a knowledge of the 

plant states, only input/output measurements. Consequently, observer based methods can 

potentially diagnose faults more reliably due to the extra information from the plant state vector. 
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Variable structure observer based methods are gaining popularity due to their robustness properties 

and application to nonlinear systems. They are described briefly in section 6.1.5(iii). Figure 6.1 

below illustrates the various fault detection and isolation classification schemes: 

(., FDI Methods 

Signal Based 

Model Based 

Qualitative (heuristic) ) 

(Expert Systems 
_ -Fuzzy Set Theory 

-Topological Methods 
\fault Trees 

	(Quantitative (analytical) 

(‘ 	Parity Space 
	

i 

Fault Detection Filters ) 

Unknown Input Observers ) 

arameter Estimator 	) 

-Least Squares 
-Instrumental variable 
-Neural Network 
	 ) 

Observer Based 

	i 

	) 
I---Luenberger (deterministic) 

— -Kalman Filter (stochastic) 
-Extended Kalman Filter 
Variable Structure Observer 

Nonlinear) 	I 

'Extended Luenberger 
-Extended Kalman Filter 
-Lie Algebraic Methods 
-Variable Structure Observer 

\ -Linearization Methods 
N. 	  

Fig.6.1 
Classifications of FDI Methods 
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6.1.3 Signal Based Methods: 

These are methods which do not require any mathematical models of the plant. The simplest 

method of fault detection is limit checking. Other methods use special or multiple sensors such as 

strain gauges on critical structures, redundant sensors, and voting systems, frequency domain 

analysis (signature analysis), although this requires knowledge of the spectra for normal and failed 

operation. These methods are very common in industrial plants. A very popular method includes 

the use of Multi Valued Influence Matrices (MVIM) in which fault diagnosis is performed by 

matching a measurement vector against the columns of the influence matrix, generally used in 

complex systems [13]. Note that MVIM methods require some training/learning techniques to 

construct the influence matrix. A neural network equivalent classifier can be used in an identical 

manner. See also [14, 15] for variations involving the use of influence matrices. Others include 

Fault Tree Analysis (FTA) and Event Tree Analysis (ETA). 

In summary, signal based methods include: 

- Topological approaches such as fault trees/directed graphs [64]; 

- Multivalued influence matrix approach [13, 14, 15]. 

6.1.4 Model Based Methods: 

Methods which require a mathematical model of the plant. These methods are more extensive, and 

do not necessarily require additional, or special hardware to identify faults. They can give more 

accurate estimation of faults, and can use analytical redundancy such as sensor fusion techniques. 

These fall into two categories: Qualitative or heuristic and Quantitative or analytical methods. 

(i) Qualitative: Applicable to large scale systems in which the dynamics of the process is not well 

known. These methods require a black box model or heuristic model of the plant, these include: 

Expert systems and knowledge databases: [8, 59, 60, 61, 62]. 

Artificial intelligence methods [63]. 

Fuzzy logic identification. In most real world systems, as the complexity of a system 

increases, our ability to create accurate and precise models about such systems decreases. 

In these instances, fuzzy models of the system can be constructed where the physical 

processes are poorly understood but in which linguistic, intuitive knowledge and degree of 

vagueness of the the variables of the system are available. Fuzzy model identification and 

fault diagnosis has been applied to: modeling internal combustion engines [56], nonlinear 

systems [57], process industries [81], survey papers on fuzzy modeling and control: [55, 

58]. 
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Neural networks have become an active area of research in fault diagnosis. Neural 

networks have robustness and generalization capabilities, with the ability to adapt and 

learn. Neural networks can be trained to classify faults from input/output training data 

sets, and learn complex nonlinear transfer functions for modeling applications. 

Introductory papers can be found in: [67, 68, 70]; 

Hopfield/ART-1/ARTMAP classifiers [65, 66, 69]; neurofuzzy methods: [55]; modeling 

and state estimation [71]. An issue of concern however with neural network is that the 

training algorithms may suffer from local and slow convergence. Currently, qualitative 

methods using neural networks for fault detection and isolation is a promising area of 

research. 

(ii) Quantitative: Require an accurate mathematical model of the plant. Quantitative methods 

operate in two stages: - residual generation and residual analysis. Many well established methods 

are available, these are: 

Parity space is one of the most popular [1, 17, 19], with variations using fuzzy logic [51, 

52], optimal parity vectors [16], optimally robust parity relations [6, 18], continuous 

parity space [20], generalized parity space [21], 

- Parameter estimation/system identification methods see [34, 35, 36, 53], 

The more cornmon and well established methods of Parity space will be discussed in further detail 

due to their simplicity, ease of use to linear systems in state variable form, and for simulation 

comparison with genetic algorithms. Figure 6.2 illustrates the relationship between different fields 

of science and their relative degree of model accuracy (i.e. depth of knowledge): 

Qualitatiw Models Quantitative Models 

  

Fig.6.2 
Model Accuracy Versus Field of Knowledge 

Qualitative models in which accurate mathematical models are not available include biological, 

social, economic systems. Quantitative models in which an accurate mathematical model can be 

developed include thermal, electrical, mechanical and chemical processes. 
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6.1.5 Observer Based Methods: 

Observer based methods are the most powerful, extensive, and can be applied to nonlinear systems. 

These methods use an observer which estimates the states of the plant, residuals can then be 

calculated from the difference of the measured and estimated states. There are several types of 

observers: Luenberger (deterministic), Kalman filters (stochastic), Extended Kalman filters (non 

linear stochastic systems) and Sliding mode observers. There are many different variations, in 

particular see [49] for general introduction to nonlinear observers. Observer based methods 

include: 

Fault Detection Filters (FDF) see [1, 22], robust [23, 24, 54], and simplified design 

method [25, 26]. 

- Unknown Input Observers (U10) see [1, 27, 28, 30], stochastic systems [29], and robust 

[31], and Dedicated Observer Schemes (DOS): which requires multiple observers for each 

sensor, for LTI systems see [32, 33], 

Linear Kalman Filters and Linear (KF) Luenberger Observer: [48, 72, 73, 74] are well 

established in the literature. 

- Extended Kalman Filter [40] (EKF) and Extended Luenberger observer: also known as 

nonlinear Luenberger observers, [46, 47]. 

- Thau Observer: which is more of a verification method rather than design, see: [37]. 

Lie Algebraic Methods: newer but more difficult to apply, control affine form only. 

- Adaptive Observers. 

- Variable Structure Observers: which includes the Walcott and Zak observer [41, 42], the 

Utkin observer [44], the discontinuous observers [43]. Variable structure observers 

apply to both linear and nonlinear systems [45]. 

High Gain Observers. 

(i) Extended Luenberger observers: [46, 47] and extended Kalman filters [40, 49] provide a 

natural extension of conventional Kalman and Luenberger observers to nonlinear systems. The 

extended Luenberger observer uses an extended linearization method which is independent of the 

operating point (pseudolinearization). This pseudolinearization is made independent of the 

operating point by nonlinear state transformation to observer canonical form. The mathematical 

description of the extended Lumberger observer is however complex. The Extended Kalman Filter 

(EKE) works by constantly linearizing the system at the current plant operating point, the EKE 

filter minimizes the trace of the covariance matrix of the estimation errors. 
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Its main deficiencies include: requiring perfect system knowledge, no a priori knowledge on 

stability, no robustness against modeling errors can be guaranteed, and computer intensive real 

time implementation. An enhancement of the extended Kalman filter is the Constant Gain 

Extended Kalman Filter which addresses the robustness issues and real time implementations. 

Thau Observers: [37, 49], describes a method of verification rather than a direct design 

method. Sufficient conditions for the convergence of the observer are given but no information on 

how to design the observer is provided. It can be applied to control affine nonlinear systems. The 

Thau method does not address the problem of modeling errors, and lacks robustness, however its 

main advantage is in its simplicity. 

(iii) Variable structure Observers: (VS) observers are a relatively new type of observers which 

owe their design and implementation to Lyapunov stability theory and variable structure/sliding 

mode control theory. Because of this close affinity to VS control, the properties of robustness, 

invariance in sliding mode and applicability to nonlinear systems are all equally valid to VS 

observers. There are at present three main types of VS observers: (i) The Walcott and Zak 

observer, (ii) The Utkin observer and (iii) The Discontinuous observer. A brief description is 

given below. For an introductory treatment see [43]. 

(a) The Walcott and Zak Observer: Perhaps one of the easiest VS observer is the Walcott and 

Zak observer [41, 42]. The only condition imposed is that the disturbance/nonlinearity is 

matched, and the solution to two Lyapunov equations. This observer is identical to a standard 

Luenberger observer with a VS term which eliminates the disturbance term. Relatively easy 

to apply to linear systems, however a boundary layer is necessary to prevent chattering. 

(b) The Utkin Observer: The Utkin observer [43, 44] requires a similarity transformation so that 

the outputs y(t) appear as components of the states. The plant is then in a symmetric 

(observer canonical) form. It can be shown that if the output error e(t) = 	y(t) 

converges to zero, then the state error e x (t)= i(t)— x(t) also converges to zero 

asymptotically. Proof is by defining a Lyapunov function candidate. It does not require 

matching conditions on the disturbances. 

(c) The Discontinuous (structured) Observer: This is a general form of the VS observer, it 

requires a similarity transformation to symmetric canonical form and the solution to two 

Lyapunov equations. Much more difficult to apply, but more general with fewer restrictions. 
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Variable structure observers offer the greatest potential due to their robustness properties, able to 

deal with system nonlinearities and external disturbances. In the applications to linear systems 

with matched disturbances, the VS observer is relatively straightforward to apply. Chattering must 

also be considered during implementation. 

(iv) Adaptive observers: [49, 50] were designed to be for a certain class of nonlinear second order 

systems with bounded coefficients and having bounded time variation of the form: 

51- 	+ a2 (y, Y,t)= b(y,Y,t).u+ f(y) 

where a 1 , a2 , b are unknown functions of time, and f(y) is a known functions of y. Applying a 

transformation to canonical form, results in a seventh-order ordinary differential equation. 

Because of its restricted applicability to second order systems, and amount of real-time 

computation, the adaptive observer is not very common. 

(v) High gain observers: (HGO), also known as the Gauthier-Kupta observer, it gives very fast 

convergence of the estimation error. Works only with single output systems, this is generally not a 

drawback because multiple HGO can be designed for each individual output. There are restrictions 

to the structure of the system dynamics, and is not very general. Only applicable to certain class of 

nonlinear systems. 

(vi) Fault detection filters: FDF (also known as fault sensitive filters) are a special class of 

Luenberger observers which generate directional residuals for the purpose of fault isolation. Fault 

detection filters are full order state estimators with a special choice of observer gain, chosen such 

that when a particular fault occurs, the residual is constrained in a single direction or plane. The 

residuals are therefore the innovations terms of the filter. To detect a fault, the norm of the 

residual is compared to a threshold, if greater than the threshold then a fault is detected. Fault 

isolation requires comparing the direction of the residual with pre-defined fault directions (or 

signatures). It is possible to design the observer such that the residuals are insensitive to the 

unknown disturbances, but sensitive to faults, this is the robust form of the fault detection filter. 

The fault detection filter developed by Beard (1971), also known as the Beard Fault Detection 

Filter (BFDF). 
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6.1.6 Modeling Faults in Systems, Residual Generation: 

(i) Modeling Faults: Faults can appear in the input (actuator faults), system (internal or 

component faults) and output (sensor faults). It is common practice to model faults as a 

combination of additive and multiplicative faults. Figure 6.3 below illustrates this concept. In 

most instances, faults occur in either the input or output, thus component faults are generally not 

considered in most research. The simplest fault model applies to linear deterministic systems with 

no external disturbances. To build a mathematical model, we need to use the conventional form of 

state space. 

Fig.6.3 
Fault Model for Linear Systems 

Looking at figure 6.3, actuator and sensor faults can be modeled as a combination of multiplicative 

and additive faults, in the continuous time domain, the state-space plant model is given by: 

Plant State Model: 

Input/Output Fault models: 

= A.x + B.0 
y =C.x+ D.0 

u = au .d" + Au 

y=a y .y in  +Ay 

Eqn.6.1 

Eqn.6.2 

where: u E 9t': input control vector of the plant, y E 91 m : output measurement vector of the plant, 

u m  E 91 r • is the measured value of the input control vector, y E rn • is the measured value of the 

output vector. The diagonal matrices a u  and a y  are multiplicative faults represented by square 

diagonal matrices, Au and Ay column vectors representing additive faults: 
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In the fault free case, all elements of the diagonal are set to 1, it is customary to consider only a 

single fault in the input or a single fault at the output. This sets all entries to 1, except for one 

single entry in each matrix corresponding to a multiplicative fault. The column vectors: Au and 

Ay represent additive faults, in the fault free case all entries are zero. In the fault case, only one 

entry will be nonzero corresponding to the additive fault. To simplify the problem, the faults can 

be assumed time independent (constant). 

(ii) Residual Generation: The residual r(t) is simply the difference between the measured output 

and estimated output (or state) from an observer or model of the plant. In the case of an observer, 

the residual is also the innovation term of the observer dynamics. The residual vector may have a 

specific signature or direction (directional residuals) as in the case of the fault detection filter 

(FDF). Ideally, in the absence of faults the residual should be zero. When faults are present, the 

residual is nonzero. To detect a fault, we calculate the magnitude of the residual (Euclidean norm), 

and compare it to some threshold value. Due to modeling errors, uncertainties, disturbances and 

noise, the residual is nonzero even in the absence of faults. The magnitude of the residual provides 

an indication of the size of the fault. To locate the fault, the structure or signature of the residual 

must be compared with a set of known patterns of known fault modes. The use of neural networks 

classification techniques have been used such as the Hopfield and ART networks. Statistical 

testing is often used, such as Sequential Probability Ratio Testing (SPRT), Bayesian testing, 

Multivariate testing, Hypothesis testing, and Maximum Likelihood testing. 

When dealing with robust residual generation, most methods attempt to maximize some 

performance or cost functional, this cost function is usually the ratio of the transfer function norm 

from: fault-to-residual Gd(s) to disturbance-to-residual Gni(s), for instance using Laplace 

notation: 

J = max(  Gif(s) I  
G (S) 

Eqn.6.4 

This leads to a multiobjective optimization problem in which we try to maximize the transfer 

function J 1  =. maxliqf  (s)Il and minimize J2 = minllGrd 01. To see how residuals are applied to 

fault detection and isolation, consider a linear LTI system with faults at the input and outputs as 

follows, the general expression is: 

A.x+ B.u+121 .f 
y = C.x+ D.u+ R2 1 

Eqn.6.5 
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Where R I  and R2 are known input and output fault transfer matrices, and f is the fault to be 

estimated. The input/output transfer function using Laplace transform is given by: (bearing in 

mind that y(s) is actually a different variable to y(t)) 

y(s)= G.(s).u(s)+ G 1-(s). f(s) 	 Eqn.6.6 
Where: 

G(s)= C.(s1 — 	.B+ D 

G f  (s)= C.(s1 — 	.R, + R2  
Eqn.6.7 

This is the most commonly used form of representing input and output faults for linear systems. 

All model based FDI methods are designed to estimate the fault f with possible variations which 

include noise, disturbances, nonlinearities, unmodeled dynamics and unknown inputs. The residual 

can be defined mathematically as a combination of the input and output measurement sequences, 

see figure 6.4: 

r(s)= H.(s).u(s)+ H y (s).y(s) 	 Eqn.6.8 

substituting the equation for y(s) given previously into the above expression results in a general 

form of the residual generator: 

r(s)=[H.(s).+H y(s).G.(s)].u(s)+ H y (s).G.f (s). f( s) 	Eqn.6.9 

the requirements are that when no faults are present: i.e. f=0, then the residual should also be zero: 

r--0, therefore we have two requirements which must be satisfied: 

H .(s).+H y (s).G.(s)= 0 

H y (s).G.f (s)# 0 
Eqn.6.10 

The above is a generalized representation of fault detection using residuals for linear systems. The 

first requirement implies that the residual is independent of the input, and the second requirement 

specifies detectability. This applies to all forms including model based, observer based and parity 

space methods. 

Most literature relating to fault detection and isolation for linear systems deals with the above 

equations, or variations of equation 6.9. These include the presence of disturbances, noise, and 

plant uncertainty. In these circumstances, statistical testing of the residual may be required. This 

an involve: (i) Weighted sum-squared residual (WSSR), (ii) Chi-squared testing (iii) Sequential 

probability ratio testing SPRT, (iv) Generalized Likelihood ratio testing GLR, and (v) Multiple 

Hypothesis Testing. 
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The basic concept of residual generation is illustrated in figure 6.4 below: 

PLANT 

r(s) residual 

Fig. 6.4 
Generic Form of Residual Generators for Linear Deterministic Systems 

One of the most popular methods for detecting faults in linear systems is parity space. Parity 

space is used as a comparison with hybrid genetic algorithms. The theory is outlined next. 

6.1.7 Parity Space Methods - Theory: 

The parity space method (see ref. [1], pp.38-44) is one of the most commonly used model based 

approach for generating residuals. There are two types of parity space: direct redundancy and 

temporal redundancy. Direct redundancy is of limited applicability and is not considered as it 

requires more sensors than states, i.e. for: X(t)E 9 , y(t) E 9m  requires m>n. Temporal 

redundancy may be applied to a wider range of problems and is not restricted to the above 

condition. Parity space was developed in discrete time domain, but has now been extended to 

continuous time domain. Given the following system model in discrete time: 

x(k + 1)= A.x(k)+ B.u(k)+R I . f(k) 
y(k)= C.x(k)+ D.u(k)+ R2 ftk) 

Eqn.6.11 

Taking a window of s previous samples and the current sample, a total  s+/  equations is 

constructed, combining these equations recursively into one another gives: 

y(k— s) u(k—s) J(k— s) 

y(k— I) 
y(k) 

—H. 
u(k —1) 

u(k) 

= W.x(k—s)+ M 
fil-1) 

f(k) 

Eqn.6.12 
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where: 

D 	0 0 -  R2 0 0 
CB 	D 0 CA CR, R2  • 0 

Eqn.6.13 
H = CAB 	CB 0 w= CA2  m= CAR, CR, .0 

0 • 0 
CA" B CA" B . . D CA' CA" R, CA" R, . 	• 	R2  

Note the presence of the observability matrix W, re-writing equation 6.12 gives: 

Y(k) — H.U(k)=W.x(k — s)+ M. k) 	 Eqn.6.14 

Note also that Y(k) represents s+1 measurements of y vectors, and U(k) likewise. However x(k-s) 

is a single unknown vector. The key idea of parity space is to multiply each side by a matrix V 

thus: 

V.[Y(k) — H.U(k)]=V.[W.x(k — s)+ M. F(k)] 	 Eqn.6.15 

where V is chosen to be the left nullspace of the matrix W such that: V. W=(), then the equation 

becomes independent of the state x(k-s), this simplifies to: 

V.[Y(k) — H.U(k)] = V. M. F(k) 	 Eqn.6.16 

the residual is defined to be the right hand part of the above equation: 

k)= V.[Y(k) — H.U(k)] 	 Eqn.6.17 

in the absence of faults F(k)=O, the residual should be zero r(k)= 0; however in the presence of 

faults F(k)* 0 the residual is nonzero r(k) * 0 . In summary, the parity space method for 

linear systems has two parts: it first requires the calculation of the residual from the equation: i.e. 

computational form of residual, obtained from past measurements: 

r(k)=V.[Y(k) — H.U(k)] 

we can then estimate the fault F(k) from the evaluational form of residual: 

r( k)= V. M. F(k) 

Eqn.6.18 

Eqn.6.19 

This method can easily detect the presence of faults, but locating the fault is more difficult. Note 

also that the parity space equations are equivalent to a deadbeat observer. There are other 

limitations also with parity space as we shall see later. 
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6.2 Detecting Faults With Hybrid Genetic Algorithms: 

From the brief survey presented above, there are many ways in which genetic and heuristic search 

algorithms may be applied to fault detection and isolation problems. Below we present a direct and 

straightforward manner of using genetic algorithms for fault detection and isolation. 

In these next set of simulations, genetic algorithms are compared with conventional parity space 

methods. Both additive and multiplicative faults in the sensor and actuator are compared. Two 

types of faults are simulated: 

(i) Input and output faults using the linearized open loop longitudinal aircraft model described in 

the appendix. Both single input/output and multiple input/output faults are considered. 

Results obtained using hybrid genetic algorithms are compared with conventional parity space 

methods described earlier. 

(ii) The second simulation investigates internal (component) faults using hybrid genetic 

algorithms for the nonlinear aircraft system. 

This is essentially a model based fault diagnosis system. We use a radial basis function network to 

provide a reference (fault free) model the plant. The radial basis function network is initially 

trained using genetic algorithms. The residual generated is used by the genetic algorithm to predict 

the fault. The basic underlying theory behind detecting faults with GA is discussed next. The final 

configuration is illustrated in figure 6.7. 

6.2.1 Theory: 

The basic concept behind detecting faults with genetic algorithms is as follows: the population of 

chromosomes is initialized with many different fault combinations, this can also include a fault-free 

condition. The fitness of the chromosome is then evaluated by calculating the difference between 

the measured plant output (of the faulty plant), and the predicted plant output using the fault 

information contained within the chromosome. Note that this is essentially a model based 

approach. Consequently, the chromosome which best predicts the actual faulty plant output 

provides the best estimate of the occurring fault. 
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The concept is illustrated Fig.6.5 below, for the given plant model: 

Fig. 6.5 
Input-Output Faults in a Linear System 

The GA codification for this problem could be something like fig.6.6 below: 

      

 

....internal plant faults..... a y  A y error fitness 

      

      

Fig. 6.6 
Typical Codification for detecting input/internal/output faults 

Where the faults Au, au , Ay, ay, can represent scalar or vectored variables. This also means that 

we can code any plant fault including internal faults as well as input-output faults into the 

chromosome. Internal plant faults must be explicitly defined parametrically as part of the plant 

dynamics, for instance: x = A.x + B.0 + D. f , where f=fault. The fitness of the chromosome can 

then be simply computed as the inverse of the error function: 

error =(y7 v1,(y — - oaf
) 2  Eqn.6.20 

where y7 is the actual measured plant output containing the fault at sample number: j, and yGAj is 

the predicted plant output computed using the fault information contained within chromosome. 

Thus we can search through a large fault space by simply defining a large population of 

chromosomes, each with a different value and type of fault. 

For instance a population of 100 chromosomes can initially search through 100 different fault 

configurations simultaneously. Figure 6.7 below illustrates a typical setup in which a genetic 

algorithm is used to detect and estimate faults. Note that the RBF represents the fault free model 

of the plant. 
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Fig. 6.7 
Using Genetic Algorithms to Detect Faults 

From figure 6.7, the genetic algorithm essentially injects the fault information contained within 

each chromosome into the input/output of the RBF model. The predicted model output is then 

computed and compared with the actual plant output. The resulting error is used to compute the 

corresponding fitness of the chromosome. 

One of the advantages of using genetic algorithm search is the inherent robustness to noise. 

Furthermore, constraints can also be imposed, which can narrow the search space and produce a 

faster convergence. For instance a faulty sensor can produce a maximum output within its 

saturation range. This constrains the maximum allowable fault range. Methods of constrained 

optimization were discussed in chapter 1. A disadvantage of GA is that this algorithm is 

computationally intensive because the error calculation requires running a full simulation of the 

model output (over N samples) for each chromosome. Thus for a population of 100 chromosomes, 

we need to run a complete model simulation 100 times at each generation step. However as we 

shall see, convergence is generally very rapid. 

The accuracy of the predicted fault depends largely upon the accuracy of the reference model, the 

presence of noise and external disturbances. A further advantage of such a method shown in figure 

6.7 is the potential applicability to nonlinear systems. Simulation results using the longitudinal 

aircraft model are presented next, comparing genetic algorithms with conventional parity space 

methods. 
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6.2.2 Detecting Input/Output Faults in Linear Systems: 

For the first simulation, a model based FDI technique described earlier in 6.1.4 is used. The model 

is constructed using radial basis function networks, this is essentially a black box model. We use 

genetic algorithms for two parts of this simulation: 

(i) To train (offline) the radial basis function network to model the longitudinal aircraft 

dynamics. 

(ii) To detect, locate and estimate single input, single output and multi input/output faults. 

The linearized open loop longitudinal dynamics described in the appendix is used, and is again 

illustrated below. For the state space system: i = A. x + B.0 , where: x = [q a 0]T  and 

u= ö e ,  q: pitch rate (deg/sec.), a: angle of attack (deg.), and 8: pitch angle (deg.), the control S e : 

is the elevator surface command. 

elevator 
command 

  

+ B.0 

 

	 q -pitch rate (deg/sec) 
a -angle of attack (deg) 

	P 0 -pitch angle (deg) 

   

      

Figure 6.8 
Open loop Longitudinal Dynamics 

Linearizing the model about x0=[0, 1.5, Of gives the following state space matrices: 

- 0.9870 - 22.9501 0 [[- 28.34091 

	

A = 1.0000 -1.3290 0 	B = - 0.1680 
1.0000 	0 	0 	0 

Note that we could also have used the nonlinear model, however for parity space comparison, a 

linearized model in state space form is required. 

(i) Training the RBF with GA: 

For the first part of the simulation, we need to initially train the radial basis function network 

(RBF) to model the linearized aircraft dynamics. The radial basis function network was described 

in detail previously in chapter 2. We use a genetic algorithm to train the RBF network as in 

chapter 2. 

The longitudinal aircraft model has 3 states (outputs) and therefore requires 3 separate radial basis 

function networks. This is illustrated in figure 6.9 below. In this instance, random training data 

was generated from the linearized model. The data is then used to train the RBF network using 

genetic algorithms. 



q(k) 	• RBF #1 

	• a(k) fb--10 • 	 RBF #2 

0-6 	• 0 (k) RBF #3 1 
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Modeling the linearized aircraft with a radial basis function network. The 11  are time delay (or 

shift) operators: 

Fig.6.9 
RBF Model of the Longitudinal Aircraft Dynamics 

The chromosomal representation of the training problem is illustrated below Fig.6.10. Note that 

all three RBF are trained simultaneously. 

node 1 node n1 

RBF #1 

RBF #2 

RBF #3 

n i I wo I wi 11 12 13 14 Sdi I... ..... 'Wm 11 t2 13  t4 Stint I erri 

I n2  I" 1" ti 12 t3 14 sd I. • • • • • • • 111/n2 ti 1.2 1.3 14 Sdn2 I err2 

I n3  I wo I wi ti t2 (3 (4 sdi ......... 1 Wn311 12 r3 14 sdolerr3 I fitness 

Fig.6.10 
Chromosomal Representation of RBF Training for Longitudinal Aircraft Model 

Where n i=number of hidden nodes in the first RBF#1, n2=number of hidden nodes in the second 

RBF#2, and n3=number of hidden nodes in the third RBF#3. The error values err', err2, and err3  

are given by: 

err, =E(q — qRBFJ )2  
.1= 1  

err2  — (a — a RBF )2 err3 =1,(0 — 9 RBF  ) 2  Eqn.6.21 
i=1 	 j=1 

The fitness is evaluated as the inverse of the sum of the 3 error values: fitness=11(err i +err2+err3). 

This means that all three RBF networks are trained simultaneously. Results of the training is 

illustrated on the following pages. The setup for the genetic algorithm is as follows: Hidden 

neurons: 10 in each RBF, population: 10, Probability of crossover Pc=0.6, Probability of mutation 

Pm=0.1, and binary tournament selection. We can see that the genetic algorithm converges within 

100 generations. 
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This fast convergence is due to the linear quadratic nature of the cost function. Referring to figure 

6.11, there are two columns, the left column is used for testing (verification)  the  radial basis 

function network using a step response, and the right column is used to train  the  radial basis 

function using random data. The blue plot is the RBF output, and the red plot is the linearized 

aircraft output. The two graphs agree well. Note however the presence of a slight  DC  drift on the 

pitch angle (bottom left graph). It is impossible and impractical for a model to  follow  the actual 

open loop plant precisely. 

Legend:  • RBF  • Linearized Aircraft 

Step Comparison (Verification): 

1 	
Se: elevator command deg 

0.5 

0 

Random Comparison (Training): 

Se: elevator command deg 

5 Time (sec) 10 5 Time  (sec) 10 

a: alpha deg  a: alpha deg 

5 	Time (sec) 	10 5 	 10 Time (sec) 

9: theta (pitch) deg 	 0: theta (pitch) deg 

-10 	 
5 	 10 	 5 	 10 

Time (sec) 	 Time (sec) 

Fig.6.11 
Comparing the RBF model output with Plant 
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Fig.6.12 
Fault detection using genetic algorithms and radial basis functions 
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(ii) Fault Detection with Hybrid genetic algorithms: 

Using the previously trained RBF, the RBF can now be applied to the task of fault detection and 

isolation. In these next set of simulations, the genetic algorithm is used to both detect and quantify 

the following faults: single input faults, single output faults, multiple input/output faults, single 

input faults with time of occurrence. Before presenting the results, the simulation setup is depicted 

below in figure 6.12 in greater detail: 

actuator 
faults 

+Au, xa u  
parametric 

faults 

sensor faults: 
add 	multiply 

+Aq, xa, 
xaa 
xae 

+Aa, 
+AO, 

It is assumed that all the states are available for measurement, thus C matrix is the identity matrix: 

y(t)=x(t). Additive and multiplicative faults are both shown in fig.6.12. The Chromosomal 

representation of the above problem is shown below fig 6.13. The error is computed as the sum of 

equations 6.21, the fitness is the inverse of the error. No constraints are imposed on this simulation 

problem. 

+A u Xa q 

 

+Aq xa.a  +Aa xcite I +AO error fitness 

         

Fig.6.13 
Chromosomal representation for the above problem 
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Detecting faults with GA as illustrated above works as follows: initially assume that the system is 

free from faults, and the RBF model output exactly matches the plant dynamics x(t)=x„,(t). When 

a fault occurs, the genetic algorithm will begin to search through all possible fault-spaces until a 

particular fault is found (or combination of faults). At this point, the RBF model + fault best 

matches the faulty plant output x(t). Note that the above FDI methodology is effectively 

independent of any controller. Simulation results are given below. 

(iii) Single Input Faults: 

In this simulation, single input faults are detected. A multiplicative fault of 0.75 and additive fault 

of 0.00 is introduced into the input thus: Au=0 au=0.75. The genetic algorithm correctly locates 

the fault after 150 generations. Refer to figure 6.14. The three hybrid genetic algorithms are 

compared with results obtained using conventional parity space methods. A summary is illustrated 

below in table 6.1 including computational effort: 

Method: Error: MFP 
Parity Space 0 < 1. 

GA < 10-2  22 

GA + Simulated Annealing < 10-2 25 

GA + Greedy Search < 10 -2  7 

Table.6.1 
Comparison of conventional Parity space with hybrid GA 

The error is defined as the RMS difference between the actual fault and estimated fault. Note that 

the error can never be zero due to the modeling inaccuracies of the RBF neural network used in the 

simulation. The above simulations are typical, with the greedy algorithm consistently giving better 

results. The setup for the genetic algorithm is as follows: population: 20, Pc=0.6, Pm=0.2, binary 

tournament selection is used. Convergence properties of the GA and hybrid methods are illustrated 

below. In all three cases, all methods converge to the correct fault. 

Figure 6.14 compares the convergence rate of the three methods. Note that both conventional 

genetic algorithms and hybrid GA + simulated annealing resulted in almost comparable 

convergence rates. However the hybrid GA + greedy search resulted in a factor of four 

improvement in convergence over the conventional genetic algorithm. 
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Fig.6.14 
Single input faults 

(iv) Single Output Fault: 

In this simulation, single output faults are detected. A multiplicative fault of 0.85 and additive 

fault of 0.00 is introduced into the first output thus: Aq=0 a q=0.85. The genetic algorithm 

correctly locates the fault after 100 generations. 

Method: Error: MFP 
Parity Space 0 < 1 

GA < 10-4  20 

GA + Simulated Annealing < 10-4  25 

GA + Greedy Search < 10 -4  13 

Table.6.2 

The setup for the genetic algorithm is as follows: population: 20, Pc21.6, Pm=0.2, binary 

tournament selection is used. Typical convergence plot is illustrated in figure 6.15 below: 
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Fig.6.15 
Single output faults 

(v) Multiple Input - Output Fault: 

In this simulation, multiple input - output faults are estimated. A multiplicative  fault  of 0.75 and 

additive fault of 0.00 is introduced into the input ie: Au=0 434,3.75, and a second fault is also 

introduced into the output: Aq=0 041=0.85. All three hybrid genetic algorithms correctly locate 

both faults after 700 generations, refer to figure 6.16. Table 6.3 below compares the results: 

Convergence at error < 10-2 : 

Method: MFP GAIN —> 0.75 
(input) 

OFFSET —4 0.0 
(input) 

GAIN -4 0.85 
(output) 

OFFSET -- 0.0 
(output) 

GA: 250 0.7592 0.0018 0.8481 0.0020 

gm 418 0.7416 -0.0024 0.8511 -0.0029 

Greedy 60 0.7480 0.0053 0.8515 0.0059 

Table.6.3 
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Typical convergence plots of the three methods: 

100 	203 	300 	400 	5(X) 
AFP =mutational allot OOP) 

Fig.6.16 
Multiple input output faults 

(vi) Detecting time of fault: 

The time at which the fault occurred can also be estimated, by introducing an extra time parameter 

into the chromosomal representation of the faults, thus T wit. Chromosomal representation for this 

problem is illustrated below: 

xce u  I +Au I xa q  I +Aq kick, I +Act I xoce +Ae I Tfaalt !error' fitness 

  

Fig.6.17 
Codification for detecting time of fault 

Where Tfautt refers to a sample number which must be an integer between 1 to N. This is a simple 

constraint which can be handled by a repair algorithm. The error and fitness are again calculated 

according to equations 6.21. 
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For this simulation, a multiplicative fault of 0.75 and additive fault of 0.00 is introduced into the 

input ie: iu=0 a,A.75. Furthermore, the time of fault is set to occour at the 50 th  sample. Results 

are summarized below: 

Convergence at error < 10 -2 : 

Method: MFP GAIN —> 0.75 
(input) 

OFFSET —> 0.0 
(input) 

Time of Fault-4 50 
(sample) 

GA 66 0.7563 -0.0000 50.0000 

GA + SA 152 0.7568 -0.0001 50.0000 

GA + Greedy 21 0.7519 -0.0000 49.0000 

Table.6.4 

Note that both input gain and offset faults are floating point numbers, however the time of fault 

must be an integer (sample number). Table 6.4 compares the convergence of the three genetic 

algorithm methods. For this type of problem, the parity space technique offers no direct 

methodology for solving the time of fault. 
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6.2.3 Detecting Internal Faults: 

In this last simulation, the nonlinear aircraft longitudinal model is used. Genetic algorithms are 

applied to the problem of detecting internal plant faults. Given the generalized dynamical system 

representing the aircraft longitudinal dynamics: 

	

= A(x, p)+ B(x).0 	 Eqn.6.22 

in which the vector p consists of components representing potential internal plant faults in 

parametric form. If this system is linearized, the following linear model is obtained: 

A.x+B.u+D.p Eqn.6.23 

The faults now appear parametrically as inputs to a linear system. The full simulation setup is 

illustrated below: 

parametric 
faults p 

q(t) 
a(t) 
0(t) 

qni(t) 

am(t) 
0,n(t) 

Fig.6.19 
Fault detection using a linearized parametric form of plant internal faults 

For this simulation, the faults are assumed to occour in the following coefficients of the aircraft 

equation of motion: q = { Ma , Mq  Za  } , refer to appendix 8.1 for a description of these 

aerodynamic coefficients. Further, for this simulation we assume that only multiplicative faults 

occour, and that there are no additive faults. Thus we denote the multiplicative fault for each 

parameter as: 



Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.30 

FAULT _ 1; fa :  multiplicative fault in ; 17  a  

FAULT_ g : multiplicative fault in 11-1,7  
FAULT _Za : multiplicative fault in Za  

Then the chromosomal representation for this problem can be simply defined as: 

FAULT_ FAULT_ !Ng  FAULT _Z. error fitness 

     

Fig.6.20 
Codification for detecting internal plant faults above 

Again, the error is computed as per equations 6.21. The first and second faults can be interpreted 

as altered pitch aerodynamic due to airframe change, the third fault as altered yaw aerodynamics 

due to airframe change. Note that a value of 1 in each indicates a fault free condition. Results are 

given below: 

In this simulation, the following multiplicative faults are assumed to occur: 

FAULT_ Ma  =1.1 

FAULT _ ;fig = 0.8 

FAULT _Za  = 0.9 

Results for this simulation are illustrated in figure 6.21, convergence is within  250  generations. 

After 250 generations, the values found by the GA search are: 1.100, 0.8002, 0.8999, which agree 

well with the above faults. 
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Fig.6.21 
Convergence properties of the GA, the fault is correctly predicted 
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6.3 Chapter Summary and Conclusion: 

(i) Results: From simulation results, genetic algorithms can be readily applied to fault diagnosis of 

linear systems with input and output faults. We have used parity space as a basis for comparison. 

Parity space methods are easy to apply but suffer from serious limitations such as inability to 

detect multiple input/output faults. GA methods do not have these limitations, and convergence is 

generally rapid. Results using hybrid genetic algorithms show that the combined GA+greedy 

search outperforms the conventional GA and the hybrid GA+simulated annealing algorithm. We 

have also shown that genetic algorithms can be used to detect the time at which the fault occured. 

(ii) Advantages: Genetic algorithms can be used to detect multiple input and output faults. 

Furthermore, fault diagnosis using genetic algorithms is not restricted to linear systems, it can also 

be applied to nonlinear time varying systems, provided that the fault be modeled parametrically. 

Additionally, genetic algorithms can also be applied in detecting internal plant faults in instances 

where the internal faults may be described parametrically. 

The underlying concept of using genetic algorithms in fault diagnosis enables hundreds of possible 

fault combinations to be searched over a wide parameter space. In addition, the use of 

chromosomal representation enables greater freedom in describing a fault, which may appear as a 

discontinuous function, for instance an ON/OFF condition may be detected, or some discrete 

function. We also have a greater choice in selecting a fitness function which may be linear, 

nonlinear or discontinuous. In our simulation, a simple Euclidean distance metric was used. 

(iii) Disadvantages: As with any GA, computational effort required was much greater than 

conventional parity space. From simulation results, the computational effort was approximately 

two orders of magnitude greater when genetic algorithms were used. This is an issue which needs 

to be addressed if genetic algorithms are to be accepted in real time and online fault diagnosis, in 

particular life-critical systems such as aircraft and medical applications. A further disadvantage is 

that an input/output (black box) model of the system is required. The reason for the higher 

computational effort is because the genetic algorithm runs full model simulation in order to 

compute the fitness function for each member of the population over each generation. Perhaps a 

means to reduce computational effort is to use a simpler fitness function or a variation such as a 

statistical function. This may be a topic of future research. 
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(iv) Future work: From this brief survey, the model based methods offer interesting applications 

for research in fault detection and isolation. Other methods including observer based which have 

yet to be investigated, such as variable structure/sliding observers and nonlinear (lie algebraic) 

methods. The advantages of using these techniques in control are well established, including 

robustness to uncertainties, and invariance to disturbances. These advantages can be carried over 

to the design of robust observer applications. 

There are clearly a multitude of methods for fault diagnosis as seen from the survey, a full 

discussion would be impractical. The popular methods of parity space are well established and 

offer a simple and reliable methodology of detecting faults for linear systems. 

Although model based and observer based methods require a -priori knowledge of the plant, the 

main difference is that model based methods do not require a knowledge of the plant states, only 

input/output measurements. Consequently, more information is necessary for observer based 

methods. 

From the literature on FDI, we can see that there are many techniques and variations of fault 

detection, in which GA can be applied. Currently, research and state-of-the-art FDI focuses 

primarily on nonlinear systems and robust methods with the application of neural networks and 

fuzzy set theory. 

The application of fault diagnosis comparing (or hybridizing) genetic algorithms with other 

statistical and fuzzy methods described in section 6.1 would be an interesting topic for future 

research with applications to genetic algorithms. 
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7.1 Conclusion: 

(i) Genetic Algorithms: 

Genetic algorithms (GA) are a powerful generalized multiparameter search scheme. However, they 

cannot simply be applied to any problem blindly. Any method which can be used to enhance the 

performance of a GA (i.e. gradient or hybrid methods) should be considered. Thus careful 

application of the GA algorithm is always recommended. This can mean the difference between 

successful convergence or poor convergence. The rate of convergence is strongly affected by the 

shape of the fitness function. The selection of a proper fitness function is also important. Careful 

choice of mutation, crossover, and selection operators is also critical. However, when the GA 

search is performed over a search space of low dimensionality as seen in chapter 4 (SISO system), 

then the choice of mutation and crossover are less critical. One of the main concerns associated 

with genetic algorithms is premature convergence. This is caused by a superfit individual quickly 

proliferating throughout the population, reducing genetic diversity and generally resulting in rapid 

convergence to a sub-optimal solution. Conversely, using high mutation probabilities and selection 

schemes with low selection pressure can result in excessive genetic diversity and unacceptably 

slow convergence. A genetic algorithm should always be implemented as a judicious balance 

between avoiding premature convergence, and avoiding wasteful searching by ineffective selection 

schemes or excessive mutation probabilities. Some lessons learned from the simulation studies are: 

1. Fitness functions: For fitness functions which are quadratic, simple convex functions, or have 

few minima, convergence can be very rapid. The shape of the fitness function and the number 

local minima has a profound influence upon the convergence of the genetic algorithm. For 

example, designing a LQR using a genetic algorithm generally results in fast convergence. The 

fitness function should always be carefully selected. If a GA fails to converge, or takes 

unusually long to converge, the improper choice of fitness function is generally the primary 

cause. 

This concept can be extended to constrained optimization problems in which a penalty function 

is used. Dynamic penalty functions require a procedure for scheduling (or increasing) the 

penalty coefficient. A simpler method would be to use a static penalty function in which the 

penalty coefficient remains constant. In our simulations, we made use of an infinite value of 

penalty parameter, in other words, if the solution is infeasible (i.e. constraint is not met) then the 

fitness is simply set to zero. 
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2. Codification: According to the original schema theorem developed by Holland [2], binary 

coding was used to derive convergence rates and population takeover time for the basic GA. 

Unfortunately, the original schema theorem cannot be directly applied to floating point 

chromosomal representation. However, despite this, the majority of current publications on GA 

research use floating point representation. Refer to [6] for a comparison on binary and floating 

point representation. In all our simulations, floating point representation was used and found to 

work well. 

3. Selection Operator: The choice of selection operator has a strong influence upon the rate of 

convergence. Proportional fitness selection such as roulette wheel selection is common. This 

however can result in premature convergence and reduce initial search. Most selection 

operators however must bear some direct relation between probability of selection and fitness 

value. The two methods found to be most effective are: ranking selection and tournament 

selection, binary tournament selection was used throughout all the simulations and found to 

work well. Premature convergence can be avoided by reducing the selection pressure, for 

instance: reducing the number of sub-individuals m chosen from the population n in tournament 

selection can substantially reduce the rate of convergence. Since in general, a GA requires at 

least two parents, two different selection operators may be used, one for each parent. The first 

parent may be selected using a tournament selection scheme, the second using pure random 

selection. This method can sometimes prevent premature convergence, leading to a better 

search. Random selection simply selects a parent from the population at random without regard 

to its fitness value. Thus any individual can be selected with equal probability. Ranking 

selection is also found to be a very effective selection scheme. Ranking selection eliminates the 

problem associated with premature convergence because only relative fitness is used and not the 

absolute fitness. Additionally, because only relative fitness is required, the computation of 

fitness values can be simplified, or in applications in which a continuous fitness function may 

not be available, for instance classification problems. Another selection operator which is very 

effective is stochastic universal sampling, often used with multiple parents (more than 2). This 

is regarded as an optimal sampling scheme. 

4. Mutation Operator: The choice of mutation operator, mutation probability Pm  and mutation 

intensity x all have a strong influence upon the performance of any GA. Whilst the concept of 

mutation is identical in both binary and floating point representation, the actual implementations 

differ. 
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In binary representation, mutation simply swaps bits from 1 to 0 or 0 to 1 with finite probability 

Pm. This probability is generally very low eg: Pm=0.01. When dealing with floating point 

representation, we have many more variations by which mutation may be implemented. The 

most obvious is to add a uniformly distributed random number thus: x i=xj+x*rand, where lc is 

the mutation gain or intensity. A second method would be to use: x i=xix(l+erand) where 

rand has a gaussian distribution. The first method has the potential to search a wider space, the 

second a narrower search space. Furthermore the mutation intensity lc may be chosen to be a 

function of time x(t), and generally decrements as the algorithm converges closer to the 

solution. In many instances, x may be manually controlled. 

In general, randomly switching between both schemes resulted in rapid convergence. As a 

further observation, the probability of mutation Pm  should be higher when using floating point 

representation than if using binary representation. For example if a number x is represented as 

a 20 bit binary string, the probability of mutating this binary string number is 20xPm . 

If floating point representation is used for x, then we should use P m  =20x0.01=0.2. This is why 

high mutation probabilities are used in most simulations between Pm : 0.1-0.4. Note that a high 

mutation probability Pm  helps to retain genetic diversity and prevent premature convergence. 

On the other hand, a high mutation rate can also slow down convergence considerably. Again, 

the choice of mutation probability and intensity sometimes requires much trial-and-error work. 

Some authors have used self adaptive genetic algorithms with fuzzy search control, see [5]. and 

below section 7.2 for details. As a rule of thumb, the mutation probability should be chosen to 

be the inverse of the dimensions of the search space. The algorithm for mutation is: 

for j=1 to n 
if (rand < Pm) 

= + 70<rand (or) 
xj = x3x(1 + xxrand) 

end 
end 

where n=length of chromosome, and rand=random number generator with uniform or gaussian 

probability distribution. 

5. Crossover Operator: The choice of crossover operator is less critical. If using binary string 

representation, a two point crossover is generally a more effective search method than single 

point crossover. 



Chapter 7: Sumrnary and Conclusions 	 P.7.5 

When using floating point representation, a uniform weighted average crossover was found to 

give better convergence results than any other method tested. The crossover operator for 

floating point (or integer) representation is: zi = axi  + (1-a).yj, where xi  and yi  are the two 

parents, zj  is the offspring and a is a uniformly distributed random number [0,1], and j is the  /h 

components of the chromosome. With a=0.5 fixed, averaging crossover can also yield good 

results. However simple swapping crossover (as used in binary strings) generally leads to poor 

results. Probability of crossover Pc  is generally higher than mutation, values between 0.6-0.9 

are recommended. The addition of the Hooke-Jeeves pattern search crossover (refer to chapter 

1.4.2) was also found to improve the rate of convergence. The algorithm for the uniform 

weighted average crossover operator is: 

for j=1 to n 
if (rand < Pc) 

zi = ax; + (1-0).yi 
end 

end 

where n=length of chromosome, and rand=random number generator with uniform probability 

distribution [0,1]. The Hooke-Jeeves crossover operator is: 

if (fitnessA > fitnessB) then 
offspring = 2.xA  - xB 

else 
offspring = 2.xs - xA 

When dealing with complex numbers, the crossover operator should be implemented as if the 

real and imaginary parts are two separate numbers. 

6. Population Inversion: Generating a new population from the old population is commonly 

referred to as population inversion. Given a population of n parents, the GA generally produces 

a second population of n offspring at each generation step. There are generally 3 accepted 

methods of population inversion: (i) The most common method is to completely replace the old 

population (parents) with the new population (offspring). (ii) Another variation would be to 

replace a subpopulation of m (parent) individuals with m fittest offspring. (iii) Or combine the 

new and old population into one, and then select the n most fit individuals. 
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From simulations, the third method was found to be very effective in most applications. 

However one point to consider: the first method generally results in slower convergence, but 

retains greater genetic diversity. The third method converges quicker, loosing potential genetic 

information early, some trial and error may be necessary in the choice of population inversion 

operator. Whichever method is used however, the concept of Elitism was found to be 

indispensable in any population inversion scheme. 

7. Computational Effort: The calculation of fitness values is by far the most computationally 

intensive part of any GA, this is particularly true in training RBF networks (chapter 2), in 

MRAC (chapter 4) control, and FDI (chapter 6). The high computational burden stems from 

the parallel nature of genetic algorithms. For example, when training a RBF network using 

200 training samples, a population of 50 individuals and 10 hidden nodes, this results in 

200x50x10=100,000 computations for each hidden node at each generation step (note that a 

single node computation may require many FLOPS). Furthermore, because the RBF weights 

are computed by least squares, this means that in addition, it also requires 50 matrix inversions 

at each generation. In such instances, vectoring the algorithm or using multiple processors (e.g. 

systolic array) would be preferable as the GA is easily adapted for parallel processing 

hardware. As a Consequence, the GA must be made to converge as efficiently as possible in the 

fewest possible generations. To overcome this problem, hybrid GA methods were adopted. 

Increasing population size reduces the number of generations required for convergence, however 

not necessarily as a linear function. This means that a tradeoff between population size and 

number of generations to converge is generally needed on a single processor machine. If 

running on a parallel machine with multiple processors for instance, then the population size 

may be increased to the full number of available processors. 

8. Robustness Qualities: Genetic algorithms show good robustness properties to noisy data. This 

robustness quality can be attributed to the large amount of measured data generally required to 

be processed by the GA in order to compute fitness. For instance when training a RBF network 

for modeling or control, the quantity of training data and the fact that all data carries equal 

weight reduces the effect of noise present. Noise is assumed to be uncorrelated with a zero 

mean. 
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9. Population Initialization: Initial search is essential for rapid convergence. The population 

should always be initialized within and as close to the solution space as possible. Choose a 

narrower search space if the solution is known to lie within a particular region. If the GA 

initially encounters a local minima, the entire population may soon lie within this local minima. 

Whilst the GA is capable of emerging from the local minima, this is generally not very efficient. 

If however, the initial search is prevented from converging too quickly, it will have greater 

opportunity to find a global minimum and subsequently converging towards it. 

10 Constraint Handling: Genetic algorithms can handle constrained related optimization problems 

directly without the need to restructure the problem. Repair algorithms are found to work well 

in all simulations. The static penalty function has been also found to work well, the difficulty 

arises in the choice of a value of the penalty coefficient. When light penalties are used, they fail 

to accurately enforce the constraint. However when heavy penalties are used, that portion of 

the population which violates the constraints will quickly vanish. This reduces the search space 

and can lead to an excessive number of unfeasible solutions.. 

In summary, genetic algorithms cannot be simply applied blindly to any problem. Each GA 

implementation must be carefully considered taking into account any problem specific information 

and some trial-and-error work. As a last point at hand, we note that according to the no-free-lunch 

theorem (NFL) by Wolpert and Macready [1], states that without problem and domain specific 

information, there is no way to justify claims that one search algorithm is better than all others. 

This implies that the proper choice of search algorithm is strongly dependent upon the problem to 

be solved. 

(ii) Applications to Identification and Control: 

Some key results obtained in the implementation of control systems with genetic algorithms and 

radial basis function networks is briefly summarized below: 

1. RBF Applications: From the results obtained in chapter 2, training using genetic algorithms 

can produce a RBF network with superior performance compared to conventional training. 

However training times are excessive. To reduce training time, we require some variation of the 

GA tailored specifically for RBF networks. The hybrid combination of conventional genetic 

algorithms and greedy local search was found to improve convergence. 
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2. Eigenstructure Assignment: The generalized robust eigenstructure assignment problem 

formulated in chapter 3 can be directly solved with hybrid genetic algorithms, generally with 

fast convergence results. If using conventional gradient based optimization, the presence of 

constraints results in a problem formulation requiring Lagrange multiplier methods. The 

Lagrange multiplier formulation (chapter 1) produces an excessive number of equations (five 

matrix differential equations), requiring gradient calculations for each, including having to solve 

for the lagrange multiplier matrix. Furthermore, convergence is local only. Genetic algorithms 

can deal with this problem directly, using penalty functions to handle the constraints. 

Eigenstructure assignment has also been extended to the problem of reconfigurable control [7]. 

In this instance, the feedback controller K is modified such that the closed loop eigenstructure 

remains unchanged under the influence of plant changes: AA and AB. This can be a subject of 

further research with the application of genetic algorithms. 

3. MRAC Control: From chapter-4, we can see that hybrid genetic algorithms can easily be 

applied to adaptive control applications, and convergence is generally very rapid. For simple 

SISO systems, convergence results within 50 generations. However, despite the rapid 

convergence, the computational effort is excessive. The use of hybrid genetic algorithms helps 

to alleviate this problem. However, there is no guarantee that the genetic algorithm will 

converge at all. This is a critical issue if genetic algorithms are to be accepted as an alternative 

in MRAC control applications. On the other hand however, genetic algorithms have fewer 

restrictions and can also be applied to nonlinear systems. Note also that the GA is not really 

recursive, whereas both the Lyapunov method and MIT rule generate new parameters at each 

sample interval with only the current measurement, the genetic algorithm requires knowledge of 

past historical data as well as current data. This means that its response is delayed if an abrupt 

change occurs in the plant A and B matrices. Whilst the genetic algorithm may not be 

recursive, it can however still operate online. From the results, we can see that genetic 

algorithms work well, and have fewer restrictions when compared with more traditional 

methods such as the MIT gradient based rule and Lyapunov stability theory. The GA can 

easily be extended to more unconventional controller configurations without any change to the 

genetic algorithm design. Genetic algorithms are easily extended to solving nonlinear MRAC 

systems, utilizing any controller structure e.g.: neural networks, fuzzy logic, linear dynamic 

compensators etc. The GA offers many new and novel possibilities for implementing robust 

adaptive control systems, in particular areas of intelligent control systems. 
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4. Mixed I12/H. Control: Results from chapter-5 show that genetic algorithms can be 

successfully applied to the design of full order, reduced order H2, FL, and mixed H2/H.. 

compensators. Results agree well with those obtained using conventional state space solutions, 

and conventional model reduction techniques. In most cases, the GA converged within 400 

generations. Genetic algorithms are conceptually elegant, simple and applicable to a wide 

range of robust control and multiobjective constrained optimization problems. In this 

applications, solution to the H2 or FL problem required only a single objective constrained 

optimization. The solution to the mixed H 2/FL, is a multiobjective constrained optimization 

problem which leads to a family of solution. By proper selection of the scalar weight K, more 

or less emphasis can be placed on the optimization of either the H2 or FL specifications. 

5. Fault Detection and Isolation: Fault detection and isolation (FDI) can be viewed as a system 

identification problem. From the survey in chapter-6, there are a multitude of methods for fault 

diagnosis as evidenced from the survey. The popular methods of parity space are well 

established and offer a simple and reliable methodology of detecting faults for linear systems. 

However parity space methods suffer serious limitations such as inability to detect output or 

multiple faults. Simulation results indicate that genetic algorithms using a model based FDI 

system can be used to detect input, output, and internal plant faults with rapid convergence. 

Genetic algorithms do not suffer from restrictions prevailing most traditional FDI methods. 

Furthermore, nonlinear systems can be diagnosed as long as a model of the system is available. 

Because genetic algorithms deal with population of individuals, a large variety of probable 

faults can be quickly analyzed and evaluated, whilst providing good immunity to sensor noise. 

Given the plethora of currently available methods [8], one would expect wide-ranging 

applications of genetic algorithms and heuristic search, in the field of fault detection and 

isolation. This would be an ideal topic for future PhD research. 

In summary, we have seen that genetic and hybrid algorithms are a powerful tool for solving 

problems including constrained optimization and machine learning. We have shown that the GA 

can converge very rapidly in all applications. This feature, coupled with need for control systems 

to be more autonomous, reliable, and adaptive makes the genetic algorithm an ideal mechanism for 

evolving control systems. 
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7.2 Challenges and Future Development: 

Some directions for possible future research are briefly outlined below. In particular, applications 

of evolutionary concepts to areas of conventional control and intelligent control. Although, the 

work in this thesis focused primarily on genetic algorithms, evolutionary computation encompasses 

a broader class of evolutionary theories as discussed in chapter 1. This provides a greater scope 

for many different potential applications to control engineering. 

(i) Genetic Algorithms: 

1. Mathematical framework: Evolutionary algorithms have demonstrated the ability to rapidly 

solve problems in which classical optimization methods fail or are inadequate. However there 

is a lack of strong mathematical framework, particularly in the areas of convergence rates and 

stability proofs. 

2. Multiobjective optimization: This is a relatively new area in which evolutionary computation 

can play a significant role. Currently there are two methods of multiobjective optimization 

using genetic algorithms: Pareto dominance principle and Nash Equilibria [9]. A good review 

on multiobjective optimization (MOP) using genetic algorithms is found in [13]. 

Nash Equilibria is a relatively new concept of game theory in genetic algorithms, which has 

more robust and faster convergence properties. Nash equilibria which originated in 1951 [10], 

is inspired from Games Theory and economics, produces a single solution rather than a family 

of solutions. Also referred to as Non-Cooperative approaches. A good introduction to Nash 

equilibria is given by [11]. A similar strategy using asynchronous (less frequent) exchange of 

data exists, this is called the Stackelberg Equilibria [12] in which one player plays before the 

other, taking into account its reaction. All these techniques are referred to as evolutionary 

game theory, and offer new avenues of research in genetic algorithms [11]. Niching and 

coevolutionary theory also relate to multiobjective optimization concepts. This is currently an 

active area of research with potential applications in control theory. 

3. Self Adaptation: Self adaptation is a relatively new concept in evolutionary strategies. Self 

adaption involves dynamically modifying the genetic operators such as crossover and mutation 

probabilities, and mutation intensity, in order to improve convergence. 



New Mutation Probability 

New Mutation Intensity 

Fig.7.2 
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Self adaptation of strategy parameters involves encoding the strategy parameters i.e. mutation 

and crossover probabilities, mutation and crossover intensities as part of the search space. In 

Other words, the strategy parameters are included as part of the chromosome. Consequently, an 

individual consists of two parts: an object variable vector x and a strategy parameter vector s as 

part of its chromosomal structure. Subsequently, s may be defined by the 4-touple: 

s = Pc , an, '  ac  } . A typical chromosomal representati on would be something like: 

Xi I SI  I X2 152 

Fig.7.1 

The simplest mechanism of self adaptation would be to first recombine and mutate the strategy 

parameters s yielding s', and then using these updated parameters to recombine and mutate the 

solution vector x yielding x'. Thus rather than using constant strategy parameters (or modified 

by some deterministic rule), they are themselves modified by evolutionary means. The strategy 

parameters are continuously updated and the rate of convergence improved, as the simulation 

progresses. Note that the speed of adaptation of the strategy parameters is controlled by 

learning-rates generally under some manual control. 

In theory, all four parameters of s can evolve, in practice this would be inefficient and only the 

mutation operator is generally considered. The mutation operator plays a significant role in the 

convergence of GA, for instance at the start of a GA search, the mutation intensity should be 

high for efficient search over a wide solution space. However when a global extremum has 

been found, the intensity should be reduced to enable narrow search within this region. 

4. Fuzzy Search Control: This is a variation of the above method. Rather than including the 

strategy parameters s into the chromosome, an external fuzzy logic system is used. The fuzzy 

logic system monitors the progress of the genetic algorithm, and adapt the strategy parameters s 

according to the time-evolution of the fitness function. The method is illustrated below, the 

advantage of such method is the partitioning of the two entities: the chromosomal representation 

of the search space x and the adaptation of the strategy parameters s. 

Fitness Trend 

Old Mutation Probability 

Old Mutation Intensity 
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(ii) Applications to Identification and Control: 

1. Neural network and fuzzy logic systems: Practical applications of evolutionary computation 

to the training of neural networks and fuzzy logic controllers [14] are necessary, in order to gain 

greater industry acceptance. We have seen that genetic algorithms can produce good results 

with RBF networks. However training times are in general excessive. To reduce training time, 

we require some variation of the GA tailored specifically to train RBF networks, hybrid GA 

methods help to ameliorate this problem. The application of hybrid GA methods can also be 

extended to training many different types of neural networks, however this is still an active area 

of research. 

2. Eigenstructure assignment: Eigenstructure assignment has also been extended to the problem 

of reconfigurable control [7]. In this instance, the feedback controller K is modified such that 

the closed loop eigenstructure remains unchanged under the influence of plant changes: Ait and 

AB. This is a subject of further research with applications to genetic algorithms. 

3. MRAC and Adaptive Control: In chapter 4, we found genetic algorithms to work well when 

applied to MRAC control applications. Whilst convergence was generally very rapid, it 

required high computational effort. With hybrid GA, the computational effort was significantly 

reduced and comparable to conventional MRAC schemes. Genetic algorithms are easily 

extended to solving nonlinear MRAC systems, with any controller structure e.g.: neural 

networks, fuzzy logic, linear dynamic compensators etc. Further areas of research would 

include: 

- Modify the GA to be a recursive algorithm, rather than searching the entire solution space, use 

the previous results to generate a population with a narrower search range which would aid in 

convergence. 

- Apply GA to indirect method of MRAC. Only the direct method was used in the simulations, 

with output feedback instead of full state feedback. 

- Applications of GA to nonlinear systems with robustness properties using variable structure 

model reference adaptive control. Variable structure MRAC is currently an active area of 

research. 
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4. H2/H Control: From chapter-5, some possibilities for future research include: 

- Replace a dynamic H2 or H.. compensator with a RBF network trained with genetic 

algorithms, the figure below illustrates a typical setup for a H2 optimal controller: 

minimize 

G(s)  	z  

RBF 
train with 
genetic 
algorithms 

Fig.7.3 
Using a RBF implementation of H2 and Ho. compensators 

- Use homotopy theory for training RBF networks, compare with genetic algorithms. 

- For the mixed H2/F1..„ simulation, use linear matrix inequalities and convex optimization 

comparing solutions with genetic algorithms. 

5. Fault Detection and isolation: From this brief survey, the observer based methods offer 

interesting applications for research in fault detection and isolation. Several methods which 

have yet to be investigated include variable structure/sliding observers and nonlinear (lie 

algebraic) methods. The advantages of using these techniques in control are well established, 

including robustness to uncertainties, and invariance to disturbances. These advantages can be 

carried over to the design of robust observer applications. From the literature (chapter 6) on 

FDI, we can see that there are many techniques and variations, in which GA can be applied. 

As systems become more complex, the application of conventional controllers may become 

inadequate. The application of artificial intelligence, neural networks, expert systems and 

evolutionary theory to produce better and more robust intelligent control systems is inevitable. 

Genetic algorithms offer alternatives to solving control system problems dealing with intelligent 

control. Intelligent control systems have the ability to adapt to changes in both plant and 

environment. Another feature of intelligent control is the ability to diagnose and/or predict potential 

faults from the behavior of the system, and if possible automatically reconfigure the control laws. 

This produces a high level of autonomy and self reliance. Evolutionary algorithms offer a feasible 

alternative by which such systems may attain practical implementation. 
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8.1 Aircraft Mathematical Model: 

(i) Full Nonlinear Model: 

In order to define the mathematical model, we first need to define the coordinate system and 

notation used in the model. In a three dimensional Cartesian coordinate system, for a rigid object 

in motion, there are three position (x,y,z) components, three linear velocity components (u, v, w), 

three angular rates (p,q,r) and three rotational orientation components (IA 0,71) also known as 

Euler angles. 

There are thus a total of 12 state variables to fully describe an aircraft in motion (in a uniform 

atmosphere). In many cases, these can be greatly simplified for steady state level equilibrium (or 

trim) flight. There are several systems of coordinates: principal or body axes (aligned with 

aircraft body axes), stability axes (aligned with wind velocity vector), fixed earth reference axes. 

Figures 8.1, 8.2, 8.3, 8.4 below illustrate the notation used for a body axis system. 

The model used is for a swept-wing fighter high performance aircraft taken from reference [15] 

(see chapter 7): described by a nonlinear system in control affine form: 

(Loci.(a—a0)+4.)3+41.q+4.r+4.p+4,.(a—a0 ).r-11.q.r - 
ilice (a—a0 )+ A-lq .q+ 4. p.r — Me,p43+ Ma.(g1V).(cosacos4)—cos00 ) 

No43+Nr.r+Np.p+Nx.p.(a—ao)-13.p.q+Ng.q 
q—p43+4,.(a—a0)+(glVElcos4)—ccs00) 

Y0.13+ p.(sincco  +a—a)— r.ccscri, +(g/ V).cos 0.sin4) 
p+q.tan0.sin0+rtaneicos0 

q.coscp—r.shur.• 
q.simpec0+nco4sec0 

L6a  +Laa,(oc—oco ) 	It, 	0 - 
o 	o k 

Ne,a +N(za (oc—a0) Re, 	0 
0 	o 	4 

_ 

0
. 8r  

Yea YEr 
8e  

0 0 0 

0 00 

0 0 0 
— 

a 
0 

Where: Position, velocity, and orientation components are: 

u, v,w - Linear velocity components along body axes m/sec. 
- Linear acceleration components along body axes. m/sec 2  

p, q, r - Angular velocity components for each body axes, rad/sec. 
- Angular acceleration components for each body axes, rad/sec 2  

0,0, vi - Euler angles (rotational orientation) in radians. 
a, 13 	- Angle of attack and sideslip angles, typically measured by air data probes. 

Control Surfaces: 

se : 
	 - Elevator (horizontal tail) command in degrees, used mainly for pitch control. 

- Aileron commands in degrees, used mainly for roll control. 

ar: 	- Rudder (vertical tail) command in degrees, used mainly for yaw control. 
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Inertial Coefficients: Ii=0 .7270 ; 12=0 . 9490 ; 13=0. 7160 along each of the body axes. 

note below that: (10=1.5 degrees is constant. 

Ma  =Ma  + Ma •4, 

t171 = Mg  + Ma  

. -M8e  = M8e 	M a•Z8e  

80  = 113  + Lgog .(a-a0 ) 

Rag  =N 	+ Algog .(a-a0 ) 

Eqn.8.2 

Data for two different flight conditions is supplied: 

Flight Condition I: Flight Condition II 
= -0.196; A6 = -23.180; Yo = -0.280; M6 = -10.700; 

Za  = -1.329; Bra  = -0.173; Za  = -1.746; Ma  = -0.251; 

Lis = -9.990; *, = -0.814; Lo = -20.910; A6 = -1.168; 
4, = -3.933; Mu = -28.370; 4 = -5.786; gu = -31.640; 
La  = 0.107; At = 5.670; La  = 0.108; iii = 8.880; 
L, = 0.126; IS = 0.002; L, = 0.221; N6 = 0.013; 
Lm  = 8.390; gm  = -1.578; Lza  = 13.160; gm  = -1.583; 
Ltia  = -684.400; fi, = -0.235; Loa  = -543.800; 141. = -0.377; 
Loa  = -45.830; Nu = -0.921; Z8a  = -60.270; bia, = -1.282; 
La, = 63.500; rtrau  = 1.132; Lau = 64.600; Nal. = 2.459; 
Lisr  

lisa 

= 
= 

-7.640; 
0.0071; 

4,. 
Zu 

= 
= 

-6.510; 
-0.168; 

118r  
Yis. 

= 
= 

-10.050; 
0.0119; 

178, 

Zu 

= 
= 

-8.300; 
-0.224; 

g/V = 0.0345; bi6 = 0.223; g/V = 0.0412; ist6 = 0.223; 

Yar = 0.000; Yisr = 0.000; 

Note that since all angular components are in radians, the control input (rudder, elevator, ailerons) 

must also be converted to radians before input into the aircraft equation. Equation 8.1 on the 

previous page can be written in traditional control affine form, for nonlinear control design. 

±(t)= A(x)+ B(x).u(t) 	 Eqn.8.3 

(ii) Linearized Longitudinal Dynamics: 

The linearized longitudinal dynamics is given by: 

I = A.x + B.0 	 Eqn.8.4 
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where: x = [q a 8 .1 and u = 3,, All other state variables in the full model are set to zero. 

Linearizing the model about x0= [0,  1.5, O] r  gives A and B matrices: 

[- 0.9870 
A= 	1.0000 

1.0000 

- 22.9501 
-1.3290 

0 

0 
0 
0 

B= 
- 28.34091 
- 0.1680 

0 

(ii) Linearized Lateral Dynamics: 

The linearized lateral dynamics is given by: 

= A.x+ B.0 	 Eqn.8.5 

where: x =[p r 	4:1T and u = [8: S rc
]T 

 , All other state variables in the full model are set 

to zero. Linearizing the model about x 0=[0, 1.5, Of gives A and B matrices: 

A = 

- 3.9330 
0.0020 
0.0262 
1.0000 

0.1260 
- 0.2350 
- 0.9997 

0 

- 9.9900 
5.6700 
- 0.196 

0 

0 
0 

0.0345 
0 

= B 

- 45.8300 
- 0.9210 
0.0071 

- 7.6400 
- 6.5100 

0 

Fig.8.1 
Aircraft Axes and Symbols 



V wind 
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Fig.8.2 
Aircraft roll component 

Z W.mg 

Fig.8.3 
Longitudinal Dynamics 

Aircraft pitch 0 and angle of attack a definitions 

Fig.8.4 
Lateral Dynamics 

Aircraft yaw iiand sideslip angle /3 definitions 
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8.2 Partial Eigenstructure Assignment: 

This method was used as a comparison against results obtained with genetic algorithms in chapter 

3. This is the conventional partial eigenstructure assignment algorithm. Its description is outlined 

below by way of an example instead of giving a general formulation. The description is for a single 

eigenvalue X and eigenvector v component. The procedure must be repeated for all of the 

eigenvalues/eigenvectors. From chapter 3, we have seen that all achievable closed loop 

eigenvectors va must belong to the subspace spanned by the columns of S =(X.I — A)'.B , in 

other words the vector va must correspond to the subspace: va = S.g where g is a vector to be 

solved for, the minimization now becomes: 

minimizellv — S. 
2  

g112 	 Eqn.8.6 

4 Matrix dimensions used in simulations for chapter 3 are: v E 9 is a column vector, S E 9
4X2 is a 

matrix, and g E 912  is a column vector. The minimization of the norm can be achieved by least 

squares solution of the g vector. Assuming that { X, v} forms part of a complex conjugate pair, 

implies that g vector has also a complex conjugate. If we define all v, S, g in more detail we get 

the following expression, for the roll mode eigenvalue/eigenvector specification (see chapter 3): 

v = 

_ X + j1 
0+ JO 
0+ JO 
1+ jX 

S 
a„+ jb„ 	ai2 	ibiz - 

a2,+ jb2 , 	a22  + jbn  
a3,+ jb,, 	a3, + jb3, 

I/ 31 	jb3i 	a42 	jb42_ 

g = [ x, + jy,1 	Eqn.8.7 
X2 ÷ iY2] 

where X=don't care state in the eigenvector, all other specified entries in the eigenvector must be 

assigned as closely as possible. 

min 

Remove the norm symbol only 

gives: 

The problem becomes that of minimizing: 
2 

Eqn.8.8 

2 

for notational convenience, and separating the real/imaginary parts 

    

[an bn 

+ 

a31 ibn 

a31 ibn 

an + jib - 

[ 

an + jbn  x, + jy, 

a32 + ib32 . X2 4-  iY2 

a42 + ib42_ 

  

  

  

  

     

  

[[a 

ti 

a21  a22  

a31  a32  

(142 

-41 	1112 

+j 
b2. 

b3i b32 

   

     

   

(Ezi iry:1) 
Eqn.8.9 

  

_b3I b42 _ 

  

    

    

Note there are 4 unknowns: xi, x2, yi, y2 to solve for. 



4 	42 41 
r1 102 , 	ton  )71 1 + 

at: 	an 
a2 	a22 Yl] b21  xX,2  

L 	j b3 , 	bn  [y2  a 31 	a32 _Y2 431 

b31 	b42 _a3I 	a42 43, 

42 

6,2 11 x,11 	Eqn.8.10 
lx2J 

442 

Expanding equation 8.9 gives: I 
0 	0 
1 	X 2 -  [[

ai.  aa142_ 

a3222  a2, a 

all 

[ 	
- 	- 

a [y,] 

a31 a32 Y2 	ki bn Lx2 J 
a31 a42_ 	_b31 1142 

	

n 	+ 

-x 

101 

. 

 
a 	

L 	is  
n  an 	un un 

[ /7,1 an 	bit bn I 	
_ 

an  a22  ix, 1_ 421 bn I 1  
a31  a32 Lx2 _I 	--,1 -i2 

h.  k  1;12  i 

a 31  1242 	bil 1)42 _ 

Eqn.8.11a 

Eqn.8.11b 

1 
lk
,
o

 o
 -
 -
,
 o

 o
 

i 	
1  

.  

an 	an .‘ b12 '‘ 1 

[ ) 

) 

• 	; 

3 

a 21 	a22 

a31 	a32 

a 31 	a42 , 
bn 	121 2 \ 

b21 	b22 
b3i 	b32 

— 
 

[bli 

	

b21 	b22 

	

b31 	b32 

	

b31 	b42 

	

/ an 	an \ 

	

a21 	a22 

	

an 	a32 

X ‘ b31 	b42 / k a 31 	a42 	..-1 

Remove 
/these rows 

2 

2/ 

Eqn.8.14 
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Matching real parts and imaginary parts gives two expressions 8.11a and 8.11b respectively: 

Writing 8.11a and 8.11b in matrix form gives two sets of equations: 

u A.x B.y 
Eqn.8.12 

v=B.x+A.y 

Where A=real(S), B=imag(S), and the matrix S = / — A)- '.B . The x and y vectors are as in 

Eqn.8.11. Combine into one expression to give: (not to be confused with A,B matrices of the LTI 

state variable system): 

iuv) = (AB —AB).(x  y) Eqn.8.13 

All we need to do is to remove the X don't care rows from the above expression and then solve for 

the x and y vectors by conventional least squares: 

After the first and last rows have been removed, write the above equation 8.12 as a simple linear 

matrix function: w = T. k, where w, T and k are the respective components of equation 8.12. 

Solving by least squares gives: 

T= (TT  .T) I .T T  .w 	 Eqn.8.15 

ir 	 , From the solution of: --g= k, x2 yi Y2 J , the g vector can be formed: g = 
[xi  + jy,] 

 
x2 + jy2  

achievable eigenvectors can then be computed S.g and the minimization equation 8.6 solved. 
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8.3 Bioreactor Mathematical Model: 

The bioreactor represents another physical system which was used for simulations studies. A brief 

introduction is given below. The bioreactor has been chosen for simulations due to its wide use in 

industry and portrays a simpler nonlinear system (lower order) compared to the aircraft model. 

The mathematical model we used is taken from chapter-2 references [5, 6, 7, 8]. The bioreactor 

consists of a tank containing water, nutrients (or substrate) and biomass (or cells). Nutrients and 

biomass are added to the tank (via the inlet), the nutrients are consumed by the biomass thereby 

increasing the overall biomass concentration in the tank. Furthermore, biomass is removed from 

the tank via an outlet, at the same flow rate as the inlet. The overall volume of the liquid in the 

tank is made to remain constant. This is illustrated schematically below Fig.8.5: 

Fi xi si 

44.117J 
V X S 

Fig.8.5 
Schematic Diagram of a Bioreactor 

Figure 8.5 illustrates the basic elements of a bioreactor tank. A complete derivation is omitted, 

however the reader is referred to chapter 2 references on bioreactors. The following state 

equations describe the dynamics of a bioreactor as a set of second order nonlinear differential 

equations: 

Bioreactor Dynamics: 
ds 	 s 	F 

	).X i-.(s — s) 
+s 

 V 1  
dr 	s 	F, 

). x 

Where: 
x,: 	Input biomass concentration=0. 
s,: 	Input nutrient concentration. 
F,: 	Input flowrate (constant) 
x: 	Biomass concentration inside tank. = output biomass 
s: 	Nutrient concentration inside tank. = output concentration 

Eqn 1.16 

■■■■■■7 

	  F, x0  so 
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In continuous operation, the bioreactor runs at some steady state operating point,  we  assume that 

the flow rates are constant and identical ie: = Fo , thus the volume of liquid inside the tank 

remains constant. We also assume that the output biomass and nutrient are the same as the 

biomass and nutrient ie: xo  = x, so = s inside the tank, we also assume the input  has  no biomass 

xi 

 

=0. Typical values for the saturation constant and growth rate coefficients are: p. =03 and 

Ks  = 0.1 to 0.4, =1.25, the initial conditions: s(0) =1.0, x(0). 02. The equations can be 

represented in non-linear state variable form shown below. Let x2=x, x2=s, u=s„ then together 

with the above assumptions we can write in more traditional form: 

1 X2  	F, ) 
i i  = iint- 	 .X1 Ks  + X2  V 

X  
I 	

2   )
. 

Ft f 
12 = — KI • Pm 	x +—.0— x2 ) 1 , Ks  + X2 	v 

Eqn.1.17 

  

Figure Fig.8.6 and 8.7 shows a typical step response simulation of the bioreactor open loop 

dynamics to nutrient input. 
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1.2 
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Fig.8.6 

Open Loop Step Response: x(t): Biomass Output 

0 	200 	400 	600 
Fig.8.7 

Open Loop Step Response: s(t): Nutrient Output 

The response is relatively intuitive, when a step input (in nutrient) is applied to the tank, assuming 

perfect and instantaneous mixing, the nutrient in the tank and hence output nutrient is initially high, 

but the nutrient is gradually consumed by the biomass (fig. 8.7) thus reduce with time. At the same 

time, the biomass concentration increases as an exponential function i.e. fig.8.6  due  to nutrient 

uptake. 
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8.4 Hooke-Jeeves Search Flowchart: 

r  Hooke-Jeeves Method 
minimize { f(x)} 

. 	 . 

given points: xo  = [xi.. .x] 
search span range: A 

Xis= XI 

Exploratory Move 

x(j) = X.() + A 

x(j) = x(j) - A 

xi = 2.x,, - x. 
xo  = x. XI = X. 

NO 

A=A/10 

return x o  I 


