
Control System Design Applications

With Hybrid Genetic Algorithms

By:

Vito Dirita (BE, MESc, Electrical Engineering)

School of Engineering,

Department of Electrical and Electronic Engineering

Submitted in fuffillment of the requirements for the degree of:

Doctor of Philosophy.

University of Tasmania

November 2002

Preface ii

Statement of Originality:

This thesis contains no material which has been accepted for a degree or diploma by the University

or any other institution, except by way of background information and duly acknowledged in the

Thesis, and to the best of my knowledge and belief no material previously published or written by

another person except where due acknowledgment is made in the text of the Thesis.

Vito Dirita.

Authority of Access:

This Thesis may be made available for loan and limited copying in accordance with the Copyright

Act 1968.

Vito Dirita.

Preface iii

Abstract:

This thesis investigates the hybrid application of stochastic and heuristic algorithms, in particular

genetic algorithms (GA), simulated annealing (SA) and Greedy search algorithms for the design of

linear and nonlinear control systems. We compare the rate of convergence, computational effort

required (FLOPS) and ease of implementation. Where possible, results are compared with the

more traditional control system design methodologies. Two specific practical applications include

aircraft flight control systems, and a nonlinear example of an industrial bioreactor fermentation

process.

Stochastic algorithms (GA) and heuristic algorithms (SA, Greedy, Tabu search) are powerful

search methods, capable of locating the global minimum or maximum (extremum) of multimodal

functions. They operate without the need for function gradients and are robust to noisy data. The

current research trend is directed towards the solution to constrained multiobjective optimization

problems of multimodal functions which may result in a family of optimal solutions (i.e Pareto

optimal set) and game theoretic approaches such as Nash and Stackelberg Equilibria.

Genetic algorithms suffer from one particular drawback, the rate of convergence can be

unacceptably slow if accurate solutions are sought. To overcome this deficiency, hybridization of

genetic algorithms with fast local search procedures are often used. Two heuristic based search

procedures are: greedy search and fast simulated annealing.

We investigate three types of Hybrid algorithms: (i) genetic algorithms (GA), (ii) hybrid GA +

simulated annealing (SA), and (iii) hybrid GA + greedy search. These methods are applied to

solving off-line linear and nonlinear control problems which may otherwise have no direct

analytical solution. In cases where solutions are obtainable using conventional methods, results are

compared with hybrid algorithms. Robustness against modeling errors, nonlinearities, disturbances

and parametric uncertainty will also be discussed.

We investigate five specific design applications, these include: training radial basis function (RBF)

neural networks, robust eigenstructure assignment (ESA), model reference adaptive control

(MRAC), robust mixed H 2/H_ design, and lastly fault detection and isolation (FDI).

We show that hybrid algorithms can perform better, can handle a broader class of problems, and

have fewer restrictions than conventional methods. Furthermore, stochastic and heuristic methods

can directly deal with constraints.

Preface iv

Acknowledgments:

I would like to thank my supervisor Dr. Ziiihong Man for his kind assistance and guidance towards

this thesis. I would also like to thank Prof. W. F. Budd for proof-reading this manuscript.

This thesis is dedicated to my dear wife Robina and my son Adrian.

Vito Dirita.

Preface v

Table of Contents:
Abstract 	 iii

Acknowledgments 	 iv

Table of Contents 	

Preface viii

Abbreviations 	 xi

1. Introduction To Optimization:

	

1.1 	Introduction

1.1.1 	Derivative Free Methods 	

	

1.2 	Conventional Optimization 	

1.2.1 	Derivative Free Methods 	
1.2.2 	First Derivative Methods 	
1.2.3 	Second Derivative Methods 	

	

1.3 	Stochastic and Heuristic Search Methods 	

p.1.2

p.1.3

p.1.4

p.1.4
p.1.5
p.1.5

p.1.6

1.3.1 	Evolutionary Programming 	 p.1.6
1.3.2 	Evolutionary Strategies 	 p.1.6
1.3.3 	Genetic Programming. 	 p.1.7
1.3.4 	Genetic Algorithms 	 p.1.7
1.3.5 	Simulated Annealing 	 p.1.8
1.3.6 	Greedy Search p.1.9
1.3.7 	Tabu Search p.1.9

1.4 Genetic Algorithms and Hybrid Methods 	 p.1.10

1.4.1 	Conventional Genetic Algorithms 	 p.1.10
1.4.2 	Hybrid Genetic Algorithms p.I.15

1.5 Constrained and Multiobjective Optimization p.1.20

1.5.1 	Calculus Based Constrained Single Objective Optimization 	 p.1.20
1.5.2 	Genetic Algorithm Single Objective Constrained Optimization. 	 p.1.22
1.5.3 	Genetic Algorithm Multiobjective Optimization 	 p.1.22

1.6 Chapter Summary and Conclusion 	 p.1.26

1.7 References and Further Reading 	 p.1.27

2. Training Radial Basis Functions with Hybrid Genetic Algorithms:

2.1 Introduction 	p.2.2

2.1.1 	The Radial Basis Function Network 	 p.2.3
2.1.2 	Training Radial Basis Function Networks 	 p.2.5

2.2 Training RBF Networks with Hybrid Genetic Algorithms 	 p.2.6

2.2.1 	Bioreactor Mathematical Model 	 p.2.7
2.2.2 	Training with Conventional Methods 	 p.2.8
2.2.3 	Training with Hybrid Genetic Algorithms 	 p.2.11
2.2.4 	Comparison of Results 	 p.2.16

2.3 Chapter Summary and Conclusion 	 p.2.18

2.4 References and Further Reading 	 p.2.2I

Preface vi

3. Eigenstructure Assignment Using Hybrid Genetic Algorithms:

3.1 	Eigenstructure Assignment 	

3.1.1 	Introduction
3.1.2 	Full Eigenstructure Assignment and Moores Method 	
3.1.3 	Partial Eigenstructure Assignment 	
3.1.4 	Robust Eigenstructure Assignment 	
3.1.5 	Response of LTI Systems from Eigenstructure Information 	

p.3.2

p.3.2
p.3.3
p.3.5
p.3.6
p.3.9

3.2 Partial Eigenstructure Assignment for Static Compensators 	 p.3.10

3.2.1 	Theory 	p.3.10
3.2.2 	Simulation 3.1: Fixed Eigenvalues 	 p.3.13
3.2.3 	Simulation 32: Domain Constrained Eigenvalues 	 p.3.15

3.3 Eigenstructure Assignment for Dynamic Compensators 	 p.3.19

3.3.1 	Theory p.3.19
3.3.2 	Simulation 3.3: Static Output Feedback. 	 p.3.23
3.3.3 	Simulation 3.4: Dynamic Control Output Feedback 	 p.3.25

3.4 Robust Eigenstructure Assignment 	 p.3.29

3.3.1 	Theory 	p.3.29
3.3.2 	Simulation 3.5: Hybrid Genetic Algorithms. 	 p.3.30

3.5 Chapter Summary and Conclusion 	 p.3.34

3.6 References and Further Reading 	 p.3.36

4. Model Reference Adaptive Control With Hybrid Genetic Algorithms:

4.1 Model reference adaptive control 	 p.4.2

4.1.1 	Introduction p.4.2

4.2 Model Reference Adaptive Control: SISO Systems 	 p.4.5

4.2.1 	Simulation-4.1: Lyapunov Stability method 	 p.4.5
4.2.2 	Simulation-4.2: MIT-rule Method 	 p.4.11
4.2.3 	Simulation-4.3: Hybrid Genetic Algorithms 	 p.4.16
4.2.4 	Comparison of Results 	 p.4.22

4.3 Model Reference Adaptive Control: MIMO Systems 	 p.4.24

4.3.1 	Simulation-4.4: Lyapunov Stability method 	 p.4.24
4.3.2 	Simulation-4.5: Gradient based (MIT-rule) Method 	 p.4.30
4.3.3 	Simulation-4.6: Hybrid Genetic Algorithms 	 p.4.36
4.3.4 	Convergence Rates 	 p.4.43

4.4 Chapter Summary and Conclusion 	 p.4.45

4.5 References and Further Reading 	 p.4.48

5. Mixed Hilt. Controller Synthesis with Hybrid Genetic Algorithms:

5.1 Introduction p.5.2

5.1.1 	Robust Control Theory 	 p.5.3
5.1.2 	H2 Control Theory And State Space Solutions. 	 p.5.4
5.1.3 	FL Control Theory And State Space Solutions. 	 p.5.7
5.1.4 	Mixed HilH. Control Theory 	 p.5.9

Preface vii

5.2 H2 Controller Synthesis 	

5.2.1 	Simulation Setup 	
5.2.2 	Conventional State Space Solution 	
5.2.3 	Solution Using Genetic Algorithms 	
5.2.4 	Convergence Rates for Hybrid Genetic Algorithms 	

p.5.11

p.5.11
p.5.13
p.5.15
p.5.19

5.3 H.. Controller Synthesis 	 p.5.21

5.3.1 	Simulation Setup 	 p.5.21
5.3.2 	Conventional State Space Solution 	 p.5.22
5.3.3 	Solution Using Genetic Algorithms 	 p.5.24
5.3.4 	Convergence Rates for Hybrid Genetic Algorithms 	 p.5.32

5.4 Mixed 142/H— Controller Synthesis With Hybrid Genetic Algorithms 	 p.5.33

5.4.1 	Simulation Setup 	 p.5.33
5.4.2 	Solution Using Genetic Algorithms 	 p.5.35

5.5 Chapter Summary and Conclusion 	 p.5.41

5.6 References and Further Reading 	 p.5.42

6. Fault Detection and Isolation Using Hybrid Genetic Algorithms:

6.1 Fault Detection and Isolation 	 p.6.2

6.1.1 	Introduction p.6.2
6.1.2 	Fault Detection and Isolation - Survey 	 p.6.4
6.1.3 	Signal Based Methods 	 p.6.7
6.1.4 	Model Based Methods 	 p.6.7
6.1.5 	Observer Based Methods 	 p.6.9
6.1.6 	Modeling Faults in Systems, Residual Generation. 	 p.6.12
6.1.7 	Parity Space Methods - Theory 	 p.6.15

6.2 Detecting Faults: Hybrid Genetic Algorithms 	 p.6.17

6.2.1 	Theory 	p.6.17
6.2.2 	Detecting Input/ Output Faults in Linear Systems 	 p.6.20
6.2.3 	Detecting Internal Faults: 	 p.6.29

6.3 Chapter Summary and Conclusion 	 p.6.31

6.4 References and Further Reading 	 p.6.32

7. Summary and Conclusions.

7.1 Conclusion 	 p.7.2

7.2 Challenges and Future Development 	 p.7.10

7.3 References and Further Reading 	 p.7.14

8. Appendix.

8.1 Aircraft Mathematical Model 	 p.8.2

8.2 Partial Eigenstructure Assignment 	 p.8.6

8.3 Bioreactor Mathematical Model 	 p.8.8

8.4 Hooke-Jeeves Search Flowchart 	 p.8.10

Preface viii

Preface:

Ever since the inception of evolutionary programming and genetic algorithms by Holland in 1962,

genetic algorithms have found wide acceptance in many fields such as combinatorial optimization,

artificial intelligence, system identification and control. Genetic algorithms are a robust

optimization technique capable of locating the global extremum of complex multimodal functions.

Current research in genetic algorithms include constrained and unconstrained optimization, and

multiobjective optimization. In many instances, single solutions to multiobjective optimization

problems do not exist, and instead a family of solutions exists, this is known as a Pareto optimal

set. Genetic algorithms do not require function gradients, but rather deal directly with the cost

function to be optimized. This has the added advantage of being able to handle complex nonlinear

cost functionals, or where the gradients are discontinuous or undefined, for instance: image

classification problems.

Genetic algorithms can be applied to either on-line or off-line control problems. Off-line design of

control systems can be applied to a wider range of optimization problems, for instance mixed

H2/110., Multi Input Multi Output (MIMO) designs using reduced order compensators in which no

direct design method currently exists, and other applications such as partial eigenstructure

assignment with constraints. With genetic algorithms, there are no restrictions, the plant may be

nonlinear, the controller may be linear, nonlinear, fuzzy or neural control based. Self tuning of

controller parameters can be realized by a genetic algorithm which attempts to optimize some

performance function (e.g. Linear Quadratic Regulator cost function) from the plant input and

output measurements. This leads to several important issues of how to ensure internal plant

stability and convergence of the genetic algorithm. There are two serious limitations which need to

be resolved when dealing with genetic algorithms:

I. Because a genetic algorithm search is stochastic, there is no method currently available to

guarantee their convergence. This is a serious limitation which needs to be addressed if genetic

algorithms are to gain wider acceptance in on-line control applications.

2. Genetic Algorithms constitute a family of powerful global search and optimization algorithms

which can deal with multimodal functions containing many local minima. Nevertheless, genetic

algorithms can become excessively slow in their final stages of convergence, once a minimum

has been found.

Preface ix

To obtain accurate solutions (with many decimal places), the genetic algorithm is inefficient.

One way to overcome this problem would be to combine the genetic algorithm with a fast local

search procedure. Once the minimum has been found by the GA search, the fast local search is

then used to quickly converge the solution to the desired accuracy.

In this thesis, we address the second issue, combining genetic search with a fast local search to

improve convergence properties of the hybrid algorithm. Fast local search procedures are also

known as hill-climbing methods. Thus hybrid methods (also known as genetic local search)

combine the reliability and robustness properties of the genetic algorithm and their original search

heuristics with the accuracy and fast convergence of local search methods.

We investigate three types of Hybrid algorithms: (i) genetic algorithms (GA), (ii) hybrid GA +

simulated annealing (SA), (iii) hybrid GA + greedy search. These methods are applied to solving

off-line linear and nonlinear control problems which may otherwise have no direct analytical

solution. In cases where solutions are obtainable using conventional methods, results are compared

with hybrid algorithms.

The full potential of genetic algorithms is yet to be realized in the area of control, and in particular

intelligent control and expert systems. In this thesis we investigate some applications of genetic

algorithms in control. Each chapter deals with one specific area of control and where possible,

comparison is made between conventional methods with solutions using genetic algorithms.

Preface x

Organization of Thesis:

Chapter 1: Begins with an introduction to optimization, including evolutionary computation,

genetic algorithms, simulated annealing, greedy algorithms, Tabu search', constrained optimization

and multiobjective optimization using calculus based techniques as well as genetic algorithm based

techniques.

Chapter 2: Discusses applications of genetic algorithms in training radial basis function

networks. The example used is a model matching problem of a nonlinear system, often found in

control system applications.

Chapter 3: Discusses applications of genetic algorithms in the design of robust eigenstructure

controllers with partial eigenstnicture specifications. Simulation results comparing conventional

methods with GA are discussed. Simulation results including full state feedback and measurement

feedback using dynamic compensators are given.

Chapter 4: We apply GA to solving model reference adaptive control problems, with constraints

and multiple objectives. As seen by the results, genetic algorithms perform better than

conventional MIT and Lyapunov based methods and require fewer assumptions to implement.

Chapter 5: We apply GA to solving mixed H2 / H., control problems, results are compared with

conventional state space solutions. Full order dynamic compensators and reduced order

compensators are described. The objective function is to minimize sensitivity norms (from

disturbance to performance outputs) and maximize robustness against model uncertainties.

Simulation results using the linear aircraft model is provided.

Chapter 6: This is a survey chapter on different types of fault detection and isolation. We show

that fault detection based on GA outperforms conventional fault detection methods such as the

widely accepted parity space technique. We also show that fault detection in linear and nonlinear

systems is also possible with GA.

Chapter 7: Discussion and Conclusion.

Chapter 8: Appendix.

Each chapter is self contained, comprising of an introduction, theoretical background, simulation

results, discussion, conclusion, and references. This individual chapter format should hopefully

facilitate reading.

RBF

SA

SISO

SPRT

S'TR

TS

UI0

VSO

Radial Basis Function

Simulated Annealing

Single Input Single Output

Sequential Probability Ratio Testing

Self Tuning Regulator

Tabu Search

Unknown Input Observer

Variable Structure Observer

Preface xi

Abbreviations:

Al 	Artificial Intelligence

ANN 	Artificial Neural Network

ART Adaptive Resonance Theory

BP 	Back Propagation

BFGS Broyden Fletcher Goldfarb Shanno

DFP 	Davidon Fletcher Powell

EA 	Evolutionary Algorithms

ECP 	Equality Constrained Problem

EKF 	Extended Kalman Filter

EP 	Evolutionary Programming

ES 	Evolutionary Strategies

ESA 	Eigen-Structure Assignment

ETA 	Event Tree Analysis

FDF 	Fault Detection Filter

FDI 	Fault Detection and Isolation

PLC 	Fuzzy Logic Controller

FSM 	Finite State Machine

FTA 	Fault Tree Analysis

GA 	Genetic Algorithms

GP 	Genetic Programming

GS 	Greedy Search

ICP 	Inequality Constrained Problem

LMI 	Linear Matrix Inequalities

LQR 	Linear Quadratic Regulator

LTI 	Linear Time Invariant

MIMO Multi Input Multi Output

MLP Multi Layer Perceptron

MOP Multiobjective Optimization Problem

MRAC Model Reference Adaptive Control

MVIM Multi Valued Influence Matrices

HD 	Proportional Integral Derivative

Chapter!. Introduction To Optimization 	 P.1.1

1 Introduction To Optimization

Contents:

1.1 Introduction 	 p.1.2
1.1.1 Objectives 	p.I.3

1.2 Conventional Optimization 	 p.1.4

1.2.1 Derivative Free Methods 	 p.1.4
1.2.2 First Derivative Methods 	 p.1.5
1.2.3 Second Derivative Methods 	 p.1.5

1.3 Stochastic and Heuristic Search Methods. 	 p.1.6

1.3.1 Evolutionary Programming 	 p.1.6
1.3.2 Evolutionary Strategies 	p.1.6
1.3.3 Genetic Programming 	 p.1.7
1.3.4 Genetic Algorithms 	 p.1.7
1.3.5 Simulated Annealing 	 p.1.8
1.3.6 Greedy Search 	 p.1.9
1.3.7 Tabu Search 	 p.1.9

1.4 Genetic Algorithms and Hybrid Methods 	 p.1.10

1.4.1 Conventional Genetic Algorithms 	 p.1.10
1.4.2 Hybrid Genetic Algorithms 	 p.1.15

1.5 Constrained and Multiobjective Optimization 	 p.1.20

1.5.1 Calculus Based Constrained Single Objective Optimization 	 p.1.20
1.5.2 Genetic Algorithm Single Objective Constrained Optimization 	 p.1.22
1.5.3 Genetic Algorithm Multiobjective Optimization 	 p.1.22

1.6 Chapter Summary and Conclusion 	 p.1.26

1.7 References and Further Reading 	 p.1.27

Chapter I. Introduction To Optimization 	 P.1.2

1.1 Introduction:

This introductory chapter provides an initial background to the subject of optimization. Topics

covered include: calculus based (or conventional optimization), heuristic and stochastic search,

hybrid search methods, constrained and multiobjective optimization.

For the first part of the chapter, a brief discussion of conventional calculus based optimization is

provided. Calculus based optimization falls into three main categories: (i) derivative free or

pattern search methods such as the Nelder-Mead Simplex method [42], (ii) first derivative or

gradient based methods such as gradient descent or conjugate gradient in which the gradient of the

function must be known or estimated, and (iii) second derivative or variable metric (also known as

Newton or Quasi-Newton) methods in which the Hessian matrix must be known or approximated.

All three methods differ in complexity and convergence. Derivative free methods are the simplest

to implement, but result in unacceptably slow rates of convergence. Second derivative methods

have a greater rate of convergence, however at the expense of computational complexity. All these

methods can only locate the local extremum of a function (local convergence characteristics).

The second part discusses stochastic and heuristic search techniques. Stochastic methods are

probabilistic based search methods which include evolutionary computation [1]: evolutionary

programming, evolutionary strategies, genetic programming, genetic algorithms and simulated

annealing [72]. Heuristic search methods include: greedy algorithms [52] and Tabu search [56].

Stochastic search methods have global convergence characteristics, but can suffer from slow final

convergence, while greedy algorithms and Tabu search have rapid final convergence.

In the third part, hybrid search methods are discussed. Hybrid methods generally combine two or

more individual search techniques such that the resulting algorithm has superior convergence

properties when compared to either individual methods. For instance, evolutionary computation

has been combined with gradient based optimization to utilize the global search capability of

evolutionary computation with the fast local convergence properties of the gradient based method.

Lastly, a discussion of multiobjective optimization and constrained optimization is briefly outlined.

Multiobjective optimization using genetic algorithms, Pareto optimality, population Niching

methods and Nash equilibria are discussed. Constrained optimization using penalty and repair

functions are also described.

Chapter 1. Introduction To Optimization 	 P.1.3

1.1.1 Objectives:

Before proceeding any further, a brief summary of the main objectives of this thesis is provided

below:

1. To investigate potential applications of genetic and hybrid genetic algorithms to the design and

synthesis of control systems, and to compare with the more traditional and conventional

control system design methods. In particular, the following areas are investigated: (i) training

neural networks to model nonlinear systems, (ii) robust eigenstructure assignment, (iii) model

reference adaptive control, (iv) robust H2 and 1-1_, and compensators with mixed HAL

design objectives, and lastly (v) fault detection and isolation.

2. To show that genetic algorithms can converge rapidly, have fewer restrictions and can solve a

wider range of control problems, including constrained and multiobjective problems, which

may otherwise have no direct solution with conventional control design techniques.

3. Whilst genetic algorithms have powerful global search capability, they can sometimes suffer

from slow final convergence once a solution is found. To overcome this problem, hybrid

methods have been developed. To investigate hybrid GA methods by combining the global

search capability of genetic algorithms with the convergence properties of a fast local search

heuristic, without resorting to gradient or Hessian matrix computation. These methods can

include: derivative free techniques, see chapter 1.2.1, or heuristic based such as Tabu search

(section 1.3.7), Greedy search (section 1.3.6) or a fast Simulated Annealing (section 1.3.5).

The three methods chosen are: (i) conventional genetic algorithms, (ii) genetic algorithms and

simulated annealing, (iii) genetic algorithms and greedy search.

4. To show that hybrid genetic algorithms are more effective stochastic based search and

optimization methods compared to conventional genetic algorithms.

5. To show that the use of floating point chromosomal codification can be readily and directly

applied to control system applications.

6. To investigate adaptive control using hybrid genetic algorithms, and to compare results with

traditional Lyapunov based stability and gradient based (MIT-rule) methods.

Chapter!. Introduction To Optimization 	 P.1.4

1.2 Conventional Optimization
Conventional optimization, also known as calculus based optimization, approximates the function

to be minimized (or maximized) by a first or second order Taylor series expansion. Derivative free

methods do not require a Taylor series approximation. Note that all these methods discussed are

also known as hill-climbing methods.

1.2.1 Derivative Free Methods:

Derivative free methods, also known as direct search or pattern search techniques, do not require

knowledge nor approximation of the function gradient. The most popular is the Nelder-Mead

Simplex method [42] in which a simplex (tetrahedron) is defined consisting of (n+1) vertices, where

n is the number of dimensions of the function. At each iteration, the shape of the simplex changes

according to the shape of the local landscape, gradually moving down towards into the valley of the

function to be minimized. This adaptation process is achieved by three steps: reflection, expansion

and contraction. Only several function evaluations are required for each iteration, however

convergence is slow, requiring many iterations. This method is very robust and works well if the

number of variables n does not exceed five or six. Convergence properties of the Nelder and Mead

simplex have been described in [43]. Implementations in MATLAB© (optimization toolbox) and

Numerical Recipes is also available.

Another effective method is Powell's Method [44, 45, 49]. Powell's method starts with a single

initial point and search direction. At each iteration, n line minimizations must be performed, one

for each direction, and a new search direction is obtained. A new (better) point is obtained by

summing the old point and the search direction thus: xki.i = xk + d k. Line minimization using a

golden search or quadratic fit search is often used. Powell's method converges in fewer iterations

compared to Nelder and Mead Simplex, works well with functions of up to twenty variables, but

requires a line search minimization.

The last method known as the Hooke and Jeeves algorithm [46] starts with a single initial point

and a search span range Ak. At each iteration, it operates in two steps or moves: exploratory and

pattern moves, whereby the span range Ak is gradually reduced. A better point is then given by

xk .„. 1 = xk + Ak. The algorithm terminates when the magnitude of A k is below a predefined value.

Several other derivative free optimization methods exist including: Rosenbrock's algorithm [47],

and Fletcher [48]. All these methods are limited to local search (local extrema) of a function, and

convergence is generally slow and dependent on the initial starting point and shape of the function.

Chapter 1. Introduction To Optimization 	 P.1.5

1.2.2 First Derivative Methods:

First derivative methods require the knowledge of the function gradient. The simplest, although

generally not recommended, is the method of steepest descent, also known as gradient descent.

Given an initial estimate xk, the next iteration xk+i gives a better estimate from: xk+, = xk - a.aflaxk,

where a is a step size and aflaxk is the gradient vector. The step size a can be a constant or can be

found by a line minimization procedure by minimizing: f(xk - a.)flaxk) using a golden section or a

quadratic fit search. The problem with steepest descent is that it will perform many small steps in

going down a long, narrow valley even if the valley is a quadratic function. A more effective

procedure however is to use the method of conjugate gradients [49]. This procedure also requires

a line minimization and gradient calculation at each iteration. The method avoids the pitfalls of

gradient descent by ensuring that at each new iteration, the next direction is conjugate to the

previous. Thus for a quadratic function, only two steps are necessary to reach the minimum. There

are two variants of the conjugate gradient: Polak-Ribiere and Fletcher-Reeves formula. These

methods suffer from poor convergence where the gradient is near zero.

1.2.3 Second Derivative Methods:

Second derivative methods also known as variable metric or Quasi-Newton methods require a

knowledge of the function's Hessian matrix. These methods attempt to approximate the function

fix) as a quadratic by Taylor series expansion at the given point x k. By minimizing the quadratic

approximation, a better solution can be found xk +1. This procedure is then repeated at the new

point xk.o . The iterative formula known as the Newton-Raphson method is: xk+, = xk — H 1 gk ,

where gk is the function gradient, Hk is the function Hessian matrix. The difficulty of such a

method is in computing the inverse of the Hessian matrix, which may be numerically ill conditioned

(poor condition number). This drawback leads to a new class of Quasi-Newton methods in which

the matrix inverse 11 1 is replaced (i.e. approximated) by a positive definite symmetric matrix Gk.

At each iteration, the matrix Gk is updated such that as xk approaches x* (optimum), then Gk

approaches Hi'. There are two main algorithms implementing this concept: Davidon-Fletcher-

Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [3]. These methods are the

preferred having very fast convergence properties, and are generally available in off-the-shelf

numerical optimization software packages.

Chapter I. Introduction To Optimization 	 P.1.6

1.3 Stochastic and Heuristic Search Methods:
Stochastic search methods include Evolutionary Computation (EC) and Simulated Annealing (SA).

Heuristic search methods include Greedy Algorithms and Tabu Search. Evolutionary computation

(EC) is broadly classified into four categories: evolutionary programming (EP), evolution

strategies (ES), genetic programming (GA) and genetic algorithms (GA). Whilst different, they

all share one fundamental principle: reproduction, random variation, and selection. Of these four

methods, genetic algorithms have found widest acceptance in the field of optimization,

identification and control. Excellent sources of reference on evolutionary computation can be

found in [1, 2, 4, 5, 6]. The four Evolutionary methods described above share the same

characteristics and similarity in many respects. They all operate on a population of individuals,

and have each individual represented by an encoded string (chromosome) using some alphabet such

as binary, floating point etc. The definition of individual performance or fitness based on some

objective function to be optimized, and the application of genetic operators (selection, crossover,

mutation) recursively to arrive at the solution. A good introduction to evolutionary computation is

provided by Fogel [1]. Greedy algorithms [50] and Tabu search [54] operate on a single

individual (solution) and use rule-of-thumb heuristics to produce a better solution based on

previous solutions. Solutions found using heuristic and metaheuristic methods are not necessarily

globally optimal.

1.3.1 Evolutionary Programming (EP):

Evolutionary programming techniques work with a population of finite state machines (FSM).

Each individual FSM (chromosome) represents a potential solution. The inputs are a sequence of

symbols: al, az, .. a. (belonging to a finite alphabet), and the fitness value is a measure of how

accurately the individual is able to predict the next output 	which is then compared with the

next observed symbol 	Transition diagrams are used to represent the behavior for which

nodes correspond to each state, and arrows, indicate transition from one state to another. Concepts

of reproduction, mutation, crossover and selection are applied at each generation. Evolutionary

programming is not suitable for numerical optimization problems.

1.3.2 Evolution Strategies (ES):

This technique has been developed to solve parameter optimization problems. Each chromosome

consists of two float-vectors: lx, a}, where the x vector represents a single point in the search

space (potential solution) and a represents a vector of standard deviations associated with x.

Chapter 1. Introduction To Optimization 	 P.1.7

Only one genetic operator is used: mutation, the next population of offspring is generated by the

expression: x i+, = x + N(0,a), where N(0,a) is a vector of independent random gaussian

numbers with zero mean and a standard deviation. The offspring then replaces the parent if its

fitness value is higher than that of the parent. This is in effect a random search, and convergence is

slower when compared with genetic algorithms.

1.3.3 Genetic Programming (GP):

This is a relatively new approach in which the objective is to find the best algorithm to solve a

particular problem rather than using an evolution program to solve a problem. In other words,

each chromosome in a population represents a particular computer algorithm. The search space is

then a hyperspace of all valid computer programs which can be viewed as a space or rooted trees.

This in effect results in an evolving computer program. Genetic operators such as crossover and

mutation swap and modify sub-branches of parent trees. These have applications in artificial

intelligence, but are not suitable for continuous function optimization problems.

1.3.4 Genetic Algorithms (GA):

Genetic algorithms (GA), first proposed by John Holland [2], attempt to mimic the process of

natural evolution and survival-of-the-fittest by processes of genetic operators and natural selection.

It is this process of evolution (or natural adaptation) which enables a population to evolve and to

solve complex optimization problems. There are four features which define the concept of GA:

(1) codification of solution space by bit-strings also referred to as chromosomal representation, (2)

genetic operations which include crossover and mutation, (3) evaluation and selection, and (4) a

population solutions rather than a single solution. Genetic Algorithms operate on a bit-string

representation of the solution variables rather than the variables themselves, furthermore, GA do

not operate on a single solution but on a population of individuals (chromosomes), this concept is

known as intrinsic parallelism. The average fitness of the population of individuals is improved

with each iteration (or generation) by genetic operators of selection, crossover and mutation. The

general workings of the original GA proposed by Holland [2] is as follows: an initial population N

is created with random values which span the solution space or the search space. Two or more

parents are chosen via a selection scheme, this selection is based on relative fitness of the

individuals. The higher the fitness the more likely the individual is to be selected, this is known as

proportional selection.

Chapter 1. Introduction To Optimization 	 P.1.8

The parents are combined probabilistically using the genetic process of crossover to produce either

a single or two offspring. Mutation is then applied with a small probability to the resulting

offspring, which are then used to create a new population of individuals. This process is repeated

usually N times, where N is the population size. Crossover is the main search operator, with

mutation as a background operator which is applied with much lower probability. Whilst

crossover allows the solution to work it's way down to a minimum (or maximum), it can get stuck

within a local minimum, and mutation overcomes this by enabling search to continue over a wide

solution space. The basis of GA search is embedded within the concept of the building block

hypothesis. This states that a better individual (offspring) can be created by combining substrings

or blocks from two (or more) parent individuals. Holland's original work on the schema theorem

[2] provides a formal analysis and convergence properties of the GA. The schema theorem was

based on binary string codification, currently the trend however is towards floating point

representation.

1.3.5 Simulated Annealing (SA):

Strictly speaking, simulated annealing (SA) is not an evolutionary programming method, however

it owes its basis to natural phenomena and is also applied probabilistically as in GA. Simulated

annealing, first proposed by Kirkpatrick [3] is an optimization technique analogous to the thermal

process of annealing. The SA algorithm starts with a high temperature To and initial states x

(solution), a random perturbation etx is applied to the states with magnitude dependent on the

temperature Ex=f(T), and new solutions are evaluated at x+ox. If the energy level (or fitness) is

less than the energy level at x, then this solution is accepted. If it is greater however, it will only be

accepted with a finite probability which decreases with temperature. In the next iteration, the

temperature is reduced (annealing schedule) and the process is repeated again. This continues

until equilibrium is reached or the temperature is below a specified value (termination criterion).

This algorithm is also known as the Metropolis algorithm.

The key to achieving good performance with simulated annealing and global convergence is that a

stationary distribution must be reached at each temperature and the cooling schedule must proceed

very slowly. The SA algorithm is not as effective as the GA algorithm at finding global minimum,

however it has very fast convergence properties near the solution. Note that SA operates on a

single candidate solution rather than a population of solutions.

Chapter I . Introduction To Optimization 	 P.1.9

1.3.6 Greedy Search (GS):

A greedy algorithm is a heuristic search algorithm which looks for the best immediate solution

without considering many other alternatives. In this sense, a greedy search generally quickly finds

local rather than global optimal solutions. A typical greedy search algorithm would be as follows:

iterate

- look for adjacent solution(s) within a predefined search span/range.

- if adjacent solution is better, accept as the current solution.

- increase or decrease the search span/range accordingly.

end

Fig.!.!
Typical Greedy Search Algorithm

While there is no one single generic form of the greedy search algorithm, the above is typical and

can be applied to both combinatorial optimization problems, discrete and continuous function

optimization. Examples of greedy search can be found in [50] in discrete function optimization,

continuous function optimization [51], combinatorial optimization [52], and applications to radial

basis function networks [53]. Because greedy search algorithms have good local convergence

properties, applications usually involve a hybrid approach with an algorithm having global

convergence (e.g.: Genetic Algorithm) and a greedy local search algorithm.

1.3.7 Tabu Search:

Tabu search operates on the premise that some moves (from the current position) are forbidden or

Tabu. Forbidden moves are those recently visited which did not yield an optimal solution. Tabu

search requires a Tabu list which is a record of forbidden moves. At each iteration, Tabu search

chooses a non-Tabu feasible move. After each step, a collection of moves that includes any

returning immediately to the previous point is added to the Tabu list. This move is then forbidden

for several iterations. After many iterations, the Tabu list is cleared and the procedure is repeated

from the new current position. Tabu search is currently becoming an active area of research in

many diverse fields. For instance Tabu search can be applied to optimization of functions in

continuous domains [54], topological and combinatorial optimization [55, 61], introductory papers

can be found in [56,57,58], applications to vehicle routing [59], comparison with simulated

annealing and genetic algorithms [60]. The main strength of Tabu search is in combinatorial and

topological optimization problems.

Chapter 1. Introduction To Optimization 	 P.1.10

1.4 Genetic Algorithms and Hybrid Methods:
Conventional genetic algorithms and hybrid genetic algorithms comprise the core of all simulations

contained within this dissertation. Genetic algorithms were introduced in section 1.3.4. In this

next section, detailed aspects on genetic algorithms and hybrid genetic algorithms is presented.

1.4.1 Conventional Genetic Algorithms:

Genetic Algorithms, originally developed by John Holland [2], are based on the Darwinian

biological evolutionary principle of survival of the fittest strategy. The concept is to mimic the

mechanisms of biological evolution using mathematical abstractions of genetic operators. Genetic

algorithms operate on a population of individuals (or chromosomes) in order to search for a

solution. Each individual consists of a potential solution and its associated fitness value. This

fitness value represents the individual's performance upon the solution of the problem. For

example the fitness value could indicate the inverse of the RMS error between the simulated model

output compared with actual plant output, or some optimization function to be minimized. Higher

fitness values denote better solutions. Each individual in the population is represented by a bit

string or chromosome (also known as codification) . Historically binary representation was used.

This has the advantage of being more generalized, but has limited accuracy. Currently floating

point representation is used [12]. Figure 1.2 below illustrates the traditional binary representation

of a chromosome:

Chromosome
Gene

+/- 1 0 1 1 1 0 1 real x i

signt 	
bit 	binary x i

	 1+/- 1 0 1 1 1 0 1 Ireal xn'Fitness

binary x„

Fig. 1.2
Original Binary Representation of a Chromosome

For instance, the above chromosomal representation can be used to encode the solution to the

following unconstrained minimization problem: min{ f (x)} , where x= 	x2,.. xd, and the fitness

value can be defined simply to be the inverse of the function thus: fitness =11 f (x).

Referring to figure 1.2, the chromosome is subdivided into genes, and a gene encodes a particular

function e.g.: node weights for a neural network. The complete string refers to a chromosome.

The biological equivalent would be a DNA sequence.

Chapter 1 . Introduction To Optimization 	 P. 1 .1 I

Binary bit strings are no longer used and real number representation is more common, however

binary representation is more domain independent, but is slow and factors of accuracy and finite

length approximations result in problems with precision. The original Schema theorem developed

by Holland [2] for the convergence analysis of GA used binary representation. Unfortunately it is

difficult to see how the schema theorem is applicable to floating point representation. A

comparison of floating point and binary representation is provided in [12]. The genetic algorithm

in its simplest form is illustrated in the flowchart form below (Fig 1.3), noting that there are many

other variations to this algorithm.

Initialize)
Population N

POLD

one generation

repeat
for k t to N

Select Parents: A,B from POLD

A=POLDO

B=POLDO

Crossover Operator Probability =
C=A0B

Mutation Operator: Probability = P
D=mut{C}

Jr
Compute fitness for D chromosome

Insert into new population
D-->PNEw(j)

copy to old population

PoLD<--PNEw

NO

exit

Fig. 1.3
The Genetic Algorithm

Chapter 1. Introduction To Optimization 	 P.1.12

A new population is created with each generation, by using the genetic operators of selection,

crossover and mutation, the average population fitness increases. Eventually the population

converges whereby the majority of the population will have near-identical chromosomal values.

Genetic algorithms have been applied successfully in training Multi Layer Perceptrons (MLP) and

radial basis function neural networks [14]. Some excellent introductory textbooks on GA can be

found in references [1, 2, 4, 5, 6]. Figure 1.3 illustrates a typical genetic algorithm. This is the

traditional GA, sometimes also referred to as the simple genetic algorithm. The genetic algorithm

uses no problem specific information, except when calculating the fitness value of a chromosome.

The lack of gradient information however can result in slow convergence in regions where the

objective function has nearly zero gradient. We next look at the four main genetic operators:

selection, crossover, mutation and population inversion.

(i) The Selection Operator: The selection operator is used to choose parent individuals from the

current population based on the individual's fitness. Holland's original work used the probability of

selection proportional to the fitness value. This is known as the roulette wheel selection operator.

With each generation step, the fitter individuals obtain more copies, thus producing a near identical

population. This reduces the convergence rate, and selection becomes ineffective, the crossover

operator also becomes ineffective due to lack of genetic diversity. Also, the possibility of creating

a single super-individual which will quickly proliferate throughout the population and result in

premature convergence possibly to a local minimum. Therefore the selection operator must be a

careful balance between preventing premature convergence and maintaining adequate genetic

diversity. There are two main groups of selection operators: Fitness proportional selection and

Rank based selection.

Fitness Proportional Selection: This selection operator chooses parents with a probability directly

proportional to the individual's fitness value. The most common is roulette wheel selection,

similar in principle to a roulette wheel. Each member is represented as a slot of a roulette wheel,

the width of the slot is proportional to its fitness. To select an individual, we simply spin the wheel

(i.e. choose a uniform random number) and the slot where the random number ends up is the

individual selected. This can result in premature convergence for super-fit individuals. To

overcome this problem, fitness scaling can sometimes be applied to the population before

selection. Many types of fitness scaling are available: linear static scaling, linear dynamic scaling,

exponential scaling, logarithmic scaling, sigma truncation and Boltzman scaling.

Chapter 1. Introduction To Optimization 	 P.1.13

Rank Selection: The individuals are ordered (sorted) by fitness values, only the relative fitness is

important, and not absolute fitness. This method reduces the possibility of premature convergence,

but ignores the actual fitness values of the individuals.

After sorting, several selection schemes may be applied including: tournament selection, stochastic

universal sampling, and truncation selection. Tournament Selection selects m individuals randomly

with uniform probability from the population, and the fittest (from m subpopulation) is then

selected to be the parent. Generally m is two. A high value of m can produce premature

convergence, a low number may result in a too slow convergence. Trial and error may be required

in the choice of m. Variations of tournament selection can be found in reference [28] for

multiobjective problems. Stochastic Universal Sampling is an optimal sampling algorithm with

zero bias and minimal spread. It is also possible to scale and compute new fitness values

according to the relative position of the individual in the rank, and then apply fitness proportional

selection methods discussed above.

The selection operator can have a critical influence on the convergence properties of the GA.

Tournament selection and stochastic universal sampling are currently the most popular, however

some trial and error may be required in order to ascertain which selection operator works best for a

particular application. An important quantity is the selection pressure, this is a measure of how

strongly the fitter individuals are selected over the less fit individuals. For instance the ratio:

increase in average fitness/standard deviation of the population can be used to quantify selection

pressure. Fuzzy selection schemes have also been developed, for instance see [14B].

(ii) The Crossover Operator: The crossover operator (or recombination operator) takes two or

more parents and recombines them to produce either one or more offspring. This is illustrated

below in fig. 1.4 for a binary string chromosome using single point crossover and producing a

single offspring:

A-parent:

B-parent:

Offspring:

crossover site

101101 001000

001 0 0 1 1 0 11 0 0

001 001 0 0 1 0 0 0

Fig. 1.4
The Single Point Crossover Operator

Chapter!. Introduction To Optimization 	 P.1.14

There are a number of variations of the crossover operator, these are: two point crossover,

multipoint crossover, uniform crossover, diagonal crossover, and weighted average crossover.

Two point crossover is more effective than single point. Uniform crossover simply swaps single

bits chosen at random and not entire segments. Weighted average crossover only works with real

numbers and simply averages the two parents thus: offspring = ax ParentA + (1-a) x Pare ntB,

where a is a random number [0,1] chosen with uniform probability. We also found that sometimes

a constant a=0.5 can produce rapid convergence. For the crossover operator to be effective, a

diverse population is required, because this is the main GA search operator. Once the population

has converged, crossover becomes ineffective. When this occurs, the only search operator is

mutation, at which point the genetic algorithm degenerates to a pure random search algorithm.

This substantially reduces the rate of convergence. Crossover is applied statistically, with high

probability values, typical probability: Pc=0.7 to 0.9. Diagonal crossover is used in multi-parent

(more than two parents) recombination.

(iii) The Mutation Operator: The mutation operator plays a secondary role to the genetic

algorithm. Subsequently it is applied with low probability typically: Pm=0.01. Mutation changes

bits of the chromosome at random. This is illustrated below for a binary string:

old string: 1101101 0 0 1 0 0 0 1

new string: 1101101 1 0 1 0 0 0 1

mutated bit--I

Fig. 1.5
The Mutation Operator

For floating point numbers, the mutation operator becomes: xi = xi + k x rand, where xi is an

individual element of the chromosome, k=mutation intensity (or gain), and rand has a uniform

normal or gaussian distribution. The purpose of mutation is to prevent the GA from getting stuck

in a local minima, to provide prolonged genetic diversity, and increased search space. The

mutation intensity k or mutation gain, may be set with a value that should ideally decrement as the

algorithm gradually converges. A high mutation intensity should be used near the start of the

simulation, and gradual decrease with generation thus: k=k(t). Another form of mutation is: xi = xi

x (1+ kx rand) which has a narrower search range, and the random function rand is a gaussian

distribution. As a rule of thumb, the probability of mutation P m should be chosen to be the inverse

of the dimension of the parameter space. Thus if 10 parameters are to be sought, then set the

mutation probability to: P m = 0.1.

Chapter 1. Introduction To Optimization 	 P.1.15

(iv) The Population Inversion Operator: With each generation, a new population of offspring is

created from the old parent population. Sometimes a new population is created by a combination

of the best offspring and best parents. When generating a new population, it must be ensured that

identical individuals are not duplicated reducing genetic diversity. Two methods which we have

used are: (i) combine the N parents and N offspring into one 2N population, and choose the N

fittest ones for the new population, or (ii) simply replace the old population with the new

population. However, whichever method is chosen for generating a new population from the old,

the concept of elitism in which the best individual from the old population is preserved into the new

population unmodified, is found to be essential.

1.4.2 Hybrid Genetic Algorithms:

Genetic Algorithms constitute a family of powerful global search and optimization algorithms

which can deal with multimodal functions containing many local minima. Nevertheless, genetic

algorithms can become excessively slow in the final stages of convergence, once a global minimum

has been found. To obtain accurate solutions (with many decimal places), the genetic algorithm is

inefficient. This deficiency is in part due to population convergence, in which the crossover

operator becomes ineffective. Also, the genetic algorithm does not exploit local landscape features

such as function gradients. One way to overcome this problem would be to gradually reduce the

mutation intensity or gain (see 1.4.1 part iii) once the population has reached steady state. The

genetic algorithm then becomes a purely random search algorithm with an annealing schedule on

the mutation operator. However, pure random searches are also unacceptably slow.

(i) Hybridization of Genetic Algorithms: Another method is to combine the genetic algorithm with

a fast local search procedure. Once the minimum has been found by the genetic algorithm, the fast

local search is used to quickly converge the solution to the desired accuracy. Fast local search

procedures are also known as hill-climbing methods. Thus hybrid methods (also known as genetic

local search) combine the reliability and robustness properties of the genetic algorithm and their

original search heuristics with the accuracy and fast convergence of local search methods.

(ii) Examples: Examples of hybrid genetic algorithms which include nonlinear system

identification [61] hybrid methods which combine genetic algorithms with Quasi-Newton (see

1.2.3) local search and Nelder-Mead Simplex (see 1.2.1) methods are discussed.

Chapter 1. Introduction To Optimization 	 P.1.16

Again, in [62], variable metric methods using the BFGS (see 1.2.3) have been combined with

genetic algorithms in multiobjective optimization applications. Hybrid genetic algorithms coupled

with steepest descent methods can be found in [63, 65] in a seismic data imaging application.

Combining genetic algorithms with heuristic local search methods can be found in [64] in which a

greedy multi-start local search is used.

Applications to combinatorial optimization problems for the classical traveling salesman problem

can be found in [66] using a simulated annealing local search procedure. Greedy local search

algorithms have also been used to hybridize genetic algorithms, for instance [67, 70] describe an

application in a continuous function domain.

Hybrid genetic algorithms using a fast simulated annealing local search procedure have been

investigated, for instance in [68] where neural networks have been trained using hybrid GA+SA

methods. In another application, genetic algorithms have been combined with Tabu search (see

1.3.7) to solve nonlinear continuous function optimization problems [69]. From the above list,

many methods in diverse fields have been investigated.

Alternatively, it is also possible to hybridize the genetic operators, such that some local search is

featured into either crossover of mutation operators. For instance, the pattern search method used

by the Hooke-Jeeves algorithm described in section 1.2.1 can easily be incorporated into the

crossover operator. This is described in more detail on the following section.

As a general rule however, it is impossible to accurately and reliably locate the global minimum of

a multimodal function. This conflict is referred to as the exploitation-exploration trade-off, and

must be borne in mind when attempting to hybridize or implement any optimization algorithm.

(iii) Combining genetic algorithms and metalteuristic searches: The aim of this thesis is to

develop and compare hybrid methods with conventional genetic algorithms, and in particular apply

these methods to a number of control system design problems. The objective is also to see how

well hybrid genetic algorithms compare with conventional control system design methodologies.

Some of the desirable properties required of the hybrid GA method are:

1. Use a fast local search procedure which does not require gradient computation. For instance,

the methods discussed in 1.2.1 such as Nelder-Mead Simplex or Powell's method can be used.

2. We also wish to retain the stochastic and heuristic nature of the overall algorithm. Thus the

genetic algorithm can be coupled to a fast greedy local search, fast simulated annealing, or a

Tabu search. These methods also have some weak global search capability.

Chapter 1. Introduction To Optiraization 	 P. 1 .17

3. The hybrid genetic algorithm must also be able to deal with constrained optimization and

multiobjective optimization problems.

The two hybrid genetic algorithms chosen are: (i) genetic algorithm coupled with a fast simulated

annealing local search and (ii) genetic algorithm coupled with a fast greedy local search. These are

chosen because constraints may be included and also have some global search capability. A

multistart procedure is implemented for the local search algorithm. Note that Tabu search can also

be used, however its application is more suited for combinatorial optimization problems than in

continuous function domains. The two local search algorithms are detailed below.

(iv) Hybridization with greedy search algorithm: A greedy algorithm has no specific structure

other than that illustrated by figure 1.1. However a typical greedy heuristic algorithm would use

the following concepts: a variable search step size which contracts when convergence is slow, and

expands when convergence is rapid. It must also keep track of the direction of recent success, so

that the search is conducted over the direction of most rapid descent. This algorithm is outlined in

figure 1.6 below. Referring to figure 1.6, the two vectors are best_vec and best_sum, where

best_vec is the direction vector of most recent success, the magnitude of this vector expands and

contracts according to rate of convergence. The vector: best_sum is a cumulative sum of best_vec

and helps to search (i.e. exploratory move) in previous successful directions using long jumps. The

function random_vectoro simply returns a vector with the same magnitude (norm) as the input

vector. A similar greedy local search algorithm can be found in reference [511 Note that figure

1.6 is only a single iteration loop of the greedy algorithm, which must be repeated to obtain

convergence.

(v) Hybridization with Fast simulated annealing algorithm: A faster variation of the classical

conventional simulated annealing algorithm is used. Simulated annealing is comprised of three

components: a temperature annealing schedule, a gaussian-like function for random state

generation (generating function) and an acceptance function based on a boltzman probability

distribution. Fast simulated annealing [71] is a semi-local search with occasional long jumps to

overcome any local minimum. This version has a faster annealing schedule (exponential), while

the generating function has a wider spread, and with a modified acceptance function. The

algorithm is illustrated in figure 1.7.

x = x + best_vec
best_sum = best_sum + best_vec
best_vec = 2xbest_vec

for k=1..N
best_vec = random_vector(ben_vec)
y I = ftx+best_vec)
if (y, < y) break

end

YES

same direction as before, but
further away
x = x + best_vec + best_sum
best_sum = best _sum + best _vec
best_vec = 2xbest_vec

failed to find better solution,
reduce search range

Chapter 1. Introduction To Optimization 	 P.1.18

same direction as before,
do a cumulative update.

x = x + best_vec
best_sum = 0
best_vec = 2xbest_vec

a new direction has been
found, reset sum vector

exploratory search NO

•

repeat

Fig. 1.6
Typical Greedy Search Algorithm

	H

if (fitnessA > fitnessB) then
offspring = 2.xA - xB

else
offspring = 2.xB - xA

- 	 I

Chapter 1. Introduction To Optimization 	 P.1.19

m im mil ize f()

	.i
generating function
Sx = T k x random _vector()

I
compute:

Sy = f(x + 8 x) - f(x)

annealing schedule
Tk = axT k

I
repeat

	1
acceptance function:

h(x) = 1 /(11-e 3Yfrk)

YES

keep x

NO

NO

Fig. 1.7
Typical Simulated Annealing Search Algorithm

(iv) Pattern Search Crossover operator: To further aid in convergence, we also hybridize the

crossover operator by applying local search heuristics borrowed from the Hooke-Jeeves algorithm

(see 1.2.1), and appendix. This heuristic is applied within the crossover operator with a finite

probability. Given two parents, A and B, the pattern-search crossover operator is:

where xA and xB represent the components of parent A and parent B chromosome. A flowchart of

the Hooke-Jeeves algorithm is also provided in the appendix.

Chapter 1. Introduction To Optimization 	 P.1.20

1.5 Constrained and Multiobjective Optimization:

Genetic Algorithms described earlier can be applied directly in solving unconstrained optimization

problems. However in practice, most optimization problems are constrained, therefore the genetic

algorithm must be modified to deal with such problems. Constrained optimization [15-28]

problems can have linear or nonlinear constraints. The constrained optimization problem can be

defined in several ways, for instance the Equality Constrained Problem (ECP): is defined as:

minimize f(x) subject to h(x)=O, and the Inequality Constrained Problem (ICP): minimize f(x)

subject to h(x)<O, where: f: R n 	R, h: R" 	Rin . It is possible to transform an ECP problem

into an ICP and vice versa by the addition of slack variables. Thus the two problems are

interchangeble and can be solved in the same fashion.

The field of constrained optimization using calculus based methods is well established, however

with genetic algorithms this is a relatively new topic of research. Genetic algorithms can also be

extended to these standard methods, or alternatively, we could modify the genetic rules to deal

specifically with constrained optimization problems. An excellent survey of constrained

optimization using evolutionary algorithms can be found in [18-23]. A brief summary of calculus

based methods and genetic algorithm based methods is outlined below.

1.5.1 Calculus Based Constrained Single Objective Optimization:

(i) Linear Programming Methods: If we are dealing with only simple linear constrained

problems, then there are techniques which are very effective, known as the simplex method. When

the problem is of the form: minimize: f(x)= c.x, subject to: A.x = b, x 0, it can be

directly solved by matrix manipulation. Other forms include two-phase simplex methods and

duality methods. A solution via the MATLAB © Optimization Toolbox is straightforward. We

will not deal with these optimization problems.

(ii) Penalty Function Methods: The penalty function method transforms a constrained

optimization problem into an unconstrained one. The minima of both the constrained and

unconstrained functions is the same. There are many variations to the penalty function method,

such as nonquadratic penalty functions, Fletcher's method, Powel's method, quadratic penalty

functions.

Chapter I. Introduction To Optimization 	 P.1.21

For instance the following is a typical quadratic penalty function in which the penalty: Pk is

progressively increased with each generation k thus: L(x) = f (x)+ pk .Elhi (x)1
2 . Perhaps the

simplest penalty function is the Static Penalty Function [27], this is given by:

L(x) = f (x)+ I pi8; where Si=1 if constraint i is violated, else 5i=0 if constraint i is not
i=

violated. This penalty function makes no use of a distance metric for the feasible region. The

dynamic penalty function increases the severity of the penalty parameter with each generation.

Adaptive penalty functions modify the penalty parameter pi depending on the distance from the

feasible solution (see reference [27]).

Penalty function methods have been successfully applied to constrained optimization with genetic

algorithms. An excellent summary of the penalty function method is found in reference [23, 27],

adaptive penalty methods in [19], and a more extensive discussion on static penalty, dynamic

penalty, annealing penalties, and adaptive penalty methods can be found in reference [27].

Lagrangian Function Methods: All Lagrangian functions have the following general

structure L(x, 2,) = f (x)+ E Ai . h i (x) , where A.i are the lagrange multiplier vectors or matrices

which also need to be solved for. The lagrangian function is similar to the penalty function method

and has been successfully applied to constrained optimization problems in genetic algorithms. This

is a very popular method, in which the solution can be found by computing partial derivatives:

aL/ ax = 0 and aL/ a.= 0 and solving a simultaneous set of equations. The above method only

applies to equality constraints. This is also a very popular technique.

(iv) Barrier Function Methods: The barrier functions apply to inequality constraints and are also

similar to the penalty function, a typical inverse barrier function and log barrier function is given

by: L(x)= f (x)+ pk .E[hi (x)F 1 and log barrier function: L(x)= f (x)+ pk .E—ln(hi (x)) with

k increasing with time. Currently Barrier functions have had no application in genetic algorithms.

Calculus based methods can also be implemented with genetic algorithms. However, genetic

algorithms offer potentially new and novel possibilities for the solution to constrained optimization

problems.

Chapter 1. Introduction To Optimization 	 P. I .22

1.5.2 Genetic Algorithm - Single Objective Constrained Optimization:

Rather than transforming the constrained problem into an equivalent unconstrained one, we can

modify the genetic operators of crossover, mutation and selection to directly deal with the

constraint. Specialized GA methods exist when dealing with constrained optimization problems.

There are essentially three methods of handling constraints with genetic algorithms (not counting

the calculus based ones above). The methods are: Decoders, Penalty functions, and repair

algorithms.

(i) Decoders: Decoders process instructions incorporated into the chromosome, which are used

to construct a feasible solution. Essentially, a decoder is a mapping T from a representation space

d (binary strings, vectors, integers) into a feasible part of the solution space s. Thus with a

decoder, illegal chromosomes (infeasible solutions) cannot occur. The method is problem specific,

can be computationally intensive to implement the transformation T. Further, there must be a

unique mapping between the representation space d and solution space s. One criticism is that not

all problems can be solved using this method.

(ii) Penalty Functions: Discussed above, a penalty function is used, with a gradually increasing

penalty parameter, the penalty parameter is initially small, and gradually increases with each

generation.

(iii) Repair Algorithms: A repair algorithm simply corrects an infeasible solution by mapping any

infeasible individual into a feasible one. The repaired individual can be used for evaluation

purposes or can be used to replace the original one (with some finite probability).

Repair algorithms are very popular in the area of evolutionary computation, due to their relative

ease by which an infeasible individual can be repaired. This algorithm is problem dependent. A

discussion can be found in reference [1]. We use repair algorithms and penalty functions in our

simulations.

1.5.3 Genetic Algorithm Multiobjective Optimization:

Currently there are two methods of multiobjective optimization using genetic algorithms: Pareto

dominance principle and Nash Equilibria [29]. A good review on multiobjective optimization

(MOP) using genetic algorithms is found in [38]. A third less popular method known as

Stakelberg equilibria exists, a brief discussion is given on these methods below.

Chapter 1. Introduction To Optimization 	 P.1.23

(i) Pareto Dominance Principle: When dealing with multiple objectives, ie the function F(x) is a

vector function, then a single solution may not exist. Instead multiple solutions or a set of

solutions may exist. In this case, the problem may be stated as follows, given the vector function:

min (F(x)}, where is defined as: F(x)=[.fi(x), 12(x),... fv(x)], there are i=1..N functions to

minimize, and j=1..r constraints. In general the solution is not unique, and a family of solutions

may exist. The pareto dominance principle provides an efficient means to find optimal solutions.

Defm3.1: A solution x 1 is said to dominate x 2 if the following condition holds: fi (x i)< 1(x2)

for all values of i=1,2,...N:

Defn.3.2: The Pareto Optimum is defined as follows: a solution x* E X is Pareto optimal if and

only if there exists no X E X such that f; (x) f(x*) for i=1,2...N with f, (x)< (x*) for at

least one i. Thus intuitively, the point x* is optimal if no criterion can be improved without

worsening at least one other criterion.

The group of nondominated solutions is called the Pareto set. This is illustrated graphically for

two criteria fi (x) and f2(x) to clarify the concept:

12(X)
rank-1 rank-2

	rank-3

Pareto Front

11(1)

Fig. 1.8
Pareto Front and Ranking Scheme

From figure 1.8, the Pareto front is the set of all nondominated solutions, this is assigned rank-1,

this is then removed from the population, and the next front is determined and assigned rank-2.

The procedure repeats until all individuals are accounted for. There are many references

discussing Pareto optimality applications with genetic algorithms, see: [29 - 33].

Classical gradient based optimization algorithms are capable of finding the optimal value of only a

single objective. Consequently the multiple objectives may be combined into one weighted sum:

Chapter I. Introduction To Optimization 	 P. I .24

U(x)=1W,. f1 (x) Eqn.1.1

The function U(x) is sometimes referred to as a utility or composite function.

(ii) Nash Equilibria: This is a relatively new concept of game theory in genetic algorithms,

which is more robust and has faster convergence properties. Nash equilibria which originated in

1951 [34], is inspired from Games Theory and economics, and only produces a single solution

rather than a family of solutions. Also referred to as Non-Cooperative approaches, the Nash

strategy [29] consists of having N players, each optimizing its own criterion. However each player

has to optimize his criterion given that all the other criteria are fixed by the rest of the players.

When no player can further improve his criterion, the system has reached an equilibrium called the

Nash Equilibrium. A good introduction to Nash equilibria is given by [35].

To understand Nash game theory, assume there are two players A,B, and there are two functions to

minimize: fa(x,y) and fdx,y). Player A minimizes the first function with respect to x while keeping

y fixed by player B, conversely player B minimizes the second function fh(x,y) with respect to y

while keeping x fixed by player A. This means that two populations are required, one for each

player. Figure 1.9 below illustrates how Nash equilibria is applied with each generation to genetic

algorithms.

Let xk., be the best value found by player-A at generation k-1, and yk., the best value found by

player-B at generation k-1. Then at generation k, player-A optimizes xk while using yk. i , at the

same time player-B optimizes yk while using xk./. After this, player-A sends the best value xk to

player-B, and player-B sends the best value yk to player-A. This is repeated until neither player-A

or B can further improve their criteria, this is the Nash equilibrium.

Simulation studies [29] have shown that exchanges between player-A and B must be as frequent as

possible, low exchange leads to low convergence rates.

From an evolutionary perspective, Nash equilibria can be viewed as an independent evolution of

different species leading to the optimization or adaptation for each species to the natural

environment. This can occur even when the behavior of one species has a direct influence on the

others. A new genetic operator referred to as exchange is introduced to simulate the transfer of

genetic material from one population to the other population.

Chapter 1. Introduction To Optimization 	 P.1.24

Eqn.1.1

The function U(x) is sometimes referred to as a utility or composite function.

(ii) Nash Equilibria: This is a relatively new concept of game theory in genetic algorithms,

which is more robust and has faster convergence properties. Nash equilibria which originated in

1951 [34], is inspired from Games Theory and economics, and only produces a single solution

rather than a family of solutions. Also referred to as Non-Cooperative approaches, the Nash

strategy [29] consists of having N players, each optimizing its own criterion. However each player

has to optimize his criterion given that all the other criteria are fixed by the rest of the players.

When no player can further improve his criterion, the system has reached an equilibrium called the

Nash Equilibrium. A good introduction to Nash equilibria is given by [35].

To understand Nash game theory, assume there are two players A,B, and there are two functions to

minimize: fa(x,y) and fb(x,y). Player A minimizes the first function with respect to x while keeping

y fixed by player B, conversely player B minimizes the second function fb(x,y) with respect to y

while keeping x fixed by player A. This means that two populations are required, one for each

player. Figure 1.9 below illustrates how Nash equilibria is applied with each generation to genetic

algorithms.

Let xk., be the best value found by player-A at generation k-I, and yk., the best value found by

player-B at generation k-1. Then at generation k, player-A optimizes xk while using yk.i, at the

same time player-B optimizes yk while using xk_/ . After this, player-A sends the best value xk to

player-B, and player-B sends the best value yk to player-A. This is repeated until neither player-A

or B can further improve their criteria, this is the Nash equilibrium.

Simulation studies [29] have shown that exchanges between player-A and B must be as frequent as

possible, low exchange leads to low convergence rates.

From an evolutionary perspective, Nash equilibria can be viewed as an independent evolution of

different species leading to the optimization or adaptation for each species to the natural

environment. This can occur even when the behavior of one species has a direct influence on the

others. A new genetic operator referred to as exchange is introduced to simulate the transfer of

genetic material from one population to the other population.

Generation k-1

Player-A
Population-1

Jr
Player-B

Population-2

Jr
("- optimize fi(x,y)

Xk-I
y is fixed by player 2

optimize f2(x,y)
Yk-1

X is fixed by player 2
L 	 send y nd xk_,

Generation k

V.- optimize f2(x,y)
Yk

X is fixed by player 2

✓ optimize fi(x,y)
xk

• is fixed by player 2.A send yk
nd xk

Generation k+1

optimize f2(x,y)

x is fixedYkb+; player 2

✓ optimize fi(x,y)
Xk+1

y is fixed by player 2

Chapter I . Introduction To Optimization 	 P.1.25

Fig. 1.9
Nash Equilibria with two players applied to Genetic Algorithms

Stackelberg Equilibria: A similar strategy using asynchronous (less frequent) exchange of

data exists, which is called the Stackelberg Equilibria [36] in which one player plays before the

other, taking into account its reaction. All these techniques are part of evolutionary game theory,

and offer new avenues of research in genetic algorithms. Refer to [35].

Chapter 1. Introduction To Optimization 	 P.1.26

1.6 Chapter Summary and Conclusion:
This chapter has provided an introduction to concepts of evolutionary computation theory in which

genetic algorithms are but just one area which have found wide acceptance in the control systems

research community. Furthermore, a brief discussion on constrained optimization and

multiobjective optimization was provided. It must be emphasized that the field of evolutionary

computation is extensive and that many other concepts such as fuzzy-evolutionary computation

[4,5], neuro-evolutionary and other hybrid approaches exist, too numerous to give adequate

consideration..

This thesis focuses primarily on the design and synthesis of control systems using conventional

genetic algorithms and hybrid genetic algorithms. Genetic algorithms have recently been applied

successfully to many control applications, in which conventional design methodologies are difficult

to apply, or may not exist. Currently, the design trend is towards control systems which have a

high level of autonomy, and are capable of dealing with plant changes, unknown environments,

faults, nonlinearities, external disturbances, and systems capable of learning. In the field of control

theory, such systems are generally termed robust, self tuning, adaptive, and reconfigurable control

systems. Each one belonging to a particular area of control theory. Whilst self tuning and

adaptive control can deal with a limited amount of plant changes, a broader class of autonomous

control systems would generally embrace concepts of artificial intelligence, knowledge bases and

expert systems, and are implemented using fuzzy and neural control. In such cases, the process of

learning and adaptation can only be accomplished as a set of goal-oriented tasks rather than

traditional control methodologies. In this instance, the objective may not necessarily be a single

continuous mathematical function, but instead some abstract goal to be achieved. This goal can

subsequently define the quality of the solution (i.e. fitness level).

In this thesis, we look at how genetic algorithms and hybrid genetic algorithms can be applied

directly in a number of areas of control system design, and show that results are comparable and in

some cases superior to the more traditional methods.

Chapter 1. Introduction To Optimization 	 P.1.27

1.7 References and Further Reading:
Introductory References:

[1] T.Back, D.B.Fogel, Z.Michalewicz
Handbook of Evolutionary Computation
Oxford University Press, 1997

[2] J.H.Holland,
Adaption in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[3] M.A.Bhatti
Practical Optimization Methods with Mathematica Applications
Springer-Verlag New York, Inc. 2000

[4] W. Pedrycz
Fuzzy Evolutionary Computation
Kluwer Academic Publishers, 1997

[5] E. Sanchez, T. Shibata, L. A. Zadeh
Genetic Algorithms and Fuzzy Logic Systems
World Scientific, 1997

[6] David B. Fogel,
An Introduction to Simulated Evolutionary Optimization
IEEE Transactions on Neural Networks, Vol.5, No.1, pp.3-I4, January 1994

Genetic Algorithms:

[7] L. Davis
Handbook of Genetic Algorithms
Van Nostrand Reinhold, 1991

[8] Charles L. Karr, L. Michael Freeman
Industrial Applications of Genetic Algorithms
CRC Press 1999

[9] Mitchell, Melanie
Introduction to Genetic Algorithms
Cambridge, Mass. MIT Press 1996

[10] David B. Fogel,
An Introduction to Simulated Evolutionary Optimization
IEEE Transactions on Neural Networks, Vol.5, No.1, pp.3-14, January 1994

[11] Thomas Back, Frank Hoffineister, Hans-Paul Schwefel
A Survey of Evolutionary Strategies
Proceedings of the Fouth International Conference on Genetic Algorithms, pp.2-9, 1991

[12] C.Z.Janikow, Z. Michalewicz,
An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms
Proceedings fo the 4 th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San
Mateo, California. pp.31-36, 1991.

[13] R.Caponetto, L.Fortuna, S.Graziani, M.G.Xibilia
Genetic Algorithms and Applications to System Engineering: a Survey.
Transactionsof the Institute of Measurement and Control, Vol.15, No.3, 1993.

Chapter I. Introduction To Optinaration 	 P.1.28

[14] A.J.F. van Rooij, LC.Jain, R.P.Johnson
Neural Network Training Using Genetic Algorithms.
World Scientific Publishing Co. 1996

[14B] M.Mahfouf, D.A.Linkens, M.F.Abbod
Multi-objective Genetic Optimization of GPC and SOFLC Tuning Parameters Using a Fuzzy-Based Ranking Method
LEE Proceedings Control Theory Applications, Vo.47, No.3, pp344-354, May 2000

Conventiona and GA Constrained Optimization:

[15] Edwin K.P.Chong, Stanislaw H. Zak
An Introduction to Optimization
John Wiley and Sons Inc. 1996

[16] L.E. Scales
An Introduction to Non-Linear Optimization
Macmillan 1985

[17] Dimitri P. Bertsekas
Constrained Optimization and Lagrange Multiplier Methods
Academic Press 1982

[18] Carlos A Coello
A Survey of Constraint Handling Techniques used with Evolutionary Algorithms
WEB: http/citeseer.nj.nec.com/did/202945

[19] David W. Coit, Alice E. Smith, David M. Tate
Adaptive Penalty Methods for Genetic Optimization of Constrained Combinatorial Problems
WEB: http/citeseer.nj.nec.com/coit96adaptive.html

[20] P.Admidis, S.Kazarlis, V.Petridis
Advanced Methods for Evolutionary Optimization
WEB: http/citeseer.nj.nec.com/did/15960

[21] Carlos A Coello
Evolutionary Algorithms for Constrained Parameter Optimization Problems
WEB: http/citeseer.nj.nec.com/did/140843

[22] Z.Michalewicz, D.Dasgupta, R.G. Le Riche, M. Schoenauer
Evolutionary Algorithms for Constrained Engineering Problems
WEB: http/citeseer.nj.nec.com/abib/0/324335/93248

[23] K. Sugihara
A Survey of GA Solutions for Optimization with Constraints
WEB: http//www. ics/hawaii/edu/—xiaochun/ics_691_ga/ga_survey.htm

[24] H. Adeli, Nai-Tsang Cheng
Augmented Lagrangian Genetic Algorithm for Structural Optimization
Journal of Aerospace Engineering, Vol.7, No.1, January 1994, pp.104-118

[25] H. Adeli, Nai-Tsang Cheng
Concurrent Genetic Algorithms for Optimization of Large Structures
Journal of Aerospace Engineering, Vol.7, No.3, July 1994, pp.276-296

[26] Zbigniew Michalewicz, Cezary Z. Janikow
Handling Constraints in Genetic Algorithms
Proceedings of the Fouth International Conference on Genetic Algorithms, pp.151-157, 1991

[27] Alice E. Smith, David W. Coit
Penalty Functions
WEB: http/citeseer.nj .nec.com/did/255729

Chapter 1. Introduction To Optimization 	 P.1.29

[28] W.A.Crossley, A.M.C,00k, D.W.Fanjoy, V.B. Venkayya
Using the Two Branch Tournament Genetic Algorithm for Multiobjective Design
AIAA Journal, Vol.37, No.2, pp.261-267, Feb.I999

MultiObjective Optimization with GA:

[29] D.Quagliarella, J.Periaux, C.Poloni, G.Winter
Genetic Algorithms and Evolution Strategies in Engineering and Computer Science
Recent Advances and Industrial Applications, John Wiley and Sons, 1998 (Book)

[30] A.Osyczka, S.Kundu
A New method to Solve Generalized Multicriteria Optimization Problems Using the Simple Genetic
Algorithm, Structural Optimization, Vol.10 pp.94-99, 1995

[31] Carlos M. Fonseca, Peter J. Hemming
Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms- Part I: A
Unified Formulation
IEEE Transactions on Systems Man and Cybernetics, Vol.28, No.1, pp.26-37, January 1998

[32] Carlos M. Fonseca, Peter J. Flemming
Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms- Part
Application Example
IEEE Transactions on Systems Man and Cybernetics, Vol.28, No.1, pp.28-47January 1998

[33] K.Fujita, N.Hirokawa, S.Alcagi, S.Kitamura, H.Yokohata
Multiobjective Optimal Design of Automotive Engine Using Genetic Algorithms
Proceedings of DETC'98 1998 Design Engineering Technical Conference, Sept. 13-16, 1998 Atlanta, Georgia

[34] J. Nash
Non-Cooperative Games
Annals of Mathematics, Vol.54, pp.286-295, 1951

[35] Robert Gibbons
A Primer in Game Theory
Harvester Wheatsheaf, 1992 (Book)

[36] Joao Pedro Pedroso
Numerical Solution of Nash and Stackelberg Equilibria: and Evolutionary Approach

[37] John J. Grefenstette
Optimization of Control Parameters for Genetic Algorithms
IEEE Transactions on Systems Man and Cybernetics, Vol.SMC-16, No.1, pp.122-128, January-February 1986

[38] H. Tamalci, H. Kita, S. Kobayashi
Multi-Objective Optimization by Genetic Algorithms: A Review
Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, pp.517-522, 1996

[39] Eckart Zitzler, Lothar Thiele
Multiobjective Evolutionary Algorithms: a Comparative Case Study and The Strength Pareto Approach
IEEE Transactions on Evolutionary Computation, Vol.3, No.4, pp.257-271 Nov.1999

[40] Jong-Hwan Kim, Hyun Myung
Evolutionary Programming Techniques for Constrained Optimization Problems
IEEE Transactions on Evolutionary Computation, Vol.1, No.2,. pp.129-140 July 1997

[41] Bruno Sareni, Laurent Krahenbuhl
Fitness Sharing and Niching Methods Revisited
IEEE Transactions on Evolutionary Computation, Vol.2, No.3, pp.97-106, September 1998

Chapter I. Introduction To Optimization 	 P. I .30

Derivative Free Optimization:

[42] J.A.Nelder, R.Mead
A Simplex Method for Function Evaluation
The Computer Journal, Vol.7, pp.308-313, 1965

[43] V. Torczon
On the Convergence of the Multidirectional Search Algorithm
SIAM Journal of Optimization, Vol.1, No.1, pp.123-145, February 1991

[44] M.J.D. Powell
An Efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating
Derivatives.
The Computer Journal, Vol.7, pp.155-162, 1964

[45] K.I.M. McKinnon
Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point
SIAM Journal of Optimization, Vol.9, No.1, pp.148-158, February 1998

[46] L.C.W. Dixon
Nonlinear Optimization, 1972

[47] H.H.Rosenbrock
An Automatic Method for Finding the Greatest or Least Value of a Function
The Computer Journal, Vol.3, pp.175-184, 1960

[48] R. Fletcher
Function Minimization Without Evaluating Derivatives - a Review
The Computer Journal, Vol.8, Issue.!, pp.33-41, April 1965

[49] R. Fletcher, C.M. Reeves
Function Minimization By Conjugate Gradients
The Computer Journal, Vol.7, Issue.2, pp.149-154, July 1964

Greedy, Tabu Search:

[50] M.Y. Wang
An Optimum Design for 3D Fixture Synthesis in a Point Set Domain
IEEE Transactions on Robotics and Automation, Vol.6 No.6, December 2000

[51] R. Desai, R.Patil
SALO: Combining Simulated Annealing and Local Optimization for Efficient Global Optimization
Proceedings of the 9th Florida AI Research Symposium (FLAIRS-96), pp.233-237, June 1996

[52] T.A.Feo, M.G.C.Resende
Greedy Randomized Adaptive Search Procedures
Journal of Global Optimization, Vol.6, No.2, pp.109-133, March 1995

[53] R. Schaback, H.Wendland
Adaptive Greedy Techniques for Approximate Solution of Large RBF Systems
Numerical Algorithms, 2000

[54] A.Fanni, A.Manunza, M.Marchesi, F.Pilo
Tabu Search Metaheuristics for Electromagnetic Problems Optimization in Continuous Domains
IEEE Transactions on Magnetics, Vol.35, No.3, pp.1694-1697, May 1999

[55] C.Friden, A. Hertz, D. de Werra
An Exact Algorithm Based on Tabu Search for Finding a Maximum Independent set in a Graph
Computers and Operations Research, Vol.17, pp.437-445, 1990

Chapter I. Introduction To Optimization 	 P.1.31

[56] F.Glover, E.Taillard, M.Laguna, D. de Werra
Tabu Search
Annals of Operations Research, Vol.41, 1993

[57] F.Glover
Tabu Search, Part I
ORSA Journal on Computing 1, pp.190-206, 1989

[58] F.Glover
Tabu Search, Part II
ORSA Journal on Computing 2, pp.4-32, 1990

[59] M.Gendreau, A.Hertz, G.Laporte
A Tabu Search Heuristic for the Vehicle Routing Problem
Management Science, Vol.40, No.10, pp.1276-1290, 1994

[60] B.L.Fox
Integrating and Accelerating Tabu Search, Simulated Annealing and Genetic Algorithms
Annals of Operations Research, Vol.41, pp.47-67, 1993

Hybrid GA Methods:

[61] J.M Renders, S.P.Flasse
Hybrid Methods Using Genetic Algorithms for Global Optimization
IEEE Transactions on Systems Man and Cybernetics, Vol.26, No.2, pp.243-258, April 1996

[62] D.Quagliarella, A.Vicini
Coupling Genetic Algorithms and Gradient Based Optimization
Genetic Algorithms and Evolution Strategies in Engineering and Computer Science
Recent Advances and Industrial Applications, John Wiley and Sons, pp. 289-303, 1998 (Book)

[63] K.E.Mathias, L.D.Whitley, C.Stork, T.Kusuma
Staged Hybrid Genetic Search for Seismic Data Processing
IEEE Conference on Evolutionary Computation, Vol.1, pp.356-361, 1994

[64] M.Yagiura, T.lbaralci
Genetic and Local Search Algorithms as Robust and Simple Optimization Tools
Meta-heuristics: Theory and Applications, pp.63-82, Kluwer Academic Publishers, Boston 1996

[65] K.Krishna, M.N. Murty
Genetic K-Means Algorithm
IEEE Transactions on Systems Man and Cybernetics, Vol.29, No.3, pp.433-439, June 1999

[66] A.Kolen, E.Pesch
Genetic Local Search in Combinatorial Optimization
Discrete Applied Mathematics, Vol.48, pp.273-284, 1994

[67] A.Fanni, M.Marchesi, A.Serri, M.Usai
A Greedy Genetic Algorithm for Continuous Variables Electromagnetic Optimization Problems
IEEE Transactions on Magnetics, Vol.33, No.2, pp.1900-1903, March 1997

[68] A.Abraham, B.Nath
Optimal Design of Neural Nets Using Hybrid Algorithms
Proceedings of the Sixth Pacific Rim International Conference on Artificial Intelligence pp.510-520, 2000

[69] F.Glover
Tabu Search for Nonlinear and Parametric Optimization with Links to Genetic Algorithms
Discrete Applied Mathematics, Vol.49, pp.231-255, 1994

Chapter I. Introduction To Optimization 	 P.1.32

[70] A.Fanni, M.Marchesi, A.Serri, M.Usai
Performance Improvement of a Hybrid Optimization Algorithm for Electromagnetic Device Design
WEE Transactions on Magnetics, Vol.35, No.3, pp.1698-1701, May 1999

Simulated Annealing:

[71] H.Szu, R.Hartley
Fast Simulated Annealing
Physics Letters A, Vol.122, No.3,4, pp. 157-162, June 1987

[72] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi
Optimization by Simulated Annealing
Science, Vol.220, pp-671-680, 1983

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.1

2 Training Radial Basis Functions
With Hybrid Genetic Algorithms

Contents:

	

2.1 Introduction p.2.2

2.1.1 The Radial Basis Function Network 	 p.2.3
2.1.2 Training Radial Basis Function Networks 	 p.2.5

	

2.2 Training RBF Networks with Hybrid Genetic Algorithms p.2.6

2.2.1 Bioreactor Mathematical Model. 	 p.2.7
2.2.2 Training with Conventional Methods 	 p.2.8

	

2.2.3 Training with Hybrid Genetic Algorithms p.2.11
2.2.4 Comparison of Results 	 p.2.16

	

2.3 Chapter Summary and Conclusion p.2.18

2.4 References and Further Reading 	 p.2.21

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.2

2.1 Introduction:

The purpose of this chapter is to apply hybrid genetic algorithm concepts developed in chapter 1 to

the training of radial basis function (RBF) networks [8]. This is illustrated by way of an example

of a model matching problem often found in control system applications. In this example, a radial

basis function (RBF) network is trained to model a nonlinear bioreactor fermentation process.

Heuristic and stochastic search algorithms which include: genetic algorithms, simulated annealing,

greedy and Tabu search are currently active areas of research in many diverse fields such as:

combinatorial optimization, neural network training, industrial design, economics, image

processing, system identification, machine learning, adaptive algorithms, pattern recognition,

artificial intelligence, nonlinear and robust control system design. One of the main applications of

stochastic search algorithms is in the area of optimization theory. When compared to traditional

optimization methods based on calculus and enumerative strategies, these algorithms are found to

be robust, globally converging, less influenced by noise and initial conditions, and relatively simple

to apply to any problem domain. Additionally, stochastic algorithms do not require gradient or

higher order derivative information for convergence, only a single cost functional (i.e. fitness

function) is needed. Cost functionals need not necessarily be linear or continuous, for instance

discontinuous cost functions can be used for pattern or classification problems when applied to

neural network training.

The purpose of this chapter is to apply and compare the three hybrid genetic algorithms discussed

in chapter 1 to training radial basis function networks, the algorithms are: Conventional Genetic

Algorithms (GA), Genetic Algorithms with Fast Simulated Annealing (GA+SA) and Genetic

Algorithms with Greedy Search (GA+GS). Rate of convergence, computational effort (FLOPS)

and ease of implementation are compared. Results are also compared with more conventional RBF

training algorithms.

Initially, a brief overview of radial basis function networks and current means of training is

provided. Also included is a mathematical description on bioreactors. Simulation results follow in

section 2.2. A good introduction to Genetic Algorithms is given by Davis [2], Mitchell [4], and

practical industrial applications by Karr [3]. An introduction to simulated annealing can be found

in [22], and greedy algorithms in [23] and [24], see also chapter 1 for many additional references.

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.3

2.1.1. The Radial Basis Function Network:

Radial basis function networks (RBF) are a class of feed-forward neural networks which are

characterized by their topological simplicity and ease of training compared to other neural

networks. Because of this, radial basis functions have been widely applied to signal processing

applications, system identification, function interpolation and curve fitting. However, radial basis

functions generally require an excessive number of nodes for accurate operation. The original

RBF model required an equal number of hidden nodes as data points. This is clearly unacceptable

because the number of data points is generally very large. It is possible however, to synthesize

RBF networks with fewer nodes by applying globally converging training and optimization

routines. This is the objective of this chapter.

The radial basis function network consists of three layers: the input layer is made up of source

nodes, the second layer (hidden layer) performs some arbitrary basis for the input patterns, the

output layer has adjustable weights and a single summation node. The hidden units (or nodes)

consist of nonlinear elements which enable the RBF to perform nonlinear mappings and also enable

effective separation of input vectors for pattern classification problems.

Training a radial basis function network in off-line system identification problems requires the

selection of the gaussian function centers, variances and weights. The original paper by

Broomhead and Lowe [11] suggested that the centers be selected randomly from the data. The

variances (or spread of centers) can be estimated from a histogram plot of the data, and the weights

calculated by least squares. This is by far the simplest and quickest method, but generally

produces less than satisfactory , results unless the number of hidden nodes is large.

Referring to figure 2.1 below, a radial basis function network comprises of three layers. The first

layer is the input layer which is fully connected to the hidden layer,, there are no (adjustable)

connection weights between the input and hidden layers. The hidden layer consists of a non linear

activation function or basis function. In each hidden layer node, the Euclidean distance between

the centers and the input vector is calculated. The activation function uses the Euclidean distance in

order to calculate the hidden node output. The output layer consists of a single output. The output

layer is connected to the hidden layer via a set of adjustable synaptic weights. The topology is

illustrated in figure 2.1 below:

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.4

Fig. 2.1
The Radial Basis Function Network

Notation (for node-1 only):

wi: output weight associated with node 1, scalar.
tw : node 1 centers, this is a vector: t (I) =
Si: node I spread of centers, also called standard deviations (sd), or widths, this is a scalar.

A RBF network implements the input-output mapping R m R I according to:

y = Wo X bias +Ew j .4) j (111 — di) 	 Eqn.2. 1
J=1

Where: Iwo , 	wn } refers to the connection weights, for each hidden node a center t is defined

which is a vector R m, the Euclidean distance is given by the expression: v 2 = 11 xi - t, 11 2 for

i= I ...m. Several activation functions 4) are possible, the more common ones are:

Thin plate spline function 4)(v)= V 2 .10g(V)

Gaussian function 4)(v)=e—v21132

Multiquadric function o(v) = (v 2 + p2)1/2

Inverse multiquadric function co(v).„ (v 2 + 02)--1/2

Table 2.1
Typical Basis Functions for RBF Network.

In this thesis, the Gaussian function will be used throughout all simulations. The 13 parameter

which represents a standard deviation (width or spreading quantity) must also be determined during

training. The RBF contains only a single output, for multi-output applications, the network is

duplicated for each output, but the weights, centers and spread of centers must be determined for

each individual network. To train a RBF network (or any other neural network), training data is

required, the training data set is usually obtained from the actual response from the plant, using

some known input function.

x(k)

so(k)

RBF #2

	Fri 	

Error = I(RBFi — bioreactori)2
112 [N

j.I

Eqn.2.2

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.5

Referring to figure 2.1, the REF has only a single output, therefore when dealing with multi-output

systems, then multiple REF networks are required. For instance, the bioreactor (section 2.2) has

two outputs (x,„, 4), and one input CO, therefore we require two individual REF networks, see

figure 2.2A,B. In this case, each REF network may be trained separately.

so(k)

Figure 2.2.A 	 Figure 2.2.B
Training Setup for a RBF Network. 	 Operating Setup for a RBF Network

The output error is the difference between the REF and actual bioreactor plant outputs, this is

calculated for each sample j, and this is repeated for each individual RBF network thus:

Figure 2.2A illustrates the training configuration, and figure 2.2B illustrates the operating

configuration in which the neural network simulates the bioreactor. In this setup, the outputs are

fed back into the inputs via a z- ' delay operator. It is assumed that the forward propagation delay

through the REF network is negligible compared with the sampling time.

2.1.2. Training Radial Basis Function Networks:

The simplest method to train a REF network is to choose the centers from the input data randomly

[5]. The node widths can be estimated by analyzing the spread of centers from a histogram plot of

Euclidean distances, the weights can then be computed by least squares. However, arbitrary

selection of centers from the data often results in poor performance, requiring excessive number of

hidden nodes. Since the performance of the REF critically depends on the chosen centers, a better

method is needed. A number of methods exist which address this problem, for example Chen [12,

13] uses a method of Orthogonal Least Squares to train a RBF, in another paper, Chen et al [15]

uses a Hybrid Clustering algorithm for non linear system identification. These methods are more

tailored for on line training and identification.

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.6

Another popular training method is the k-means clustering algorithm [25]. The k-means

clustering algorithm first computes the node centers, it then estimates the node widths, and lastly

the node weights. This is described in detail below.

(i) Node Centers: The node centers are determined by clustering or partitioning the training data

set into n equal subclusters, where n is the number of hidden nodes of the REF network. The

average of each subcluster is then calculated. From this initial estimate, a better estimate can be

obtained by computing the Euclidean distance between each training data point and the node

centers for each node. The training data point is then placed into a bin (there are n bins) belonging

to the node center closest to it. After all training points have been binned, the average in each bin

is computed. This gives a better estimate of the centers for each particular node. The process is

repeated until the centers have converged. From simulations, this can take 10-20 iterations, and is

generally very fast.

(ii) Node Widths: The node widths are computed using a p-nearest neighbor heuristic, generally

p=2 as suggested in [26]. Using only the node centers, each node width can be estimated by

looking for 2 nearest node centers to it, and then computing:

k=1

	 1 1/2 	Eqn.2.3

where is the width of the th node, ti is it's center, and tk are the nearest centers to it.

(iii) Node Weight: The node weight is computed using least squares. All node weights are

computed simultaneously. A regularization parameter is often introduced to prevent the weights

from becoming too excessive and avoiding overtraining the network. Note also that the node

weights are calculated in the same fashion when genetic algorithms are used to train the RBF

network.

2.2 Training REF Networks With Hybrid Genetic Algorithms
This simulation example involves training a Radial Basis Function (RBF) Network to model a

bioreactor fermentation process, this is a model matching problem for a nonlinear system. We

briefly describe the bioreactor nonlinear equations. We then compare training the RBF using

conventional methods with hybrid genetic algorithms. References to bioreactors can be found in

[5, 6, 7], and using RBF to model bioreactors [7B]. See also appendix section 8.3.

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.7

2.2.1. Bioreactor Mathematical Model:

The bioreactor consists of a tank containing water, nutrients (or substrate) and biomass (or cells).

Nutrients and biomass are added to the tank (via the inlet), the nutrients are consumed by the

biomass thereby increasing the overall biomass concentration in the tank. Furthermore, biomass is

removed from the tank via an outlet, at the same flow rate as the inlet. The overall volume of the

liquid in the tank remains constant. The bioreactor is illustrated in figure 2.3 below:

Fi xi si

oariL
V x s

X0 SO

Fig.2.3
Schematic Diagram of a Bioreactor

Where:
x,: 	Input biomass concentration=0

s,: 	Input nutrient concentration.

F,: 	Input flowrate (constant).

x: 	Biomass concentration inside the tank —> output biomass

s: 	Nutrient concentration inside the tank —> output concentration

x0 : Output biomass concentration

so : 	Output nutrient concentration

Fo : Output flowrate

Let x1 =x, x2=s, u=s„ then together with the above assumptions we can write in more conventional

control system form, the dynamics is a second order nonlinear system. Referring to equation.2.4

below: x i=output biomass, x2=output nutrient concentration, u=input nutrient concentration:

Eqn.2.4

x2
i l — po,. 	 F").x, ics — 	ç+ x2 V

1 	
x2 j 	Ft ,

K 1- X2 •X +—• U— X2) I V

s(t)

1.8

1.6

200 	400 	600
Fig.2.4.B

Open Loop Step Response: s(t): Nutrient Output

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.8

In continuous operation, the bioreactor runs at some steady state operating point, we assume that

the flow rates are constant and identical i.e.: F, = Fo , therefore the volume of liquid inside the tank

is also constant. We assume that the output biomass and nutrient is the same as the biomass and

nutrient within the tank i.e.: xo = x, so = s , assume the input has no biomass x, =0.

Typical values for the saturation constant and growth rate coefficients are: Pm =03 and Ks = 0.1

to 0.4, K 1 = 1.25, the initial conditions: s(0) =1.0, x(0) = 0.2. The bioreactor open loop step

response is illustrated below:

0.8

0.6

0.4

0.2
0 	200 	400

	
600

Fig. 2.4.A
Open Loop Step Response: x(t): Biomass Output

When a step input (in nutrient) is added to the tank, assuming perfect and instantaneous mixing,

the nutrient in the tank and hence output nutrient is initially high, but the nutrient is gradually

consumed by the biomass (fig. 2.4.B) reducing with time. At the same time, the biomass

concentration increases as a nonlinear function i.e. fig.2.4.A due to nutrient uptake. Because the

bioreactor has two outputs, we require two separate radial basis function networks, this is

illustrated in figure 2.2 above. In the next section, simulation results using conventional training

methods is provided.

2.2.2. Training With Conventional Methods:

From the mathematical model of the bioreactor, three sets of responses are initially generated, the

first response is used to train the RBF using a random input function, the other two responses are

used to verify the network using a different random and step input function.

The dynamics of the bioreactor are intrinsically slow, a time step typically of 0.5 seconds is

required in the simulation.

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.9

(i) Results Using Conventional Training: Simulation results with conventional training using

MATLABc running on a Pentium III/750MHz PC, with 300 training samples is given in following

pages. Simulation results using 20 and 40 hidden nodes is shown in figures 2.5 and 2.6

respectively. Matlab includes a neural network toolbox which can be used to train the RBF

networks. The Matlab functions are: newrb0, which is used for training, and sim0 which is used

for simulation and verification purposes. When using Matlab's newrb0 function, the value of node

widths (spread) must be specified. The value of node widths can be estimated from the training

data set. Our training data set suggests that this value can be anywhere between 0.2 and 4.0. The

choice of spread may require some trial and error before the optimum value can be found.

Table 2.2 below summarizes the results obtained using the conventional matlab neural network

toolbox. Results are for 20 and 40 nodes in the first column, the value of spread in the second

column, and computational effort (megaflops) in the third column. The last two columns give

values for the training error (equation 2.2) for the configuration shown in figure 2.2A, and

verification error for the configuration shown in figure 2.2B.

Training Error Verification Error

Nodes Spread MFP Figure RBF#1 	RBF#2 random 	step

20 0.8 41 Fig.2.5 0.01514 	0.02343 0.9526 	1.3504

40 1.4 105 Fig.2.6 0.00460 	0.00844 0.6998 	0.9409

Table 2.2
Training results using conventional matlab neural network toolbox

The training error is shown for each individual network as the sum square difference between the

RBF output and bioreactor output. The verification error however is the RMS sum of both

networks, using random input and step input test data.

The choice of node spread 13 has a significant influence on the outcome of the training. The larger

that spread is the smoother the function approximation will be. Too large a spread means a lot of

neurons will be required to fit a fast changing function. Too small a spread means many neurons

will be required to fit a smooth function, and the network may not generalize well. Figures 2.5 and

2.6 on the following page compare the RBF output (blue) with the actual bioreactor output (red)

using random test data (first row) and step test data (second row) for 20 and 40 nodes.

Matlab NNET
Xo(t) biomass out

Toolbox:

Xo(t) biomass out
1.4

1.2

100 	200

1.2

1

0.8

0.6

0.4

0.2

0
o

100 200

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.10

Matlab NNET Toolbox: Verification (RAND): Error: 0.9526 Nodes: 20

0.8

0.6

0.4

0.2

0
o 	100 	200

0.8

0.6

0.4

0.2

0
o

So(t) nutrient Out
1.4

0.8

0.7

0.8

0.5

0.4

0.3

0.2

0.1
0

300 	400 	500

300

Verification (STEP): Error: 1.3504
So(t) nutrient out

0.9

1.4

1.2

0.8

0.8

0.4

0.2

So(t) nutrient out Xo(t) biomass out
1.4

100 200 300 400 500
o o 100 200 300 400 500

Verification (STEP): Error: Matlab NNET Toolbox: 0.9409 Nodes: 40
Xo(t) biomass out

0.8

0.6

0.4

0.2

100 200 300 400

So(t) nutrient out

100 500 300 400 200

1

0.9

0.8

0.7

0.8

0.5

0.4

0.3

0.2
0 500

Fig. 2.6

1.2

0.8

0.6

0.4

0.2

.411W11
11\11 Ina gm=

: rear MAIM
1.1

300 	400
	500

Nodes: 20

500 400 100 500 400 300 200

11111111111111111
114111111111111.1111111111'

Bi• react I r

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.11

2.2.3. Training With Hybrid Genetic Algorithms:

The RBF can also be trained using hybrid genetic algorithms. The three methods compared are:

Conventional Genetic Algorithms (GA), Genetic algorithms + Simulated Annealing (GA+SA) and

Genetic algorithms + Greedy Search (GA+GS).

(i) Genetic Algorithms: Before discussing the results, the chromosomal representation used for

this simulation is illustrated in figure 2.7 below, where: wo=bias weight, [w, t 	4') sdj =node-

1 weight, centers and standard deviation (widths) respectively. The same is repeated to the

remaining nodes 2 to n. The error is the Euclidean norm of the difference of the RBF output and

Bioreactor output (equation 2.2), the fitness is then computed as the inverse of the error thus:

fitness=1/(error).

node-1

node-n

4 	

(I)
WO I WI I t1

,(I)
L2

(I)
t3 1

(n)
Wn I t

(n)
t2

(n)
t3 sdn

error fitness

Fig. 2.7
Chromosomal Representation of RBF Network with GA

In this simulation, the GA maintains two separate populations, the first population is used to train

the first radial basis function RBF#1, and the second is used to train RBF#2. Consequently both

RBF networks can be trained simultaneously. The weights are computed using least squares. For

this simulation we set: population=30, maximum generations=200, crossover probability=0.6 and

mutation probability=0.1, binary tournament selection and floating point codification was used.

Several simulation results are listed to illustrate the stochastic nature of the convergence. Results

are tabulated using 20 and 40 nodes:

Training Error Verification Error

Nodes Time MFP Gen RBF#1 	RBF#2 random 	step

20 10:43 10540 140 0.00233 	0.00650 0.33975 	0.59029
10:43 10550 140 0.00269 	0.00435 0.64191 	0.79235
10:56 10551 140 0.00426 	0.00339 0.91685 	0.26338
10:49 10557 140 0.00192 	0.00361 0.57244 	0.81601
10:55 10536 140 0.00214 	0.00800 0.53976 	0.83718

40 37:33 39917 160 0.00188 	0.00176 0.33477 	0.22392
37:32 39908 160 0.00227 	0.00263 0.32801 	0.32676
37:33 39866 160 0.00232 	0.00252 0.34336 	0.41723
37:47 39832 160 0.00227 	0.00276 0.32069 	0.14259
37:43 39836 160 0.00278 	0.00367 0.34063 	0.19805

Table 2.3
Training results using conventional genetic algorithms

Xo(t) biomass out

0.5

1.5

0

1

0

So(t) nutrient out

100 200 300 400 500

So(t) nutrient out
1.4

1.2

1

0.8

0.6

0.4

0.2

0 0 100 500 300 400 200

Xo(t) biomass out
1.4

1.2

1

0.8

0.6

0.4

0.2

100 0 400 300 0 500 200

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms
	 P.2.12

Genetic Algorithm: - Verification (RAND) Error.: 0.4430147 Nodes: 20

0.8

0.6

0.4

0.2

Genetic Algorithm: - Verification (STEP) Error: 0.37189 Nodes: 20
Xo(t) biomass out 	 1 So(t) nutrient out

Bioreactor

RBF :

100 	200 	300 	400 	500

Fig. 2.8

Genetic Algorithm: - Verification (RAND) Error.: 0.4183647 Nodes: 40

0.8

0.6

0.4

0.2
0 100

	
200
	

300
	

400 500

0.8

0.6

0.4

0.2

Genetic Algorithm: - Verification (STEP) Error: 0.23482 Nodes: 40
Xo(t) biomass out 	 So(t) nutrient out

1
Bioreactor

RBF

100 	200 	300 	400 	500

0.8

0.6

0.4

0.2
0 500 100

	
200
	

300
	

400

Fig. 2.9

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.13

(ii) Genetic Algorithms+Simulated Annealing (GA+SA): Simulated annealing requires a search

vector and a temperature annealing schedule. The search vector is defined in a similar manner to

that of genetic algorithms, and is illustrated in figure 2.10 below:

node-1

node-n

wo I WI I ein

t 	I

wn It 4'1) sd.

Fig. 2.10
Search vector for GA+SA algorithm

There are two search vectors, one for each RBF network. Again, both networks are trained

simultaneously. The temperature annealing schedule is defined as: initial temperature: To, final

temperature: Tfi the temperature at the kth iteration is given by: Tk=a.Tk.i, this is an exponential

annealing schedule where alpha is computed from:
1

a =10
(-log(Tf ITo))
 " Eqn.2.5

giving values of alpha typically between 0.9-0.98, N=number of iterations. Results for this

simulation using 20 and 40 nodes is tabulated below, values are: To=1 (normalized), T f=0.001,

iterations=200 (20 nodes) and 240 (40 nodes)

Training Error Verification Emu.

Nodes Time NI:FP Gen RBF#1 	RBF#2 random 	step

20

Irl C
I 1

0
 ts.

“
 gm,
 ea

 s
•
 ea

0
1
 0

1
 0

1
 0

1
 0

1

10409 200 0.00297 	0.00464 0.41078 	0.25718
10406 200 0.00294 	0.00362 0.43302 	0.44228
10409 200 0.00264 	0.00342 0.67604 	0.18233
10408 200 0.00285 	0.00365 0.48328 	0.17402
10407 200 0.00288 	0.00367 0.41093 	0.40195

40 35:35 41360 240 0.00178 	0.00353 0.35444 	0.21236
35:28 41362 240 0.00182 	0.00313 0.37063 	0.19034
35:39 41372 240 0.00212 	0.00342 0.31717 	0.28021
35:17 41377 240 0.00189 	0.00298 0.30040 	0.24368
35:24 42.341 240 0.00201 	0.00237 0.28266 	0.33288

Table 2.4
Training results using genetic algorithms and simulated annealing

Typical plots for 20 and 40 nodes are illustrated on the following page Fig.2.11 and Fig.2.12.

Xo(t) biomass out
1.5

1

0.5

1.5 So(t) nutrient out

1

0.5

RB F

Xo(t) biomass out So(t) nutrient out

- Verification (STEP) Error: 0.2217 Nodes: 40 GA+Simulated Annealing:

B iore kct or

100 	200 	300 	400 	500

Fig. 2.12

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 	100 	200 300 400 500

0.8

0.6

0.4

0.2
0

So(t) nutrient out
1

100 500 400 300 200

Xo(t) biomass out

0.8

0.6

0.4

0.2

, R-B-F 	,

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms
	 P.2.14

GA+Simulated Annealing: - Verification (RAND) Error.: 0.4311976 Nodes: 20

100 	200
	

300
	

400
	

500
	

100
	

200
	

300 	400
	

500

GA+Simulated Annealing: - Verification (STEP) Error: 0.26988 Nodes: 20

1

0.8

0.6

0.4

0.2

0.2
0

Xo(t) biomass out

100 	200 	300 	400 	500

So(t) nutrient out

100
	

200
	

300
	

400
	

500

1

0.8

0.6

0.4

Fig. 2.11

GA+Simulated Annealing: - Verification (RAND) Error.: 0.3247598 Nodes: 40

100 300 500 200 400

Xo(k+1) biomass out (randq
1.4

1.2

1

0.8

0.6

0.4

0.2

100 200 300 400 500

14

12

1

0.8

0.6

0.4

0.2

0

So k+1 nutrient out rand

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms
	

R2.15

(iii) Genetic Algoritinns+Greedy Search (GA+GS): The greedy algorithm uses a search vector

which is identical to that of simulated annealing (Fig.2.10). The performance of the greedy

algorithm strongly depends upon the initial value. Typical results are tabulated below:

Training Error Verification Error

Nodes Time MEP RBF#1 	RBF#2 random 	step

20 4:50 4785 0.003160 	0.005724 0.45574 	0.42448
4:52 4849 0.003453 	0.004171 0.35973 	0.44323
5:46 5750 0.003258 	0.005203 0.45351 	0.38673
5:25 5348 0.004603 	0.003598 0.62629 	0.26401
6:35 6566 0.002091 	0.005390 0.43774 	0.45490

40 6:49 8158 0.002064 	0.001980 0.31679 	0.24220

9:39 11830 0.001946 	0.003705 0.26691 	0.22193
17:58 21789 0.001235 	0.001946 0.28643 	0.20710

19:21 23347 0.001707 	0.001740 0.44539 	0.13030
25:13 30777 0.001135 	0.001781 0.28535 	0.15008

Table 2.5
Training results using genetic algorithms and greedy search

The combined GA+GS converges in about half the time/flops when compared with the standard

genetic algorithm. Results for 20 and 40 nodes are illustrated in figures 2.13 and 2.14 below.

GA + Greedy Search: - Verification (RAND) Error.: 0.4605590 Nodes: 20

GA + Greedy Search: - Verification (STEP) Error: 0.34154 Nodes: 20

1 	
Xo(k+1) biomass out (run) 	 1 So(k+1) nutrient out (run)

0.8

0.6
0.6

0.4

0.4
0.2

0.2
0
	

100
	

200
	

300
	

400

0.8

100 	200 	300 	400 	500 500

• Bioreactor

Fig. 2.13

1.4

1.2

1

0.8

0.6

0.4

0.2

100 500 400 300 200 100

1.4

1.2

1

0.8

0.6

0.4

0.2

0 0 500 400 300 200

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
100 200 300 400 500

1

0.9

0.8

0.7
0.6

0.5
0.4

0.3

0.2
0

Fig. 2.14

100 200 300 400 500

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms
	 P.2.16

GA + Greedy Search: - Verification (RAND) Error.: 0.2853458 Nodes: 40
Xo(t) biomass out
	

So(t) nutrient out

GA + Greedy Search: - Verification (STEP) Error: 0.15008 Nodes: 40
Xo(t) biomass out
	

So(t) nutrient out

2.2.4 Comparison of Results:

From the previous results, all three GA methods yield a network with superior performance when

compared with a RBF network trained using conventional methods. However the results provide

no indication of the actual convergence rate for each of the three GA methods. In figure 2.15

below, the network performance (i.e. training error) is plotted as a function of the training time (or

FLOPS) for a network with 20 nodes. The conventional GA is plotted in red, hybrid

GA+simulated annealing in green, and hybrid GA+gyeedy search in blue. Both hybrid methods

converge slightly faster than the conventional GA. The same is repeated for the RBF network with

40 nodes, this is illustrated in figure 2.16 below.

Table 2.6 below summarizes the training and verification errors obtained after a fixed number of

computations: 10,000 MFP for the 20 node RBF, and Table 2.7 for 40 nodes after 40,000 MFP

computations.

RBF#1 Error
10

10

RBF#2 Error 	 RBF#1 + RBF#2 Sum Error
10_I 	10°

1 o
0 	5000 	10000 	15000

MFP
5000 	10000 15000 le 0

MFP

10'

10 2

5000 	10000 	15000
MFP

Fig. 2.15

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.I7

Training and verification error comparison after 10,000 MFP computations, for 20 node RBF

network:

Training Errors: Verification Errors

METHOD: RBF#1 Error RBF#2 Error Errorl+Error2 Train time RBF#1 Error RBF#2 Error

MATLAB 0.015140 0.023430 0.038570 00:20 0.95300 1.35000
GA: 0.003535 0.007448 0.010984 11:10 0.44301 0.37189
GA+SA: 0.002625 0.003251 	' 	0.005877 9:50 0.43120 0.26988
GA+GREEDY: 0.003618 0.003011 i 	0.006630 9:40 0.44312 0.11502

Table 2.6

Typical convergence rates for conventional genetic algorithms and hybrid genetic algorithms versus

the computational effort for 20 node RBF network:

Convergence Rate: GA: red GA+SA: green GA+GS: blue (20 nodes)

Training and verification error comparison after 40,000 MFP computations, for 40 node RBF

network:

Training Errors: Verification Errors
f

METHOD: RBFV1Error RBF#2 Error Errorl+Error2 , Train time RBF#1 Error RBF#2 Error

MATIAB 0.004600 0.008440 0.013040 	 :41 0.9473 0.4495
GA: 0.002771 0.003924 0.006695 	35:02 0.4183 0.2348
Si.: 0.001572 0.001693 0.003265 	32:05 0.3247 0.2217
GREEDY: 0.001269 0.002175 0.003444 	30:47 0.2232 0.1478

Table 2.7

.............

17: A 	

GA+SA

GA.+-GS

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2. I 8

Typical convergence rates for conventional genetic algorithms and hybrid genetic algorithms versus

the computational effort for 40 node RBF network:

Convergence Rate: GA: red GA+SA: green GA+GS: blue (40 nodes)

RBF#1 Error 	 RBF#2 Error 	 RBF#1 + RBF#2 Sum Error
10 	10 	10 	

1 0
-2

10
-2

1 0. 0 2 	3
MFP

4 	5

x 10'

Fig. 2.15

1 	2 	3 	4 	5
MFP x 10

2.3 Chapter Summary and Conclusion:

From the simulation results, it is clear that training RBF using genetic algorithms can produce a

network with superior performance and fewer nodes when compared with conventional training

schemes. However training times using GA are excessive. Even hybrid GA methods still require a

high computational effort compared with the more traditional methods. Thus it is unlikely that

applications requiring on-line training of RBF networks using these methods is appropriate.

However, in applications where the smallest number of nodes is desirable, then off-line training

using GA and hybrid GA may be more feasible.

We have investigated two different methods of crossover: swapping and weighted average. From

simulation results, the averaging crossover converges quicker but looses genetic diversity more

rapidly. The swapping crossover has slower convergence but retains diversity. The results above

are for weighted average crossover only.

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.19

Some key points regarding GA are outlined next.

(i)Population

The initialization of a population is an important factor. Two points to consider are: to ensure that

the initial population spans the entire possible search space in which the solution is contained. And

secondly, if the approximate solution is known, to initialize the population near the solution.

(ii)Mutation Operator:

Two forms of mutation operators are used:

= x + kx rand
and

Eqn.2.10a

x; = x; x(1 + kxrand) 	 Eqn.2.10b

the first (Eqn.2.10a) allows a wide search space to be analyzed, the second works well near the

solution (narrower search space). The two methods are used with a probability of 0.5, and k is a

mutation gain parameter which can be user selected or gradually decreases over time. Mutation is

applied uniformly over the components of the chromosome. For instance, given the following

chromosomal representation (Fig.2.16) with parameters (x i , x2x.) to solve for, the mutation

operator is applied to each element of the chromosome in sequence, beginning from x 1 to x. with

probability Pm:

Xj X2
	

Xn err Fitness

Figure 2.16

A typical mutation algorithm would be:

%BIASED MUTATION:
for j=1:n

if (rand < Pm)
= fix(3*rand);

gain = mutationGain*10*(-r);

if (rand<0.5)
%wide search space:
GeneB(j) = GeneB(j) + gain*randn;

else
%narrower search space:
GeneB(j) = GeneB(j)*(1 + gain*randn/10);

end;
end

end

Note that either one of the two mutation equations (Eqn.2.10a) and (Eqn.2.10b) is chosen

randomly.

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.20

(iii) Crossover Operator:

A uniform crossover operator is used. This means that for each parameter .z .; of the chromosome

(Fig.2.16), the resulting offspring is the weighted average of the two parents. This is applied

uniformly for j=1..n, and probability Pc to each parameter xj, the crossover algorithm used is:

?SWAPPING CROSSOVER OPERATOR:
for j=1:n

if (rand < Pc)
eta 	. rand:
GeneB(j) = eta*GeneAl(j) + (1-eta)*GeneA2(j):

end;
end;

%1ZOOKE-JENVES CROSSOVER OPERATOR:
if (rand<0.25)

fitl = GeneAl(cols):
fit2 = GeneA2(cols):

if (fitl>fit2)
GeneB = 2*GeneAl GeneA2;

else
GeneB = 2*GeneA2 GeneAl;

end
end

If the swapping crossover method is used, the value of alpha is simply set to zero. A value of

a=0.5 can sometimes produce rapid convergence. Furthermore, the addition of the Hooke-Jeeves

crossover operator discussed in chapter 1 is applied with a low probability of 0.25.

(iv) Population Inversion:

Two methods which we have used are: (i) combine the parents and offspring into one population,

and then choose the fittest N chromosomes from this population, or (ii) simply replace the old

population with the new population. We found that the first method can lead to premature

convergence and loss of genetic diversity. The second method retains genetic diversity, but can also

be inefficient because offsprings with very poor fitness can remain in the population. Trial and

error may be required depending on the application.

(v) Future work:

1. As a topic of interest, compare genetic algorithms with orthogonal least squares in training

radial basis function networks.

2. Use genetic algorithms and hybrid genetic algorithms to train multilayer perceptrons (MLP)

neural networks, compare with backpropagation.

3. Hybridize genetic algorithms using Tabu local search, and compare with results using Greedy

search and simulated annealing.

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.21

2.4 References and Further Reading:
Introductory References to Genetic Algorithms:

[1] J.H.Holland,
Adaption in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[2] L Davis
Handbook of Genetic Algorithms
Van Nostrand Reinhold, 1991

[3] Charles L Karr, L Michael Freeman
Industrial Applications of Genetic Algorithms
CRC Press 1999

[4] Mitchell, Melanie
Introduction to Genetic Algorithms
Cambridge, Mass. MIT Press 1996

References on Bioreactors:

[5] Y.Y. Yang, D.A. Linkens,
Modelling of Continuous Bioreactors via Neural Networks.
Transactions of the Institute of Measurement and Control, Vol.15, No.4, pp.158-169, 1993.

[6] I.Queinnec, B.Dahhou, M.M'Saad
On Adaptive Control of Fedbatch Fermentation Processes.
International Journal of Adaptive Control and Signal Processing, Vol.6, pp.521-536, 1992.

[7] J.D. Boskovic
Stable Adaptive Control of a Class of Nonlinearly-Parametrized Bioreactor Processes.
Proceedings of the American Control Conference, Seattle Washington, pp.1795-1799, June 1995.

[7B] M.R.Warnes, J.Glassey, G.A.Montague, B.ICara
Application of Radial Basis Function and Feedforward Artificial Neural Networks to the Escherichia Coli
Fermentation Process.
Neurocomputing, vol.20, pp.67-82, 1998

References on Training Neural Networks and Genetic Algorithms:

[8] A.J.F. van Rooij, L.C.Jain, R.P.Johnson
Neural Network Training Using Genetic Algorithms.
World Scientific Publishing Co. 1996

[9] Hsi-Chin Hsin, Ching-Chung Li, M.Sun, R.J.Sclabassi,
An Adaptive Training Algorithrnfor Back- Propagation Neural Networks.
IEEE Transactions on Systems, Man, and Cybernetics, Vol.25, No.3, pp.512-514, March 1995.

[10] C. Darken, J.Chang, J.Moody,
Learning Rate Schedules for Faster Stochastic Gradient Search.
Neural Networks for Signal Processing, 1992.

[11] D.S.Broornhead, D.Lowe,
Multivariable Functional Interpolation and Adaptive Networks,
Complex Systems, Vol.2 pp.321-355, 1988.

[12] S.Chen, C.F.N.Cowan, P.M.Grant
Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
IEEE Transactions on Neural Networks, Vol.2, No.2, pp.302-309, March 1991

Chapter 2: Training Radial Basis Functions With Hybrid Genetic Algorithms 	 P.2.22

[13] S.Chen, S.A.Billings, W.Luo
Orthogonal Least Squares Methods and their Application to Non-linear System Identification.
International Journal of Control, Vol.50, No.5, pp.1873-1896, 1989.

[14] A.Sherstinsky, R.W.Picard
On the Efficiency of the Orthogonal Least Squares Training Method for Radial Basis Functions.
IEEE Transactions on Neural Networks, Vol.7, No.1, pp.195-200, January 1996.

[15] S.Chen, S.A.Billings, P.M.Grant
Recursive Hybrid Algorithm for Non-linear System Identification using Radial Basis Function Networks.
International Journal of Control, Vol.55, No.5, pp.1051-1070, 1992.

[16] S.A.Billings, G.L.Theng
Radial Basis Function Network Configuration Using Genetic Algorithms.
Neural Networks, Vol.8, No.6, pp.877-890, 1995

Applications of Genetic Algorithms in Control Systems:

[17] K.Krishnalcumar, D.E.Goldberg
Control System Optimization Using Genetic Algorithms.
International Journal of Guidance Control and Dynamics, Vol.15, No.3, pp.735-740, May-June 1992

[18] A. Varsek, T. Urbancic, B. Filipic
Genetic Algorithms in Controller Design and Tuning.
IEEE Transactions on Systems, Man and Cybernetics, Vol.23, No.5, pp.1330-1339, Sept-Oct. 1993

[19] D.C.Dracopoulos, A.J. Jones
Neural Networks and Genetic Algorithms for the Attitude Control Problem.
From Natural to Artificial Computation, Lecture Notes in computer Science, Vol.930, Springer 1995

[20] J.J. Grefenstette
Optimization of Control Parameters for Genetic Algorithms
IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-16, No.1, pp.122-128, Jan-Feb. 1986

[21] T.Kumagai, M.Wada, R.Hashimoto, A.Utsugi
Dynamical Control by Recurrent Neural Networks Through Genetic Algorithms
International Journal of Adaptive Control and Signal Processing, Vol.13, pp.261-271, 1999

Simulated annealing and Greedy algorithms:

[22] P.J.M van Laarhoven, E.H.L. Aarts
Simulated Annealing, Theory and Applications
Mathematics and Its Applications, Kluwer Academic Publishers, 1988

[23] T.A.Feo, M.G.C. Resende
Greedy Randomized Adaptive Search Procedures
Journal of Global Optimization, Vol.6, No.2, pp.190-133, March 1995

[24] A.Fanni, M.Marchesi, A.Serri, M.Usai
A Greedy Genetic Algorithm for Continuous Variables Electromagnetic Optimization Problems
IEEE Transactions on Magnetics, Vol.33, No.2, pp.1900-1903, March 1997

[25] J.A.Leonard, M.A.Kramer
Radial Basis Function Networks for Classifying Process Faults
IEEE Control Systems, pp.31-38, April 1991

[26] T.J.Moody, C.J.Darken
Fast Learning in Networks of Locally Tuned Processing Units.
Neural Computation, Vol.!, pp.151-160, 1989

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.1

3 Eigen structure Assignment Using
Hybrid Genetic Algorithms:

Contents:

3.1 Eigenstructure Assignment 	 p.3.2

3.1.1 Introduction 	 p.3.2
3.1.2 Full Eigenstructure Assignment and Moores Method. 	 p.3.3
3.1.3 Partial Eigenstructure Assignment 	 p.3.5
3.1.4 Robust Eigenstructure Assignment 	 p.3.6
3.1.5 Response of LTI Systems from Eigenstructure Information 	 p.3.9

3.2 Partial Eigenstructure Assignment for Static Compensators 	 p.3.10

3.2.1 Theory 	 p.3.10
3.2.2 Simulation 3.1: Fixed Eigenvalues 	 p.3.13
3.2.3 Simulation 3.2: Domain Constrained Eigenvalues 	 p.3.15

3.3 Eigenstructure Assignment for Dynamic Compensators 	 p.3.19

3.3.1 Theory 	 p.3.19
3.3.2 Simulation 3.3: Static Output Feedback. 	 p.3.23
3.3.3 Simulation 3.4: Dynamic Control Output Feedback 	 p.3.25

3.4 Robust Eigenstructure Assignment 	 p.3.29

3.4.1 Theory 	 p.3.29
3.4.2 Simulation 3.5: Hybrid Genetic Algorithms 	 p.3.30

3.5 Chapter Summary and Conclusion 	 p.3.34

3.6 References and Further Reading 	 p.3.36

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.2

3.1 Eigenstructure Assignment:

3.1.1 Introduction:

The aim of this chapter is to apply hybrid genetic algorithms, and concepts of constrained

optimization theory discussed in chapter 1, to the design of control systems based on eigenstructure

assignment (ESA). Three different designs are considered: (i) Full state static feedback, (ii)

Output feedback using a dynamic compensator, and (iii) Robust eigenstructure assignment.

Results are verified with conventional eigenstructure assignment methods. An introduction to

eigenstructure assignment is briefly outlined below.

Eigenstructure assignment is a powerful design technique which has developed over the last twenty

years. The objective of eigenstructure assignment is to determine the feedback gain matrix K such

that the closed loop eigenvalues and eigenvectors (eigenstructure) are as close as possible to some

design specifications. This method allows the designer to directly satisfy damping, settling time

and mode decoupling specifications by the proper choice of eigenvalues and eigenvectors. The

behavior of a linear dynamic system can be completely characterized by its eigenstructure. The

eigenvalues determine the stability of the system while the eigenvectors determine the contribution

of each system mode to the overall system outputs or states. More specifically, the output for a

linear discrete time system x(k +1) = 40.x(k) with zero input, is given by [1]:

x(k)= V. . 	x(o) 	 Eqn.3.1

Where V=a matrix of eigenvectors of (I), A" =diagonal matrix of corresponding eigenvalues, and

x(0) initial condition.

There are essentially three types of feedback: full state feedback, output feedback, and constrained

output feedback [1, 2]. Full state feedback [7] allows greater design freedom in the choice of

eigenstructure placement, but may require an observer for state estimation. The more popular

method is output feedback, this method has more restrictions on the placement of eigenvectors, but

does not require a state observer. The third method of constrained output feedback sets some

entries of the output feedback gain matrix to zero, reducing controller complexity and increasing

reliability, however it is not always evident which entries should be zero. One obvious method [3,

4] would simply be to choose those entries which have the smallest influence upon the eigenvalues

and eigenvectors of the closed loop system.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.3

Note in particular that pole placement (i.e. Ackerman's formula) and optimal-LQR (matrix Riccati

equation) controller designs are simply a special instance of eigenstructure assignment where only

the eigenvalues are taken into consideration.

One popular method of computing the feedback gain matrix K for MIMO systems is by Moore's

method [6], and is described in section 3.1.2 below. Other methods include parameterization of

controllers [5] for full state feedback. Extensions to improve design freedom of parametric

approaches include [7] in which all combinations of allowable subspaces is computed.

Eigenstructure assignment has been used in reconfigurable control systems [8] in which the

operating conditions of the plant change and new feedback gain matrix K is re-computed to

maintain the eigenvalues and vectors as close as possible to the original design specifications.

Applications to aircraft control using partial eigenstructure assignment in which not all eigenvalues

are prescribed [9] uses minimum norm to ensure stability of the remaining unspecified

eigenstructure. In [10], eigenstructure is used to achieve mode decoupling and desired

damping/rise time for a high performance (F-15) aircraft using output feedback. Applications to a

commercial transport (Boeing 767) using eigenstructure to design a lateral autopilot are discussed

[12]. More recently, the area of robust eigenstructure assignment including reconfigurable control

has received considerable attention. The task of reconfigurable control is twofold: first to

guarantee performance and stability whenever possible, and secondly, to recover control

effectiveness under changing or failed conditions. Reconfiguration is performed on-line, in the

event of a failure the fault detection and isolation system (see chapter 6) should provide accurate

isolation and identification of the fault. This chapter will investigate the application of hybrid

genetic algorithms for solving general and robust eigenstructure problems.

3.1.2 Full Eigenstructure Assignment by Moore's Method

Eigenstructure assignment by Moore's method is presented below, this method can be later used as

a comparison with solutions obtained using hybrid genetic algorithms. Moore's method [1]

requires that all the eigenvalues and eigenvectors are specified at the design stage. In [9], partial

eigenstructure assignment using Moore's method is discussed. Moore's method requires full state

feedback, however the solution can be obtained without iteration. The procedure below is

presented in algorithmic form rather than giving a complete derivation of Moore's method. Given a

linear time invariant (LTI) system in state space and continuous time:

Chapter 3: Eigenstructwe Assignment Using Hybrid Genetic Algorithms 	 P.3.4

.i= A.x+ B.0 	 Eqn.3.2

and a full state feedback control law:

u= —K.x 	 Eqn.3.3

for x E 9", U E 91 m we require that the closed loop eigenvalues and eigenvectors correspond as

closely as possible to those specified, thus the eigenvalue problem becomes:

(A — B.K)v i Eqn.3.4

where: {2.i , v i 	, are the desired eigenvalues and eigenvectors respectively. The algorithm is

given below, note the necessary condition: n=rank(A). Moore's method requires full specification

of all eigenvalues and eigenvectors:

Procedure for Moore's Method:

Repeat j=1 TO n (for each eigenvalue)
setup the matrix:

S =[A j .1 — Al 13]
Compute the right nullspace of the above matrix —› M,N:

[M]
= null(S)

Compute the column vectors V and W by least squares solution
a =(mT.m)-1 .mT.v j
v„ = m.a

= N.a
Construct matrices V,W from column vectors v i,w; thus:

V = [...v j ...]

W = [...w j ...]
end

Fig.3.1

The full state feedback gain can then be computed from the matrices thus: K = —W .V ' . Note that

Moore's method gives the best match (in the least squares sense) to the specified eigenvectors. In

fact, the user specified eigenvectors may be unrealizable or unachievable, and Moore's method

gives the closest best match to the specified eigenvectors. As we shall see later, the achievable

eigenvectors must belong to the subspace spanned by the columns of S = (A1 .! — 	 B. If this

is the case, Moore's method will then yield a precise match to the specified eigenstructure.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.5

There have been many variations to this method with partial eigenstructure and output feedback

instead of state feedback. When dealing with partial eigenstructure assignment where only some of

the eigenvalues/eigenvectors have been specified, the question of how best to allocate the remaining

ones is the subject of robust eigenstructure assignment.

Note also that Moore's method fails when one or more closed loop eigenvalues are required to be

identical to the open loop eigenvalues. When dealing with partial eigenstructure assignment, this

method can be modified to deal with eigenvalues/vectors which are not specified or are not critical

in the design.

3.1.3 Partial Eigenstructure Assignment:

In many practical situations, the full specification of the eigenstructure is not known (or not

necessarily required), but only certain elements of the eigenstructure are specified. Thus the

problem is to find the best possible eigenstructure which matches the specified components of the

required eigenstructure as closely as possible without regard to the other remaining unspecified

components. This is the partial eigenstructure assignment problem. The conventional solution [1]

is outlined below, for each single eigenvalue and desired eigenvector

(d)
V —[Vi X X Vj X X Vk Xr

where x=don't care (represents unspecified components) and v i are the specified components. A

simple re-ordering operation is used to rearrange the above vector into two subvectors:

reorder:{v(d)} ___> vd) . [n
d

E,qn.3.5

where n=subvector of specified components, and d=subvector of unspecified components. The

achievable eigenvectors must be selected from the subspace spanned by: S = (A. I — 	 B.

Thus all achievable eigenvectors are given by: v 	S. g. The S matrix is also reordered in the

same sequence as previously in equation 3.5:

reorder: {s} 	[D] 	 Eqn.3.6

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.6

In order to minimize the norm of the difference between the actual and desired eigenvectors the g

vector can be estimated by least square thus:

g = (N T 	.N T .n 	 Eqn.3.7

If however the dimension dim {n} < m, where m=number of inputs (14E 9r), then the solution

can be found given by:

g = NT (N.NT) ' .n 	 Eqn.3.8

The feedback gain K can be computed from the g vector. A full detailed description of the partial

eigenstructure algorithm we implemented is provided in the appendix (see 8.2). This will be used

for comparison with solutions obtained using genetic algorithms. If only partial eigenstructure

specification is given, then the question of how best to choose the remaining unspecified

eigenvalues/eigenvectors becomes the next topic of discussion: robust eigenstructure assignment.

3.1.4 Robust Eigenstructure Assignment:

More recently, robust eigenstructure assignment has been a topic of research interest including

areas of reconfigurable control systems [18]. The objective is to design a feedback control law in

which the eigenstructure of the closed loop system is unaffected, or minimizing the effects caused

by changes in the operating conditions (or failures) of the nominal system. Some examples of

robust eigenstructure assignment include [15] in which the attempt is to minimize the difference

(norm) between the desired and achievable eigenvalues/vectors.

This chapter outlines the general framework in which the robust eigenstructure problem can be

defined and solved using hybrid genetic algorithms. Other methods of robust eigenstructure

formulation include the minimization of sensitivity and complimentary sensitivity function norms

[17], which also appear to be a popular techniques. Some other examples with genetic algorithms

[16, 19] have recently emerged.

From the previous chapter, we discussed optimization problems in which hybrid genetic algorithms

can be readily applied to. Genetic algorithms require that the robust eigenstructure problem first

be formulated in a generalized multiobjective constrained optimization framework. This

formulation is developed below.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.7

The eigenstructure assignment problem starts with the definition of the desired closed loop

eigenvalues and eigenvectors, and then computes the feedback gain matrix K to meet these

requirements. In general, not all eigenvalues and eigenvectors are specified, the question is then

of how best to choose the remaining (unspecified eigenvalues/eigenvectors) so that the system is

stable, robust and the closed eigenvectors are as close to those specified. Consider the following

linear time-invariant and completely controllable system:

i(t)= A.x(t)+ B.u(t)
y(t)= C.x(t)

Eqn.3.9

Where x E 9", is the state vector, and u E
9m is the control vector, using full state feedback:

u(t)= —K .x(t) the closed loop system becomes:

i(t)= (A— B.K).x(t) 	 Eqn.3.10

Where the closed loop eigenstructure of (A - B. K) must match as closely as possible to those

specified. It is assumed that the controllability condition is satisfied i.e. rank of the controllability

matrix=n. Given this condition, all eigenvalues can be placed, and up to m entries in each

eigenvector can be placed in specified locations. The robust eigenstructure assignment problem

can be stated as follows: determine the feedback gain matrix K such that:

Robust Eigenstructure Problem Definition:

1. The eigenvectors of the closed loop gain (A - B. K) are as close as possible to the specified

eigenvectors v = [v i , v2 ,...vg .

2. The eigenvalues of the closed loop system (A - B. K) contain the specified eigenvalues

3. The remaining (n-q) unspecified eigenvalues and eigenvectors are stable.

4. The stability margin is maximized to account for robustness against uncertainties in the state-

space matrices.

The four requirements can be stated mathematically as a constrained multiobjective optimization

problem. The eigenvector problem is defined as finding K such that for each

eigenvalue/eigenvector: (A — B. K)v , =

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.8

Requirement-1: Match the eigenvectors as close as possible to the desired eigenvectors: let v i be

the desired eigenvectors, and v i a the achievable eigenvectors, then this is

equivalent to minimizing the norm:

fi m n 	— ' , 11 2 	
Eqn.3.11

i=1

All achievable closed loop eigenvectors v ia must belong to the subspace spanned

by the columns of S = (41 — .B see [1], in other words the vector v i a

must correspond to the subspace: v i a = S i .g i where g i is a vector to be solved

for, the minimization now becomes (where H=complex conjugate transpose):

= min y(s i .gi 	-v,) 	Eqn.3.12
,=1

Requirement-2: Match the actual eigenvalues to the specified eigenvalues, from equation 3.4, the

following condition must be zero:

h, = (A + B.K — 	i .g =O 	 Eqn.3.13

This defines a first constraint. Since h i is a vector, we can minimize its trace.

Requirement-3: The remaining (n-q) unspecified eigenvalues and eigenvectors must be stable. It

is sufficient to satisfy the Lyapunov equation:

h2 = 	.P + A, + Q = 0 	 Eqn.3.14

where AMA+B.K) is the closed loop gain, and Q is positive definite symmetric

matrix. This defines a second constraint. Since h 2 is a matrix, we can minimize

its trace.

Requirement-4: The stability margin is maximized to account for robustness against

uncertainties in the state-space matrices. For unstructured perturbations, this

translates to minimizing the quantity:

12 = trace(P2) 	 Eqn.3.15

the smaller this value, the more robustly stable the closed loop system will be to

unstructured perturbations.

minimize:

A = min E(s i • g i —10 h'

f2 = mirtftrace(P 2)1

constraints:

111 =E(A, + K — Ail).S g =0

h2 = Ac T .P+ P.Ac +Q =0

Eqn.3.16

Eqn.3.17

Eqn.3.18

Eqn.3.19

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.9

The robust eigenstructure assignment problem can be formulated as a multiobjective optimization

problem with two objectives and two constraints:

Fig.3.2

This is the generalized framework for robust eigenstructure assignment. This can be solved by

calculus based constrained optimization using Lagrange multiplier methods [15].

3.1.5 Response of LTI Systems from Eigenstructure Information:

The eigenvalues and eigenvectors of a matrix can be used to completely characterize the dynamic

behavior of a LTI system. Refer to [1] and [22] (pp. 342-345). Given an unforced system with

full state feedback K:

±(t)= A.x(t) 	 Eqn.3.20

with eigenvalues of the closed loop system A=A -B.K at: A A = diag[A,,, 	and the

eigenvectors VA = 	Vg . The system is transformed to discrete time thus:

x(k +1)= x(k) 	 Eqn.3.21

where the matrix c1 = eAT .-=T.A, and T=step size. Since the transformation involves only a

scaling by T, then the eigenvectors of (Dare identical to those of (A-B. K) ie: V4, = VA, but the

eigenvalues are scaled by T, thus: Ao = T. AA. It can be shown that the response at time step k of

this system is completely described by relation:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.10

thus equating parts, we get:

x(k)=V4) .Ak..V4; 1 .x(o)

Ak = 	.1/4; 1

Eqn.3.22

Eqn.3.23

From the above relation, the eigenstructure of the system can be used to fully describe its dynamic

response. Note that if a system has unique nonzero eigenvalues, then the eigenvectors will be

linearly independent.

3.2 Partial Eigenstructure Assignment for Static Compensators

3.2.1 Theory:

We now look at how hybrid genetic algorithms can be used to design a full state feedback static

compensator K for the partial eigenstructure assignment problem. In this simulation, all

eigenvalues have been specified, but only partial specification is provided for the corresponding

eigenvectors. This problem can be solved by conventional methods described earlier. We can

compare the solution obtained using genetic algorithms with conventional methods (see appendix

8.2). Two individual simulations are considered:

(a) In the first part, the eigenvalues have been fully specified, and partial specification is provided

for the eigenvectors. We can verify the solution obtained by GA as this problem can also be

solved by conventional eigenstructure assignment.

(b) In the second part, the upper and lower range of the allowable eigenvalues is given, for

instance: Acjiower) < < jupper) and partial specification is provided for the eigenvectors as

described above. 	This second method cannot be directly solved by conventional

eigenstructure assignment. This is a constrained optimization problem.

The linearized lateral aircraft model is used for these two simulations (appendix 8.1). A

description of the simulation setup is outlined next. Consider the following linearized dynamic

system:

1(0= A.x(t)+ B.u(t)
y(t)= C.x(t)

Eqn.3.24

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.11

Where x E 9I n , is the state vector, and u 9r is the control vector, assuming full state feedback:

u(t) = —K.x(t) the closed loop system becomes:

.i(t)= (A— B.K).x(t) 	 Eqn.3.25

Where the closed loop eigenvalues and eigenvectors of (A - B. K) must match as closely as possible

to those specified. It is assumed that the controllability condition is satisfied i.e.: rank of the

controllability matrix=n. Given this condition, using full state feedback, up to n eigenvalues (i.e.:

all) can be placed in specified locations.

(i) Assignability Conditions:

With full state feedback: x E 9in is the state vector, and u E 91'n is the control vector, the

maximum possible assignability of eigenvalues and eigenvectors are:

(i). a maximum of n of closed loop eigenvalues can be assigned, i.e. all eigenvalues may be

arbitrarily assigned.

(ii). a maximum of nxm total eigenvector entries can be arbitrarily assigned,

(iii) no more than m entries in any one eigenvector can be chosen arbitrarily, with n

eigenvectors, gives a total of nxm entries.

For our system, n=4, m=2, giving a total of 4 maximum allowable eigenvalues which may be

arbitrarily placed, and 4 eigenvectors, with only 2 entries in each eigenvector column arbitrarily

assigned.

(II) Objectives:

For this first simulation, the problem is to minimize the eigenvector assignment error given by the

objective function 2.26 below:

= minI(Si •g i —v i)ff (Si •g i —v i) Eqn.3.26
i=1

where Si = (A7 . I — AY I .B, the feedback gain can be calculated from the gi vectors, i.e:

K = —G.V -I V=achievable eigenvector matrix nxn, and G=,r042,..gn] matrix of gi column

vectors mxn. The above equation attempts to minimize the difference between the desired

eigenvectors v i with the achievable eigenvectors

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.12

Thus the achievable eigenvectors must belong to the subspace spanned by S i = Ar I- A 1 1 .B.

Since full state feedback is used, all eigenvalues are assignable.

(iii) Required eigenstructure:

Eigenstructure assignment is applied to the linearized aircraft lateral model, with roll mode and

Dutch roll modes at: A,=-2±1j and A„=-1.5±1.5j respectively. This is illustrated in figure 3.3 below,

and the eigenstructure specification is tabulated in figure 3.4. Note that the don't care states are

denoted in red by an x symbol. The given eigenstructure provides partial decoupling between the

roll and Dutch roll modes. The aircraft lateral dynamics, with full state feedback is illustrated in

figure 3.3 below:

PLANT

x(0.p(t) - roll rate deg/sec.
r(t) - yaw rate deg/sec.
/3(t) - sideslip angle deg.
it(t) - roll angle deg.

u(t)= 4(t) -aileron angle deg.
4(t) -rudder angle deg.

Fig. 3.3
Lateral Dynamics Used for Simulation

for the linearized lateral model, the required eigenstructure may be written in the form (see

reference [39]), for each column, the first row is the eigenvalue and corresponding eigenvector

below:

Roll Mode: Dutch Roll Mode:

-2.0 4. j1.0 -2.0 - j1.0 -1.5 4. 	j1.5 -1.5 - j1.5

xi 4. j1.0 X3 - j1.0 0.0 + 10.0 0.0 - j0.0
0.0 + 10.0 0.0 - 10.0 1.0 + 	jX6 1.0 - 	jX8

0.0 + 10.0 0.0 - 10.0 X5 + j1.0 X7 - j1.0
1.0 + 	jX2 1.0 - 	jX4 0.0 + j0.0 0.0 - 10.0

Fig. 3.4
Eigenstructure Used in Lateral Aircraft Simulation

Where xi, X2 ...X8 represent don't care values (unspecified values). Note that because complex

conjugate pairs are present, then we have the condition: X1=X3 , X2=X4 , X5=X7, X6=X8, there

are essentially only 4 parameters to solve for. Note that in this instance, the g vectors must also be

complex conjugate pairs i.e.: g2 = g4 = k3 .

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.13

(iv) Chromosomal representation:

The chromosomal representation of this problem is illustrated in figure 3.5 below, where the error

function (error) is given by equation 3.26 and the fitness is simply the inverse of the error function.

x , I x2 1 x3 1 x4 J x,
X6 1 X7 IX81 error Fitness

Fig. 3.5
Chromosomal Structure of Partial ESA Problem: Simulation-1

This is a generalized chromosomal representation which can be used for complex conjugates as

well as purely real eigenvalues. There are several ways in which to encode the chromosome

(Fig.3.5), one way would be to do a GA search on the gi vectors (see equation 3.26) but this would

require solving for 8 values, to see why, consider each g vector for each eigenvalue/eigenvector

value consisting of 4 elements thus:

[a, + jb,]
g1= n

ile2

Since there are 2 x g vectors to solve for (g i , g3) as the other two (g2, g4) are simply complex

conjugates of the first two, this gives a total of 8 parameters to solve for.

The second method would simply be to do a GA search on the unspecified parameters: Xl, X2

...x8, giving a total of only 4 parameters to solve for since: X1=X3 , X2=X4 , X5=X7 , X6=X8 .

We can then estimate the g i vectors from these values by least squares, and compute the fitness

function 3.26. This second method is considerably more efficient and converges very rapidly.

Results are given below.

3.2.2 Simulation 3.1: Fixed Eigenvalues:

(i) Objective: For this first simulation, we use the required eigenstructure described above, and

compute the achievable eigenvectors. The aircraft lateral dynamics are given by the following

matrices (refer to appendix 8.1)

A . -3.9330 0.1260 -9.9900 0 Et . -45.8300 -7.6400
0.0020 -0.2350 5.6700 0 -0.9210 -6.5100
0.0262 -0.9997 -0.1960 0.0345 0.0071 o
1.0000 0 0 0 0 0

The results from the first simulation are shown on the following page. Results using genetic

algorithms and conventional eigenstructure assignment give identical results. Note the rapid

convergence (within 40 generations) of the genetic algorithm.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.14

Given the objective below, find the gain K such that the eigenstructure matches as closely as

possible to the following specification, where x=don't care (can take any value):

FkAl Mode: Dutch Roll Mode:

-2.0 + 	j1.0 -2.0 - 	j1.0 -1.5 + j1.5 -1.5 - 	j1.5

+ 	j1.0 - 	j1.0 0.0 + 	j0.0 0.0 - 	j0.0
0.0 + 	j0.0 0.0 - 	j0.0 1.0 + 1.0 - 	jX8
0.0 + 	j0.0 0.0 - j0.0 + 	j1.0 - j1.0
1.0 + 1.0 - 	jX4 0.0 + 	j0.0 0.0 - j0.0

Fig.3.6

(ii) Solution by Genetic Algorithms: For this GA simulation, we use: Population: 60, Pc=0.6,

Pm=0.1, max generations=200, binary tournament selection, objective: to match eigenvectors only

(equation 3.26). The chromosomal representation as shown in figure 3.3. Results are given below:

match error: f=0.0 137

Achievable Eictenvectors

+ 	1.0000j - 	1.0000j 0.0000 - 0.0000j 	0.0000 + 0.0000j
-0.0033 	+ 	0.0050j -0.0033 	- 	0.0050j 1.0000 + 1.8775j 	1.0000 - 	1.8775j
0.0109 	- 	0.0057j 0.0109 + 0.0057j -0.3838 + 1.0000j 	-0.3838 - 1.0000j
0.9998 	- 0.9998 	+ 	0.0001j -0.0000 + 0.0000j 	-0.0000 	- 	0.0000j

The feedback gain K is found as:

0 .064508221 0 .268488544 -0.1116345G1 [-0.002057691
K=

0 .003573822 -0.403457113 -0.302988201 0.015210675_

Typical convergence rate of the genetic algorithm:
Error convergence ji

035

0.30

0.25

0.20

0.15

0.10

0.05

20 	40 	60 	80 	100 	120 	140 	160 	180 	200

Generation

Fig. 3.7
Genetic Algorithm Error Convergence

-2.5 	real(X 1)
constraint

0.5 	imag(k) 15
Eqn.3.27

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.15

(iii) Solution by Conventional Methods: (see appendix for algorithm): Using Moore's method

discussed in section 3.1.2:

match error: fi = 0.0183

Achievable Eigenvectors

-1.9995 + 1.0000j -1.9995 - 1.0000j -0.0000 + 0.0000j -0.0000 - 0.0000j
-0.0033 + 0.0050j -0.0033 - 0.0050j 1.0000 + 1.8776j 1.0000 - 	1.8776j
0.0109 - 0.0057j 0.0109 + 0.0057j - 0.3839 4. 1.0000j -0.3839 - 1.0000j
0.9998 - 0.0001j 0.9998 + 0.0001j 0 + 0.0000j 0 - 0.0000j

The feedback gain K is found:

K-
-0.002057621. 	0.064508233 	0.268488541 -0.111634503

0.0035738M -0.403457114 -0.302988193 	0.0152106'5

A comparison of the two methods is tabulated below:

Method: flO MFLOPS: Time:
Genetic Algorithms:

Koore's Method:

0.0137

0.0183

50

0.01

28 sec

<1 sec

Fig.3.8
Comparing Genetic Algorithms with Conventional Partial Eigenstructure Assignment

Whilst the genetic algorithm gives a slightly better match, the solution is almost identical to the

conventional method. The GA however requires almost 50 MFLOPS of computational effort

compared with only 0.01 using conventional (Moore's) method. This simulation illustrates that

while the GA converges rapidly, its computationally inefficient when compared with direct ESA

design methods. The usefulness of the GA however can be demonstrated in the next ESA design

application (simulation 3.2) in which no direct design method exists.

3.2.3 Simulation 3.2: Domain Constrained Elgenvalues:

(i) Objective: This second simulation is a constrained optimization problem, slightly more

difficult to solve than the first. In this simulation, the upper and lower allowable range of the first

eigenvalue is given, thus for the roll mode: A,, we allow the following valid range of eigenvalues:

The eigenvalues of the roll mode are allowed to be in the specified range as above, the Dutch roll

mode eigenvalues are fixed. Match the eigenstructure as closely as possible to:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.16

-2.5 .5 real(i) 5-1.5
0.5 5 imag(?4) 5 1.5

=conjugate(1)

/Roll Mode: --7. Dutch Roll Mode:

Ai 4 -1.5 + 11.5 -1.6 - j1.5

x1 + j1.0 X3 - j1.0 0.0 + 10.0 0.0 - 10.0
0.0 + 10.0 0.0 - j0.0 1.0 • jx6 1.0 - 	jX6
0.0 + 10.0 0.0 - j0.0 X5 • 11.0 x7 - j1.0
1.0 + 	jX2 1.0 - 	jX4 0.0 + 10.0 0.0 - 10.0

Fig.3.9

Find the gain K such that the closed loop eigenvalues and eigenvectors are as close to those above,

where x=don't care (can take any value).

(ii) GA solution: This is a constrained (domain constraint) optimization problem which is solved

using repair algorithms. Simulation results are given in the following pages. The chromosomal

representation for this problem is shown below (Fig.3.10) again using floating point codification:

n ImIX, X2 x3 I x, I x, I x6 I x7 I xi I x i I k Ix, I x, error I Fitness

Fig. 3.10
Chromosomal Representation of Partial Eigenstructure Assignment Problem: Simulation-3.2

For this GA simulation, we use: Population: 60, Pc=0.6, Pm=0.1, maximum generations=200,

binary tournament selection, objective: to match eigenvectors only (equation 3.26).

All eigenvalues are complex numbers, and the GA search only applies to X I , the remaining

eigenvalues are simply: A. 2 = X I , and X3 = -1.5 + j1.5, X.4 = -1.5 - j1.5 (fixed). Convergence is

within 500 generations, this is illustrated in figure 3.11 below. The convergence of the eigenvalue

X1 is also shown in figure 3.11. Convergence is initially very rapid for the first 50 generations.

Similarity, convergence for the eigenvalue X I is also initially rapid. The slow convergence is due to

the fitness function being nearly flat near the optimum.

match error: /1=0.0084
Achievable Eigenvectors

-1.3351 + 1.0000j -1.3351 - 1.0000j 0.0000 - 0.0000j 0.0000 + 0.00001
0.0000 + 0.0049j 0.0000 - 0.0049j 1.0000 + 1.8776j 1.0000 - 1.8776j
0.0024 - 0.0064j 0.0024 + 0.0064j -0.3839 + 1.00001 -0.3839 - 1.0000j
0.9999 - 	0.3330j 0.9999 + 0.3330j -0.0000 - 0.0000j -0.0000 + 0.0000j

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.17

The eigenvalues are given by:
-1.5017 + 0.50001 	-1.5017 - 0.50001 	-1.5000 + 1.50001 	-1.5000 - 1.5000i

The feedback gain K is found:

K -

	0.0645 	0.2685 	-0.0574
=

0.0046 	-0.4035 	-0.3030 	0.0165

Typical convergence plots, including convergence of the eigenvalue 	are illustrated below:

Eigenvector error fi Convergence
0.5

0.4

0.3

0.2

0.1

o o

1
0.5

0
-0.5

-1
-1.5

-2
-2 5

100
	

200
	

300
	

400 	500
Generation

Eigenvalue A.; Convergence:

	

.7,....1,••••••••••■•4 	

	 'maga ') 	

zreal(X I)

0 	100 	200 	300 	400
	500

Fig. 3.11
Genetic Algorithm convergence (simulation 3.2)

(iii) Conventional Solution: There is no direct solution using conventional methods, however we

can still check the validity of our results by simply plotting the value offi for a whole range of Xi.

i.e. given the range constraint:

-2.5 	real(),) 	-1.51
0.5 5_ imag(A,) 5 15 f

The algorithm would simply be:

constraint

for a=-1.5 TO -2.5
for b=0.5 TO 1.5

= a + jb
= conjugate(X 1)
= solve by conventional eigenstructure assignment.

end
end

Fig.3.12

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.18

This would result in a 3D surface plot of the value fl for a whole range of Xi along the two

horizontal x axes, the results are illustrated below in figure 3.13. From this plot, we can in fact see

that the minimum value of fl over the specified range of k given above occurs when A., 1 = -1.5 +

0.5j. This is the same result which we obtained previously with genetic algorithms. Comparing

results from simulations 3.1 and 3.2, in both instances the genetic algorithm and conventional

method give identical results. Note that whilst the GA takes longer to converge, it can be used to

solve more complex eigenstructure assignment constrained optimization problems, whereas the

conventional ESA method is restricted to solving only specific problems.

match error: 11 = 0.0117

Achievable Eigenvectors

-1.3332 + 1.0000j -1.3332 - 1.0000j -0.0000 + 0.0000j -0.0000 - 0.0000j
0.0001 + 0.0049j 0.0001 - 0.0049j 1.0000 + 1.8776j 1.0000 - 1.8776j
0.0024 - 0.0064j- 0.0024 + 0.0064j -0.3839 + 1.0000j -0.3839 - 1.0000j
0.9999 - 0.3333j 0.9999 + 0.3333j 0 + 0.0000j 0 - 0.0000j

The feedback gain K is found:

K

 = [

0.019592379 0.064508233 0.268488541 -0.057304768]
0.004591785 -0.403457114 -0.302988199 0.016528473

The match error fl as a function of the eigenvalue A., :is plotted below in figure 3.11:

0.025

8

0.02,

(t)

8
1 0015

0.01
15

minimum fi
over the allowed
range of Xi

-15

imag(A.l) 	05 -25 	real (A, 1)

Fig. 3.13
Solution by conventional methods

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.19

Figure 3.11 above illustrates how the matching error f i is affected by the eigenvalue X i as the real

part of the eigenvalue spans the range - 2.5 < rea1(2,) —15, and the imaginary part spans the

range: 0.5 	imag(2,) 1.5. The value of fl is calculated at each grid point on the surface using

conventional eigenstructure assignment algorithm used previously in simulation 3.1.

Method: fl() MFLOPS: Time:
Genetic Algorithms:

Moore's Method:

0.0084

0.0117

120

7

60 sec

4 sec

Fig.3.14
Comparing Genetic Algorithms with Conventional Partial Eigenstructure Assignment

The computational effort required by the GA has increased from 50 to 120 MFP (factor of 2.5).

However the computational effort by conventional methods requiring a search over the full range

of lambda A. 1 has increased from 0.01 to 7 MFP, representing an increase of about 700. This

simulation illustrates how the incorporation of constraints on the GA has only a small effect on the

computational effort.

In these simulations, we have assumed the existence of full state feedback. In practice only

measurement feedback may be available. In this case, a dynamic compensator is necessary. This

is the topic of our next discussion.

3.3 Eigenstructure Assignment for Dynamic Compensators:

3.3.1 Theory:

When full state feedback is not available, then a dynamic compensator may be used to provide the

additional design freedom. These simulations illustrate the design of dynamic compensators using

genetic algorithms with only output feedback. The order of the compensator is generally chosen to

be p=n-r where n=number of states of system, and t=number of measured outputs. In these next

set of simulations, genetic algorithms are applied to the design of dynamic output feedback

compensators, the results are compared with conventional design methods. This simulation is

divided into two parts:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.20

(i) The first part, eigenstructure assignment is used with only a fixed compensator, and output

feedback to illustrate the limitations present.

(ii) The second part, eigenstructure assignment is used with dynamic output feedback control to

increase the number of degrees of freedom, and to overcome the limitations present in (i)

above. We compare results obtained with both genetic algorithms and conventional methods.

The theory of dynamic output feedback control [2, 38] is outlined next. Given the linear time

invariant system:

1 i= A.x+ B.0
y=C.x

Eqn.3.28

Where x E 9r , is the state vector, and u E 9r1 is the control vector, y E 9i r is the measurement

vector, it is assumed that n> r, using a dynamic compensator of the form:

E. y 1
u= F.z+G.y f

Eqn.3.29

The order p of the dynamic compensator z E 9V should be 0 p n — r, generally p=n - r. This

is illustrated in figure 3.15 below. When p=0, this results in a static feedback gain matrix (section

3.2). The two equations can be combined into a composite system which can be solved in a similar

fashion to the previous eigenstructure simulations. The composite system is given by: (see

reference [2]) equation 3.30:

= 	00][1 + [Bo 0][ui
u2]

] r y, i ic 0 x
Ly2i'Lo / z

I u, 1 r G F yi
Lu2 i = LE D

i
y2

Eqn.3.30

COMPENSATOR

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.21

Which may be written more compactly in matrix form similar to the expression used in

eigenstructure assignment for static compensators:

y=C•..7 	 Eqn.3.3 1

u = T. y

This can now be solved in a similar manner as in section 3.2 above. The composite matrices for

equation 3.31 are:

x _ [x]
z

[
u

_
y . [y i I 	a= 	l

Y2 	U, _
. i=

0
[A oi

0

	

= [B 	o

	

0 	/
c, = [

0

C 01
I

	

i, = [G 	F

	

LE 	D-
-

In particular, note that: y i =y and u i =u. Solving for the feedback gain matrix T, the individual

submatrices: G,F,E,D may be extracted. The plant and controller systems are illustrated in figure

3.15 below:

Fig. 3.15
Eigenstructure assignment using dynamic output feedback

The eigenstructure may be specified as before in the previous simulation with the addition of one

eigenvalue (for the compensator: z) and one additional eigenvector entry for each, the don't care

entries are shown in red below:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.22

Roll Mode Dutch Roll Mode Compensator

-2.0 + 11.0 -2.0 - J1.0
ekr

x
x
x
x

x
-1.5 + J1.5 -1.5 - j1.5

x + J1.0 x - j1.0 0.0 + j0.0 0.0 - j0.0
0.0 + J0.0 0.0 - j0.0 1.0 + 	jx 1.0 - 	3x
0.0 + j0.0 0.0 - J0.0 x + j1.0 x - j1.0
1.0 + 	jx 1.0 - 	jx 0.0 + j0.0 0.0 - j0.0
1.0 + 	JO 1.0 - 	JO 1.0 + 	JO 1.0 - 	JO

*

additional eigenvector
components due to
compensator dynamics

Fig. 3.16
Eigenstructure assignment using dynamic output feedback

Note the choice of additional eigenvector entry for the roll mode and Dutch roll mode (last row),

they must be carefully selected to avoid the modal matrix from becoming numerically singular. The

eigenstructure used above is taken from reference [2] and is commonly used for ESA in lateral

dynamics for aircraft control studies.

As in the previous simulations, we note that the solution to the ESA problem with dynamic

feedback requires the solution to:

+ T3FC).v i 	 Eqn.3.32

which can be rearranged thus:

vi =01 .1-Tly'R.T.C%vi

if we define the g vectors as:

g,=F v,

Then the eigenvectors must belong to the subspace spanned by:

Eqn.3.33

Eqn.3.34

- 	 Eqn.3.35

Solving for all the g vectors gives the matrix G=[g i ...g,], and the achievable eigenvector matrix

V= [v] ... v„], then the dynamic compensator can be computed from:

Eqn.3.36

In which the individual submatrices may then be extracted, i.e.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.23

= FG Fl
LE Di Eqn.3.37

Simulation results are provided in the following pages and compared with conventional solutions,

using the previous values of the A and B matrices, with the addition of an output matrix C:

	

A . -3.9330 	0.1260 -9.9900 	0

	

0.0020 -0.2350 	5.6700 	0
0.0262 -0.9997 -0.1960 0.0345

	

1.0000 	 0 	 0 	0

B = -45.8300 -7.6400
-0.9210 -6.5100

	

0.0071 	 0

	

0 	 0

C=1 0 0 0
0100
0010

A quick note about matrix dimensions used in this simulation:
A E 9I4x4 B 9I4x2 	E 913x4 D E 911x1 E 9 1x3 F E 912x1 G E 9t2x3 Eqn.3.38

and for the composite system:

A E 9I5x5 	E 915x3 r E 91 4)(5 	E 9t3x4

3.3.2 Simulation 3.3: Static Output Feedback:

Eqn.3.39

The first simulation illustrates the problems associated with eigenstructure assignability when only

output feedback is available using only a static feedback compensator, i.e. constant feedback gain

matrix K. This method can be used for later comparison with dynamic compensation. Thus given

the system:

i= A.x+ B.0
y = C. x

Eqn.3.40

Where x E 91 4 , is the state vector, and u E 91 m is the control vector, y E 9i r is the measurement

vector, find the feedback gain matrix K: u=K.y such that the eigenstructure matches that specified

in simulation-3.1. Eigenstructure assignability is now severely restricted due to the presence of the

output matrix C. Conventional methods can be used to find the output matrix K, results are

provided on the following pages (see simulation 3.4). See fig.3.17 below:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.24

Fig. 3.17
Eigenstructure assignment using a static output feedback compensator

It can be shown that the maximum number of assignable eigenvalues is r, where y E 9, in this

case 	assuming that the pair (A,B) is controllable, see [39]. In general however, it is assumed

that: m < r < n.

(i) Assignability Conditions: With output feedback, the following restrictions apply:

(i). a maximum of max(r,m) of closed loop eigenvalues may be assigned.

(ii). a maximum of max(r,m) eigenvectors can be partially assigned with min(r,m) entries in

each vector arbitrarily chosen.

For our system, n=4, m=3, r=2, giving a total of 3 maximum allowable eigenvalues which may be

arbitrarily, and 3 eigenvectors, with only 2 entries in each eigenvector arbitrarily chosen.

Simulation results are given on the following page. Results indicate that using output feedback

fails to allocate all specified eigenvalues, and only the second conjugate pair is assigned. This is a

limitation of output feedback with constant feedback gain K. A summary of the simulation results

is given below.

(ii) Objective: Find the gain K such that the closed loop eigenvalues and eigenvectors are as close

to those above, where x=don't care (can take any value) using only output measurement feedback

and static compensator K:

Roll Mode: Dutch Roll Mode:

-2.0 + j1.0 -2.0 - 11.0 -1.5 + 11.5 -1.5 - j1.5

x1 + j1.0 x3 - j1.0 0.0 + j0.0 0.0 - j0.0
0.0 + j0.0 0.0 - j0.0 1.0 + 	jx6 1.0 - 	jx8
0.0 + j0.0 0.0 - j0.0 x5 + j1.0 x7 - j1.0
1.0 + 	jx2 1.0 - 	jx4 0.0 + j0.0 0.0 - j0.0

Fig.3.18

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.25

Eigenstructure by Conventional Method: The solution to the above problem using only

static output feedback gives the following achievable eigenstructure :

Achievable eigenvalues:

-2.0000 	0.0000 	-1.5000 + j1.5000 	-1.5000 - j1.5000

Achievable eigenvectors:

0.8944 -0.0000 0.0000 - 0.0000i 0.0000 + 0.0000i
-0.0038 -0.0302 1.0000 + 1.8776i 1.0000 - 	1.87761
-0.0064 -0.0215 -0.3839 + 1.00001 -0.3839 	- 1.0000i
-0.4472 -0.9993 0.0001 + 0.00011 0.0001 - 0.0001i

Note that whilst the algorithm is able to match the last two of the eigenvalues and eigenvectors at

-1.5+/-1.5j perfectly, it fails at assigning the first two. If however the first two eigenvalues are

purely real, then the algorithm would allocate one of the two eigenvalues in addition to the second

pair of complex conjugate.

We can clearly see the limitations of using output feedback when eigenstructure assignment is used

as a design tool. Consequently dynamic feedback is required. This is the topic of discussion in the

next two simulations which follow. Genetic algorithms are used to design the dynamic

compensators. This will be compared to conventional eigenstructure assignment methods.

3.3.3 Simulation 3.4: Dynamic Control Output Feedback:

Looking at the previous results, output feedback presents serious limitations when all eigenvalues

must be assigned. These problems may be overcomed by using dynamic feedback or dynamic

control. In this simulation, eigenstructure assignment for dynamic compensators is implemented

using genetic algorithms, this is then compared with results obtained using conventional methods.

Using dynamic feedback control, the composite equations may be written in the form:

= 	+ T3. t7

= Eqn.3.4 1

This is in the same form as previously required for eigenstructure assignment. Where the

composite variables are:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.26

,7=rx] 	 01 	0] 	01 	[G F]

Lz]
5 = []
	[142] 	L0 0] Lo i] 	L0 i]

1(7 _ - E D
Eqn.3.42

- We note that the C matrix has now rank(C)=4, in other words, we can use the augmented system

to assign all four eigenvalues and eigenvectors. The composite system matrices now become:

	

A = -3.9330 	0.1260 	-9.9900 	0

	

0.0020 -0.2350 	5.6700 	0
0.0262 -0.9997 -0.1960 0.0345

	

1.0000 	0 	0 	0

-45.8300 -7.6400
-0.9210 -6.5100

0.0071

1

c = 1 0 0 0
0100
0010

1 0000

Since only up to four eigenvalues may be assigned, then the compensator A, 5 eigenvalue cannot be

arbitrarily assigned, however it must be stable. For our system, n=5, m=4, r=3, giving a total of 4

maximum allowable eigenvalues which may be placed, and 4 eigenvectors, with only 3 entries in

each eigenvector arbitrarily chosen. Simulation results are given on the following page.

Compensator eigenvector specification is not required.

(i) Objectives: Find the dynamic compensator gain K such that the closed loop eigenvalues and

eigenvectors are as close to those above, where x=don't care (can take any value) using output

feedback:

Roll Mode: Dutch Roll Mode: Compensator

-2.0 + 	j1.0 -2.0 - 	j1.0 -1.5 + j1.5 -1.5 - j1.5

..4
x
x
x
x
x

xi + 	j1.0 - 	j1.0 0.0 + j0.0 0.0 - j0.0
0.0 + 	j0.0 0.0 - 	j0.0 1.0 + 	jx6 1.0 - 3x.8

0.0 + j0.0 0.0 - 	j0.0 x + j1.0 - j1.0
1.0 + 	3x2 1.0 - 	jX4 0.0 4- 	j0.0 0.0 - j0.0
1.0 4. 	j0 1.0 - 	JO 1.0 + 	j0 1.0 - 	JO

Fig.3.20

(ii) Simulation Results using Conventional Methods:

Achievable Eigenvalues:

-2.0 + j1.0 -2.0 - j1.0 	-1.5 + j1.5 -1.5 - j1.5 	-0.0378

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms P.3.27

Achievable Eigenvectors:
-1.9995 	+ 	1.0000i 	-1.9995 - 	1.0000i 0.0000 + 0.00001 0.0000 - 	0.0000i 0.0377
-0.0033 + 	0.00501 -0.0033 - 	0.0050i 1.0000 + 	1.8776i 1.0000 - 	1.8776i -0.0301
0.0109 - 	0.00571 0.0109 + 	0.0057i -0.3839 + 	1.0000i -0.3839 - 	1.0000i -0.0213
0.9998 - 	0.0001i 0.9998 + 	0.00011 -0.0000 - 	0.0000i -0.0000 + 0.0000i -0.9983
1.0000 1.0000 1.0000 1.0000 -0.0243

Dynamic Compensator Matrices: G, F, E, D can be found from the terms of the K matrix:

K=G

Results from the simulation gives:

K 	0.003074418 -0.129655514 -0.146167328
- 0.003712355 	0.412333707 	0.286321415

0.112103407
-0.015274564

1.017115088 -0.539781790 	2.513499919 0.004653040

(ii) Simulation Results using GA:

The simulation is repeated using genetic algorithms, the chromosomal structure is illustrated

below, note that the dynamic compensator is not included as part of the search. Thus any

compensator eigenvalue/eigenvector is acceptable as long as A.5 < 0. Once a solution is

obtained, the compensator eigenvalue and eigenvector is simply obtained by using the eig()

matlab functon thus: eig(A- + . FTC-) of the closed loop system.

Xi x2 	 x, x„ error Fitness

Fig.3.2 1

AzhievableEigenvalues:

-2.0000 + J1.0000 	-2.0000 - j1.0000 -1.5000 + j1.5000 -1.5000 - 	j1.5000 -0.0378

Achievable Eigenvectors:
-1.9995 	+ 1.00001 	-1.9995 - 	1.00001 0.0000 + 0.00001 0.0000 - 	0.00001 0.0377
-0.0033 	+ 	0.00501 	-0.0033 - 	0.00501 1.0000 + 1.87761 1.0000 - 	1.8776i -0.0301
0.0109 	- 	0.00571 	0.0109 + 0.00571 -0.3839 + 1.00001 -0.3839 - 	1.00001 -0.0213
0.9998 	- 	0.00011 	0.9998 + 0.0001i -0.0000 - 	0.00001 -0.0000 + 	0.00001 -0.9983
1.0000 	 1.0000 1.0000 1.0000 -0.0243

Dynamic Compensator Matrices: G, F, E, D can be found from the terms of the K matrix:

K=G

Results from the simulation gives:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.28

K = 	0.003074193 -0.129655002 -0.146168284 	0.112102533
-0.003712325 	0.412333637 	0.286321545 -0.015274445

1.017114982 -0.539776031 	2.513489097 	0.004643255

Convergence properties of the genetic algorithm are illustrated below Fig.3.22, the genetic

algorithm converges very rapidly, within the first 40 generations. We can also see that all

eigenvalues and eigenvectors are assigned as required.

Eigenvector Error Convergence f.

0
0 	 20 	40 	60 	80 	100

Generation
Fig. 3.22

Convergence properties of genetic algorithm:

(iii) Notes on Simulation:

1. This simulation is essentially identical to the first (simulation 3.1), with the exception that we

use the composite system matrices instead of the original plant matrices. When the feedback

gain matrix K is found, the dynamic compensator terms: D,E,F,G, can be extracted using

equation 3.42.

2. Note that with dynamic feedback, all four eigenvalues (roll mode, Dutch roll mode) can be

assigned arbitrarily. Note also that the compensator eigenvalue cannot be assigned, however

any stable compensator eigenvalue is allowed. Using conventional ESA methods, the stability

of the compensator eigenvalue cannot be guaranteed and difficult to impose constraints to

ensure its stable. With genetic algorithms however, the stability of the compensator eigenvalue

can be guaranteed by using constrained optimization such as penalty functions or repair

algorithms.

3. Both the conventional method and genetic algorithm method produce identical results. The

convergence of the GA is shown in figure 3.16.

0.35

0.3

0.25

0.2

0.15

0.1

0.05

minimize:

fi
\if

= minI(Si •g i — vo
i=1

f2 = minirace(P 2)1

constraints:

hi 	+ K — 	= 0
i=1

h2= 	.P+P.Ac -FQ =0

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.29

3.4 Robust Eigenstructure Assignment:

3.4.1 Theory:

This last simulation involves solving the robust eigenstructure assignment problem defined earlier

in section 3.1.4. Full state feedback using a static compensator is assumed. There is no

conventional design method presently available to solve this type of eigenstructure assignment

problem. Our results can be verified by comparing three methods: (i) Conventional Genetic

Algorithms (GA), (ii) Genetic Algorithms and Simulated Annealing (GA+SA), and (iii) Genetic

Algorithms and Greedy Search (GA+GS). Convergence rates and computational effort are

compared. From section 3.1.4, the robust eigenstructure assignment problem is defined as a

multiobjective optimization problem, in which the functions to minimize f l and 12 and constraints

h 1 =0 and h2=0 are given by:

Fig.3.23

A simpler problem would be to minimize a composite cost functional defined as a weighted sum of

the two cost functionalsf, and f2 and thus:

f(x) = fgx) + 13,f2(x) Eqn.3.43

where 13 is varied from=0.1, 1, 10 to show the effects of adding more emphasis on one function

against the other function. The second constraint h2=0 is dealt with by defining the Q matrix

(positive definite symmetric) as the identity matrix, and solving this constraint by solving the

lyapunov function directly. The matlab (yap() function can be used to solve for P. Note that the

solution P must also be a positive definite symmetric matrix.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.30

Since h 1 and h2 both represent matrices, we can compute the matrix norm or trace for each

constraint. The matrix: Ac=(A+B.K) is the closed loop gain. This problem is effectively identical

to section 3.2, with the addition of two constraints and a composite functional to minimize.

3.4.2 Simulation 3.5: Hybrid Genetic Algorithms:

(i) Objective: The required eigenstructure is defined as follows Fig.3.24 with the roll mode

identical to the originally defined eigenstructure in section 3.2. However, the Dutch roll mode is

replaced by two decoupled modes: the first has a pole at —1, the second pole is at ks and is

unspecified. Further, we constrain the unspecified pole to be within the range: —2.5 < A.4 < -0.5.

Roll Mode: Decoupled Modes

-2.0 + j1.0 -2.0 - j1.0 -1 X41

xi + j1.0 x3 — j1.0 x5 0
0.0 + j0.0 0.0 — j0.0 X6 1
0.0 4. 	j0.0 0.0 — j0.0 1 x7
1.0 + 	jx2 1.0 — 	jx4 0 x8

Fig. 3.24

The values of A,B matrices remain the same. The search is over the parameters: { X1, X2, X5, X6,

X7, X8, A4 with X3=X 1 and X4=X2 .

(ii) Genetic algoritluns: the chromosomal representation for this problem is illustrated in figure

3.25 below, again floating point codification is used:

XI X2 x3 1- x4 1x, X6

1 I f2 1 hi

Fitness

Fig. 3.25
Chromosomal Representation of Partial Eigenstructure Assignment Problem: Simulation-4

The fitness is the inverse of the composite cost functional Eqn.3.43. Additionally, a penalty is

introduced such that if A.4 is not within the desired range : —2.5 < A,4 < -0.5 then the fitness is set to

zero. Similarly, if constraints h 1*0 or h2*0 then the fitness is also set to zero. The solution to the

lyapunov equation (Eqn.3.19) must also exist, and the P matrix must be positive symmetric, if a

solution does not exist then the fitness is set to zero. A chromosome with zero fitness is said to be

infeasible and produces zero offspring. Simulation results using: Population=30, crossover

probability Pc16, mutation probability Pm3.02, Generations=200 and binary tournament

selection are tabulated below in Fig.3.26 for values of beta: 0.1, 1, 10:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.31

gen: 	Xl: 	12: 	15: 	16: 	17: 	XII: X4: /10: PO: Time: MFP:

200 	-2.00 	-0.00 	0.00 	0.80 	0.43 	0.00 -2.50 0.0004 2.3846 0:31 75

Closed loop eigeurvalnes (A-13.1i): -2.0000 + 1.0000i
-2.0000 - 1.0000i

0.1 -1.0000
-2.5000

Feedback Compemmator gain X: 	-0.0018 	0.0776 0.3235 -0.1117
0.0021 	-0.4821 -0.6334 0.0155

200 	-2.00 	-0.00 	0.01 	0.80 	0.43 	0.00 -2.50 0.0004 2.3844 0:35 75

Closed loop eigenvalues (M-B.X): 	-2.0000 + 1.0000i
1 -2.0000 - 1.0000i

-1.0000
-2.5000

'

Feedback Compensator gain X: 	-0.0018 	0.0778 0.3232 -0.1117
0.0021 	-0.4821 -0.6334 0.0155

200 	-2.00 	-0.00 	0.04 	0.80 	0.44 	0.00 -2.50 0.0012 2.3842 0:34 76

Closed loop eigenvalues (M-B.X): 	-2.0000 • 1.00001
-2.0000 - 1.0000i 10 -1.0000
-2.5000

Feedback Compensator gain X: 	-0.0018 	0.0782 0.3222 -0.1117
0.0021 	-0.4821 -0.6333 0.0155

Fig. 3.26
Simulation results using conventional genetic algorithms

In all instances, the GA converges within 200 generations, and the solution is independent of the

value of beta. The closed loop eigenvalues of (A-B.K) can be verified using Matlab's eig0

function. In all cases, the unspecified pole A.4 is at -2.5.

GA+Simulated Annealing: The search vector used is identical to genetic algorithms without

the function and fitness entries, this is illustrated below:

XI xdx3 1x4 ixdx6 I xdx8 ix,
Fg. 3.27

Chromosomal Representation of Partial Eigenstructure Assignment Problem: Simulation-4

The temperature annealing schedule is given by: T(k+1)=a.T(k) where alpha is given by:

10(1/Nlog(Tf/To)) 	 FAin.3.44

To=initial temperature normalized to 1.0, and Tf is the final temperature 0.001, N is the number of

iterations set to 200. The value of alpha is generally = 0.8-0.95.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.32

Simulation results using three values of beta: 0.1, 1, 10 are summarized below, the SA algorithm

converges within 200 iterations:

gen: 	Xl: 	X2: 	X5: 	86: 	X7: 	XII: X4: Time: WY.:

200 	-2.00 	-0.00 	-0.00 	0.80 	0.44 	-0.00 -2.50 00:17 51

Closed loop eigenvalues (a-B.X): -2.0000 + 1.00001
-2.0000 - 1.00001

0.1 -1.0000
-2.5000

Feedback Compensator gain X: 	-0.0018 	0.0776 0.3235 -0.1117
0.0021 	-0.4821 -0.6334 0.0155

200 	-1.99 	-0.00 	0.02 	0.80 	0.44 	-0.00 -2.50 00:17 51

Closed loop eigenvalues (A-B.X): 	-2.0000 + 1.0000i

1 -2.0000 - 1.00001
-1.0000
-2.5000

Feedback Compensator gain X: 	-0.0018 	0.0778 0.3231 -0.1117
0.0021 	-0.4821 -0.6334 0.0155

200 	-1.99 	0.00 	0.04 	0.80 	0.44 	0.01 -2.50 00:17 51

Closed loop eigenvalues (h-B.R): 	-2.0000 + 1.0000i
-2.0000 - 1.0000i 10 -1.0000
-2.5000

Feedback Compensator gain X: 	-0.0018 	0.0782 0.3223 -0.1117
0.0021 	-0.4821 -0.6333 0.0155

Fig. 3.28
Simulation results using Hybrid genetic algorithms + simulated annealing

The hybrid GA+SA converges faster than conventional genetic algorithms, and yielding an

identical compensator and eigenvalue A.,4 is at -2.5.

(iii) GA+Greedy Search : The search vector used is identical to simulated annealing, results for

greedy search are summarized below in figure 3.29. Results show that the hybrid GA+greedy

search converge more rapidly than either conventional genetic algorithms or hybrid GA+simulated

annealing. Computation time is approximately 7 seconds for the hybrid GA+greedy search, 17

seconds for the hybrid GA+simulated annealing, and 35 seconds for the conventional genetic

algorithm.

A true indication of convergence rates for the three methods can be obtained by plotting the error

(inverse of equation 3.43) as a function of computation time. This is illustrated in figure 3.30 on

the following page. Results obtained using hybrid GA + greedy search:

Convergence Rates of the Three GA Methods:

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.33

pen: 	Xl: 	X2: 	X5: 	X6: 	X7: 	X8: -44: Time: KM, :

500 	-2.00 	0.00 	0.00 	0.80 	0.43 	-0.00 -2.50 7 19

Closed loop eigenvalues (A-B.K): -2.0000 • 1.0000i
-2.0000 - 	1.0000i

0.1 -1.0000
-2.5000

Feedback Compensator gain K: 	-0.0018 	0.0776 0.3235 -0.1117
0.0021 	-0.4821 -0.6334 0.0155

500 	-2.00 	0.00 	0.01 	0.79 	0.43 	-0.00 -2.50 7 19

Closed loop eigenvalues 	(A-B.K): 	-2.0000 + 1.0000i

1 -2.0000 - 	1.0000i
-1.0000
-2.5000

Feedback Compensator gain K: 	-0.0018 	0.0779 0.3230 -0.1117
0.0021 	-0.4821 -0.6334 0.0155

500 	-2.02 	0.00 	0.02 	0.80 	0.41 	0.00 -2.50 7 18

Closed loop eigenvalues 	(A-B.K): 	-2.0000 + 1.00001
-2.0000 - 	1.00001 10 -1.0000
-2.5000

Feedback Compensator gain K: 	-0.0018 	0.0782 0.3223 -0.1117
0.0021 	-0.4821 -0.6333 0.0155

Fig. 3.29
Simulation results using hybrid genetic algorithms + greedy search

Figure 3.30 below is a typical convergence plot comparing the three methods. Conventional GA is

plotted in red, hybrid GA+SA is plotted in green and hybrid GA+GS is plotted in blue. All

methods converge to the same value, however the hybrid methods converge more rapidally when

compared with conventional genetic algorithms. In particular, the hybrid GA+greedy search has

superior convergence compared to the other two methods. All methods yield identical

compensators.

5
	

10 	15 	20 	25 	30
Computation Time (MFP)

Fig. 3.30
Simulation results comparing convergence rates for the three GA methods

Chapter 3: Eigenstructvre Assignment Using Hybrid Genetic Algorithms 	 P.3.34

3.4 Chapter Summary and Conclusion:
From simulation results, clearly genetic algorithms can be used to synthesize controllers both static

and dynamic for a variety of different eigenstructure assignment applications. Convergence is

generally very rapid. Genetic algorithms have fewer restrictions and can directly deal with

constraints. The simulations have been kept relatively simple for the purpose of verification with

conventional partial eigenstructure assignment methods. The robust eigenstructure assignment

problem can also be directly solved with conventional and hybrid genetic algorithms.

Simulation results show that hybrid genetic algorithms converge more rapidly than conventional

genetic algorithms, in particular the greedy search converges by a factor of four compared with

conventional GA.

(i) Additional Notes:

1. When dealing with a control distribution matrix B which has a very small minimum singular

value, then the application of pseudocontrol may be required. In our simulations, the singular

values of B are: [46.5053, 6.2642], this is not an issue in the design.

2. Most of the examples chosen for the simulations have been relatively simple for the purpose of

being able to verify the results with conventional eigenstructure assignment methods.

With genetic algorithms, there are fewer restrictions and thus a wider range of problems can be

solved, including nonlinear and reconfigurable control.

3. Doing a search on the X ; (don't care) components results in a faster convergence compared to

searching the gi vectors directly.

(ii) Future Work:

1. The robust eigenstructure problem can be formulated using lagrange multiplier (calculus based)

methods. However this method has local rather than global search characteristics. Genetic

algorithms can be used to solve the robust eigenstructure assignment problem by combining a

GA start to find the global minimum, then using lagrange multipliers to quickly find the

minimum. This method requires the calculation of gradients. It also requires the calculation of

additional auxiliary variables: i.e. the lagrange multiplier matrix.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.35

2. Other conventional methods are available for solving robust eigenstructure assignment

problems in which the performance indices are given in terms of sensitivity and complementary

sensitivity functions [16], [19]. Eigenstructure for gain suppression in which selected entries in

the output feedback gain matrix are removed [4]. Robust eigenstructure assignment for

systems dealing with state space uncertainty [21]. Modeling errors and uncertainty can be

included as part of the GA optimization search.

3. Eigenstructure assignment using radial basis function networks as a feedback control for

nonlinear systems. Training using conventional and genetic algorithms.

4. Areas of reconfigurable control have been investigated [18] in which the objective is to

implement a compensator that results in a closed loop eigenstructure invariant under plant

changes (A,B matrices). Genetic algorithms can be potentially used for such off-line

compensator design.

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.36

3.5 References and Further Reading:
References on Eigenstructure Assignment:

[I] 	A.N.Andry, E.Y.Shapiro, J.C.Chung
Eigenstructure Assignment for Linear Systems
IFFE Transactions on Aerospace and Electronic Systems, Vol. AES-19, No.5, pp.711-729, December.1983

[2] K.M.Sobel, E.Y.Shapiro, A.N.Andry 	-
Eigenstructure Assignment
The Control Handbook, CRC Press 1996, Chapter-38

[3] J.R. CaIvo-Ramon
Eigenstructure Assignment by Output Feedback and Residue Analysis
IEEE Transactions on Automatic Control, Vol.31, No.3, pp.247-249, 1986

[4] K.M.Sobel, W.Yu, F.J.Lallman
Eigenstructure Assignment with Gain Suppression Using Eigenvalue and Eigenvector Derivatives
International Journal of Guidance Control and Dynamics, Vol.13, No.6, pp.1008-1013, 1990

[5] S.M.Karbassi, D.J.Bell
New Method of Parametric Eigenvalue Assignment in State Feedback Control
IEE Proceedings Control Theory Applications, Vol.141, No.4, pp.223-225, July 1994

[6] B.C. Moore
On the Flexibility Offered by State Feedback in Multivariable Systems Beyond Closed Loop Eigenvalue
Assignment.
IEEE Transactions on Automatic Control, Vol. AC-21, No.3, pp.689-692, 1976

[7] S.Askarpour, T.J.Owens
Integrated Approach to Eigenstructure Assignment by State Feedback
IEE Proceedings Control Theory Applications, Vol.146, No.2, pp.113-118, March 1999

[8] J. Jiang
Design of Reconfigurable Control Systems Using Eigenstructure Assignments
International Journal of Control, Vol.59, No.2, pp.395-410, 1994

[9] Hee-Seob Kim, Youdan Kim
Partial Eigenstructure Assignment Algorithm in Flight Control System Design
IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No.4, pp.1403-1408, October 1999

[10] George M. Siouris, Jang Gyu Lee, Jae Weon Choi
Design of a Modern Pitch Pointing Control System
IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No.2, pp.730-737, April 1995

[11] Howard Kaufman, Paul Berry
Adaptive Flight Control Using Optimal Linear Regulator Techniques
Automatics, Vol. 12, pp.565-576, 1976

[12] D.Gangsaas, K.R.Bruce, J.D.Blight, Uy-Loi Ly
Application of Modern Synthesis to Aircraft Control: Three Case Studies
IEEE Transactions on Automatic Control, Vol. AC-31, No.11, pp.995-10I3, November 1986

[13] R.J.Patton, G.P.Liu, J.Chen
Multiobjective Controller Design Using Eigenstructure Assignment and the Method of Inequalities
International Journal of Guidance Control and Dynamics, Vol.17, No.4, pp.862-864, 1993

Chapter 3: Eigenstructure Assignment Using Hybrid Genetic Algorithms 	 P.3.37

[14] K.M. Sobel, E.Y. Shapiro
Application of Eigenstructure Assignment to Right Control Design: Some Extensions
International Journal of Guidance Control and Dynamics, Vol.10, No.1, pp.73-81, 1987

References on Robust Eigenstructure Assignment:

[15] I.K.Konstantopoulos, P.J.Antsaklis
Optimisation Approach to Robust Eigenstructure Assignment
IEE Proceedings Control Theory Applications, Vol.146, No.6, pp.561-565, November 1999

[16] G.P.Liu, R.J.Patton
Robust Control Design Using Eigenstructure Assignment and Multi-Objective Optimization
International Journal of System Science, Vol.27, No.9, pp.871-879, 1996

[17] J.Kautsky, N.K.Nichols, P.Van Dooren
Robust Pole Assignment in Linear State Feedback
International Journal of Control, Vol.41, No.5, pp.1129-1155, 1984

[18] Jin Jiang
Design of Reconfigurable Control Systems Using Eigenstructure Assignment
International Journal of Control, Vol 59, No.2, pp.395-410, 1994

[19] G.P.Liu, R.J.Patton
Robust Control Design via Eigenstructure Assignment, Genetic Algorithms and Gradient Optimization
LEE Proceedings Control Theory Applications, Vol.141, No.3, pp.202-208, May 1994

[20] L.F. Faleiro, R.W. Pratt
Multi-Objective Eigenstructure Assignment with Dynamic Flight Control Augmentation Systems
ALA
WWW:

[21] W.Yu, K.M. Sobel
Robust Eigenstructure Assignment with Structured State Space Uncertainty
International Journal of Guidance Control and Dynamics, Vol.14, No.3, pp.621--628, June 1991

[22] Raymond G. Jacquot
Modern Digital Control Systems
1981

References on MultiObjective Optimization with GA:

[23] D.Quagliarella, J.Periaux, C.Poloni, G.Winter
Genetic Algorithms and Evolution Strategies in Engineering and Computer Science
Recent Advances and Industrial Applications
John Wiley and Sons, 1998 (Book)

[24] A.Osyczka, S.Kundu
A New method to Solve Generalized Multicriteria Optimization Problems Using the Simple Genetic
Algorithm
Structural Optimization, Vol.10 pp.94-99, 1995

[25] Carlos M. Fonseca, Peter J. Flemming
Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms- Part I: A
Unified Formulation
IEEE Transactions on Systems Man and Cybernetics, Vol.28, No.1, pp.26-37, January 1998

[26] Carlos M. Fonseca, Peter J. Flemming
Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms- Part R.
Application Example
IEEE Transactions on Systems Man and Cybernetics, Vol.28, No.1, pp.28-47January 1998

Chapter 3: Eigensmucture Assignment Using Hybrid Genetic Algorithms 	 P.3.38

[27] ICFujita, N.Hirokawa, S.Akagi, S.Kitamura, H.Yokohata
Multiobjective Optimal Design of Automotive Engine Using Genetic Algorithms
Proceedings of DETC'98 1998 Design Engineering Technical Conference, Sept. 13-16, 1998 Atlanta, Georgia

[28] J. Nash
Non-Cooperative Games
Annals of Mathematics, Vol.54, pp.286-295, 1951

[29] Robert Gibbons
A Primer in Game Theory
Harvester Wheatsheaf, 1992 (Book)

[30] Joao Pedro Pedroso
Numerical Solution of Nash and Stackelberg Equilibria: and Evolutionary Approach
WEB: http/

[31] John J. Grefenstette
Optimization of Control Parameters for Genetic Algorithms
IEEE Transactions on Systems Man and Cybernetics, Vol.SMC-16, No.1, pp.122-128, January-February 1986

[32] H. Tamaki, H. Kita, S. Kobayashi
Multi-Objective Optimization by Genetic Algorithms: A Review
Proceedings of the 1996 'EPP. International Conference on Evolutionary Computation, pp.517-522, 1996

[33] Eckart Zitzler, Lothar Thiele
Multiobjective Evolutionary Algorithms: a Comparative Case Study and The Strength Pareto Approach
IEEE Transactions on Evolutionary Computation, Vol.3, No.4, pp.257-271 Nov.1999

[34] Jong-Hwan Kim, Hyun Myung
Evolutionary Programming Techniques for Constrained Optimization Problems
IEEE Transactions on Evolutionary Computation, Vol.1, No.2, pp.129-140 July 1997

[35] Bruno Sareni, Laurent ICrahenbuhl
Fitness Sharing and Niching Methods Revisited
IEEE Transactions on Evolutionary Computation, Vol.2, No.3, pp.97-106, September 1998

[38] T.L. Johnson, M.Athans
On the Design of Optimal Constrained Dynamic Compensators for Linear Constant Systems
IEEE Transactions on Automatic Control, Vol.15, pp.658-669, December 1970

[39] K.M.Sobel, W.Yu, F.J.Lallman
Eigenstructure Assignment for the Control of a Highly Augmented Aircraft
International Journal of Guidance Control and Dynamics, Vol.12, No.3, pp.318-324, May-June 1989

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.1

Model Reference Adaptive Control
With Hybyrid Genetic Algorithms

Contents:

4.1

4.2

Model Reference Adaptive Control 	

4.1.1 	Introduction 	

Model Reference Adaptive Control: SISO Systems 	

p.4.2

p.4•2

p.4.5

4.2.1 Simulation-4.1: Lyapunov Stability method. 	 p.4.5
4.2.2 Simulation-4.2: MIT-rule Method 	 p.4.11
4.2.3 Simulation-4.3: Hybrid Genetic Algorithms 	 p.4.16
4.2.4 Comparison of Results 	 p.4.22

4.3 Model Reference Adaptive Control: MIMO Systems 	 p.4.24

4.3.1 Simulation-4.4: Lyapunov Stability method. 	 p.4.24
4.3.2 Simulation-4.5: Gradient based (MIT-rule) Method 	 p.4.30
4.3.3 Simulation-4.6: Hybrid Genetic Algorithms 	 p.4.36
4.3.4 Convergence Rates 	 p.4.43

4.4 Chapter Summary and Conclusion 	 p.4.45

4.5 References and Further Reading 	 p.4.48

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.2

4.1 Model Reference Adaptive Control:

4.1.1 Introduction

The objective of this chapter is to apply hybrid genetic algorithms optimization to the

implementation of model reference adaptive control systems (MRAC). Results from conventional

MRAC methods (i.e. MIT-gradient rule, and Lyapunov stability theory) are compared with genetic

algorithms. In this chapter, we investigate the following two applications:

(i) Model reference adaptive control applied to simple linear Single Input Single Output (SISO)

systems. Simulation results compare: MIT-rule, Lyapunov stability methods, and hybrid

genetic algorithms.

(ii) Model reference adaptive control extended to more complex linear Multi Input Multi Output

(MIMO) second order systems. Simulation using the lateral aircraft dynamics is used.

Again, we compare: MIT-rule, Lyapunov methods, and hybrid genetic algorithms.

A brief introduction to MRAC is outlined below.

Model Reference Adaptive Control (MRAC) theory is well established, originally developed to deal

with aircraft adaptive control in a changing environment and changing operating conditions.

Unfortunately, early applications in the 1950's failed to stimulate interest due to lack of hardware

and nonexistent stability theory [2]. Renewed interest in adaptive control emerged in the 1960's

following the development of state space techniques and Lyapunov based stability theory were

introduced. The availability of rudimentary computer hardware made physical realizability

possible.

Presently, theory on MRAC control has matured, providing a systematic procedure to control

linear systems with partially known or changing parameters. Currently, MRAC has been extended

to include variables structure control with only input-output measurements [5, 6], nonlinear

systems [1, 8], and adaptive sliding mode [9], and fuzzy logic control [12].

A typical MRAC system is illustrated below in figure 4.1. The goal of MRAC is to modify the

controller (parameters AO such that the closed loop input/output response of the plant and

controller is the same as the reference model. Thus the error between the plant and model outputs

must be made to approach zero asymptotically.

r(t)
Adaption

Rule

Reference
Model
Pr(s)

	1 Controller

C(s,Bc)
u(t)

y(t)

ym(t)

Plant

P(s, ep)

r(t)

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.3

Fig.4.1
Typical (Direct) MRAC Scheme Configuration

From figure 4.1, notice the two loops: the regular feedback control loop and the parameter

adjustment loop. The dynamics of this closed loop system combined with the parameter

adjustment law actually constitute a nonlinear system. Additionally, the feedback controller

C(s,0,) must be designed such that all signals are bounded. The problem is generally simplified by

defining a fixed controller structure. The controller incorporates some adjustable parameters O c,

these are modified by some adaptive rule such that global asymptotic stability of the error equation

e(t) is guaranteed. Thus the objective is to determine the adaptive law which is a function of the

error e(t).y(t)-y„,(t), whilst ensuring stability, thus:

kw= adaption_law(e(t),r(t)): such that: e(t) 0 asymptotically

Almost all literature on MRAC control involves specifying the controller structure and the manner

by which the controller parameters are to be adjusted (adaptive law). The two commonly used

parameter adjustment methods are: (i) gradient based (or MIT rule), sometimes commonly referred

to as the sensitivity function, and (ii) Lyapunov stability methods. Both methods are described in

detail in this chapter, with specific reference to state-space solutions. Other techniques such as

small gain theorem and passivation theory have also been used in conjunction with nonlinear

adaptive control. Note that the controller may be a simple PIO with adaptable gain { K, KJ, Ka)

parameters [10], or a more complex neural network such as a radial basis function for nonlinear

systems] 1 1].

Model reference adaptive control systems fall under two main categories: (i) Direct MRAC and (ii)

Indirect MRAC:

Plant u(t) •
C(s Oc)

Controller

po, eo

Reference
Model
Pr(s)

System
Identification

Jr

Op
e,

Compute
Oc=F(E)p)

ec

r(t)

r(t)

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.4

(i) Direct MRAC: Consists of only one step, the error e(t) and the input r(t), these feed into the

adaptive rule block which is used to directly estimate the controller parameters O e such that

the error reduces to zero asymptotically. There is no system identification block. This is

illustrated in figure 4.1.

(ii) Indirect MRAC: There are two steps to indirect MRAC, the first is to estimate online the

plant unknown (or changing parameters) Op from the error e(t) and the input r(t), this is also

known as system identification. This information is then used to compute or adjust the

controller parameters O c using some relationship or function: ec=F(ep). This is illustrated in

fig.4.2 below:

Fig.4.2
Indirect MRAC Scheme Configuration

This second method is generally more involved, but has the added advantage of estimating some

useful plant parameters, for instance payload mass of a robotic manipulator. Adaptive control

schemes also fall under other categories of self tuning regulators (STR), self organizing control

(SOC), gain scheduling (also known as open loop adaptive control), dual control, stochastic self

tuning control, and embody concepts of system identification, real time parameter estimation, such

as recursive least squares.

Applications include: robotic manipulators [9], disk drive control, aircraft stability augmentation,

aircraft reconfigurable control [4,7]. Industrial applications are also emerging, due to availability

of software and hardware. The subject of adaptive control is extensive, as seen in [3], and this

chapter will only attempt to deal with a small subset i.e.: direct MRAC.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.5

4.2 Model Reference Adaptive Control: SISO Systems:

For this first set of simulations, a simple SISO system to illustrate and compare hybrid genetic

algorithms with conventional model reference adaptive control schemes. Three different methods

are compared:

(i) Generation of parameter update rules using Lyapunov stability theory, section 4.2.1.

(ii) Generation of parameter update rules using the MIT-rule, section 4.2.2.

(iii) Generation of parameter update rules using hybrid genetic algorithms, section 4.2.3

A summary and discussion on relative performance and merit of each method is found at the end of

this section. Most of the theory presented below is based on reference [11], with greater detail for

simulation implementation purposes. Mathematical derivations are provided in each section. In all

simulations, it is assumed that full state feedback is available.

4.2.1 Simulation-4.1: Lyapunov Stability Method:

(i) Theory:

In this section, parameter update rules are derived for a simple SISO system using the Lyapunov

stability method. The final configuration is illustrated in figure 4.3 below. Consider a simple

SISO system in state variable form:

-Plant:
= a.x + b.0 	 Eqn.4.1

in which the scalar coefficients a and b are time varying or unknown, a feedback controller is

sought with the general structure:

-Controller:
u = 	— g.x 	 Eqn.4.2

where the controller parameters to be solved for are defined by the vector: 0c=fd,g). Substituting

equation 4.2 into 4.1 gives the following closed loop system:

-Closed loop system:

= (a — b. g).x + b.d.u, 	 Eqn.4.3

The above closed loop system is required to follow the reference model given by the expression:

-Reference Model:

Xm = am .x„,+ 	tic 	 Eqn.4.4

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.6

Comparing equation 4.3 with 4.4, the models are perfectly matched when the controller coefficients

are the same as the model coefficients:

g° = 	— am) and d° 	 Eqn.4.5

Perfect model following occurs when the coefficients in equation 4.3 are: g=g° and d=d).

Obviously, we cannot simply substitute equations 4.5 into the controller 4.2 because the plant

coefficients a and b are unknown or time varying. The error (time derivative) equation between the

closed loop plant and the reference model is:

e = — 	 Eqn.4.6

Substituting equations 4.3 and 4.4 into equation 4.6, we get:

e = ((a — b.g) — am).x +(b.d — 	 + a„,.e 	 Eqn.4.7

Substituting the equations for perfect model following equation 4.5 into equation 4.7 , we get a

simplified form:

e=w,.(g— g°) + 2 (d — d°) + a,,,.e 	 Eqn.4.8

where the terms are: v i = —b.x , and: v2 = bat. Note that this equation requires that the

coefficient b is known. As we will see later, the coefficient b can simply be replaced by bm under

some mild conditions. To get the adaptive rules for g and d, define a Lyapunov function of the

form:

1 	1 	 1
V (e, g,d)._rer . p.e + _ (g _ g o)T (g _ g o)+ _ (d _ d o) 7. (d _ do) 	Eqn.4.9

2 	2 	 2

The Lyapunov function has been written in vector/matrix form for generalization to MIMO

systems. The two conditions required to be satisfied by a Lyapunov function are: V>0 for all

values of e,g,d; which is clearly satisfied by equation 4.9, and V=0 when: e=0, g=t, d=d°. The

matrix P must be positive symmetric, and the coefficient y can be used to control the parameter

update rate. Differentiating equation 4.9 with respect to time, and noting that e(t),g(t),d(t) are also

functions of time, we get:

reT pe 	 (g gOST •) g + (d — d°)T
2 	2

Eqn.4.10

substituting the error function given by equation 4.8 into 4.10, and simplifying to a scalar system,

the equation becomes:

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.7

V =y.P.a n,e2 + (g— g °).(T.P.e.lit l + g) +(d— d°).(y.P.e.tv 2 +il) 	Eqn.4. 1 1

Clearly, the necessary conditions for convergence require that V < 0 , which can easily be satisfied

by choosing:

P.a„,=—q

:g = -i-P.e.lifi
il =-y.P.e.v2

}

Eqn.4.12

where y>0, substituting N'1 = —b.x , and: N'2 = b. u, into equation 4.12 gives the adaptive

equations thus:

Eqn.4. 13

Converting to discrete time for computer simulation, the values for g and d at each time step can be

updated with the simple numerical integration rule: gn+r=g,, + AT.dg/dt, and: 444=4 +

AT.dd/dt. Note also that whilst the update equation is independent of the coefficient a, it depends

on b. The general approach is to replace b by b.. This approach is valid as long as both b and bm

have the same sign, i.e.: sign(b)=sign(b.). If this condition is not satisfied, then the adaptive

equation fail to converge (as seen later from simulations). The complete adaptive system is

illustrated in figure 4.3 below:

dd
dt = -

y.P.e.b.u, and
dg

= y. P.e.b.x
dt

uc(t)

Fig.4.3
MRAC Scheme Using Lyapunov stability (SISO system)

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.8

(ii)Simulation Setup:

Given the following plant and reference model coefficients: a=-1.13, b=2.0, am=-0.2, 13,=0.5.

Plant: 	 = a. x + b. u
Controller: 	 u = d.0 — g.x

Closed Loop System: 	x = (a — b. g).x +

Reference Model: 	X m = a m .xm +

If the values of a and b are known in advance, then to compute the feedback gains: g=(a-a„,)/b = -

0.4 and d=b„,/b = 0.25. However since a and b are not known or can change, we cannot calculate

the d and g values, the following simulation shows convergence of the d and g values to their

correct values of g=-0.4 and d=0.25.

(iii)Simulation Results:

Simulation results for the setup illustrated in figure 4.3 are given in simulation 4.1 below. The

coefficients used in the simulation are: a=-1.0, b=2.0, am=-0.2, b„,=0.5. The controller gains

should converge to: g=(a-a„,)/b = -0.4, and d=b„,/b = 0.25. Results are illustrated in figure 4.4

below.

1. The first (topmost) plot illustrates the convergence of the d parameter, this correctly

converges to 0.25.

2. The second plot illustrates the convergence of the g parameter, this also correctly converges

to -0.4.

3. The third graph illustrates the convergence of the (a-b.g)--)a„„ this also correctly converges

to the value of a m, i.e.: -0.2.

4. The fourth graph illustrates the convergence of the b.d—>b„„ this also correctly converges to

the value of bm, ie: 0.5.

The rate of convergence strongly depends upon the value of y. Table 4.1 below summarizes the

results obtained after 3000 iterations with different values of y. With a high value of y, such as 1,

the convergence is very rapid, within the first 1000 iterations. Note also that increasing the value

of y increases the oscillatory behavior of the convergence. Further increases in y will result in

instability.

0.5
0.4
0.3
0.2
0.1 500 3003 2500 2303 1503 1000

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.9

y Iterations d—>0.25 g—>-0.4 error Flops

0.01 3000 0.2492 -0.4111 0.0506 104817

0.05 3000 0.2500 -0.4000 -0.0000 104817

0.20 3000 0.2500 -0.4001 0.0001 104817

Table 4.1
Convergence as a function of y

Since there are two parameter update equations, we could also use a different value of y in each

equation, thus:

dd
—
dg

= y,.P.e.b.x and
dt 	'

in order to get the best convergence for each parameter. Figure 4.5, illustrates the problem

associated when sign(b)* sign(b), in this simulation the value of b=2.0 and b„,=-0.1, and the

adaptive algorithm actually fails to converge.

d Convergence (should converge to: (125):

g Convergence (should commie to: -0.4):
-0.1

500 	1003 	1500 	2000 	2533 	3000

(a-hg 4„) Convergence (should converge to: -0.2):

500 1000 1503 2000

(b.d bin) Convergence (should converge to: 0.5):

500 	1000 	1500
Fig.41A

NlibM2SdiemeUMngLopmcwmAbility(SISIDsystem)Cammrpme

-0.5

0
-0.2
-0.4
-0.6

1
0.8
0.6
0.4

02 0

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.10

The simulation shows convergence of the d and g values to their correct values of g=-0.4 and

d=0.25, using different values of gamma. Note that the estimated value of am given by: (a-b.g)

must remain negative (i.e. eigenvalue) for the closed loop system to remain stable.

(iv) Failure To Converge:

The above simulation shows that convergence is possible. However the assumption is made that

sign(b)=sign(bm) in the derivation of the update rule for the adaptive control scheme. In some

instances this may not be valid, and the algorithm fails to converge. For instance consider the

following situation: b n,=-0.1, the results now illustrate the adaptive algorithm failing to converge.

0.13

0.12

0.11

0.1

d Convergence (should converge to 0.25):

)=0-05 	

500 	10(X) 	1503 	2003 	2503 	3003

g Convergence (should converge to: -0.4):
0.13

• •
0.12

0.11

0.1
500 	1003 	1500 	2000 	2500 	3300

0.13
an„) Convergence should canerge to: -0.2):

0.12

0.11

0.1
500 	1000 	1500 	2000 	2500 	300(3

(b.d 	bn,) Convergence (should converge to: 0.5):
0.13

0.12

0.11

0.1 0
1000 	1500 	2000 	2503 	3003

Fig.4.5
MRAC Scheme Using Lyapunov stability (SISO system) Failure to Convergence

Another cause for failure to converge is the choice of gamma, if chosen too small, convergence can

be slow, if chosen too large, instability may result.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.11

4.2.2 Simulation-4.2: MIT-Gradient Based Method:

(i) Theory:
In this section, the parameter update equations are derived for the same SISO system using the

MIT-rule method. This method is also known as gradient based, steepest descent or sensitivity

based method. The final configuration is illustrated in figure 4.6 on the following page. Consider

the SISO system previously defined:

Plant: 	 i=a.x+b.0

Controller: 	 u = d.0 - g.x

Closed Loop System: 	i = (a — b.g).x+

Reference Model: 	 Xm = a m . + bm .u,
Eqn.4.14

The MIT rule is defined as the negative of the cost function gradient, similar to gradient based

optimization, an example of this method is: backpropagation when training multi-layer-

perceptrons neural networks. The MIT rule is given by the general expression:

de _ DJ
dt 	ae Eqn.4.15

where t:-parameters to update, for the SISO problem this is simply 6{d,g }, and J is some error

related cost function to minimize. Typically, J is given by the output error function:

1
J (0) = — e2 (0) 	 Eqn.4.16

2

Computing partial derivatives:

a.i _ ae
ae e. ae

Substituting equation 4.17 into equation 4.15 gives the parameter update rule:

de _ 	ae
dt —Y.e. DO

Thus for the SISO system given above, for each component, the update rule is:

dd 	ae
dt 	ad
dg _ 	De

Eqn.4. 1 7

Eqn.4.18

Eqn .4. 1 9

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.12

Note that any cost function can be used instead of equation 4.15, for instance another choice would

be to use J(0) =le(0)I. The choice of cost function affects the final outcome of the parameter

update equations and their rate of convergence. Referring to equation 4.19, the parameter update

equations require both the error and the error derivative functions. To obtain the error function, as

in section 4.3.1, write:

e=x — x„, 	 Eqn.4.20

where x and x, are obtained by taking Laplace transform of equations 4.14 thus:

x = (s –(a – b. g)) -1 .b.d.u,
x„,= (s –

Eqn.4.21

note the slight abuse in notation used in equation 4.21 for the new variables x and x„. The error is

then given by:

e = (s — (a — b. g))- 1 .b.d.uc — (s — an,)- 1 	 Eqn.4.22

where s=Laplace operator. Computing the error gradients with respect to each parameter gives:

ae
= (s – (a – b. g)) -1 .b.uc

ae
ag = –(s – (a – b. g))-2 .b2

Eqn.4.23

Substituting equations 4.23 into equations 4.19, and after some simple manipulation giving the

following parameter update equations:

dd
–y.e.

y.e.

b
.0

x.

Eqn.4.24
dt

dg

s _ (a _ 	g)

s – (a – b. g)) dt

Note the similarity of these update equations with those derived using Lyapunov stability theory in

the previous section (equations 4.13). Note also that since both a and b are unknown, the

following approximations are often made: b bm and: (a-b.g) am . The update equations are:

dd b„,
	 .u,

dt 	s –

dg b„,
—= y.e. 	 .x dt 	s –

Eqn.4.25

t„/1)

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4. I 3

As a further observation, when comparing with the Lyapunov derived update equations (Eqn.4.13),

is that the above expressions for &Mt and dg/dt define a first order dynamical system instead of a

constant (Eqn.4.13). The rate of convergence is dependent on y, which may be chosen differently

for each parameter update equation in 4.25 above. The entire MRAC setup is illustrated in figure

4.6 below.

Ur(t)

PLANT

	

u(t) 		

d 	4;;Fp—* 	

REFERENCE

• • •

.e.
	b„,
	 .x

s — a

.e.
	bm

s — a

Fig.4.6
MRAC Scheme Using the MIT rule (SISO system)

Implementation issues: for MATLAB simulation purposes, equations 4.25 are better handled in

state space form, thus if we define (1 1 = d and d2 = d1 , then it can be re-written as:

	

, 	 ro 1 y d,)+r 0

	

,d2 	0 a,,, d,) (— y.e.b„,)
.0 	 Eqn.4.26a

This can then be treated the same way as a state-space problem. The same applies to the g

parameter update equation, if we define g i = g

(k 1) =io
g 2 	0 	am

and g2 =

g i j +
g 2

, then:

0
.x 	 Eqn.4.26b

dg/dt update

4 	

&I/di update

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.14

(ii)Simulation Setup:

Identical to 4.2.1 above.

(iii)Simulation Results:

Simulation results for the setup illustrated in figure 4.6 are given in simulation 4.2 below. The

coefficients used in the simulation are as before: a=-1.0, b=2.0, am=-0.2, bm=0.5. Therefore the

controller gains should converge to: g=(a-a.)/b = -0.4, and d=b„,/b= 0.25. Simulation results are

illustrated in figure 4.7 below:

1. The first (top figure) plot illustrates the convergence of the d parameter, this correctly

converges to 0.25.

2. The second plot illustrates the convergence of the g parameter, this also correctly converges

to -0.4.

3. The third graph illustrates the convergence of the (a-b.g)a., this also correctly converges

to the value of am, i.e.: -0.2.

4: The fourth graph (bottom) illustrates the convergence of the b.db., this also correctly

converges to the value of b., i.e.: 0.5.

The rate of convergence depends on the value of y, the table 4.2 below summarizes the results

obtained after 6000 iterations with different values of y.

y Iterations d—>0.2500 g—>-0.4000 error Flops

0.01 6000 0.2525 —0.4007 0.0124 336201

0.02 6000 0.2514 —0.3996 —0.0044 336201

0.04 6000 0.2803 —0.4041 0.0719 336201

Table 4.2
Convergence as a function of y

From table 4.2, convergence is slower when compared with the Lyapunov method in simulation

4.1. Large values (0.04) produce an oscillatory behavior which actually reduces convergence.

Thus a small value of gamma results in a too-slow convergence due to low update, a high value of

gamma can also result in a too-slow convergence due to oscillation. Hence the proper selection of

gamma is essential.

-0.5
0 	1030 	2C00 	3000 	4030

(a.b.g= am) Commence (should emerge tot -0.2):
0

-0.5

-1 0 	1030 	2000 	3000 	4030

(b.db,n) Comergence (should comerge to: OS):

5C00

5C00

6000

0303

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.15

d Canergence (should emerge to: 015):
0.4

02

1003 	2020 	3000
g Commence (should converge toc -0.4):

0
raC4

4CCO

1

0.5

0

1030 2000 3000 4030 5030 6C00
Fig.4.7

MRAC Scheme Using the MIT-rule (SISO system) Convergence

Note that the solution (a -bg) is always negative indicating that the closed loop system remains

stable during the adaptive process. Convergence is slower than the first method, refer to table 4.2.

In general the MIT (or gradient based) methods require a small value of gamma to avoid

instability.

(iv) Failure To Converge:

The above simulation shows that while convergence is possible, the assumption is made that b=b,„,

and the approximation: a-bg=a„, in the derivation of the update rule for the adaptive control

scheme. In some instances this is not always valid and the algorithm fails to converge. Thus, this

scheme also suffers from the same problem as the first simulation, when sign(b) * sign(b) , it

fails to converge. A further drawback, the MIT method produces a second order update law when

compared with the Lyapunov method which produces only a first order update law.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.16

4.2.3 Simulation 4.3: Hybrid Genetic Algorithms:

In this section, the parameter update rules are derived for the same SISO system using hybrid

genetic algorithms. The three methods used are: (i) conventional genetic algorithms (GA), (ii)

GA+simulated annealing, and (iii) GA+greedy search. Computational effort and convergence rates

are compared. The final configuration is illustrated in figure 4.9 below. The same SISO system

is used in the simulations:

Plant: 	 = a.x + b.0

Controller: 	 u = d.0 — g.x

Closed Loop System: 	x = (a — b.g).x + b. d.u,

Reference Model: 	 im = a m . + bm •u,
Eqn.4.27

(i) Conventional Genetic Algorithms: The fitness function is defined to be the inverse of the

error function. The error is computed as the RMS value, of the output difference x(t)-x,„(t) sum:

e2 =/(xj (0—xm (0) 2 Eqn.4.28

Where n=number of sample points, the chromosomal representation for this problem is illustrated

in figure 4.8 below. The controller parameters to solve for are: d, and g. The error err is defined

by equation 4.28 above, and the fitness is the inverse of the error: fitness = 1/error.

I dig lerrlfitness

Fig.4.8
MRAC Scheme Using the Genetic Algorithm (SISO system)

This problem represents an unconstrained optimization problem which is relatively straightforward

to solve with genetic algorithms. The problem is solved essentially off-line, thus from past n

measurements of x and x„„ the genetic algorithm computes the d, and g values which minimize the

error function 4.28.

Simulation results for the setup illustrated in figure 4.9 are given in simulation 4.3 below. The

coefficients used in the simulation are: a=-1.0, b=2.0, b„,=0.5. Therefore the controller

gains should converge to: gqa-and/b = -0.4, and d=b„/I, = 0.25.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.17

For the genetic algorithm, the following setup was used: mutation and crossover probability tested

over a range of values, selection type: binary tournament, population size: 20, sample points

n=200, convergence results are summarized in table 4.3 below:

Ur 1) 	• V()

REFERENCE MODEL

	• bm -4

g update

d update
Genetic

Algorithm u(t)

Fig.4.9
MRAC Scheme Using the Genetic Algorithm (SISO system)

Table 4.3 below summarizes the convergence results obtained using the genetic algorithm.

Because genetic algorithms are a stochastic search based algorithms, the simulation was conducted

ten times with different values of mutation probability Pm and crossover probability Pc to observe

the variation in convergence. In all cases, the GA converges within 60 generations (3.9 Mflops)

irrespective of crossover or mutation probability. The fast convergence rate is due to the fact that

this is a SISO system and only two parameters are searched for: {cl,g}. Consequently this is a

relatively simple problem to solve using a GA. Convergence plots are illustrated in fig. 3.10.

Sim: Generations Pc: Pm: d-0.25 Error: MFP:

1 60 0.40 0.02 0.2553 -0.3961 0.06495 3.9
2 60 0.50 0.02 0.2500 -0.4000: 0.00001 3.9
3 60 0.60 0.02 0.2500 -0.4000 0.00000 3.9
4 60 0.70 0.02 0.2500 -0.4000 0.00000 3.9
5 60 0.80 0.02 0.2500 -0.4000 0.00002 3.9

6 60 0.40 0.20 0.2500 -0.4000 0.00016 3.9
7 60 0.50 0.20 0.2515 -0.3989 0.01722 3.9
8 60 0.60 0.20 0.2500 -0.4000 0.00000 3.9
9 60 0.70 0.20 0.2500 -0.4000 0.00001 3.9

10 60 0.80 0.20 0.2500 -0.4000 0.00000 3.9

Table 4.3
Conventional Genetic Algorithm

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.18

Typical convergence of the d and g parameters are plotted below. The first (topmost) plot is the

error convergence, the middle graph shows the d parameter convergence, and the last (bottom)

graph is the g parameter convergence. After only 60 generations, the GA has fully converged.

10 5

10 °

1 0 -5

10
0
d-3(025)

0.8

0.6

0.4

0.2

0 0

g —>(-0.4)
-0.1

-0.2

- 1 0

10

10
	

20
	

30
	

40
	

50
	

60

20 30 40 50 so

-0.3

-0.4

0 	10 	20 	30 	ao 	50
	

60
Fig.4.10

MRAC Scheme Using Genetic Algorithms (SISO system) Convergence

Note that unlike the previous two simulations (Lyapunov and MIT methods), the genetic algorithm

does not update the values of d and g progressively i.e. at each time step, but the update is made

after the genetic algorithm has converged, or after a finite number of generations. Note also that

whilst both Lyapunov and MIT methods converge, the actual convergence is gradient based and

may be only local. Furthermore, unlike the other two methods, the genetic algorithm uses all past

output data of x„,(t) simultaneously when running a search. Instead both the Lyapunov and

gradient based methods, greater weight is placed upon current measurements.

Failure To Converge Issues:

Genetic algorithms can take unusually long time to converge or even fail to converge altogether

when loss of genetic diversity occurs. Because the search is primarily dependent on crossover, to

maintain effective search, variation is necessary. Premature convergence can lead to local minima

and convergence thereafter is significantly reduced. Advantages of genetic algorithms is that no

assumption is required as seen previously in the Lyapunov method (in which b is replaced by bni)
and the MIT method in which (a-g.b) is replaced by am.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.19

In the following simulation, where both the MIT and Lyapunov methods failed to converge when

the value of b„,=-0.1 we see that the genetic algorithm has successfully converged after 100

generations: convergence is: d=-0.0498, g=-0.4003, the actual values should be: d=-0.05 and

g=-0.4, refer to figure 4.11 below:

1.5

0.5

error Convergence

-.

	., 	

	.: 	

h■••■
0 10 	20 	30 	40 	60 	70 	80 	90 	100

d Convergence (-0.05):
0

	

-0.2 		

	

; 	 i. 	I 	 ! 	 : 	

-0.4 : after 100 generations, d: -0.0498 	
:

-0.6 . . 	: : 	. ,
-0.8 10 	20 	30 	ao 	so 	60 	70 	ao 	90 	100

g Convergence (-0.4):

0.5 '.- after 100 generations, g: -0.4003

0 :•
	.:. 	 i 	

-0.5 10 	20 	30 	40 	50 	60 	70 	80 	90 	100
Fig.4.11

MRAC Scheme Using Genetic Algorithms (SISO system) Convergence

(ii) Genetic Algoritiuns+Simulated annealing: The fitness function is defined to be the inverse of

the error function Eqn.4.28. The search vector is shown below:

d 1 g

Fig.4.12
Search Vector for Genetic Algorithm+SA (SISO system) scheme

The temperature annealing schedule is given by: T(k+ 1)=a. T(k), where alpha is given by:

a =10(""*Tf /To)) Eqn.4.29

Where: Tc=initial temperature normalized to 1.0, and T f is the final temperature 0.001, N is the

number of iterations set to 100. The value of alpha is generally ...-- 0.8-0.95. Simulation results are

illustrated below for 10 simulations, running time is approximately 23 seconds, using 200 data

samples.

error convergence
10

2 	
GA + Simulated Annealing:

10

-2
10

10 .4

1.5

0.5

20

g convergence (---0.4)

ao 	 so 	 80 	 100

20 	 ao 	 so 	 80 	100

d convergence (-) 0.25)

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.20

Sim: d-,0.25 Error:

1 0.2503 -0.3997 0.00662 3.2
2 0.2500 -0.4001 0.00325 3.2
3 0.2499 -0.4001 0.00234 3.2
4 0.2500 -0.4000 0.00096 3.2
5 0.2500 -0.4000 0.00447 3.2
6 0.2504 -0.3997 0.00632 3.2
7 0.2494 -0.4005 0.00693 3.2
8 0.2501 -0.3999 0.00092 3.2
9 0.2501 -0.3999 0.00210 3.2

10 0.2501 -0.4000 0.00222 3.2

Table 4.4
Hybrid Genetic Algorithms + Simulated Annealing

The hybrid GA+simulated annealing gives marginally better convergence results compared with the

conventional genetic algorithm. Figure 4.13 below illustrates the { d,g} parameter and error

convergence of the hybrid genetic algorithm.

20 	 40 	 60 	 80
	

100
Fig.4.13

Typical convergence of the hybrid genetic algorithm + simulated annealing

OA

02

0

-0.2

-0.4

-0.6

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.21

(iii) Genetic Algorithins+Greedy Search: The search vector is identical to simulated annealing

(fig.4.12). Results from the hybrid GA and greedy search are summarized below in table 4.5 for

10 simulation runs. Convergence time is approximately 7 seconds, samples=200.

Sim: d-0.25 g--4 - 0.4 Error: MEP:

1 0.2500 -0.4000 0.00060 1.2
2 0.2501 -0.3999 0.00098 1.2
3 0.2500 -0.4000 0.00081 1.2
4 0.2500 -0.4000 0.00005 1.2
5 0.2500 -0.4000 0.00034 1.2
6 0.2500 -0.4000 0.00002 1.2
7 0.2487 -0.4008 0.01768 1.2
8 0.2501 -0.3999 0.00205 1.2
9 0.2499 -0.4001 0.00113 1.2

10 0.2500 -0.4000 0.00053 1.2

Table 4.5
Hybrid Genetic Algorithms + Greedy Search

Typical convergence plots for the hybrid GA and greedy search are illustrated below, convergence

is better than either conventional genetic algorithms or hybrid genetic algorithms + simulated

annealing.

GA + Greedy Search

10 2
error convergence

10 0

- 2
 1 0

10 -4
20

d convergence (-o0.25)

40 60 80 100 120

0.45

OA

0.35

0.3

0.25

0.2
20 40 60 BO 100 120 0

g convergence (-o -0.4)
-0.25

-0.3

-0.35

-0.4

-0.45
20 40 60 80 100 120 0

Fig 4.14
Typical convergence of the hybrid genetic algorithm + greedy search

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.22

4.2.4 Comparison of Results:

(i) Summary . A summary of the three simulations is tabulated below, this is by no means

comprehensive, as there are many variations to the conventional Lyapunov and MIT rule to

overcome some of the problems and improve convergence rates.

Lyapunov's Method:

Advantages Disadvantages
- Easy and simple to implement, - Requires the assumption: sign(b)=sign(bm)

- Fast convergence, - In deriving the update rules, the assumption is
made: b=bm

- Many possible adaptive algorithms possible by
choice of Lyapunov functions. 	Theory well - Difficult to apply to nonlinear systems.
developed

- Convergence is local.
- Derivations are relatively straightforward, can be

easily extended to MIMO systems.

- Produces simple first order update equations.

MIT rule

Advantages Disadvantages
- Easy and simple to implement, - Requires the assumption: sign(b)=sign(bm)

- Derivations are relatively straightforward, can be - Slow Convergence, can become easily unstable
easily extended to MIMO systems. even at low values of y, critically depends on y.

- Theory well developed. - Produces second order update equation.

.-In deriving the update rules, the assumption is
made: b=bm , and (a-6.0=am.

- Difficult to apply to nonlinear systems.

Hybrid Genetic Algorithms

Advantages Disadvantages
- Easy and simple to implement. - Slow convergence, not really a on-line adaptive

system.
- No mathematical derivations necessary.

- Equal weight is assigned to all sample points.
- Easily extended to nonlinear systems.

- No proof of stability, 	rate of convergence not
- Can deal with constraints. guaranteed.

- Does not require y parameter.

- No 	assumptions 	necessary 	such as:
sign(b)=sign(b m).

- Search is global.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.23

(ii) Convergence Rates: Table 4.6 below summarizes the convergence properties of the 5 methods

used. Lyapunov method is the most efficient in terms of convergence time, the GA is the least

efficient. Simulated annealing gives similar convergence results. Greedy algorithms converge

faster than both GA and hybrid GA+SA, but slower than the MIT rule based method, and retains

the global search feature of a full heuristic algorithm. Whilst the hybrid genetic algorithm require

a computational effort greater than either the Lyapunov or MIT rule algorithms, this is attributed

to the calculations being conducted with 200 samples per iteration compared with only one sample

per iteration of the Lyapunov and MIT-rule methods. If we however compare the computational

effort in flops per sample per iteration, then a more accurate comparison emerges. The hybrid

GA+greetly search method is now comparable with both Lyapunov and MIT-rule methods. This

can be seen from the plot shown in figure 4.15 below.

Method Iterations: FLOPS/sample/iteration: Total FLOPS: Factor:

Lyapunov 3000 35 104,000 1.0
MIT rule 6000 56 336,000 3.2
GA 	(pop=20) 60 326 3,920,000 37.7
GA+SA 100 163 3,277,000 31.0
GA+Greedy 120 50 1,200,000 11.0

Table 4.6
Comparison of Convergence Rates and computational effort

Figure 4.15 below compares the error convergence as a function of computational effort for the

five methods investigated.

Convergence: GA:red SA:green GREEDY:blue LYAPUNOV:black MIT:magenta

10
1 Error

GA
=
	

jIS

2
	

3 	4 	5 	6 	7 	8 	9 	10

computational effort Megaflops (MFP)

Fig.4.15
Typical convergence of the hybrid genetic algorithm + greedy search

10

10 -1

10 -2

10

10 -4

10 -

10

10 -

10 0

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.24

4.3 Model Reference Adaptive Control: MIMO Systems:

In these next set of simulations, we repeat the procedures developed in section 4.2 and apply model

reference adaptive control to multivariable multi-input multi-output (MIMO) systems. This

section consists of the following simulations:

(i) Generation of parameter update rules using Lyapunov theory for MIMO systems, section 4.3.1

(ii) Generation of parameter update rules using the MIT-rule for MIMO systems, section 4.3.2.

(iii) Generation of parameter update rules using hybrid GA for MIMO systems, section 4.3.3

Systems are in state variable form, and full state feedback is assumed to be available. Parameter

update equations are derived for each simulation. While the methodology essentially follows on

from section 4.2, the equations are more slightly more involved.

4.3.1 Simulation 4.4: Lyapunov Stability Method:

(i) Theory:

The parameter update rules for the MIMO system using Lyapunov stability theory are derived

below. The final configuration is illustrated in figure 4.16. Consider a MIMO system in state

variable form:

Process Dynamics: 	 i = A.x + B.0 	 Eqn.4.29.a

Controller: 	 u = D.uc — G.x 	 Eqn.4.29.b

Closed Loop System: 	.k=(A—B.G).x+B.D.uc 	 Eqn.4.29.c

Reference Model: 	 .k. = Am .xm + Bm •ue 	 Eqn.4.29.d

Where: X E 91, Xm E 91 4 , U E 91'n , tic E 91 m . comparing equations 4.29.c and 4.29.d, the plant

and reference models are perfectly matched when:

A. = (A - B.G) 	G° = B -1 .(A - Am)
Eqn.4.30

Bm = B.D 	= D° = B -1 .Bm

Note that while the inverse /3-1 may not exist, a solution to the matrices G and D can still be found.

The state error and its time derivative is given by:

e = x — xm
Eqn.4.3 1

= X — Xm

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.25

Substituting the two equations for the plant (4.29.c) and the reference model (4.29.d) into the

above error equation, and after some manipulation gives:

e = ((A— B.G)— An).x + (B.D — Bni)•uc + kr e 	Eqn.4.32

Substituting into equation 4.32 the equations for perfect model following (equation 4.30), we get a

simplified form:

e = Am .e+ B.(D — D°).tic — B.(G — G°).x 	 Eqn.4.33

The above error expression must be written in the same format as equation 4.8 (SISO system) so

that the Lyapunov function (Eqn.4.9) can be applied in the same fashion. Additionally the matrices

(D-D°) and (G-C) must be vectorized (i.e. convert to single column vector) because when

multiplied, it must result in a scalar Lyapunov function, refer to equation 4.9. Therefore, we can

re-write the term:
T

Uc 	0 . 0
0 /4 7: . 0

o 	o .
B.(D — D °).tic = B.AD.0 = B.

Ad i ,

Ad„,„,

Eqn.4.34.a

The Acl vector is simply a vectorized version of the AD matrix, i.e. the columns of 413 stacked on

top of one another with the first column of AD placed at the top, and AD=D-D° . The same applies

to the third term of Eqn.4.33:
XT 0 . 0
0 X T . 0

— B.(G — G °).x = — B.AG.x = — B.

Agl I

Eqn.4.34.b

Ag„,„

We can now write the error function in a simplified and more compact format:

e = Am .e + v i .Ad + Wv Ag 	 Eqn.4.35

where:

li = B.

UcT

0

0

0
UcT

0

0
. 	0

. 	Uc

NI = — B.

X
T

0

0

0
X T

0

. 	0

. 	0

. 	X T

Ad =
Ad l I

Ad mm _
Ag =

Ag„

_Ag,

Eqn.4.36

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.26

This equation requires that the matrix B is known. As previously seen (SISO simulation 4.2), the

matrix B can simply be replaced by Bm under some mild conditions. To get the adaptive rules for

Ag and Ad, define a Lyapunov function in a similar form to Eqn.4.9:

1 	1 	1
V (e, g,d)=—y.er .P.e +— Ag T 46,g +AdTAd

2 	2 	2
Eqn.4.

We follow the same procedure and compute the time derivative of the Lyapunov function to get the

adaptive parameter update rules:

1 	 1
= —

2

y.er P.e + —

2

y.eT P.e + MT .&1 + Ag T Eqn.4.38

Insert the error expression Eqn.4.35 into Eqn.4.38, and after some manipulation gives:

= —1 y.er (A.P + P. A,„)e + 	.(y.wr .P.e + Ail)+ Ag T .(y.111 72. .P.e + Ag) Eqn.4.39
2

The first term of equation 4.39 can be replaced by -Q where Q is strictly positive real.

Q.e + Ad T 	.P.e + 6,(.1)+ Ag T 	4 .P.e + 6,0 	Eqn.4.40

A negative Lyapunov function requires that the following conditions are satisfied by equation 4.40:

=

Ag = —Y-W 2T -Re
Eqn.4.41

This gives the two adaptive update equations, note that since g° and d° are constant, then Ad = d

and Ak = :

dd
—" 71.

 .P .e

dg
= 	P e

Eqn.4.42

Where: w and tv2 are defined by equations 4.36 above. Note the similarity of the two adaptive

update equations obtained for the MIMO system when compared with the SISO system given by

equations 4.13. The only difference is that the MIMO system requires solving for P given Q and

A., the Lyapunov Equation: — Q = AnT .P + P. 4,, which can be directly solved with MATLAB.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.27

The setup is illustrated in figure 4.16 below, simulation results are given on the following page.

PLANT

u(t)

e(t)

REFERENCE MODEL

	• 	• x-.”(t)

dg/dt update
- Y. 1.112. Re

V T)

t) dd/dt update P.e 4-

Fig.4.16
MRAC Scheme Using Lyapunov stability (M1M0 system)

(ii) Simulation Setup:

For this simulation, the lateral aircraft model from chapter 1 is again used. The open loop

dynamics is given by the matrices:

A = -3.9330 0.1260 -9.9900 0 B = -45.8300 -7.6400
0.0020 -0.2350 5.6700 0 -0.9210 -6.5100
0.0262 -0.9997 -0.1960 0.0345 0.0071 o
1.0000 0 0 o o o

The reference model is chosen such that the closed loop response contains desired eigenvalues at

the locations 1.5±j1.5 (roll mode) and 2.0±j1.0 (Dutch roll mode). This is essentially the

eigenstructure assignment problem which was solved in chapter 3, where only the poles are

assigned (i.e. a pole placement problem):

Am = -4.0000 -0.0000 0.0000 -5.0000 Bm = -22.9150 -11.460
0.0234 -2.8021 3.9448 -0.0038 -0.4605 -9.765
0.0262 -1.0002 -0.1979 0.0353 0.0036 0
1.0000 0 0 0 0 0

	 D

Convergence got
-0.08

-0.08

-0.1

-0.12

gli Convergence 	g12 Convergence
0.1

0.08

0.08

0.04

0.02

-0.14 	
5000 	10000 	0 	5000 	10000

-0.05
5000 	10000 	0

g13 Convergence
0

-0.01

-0.03

-0.04

-0.08
0

.......

5000 	10000

0

0.3

0.25

0.2

0.15

0.1

0.05

0.05

0

 	-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35
10000 	0

gii Convergence
0.1

0.05

-0.05

-0.05 -0.1

-0.1 -0.15

10000 	0 5000

Convergence

5000 	10000

gn Convergence 	gn Convergence
0.05 	 -0.1

-0.15

-0.2

-0.25

-0.9

-0.35

-OA

-0.2 	 -0.45
0 	5000 	10000 	0 	5000

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.28

The values of G° and D° can be estimated only if we know in advance the matrices A and B, this

information can be used only for verification purposes:

= -0.002057691 0.064508221 0.268488544 -0.111634509
0.003573822 -0.403457113 -0.302988201 0.015210675

D° = 0.5 	0.0
0.0 	1.5

(iii) Simulation Results:

(a) G-Matrix Convergence: The graph below (Fig.4.17) shows the convergence of the feedback

gain matrix G as a function of time, after 10,000 iterations, and computation: 14 MFP convergence

is:
G = -0.00194 	0.06410 	0.26843 -0.11162

0.00245 -0.40076 -0.30272 	0.01498

This agrees with the value G° above. Note that the choice of gamma y need not be a scalar value,

but a matrix diagonal may also be used. In this simulation gamma was manually adjusted for each

element of the G matrix until good convergence was obtained for each element of the G matrix.

GAMMA = 0.133*cliag([1, 10, 10, 1, 10, 10, 10, 10])

Figure 4.17 below illustrates the convergence of the individual elements of the G matrix,

convergence can be increased by increasing gamma.

Fig.4.17
MRAC Scheme Using Lyapunov stability (MIMO system) G matrix Convergence

0 0

2000 	4000 	8000 	8000 	10000

d22 Convergence

0.18
0.18
0.14
0.12

0.1
0.08
0.08
0.04
0.02

0

1.5

1

0.5

4000 10000 8000 2000 8000 8000

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.29

(b) D-Matrix Convergence: Figure 4.18 below shows the convergence of the feedback gain

matrix D as a function of time, after 10,000 iterations, and computation: 14MFP, convergence

is:
D 	0.50000 0.00000

-0.00001 1.49999

0.52

0.5

0.48

0.48

0.44

d, 1 Convergence
• • • • • • • • • •

0 	2000 	4000 	8000 	8000 	10000

d21 Convergence

2000 	4000 	8000 	8000 	10000

(112 Convergence

0.2

0.15

OA

0.05

0

-0.05

Fig.4.18
MRAC Scheme Using Lyapunov stability (MIMO system) D matrix Convergence

This agrees with the expected value of D° above. In this simulation, the choice of gamma was:

y=3, a scalar was used rather than a diagonal matrix.

(c) Eigenvalues of (A-B.G) Matrix During Convergence: Figure 4.19 below illustrates the

convergence of the closed loop eigenvalues:

Convergence to: -2+1j

1 r 	
0 	

-1 , 	 : 	imag part of
-2- 	
-3-
-4 .- 	 : 	 1 	real part of ki 	:. 	
-5-
-6 --- 	-

2000 	4000 	6000 	8000 	10000

3
2.5

2
1.5

1
0.5

0

-1
2000 	4000 	6000 	8000 	10000

Fig.4.19
MRAC Scheme Using Lyapunov stability (MIMO system) Closed Loop Eigenvalues Convergence

2

7
0

A.3: Convergence to: -1.5+1.5j

imag part of X3

; e), real part of X3

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.30

During convergence, the eigenvalues of the closed loop system (A-B. G) should remain stable, a

plot of the four (two complex conjugate pairs) is shown below during convergence. It can be seen

that the eigenvalues remain stable and that they reach the desired values of L2=1.5±j1.5 (roll

mode) and 2‘3 ,4=2.0±j1.0 (Dutch roll mode) after approximately 10,000 iterations. Legend: blue =

real part of eigenvalue, and red = imaginary part of eigenvalue:

4.3.2 Simulation 4.5: MIT-Gradient Based Method:

(i) Theory:

In this section, parameter update rules for the MIMO system described in 4.3.1 are derived using

the MIT-rule. Whilst the derivation is simpler compared to the Lyapunov method, the resulting

parameter update equations are slightly more complex. Consider a MIMO system in state variable

form as previously described:

Plant: 	 = A. x + B.0

Controller: 	 u = D.u, — G. x

Closed Loop System: 	x = (A — B.G).x + B.D.u,

Reference Model: 	X m = Am .X m + B..u,
Eqn.4.43

Where: x E ER", Xm E 9I n , U E 91 m , tic E 9m . comparing equations 4.43, the plant and reference

models are perfectly matched when:

A„, = (A - B.G) = G 0 =B i .(AAm)
Eqn.4.44

Bm = B.D 	D° =B •B,„

Following the same arguments used in section 4.3.2, the parameter update equations are derived

for the MIMO system. The MIT rule is:

dd
dt 	ad
dg 	JJ
dt 	7. ag

Where d and g are vectorized forms (column vectors) of the D and G matrices respectively, not to

be confused with the scalar variables used earlier in the SISO simulations. The cost function J is

given by:

Eqn .4 .45

dt 	• e • sl — A. • IC

dg
= y.er .

1 B,,,
sl — A

. x
dt 	 „,

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.31

1
J(d, g)= —2 eT (d, g).e(d, g)

Computing partial derivatives, gives the following update equations:

dd

-— = —?
pr (ae)

dt 	ad)
dg 	ae
— = l —y.er . — dt 	ag)

Eqn.4.46

Eqn.4.47

Note that the partial derivatives in brackets represent Jacobian matrices. The error function is

computed from:

e=x — x„, 	 Eqn.4.48

where x and ;cm are obtained by taking Laplace transform of the last two equations of 4.43. The

error is then given by:

e = (sl — (A — B.G)) -1 . B. 	— (sl — Am) -1 	 Eqn.4.49

Computing partial derivatives (Jacobians) with respect to the G and D matrices gives:

ae
ap 	- (A —

ae — — 	 .x ac 	- (A — B.G)

Eqn.4.50

Again, since the A and B matrices are unknown, the approximation is made that: B B., and (A-

B. G) A m. The parameter update equations then become:

Eqn.4.51

Implementation Issues: The final implementation is illustrated in figure 4.20 below, note that the

actual MATLAB implementation is split into two parts, the computation of the Jacobian matrices:

ae aG and ae al) equations 4.50, - and the computation the parameter update equations from

4.47.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.32

Note also that equations 4.51 represent a first order dynamical system which also requires

numerical integration. This results in a second order dynamical system. The most practical way to

handle this problem is to simply re-write equations 4.50 as a first order differential equation thus:

ae 	(ae
ap . A,,,. T-D j- Bm .(8 ;Jac

ae 	iae = A . — aG 	aG)- B m

Eqn.4.52

where the terms k in the first equation is 1 for the if entry of the D matrix, and zero for all other

entries, similarly for the second expression applying to the G matrix. The simulation then would

proceed as follows, for instance for the G matrix:

Akorithm: G matrix:

step-1: first compute
ae

aG = Am. —aG) Brnu).x

step-2: update the Jacobian ae / aG at the kth time step by numerical integration:

rae) = rae) AT rae)
aG)„,, 	aG)

step-3: compute the G update equation:
dG
dt = 	aG) * e

step-4: update the G matrix by numerical integration:
dG)

Gk+
'
 = Gk + AT .1— dt

Eqn.4.53.a

Eqn.4.53.b

Eqn.4.53.c

Eqn.4.53.d

The same applies for the D matrix. As can be seen, the actual implementation is slightly more

complex compared to the Lyapunov method, however the derivation is much simpler. The complete

simulation setup is illustrated in figure 4.20. Simulation results are provided below. Again, any

cost function could have been used instead of equation 4.46, which must be a function of the error

e(t).

Fig.4.20
MRAC Scheme Using MIT rule (MIMO system)

(ii) Simulation Results:

(a) G-Matrix Convergence: The graph below shows the convergence of the feedback gain matrix

G as a function of time for three different values of gamma. Convergence is within the first 20,000

iterations. The initial value of the G matrix at t=0 is set to zero:

0.1
gi2 Convergence

z.os

0.08 -0.1

-0.02 -0.12 0.08

0.25

0.2

0.16

0.1

0.05

-0.04 -0.14 0.04

-0.06 0.02 -0.16
y=0.01

-0.08 -0.18

-0.05
10000 	20000 10000 10000 10000 20000 20000 0

gil Convergence
0 02 - 	

4.02 	
20000 	0

gi3 Convergence 	gts Convergence

0

-02

-03

-OA

10003

0. 6

0 10000

01R22 Convergence

-0.2

-0.3

-0 4
0 	10000 	20000 	0

Fig.4.21

24 Conver ence

0.06

-0.05

-0.1
0 10000

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.33

PLANT

u(t) —e—• • 	•

e(t)

dG/dt

REFERENCE MODEL

J.

	 ae/aG

Y (VT e

Bina
sl - Am

x(t)

dD/dt
—7.(f r De).e 17e/ at)

Bm.uc
sl - Am

4- U40

MRAC Scheme Using MIT rule (MIMO system) G matrix Convergence

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.34

Convergence of the G matrix after 20,000 iterations for the three different values of gamma

(gamma is a diagonal matrix thus: Txdiag[1,2,1,1,2,2,2,1])

-0.0021 0.0645 0.2685 -0.1116
0.0036 -0.4035 -0.3030 0.0152

G matrix convergence, with 1M.).01

0.0002 0.0435 0.2350 -0.1185
-0.0099 -0.2906 -0.1240 0.0517

G matrix convergence with -y4.05

-0.0014 0.0621 0.2677 -0.113.7
-0.0001 -0.3913 -0.2986 0.0157

G matrix convergence with y:).10

-0.0020 0.0644 0.2685 -0.1116
0.0034 -0.4029 -0.3028 0.03.52

The diagonal entries were chosen by manually tuning each entry until reasonably good convergence

was obtained for each G matrix element.

(b) D-Matrix Convergence: Similarly, for the D matrix, convergence is plotted in figure 4.22

below for three different values of gamma, in this instance gamma is a simply a scalar and not a

diagonal matrix.

d1 1 Convergence

2000 	4000 	6000 	8000 	10000

d21 Convergence

d12 Convergence

T=
y=0.2

6000 	8000 	10000

0.6

0.5

0.4

0.3

0.2

0. 1

0.3

0.2

0. 1

0.3

0.2

0.1

- 0.1

2

1.5

0.5

=5

2000 	4000

d22 Convergence

2000 	4000 	8000 	8000 	10000 	0 	2000 	4000 	6000 	8000 	10000

Fig.4.22
MRAC Scheme Using Mn' rule (MIMO system) D matrix Convergence

Chapter4: Model Reference Adaptive Control With Hylxid Genetic Algorithms 	 P.4.35

After 10,000 iterations the actual value of D matrix for the three gammas is:

0.5000
0.0000

0.0000
1.5000

D matrix Convergence: y112
0.4889 0.0499
0.0613 1.2237

D matrix Convergence: 7.1
0.5000 0.0001
0.0002 1.4996

D matrix Convergence: T=5
0.5000 -0.0000

-0.0000 1.5000

As can be seen, the D matrix also converges to the correct value of D°, however convergence is

also slow, but faster than the G matrix.

(e) Eigenvalues of (A-B.G) Matrix During Convergence: The eigenvalues of the closed loop (A-

B.G) matrix are plotted during convergence, it can be seen that the closed loop system remains

stable, and that they converge to the required closed loop eigenvalues of the reference model.

24: Sanwripre ta -2+1j

-2

-4 	1\!. 	
-6 - ----- 	real part of 214

-10 IMO

im3g part cif A.1

• •
• •

X03 	3300 	4CCO 	5303 	EOM 	XCO 	8000 	XCO 	10X0

0
-Q5

-1
-1.50

Ccmerwnce to: -1.5+1.5j

	mg pert cf 	

1M13 	2X0 	XOD 	403D 	3300 	(1303 	7000 	ECO) 	9X0 	10003

Fig.4.23
MRAC Scheme Using MIT rule (MIMO system) Closed Loop Eigenvalues Convergence

3
25

2

	

1.5 	•

	

1 real pert d A,3 Q5

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.36

4.3.3 Simulation 4.6: Hybrid Genetic Algorithms:

In this section, the same MIMO problem is solved using hybrid genetic algorithms. Simulation

results compare: (i) conventional genetic algorithms, (ii) genetic algorithms + simulated annealing

and (iii) genetic algorithms + greedy search. Computational effort and convergence rates are

compared. The final configuration is illustrated in figure 4.24 below.

14(t)

PLANT

• 	•

HA H
x(t)

REFERENCE MODEL

	■

rn

G update
Genetic

Algorithm D update

Fig.4.24
MRAC Scheme Using Genetic Algorithms (MIMO system)

(i) Genetic Algorithms: Again, the fitness function is chosen to be the inverse of the error

function. The error is computed as the RMS value of the output difference x(t)-x„,(t), refer to

equation 4.28. The chromosomal representation for this problem is illustrated in figure 4.25

below. The controller parameters to solve for are: D, and G matrices. The fitness is the inverse of

the error function: fitness = 1/error.

d 12 d21 d22 IgH g12 g13 g14 g21 g22 g23 g24 I err I fitness

Fig.4.25
MRAC Scheme Using the Genetic Algorithm (MIMO system)

.arels r(prals ti!tioual

uoguindod alp oianp paonpal Xllugumsgns uagi pur (suogriaua2 oo Ism .; alp wygm) p!clui

X.I0A XIIRI1ILII Si 0UO210A1100 '011.19 Jo uopounj rS D x!gutu tuu2 3forcipaaj qi jo aDualanuoa

aw smogs mop(' ticlul2 ata 1717 o1:1m mot lug atp ut pal u! pals!! Si D jo awn loam au

suotlgiau2ooc`oot`00€,I0jaDualOAU00xuluw9
vt, awl

SE00'0 	80E 8,000 L9T0'0 9T000- 8909'0- 	8E000 WITT*0- E89E*0 Lf90'0 0E000- 00S
006
00f
OOP

PT00'0 08E 9E000 09'00 8E000- 0909'0- 	Tt00'0 6TTT*0- 989E'0 Lf90'0 LE00'0-

86000 86T 05000 0ET0'0 8L60- 0909'0- 	T9000 ETTT*0- fL9E'0 99900 TE00°0-

Et00'0 fEt fL00'0 E8T0'0 LOOCO- EPOP'0- 89000 EETT*0- SL9E*0 89900
09900

5,900

91900

EE00'0-

SOTVO OOT 00E00 60E00 LL6L'O- 1609"0- L9000 LETT'O- fL9E*0 8E000-
"EZOO*0 -

'1E00'0-

00f

E0000 	°TOT 90000 PC[0'0 OEOE'0- 9E090- 9E000 LiTT*0- 689E'0 00E
00E fT00'0 Pig 9E000 E9T0'0 EE0C0- 1E090- ffi00'0 WETT*0- E89E'0

66000 9TT 98000 80T0°0 86000- M9'0- 99000 SOTT*0- 069r0 	89900 LE00'0- 00E

119000 88 ETIO*0 9ET0'0 686E*0- OLOP*0- 96000 °TWO- T89E*0 	96900 SE00'0- 00E

(1) E900'0 19E 8E000 StT0'0 EL60- L9090- 69000 STIT*0- ELWO 	69900 6E000- 00E

z:s --- gnE'0 - ,E0V0- GEO.. 97-.IT*0 - te9V0 5,900 0E000 -

GO-Dpwou j EgUllf Amja tqX a8 a8 m8 m8 u8 uS n8

.(Ez .t1u) aud Su!mouoj tp uo ponop:1 osre s! (ououtipuip lsiu alp `mopq parinqul

glE `aouallanuoo 1p jo anuru ousegools ap aniasqo 02 saup trn polonpuoo sum uourrnuns

alp `stumpare pang gams ousmcirqoici r are sunppoitir ououa asnroasi nuppoilir ouatiag

alp Su!sn pau!riqo sqnsal =man/woo atp sazugununs mopq y alqui :amaiatuoo xypna 9

. uogoalas

luawutunol iCiutug :awatos uogoalas To.wd Xgllgugold uoguinw puu ,Cgggegoid

10AOSS0.10 `001.saidwrs ulup `00=suogu1auag wnwpcutu `0E :uoguindod :smogoj su s! dtuas

tutp!Jaje °galaI1 uogrinw!s sup JoA . 9 . 17 uoguinw!s aas `moiag uan!2 STflSJ uoguinw!s

.8z .t uouounj 10.1.12 2tp azFurinsw tionim sawn 9 pur • a mu grinchuoo

unpuo2le opaua2 aw r pur x jo sruatuainsratu wag snip `auri-Jjo Alleuuassa panios s! =Raid

sna - E .t uoguinwts wag walgoid psis luaiumnba alp ()I paludwoo z Ajuo jo pralsw slalaurend

z j

Jo 2ugs!suop waigoid uopuzungdo patgullsuooun reuo!suaw!pginw sluasaJdaJ walgold sun

LE-4'd
	 sunppoSiv riatiag puqX14 qu Kuwoj gA IldEpV aouaLaJaN ppow :traiduq3

gii Canergence
410 1117=7

-02

43
44

100 	200 	300

45 46

47 0 100 230 300

0.6

3.5

2.6

1.5

00 	 50 	 100 	160 	200 	260 	300

generation

2

3

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.38

g12 Canexgence
0.9
0.8
0.7
0.6
OS
0.4
0.3
02
0.1

0
41 0

g13 Canergence 	gla Carnage=
0.6 	 0

-0.1

02
 H-......---.-

-02

0.4

0 	 -0.3
-02 	 -0.4

44 	 45
	 , -0.6 	 -0.6

480 	1C0 ZO 	900 .417 0 100 	200 	330

0.35
0.3

025
02

0.15
0.1

0.05
0

405

-at

02
0.1

0

-02
43
-0.4
4.5

-0.7

0.8 o

g21 Comergence g22 Canergence
-0.3
-0.4
45

2

. 4.6
.. 	... •

-a7
-0.8
-0.9

-1
-1.1
-1.2

100 230 	303 -12 0 	100 200 xo

g23 Canergence 	g24 a:mergence
12

1

0.8
0.6

0.4

02

0

100 	ZO 	300 420 	100 	203 	300

Fig.4.26
MFtAC Scheme Using Genetic Algorithms (NM° system) G matrix Convergence

Computational effort: 300 generations approximately 300 MFP. From table 4.4, results from

the first simulation (first row 1) are illustrated in figure 4.26 above. Whilst the genetic algorithm

is capable of converging near the solution, the final convergence is generally slow. To overcome

this, the two hybrid methods discussed earlier are used in the next set of simulations and iii).

Figure 4.27 below shows the error convergence as a function of generation for the simulation

above:

error convergence

Fig.4.27
Error convergence

0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0 8 0

15

1

05

0

-0.5

50 	100 	150 	.10 	50 	100

Fig.4.28
MRAC Scheme Using Genetic Algorithms (MIMO system) D matrix Convergence

2
	p. 	

150

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.39

D matrix convergence: Table 4.5 below summarizes the convergence results obtained for the D

matrix. Again the simulation ran ten times to illustrate the stochastic nature of the convergence:

I 	d" I 	cl dv d22 	I 	error 	I fitness
0.0000 1.5000

,

150 0.5003 0.0001 -0.0008 1.4992 	0.0013 	764

150 0.5001 0.0002 -0.0006 1.4992 	0.0013 	783

150 0.5007 0.0007 -0.0025 1.4964 	0.0035 	288

150 0.5027 0.0007 -0.0113 1.4980 	0.0101 	98

130 0.4963 0.0028 0.0152 1.4679 	0.0160 	62

150 0.4994 0.0001 0.0023 1.4998 	0.0023 	441

150 0.4978 0.0014 0.0090 1.4941 	0.0103 	96

150 0.4994 0.0006 0.0043 1.4966 	0.0051 	197

150 0.4999 -0.0006 -0.0009 1.5018 	0.0026 	386

150 	0.5002 0.0011 -0.0016 1.4955 	0.0048 	210

Table 4.5
D matrix convergence after 150 Generations

The D matrix converges more rapidly than the G matrix, due to the fewer parameters to solve for.

Figure 4.28 below illustrates the convergence of the D matrix.

c111 Convergence 2 Convergence

50 	100 	150

d21 Convergence d22 Convergence

0.7
0.65

0.6
0.55

0.5
0.45

0.4
0.35

0.3

so

100 150

0.3
0.25

0.2
0.15

0.1
0.05

0
-0-05

-01
-°.15 0

After 150 generations, the D matrix has converged. Again, convergence is initially very rapid

(first 50 generations), and thereafter considerably reduced.

g11 912 gl 3 914

g23 924

-0.9
1000 	2000 	3000 	0

-0.4

-0.5

-0.8

-0.7

-0.8

1000 	2000 	3000

g21 g22
1000 	2000 3000

-0.1

0.3

0.2

0.1

0 	1000 	2000 	3000

-0.5

-1.5
0

0.5

0

1000 	2000 	3000

-0.1

-0.2

-0.3

-0.4
V

-0.5 	
1000

0

2000 	3000

0

-0.2

-0.3

-0.4

1000 	2000 	3000 	0 	1000 	2000 	3000

0.4

0.2

-0.2

-0.4

0.4

0.2

-0.2

-0.4

0

-0.1

-0.2

-0.3

-0.4

-0.5

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.40

(ii) Genetic Algorithms + Simulated Annealing: The search vector is similarly defined as in

conventional genetic algorithms without the error and fitness entries thus:

A 11 d12 d21 d22 Igli gI2 g13 gl4 g21 g22 g23 g24

Fig.4.29
MRAC Scheme Using the Hybrid Genetic Algorithm + Simulated Annealing

The temperature annealing schedule is defined identically as in the SISO case (see 4.2.3 part ii).

Results for this simulation are summarized below.

G matrix convergence: Table 4.6 below summarizes the G matrix convergence for 10 simulation

runs using 100 samples and 3000 SA iterations:

gll: g12: g13: g14:
,

g21: 	g22: g23: g24: 	error 	G-Go: N1FF

0021 0.0645 0.2615 -0.1116 0.0036 	-0.4034 -0.3029 0.01S-

-0.0021 0.0645 0.2685 -0.1116 0.0036 1 	-0.4034 -0.3029 0.0153 	0.00012 0.00015 737

-0.0020 0.0645 	0.2684 	-0.1117 0.0035 	-0.4033 -0.3024 0.0154 	0.00032 0.00061 737

-0.0021 0.0645 	0.2685 -0.1116 0.0036 	-0.4034 	-0.3027 0.0152 	0.00022 0.00026 737

-0.0021 0.0645 	0.2685 -0.1116 0.0036 	-0.4034 	-0.3028 0.0152 	0.00014 0.00019 737

-0.0021 0.0645 	0.2685 -0.1117 0.00361 	-0.4035 	-0.3029 0.0154 	0.00026 0.00025 737

-0.0021 0.0645 	0.2685 -0.1116 0.0036 	-0.4035 	-0.3032 0.0152 	0.00025 0.00022 737

-0.0020 0.0645 	0.2684 -0.1117 0.0035 	-0.4034 	-0.3024 0.0154 	0.00021 0.00061 737
-0.0021 0.0645 	0.2684 -0.1117 0.0036 	-0.4034 	-0.3024 0.0154 	0.00035 0.00062 737

-0.0021 0.0645 	0.2685 -0.1116 0.0036, 	-0.4035 	-0.3030 0.0152 	0.00006 0.00005 737

-0.0020 0.0645 	0.2685 -0.1117 0.0035 	-0.4035 	-0.3027 0.0154 	0.00023 0.00038 	737

Table 4.6
G matrix Convergence after 3000 SA Iterations

A typical matrix convergence plot is illustrated below:

Fig.4.30
MRAC Scheme Using Genetic Algorithms (MEMO system) G matrix Convergence

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.41

D matrix convergence: Table 4.7 below summarizes the G matrix convergence for 10 simulation

runs:

dll 	d12 d21 d22 Error: EI-Do: NIFP:

0.0000 0.0000 1.5000

0.5000 0.0000 0.0001 1.4999 0.00011 0.00017 74
0.5000 -0.0001 -0.0002 1.5002 0.00026 0.00026 74
0.5000 -0.0001 -0.0002 1.5000 0.00025 0.00023 74
0.5000 -0.0001 -0.0001 1.5002 0.00025 0.00024 74
0.5000 0.0000 -0.0000 1.4997 0.00017 0.00026 74
0.5000 0.0000 0.0000 1.4998 0.00011 0.00017 74
0.4999 0.0000 0.0002 1.4999 0.00017 0.00025 74
0.5001 -0.0000 -0.0002 1.5001 0.00018 0.00024 74
0.5000 -0.0000 0.0002 1.5000 0.00026 0.00017 74
0.5000 -0.0000 -0.0002 1.5000 0.00018 0.00018 74

Table 4.7
D matrix Convergence

Typical matrix convergence plots, convergence is within the first 100 iterations.
d1 1 d12

0.8 0.8

0.6
0.6 	

0.4
0.4 	

0.2

0.2 	 jU 	

-0.2
50

d21

100 150 200 50

d22

100 150 200 0

2 2

1.5 1.5 rr.

0.5 	 0.5

-0.5 	 -0 5

50 	100 	150 	200 	 0 	50 	100 	150 	200

Fig.4.3 1
MRAC Scheme Using Genetic Algorithms (MIMO system) D matrix Convergence

This hybrid genetic algorithm converges considerably more rapidly when compared with the

conventional genetic algorithm in (i).

(iii) Genetic Algorithms + Greedy search: The search vector is similarly defined as in simulated

annealing, see figure 4.29. Below, results of the G and D matrix convergence are given.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms
	 P.4.42

G matrix convergence: Table 4.8 below summarizes the G matrix convergence for 10 simulation

runs using 100 samples, and 3000 greedy search iterations:

gll: g12: g13: g14: 	g21: g22: g23: g24: Error: 	IG4Go: MFP:

-0.0021 0.0645 0.2685 -0.1: 	0.0036 -0.4034 -0.3029 0.0152
1

A
l 1

.)
 1

4
 1

4
 IJ

 la
 11

4 I
IJ

 IN
 141

la

 L
a

to

 t
o

 to
 to

 to
 1..

.,
1.4

 1..
1

F
.
 1.1

 to
 F

.
l0

 0
0

 0
 F

.
F

.

0.0645 0.2684 -0.1118 	0.0035 -0.4032 	.0.3023 0.0164 0.00067 	0.00141

0.0645 0.2685 -0.1115 	0.0036 -0.4033 	,-0.3033 0.0145 0.00034 	0.00079

0.0645 0.2684 -0.1117 	0.0036 -0.4032 	1-0.3027 0.0158 0.00032 	0.00069

0.0645 0.2684 -0.1116 	0.0036 -0.4034 	1-0.3026 0.0152 0.00025 	0.00045

.-I
N

0

°

°
 0.0645 0.2684 	-0.1116 	0.0036 -0.4034 	-0.3026 0.0153 0.00024 	0.00041

0.0645 0.2684 	-0.1116 	0.0036 -0.4035 	.0.3028 0.0152 0.00020 	0.00024

0.0645 0.2684 	-0.1117 	0.0035 -0.4033 	.3026 0.0154 0.00018 	0.00046

0.0645 0.2684 	-0.1116 	0.0036 -0.4035 	-0.3028 0.0153 0.00016 	0.00022

0.0645 0.2685 	-0.1116 	0.0036 -0.4035 	.0.3030 0.0152 0.00001 	0.00001

0.0645 0.2685 	-0.1116 	0.0036 -0.4035 	.0•3030 0.0152 	0.00001 	0.00000

Table 4.8
G matrix convergence

The figure below illustrates typical convergence properties of the hybrid algorithm:

0.05

-0.05 	

gi1
03

912
0.3

0.2

g13
02

0.1

g14

02 	

0.1 	
0.1 	

-a1 	 0 -0.1

-0.15 -0.1 -02 	

412 411 412 413
0 1000 2000 3110 	0 	1000 2C00 3C00 	0 	1CCO 2000 3000 	0 	1C00 2000 31110

g21 923 g24
0.1 02 0.4 02

0.1
0 .. 0 02 - 	-1

0
0 •

-G1

-0.2 -0.4 -a2 -0.2 	

413 416 -a4 -G3
0 1000 2030 3030 	0 	1000 2C00 3330 	1000 2C00 3000 	0 	1C00 2(100 3311)

Fig.4.32
MRAC Scheme Using Hybrid Genetic Algorithms + Greedy Search(MIMO system) G matrix Convergence

D matrix convergence: Table 4.9 below summarizes the D matrix convergence for 10 simulation

runs with 100 samples and 220 iterations. The D matrix converges very quickly compared with

both conventional GA and hybrid GA+simulated annealing methods.

-0.5

dll
OA

OA

OA

02

0.5

d12
0.6 	

0.4 	

0.2

-0.2
200 300 100

d22

200 300 0

2

1.5 	

0.5 	

-0.5 	

100

d21

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.43

dll d12 d21 d22 Error: 130-floo: 	NIFP:

.5000 0.0000 0.0000 1.5000

0.5000 0.0000 0.0002 1.5001 5334 0.00024 	17
0.5000 0.0000 -0.0002 1.5000 	6136 0.00025 17
0.5000 0.0000 -0.0001 1.4998 	6330 0.00025 17
0.5000 0.0000 0.0000 1.5000 	29718 0.00004 	17
0.5000 -0.0000 0.0000 1.5000 30531 0.00003 18
0.5000 0.0000 0.0000 1.5000 46518 0.00004 18
0.5000 -0.0000 -0.0000 1.5000 70323 0.00002 17
0.5000 -0.0000 -0.0000 1.5000 126538 0.00001 18

Table 4.9
D matrix convergence

The figure below illustrates typical convergence properties of the hybrid algorithm, note that

convergence is within the first 200 greedy search iterations.

100 	200 	300 100 	200 	300

Fig.4.33
MRAC Scheme Using Hybrid Genetic Algorithms + Greedy Search(MIMO system) D matrix Convergence

4.3.4 Convergence Rates:

Greedy algorithms give on average the fastest convergence when compared with both conventional

GA and hybrid SA methods. However the convergence of the greedy algorithm is not as consistent

as the GA. In many cases the greedy algorithms can converge very rapidly, and in others very

slowly. This depends on the initial solution, if the initial value is near the optimum, then

convergence is very rapid. One advantage of the genetic search algorithms is that we do not need

to specify the gamma parameter as used by both the Lyapunov and MIT rule methods.

D matrix convergence:
Convergence: GA:red SA:green GREEDY:blue LYAPUNOV:black MIT:magenta

60 	70 	 80 	 90 	100

G matrix convergence:
Convergence: GA:red SA:green GREEDY:blue LYAPUNOV:black MIT:magenta

10 -6

10
-7

10 8

10 °

Error

10 1

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.44

The following figures illustrate the convergence properties of the five methods compared:

250
MFP

Fig.4.35

o 	so 	100
	

150
	

200 300 350 400 450 500

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.45

4.4 Discussion and Conclusion:
From these simulations, we can see that hybrid genetic algorithms can easily be applied to adaptive

control applications and convergence is generally very rapid. For simple SISO systems,

convergence results within 50 generations. For multivariable 2 th order MIMO systems, the genetic

algorithm converges within 200 generations. However, despite the rapid convergence, the

computational effort required at each generation is approximately 1 MFP, compared with only 20-

30 operations at each time step with conventional Lyapunov or MIT rule based methods.

Furthermore, there is no guarantee on the rate of convergence of a hybrid genetic algorithm. This

is a critical issue if genetic algorithms are to be accepted as an alternative method of generating

parameter update rules in adaptive control applications. On the other hand however, genetic

algorithms have fewer restrictions and can also be applied to nonlinear systems. Some key

differences are summarized below.

Key Points and Differences:

1. GA is not really recursive, whereas both the Lyapunov method and MIT rule generate new

parameters at each sample interval with only the current measurement, the genetic algorithm

requires knowledge of past historical data as well as current data. This means that its response

is delayed if an abrupt change occurs in the plant A and B matrices. Whilst the genetic

algorithm may not be recursive, it can however still operate online.

2. Because the GA works with historical data, it is more immune to the presence of noise in the

current measurement. GA method puts equal weights on all samples, whereas the MIT and

Lyapunov methods place more emphasis on current data.

3. Constrained problems can also be easily dealt with using genetic algorithms, but more difficult

to solve using the conventional MIT and lyapunov methods.

4. Higher computational effort is required with genetic algorithms, typically 20 times or more

compared with conventional methods. Hybrid genetic algorithms give comparable performance,

in particular the hybrid GA + greedy search converge very rapidly.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.46

5. From the results, we can see that genetic algorithms work well, and have fewer restrictions

when compared with more traditional methods such as the MIT gradient based rule and

lyapunov stability theory. The GA can easily be extended to more unconventional controller

configurations without any change to the genetic algorithm.

6. Convergence is generally faster than our results indicate because not all parameters of the A and

B matrices change simultaneously, but only a few matrix parameters change for instance:

payload mass of robotic manipulator. This can be encoded into the chromosome, and search

conducted for several rather than all matrix parameters.

7. Genetic algorithms are easily extended to solving nonlinear MRAC systems, with any controller

structure e.g.: neural networks, fuzzy logic, linear dynamic compensators etc.

Future Work:

Much work needs to be done in order for GA to be accepted in adaptive and MRAC control

applications. Currently there are very few papers which address the application of GA to MRAC

control. This chapter addresses only the basic concepts of MRAC and attempts to obtain some

preliminary results. Some future work would involve:

1. Use measurement feedback instead of full state feedback, and a dynamic compensator (see

section 3.2).

1. Modify the GA to act like an online recursive algorithm, rather than searching the entire

solution space, use the previous results to generate a narrower search range which would

improve convergence. This type of online genetic algorithm can be a topic of future research

and is beyond the scope of this thesis.

2. Apply GA to indirect method of MRAC. Only the direct method was used in the simulation,

with output feedback instead of full state feedback, including gaussian noise in the output.

3. Applications of GA to nonlinear systems with robustness properties using variable structure

model reference adaptive control. Variable structure MRAC is currently an active area of

research.

4. Model reference adaptive control problem can also be formulated in a robust control

framework, for instance the model matching problem may be written as:

u(t)
B(x)

• di • X,, , (1)

R BF(x, u. 0)

A(''

Reference Model

update 	 Genetic
Algorithm

= 	Wj , Centres, a]

Fig.4.36
MRAC Control for nonlinear systems with neurocontrol

u,(1)

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.47

error = mink

here T1 is a model (reference model) and T2 is the plant, Q is a cascade controller such that the

error of the transfer functions is minimized. For linear systems, this may be solved using the

Nevanlinna's algorithm. Again this can be easily handled with GA, in which the fitness function

can be the inverse of the error.

5. Applications of radial basis function networks for nonlinear systems. For instance consider the

following setup, in the figure below, a radial basis function is used to control a nonlinear plant.

A linear model is used as a reference. Again, training using genetic algorithms as in chapter 2

can be applied to this problem. We could also use fuzzy logic control to replace the neural

network. Genetic algorithms can be used for adjusting the fuzzy rules. For instance see [18].

Nonlinear Plant
neural

network /

An interesting paper dealing with nonlinear reconfigurable adaptive flight control using genetic

algorithms [19], using neural networks/dynamic inversion [20], more general papers [21], adaptive

PID control and genetic algorithms [22]. In summary, genetic algorithms can be applied to model

reference adaptive control, resulting in good convergence properties. There are clearly many

applications including nonlinear neurocontrol and others such as variable structure adaptive

control, and fuzzy variable structure control, which offer new and interesting possibilities for

research.

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.48

4.5 References and Further Reading

[1] W. S. Levine
Flight Control of Piloted Aircraft. IF-16 Aircraft
The Control Handbook, TER CRC Press 1996, Ch.54 pp847-858

[2] K.J.Astrom,
Theory and Applications of Adaptive Control, A survey
Automatica, Vol.19, No. 5, pp.471-486, 1983

[3] G.Feng, R.Lozano
Adaptive Control Systems
Newnes, 1999

[4] M. Bodson, J.E. Groszlciewicz
Multivariable Adaptive Algorithms for Reconfigurable Flight Control
IEEE Transactions on Control System Techonology, Vol.5, No.2, pp.217-229, March 1997

[5] G. Ambrosino, G.Celentano, F.Garofalo
Variable Structure Model Reference Adaptive Control Systems
International Journal of Control, Vol.39, No.6, pp.1339-1349, 1984

[6] L. Hsu, R.R.Costa
Variable Structure Model Reference Adaptive Control Using only Input and Output Measurements
International Journal of Control, Vol.49, No.2, pp.399-416, 1989

[7] P.S.Maybeck, R.D.Stevens
Reconfigurable Flight Control Via Multiple Model Adaptive Control Methods
IEEE Transactions on Aerospace and Electronic Systems, Vol.27, No.3, pp.470-479, May 1991

[8] S.N. Singh
Nonlinear Adaptive Attitude Control of Spacecraft
IEEE Transactions on Aerospace and Electronic Systems, Vol.AES-23, No.3, pp.470-479, May 1987

[8] 	Z.Qije, S.Chunyi
An Adaptive Sliding Mode Control Scheme for Robot Manipulators
International Journal of Control, Vol.57, No.2, pp.261-271, 1993

[9] M.Bohm, M.A.Demetriou, S.Reich, LG.Rosen
Model Reference Adaptive Control of Distributed Parameter Systems
SIAM Journal of Control and Optimization, Vol.36, No.1, pp.33-81, January 1998

[10] K.J.Astrom, J.Hagglund, CC.Hang, W.K.Ho
Automatic Tuning and Adaption for HD Controllers - A Survey
Control Engineering Practice, Vol.1, No.4, pp.699-714, 1993

[11] M.A.Duarte, K.S.Narendra
A New Approach to Model Reference Adaptive Control
Interational Journal of Adaptive Control and Signal Processing, Vol.3, pp.53-73, 1989

[12] Chih-Hsin Tsai, Chi-Hsiang Wang, Wei-Song Lin
Robust Fuzzy Model Following Control of Robot Manipulators
IEEE Transactions on Fuzzy Systems, Vol.8, No.4, pp.462-469, August 2000

[13] Isabelle Rivals, Leon Personnaz
Nonlinear Internal Model Control Using Neural Networks: Applications
IEEE Transactions on Neural Networks, Vol.11, No.1, pp.80-90, January 2000

Chapter4: Model Reference Adaptive Control With Hybrid Genetic Algorithms 	 P.4.49

[14] D.R.Mudgett, A.S.Morse
An Advanced Example of Direct Adaptive Control System Design
International Journal of Adaptive Control and Signal Processing, Vol.4, pp.163-169, 1990

[15] K.S.Narendra, J.D.Boskivic
Robust Adaptive Control Using a Combined Approach
International Journal of Adaptive Control and Signal Processing, Vol.4, pp.111-131, 1990

[16] M.A.Duarte, K.S.Narendra
A New Approach to Model Reference Adaptive Control
International Journal of Adaptive Control and Signal Processing, Vol.3, pp.53-73, 1989

[17] G.Tao, P.A.Ioannou
Robust Model Reference Adaptive Control for Multivariable Plants
International Journal of Adaptive Control and Signal Processing, Vol.2, pp.217-248, 1988

[18] E. Sanchez, T,Shibata, LA.Zadeh
Genetic Algorithms and Fuzzy Logic Systems, Soft Computing Perspectives
World Scientific, 1997

[19] M.L.Steinberg, A.B.Page
Nonlinear Adaptive Flight Control with Genetic Algorithm Design Optimization
International Journal of Robust and Nonlinear Control, Vol.9, pp.1097-1115, 1999

[20] K.A.Wise, J.S.Brinker, A.J.Calise, D.F.Enns, M.R.Elgersma, P.Voulgaris
Direct Adaptive Reconfigurable Flight Control for a Tailless Advanced Fighter Aircraft
International Journal of Robust and Nonlinear Control, Vol.9, pp.999-1012, 1999

[21] K.De Jong
Adaptive System Design, A Genetic Approach
IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-10, No.9, pp.566-574, September 1980

[22] W. Zuo
Multivariable Adaptive Control for a Space Station Using Genetic Algorithms
IEE Proceedings on Control theory and Applications, Vol.142, No.2, pp.81-87, March 1995

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.1

5 Mixed Hill. Controller Synthesis with
Hybrid Genetic Algorithms

Contents:

5.1 Introduction 	 p.5.2

5.1.1 Robust Control Theory 	 p.5.3
5.1.2 H2 Control Theory and State Space Solutions. 	 p.5.4
5.1.3 FL. Control Theory and State Space Solutions. 	 p.5.7
5.1.4 Mixed H2/H— Control Theory 	 p.5.9

5.2 H2 Controller Synthesis 	 p.5.11

5.2.1 Simulation Setup 	 p.5.11
5.2.2 Conventional State Space Solution 	 p.5.13
5.2.3 Solution Using Genetic Algorithms 	 p.5.15
5.2.4 Convergence Rates for Hybrid Genetic Algorithms 	 p.5.19

5.3 IL. Controller Synthesis 	 p.5.21

5.3.1 Simulation Setup 	 p.5.21
5.3.2 Conventional State Space Solution 	 p.5.22
5.3.3 Solution Using Genetic Algorithms 	 p.5.24
5.3.4 Convergence Rates for Hybrid Genetic Algorithms 	 p.5.32

5.4 Mixed HZ/H.. Controller Synthesis 	 p.5.33

5.4.1 Simulation Setup 	 p.5.33
5.4.2 Solution Using Genetic Algorithms 	 p.5.35

5.5 Chapter Summary and Conclusion 	 p.5.41

5.6 References and Further Reading 	 p.5.42

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithm 	 P.5.2

5.1 Introduction:

In this chapter, we look at how hybrid genetic algorithms can be applied to the sythesis of robust

H2, FL, mixed H2111_ linear full order, and reduced order compensators. The results are compared

with conventional MATLAB h2 lqg and hinf functions, including standard model reduction

techniques for the reduced order compensators.

State space solutions to the H2 and IL problem for linear systems are well established, requiring

only the solution to two Riccati equations. However, this results in compensators with the same

order (or higher if shaping filters are used) as the plant, making implementation impractical. The

use of Model reduction techniques often leads to suboptimal controllers. A further complication is

that most specifications are given as multiple or mixed objectives, for instance minimizing the H2

performance measure of one closed loop transfer matrix, whilst ensuring the H., < y norm bound of

another closed loop transfer matrix is also satisfied. As yet, there is currently no direct design

method to deal with mixed H 2/H_ objectives. In this chapter, we investigate the application of

hybrid genetic algorithms to three separate optimal control problems:

(i) Robust H2 (linear quadratic gaussian LQR) controllers. Simulation results comparing

conventional MATLAB h2 lqg function with hybrid genetic algorithms is given. The direct

implementation of reduced order compensators using genetic algorithms is compared with

conventional model reduction techniques.

(ii) The above procedure is repeated for an FL controller.

(iii) Parts (i) and (ii) are combined for the implementation of a mixed H 2/H,., controller.

A simple linear state-space example is used to illustrate the above concepts. The chapter is divided

into four parts: the first part discusses basic concepts of H2 and FL control theory including

standard state space solutions, methods for dealing with mixed H 2/FL problems, fixed order

controllers which includes homotopy theory, and genetic algorithms. In the second part, a robust

H2 controller is implemented using genetic algorithms, and compared with conventional state space

solutions, the design of reduced order compensators is also included. The same applies for the

third part involving a robust FL controller. And lastly, a robust H 2/H,,,, controller with mixed

design objectives is implemented.

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.3

5.1.1 Robust Control Theory:

The modern robust control paradigm combines the performance and robustness specifications into

a single design framework. Thus all the information about a system including plant, external

disturbances, noise, plant uncertainties and nonlinearities, can be combined into one single design

framework. Robust control theory provides a systematic means of synthesizing controllers within

this framework. Additionally, filters and frequency weights can be included into the design.

Frequency weights can be used to shape the input noise over some frequency, and can also be used

to emphasize the frequency range over which the effects of disturbances are to be minimized. For

instance, if we wish to reduce the effects of external disturbances at some frequency range, then the

frequency weights are emphasized more over this range. Nonlinearities and unstructured dynamics

can be described as a magnitude bounded by some transfer function. For instance, in aircraft

control, the airframe deformation produces unmodelled dynamics which can be captured by a norm

bound frequency dependent transfer function. Figure 5.1 below illustrates the generalized plant P

which includes a nominal plant transfer function, frequency dependent weights, uncertainty models,

actuator and sensor dynamics.

T 	 	

Fig.5.1
Generalized Plant and Controller

The inputs to the plant are: exogenous inputs w, which consist of disturbances, sensor noise,

reference commands, and the controlled inputs u to the actuators. The outputs include z, consisting

of performance measures, tracking errors, the measured outputs y from the sensors, generally

corrupted by noise. The objective is then to minimize the size of the transfer function from w to z

denoted by 71„(s) by the appropriate choice of the controller K, whilst ensuring internal stability of

the closed loop system. The size of a transfer function can be represented by a norm. There are

two types of norms which are of particular interest in control engineering: the H2 and the norm.

Each has a different interpretation and application. The H2 norm is simply the RMS output at Z if

W is an independent, zero mean unit intensity white noise source. Thus the H2 controller is simply

an extension (or generalization) of the linear quadratic gaussian (LQG) controller. The IL, norm

however is defined as the maximum gain (singular value) of the transfer function over all

frequencies of interest. Its application is mostly found in dealing with plant uncertainty.

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.4

Standard state-space solutions are available for these two types of problems, discussed further in

sections 5.1.2 and 5.1.3. These solutions yield controllers which are the same order as the

augmented plant P. This sometimes leads to controllers which are physically unrealistic to

implement in practice. The application of model reduction techniques can result in sub-optimal

controllers. Furthermore, in many practical situations, mixed design objectives are given such as

minimizing the norm of: Il7 z22 (s)02 , whilst bounding the norm: IlTze.w..(s)O . < y . This effectively

is a constrained optimization problem.

w 2
	

Z 2

w 	 I

K 	

Fig.5.2
Mixed Hz/H. Controller Specifications

At present, there are no direct design methods available to deal with multiobjective H 2/H,,, control

problems. There are a number of iterative numerical schemes available, some are briefly discussed

in section 5.1.4. Some excellent introductory references to robust control theory include: [1, 3, 4,

5], a good tutorial paper on control can be found in [2], a seminal paper by Zames 1979 [6],

and later in which state space solutions where found by Doyle in 1989 [7]. In [8], Doyle

demonstrated that H2 controllers do not necessarily guarantee robustness. Conventional state space

solutions to the H2 and FL, are outlined next..

5.1.2 H2 Control Theory and State Space Solutions:

(i) Definition of the H2 norm:

Given the following generalized plant and controller (fig 5.3), the H2 problem is as follows: solve

for K such that the H2 norm of IT 11 is minimized' whist providing internal stability of the closed

loop system. Internal stability is defined as follows: when the input is zero w=0, then both the

states of the plant and controller should approach zero asymptotically: x—>0 and xe-->0

m i nit z„ 2

Fig.5.3
Generalized Plant and Controller

K =
F2

[A + 132F2 + L2C2 + L2D22F2

—L2 o 1

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.5

The H2 norm of a transfer function T„,, is defined by equation 5.1 below:

HTZW II .1 2-f- trace [T,(jw).T(jw)Ww12 Eqn.5.1

(ii) Compensator using Conventional state Space Methods:

The optimal compensator K which minimizes the above H2 norm may be computed by the

following procedure. Given the following generalized LTI plant in state space form:

= A. x + w + B2 . U

Z 	w + D12 . u 	 Eqn.5.2

y = C2 .X D21 . w+ D22 .0

assuming D11=D22=0 with no loss of generality, the compensator is given by:

Eqn.5.3

where F2 and L2 are given by:
F2 = —R(Rxru + B2T X2) }

L2 = 	C2T Vxy).V;y1

and X2, Y2 are the positive semidefinite solutions to the two Riccati equations:

} R,Tu — X 2 B2 R:.' B2T X2

 22 V)73,1 C2 Y2

Eqn.5.4

Eqn.5.5

and
Ar = (A — B2R/C)
A, = (A — lc' C2)

Eqn.5.6

The compensator has the structure of a full order optimal state estimator and a full state optimal

controller, expanding equation 5.3 we get the dynamic form of the compensator structure:

= (A + B2 F2 + L2C2 L2D22F).; (— L2). y

u =(F2).xc + (0).y
Eqn.5.7

The solution to the Riccati equations can be found without iteration. The above implementation is

also available using MATLAB's robust control toolbox function h21gg. Results using this

method are compared with hybrid genetic algorithms.

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.6

(iii) Solution by Genetic Algorithms:

We now outline the method used for solving the H2 problem using genetic algorithms and a pre-

defmed (fixed order) compensator. The generalized compensator K is given by (compare this with

equation 5.7 above):

= Ac .x, + Bc . y

=
Eqn.5.8

The above compensator can be of any order, and need not necessarily be the same as that of the

plant. The closed loop system is obtained by combining equations 5.2 with 5.8 into one single

augmented system [9], similar in principle to chapter 3:

Eqn.5.9
z =

The system is now in input w output z form, where the composite matrices are:

ri A. F A 	— B2 . Cc 	B,
Lx 	LBc . C2 	Ac 	LBc .D21 = [c, D12 CC Eqn.5.10

The closed loop transfer function from w to Z is given by the Laplace transform of equation 5.9,

thus: T = col- A yi B. If the disturbance w is a zero mean unit intensity white noise, then the
—

H2 norm from w to Z is given by the expression [7]:
2

IlTzw
= trace(Q.b.h

= trace(P.E

where Q and P are the observability and controllability gramians, found by solving either one of

the following Lyapunov equations:

A.P + P. + 	T = 0
TQ + Q. A + E' T =0

}

constraints Eqn.5.12

This is essentially a constrained optimization problem with one optimization function and one

constraint. This offers an alternative method for solving the H2 problem using genetic algorithms,

in which the order of the compensator can be constrained. This problem has been solved using

genetic algorithms [9], homotopy theory methods [10,11], and quasi-Newton/continuation methods

[12]. Homotopy methods described in 5.1.4, are essentially a gradient based optimization requiring

the calculation of a gradient of a lagrangian function (see also chapter 1.5). Note the addition of

further constraints such as Q>0 and P>0, which will be discussed in greater detail in section 5.2.

}minimize 	 Eqn.5.11

Chapter 5. Mixed H2/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.7

5.1.3 H.. Control Theory and State Space Solutions:

(i)Definition of the H., norm:

Given the following generalized plant and controller figure 5.4, the 1-1., problem is as follows: solve

for K such that the 11., norm of the transfer function IIT,Il is minimized, whilst ensuring internal

stability of the closed loop plant and controller. This problem is conceptually more difficult to

solve compared with the previous H2 norm problem:

minHT, 11 -

w
P

U
	 Y

K

Fig.5.4
Generalized Plant and Controller

The 1-1., is defined by the following equation 5.13 below:

IIT, IL = sup a.[T(j())1 	 Eqn.5.13
w

Thus the H,, is simply the maximum value of the singular value plot: a.[Tm (j())] over all

frequencies co, and sup is the least upper bound of the function (i.e. supremum).

(ii)Compensator using Conventional state Space Methods:

The optimal compensator K which minimizes 1-1., is given by the following expression, in packed

matrix notation:

K - [FA: 	 Eqn.5.14

where the individual matrices are given by:

il., = A + (B1 + L., D21)147., + B2 F., + Z .L.. C2 + Z..L.,D22 F.,
F.,= -R(R:+ B27' .X.,)

1
W.0 =—T2 BIT X,,

L...-(Y C2T +V.,),)Vy-y1

1
Z ..=11-

Y

i l

Eqn.5.15

Chapter 5. Mixed H 2/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.8

and where X., and Y. are the solutions to the following two Algebraic Riccati equations:

1 0 = X _A, + ArT X., + R R.,„Ic: Rxr. — X.(B2 R;„1 B2T — AK I y2)X.,
0 = Ae t + Y_AeT +lc., —KyV 1 11xyr — Y.,(CN 1 C2 — CiT C1 I y2)Y

Eqn.5.16

Note the presence of the y parameter. Consequently, the solution to the IL, problem requires an

iterative search over y in which y is minimized and equations 5.16 are satisfied, furthermore, we

also require that X.>0, Y.>0 and the solution to 2 Hamiltonian matrices must contain no

eigenvalues on the jo) axis (see reference. 3 pp.654). The H. is then given by: Il Tav <

(iii) Solution by Genetic Algorithms:

In a similar fashion to the H2 formulation, the 	problem can also be stated as follows: given the

generalized dynamic compensator K:

I, =•+B. y
= Cc .xc

Eqn.5.17

—
Where the composite matrices A, B ,C are given by equation 5.10. The R. compensator can be

found from the solution to the following minimization problem:

I I 112. = trace(Q.,.11.11 T)
= trace(P...C.C T)

}

minimize Eqn.5.18

where Q., and P.,, are the observability and controllability gramians, given by the solution to the

following Riccati equations

+PA T + -14 	+ 7 -- 2 R.E. .C-7. 	= 0
AT,,., .4_ 	+ 	.E. +y _2 Q.)-3. -AT 	0

This is essentially a constrained optimization problem with one optimization function and one

constraint. In summary, to find the compensator, we require to find the minimum value of y which

will minimize equation 5.18 subject to the constraint given by equation 5.19. The is then given

by: 1lTzw <y. This problem has been solved using homotopy theory methods [10, 11], and quasi-

Newton/continuation methods [12] using a Lagrangian function formulation, and Linear Matrix
Inequalities methods [21]. Genetic algorithms have not yet been applied to this problem. Note

also the presence of further constraints: Q., > 0, P,„ >0, and stability of closed loop system which

are discussed in section 5.3.

} constraint 	Eqn.5.19

Chapter 5. Mixed H 2/H_ Controller Syntheis With Hybrid Genetic Algorithms 	 P.5.9

5.1.4 Mixed H 2/H,.. Control Theory:

(i) Conventional Methods:

When dealing with mixed H2/K., control objectives, there are no direct design methods available to

finding the compensator K. As most specifications are given as multiobjective optimization

problems, then solving this type of problem becomes important. There are currently two methods

of dealing with mixed H2/H., control objectives: homotopy algorithms [16] and Linear Matrix

Inequalities (LMI) in [21]. Both methods are based on numerical optimization techniques and

require iterative search algorithms.

-Homotopy algorithms: or continuation methods, are based on algebraic and differential topology

theory [15] which can be used as a global search technique for nonlinear problems. Homotopy

algorithms can be used to solve complex optimization functions by first solving a simpler and

similar function in which a solution can easily be obtained, and then gradually distorting the

simpler function back into the original more complex function. At the same time also distorting the

solution of the simpler function into the original more complex function. A good introduction can

be found in [16]. Applications to H2 fixed order compensators using homotopy methods can be

found in [11, 17, 18], and to mixed H2/1-1., problems in [19], and more specifically for H c., problems

in [20]. Homotopy theory can also be used to solve nonlinear constrained and unconstrained

optimization problems. These methods are globally convergent for many complex optimization

problems, but can suffer ill-conditioning due to roundoff errors in numerical solution.

Convergence is strongly dependent on the ability to accurately track the solution curve which

depends on the deformation function.

-Linear Matrix Inequalities (LMI): has gained considerable popularity over the last few years.

Currently the theory of robust control is dealt with concepts of Linear Matrix Inequalities (LMI)

and convex optimization. Multiobjective H2 and control problems can be cast into a single

LMI framework which can be solved numerically with great efficiency using interior point or

cutting-plane methods. An excellent introduction to LMI applications and convex optimization in

control theory can be found in [23, 24, 30, 31, 43]. Applications using LMI dealing specifically

with only H2/LQG problems can be found in [21], and to FL, problems [27, 33]. Applications to

mixed H2 / Ho. control objectives using LMI's and convex optimization can be found in [22, 25, 34,

35 40, 44, 45, 46], for SISO systems [48], and discrete time systems [49, 50].

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.10

Because LMI uses a finite sum to approximate an infinite dimensional optimization variable (i.e.

Ritz approximation), the accuracy of the solution depends on the number of parameters used to

approximate the function.

Other variations to the mixed H2 / FL control problem includes a modified Riccati method [26] in

which the inputs w2 and 	are the same, a state space solution to the mixed H2/FL control

problem is given in [36, 39] under some mild assumptions, and using Lagrange multiplier methods

are given in [38]. Necessary and sufficient conditions for the solution to the IL/Hz problem can be

found in [47], applications to nonlinear FL control can be found in [29, 51,52, 53, 54, 55].

(ii) Solution by Genetic Algorithms:

Genetic algorithms have also been applied to the mixed HAL problem. Examples of applications

to robust control using genetic algorithms can be found in [13, 14], in particular for EL fixed

order compensators [56, 57]. Some examples specific to H2 control can be found in [9] dealing

with fixed order compensators, the mixed H 2/FL control problem has also been investigated using

a two-player Nash differential game theory [32], and genetic algorithms for SISO systems in

polynomial (/-1 form [37], and multiobjective applications [42].

The method we use is to combine the results obtained in sections 5.1.2 and 5.1.3 into one single

multiobjective optimization problem. Then the problem is to minimize the two functions:

subject to the constraints:

II 112
DTA: = trace(Q2 .i3.13'

}minimize
DTA1 = trace(a..B.B T

Eqn.5.20

constraint 	Eqn.5.21
- T 	 -T - 	-2 	-**-'7' A Q,„ + Q.,. A + C .0 + y Q.B.B 	0

Where: T2 is the transfer function from w2-9z2, and 71., is the transfer function from 	This

is described in more detail in section 5.4. A more relaxed approach would be to minimize the H2

norm subject to the constraint: fl_< y. Note also the necessary conditions of closed loop internal

stability and positive definite solutions to the Lyapunov and Riccati equations 5.21. To our

knowledge, this method has never been investigated using genetic and hybrid algorithms.

A T Q2 + Q2.71 + E T .E. = 0

Chapter 5. Mixed H 2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P3.11

5.2 H2 Controller Synthesis:
5.2.1 Simulation Setup:

For the first simulation, we synthesize a full order H2 compensator using conventional state space

methods, and compare with solutions obtained using hybrid genetic algorithms. For the second

part of the simulation, a reduced order compensator is synthesized using hybrid genetic algorithms,

and the result is compared with conventional (MATLAB) model reduction techniques on a full

order compensator. Convergence rates and computational effort for three hybrid genetic

algorithms are compared: (1) conventional genetic algorithms, (2) genetic algorithms and simulated

annealing, and (3) genetic algorithms and greedy search.

(i) Plant Model: For this simulation, the plant model is taken from reference [45] and is illustrated

below:

i = A.x + Bi .w + B2 .0
z2 = Cpx + Dir w + D12 .0

Z., =c2 •x+ D21 •W + D22 • U

y = C3 . X + D31 . W + D32 . u

The setup is depticted in Figure.5.5 below:

Eqn.5.22

1 	■ z2
P 	■ z.

Y

K

Fig.5.5
Simulation Setup Plant/Compensator

Thus we have a single disturbance input w and two performance output z2 and z>,. For this part,

the z..... is ignored and only the transfer function from w—>z 2 is considered. Note that one of the

conditions required for computing the H2 norm is that D 11 =0. The plant matrices are given by:

A =
0

— 1
[0

10
— 1
2

2
0

—5]

C, =
0 	1
0 	0
0 	0

0
I
0

B 1 =[1 	0 1] B2 = [0 	1 0]

D„ =[0 0 0] 	D 12 = [0 	0 1]

D 2 ,=[0 0] D„ =[0 	1]
D,,= [2] D„ = [0]

C, = [01 00 Cid C, 	= [0 1 0]

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.12

(ii) Compensator: The above system represents a 3 111 order linear dynamical system, for the

simulation we ignore any frequency dependent weights. Thus, the full order compensator would

then also be a 3rd order system. The compensator in state space is given by:

ic = Ac .xc + Bc . y

u = Cc .xc
Eqn.5.23

For the given plant model above, the compensator matrix sizes are: Ac E 913x3 , Bc E 9t3xl , and

Cc E 91 1x3 . Alternatively, the compensator may be written in input/output transfer function form,

for a 3rd order system, the transfer function from y to u is given by:

C S2
K(s) — 	3 	 Eqn.5.24

s +a 2 .s 2 +ar s+ao

The compensator given by equation 5.23 consists of a total of: 9+3+3=15 parameters, whilst the

second compensator of only 6 parameters. Clearly the first compensator is overparameterized.

The second compensator is in effect a minimal realization, which can be transformed into either

reachable or observable canonical forms, (see reference [59] pp.67) thus:

Ac =
0
0 [

—a0

1
0

—a 1

0
1

—a 2

Bc = 0
01

1
Cc =[co c, cd Eqn.5.25

Furthermore, note that the B, compensator matrix remains a constant, and only the A c and Cc

matrices are affected.

(iii) Closed Loop System: The closed loop system is obtained by combining equations 5.22 with

5.23 into one single (augmented) system:
—

Z2 =

zo =

Eqn.5.26

The system is now in input/output: w --> { z2, z.} form, where the matrices are:

[A 	B2 •Cc1 i. 3 	 _lc
Bc.q 	Ac 	13c.D31

D12 . Cc I C = [C2 D22 . Cc] Eqn.5.27

For the H2 simulation, only output z2 is considered. Simulation results are given in the following

pages.

OPEN
LOOP CLOSED

LOOP

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.I3

5.2.2 Conventional State Space Solution:

(i) Full order Compensator: The above H2 problem can be readily solved using MATLAB's

h2lqr function. The full order compensator which minimizes the H2 norm from input w to output

Z2 is given by (shown both in pole-zero and polynomial forms):

—0.023046(s + 4.618)(s —13.99)
K(s)— 	

(S + 5.095)(s
2

+ 1.383s + 9.912) full order compensator

— 0.02305s 2 + 0.2159s + 1.488

s

- 	

3
+ 6.478s

2
+ 16.96s + 50.5

The open loop H2 norm is 0.43390, and the closed loop: 0.40957. The presence of zero in the

positive half plane (13.99) results in a minimum phase compensator. The compensator eigenvalues

from K(s) above are given by: -0.6916 ± p.0714, -5.0948. Open and closed loop singular value

plots of 0.(7',24j())) are plotted in figure 5.6 below:

H, Singular value plots: w 	z2

	

3 	 1

	

10 	10 	10 	10

Fig.5.6
Open loop and closed loop singluar value plot of T,2,..,(s)

(ii) Reduced order Compensator: Model reduction can be used to obtain a reduced order

compensator (rd order). To perform model reduction the MATLAB function balreal is first

applied to the compensator which produces a balanced realization of the compensator. In this case,

the diagonal entries of the joint gramian are: 0.0450, 0.0300, 0.0003. Since the last state is weakly

coupled to the input/output, this state can be removed by using the MATLAB model reduction

function modred. This yields the following second order compensator:

1 0 0

10 1

10

10 -3

10 1
	

10 2
	10 3

OPEN
LOOP -------•

CLOSED LOOP /
REDUCED ORDER
COMPENSATOR

CLOSED LOOP
FULL ORDER
COMPENSATOR

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.14

- 0.019745(s -15.34)
2 	

(s +1.383s + 10.06) reduced order compensator

- 0.01975s + 0.3029

s2 + 1.383s + 10.06

With the reduced order compensator, the H2 norm of the closed loop system is 0.40958. In this case

the effect of model reduction does not degrade the performance of the closed loop transfer function

Taw . This can be seen from the singular value plot of the open loop, closed loop using full order

and reduced order compensator is shown in figure 5.7 below:

H, Singular value plots: w z2

■ 	 I

0 	 1 	 2
10 	 10

	
10

Fig.5.7
Open loop and closed loop using full order and reduced order compensator.

The singular value plot of the closed loop system with a full order compensator (plotted in blue) is

overlapped by the closed loop plot using the reduced order compensator (plotted in green). In this

instance, the model reduction works well due to the presence of a very weakly coupled state

(0.0003). A summary of the three H2 norms for each instance is tabulated below:

System: 1.16
Open Loop: 0.43390

Closed Loop (Full order compensator): 0.40957

Closed Loop (Reduced order compensator): 0.40958

10

-1
10

-2
10 	A

10

Table 5.1

Objective:

The objective of the genetic algorithm then is to find the compensator

parameters (a0021,a2,co,c1,c21 which will minimize the following function:

11 7 1 2 2 = trace(Q2.1-3.h T

Subject to the following constraints:

1. The existence of the solution to the lyapunov equation:
— T 	 —*T — A Q2 + 2 . A+ C .0 = 0, where Q2 is positive definite symetric ie: Q2

>O.

2. The closed loop system must be internally stable, ie: eigenvalues of
A must be stable. Controller must be stable, eigenvalues of /l c must be <
0. No eigenvalues on the j00 axis (ie marginally stable closed loop system).

Chapter 5. Mixed H2/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.15

5.2.3 Solution Using Genetic Algorithms:

The above H2 problem will now be solved using hybrid genetic algorithms as described earlier in

section 5.1.2. Both full order and reduced order compensators will be implemented and results

compared with those obtained using conventional methods above.

(i) Full order Compensator: Solution using genetic algorithms to the H2 problem was described

in section 5.1.2, this is briefly summarized below. The full order compensator is given by the

following dynamical system:

.t, = A,. x, + Be y
=

where the compensator matrices are given by the minimal realization in canonical form:

Eqn.5.28

1 0 0
Ac = 	0

[0

—a0

0
—a 1

1
—a2

 1
Bc = 0

1
Cc = [co c, cd Eqn.5.29

Combining with the plant model given by equation 5.22, we get the following closed loop transfer
— function from w to z2: thus: Taw (s) = C-2 (S/ — 	B , where the composite matrices are:

-62 =[q Divcc] Eqn.5.30

Bc .c3 	Ac 	B1 . D31

The H2 genetic algorithm is summarized below:

Chapter 5. Mixed H 2/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.16

The chromosomal representation for this problem is illustrated in figure 5.8 below:

a21 al I ao I c2 I Cl I co I I, 'Fitness

Fig.5.8
Chromosomal Representation for the H2 problem

where real number codification is used for { ao,a l ,a2,co,c 1 ,c2), the H2 value is computed as above,

and the fitness is the inverse of H2. Note that if any of the constraints are violated, then the

solution is infeasible and the fitness is set to zero. We chose to discard infeasible solutions rather

than attempting to use a repair algorithm because an infeasible solution results in an unstable

closed loop system. There are no direct repair algorithms which would directly produce a feasible

solution from an unfeasible one. Subsequently attempting to repair the infeasible solution would

instead require a second search using the infeasible chromosome as a starting point which would

not be as efficient. The solution to the Lyapunov function is found using a Hamiltonian matrix

approach. Because this problem is essentially a constrained optimization problem, a second

method for solving it would be to minimize the a Lagrangian function (see section 1.5.1), for

instance:

L(A„ Ac , Cc) = trace{(Q2.iiiiT)+Ax -AT -62 + 	 Eqn.5.31

Where L is the Lagrangian function to minimize, and is the multiplier matrix. This approach

however also requires solving for Q2 and X, matrices. Given that both Q2 and A, are symmetric and

size 6x6, a total of 21+21 parameters in addition to the 6 controller parameters. Equation 5.31 can

also be solved using gradient based optimization techniques or homotopy theory, see references [9,

10,19,28]. However Homotopy or gradient based optimization requires the computation of

gradients, for equation 5.28 we have: aL/ aA = 0, aLI ak= o, JL / aa, = o, 3L / aQ2 = 0 , a

total of 48 simultaneous equations. Furthermore, the computation of a Hessian of size 48x48 is

also required which could be numerically ill-conditioned. Simulation results using the GA

algorithm-1 from the previous page are tabulated below. For this algorithm we used: binary

tournament selection, crossover probability Pc=0.5, mutation probability Pm=0.2, full order

compensator, population size= 100, uniform weighted average crossover. We ran the simulation 5

times due to illustrate the probabilistic nature of the GA, results are tabulated in table 5.2 below.

Each simulation runs for 250 generations, the first (red) row is the solution obtained with

conventional matlab methods from section 5.2.1. Computational effort is approximately 370MFP

for 250 generations.

• Geinetic Algorithms

• Conventional Matla

2
...

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.17

a2: a l : 	a.: b 2 : b i : 	60 : II,:

f 4395 7 -.

7.165 	17.90 	57.3 -0.0232 0.2034 1.693 0.409574
6.592 17.12 51.6 -0.0231 0.2144 1.522 0.409574
7.030 17.71 56.0 -0.0233 0.2062 1.652 0.409574
6.948 17.60 55.2 -0.0232 0.2071 1.629 0.409574
7.105 17.81 56.7 -0.0233 0.2044 1.675 0.409574

Table 5.2

Results from table 5.1 indicate that some of the controller parameters have a less influential effect

upon the outcome of the computation of the H2 norm. For instance the parameter b2 is nearly

always the same, whilst the a 2 parameter is more variant. For the second row in table 5.2, the

compensator transfer function obtained with genetic algorithms may be written as for comparison

withconventional MATLAB solutions:

-0.023222(s+ 5.217)(s-13.98)

(s+5.784)(s 2 +1.382s + 9.914)

-0.02322s
2 +0.2034s +1.693

s3 +7.165s 2 +17.9s + 57.34

GA full order compensator

The compensator eigenvalues from K(s) above are given by: -0.6908 ± j3.0719, -5.7836. Figure

5.9 below compares the singular value plot of the closed loop system vv-9z2 for the solution

obtained with genetic algorithms and conventional methods. The curves are identical and overlap.

closed loop singluar value plot w->z2

1 0

-3
10

-3
10

	

2 	3
10 	10 	100 	10 	10 	10

Fig.5.9
Comparing singular value plots: GA and Conventional Methods

(ii) Reduced order Compensator: A reduced order compensator (2nd order) can be implemented

directly by defining the compensator structure as:
jc, = Ac .xc +Bc y

= 	
1 Eqn.5.32

u Cc.xc

Chapter 5. Mixed H 2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.1 8

Where the matrices for the reduced order compensator are given by:

0 	1 	0
A, = au 	B, =[1 1 C, = [c„ c,1

-aj
Eqn.5.33

Again, the simulation is repeated for this system, and results are tabulated in Table.5.3 on the

following page. From table 5.3, we can see that the results using genetic algorithms agree well

with the results obtained using conventional methods (shown in red in the first row of table 5.3).

For this algorithm we used: binary tournament selection, crossover probability Pc=0.5, mutation

probability 13,,=0.2, population size=100, uniform weighted average crossover, generations=300.

We repeated the simulation 5 times to illustrate the probabilistic nature of the GA. In this case,

there is less variation in convergence when compared to the full order compensator (table 5.1), i.e.:

the GA algorithm converges to the same solution in all cases.

a2 a l ao b2 b 1 bo 112

1.383 10.06 -0.0197 0.3029 0.40958

0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579
0.000 1.386 10.04 0.000 -0.0196 0.3033 0.409579

Table 5.3

Figure 5.10 below illustrates a typical convergence plot of the genetic algorithm. Convergence is

generally within the first 50 generations, after which the population has nearly converged to a

single solution. Note that this is a plot of H 2-H2 , where H2 is the fittest value in the population,

currently found by the GA and H 2„,,„ is the target value = 0.4096.

Convergence Plot: H 2-H2r. (H2. = 0.4096)
0.018

0.018

0.014

0.012

0.01

0.008

0.006

0.004

0.002

so 100 150

Fig.5.10
GA Typical Convergence Plot

many possible compensator
structures

• 	 ■
wealcglobal minimum

H2

Chapter 5. Mixed H2/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.19

Computational effort: conventional state space solution requires approximately 0.25MFP, and

several seconds of computational time (Pentium BI/750MHz). Genetic algorithms however require

780MFP and approximately 100 seconds of computation time for 300 generations. Thus whilst

genetic algorithms can give a direct solution to fixed and reduced order compensators, the

computational overheads are very high. Table 5.2 illustrates the convergence properties of the

genetic algorithm. The variation of the compensators found is attributed to the presence of the

wealdy coupled state (0.0003). This means that the solution has a weak global minimum within a

wide global minimum. The figure below illustrates this concept:

compensator parameters

Fig.5.11

This problem is no longer present for the reduced order compensator as seen from table 5.3. The

poor gradient prohibits the GA from locating the weak global minimum. Table 5.2 shows that the

H2 is nearly identical in different compensators, and therefore the function minimum is nearly flat.

5.2.4 Convergence Rates for Hybrid Genetic Algorithms:

This last set of simulations compare the convergence rates of the three different hybrid genetic

algorithms: (a) conventional genetic algorithms, (b) genetic algorithms and simulated annealing,

and (c) genetic algorithms and greedy search. Figure 5.12 below compares the convergence rate of

the three algorithms for the full order compensator. Both hybrid methods converge much more

rapidly compared with the conventional genetic algorithm. Computational effort compared with

conventional matlab H2 design is summarized in table 5.4 below with accuracy set at 10 -7 (i.e.: H2-

H2nun <

Method: MFLOPS Design Time:

Conventional matlab: 0.25 < 1 sec
GA: 80 10 sec
GA + Simulated annealing 30 4 sec
GA + Greedy Search: 25 3 sec

Table.5.4

1 h2412min
Full Order Compensator: Red:GA Orsen:SA Blufwereedy

10

•

-2
10

-3
10

-4
10

-5

-6

10 .

10 —

7
10 	

Chapter 5. Mixed H2/1-L. Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.20

10
	

30 	40 	50 	60 	70 	80 	90 	100

MFP computational effor (MFP)
Fig.5.12.A

Convergence rates for: GA, GA+SA, GA+GS (full order compensator)

.1 h2-h2min
Reduced Order Compensator: Red:GA Green:SA Blue::Greedy

10 	20 	30 	 40 	 50 	60 	70 	80

MFP computational effor (MFP)

Fig.5.12.B
Convergence rates for: GA, GA+SA, GA+GS (reduced order compensator)

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.21

5.3 lico Controller Synthesis:

5.3.1 Simulation Setup:

For these next set of simulations, we apply hybrid genetic algorithms to the design of full order and

reduced order compensators. Results are compared with conventional state space solutions and

model reduction techniques.

(i) Plant Model: For this simulation, the same plant model as used in the previous section 5.2 is

applied to the FL, compensator design:

= A.x+Brw+B2 .0

z2 = Cr x + 	+ D12 .0

= 	X + D21 .W + D22 ./4

y = q•x+ Dm • W + D32 • U

This is illustrated in figure 5.13 below:

Eqn.5.35

Z 2

	 z

K

Fig.5.13
Simulation Setup Plant/Compensator

In this instance, we wish to minimize the transfer function from the exogenous input w to the

performance output zo.,. For this part, the z2 is ignored and only the transfer function from

is considered. The transfer function is denoted by: T(s), and plant matrices are identical to

the ones in the previous section.

(ii) Compensator: Again, a compensator in state-space is sought with the form:

In transfer function form:

= A,. x + Bc . y

=
Eqn.5.36

2
K(s) — 	3 	 Eqn.5.37

S +a2" S 2 +a1 - s+ao

Where equations 5.32 and 5.33 are related using a minimal realization in reachable canonical form

as previously described in section 5.2.

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.22

(iii) Closed Loop System: The closed loop system is obtained by combining equations 5.22 with

5.23 into one single augmented system:

}

Eqn.5.38

The system is now in input/output form, where the matrices are given by equations 5.27. For the

}1., simulation, only output z,.. is considered. Simulation results are given in the following pages.

5.3.2 Conventional State Space Solution:

(i) Full order Compensator: The above 1-1,. problem can be readily solved using MATLAB's

hinf() function. The full order compensator which minimizes the 11„. norm from input w to output

Z2 is given by (both in pole-zero and polynomial forms):

K(s) -
- 0.36083(s - 3.124)(s + 5.387)

(s + 5.118)(s2 + 3.372s + 14.66)

-0.3608s2 -0.8165s+ 6.073
- s3 +8.4982 +31.92s + 75.04

full order compensator

The open loop BL„, norm is 1.52705, and the closed loop: 0.58021. The presence of zero in the

positive half plane (3.124) results in a minimum phase compensator. The compensator eigenvalues

from K(s) above are given by: -1.6862 ± j3.4379, -5.118. Open and closed loop singular value

plots of a(Tz24 j co)) are plotted in figure 5.14 below:

H.. Singular value plots: w -, z_

CLOSED
LOOP

10 1

0
10

10

io"' 	10 0 	10 1
	

10 2

Fig.5.14
Open loop and closed loop singular value plot of '4..(s)

OPEN
Logy

0

-2
10

-1
10 	 10

Singular value plots: w
10 1

CLOSED LOOP
FULL ORDER
COMPENSATOR

CLOSED- +.490P 	 -
REDUCED ORDER
COMPENSATOR

10 1 1 0
2

10

-1
10

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.23

(ii) Reduced order Compensator: Model reduction can be used to obtain a reduced order

compensator (2nd order). To perform model reduction the MATLAB function balreal is first

applied to the compensator which produces a balanced realization of the compensator. In this case,

the diagonal entries of the joint gramian are: 0.1082, 0.0682, 0.0005. Since the last state is weakly

coupled to the input/output, this state can be removed by using the MATLAB function modred.

This yields the following second order compensator:

- 0.3665(s - 3.114)
K(s) - 	2

(s + 3.303s +14.3) reduced order compensator

-0.36658+1.141

s2 + 3.303s +14.3

With the reduced order compensator, the 1-1.. norm of the closed loop system is 0.58124. In this

case the effect of model reduction only mildly degrades the performance of the closed loop transfer

function Tz.„,. A singular value plot of the open loop, closed loop using full order and reduced

order compensator is shown in figure 5.15 below:

Fig.5.15
Open loop and closed loop using full order and reduced order compensator.

The singular value plot of the closed loop system with a full order compensator (plotted in blue) is

overlapped by the closed loop plot using the reduced order compensator (plotted in green). In this

instance, the model reduction works well due to the presence of a very wealdy coupled state

(0.0005).

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.24

Table 5.5 below summarizes the results with conventional Ho., design:

System: II...
Open Loop: 1.52705

Closed Loop (Full order compensator): 0.58021

Closed Loop (Reduced order compensator): 0.58124

Table 5.5

5.3.3 Solution Using Genetic Algorithms:

The above H.. problem is now solved using hybrid genetic algorithms as described earlier in section

5.1.3. Both full order and reduced order compensators will be implemented and results compared

with those obtained using conventional methods above.

(i) Full order Compensator: Solution using genetic algorithms to the H.. problem was described

in section 5.1.3, this is briefly summarized below. The full order compensator is given by equation

5.29 above, the objective is to minimize the H.. norm of the following closed loop transfer function:

&(s1 —

where the composite matrices are:

A — B2 .Cc
1— 13 =[4 LBc . 	Ac 	Bc. D31

This can be accomplished by minimizing the trace of the matrix:

11 1/112... =

subject to the constraint:

Eqn.5.39

=[c D22 . Cc 	Eqn.5.40

Eqn.5.41

Eqn.5.42

where Q., is the observability gramian, given from the solution to the Riccati equation. This is

essentially a constrained optimization problem with one optimization function and one constraint.

Thus to find the solution, we require to find the minimum value of y which will minimize equation

5.41 subject to the constraint given by equation 5.42. The H.. is then given by: °TZJ <y. Note

also the presence of further constraints such as Q..> 0, and stability of closed loop system which

are discussed in section 5.2.

Chapter 5. Mixed H 2/11_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.25

Unlike the H2 problem, the FL is not truly optimal, this is because we are attempting to minimize

both y and equation 5.41. This can be viewed as a multiobjective problem, and as such may lead

to a family of solutions. This problem can be solved in a number of ways, using Pareto optimality,

Nash equilibria or composite cost function method (see chapter 1.5).

The simplest is to use a composite function as follows: f;=(hx+axy), where

hx = trace(a..h.hT), with alpha being made to vary to see the effects of adding more emphasis

on one parameter agaist the other.

The complete genetic algorithm is summarized below, there are two possible alternative

simulations: single objective and multiobjective:

Single - Objective:

The single objective genetic algorithm is to find the compensator parameters

(ao,alia2,co,ci,c2) which will minimize the following function:

minimize: 2
OHL =

subject to 'Y<Yo, where yo is a user specified design goal

Multi - Objective:

The multi-objective genetic algorithm is to find the compensator parameters

{ao,ci i ,a2,co,cbc2) which will minimize the following function:

minimize: IHE = trace(Q,..ji.FI T) -F a.y

Subject to the additional following constraints:

1. The existence of the solution to the Riccati equation:

A 	+ Q.,.A+ET 	y -2 aji = 0 , where Q., is positive

definite symetric ie: Q ,. >0.

2. The closed loop system must be internally stable, ie: eigenvalues of A must
be stable. Controller must be stable, eigenvalues of 	/lc must be < 0. No
eigenvalues on the jo3 axis (ie marginally stable closed loop system).

""' 3. Verify the stability of the Riccati Solution thus: A. = A +
where A, must be positive definite.

Fig.5.16

Chapter 5. Mixed H 2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.26

Thus, the problem can be defined and solved in several different ways, simulation results are given

in the following pages. The chromosomal representation for this problem is illustrated below.

a2 la1 I an I e2 Cl

hi A I Fitness

Fig.5.17
Chromosomal Representation for the 1-1.., problem

The genetic algorithm conducts a search over (ao,al,a2,co,chc2,y) using real number codification,

and where: hx = trace(Q„..h.h r), the composite cost functional: fAh„-i-(xxy), and the fimess is

the inverse: Fitness=1Ifi. The presence of the parameter a can be used to see the effects on rate of

convergence and final solution by varying alpha. Note that if any of the constraints are violated,

then the solution is infeasible and the fitness is made zero. The solution to the Riccati equation Q..

is found using a Hamiltonian matrix approach. Because this problem is essentially a constrained

optimization problem, a second method for solving it would be to define a Lagrangian function,

similar to the H2 problem discussed in section 5.2.3. Alternatively, rather than attempting to find

the minimum value of y which will minimize equation 5.41, we could simply set a constraint on y

(design goal), for instance y0.7, and only minimize equation 5.41. This problem then becomes a

single objective rather than multiobjective constrained optimization problem. Simulation results

using the GA algorithm-2 from the previous page are tabulated below. For this algorithm we used:

binary tournament selection, crossover probability P=0.5, mutation probability P.=0.2, full order

compensator, population siz60, uniform weighted average crossover.

(a) Sinale Objective: design aoal: aamma50.7:

In this simulation, we minimize equation 5.37 and set a constraint on gamma thus: y0.7. We ran

the simulation 5 times due to illustrate the probabilistic nature of the GA, results are tabulated in

Table-5.6 below:

gen: az a 1 a() C2 Ci Co He.

8.49 31.92 75.04 -0.36 -0.816 6.073 0.5802

500 8.62 34.13 75.25 -0.447 -0.893 6.650 0.5511
500 8.69 34.42 76.41 -0.447 -0.928 6.754 0.5510
500 8.47 33.64 73.20 -0.445 -0.839 6.488 0.5515
500 8.43 33.46 72.49 -0.446 -0.816 6.420 0.5513
500 8.40 33.28 71.81 -0.447 -0.791 6.349 0.5511

Table 5.6

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.27

Figure 5.18 below compares the singular value plot of Tz_„. using conventional state space and

genetic algorithms for the design goal: gamma<0.7. Results are nearly identical.

closed loop singluar value plot w —> z_
10

4—*-00 NVENTI0 NAL
SOLUTION

10

GA p:)LUTION I

10

-3
10

1 0 -3 1 02 	1 0 	 10 ° 	10 1 	 1 0

Fig.5.1 8
Comparing singular value plots: GA and Conventional Methods

This next plot illustrates the effects of decreasing the value of gamma. Values of gamma are: 1,

0.9, 0.8, 0.7, 0.6. The green plot is for y=1, with the red plot furthest away at y=0.6.

Closed loop singular value plot of w

y= 0.6

V
decreasing

gamma

decreasing
gam ma

10 2 	
10 -1 	 1 '0 °

	
1 0 1
	

10 2

Fig.5.19

Because of the weakly coupled state (0.0005), a family of compensators can be implemented which

will satisfy the requirements for y0.7 or any other value of gamma. For gamma -y0.5, no

solution exists.

• a=0.1 CA solution

111 a=1.0 GA solution

• a=10 GA solution

conventional solution

Chapter 5. Mixed H 2/1-1... Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.28

(b) Multiobiective: minimize fx=(h)r+axyl

In this simulation, we minimize the composite cost functional which defines a multiobjective

problem. We ran the simulation for different values of a to see the effects of a on the final

solution. Note the additional constraint of gamma<1. Results after 500 generations are tabulated

in Table-5.7 below:

a2 at ao c2 Cl co H.. Alpha.

8.49 31 75.04 -0.36 -0.816 6.073 0.5802

8.00 32.32 64.54 -0.48 -0.588 5.902 0.5406 1.0

8.33 33.11 71.10 -0.44 -0.779 6.301 0.5501 0.1

8.01 37.51 59.75 -0.72 -0.600 7.166 0.4865 10

Table 5.7

From table 5.7, in the first simulation, the value of a=1 places equal emphasis on both minimizing
—
A l'— the function hx = Cc.,(s1 —) B and gamma. In the second simulation less emphasis is placed

on gamma, and in the third simulation greater emphasis is placed on minimizing gamma. The

singular value plots of the three simulations is shown in figure 5.20 below:

10 2

10 2 10 	10 0 	10 1 	10 2 	10
Fig.5.20

Comparing singular value plots: GA and Conventional Methods

Whilst all solutions give an almost identical singular value plots, some shaping can be achieved by

the choice of a. In particular, larger values of a=10 give a flatter response (green curve). Values

of a<I have little influence on the response.

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.29

Figure 5.21 on the following below illustrates a typical convergence plot, convergence is generally

within the first 100 generations of the GA.

1.05

1 0 	
20 	40 	60 	so 	100 	120

	
140
	

160
	

180
	

200

Fig.5.21
Convergence of the genetic algorithm

(ii) Reduced order Compensator: A reduced order compensator (2nd order) can also be

implemented directly by defining the compensator matrices as:

= L- ° 	1 	[°1] Ce = [co Eqn.5.43

Again, the simulation is repeated for this system, and results are given on the following pages.

(a) Single Objective: design goal: gamma<0.70:

In this simulation, we minimize equation 5.41 and set a constraint on gamma thus: -10.7, results

are tabulated in Table-5.8 below. From table 5.8, we can see that the results using genetic

algorithms agree with the results obtained using conventional methods (shown in red in the first

row of table 5.8). For this algorithm we used: binary tournament selection, crossover probability

Pc=0.5, mutation probability P m=0.2, population siz60, uniform weighted average crossover,

generations=1000. We ran the simulation 5 times to illustrate the probabilistic nature of the GA.

In this case, there is less variation in convergence when compared to the full order compensator

(table 5.7), i.e. the GA algorithm converges to the same solution in all cases. The red values in

table 5.8 are the compensator coefficients obtained using MATLAB's FL design and model

reduction. The results obtained using genetic algorithms produce a compensator with a lower FL,

values.

-2

Chapter 5. Mixed H 2/H.. Controller Synthesis With Hybrid Genetic Algorithms 	 p30

gen: a2 a 1 ao C2 C1 Co H._
3.303 14.3 -0.366 1.141 0.58124

1000 0.000 3.863 15.5 0.000 -0.462 1.364 0.55130
1000 0.000 3.822 15.4 0.000 -0.456 1.352 0.55098
1000 0.000 3.849 15.5 0.000 -0.460 1.360 0.55160
1000 0.000 3.858 15.5 0.000 -0.461 1.362 0.55102
1000 0.000 3.861 15.5 0.000 -0.461 1.364 0.55113

Table 5.8

Figure 5.22 below compares the singular value plot of the reduced order compensator obtained

using genetic algorithms with conventional model reduction techniques:

0
	 reduced order ccopensator. red=GA, green=cawentional

10

10

10

10 -2 10 -1 10 0 10 1 10 2

Fig.5.22
Comparing singular value plots: GA and Conventional Methods Reduced order compensator

Figure 5.22 shows that whilst the genetic algorithm compensator has a slightly lower peak (Flo.

norm), it has a higher singular value over most of the frequency range from 10 -2 to 10+ 2 .

(b) Multiobiective: minimize fx=(hx+ccxy)

In this simulation, we minimize the composite cost functional for 3 different values of a: (1, 0.1,

10). Results for this simulation after 1000 generations are tabulated in table-5.9 below:

az a l ao C2 CI Co Y FL a
3.303 14.3 -0.366 - 0.58124

0.000 4.032 15.9 0.000 -0.494 1.441 0.6485 0.54139 a=1.0

0.000 3.337 14.3 0.000 -0.369 1.146 1.0000 0.58123 a=0.1

0.000 6.599 22.4 0.000 -0.991 2.477 0.4931 0.48132 a=10

Table 5.9

10

1 0

2

a=1

a=0.1 	

a=10

increasing
alpha
lo‘+s
peak

increasing
alpha

raises rest
of curve

Chapter 5. Mixed HAL Controller Synthesis With Hybrid Genetic Algorithms 	 p.5.31

Comparing the results of the simulation from table-5.9, we can clearly see that when alpha=0.1, the

compensator obtained with genetic algorithms is identical to that obtained with conventional model

reduction techniques. This indicates that the choice of alpha should be less than one if

implementing reduced order compensators with genetic algorithms.

Figure 5.23 below is a singular value plot of the results obtained using genetic algorithms for the

reduced order compensator for the 3 different values of alpha:

reduced order compensator: alpha: red=0.1 blue.] green=10

10
-2 	 -1 	 0 	 1

	
2

10 	 10 	 10 	 10
	

10
Fig.5.23

Comparing singular value plots for different alphas.

From figure 5.23, increasing the value of alpha simply places more emphasis or penalty on gamma,

thus it would be expected that for large values of alpha, the peak of the singular value plot is

lowered at the expense of raising the rest of the curve.

In summary, implementing FL compensators with genetic algorithms, there are two possible

scenarios, the first would be to minimize equation 5.41 subject to the constraint given by equation

5.42. The compensator would then have the property: 11., < y. Note that if y is chosen too small, a

solution may not exist. A second method is to minimize the composite cost functional:

fx=(hx+axy), where hx = trace(Qc...h.h T)
, with alpha set to less than one.

10

Hint

10

1 0

10 — 	

1 0 — 	

10

...........

50 	 100 	 150 	 200 	 250

-6
10

0

Chapter 5. Mixed H2/1-1_ Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.32

5.3.4 Convergence Rates for Hybrid Genetic Algorithms:

This last set of simulations compares the convergence rates of the three different hybrid genetic

algorithms: (a) conventional genetic algorithms, (b) genetic algorithms and simulated annealing,

and (c) genetic algorithms and greedy search. In all cases, the convergence rates differ

significantly.

Figure 5.24 below compares the convergence rate of the three algorithms for the full order

compensator. The red plot is the conventional genetic algorithm, the green plot is the hybrid

genetic algorithm + simulated annealing, and the blue plot is the hybrid genetic algorithm + greedy

search strategy. Both hybrid methods converge much more rapidly compared with the

conventional genetic algorithm.

Full order compensator:
Red:GA Gmen:SA Blue::Greedy

MFP computational ettor (MFP)

Fig.5.24

Figure 5.25 below shows the convergence properties of the 3 genetic algorithm methods for the

reduced order compensator.

	

_ • : _ . 	f 	------ 	 	-- - z --

	 GA

.4\
50 	100 	150 	200 	250 	300 	350 	400 	450

M FP computational effor (M FP)

9
10

-10
10

0 500

-
1 0

2

-3
10

-4
10

-5
10

-6
10

-7
10

.
10

8

Fig.5.25

5.4 Mixed H2/1-10,3 Controller Synthesis:

5.4.1 Simulation Setup:

For the last set of simulations, we apply genetic algorithms to the design of full order and reduced

order compensators with mixed H2/FL specifications. This is in essence a combination of the two

previous methods, and represents a multiobjective optimization problem. Currently there is no

direct design solution to this problem. The only two iterative numerical optimization methods are

Homotopy theory, and linear matrix inequalities (a convex optimization approach). These were

discussed earlier in section 5.1.4.

(i) Plant Model: For this simulation, the same plant model as used in the previous section 5.2 is

used for 1-1,„, design:

A.x -1-131 .w B2 .0

z2 = Crx + Dir w+ 4 2 .0

z. = C2 • X + D2i • W D22 • u
y = cy x + D31 . w+ D32•U

Eqn.5.45

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms
	

P.5.33

Red:GA Green:SA Blue:Greedy
10

" 2 ----- • ----- - 	-
Hint

-1

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P3.34

This is illustrated in figure 5.26 below:

Fig.5.26
Simulation Setup Plant/Compensator

The objective is to minimize the H2 norm from the exogenous input w to the performance output z2.

Additionally, we wish to either minimize the IL from w to z„,,, or a more relaxed approach would

be to satisfy the constraint: H., < y, where y is some design goal. Again, to minimize the H2 norm

we simply minimize the function:

f2 = Q2. F3. h T

and to minimize the , norm we minimize the function:

Eqn.5.46

= trace(a..h.li)+ a. y 	 Eqn.5.47

(ii)Compensator: Again, a compensator in state-space is sought with the form:

In transfer function form:

= Ac . x +B. y
= Cc .;

Eqn.5.48

K(s)-
C2 .S

2
1-C1 .S+ Co

Eqn.5.49
s3 + a2 .s 2 + ap s-F a o

Where equations 5.43 and 5.44 are related using a minimal realization in reachable canonical form

as previously described in section 5.2 (equations 5.28).

(iii) Closed Loop System: The closed loop system is obtained by combining equations 5.22 with

5.23 into one single (augmented) system:

+ h.w

Eqn.5.50 Z2 = crx

= co..x

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.35

The system is now in input/output: w -->f z2, 	I form, where the matrices are given by equations

5.27. In the mixed H 2/FL, simulation, both z.., and z2 outputs must be considered.

5.4.2 Solution Using Genetic Algorithms:

Both full order and reduced order compensators will be implemented and results compared with

those obtained using conventional methods above. The complete genetic algorithm is summarized

below:

Multi-Objective:

The multi-objective genetic algorithm is to find the compensator parameters:
fao,a i ,a2,co,c1,c2,y1 which will minimize the following functions:

f2 =

f = trace(Q,...h.i3 T)+oc.?

Subject to the additional following constraints:

1. The existence of the solution to the Riccati equation, where 	is positive definite
symetric: Q,. > 0.

ATa. 	 T -6..+7_2 a,..idire", . 09

2. The existence of the solution to the Lyapunov equation: where Q2 is positive definite
symetric: Q2> 0.

A TQ2 62. A + .e.12 7. • =0

3. The closed loop system must be internally stable, ie: eigenvalues of A must be
stable. Controller must be stable, eigenvalues of Ac must be <0. No eigenvalues on
the jce axis (ie: marginally stable closed loop system).

4. Verify the stability of the Riccati solution, where Ar must be positive definite:

Ar = A

Fig.5.27

(i) Full order Compensator: The chromosomal representation for this problem is illustrated

below:

Chapter 5. Mixed I-12/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.36

az I al I ao I cz I ci I co I I Y 1 12 f..1 Fitness

Fig.5.28
Chromosomal Representation for the mixed Hz/H. problem

The genetic algorithm conducts a search over (ao,al,a2,co,c1,c2,TI using real number codification,

and where: the fitness is given by the inverse of the composite cost functional:

Fitness — 	
12+ 1c.

Eqn.5.51

If the solution is feasible, however if any of the constraints are violated, then the solution is

infeasible and the fitness is made zero. Note the additional constraint y<1. The presence of the

parameter K (>0) can be used to see the effects of the final solution by varying relative emphasis on

the H2 or FL components. In the following simulations, the value of K is set to: 0.1, 1, 10, the

value of alpha is fixed c0.1. For this algorithm we used: binary tournament selection, crossover

probability Pc=0.5, mutation probability P„,=0.2, population siz50, uniform weighted average

crossover, generations=1000. Results are tabulated in Table-5.10, 5.11, 5.12 for values of x-=0.1,

1, 10 respectively below:

v=0-1: In this simulation, more emphasis is placed upon minimizing the H2 norm of the w—>z2

transfer function by choosing K=0.1. Subsequently, the results would give a compensator

which is closer to the H2 compensator obtained in section 5.2. Looking at figure 5.29, the

top graph compares the response of the mixed H2/FL compensator with that of only the H2

compensator obtained in section 5.2, the bottom graph compares the response of the mixed

H21FL compensator with that of only the FL compensator obtained in section 5.3. We can

see that the closed loop response matches the H2 response better as more emphasis was

placed on minimizing the 12 function. Note the additional constraint that .-)11. Total

iterations=400.

x=1.0: In this simulation, equal emphasis is placed on both minimizing the H2 norm of the w-3z2

transfer function and the H., norm of the w—n,„,, transfer function by choosing ic=1.

Subsequently, the results would give a compensator which is a compromise between the H2

compensator obtained in section 5.2, and the H., compensator obtained in section 5.3.

Chapter 5. Mixed H2/H. Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.37

Looking at figure 5.30, the top graph compares the response of the mixed H2/H.,

compensator with that of only the H2 compensator obtained in section 5.2, the bottom

graph compares the response of the mixed H 2/11., compensator with that of only the H.,

compensator obtained in section 5.3. We can see that the closed loop response is an

attempt to simultaneously match both the H2 response and FL Total iterations=400 in

each simulation.

x=10: In this simulation, more emphasis is placed upon minimizing the H.. norm of the w—n..

transfer function by choosing x=10. Subsequently, the results would give a compensator

which is closer to the Ho. compensator obtained in section 5.3. Looking at figure 5.31, the

top graph compares the response of the mixed H2/11., compensator with that of only the H2

compensator obtained in section 5.2, the bottom graph compares the response of the mixed

H2/11„. compensator with that of only the H.. compensator obtained in section 5.3. We can

see that the closed loop response matches the 1-1., response better as more emphasis was

placed on minimizing the f.. function. Total iterations=400.

Table 5.10 below gives the compensator coefficients for the three values of K. Note that as the

value of x increases from 0.1 to 10, more emphasis is placed on reducing the H., norm,

subsequently this value is smallest when x=10. However as the value of H., decreases, the value

of H2 invariably increases. The choice of K determines the compensator coefficients.

Consequently, when synthesizing a mixed H 2/H., compensator, first select the desired upper value

of H., < y, and then compute the compensator coefficients to minimize the H2 norm.

The red values of H2 and H., in table 5.10 are computed from individual H2 and H.. designs

(section 5.2 and 5.3) and do not represent a mixed HAI_ design. However as ic-40, then

H2-30.4096, however as)c—>00, then H.,—>0.5802.

ic a2 ai a() c2 c1 co H2 H..

0.4096 0.5802

0.1 8.782 21.570 74.957 -0.054 0.034 3.357 0.4161 1.0000

0.8798 1 8.272 26.675 71.140 -0.179 -0.346 5.111 0.4556

10 7.949 30.786 68.717 -0.319 -0.688 5.802 0.5020 0.8591

Table 5.10

10 -2
1o 2

-2
10

-
10

2

Ic=10 :

io °
H 2 : 22)-2 Z2 Transfer function

10 ° 10 2
10 2 	

2 10 -

H2 only

10 1

10 ° 10 2

H.. only

10'

M ixed H 2/H- with
Genetic Algorithms

10 .1

2 to' 10 10 10
Fig.5.30

H2: 	-2 Z2 Transfer function

M bed Ht/H.. with
Genetic Algorithm s

10 2 1 0
-2

10 	 10 10 °

: w-2 2. Transfer function

H..: w—*z. Transfer function
10 °

10

Fig.5.29

H2: W-2,22 Transfer function

Mixed H2/H.. with
Genetic Algorithms

10

H.: w -2t. Transfer function

Mixed H2/H— with
Genetic Algorithms

10

10

10

Mixed H2/H- with /4
Genetic Algorithms

10
	

1 0'
	

10 2

ic=1:

10 °

1 0

10

1 0

10

- 2
10

H.. only
	M ixed H2/H_ with

Genetic Algorithms

Chapter 5. Mixed H2/H. Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.38

102 .1 10 	 10 ° 	 10'
Fig.5.31

=
[—a„ —a,1

k . 	[1 Cc = [c„ c,] Eqn.5.52 0 	1 	0-

Chapter 5. Mixed H2/H.. Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.39

(ii) Reduced order Compensator: A reduced order compensator (2nd order) can be implemented

directly by defining the compensator matrices as before:

Again, the simulation is repeated for this system, and results are tabulated in Table.5.13 on the

following page. For this algorithm we used: binary tournament selection, crossover probability

P=0.5, mutation probability P m=0.2, population size=60, uniform weighted average crossover,

generations=400.

K az al ao C2 C1 Co H 2 H.,

0.4096 0.5802

0.1 0.000 1.544 10.311 0.000 •-0.057 0.458 0.4161 1.0000

1
_

10

0.000 2.477 12.009 0.000 -0.194 0.846 0.4560 0.8796

0.000 3.207 13.957 0.000 -0.340 1.103 0.5014 0.8591

Table 5.11

Table 5.11 above summarizes the results obtained with genetic algorithms for the reduced order

compensator with values of K=0.1, 1, 10 respectively. For each value of K, the simulation was

conducted 5 times to observe any variation in convergence, and in each instance the results were

identical, consequently only one result is given for each K. Figures 5.32, 5.33, 5.34 below compare

the reduced order mixed H211-1_ compensator obtained using genetic algorithms with the

conventional H2 and Hoo compensator obtained using state space solutions. Again, with K=0.1, the

compensator is much like the H2 compensator. With K=1, the compensator is an in-between

compromise between the H2 and Hoo compensator, and finally when K=10, the compensator

becomes much more like the Ho., compensator.

10 10 	 10 1
H.: w-. z. Transfer function

10

1 0

10

10

-2
10

0
10

10 2

ic=1:
10

10

-
10

2

10 2 10

10 2 10 °

Fig.5.32

Transfer function

•2
10

0

10

10

: 1V-+ z

M ixed H2/H_
Genetic Algorithms

with

-2 -1
10

H2: 1V-I Z2

Transfer function

Mixed Hz/H. with
Genetic Algorithms

H2 only

H2 only

M ixed H 2/H _ with
Genetic Algorithms

•2
10

-
10

2
 10 2 1 	°

Fig.5.33
1 0 '

10 	- ---- M ixed H 2/H with
Genetic Algorithms

M ixed Hz/H. with
Genetic Algorithm s

10

10

10 2

	

-2 	 -1

	

10 	 10 10 ° 10 1 10 2

10 0 : w-+ z 	Transfer function

10

10
10 0

Fig.5.34

	

1 	 2

	

10 	 10

	

-2 	 -1

	

10 	 10

Mixed Hz/H. with
Genetic Algorithms H.. only

Chapter 5. Mixed H2/H. Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.40

H 2 : w -0 z2 T ran sfer function

ic=10:
H 2: 1V-> Z2 Transfer function

Chapter 5. Mixed H2/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.41

5.5 Chapter Summary and Conclusion:
(i)Summary:

Simulation results indicate that genetic algorithms can be successfully applied to the design of full

order and reduced order H2, H.„ and mixed HAI_ compensators. Results agree well with those

obtained using conventional state space solutions, and conventional model reduction techniques. In

most cases, the GA converged within 400 generations. In all simulations we used: binary

tournament selection, crossover probability 13,.9.5, mutation probability P m=0.2, population

siz50 to 100, uniform weighted average crossover. The mutation gain was gradually reduced

over the simulation run for the conventional genetic algorithm. Genetic algorithms are

conceptually elegant, simple and applicable to a wide range of robust control and multiobjective

constrained optimization problems. In this applications, solution to the H2 or H., problem required

only a single objective constrained optimization. The solution to the mixed H2/1-I., is a

multiobjective constrained optimization problem which leads to a family of solution. By proper

selection of the scalar weight K, more or less emphasis can be placed on the optimization of either

the H2 or H., specifications. This gives the user some design freedom in implementation. Note as a

further extension, the scalar weight x can be frequency dependent x(jw).

(ii)future work:

1. Replace the H2 or H., compensator with a RBF network trained using genetic algorithms, the

figure below illustrates a typical setup for a H2 optimal controller:

minimize r 2 1lTzw 0 Mg

G(s) 	 z

RBF I:iiij train with
genetic
algorithms

Fig.5.34
Using a RBF H2 and Ha., compensator

2. For the mixed H2/11., simulation, use linear matrix inequalities and convex optimization

comparing solutions with genetic algorithms.

3. Addition of frequency dependent weights which can also be designed using hybrid genetic

algorithms.

Chapter 5. Mixed H2/H_ Controller Synthesis With Hybrid Genetic Algorithms 	 P3.42

5.6 References and Further Reading:
[1] J.C. Doyle, B.A. Francis, AR. Tannenbaum

Feedback Control Theory
New York, Macmillan Publishing Co. 1992

[2] Huibert Kwakernaak
Robust Control and FL Optimization - Tutorial Paper
Automatica Vo. 29, No. 2, pp.255-273, 1993

[3] W.S.Levine
The Control Handbook (chapter 40)
CRC Press 1996

[4] M.Green, D.J.N.Limebeer
Linear Robust Control,
Prentice Hall Information and System Science Series, 1995

[5] J.M.Maciejowsld
Multivariable Feedback Design
Addison Wesley Publishing Company 1989

[6] G. Zames,
Feedback and Optimal Sensitivity: Model Reference Transformations, Weighted Seminorms, and Approximate
Inverses
Prc. 17th Allerton Conf., pp744-752, 1979

[7] J.C. Doyle, K.Glover, P.P.Ithargonekar, B.A.Francis
State-Space Solutions to Standard FL, and H2 Control Problems
IEEE Transactions on Automatic Control, Vol.34, No.8, pp.831-846, August 1989

[8] J.C. Doyle,
Guaranteed Margins for LQG Regulators
IEEE Transactions on Automatic Control, Vol. AC-23, No.4, pp.756-757, August 1978

[9] C.L.Karr, LM.Freeman
Genetic Algorithms for H2 Controller Synthesis
Industrial Applications of Genetic Algorithms CRC Press 1999 (pp 35-48)

[10] M.Whorton, H.Buschek, A.J.Calise
Homotopy Algorithm for Fixed Order Mixed H./H2 Design
Joumalof Guidance, Control and Dynamics, Vol.19, No.6, pp.1262-1269, Nov-Dec. 1996

[11] M. Mercadal
Homotopy Approach to Optimal, Linear Quadratic, Fixed Architecture Compensation
Journalof Guidance, Control and Dynamics, Vol.14, pp.1224-1233, Nov-Dec. 1991

[12] J.R.Corrado, R.S.Erwin, D.S.Bernstein, W.M.Haddad
Stable H2 Optimal Controller Synthesis.
Optimal Control Applications and Methods, Vol.21, pp.107-124, 2000

[13] S.S.Ge, T.H.Lee, G.Zhu
Genetic Algorithm tuning of Lyapunov Based Controllers: An Application to a Single Link Flexible Robot
System.
IEEE Transactions on Industrial Electronics, Vol.43, No.5, pp.567-573, October 1996

[14] C.I.Marrison, R.F. Stengel
Robust Control System Design Using Random Search and Genetic Algorithms
IEEE Transactions on Automatic Control, Vol.42, No.6, pp.835-839, June. 1997

Chapter 5. Mixed H2/H— Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.43

[15] M.C. Gemignani
Elementary Topology
Addison Wesley Publishing Company 1972, (Book)

[16] S.LRichtcher, R.A.DeCarlo
Continuation Methods: Theory and Applications
WEE Transactions on Circuits and Systems, Vol.CAS-30, No.6, pp.347-352, June. 1983

[17] J.R.Corrado, R.S.Erwin, D.S.Bemstein, W.M.Haddad
Stable H2 Optimal Controller Synthesis
Optimal Control Applications and Methods, Vol.21, pp.107-124, 2000

[18] E.G.Collins, L.D.Davis, S.Richter
Design of Reduced-order, H2 Optimal Controllers Using a Homotopy Algorithm
International Journal of of Control, Vol.61, No.1, pp.97-126, 1995

[19] M.Whorton, H.Buschek, A.J.Calise
Homotopy Algorithm for Fixed Order Mixed H.IH2 Design
Joumalof Guidance, Control and Dynamics, Vol.19, No.6, pp.1262-1269, Nov-Dec. 1996

[20] B.C.Fabien
Output Feedback Stabilizing Control With an H.. Bound on Disturbance Attenuation
Journal of Dynamic Systems Measurement and Control, Vol.115, pp.531-535, September 1993

[21] E.Feron
Analysis of Robust H2 Performance using Multiplier Theory
SIAM Journal of Control and Optimization, Vol.35, No.1, pp.160-177, January 1997

[22] X.Chen, J.T.Wen
A Linear Matrix Inequality Approach to the General Mixed H./H2 Control Problem
American Control Conference, pp1443-1447, June 1995

[23] S.Boyd, L.E.Ghaoui
Linear Matrix Inequalities in Systems and Control Theory
SIAM Studies in Applied Mathematics, Vol.15, 1994 (book)

[24] S.Boyd, V.Balalcrishnan, E.Feron, L.E.Ghaoui
Control System Analysis and Synthesis Via Linear Matrix Inequalities
American Control Conference, pp.2147-2154, 1993

[25] D.E.Walker, D.B.Ridgely
Uniqueness of the General Mixed H./H2 Optimal Controller
American Control Conference, pp.1453-1457, June 1995

[26] D.S.Bernstein, W.M.Haddad
LQG Control with an H.. Performance Bound: A Riccati Equation Approach.
IEEE Transactions on Automatic Control, Vol.34, No.3, pp.293-305, March 1989

[27] P.Gahinet, P.Apkarian
A Linear Matrix Inequality Approach to the H., Control
International Journal of Robust and Nonlinear Control, Vol.4, pp.421-488, 1994

[28] F.S.ICramer, A.J.Calise
Fixed Order Dynamic Compensation for Multivariable Systems
Journal of Guidance Control and Dynamics, Vol.11, No.1, pp.80-85, Feb.1988

[29] A.J. van der Schaft
On a State Space Approach to Nonlinear FL. Control
Systems and Control Letters, Vol.16, pp 1-8, 1991

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.44

[30] S.Boyd, V.Balakrishnan, E.Feron, LE.Ghaoui
History of Linear Matrix Inequalities in Control Theory
American Control Conference, pp.31-34, June 1994

[31] E.G.Collins, D.Sadhulchan, LT.Watson
Robust Controller Synthesis via Non-linear Matrix Inequalities
International Journal of Control, Vol.72, No.11, pp.971-980, 1999

[32] Chamg-Shi Wu, Bor-Sen Chen, Ying-Wen Jan
Unified Design for FL/H2 and Mixed Control of Spacecraft
Joumalof Guidance, Control and Dynamics, Vol.12, No.6, pp.884-896, Nov-Dec. 1999

[33] R.J.Niewhoener, LICaminer
Linear Matrix Inequalities in Integrated Aircraft/Controller Design
American Control Conference, pp.177-181 June 1995

[34] P.P.Khargonekar, M.A.Rotea
Mixed FL/H2 Control: A Convex Optimization Approach
IEEE Transactions on Automatic Control, Vol.36, No.7, pp.824-837, July 1991

[35] Mario Sznaier
An Exact Solution to General SISO Mixed H../H2 Problems via Convex Optimization
IEEE Transactions on Automatic Control, Vol.39, No12, pp.2511-2517, December 1994

[36] M.A. Rotea, P.P.Ithargonekar
Hz-optimal Control with an FL -constraint: The State Feedback Case
Automatica, Vol.27, No.2, pp.307-316, 1991

[37] K.J.Hunt
Polynomial LQG and FL Controller Synthesis: A Genetic Algorithm Solution
IEEE Proceedings of the 31st Conference on Decision and Control, Tucson, Arizona pp.3604-3609, Dec. 1992

[38] J.Doyle, K.Thou, K.Glover, B.Bodenheimer
Mixed H2 and FL Performance Objectives II: Optimal Control
IEEE Transactions on Automatic Control, Vol.39, No.8, pp.1575-1586, August 1994

[39] L.Xie, Y.Chai Soh
Robust LQG Control of Uncertain Linear Systems Via Simultaneous H2 and FL Approach
Optimal Control Applications and Methods, Vol.18, pp.49-58, 1997

[40] Z.Hu, S.E.Salcudean, P.D.Loewen
A Numerical Solution to the Multiobjective Control Problems
Optimal Control Applications and Methods, Vol.19, pp.411-422, 1998

[41] J.Doyle, K.Thou, K.Glover, B.Bodenheimer
Mixed H2 and FL Performance Objectives I: Robust Performance Analysis
IEEE Transactions on Automatic Control, Vol.39, No.8, pp.1564-1574, August 1994

[42] A.Chipperfield, P.Flemming
Multiobjective Gas Turbine Engine Controller Design Using Genetic Algorithms
IF.F.F Transactions on Industrial Electronics, Vol.34, No.5, pp.583-587, October 1996

[43] R.E.Avedon, B.A.Francis
Digital Control Design via Convex Optimization
Journal of Dynamic Systems Measurement and Control, Vol.115, pp.579-586, December 1993

[44] I.Masubuchi, A.Ohara, N.Suda
LMI-Based Output Feedback Controller Design
American Control Conference, pp.3473-3477 June 1995

Chapter 5. Mixed H2/H- Controller Synthesis With Hybrid Genetic Algorithms 	 P.5.45

[45] C.Scherer, P.Gahinet, M.Chiladi
Multiobjective Output Feedback Control via LM1 Optimization
IEEE Transactions on Automatic Control, Vol.42, No.7, pp.896-911, July 1997

[46] C.Scherer
Multiobjective H2/1-1. Control
WEE Transactions on Automatic Control, Vol.40, No.6, pp.1054-1062, June 1995

[47] His-Han Yeh, S.S.Banda, Bor-Chin Chang
Necessary and Sufficient Conditions for the Mixed H2 and FL Optimal Control
IEEE Transactions on Automatic Control, Vol.37, No.3, pp.355-358, March 1992

[48] Z.Hu, S.E.Salcudean, P.D.Loewen
Numerical Solution of the Multiple Objective Control System Design Problem for SISO Systems
American Control Conference, pp.1458-1462, June 1995

[49] M.Sznaier
A Mixed 1./H. Optimization Approach to Robust Controller Design
SIAM Journal of Control and Optimization, Vol.33, pp.1086-1101, July 1995

[50] J.C.Geromel, P.L.D.Peres, S.R.Souza
A Convex Approach to the Mixed H2/ FL Control Problem for Discrete Time Uncertain Systems
SIAM Journal of Control and Optimization, Vol.33, No.6, pp.1816-1833, November 1995

[51] J.A.Ball, J.W.Helton, M.L.Walker
FL Control for Nonlinear Systems with Output Feedback
IEEE Transactions on Automatic Control, Vol.38, No.4, pp.546-559, April 1993

[52] Alsidori, W.Kang
FL Control via Measurement Feedback for General Nonlinear Systems
WEE Transactions on Automatic Control, Vol.40, No.3, pp.466-472, March 1995

[53] A.J. van der Schaft
1.2 Gain Analysis of Nonlinear Systems and Nonlinear State Feedback FL Control
IEEE Transactions on Automatic Control, Vol.37, No.6, pp.770-784, June 1992

[54] Guang-hong Yang, James Lam, Jianliang Wang
Reliable FL Control for Affine Nonlinear Systems
IEEE Transactions on Automatic Control, Vol.43, No.8, pp.1112-1116, August 1998

[55] A. Isidori, A.Astolfi
Disturbance Attenuation and FL Control Via Measurement Feedback in Nonlinear Systems
IEEE Transactions on Automatic Control, Vol.37, No.9, pp.1283-1293, September 1992

[56] Bor-Sen Chen, Yu-Min Cheng
A Structure Specified FL Optimal Control Design for Practical Applications: A Genetic Approach.
IEEE Transactions on Control System Technology, Vol.6, No.6, pp.707-718, Nov. 1998

[57] K.S.Tang, K.F.Man, D.W. Gu
Structured Genetic Algorithm for Robust FL Control System Design
WEE Transactions on Industrial Electronics, Vol.43, No.5, pp.575-582, October. 1996

[58] T. Back, D.B.Fogel, Z. Michalewicz
Handbook of Evolutionary Computation
Institute of Physics Publishing and Oxford University Press„ 1997 (Book)

[59] F.L.Lewis
Applied Optimal Control and Estimation, Digital Design and Implementation
Prentice Hall, Digital Signal Processing Series, 1992 Texas Instruments (Book)

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.1

Fault Detection and Isolation Using
Hybrid Genetic Algorithms

Contents:

6.1 Fault Detection and Isolation 	 p.6.2

6.1.1 Introduction 	 p.6.2
6.1.2 Fault Detection and Isolation - Survey 	 p.6.4
6.1.3 Signal Based Methods 	 p.6.7
6.1.4 Model Based Methods 	 p.6.7
6.1.5 Observer Based Methods 	 p.6.9
6.1.6 Modeling Faults in Systems, Residual Generation. 	 p.6.12
6.1.7 Parity Space Methods - Theory 	 p.6.15

6.2 Detecting Faults With Hybrid Genetic Algorithms 	 p.6.17

6.2.1 Theory 	 p.6.17
6.2.2 Detecting Input/Output Faults in Linear Systems 	 p.6.20
6.2.3 Detecting Internal Faults 	 p.6.29

6.3 Chapter Summary and Conclusion 	 p.6.31

6.4 References and Further Reading 	 p.6.32

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.2

6.1 Fault Detection and Isolation:

6.1.1 Introduction:

This chapter examines the subject of fault detection and isolation (FDI). Its purpose is twofold: (1)

to provide an initial outline and summary on a number of traditional and active areas of research

involving fault detection and isolation, and (2) the application of hybrid GA and neural networks to

the detection and identification of faults. Simulation results comparing genetic algorithms and

conventional fault detection methods is presented. A comprehensive survey on FDI can be found in

reference [1].

The objectives of fault detection and isolation can range from simple diagnosis of non critical

components, to more complex life critical systems such as aircraft, nuclear power plants, and

medical equipment. Faults, when detected early can be used to prevent major damage to

equipment, loss of operation or income, or loss of human lives. Faults which occur gradually over

a long period of time (incipient), generally indicate equipment or component mechanical wear,

deterioration and contamination. Sudden (abrupt) faults on the other hand are generally easier to

detect, but can be more damaging if not detected quickly. When a fault has been detected, various

contingencies can be initiated from simple manual component replacement to more complex control

reconfiguration. Nowadays, fault detection and isolation has become an integral part of the

operation of ships, submarines, aircraft, spacecraft and industrial plants. Fault detection and

isolation has evolved from simple limit checking, to more sophisticated analytical methods

involving plant models and state estimators, knowledge databases, expert diagnostic systems, and

artificial intelligence. Fault detection and isolation can be broadly classified into three main

categories: signal based, model based (qualitative and quantitative), and observer based.

(1) Signal based: These methods are the simplest and generally the more commonly used in

industry. For example comparing readings from a multiply-redundant sensor system, limit and

threshold checking, trend checking, and spectrum checking. Suitable for manual inspection and

operation.

(2) Model based: Model based methods fall into two categories: qualitative and quantitative.

(i) Qualitative: A model is required, however not necessarily a mathematical one. This includes

Artificial Intelligence (Al), Artificial Neural Networks (ANN) black box models, Expert Systems,

Fuzzy Logic Systems (FLS), fault trees, topological and rule-based methods are generally a

combination of the above.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.3

For instance, neural networks can be trained to classify data into healthy or faulty. Neural network

methods have been slow to emerge in the area of FDI due to the long training times involved.

There is ample and varied literature on these methods (see section 6.14 below for references) .

(ii) Quantitative: These methods are well established for linear systems, and all require an

accurate mathematical model of the process. Methods include fault detection filters (FDF), parity

space and optimally robust parity methods, unknown input observers (UIO's), eigenstructure

assignment, influence matrix methods and robust H„., (formed spaces) methods. All these methods

use the concept of analytical redundancy in which the output of any one sensor can be

reconstructed from measurements of the other (healthy but dissimilar) sensors, and a-priori

knowledge of the plant. Analytical redundancy requires no extra hardware (i.e. sensors/actuators)

when compared to hardware redundancy (or parallel redundancy), in which sensors/actuators are

physically duplicated. All these methods (excluding He.,) suffer from model uncertainties,

disturbances and noise.

(3) Observer based: these methods include: Kalman filters and Luenberger observers. Newer

techniques include: robust sliding mode Variable Structure System (VSS) observers, nonlinear

observers such as extended Kalman filters (EICF) for stochastic systems, and extended Luenberger

observers for deterministic systems, Lie-algebraic methods, robust 11., methods, and

pseudolinearization methods. The advantages include robustness to disturbances and model

uncertainties, and ability to deal directly with the nonlinearities of the systems. In many cases, the

nonlinearity is treated as an unknown bounded disturbance. Observer based methods are also

affected by model uncertainties and disturbances, however robustness issues can be included in the

overall part of the observer design. The application of nonlinear and variable structure observers

to FDI is presently an active area of research.

There are three stages to detecting faults: (i) Fault Detection: knowing that a fault has occurred

and generating an alarm condition, (ii) Fault Isolation: locating the fault i.e. deciding which sensor

or component has failed, and (iii) Fault Identification: estimating the extent or size of the fault, and

any time dependent behavior. The first part is the simplest, detecting a fault condition. This is

accomplished by calculating a residual vector, which is the difference between the measured and

calculated outputs (from a mathematical model) of the system.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.4

In the absence of faults, the residual is zero, when a fault occurs, the residual is nonzero. Problems

arise when external disturbances, model uncertainties and noise exist, resulting in a nonzero

residual for the fault-free condition. Robust, adaptive thresholding, and statistical techniques have

been developed to address this problem. The concept of residuals is described in more detail in

section 6.1.6. The second part is more difficult, to locate (i.e. isolate) the faulty sensor or

component. Presently the method of Multiple Hypothesis Testing and Maximum Likelihood ratio

testing are used. These are all statistical methods requiring multiple models to be tested

simultaneously, each model assumes a specific fault, including one model which is fault free. The

residual from each model is statistically tested against the actual process output to infer the cause

of the fault. The third part (size of fault) can be estimated once the fault has been located. Note

that both model based and observer based methods involve the calculation of a residual vector.

The prompt detection of faults is becoming more vital, as the complexity and interdependence on

automation is increasing, and in many cases becoming more life-critical such as nuclear power

plants, medical equipment, and aircraft control. For instance, control system failures have

contributed to a number of aircraft incidents: blocked pressure ports which produced erroneous air

data leading to a crash [2], a false stall warning because of a stuck angle-of-attack detector leading

to damage to the aircraft [3], and separation of an engine pylon caused loss of power, loss of

hydraulic systems, and asymmetrical flap settings leading to a crash [4], failed inertial reference

unit (gyro) caused the ARIANE-5 (Flight-501, June 1996) to crash [2].

This chapter is primarily concerned with detecting and isolating faults occurring in the plant

sensor and actuator part of the control loop. Both linear and nonlinear systems are investigated.

Simulations using genetic algorithms are compared with more traditional methods of parity space.

This chapter is not intended to be a comprehensive survey of fault detection and isolation, however

a brief introduction and overview will be provided, and many references are also provided at the

end of the chapter for the interested reader on this subject.

6.1.2 Fault Detection and Isolation - Survey:

A large number of survey papers have been published on fault detection and isolation, refer to [5,

6, 7, 8, 9, 10, 11, 12] dealing with parity space and dedicated observers, fault detection filters,

residual generation, robust observers for linear systems, expert systems, artificial intelligence,

fuzzy logic and neural network based methods, and statistical methods are discussed in [80].

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.5

An excellent introductory textbook is by Chen and Patton [1]. Before discussing techniques for

fault detection and isolation, some definitions are provided which are used throughout the FDI

literature:

Fault: An unpennitted deviation of at least one characteristic property or parameter of the system

from the acceptable/usual/standard condition.

Failure: A permanent interruption of a system's ability to perform a required function under

specified operating conditions.

Residual: A fault indicator, based on a deviation between measurements and mode-equation based

computations. Residuals can be computed from either states or measured outputs.

Analytical Redundancy: Use of two or more (but not necessarily identical) ways to determine a

variable, where one way uses a mathematical process model in analytical form. As opposed to

physical/hardware redundancy in which sensors/actuators are duplicated, and a voting scheme is

required.

As indicated earlier, fault detection and isolation methods can be broadly classified into three

categories: (i) Signal Based, (ii) Model Based (qualitative, quantitative), and (iii) Observer

Based. Figure 6.1 on the following page illustrates this classifications.

A failure detection and identification scheme must posses certain fundamental characteristics in

order to reliably detect faults, and minimize false alarms: (i) Robustness to modeling uncertainties.

(ii) Robustness to disturbances and noise. (iii) Ability to isolate faults. (iv) Ability to detect

incipient (gradual) and abrupt (sudden) faults. (v) Detection of both additive and multiplicative

faults. (vi) Applicability to non-linear systems.

Both linear and nonlinear observer (variable structure) methods offer the greatest potential to fault

detection and isolation due to the robustness properties. Although model based and observer based

methods require a-priori knowledge of the plant dynamics, and the concept of analytical

redundancy, the main difference is that model based methods do not require a knowledge of the

plant states, only input/output measurements. Consequently, observer based methods can

potentially diagnose faults more reliably due to the extra information from the plant state vector.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.6

Variable structure observer based methods are gaining popularity due to their robustness properties

and application to nonlinear systems. They are described briefly in section 6.1.5(iii). Figure 6.1

below illustrates the various fault detection and isolation classification schemes:

(., FDI Methods

Signal Based

Model Based

Qualitative (heuristic))

(Expert Systems
_ -Fuzzy Set Theory

-Topological Methods
\fault Trees

	(Quantitative (analytical)

(‘ 	Parity Space
	

i

Fault Detection Filters)

Unknown Input Observers)

arameter Estimator)

-Least Squares
-Instrumental variable
-Neural Network
)

Observer Based

	i

)
I---Luenberger (deterministic)

— -Kalman Filter (stochastic)
-Extended Kalman Filter
Variable Structure Observer

Nonlinear) 	I

'Extended Luenberger
-Extended Kalman Filter
-Lie Algebraic Methods
-Variable Structure Observer

\ -Linearization Methods
N. 	

Fig.6.1
Classifications of FDI Methods

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.7

6.1.3 Signal Based Methods:

These are methods which do not require any mathematical models of the plant. The simplest

method of fault detection is limit checking. Other methods use special or multiple sensors such as

strain gauges on critical structures, redundant sensors, and voting systems, frequency domain

analysis (signature analysis), although this requires knowledge of the spectra for normal and failed

operation. These methods are very common in industrial plants. A very popular method includes

the use of Multi Valued Influence Matrices (MVIM) in which fault diagnosis is performed by

matching a measurement vector against the columns of the influence matrix, generally used in

complex systems [13]. Note that MVIM methods require some training/learning techniques to

construct the influence matrix. A neural network equivalent classifier can be used in an identical

manner. See also [14, 15] for variations involving the use of influence matrices. Others include

Fault Tree Analysis (FTA) and Event Tree Analysis (ETA).

In summary, signal based methods include:

- Topological approaches such as fault trees/directed graphs [64];

- Multivalued influence matrix approach [13, 14, 15].

6.1.4 Model Based Methods:

Methods which require a mathematical model of the plant. These methods are more extensive, and

do not necessarily require additional, or special hardware to identify faults. They can give more

accurate estimation of faults, and can use analytical redundancy such as sensor fusion techniques.

These fall into two categories: Qualitative or heuristic and Quantitative or analytical methods.

(i) Qualitative: Applicable to large scale systems in which the dynamics of the process is not well

known. These methods require a black box model or heuristic model of the plant, these include:

Expert systems and knowledge databases: [8, 59, 60, 61, 62].

Artificial intelligence methods [63].

Fuzzy logic identification. In most real world systems, as the complexity of a system

increases, our ability to create accurate and precise models about such systems decreases.

In these instances, fuzzy models of the system can be constructed where the physical

processes are poorly understood but in which linguistic, intuitive knowledge and degree of

vagueness of the the variables of the system are available. Fuzzy model identification and

fault diagnosis has been applied to: modeling internal combustion engines [56], nonlinear

systems [57], process industries [81], survey papers on fuzzy modeling and control: [55,

58].

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.8

Neural networks have become an active area of research in fault diagnosis. Neural

networks have robustness and generalization capabilities, with the ability to adapt and

learn. Neural networks can be trained to classify faults from input/output training data

sets, and learn complex nonlinear transfer functions for modeling applications.

Introductory papers can be found in: [67, 68, 70];

Hopfield/ART-1/ARTMAP classifiers [65, 66, 69]; neurofuzzy methods: [55]; modeling

and state estimation [71]. An issue of concern however with neural network is that the

training algorithms may suffer from local and slow convergence. Currently, qualitative

methods using neural networks for fault detection and isolation is a promising area of

research.

(ii) Quantitative: Require an accurate mathematical model of the plant. Quantitative methods

operate in two stages: - residual generation and residual analysis. Many well established methods

are available, these are:

Parity space is one of the most popular [1, 17, 19], with variations using fuzzy logic [51,

52], optimal parity vectors [16], optimally robust parity relations [6, 18], continuous

parity space [20], generalized parity space [21],

- Parameter estimation/system identification methods see [34, 35, 36, 53],

The more cornmon and well established methods of Parity space will be discussed in further detail

due to their simplicity, ease of use to linear systems in state variable form, and for simulation

comparison with genetic algorithms. Figure 6.2 illustrates the relationship between different fields

of science and their relative degree of model accuracy (i.e. depth of knowledge):

Qualitatiw Models Quantitative Models

Fig.6.2
Model Accuracy Versus Field of Knowledge

Qualitative models in which accurate mathematical models are not available include biological,

social, economic systems. Quantitative models in which an accurate mathematical model can be

developed include thermal, electrical, mechanical and chemical processes.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.9

6.1.5 Observer Based Methods:

Observer based methods are the most powerful, extensive, and can be applied to nonlinear systems.

These methods use an observer which estimates the states of the plant, residuals can then be

calculated from the difference of the measured and estimated states. There are several types of

observers: Luenberger (deterministic), Kalman filters (stochastic), Extended Kalman filters (non

linear stochastic systems) and Sliding mode observers. There are many different variations, in

particular see [49] for general introduction to nonlinear observers. Observer based methods

include:

Fault Detection Filters (FDF) see [1, 22], robust [23, 24, 54], and simplified design

method [25, 26].

- Unknown Input Observers (U10) see [1, 27, 28, 30], stochastic systems [29], and robust

[31], and Dedicated Observer Schemes (DOS): which requires multiple observers for each

sensor, for LTI systems see [32, 33],

Linear Kalman Filters and Linear (KF) Luenberger Observer: [48, 72, 73, 74] are well

established in the literature.

- Extended Kalman Filter [40] (EKF) and Extended Luenberger observer: also known as

nonlinear Luenberger observers, [46, 47].

- Thau Observer: which is more of a verification method rather than design, see: [37].

Lie Algebraic Methods: newer but more difficult to apply, control affine form only.

- Adaptive Observers.

- Variable Structure Observers: which includes the Walcott and Zak observer [41, 42], the

Utkin observer [44], the discontinuous observers [43]. Variable structure observers

apply to both linear and nonlinear systems [45].

High Gain Observers.

(i) Extended Luenberger observers: [46, 47] and extended Kalman filters [40, 49] provide a

natural extension of conventional Kalman and Luenberger observers to nonlinear systems. The

extended Luenberger observer uses an extended linearization method which is independent of the

operating point (pseudolinearization). This pseudolinearization is made independent of the

operating point by nonlinear state transformation to observer canonical form. The mathematical

description of the extended Lumberger observer is however complex. The Extended Kalman Filter

(EKE) works by constantly linearizing the system at the current plant operating point, the EKE

filter minimizes the trace of the covariance matrix of the estimation errors.

Chapter 6: Fault Detection and Lsolation Using Hybrid Genetic Algorithms 	 P.6.10

Its main deficiencies include: requiring perfect system knowledge, no a priori knowledge on

stability, no robustness against modeling errors can be guaranteed, and computer intensive real

time implementation. An enhancement of the extended Kalman filter is the Constant Gain

Extended Kalman Filter which addresses the robustness issues and real time implementations.

Thau Observers: [37, 49], describes a method of verification rather than a direct design

method. Sufficient conditions for the convergence of the observer are given but no information on

how to design the observer is provided. It can be applied to control affine nonlinear systems. The

Thau method does not address the problem of modeling errors, and lacks robustness, however its

main advantage is in its simplicity.

(iii) Variable structure Observers: (VS) observers are a relatively new type of observers which

owe their design and implementation to Lyapunov stability theory and variable structure/sliding

mode control theory. Because of this close affinity to VS control, the properties of robustness,

invariance in sliding mode and applicability to nonlinear systems are all equally valid to VS

observers. There are at present three main types of VS observers: (i) The Walcott and Zak

observer, (ii) The Utkin observer and (iii) The Discontinuous observer. A brief description is

given below. For an introductory treatment see [43].

(a) The Walcott and Zak Observer: Perhaps one of the easiest VS observer is the Walcott and

Zak observer [41, 42]. The only condition imposed is that the disturbance/nonlinearity is

matched, and the solution to two Lyapunov equations. This observer is identical to a standard

Luenberger observer with a VS term which eliminates the disturbance term. Relatively easy

to apply to linear systems, however a boundary layer is necessary to prevent chattering.

(b) The Utkin Observer: The Utkin observer [43, 44] requires a similarity transformation so that

the outputs y(t) appear as components of the states. The plant is then in a symmetric

(observer canonical) form. It can be shown that if the output error e(t) = 	y(t)

converges to zero, then the state error e x (t)= i(t)— x(t) also converges to zero

asymptotically. Proof is by defining a Lyapunov function candidate. It does not require

matching conditions on the disturbances.

(c) The Discontinuous (structured) Observer: This is a general form of the VS observer, it

requires a similarity transformation to symmetric canonical form and the solution to two

Lyapunov equations. Much more difficult to apply, but more general with fewer restrictions.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.11

Variable structure observers offer the greatest potential due to their robustness properties, able to

deal with system nonlinearities and external disturbances. In the applications to linear systems

with matched disturbances, the VS observer is relatively straightforward to apply. Chattering must

also be considered during implementation.

(iv) Adaptive observers: [49, 50] were designed to be for a certain class of nonlinear second order

systems with bounded coefficients and having bounded time variation of the form:

51- 	+ a2 (y, Y,t)= b(y,Y,t).u+ f(y)

where a 1 , a2 , b are unknown functions of time, and f(y) is a known functions of y. Applying a

transformation to canonical form, results in a seventh-order ordinary differential equation.

Because of its restricted applicability to second order systems, and amount of real-time

computation, the adaptive observer is not very common.

(v) High gain observers: (HGO), also known as the Gauthier-Kupta observer, it gives very fast

convergence of the estimation error. Works only with single output systems, this is generally not a

drawback because multiple HGO can be designed for each individual output. There are restrictions

to the structure of the system dynamics, and is not very general. Only applicable to certain class of

nonlinear systems.

(vi) Fault detection filters: FDF (also known as fault sensitive filters) are a special class of

Luenberger observers which generate directional residuals for the purpose of fault isolation. Fault

detection filters are full order state estimators with a special choice of observer gain, chosen such

that when a particular fault occurs, the residual is constrained in a single direction or plane. The

residuals are therefore the innovations terms of the filter. To detect a fault, the norm of the

residual is compared to a threshold, if greater than the threshold then a fault is detected. Fault

isolation requires comparing the direction of the residual with pre-defined fault directions (or

signatures). It is possible to design the observer such that the residuals are insensitive to the

unknown disturbances, but sensitive to faults, this is the robust form of the fault detection filter.

The fault detection filter developed by Beard (1971), also known as the Beard Fault Detection

Filter (BFDF).

available
(measured)

u(t) System y(t) Sensors (t) _py

fit)
component

faults

fit)
sensor
faults

available
(measured)

um(t)
	

Actuators

—r--
fa„,

actuator
faults

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.12

6.1.6 Modeling Faults in Systems, Residual Generation:

(i) Modeling Faults: Faults can appear in the input (actuator faults), system (internal or

component faults) and output (sensor faults). It is common practice to model faults as a

combination of additive and multiplicative faults. Figure 6.3 below illustrates this concept. In

most instances, faults occur in either the input or output, thus component faults are generally not

considered in most research. The simplest fault model applies to linear deterministic systems with

no external disturbances. To build a mathematical model, we need to use the conventional form of

state space.

Fig.6.3
Fault Model for Linear Systems

Looking at figure 6.3, actuator and sensor faults can be modeled as a combination of multiplicative

and additive faults, in the continuous time domain, the state-space plant model is given by:

Plant State Model:

Input/Output Fault models:

= A.x + B.0
y =C.x+ D.0

u = au .d" + Au

y=a y .y in +Ay

Eqn.6.1

Eqn.6.2

where: u E 9t': input control vector of the plant, y E 91 m : output measurement vector of the plant,

u m E 91 r • is the measured value of the input control vector, y E rn • is the measured value of the

output vector. The diagonal matrices a u and a y are multiplicative faults represented by square

diagonal matrices, Au and Ay column vectors representing additive faults:

-au, 	0 . 0
0 au2 . 0

=

a =

a 	0 . 0
0 a y2 . 0

Au= Au2 AY2 Ay =
-

Ayr _

Eqn.6.3

0 	0 . aur_

0 	0 .

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.13

In the fault free case, all elements of the diagonal are set to 1, it is customary to consider only a

single fault in the input or a single fault at the output. This sets all entries to 1, except for one

single entry in each matrix corresponding to a multiplicative fault. The column vectors: Au and

Ay represent additive faults, in the fault free case all entries are zero. In the fault case, only one

entry will be nonzero corresponding to the additive fault. To simplify the problem, the faults can

be assumed time independent (constant).

(ii) Residual Generation: The residual r(t) is simply the difference between the measured output

and estimated output (or state) from an observer or model of the plant. In the case of an observer,

the residual is also the innovation term of the observer dynamics. The residual vector may have a

specific signature or direction (directional residuals) as in the case of the fault detection filter

(FDF). Ideally, in the absence of faults the residual should be zero. When faults are present, the

residual is nonzero. To detect a fault, we calculate the magnitude of the residual (Euclidean norm),

and compare it to some threshold value. Due to modeling errors, uncertainties, disturbances and

noise, the residual is nonzero even in the absence of faults. The magnitude of the residual provides

an indication of the size of the fault. To locate the fault, the structure or signature of the residual

must be compared with a set of known patterns of known fault modes. The use of neural networks

classification techniques have been used such as the Hopfield and ART networks. Statistical

testing is often used, such as Sequential Probability Ratio Testing (SPRT), Bayesian testing,

Multivariate testing, Hypothesis testing, and Maximum Likelihood testing.

When dealing with robust residual generation, most methods attempt to maximize some

performance or cost functional, this cost function is usually the ratio of the transfer function norm

from: fault-to-residual Gd(s) to disturbance-to-residual Gni(s), for instance using Laplace

notation:

J = max(Gif(s) I
G (S)

Eqn.6.4

This leads to a multiobjective optimization problem in which we try to maximize the transfer

function J 1 =. maxliqf (s)Il and minimize J2 = minllGrd 01. To see how residuals are applied to

fault detection and isolation, consider a linear LTI system with faults at the input and outputs as

follows, the general expression is:

A.x+ B.u+121 .f
y = C.x+ D.u+ R2 1

Eqn.6.5

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.14

Where R I and R2 are known input and output fault transfer matrices, and f is the fault to be

estimated. The input/output transfer function using Laplace transform is given by: (bearing in

mind that y(s) is actually a different variable to y(t))

y(s)= G.(s).u(s)+ G 1-(s). f(s) 	 Eqn.6.6
Where:

G(s)= C.(s1 — 	.B+ D

G f (s)= C.(s1 — 	.R, + R2
Eqn.6.7

This is the most commonly used form of representing input and output faults for linear systems.

All model based FDI methods are designed to estimate the fault f with possible variations which

include noise, disturbances, nonlinearities, unmodeled dynamics and unknown inputs. The residual

can be defined mathematically as a combination of the input and output measurement sequences,

see figure 6.4:

r(s)= H.(s).u(s)+ H y (s).y(s) 	 Eqn.6.8

substituting the equation for y(s) given previously into the above expression results in a general

form of the residual generator:

r(s)=[H.(s).+H y(s).G.(s)].u(s)+ H y (s).G.f (s). f(s) 	Eqn.6.9

the requirements are that when no faults are present: i.e. f=0, then the residual should also be zero:

r--0, therefore we have two requirements which must be satisfied:

H .(s).+H y (s).G.(s)= 0

H y (s).G.f (s)# 0
Eqn.6.10

The above is a generalized representation of fault detection using residuals for linear systems. The

first requirement implies that the residual is independent of the input, and the second requirement

specifies detectability. This applies to all forms including model based, observer based and parity

space methods.

Most literature relating to fault detection and isolation for linear systems deals with the above

equations, or variations of equation 6.9. These include the presence of disturbances, noise, and

plant uncertainty. In these circumstances, statistical testing of the residual may be required. This

an involve: (i) Weighted sum-squared residual (WSSR), (ii) Chi-squared testing (iii) Sequential

probability ratio testing SPRT, (iv) Generalized Likelihood ratio testing GLR, and (v) Multiple

Hypothesis Testing.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.15

The basic concept of residual generation is illustrated in figure 6.4 below:

PLANT

r(s) residual

Fig. 6.4
Generic Form of Residual Generators for Linear Deterministic Systems

One of the most popular methods for detecting faults in linear systems is parity space. Parity

space is used as a comparison with hybrid genetic algorithms. The theory is outlined next.

6.1.7 Parity Space Methods - Theory:

The parity space method (see ref. [1], pp.38-44) is one of the most commonly used model based

approach for generating residuals. There are two types of parity space: direct redundancy and

temporal redundancy. Direct redundancy is of limited applicability and is not considered as it

requires more sensors than states, i.e. for: X(t)E 9 , y(t) E 9m requires m>n. Temporal

redundancy may be applied to a wider range of problems and is not restricted to the above

condition. Parity space was developed in discrete time domain, but has now been extended to

continuous time domain. Given the following system model in discrete time:

x(k + 1)= A.x(k)+ B.u(k)+R I . f(k)
y(k)= C.x(k)+ D.u(k)+ R2 ftk)

Eqn.6.11

Taking a window of s previous samples and the current sample, a total s+/ equations is

constructed, combining these equations recursively into one another gives:

y(k— s) u(k—s) J(k— s)

y(k— I)
y(k)

—H.
u(k —1)

u(k)

= W.x(k—s)+ M
fil-1)

f(k)

Eqn.6.12

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.16

where:

D 	0 0 - R2 0 0
CB 	D 0 CA CR, R2 • 0

Eqn.6.13
H = CAB 	CB 0 w= CA2 m= CAR, CR, .0

0 • 0
CA" B CA" B . . D CA' CA" R, CA" R, . 	• 	R2

Note the presence of the observability matrix W, re-writing equation 6.12 gives:

Y(k) — H.U(k)=W.x(k — s)+ M. k) 	 Eqn.6.14

Note also that Y(k) represents s+1 measurements of y vectors, and U(k) likewise. However x(k-s)

is a single unknown vector. The key idea of parity space is to multiply each side by a matrix V

thus:

V.[Y(k) — H.U(k)]=V.[W.x(k — s)+ M. F(k)] 	 Eqn.6.15

where V is chosen to be the left nullspace of the matrix W such that: V. W=(), then the equation

becomes independent of the state x(k-s), this simplifies to:

V.[Y(k) — H.U(k)] = V. M. F(k) 	 Eqn.6.16

the residual is defined to be the right hand part of the above equation:

k)= V.[Y(k) — H.U(k)] 	 Eqn.6.17

in the absence of faults F(k)=O, the residual should be zero r(k)= 0; however in the presence of

faults F(k)* 0 the residual is nonzero r(k) * 0 . In summary, the parity space method for

linear systems has two parts: it first requires the calculation of the residual from the equation: i.e.

computational form of residual, obtained from past measurements:

r(k)=V.[Y(k) — H.U(k)]

we can then estimate the fault F(k) from the evaluational form of residual:

r(k)= V. M. F(k)

Eqn.6.18

Eqn.6.19

This method can easily detect the presence of faults, but locating the fault is more difficult. Note

also that the parity space equations are equivalent to a deadbeat observer. There are other

limitations also with parity space as we shall see later.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algoritluns 	 P.6.17

6.2 Detecting Faults With Hybrid Genetic Algorithms:

From the brief survey presented above, there are many ways in which genetic and heuristic search

algorithms may be applied to fault detection and isolation problems. Below we present a direct and

straightforward manner of using genetic algorithms for fault detection and isolation.

In these next set of simulations, genetic algorithms are compared with conventional parity space

methods. Both additive and multiplicative faults in the sensor and actuator are compared. Two

types of faults are simulated:

(i) Input and output faults using the linearized open loop longitudinal aircraft model described in

the appendix. Both single input/output and multiple input/output faults are considered.

Results obtained using hybrid genetic algorithms are compared with conventional parity space

methods described earlier.

(ii) The second simulation investigates internal (component) faults using hybrid genetic

algorithms for the nonlinear aircraft system.

This is essentially a model based fault diagnosis system. We use a radial basis function network to

provide a reference (fault free) model the plant. The radial basis function network is initially

trained using genetic algorithms. The residual generated is used by the genetic algorithm to predict

the fault. The basic underlying theory behind detecting faults with GA is discussed next. The final

configuration is illustrated in figure 6.7.

6.2.1 Theory:

The basic concept behind detecting faults with genetic algorithms is as follows: the population of

chromosomes is initialized with many different fault combinations, this can also include a fault-free

condition. The fitness of the chromosome is then evaluated by calculating the difference between

the measured plant output (of the faulty plant), and the predicted plant output using the fault

information contained within the chromosome. Note that this is essentially a model based

approach. Consequently, the chromosome which best predicts the actual faulty plant output

provides the best estimate of the occurring fault.

x= Ax+B.0
y=C.x

noise noise

	■ y in(t)

multiplicative additive
faults 	faults

canponent
faults

a
multiplicative

faults

A y
additive
faults

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.18

The concept is illustrated Fig.6.5 below, for the given plant model:

Fig. 6.5
Input-Output Faults in a Linear System

The GA codification for this problem could be something like fig.6.6 below:

....internal plant faults..... a y A y error fitness

Fig. 6.6
Typical Codification for detecting input/internal/output faults

Where the faults Au, au , Ay, ay, can represent scalar or vectored variables. This also means that

we can code any plant fault including internal faults as well as input-output faults into the

chromosome. Internal plant faults must be explicitly defined parametrically as part of the plant

dynamics, for instance: x = A.x + B.0 + D. f , where f=fault. The fitness of the chromosome can

then be simply computed as the inverse of the error function:

error =(y7 v1,(y — - oaf
) 2 Eqn.6.20

where y7 is the actual measured plant output containing the fault at sample number: j, and yGAj is

the predicted plant output computed using the fault information contained within chromosome.

Thus we can search through a large fault space by simply defining a large population of

chromosomes, each with a different value and type of fault.

For instance a population of 100 chromosomes can initially search through 100 different fault

configurations simultaneously. Figure 6.7 below illustrates a typical setup in which a genetic

algorithm is used to detect and estimate faults. Note that the RBF represents the fault free model

of the plant.

u(t) y(t)

actuator
faults

{ Au, au }

sensor
faults

{ AY ay }
parametric

faults

RBF Model y(t)

Fault Estimate
{ Au, au , Ay, ay }

i=A.x+B.0

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.19

Fig. 6.7
Using Genetic Algorithms to Detect Faults

From figure 6.7, the genetic algorithm essentially injects the fault information contained within

each chromosome into the input/output of the RBF model. The predicted model output is then

computed and compared with the actual plant output. The resulting error is used to compute the

corresponding fitness of the chromosome.

One of the advantages of using genetic algorithm search is the inherent robustness to noise.

Furthermore, constraints can also be imposed, which can narrow the search space and produce a

faster convergence. For instance a faulty sensor can produce a maximum output within its

saturation range. This constrains the maximum allowable fault range. Methods of constrained

optimization were discussed in chapter 1. A disadvantage of GA is that this algorithm is

computationally intensive because the error calculation requires running a full simulation of the

model output (over N samples) for each chromosome. Thus for a population of 100 chromosomes,

we need to run a complete model simulation 100 times at each generation step. However as we

shall see, convergence is generally very rapid.

The accuracy of the predicted fault depends largely upon the accuracy of the reference model, the

presence of noise and external disturbances. A further advantage of such a method shown in figure

6.7 is the potential applicability to nonlinear systems. Simulation results using the longitudinal

aircraft model are presented next, comparing genetic algorithms with conventional parity space

methods.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.20

6.2.2 Detecting Input/Output Faults in Linear Systems:

For the first simulation, a model based FDI technique described earlier in 6.1.4 is used. The model

is constructed using radial basis function networks, this is essentially a black box model. We use

genetic algorithms for two parts of this simulation:

(i) To train (offline) the radial basis function network to model the longitudinal aircraft

dynamics.

(ii) To detect, locate and estimate single input, single output and multi input/output faults.

The linearized open loop longitudinal dynamics described in the appendix is used, and is again

illustrated below. For the state space system: i = A. x + B.0 , where: x = [q a 0]T and

u= ö e , q: pitch rate (deg/sec.), a: angle of attack (deg.), and 8: pitch angle (deg.), the control S e :

is the elevator surface command.

elevator
command

+ B.0

	 q -pitch rate (deg/sec)
a -angle of attack (deg)

	P 0 -pitch angle (deg)

Figure 6.8
Open loop Longitudinal Dynamics

Linearizing the model about x0=[0, 1.5, Of gives the following state space matrices:

- 0.9870 - 22.9501 0 [[- 28.34091

	

A = 1.0000 -1.3290 0 	B = - 0.1680
1.0000 	0 	0 	0

Note that we could also have used the nonlinear model, however for parity space comparison, a

linearized model in state space form is required.

(i) Training the RBF with GA:

For the first part of the simulation, we need to initially train the radial basis function network

(RBF) to model the linearized aircraft dynamics. The radial basis function network was described

in detail previously in chapter 2. We use a genetic algorithm to train the RBF network as in

chapter 2.

The longitudinal aircraft model has 3 states (outputs) and therefore requires 3 separate radial basis

function networks. This is illustrated in figure 6.9 below. In this instance, random training data

was generated from the linearized model. The data is then used to train the RBF network using

genetic algorithms.

q(k) 	• RBF #1

	• a(k) fb--10 • 	 RBF #2

0-6 	• 0 (k) RBF #3 1

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.2 I

Modeling the linearized aircraft with a radial basis function network. The 11 are time delay (or

shift) operators:

Fig.6.9
RBF Model of the Longitudinal Aircraft Dynamics

The chromosomal representation of the training problem is illustrated below Fig.6.10. Note that

all three RBF are trained simultaneously.

node 1 node n1

RBF #1

RBF #2

RBF #3

n i I wo I wi 11 12 13 14 Sdi I... 'Wm 11 t2 13 t4 Stint I erri

I n2 I" 1" ti 12 t3 14 sd I. • • • • • • • 111/n2 ti 1.2 1.3 14 Sdn2 I err2

I n3 I wo I wi ti t2 (3 (4 sdi 1 Wn311 12 r3 14 sdolerr3 I fitness

Fig.6.10
Chromosomal Representation of RBF Training for Longitudinal Aircraft Model

Where n i=number of hidden nodes in the first RBF#1, n2=number of hidden nodes in the second

RBF#2, and n3=number of hidden nodes in the third RBF#3. The error values err', err2, and err3

are given by:

err, =E(q — qRBFJ)2
.1= 1

err2 — (a — a RBF)2 err3 =1,(0 — 9 RBF) 2 Eqn.6.21
i=1 	 j=1

The fitness is evaluated as the inverse of the sum of the 3 error values: fitness=11(err i +err2+err3).

This means that all three RBF networks are trained simultaneously. Results of the training is

illustrated on the following pages. The setup for the genetic algorithm is as follows: Hidden

neurons: 10 in each RBF, population: 10, Probability of crossover Pc=0.6, Probability of mutation

Pm=0.1, and binary tournament selection. We can see that the genetic algorithm converges within

100 generations.

10 10 Time (sec)

10

-1 0 -10 	

0 	 5 	Time (sec)

q (pitch rate) deg/sec

5

q (pitch rate) deg/sec

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.22

This fast convergence is due to the linear quadratic nature of the cost function. Referring to figure

6.11, there are two columns, the left column is used for testing (verification) the radial basis

function network using a step response, and the right column is used to train the radial basis

function using random data. The blue plot is the RBF output, and the red plot is the linearized

aircraft output. The two graphs agree well. Note however the presence of a slight DC drift on the

pitch angle (bottom left graph). It is impossible and impractical for a model to follow the actual

open loop plant precisely.

Legend: • RBF • Linearized Aircraft

Step Comparison (Verification):

1 	
Se: elevator command deg

0.5

0

Random Comparison (Training):

Se: elevator command deg

5 Time (sec) 10 5 Time (sec) 10

a: alpha deg a: alpha deg

5 	Time (sec) 	10 5 	 10 Time (sec)

9: theta (pitch) deg 	 0: theta (pitch) deg

-10 	
5 	 10 	 5 	 10

Time (sec) 	 Time (sec)

Fig.6.11
Comparing the RBF model output with Plant

I

	•

Fault Estimate

Fig.6.12
Fault detection using genetic algorithms and radial basis functions

Se(t)

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.23

(ii) Fault Detection with Hybrid genetic algorithms:

Using the previously trained RBF, the RBF can now be applied to the task of fault detection and

isolation. In these next set of simulations, the genetic algorithm is used to both detect and quantify

the following faults: single input faults, single output faults, multiple input/output faults, single

input faults with time of occurrence. Before presenting the results, the simulation setup is depicted

below in figure 6.12 in greater detail:

actuator
faults

+Au, xa u
parametric

faults

sensor faults:
add 	multiply

+Aq, xa,
xaa
xae

+Aa,
+AO,

It is assumed that all the states are available for measurement, thus C matrix is the identity matrix:

y(t)=x(t). Additive and multiplicative faults are both shown in fig.6.12. The Chromosomal

representation of the above problem is shown below fig 6.13. The error is computed as the sum of

equations 6.21, the fitness is the inverse of the error. No constraints are imposed on this simulation

problem.

+A u Xa q

+Aq xa.a +Aa xcite I +AO error fitness

Fig.6.13
Chromosomal representation for the above problem

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.24

Detecting faults with GA as illustrated above works as follows: initially assume that the system is

free from faults, and the RBF model output exactly matches the plant dynamics x(t)=x„,(t). When

a fault occurs, the genetic algorithm will begin to search through all possible fault-spaces until a

particular fault is found (or combination of faults). At this point, the RBF model + fault best

matches the faulty plant output x(t). Note that the above FDI methodology is effectively

independent of any controller. Simulation results are given below.

(iii) Single Input Faults:

In this simulation, single input faults are detected. A multiplicative fault of 0.75 and additive fault

of 0.00 is introduced into the input thus: Au=0 au=0.75. The genetic algorithm correctly locates

the fault after 150 generations. Refer to figure 6.14. The three hybrid genetic algorithms are

compared with results obtained using conventional parity space methods. A summary is illustrated

below in table 6.1 including computational effort:

Method: Error: MFP
Parity Space 0 < 1.

GA < 10-2 22

GA + Simulated Annealing < 10-2 25

GA + Greedy Search < 10 -2 7

Table.6.1
Comparison of conventional Parity space with hybrid GA

The error is defined as the RMS difference between the actual fault and estimated fault. Note that

the error can never be zero due to the modeling inaccuracies of the RBF neural network used in the

simulation. The above simulations are typical, with the greedy algorithm consistently giving better

results. The setup for the genetic algorithm is as follows: population: 20, Pc=0.6, Pm=0.2, binary

tournament selection is used. Convergence properties of the GA and hybrid methods are illustrated

below. In all three cases, all methods converge to the correct fault.

Figure 6.14 compares the convergence rate of the three methods. Note that both conventional

genetic algorithms and hybrid GA + simulated annealing resulted in almost comparable

convergence rates. However the hybrid GA + greedy search resulted in a factor of four

improvement in convergence over the conventional genetic algorithm.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.25

1.5

0.5

0

-0.05

Fault (Gain) --+ 0.75

GA
GA + SA

GA + Greedy

5 	10

Fault (Offset) —* 0.00

15 	20 	25 ao 	35 	40

5
	

10 	15 	20 	25 	30 	35
	

40

ms error

10

10

10
5
	

10 	15 	20 	25 	30 	35 	40
M FP computational tailor (MFP)

Fig.6.14
Single input faults

(iv) Single Output Fault:

In this simulation, single output faults are detected. A multiplicative fault of 0.85 and additive

fault of 0.00 is introduced into the first output thus: Aq=0 a q=0.85. The genetic algorithm

correctly locates the fault after 100 generations.

Method: Error: MFP
Parity Space 0 < 1

GA < 10-4 20

GA + Simulated Annealing < 10-4 25

GA + Greedy Search < 10 -4 13

Table.6.2

The setup for the genetic algorithm is as follows: population: 20, Pc21.6, Pm=0.2, binary

tournament selection is used. Typical convergence plot is illustrated in figure 6.15 below:

GA + SA

-0.04

4.06
0

-0.02

Fault (Offset) -) 0.00
om Oki As.—

a 1 0 16 20 25 so 35 40

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorittuns 	 P.6.26

1.5

0.5

Fault (Gain) 	0.85

5 10 15 20 25 30 as 40

ms error

10

10

10

5 	10 	15 	20 	25 	30 	35 	40
MFP computalional &for (MFP)

Fig.6.15
Single output faults

(v) Multiple Input - Output Fault:

In this simulation, multiple input - output faults are estimated. A multiplicative fault of 0.75 and

additive fault of 0.00 is introduced into the input ie: Au=0 434,3.75, and a second fault is also

introduced into the output: Aq=0 041=0.85. All three hybrid genetic algorithms correctly locate

both faults after 700 generations, refer to figure 6.16. Table 6.3 below compares the results:

Convergence at error < 10-2 :

Method: MFP GAIN —> 0.75
(input)

OFFSET —4 0.0
(input)

GAIN -4 0.85
(output)

OFFSET -- 0.0
(output)

GA: 250 0.7592 0.0018 0.8481 0.0020

gm 418 0.7416 -0.0024 0.8511 -0.0029

Greedy 60 0.7480 0.0053 0.8515 0.0059

Table.6.3

500

	, GA + Greedy
100 	200 	300

	
400

Fault (Gain) -) 0.85
1

0.95

0.9

0.85

0.8

0.75

0.7

Input Fault (Gain) -) 0.75 	 Fait (011ast) -*GO
0.1 	

GA

GA + SA :

411 0 	100 	200

Fault (Ortaa) -)0.0
0.15 	

300 	CO 	50D

	

0.1 	

0.05

0

	

-0.05 	
100 	ZO 	300 	400 	500 	0 	100 	ZO 	300 	400 	500

„ M18 STU
10 	

10-'
'

4

10

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.27

Typical convergence plots of the three methods:

100 	203 	300 	400 	5(X)
AFP =mutational allot OOP)

Fig.6.16
Multiple input output faults

(vi) Detecting time of fault:

The time at which the fault occurred can also be estimated, by introducing an extra time parameter

into the chromosomal representation of the faults, thus T wit. Chromosomal representation for this

problem is illustrated below:

xce u I +Au I xa q I +Aq kick, I +Act I xoce +Ae I Tfaalt !error' fitness

Fig.6.17
Codification for detecting time of fault

Where Tfautt refers to a sample number which must be an integer between 1 to N. This is a simple

constraint which can be handled by a repair algorithm. The error and fitness are again calculated

according to equations 6.21.

GA

GA + Greedy

rT 	
	 + SA

1

52 10

48
10

-2 	
,

Input Fault (Gain) -) 0.75 Fault (Offset) -40.0

50
	

100
	

150
	

200 	0 	50 	100 	150 	200

Time of Fauft 50 rms error

1.2

0.8

0.6

0.4

0.2

-0.2

0.03

0.02

0.01

-0.01

-0.02

50

10 1

48

44

10
-3

100 	150 	200 	0

Fig.6.18

,

50 	100 	150 	200
MFP computational effor (MFP)

42
o so

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.28

For this simulation, a multiplicative fault of 0.75 and additive fault of 0.00 is introduced into the

input ie: iu=0 a,A.75. Furthermore, the time of fault is set to occour at the 50 th sample. Results

are summarized below:

Convergence at error < 10 -2 :

Method: MFP GAIN —> 0.75
(input)

OFFSET —> 0.0
(input)

Time of Fault-4 50
(sample)

GA 66 0.7563 -0.0000 50.0000

GA + SA 152 0.7568 -0.0001 50.0000

GA + Greedy 21 0.7519 -0.0000 49.0000

Table.6.4

Note that both input gain and offset faults are floating point numbers, however the time of fault

must be an integer (sample number). Table 6.4 compares the convergence of the three genetic

algorithm methods. For this type of problem, the parity space technique offers no direct

methodology for solving the time of fault.

Chapter 6: Fault Detection and Isolation Using Hybrid Gook Algorithms 	 P.6.29

6.2.3 Detecting Internal Faults:

In this last simulation, the nonlinear aircraft longitudinal model is used. Genetic algorithms are

applied to the problem of detecting internal plant faults. Given the generalized dynamical system

representing the aircraft longitudinal dynamics:

	

= A(x, p)+ B(x).0 	 Eqn.6.22

in which the vector p consists of components representing potential internal plant faults in

parametric form. If this system is linearized, the following linear model is obtained:

A.x+B.u+D.p Eqn.6.23

The faults now appear parametrically as inputs to a linear system. The full simulation setup is

illustrated below:

parametric
faults p

q(t)
a(t)
0(t)

qni(t)

am(t)
0,n(t)

Fig.6.19
Fault detection using a linearized parametric form of plant internal faults

For this simulation, the faults are assumed to occour in the following coefficients of the aircraft

equation of motion: q = { Ma , Mq Za } , refer to appendix 8.1 for a description of these

aerodynamic coefficients. Further, for this simulation we assume that only multiplicative faults

occour, and that there are no additive faults. Thus we denote the multiplicative fault for each

parameter as:

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.30

FAULT _ 1; fa : multiplicative fault in ; 17 a

FAULT_ g : multiplicative fault in 11-1,7
FAULT _Za : multiplicative fault in Za

Then the chromosomal representation for this problem can be simply defined as:

FAULT_ FAULT_ !Ng FAULT _Z. error fitness

Fig.6.20
Codification for detecting internal plant faults above

Again, the error is computed as per equations 6.21. The first and second faults can be interpreted

as altered pitch aerodynamic due to airframe change, the third fault as altered yaw aerodynamics

due to airframe change. Note that a value of 1 in each indicates a fault free condition. Results are

given below:

In this simulation, the following multiplicative faults are assumed to occur:

FAULT_ Ma =1.1

FAULT _ ;fig = 0.8

FAULT _Za = 0.9

Results for this simulation are illustrated in figure 6.21, convergence is within 250 generations.

After 250 generations, the values found by the GA search are: 1.100, 0.8002, 0.8999, which agree

well with the above faults.

FAULT_ c = 1.100 	FAULT_ if = 0.8002 	FAULT _Z0 = 0.899

1.18 1.3 1.25

1.14 z 	 1.2 1.2

1.12 1.15 	
1.1

1.1 1.1
1 1

1.08 1.05
0.9

1.06

0.8
1.04 0.95 -

0.7
1.02 0.9

0.6 0.85

0.98
0 	100 200

0.5
o 300 100 200

0.8
300 	0 	100 	200 300

generation 	 generation

Fig.6.21
Convergence properties of the GA, the fault is correctly predicted

generation

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithins 	 P.6.31

6.3 Chapter Summary and Conclusion:

(i) Results: From simulation results, genetic algorithms can be readily applied to fault diagnosis of

linear systems with input and output faults. We have used parity space as a basis for comparison.

Parity space methods are easy to apply but suffer from serious limitations such as inability to

detect multiple input/output faults. GA methods do not have these limitations, and convergence is

generally rapid. Results using hybrid genetic algorithms show that the combined GA+greedy

search outperforms the conventional GA and the hybrid GA+simulated annealing algorithm. We

have also shown that genetic algorithms can be used to detect the time at which the fault occured.

(ii) Advantages: Genetic algorithms can be used to detect multiple input and output faults.

Furthermore, fault diagnosis using genetic algorithms is not restricted to linear systems, it can also

be applied to nonlinear time varying systems, provided that the fault be modeled parametrically.

Additionally, genetic algorithms can also be applied in detecting internal plant faults in instances

where the internal faults may be described parametrically.

The underlying concept of using genetic algorithms in fault diagnosis enables hundreds of possible

fault combinations to be searched over a wide parameter space. In addition, the use of

chromosomal representation enables greater freedom in describing a fault, which may appear as a

discontinuous function, for instance an ON/OFF condition may be detected, or some discrete

function. We also have a greater choice in selecting a fitness function which may be linear,

nonlinear or discontinuous. In our simulation, a simple Euclidean distance metric was used.

(iii) Disadvantages: As with any GA, computational effort required was much greater than

conventional parity space. From simulation results, the computational effort was approximately

two orders of magnitude greater when genetic algorithms were used. This is an issue which needs

to be addressed if genetic algorithms are to be accepted in real time and online fault diagnosis, in

particular life-critical systems such as aircraft and medical applications. A further disadvantage is

that an input/output (black box) model of the system is required. The reason for the higher

computational effort is because the genetic algorithm runs full model simulation in order to

compute the fitness function for each member of the population over each generation. Perhaps a

means to reduce computational effort is to use a simpler fitness function or a variation such as a

statistical function. This may be a topic of future research.

chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.32

(iv) Future work: From this brief survey, the model based methods offer interesting applications

for research in fault detection and isolation. Other methods including observer based which have

yet to be investigated, such as variable structure/sliding observers and nonlinear (lie algebraic)

methods. The advantages of using these techniques in control are well established, including

robustness to uncertainties, and invariance to disturbances. These advantages can be carried over

to the design of robust observer applications.

There are clearly a multitude of methods for fault diagnosis as seen from the survey, a full

discussion would be impractical. The popular methods of parity space are well established and

offer a simple and reliable methodology of detecting faults for linear systems.

Although model based and observer based methods require a -priori knowledge of the plant, the

main difference is that model based methods do not require a knowledge of the plant states, only

input/output measurements. Consequently, more information is necessary for observer based

methods.

From the literature on FDI, we can see that there are many techniques and variations of fault

detection, in which GA can be applied. Currently, research and state-of-the-art FDI focuses

primarily on nonlinear systems and robust methods with the application of neural networks and

fuzzy set theory.

The application of fault diagnosis comparing (or hybridizing) genetic algorithms with other

statistical and fuzzy methods described in section 6.1 would be an interesting topic for future

research with applications to genetic algorithms.

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.33

6.4 References and Further Reading:

[1] J. Chen, R.J. Patton,
Robust Model Based Fault Diagnosis for Dynamic Systems
Kluwer Academic Publishers, 1999

[2] McKenna J.T,
Blocked Static Ports Eyed in Aeropeni 757 Crash
Aviation Week and Space Technology, pp. 76, November 11, 1996

[3] Leannont, D.
Airline Safety Review
Flight International, Jan.27, 1993

[4] National Transport Safety Board NTSB-AAR 79-17
Aircraft Accident Report, American Airlines Inc. DC-10-10, NI IOAA
Chicago-O'Hare International Airport, Chicago Illinois, May 25, 1979, Jan.27, 1993

[5] P.M. Frank
Fault Diagnosis in dynamic Systems Using Analytical and Knowledge-based Redundancy - A survey and
Some New Results, Automatica Vol. 26, No. 3, pp. 459-474, 1990

[6] E.Y.Chow, A.S.Willsky
Analytical Redundancy and the Design of Robust Failure Detection Systems
IEEE Transactions on Automatic Control, Vol. AC-29, No.7, pp.603-614, July 1984

[7] R. Isermann
Fault Diagnosis of Machines via Parameter Estimation and Knowledge Processing - A Tutorial paper
Automatica, Vol. 29, No. 4, pp. 815-835, 1993

[8] R. Milne
Strategies for Diagnosis
IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-17, No.3, pp. 333-339, May/June 1987

[9] J.J. Gertler
Survey of Model Based Failure Detection and Isolation in Complex Plants,
IEEE Control Systems Magazine, Vol.8, No.6, pp. 3-11, December 1988

[10] R. Isennann
Process Fault Detection Based on Modeling and Estimation Methods - A Survey
Automatica, Vol. 20, No. 4, pp. 387-404, 1984

[11] M.A.Massoumnia, G.C.Verghese, A.S.Willsky
Failure Detection and Identification
IEEE Transactions on Automatic Control
Vol. 34, No.3, pp.316-321, March 1989

[12] A.S.Willsky
A Survey of Design Methods for Failure Detection in Dynamic Systems
Automatics Vo.12, pp. 601-611, 1976

[13] K.Danai, H.Chin
Fault Diagnosis With Process Uncertainty.
Journal of Dynamic Systems, Measurement and Control, Vo.113, pp.339-343, September 1991

[14] H.Chin, K.Danai
A Method of Fault Signature Extraction for Improved Diagnosis
Journal of Dynamic Systems, Measurement and Control
Vo.I13, pp.634-638, December 1991

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.34

[15] T.Ono, T.Kurnamaru, A.Maeda, S.Sagara, ICKumamaru
Influence Matrix Approach to Fault Diagnosis of Parameters in Dynamical Systems.
IFFF Transactions on Industrial Electronics. VoIE-34, No.2„ pp.285-291, May 1987

[16] Hong Jing, Hong Yue Zhang
Optimal Parity Vector Sensitive to Designated Sensor Fault
IEEE Transaction on Aerospace and Electronic Systems, Vol.35, No.4, pp.1122-1128, October 1999

[17] J.Gertler, D.Singer
A New Structural Framework for Parity Equation based Failure Detection and Isolation
Automatica, Vo.26, No.2, pp.381-388, 1990

[18] Xi-Cheng Lou, A.S.Willsky, G.C.Verghese
Optimally Robust Redundancy Relations for Failure Detection in Uncertain Systems
Automatica, Vo.22, No.1, pp.333-344, 1986

[19] M.P.Frank, R.J. Patton, R. Clark
Fault Diagnosis in Dynamic Systems - Theory and Applications
Kluwer Academic Publishers, 1989

[20] A. Medveclev
Fault Detection and Isolation by a Continuous Parity Space Method
Automatica, Vo.31, No.7, pp.1039-1044, 1995

[21] J.F.Magni, P.Mouyon
On Residual Generation by Observer and Parity Space Approaches
IFFF Transactions on Automatic Control, Vol. 39, No.2, pp.441-447, February 1994

[23] H.Wang, H.Kropholler, S.Daley
Robust Observer Based FDI and its Application to the Monitoring of a Distillation Column.
Transactions on of the Institute of Measurement and Control, Vo.15, No.5, pp.221-227, 1993

[24] Randal K. Douglas, Jason L. Speyer
Robust Fault Detection Filter Design
Proceedings of the American Control Conference, pp.91-96, 1995

[25] Jaehong Park, Giorgio Rizzoni
A New Interpretation of the Fault Detection Filter Part. 1, Closed Form Algorithm
International Journal of Control, Vol.60, No.5, pp.767-787, 1994

[26] Jaehong Park, Y.Halevi, Giorgio Rizzoni
A New Interpretation of the Fault Detection Filter Part.2, The Optimal Detection Filter
International Journal of Control, Vol.60, No.6, pp.1339-1351, 1994

[27] J.Chen, R.J.Patton, H.Y.Zhang
Design of Unknown Input Observers and Robust Fault Detection Filters
International Journal of Control
Vo.63, No.1, pp.85-105, 1996

[28] M. Hou, P.C. Muller
Design of Observers for Linear Systems with Unknown Inputs
IEEE Transactions on Automatic Control, Vol. 37, No. 6, pp.871-875, June 1992

[29] Y. Park, J.L. Stein
Steady State Optimal State and Input Observer for Discrete Stochastic Systems
Journal of Dynamic Systems, Measurement and Control, Vo.111, pp.121-127, June 1989

[30] M.Saif, Y.Guan
A Novel Approach to the Design of Unknown Input Observers
IFFF. Transactions on Automatic Control, Vol. 36, No.5, pp.632-635, May 1991

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithm 	 P.6.35

[31] M.Saif, Y.Guan
A New Approach To Robust Fault Detection and Identification
JEFF. Transaction on Aerospace and Electronic Systems, Vol.29, No.3, pp.685-695, July 1993

[32] R.N.Clark
A Simplified Instrument Failure Detection Scheme
IFFF. Transaction on Aerospace and Electronic Systems, Vol.AFS 14, No.4, pp.558-563, July 1978

[33] R.N.Clark
Instrument Fault Detection
JEFF. Transaction on Aerospace and Electronic Systems, Vol.AES 14, No.3, pp.456-465, May 1978

[34] K.J.Astrom, P.Eylchoff
System Identification - A Survey
Automatica, Vol. 7, pp. 123-162, 1971

[35] K.J. Hunt
A Survey of Recursive Identification Algorithms
Transactions of the Institute of Measurement and Control, Vo.8, No.5, pp.273-278, October-December 1986

[36] L.A.Pineiro, D.J.Biezad
Real-Time Parameter Identification Applied to Flight Simulation
IEEE Transaction on Aerospace and Electronic Systems, Vol.29, No.2, pp.290-301, April 1993

[37] F.E. Thau
Observing the State of Nonlinear Dynamic Systems.
International Journal of Control, Vol.17, No.3, pp.471-479, 1973

[38] R. Mehra, S. Seereeram, D. Bayard, F. Hadaegh
Adaptive Kalman Filtering, Failure Detection and Identification for Spacecraft Attitude Estimation
Fourth International Conference, pp, 176-181

[40] S.M.Joshi
Robustness of Extended Kalman Type Observers
International Journal of Control, Vol.45, No.5, pp.1857-1866, 1987

[41] B.L.Walcott, S.H.Zak
Comparative Study of Nonlinear State Observation Techniques
International Journal of Control, Vol.45, No.6, pp.2109-2132, 1987

[42] B.L.Walcott, S.H.Zak
Combined Observer Controller Synthesis for Uncertain Dynamical Systems with Applications
International Journal of Control, Vol.18, No.1, pp.88-104, 1988

[43] Christopher Edwards, Sarah K. Spurgeon
On the Development of Discontinous Observers
International Journal of Control, Vol.59, No.5, pp.1211-1229, 1994

[44] Ibrahim Haskara, Umit Ozguner, Vadim Utkin
On Sliding Mode Observers via Equivalent Control Approach
International Journal of Control, Vol.71, No.6, pp.1051-1067, 1998

[45] J.J.E.Slotine, J.K.Hedrick, E.A.Misawa
On Sliding Observers for Nonlinear Systems
Journal of Dynamic Systems, Measurement and Control, Vo.109, pp.245-252, September 1987

[46] J. Birk, M.Zeitz
Extended Luenberger Observer for nonlinear Multivariable Systems
International Journal of Control, Vol.47, No.6, pp.1823-1836, 1988

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.36

[47] Nikolaos Kazantzis, Costas Kravaris
Nonlinear Luenberger type Observer with Applications to Catalyst Activity Estimation
Proceedings of the American Control Conference, pp.1756-1761, 1995

[48] D.G. Luenberger
An Introduction to Observers
IEEE Transactions on Automatic Control, Vol. AC-16, No. 6, pp.596-602, December 1971

[49] J.K.Hedrick, E.A.Misawa
Nonlinear Observers, State of the art Survey
Journal of Dynamic Systems, Measurement and Control, Vo.111, pp.344-352, September 1989

[50] May-Win L Them, Eduardo. A. Misawa
Comparison of the Sliding Observer to Serveral State Estimators Using a Rotational Inverted Pendulum.
Proceedings of the 34 th Conference on Decision and Control, Vol. 4, pp.3385-3390, December 1995, New
Orleans LA.

[51] G.Schram, S.M.Gopisetty, R.F.Stengel
A Fuzzy Logic Parity Space Approach To Actuator Failure Detection and Identification
American Institute of Aeronautics and Astronautics 1998, (internet download)

[52] S.M. Gopisetty, R.F.Stengel
Detecting and Identifying Multiple Failures in a Flight Control System
AIAA-98-4488 conference Boston aug.1988, (internet download)

[53] J.X.Xu, H. Hashimoto
Parameter Identification Methodologies based on Variable Structure Control
International Journal of Control, Vol.57, No.5, pp.1207-1220, 1993

[54] Randal K. Douglas, Jason L. Speyer
An IL Bounded Fault Detection Filter.
Proceedings of the American Control Conference, pp.86-90, 1995

[55] Y.Jin, J.Jiang, J.Zhu
Neural Network Based Fuzzy Identification and Its Application to Modeling and Control of Complex Systems.
IEEE Transactions on Systems, Man and Cybernetics, Vol.25, No.6, pp. 990-997, June 1995

[56] E.G. Laukonen, K.M.Passino, V.Krishnaswarni, G.C.Luh, G.Rizzoni
Fault Detection and Isolation for an Experimental Internal Combustion Engine via Fuzzy Identification.
IEEE Transactions on Control System Technology, Vol.3, No.3, pp. 347-355, September 1995

[57] K.Liu, F.L.Lewis
Adaptive Tuning of Fuzzy Logic Identifier for Unknown Non Linear Systems
International Journal of Adaptive Control and Signal Processing, Vol.8, No.3, pp. 573-586, 1994

[58] R. Isennann
On Fuzzy Logic Applications for Automatic Control, Supervision, and Fault Diagnosis
IEEE Transactions on Systems, Man and Cybernetics, Vol. 28, No. 2, pp. 221-235, March 1998

[59] P.K. Fink, J.C.Lusth
Expert Systems and Diagnostic Expertise in the Mechanical and Electrical Domains
IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC 17, No.3, pp. 341-349, May/June 1987

[60] M.J. Pazzani
Failure-Driven Learning of Fault Diagnosis Heuristics
IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC 17, No.3, pp. 380-394, May/June 1987

[61] R. Iserinann, B.Freyermuth
Process Fault Diagnosis Based on Proceess Model Knowledge - Part 1, Principles for Fault Diagnosis With
Parameter Estimation.
Journal of Dynamic Systems, Measurement and Control, Vo.113, No.2„ pp.620-626, December 1991

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.37

[62] R. Isermann, B.Freyermuth
Process Fault Diagnosis Based on Proceess Model Knowledge - Part It Case Study Experiments
Journal of Dynamic Systems, Measurement and Control, Vo.113, No.2„ pp.627-633, December 1991

[63] R.F.Stengel
Intelligent Failure-Tolerant Control
IFFF. Control Systems Magazine, pp.14-23, June 1991

[64] Y.Ishida, N. Adachi, H. Tolcurnaru
A Topological Approach to Failure Diagnosis of Large-Scale Systems
IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC 15, No.3, pp. 327-333, May/June 1985

[65] A. Srinivasan, C.Batur
Hopfield/ART-1 Neural Network Based Fault Detection and Isolation
IFFF Transactions on Neural Networks, Vol.5, No.6, pp. 890-899, November 1994

[66] T.Sorsa, H.N.ICoivo, H.Koivisto
Neural Networks in Process Fault Diagnosis
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, No.4, pp.815-825, August 1991

[67] T.Sorsa, H.N.Koivo
Application of Artificial Neural Networks in Process Fault Diagnosis
Automatica, Vol. 29, No.4, pp.483-489, 1993

[68] S.R.Naidu, E.Zafiriou, T..J.McAvoy
Use of Neural Networks for Sensor Failure Detection in a Control System
IEEE Control Systems Magazine, pp. 49-55, April 1990

[69] T.H.Guo, J.Musgrave
Neural Network based Sensor Validation for Reusable Rocket Engines
American Control Conference, pp.1367-1372, 1995

[70] M.R.Napolitano, C.I.Chen, S.Naylor
Aircraft Failure Detection and Identification Using Neural Networks
Journal of Guidance, Control and Dynamics, Vol.16, No.6, pp. 999-1009, Nov-Dec 1993

[71] M.R.Napolitano, V.Casdorph, C.Neppach, S.Naylor, M.Innocenti, G.Silvestri
Online Learning Neural Architectures and Cross-correlation Analysis for Actuator Failure Detection and
Identification.
International Journal of Control, Vol.63, No.3, pp.433-455, 1996

[72] J.C.DeLaat, W.C.Merrill
A Real Time Microcomputer Implementation of Sensor Failure Detection for Turbofan Engines
IEEE Control Systems Magazine, pp.29-37, June 1990

[73] G.F.Steven
Kalman Filtering - noise corrupted signal processing
Electronics and Wireless World, pp.I083-1085, Nov. 1988

[74] J.C.Deckert, M.N.Desai, J.J.Deyst, A.L.Willsky
F-8 DFBW Sensor Failure Identification Using Analytic Redundancy
IEEE Transactions on Automatic Control, Vol. AC-22, No. 5, pp.795-803, October 1977

[75] T.Takagi, M.Sugeno
Fuzzy Identification of Systems and Its Application to Modeling and Control
IEEE Transactions on Systems, Man and Cybernetics, Vol.SMC-15, No.1, pp. 116-132, January/Feb. 1985

[76] W.S. Levine
The Control Handbook
IEEE Press 1996

Chapter 6: Fault Detection and Isolation Using Hybrid Genetic Algorithms 	 P.6.38

[78] A.J. Fossard, D.Normand-Cyrot
Nonlinear Systems, Volume-1, Modeling and Estimation
Chapman & Hall 1995

[79] Jean-Jacques E. Slotine, Weiping Li
Applied Nonlinear Control
Prentice Flail 1991

[80] Michele Basseville
Detecting Changes in Signals and Systems- A Survey
Automatica, Vol. 24, No.3, pp.309-326, 1988

[81] R.M.Thong, M.B.Beck, A.Latten
Fuzzy Control of the Activated Sludge Wastewater Treatment Process
Automatica, Vol. 16, pp.695-701

Chapter 7: Summary and Conclusions 	 P.7.I

Summary and Conclusions:

Contents:

7.1 Conclusion 	 p.7.2

7.2 Challenges and Future Development 	 p.7.10

7.3 References and Further Reading 	 p.7.14

Chapter 7: Summary and Conclusions 	 P.7.2

7.1 Conclusion:

(i) Genetic Algorithms:

Genetic algorithms (GA) are a powerful generalized multiparameter search scheme. However, they

cannot simply be applied to any problem blindly. Any method which can be used to enhance the

performance of a GA (i.e. gradient or hybrid methods) should be considered. Thus careful

application of the GA algorithm is always recommended. This can mean the difference between

successful convergence or poor convergence. The rate of convergence is strongly affected by the

shape of the fitness function. The selection of a proper fitness function is also important. Careful

choice of mutation, crossover, and selection operators is also critical. However, when the GA

search is performed over a search space of low dimensionality as seen in chapter 4 (SISO system),

then the choice of mutation and crossover are less critical. One of the main concerns associated

with genetic algorithms is premature convergence. This is caused by a superfit individual quickly

proliferating throughout the population, reducing genetic diversity and generally resulting in rapid

convergence to a sub-optimal solution. Conversely, using high mutation probabilities and selection

schemes with low selection pressure can result in excessive genetic diversity and unacceptably

slow convergence. A genetic algorithm should always be implemented as a judicious balance

between avoiding premature convergence, and avoiding wasteful searching by ineffective selection

schemes or excessive mutation probabilities. Some lessons learned from the simulation studies are:

1. Fitness functions: For fitness functions which are quadratic, simple convex functions, or have

few minima, convergence can be very rapid. The shape of the fitness function and the number

local minima has a profound influence upon the convergence of the genetic algorithm. For

example, designing a LQR using a genetic algorithm generally results in fast convergence. The

fitness function should always be carefully selected. If a GA fails to converge, or takes

unusually long to converge, the improper choice of fitness function is generally the primary

cause.

This concept can be extended to constrained optimization problems in which a penalty function

is used. Dynamic penalty functions require a procedure for scheduling (or increasing) the

penalty coefficient. A simpler method would be to use a static penalty function in which the

penalty coefficient remains constant. In our simulations, we made use of an infinite value of

penalty parameter, in other words, if the solution is infeasible (i.e. constraint is not met) then the

fitness is simply set to zero.

Chapter 7: Summary and Conclusions 	 P.7.3

2. Codification: According to the original schema theorem developed by Holland [2], binary

coding was used to derive convergence rates and population takeover time for the basic GA.

Unfortunately, the original schema theorem cannot be directly applied to floating point

chromosomal representation. However, despite this, the majority of current publications on GA

research use floating point representation. Refer to [6] for a comparison on binary and floating

point representation. In all our simulations, floating point representation was used and found to

work well.

3. Selection Operator: The choice of selection operator has a strong influence upon the rate of

convergence. Proportional fitness selection such as roulette wheel selection is common. This

however can result in premature convergence and reduce initial search. Most selection

operators however must bear some direct relation between probability of selection and fitness

value. The two methods found to be most effective are: ranking selection and tournament

selection, binary tournament selection was used throughout all the simulations and found to

work well. Premature convergence can be avoided by reducing the selection pressure, for

instance: reducing the number of sub-individuals m chosen from the population n in tournament

selection can substantially reduce the rate of convergence. Since in general, a GA requires at

least two parents, two different selection operators may be used, one for each parent. The first

parent may be selected using a tournament selection scheme, the second using pure random

selection. This method can sometimes prevent premature convergence, leading to a better

search. Random selection simply selects a parent from the population at random without regard

to its fitness value. Thus any individual can be selected with equal probability. Ranking

selection is also found to be a very effective selection scheme. Ranking selection eliminates the

problem associated with premature convergence because only relative fitness is used and not the

absolute fitness. Additionally, because only relative fitness is required, the computation of

fitness values can be simplified, or in applications in which a continuous fitness function may

not be available, for instance classification problems. Another selection operator which is very

effective is stochastic universal sampling, often used with multiple parents (more than 2). This

is regarded as an optimal sampling scheme.

4. Mutation Operator: The choice of mutation operator, mutation probability Pm and mutation

intensity x all have a strong influence upon the performance of any GA. Whilst the concept of

mutation is identical in both binary and floating point representation, the actual implementations

differ.

Chapter 7: Summary and Conclusions 	 P.7.4

In binary representation, mutation simply swaps bits from 1 to 0 or 0 to 1 with finite probability

Pm. This probability is generally very low eg: Pm=0.01. When dealing with floating point

representation, we have many more variations by which mutation may be implemented. The

most obvious is to add a uniformly distributed random number thus: x i=xj+x*rand, where lc is

the mutation gain or intensity. A second method would be to use: x i=xix(l+erand) where

rand has a gaussian distribution. The first method has the potential to search a wider space, the

second a narrower search space. Furthermore the mutation intensity lc may be chosen to be a

function of time x(t), and generally decrements as the algorithm converges closer to the

solution. In many instances, x may be manually controlled.

In general, randomly switching between both schemes resulted in rapid convergence. As a

further observation, the probability of mutation Pm should be higher when using floating point

representation than if using binary representation. For example if a number x is represented as

a 20 bit binary string, the probability of mutating this binary string number is 20xPm .

If floating point representation is used for x, then we should use P m =20x0.01=0.2. This is why

high mutation probabilities are used in most simulations between Pm : 0.1-0.4. Note that a high

mutation probability Pm helps to retain genetic diversity and prevent premature convergence.

On the other hand, a high mutation rate can also slow down convergence considerably. Again,

the choice of mutation probability and intensity sometimes requires much trial-and-error work.

Some authors have used self adaptive genetic algorithms with fuzzy search control, see [5]. and

below section 7.2 for details. As a rule of thumb, the mutation probability should be chosen to

be the inverse of the dimensions of the search space. The algorithm for mutation is:

for j=1 to n
if (rand < Pm)

= + 70<rand (or)
xj = x3x(1 + xxrand)

end
end

where n=length of chromosome, and rand=random number generator with uniform or gaussian

probability distribution.

5. Crossover Operator: The choice of crossover operator is less critical. If using binary string

representation, a two point crossover is generally a more effective search method than single

point crossover.

Chapter 7: Sumrnary and Conclusions 	 P.7.5

When using floating point representation, a uniform weighted average crossover was found to

give better convergence results than any other method tested. The crossover operator for

floating point (or integer) representation is: zi = axi + (1-a).yj, where xi and yi are the two

parents, zj is the offspring and a is a uniformly distributed random number [0,1], and j is the /h

components of the chromosome. With a=0.5 fixed, averaging crossover can also yield good

results. However simple swapping crossover (as used in binary strings) generally leads to poor

results. Probability of crossover Pc is generally higher than mutation, values between 0.6-0.9

are recommended. The addition of the Hooke-Jeeves pattern search crossover (refer to chapter

1.4.2) was also found to improve the rate of convergence. The algorithm for the uniform

weighted average crossover operator is:

for j=1 to n
if (rand < Pc)

zi = ax; + (1-0).yi
end

end

where n=length of chromosome, and rand=random number generator with uniform probability

distribution [0,1]. The Hooke-Jeeves crossover operator is:

if (fitnessA > fitnessB) then
offspring = 2.xA - xB

else
offspring = 2.xs - xA

When dealing with complex numbers, the crossover operator should be implemented as if the

real and imaginary parts are two separate numbers.

6. Population Inversion: Generating a new population from the old population is commonly

referred to as population inversion. Given a population of n parents, the GA generally produces

a second population of n offspring at each generation step. There are generally 3 accepted

methods of population inversion: (i) The most common method is to completely replace the old

population (parents) with the new population (offspring). (ii) Another variation would be to

replace a subpopulation of m (parent) individuals with m fittest offspring. (iii) Or combine the

new and old population into one, and then select the n most fit individuals.

Chapter 7: Summary and Conclusions 	 P.7.6

From simulations, the third method was found to be very effective in most applications.

However one point to consider: the first method generally results in slower convergence, but

retains greater genetic diversity. The third method converges quicker, loosing potential genetic

information early, some trial and error may be necessary in the choice of population inversion

operator. Whichever method is used however, the concept of Elitism was found to be

indispensable in any population inversion scheme.

7. Computational Effort: The calculation of fitness values is by far the most computationally

intensive part of any GA, this is particularly true in training RBF networks (chapter 2), in

MRAC (chapter 4) control, and FDI (chapter 6). The high computational burden stems from

the parallel nature of genetic algorithms. For example, when training a RBF network using

200 training samples, a population of 50 individuals and 10 hidden nodes, this results in

200x50x10=100,000 computations for each hidden node at each generation step (note that a

single node computation may require many FLOPS). Furthermore, because the RBF weights

are computed by least squares, this means that in addition, it also requires 50 matrix inversions

at each generation. In such instances, vectoring the algorithm or using multiple processors (e.g.

systolic array) would be preferable as the GA is easily adapted for parallel processing

hardware. As a Consequence, the GA must be made to converge as efficiently as possible in the

fewest possible generations. To overcome this problem, hybrid GA methods were adopted.

Increasing population size reduces the number of generations required for convergence, however

not necessarily as a linear function. This means that a tradeoff between population size and

number of generations to converge is generally needed on a single processor machine. If

running on a parallel machine with multiple processors for instance, then the population size

may be increased to the full number of available processors.

8. Robustness Qualities: Genetic algorithms show good robustness properties to noisy data. This

robustness quality can be attributed to the large amount of measured data generally required to

be processed by the GA in order to compute fitness. For instance when training a RBF network

for modeling or control, the quantity of training data and the fact that all data carries equal

weight reduces the effect of noise present. Noise is assumed to be uncorrelated with a zero

mean.

Chapter 7: Summary and Conclusions 	 P.7.7

9. Population Initialization: Initial search is essential for rapid convergence. The population

should always be initialized within and as close to the solution space as possible. Choose a

narrower search space if the solution is known to lie within a particular region. If the GA

initially encounters a local minima, the entire population may soon lie within this local minima.

Whilst the GA is capable of emerging from the local minima, this is generally not very efficient.

If however, the initial search is prevented from converging too quickly, it will have greater

opportunity to find a global minimum and subsequently converging towards it.

10 Constraint Handling: Genetic algorithms can handle constrained related optimization problems

directly without the need to restructure the problem. Repair algorithms are found to work well

in all simulations. The static penalty function has been also found to work well, the difficulty

arises in the choice of a value of the penalty coefficient. When light penalties are used, they fail

to accurately enforce the constraint. However when heavy penalties are used, that portion of

the population which violates the constraints will quickly vanish. This reduces the search space

and can lead to an excessive number of unfeasible solutions..

In summary, genetic algorithms cannot be simply applied blindly to any problem. Each GA

implementation must be carefully considered taking into account any problem specific information

and some trial-and-error work. As a last point at hand, we note that according to the no-free-lunch

theorem (NFL) by Wolpert and Macready [1], states that without problem and domain specific

information, there is no way to justify claims that one search algorithm is better than all others.

This implies that the proper choice of search algorithm is strongly dependent upon the problem to

be solved.

(ii) Applications to Identification and Control:

Some key results obtained in the implementation of control systems with genetic algorithms and

radial basis function networks is briefly summarized below:

1. RBF Applications: From the results obtained in chapter 2, training using genetic algorithms

can produce a RBF network with superior performance compared to conventional training.

However training times are excessive. To reduce training time, we require some variation of the

GA tailored specifically for RBF networks. The hybrid combination of conventional genetic

algorithms and greedy local search was found to improve convergence.

Chapter 7: Summary and Conclusions 	 P.7.8

2. Eigenstructure Assignment: The generalized robust eigenstructure assignment problem

formulated in chapter 3 can be directly solved with hybrid genetic algorithms, generally with

fast convergence results. If using conventional gradient based optimization, the presence of

constraints results in a problem formulation requiring Lagrange multiplier methods. The

Lagrange multiplier formulation (chapter 1) produces an excessive number of equations (five

matrix differential equations), requiring gradient calculations for each, including having to solve

for the lagrange multiplier matrix. Furthermore, convergence is local only. Genetic algorithms

can deal with this problem directly, using penalty functions to handle the constraints.

Eigenstructure assignment has also been extended to the problem of reconfigurable control [7].

In this instance, the feedback controller K is modified such that the closed loop eigenstructure

remains unchanged under the influence of plant changes: AA and AB. This can be a subject of

further research with the application of genetic algorithms.

3. MRAC Control: From chapter-4, we can see that hybrid genetic algorithms can easily be

applied to adaptive control applications, and convergence is generally very rapid. For simple

SISO systems, convergence results within 50 generations. However, despite the rapid

convergence, the computational effort is excessive. The use of hybrid genetic algorithms helps

to alleviate this problem. However, there is no guarantee that the genetic algorithm will

converge at all. This is a critical issue if genetic algorithms are to be accepted as an alternative

in MRAC control applications. On the other hand however, genetic algorithms have fewer

restrictions and can also be applied to nonlinear systems. Note also that the GA is not really

recursive, whereas both the Lyapunov method and MIT rule generate new parameters at each

sample interval with only the current measurement, the genetic algorithm requires knowledge of

past historical data as well as current data. This means that its response is delayed if an abrupt

change occurs in the plant A and B matrices. Whilst the genetic algorithm may not be

recursive, it can however still operate online. From the results, we can see that genetic

algorithms work well, and have fewer restrictions when compared with more traditional

methods such as the MIT gradient based rule and Lyapunov stability theory. The GA can

easily be extended to more unconventional controller configurations without any change to the

genetic algorithm design. Genetic algorithms are easily extended to solving nonlinear MRAC

systems, utilizing any controller structure e.g.: neural networks, fuzzy logic, linear dynamic

compensators etc. The GA offers many new and novel possibilities for implementing robust

adaptive control systems, in particular areas of intelligent control systems.

Chapter 7: Summary and Conclusions 	 P.7.9

4. Mixed I12/H. Control: Results from chapter-5 show that genetic algorithms can be

successfully applied to the design of full order, reduced order H2, FL, and mixed H2/H..

compensators. Results agree well with those obtained using conventional state space solutions,

and conventional model reduction techniques. In most cases, the GA converged within 400

generations. Genetic algorithms are conceptually elegant, simple and applicable to a wide

range of robust control and multiobjective constrained optimization problems. In this

applications, solution to the H2 or FL problem required only a single objective constrained

optimization. The solution to the mixed H 2/FL, is a multiobjective constrained optimization

problem which leads to a family of solution. By proper selection of the scalar weight K, more

or less emphasis can be placed on the optimization of either the H2 or FL specifications.

5. Fault Detection and Isolation: Fault detection and isolation (FDI) can be viewed as a system

identification problem. From the survey in chapter-6, there are a multitude of methods for fault

diagnosis as evidenced from the survey. The popular methods of parity space are well

established and offer a simple and reliable methodology of detecting faults for linear systems.

However parity space methods suffer serious limitations such as inability to detect output or

multiple faults. Simulation results indicate that genetic algorithms using a model based FDI

system can be used to detect input, output, and internal plant faults with rapid convergence.

Genetic algorithms do not suffer from restrictions prevailing most traditional FDI methods.

Furthermore, nonlinear systems can be diagnosed as long as a model of the system is available.

Because genetic algorithms deal with population of individuals, a large variety of probable

faults can be quickly analyzed and evaluated, whilst providing good immunity to sensor noise.

Given the plethora of currently available methods [8], one would expect wide-ranging

applications of genetic algorithms and heuristic search, in the field of fault detection and

isolation. This would be an ideal topic for future PhD research.

In summary, we have seen that genetic and hybrid algorithms are a powerful tool for solving

problems including constrained optimization and machine learning. We have shown that the GA

can converge very rapidly in all applications. This feature, coupled with need for control systems

to be more autonomous, reliable, and adaptive makes the genetic algorithm an ideal mechanism for

evolving control systems.

Chapter 7: Summary and Conclusions 	 P.7.10

7.2 Challenges and Future Development:

Some directions for possible future research are briefly outlined below. In particular, applications

of evolutionary concepts to areas of conventional control and intelligent control. Although, the

work in this thesis focused primarily on genetic algorithms, evolutionary computation encompasses

a broader class of evolutionary theories as discussed in chapter 1. This provides a greater scope

for many different potential applications to control engineering.

(i) Genetic Algorithms:

1. Mathematical framework: Evolutionary algorithms have demonstrated the ability to rapidly

solve problems in which classical optimization methods fail or are inadequate. However there

is a lack of strong mathematical framework, particularly in the areas of convergence rates and

stability proofs.

2. Multiobjective optimization: This is a relatively new area in which evolutionary computation

can play a significant role. Currently there are two methods of multiobjective optimization

using genetic algorithms: Pareto dominance principle and Nash Equilibria [9]. A good review

on multiobjective optimization (MOP) using genetic algorithms is found in [13].

Nash Equilibria is a relatively new concept of game theory in genetic algorithms, which has

more robust and faster convergence properties. Nash equilibria which originated in 1951 [10],

is inspired from Games Theory and economics, produces a single solution rather than a family

of solutions. Also referred to as Non-Cooperative approaches. A good introduction to Nash

equilibria is given by [11]. A similar strategy using asynchronous (less frequent) exchange of

data exists, this is called the Stackelberg Equilibria [12] in which one player plays before the

other, taking into account its reaction. All these techniques are referred to as evolutionary

game theory, and offer new avenues of research in genetic algorithms [11]. Niching and

coevolutionary theory also relate to multiobjective optimization concepts. This is currently an

active area of research with potential applications in control theory.

3. Self Adaptation: Self adaptation is a relatively new concept in evolutionary strategies. Self

adaption involves dynamically modifying the genetic operators such as crossover and mutation

probabilities, and mutation intensity, in order to improve convergence.

New Mutation Probability

New Mutation Intensity

Fig.7.2

Chapter 7: Summary and Conclusions 	 P.7.11

Self adaptation of strategy parameters involves encoding the strategy parameters i.e. mutation

and crossover probabilities, mutation and crossover intensities as part of the search space. In

Other words, the strategy parameters are included as part of the chromosome. Consequently, an

individual consists of two parts: an object variable vector x and a strategy parameter vector s as

part of its chromosomal structure. Subsequently, s may be defined by the 4-touple:

s = Pc , an, ' ac } . A typical chromosomal representati on would be something like:

Xi I SI I X2 152

Fig.7.1

The simplest mechanism of self adaptation would be to first recombine and mutate the strategy

parameters s yielding s', and then using these updated parameters to recombine and mutate the

solution vector x yielding x'. Thus rather than using constant strategy parameters (or modified

by some deterministic rule), they are themselves modified by evolutionary means. The strategy

parameters are continuously updated and the rate of convergence improved, as the simulation

progresses. Note that the speed of adaptation of the strategy parameters is controlled by

learning-rates generally under some manual control.

In theory, all four parameters of s can evolve, in practice this would be inefficient and only the

mutation operator is generally considered. The mutation operator plays a significant role in the

convergence of GA, for instance at the start of a GA search, the mutation intensity should be

high for efficient search over a wide solution space. However when a global extremum has

been found, the intensity should be reduced to enable narrow search within this region.

4. Fuzzy Search Control: This is a variation of the above method. Rather than including the

strategy parameters s into the chromosome, an external fuzzy logic system is used. The fuzzy

logic system monitors the progress of the genetic algorithm, and adapt the strategy parameters s

according to the time-evolution of the fitness function. The method is illustrated below, the

advantage of such method is the partitioning of the two entities: the chromosomal representation

of the search space x and the adaptation of the strategy parameters s.

Fitness Trend

Old Mutation Probability

Old Mutation Intensity

Chapter 7: Summary and Conclusions 	 P.7.12

(ii) Applications to Identification and Control:

1. Neural network and fuzzy logic systems: Practical applications of evolutionary computation

to the training of neural networks and fuzzy logic controllers [14] are necessary, in order to gain

greater industry acceptance. We have seen that genetic algorithms can produce good results

with RBF networks. However training times are in general excessive. To reduce training time,

we require some variation of the GA tailored specifically to train RBF networks, hybrid GA

methods help to ameliorate this problem. The application of hybrid GA methods can also be

extended to training many different types of neural networks, however this is still an active area

of research.

2. Eigenstructure assignment: Eigenstructure assignment has also been extended to the problem

of reconfigurable control [7]. In this instance, the feedback controller K is modified such that

the closed loop eigenstructure remains unchanged under the influence of plant changes: Ait and

AB. This is a subject of further research with applications to genetic algorithms.

3. MRAC and Adaptive Control: In chapter 4, we found genetic algorithms to work well when

applied to MRAC control applications. Whilst convergence was generally very rapid, it

required high computational effort. With hybrid GA, the computational effort was significantly

reduced and comparable to conventional MRAC schemes. Genetic algorithms are easily

extended to solving nonlinear MRAC systems, with any controller structure e.g.: neural

networks, fuzzy logic, linear dynamic compensators etc. Further areas of research would

include:

- Modify the GA to be a recursive algorithm, rather than searching the entire solution space, use

the previous results to generate a population with a narrower search range which would aid in

convergence.

- Apply GA to indirect method of MRAC. Only the direct method was used in the simulations,

with output feedback instead of full state feedback.

- Applications of GA to nonlinear systems with robustness properties using variable structure

model reference adaptive control. Variable structure MRAC is currently an active area of

research.

Chapter 7: Summary and Conclusions 	 P.7. I 3

4. H2/H Control: From chapter-5, some possibilities for future research include:

- Replace a dynamic H2 or H.. compensator with a RBF network trained with genetic

algorithms, the figure below illustrates a typical setup for a H2 optimal controller:

minimize

G(s) 	z

RBF
train with
genetic
algorithms

Fig.7.3
Using a RBF implementation of H2 and Ho. compensators

- Use homotopy theory for training RBF networks, compare with genetic algorithms.

- For the mixed H2/F1..„ simulation, use linear matrix inequalities and convex optimization

comparing solutions with genetic algorithms.

5. Fault Detection and isolation: From this brief survey, the observer based methods offer

interesting applications for research in fault detection and isolation. Several methods which

have yet to be investigated include variable structure/sliding observers and nonlinear (lie

algebraic) methods. The advantages of using these techniques in control are well established,

including robustness to uncertainties, and invariance to disturbances. These advantages can be

carried over to the design of robust observer applications. From the literature (chapter 6) on

FDI, we can see that there are many techniques and variations, in which GA can be applied.

As systems become more complex, the application of conventional controllers may become

inadequate. The application of artificial intelligence, neural networks, expert systems and

evolutionary theory to produce better and more robust intelligent control systems is inevitable.

Genetic algorithms offer alternatives to solving control system problems dealing with intelligent

control. Intelligent control systems have the ability to adapt to changes in both plant and

environment. Another feature of intelligent control is the ability to diagnose and/or predict potential

faults from the behavior of the system, and if possible automatically reconfigure the control laws.

This produces a high level of autonomy and self reliance. Evolutionary algorithms offer a feasible

alternative by which such systems may attain practical implementation.

Chapter 7: Summary and Conclusions 	 P.7.14

7.3 References and Further Reading:

[1] D.H.Wolpert, W.G.Macready
No Free Lunch Theorems for Search
Technical Report SR-TR-95-02-010, Santa Fe Institute

[2] J.H.Holland,
Adaption in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[3] W. Pedrycz
Fuzzy Evolutionary Computation
Kluwer Academic Publishers, 1997

[4] J. Yen, R.Langari, LA.Zadeh
Industrial Applications of Fuzzy Logic and Intelligent Systems.
IEEE Press, 1995

[5] T. Back, D.B.Fogel, Z. Michalewicz
Handbook of Evolutionary Computation
Institute of Physics Publishing and Oxford University Press„ 1997 (Book)

[6] C.Z.Janikow, Z. Michalewicz,
An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms
Proceedings fo the 4 th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San
Mateo, California. pp.31-36, 1991.

[7] J. Jiang
Design of Reconfigurable Control Systems Using Eigenstructure Assignments
International Journal of Control Vol.59, No.2, pp.395-410, 1994

[8] J. Chen, R.J. Patton,
Robust Model Based Fault Diagnosis for Dynamic Systems
Kluwer Academic Publishers, 1999

[9] D.Quagliarella, J.Periaux, C.Poloni, G.Winter
Genetic Algorithms and Evolution Strategies in Engineering and Computer Science
Recent Advances and Industrial Applications, John Wiley and Sons, 1998 (Book)

[10] J. Nash
Non-Cooperative Games
Annals of Mathematics, Vol.54, pp.286-295, 1951

[11] Robert Gibbons
A Primer in Game Theory
Harvester Wheatsheaf, 1992 (Book)

[12] Joao Pedro Pedroso
Numerical Solution of Nash and Stackelberg Equilibria: and Evolutionary Approach

[13] H. TamaIci, H. Kita, S. Kobayashi
Multi-Objective Optimization by Genetic Algorithms: A Review
Proceedings of the 1996 IEEE International Conference on Evolutionary Computation pp.517-522, 1996

[14] M. Russo
Genetic Fuzzy Learning
IEEE Transactions on Evolutionary Computation, Vol.4, No.3, pp.259-273 September 2000

[15] S.N. Singh,
Asymptotically Decoupled Discontinuous Control of Systems and Nonlinear Aircraft Maneuver.
IEEE Transactions on Aerospace and Electronic Systems, Jan 1989, Vo. 25, No. 3, pp.380-390

Chapter 8: Appendix 	 P.8.1

Appendix:
Contents:

8.1 Aircraft Mathematical Model 	 p.8.2

8.2 Partial Eigenstructure Assignment 	 p.8.6

8.3 Bioreactor Mathematical Model 	 p.8.8

8.4 Hooke-Jeeves Search Flowchart 	 p.8.10

Chapter 8: Appendix 	 P.8.2

8.1 Aircraft Mathematical Model:

(i) Full Nonlinear Model:

In order to define the mathematical model, we first need to define the coordinate system and

notation used in the model. In a three dimensional Cartesian coordinate system, for a rigid object

in motion, there are three position (x,y,z) components, three linear velocity components (u, v, w),

three angular rates (p,q,r) and three rotational orientation components (IA 0,71) also known as

Euler angles.

There are thus a total of 12 state variables to fully describe an aircraft in motion (in a uniform

atmosphere). In many cases, these can be greatly simplified for steady state level equilibrium (or

trim) flight. There are several systems of coordinates: principal or body axes (aligned with

aircraft body axes), stability axes (aligned with wind velocity vector), fixed earth reference axes.

Figures 8.1, 8.2, 8.3, 8.4 below illustrate the notation used for a body axis system.

The model used is for a swept-wing fighter high performance aircraft taken from reference [15]

(see chapter 7): described by a nonlinear system in control affine form:

(Loci.(a—a0)+4.)3+41.q+4.r+4.p+4,.(a—a0).r-11.q.r -
ilice (a—a0)+ A-lq .q+ 4. p.r — Me,p43+ Ma.(g1V).(cosacos4)—cos00)

No43+Nr.r+Np.p+Nx.p.(a—ao)-13.p.q+Ng.q
q—p43+4,.(a—a0)+(glVElcos4)—ccs00)

Y0.13+ p.(sincco +a—a)— r.ccscri, +(g/ V).cos 0.sin4)
p+q.tan0.sin0+rtaneicos0

q.coscp—r.shur.•
q.simpec0+nco4sec0

L6a +Laa,(oc—oco) 	It, 	0 -
o 	o k

Ne,a +N(za (oc—a0) Re, 	0
0 	o 	4

_

0
. 8r

Yea YEr
8e

0 0 0

0 00

0 0 0
—

a
0

Where: Position, velocity, and orientation components are:

u, v,w - Linear velocity components along body axes m/sec.
- Linear acceleration components along body axes. m/sec 2

p, q, r - Angular velocity components for each body axes, rad/sec.
- Angular acceleration components for each body axes, rad/sec 2

0,0, vi - Euler angles (rotational orientation) in radians.
a, 13 	- Angle of attack and sideslip angles, typically measured by air data probes.

Control Surfaces:

se :
	 - Elevator (horizontal tail) command in degrees, used mainly for pitch control.

- Aileron commands in degrees, used mainly for roll control.

ar: 	- Rudder (vertical tail) command in degrees, used mainly for yaw control.

Chapter 8: Appendix 	 P.8.3

Inertial Coefficients: Ii=0 .7270 ; 12=0 . 9490 ; 13=0. 7160 along each of the body axes.

note below that: (10=1.5 degrees is constant.

Ma =Ma + Ma •4,

t171 = Mg + Ma

. -M8e = M8e 	M a•Z8e

80 = 113 + Lgog .(a-a0)

Rag =N 	+ Algog .(a-a0)

Eqn.8.2

Data for two different flight conditions is supplied:

Flight Condition I: Flight Condition II
= -0.196; A6 = -23.180; Yo = -0.280; M6 = -10.700;

Za = -1.329; Bra = -0.173; Za = -1.746; Ma = -0.251;

Lis = -9.990; *, = -0.814; Lo = -20.910; A6 = -1.168;
4, = -3.933; Mu = -28.370; 4 = -5.786; gu = -31.640;
La = 0.107; At = 5.670; La = 0.108; iii = 8.880;
L, = 0.126; IS = 0.002; L, = 0.221; N6 = 0.013;
Lm = 8.390; gm = -1.578; Lza = 13.160; gm = -1.583;
Ltia = -684.400; fi, = -0.235; Loa = -543.800; 141. = -0.377;
Loa = -45.830; Nu = -0.921; Z8a = -60.270; bia, = -1.282;
La, = 63.500; rtrau = 1.132; Lau = 64.600; Nal. = 2.459;
Lisr

lisa

=
=

-7.640;
0.0071;

4,.
Zu

=
=

-6.510;
-0.168;

118r
Yis.

=
=

-10.050;
0.0119;

178,

Zu

=
=

-8.300;
-0.224;

g/V = 0.0345; bi6 = 0.223; g/V = 0.0412; ist6 = 0.223;

Yar = 0.000; Yisr = 0.000;

Note that since all angular components are in radians, the control input (rudder, elevator, ailerons)

must also be converted to radians before input into the aircraft equation. Equation 8.1 on the

previous page can be written in traditional control affine form, for nonlinear control design.

±(t)= A(x)+ B(x).u(t) 	 Eqn.8.3

(ii) Linearized Longitudinal Dynamics:

The linearized longitudinal dynamics is given by:

I = A.x + B.0 	 Eqn.8.4

Chapter 8: Appendix 	 P.8.4

where: x = [q a 8 .1 and u = 3,, All other state variables in the full model are set to zero.

Linearizing the model about x0= [0, 1.5, O] r gives A and B matrices:

[- 0.9870
A= 	1.0000

1.0000

- 22.9501
-1.3290

0

0
0
0

B=
- 28.34091
- 0.1680

0

(ii) Linearized Lateral Dynamics:

The linearized lateral dynamics is given by:

= A.x+ B.0 	 Eqn.8.5

where: x =[p r 	4:1T and u = [8: S rc
]T

 , All other state variables in the full model are set

to zero. Linearizing the model about x 0=[0, 1.5, Of gives A and B matrices:

A =

- 3.9330
0.0020
0.0262
1.0000

0.1260
- 0.2350
- 0.9997

0

- 9.9900
5.6700
- 0.196

0

0
0

0.0345
0

= B

- 45.8300
- 0.9210
0.0071

- 7.6400
- 6.5100

0

Fig.8.1
Aircraft Axes and Symbols

V wind
vector

Chapter 8: Appendix 	 P.8.5

Fig.8.2
Aircraft roll component

Z W.mg

Fig.8.3
Longitudinal Dynamics

Aircraft pitch 0 and angle of attack a definitions

Fig.8.4
Lateral Dynamics

Aircraft yaw iiand sideslip angle /3 definitions

Chapter 8: Appendix 	 P.8.6

8.2 Partial Eigenstructure Assignment:

This method was used as a comparison against results obtained with genetic algorithms in chapter

3. This is the conventional partial eigenstructure assignment algorithm. Its description is outlined

below by way of an example instead of giving a general formulation. The description is for a single

eigenvalue X and eigenvector v component. The procedure must be repeated for all of the

eigenvalues/eigenvectors. From chapter 3, we have seen that all achievable closed loop

eigenvectors va must belong to the subspace spanned by the columns of S =(X.I — A)'.B , in

other words the vector va must correspond to the subspace: va = S.g where g is a vector to be

solved for, the minimization now becomes:

minimizellv — S.
2

g112 	 Eqn.8.6

4 Matrix dimensions used in simulations for chapter 3 are: v E 9 is a column vector, S E 9
4X2 is a

matrix, and g E 912 is a column vector. The minimization of the norm can be achieved by least

squares solution of the g vector. Assuming that { X, v} forms part of a complex conjugate pair,

implies that g vector has also a complex conjugate. If we define all v, S, g in more detail we get

the following expression, for the roll mode eigenvalue/eigenvector specification (see chapter 3):

v =

_ X + j1
0+ JO
0+ JO
1+ jX

S
a„+ jb„ 	ai2 	ibiz -

a2,+ jb2 , 	a22 + jbn
a3,+ jb,, 	a3, + jb3,

I/ 31 	jb3i 	a42 	jb42_

g = [x, + jy,1 	Eqn.8.7
X2 ÷ iY2]

where X=don't care state in the eigenvector, all other specified entries in the eigenvector must be

assigned as closely as possible.

min

Remove the norm symbol only

gives:

The problem becomes that of minimizing:
2

Eqn.8.8

2

for notational convenience, and separating the real/imaginary parts

[an bn

+

a31 ibn

a31 ibn

an + jib -

[

an + jbn x, + jy,

a32 + ib32 . X2 4- iY2

a42 + ib42_

[[a

ti

a21 a22

a31 a32

(142

-41 	1112

+j
b2.

b3i b32

(Ezi iry:1)
Eqn.8.9

_b3I b42 _

Note there are 4 unknowns: xi, x2, yi, y2 to solve for.

4 	42 41
r1 102 , 	ton)71 1 +

at: 	an
a2 	a22 Yl] b21 xX,2

L 	j b3 , 	bn [y2 a 31 	a32 _Y2 431

b31 	b42 _a3I 	a42 43,

42

6,2 11 x,11 	Eqn.8.10
lx2J

442

Expanding equation 8.9 gives: I
0 	0
1 	X 2 - [[

ai. aa142_

a3222 a2, a

all

[
- 	-

a [y,]

a31 a32 Y2 	ki bn Lx2 J
a31 a42_ 	_b31 1142

	

n 	+

-x

101

.

a 	

L 	is
n an 	un un

[/7,1 an 	bit bn I 	
_

an a22 ix, 1_ 421 bn I 1
a31 a32 Lx2 _I 	--,1 -i2

h. k 1;12 i

a 31 1242 	bil 1)42 _

Eqn.8.11a

Eqn.8.11b

1
lk
,
o

 o
 -
 -
,
 o

 o

i 	
1

.

an 	an .‘ b12 '‘ 1

[)

)

• 	;

3

a 21 	a22

a31 	a32

a 31 	a42 ,
bn 	121 2 \

b21 	b22
b3i 	b32

—

[bli

	

b21 	b22

	

b31 	b32

	

b31 	b42

	

/ an 	an \

	

a21 	a22

	

an 	a32

X ‘ b31 	b42 / k a 31 	a42 	..-1

Remove
/these rows

2

2/

Eqn.8.14

Chapter 8: Appendix 	 P.8.7

Matching real parts and imaginary parts gives two expressions 8.11a and 8.11b respectively:

Writing 8.11a and 8.11b in matrix form gives two sets of equations:

u A.x B.y
Eqn.8.12

v=B.x+A.y

Where A=real(S), B=imag(S), and the matrix S = / — A)- '.B . The x and y vectors are as in

Eqn.8.11. Combine into one expression to give: (not to be confused with A,B matrices of the LTI

state variable system):

iuv) = (AB —AB).(x y) Eqn.8.13

All we need to do is to remove the X don't care rows from the above expression and then solve for

the x and y vectors by conventional least squares:

After the first and last rows have been removed, write the above equation 8.12 as a simple linear

matrix function: w = T. k, where w, T and k are the respective components of equation 8.12.

Solving by least squares gives:

T= (TT .T) I .T T .w 	 Eqn.8.15

ir 	 , From the solution of: --g= k, x2 yi Y2 J , the g vector can be formed: g =
[xi + jy,]

x2 + jy2

achievable eigenvectors can then be computed S.g and the minimization equation 8.6 solved.

Chapter 8: Appendix 	 p.8.8

8.3 Bioreactor Mathematical Model:

The bioreactor represents another physical system which was used for simulations studies. A brief

introduction is given below. The bioreactor has been chosen for simulations due to its wide use in

industry and portrays a simpler nonlinear system (lower order) compared to the aircraft model.

The mathematical model we used is taken from chapter-2 references [5, 6, 7, 8]. The bioreactor

consists of a tank containing water, nutrients (or substrate) and biomass (or cells). Nutrients and

biomass are added to the tank (via the inlet), the nutrients are consumed by the biomass thereby

increasing the overall biomass concentration in the tank. Furthermore, biomass is removed from

the tank via an outlet, at the same flow rate as the inlet. The overall volume of the liquid in the

tank is made to remain constant. This is illustrated schematically below Fig.8.5:

Fi xi si

44.117J
V X S

Fig.8.5
Schematic Diagram of a Bioreactor

Figure 8.5 illustrates the basic elements of a bioreactor tank. A complete derivation is omitted,

however the reader is referred to chapter 2 references on bioreactors. The following state

equations describe the dynamics of a bioreactor as a set of second order nonlinear differential

equations:

Bioreactor Dynamics:
ds 	 s 	F

).X i-.(s — s)
+s

 V 1
dr 	s 	F,

). x

Where:
x,: 	Input biomass concentration=0.
s,: 	Input nutrient concentration.
F,: 	Input flowrate (constant)
x: 	Biomass concentration inside tank. = output biomass
s: 	Nutrient concentration inside tank. = output concentration

Eqn 1.16

■■■■■■7

	 F, x0 so

Chapter 8: Appendix 	 P.8.9

In continuous operation, the bioreactor runs at some steady state operating point, we assume that

the flow rates are constant and identical ie: = Fo , thus the volume of liquid inside the tank

remains constant. We also assume that the output biomass and nutrient are the same as the

biomass and nutrient ie: xo = x, so = s inside the tank, we also assume the input has no biomass

xi

=0. Typical values for the saturation constant and growth rate coefficients are: p. =03 and

Ks = 0.1 to 0.4, =1.25, the initial conditions: s(0) =1.0, x(0). 02. The equations can be

represented in non-linear state variable form shown below. Let x2=x, x2=s, u=s„ then together

with the above assumptions we can write in more traditional form:

1 X2 	F,)
i i = iint- 	 .X1 Ks + X2 V

X
I 	

2)
.

Ft f
12 = — KI • Pm 	x +—.0— x2) 1 , Ks + X2 	v

Eqn.1.17

Figure Fig.8.6 and 8.7 shows a typical step response simulation of the bioreactor open loop

dynamics to nutrient input.

1.4

1.2

1

200
	

400
	

600
Fig.8.6

Open Loop Step Response: x(t): Biomass Output

0 	200 	400 	600
Fig.8.7

Open Loop Step Response: s(t): Nutrient Output

The response is relatively intuitive, when a step input (in nutrient) is applied to the tank, assuming

perfect and instantaneous mixing, the nutrient in the tank and hence output nutrient is initially high,

but the nutrient is gradually consumed by the biomass (fig. 8.7) thus reduce with time. At the same

time, the biomass concentration increases as an exponential function i.e. fig.8.6 due to nutrient

uptake.

YES

Xn = X
	1

Chapter 8: Appendix 	 P.8.10

8.4 Hooke-Jeeves Search Flowchart:

r Hooke-Jeeves Method
minimize { f(x)}

. 	 .

given points: xo = [xi.. .x]
search span range: A

Xis= XI

Exploratory Move

x(j) = X.() + A

x(j) = x(j) - A

xi = 2.x,, - x.
xo = x. XI = X.

NO

A=A/10

return x o I

