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ABSTRACT

There is a need for reliable automotive performance. While automotive engineers are
highly trained mechanical engineers, there is a requirement to keep abreast of the
emerging technologies such as neural networks or fast-converging algorithms. Any
significant or radical change comes about through multi-disciplinary interaction.
Emerging technologies such as evolutionary algorithms, neural networks and fuzzy

logic are constantly applied to more diverse technological applications.

From automotive industry point of view, continual attempts are made to build models
to avoid vehicle roll over. While highly advanced automotive manufacturers are

carrying out such research, very little or no results are available in the public domain.

In this thesis, critical parameters responsible for vehicle roll over will be identified
and predicted. As part of the model verification, a hardware comprising of a Formula
SAE race-car, sensory technology and instrumentation will be developed. This thesis
highlights successful application of roll-over parameters namely longitudinal velocity,
v, and vehicle roll angle, 6,. This prediction is seen as a step towards identifying on-
line warning systems for roll over detection and subsequent control systems to avoid

roll over.
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Chapter 1 - Introduction

The introduction of the automobile ownership to the general public by Henry Ford in
the early part of the last century has created a moving lifestyle for millions of people
across the globe. The advantages of this lifestyle include greater freedom and
flexibility of travel for all car owners, massive employment in the industries which
design, produce and maintain these machines as well as the industries that fuel them.
Cars have for many years provided users with an economic, flexible and often-fun
form of transport to get them from one point to another for whatever reason. Sadly it
seems few gains come without a loss. The disadvantage of mass individually
controlled transport is greater scope for human error, and increased risk for all road

UScErs.

In the US in 1960, the Dr. William Haddon became the first director of the National
Highway Safety Bureau (NHSB). Haddon, a public health physician recognised that
standard public health methods and epidemiology could be used to study and prevent
motor vehicle and other injuries. He examined interactions between host (human),
agent (motor vehicle) and environment (highway), before during and after the incident
concluding that each phase could be tackled to minimise the injuries.[1] In this thesis
the agent or motor vehicle is considered and a further step toward preventing

accidents proposed for this phase. \

In the majority of studies done, human error is blamed for a significant proportion of
motor vehicle related injuries (host): Some common causes of this error are excessive
alcohol consumption, fatigue, driver inattention and driver inexperience. Much has
already been done from the fields of public health and education to minimise the
likelihood of drivers getting behind the wheel in these conditions. A great deal has
also been done in highway improvement to make safer roads and to encourage drivers
to obey speed limits (environment). The third prong to this attack lies clearly with the

motor vehicle itself (the agent).
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1.1 Need for sensor control in automobiles

Sensor control is a reasonably old concept. As with most new technology, Science-
fiction writers have been suggesting it for years. Only recently, however, have the
computational power and support technologies begun to mature to the required level.
The idea of sensor control is to use a number of sensors throughout the car to measure
and collect instantaneous data pertaining to the vehicle’s current state of motion. This
information may then be used to control aspects of the vehicle's dynamic behaviour
including lateral sliding and vehicle roll over. Depending on the level of control this
may mean; a split second emergency warning, suggested course of action or removal
of control from the driver to the sensor control system. Each level of control naturally
requires an additional increase in the reliability and accuracy of the system. (A false

alarm 1is less dangerous than is an incorrect driver override strategy.)

Sensor control will allow for safer, more comfortable driving for all motorists using
public highways. It will allow greater control over fuel economy and eventually will
allow drivers to elicit the maximum life from their vehicles and vehicle components.

This will lead to greater reliability and investment return for the automobile owner.

1.2 Concept of intelligent car used for traffic control, auto navigation

and prevention of vehicle roll over.

Intelligence and artificial intelligence has many definitions. For the purpose of this
thesis we will define the concept of the intelligent vehicle as a vehicle possessing the
ability to make driving decisions based on its environment and previous events in
similar environments. This vehicle will make decisions based on the data it obtains
from its sensors and from trends built up from the data it has previously received. In
this respect the vehicle is expected to ‘learn from its experience’. This dynamic
experience then becomes vital in critical situations where driver inexperience can

prove fatal such as high-speed sliding and potential vehicle roll over.

The intelligent highway is a concept intended to maximise the flow rate of traffic
along highways while increasing passenger safety. The ideal of this concept includes

a navigation component whereby the most efficient route between locations is always
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taken. Development of intelligent highway technologies aims to reduce traffic
congestion and while maximising economy and safety. Many systems proposed thus
far have required the installation of expensive cameras and sensors into current
highway systems. A feasible solution proposes the use of sensors and transmitters
already being built into many new cars to send information back and forth to a central
body.[2] As such it seems the ‘sensitive car’ may be a critical component in the

development of the intelligent highway as well as dynamic vehicle safety.

1.3 Need for reliable estimation of dynamic performance

Central to the technology for controlling vehicle dynamics is, not only the output from
the sensors, but also the interpretation of this output. For real-time critical driving
control, it is necessary to have split second information about what is currently
happening to the dynamics of the vehicle. This is the role of reliable dynamic
performance estimation. The control systems based on the sensors are useless for
altering the outcome an event if the information arrives too late for the control system
to activate. Since sensors are not yet able to sense into the future a reliable estimation
of what is cufrently occurring is needed. This estimation must be based on the precise
sensory outputs, which are coordinated to indicate the true ‘state’ the vehicle is in.
Such an estimate allows the setting of control limits that would then allow impending

difficulty to be controlled.

1.4 Current state of affairs

While the majority of the major automotive manufacturers is investigating sensor
control, and in many cases, producing models featuring localised forms of this
control, progress tends to centre on individual systems rather than a more global
approach. The advantage of a global or comprehensive approach becomes apparent in

-

reduced cost for additional features.[3]

As many.of the control features require the same inputs and utilise the same controls,
(eg. ASS and ABS both use individual wheel speed and brake pressure in their control

systems) it is possible to attain both systems for little more than the initial cost of just
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one system. The clear advantage is economic for both the consumer and the

manufacturer

1.5 Difference between local control and comprehensive control

As previously stated there is a clear distinction between what might be termed local
control and global or comprehensive of vehicle dynamics. A discussion and some

examples of the two systems follow.

Local control refers to control systems that focus on one aspect of the automotive
system only. While many of these systems may appear on the one vehicle the control
loop for each relies only on the components it controls and does not coordinate with
any other system on board. There are already many examples of this type of control

on the modern car. To follow are three of the more common control systems.

1.5.1 Cruise control

Cruise control allows the maintenance of a set speed, chosen by the driver. The driver
sets the required speed and from then on no input is required from the accelerator
pedal to maintain the speed. Within the control loop, the engine RPM is varied to
maintain the vehicle speed obtained from a wheel speed sensor. The simple feedback
loop means that the speed will remain constant relative to the ground regardless of
any inclines or declines that may be encountered during the journey. In each case the
control loop will raise or lower the engine RPM to match the wheel speed with the
value set by the driver. The system may be immediately over-ridden by a touch on the
brake pedal or accelerator that allows for emergency manoeuvres should they be
required. Minor problems with the system may include slow response to decline speed
changes, a problem in the age of speed cameras, and a reduction in the need for driver

concentration which may lead to inattentiveness or boredom whilst driving.

Adaptive cruise control is the next step in this line of development where the distance
to the vehicle in front is set to allow constant speed following as is often the case in
congested traffic.[4] Such a system requires forward ‘seeing” sensors to determine the
distance or time to the next vehicle as well as an advanced control system to allow for

quick braking and acceleration.
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1.5.2 ABS

ABS is the German acronym used for Anti-lock Braking. These systems are now wide
spread in the automotive industry and are becoming a standard on new vehicles. In
heavy braking or braking under low friction conditions the wheels undergoing the
braking action may be caused to lock up or skid due to the force on the wheel from
the brake being greater than the force of the wheel in contact with the road. As it is
known that the coefficient of sliding friction is somewhat lower than that of static
friction, the braking force from wheels that are skidding (sliding) will be less than that
of wheels that continue to roll (stationary at point of contact). In addition to this a
rolling tyre can exert a lateral force on the road whereas a sliding tyre cannot, hence
the ability to steer is lost when sliding occurs (this is discussed in greater detail in
chapter 2). To prevent these effects, the anti-lock brake system senses when the
wheels are stationary ie have ‘locked up’ and are skidding and forces the brake

pressure to release to force the wheels to allow them to roll again.

This system is constantly active on the vehicle and to some extent takes absolute
control of the brake pressure away from the driver. It was for this reason somewhat
reluctantly accepted after its introduction. As may be expected drivers are hesitant to
relinquish control to a system until it has been well proven. It has over the years

proven itself to be a reliable and valuable asset for safer driving.

1.5.3 ASS

ASS or Anti-Skid Steering is a control strategy reduces the angle of steering to that
which the road can take without sliding.[5] This is much the same principal as ABS,
which reduces the brake forces to that which the road can take without skidding. The
value of such a system is supported by the great difficulty encountered by drivers
other than professional drivers when trying to control a skidding vehicle. Clearly
avoiding the skid or potential roll over situation to begin with would be preferable.
The difficulty encountered with ASS that was encountered also with ABS is proving
that the system will always perform better than a driver without the system performs.

It seems that this may be quite difficult to prove beyond the consumer’s doubt.
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1.5.4 Comprehensive control

Comprehensive control is the integration of a number of local controls into one
system. In this form of control the local units are able to assist for the best overall
performance of the vehicle. Comprehensive control may mean using individual wheel
braking to control the maximum allowable steering angle whilst avoiding vehicle roll
over. It may mean using on-line engine control to maintain speed in cruise control or
control of headway whilst still allowing the driver to dictate the movements of the car.
The major objective is to allow the driver to drive up to the vehicle’s limits without
crossing them as this would create an unsafe environment for the driver and other
road users. As a comprehensive system, the best means available may be utilised to
avoid incident as opposed to the modular, local approaches that allow intervention by
one system only. With current computing power now capable of real time decision-
making and computational speed continuing to increase rapidly, the technological

support for such a system is becoming available.

A number of manufacturers have working systems that begin to emulate this concept
at least to some degree. At this time a complete working system of comprehensive
control does not appear to exist in the public domain. It is certainly not yet available

to the consumer.

1.6 Need for comprehensive control to avoid vehicle roll over

Although much has been done in this area to date, a primary need still exists in the
automotive industry to continue to reduce the number of deaths and injuries through
motor vehicle accidents. Many localised systems save lives either through direct
application eg. ABS, or through reduction of driver fatigue which is a known cause of
accidents eg. Cruise control. To prevent accidents of a catastrophic nature, such as
vehicle roll over, requires an integrated comprehensive approach. Accidents will
continue to occur, and as the number of vehicles using the public roads increases so
must the standard of safety equipment with which a vehicle is fitted. A great many
local systems are ‘available but integration is required to prevent redundancy between
the systems. The increase in efficient use of resources available will quickly bring

down the price of such systems to the consumer; thus making them accessible to a
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broader cross-section of the community. The safer cars become and the greater the
number of safe cars the lower the likelihood of accidents and the lower the cost of

accidents to the community.

1.7 Need for intelligent tools

A complex problem such as predicting the parameters that contribute to vehicle roll
over is ideally suited to the application of intelligent tools, by this is meant the use of
artificial neural networks. These networks are specifically suited to the numerical
estimation of complex non-linear relationships such as will be found in the study of
vehicle dynamics. However, the use of intelligent tools such as artificial neural
networks implies a direct need for training and training data. The backbone of the
neural network is its ability to produce the same results as the particular system
without specific knowledge of that system. These tools have been proven on many

manufacturing systems already and the applications continue to expand.

Similarly an intelligent system can be of use in other than critical driving conditions
through the control of driving economy. Such a system would allow the driver to be
aware of bad habits that are costing money in the form of excess fuel or excessively
worn parts. It may also allow for control to be implemented maintaining a set value of
efficiency. However, the training data must be of high quality specific to its purpose.
The computer acronym GIGO is pertinent in this case, garbage in garbage out means
that for a system to behave comprehensively it must be trained comprehensively. This
requires the use of a database built up from extensive track trials of the highest quality

standard. Accurate comprehensive data will yield accurate comprehensive results.

1.8 What has been done to date

The majority of work completed to date focuses on one or other aspect of sensor
control. Many systems have been developed encompassing control of only one of
many systems of the automobile. Overlap between the systems has been largely
ignored and the result is great room for centralised use of technology. As with the

majority of competitive industries ‘the edge’ in automobile manufacturing often lies



Page 8

in the evolution of technology, for this reason much of the information relating to

sensor control tools and technology remains in the private domain.

Finally, a reliable estimation of parameters responsible primarily for vehicle roll over,

as a cause of accidents will be identified and predicted in this thesis.
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Chapter 2 Vehicle Dynamics Control and Applied Intelligence

To estimate parameters responsible for roll over, an understanding of vehicle
dynamics is imperative. While the use of neural networks reduces the need to
completely understand the physical characteristics of a system when modelling it, it is
still useful to have a conceptual understanding of the dynamics involved. This is to

build the basis for decisions utilised in control systems.

2.1 Conceptual Vehicular Physics

Regardless of a vehicle’s state of movement, a wide range of highly varied forces act
on a vehicle in motion. One group of these forces occurs along the longitudinal axis;
including propulsive force, aerodynamic drag and rolling resistance. Another group
acts laterally, these include crosswinds and the centrifugal forces generated during
comering. These forces are transferred to the tyres and ultimately to the road surface
by a number of transfer elements, these are

e The chassis (eg wind force),

e The steering (steering force),

e The engine,

e The transmission (propulsive force), and the

e Brake system (braking force).

A number of forces act upon the vehicle “from below”, these include the lateral and

longitudinal forces resulting from the gradient of the road and its transverse slope.[6]

When the forces mentioned reach extreme magnitudes, during say, major shifts in the
vehicle’s state of motion, they can become dangerous (eg skidding) which may result
in an accident occurring. It is thus important when considering the dynamic handling
response of a vehicle to consider the following parameters:

e Steering-wheel angle,

e Lateral acceleration,

e Linear acceleration/deceleration,

e Yaw rate,

¢ Float and roll angles

Additional data that will allow more precise definition of specific handling patterns:
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e Longitudinal and transversal velocity (lateral velocity),
e Steering angles of front and rear wheels,
e Slip angles at all wheels,

e Torque applied at the steering wheel.[6]

Fundamental to the understanding of vehicle dynamics that cause roll over is a
detailed knowledge of forces acting upon the vehicle. The most complex of these
interactions is the force through the tyres. A discussion of tyre dynamics follows
including friction factor, slip and overall vehicle dynamics and some applications

already developed that deal with these factors.

The tire is the connecting element linking the vehicle and the road surface. The tire
transfers propulsive, braking and lateral forces. This environment means the vehicle's

load limits are defined by various physical factors.[6]

2.1.1 Vertical Tyre Force

The vertical tyre force is the downward force exerted at the contact patch between the
tyre and the road. This force consists of the vehicle weight and its load distributed
over the wheels. The road longitudinal gradient and lateral grade add extra
components. Additional loads on the vehicle can increase or decrease the vertical tyre
forces. In the case of traversing a curve, the effect would be to increase the load on
the outer tyres and decrease the load on the inner tyres. The effect of additional load is
to reshape the contact patch, which is not uniform as the tyre sidewalls take much of

the load and prevent uniformity.

2.1.2 Longitudinal Force

When rolling along a road or other surface the wheel rotation rate is proportional to
the wheel hub’s linear velocity, if we consider for the time being that tyre rolling-
resistance is ignored. This relationship is affected by external influences acting on the
wheel, such as a brake force decelerating the wheel. The resulting interrelationship

produces wheel slip.
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2.1.3 Tyre Slip

Tyre slip corresponds to the difference between the theoretical and actual distances
covered by the tyres. For example, if the circumference of a standard passenger car
tyre were roughly 1.5 meters, then it would be logical to assume those ten rotations of
the wheel translate into 15 meters of vehicle travel. In reality, the actual distance is

shorter owing to the tyre slip.

Tyre slip originates from the tyre’s inherent inflexibility. A driven wheel rolling along
the road surface is subject to deformation while simultaneously flexing with varying
intensity according to weather and road surface conditions. This leads to energy
consumption and heats the tyre. Because the tyre’s primary constituent is rubber, only
a portion of this deformation energy is recovered as the tyre leaves its contact zone or

patch.

Under braking and deceleration, as well as during acceleration — either from standing
or rolling start — the level of force transfer depends upon the tyres’ slip rates at the
road surface. The relationship between slip and the tyre’s coefficient of friction is
basically the same whether accelerating or braking. Similarly the force transfer
depends upon the tyres’ slip rates at the road surface. The relationship between slip
and the coefficient of friction is basically the same regardless of whether the vehicle is
accelerating or decelerating. The vast majority of braking and acceleration processes
take place at minimal slip rates within a stable range; here, increases in slip will be

followed by a corresponding rise in available adhesion.

2.1.4 Friction Factor

Application of braking torque to the wheel generates a braking force, say Fg, between
the tyre and the road surface. Under steady-state operation that is no wheel
acceleration, this braking force is proportional to the braking torque. The relationship
between the tyres” vertical contact force and the braking force that can be transmitted

to the road is defined by the coefﬁcie_:nt of static friction Uyr.[6]

The coefficient of static friction, which is the maximum coefficient of adhesion,

varies to reflect changes in such factors as vehicle speed, tyre condition and road-
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surface. The static friction coefficient reflects the properties that materialise when tyre
and road-surface materials meet, as well as all of the subsidiary influences that act on

this combination. Actual figures are thus directly affected by road-surface condition.

2.1.5 Aquaplaning

A layer of rainwater on the road can cause the friction coefficient to dive towards zero
as the vehicle is lifted from the tractive surface of the road. This phenomenon is
known as “aquaplaning” and its distinctive feature is the loss of physical contact
between tyre and road that occurs when a wedge of water forms to separate the two
across the entire contact patch.

The tendency to aquaplane is defined by:

e The depth of the water on the road surface,

e The vehicle’s speed,

e Tyre tread pattern and wear,

e The load pressing the tyre against the road.[6]

Wide tyres are particularly susceptible to aquaplaning. It is not possible to brake or
steer an aquaplaning vehicle, as neither steering inputs nor braking force can be

transferred to the road.

2.1.6 Friction — tyre slip.

The friction generated by a tyre is primarily determined by its longitudinal (rotational)
slip. While vertical tyre force plays a subsidiary role, a roughly linear relationship
exists between braking force and vertical tyre force during constant tyre slip.

Yet another force defining the friction is the wheel’s slip angle (lateral slip). Whereas
with constant tyre slip, the transfer of braking and motive forces decrease in response
to higher wheel slip angles, increases in the wheel slip angle with constant braking

and motive force will result in higher slip rates.
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Slip-angle u and effect of Jateral {orce £
(vertical view)

UBISRY

Figure 2.1-1 Wheel Slip Angle [6]

A freely rotating wheel reacts to application of lateral force with sideways movement
at the hub. The ratio of lateral speed to longitudinal speed is termed lateral slip. The
angle separating the resulting wheel-speed and the longitudinal speed is the slip angle
o as shown in Figure 2.1-1. Under steady-state operation (without wheel acceleration)
the axial force applied to the wheel through the axle as lateral force Fs in a state of
equilibrium with the lateral forces exerted on the wheel through the road surface. The
ratio of the lateral force transferred through the axle to the wheel’s vertical tyre force

Fn is the coefficient of lateral force p.[6]

[Tire flex relative to rim plang, a.g., in a right-
hard curve with lateral force Fi (frontal view)

Figure 2.1-2 Ratio of Lateral Tyre Force to Vertical Tyre Force [6]

The relationship between the slip angle o and the coefficient of lateral force L is non-
linear and is defined by the slip-angle curve. The coefficient of lateral force

contrasts with the coefficient of static friction pgr by exhibiting substantial sensitivity

to the vertical tyre force Fy during acceleration and braking. This characteristic is of
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special interest for the auto manufacturers’ suspension designers in their attempts to
improve the handling characteristics and prevent vehicle roll over by means of anti-
roll bars. Very high lateral forces Fs induce substantial shifts in the position of the
contact patch relative to the wheel rim and in doing so delay the build up of lateral
forces as shown in Figure 2.1-2. This phenomenon has a substantial effect on the
transition response (handling during the switch from one condition to another) that

characterise vehicles when reacting to inputs at the steering wheel.

This affects the simplicity of estimation of velocities and accelerations dramatically.
In the simple case of a vehicle travelling under high traction, estimates of velocities
and accelerations can be made from the steering angle and wheel speed sensors.
However, when the wheels begin to slide as previously mentioned the non-linearity of
the relationship means that estimation of velocities and accelerations becomes

increasingly complex.

2.1.7 Force Relationships

When lateral forces join the braking force acting upon a wheel rim, the road surface
reacts by exerting two forces against the tyre, along both the braking and lateral axes.
Providing the processes remain below a given physical threshold, all the forces acting
upon the rotating wheel are effectively counterbalanced by opposite forces of equal
magnitude from the road surface. Crossing this physical threshold upsets this state of

equilibrium and results in a loss of vehicle stability.

| Total tractive resistance

i ¥, Aurodynarmic diag, Fr, Rolling resistance,
| Fg Climbing rosistance, S Centor of gravity,

i € Forge due 1o weight

i Angle of upgrade/downgmade

Figure 2.1-3 Total Tractive Resistances [6]
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Total tractive resistance as shown in Figure 2.1-3 is the sum total of rolling,
aerodynamic and climbing resistance. Overcoming this overall resistance entails
applying sufficient tractive force to the driven wheels. The tractive force available at
the driven wheels increases to reflect rises 'in such factors as available engine torque
and the conversion ratio of the gearing between engine and wheels. It is inversely
proportional to drive train losses. A proportion of the tractive force is needed to
overcome total tractive resistance. Lower gearing in the form of numerically higher
step-down conversion ratios is employed for graduated adaptation to the radical rise in
tractive resistance encountered on uphill grades (multiple ratio transmission). The
“surplus” by which tractive force exceeds tractive resistance accelerates the vehicle. If

tractive resistance is higher than tractive force the vehicle will decelerate.

Rolling resistance originates from the deformation processes between wheel and road
surface. It is the product of the force to weight and the coefficient of rolling
resistance. Rolling resistance, in turn, is inversely proportional to tyre radius and the
tire’s degree of deformation (affected by such factors as tyre pressure). Rolling
resistance also increases in response to higher loads and road speeds. Yet another
factor is paving material; the coefficient of rolling resistance on asphalt is only

approximately 25% of that on dirt roads.

During cornering, the rolling resistance is joined by cornering resistance, whose
coefficient or magnitude is defined by such factors as vehicle speed, cornering radius,
suspension geometry, tyre design, inflation pressures and the vehicle’s cornering

response (lateral acceleration at various slip angles).[6]

2.1.8 Aerodynamic Resistance

Aerodynamic resistance is,,determined based on a number of individual elements.
These include barometric pressure, the vehicle's aerodynamic drag coefficient (as
determined by its shape), the maximum vehicle cross-section and vehicle speed,

taking headwind velocity into account.

Clearly, if all force directions and dynamic behaviour are to be found from first

principles and used for prediction and control, it is complex.
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Intense crosswinds shift vehicles from their initial paths of travel in a process that is
especially pronounced at higher vehicle speeds and with unfavourable vehicle
dimensions. On vehicles with unfavourable configurations, sudden wind impact of the
kind encountered when a vehicle emerges from a tree-lined passage into open
countryside can induce substantial lateral displacement and yaw angle shifts. When
these phenomena manifest themselves before the driver has had time to react they can
lead to driver error. Gusts of wind acting on the vehicle at an angle add a lateral
component to the aerodynamic drag. This force, distributed across the entire surface
area of the vehicle, can be considered as a singie crosswind force applied at a

“pressure point D” shown in Figure 2.1-4.

Vehicle in crosswind
O Pressure point, O Reference point, S Center
of gravity. Fgy Crasswind forca. My Yaw.

Fg + Mz at O correspond to Fs at D,

{ Vehicle length, d Distance to pressure point.
S —
- —

N

UAFO0ATY

Figure 2.1-4 Vehicle in Crosswind

The precise location of this pressure point depends upon the shape of the body and the
air current’s angle of incidence although it is usually found on the forward half of the
vehicle. On vehicles featuring a conventional “3-box” body configuration this focal
point is relativély consistent, and also lies closer to the centre than on a hatchback,
where the pressure point can wander in response to changes in the air flow’s angle of
attack. On the other hand, the centre of gravity S varies as a function of vehicle load.
Generally selecting a reference point O in the middle of the vehicle's forward section
facilitates applicable portrayals of crosswind effects (regardless of suspension

position relative to the bodywork).
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When crosswind force is defined using a reference point other than the pressure point,
the crosswind force at the pressure point must be included as an additional factor: this
is the yaw moment. The wheels’ lateral guiding force (cornering forces) acts as a
counterforce to the crosswind force. Along with the slip angle and load factor, the
lateral guiding force generated by a pneumatic tyre depends upon its size and
dimensions, inflation pressure and the friction characteristics of the road surface.

A pressure point location in the immediate vicinity of the vehicle’s centre of gravity is
desirable owing to its positive effects on directional stability under crosswind
conditions. On vehicles with a natural tendency to oversteer a pressure point forward
of the centre of gravity will minimise the tendency to wander from the original
course. On understeering vehicles, the optimal pressure point location is immediately

to the rear of the centre of gravity.[6]

2.1.9 Oversteer and Understeer

The wheel with its rubber tire must be rotating at an angle relative to its plane as a
condition for lateral guiding forces (cornering forces) between wheel and road
surface. This means that a slip angle must be present. Vehiclés are described as
having ﬁndersteer when the slip angle of the front end increases more rapidly than the
rear slip angle as lateral acceleration rises. The inverse condition (higher rear slip) is
referred to as oversteer. Some vehicles display an intrinsic and invariable tendencies
toward either oversteer or understeer, whatever the conditions. Others understeer at
low rates of lateral acceleration before making a transition to oversteer as lateral-
acceleration rises. Here, again, an inverted response pattern is also possible (initial

oversteer and subsequent understeer).

2.1.10 Longitudinal Dynamics

The vital importance of stopping distances in road safety means that the distance
travelled during deceleration is more significant than that travelled during
acceleration. Accelerative and decelerative maxima are obtained with the tractive or
braking forces acting on the vehicle wheels to hold them just below their traction limit
(point of maximum adhesion). Real-world adhesion is lower because all wheels

cannot uniformly exploit maximum adhesion under every accelerative (decelerative)
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process. Electronic traction, braking and stability systems (TCS, ABS and ESP) rely

on closed-loop control to maintain force transfer in the maximum range.[6]

2.1.11 Control — ESP
ESP stands for Electronic Stability Program and was developed by Robert Bosch

GmbH. It is a vehicle stability system that relies on the vehicle’s braking system as a
tool for “steering” the vehicle. It is also known as VDC or vehicle dynamic control
system in Mercedes vehicles. The desired trajectory of the vehicle is determined from
the driver’s inputs, steering wheel angle, engine drive torque as derived from the
accelerator pedal position, and the brake pressure. The trajectory actually taken by the
vehicle under these conditions will vary depending on the road friction. If the road is
slippery, with a coefficient of friction, U less than the nominal lateral acceleration, the
vehicle will not follow the nominal motion and the radius of the turn will become
larger than that of the nominal motion as shown in Figure 2.1-5.[7]

Track on Jow y road
Yehicle slip

Step input steering wheet,
“stearing wheel angle fixed

Figure 2.1-5 VDC Versus Yaw Rate Control [7]

One of the basic state variables that describe the lateral motion of the vehicle is its
yaw rate. It would seem reasonable to design a control system that makes the yaw rate
of the vehicle equal to the yaw rate of the nominal motion (yaw rate control). If this
control is used on the slippery road, the lateral acceleration and the yaw rate will not
correspond to each other as they do during the nominal motion. In fact the slip angle
of the vehicle increases rapidly and the vehicle ‘spins out’. Hence, both the yaw rate

and the slip angle of the vehicle must be limited to values that correspond to the
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coefficient of friction of the road. Thus in VDC both the yaw rate and the vehicle slip

angle are taken as the nominal state variables and this as the controlled variables.[7]

Figure 2.1-6 Rotation of tyre force.[7]

It is well known that both the longitudinal and lateral forces (Fi, Fs) on a tyre depend
on the tyre slip A, the slip angle o, and on the normal force on the tyre, Fy. The lateral
force a tyre generates for a given slip angle decreases with increasing magnitude of
the tyre slip. This property is used for the control of the lateral force and the yaw
moment on the vehicle and, therefore, the tyre slip is used as the basic control variable
of the control algorithm. For instance, if the slip of the left front tyre is increase by a
small amount AA from an initial value A, and if the tyre slip angle is 0., then the yaw
moment on the car is in a first approximation changed by the following amount:

JF,
™=

-AAla-cosd, —b-sind, )+ % -AAla-sin S, +b-cosd, )

Equation 2-1 [7]

Here, changes in the tyre normal force as a result of a change in the tyre longitudinal
or lateral force are neglected, as are changes in the aligning torque on the tyre.
Similarly, the lateral and the longitudinal forces on the vehicle will be changed by the

following amounts:
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AF, = —%-Ai-sin 5, —%-Ai-coséw Equation 2-2 [7]
AF, = 9 AA-cosd,, ~ aaljf -AA-sin 8, Equation 2-3 [7]

These relations which can be derived for each wheel of the vehicle are extremely non-
linear, since the derivatives of the forces are highly dependent on the operating point

(Aos0t) Of the tyre.[7]

If the tyre slip is increased to the value A,, then the lateral force on the tyre is reduced
to the value Fs(A,). At the same time a brake force Fg(A,) is generated. Fr(A,) is now
the resultant tyre force. At the limit of adhesion between the tyre and the road the
absolute values of Fr (A=0) and the Fgr(A,) are approximately equal. Clearly,
increasing the tyre slip then means rotating the resultant tyre force and therefore

changing the yaw moment, the lateral force, and the longitudinal force on the vehicle.

The rotation can be done at each tyre so that we can freely choose at which tyre the
slip should be changed, and by which amount. Unfortunately, the changes in the
longitudinal forces may lead to an undesired increase in the lateral deviation of the
vehicle from the nominal path. A compromise result can be solved by optimal design
methods. Special attention must be given to the robustness of the design since the
operating point (A,,0,) of the tyre is unknown (neither the tyre slip nor the slip angle

1s measured) and many related variables have estimated values only.[7]

Because the “discriminatory” control concept relies on two individual intervention
strategies, the system has two options for “steering” the vehicle: it can brake selected
wheels, known as selective braking or accelerate the driven wheels.[6] Although
advanced, these tools do not identify or predict parameters responsible for vehicle roll

over.

2.1.12 Control — ABS

Anti-lock braking or ABS has been around for at least 70 years, the first patent being

issued in 1928 to Karl Wessel for a brake force controller that was never built. Robert
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Bosch in 1936 and Fritz Osthaus in 1940 performed fundamental work. Fritz Ostwald
patented it in 1936, during his undergraduate study. Heinz Leiber at Daimler —Benz
brought about the first working system in 1964.[8]

The idea behind ABS is simple: the braking force coefficient and braking
effectiveness are highest with the tyre at optimal brake slip. The controller modulates
the brake pressure to keep the wheel in the optimal zone. The friction coefficient of a
locked wheel is about 10% lower than optimum, depending on the surface. Even more
important is the lateral, or sideways, force coefficient, since it decreases to only about
10% of its full value when the wheel locks.[8] This decrease in the lateral force can

allow a vehicle to slide sideways out of a curve instead of maintaining its trajectory.

ABS systems do not necessarily exploit all available traction. In 2 channel systems
only the wheel speed at one front wheel is sensed which can lead to lockup or under-
braking of the other front wheel. In 3 channel systems and some 4-channel éystems
the rear wheels are low-value-tied, and the modulation is based on the wheel with the
lower adhesion. Only the very best ABS systems have four wheel sensors and can use
all adhesion at each wheel. But even then, it may be preferable to low-value-tie the
rear wheels for better stability, as in Mercedes’, since the overriding goal is stable

vehicle dynamics.[8]

The goal of every ABS system is to provide minimum stopping distance and
maximum directional control. Minimum stopping distance is achieved by maintaining
the peak longitudinal force the tyre is capable of. Typically this value occurs at 5 to
15% longitudinal slip between the tyre and road. Some older systems have feedback
of one vehicle state variable: lateral acceleration. Later systems make use of
additional information available from a yaw velocity sensor, steering wheel angle
(and velocity) as well as other pertinent parameters.[9] Maximum directional control
means maintaining the ability to make the vehicle turn proportional using the steering
wheel as in normal driving situations. This is maintained by not allowing the wheels

to lock.
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Unfortunately ABS has been found to have a number of drawbacks under certain
circumstances. For example below speed of 50 kph, ABS systems have been found to
drop to as low as 82% of the deceleration of a standard braking system average
decelerafion with locked, sliding wheels.[10] Areas in which ABS continues to be
improved include the following: economy, making the systems available to even the
lowest cost vehicles; improvement of available traction usage under complex real
road conditions to extend the range of performance; and to improve the interface of
vehicle capability with driver ability to extend the range of real situation utilisation of

available performance.[11]

Further problems are incurred on 4 wheel drive systems sporting the ABS system.
When braking on loose surfaces the wheel quickly stops rotating because it is
effectively lubricated by the loose road surface. The ABS sensor immediately releases
the wheel because it has stopped but before any significant braking can take place.
Consequently the vehicle progresses along to the distress of the occupants without any
significant slowing. The only current solution to this situation seems to be switching
the ABS off completely.[12] Clearly this system would benefit from knowledge of the
actual deceleration of the vehicle and the driver’s requested deceleration from the
brake pressure. From this extra information an intelligent decision could be made

regarding the effectiveness of the ABS system.

It has also been found that even drivers trained on ABS in advanced driving schools
do not always remember to apply the brakes hard enough to activate the ABS when

they detect an incipient loss of control.[9]

Clearly, there are still many issues associated with the use of full time ABS. For the
larger part, advantages of ABS tend to outweigh the drawbacks but in some areas
such as those mentioned there is still a great deal of work to be done in creating
systems that will perform at least as well as the current system, preferably better and
never worse. At the heart of this intelligent decision-making is the real-time data upon
which the decisions are based. There is a need for timely information about what the
vehicle is doing and likely to do at every state point of a journey. Timely reliable

estimation of the parameters responsible for roll over is the purpose of this thesis.
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Automotive companies are looking for a solution that integrates these modemn
techniques as comprehensive tools for safer driving. These estimations provided in
this thesis will form a solid basis for future work on intelligent automotive control

systems that begin to address the problems outlined.

2.2 Control and prediction using applied intelligence

The first step to developing a control system is to be able to qualify and quantify the
system in question. In the case of automotive stability control understanding and
quantification of real time velocities and accelerations is paramount to all future work.
In critical situations, built-in parameters allow a better vehicle behaviour estimation
and the elimination of incorrect fault detection. In the case of complex systems, fuzzy
logic and neural networks are often efficient tools to provide good results with

reduced designing time.[13]

Porcel et al.[13] aimed to show that a neuro-fuzzy approach can be utilised to
maintain response to critical situations with increased accuracy compared with classic
methods. The test car was a front wheel drive (FWD) vehicle. It was fitted with
sensors to measure longitudinal and transverse velocities by an optical cross-
correlation sensor located at the rear of the vehicle. It also measured wheel velocities
taken from the ABS system and gyro and acceleration sensors mounted near the
centre of gravity of the car measured longitudinal and lateral accelerations and the

yaw rate. The result of their investigation is outlined in the following sections.

2.2.1 Longitudinal Velocity Estimation

The critical driving conditions considered by Porcel et al. are as follows:

e Foot off the accelerator while cornering, as may occur when a driver drives too
fast at the beginning of a bend, and reacts by taking the foot fully off the pedal
while still cornering.

e Violent braking while cornering. In an emergency situation while comering, the
inner front wheel may lock, and the rear one may no longer adhere to the road.
Both inner Wheels may lose their contact with the road if the driver takes a bend

on two wheels.
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Oversteering. This occurs when the vehicle becomes unstable during rear wheel
lateral slide. The driver tries to compensate for the deviation of the vehicle from
the normally expected trajectory by steering into the skid.

Understeering. Front wheel slide out generally occurs when taking a sharp bend at
a high speed and lateral sliding when a driver drives too fast into a wide curve

near the grip limit.[13]

In the literature fuzzy logic was used to build two indicators to identify and detect the

different ways a vehicle behaves these indicators show:

Loss of contact while cornering from lateral acceleration and yaw rate.
Lateral acceleration can be high without any rear wheel locking. This occurs at
high yaw rate, ie. a tight curve. A number of rules determine the indicator value, if
non-zero this detects the possibility of a rear wheel losing contact with the road.

Oversteering, front wheel sliding out and lateral sliding. Detects critical
deviations from the intended driving behaviour of the vehicle during lateral
motion. Steering wheel angle, lateral acceleration, the derivative of yaw rate, and

the derivative of transverse acceleration are considered to do this.[13]

These indicators are discussed in more detail in chapter 6. The aggregation of the

system means that the best combination of wheel speeds or the integral of the

longitudinal acceleration can be used at any one time to determine the longitudinal

velocity.

2.2.2 Longitudinal Velocity Results

The results for the longitudinal velocity show an improvement of the proposed fuzzy

estimator over traditional methods of determining longitudinal velocities. Figure 2.2-1

shows a very slight improvement in accuracy with the foot off the accelerator while

cornering.
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Figure 2.2-1 Comparison of results for a test cycle, on a wet road, in ‘“foot off the

accelerator position”, while cornering to the right.[13]

The improvement is more pronounced in a small section of the ‘violent braking while

cornering’ as depicted in Figure 2.2-2. Both comparisons are with the average of rear

wheel velocities and the graphs show the difference in errors (up to 8 m/s in the

violent braking case). This is based on the inside wheel locking up during braking and

cornering which means one of the wheel velocities will be zero. Thus the average will

be significantly out even if one of the wheel speeds is correct.
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Figure 2.2-2 Comparison of results for a violent braking cycle while

cornering.[13]
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Figure 2.2-3 Comparison of results with the fuzzy estimator using the wheel

speed only for oversteering.[13]

Considering Figure 2.2-3, we see the results of an oversteering case where the front
wheel 1s sliding out and lateral sliding is induced. Once again the difference between
the estimation based on average wheel speeds is out by up to 8 m/s. The estimator on
the other hand is much more accurate giving a result to within 1.5 ms. Clearly any
system that is based purely on wheel speeds may become grossly inaccurate in the
critical conditions when it is most needed to prevent an accident. The results
presented thus far were used to demonstrate the effectiveness of a fuzzy logic system
in this type of application. These results are used to estimate longitudinal velocity in
Chapter 6 as a parameter considered responsible for vehicle roll over. The following
section outlines the work done by Porcel et al. on transverse velocity estimations
using neural networks. It is included to support the use of neural networks as a tool in

the estimation of vehicle dynamics.

2.2.3 Transverse Velocity Estimation

There are no means to measure the transverse velocity in a direct way with the help of
low cost sensors. Therefore it was necessary for Porcel et al.[13] to create an
estimation system based on inputs from the ABS, the gyroscope sensor, the

acceleration sensors and the steering wheel angle. With a fuzzy inference system the
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longitudinal velocity was reconstructed. This system served to detect wheels' losses
of contact, front wheel sliding out and the vehicle's lateral motion. This information
resulted in the choice of different wheel speeds to be referred to as the longitudinal

velocity.

While the vehicle response for this investigation was known, the unknown friction
coefficients between tyre and road surface and tyre characteristics made the case
complex. The use of neural networks simplified the task immensely, as the unknown
details no longer require modelling or approximation. By feeding the neural networks
with sensor outputs, the estimated longitudinal velocity and the transverse velocity as
measured by the cross-correlation sensor, the network was trained. Porcel et al.[13]
decided to break the cases down into a number of instances typical of the vehicle's
behaviour under critical conditions and use these to each to train a network. Thus a
number of networks were developed and a fuzzy controller used to determine which

of the networks was most appropriate given the vehicle's dynamic state.

The three fields concerning transverse velocity were identified as:

e Understeering, even high system inputs (transverse acceleration, steering angle)
lead to a relatively small system output (transverse velocity)

e Oversteering, rear wheel lateral slide or even total vehicle instability cause high
transverse velocities.

¢ Braking in a turn, a locked inner front wheel and a sliding inner rear wheel may
cause vehicle instability. The resulting yaw rate is responsible for high transverse

velocities.

2.2.3.1 Neural Network Representation

Porcel et al.[13] tested a number of different networks examining combinations of
input variables and testing performance for precision and case representation. The
combinations of input variables compared included longitudinal and transverse
acceleration, the steering wheel angle, longitudinal velocity, yaw rate, the derivative

of yaw rate and the output in the last time step.
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The networks considered were feed-forward networks, radial basis networks and
Elman networks. In this investigation the Elman nets were found to display
characteristic saturation effects, when confronted with inputs that were higher than
those appearing in the training data. The performance of the radial basis nets was
similar to that of the feed-froward nets, but required more neurons. (Please refer to

chapter 3 for a comprehensive discussion of neural network theory and practice.)

- tansigmoid neuron . - “purelinear neuron: < - -

_ ,E(;:?)':tai}h

Figure 2.2-4 Neuron transfer functions: tansigmoid and purelinear.[13]

Activation functions considered were logsigmoid, tansigmoid and radial basis
neurons, with the final choice lying with tansigmoid in the input and hidden layer and
one purely linear neuron in the output layer (see Figure 2.2-4). The networks were

trained and tested using standard procedures (outlined in chapter 3).

The results of the network training and testing were presented as follows for each of

the three cases.

2.2.3.2 Understeering conditions

The results for the test involving understeering conditions are shown in Figure 2.2-5.
The results are based on longitudinal acceleration, the derivative of transverse
acceleration, yaw rate and its derivative; and longitudinal velocity. Clearly, these are
only a few of many possible variables that could have been used. A blanket approach,
using all variables that could possibly contribute to the transverse velocity would be

the next step toward improving the results.
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Figure 2.2-5 Transverse Velocity: real and estimated value for understeering.[13]

2.2.3.3 Oversteering conditions

Figure 2.2-6 Transverse Velocity: real and estimated value for oversteering.[13]

We can see from Figure 2.2-6 that the network gives an overview of the general trend
associated with the transverse velocity variation. There is a tendency to smooth out or
generalise the actual results. This is a trademark of the neural network approach. It
may be possible to improve the results by further training the network but it is likely
that further training would simply lead to over fitting, whereby the errors and
anomalies in the measurements are treated as part of the trend and the curve over
complicated. The inputs used to train the network were the same as the previous

section.
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2.2.3.4 Braking in a turn
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Figure 2.2-7 Transversé Velocity: real and estimated value for ‘“Braking in a

turn”.[13]

The results for “braking in a turn” as shown in Figure 2.2-7 are much more
encouraging. Once again some of the detail is missing but the overall trend is in
agreement. Again, future work would aim to improve the results through the use of

different neural networks or an increased number of inputs.

2.3 Applied Intelligence to Automotives

The following is a broad view of applied intelligence to automotives, while not
directly related to the task at hand, it is included for academic interest, with specific

details of this particular study to follow.

2.3.1 Engine related

Applied intelligence has found its way into the automotive industries particularly in
those areas relating to the engine. This is combined in some instances with fuzzy logic
technology to produce some interesting work. Applied intelligence in this area falls

into two main areas, engine control and engine diagnostics.

2.3.1.1 Engine diagnostics

Lu, Chen and Hamilton outlined the development of a fuzzy diagnostic model for

automotive fault diagnosis.[14] The model uses a fuzzy rule generation algorithm
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developed by the team and is based on priority rules. The model has been
implemented in a vacuum leak detection agent system and after testing on large sets
of data was proven to be excellent. The system is being implemented into a Ford test
system for end-of-line test.

Virtual sensing is another promising technique in this field. A neural network based
engine performance, fuel efficiency and emissions prediction system has been
developed for Spark Ignition (SI) and Compression Ignition engines (CI).[15]
Through limited training on an engine dynamometer the network is able to accurately
predict real-time engine power output, fuel consumption and regulated exhaust
emissions over highly transient engine operating conditions and using only readily
measured engine parameters. The instantaneous prediction of exhaust emissions may
form the basis of an intelligent diagnostic system although it appears this has yet to be

attempted by this group.

2.3.1.2 Engine Mapping

The characteristics of neural networks are such that they are ideally suited to control
situations particularly where the input may be noisy. This is particularly true of the
work done in the field of engine control applications. Neural networks provide a
simple and effective way to describe the linear input-output behaviour of a system
through 3-d mappings. The limitations of the system have been examined and were
found to be such that an advantage over conventional look-up tables varied from case
to case.[16] The mainvcontributing factors to the decision were the amount of memory
available in the control module, allowable computation times, need for the on-line
adaptation capability, and required transparency of the representation. The neural
network model has much smaller memory requirements at 31 parameters than a full
interpolating look-up table. Where adaptation was required the neural network model

was also superior.

2.3.1.3 Application to Idle Speed Regulation
Neural network based, discrete adaptive sliding mode control has been developed for
idle speed regulation in internal combustion engines.[17] The control goal in this

situation was to lower the idle speed for better fuel economy while rejecting typical
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load disturbances and reducing engine speed variations for drive comfort. This
approach was simulated using a Ford V8 4.6L engine. Feed-forward neural networks
were used to approximate the unknown system dynamics. In this case the Network
provided a number of advantages over conventional approaches. These were:
1. explicit knowledge of the system dynamics is not necessary for the controller
design;
2. the controller is adaptive to the system parameter uncertainties and external
disturbances;
3. the time delay in the system can be addressed by increasing the relative order
of the system.
They succeeded in showing that it is possible to use neural network based technology
for the efficient control of idle speed and that it can be a simpler tool to use than

conventional methods.

2.3.1.4 Air-fuel ratio control for directly injected spark ignition engines

Spark ignition engines that are directly fuel injected tend to run lean at low loads and
stoichiometric for the other operating areas. Lenz and Schroder have shown that a
normalised Radial Basis Function artificial neural network can be used as a mapping
from the driver’s input and operating conditions of the engine on injection commands
to achieve a defined air-fuel ratio in transient operation.[18] This network is trainable
and represents an intelligent feed-forward control structure. It therefore takes account
of wear and alters the mapping accordingly. Hence the best performance is

maintained at all times.

In addition to what has been done at a practical level, artificial neural networks have
also been used to model the behaviour of the spark ignition engine from the
perspective of an input/output system. An example of this is given by Lichtenthaler et
al.[19]. Hardware-in-the-Loop (HIL) simulation was used to support test and
verification during the development phase. The neural networks were shown to have
advantages with respect to robustness and measuring extent. They could also be used
as stand alone models or as sub-models integrated in a global model based on a

physical structure.
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Various methods have been applied to the question of vehicle dynamics. Largely the
need for modelling arises from Computer aided engineering or CAE. With an accurate
estimate of the various stresses and loads that will be present in vehicle dynamics, the
vehicle may be engineered to be as light and as strong as both is possible and

necessary.

This concept is by no means new and was under development in 1989.[20] Previous
approaches have been complex and computationally intensive. They have also
required a great deal of knowledge and experience to be of real use. Two techniques
that have warranted research in this area of automotives are bond graph modelling and

the use of Kalman filters.

2.3.1.5 Vehicle control

In the area of vehicle control neural networks and fuzzy logic have both played a part.
A good example of the possibilities that also serves to demonstrate the strengths and
weaknesses of each approach is the -fuzzy and neural truck backer upper control
systems.[21] The comparative study was tested in a computer simulation environment
not on real world data. A fuzzy logic rule base was set up from empirical know-how
to reverse the truck model into a docking bay. The comparison was made with the
Truck backer upper proposed by Nguyen and Widrow.[22] Some of the results are

shown below:

i} ikt irh

Figure 2.3-1 Sample truck trajectories of the neural controller for initial

positions (x, y, ¢): (a) (20, 20, 30), (b) (30, 10,220), and (c) (30, 40, -10).[21]
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Figure 2.3-2 Sample truck trajectories of the fuzzy controller for initial positions

®, y, 9): (a) (20, 20, 30), (b) (30, 10,220), and (c) (30, 40, -10).[21]

Figure 2.3-1 traces the path of the truck as the neural network controls the backing
path. In Figure 2.3-1 (a) and (b) the path is very close to the fuzzy logic result.
However comparison with (c) in Figure 2.3-2 shows that the neural network result is
far from optimum. In fact the simulated truck does a complete 360 degree turn whilst

backing into the docking bay.

The fuzzy approach here was found to have advantages over the neural network
approach - based on a back-propagation algorithm. This is not surprising, as fuzzy
rules are able to replicate common sense type rules. The real advantage of the neural
network approach becomes more evident when the complexity of the system is
outside of the scope of common sense and a simple rule base. In this respect the
neural network would be more powerful in a more complex situation where the
empirical know-how is not as easy to come by. Similarly, the neural network
approach is ideally suited for applications where smooth continuous results are
required, Figures 2.3-1 and 2.3-2 begin to show the smoother operation of the neural

network result.

The fuzzy rule based model was also found to be more robust as rules were removed
than the neural network was when training data was reduced. This would suggest that
the neural network algorithm was less than ideal. It is interesting to note however that
once trained a neural network no longer requires its training data where as the fuzzy
rule system will always require each rule. Hence the neural system is less likely to
lose the network it depends on than the fuzzy rule system. The results between the

two were extremely close up to 50% loss of information.
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Figure 2.3-3 (a) Control surface of the fuzzy controller, Fuzzy set values
determine the input and output combination. (b) Corresponding control surface

of the neural controller for a constant value y = 20.[21]

The fundamental difference between the two methods is detailed in Figure 2.3-3. The
fuzzy rules are relatively discrete, meaning that there will be large jumps between
consecutive points. The neural network control system, on the other hand, is perfectly
smooth. This allows the network to interpolate and give very smooth variation of the
output with the input variation. In very sensitive applications such as complex

dynamics control and estimation, this quality is essential.

2.4 Other Neural Network Applications

While the field of neural networks is continuously growing it would seem that the
actual volume of practical research is quite small compared to the number of
simulations and models based and tested on entirely theoretical values. While it would
appear that the theory is indeed well developed and the applications apparently viable,
there is conspicuously small number of practical, real life working applications. The
clear majority of work to date in the automotive area has focussed on modelling a
particular performance rather than actual application to a real time process. This is
generally done with computer simulation, and whilst proving the result to be possible,

it falls short of actual practical application.

Some of the areas where fuzzy logic and neural network tools are finding applications

include:
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1. quality prediction in industrial control [23, 24],

[N

manufacturing applications, such as design, process planning and scheduling [25,
26,

procéss control, fault diagnosis and condition monitoring [27, 28, 29, 30],

control and monitoring of machining processes [31, 32, 33, 34],

pattern recognition [35, 36, 37], and

AN N

robotic control [38, 39]

One area of research, that has proven to be ideally suited to artificial intelligence
applications, is manufacturing. The complex non-linear nature of manufacturing and
process control means that it is ideally suited to neural network modelling. A general
indication of this field was included to demonstrate the success possible through use

of neural networks.

2.5 Concluding Remarks

If we consider the state of the art control and safety systems on new a concept
vehicles such as: Anti-lock braking (ABS) [8], Vehicle Dynamic Control (VDC) [7]
and Dynamic Stability Control (DSC) from BMW [40], Traction Control (ASR) [41],
All Wheel Drive (AWD), Tyre Pressure monitoring system [42], Dynamic Brake
Control (DBC)[43] and Brake by wire [44], it is clear that these developments are
focussed on localised control. DSC and VDC are moving toward a comprehensive
system but there is no one vehicle that incorporates all of the design features available
to date. Hence the need still exists for a comprehensive intelligent control system
based on a complete, real time knowledge of the individual vehicle’s dynamic

behaviour.

The state of dynamic performance prediction is well developed in a theoretical sense.
Models have been developed that demonstrate the effectiveness of a particular system
in simulation mode. There are very few systems that can produce dynamic
performance prediction. A need exists for the estimation of salient data to form a basis

for the comprehensive control outlined above.
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Velocity as a parameter responsible for overturning is currently estimated using first
principles. This does not take into account the non-linear forces associated with the
deformation of tyre walls or the unusual friction conditions associated with skidding.
For control purposes there is a need to estimate the parameters responsible for vehicle

overturning under all road conditions.

Reliable estimation of acceleration in 3 dimensions would lead to more accurate
modelling for stress analysis and safer more efficient design of safety systems and
other vehicle systems. Estimation of these values lays the basis for accurate,
comprehensive and intelligent control systems that will eventually lead to greater

safety and efficiency in the automotive industry.

In conclusion, the state of the art for reliable quantitative estimation of parameters
responsible for vehicle overturning is inadequate. This work will propose a possible
solution to rectify this inadequacy through the use of established neural networks and
modification for estimation of these performance parameters. The following chapters

will outline the networks to be used, the experimental set up and results.
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Chapter 3 Computational Intelligence Literature Review

In considering the application of artificial neural networks to prediction of parameters
responsible for vehicle roll over, it is important to have a good basic understanding of
the background theory and some common terminology. This chapter is included to
give a brief overview of Artificial Intelligence and artificial neural network theory as

a basis for the work detailed in chapter 6.

3.1 What is Artificial intelligence?

Artificial intelligence and computational intelligence are terms used to cover an ever-
increasing field of research. Artificial Intelligence or Al has come to mean many
different things. Martin Fischler and Oscar Firschien [45] describe three theories

developed in philosophy. These theories are the “existence theories”

1. Intelligence is a non-physical property of living organisms and cannot be
recreated in a machine

2. Intelligence is an emergent property of organic matter: silicon is inadequate,
but when we learn how to build machines out of organic compounds there
may be a chance of developing intelligent behaviour.

3. Intelligence is a functional property of formal systems, and is completely

independent of any physical embodiment.

Engineering is primarily concerned with the third viewpoint. Intelligence can then be
defined on a number of attributes including the ability to learn, recognise symbols,
speak and understand speech. For the many different attributes, there exist computer-
based simulations that display their characteristics to some degree. Although there has
yet to be developed a system that will encompass all of the ideals put forward here, a
number of different disciplines have been developed. These include expert systems,
natural languages, and simulation of human sensory capabilities (eg image
recognition), robotics and artificial neural networks. As the main area of interest is
predicting complex non-linear relations a suitable tool for the task at hand is the

artificial neural network. This will be the main focus of this outline.
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3.2 The Biological Neuron

Cell body

Dengrites

Nuclous -

Figure 3.2-1 Biological Neuron [46]

A neuron is the biological building block of the brain and the biological neural system
as represented in Figure 3.2-1. It allows inputs from a large number of similar
neurons. It will then send a single output to many other neurons across the network of
axons (neuron connectors). Each axons has many branches known as axon collaterals
that join each end at the input of another neuron in a connection known as a synapse
shown in Figure 3.2-2. The parts of the neuron to which these synapses are joined are
called dendrites. Many synapses are fixed but many are adaptive or plastic which
means that they can increase or decrease in strength under appropriate conditions. As
such these synapses have differing strengths or synaptic weights. They come in two
forms which allow either of two effects on their associated neuron, excitatory
(positive) and inhibitive (negative). Finally synapses are unidirectional, in that they

allow signals to pass in only one direction.[47]

Figure 3.2-2 Biological Synapse [46]
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The physical assumptions that many artificial neural networks are based upon are

given in Figure 3.3-1

*“l. The activity of the neuron is an “all-or-none” process.
2. A certain fixed number of synapses must be excited within the period of latent addition in order to
excite a neuron at any time, and this number is independent of previous activity and position on the

neuron.

3. The only significant delay within the nervous system is synaptic delay

Figure 3.3-1 Artificial Neural Network Assumptions

In the McCulloch-Pitts model the artificial neuron provides the weighted sum of its
input potential’s in a numeric value. The neuron then will fire or not dependent on
whether the summed weighted input is greater than a threshold value. If it does fire it

will transmit this summed weighted input value, if not it will transmit nothing.

Schematically, this set-up may be represented as in Figure 3.3-2.
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Figure 3.3-2 Basic Structure of an Artificial Neuron [64]

3.4 Neurons as functions
At the most basic level there are three functions that combine to give the neuron its
processing capability. These functions are the input function, activation function and

output function. All three functions may be combined to into one function known as
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3.3 A Brief History of Neural Networks

The first modelling of neurons dates back to the 1940s when McCulloch and Pitts
published their classic paper “A logical Calculus of the Ideas Immanent in Nervous
activity”.[48] The original neurons were simple logic gates AND, OR and NOT. Their
work forms much of the current basis for neural network development. In 1949,
Donald Hebb introduced the Hebbian learning rule, a learning scheme that purported

to store information in the connections.[49]

Frank Rosenblatt invented the Perceptron in 1958 [50]. As will be described later, this
model was capable of learning patterns by modifying connections to the threshold
elements. In the early 1960’s Bemard Widrow and Marcien Hoff introduced
ADALINE (ADAptive LINEar combiner) [51]. This was a basic pattern recognition
device from which the Widrow-Hoff learning rule developed. (In this rule, the
summed square error is minimised during training.) In 1965 Nils Nilsson [52]
summarised the developments of the time, formulating inherent limitations of learning
machines with modifiable connections. At this time layered networks existed but no

efficient learning techniques had as yet been developed.

The period from 1965 to 1984 proved quiet and there was little research done to
improve upon the work done to date. Learning of threshold elements was studied by
Sum-Ichi Amari [53, 54]. The neural architecture for visual recognition known as
neocognition was developed by Kunihiko Fukushima [55]. Tuevo Kohonen [56,57];
pursued associative memory research during this period, while Adaptive Resonance
was worked on by James A. Anderson [58]. A number of neural architectures were
introduced by Stephen Grossberg [59,60]. Recurrent neural architectures for
associative memories were introduced by John Hopfield [61,62] and rekindled much
of the interest in neural networks. The publication of “Parallel distributed processing”
by James McClelland and David Rumelhart [63] brought the field back into main
stream focus in 1986. The theories and learning rules introduced began to show the

true potential of the once dubious layered networks.
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the transfer function although it is useful to consider them separately for the purposes

of simplicity.

3.4.1 Input function
Fundamentally, the input function provides a summation of the multiplication of
inputs with the corresponding weights. It generates the input for a neuron from the
outputs from every other neuron connected synaptically to it. The function multiplies
them by their corresponding weights and then sums the result to create the input for
the activation function.

This may be written as

net, = ZX,-W i Equation 3.4-1

where i denotes the number of input neurons.

3.4.2 Activation function

The activation function is non-linear. The purpose of this function is to determine the
~output of the neuron. The activation function may be any function that is both
monotonically increasing and differentiable. The output range of the activation
function is usually limited to between 0 and 1 or -1 and +1. Early models used a
simple threshold function or step function for this purpose as shown in Figure 3.4-1.
The result being that a neuron would output a value of 1 if the inputs exceeded the

threshold value or zero if it did not.

wix) = Jtemp—1 if x>0

temp—0 otherwise

Figure 3.4-1 Graph of Threshold or Step function [65]
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However, a more general, non-linear function known as the sigmoid function has been
used more recently for this purpose. The function may be loosely defined as a
continuous, real-valued function whose derivative is always positive, and whose range
1s boundéd. This function may be represented by Equation 3.4-2 and graphically as
shown in Figure 3.4-2.

S(x) = 1/(1+Exp(-cx)) Equation 3.4-2[66]

Output value

1t

0.8t

0.6},
Transfer function =
1/(14Exp[~-5um])

Input valuve
0.5 1

Figure 3.4-2 Sigmoidal Activation Function [65]

A major advantage of the sigmoidal function is that its derivative is relatively easy to

calculate, important in the neural scheme of things. It is given by:

S’(x) = S(x) *(1-S(x)) Equation 3.4-3[66]

3.4.3 Output function

The final component of the transfer function is generally chosen to be equal to the
output of the activation function or, in other words, the output of the neuron will be
the same as the activation. So, the sigmoid function represents the neuron transfer
function with the horizontal axis representing the weighted summed input and the

vertical axis representing the neuron output.

3.5 Perceptron

The Perceptron is a pattern classification system developed by Frank Rosenblatt in the
late 1950s, early 1960s.[50] Rosenblatt became fascinated with the operation of the
eye of a fly. Much of the processing done to tell the fly to escape is done in the eye.
The single layer Perceptron was found to be useful in classifying a continuous-valued |

set of inputs into one of two classes. As such the Perceptron recognises abstract and
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geometric patterns from optical input patterns disregarding noise in the input. The
neuron computes the weighted sum of the input signals and compares that net
weighted input to a threshold value, T. If the net input is greater than or equal to the
threshold, the neuron outputs +1, if not, it outputs —1. This initial model was further
developed by Minsky et al.[67] a generalised description follows.

3.5.1 Simple two-layer Perceptron.

Figure 3.5-1 shows the architecture of a simple two layer Perceptron. There is one
layer of input nodes and one layer of output nodes. Each of these two layers is fully
connected to the nodes in the other layer but to none of the nodes in its own layer.
When a signal is sent from the input layer to the output layer, it has the corresponding
weight applied to it and the receiving node in the output layer sums all the values it
receives. If this sum exceeds a given threshold, that node in turn will produce an

output signal, otherwise it remains dormant.

Figure 3.5-1 Simple Perception layout [68]

The output of a node may be expressed as:
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S; = Zn:a,.w,.j b
i=0

IfS;>6thenx; =1 Equation 3.5-1

IfS;<@thenx; =0

Where 6 is a predetermined threshold value

The Perceptron may be trained to produce the desired output by adjusting the weights
through use of the following training algorithm.[69]
w; =w;+C(t; — x;))a,

new old

Where Cis a learning rate constant
x; is the actual output Equation 3.5-2

t; is the desired output

a, is the input node output

The functional limitation of the Perceptron is that it can only recognise linearly
separable patterns owing to having only one adaptive layer. (A linearly separable
pattern is one that can be separated into two distinct classes by drawing a single line.)
In demonstrating that this can be done it is something of an historical landmark in the

history of neural networks.[67]

3.6 Types of Networks

A great many neural networks have been developed over the years, each is suited
more or less to a particular type of problem. Figure 3.6-1 shows a taxonomy or family
tree of some of the better known networks. Each of the networks can be training to
solve a specific problem using compilations of training data. Artificial neural
networks are often described as a black box; this is largely because the process is self-
organising. The desired output is provided but the way in which this outcome is
achieved is left to the internal algorithms. In general, a neural network will map a real
input of any given dimension to a real output of some other given dimension. It is
worth doing a brief tour of some of the types and the purposes to which they are best
suited. The major difference is between the feed-forward and recurrent model types.
Beyond this, models are delineated by the training method as supervised or

unsupervised.
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Figure 3.6-1 A Taxonomy of Neural Network Models [70]

3.6.1 Feed-forward Networks

The Perceptron, as has been shown, is a prime example of a feed-forward network.
Primarily these networks are distinguished by the passage’of input signals in one
direction only. The signal makes its way from the input layer thr‘ough the weighting
system to the output layer where it is compared to the required result and the weights
modified. The process then repeats. In its general form the feed-forward network has
one input layer to receive information from the knowledge base, any number of
hidden layers (the processing power) and one output layer that passes information to
the surrounding environment. Each layer in the network contains neurons that receive

any number of inputs and send a single output to other neurons in the following layer.

3.6.2 Recurrent Networks

The recurrent network differs from the feed-forward net in that it has at least one
feedback loop. The classic example of this type of network is the Hopfield model,
first introduced by John Hopfield [61]. The recurrent network may consist of a single
layer of neurons with each neuron feeding its output signal back to the inputs of all
the other neurons. The feedback implied by this system creates a dynamic response,
allowing the network to evolve as time elapses. If a network is stable, eventually, it
will reach equilibrium; however, instability can be a troublesome aspect of this type
of network. A conceptual comparison of the two network types is shown in Figure

3.6-2.
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AF

feed-forward network recurrent network

Figure 3.6-2 Conceptual comparison of feed-forward and recurrent networks|[71]

3.6.3 Some Important Characteristics of Neural Networks

Neural networks are very different from other mapping techniques in a number of
aspects. These differences are what make them so unique as a tool, a list of the

important characteristics follow:

e Neural networks consist of a numerous, very simple processing elements
(neurons) that communicate through a rich set of interconnections with variable
weights or strengths.

e Information (memories) are stored or represented by the interconnections between
the neurons. Information is processed by a spreading, constantly changing pattern
of activity across many neurons.

e Neural networks are trained rather than programmed, there is no imperative to
completely understand a system to be able to replicate it. Some systems are
capable of autonomous learning and some of learning by trial and error.

e Neural networks do not consist of separate memory and controller, plus externally
stored program to dictate the operation of the system as in a digital computer. The
neural network is controlled instead by 1. The transfer function of the neurons, 2.
The detailed structure of the connections amongst the neurons, 3. The learning law
the system follows.

e Neural networks act as associative memories; they group similar items together
within their structure. As a memory, a neural network can retrieve stored
information from incomplete, noisy, or partially incorrect input cues.

e Neural networks are able to generalise, that is learn the characteristics of a general

categories based on a series of specific examples from that category.
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e Neural networks are highly fault tolerate and are capable of continuing to function
after a significant proportion of its neurons and interconnections have become
defective. Its performance will degrade slowly and smoothly as neurons and
interconnections fail.

e Neural networks innately act as a processor for time-dependent spatial patterns or
spatiotemproal patterns.

e Neural networks can be self-organising. Certain networks can be made to
generalise from data patterns used in training without being provided with specific
instructions on precisely what to learn.

The preceding list summarises the basic functions of neural networks and highlights

some of the desirable features that are contributing to their growing application

popularity.[24]

3.7 Considerations for Improving and Evaluating Network Performance

There are a number of considerations for improving and evaluating neural network
performance. Among these is the type and preparation of data that is to be used as
well as the choice of network architecture, which is covered in section 3.8. Testing of

the network is used to evaluate its performance.

3.7.1 Design of Network Training Data

To maximise the usefulness of a particular network it is important to carefully

consider the type of data with which it is to be trained, as well as how that data is to

be prepared. Testing is also important to determine the effectiveness of the network.

The performance of a network is dependent on the values used to train it. Most

significant is the number of values used in the training set. The two goals a data set

must satisfy are [72]:

1) Every variable in the training data set must be adequately represented. Usually,
the training data will consist of several possible subgroups, each having its own
central tendency toward a particular pattern. All of these pattems must be
represented sufficiently.

2) Within each class, statistical variation must be adequately represented. It is the

presence of random noise imposed onto pure patterns that makes most neural
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network applications necessary. The training set must be designed to insure that

an adequate variety of noise effects are included.

3.7.2 Normalising Network Input

Network performance can often be improved by removal of insignificant
characteristics such as standard deviations and offsets which, can serve to obscure the
real issue. Hence, scaling the network, otherwise known as normalising can serve to
remove certain insignificant characteristics from the training set by placing all values
within certain predetermined limits. This avoids the network creating a bias toward
vector components that are of higher magnitude. Normalising also creates an equal
footing for error minimisation, where greater magnitude for certain elements would
dominate the correction process as it is based on the total error from all outputs. It is
imperative to normalise the target output when the activation function used results in
a bounded output. For example the sigmoid function outputs a value between 0.0 and
1.0, for this particular function the target output must also be between these values for
the network to train appropriately.

Data is commonly normalised as follows [24]:

x; —min(x ;)

norm(x,) = Equation 3.7-1

max(x ;) — min(x i)
where norm(x;) is the normalised i™ value in a set of J values,
x; 1s the original i™ value in a set of j values,
min(x; ) is the original minimum value in a set of j values, and
max(x;) is the original maximum value in a set of j values.
The data is thus scaled over 0.0 — 1.0 such that the original minimum value becomes
equal to 0.0 and original maximum value becomes equal to 1.0, the values in between

are uniformly scaled.

3.7.3 Network Testing and Performance

Initially, the network is trained on a set of values, so the first step is to test that it can
accurately predict the values it has been trained on. Following this the network must
be tested on its ability to interpolate or generalise, that is, to predict data from values

that it has not yet specifically seen.[24]
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3.8 Network Architectures for Decision Making

It has been found that Back Propagation (BP) and Radial Basis Function (RBF)
networks have been used for applications similar to the predictions of parameters to
prevent vehicle roll over, as discussed in the previous chapter. In this work both BP
and RBF will be used for prediction purposes with minor modification. This section
details the algorithms for both modes with the relevant code shown in the relevant

section of Appendix A — Source Code.

3.8.1 Back Propagation Neural Network (BP)

The architecture of the BP network is similar to that of the Perceptron. It consists of
an input layer, one or more hidden layers and an output layer. There are i input nodes,
J hiddel_l nodes and k output nodes. All input nodes are connected to all hidden nodes
through weighted connection, wj;, and all hidden nodes are connected to all output

nodes through weighted connection, wy; as shown in Figure 3.8-1

Y1

Figure 3.8-1 Back Propagation Neural Network Architecture

Input neurons pass forward input patterns to neurons in the hidden layer. In this feed-
forward structure there are no connections leading from a unit to units in previous

layers, nor to other units in the same layer nor units one layer ahead.

Every neuron in each layer hence communicates with only the neurons in the
immediately following layer. All processing is done exclusively in the hidden and
output layers. The functions performed in these layers are input function, activation

function and an output function.
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Input Function
The input function sums the inputs and synaptic weights. It is a linear function given

by:

net; = Zx,. W Equation 3.8-1
j

where net; = weighted summed input to neuron j,

x; = input i to neuron j,

wj; = weight connecting input neuron i to hidden layer neuron j.

Activation Function

The most commonly used activation function for BP networks is the non-linear

sigmoidal logistic function given by the following equation:

f(net.,)= _ Equation 3.8-2
"7 L+exp(-net;)

Output Function

The purpose of the output function is to pass the forward the output of the activation

function; hence it is a linear function equal to the output of the activation function.

Processing stages

Training BP networks occurs in two stages; initially the input pattern generates a
forward flow of activation from the input to the output layer. Secondly, error in the
network output generates a flow of information from the output layer backward to the

input layer.[47]

The back propagation procedure uses a gradient descent method, which adjusts the
weight in its original and simplest form by an amount proportional to the partial

derivative of the error function with respect to the given weight.[70]

The associated error for a given input pattern is calculated after the forward
propagation is complete. This is done by comparing the real number output of the BP

network with a target value supplied with each input patten and using the error to
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update the interconnection weights from the hidden layer to the output layer. An error
value is calculated for all neurons in the hidden layer prior to the output layer and
similarly for each of the subsequent layers. This process continues until all weights

have been updated in this manner.

Error value for output laver

The first layer error value is simply calculated as follows: [69]

O, =(t, —a,) f (net)) Equation 3.8-3

Where, #; = target value for unit &
a;. = output value for unit k
f(x) = derivative of the sigmoid function, and

net; = weighted sum of inputs to hidden layer neuron j

The expression (#; — ax) represents the difference between the target output and the
network prediction while the derivative of the sigmoid function is used to scale the
error.[24] The use of the derivative of the sigmoid function means that the error is
scaled to make a larger correction when the weighted sum of the inputs is small, close

to zero, and a smaller correction when the weighted sum of the inputs is large.

Error values for Hidden lavers

The calculation of error values for the hidden layers is slightly more complicated. For
neuron j in the hidden layer the error value calculation considers the weighted sum of
the d values of all neurons that receive output from neuron j. Hence the error value

calculation for the hidden layer is written as [69]:
o, = [Z O Wy ] f'(net)) 4 Equation 3.8-4
k

where, wy; = weight connection to neuron k from neuron j.

The respective values of & are now used to adjust the interconnections of the output
and hidden layer neurons. So each interconnection weight is adjusted by considering
the & value of the neuron that receives input from that interconnection. Hence this

weight adjustment can be written: [69]



Page 53

Aw; =nda; Equation 3.8-5

where wj; = weight of connection to neuron j from neuron i, and

1 = learning rate constant, 0 < < 1,

a; = output of hidden layer neuron j
Clearly the change in connection weight is proportional to the error value, so it
follows that a large error value from neuron j will result in a large adjustment to its
incoming weights. Likewise, large output values, a;, will result in larger weight
adjustments. The learning rate, 7, is selected to reflect the desired convergence speed
of the neural network. Unfortunately very large values of 77 can lead to instability of
the network which results in unsatisfactory learning. Conversely very small values of
n will incur excessively slow learning rates. In some cases the learning rate is varied
to produce a more efficient training technique for the network, perhaps decreasing in

rate as the network approaches convergence.[69]

Convergence improvement

A common method for improving convergence of the weight update is the
introduction of a momentum term. It is sometimes known as the ‘generalised delta

-

rule’:

C(+D=w.()+n0 X +aw, () —w. (-1
Wy (E+D) = w; () 470, + a(w, (1) = w, (0= D) Equation 3.8-6

whereO0< o < 1.

The addition of this term delays a portion of the weight update until the following
iteration, thus oscillations in weights changes are dampened and convergence

improved.

Initialisation of weights

Typically weights of a network to be trained are initialised to small random values. In
fact, a well-known initialisation method for a feed-forward network with sigmoidal
units is to select its weights with uniform probability from an interval [-o,0].[73]

Commonly chosen values for o are 0.5 or 1.0.

Weight initialisation has significant influence over network convergence and so is an

important aspect. Training difficulties will be encountered if the network requires
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unequal weights, and a uniform initialisation is used. In the extreme case, if each
neuron output within the network is the same value due to equal valued weights, each
weight change will be identical and the network weights will never differ. This is

counter-productive, as most applications require uneven weights within the network.

3.8.1.1 Training Algorithm Summary

The training algorithm is an iterative gradient algorithm designed to minimise the
mean square error between the actual output of the multi-layer feed-forward
Perceptron and the desired output. It requires continuous differentiable non-linearity.

For this purpose the sigmoid logistic function is generally used.[74]

Step 1.Initial Weights and Offsets
Set all weights and node offsets to small random values.

Step 2. Present Input and Desired OQutputs
Present a continuous valued input vector xp ,x;, ...xy.; and specify the desired
outputs dp, dj, ... dy.;. If the net is used as a classifier then all outputs are
typically set to zero except for that corresponding to the class the input is
from. That desired output is 1. The input could be new on each trial or samples
from a training set could be presented cyclically until weights stabilise.

Step 3. Calculate Actual Outputs
Use the sigmoid non-linearity and Perceptron weight output equations to
calculate outputs yg, yj, ... Yum.1-

Step 4. Adapt Weights
Use a recursive algorithm starting at the output nodes and working back to the

first hidden layer. Adjust weights by
w1 +1)=w, () +n6 x] ' Equation 3.8-7
Where w;j(t) is the weight from hidden node i or from an input node j at time ¢, x’; is

either the output of node i or is an input, 77 is a gain term, and ¢, is an error term for

node j. If node j is an output node, then
0, =y;,(l=y)Xd; -y, Equation 3.8-8

where d; is the desired output of node j and y; is the actual output.
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If node j is an internal hidden node, then
0, =x,(1-x )Z 0w Equation 3.8-9
k

where k is over all nodes in the layers above node j. Internal node thresholds are
adapted in a similar manner by assuming they are connection weights on links from
auxiliary constant-valued inputs. Convergence is sometimes faster as a momentum
term is added and weight changes are smoothed by

@+ D=w.O+n0 X +a(w.(t)-w.(t—1
wy (1 +1D) =w; (1) +10;x; + a(w; (1) —w; (1 — 1)) Equation 3.8-10

where0 < a < 1.

Step 5. Repeat by going to Step 2.

The detailed listing of code is included in Appendix A-1: Back Propagation Source
Code. The application of the BP network to prediction of roll over parameters will be
covered in chapter 6 of this thesis along with the application of Radial Basis

Functions, the theoretical basis of which will now be discussed.

3.8.2 Radial Basis Function Neural Network (RBF)

Neural networks are based on localised basis functions and iterative function
approximation are usually referred to as Radial Basis Functions (RBF).[75] Whilst
their history dates back as far as Bashkirov et al. in 1964 [76], RBF networks were
introduced by Broomhead and Lowe in 1988 [77]. Early contributions were also made
by Moody and Darkin [78], Poggio and Gorosi [79]. With an application approach
further developed by Renals [80]. |

The classic characteristic of the RBF network is that the response of the localised
basis function falls off rapidly as the distance between the centre of the basis function
and the input vector gets large.[75] The distance scale, the function centre and the
exact shape of the radial function are parameters of the model. RBF networks have
been shown to approximate continuous function mapping arbitrarily well [77], [78],

[80] and with the best approximation property.[80]

The RBF network is comprised of three layers, the input, hidden and output layers.

The main adjustable parameters are the final layer weights, wy; connecting the k-th
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output node to the j-th hidden layer node. In addition to these weights there are also
weights connected to all input, hidden and output nodes. There are no connections

between adjacent nodes and none between non-adjacent layers as shown in Figure

3.8-2.

X

Input Layer Hidden Layer Output Layer

Figure 3.8-2 Radial Basis Function Network Architecture

Both input and output layers of the network consist of linear functions, as their only
purpose is to pass the input pattern and output response to the external environment.

The weighted summation used is generally of the form

y=2 hw, Equation 3.8-11
J

where h; = output of hidden layer neuron j, and

wy; =output layer weight.

The number of input and output nodes is determined by the input pattern and the
required number of outputs, the dimension of each vector giving the required number
of nodes. As the function of the hidden nodes is somewhat non-linear, the number of
hidden nodes is a more complex determination. Generally an optimum number of

hidden nodes is found through a system of trial and error.

Typically the Gaussian function is used for the RBF activation function as

follows.[81]
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h; = exp|:— (x — )T (x 4 )} Equation 3.8-12
20,
where h; is the output of hidden layer neuron j,

x is the input vector,

u; is the weight of hidden layer neuron j,

T indicates vector transpose,

o; specifies diameter of receptive field of hidden layer neuron j.
As may be seen in Figure 3.8-3, the Gaussian function monotonically decreases with

distance from the central point. This is the classic characteristic of the RBF network.
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Figure 3.8-3 Graphical representation of Gaussian function [82]

3.8.2.1 Training Algorithm Summary

The simplified training procedure is written as follows:

1) Use a suitable clustering technique to set the input to hidden layer weights of the
network to represent sufficiently the training patterns. Initialise the hidden-to-
output layer weights of the network at small random values.[24]

2) Start the learning cycle by exposing the network to a certain input pattern paired
with the desired output.

3) Compute the network’s output and compare it with the desired output so that the

error can be calculated.
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4) Adjust the weights of the network using the error back propagation algorithm so
that a certain amount of the detected error is removed.[70]

The detailed listing of the software source code is included in Appendix A-2: Radial

Basis Function Source Code. Chapter 6 details the application of this network and

selection of the optimum architecture.

3.9 Concluding Remarks

In this chapter covered a brief outline of the theoretical basis for neural networks as
they will be applied later in this thesis. Somé definitions of artificial intelligence were
considered and the biological basis for artificial neural networks examined. This was
followed by a brief history of the development of modern neural networks and the
simple two-layer Perceptron with associated functions. The different types of
networks were discussed as well as some important characteristics that make the
neural network approach unique. Some considerations for improving network
performance were outlined and the details of two main models discussed. These
models were Back Propagation and Radial Basis Function, the source codes of which
are included in Appendix A. Chapter 4 will outline the development of the

experimental set up, with Chapter 5 focussing on the sensors.
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Chapter 4 Development of experimental rig for training data

4.1 Design of the Intelligent Race Car

The intelligent car addresses some of the inadequacies highlighted in previous
chapters. Briefly, the concept is a car that mimics intelligent behaviour, incorporating
comprehensive control systems designed for maximum control and safety. The use of
neural networks in this process allows not only for the simple prediction of otherwise
complex relationships but also portability of the system from vehicle to vehicle once
tested. The data gathered from the vehicle is used to train it. While there will be no
need for extra programming for every simple change, a different training set and the
results are used to customise the vehicle in question. It is anticipated that the
technology will be applied to the problem of truck over turning in the future. This is a

commercially viable option given the falling price of sensor technology.

4.1.1 Design considerations

In choosing a test vehicle for this project, the factors held to be of greatest importance
were safety, ability to push the driving envelope and optimum sensor location. A
lower centre of gravity was chosen as the preferred option to avoid physical
overturning and a roll hoop bar included in the design for safety. The roll hoop bar as
shown in Figure 4.1-1 was finally chosen to be round mild steel tube 25.4mm outside

diameter and 2.4 mm wall thickness.

Figure 4.1-1 Roll Hoop Safety Bar.
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While the car cannot physically overturn unless under extreme driving conditions, the
parameters highlighted as responsible for overturning can be measured for subsequent
neural network modelling. Also as this research is university based there has been a
clear advantage in including an educational training component to the design.[83] For
these reasons the vehicle was designed to specifications for entry into the Formula
SAE, a student engineering design and racing competition held annually by the
Society of Automotive Engineers in the US, UK, Europe and for the past two years in

Australia. A brief outline of the race rules and design specifications is given below.

4.1.2 Formula SAE Rules

The task involved the students assuming that a manufacturing firm has engaged them
to produce a prototype car for evaluation as a production item. The intended market is
the non-professional weekend auto-cross racer. The car must, therefore, have high
performance in terms of its acceleration, braking, and handling qualities. The car must
be low in cost, easy to maintain, and reliable. The car’s marketability is enhanced by
other factors such as aesthetics, comfort and use of common parts. The manufacturing
firm is planning to produce four cars per day for a limited production run and the

prototype vehicle should actually cost below $30,000.[84]

4.1.3 Design and Manufacture

The entire vehicle was designed and manufactured ‘in house’ cooperatively by all
team members and members of the team were involved in most aspects of the vehicle
fabrication. Individual members were assigned to management of particular areas.
This work focuses largely on the modifications to the engine and in the complete
development of the vehicle wiring system. An overview of the entire process is
included with the specific details. A separate chapter is included on the sensors as

they are of particular interest.

Being the single largest component of the vehicle, design of the frame incorporated
the specification of, and allowances for, all the other components. As high
performance was a design goal, the frame was manufactured to close tolerances. The
frame is also the primary form of driver protection where safety guidelines were

included as part of the rules [84] and the minimum frame thickness for safety was
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specified. The key components that were considered in the frame design are as

follows:

e Suspension wishbones, springs, pull rod pivots and their mountings
¢ Driver interface — steering wheel, brake and accelerator pedals

e Bodywork, Seat and associated Kevlar arrangement

e Gear shifter mechanism

¢ Differential and drive shafts

¢ Engine and electrical systems

e Fuel tank
e Radiator
e Sensors

Following the initial design a Finite Element Analysis was completed [85] using the
commercial package Strand7 [86]. As a result, and with consideration of material
restrictions and availability, 25 mm OD mild steel tubing of wall thickness 2.6 mm
and 1.6 mm were chosen for the construction of the frame. The design went through
an iterative process to decrease weight whilst maintaining stiffness and strength. the
end result was a frame model that was well below its strength limit and had an FEA
torsional stiffness of 0.6 degrees per 1 kNm load between front and rear suspension

points.

As the FEA modelling program does not feature a CAD drawing facility the model
was imported into drawing package CadKey [87] as a wire frame completed in three
dimensions and printed. A Complete set of drawings is included in Appendix B -

Frame Specifications.

The frame was MIG welded, due to workshop constraints, in a jig that took the form
of a steel table to reduce distortion. The front and rear roll hoops were bent into shape
and members cut to length and tapered. Firstly, the front bulkhead was constructed
followed by the engine bay and rear section, the frame was removed from the jig and

final welding completed. 140 or so mounting points for the suspension, engine, seat
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and harness were designed, constructed and welded to the frame. Secondly the frame

was painted using automotive acrylic paint.

The next stage of construction was the suspension. The purpose of the suspension

system 1s to maximise the amount of contact between the tyres and the road surface,

in such a way as to provide the level of traction required in a situation. The

suspension was designed and constructed with the following objectives in mind:

¢ Conform to Formula SAE rules, specifying the minimum allowable travel of all
four wheels and general suspension system requirements.

e Minimise the forces experienced by the frame as all major frame loading is
induced by the suspension.

¢ Conform to the chosen optimal suspension geometry and an appropriate level of
strength and serviceability.

e Minimise the overall size (in particular the frontal area) and weight of the
suspension system.

e Facilitate easy geometric changes, part replacement and tuning.

e Use as few parts as possible. . |

e Share as many common parts between wheels as possible.

¢ Provide stable mounting points for the required sensors.

For maximum design modification flexibility, conventional four wheel double
wishbone suspension was used. As different geometries clearly affect the vehicle’s
performance under different conditions, the likely track set up for Formula SAE was
considered, and a focus on maximising cornering speed was adopted. To this end the
outside wheel must remain as close to vertical as possible during cornering. Desirable
roll characteristics and acceptable geometry in squat/ dive under longitudinal
acceleration were found from the empirical experience of the local racing community
and iterative CAD modelling. The lower wishbones were chosen to meet in the centre
of the vehicle to minimise width of the frame (and frontal area) and still maintain the

necessary length difference between upper and lower wishbones (Figure 4.1-2).
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Figure 4.1-2 Front Suspension Layout and Dimensions

The heights of front and rear roll centres (the points in the transverse plane above the
wheel contact patches about which the sprung mass of the car will rotate under any
disturbing force) were chosen to correspond to the expected mass distribution of the
vehicle. The front roll centre was chosen at ground level and the rear centre was
placed at 50mm above ground level. Finally, the effective swing arm lengths were
decided upon at between 100% and 150% of the track width using 6.5/19.5 —13” and
7.2/20.0 — 13” Avon racing slick tyres for the front and rear respectively as shown in
Table 4.1-1. Drawings of the final suspension geometries and suspension spring
speciﬁcations are included in Appendix C - Suspension .Speciﬁcation.

Table 4.1-1 Wishbone design parameters.

Front roll centre height 8 mm
Rear roll centre height 49 mm
Front effective swing arm length 1564 mm
Rear effective swing arm length 1114 mm
Front upper/lower wishbone length ratio 0.56
Rear upper/lower wishbone length ratio 0.71

The results of the FEA model were considered and based on this the construction
material chosen to be: high strength chrome moly tubing of size 34’ diameter and 1.47
mm wall thickness for the top wish bone, 1" diameter and 2.1 mm wall thickness
chrome moly tubing for the bottom. Teflon lined rod ends connected the wishbones to
the frame and wheels to reduce weight. Further weight reduction was achieved

through the use of a pull rod system. The steering box on the other hand is a worm



Page 64

and sector steering box sourced through a drag racing company as it eliminated the
need for universal joints and with a few modifications, allowed for simple adjustment

of both steering wheel position and steering rate.

The final element of the rolling chassis is the wheel assembly. The wheel assembly is

defined as the series of components linking the suspension and wishbones to the road.

The design criteria are as follows:

e Simple and cheap to fabricate

e Light, strong and durable

e Allow for maximum braking capability

e Free rim rotation

e Mount to wishbones with adequate steering and suspension movement

e Mount for steering linkages

e Mount for wheel speed sensor

e Attachment to the drive axle for the rear wheels

e Give desired scrub radius and king pin angle

e Allow for significant adjustment in parameters such as camber and caster for
drivability

e Parts commonality.

Final wheel assembly specifications are given in Appendix D.
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Figure 4.1-3 Exploded view of final wheel assembly.

13” rims were chosen to allow room for large reliable brakes with a trade off on added
wheel mass compared to 10” rims. The rims were custom made to suit the required
dimensions of 7” width, 144 mm backspace offset and 152 mm internal diameter. As
previously mentioned the chosen tyres were 6.5/19.5 — 13” and 7.2/20.0-13” front and
rear respectively to minimise sidewall deflections on the front tyres and aid
acceleration by acting as energy absorbers on the rear. The brakes were chosen from
Wilwood High performance Disc Brakes. 10.2” diameter 3 pin mounted aluminium
rotors in conjunction with aluminium billet dynalite single callipers common across

front and rear wheel assemblies.

After extensive analysis considering an off-centre bearing design and a centred
design, the off-centre design proved to be simpler and cheaper to manufacture and
was chosen at the cost of slightly lower performance.[88] The design featured a 35
mm stub axle and 35 mm ID and 72 mm OD single row tapered roller bearing owing
to perceived difficulties in fabrication for marginal performance increases using the

centred bearing design.

To connect these elements to the suspension the uprights were designed with the

following considerations:
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¢ Bearing and bearing spacing

¢ Position and strength of suspension mounts

¢ King pin angle, caster and camber adjustments

e Placement of the brake calliper and steering mount

e Milling limitations

e  Weight reduction and appearance

The final design was CNC machined to shape and the boltholes manually drilled and
tapped. Drawings are included in Appendix D.

Driver interface with the vehicle is an important aspect of a user-friendly design.
Ergonomics and weight reduction were the primary concerns of the cockpit layout.
The design highlighted a need to have full closeout between the driver and possible
course hazards, including the road, front on and behind from the engine and other
moving components. Visibility was important and a reclined seating position was
chosen to minimise resistance from frontal area. The seat and nose were moulded in
carbon fibre, foam, carbon fibre / Kevlar layers in a female mould custom made from

plywood. The head of the seat is detachable for easy engine access.

The gear shifter is a simple pivoted shaft to the sequential motorcycle gearbox. A
hand clutch is mounted on the gear lever and its movement is cable driven. The brake
and accelerator were mounted on aluminium plate to allow for individual driver
adjustment. The accelerator was produced from aluminium plate and the brake system
was supplied by Wilwood and includes twin composite master cylinders that control

individual front and rear brake circuits proportioned by a balance bar.

The drive train was designed specifically around the principles of low rotating mass
and efficient power transmission. Standard CV joints were replaced in the design with
the use of Kevlar composite disks with an associated weight saving of 6 kg. Power
transmission efficiency is close to that of a solid rotating shaft with a torque rating of
over 1000 Nm. This efficiency required alignment to within 1 degree although

instantaneous deflections of up to 6 degrees may be withstood.
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The drive shafts ware large diameter aluminium-alloy tubes that are both stiffer and
lighter than the traditional solid steel. This design is dependent on a flanging
arrangement to connect the shafts to the composite discs. FEA analysis was used to
evaluate alternative designs for sections based on torque ratings and torsional

deflections.

A fully sealed Quaife Automatic Torque Biasing (ATB) differential was chosen to
assist maximum traction during acceleration and cornering. A blank sprocket was
machined to match the bolt pattern. The differential was mounted with an
asymmetrical diagonal member supporting the top of the right-hand side differential
mount that also provides triangulation of the drive train frame structure. Details of the
differential and composite discs are included in Appendix E - Drive train

Specifications.

4.1.4 Engine and Electrical systems

The engine and electrical system are difficult to separate and so are included together.
Limitations imposed by the Formula SAE guidelines [84] meant that the available
engine capacity was 610 cc or less. This significantly reduced the options on the type
of engine to be used with a motorcycle the most beneficial option. A 2000 Kawasaki
Ninja ZX6 was chosen from a range of engines for its large cam overlap, low rpm
torque and its lightweight construction. The deep oil sump is ideally suited to high
lateral accelerations. The engine is a double overhead cam, four stroke four cylinder
liquid cooled model with- a compression ratio of 11.8:1 and 6 forward gears, the

capacity is 600 cc.

In developing a working electrical system for use in the experimental test vehicle the

following objectives were identified as essential:

¢ Open architecture and expansion capability for addition sensory input for further
extension of on-board electrical systems during automotive neural network
development.

e Simplicity using common parts where feasible and designing straight runs

minimising the number of wires.
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e Fault Diagnosis — creating fault finding access locations, common locations of like
components and using fully colour-coded looms.

e Minimal maintenance requirements — the system developed must be robust and
require little maintenance.

e Aesthetically neutral/appealing.

The wiring loom was designed to fit neatly away from the major moving parts of the
car most likely to cause damage. For this reason the ECU (Engine Control Unit) is
located well away from the engine under the seat with the ignition module bolted to
the floor. As the ECU casing was waterproof further protection was not deemed
necessary. The wiring loom runs down the right side of the driver, away from the

gear changer on the left, to the fuse box.

Figure 4.1-4 Fuse box location.

The fuse box is located in a central position to minimise the length of wiring to and
from it from all locations on the vehicle and for maintenance purposes. The bulk of
the remaining loom continues along this line at a junction with the wiring from the
battery located near the starter motor and alternator on the left-hand side of the
vehicle. The original starter motor, alternator and regulator wires have been retained

from the original motorcycle engine loom.

For reliability during testing it was imperative that the complete wiring loom be
dependable in all weather conditions. The major concern in this case was rain and
contact with water and mud under wet track conditions. The insulated cables within
the wiring loom were further insulated by comprehensive wrapping in electrical tape

in all areas exposed to the elements. The most vulnerable components of the wiring
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system were the system of relays and fuses that allow the MoTeC system to control
the higher currents of the engine control system. Hence the fuse box containing these
sensitive components and exposed connections required special attention. The fuse

box is carefully sealed to avoid difficulty in this area.

The design of the wiring loom assigned a unique wire colour to each component for
simplicity of fault diagnosis. Basic electrical conventions were observed as far as
practical (black for earth, white or red for power.) Striped automotive wiring would
be used for production runs of the loom to ensure colour individuality. Wire utilised
in this design was chosen to withstand the harsh environment of the automobile.
Wiring sizes were taken from the largest likely current rating of each individual
component they served. For instance, the fan wiring could expect a continuous
operational current of between 2 and 3 Amp with a stall or start up current in the
vicinity of 7 Amp. In this case the wire chosen was rated at 10 Amp. This was

deemed necessary for the absolute reliability required of the electrical system.

The wiring was wrapped tightly and neatly by hand and covered where possible with

conduit for reasons of aesthetics and extra durability.

Figure 4.1-5 Conduit, triple insulated wiring loom under nose cone.

Care was taken to ensure that the wiring resides as far from hot components as
possible. Heat from the engine was enough of a problem to other components of the
car that heat shielding on the exhaust was deemed an appropriate solution. To ensure
easy removal of all components, wires were crimped and not soldered. Where
possible large multiple connectors have been used to eliminate the possibility of

incorrect connection upon re-installation.
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For safety reasons power for the entire car may be instantly cut using any one of three
kill-switches (shown in Figure 4.1-6). The brake over-run switch is located behind
the brake pedal and will activate if the brake is depressed while there is simultaneous
failure of both independent braking systems. The other two kill switches are located
on the dashboard to the driver’s right and externally next to the head support on the
roll bar to the driver’s right, in accordance with best practice international FIA safety

standards.

Cutting any one of these switches will deactivate the switch line to the main relay.
All power to components on the vehicle is sourced from this relay or from the switch
line after the kill switches. Both human operated kill switches are clearly labelled
with the international electrical symbol of a red spark on a white-edged blue triangle.

Circuits and wiring diagrams are inciuded in Appendix F — Electrical Specifications.

Figure 4.1-6 Kill switches

The primary purpose of the kill switches is to ensure that in case of an emergency the
engine will be deactivated. This brings us to the choice of engine and the development

of its support systems.

The choice of engine and the poor performance of carburetion under high lateral
acceleration led to the development of a custom fuel injection system. It was
envisaged that the vehicle would eventually feature installation of exhaust gas turbo
charger. While this addition did not eventuate the design of the inlet and exhaust

reflect this intention.
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Formula SAE specified that the fuel system must have a volume not exceeding 7.5
litres and that the maximum distance raced is 22km.[84] The fuel tank was designed
to be just 5 litres and placed under the seat. Space limitations meant that the tank was
required- to be long and shallow, problems with surge were avoided through the use of

foam and a small baffled chamber at the fuel pump pick-up.

The exhaust was designed to fit the existing outlet ports on the engine. The effective
lengths of the outlet pipes were modelled on an existing system and fabricated from
stainless steel mandrel bends. The exhaust was fabricated from a stainless steel pipe,
perforated and surrounded with fibreglass packing, to minimise backpressure. The tail
pipe length was acoustically tuned to a minimum of noise output at 9000 rpm. The
resulting 109 dB at 0.5 metres from the exhaust was within the limits imposed by the
Formula SAE rules.[84]

The cooling system consists of a radiator, electric water pump and two thermo-
electric fans. Initially, the radiator was envisioned as being placed in a side-pod on the
vehicle as this would ensure more effective cooling. After much deliberation, the
location was changed to the rear of the vehicle to minimise drag and the weight
inherent with the extra hose lengths, also it was thought that the slow speeds of the
Formula SAE event would minimise the benefit of the side-pod arrangement. The

fans and water pump supply the extra fluid flow required to keep the engine cool.

The chosen engine management system was the MoTeC M4-Pro Engine Control Unit
(ECU). The system provides sequential injection, which is ideal for fuel efficiency
and optimum fuel injection timing. It also provides 3D-mapping of engine parameters
and the option of open or closed loop operation from an exhaust oxygen (Lambda)
sensor for improved fuel economy or performance control. It includes engine oil
pressure and cooling water temperature sensor inputs as well as the facility to run
engine based traction control based on wheel speed measurements. The system stores
up to 128 kB of logged engine data which allows for a complete analysis of the engine
after running. The system is shielded from radiated interference and includes filters to
reject low impedance conducted interference. Essentially the ECU is a 32 bit micro-

controller. Sensors are read at up to 2400 Hz and the entire program regenerates at



Page 72

200 Hz. The system is said to use up to 70% less power than other systems to fire

injector hence drawing less power from the electrical system and generating less heat.

In fitting with the major objectives of the electrical system and engine convenience,
the original loom design with in line fuses and multiple bulky relay mountings were

re-designed to incorporate a single fuse and relay box.

The box itself is made of clear material for reasons of fast identification of loose
connections or burnt out fuses and relays as well as aesthetics (shown previously in
Figure 4.1-4). The wires are fed in groups through the back of the box that allows
removal of the box without the loom and vice versa. Rubber grommets have been

used along with a rubber gasket to seal the box cover in place.

The circuit for the fuse box was taken almost directly from the MoTeC ECU wiring
diagrams (Appendix F). Major alterations involved the removal of a relay that was
redundant in this particular application and the unification of relay type used
throughout the vehicle. The required diode activated relay was replaced with an in
line diode on the circuit to allow fitting of a standard relay in its place. Extra fuses
were included for each of the major components, allowing for very simple component

fault diagnosis.

One of the major objectives of the fuse box was to find a neat and effective way to
mount all the required relays and fuses in one place where they could be easily
accessible to check and change. The ideal situation was chosen to be a set of closely
located relay and fuse sockets joined to plugs as appropriate by a printed circuit
board. The printed circuit board was layered with solder tracks to increase the current

rated capacity in excess of 12 Amp (Appendix F).

Load ratings of fuses were selected according to the component they serve. In general
fuses will withstand up to their rated current plus 200% for 2 minutes. The majority
of components have around 7-8 Amp start up current with a continuous 2-3 Amp

while running. 10 amp fuses are most common in this system (as shown previously in
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Figure 4.1-4). Automotive fuses were specified for their compactness, physical

durability (plastic cases) and ease of mounting.

(1) (i) (iii)
Figure 4.1-7 (i) ADL located on dashboard, (ii) Com ports are located on the

dashboard for easy access during testing and data transfer with the remote PC

and (iii) Rear connections from wiring loom to Com ports.

The dashboard is the driver control panel. All the information about the engine and
other aspects of the running car is fed to the driver through the Advanced Dash
Logger or ADL. Information about the ADL is contained Appendix G along with

reference wiring and programming.

The dash itself is constructed from a composite sandwich of carbon fibre and foam
constructed using vacuum bagging techniques, the fibre was said up on sheets of
window glass to ensure a good finish. Profile cutting, drilling and finishing all
performed after the bonding process. The dashboard attaches to the frame through
bolts and welded tabs.

COM ports featured in the dash are used to facilitate fast and easy connection of the
on-board computer systems to an external computing and storage PCs for data logging
sessions. The COM ports connect to plugs behind the dash where the ECU and ADL
are connected facilitating easy removal of individual units. The trackside computer is
simply plugged into the front of the dashboard to download data or change on-board

programmed settings.

As vibration is significant on the test vehicle, stress relief for the wiring and solid

mountings is a feature of this design. Ease of removal of the dash was a major
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consideration and was achieved using two main connectors behind either side of the

dash.

Once the physical layout of the dashboard was determined, the circuit design was
largely a matter of connecting the components with the main vehicle circuit. Shrink
fit wire covering was used to prevent shorting, and the back of the dash is painted
with liquid electrical tape to ensure water resistance. Physical layout of the dashboard
switches and lights follows a logical progression. The most important switches are to
the right, away from the gear changer. The neutral and oil warning lights are located
close to the ignition switch. Specifications for components of the electrical system are

included in Appendix F - Electrical system general specifications.

4.2 Concluding Remarks

This chapter addressed the design and construction of the test vehicle. Safety while
testing parameters that contribute to vehicle roll over was an integral part of the
design. An outline of design and fabrication was given for the frame, suspension,
wheel assembly, driver interface and engine systems With the electrical system
covered in more detail. Chapter 5 will examine the significance and placement of the
sensors throughout the vehicle. As all the results obtained are dependent on the sensor

outputs the following chapter is integral.
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Chapter 5 Sensors and Sensor Fusion

Sensor fusion usually refers to the combination of multiple sensor data into one
representation or control action for improved measurement accuracy or motor
behaviour.[89] In this case, the vehicle dynamic sensor outputs are intended for
prediction of accelerations and velocities. As a preliminary step, the sensor output
must be collected through the data acquisition system and later collated for the
purpose intended by the various neural networks. The following chapter outlines the
sensors themselves: their calibration and positioning followed by the various
components of the data acquisition system. The use of the data in prediction and

decision making is covered in chapter 6.

5.1 Sensor Positioning and Specification

A detailed analysis of sensor selection may be found in [90]. The most critical sensor
from a positioning point of view is the acceleration sensor. Engaged to measure
accelerations in 3 dimensions, yaw angles and rates, pitch angles and rates and roll
angles and rates, the acceleration sensor must be located at the vehicle's centre of
gravity. This is due to the way in which the sensor uses the signals it receives. To
calculate actual pitch and roll angles, the angular rate signals must be integrated.
Unfortunately, an offset error in angular rate will produce an error in angle. That
angle error increases linearly with time. In addition, the random noise in the rate
sensors will produce a random walk effect in the calculated angle. The random walk
causes the calculated angle to drift at a rate proportional to the square root of time,
even in the absence of rate-bias error.[91] Many of these difficulties can be avoided
by initially mounting at the vehicle's centre of gravity and roll, and correct directional

alignment. These considerations were incorporated in the design of the vehicle.

The following quantities were identified as integral to the dynamic performance of the
vehicle:

Chassis Parameters:

e Individual Wheel Speeds, ®,, in rev/s

e Accelerations, A, ,A,, A,, in m/s’

e Yaw Angle, y in degrees.
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e Pitch Angle, yin degrees.

e Roll Angle, 0;in degrees.

e Yaw Angular rate, ¥ in degrees/s.
e Steering Angle, 0 in degrees.

e Suspension Spring Travel, Zg in m.

e Brake Hydraulic Pressure in front and rear circuits, Fg in Pa.

Engine parameters:
e Engine rpm
¢ Throttle position

e [ambda value

Calculated parameters:

e Distance, D in m.

¢ Gear, calculated from rpm and drive speed

e Pitch and roll angular rates, from the first derivative of the angles.
¢ Ground speed from the averaged front wheel speeds

¢ Distance, the integral of ground speed.

¢ Dnve speed, averaged rear wheel speed.

¢ Driven wheel slip from rear wheel speed and ground speed.

¢ Individual wheel accelerations, the derivative of the wheel speeds

¢ Individual suspension velocities from differentiated suspension positions.

Mathematically, the dynamics of a vehicle may be expressed as a function of all of the
above parameters. The selection of sensors to collect readings of the above parameters

was limited by the following:

¢ Minimal available mounting space
e Ability to withstand harsh environmental conditions
e Communication and signalling compatibility between elements of instrumentation

e Sensor availability [90]
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Table 5.1-1 Summary of input instrumentation sensors.[89]

Measurand Sensor Type Supplier Quantity

Wheel speed Honeywell Gear Tooth GT1 | MoTeC - 4

Series Hall Effect Sensor

Three axis accelerations, | Crossbow DMU AHRS400-200 | Davidson |

roll, pitch and yaw angles | Sensor Industrial
Measurement
Steering Angle MoTeC (Spectrol) 10 turn, gear | MoTeC 1
driven rotary potentiometer
Spring Travel Gefram Linear Potentiometer — | MoTeC 4
100 mm
Brake Force Honeywell  Eclipse  Pressure | MoTeC 2

Sensor — 2000 psi

The sensors summarised in Table 5.1-1 are fundamental to the accuracy of the data

required for this study and thus will be covered in detail after the engine sensors.

5.1.1 Engine Sensors

The throttle position sensor is located on the inlet butterfly valve and provides the
ECU with a variable voltage that represents the position of the throttle. This
information is then used to control air-fuel ratio, timing and fuel shut-off.[92]
Calibration is of the fully open position and fully closed position through the software
associated with the ECU. After comparison with the Manifold Air Pressure (MAP)
sensor, the throttle sensor was found to give better response after the engine was

tuned.

The standard crank angle sensor on the ZX-6 engine was kept and used as an input to
the ECU. The sensor is a Hall Effect sensor triggered by a wheel with twelve evenly
spaced teeth. To fix a point in the rotation cycle, the twelfth tooth is in actuality
missing. Thus the gap in the signal corresponds to pistons two and three being at top
dead centre whilst one and four are at bottom dead centre. In a four-stroke cycle this
is not sufficient information to determine the position of each piston in the cycle.
However, the decision to run wasted spark meant that the spark plugs each fire at the

top of the piston stroke regardless of whether it be the compression stroke or the
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exhaust stroke. This type of ignition system is common on standard fuel injected

engines.

Sequential fuel injection is the most precise way to inject fuel into an internal
combustion engine. Other methods of injection involve injecting some or all of the
cylinders at the same time, this is undesirable as the fuel may not fully atomise due to
the stationary air and evaporation into the inlet manifold can occur due to the heat of
the inlet valve. Sequential injection means that each injector fires individually at the
correct moment in the cycle. As the spark plugs were running wasted spark a
reference point was needed to identify the current phase of each piston in the cycle.
To achieve this an additional sensor was required on the camshaft as this rotates only
once per four-stroke cycle. A common Hall Effect sensor and associated wiring was
mounted to a stainless steel bracket inside the engine and triggered by a remote earth
magnet fixed to an existing hole in the cam shaft timing sprocket. The wires were
insulated using a Teflon insulator and exit the engine through a hole drilled in the

rocker cover.

The Hall Effect works as a proximity switch under the influence of a magnetic field.
The use of the stronger remote earth magnet allowed the distance between the magnet
and the sensor to be increased from 2 mm to 5 mm, for convenience of mounting. The

device is rate up to 100 kHz repetition rate.[93]

To be read the pulse from the sensor must be amplified by the ECU input. A simple
MOSFET amplification circuit is used for the job. The circuit is built on printed track
circuit board and mounted in a box on the outside of the engine. The sensor wiring is
temperature resistant; Kevlar insulated wire designed for harsh conditions. The
sensor is mounted into the cam sprocket cavity in an aluminium bracket held by the
nearest cam cover bolt. Directions for the set up and calibration of this sensor are

included in the ECU help menus.

The Lambda sensor measures the oxygen content in the exhaust gases, which is
directly related to the air/fuel ratio of the burned fuel in the combustion chamber. Tt is

mounted on the outlet engine pipes as close as physically possible to the engine to
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minimise the time delay between the lambda reading and the engine rpm reading. A
Zirconia cell generates the voltage output of the Lambda sensor. In principle, a
process gas with unknown oxygen concentration flows over a measuring probe that is
sealed off from the process gas by the heated Zirconia cell. A reference gas on the
opposite side of the zirconia cell with its known oxygen concentration contacts the
cell from the inside surface. At high temperatures, a voltage is generated between the
two surfaces of the cell. At constant cell temperatures this voltage depends only on
the ratio of oxygen concentrations between the reference gas and the process gas.[94]
As this voltage is temperature dependent, the sensor is temperature compensated

based on the increase of resistance of the sensor cell with temperature.

5.1.2 Wheel Speed Sensors

The wheel speed sensors are digital output gear tooth Hall Effect sensors. The Hall
Effect is an electrical phenomenon discovered in 1870 by Dr Edwin Hall. When a
current flows through a conducting material a magnetic field is set up. It means that a
voltage is generated transversely to the current flow direction in an electric conductor
(the Hall voltage), if a magnetic field is applied perpendicularly to the conductor.[95]
If a ferrous material then passes through this field it concentrates the magnetic flux
away from the conductor causing change in voltage. By measuring the changing
voltage the passage of conducting material through the magnetic field may be
monitored. In this particular situation the movement of the ferrous material, ie the
bolts holding the wheel inners to the wheel rims, gives a changing voltage indicative

of the wheel rotation.

The Hall Effect sensor is composed of an integrated circuit made up of discrete
capacitors and a bias magnet sealed in a probe type, non-magnetic plastic package for
physical protection and cost effective installation. Wiring consists of a power source
or voltage, sensor ground and signal wire that provides the output or measurement
reading value. The sensor uses a discrete capacitor to store a reference voltage that is
directly proportional to the maximum magnetic field strength (ie. the absence of a
wheel bolt). A digital output signal is triggered when the magnetic field sensed by the
hall element changes by a predefined amount. A feedback circuit is integrated into the
silicon circuit and used to reduce the effects of temperature and other error inducing

variables.
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Hall effect sensors generally operate using a metallic gear tooth wheel that has the
function of concentrating the magnetic flux away from the sensor. Incorporating such
a gear into all four wheel assemblies proved a difficult design task and as such an
alternative solution was found. As previously mentioned the heads of the steel bolts,
that hold the aluminium face plate of the wheels to the rims, act as the sensor target
material with the aluminium face plate acting as the non-target material. Simple

mounts were constructed to support the sensor and mounted to the brake calliper.

Calibration of the sensors proceeded once they were wired to the ADL. One wheel
rotation is equivalent to 18 Hall effect pulses; the wheel speed calibration was
effected in the software by specifying this value and the measurements of the

individual wheel circumferences.

5.1.3 Acceleration Sensor

Based on the difficulty of positioning a cluster of sensors at the vehicle’s centre of
gravity a single unit was chosen with the capability to read all the variables required
from the one position. The DMU-AHRS is a sensor clustering measurement system,
designed to measure nine parameters including stabilised pitch, roll and yaw angles
and yaw angular rates, and acceleration about 3 axes. These values are measured by
using a combination of micro-machined three axis accelerometers, three axis
rotational rate sensors, and three axis magnetometers. The addition of the three axis
magnetometers allows the unit to make a true measurement of magnetic heading.
Output may be in analog or RS232 digital form. The unit uses a combination of

different methods, the principles behind which are detailed below.

Firstly. an accelerometer works by measuring the relative displacement of a spring
mass system under acceleration. In the case of this particular sensor, three micro-
machined silicon micro electrical mechanicél system (MEMS) accelerometers use
differential capacitance to sense acceleration. This type of accelerometer senses a
change in electrical capacitance through the use of a distorting diaphragm sandwiched
between two plates. The two plates form the capacitor unit and detect changes as they

are separated due to the movement of the diaphragm under acceleration in one plane.
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The sensor then conditions the signal to create a linear output, as capacitance

differentials are not directly linear.

Next, the three angular rate gyroscopic sensors are made up of a number of vibrating
ceramic plates that use a silicon MEMS structure to measure the Coriolis force (F=2m
oVsin(¢), where  is the angular velocity of the axis, V is the relative velocity and ¢
is the angle between vectors ® and ¢) induced by the dynamic movement of the test
apparatus. This data may then be used to calculate the rotation rate around the given
axis. The advantage of this approach is that the output angular rate is independent of
the acceleration output. One significant problem that arises is that a change in
direction around one axis of a driving transducer induces a vibration in the detection
transducer on another axis. To over come this. problem an oscillator circuit is used to

control the vibration.

Finally the three magnetometers within the unit are constructed as miniature fluxgate
sensors and are used to provide the heading angles with respect to the earth’s
magnetic field. These results are used only for reference, with the angular rate

integrals and gravity angles used to stabilise the results.

The acceleration sensor needed to be mounted as close to the centre of gravity as
possible to minimise measurement errors as the sensor measures acceleration
proportional to the product of the angular rate squared and the distance to actual
centre of gravity. The required location was found from the FEA conducted in the
design phase and verified through the measurement of the vehicle’'s weight
distribution at each wheel. Vertically the only available option was to mount the
sensor on the floor behind the driver. The fuel tank was designed to accommodate this

location.

Installation involved taking particular care to avoid ferrous materials close to the
sensor that could affect the accuracy of the magnetometer. The sensor is mounted on a
layer of foam to minimise vibration and held in place with velcro strips to add further

dampening and eliminate the need for bolts. Connection proceeded through the ADL



Page 82

using the analog input channels and calibration was done within the software by
setting the acceleration due to gravity of the sensor upright, on its side and on its back

to give the three directions.

5.1.4 Steering Angle and Spring Travel Potentiometers

The principle of operation for both the steering angle and spring travel sensors is the
same so they are included together. Both sensors are potentiometers, the suspension
travel sensors are linear and the steering angle sensor is rotary. A potentiometer is an
analog sensor; it operates on the principle that electrical resistance is proportional to
resistance length (in a straight line or around a curve). They generally consist of a
movable component that makes contact at a point along an internal resistance. Thus
the current flowing through the circuit encounters more or less resistance based on the
position of the sensor element and the voltage changes accordingly, this is the sensor

output.

These sensors consist of an anodised aluminium cylindrical case with an internal
Y

moveable control rod of stainless steel. The maximum possible extension is 100 mm.
The sensors have M5 self-aligning rod ends at each end for mounting. The linearity

accuracy is 0.05% with infinite resolution based on the analog output.

Installation of the linear potentiometers required sufficient length to be left in both
upward and downward directions of suspension travel to avoid damage of the sensors
travelling over small bumps and ditches. Using a calibration technique whereby a
known deflection is applied at each individual wheel and associated with the sensor
output voltage in the software, the sensors were able to be mounted with no
requirement of perfect alignment and orientation precision in the vertical plane. This
simplified the mounting procedure enormously. Eight mounts were welded to the
frame and wishbones of the vehicle and the sensors bolted into position with washers
to allow the rose joints at each end to self-align during operation. The sensors were

zeroed with the car standing on the ground with an average sized driver.
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The steering angle sensor incorporates a large pulley that was mounted directly to the
steering wheel shaft and the actual steering angle sensor mounted in the direct vicinity
using an “L” shaped channel of aluminium: The sensor could be calibrated to
measure either the actual change in the steered wheel angle of the vehicle, or the angle
of the driver’s steering wheel. In this instance the latter was chosen. The calibration
consisted of temporarily mounting a protractor to the steering wheel and taking a
voltage reading. The steering wheel was then moved through a number of known
angles and the voltages read. From these values a calibration curve was developed and

entered into the software.

5.1.5 Brake Force Pressure Transducers

Thé brake pressure sensor works on the piezoelectric effect. This effect occurs when
an external force strains a crystalline substance such as quartz, resulting in a
measurable charge accumulation on the crystal surface as its ions are displaced. The
electrical voltage that develops across the crystal due to mechanical displacement is
also proportional to the input pressure that causes the deformation of the crystal and
forms the basis of pressure transducer operation. The two pressure transducers were
installed into the brake lines through the use of a simple T-junction arrangement close
to the nose of the vehicle for ease of access and wired into the ADL loom. Calibration
tables were included in the Dash manager software and calibration was thus simply a

process of loading the appropriate file into the system.

5.2 Data Acquisition Instrumentation

Data acquisition instrumentation refers to the equipment that processes the sensor
voltage outputs into meaningful information on the vehicle, the equipment that
transmits this to and receives the information at the research computer off the track
and the software that is then used to manipulate it. The following section outlines the

equipment chosen including issues of installation.

5.2.1 MoTeC Advanced Dash Logger (ADL)
The Advanced Dash Logger (ADL) from MoTeC is a compact complete data

acquisition system suited to on-board collection of sensor outputs and engine control
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parameters from the ECU. It also serves as a display unit to give the driver feedback
from the vehicle systems.

Specifications:

4 Mb data storage memory capacity allowing 16 minutes of testing
10 analog inputs

8 digital inputs

RS232 serial input

4 auxiliary outputs

High speed 32 bit microprocessor

Programmable high contrast Liquid Crystal Display

Detachable wiring loom.

CAN communication cable for direct PC connection

Installation of the ADL was largely a process of optimising visibility for the driver
making the CAN cable easily accessible on the dashboard and connecting the wiring
loom appropriately. A separate 12-volt battery was included as the power source to

isolate any interference from the heavy electric system associated with the engine.

5.2.2 Real Time Clocks
The installation of a real-time clock provides time and date channels to the ADL to
allow time stamping of all measured data. This unit also provided an additional

RS232 input communication port for the ADL.

5.2.3 Telemetry

The telemetry system consists of two modems, complete with computer connections
and antennas. The transceiver modem is located on the vehicle and transmits data
logged by the ADL to the transceiver model that is connected to the data storage and
display computer located off the track. Both modems operate in the 900MHz-
frequency band and utilise a pseudo-random code that enables the transceiver modem
to transmit data on various frequencies throughout the band. This minimises

interference from other sources.
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5.2.4 Software

A number of software utilities were included in the purchase of the data acquisition
system. These included: MoTeC Dash monitor for programming and modifying the
dash display, Data interpreter software which includes an export option to allow use
of data in other packages, such as Excel. The software for programming the ECU was
also included in the purchase. These software tools allow for the calibration of sensors

and the manipulation and display of data during and after collection.

5.3 Data Accuracy and Sensitivity

The final accuracy and reliability of the trained neural networks depends heavily on
the accuracy of the input data. This accuracy is dependent on the sensor accuracy as
well as the precision of the entire measuring system in transforming the analog and
digital signals to true units. The transmission and storage of data also plays a part in
this. For example, a low sampling rate of a highly variable data set can result in a loss
of information, as the true variation is not represented in the sample. Clearly this

aspect of data acquisition is open to optimisation.

5.4 Testing and performance

From a design point of view the test vehicle was itself thoroughly tested along with
the telemetry system as part of the development process. It proved to be extremely
reliable and robust. The final test was racing in the local Formula SAE where it
performed well and held up flawlessly through the rigorous dynamic testing. The

vehicle has done over 1000kms without significant failure.

5.5 Concluding Remarks

This chapter discussed the sensors and sensor fusion considering sensor positioning.
The key sensor was shown to be the acceleration and angle sensor that was mounted
as close to the vehicle centre of gravity as possible. The broad list of parameters to be
measured was identified and the various sensors described and specified, beginning
with the engine sensors followed by the dynamic sensors. Installation and calibration

of the sensors was also included. Finally, the data acquisition system was specified
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including telemetry, real-time clocks and software for on-line parameter estimation.
The results of research testing, data acquisition and network training are the topic of

chapter 6, to follow.
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Chapter 6 Prediction of Parameters to Avoid Roll Over.

A comprehensive range of testing parameters for varied testing conditions has been
'examined. This chapter details the predictions for the roll over parameters. Two
neural network architectures were considered Back-propagation and Radial Basis
Function. A comparison of these predictive models was made for the cases of velocity
and roll angle prediction as important parameters for the prevention of vehicle roll
over. A rationale for the choice of variables will now be addressed followed by details

of the selection of most appropriate network architecture.

Two parameters were chosen for estimation toward the prevention of vehicle roll
over. These were based primarily on a fundamental analysis of the forces acting on

the vehicle. The analysis is as follows:

Consider a vehicle of mass m, travelling a curve of radius R to the vehicle centre of

gravity at a longitudinal velocity v.

Figure 6-1 Vehicle mass, radius and velocity

Centripetal Force is given by:

F. = mTv' Equation 6-1

For a vehicle with stiff suspension, the roll over moment about point A is given by:

M = % xXh Equation 6-2
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Figure 6-2 Vehicle Moment and Force Diagram
The opposing moment about A due to weight is given by:
W = mgl Equation 6-3

Hence the velocity limit for a stiffly sprung vehicle where:

2
my

Xh=ml
R g

’ IR
is given by v = gT . Equation 6-4

However, for a vehicle with suspension, the vehicle body-roll, as indicated by the

vehicle roll angle 6, will vary the length of both 4 and /.

Clearly the two critical parameters are roll angle, 8, and vehicle longitudinal velocity,
v. The prediction of these values is to be done based on the sensor outputs from the
test vehicle. In order to train a neural network it is necessary to have measured the
correct value in some way. In the case of 6,, this is determined directly by a gyroscope
system in the acceleration sensor (outlined in chapter 5). A true measure of the
vehicle velocity is somewhat more complicated as wheel speeds can differ from the
vehicle speed in cases of wheel lockup or when a wheel leaves the ground in tight
comering. To alleviate the impact this may have on the results, the method of Porcel
et al.[13] was used to determine a close approximation. The use of this method is
based on the results given by this research team and outlined in chapter 2. The
estimation of these values was from non-wheel speed sensors only and shows the

validity of such-an approach should an expensive optical sensor be used for training
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purposes. This application of the approach is outlined in the following section. The
appropriate tool to predict these two parameters demands selection of neural network

architecture.

6.1 Selection of Appropriate Architecture

The effect of changing architecture affects performance from network to network. In
the case of a robust network such as the 2-layer Back Propagation network the
dangers are mainly those of over or under-training and excessive time consumption.
The following results were obtained through a numerical investigation over the range
of 2-10 hidden first and second layer nodes for the BP network and 2-10 nodes and
sigma between 0.1 and 0.5 for the RBF network as shown in Table 6.1-1.

Table 6.1-1 Range of Numerical Investigation Covered.

BP RBF

Inputs 16 Inputs 16
Output 1 Outputs 1

No. Hidden nodes 1* layer | 2-10 No. Hidden nodes 1% layer | 2-10
Transfer function Sigmoid | Sigma 0.1-0.5
No. Hidden nodes 2" layer | 2-10

These results for the numerical investigation are discussed in the order given below.

6.1.1 Back Propagation — Train and Test

Figure 6.1-1 shows the effect on RMS error of changing architecture in the training
phase. By examining the second layer hidden node axis it may be seen that the greater
the number of second layer nodes the lower the accuracy and the greater the RMS
error. From the above graph it may be seen that the optimum arrangement for this data
set is 8 first layer hidden-nodes and two second-layer hidden-nodes. The resultant

error for this arrangement is 0.05813.
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Train RMS error with Changing BP Architecture Test RMS Eror with Changing BP Architecture

RMS error RMS error
0

6
2nd layer
2nd >
layer 6 8 % 2 hidden
1st layer hidden nodes hidde 1st layer hidden nodes
'80-0.05 M0.05-0.1 00.1-0.15 50.15-0.2 M0.2-0.25 20-0.05 M0.05-0.1 00.1-0.15 ©0.15-0.2 M0.2-0.25
(i) (ii)

Figure 6.1-1 RMS Error with Changing Architecture for (i) Training and (ii)

Testing (BP)

The general shape of the RMS error for the testing data is much the same as that for
the training data. The only real difference is that the RMS testing error is marginally
lower in some instances for the testing case than for the training case. Once again the
minimum error is found at 8 first-layer hidden-nodes and two second-layer hidden-

nodes. The value of this error is 0.05956.

From these results the optimum architecture is at 8 first-layer hidden-nodes and two

second-layer hidden-nodes for the Back Propagation model. This Back Propagation

architecture will be used for predicting v and 6, in this chapter.

6.1.2 Radial Basis Function — Train and Test

The initial RMS error on the RBF graph for variations of architecture are of much the
same magnitude as those of the BP network. However, the drop in error due to the
addition of extra hidden nodes is markedly reduced in comparison. The range for
plotting these values was held below 10 nodes and sigma values of 0.5 due to

instabilities in the network.
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Train RMS Error with Changing RBF Architecture Test RMS with Changing RBF Architecture

RMS Error
01

05

Sigma
'®0-0.05 M0.05-0.1 00.1-0.15 00.15-0.2 M0.2-0.25|

(1) (ii)

Figure 6.1-2 RMS Error with Changing Architecture for Train and Test (RBF)

Figure 6.1-2 shows that the lowest RMS error was found to be for 10 nodes and a
value of sigma equal to 0.5. This RMS value was 0.1275 more than double the value

obtained for the BP training network.

The same trend persists with the testing data. The slope here appears more gradual but
unlike the BP test results, the errors start fractionally larger than the training errors at

just over 0.2 and decrease to the lowest value of 0.13429.

The optimum architecture is therefore selected as 10 hidden nodes and sigma equal to
0.5. This RBF architecture will be used for predictive purposes for velocity and roll

angle.

6.2 Effect of iterations on RMS Error

The number of iterations completed has a large impact on the time taken to train a
model but may also impact on accuracy to a degree as will be shown. The following
graphs were taken from the error files of the optimum BP and optimum RBF
architectures. These graphs give an indication of how a network converges to its final
solution as well as an insight into the variation in RMS error magnitude that occurs

even after the model has apparently converged.
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Figure 6.2-1 RMS Error with Iterations for BP and RMS (i) Train and (ii) Test

Comparison of the RMS error with iterations Figure 6.2-1 for the (ii) testing and (i)
training data shows a strong correlation between the two. There are small differences
in the actual values but on the whole the trends are very similar. It appears from the
graphs that the major reduction in RMS error has occurred by 100 iterations, however

the results seem most settled by 500 iteration. To minimise the time constraints it may
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possible to limit iterations at 100. It appears that the loss of accuracy would not be as
significant when considering the RMS error variation is as much as 0.02 after

convergence around 850 iterations.

It may be seen from the graphs that the BP results start at around 0.18 and drop to
0.05, the RBF results start at around 0.9 and drop eventually to around 0.14. These
large initial errors may be an indicator of the model instability. It is useful to note that
the error values are close to their minimum by iteration 100, although 200 iterations

would probably be ideal, the results from 100 iterations are likely to be reliable.

In order to best represent these velocity and roll angle values appropriate “testing
course” selection is required. The following section highlights the course selection for

the measurements to develop a knowledge base for neural network modelling.

6.3 Choice of Course

A number of (jifferent courses were tested in the research process. Data was gathered
for each of the courses and much of it used for predicting a number of parameters
such as lateral and longitudinal acceleration, yaw angle [85] and brake pressures [96].
The courses include straight-line acceleration, sweeping ovals, tight left and right-

hand circles and figure 8's.

For the problem of overturning, the straight-line data could be used to estimate
longitudinal velocity, however, very few vehicles are likely to overturn whilst
travelling a perfectly straight line. In addition to this the variation of roll angle is
minimal in this case and due mainly to engine vibration. So only one parameter could

be estimated from this data set.

The tight circles and ovals had the advantage over the straight-line data that they
could be used to estimate longitudinal velocity and roll angle. Each set of data
represents turning in one direction only, left-hand corners or right-hand corners, so the

range of data is limited in this sense.



Page 94

The final set of data is the ‘figure 8 test data. It has the same advantage of the
circular tests being able to provide data for both longitudinal velocity and roll angle
but with the added complexity of turns in both directions. This means that the network
is trained and tested on a much more demanding data set than a single, continuous
circular motion. This is important to highlight the relevance and utility of the results
to automotive systems development. As such the figure 8 course was the final data set

chosen for this analysis.

6.4 Derivation of Estimated Velocity

The ideal sensor to record longitudinal velocity is an optical cross-correlation sensor.
As this was not available within the scope of this research, the velocity was estimated
using a procedure that has been tested on a front wheel drive vehicle fitted with an
optical cross-correlation sensor. The function used has been modified slightly to

account for the test vehicle being rear wheel drive.

Based on the findings of Porcel et al.[13] the longitudinal velocity used for training
the neural networks was derived using two main indicators. The velocity was taken
from a single or combination of wheel speeds based on indications of the vehicle
behaviour. The two indicators considered critical were loss of contact while
cornering, I, and oversteering, front wheel sliding out and lateral sliding, J. While
these indicators were developed for a fuzzy classification procedure, the process
simply swaps the measured sensor between wheels. The system used here is based on
using the best wheel speed sensors in any probability of problems as these are
expected to give at least as good results as the wheel speed in question. For example,
if the wheel in question has not lost contact with the road the alternate arrangement is
reasonable and in the instance that it has, the results will be more accurate. The

indicators mentioned are depicted in the following functions.

6.4.1 Loss of Contact While Cornering, |I.
The determination of loss of contact while cornering was based on lateral acceleration
L and yaw rate, Y. The visual basic function used to determine this indicator in excel

is as follows:

Function I(L, Y)
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IfL=0And Y=0ThenI=0 ‘Normal cornering

IfL>0And Y=0ThenI=1 ‘Loss of contact on the right side
IfL<OAnd Y=0ThenI=-1 ‘Loss of contact on the left side
IfY>0ThenI=0 ‘Normal comering
IfY<OThenI=0 ‘Normal cornering

End Function

Under normal cornering a vehicle will experience lateral acceleration and will
continue to turn. Loss of contact occurs when the inside wheel of the vehicle leaves
the ground. The probability of this occurring is highest when the vehicle is
experiencing a lateral acceleration but not continuing to turn. The function given

allows this to be indicated from the data set.

6.4.2 Oversteering, Front Wheel Sliding Out and Lateral Sliding, J.

The function to determine the indicator J, was based on steering wheel angle, a, lateral
acceleration, L, the derivative of yaw rate, dd, and the derivative of lateral

acceleration Ld. The function is as follows:

Function J(a, L, dd, Ld)

Ifdd=0And Ld=0ThenJ =0 ‘Normal cornering

Ifdd<0And Ld<OThenJ=0 ‘Normal cornering

Ifdd>0And Ld>0ThenJ =0 ‘Normal cornering
IfL>0Anda>0ThenJ=0 ‘Normal cornering
IfL<O0Anda<OThenJ=0 ‘Normal cornering

Ifdd<0And Ld=0ThenJ =-1 ‘Oversteering or sliding out to the right
Ifdd<0And Ld >0 ThenJ =-1 ‘Oversteering or sliding out to the right
IfL>0Anda<0Then]J=-1 ‘Oversteering or sliding out to the right
Ifdd>0And Ld=0ThenJ =1 ‘Oversteering or sliding out to the left
Ifdd>0And Ld <0 ThenJ =1 ‘Oversteering or sliding out to the left
IfL<0Anda>0ThenJ=1 ‘Oversteering or sliding out to the left

End Function

As shown in the function above, the probability of sliding out or oversteering can be
indicated by three main parameters. These are the derivative of yaw rate, which is the

rate at which a vehicle is turning, the derivative of lateral acceleration, which is the
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rate at which the lateral acceleration on the vehicle is changing and steering wheel

angle.

6.4.3 Velocity Function, Vest

The velocity function is then calculated based on the two indicators and the four
wheel speeds denoted V;, with the first position: f indicating a front wheel, r
indicating a rear wheel, and in the second position: r, and 1 indicating right and left
respectively. I and J are the indicators as previously outlined. The values were
calculated in an excel spreadsheet and referenced to allow individual calculation for
each data point. A comparison of estimated velocity and average rear wheel speed is

shown in Figure 6.4-1.

Estimated Velocity vs Average Rear Wheel Speed
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Figure 6.4-1 Comparison of Estimated Velocity and Average Rear Wheel Speed.

Figure 6.4-1 shows a comparison of the estimated velocity with the average wheel
speed. Ve appears to be marginally noisier than the rear-wheel average; this is to be
expected as the data contains information from 2 extra sensors. The estimated velocity
gives a more accurate approximation of the longitudinal velocity than a simple rear
wheel average as it takes more information into account. Figure 6.4-1 clearly shows
the over-estimation of velocity by the average rear wheel speeds. This may be due to

one of the rear wheels slipping to some degree in early acceleration.
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The velocity function, V¢ is as follows:

Function Vest(Vfl, Vfr, Vrl, Vi, J, I)

If J > 0 Then Vest = (Vfr + Vrl) /2 ‘Sliding or oversteering to the left
‘If J <0 Then Vest = (Vfl + Vrr) / 2 ‘Sliding or oversteering to the right
If I > 0 Then Vest = Vil ‘Loss of contact on the right side
If I <0 Then Vest = Vir ‘Loss of contact on the left side

If =0 Then Vest = (Vfl + Vfr)/ 2 ‘Normal driving

End Function

This function allows the velocity to be taken from the most appropriate wheel speed
or speeds depending on the state of the vehicle as shown by the indicator functions.
The four wheel speeds were removed from the input data following the calculation of

Vest, which was used as the output variable.

The parameters chosen to train the networks were slightly different for the two cases,
velocity v, and roll angle, 6,. Primarily it was considered important to use inputs from
sensors that were different from the sensors used to find the training and test
comparison outputs. In the case of 6, this was simple as the acceleration sensor uses
different processes to measure angles, acceleration and angular rates. In the case of
velocity prediction, a function was used through the MoTeC software to determine the
gear based on wheel speeds and engihe RPM. Apart from this wheel speeds were only
used in the output. The following input parameters are selected for prediction of

velocity. The extent and ranges of these tested parameters are as follows:

Table 6.4-1 Parameters for Velocity Prediction

Parameter Min Max Unit
Engine RPM 210 11124 rpm

Throttle Position 0 100 Yo

Rear Brake Hydraulic Pressure 0 4310 kPa
Front Brake Hydraulic Pressure 0 5500 kPa
Steering Wheel Angle -192.5 209.7 deg

Suspension Position Front Left -3.2 30.6 mm
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Suspension Position Front Right -21.6 25.9 mm
Suspension Position Rear Left -34.1 8.7 mm
Suspension Position Rear Right -15.5 17 mm
Longitudinal Acceleration -2.88 1.76 G
Lateral Acceleration -3.84 3.64 G
Vertical Acceleration -1.48 4.68 G
Roll Angle -0.5 94 deg
Pitch Angle -2.8 130.3 deg
Yaw Angle -71.8 537.6 deg
Gear 0 4
Longitudinal Velocity Estimate, Vg 0 80.75 km/h

The number of data patterns used was 3461 for training both models. The test data
was 5% of this data randomly selected and withheld from the training process. The

neural network model parameters are given in Table 6.4-2.

Table 6.4-2 Neural Network Model Parameters

BP RBF

Inputs 16 Inputs 16
Output 1 Outputs 1
Hidden nodes 1* layer | 10 Hidden nodes 1* layer | 10
Transfer function Sigmoid | Sigma 0.5
Hidden nodes 2™ layer | 2

This gives a consolidated table of architecture parameters for two models. The results

of testing and training were collected and collated.

6.5 Prediction of v using BP and RBF models

This section highlights prediction of v using both the neural network models. The
training state will be shown in the first instance followed by the testing capabilities of

both networks.

6.5.1 Training Results

For the training phase of velocity prediction the velocity is estimated using the logic

in section 6.4.3 and the neural networks trained. The results are as follows:
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Figure 6.5-1 Training Results using (i) BP and (ii) RBF Networks for Velocity

As shown in Figure 6.5-1 (i) training the BP network proceeded extremely well and

there appears to be very little estimation of noise in the training output. This first
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comparison shows that the network was able to predict the values used in the training

process, an important first step.

The RBF network results also show a close estimation of the data trends. Clearly there
is some discrepancy around the data extremes such as when the velocity is zero early
in the data set and at the end of the data set. This appears to be an anomaly of the RBF
training network. The middle data trends are well represented although the trends do

not appear to be as clean as the BP training set.

Welooly L Erehiency Pstoopeen B Velocity Train Frequency Histogram RBF

g
g

:
:

1 B 500 + N

- B,

g 8 300 - -

L go0 + um- I 1

= I O‘I- --llll Ill. ]I 71
e T 'lAl*-A-ri' l 2 P S PSP P PP P S PP P
I T AN

Error Distribution Error Distribution

(O (ii)

Figure 6.5-2 Error Frequency Histogram for (i) BP and (ii) RBF Velocity Train.

In comparing the error frequency histograms (Figure 6.5-2) the minor differences
between the two models become more apparent. BP has much better predictive
capability compared to RBF. Using BP, the majority of errors were well under + 5%.
This is particularly encouraging since the model is not biased for either under
prediction or over prediction. This is excellent prediction considering other numerical
techniques such as finite element modelling can only boast accuracy to around 15%.
By contrast the RBF network appears to have the majority of errors within £ 20%
with some errors distributed out to + 40 %, Figure 6.5-2 (ii). This may be attributed to
the lack of convergence of local minima solution for the sigma values chosen. This
also shows the inability of the network to process such highly non-linear dynamic

data.
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6.5.2 Testing Results

In the testing phase, the training network is tested against a set of data tat was
included in the training set. In this way the network may be tested for its ability to
interpolate or generalise to new data, what it has learned from the training phase. The

results obtained for the testing phase of velocity prediction are as follows:
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Figure 6.5-3 Test Result using (i) BP and (ii) RBF Networks for Velocity
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In Figure 6.5-3 (i) the BP network shows excellent predictive capabilities with respect
to the testing data. Values in the main body of the data appear to be within 2-3 km/h
of the testing data. Using BP, the majority of errors were under + 5% Figure 6.5-4 (i).

Again, this is excellent prediction.
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Figure 6.5-4 Error Frequency Histogram for (i) BP and (ii) RBF Velocity Test

The variation between the RBF estimation and the original data points is more
pronounced Figure 6.5-3 (ii). The RBF network appears to have the majority of errors
within £ 20% with some errors distributed out to + 40 % Figure 6.5-4 (ii). For RBF
there is a variation of up to 38 km/h in the main body of the data. At the extremes the
network estimation does not predict the zero velocity at all. In some applications this
area may not be of concern but in an automotive application, it may be critical. In this
case, the network is out by as much as 20 km/h at the extreme, a significant and

possibly dangerous amount in this type of application.

The Back Propagation network is found to be superior compared to RBF for
predicting v. It is important to note that this estimation of v can be integrated into a

“roll-over” warning system, after substantial knowledge base is developed. The next

section will deal with prediction of 6.

6.6 Prediction of Roll Angle Using BP and RBF Models

The roll angle of the vehicle is measured using the angle sensor. Hence the network
may be trained using these values directly. The input parameters used in training the

network to predict 6, are as follows:
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Table 6.6-1 Extent of Experimentation for 6,

Parameter Max Min Unit
Engine RPM 10860 2484 pm

Throttle Position 100 0 %o
Steering Wheel Angle 210.5 -184 deg
Brake Hydraulic Pressure Front 4690 0 kPa
Brake Hydraulic Pressure Rear 3869 0 kPa
Suspension Position Front Left 6000 -9.8 mimn
Suspension Position Front Right 16.7 -104 mm
Suspension Position Rear Right 18.5 -11.6 mm

Suspension Position Rear Left 13.5 -23.5 mm

Wheel Speed Rear Right 79.3 3.7 km/h
Wheel Speed Rear Left 91.4 4.6 km/h
Wheel Speed Front Right 74.7 94 km/h
Wheel Speed Front Left 74.8 134 km/h
Lateral Acceleration 4.44 -2.25 G
Roll Angle 8.6 -3 deg

In all there are 14 inputs. These were chosen as the parameters to demonstrate the
important aspects of vehicle behaviour. The complete scope of experimentation
covered 6000 data patterns 5% of which were randomly selected and used as test data.
The 2 layer back propagation model was trained with the specifications given in Table

6.6-2.

Table 6.6-2 Neural Network Model Parameters

BP RBF
Inputs 14 Inputs 14
Output 1 Outputs 1
Hidden nodes 1* layer 10 Hidden nodes 1* layer | 10
Transfer function Sigmoid Sigma 0.5
Hidden nodes 2™ layer 2

The results of training and testing the networks based on these parameters were

collected and collated. This section highlights predictions of 6, using both the neural
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network models. The training state will be shown in the first instance followed by the

testing capabilities of both networks.

6.6.1 Training Results

The training results for prediction of 6, are as follow:
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Figure 6.6-1 Training Result using (i) BP and (ii) RBF Networks for Roll Angle
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Figure 6.6-1 (i) shows the graph of training data with the BP network output in the
training phase. The results are comparable for the prediction of velocity. The input
data in this case appears to be much more noisy and with a much less regular trend
than the velocity data. It appears that at one point the low roll angle is not well
predicted. The uneven slant of the training data around zero may have contributed to
this phenomenon with the normalising process minimising this effect. The difference
in angle between the network result and the actual training data is a high as 5 degrees
at some points. However, on the whole the variation in the main body of the data

would appear to be more of the order of 0.5-1.0 degrees.
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Figure 6.6-2 Error Frequency Histogram for (i) BP and (ii) RBF Roll Angle
Train
The BP histogram Figure 6.6-2 (i) shows a tight distribution largely within + 5 %.
This is very encouraging considering 6, is an important parameter to contribute

towards vehicle roll over.

The results for the RBF network Figure 6.6-1 (ii) are quite inferior in this instance.
The trend comparison shows that the network does not predict 6, well in the training
case. While the absolute magnitude of errors is perhaps not larger than for the BP

network, they are much more regular.

Comparison of the predictive capability as indicated by the histogram Figure 6.6-2 (ii)
show that the RBF network results are basically unreliable. The errors appear to be
well spread out past 40%. The model also appears to frequently over predict as shown

by the high number of positive errors.



6.6.2 Testing Results

The testing results for prediction of 6, are as follows:
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Figure 6.6-3 Test Result Using (i) BP and (ii) RBF Networks for Roll Angle
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The test results given in Figure 6.6-3 (i) echo those of the training data. There is a still
an apparently instantaneous variation of 3-5 degrees in some places, but on the whole,
the basic trend is very clear. Again, there appears to be an issue with the true
minimum, as estimated by the BP network, being well above the actual testing data,
possibly for the aforementioned reasons. In this situation 3 degrees is not significant
for roll over avoidance, and best represents a practical scenario to control over

turning.

It would appear that the results of the training phase for the RBF network Figure 6.6-3
(ii) are well below the standard set by the BP network. Once again, there is the
underestimation of the absolute minimum, which gives a difference of around 3
degrees in this instance. The overall trend appears to be only roughly estimated with

the majority of low values over predicted.
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Figure 6.6-4 Error Frequency Histogram for (i) BP and (ii) RBF Roll Angle Test
These general comments are reinforced by the error frequency histogram. The BP
network histogram Figure 6.6-4 (i) is clearly within acceptable bounds of accuracy
with the majority of errors lying within + 5%. The RBF network Figure 6.6-4 (ii) has
a solid distribution of errors up to and beyond 40%. The results also show a tendency
to over predict. As a predictive tool this is not acceptably accurate. In comparison

with the BP network the RBF network appears quite inferior in this instance.

In the case of 6, prediction, the BP network has been found to be superior in both
training and testing phases. In comparing the two main networks, Back Propagation
and Radial Basis Function, there is a variation of degree of accuracy within each

network.
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6.7 Concluding Remarks

Two neural networks were trained to predict values for roll angle and longitudinal

velocity. The optimum architectures of those considered were found to be:

1. 8 first-layer hidden-nodes, 2 second-layer hidden-nodes, Back Propagation
network with sigmoid activation function.

2. Radial Basis Function with 10 hidden nodes and sigma equal to 0.5

Table 6.7-1 Accuracy Summary

Accuracy Velocity Roll angle, 0,
BP +5% +5%
RBF +20% +40%

Of the two networks tested the back propagation network gave superior results based
on the results of a comparison of the trends and error frequency histograms. The
importance of this preliminary investigation is to show the capability of the neural

network approach to predicting velocity and roll angle. This has been achieved.
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Chapter 7 Final Conclusions and Future Work

In the introduction the need for sensor control for automobiles was introduced along
with the concept of the intelligent car for traffic control, navigation and prevention of
vehicle roll over. Based on this, the need for reliable estimation of vehicle dynamic
performance was identified and brief comment made on the current state of sensor
control. The distinction between local and comprehensive control was drawn using
the examples of cruise control ABS and ASS as local control strategies and the need
for comprehensive control to avoid vehicle roll over highlighted. It is concluded for

there is a need for intelligent tools for better control in automotive applications.

Conceptual vehicular physics were discussed as the basis for understanding the
physical system. The complex nature of vehicle dynamics was highlighted along with
the difficulty associated with estimation of parameters responsible for vehicle roll
over. An extensive literature survey highlighted the application of neural networks
and fuzzy logics to this problem and the work of Porcel et al.[13] examined in some
detail as a strong foundation for the results detailed in later chapters. A general
summary was made of research in artificial intelligence as used in other automotive
applications such as engine control. A comparison was made of a neural network
solution and a fuzzy logic solution to the question of backing a truck into a docking
bay. The fuzzy rule base was found to be superior in this simple case, with the real
advantage of neural networks over the fuzzy rule base being found in more complex
applications. A broad overview of neural network applications in a variety of

industries was also included.

The mathematical basis of the neural network technology has been discussed and the
biological basis for artificial neural networks is examined. This was followed by a
brief history of the development of modern neural networks and the simple two-layer
Perceptron with associated functions. The different types of networks were discussed
as well as some important characteristics that make the neural network approach
unique compared to the conventional methods. Some considerations for improving
network performance were outlined and the details of two main models discussed

namely Back Propagation and Radial Basis Function. Although the models were
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slightly modified to gain better momentum, the original code and algorithms were not

changed.

A detailed experimental set up covering the concept, design and manufacture of the
test vehicle for collection of training data, the intelligent race-car is developed. The
vehicle was designed with a lower centre of gravity as the preferred option to avoid
physical overturning, while the parameters that contribute to overturning were
measured using sensory technology. A brief overview of the development of the
frame, suspension, wheel assembly, cockpit and drive train were also discussed. More
details on the development of the engine and electrical systems were covered. Safety
and reliability were key aspects of the design as well as educational training of final

year students.

The discussion of sensors and sensor fusion considered sensor positioning. The key
sensor was shown to be the acceleration and angle sensor that was mounted as close
to the vehicle centre of gravity as possible. The broad list of parameters to be
measured was identified and the various sensors described and specified, beginning
with the engine sensors and then the dynamic sensors. Installation and calibration of
the sensors was also included. Consequently the data acquisition system was specified

including telemetry, real-time clocks and software for on-line parameter estimation.

Finally, from first principles, a rationale was given for the choice of longitudinal
velocity and vehicle roll angle as major parameters contributing to vehicle roll over.
The optimal architecture, with numerical investigation, for back propagation was
found to be 8 first-layer hidden-nodes and 2 second-layer hidden-nodes. For Radial
Basis Function model the optimal architecture was found to be for 10 nodes and
sigma equal to 0.5. The prediction of velocity from rear wheel speeds was based on
the published work in the literature. These values were then used to train both
networks. The results showed Back Propagation was the superior network for the
prediction of longitudinal velocity with an RMS error distribution within £ 5 % of the
required value for both training and testing, compared with the Radial Basis Function
network that was distributed to + 20% for both training and testing. Prediction of roll

angle was based on the value from the angle sensor. Again both networks were
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trained. The results showed Back Propagation was the superior network for the
prediction of roll angle with an RMS error distribution within *+ 5 % of the required
value for both testing and training, compared with the Radial Basis Function network
that was distributed to + 40% for both testing and training. The importance of this
preliminary investigation was to show the capability of the neural network approach
to predicting longitudinal velocity and roll angle as parameters responsible for vehicle
roll over. This work establishes applications of neural networks for prediction of

parameters responsible for overturning.

Future work in this area will foster new avenues for control and investigation in
intelligent traction control and intelligent brake pressure control. There is extensive
work still to be done in development of vehicle hardware; actuators and control
systems based on this technology. As a generic application, this work has established
the use of neural networks as a predictive tool for estimating vehicle roll over
parameters. It is both satisfying and reassuring to have a computational predictive
basis for comprehensive safety systems. This work is clearly preliminary in nature,
which leads to the identification and application of fast converging algorithms and

other neural network models that are being continually developed in this research

group.

From an industry point of view this technology would be at its most powerful when
integrated with manufacturer’s already available ESP and ABS control systems. The
development of safer driving conditions is advantageous to researcher, manufacturer
and consumer alike. This work lays the foundation for a comprehensive control
system for the prevention of vehicle roll over and consequently the prevention of

possible injuries and fatalities.
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A-1 Back Propagation Source Code

program Back_Prop_2_Hidden; {2 hidden
layers, multiple inputs/outputs}

uses Dos, crt;

const

{**************************************

***********t**********************}

{Neural Network Parameter

Specification}
MaxNumInputs = 40;
MaxNumOutputs = 10;
MaxTrainPatterns = 15000;
MaxTestPatterns = 15000;
MaxInputPatterns = 2500;
MaxMaxIterations = 1000000;

MaxNumHiddenNodes = 100;
MaxNumHidden2Nodes = 100;

{**************************************

**********************************}

{Delta Rule constants}

zeta 0.9; {Controls the
learning rate, 0 < zeta < 1}

decrate = 0.99; {Rate of
decrease of zeta over iterations range,
decrate < 1}

{Miscellaneous constants}

dataSeed = 1; {Seed for Random
Number Generation for initialising
network weights}

calcSeed = 1; {Seed for Random
Number Generation for random selection
of training data patterns}

type
{Miscellaneous ranges}

DataRange =
1. .MaxTrainPatterns; {Specifies range
of training data patterns}
TestDataRange = 1..MaxTestPatterns;
{Specifies range of test data patterns}
InputDataRange =
1..MaxInputPatterns; {Specifies range
of validation data patterns)
IterationsRange =
0..MaxMaxIterations; {Specifies range
used for controlling maximum epochs}

{Network layer ranges}

InputRange = 0..MaxNumInputs;
{index i always used for this range}
HiddenRange = 1..MaxNumHiddenNodes;

{index j always used for this range}
Hidden2Range = 1..MaxNumHidden2Nodes;
{index b always used for this range}

OutputRange = 1..MaxNumOutputs;
index k always used for this range
Y

{Input data types}

InputLayerType = array[InputRange]
of real;

OutputOutType =
array [OutputRange] of real;

Input PEType = record
x:
InputlLayerType;
out:
OutputOutType;
end;
InPEPtT = “InputPEType:;

{structure too
large for stack, put it on the heap}

DataType = array[DataRange]
of InPEPtr;

TestDataType =
array [TestDataRange] of InPEPtr;

InputDataType =
array [inputDataRange] of InPEPtr;

{Hidden layer 1 data types}

HiddenWeightType =
array [HiddenRange, InputRange] of real;

HiddenOutType =
array [HiddenRange] of real;
HiddenPEType = record
w:
HiddenWeightType;

z: HiddenOutType;
end;

{Hidden layer 2 data types}
Hidden2WeightType =
array[Hidden2Range, HiddenRange] of

real;

Hidden20utType =
array [Hidden2Range] of real;

Hidden2PEType = record
r:
Hidden2WeightType;
s:
Hidden20utType;
end;

{output data types}

OutputWeightType =
array [OutputRange, Hidden2Range] of
real;

OCutput PEType = recoxd
u:
OutputWeightType;
y: OutputOutType;
end;



DeltaErrorType =
array [OutputRange] of Real;

var

{Network variables}

NumInputs : Integer;
NumOutputs : Integer;
TrainPatterns : Integer;
TestPatterns : Integer;
InputPatterns : Integer;
MaxIterations : Integer;

NumHiddenNodes : Integer;
NumHidden2Nodes: Integer;
EpochSize : Integer;

linear : Integer;
sigmoidal : Integer;

DataDirectory :string;

ImportAnal :string;
ParamIndex :string;
dataln :string;
testDataln ;string;
errorOut :string;
trainingOut :string;
testOut :string;
weightsOut :string;
time :string;

inputDataFile :string;
netOutputfile :string;
ParamSpecFile :string;

inData : DataType;
{variable associated with training data
patterns}

testData : TestDataType;
{variable associated with test data
patterns}

inputData InputPEType;

{variable associated with validation
data patterns}

inputDataVar inputDataType;
{variable associated with validation
data patterns}

hiddenNodes HiddenPEType;
{variable used to control hidden layer
1 computation}

hidden2Nodes Hidden2PEType:;
{Variable used to control hidden layer
2 computation}

outputNodes OutputPEType; .
{variable used to control output layer
computation}

delta : DeltaErrorType;
{variable used to determine network
error}

rmsError : real;

{variable used to determine network
error}

iterations IterationsRange;
{variable used to perform maximum
iterations}

q : Integer;
{variable used in random selection of
training patterns}

fout : Text;
{variable for opening output files}
fin : Text;

{variable for opening input files}
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hl,ml,sl,hundl : Word;
{variables for calculating program
start time}

h2,m2,s2,hund2 : Word;
{Vvariables for calculating program
finish time}

{*-A-************************** I/O

chtions *****.***********************}

procedure OpenIn (var f: Text;
filename: string);

{Used to open specified files
containing information to be read into
the network}

begin {OpenIn}

Agsign(f, filename);
Reset (f) ;

end; {OpenIn}
procedure OpenOut (var f£: Text;
filename: string);

{Used to open specified files to write
network output to}

begin {OpenOut}

Assign(f, filename);
Rewrite(f);

end; {OpenOut}

{************************** Utility
Functions **************************}

function RandomOne: real;

{Returns a random number in the range -
1 to 1}

begin {RandomOne}

RandomOne := Random * 2 - 1;
end; {RandomOne}
function RandomlTo (topOfRange:
Integer): DataRange;

{Returns a random integer in the range
1 to topOfRange}

begin {RandomlTo}

RandomlTo := Round(Random *
(topOfRange - 1)) + 1;

end; {RandomlTo}
function LeadingZero (w : Word)
String;

{Enables computation time to be
formatted correctly in output file}

var s : String;



begin {LeadingZero}
Str(w:0,s);
if Length(s) = 1 then
S:=0'+8;
LeadingZero:=s;

end; {LeadingZero}

{*r*x*xxrxrenknrnkxrrxx Initialization
mctions **********************}

procedure InitParamSpec;

{Initialises the Parameter
Specification for the NN M.Alarcén 24-
11-00}

begin {InitParamSpec}

ParamSpecFile := 'c:\psc.txt';
OpenIn (fIn, ParamSpecFile);
readln (fIn, DataDirectory);

readln (fIn, NumInputs) ;
readln (fIn, NumOutputs);

readln (fIn, TrainPatterns);
readln (fIn, TestPatterns);
readln (fIn, InputPatterns);
readln (fIn, MaxIterations);

readln (fIn, NumHiddenNodes) ;
readln (fIn, NumHidden2Nodes) ;

readln (fIn, linear);
readln (fIn, sigmoidal) ;
readln (fIn, ImportAnal);
readln (fIn, ParamIndex) ;

Close (fIn);

EpochSize := TrainPatterns;
{Number of training data patterns
considered in each epoch}
end; {InitParamSpec}

procedure InitFilenames;
{Initialises tFilenames for the NN
M.Alarcén 7-12-00}

begin {InitFilenames}

dataln := DataDirectory +
ImportAnal + 'trn' + ParamIndex +
".txt'; {Input file containing training
data set}

testDataln := DataDirectory +

ImportAnal + 'tst' + ParamIndex +
'.txt'; {Input file containing test

data set}

errorQut := DataDirectory +
ImportAnal + 'err' + ParamlIndex +
‘.out'; {Output file for training and
test error}

trainingOut := DataDirectory +

ImportAnal + 'trn' + ParamIndex +
“.out'; {Output file for training
results}

testOut := DataDirectory +
ImportAnal + 'tst' + ParamIndex +
'.out'; {Output file for test results}

weightsOut := DataDirectory +
ImportAnal + 'wts' + ParamIndex +
‘.out'; {Output file for weights
matrix}
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time := DataDirectory +
ImportAnal + 'tim' + ParamIndex +
'.out'; {Output file for computation
time}

inputbataFile := DataDirectory +
‘input.txt'; {Input file containing
validation data set} .

netOutputfile := DataDirectory +
‘output.out'; {Output file for
validation results}

end; {InitFilenames}
procedure InitDataStrs (var d:
DataType; var t: TestDataType) ;

{Initialises the training and test data
structures on the heap}

var m: DataRange;
n: TestDataRange;

begin {InitDataStrs}

for m := 1 to TrainPatterns do
New (d[m]) ;

for n := 1 to TestPatterns do
New(t [n]) ;

end; {InitDataStrs}
procedure DisposeDataStrs (var d:
DataType; var t: TestDataType);

{Disposes of the training and test data
structures}

var m: DataRange;
n: TestDataRange;

begin {DisposeDataStrs}
for m := 1 to TrainPatterns do
Dispose(d(m]) ;
for n := 1 to TestPatterns do
Dispose (t[n]);
end; {DisposeDataStrs}
procedure InitData (var d: DataType;
var t: TestDataType) ;

{Reads in training and testing data
from specified files}

var m: DataRange;
n: TestDataRange;
i: InputRange;
k: OutputRange;

begin {InitData}

writeln;

writeln('Reading in the training
data');

writeln;

OpenIn(fIn, dataln);



for m := 1 to TrainPatterns do
begin {m}
for i := 1 to NumInputs do

read(fIn, d(m]*.x([i]);
for k := 1 to NumOutputs do

read(fIn, d[m] " .out[k]);

readln(fiIn);

end; {m}

Close (fIn);

for m := 1 to TrainPatterns do
dfm] *.x[0] := 1;

writeln(’Reading in the test data’);

writeln;

writeln(MaxIterations,’ iterations
will now commence to generate network
weights’) ;

writeln;

OpenIn(fIn, testbataln);

for n := 1 to TestPatterns do
begin {n}
for i := 1 to NumInputs do

read (fIn, t[n]”".x[i]);
for k := 1 to NumOutputs do
read (fIn, t[n]”.out[k]);

readln (fIn);

end; {n}

Close (fIn) ;

for n := 1 to TestPatterns do
t[nl”*.x{0] := 1;

end; {InitData}
procedure InitHiddenlLayer (var h:
HiddenPEType) ;

{Initializes the hidden layer 1 weights
to random reals in the range -1 to 1}

var 1i: InputRange;
j: HiddenRange;

begin {InitHiddenlLayer}

for j := 1 to NumHiddenNodes do
for i := 0 to NumInputs do
h.w[j, i) := RandomOne;

end; {InitHiddenlLayer}
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procedure InitHidden2Layer (var f:
Hidden2PEType) ;

{Initializes the hidden layer 2 weights
to random reals in the range -1 to 1}

var j: HiddenRange;
b: Hidden2Range;

begin {InitHidden2Layer}

for b := 1 to NumHidden2Nodes do
for j := 1 to NumHiddenNodes do
f.r[b, j) := RandomOne;

end; ({InitHidden2Layer}
procedure InitOutputlLayer (var o:
Output PEType) ;

{Initializes the output weights to
random reals in the range -1 to 1}

var b: Hidden2Range;
k: outputRange;

begin {InitOutputLayer}

for k := 1 to NumOutputs do
for b := 1 to NumHidden2Nodes do
o.ulk, b] := RandomOne;

end; {InitOutputlLayer}

{*********************** Neural Net
procedures ***********************}

procedure NetForwardDel (var inp:
Input PEType; var h: HiddenPEType; var
f: Hidden2PEType;

var o: OutputPEType; var delta:
DeltaExrrorType) ;

{Calculates network output for a given
input and also the error, delta}

var net, val, sum: real;
i: InputRange;
j: HiddenRange;
b: Hidden2Range;
k: OutputRange;

begin {NetForwardbDel}

{Hidden layer 1 forward}

for j := 1 to NumHiddenNodes do
begin {j}
net := 0;
for i := 0 to NumInputs do
net := net + h.w(j, il *
inp.x[i];
h.z(j] := 1/ (1 + exp(-net));

end; {3}



{Hidden layer 2 forward}
for b := 1 to NumHidden2Nodes do
begin {b}
sum := 0;
for j := 1 to NumHiddenNodes do
sum := sum + f.r[b,j] * h.z[j];
f.s[b] := 1/ (1 + exp(-sum));
end; ({b}

{Output layer forward}

for k := 1 to NumOutputs do
begin {k}
val := 0;
for b := 1 to NumHidden2Nodes do

val := val + o.ufk, bl * f.s[b];

o.y[k] := sigmoidal * (1 / (1 +
exp(-val))) + linear * val;

deltal(k] := inp.out[k] - o.yl[k];

end; ({k}

end; {NetForwardDel}

procedure NetForward (var inp:
InputPEType; var h: HiddenPEType; var
f: Hidden2PEType;

var o: OutputPEType; var
d1l,d2:0utputOutType) ;

var net, val, sum: real;
i: InputRange;
j: HiddenRange;
b: Hidden2Range;
k: OutputRange;

begin {NetForward}

{Hidden layer forward}

for j := 1 to NumHiddenNodes do

begin {j}

net := 0;

for i := 0 to NumInputs do

net := net + h.w(j, i] *
inp.x{i];

h.z[j] := 1 / (1 + exp(-net));

end; (j}

{Hidden layer 2 forward}

for b := 1 to NumHidden2Nodes do
begin {b}
sum := 0;

for j := 1 to NumHiddenNodes do
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sum := sum + £.r[b,j] * h.z(j];
f.s[b] := 1/ (1 + exp(-sum));
end; ({b}

{output layer forward}

for k := 1 to NumOutputs do
begin {k}
val := 0;
for b := 1 to NumHidden2Nodes do

val := val + o.ulk, b] * £.s5([b];

o.y[k] := sigmoidal * (1 / (1 +
exp(-val))) + linear * wval;

dil[k] := inp.out [k];

d2 [k} := o.yik];

end; ({k}

end; {NetForward}

procedure NetTrain (var inp:
InputPEType; var h: HiddenPEType; var
f: Hidden2PEType;

var o: OutputPEType; newzeta : real);

{This procedure calculates an output
for any given input, compares the
predicted output

with the given output, calculates the
associated error, delta, and updates
the network

weights using the "delta rule"}

var 1i: InputRange;
j: HiddenRange;
k: OutputRange;
b: Hidden2Range;

net, val, deltad, sum, deltaB,
deltaBl, vall: real;

begin {NetTrain}

{Hidden layer forward}

for j := 1 to NumHiddenNodes do
begin {j}
net := 0;
for i := 0 to NumInputs do
net := net + h.w(j, i] *
inp.x[i];
h.z[j] := 1/ (1 + exp(-net));
end; {3}

{Hidden layer 2 forward}

for b := 1 to NumHidden2Nodes do
begin {b}

sum := 0;

for j := 1 to NumHiddenNodes do



sum := sum + f£.r(b,j] * h.z[j];
f.sib] := 1/ (1 + exp(-sum));
end; ({b}

{Output layer forward}

for k := 1 to NumOutputs do
begin {k}
val := 0;
for b := 1 to NumHidden2Nodes do

val := val + o.ulk,b] * f£f.s[bl;

o.y[k] := sigmoidal * (1 / (1 +
exp(-val))) + linear * val;

delta(k} := inp.out[k] - o.yl(k]:

end; {k}

{Update output layer weights}
for k := 1 to NumOutputs do
for b := 1 to NumHidden2Nodes do

o.ulk, bl := o.ulk, b] + newzeta
* deltalk] * f£.s[b];

{update hidden layer 2 weights}

for b := 1 to NumHidden2Nodes do
begin {b}

val := 0;

for k := 1 to NumOutputs do

val := val + deltalk] * o.ulk, b]l;

deltaB := f.s[b)] * (1 - f£.s([b]) *
val;

for j := 1 to NumHiddenNodes do

f.r[b, jl := f£.r[b, jl + newzeta *
deltaB * h.z[j];

end; (b}

{Update hidden layer 1 weights}

for j := 1 to NumHiddenNodes do
begin {j}
sum := 0;
vall := 0;
for b := 1 to numHidden2nodes do
begin {b}
for k := 1 to NumOutputs do
vall := vall + delta{k] *
o.ulk, bl;
deltaBl := f.s[b] * (1 -

f.s[b]) * vall;
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sum := sum + deltaBl *
f.r(b,j};

deltad := h.z(j] * (1 - h.z[j])
* sum;

for i := 0 to NumInputs do

h.wij, i) := h.w([j, i] + zeta
* deltad * inp.x[i);
end; {b}
end; {j}

end; {NetTrain}

{************************* Display
Procedures ***tt****i***************}

procedure DisplayError (var rms: real;
inD: DataType; tD: TestDataType; h:
HiddenPEType;

f: Hidden2PEType; o: OutputPEType;
newzeta: real);

{calculates the Root Mean Square, RMS,
error for all the training and test
inputs}

{Displayed on user screen for
monitoring purposes and also written to
the specified file}

var trErr, testErr, val, testRms:
real;

del: DeltaErrorType;

m: DataRange;

n: TestDataRange;

k: OutputRange;

begin {DisplayError}

{Training data set calculations}

trErr := 0;
for m := 1 to TrainPatterns do
begin {m}

NetForwardDel (inD[m]”*, h, £, o,
del) ;
val := 0;

for k

1 to NumOutputs do

val := val + del[k] * dell[kl;

trErr := trErr + val;
end; {m)
rms := Sqrt(trErr/TrainPatterns) ;

{RMS error over all training patterns}

{Test data set calculations}

testErr := 0;
for n := 1 to TestPatterns do
begin {n}

NetForwardDel (tD{n]”~, h, £, o,
del) ;
val := 0;



for k := 1 to NumOutputs do
val := val + dellk] * dellk];
testErr := testErr + val;
end; {n}
testRms := .
Sqrt (testErr/TestPatterns); {RMS error

over all test patterns}

writeln(fOut, iterations : 3, ' /,
rms : 5 : 5, '/ ’, testRms : 5 : 5);

end; ({DisplayError}
procedure WriteOutTrainingData (var
inD: DataType; var h: HiddenPEType; var
f: Hidden2PEType;
var o: OutputPEType);
{writes the predicted and actual
outputs from training to the specified
file}
var curvel, curve2: OutputOutType;
p: DataRange;
k: OutputRange;
begin {WriteOutTrainingData}
OpenOut (fOut, trainingOut);
for p := 1 to TrainPatterns do
begin {p}

NetForward (inD[p]*, h, £, o,
curvel, curve2);

for k :=1 to NumOutputs do

write (fOut, curvellk] : 7 : 5,
") ;

for k :=1 to NumOutputs do

write(fOut, curve2lk] : 7 : 5,
")

writeln(fout) ;

end; {p}

Close (fout) ;
end; {WriteOutTrainingData}
procedure WriteOutTestData (var tD:
TestDataType; var h: HiddenPEType; var
f: Hidden2PEType;
var o: OutputPEType) ;
{writes the predicted and actual
outputs from testing to the specified
file}
var curvel, curve2: OutputOutType;

q: TestDataRange;

k: OutputRange;

begin {WriteOutTestData}
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OpenOut (fOut, testOut);
for q := 1 to TestPatterns do
begin {q}

NetForward(tD{gl”, h, £, o, curvel,
curve2);

for k := 1 to NumOutputs do

write (fOut, curvellk] : 7 : 5, ’
)

for k := 1 to NumOutputs do

write (fout, curve2lk) : 7 : 5,
"Yi

writeln(fout) ;
end; {q}
Close (fout) ;
end; {WriteOutTestData}
procedure WriteOutWeights (var h:
HiddenPEType; var f: Hidden2PEType; var
o: OutputPEType) ;

{Wwrites the weights matrix to the
specified file}

var 1i: InputRange;
j: HiddenRange;
b: Hidden2Range;
k: OutputRange;

begin {WriteOutWeights}

OpenOut (fOut, weightsoOut);

for j := 1 to NumHiddenNodes do
begin {j}
for i := 0 to NumInputs do

write (fout, h.w[j, il : 8 : 5,
")

writeln(fout);
end; {j}
for b := 1 to NumHidden2Nodes do
begin {b}
for j := 1 to NumHiddenNodes do
write (fOut, f.r[b,j] : 8 : 5,’ ’);
writeln(fOut) ;
end; {b}

writeln(fOut) ;

for j := 1 to NumHiddenNodes do
begin {j}
for k := 1 to NumOutputs do



Write (fOut, o.ulk,jl : 8 : 5,
")

writeln(fout) ;
end; {j}
Close (fOut) ;
end; {WriteOutWeights}
{Procedures from here to "main program"

used for running option 2 of the
program}

procedure InitInputData (var d:
inputDataType) ;

{Reads validation data patterns from
specified file}

var m: inputDataRange;
i: InputRange;
k: OutputRange;
begin {InitInputData}

writeln(’Reading in the input data’);
OpenIn(fIn, inputDataFile);

for m := 1 to InputPatterns do
begin {m}
for i := 1 to NumInputs do

read(fIn, dm]”*.x[i]);
for k := 1 to NumOutputs do

read (fIn,d[m] *.out [k]);

end; {m}
for m := 1 to InputPatterns do
dlm] *.x[0] := 1; {} ‘
Close (fIn);

end; {InitInputData}

procedure ReadInWeights (var
h:HiddenPEType; var f:Hidden2PEType;
var o:0utputPEType) ;

Reads weights matrix from file
g
produced using option 1 of the program}

var i, j, b, k : integer;
begin {ReadInWeights}

OpenIn(fIn,weightsoOut) ;

for j := 1 to NumHiddenNodes do
begin {j}
for i := 0 to NumInputs do

read (fIn, h.wlj, i]) ;
readln(£fIn);

end; {3}
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for b := 1 to NumHidden2Nodes do
begin {b}
for j := 1 to NumHiddenNodes do

read(fIn, f.rib, jl);
readln(fIn);

end; {b}
readln(fIn);
for j := 1 to NumHiddenNodes do
begin {j}
for k := 1 to NumOutputs do

read (fIn, o.ulk,jl);
readln(fIn) ;

end; {j}
Close (fIn) ;
end; {ReadInWeights}
procedure WriteOutNetOutputData (var
tD: inputDataType; var h: HiddenPEType;
var f:Hidden2PEType; var o:
OutputPEType) ;
{calculates the output for any given
input using the weights developed
during training}
var curvel, curve2: OutputOutType;
q: inputDataRange;
k:OutputRange;
begin {WriteOutTestData}
OpenoOut (£0ut, netOutputFile);
for q := 1 to InputPatterns do
begin {q}

NetForward (tD[g]l”, h, £, o, curvel,
curvez) ;

for k := 1 to NumOutputs do

write (fOut, curvell[k} : 7 : 5,
")

for k := 1 to NumOutputs do
write (fOut, curve2l[k] : 7 : 5, '/
& writeln(fout);
end; {q}
Close (fout) ;

end; ({WriteOutTestData}

procedure InitInputDataStrs (var d:
inputDbataType) ;

{Initialises the training and test data
structures on the heap}

var m: inputDataRange;



begin {InitDataStrs}
for m := 1 to InputPatterns do
New (d[m]) ;

end; {InitDataStrs}

{****‘k*********************** Main
Program ******i********************}

var answer: integer;

count : integer;
stop: integer;
ni: integer;
buffer: integer;

newzeta : real;
begin {Main program}

InitParamSpec; {Gets the Parameters
for the NN}

clrscr;

writeln(’ FeedForward BackPropagation
Neural Network’);

answer:=1;
if (answer = 2) then
begin {2}

InitinputDataStrs (inputDatavar);
ReadInWeights (HiddenNodes,
Hidden2Nodes, OutputNodes) ;
InitInputData (inputDataVar);
WriteOutNetOutputData
(inputDataVar, HiddenNodes,
Hidden2Nodes, OutputNodes);

end {2}
else
begin {1}

ni:=NumInputs;
stop:=ni*2;
for count:=0 to stop do
begin {count}
if count=0 then
begin
ImportAnal:=’"’;
ParamIndex:='"';
InitFilenames;
end;
if (count>0) and (count<=ni)} then
begin
ImportAnal:='pi’;
str (count, ParamIndex) ;
NumInputs:=ni-1;
InitFilenames;
end;
if count>ni then
begin
ImportAnal:=’ci’;
buffer:=count-ni;
str (buffer, ParamIndex) ;
NumInputs:=ni-1;
InitFilenames;
end;

GetTime (hl, ml, sl1, hundl);
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{Initialize the training and test
sets)

InitDataStrs (inData, testData);
Initbata (inData, testData);
OpenOut (fOut, errorOut);

{Initialise all weights using
random values}

randSeed := dataSeed;
InitHiddenlLayer (hiddenNodes) ;
InitHidden2Layer (hidden2Nodes) ;
InitOutputLayer (outputNodes) ;

{A 'for’ loop is used to fix the
total number of iterations}

{Reset the random seed so that the
calling sequence can be contolled}

randSeed := calcSeed;
newzeta := zeta;
for iterations := 1 to

MaxIterations do
begin {iterations}
for g := 1 to EpochSize do
begin {q}
inputData :=
InData [RandomlTo (TrainPatterns)]”;
NetTrain (inputData,
hiddenNodes, hidden2Nodes, outputNodes,

newzeta) ;

end; {q)

{Display RMS error for each
iteration}

DisplayError (rmsError, inData,
testData, hiddenNodes, hidden2Nodes,
outputNodes, newzeta);

{Decrease delta rule constant
over iterations range}

newzeta := decrate * newzeta;

if newzeta < 0.1 then

newzeta := 0.1
else
newzeta := newzeta;

end; {iterations}

Close (fOut);

WriteOutTrainingData (inData,
hiddenNodes, hidden2Nodes,
outputNodes) ;

WriteOutTestData (testData,
hiddenNodes, hidden2Nodes,
outputNodes) ;

WriteOutWeights (hiddenNodes,
hidden2Nodes, outputNodes) ;

DisposeDataStrs (inData, testData);

GetTime (h2, m2, s2, hund2);

OpenOut (fOut, time);

writeln (fOut, ’Start time :-
*,LeadingZero (hl),’ :’,LeadingZero(ml),’



:’ ,LeadingZero(sl), ‘' :’,LeadingZero (hund
1));

writeln (fOut, ‘Finish time :-~
’ ,LeadingZero(h2),’:’, LeadingZero (m2),’
:’ ,LeadingZero(s2), ' :’,LeadingZero (hund
2));

Close (fOut) ;

end; {count}

end; {1}

end.

Assign(fin, ‘c:\psc.txt’);
Erase (fIn);

{Main program}
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A-2: Radial Basis Function Source Code

program Radial_Basis_Function;
{multiple inputs/outputs, Gaussian
function}

uses Dos, crt;

const

{**************************************

********'k*************************}

{Neural Network Parameter

Specification}

MaxNumInputs = 40;
MaxNumOutputs = 10;
MaxTrainPatterns = 15000;
MaxTestPatterns = 15000;
MaxInputPatterns = 2500;
MaxMaxIterations = 1000000;
MaxNumHiddenNodes = 100;

{**************************************

**********************************}

{Delta Rule constants}

zeta 0.9; {Controls the
learning rate, 0 < zeta < 1}

decrate 0.99; {Rate of
decrease of zeta over iterations range,
decrate < 1}

{Miscellaneous constants}

dataSeed = 1; {Seed for Random
Number Generation for initialising
network weights}

calcSeed = 1; {Seed for Random
Number Generation for random selection
of training data patterns}

type
{Miscellaneous ranges}

DataRange =
1..MaxTrainPatterns; {Specifies range
of training data patterns}

TestDataRange = 1l..MaxTestPatterns;
{Specifies range of test data patterns}

InputDataRange =
1..MaxInputPatterns; {Specifies range
of validation data patterns}

IterationsRange =
0..MaxMaxIterations; ({Specifies range
used for controlling maximum epochs}

{Network layer ranges}

InputRange = 1..MaxNumInputs;
{index i always used for this range}

HiddenRange = 0..MaxNumHiddenNodes:;
{indez j always used for this range}

OutputRange = 1..MaxNumOutputs;
{index k always used for this range}

{Input data types}

InputLayerType = array [InputRange]
of real;
OutputOutType = array [OutputRange])
of real;
Input PEType = record
X:
InputlLayerType;
out:
OutputOutType;
end;
InPEPtr = “InputPEType;

{structure too
large for the stack, put it on the
heap}

DataType = array [DataRange]
of InPEPtr;

TestDataType =
array [TestDataRange] of InPEPtr;

InputDataType =
array [inputDataRange]) of InPEPtr;
{Hidden data types}

HiddenWeightType = array [HiddenRange,
InputRange] of real;

HiddenOutType = array [HiddenRange]
of real;
HiddenPEType = record
w:
HiddenwWeightType;

z: HiddenOutType;
end;

{Ooutput data types}

OutputWeightType = array [OutputRange,
HiddenRange] of real;

Output PEType = record
u:
OutputWeightType;
y: OutputOutType;
end;
DeltaErroxType = array [OutputRange]
of Real;
var

{Network variables}

NumInputs : Integer;
NumOutputs : Integer;
TrainPatterns : Integer;
TestPatterns : Integer;
InputPatterns : Integer;
MaxIterations : Integer;
NumHiddenNodes : Integer;
EpochSize : Integer;

sigma : real;

DataDirectory :string;
ImportAnal _:string;
ParamIndex :string;



dataln :string;
testDataln :string;
errorOut :string;
trainingOut :string;
testOut :string;
weightsOut :string;
time :string;

inputDataFile :string;
netOutputfile :string;
ParamSpecFile :string;

inData : DataType;
{variable associated with training data
patterns}

testData : TestDataType;
{variable associated with test data
patterns}

inputData InputPEType;

{variable associated with validation
data patterns}

inputDatavVar inputDataType;
{variable associated with validation
data patterns}

hiddenNodes HiddenPEType;
{variable used to control hidden layer
computation}

outputNodes : OutputPEType;

{variable used to control output layer
computation}

delta : DeltaErrorType;
{variable used to determine network
error}

rmsError : real;

{variable used to determine network
error}

iterations : IterationsRange;
{Variable used to perform maximum
iterations)

q : Integer;
{variable used in random selection of
training patterns}

fout : Text;
{variable for opening output files}
fIn : Text;

{variable for opening input files}

hl,ml,sl,hundl : Word;
{variables for calculating program
start time}

h2,m2,s2,hund2 : Word;
{Variables for calculating program
finish time}

{**************************** I/O

Functions **********************’(*****}

procedure OpenIn (var f: Text;
filename: string);

{Used to open specified files
containing information to be read into
the network}

begin {Openin}

Assign(f, filename);
Reset (f) ;

end; {OpeniIn}
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procedure OpenOut (var f£: Text;
filename: string);

{Used to open specified files to write
network output to}

begin {OpenoOut}

Assign(f, filename);
Rewrite (£);

end; {OpenOut}

{************************** Utility
Functions ************i*************}

function RandomOne: real;

{Returns a random number in the range -
1 to 1}

begin {RandomOne}

RandomOne := Random * 2 - 1;
end; {RandomOne}
function RandomlTo (topOfRange:
Integer) : DataRange;

{Returns a random integer in the range
1 to topOfRange}

begin {RandomlTo}

RandomlTo := Round (Random *
(topOfRange - 1)) + 1;

end; {RandomlTo}
function LeadingZero (w : Word)
String;

{Enables computation time to be
formatted correctly in output file}

var s : String;
begin {LeadingZero}
Str(w:0,s8);
if Length(s) = 1 then
s:="0'+s;
LeadingZero:=s;

end; {LeadingZero}

{*****************w**** Initialization
Functions ****t*****************}

procedure InitParamSpec;

{Initialises the Parameter
Specification for the NN M.Alarc¢n 24-
11-00}

begin {InitParamSpec}

ParamSpecFile := 'c:\psc.txt';
OpenIn (fIn, ParamSpecFile);



readln (fIn, DataDirectory);

readln (fIn, NumInputs);
readln (fIn, NumOutputs);
readln (fIn, TrainPatterns);

readln (fIn, TestPatterns);
readln (fIn, InputPatterns);
readln (fIn, MaxIterations);
readln (fIn, NumHiddenNodes) ;
readln (£In, sigma);

Close (fIn);

EpochSize := TrainPatterns;
{Number of training data patterns
considered in each epoch}
end; {InitParamSpec}

procedure InitFilenames;
{Initialises tFilenames for the NN
M.Alaxrcén 7-12-00}

begin {InitFilenames}

datalIn := DataDirectory +
ImportAnal + 'trn' + ParamIndex +
'.txt'; {Input file containing training
data set}

testDataln := DataDirectory +
ImportAnal + 'tst' + ParamIndex +
';txt'; {Input file containing test
data set}

errorOut := DataDirectory +
ImportAnal + 'err' + ParamIndex +
‘.out'; {Output file for training and
test error}

trainingOut := DataDirectory +
ImportAnal + 'trn' + ParamIndex +
".out'; {Output file for training
results}

testOut := DataDirectory +
ImportAnal + 'tst' + ParamIndex +
'.out'; {Output file for test results}

weightsOut := DataDirectory +
ImportAnal + 'wts' + ParamIndex +
".out'; {Output file for weights
matrix}

time := DataDirectory +
ImportAnal + 'tim' + ParamIndex +
'.out'; {Output file for computation -
time}

inputDataFile := DataDirectory +
‘input.txt'; {Input file containing
validation data set}

netOutputfile := DataDirectory +

‘output.out'; {Output file for
validation results}

end; {InitFilenames}
procedure InitDataStrs (var d:
DataType; var t: TestDataType);

{Initialises the training and test data
structures on the heap)

var m: DataRange;
n: TestDataRange;

begin {InitDataStrs}
for m := 1 to TrainPatterns do

New(d[m]) ;
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for n := 1 to TestPatterns do
New (t [n]) ;
end; ({InitDataStrs}
procedure DisposeDataStrs (var d:
DataType; var t: TestDataType);

{Disposes of the training and test data
structures}

var m: DataRange;
n: TestDataRange;

begin {DisposeDataStrs}
for m := 1 to TrainPatterns do
Dispose(d[m]);
for n := 1 to TestPatterns do
Dispose(t([n]);
end; ({DisposeDataStrs}
procedure InitData (var d: DataType;
var t: TestDataType);

{Reads in training and testing data
from the specified files})

var m: DataRange;
n: TestDataRange;
i: InputRange;
k: OutputRange;

begin {InitData}

writeln;

writeln('Reading in the training
data');

writeln;

OpenlIn(fIn, dataln);

for m := 1 to TrainPatterns do
begin {m}
for i := 1 to NumInputs do

read(fIn, d[m]”.x[i]);
for k := 1 to NumOutputs do
read (£In, d[m]”*.out[k]};
readln(fIn);
end; {m}
Close (fIn);

writeln('Reading in the test data');
OpenIn(fIn, testDataln);

for n := 1 to TestPatterns do
begin {n}
for i := 1 to NumInputs do

read (fIn, t[n]”.x[il);

for k := 1 to NumOutputs do



read(fIn, tin]”.out[k]});
readln(£fin) ;
end; {n}
writeln;
writeln(MaxIterations,’ iterations
will now commence to generate network
weights’) ;
writeln;
Close (fIn);
end; {InitData}
procedure InitHiddenLayer (var inp:

DataType; var h: HiddenPEType) ;

{set weights for each centre function,
ie. input to hidden layer weights}

var i: InputRange;
j: HiddenRange;

begin {InitHiddenLayer}

for i := 1 to NumInputs do
h.w[0, i] := 0.0;

for j := 1 to NumHiddenNodes do

for i := 1 to NumInputs do
h.wlj, i] := inp(j]1”*.x[i];

end; {InitHiddenLayer}
procedure InitOutputLayer (var o:
OutputPEType) ;

{Initializes the output weights to
random reals in the range -1 to 1}

var j: HiddenRange;
k: outputRange;

begin {InitOutputLayer}
for k := 1 to NumOutputs do
for j := 0 to NumHiddenNodes do
o.ulk, j] := RandomOne;
end; {InitOutputLayer}

{*********************** Neural Net
Procedures ***********************}

procedure NetForwardDel (var inp:
InputPEType; var h: HiddenPEType; var
o: OutputPEType; var delta:
DeltaErrorType) ;

{calculates the output of the net for a
given input and also the error, delta}

var net, val: real;
i: InputRange;
j: HiddenRange;
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k: OutputRange;
begin {NetForwardDel}

{Hidden layer forward}

for j := 1 to NumHiddenNodes do
begin {j}
net := 0;
for i := 1 to NumInputs do
net := net + sqr(inp.x[i] - h.w[j,
il);
h.z[j] := exp(-net/(2 *
sqr (sigma)}) ;
end; {j}
h.z[0] := 1; {Bias unit connected to

output layer}
{Ooutput layer forward}

for k := 1 to NumOutputs do

begin {k}
val := 0;
for j := 0 to NumHiddenNodes do

val := val + o.ulk, jl * h.zI[j];

o.ylk]l := val;
deltalk] := inp.outl[k] - o.y[k]l:
end; ({k}

end; {NetForwardDel}

procedure NetForward (var inp:
InputPEType; var h: HiddenPEType; var
o: OutputPEType; var
dl,d2:0utputOutType) ;

var net, val: real;
i: InputRange;
j: HiddenRange;
k: OutputRange;

begin {NetForward}

{Hidden layer forward}

for j := 1 to NumHiddenNodes do
begin {3}
net := 0;
for 1 := 1 to NumIgputs do
net := net + sqr{inp.x[i] -
h.w(j, il1):
h.z{j] := exp(-net/(2 *
sqr (sigma))) ;
end; {3}
h.z[0} := 1; {Bias unit connected to

output layer}



{Output layer forward}

for k := 1 to NumQutputs do
begin {k}

val := 0;

for j := 0 to NumHiddenNodes do

val := val + o.ulk, jl * h.z[j];

o.y[k]l := wval;
dl [k} := inp.out [k];
d2([k] := o.y[k];

end; {k}

end; {NetForward}

procedure NetTrain (var inp:
InputPEType; var h: HiddenPEType; var
o: OutputPEType; newzeta: real);

{This procedure calculates an output
for any given input, compares the
predicted output

with the given output, calculates the
associated error, delta, and updates
the output layer

weights using the "delta rule"}

var 1i: InputRange;
j: HiddenRange;
k: OutputRange;
net, val, deltad: real;

begin {NetTrain}

{Hidden layer forward}

for j := 1 to NumHiddenNodes do
begin {j}
net := 0;
for i := 1 to NumInputs do
net := net + sqr(inp.x[i] - h.w[j,
il);
h.z[j] := exp(-net/(2 *
sqr (sigma))) ;
end; {3}
h.z[0] := 1; {Bias unit connected to

output layer}

{output layer forward}

for k := 1 to NumOutputs do
begin {k}

val := 0;

for j := 0 to NumHiddenNodes do

val := val + o.ulk, j) * h.z[j);

o.ylk] := val;
delta(k] := inp.out{k] - o.yI[k];
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end; ({k}

{Update output layer weights}

for k := 1 to NumOutputs do
for j := 0 to NumHiddenNodes do
o.uflk, jl := o.ulk, jl + newzeta

* deltalk] * h.z[j];

end; {NetTrain}

{************t************ Display
Procedures *************************}

procedure DisplayError (var rms: real;
inD: DataType; tD: TestDataType; h:
HiddenPEType; o: OutputPEType; newzeta:
real) ;

{Calculates the Root Mean Square, RMS,
error for all the training and test
inputs}

{Displayed on user screen for
monitoring purposes and also written to
the specified file}

var trErr, testExrr, val, testRms:
real;

del: DeltaErrorType;

m: DataRange;

n: TestDataRange;

k: OutputRange;

begin {DisplayError}

{Training data set calculations}

trErr := 0;
for m := 1 to TrainPattexrns do
begin {m}

NetForwardDel (inD[m]”, h, o, del);
val := 0;

for k := 1 to NumOutputs do

val := val + del[k] * dellk];

trErr := trErr + val;
end; {m}
rms := Sgrt (trErr/TrainPatterns) ;

{RMS error over all training patterns}

{Test data set calculations}

testExrr := 0;
for n := 1 to TestPatterns do
begin {n}
NetForwardDel (tD[n] ", h, o, del);
val := 0;
for k := 1 to NumOutputs do

val := val + del[k] * dell(k];

testErr := testErr + val;



end; {n}
testRms :=

Sqrt (testErr/TestPatterns); {RMS error
over all test patterns}

’

writeln(fOut, iterations : 3, ,
rtms : 5 : 5, ' ‘, testRms : S : 5);

end; ({DisplayError}
procedure WriteOutTrainingData (var
inD: DataType; var h: HiddenPEType; var
o: OutputPEType) ;
{Writes the predicted and actual
outputs from training to the specified
file}
var curvel, curve2: OutputOutType;
p: DataRange;
k: OutputRange;
begin {WriteOutTrainingData}
OpenOut (fOut, trainingOut) ;
for p := 1 to TrainPatterns do
begin {p}

NetForward(inD{pl”*, h, o, curvel,
curvel) ;

for k :=1 to NumOutputs do

write (fOut, curvellk] : 7 : 5, '
")

for k :=1 to NumOutputs do

write (fOout, curve2(k] : 7 : 5, '
“);

writeln(fout) ;
end; {p}
Close (fout) ;
end; ({WriteOutTrainingData}
procedure WriteOutTestData (var tD:
TestDataType; var h: HiddenPEType; var
o: OutputPEType) ;
{Wwrites the predicted and actual
outputs from testing to the specified
file}
var curvel, curve2: OQutputOutType;
q: TestDataRange;
k: OutputRange;
begin {WriteOutTestData}
OpenoOut (fOut, testoOut);
for g := 1 to TestPatterns do
begin {q}

NetForward(tD[q]”, h, o, curvel,
curvez) ;
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for k := 1 to NumOutputs do

write(fOut, curvel(k] : 7 : 5, *
¥

for k := 1 to NumOutputs do

write (fOut, curve2lk] : 7 : 5,
")

writeln(fout);
end; {q}
Close (fout) ;
end; {WriteOutTestData}
procedure WriteOutWeights (var h:
HiddenPEType; var o: OutputPEType) ;

{Writes the weight matrix to the
specified file}

var 1i: InputRange;

j: HiddenRange;

k: OutputRange;
begin {WriteOutWeights}

OpenOut (fOut, wéightsOut);

for j := 1 to NumHiddenNodes do
begin {j}
for i := 1 to NumInputs do

write(fOut, h.w([j, i} : 8 : 5,
)i

writeln(fout);
end; {j}
writeln(fout) ;
for j := 0 to NumHiddenNodes do
begin {j}
for k := 1 to NumOutputs do

write (fOut, o.ulk,jl : 8 : 5,
")

writeln(fout) ;
end; {j}
Close (fOut) ;
end; {WriteOutWeights}
{Procedures from here to "main program"
used for running option 2 of the
program}

procedure InitInputData (var d:
inputDataType) ;

{Reads input data from nominated file}

var m: inputDataRange;
i: InputRange;



k: OutputRange;
begin {InitInputData}

writeln(’Reading in the input data’);
OpeniIn(fIn, inputbDataFile);

for m := 1 to InputPatterns do
begin {m}
for i := 1 to NumInputs do

read(fIn, dim]*.x[i]);
for k := 1 to NumOutputs do
read (£In,d[m] “.out [k]);
end; {m}
end; ({InitInputbData}
procedure ReadInWeights (var
h:HiddenPEType; var o:OutputPEType) ;

{Reads the weights matrix from file
produced using option 1 of the program}

var 1i,j,k : integer;
begin {ReadInWeights}

OpenIn(fIn,weightsout) ;

for j := 1 to NumHiddenNodes do
begin {j}
for i := 1 to NumInputs do

read(fIn, h.w[j, il) ;
readln (fIn) ;
end; {3}

readln(fIn) ;

for j := 0 to NumHiddenNodes do
begin {j}
for k := 1 to NumOutputs do

read(fIn, o.ulk,jl);
readln(fIn) ;
end; {j}
Close(fIn);

end; (ReadInWeights}
procedure WriteOutNetOutputData (var
tD: inputDataType; var h: HiddenPEType;
var o: OutputPEType) ;
{Calculates the output for any given
input using the weights developed
during training}

var curvel, curve2: OutputOutType;
q: inputDataRange;
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k: OutputRange;
begin {WriteOutTestData}
OpenOut (fOut, netOutputFile);
for g:=1 to InputPatterns do
begin {q}

NetForward (tD[gl”®, h, o, curvel,
curve2) ;

for k := 1 to NumOutputs do

write(fOut, curvellk] : 7 : 5,
")

for k := 1 to NumOutputs do

write (fOut, curve2ifk] : 7 : 5,
")

writeln(fout) ;
end; {q}
Close (fOut) ;
end; {WriteOutTestData}

procedure InitInputDataStrs (var d:
inputDataType) ;

{Initialises the training and test data
structures on the heap}

var m: inputDataRange;
begin {InitDataStrs}

for m := 1 to InputPatterns do
New(d[m]) ;

end; {InitDataStrs}

{**************************** Main

Program ***************************}

var answer: integer;

count : integer;
stop: integer;
ni: integer;
buffer: integer;

newzeta: real;
begin {Main program}

InitParamSpec; {Gets the Parameters
for the NN}

clrscr;

writeln;

writeln;

writeln(’ Radial Basis Function
Neural Network’);

answer:=1;

if (answer = 2) then

begin {2}

InitinputDataStrs (inputDataVar);



ReadInWeights (HiddenNodes,
OutputNodes) ;

InitInputbata (inputDataVar);

WriteOutNetOutputData
(inputDatavVar, HiddenNodes,
OutputNodes) ;

end {2}
else

begin {1}
ni:=NumInputs;
stop:=ni*2;
for count:=0 to stop do
begin {count}
if count=0 then

begin
ImportAnal:='"’
ParamIndex:='"

7
1

InitFilenames;
end;

if (count>0) and (count<=ni) then
begin

ImportAnal:='pi’;
str (count, ParamIndex) ;
NumInputs:=ni-1;
InitFilenames;
end;
if count>ni then
begin
ImportAnal:=‘ci’;
buffer:=count-ni;
str(buffer, ParamIndex) ;
NumInputs:=ni-1;
InitFilenames;
end;
GetTime (hl, ml, sl, hundl);

{Initialize the training and test
data sets}

InitDataStrs (inData, testData);
InitData (inData, testData);
OpenOut (fOut, errorOut);

{Initialise output layer weights
using random values, set hidden layer
weights}

randSeed := dataSeed;
InitHiddenLayer

(inData, HiddenNodes) ;
InitOutputLayer (OutputNodes);

{A "for’ loop is used to fix the
total number of iterations}

{Reset the random seed so that the
calling sequence can be contolled}

randSeed := calcSeed;
newzeta := zeta;
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for iterations := 1 to
MaxIterations do

begin {iterations}
for q := 1 to EpochSize do
begin {q}
inputData :=
InData[RandomlTo (TrainPatterns)]”;
NetTrain(inputData,

hiddenNodes, outputNodes, newzeta);

end; {q}

{Display RMS error for each
iteration}

DisplayError (rmsError, InData,
testData, hiddenNodes, outputNodes,

newzeta) ;

{Decrease delta rule constant
over the iterations range}

newzeta := decrate * newzeta;

if newzeta < 0.1 then

newzeta := 0.1

else

newzeta := newzeta;
end; {iterations}
Close (fOut) ;

WriteOutTrainingData (inData,
hiddenNodes, outputNodes) ;

WriteOutTestData (testData,
hiddenNodes, outputNodes) ;

WriteOutWeights (hiddenNodes,
outputNodes) ;

DisposeDataStrs (inData,
testData) ;

GetTime (h2, m2, s2, hund2);

OpenOut (fOut, time);

writeln(fOut, ‘Start time :-
' ,LeadingZero(hl),’ :’,LeadingZero(ml), ’

:’,LeadingZero(sl),’ :’,LeadingZero (hund
1));

writeln (fOut, ’Finish time :-
' ,LeadingZero (h2),’ :’,LeadingZero(m2), '
;' ,LeadingZero(s2),’ :’,LeadingZero (hund
2));

Close (fOut) ;

end; {count}

end; {1}
Assign(fIn,’c:\psc.txt’);
Erase (fIn);

end. {Main program}



Page 139

Appendix B
Frame Specifications
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B-4: Left view of frame (three dimensional member lengths,................ .. 143
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B-7: Top view of frame (member angles)....... ... 146
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B-3: Left view of frame (member angles)

[5a)

~

)0l _“Ew

& L] 10797y L

dI1UN8 OIAVD

s3]6uy ygin marg 1437

Ul




Page 143

B-4: Left view of frame (three dimensional member
lengths)
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B-5: Top view of frame (first set of dimensions)
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B-9: Front view of frame
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Appendix C
Suspension Specification
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-1: Front suspension geometry
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C-3: Suspension spring specifications

RST 58

Coil spring with intemal hydraulic floating piston
AB061-T6 aluminum body
Sprng pre-load adjustment

Spring standard color . black

s

COMPRESS

DAMFING ¥ES
ADJUSTMENT

COMPRESS

LOCKOUT YES

BEBOUND

DAMFING YES
ADJUSTMENT

EYE TC/ EYE

LENGHT 15 5mme-190mm

TRAVEL 26mme-37mm




Page 153

Appendix D
Wheel Assembly Specifications
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D-1: Upright dimensions
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D-3: Stub axle dimensions
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imensions
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D-5: King pin and caster reference angles
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Appendix E
Drivetrain Specifications

: Quaife ATB differential description
: Quaife ATB differential operation ...
: Quaife ATB differential specifications..
: Quaife ATB differential dimensions ...

: Composite disc dimensions...
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QUAIFE

Design
The Cuaifa ATH Dillerealial is desigried 10 peavan) the
complata (oss of drive hat oscurs with 8 convantisnal
d*aerential whan one whest

VaMiE requiring some ioraue 1 na slipping whee! the
Qualfe urt Is progr n actign bl o acks -
cortrotes powar s trarsmitled to all ke driving whoe's
Although ideally susted lo high pred franbwhagt
drive gysterns, Quadle ATS dilfer I3 are used in rear
and faus-wheal dive venhices whese ofimum Iracton &
required. Tha four { drive layow includes a contre
ditfacential as wall rs in each axle

The sergui capacity <f the Quade wil is increased or
by vansing the hefix and prasside angles af
geth, A comiination is avaladle to mee use:
Formuia One racing o high

& a3

Tha aperatien is auiamatie, aormal axle aricetion Is
atained and 1ha unit is imerenangaatie wilk ths
coaventicnal d¥arential

Operation

Tra Quaile Qillerartial is an gutomalic gear-gperated
Toeque Biasirg Cifprardial. Sels o Foating helizal gear
pnans {1} i 80 provids 1 armal spaad ditterealial
gasan. T doad e gear packs thora is 3 salacton ol
cenlie saring dists 120 availatle In tho aveat of whue!

glip lorqus bias Is generated by the axial and radie! thrusts (fed) of the pinians in the pockets
(3). Tra resultan: fdction force conblas the 2iviag raad whosl srd sur-gear (4) 1o tansmit a
pranter propomion of (he wwrqua. This etect is progressas, nut &t no stags does the derential
lock salid. Manze the inherant sxlely of the Quaifa Aulomalic Torque Biasing Dfterental,

Fltting and Malntenance
Inslatatian is identical to the normal gi¥arenlial with Searing predoads ard girios mesh baing
prared 1 the ongingl menutaciuren” recommandation. Senvicing ol the upit is simpla 3s al!

Quaife Automatic Torque Biasing Differential
for Added Traction

KEY
1 Hseika! gear pinlons

2 Cenm sprng dues

3 Pogeet

4 Sun Gear

Qgaar pinlorg are free filing ang normal final drive
fubrlcazan clls ara releined, Due 1o the infermal dosign
of the Quatle dilferantial, all driving wheals must be
vlevaled whon sendcing brakes, tyrag, ele.

Applications

Quaile diferersials an wsed In &1 forms of metar spert
fram ciruit to rallying in twa and four-whael driva
sysiems. A wide vasiety ol emesganzy vehicles, whare
afl-wealher mobility is essonilal, also use Quaile
differantals, Major usars being Ambulanse, Polca, MM
Coastguard, MOD, Faresty Comaission and Public
Utlilies whane the addvian of & Cuaite’' ATB dilferential
impraves vahicla handling and stebility without
compromising sarvice lI‘e or operating ¢osts, The
beralils being avallab’e all year round whalever the
fraction conditions,

Company Profile

A.T. Qualle Erginaering (estatiished 30 yeas in UK)
manufactures racing gear toves (car ang motor cywie),
d¥srentia’s, stopring compenands and drive ind power
take-ofs. The Differential design Is palanted and the
Cuaifa name is 2 rgistered mark.

R. T. Quaife Engineering Ltd

Vestry Boad, Otfard, Ssvencake, Kenl,
TN14 SEL, England
Tal: 01732 741144
Fax: 01732 7416865
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SPECIFICATION

Deslgn

The Quelle Ditfarential Is designed to power
both whaets and control loss of drive. The
differential provides constant and infinitely
varigble drive, traction belng transferred
from the spinning whesl fo the stalic whesl
automatically without the use of the nommal
friction pads in other designs. Tha operation

is fully automatic and requires no manual 3
control,

The unique design offers full maximum i
traction, Improves handling and steering, e

and puts the power where It is needsd most.
With ail the gears belng the helical ype, the

¢-3

helix and pressure angle of the gear testh | !
can be varled 1o increase or decrease the
torgue capacity.

Suitabllity

The differential is ideally suitad to four wheel
drive applications, as. well as compstition
vehicies. Can elso be used in all four whas!
drive units, beth front and rear Even when
fitted to front wheel drive vehlcles, there |s no

adversa resistanse to the steering.

QOparation (
The Quaife Differentlal is gear operated T
and therefore !aQUirﬂs nao plates which Fltting and Malntenance

may weaar or break. The unlt is smogth in Fitt

" : ng the Quaife Differential is the same as
USAE RS 1o SIS WA instaling the standard differential urit, Any
maintenance can be camiad out by a

competent mechanic and no special tools
Dastlgand & Manutactured in England. Bre f&QUII’Ed.
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E-4: Quaife ATB differential dimensions
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E-5: Composite disc dimensions
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Appendix F
Electrical Systems Specifications

Electrical system general SPECIfiCALIONS ..........u.ceveererecersseeesssrorensssanirissssnsene 165
Fuse box Wiring QiQQraAMi..............eeeceosvsveosvrscsanssssssvsssscsssssssssssicsssssassisssssssones 166
Fuse box circuit layout ........ tetsseessnessssisssstssssssessansesansrsssestnasiesessrtnas 167
ECU Wiring Diagram................... cessessssssresssssantssssssessissassaneriresesssanes 168

F-1: Electrical system general specifications

Battery
Type Gel cell
Capacity 15 Ah
Voltage 126V
Charging System
Type Three Phase AC
Alternator output voltage 45V
Stator coil resistance 0.2-0.6 Ohm
Charging Voltage 14-15V
Electric Starter System
Starter motor 12V
Brush length 12mm
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F-4: ECU Wiring Diagram

Engine Sensors Fuel Injectors
Connect in firing sequence
for sequential operation

Open

Red
White
White / Blac 1st

White

White / Red

White

White / Yellow

White

White / Green

Aux Valve

! White Note 4
13 }
Brown

Fuel Pump

X} Note &
87

—a_/o—
Fuse 20 A 87 30
--qu——z]-o —0
. 85 86
36 Blue
R

elay 30A
Note 2

Throttie
Position
Sensor

Green

Closed Black

Red
" orange

Black

Pressure
Sensor

Pon0

Engine Temp = Purple
Sensor ——— Black Not used
on 2 cy!

engines

Air Temp ———— Grey
Sensor [ Black

REF and SYNC Sensors *
Refer to the detailed drawings for the

particular trigger system
I tngger sy Note 3

+8 Volts — Red —22~ 3 Core Shielded
REF Sensor —— White ——/
0 Voits — Black

.

26
+8 Voits Red 7.8

SYNC Sensor — White 2'7
0 Volts —  glack

3 Core Shielded

Note
All wires except those marked
“Heavy” are 18# (0.85 mm2)

Note 1

To avoid the ECU fuse blowing
due to reverse battery polarity
use a diode activated relay
Bosch 0 332 014 112

White

30

\ Heavx Red ‘
86 I

I *
Ignition ”
= gwltch Battery
Relay 30A
Bosch 0 332014 112
Note 1

o Qo Qm
o oI TN

Note 2

The Ignition System power should
be suplied by the Fuel Pump relay
to ensure that the Ignition System
power is off when the engine is -
stopped. This also provides reverss|
battery protection for the Ignition
System

Ignition
System

Yellow-———-1 (See Detailed Drawings)

Note 3
Remove the Foil and drain wire

DO NOT connect the foil or drain
wire to the sensor or to ground

____ Earth at
Engine Block

Note 4 25 Heavy Black

The Aux Valve wire is connected
to ECU Aux Qutput 1

T  Chassis

Note §
The Fuel Pump wire is connected
to ECU Aux Output 4

REF - White (Note 6)
SYNC - Green (Note 8)

B 3

Connector to PC

Title M4 Loom 4 CYLINDER Sheet No| Drawing No
M 0 Te C Date 19/02/2001  [Drawn ST lApp AD | Products ECU 1of1 LO3

Note 6
{Refer to the detailed drawings for
the particular trigger system)

Looking into connector on ECU

MoTeC
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G-1: Advanced dash logger - description

MoTeC Advanced Dash Logger
(ADL)

The MoTeC Advanced Dash Logger (ADL) is a fully featured and self contained,
programmable logger. The key difference between the MoTeC ADL and other
products 1s its flexibility to be adapted to any application.

Many vehicle, marine and industrial applications require separate products to perform the logging,
controlling and displaying. However, the MoTeC ADL offers seamless integration of all three
functions.

All aspects of the ADL are fully configurable, including which sensor is connected to
which input, what to log, how fast to log it, which channels to display, warning alarms
and control outputs.

The MoTeC ADL uses a high speed 32 bit microprocessor and incorporates a 79 pin
autosport connector. The ADL is built to internationally recognised quality and
manufacturing standards and is back by a full 2 year worldwide warranty.

.1.1.1.1 Data Logging

Data logging allows for readings taken from Analog, Digital, Serial, CAN or
Calculated channels, to be stored in the ADL for later analysis on a computer. The
ADL uses permanent non-volatile Flash memory. Data memory may be unloaded at
very high speeds (approx. 19 seconds per Mbyte). Different logging options allow
384k, IMB or the full 8MB to be accessed.

The ADL can store channels at up to 1000 times per second per channel, this can be
individually set for each channel. Four logging modes may run concurrently (Normal,
Fastest Lap and two Burst Modes) each with selectable start and stop logging
parameters. Memory can operate in stack or circular buffer mode.

J1L12
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.1.1.1.3  Analog and Digital Channels

In total the ADL can accommodate over 200 channels derived from any mixture of
Analog, Digital, RS232 Serial and CAN bus data channels.

The ADL directly supports up to 28 analog inputs, 12 digital/speed inputs, 8 auxiliary
outputs and 2 high accuracy Wideband Lambda (Air/Fuel ratio) inputs.

The analog channels sample at up to 1000 samples per second per channel, with a
measurement range of 0 to 15 VDC.

Digital inputs are used for state monitoring, counting and pulse width measurement.
They accept switch, logic, open collector (Hall Effect), or magnetic signals.

The auxiliary outputs can be configured to operate as simple off/on outputs, duty
cycle control or frequency based outputs.

1.1.1.4

Serial Communications

The RS232 serial port is programmable up to 115k baud and can be used as either a
telemetry data output port or serial data input port.

As a telemetry port; devices such as Modems, GSM & Satellite Phones, Radio
Modems etc. can be connected to facilitate remote communication.

As a serial data input port; serial communication devices can be connected for
displaying and logging purposes. These include Engine Management Systems
(MoTeC and other), bar code devices, keypads, GPS Systems or other serial
communications devices.

d.1.LS

Display

The MoTeC ADL display is a high contrast, high temperature, custom designed
reflective LCD. Its unique design makes it viewable in direct sunlight or artificial
light.

The display has 3 modes of operation, where each mode is fully programmable and
independent of the other. Each mode may be selected by pressing a button or
activated by a condition.

The 70 segment bar graph display is programmable to display any channel, with an
optional peak hold marker and setpoint marker. Each numerical display item can be
programmed to display any channel value as required. The 13 digit alphanumeric
display area has 20 lines available to scroll through and may be used to display any
channel value or to display warning messages.

Lap times may be displayed when connected to a MoTeC Lap Beacon (or adriver
activated switch). Other performance information may be displayed, including
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minimum corner and maximum straight speed, fuel used or fuel remaining, and many
more.

.1.1.1.6 - Alarms

Warning alarms may be defined for any analog, digital, serial or calculated channel.
Alarm limits are fully programmable and may include up to 6 conditions to ensure
that the alarms are only activated at the correct time.

When an alarm condition has been detected, a message can be shown on the display
and an auxiliary output activated. These outputs can be used for waming lights or the
control of other devices.

The alarms remain active until they are acknowledged, either by activating a switch or
automatically after a definable period of time.
A1.1.1.7 _

Controller Area Network (CAN)

The CAN bus is a high speed communication standard operating at speeds up to
1Mbit.

CAN allows many devices to be connected by a common bus, allowing all devices to
share information as part of a larger system.

CAN devices include: automatic transmission controllers, sensors, multi-channel
input/output modules, engine management systems etc.

.1.1.1.8  Host Software
The ADL is supplied with software packages for managing the ADL, analysing the
logged data and monitoring a telemetry link.

Ease of use is one of the most attractive aspects of the MoTeC ADL software. There
is no complex language to learn, just simple menu driven windows.

A full online help system is easily accessible and is integrated throughout the
software.

.1.1.1.9 Dash Manager Software

The Dash Manager Software is used to configure the ADL and download
logged data. It is logically laid out, giving the user access to the power of the
ADL without requiring high levels of computer knowledge or intense training.

A1.1.1.10 Interpreter Software
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The Interpreter software contains predefined configurations for easy data
analysis. Screen display formats may be varied to suit all preferences,
including user defined graphs, histograms and statistical summaries. By
utilising these different display methods, users can view data in many formats
to obtain accurate, meaningful analysis.

Data can also be exported into ASCII CSV file format for analysis in other
software packages.

The Pro Logging option includes graph overlays, virtual instruments,
mathematical functions, XY graphs (scatter plots), track maps (shows
minimum and maximum speeds, gear change point and breaking points) and
other advanced features.

A.1.1.11 Telemetry Monitor (Optional)

The Telemetry Monitor software allows for realtime viewing of the telemetry
data either via direct serial communications, modems or radio modems. Data
can be viewed in various formats such as charts, bar graphs, dial gauges,
numerics, lights, XY graphs and scroll charts. All objects are definable by the
user.

.1.1.1.12 Upgerades and Accessories

The MoTeC ADL is completely field updateable by the user. The control software
and logged data is stored in FLASH memory. No programming interface is required,
simply send to the ADL the new program and the latest features are immediately
available.

1.1.1.13 Upgrade Options

The ADL has field upgradeable options using a password enabling system.
Upgrade options include:

Extended inputs & Outputs, Pro Logging (advanced data analysis), Medium
Logging (1Mbyte), Large Logging (4Mbyte), Telemetry Support, Remote
Logging and Wideband Lambda measurement.

Three wiring options are available for the ADL:

Separate I/O Terminal Module with plug-in screw terminals. Includes a
Realtime Clock, additional RS232 port and wide ranging power supply.

Standard (vehicle style) wiring loom for specific permanent installations.

Custom wiring looms for complex installations.

A.1.1.14 Accessories
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A wide range of sensors are available for use with the ADL including: linear
position, accelerometers, pressure, resistive and thermocouple temperature
sensors, hall and magnetic speed sensors and many others.

The MoTeC Lap Beacon transmitter and receiver has been designed in
conjunction with the ADL. It features high channel count (990), improved
optics, low power consumption and multi beacon capability.

And for peace of mind the MoTeC ADL offers a full 2 year worldwide
warranty.
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G-2: Advanced dash logger - specifications

ADL Specifications

.1.1.1.1 General

Microprocessor: 32 Bit High Performance
Manufacturing Quality standard to 1ISO9001

Field updateable Operating System

Non-volatile FLASH memory for data & operating system
High RF! Immunity

Rugged Aluminium Housing (IP-55, NEMA 4)

79 pin Autosport connector

Operating Temperature: -10 to 70 DegC

Operating Voltage: 7 to 22 VDC

Operating Current: 0.3 A max.

Weight: 385 gms (0.85 Ibs)

Size: 180mm x 91mm x 18mm (excluding connector)
Reverse Battery and Transient Protection

Warranty: 2 years Parts and Labour

.1.1.1.2 Measurement Inputs

e 28 Analog Inputs (10 Standard):

20 Analog Voltage (6 Standard)

8 Analog Temperature (4 Standard)

12 bit resolution, 0 to 15 VDC range

Update rate (Max. 8 channels): up to 1000 times/sec
Other inputs: up to 500 times/sec

4 Digital Inputs (2 Standard)
4 Speed Inputs (2 Standard)

Digital & Speed
e Switch to OV, logic signal, open collector (Hall Effect), or Magnetic
e State & Counting (1MHz)
e Period (1 micro sec)
e Pulse width (1 micro sec)

4 Switch Inputs (4 Standard
User definable sensor calibrations

1.1.1.3  Auxiliary Qutputs

o 8 Digital Outputs (4 standard)
e Open Collector (drives to ground) with pullup (10k ohms) to battery
positive
e  On/Off or Pulse Width Modulation with variable Frequency and Duty
Cycle

.1.1.1.4  Air Fuel Ratio Measurement (Optional)

¢ 2 high accuracy Wideband Lambda (Air/Fuel ratio) inputs
¢ Resolution: 0.01 Lambda
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e Temperature compensated
e Range: 0.75to 1.2 Lambda

.1.1.1.5 Data Logging

Memory: 384k, 1MB, 2MB, 4MB, 8MB

Non-volatile FLASH, field upgradeable

Logging of any Analog, Digital, Serial, CAN bus or Calculated channel
Maximum Logging throughput: 20k/sec

2 Burst Logging buffers with pre triggering (Large logging option only)
Typical Unload Speed: 19 sec/MB, using parallei port of PC to CAN bus
RS232 unload rates dependent on baud rate

.1.1.1.6  Calculations

Timers (0.01s, 0.1s, & 1s resolution)
2D and 3D Tables

User conditions

Math Functions: Differentiate, Integrate, Absolute, Min/Max
Lap Time and Number

Lap Gain/Loss

Speed and Distance

Gear Detection

Fuel Prediction

Tell-tales

Running Min/Max

.1.1.1.7  Display

Custom LCD, High Contrast, High Temperature, Reflective
Display any Analog, Digital, Serial, CAN bus channel or Calculated channel
3 Display Modes
70 Segment Bar graph
e Definable Range
¢ Programmable Setpoint and Peak Hold point

4 Numeric Display ltems
13 Digit Alpha Numeric Display area, 1,2 or 3 channels per line (20 scrollable
lines per display mode)

e Alarm messages

e Channel display

e Descriptive text

.1.1.1.8 Communication

e Serial RS232 Coms. (1200 to 115k baud)
CAN data link (250Kbit to 1Mbit)
¢ Telemetry Link output (R5232)

.1.1.1.9 Host Software

1. Dash Manager Software
2. Interpreter Analysis Software
3. Telemetry Software (Optional)
Computer Requirements
¢ IBM PC compatible running Windows 95/98 or NT4.0
¢ Pentium (Min.) 90MHz, 16MB RAM

.1.1.1.10 Upgrades
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The MoTeC ADL in its base configuration includes:
e 10 Analog Inputs

8 Digital Inputs

4 Digital Auxiliary Outputs

RS232 and CAN bus support

Software: Dash Manager and Interpreter

Users Manual

Upgrades Available (field updateable by the user):
¢ Extended Inputs & Outputs
e 28 Analog Inputs (10 standard)
o 12 Digital Inputs (8 standard)
o 8 Digital Auxiliary Outputs (4 standard)

e Pro Logging - Advanced Analysis Software
e Graph Overlays

XY Plots

Maths functions

Virtual Instruments display

Track Mapping

¢ Medium Logging
e 384k to TMB Memory

e Large Logging (requires Medium Logging Upgrade)
« 1MB to 8MB with Burst mode logging

¢ Lambda Measurement
e 2 Wideband Lambda inputs

o Telemetry
» Enables realtime viewing of data via a telemetry link

* Remote Logging (requires Telemetry Upgrade)
e Allows Remote Logging via a telemetry link or hand held computer

d.1.1.11 Accessories

PC Communications Cable (High Speed CAN)

Wiring Looms

Input/Output Terminal Module

Lambda (Air/Fuel ratio) Sensors and Kits

Telemetry Products
¢ GSM mobile phones, radio modems etc

* Sensors and transducers

o afull range of sensors, amplifiers, transducers, lights and buttons are
available

e Lap Beacon: Transmitter and Receiver (990 channel)
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ADL WIRING ..
Digital
DIAGRAM Input 2
White 62
Brown 53
Black 611
SPEED INPUT 1 .
+ |WHITE 62 4
Hall FR SIG |GREY__ 63
- |BLACK 61 ANALOG TEMP INPUT 1 AUXILARY OUTPUT 1
34 GREY| siG 8 BROWN
SPEED INPUT 3 43 BLACK . Fre
+ | WHITE 62
Hall FL SIG [VIOLET 85 Pot. RL AUXILARY OUTPUT 2
61 10 | GREEN
- [BLACK 21 ANALOG TEMP INPUT 2 SL
35 sIG
DIGITAL INPUT 1W e 62 43 BLACK - AUXILARY OUTPUT 3
+ Free 1 ORANGé
Hall SIG |BROWN 52 | SL
L
- |BLACK 61 SWITCH INPUT 1
57 YELLOW
ANALOG VOLT INPUT 1 61 BLACK
+ |[RED 44 .
Pot. SIG |BROWN 45 Mode Switch
. |BLACK 43 SWITCH INPUT 2
58 GREEN NOTE 1:
The AUX Cutputs can sink
ANALOG VOLT INPUT 2 a maximum of 0.5 Amps.
RED 44
+ =3
Pot. s16 |ORANGE 46 Alarm Acknowledge —
. |BLACK 43 SWITCH INPUT 3 The ADL should be wired
59 BLUE on its own power switch,
Free
ANALOG VOLT INPUT 3
N 62
Pot. RR $iG | YELLOW 47
. |BLACK 43| SWITCH INPUT 4
60 ORANGE
ANALOG VOLT INPUT 4 Violet 67
+ [RED 44 Telemetry Modem
Press. F SIG |GREEN 48
. |BLACK 43 SWITCH
8 RED o
7 BLACK f FUSE
ANALOG VOLT INPUT 5§ 5 AMP
+ |[RED 44
SiG | BLUE 43
Press. BLACK RS 232 BATTERY
- == POSITIVE
Grey 79 ECU
ANALOG VOLT INPUT 6
} + |[RED 441 ., YERM RESISTOR
Steerin siG [VICLET s0
. |BLACK 43
CARCABLE / 4 &]:
BLACK _
EARTH TO DASH
Tite BASIC LOOM (REV B LOOM) Sheet No| Drawing No
M 0 Tec Date  06/10/1939 |Drawn srl App | Products ADL 10f4d AD L-L1
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- Specifications

~ MODEL RFI 9256 Series 3

PHYSICAL

. Dimenstors.
Weghe
Carstruction™

GENERAL

Oprerstivg voltige

Oprraling currént
Standby mode
Transeedt modi it Watli

Ciperaking fenyperature range L ° '

Ciperating Hurdity ran

Paramete and muds seltings -

TRANSMITTER

Cuiplit Power
Spursts emssing
Crutplal profection

RECEIVER

Seosstivity

Erd to emd performanc
Frexguendy range

RS&¢ display range
DATA SYSTEM

RS 252 bandshaking
Pritucol modes

et acce: il spevdd

Yy Hi\"vDC. m—.vg;gléw»e grouruf

SIS mA
‘Average

it bt ottware 7

AW T Wall sody,

_ 1%0mm L x Bmm W 3amim H
- 2601 granms

Aloriewd slurmidhim chasds and cover, with integraed display

350mA
64 ey : R
Ups 1 95% sosvcotylensing R 8 50 deg ¢

resefectable.

gt
Trargmitte

s iufly, protected for any boad @ Rl pivier @ 60 e

o HidB for BER L part e 1024
Hetter than ¥ in H™-h BERfor $/N 20 dB or betler s
915128 MHZ tissical CCH921 4020 Nkl N

5 softwatel sors softwarks sefecialie

variants ¢ PLCS supputteid i hading
ot £ nnadtipoint srdibbives modes

000 hps, sisftware welectabie 2l modes

Frardvear
Al o
posdrd { poie
P

Disteibuted by:

Specdications may be subeC s

: RFF s

change withou notice.




Antenna

Digital Modem

ADL
D9 conn?ctor
' / 3 pin DTM {male pins) Data €87 tetem
\ ata
Gnd CD. = note
A2| +12 Volts
1| Ground

D9 Connector Wiring Details

Note 1

The following pins can be used;
Switched Inputs (normally swd)

2 pin DTM (male pins)

Male D9 Viewed from loom end

CD <Violet \

—@ 1

@2
DatamGreen | g3
>@ 4

GND « Black .5/

@«

'.1

O
<
6 @<«

7.

8
°@

O

Motec Part No. 61071

Spead nputs, Digital Inputs

ADL Setup

1. Set Input pin's channel to
*Carrier Dstect”

2. Select one of the templates in the’
RS232 Communications Setup
screen.

NOTE: The modem may necd configuration
before it will connect.

. 0-E-» eC Tite Digital Telemetry Connection Sheet No| Drawing No

Date 040371999

omwnSTI App ] Products ADL 1of1 TEL01

S-9

Jejjelsul — wapow olpey :

uol

081 33ed
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G-6: Wheel speed hall effect sensor —

specifications

Solid State Sensors
Hall Effect Gear Tooth Sensors
SENSOR SPECIFICATIONS
Ali valuss were measured using 1 K pulb-up resistor.
Etectrical Sugedy Volage 4.5t024 VDC
Characteristics Bupgsly Current 0 aAdyp., 20 mi max.
Cutged Voliage (cutput low) . G4 ¥ max
Chatpast Curchnt iounpmst Bighy 10 uA max. legkagyinto sensor
Switeting Time -
Rize {10 1 90%; 15 usse. max:
Fal (90 to 10%) 1.0 uSee, 1K,
Absolule Supply Veltages (Vs) =30 VDU continemns.
Maximum Veltage Extarnally Applies
Ratings “To Otpet fsutput Aighs ~D510 +3V
Chatpest Currant T sinking
Temperatzg Range )
Stoaage ~30 0 3507 - 40 Wy 302°F)
Dperating -0t 1507 C {40 b 30278}
Switching Opedars Poirt 5.7%1.25° (3,282,173 aun}
Characteristics™ o oo 47250 (3162221 ).

Diftecontigl Travei

842470 17 455334 mnn

* &3 wittvall safid] state componens, sensor pertorrmanta can be expectad o detetomte as
rating Hmits ave Approachiod; owever, $on507s will rot be damagod unlgss the fimils are

axsepded.
** Sap Reforarce Tanget tabita.

TARGET GUIDELINES

The Target Guidelines table provides ba-
sicparamaters when an application is not
fasricled to o spechic target.

Any target whee! that axcesds the follow-
ing m¥nwnum  specifications can be
sensed over t'ne entire mmpuraia}re'range
af ~30" 1015070 with any sensing-gap up
o 08D . {2.0mm). Thisdatzis based on
a4in. (102 mm; diameter wheel, rolating
10 to 3600 RPM.

Reference Target Dimensions

Touth Hegg: 200 i (5.0 e min.
Tty Wikt AOG . (2.54 sang min.
Testh Spacing: A00 . (10,18 mam miny.
Target Thicknuss: 250 . (6.3 mny

Sensor Gutput fwith pull-up resister add-
ed o cutput circuil)

{Eat]

YRS

 Drloatn g

Honoywed @ MICRD SYWATOH Sensingand Cantol ¢ 1AEL537-6045 US4 » 4 1LRIS.235.8BA7 Ieteratong o 1530717

REFERENCE TARGET/CONDITIONS
Characisristics willvary dueto target size,
geometry, jocation, and material. Sensor
spesiications wers derived using-a cold-
rolizd steel reference farget. See iable.
right. for-reference targst confi qarauon
angd evaluation conditions.

GT1 Series

Target

Digrevetes: £ (1018 )
Tesesth Whdth: D i B B%
Trhickaess: 260 i, (B35 e
Tesi Condilions

Ao Gap: 0400 080 #e. $1.02 45 203 rmn}

¥ Supply. 45024V
KB 10 g, I max.

173360 Canads 53



Black / Red

Qperating Termp  ~D 10+ 160 deg C
Quitput Siates Air High
Matai  Low (8 sex Hois Typ}

Black / White .
Sig

ov
NOTE: Shielded Cable should

Sensor
Tooth Width Tooth Spacing
2.5 mm min Gap 10 mm min
Tooth Height /r—;’” 2.0 mm max A 7
5 mm min ’

-

I e

Disk Thickness : 6mm minimum

used to connect sensor.

ADL Setup

Speed setup. W0 Lee O TERAICN CONTUE I8 Buge vanNI0n L1 e 1t (s he |ess than
Seiect "HALL" Seasce type 0.5 L0 give 1 EKPM in Z00KPH sccwacy |

&g, 1 e edge =pacing iz 20rmm then the vasistion must bs less then 0.1 mm.

+8V
Sig
ov

+8V
Sig
ov

+8Vv
Sig
ov

ADL

r—— +8V

— Speead or Digital Input

r——— 0V

ECU

1 +8V
—— Digital Input
1 0V

TC MUX (Hail Type)

+8V

— Input

1 0V

Sheet No| Drawing No

Tite GT101 Hall Effect Sensor
M OTeC Date Drawn ST | App

Progucts  ADL, £cu, TCmux | 1 of 1 XOZ

LD

JejjelSul — JOSUas 1030 |jey paads [9ayM :

uol

781 9%eq
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G-8: Suspension position linear potentiometer —

specifications

Useiul slectricad strake {C.E.12)

25ENTN I00/125/150

Main features

.

25 to 180 mm. stroke

Mechanical fixing using bracksets. selfaligning
taliyoints or flange

independent lineanty upto  0,05%

infinite resolution

No vanation of electrical signai outside theorical
electrical stroke

Displacement speed up to 10 nvs

Working temperature: -30...+100°C

Elgctrcat connaction: 3-pole screened cable {1m length)
Life duration: > 25x 10" meters or > 100x1{ operations
uhicheveris the smalier {within C.E.U.)}

Grade of protection 1P60

tretependent inaarity
{wilhin C.E U}

see table

Dispdacenent spesd

% 10 s

Dispiacement force «0.8N

Vibratiors 5,252, Amax =075 mm
amax. =20 g

Shnok &g, vims,

Toterance on resistance 4 20%

Reearnmendad cursyr <01 pA

curmsnt

Paximum oursor

currant A0mA

Maxitnum applicails voltage

565 {ablg

Eiectricg isontion

»HOML &t HO0V= toar, 28

Uielectric sengtn

< 1900 pA al SH0V~, 50Hz. 25, towr

Dassipalion al A0°0
{OW at 120°Ct

4oi tabie

Tamp. Cogll. of the msislance

=200 L 200npy o

Anluad Temperaturs Cogflicient
of tha auput voitage

s

< LAEppn

Working lempetature

230, WU

Blorage wmparaturg

.. 120°C

Case materizt

Epodised auminium
Nytan 80 3% 40

Cunlrad e materal

Staintess slad
AISE 303

Faeig

»1as

%ﬁ
—f L

4128

tmpertant: ail tha data rerort
cutrelt acress the ooy
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Usefut elactrical stroke (CEU.Y+17-0 mm 23 50 75 100 125 150
Theoretical electical stroks (CET.) 1 wm CEU +1
Resigiance (CET) [{¢] 1 2 3 ] 5 6
independent fnaarity +% 0.2 0.1 0.1 0.1 0.05 0.05
{within C.£.1.)
Dissipation at 40°C (0W al 120°C) W 0.5 1 1.5 2 25 3
Maxirmirs applicable vottage v 20 40 60
Mechanical sirake {C.M.) mm CEU 5
mod. P22 -8 M 4.5 88,5 1245 1485 | 1745 189.5
Case kength (A) mod. PZ32 - A mm 162 127 152 177 202 227
mod. P22 -+ T 745 98.5 1245 1496 | 1745 1935
Recomrmended distante between brackets (B} rum 42 &7 92 117 142 167
KMinirauzn distanca batween ball-joings (C) am 153 178 263 228 253 278
wod. PZ12- 8 q 45 55 5 75 85 95
Weight mod. PZ12 - A q 70 84 a0 186 110 120
mod. PZ12 - F g 80 79 8D o0 106 1i¢

Displacament transducer PZ12 RN
Cabie
outpul
Blounting by Drackets
— blua Mourting by
—) yellow sefaligring ball-joints
- slounting by flange F

O brown
C.E.U. Model |—————

I renuested . # iz pogsitie io supply
modes with non-standand mectanical
andéor elactrical feaiurss.

Connactior side

Code

2 mourting brackets for PZ12-§ STAD74

Exarngles: P212-8 « 25
Dizptzcement transducer model PZ12, maunting by brackeis,
usefut efecininal siroks (U.£.40.) 25aum

GEFRAN gpa resensas the tight 16 make any kind of design ur funaticnal modification at any moment wilthuat pricy notice

GEFRAN spa

via Sebina, 74

28050 PROVAGLIC YISED (85) - (TALIA
gt ph. 0309688.1 - fax. 0309630063

EHAN irternet. hitp:iferervw gafran.com

cord. 8487514755
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ADL Setup  omeasure distance)

Channel Assignments

Agsign a distance channel ie: Braka Pedal position

Sensor Calibration

1. In Calibration, select change.

2. Select Ratiometnic{5V).

3. In calibration table enter the distance
the pedal has moved and press "Read
Value". You will end up with a table
like the example.

\'2 mm
1.23 0
1.99 5
2.34 10
2.89 15
3.04 20

Deutsch MT04-3P

3| 5v
Sig
1 ov

ADL

18,28,44
Sig »—— Note 1

ov w17:27.431 o,

Note 1

39,41,42 ) inputmay be used.

Analog Voltage ( Pins 1,2,3,4,5,19,20,21,22,23,24,25,26
45,46,47.48,49,50) or Analog Temp { Pins 34,35,36,37,38,

Sheet No

M T C Titte Linear Position Sensor
0 e Date  21/09/1939 lewnST lApp ADI Products: ADL

1of1

Drawing No

X24

uonejjelsul

6-9

— Ja)awonuajod Jteaul] uonisod uoisuadsng

G81 33ed



— Steering Shaft

.

; ]

ADL

+5V »—— Sensor 5V

St

3 Pin Deutsch
{mating connector #68052)

NOTE 1
G m=»—| Analog VoIt Input

0V — Sensor OV

RED +5V 3
o VIOLET SIG 2
B \Black av 1
ADL Setup
Channel Assignments NOTE 1
Assign a Steering Chaneel to the approgpriate pin ADL PINS

Sensor Calibration
Measurement method = Ratiometric
Turn wheel to desired angle & enter angle in deg
table. Then click on road value to read sensor,,
Right turn = positive angles
Leftturn = negative angles
Straight = 0 degree

+ 5V Analog Pins are 18, 28, 44

OV Analog Pins are 17, 27, 33, 40, 43
Analog Volit Input Pins are 1, 2, 3, 4, 5,
19, 20, 21, 22, 23, 24, 25, 26, 45, 46, 47
48, 49, 50

MoTeC

Title

MoTeC STEERING ANGLE SE

NSOR Sheet No| Drawing No

Date

Products ADL

12/12]2000 |OrawnSI'| App

10f1 X21

uoniejjeisul

01-9

— lajawonualod |eiped ajbue buliaals

981 a8eq
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G-11: Brake pressure transducer - specifications

ECLIPSE® ¢ oM pRESSURE TRANSDUCER

TECHNICAL SPECIFICATIONS

RANGE DIMENSIONS Eclipse with Packard
xX = Rofies
15,25, 50 PSS 0K
(198,250, 530, W00 2000, 3000 5909, 70 PSK . 2
31,24, 7targ | T
1.6
{30, 15, 2035, 50, WK, 206, 350 700 dar s} T 7 (754
PHYSICAL / l
s
Proof Prassure 13 xigk0 tanp Vrsw ln 1285200 P51 1R2VNPT, 5 (15,9 Har
Burst Pressurs 5 % 13fea ame PoLinm BRIy 0K COmMALR .6 1§16} Hex
Eclipse with Hirschmann
Material in Contact . s g Susl Brsa AN
With Media 300 saries staiakss stegl, braze compegund
Shotk 56 4 ¢ peak {5 millisspands)
Vibration Mogts MILSH
Cums AK, H
ELECTRICAL Veoliage oulpyt Cutrent oiput =
496 Vi, nomi ioop
Full Scale Owtpst ©5- 45 Vi
2e15 Qutpud 8% ¢ nomisg! -
&

Excitation G4 Vi 2 G225 Vot €0 20mA

10 35 Ve feam

Reverse Polartiy

o

<y

Protection Ve
insulation Resistance Load resistance in current loop
R
Elgetricat Connestion
AR
PERFORMANCE
Agcaracy
> Vs
Dperating B KA §AR> 10 D OES
Temperature Range T w8145 10 28R
Compansates A€ BPP B e B D
Temperature Rangs VRO RIS
)"‘ ra
Total Enror o~ -
— ot - =37
B
7 — i@
7% —e 52
¢ % 8 % 1%
+ of Raage
PACKARD CONMECTOR PINS HIRSCHMANN CONNECTOR PINS
Vattage Cunent Valtage Corrom
ER R % i
: o Pin? | Tt D R
o I I ]
P — Fal Comnen Frter
fi d | hakesn | o Dk
@
-8B 0 -333-0ATA 35



1/8-27 NPT

i

ADL Setup

Channel Assignments
Assign he pressure Channel 10 he apprgaiiate pin
Sensor Calibration

Press "Select” and choose comec! calitration file for the sensor.
For example, Data Inst Edlipse 100 psi MAR.C1P

ECU Sstup M8

Sensor Calibration| 100 PS| sensor
Digplay in KPA 17

Display in PSI 23
Dispiay in InHg 29

ECU Setup M4 M4-8
Sensor Calibration| 100 PS! sensor

—» OV _A%__.

+5V NOTE 1

+5V 3»— Sensor 5V
Sig =»—— Analog Voit Input

Sig 0V »—— Sensor 0V

NOTE 1: _ M8 ECU
+ 5V Analog Pins are 18, 28, 44 —
0V Analog Pins are 17, 27, 33,40, 43 +5V = 12A 5V

Analog Volt Input Pins are 1, 2, 3, 4, 5,
19, 20, 21, 22, 23, 24, 25, 26, 45, 46, 47

48, 49, 50 Sig »——— NOTE 2
NOTE 2:
M8 input pins are 28A,27A,13B8,78,88,98

14B, 158 & 16B M4/ M4-8 ECU

M4 and M4-8 input pins are 17,18 & 30

+5v »— 31 sy

Sig =»—— NOTE 2

e
o T * = DISPLAY IN KPA v 2| oy
AUX VOLT PIN 3*
100 PSI Sensor CalibratienTables for M4-MJ4-8
Map Pin O] 1o} 20 (30 |40 |30 160 f20 [0 |90 | yo6 | 11d] 120] 36| 140 150 ] 160 170 ] 180 [ 190 | 200 | 210 [ 220 | 230 | 240 | 250
TO2[ A ISR IQ0 Va0 [ 172 ) IS4 196 | 208 219 [ 234 [ 243 ) 254 266 278 | 296 301 | 313 | 325 | 337 [ 348 | 360 {372 | 3R4 | 393
260 | 270 | 286[200] 300] 310f 320) 236 ] 340 35| 360| 370 380} 390 400| G0 420 30| 0| 450 | d60{ 470 480 awo| I
J07 | 319 30| a2 asd o6 [ 477|489 | 301 ] 513| s2a| 336| sas| 359| 570 sx3| s0x| 606 | 18] 630 | 64| 683 | 66s| 73] 689
aun Fomp &b 0] 901 80 [120]160] 200] 248 as0] 220 360 400 | 40| 480 | 520 | 360 600 | 640 | a0 [ 720 | 7607 | 800 | 840 vsso 920 | 960 | 1000
Aux VoliPin | (02| 149] 196 | 2431 290( 336 | 383 | 430 477 | 524 5370 | 618665 | 711 | 758 [ 805 | 832 | fow | 94ib | 981 (1018 [1034 | 1001 127 {164 1200

[ Tte_DATA INSTRUMENTS (ECLIPSE) | ShestNo| Drawing o
MoTeC

Date  28/07/1999

Drawn ST lApp AD] Preducts” ADL, ECU 10f1 x22

(450

jejjelsul — 19onpsued) ainssaad ayeug :

uol

881 ased
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G-13: Attitude & heading reference sensor —
specifications and installation

Y
\New

B 4

AHRS

ATHIUDE & HEADING REFERENGE SYSTEM,

v Roli, Fitch and Heading Angle in
Dynamic Environments

v Enhanced Performance Kaiman
Filter Algorithm

v High Stability MEMS Sersors

v High Range Gyro and Accel
Opiticns

Applications

v UARPY Contro!

AHRS400CA ©omy-Hox-aHRS)

lion

v Phatform Stabi . .
The Crossbow AHRSE00CA is ahigh 1o deterrine stabifized roll, pitch,

v Avionics performarice, solid-state sltitude and  and heading angles in static and
heading reference system intended dynamics conditions. The Kalman
for airhorne applications such as Fitter rplernentation resuftsin a
UAY control, Avionics, and Platform continuous on-tine gyro bias
x Staitization. This higr relizbilily, calibration, and an adzptive attitude
i stran-down inertig] subsystem and heading measurement that is
provides attitude and heading stehiized by the fong term gravily
v measurermnent with static and nd magretic north refarences.
-t dynamic accuracy comgarabie to Output data i provided in both
traditional spinning mass vertical anatog and digilal (RS-232} formats,
L el i 13y <
ang directional gyros. . . ”
onetgyes Fach tnertial Syslem comes with 3
z This AHRSADD series product bullds  User's Manuat offering helpful hints
on Lhe performande of the AWRS300  on programming, installation, and
- raen 1 series. It features higher performance  productintormation. o addition,
a o [ sensars, inciuding sificon MEMS Crosshows GYRO-VIEW software s
3 4 hhdes . k
g- G e Vo accelerometers and gyroscopes with  included to assist you in system
- won  lwer noise and improved bias development and evaluation, and
P . BA® cabidy, atlews yosu s perfonn data Acuisition,
0
3 Tre AHRSS0UCA achievas 13
excelient performance by employing
proprietary Kalmarn Fitter algorithms
o=
(LTS o
[T T 2
. amn o
* Y151 d
I L §T
s ] - .
TavVes
x
A0
mw
3 403
Y a: fate
e . famp Senset
e Y
S
e —— AHRS Block Diagram




Page 190

Crossbhew

#5232 Facewve Data

input Pows

Pin Diagram

inertial systems

Orderis tformation

ALIUCE

phone: 408 .965.3300 v fax: 408.324 4840 v ¢-mail; info@xbow com ¥ web: www xhow com
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