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ABSTRACT 

There is a need for reliable automotive performance. While automotive engineers are 

highly trained mechanical engineers, there is a requirement to keep abreast of the 

emerging technologies such as neural networks or fast-converging algorithms. Any 

significant or radical change comes about through multi-disciplinary interaction. 

Emerging technologies such as evolutionary algorithms, neural networks and fuzzy 

logic are constantly applied to more diverse technological applications. 

From automotive industry point of view, continual attempts are made to build models 

to avoid vehicle roll over. While highly advanced automotive manufacturers are 

carrying out such research, very little or no results are available in the public domain. 

In this thesis, critical parameters responsible for vehicle roll over will be identified 

and predicted. As part of the model verification, a hardware comprising of a Formula 

SAE race-car, sensory technology and instrumentation will be developed. This thesis 

highlights successful application of roll-over parameters namely longitudinal velocity, 

v, and vehicle roll angle, O r. This prediction is seen as a step towards identifying on-

line warning systems for roll over detection and subsequent control systems to avoid 

roll over. 
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Chapter 1 - Introduction 

The introduction of the automobile ownership to the general public by Henry Ford in 

the early part of the last century has created a moving lifestyle for millions of people 

across the globe. The advantages of this lifestyle include greater freedom and 

flexibility of travel for all car owners, massive employment in the industries which 

design, produce and maintain these machines as well as the industries that fuel them. 

Cars have for many years provided users with an economic, flexible and often-fun 

form of transport to get them from one point to another for whatever reason. Sadly it 

seems few gains come without a loss. The disadvantage of mass individually 

controlled transport is greater scope for human error, and increased risk for all road 

users. 

In the US in 1960, the Dr. William Haddon became the first director of the National 

Highway Safety Bureau (NHSB). Haddon, a public health physician recognised that 

standard public health methods and epidemiology could be used to study and prevent 

motor vehicle and other injuries. He examined interactions between host (human), 

agent (motor vehicle) and environment (highway), before during and after the incident 

concluding that each phase could be tackled to minimise the injuries.[1] In this thesis 

the agent or motor vehicle is considered and a further step toward preventing 

accidents proposed for this phase. 

In the majority of studies done, human error is blamed for a significant proportion of 

motor vehicle related injuries (host). Some common causes of this error are excessive 

alcohol consumption, fatigue, driver inattention and driver inexperience. Much has 

already been done from the fields of public health and education to minimise the 

likelihood of drivers getting behind the wheel in these conditions. A great deal has 

also been done in highway improvement to make safer roads and to encourage drivers 

to obey speed limits (environment). The third prong to this attack lies clearly with the 

motor vehicle itself (the agent). 
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1.1 Need for sensor control in automobiles 

Sensor control is a reasonably old concept. As with most new technology, Science-

fiction writers have been suggesting it for years. Only recently, however, have the 

computational power and support technologies begun to mature to the required level. 

The idea of sensor control is to use a number of sensors throughout the car to measure 

and collect instantaneous data pertaining to the vehicle's current state of motion. This 

information may then be used to control aspects of the vehicle's dynamic behaviour 

including lateral sliding and vehicle roll over. Depending on the level of control this 

may mean; a split second emergency warning, suggested course of action or removal 

of control from the driver to the sensor control system. Each level of control naturally 

requires an additional increase in the reliability and accuracy of the system. (A false 

alarm is less dangerous than is an incorrect driver override strategy.) 

Sensor control will allow for safer, more comfortable driving for all motorists using 

public highways. It will allow greater control over fuel economy and eventually will 

allow drivers to elicit the maximum life from their vehicles and vehicle components. 

This will lead to greater reliability and investment return for the automobile owner. 

1.2 Concept of intelligent car used for traffic control, auto navigation 

and prevention of vehicle roll over. 

Intelligence and artificial intelligence has many definitions. For the purpose of this 

thesis we will define the concept of the intelligent vehicle as a vehicle possessing the 

ability to make driving decisions based on its environment and previous events in 

similar environments. This vehicle will make decisions based on the data it obtains 

from its sensors and from trends built up from the data it has previously received. In 

this respect the vehicle is expected to 'learn from its experience'. This dynamic 

experience then becomes vital in critical situations where driver inexperience can 

prove fatal such as high-speed sliding and potential vehicle roll over. 

The intelligent highway is a concept intended to maximise the flow rate of traffic 

along highways while increasing passenger safety. The ideal of this concept includes 

a navigation component whereby the most efficient route between locations is always 
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taken. Development of intelligent highway technologies aims to reduce traffic 

congestion and while maximising economy and safety. Many systems proposed thus 

far have required the installation of expensive cameras and sensors into current 

highway systems. A feasible solution proposes the use of sensors and transmitters 

already being built into many new cars to send information back and forth to a central 

body.[2] As such it seems the 'sensitive car' may be a critical component in the 

development of the intelligent highway as well as dynamic vehicle safety. 

1.3 Need for reliable estimation of dynamic performance 

Central to the technology for controlling vehicle dynamics is, not only the output from 

the sensors, but also the interpretation of this output. For real-time critical driving 

control, it is necessary to have split second information about what is currently 

happening to the dynamics of the vehicle. This is the role of reliable dynamic 

performance estimation. The control systems based on the sensors are useless for 

altering the outcome an event if the information arrives too late for the control system 

to activate. Since sensors are not yet able to sense into the future a reliable estimation 

of what is currently occurring is needed. This estimation must be based on the precise 

sensory outputs, which are coordinated to indicate the true 'state' the vehicle is in. 

Such an estimate allows the setting of control limits that would then allow impending 

difficulty to be controlled. 

1.4 Current state of affairs 

While the majority of the major automotive manufacturers is investigating sensor 

control, and in many cases, producing models featuring localised forms of this 

control, progress tends to centre on individual systems rather than a more global 

approach. The advantage of a global or comprehensive approach becomes apparent in 

reduced cost for additional features.[3] 

As many of the control features require the same inputs and utilise the same controls, 

(eg. ASS and ABS both use individual wheel speed and brake pressure in their control 

systems) it is possible to attain both systems for little more than the initial cost of just 
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one system. The clear advantage is economic for both the consumer and the 

manufacturer 

1.5 Difference between local control and comprehensive control 

As previously stated there is a clear distinction between what might be termed local 

control and global or comprehensive of vehicle dynamics. A discussion and some 

examples of the two systems follow. 

Local control refers to control systems that focus on one aspect of the automotive 

system only. While many of these systems may appear on the one vehicle the control 

loop for each relies only on the components it controls and does not coordinate with 

any other system on board. There are already many examples of this type of control 

on the modern car. To follow are three of the more common control systems. 

1.5.1 Cruise control 

Cruise control allows the maintenance of a set speed, chosen by the driver. The driver 

sets the required speed and from then on no input is required from the accelerator 

pedal to maintain the speed. Within the control loop, the engine RPM is varied to 

maintain the vehicle speed obtained from a wheel speed sensor. The simple feedback 

loop means that the speed will remain constant relative to the ground regardless of 

any inclines or declines that may be encountered during the journey. In each case the 

control loop will raise or lower the engine RPM to match the wheel speed with the 

value set by the driver. The system may be immediately over-ridden by a touch on the 

brake pedal or accelerator that allows for emergency manoeuvres should they be 

required. Minor problems with the system may include slow response to decline speed 

changes, a problem in the age of speed cameras, and a reduction in the need for driver 

concentration which may lead to inattentiveness or boredom whilst driving. 

Adaptive cruise control is the next step in this line of development where the distance 

to the vehicle in front is set to allow constant speed following as is often the case in 

congested traffic.[4] Such a system requires forward 'seeing' sensors to determine the 

distance or time to the next vehicle as well as an advanced control system . to  allow for 

quick braking and acceleration. 
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1.5.2 ABS 

ABS is the German acronym used for Anti-lock Braking. These systems are now wide 

spread in the automotive industry and are becoming a standard on new vehicles. In 

heavy braking or braking under low friction conditions the wheels undergoing the 

braking action may be caused to lock up or skid due to the force on the wheel from 

the brake being greater than the force of the wheel in contact with the road. As it is 

known that the coefficient of sliding friction is somewhat lower than that of static 

friction, the braking force from wheels that are skidding (sliding) will be less than that 

of wheels that continue to roll (stationary at point of contact). In addition to this a 

rolling tyre can exert a lateral force on the road whereas a sliding tyre cannot, hence 

the ability to steer is lost when sliding occurs (this is discussed in greater detail in 

chapter 2). To prevent these effects, the anti-lock brake system senses when the 

wheels are stationary ie have 'locked up' and are skidding and forces the brake 

pressure to release to force the wheels to allow them to roll again. 

This system is constantly active on the vehicle and to some extent takes absolute 

control of the brake pressure away from the driver. It was for this reason somewhat 

reluctantly accepted after its introduction. As may be expected drivers are hesitant to 

relinquish control to a system until it has been well proven. It has over the years 

proven itself to be a reliable and valuable asset for safer driving. 

1.5.3 ASS 

ASS or Anti-Skid Steering is a control strategy reduces the angle of steering to that 

which the road can take without sliding.[5] This is much the same principal as ABS, 

which reduces the brake forces to that which the road can take without skidding. The 

value of such a system is supported by the great difficulty encountered by drivers 

other than professional drivers when trying to control a skidding vehicle. Clearly 

avoiding the skid or potential roll over situation to begin with would be preferable. 

The difficulty encountered with ASS that was encountered also with ABS is proving 

that the system will always perform better than a driver without the system performs. 

It seems that this may be quite difficult to prove beyond the consumer's doubt. 
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1.5.4 Comprehensive control 

Comprehensive control is the integration of a number of local controls into one 

system. In this form of control the local units are able to assist for the best overall 

performance of the vehicle. Comprehensive control may mean using individual wheel 

braking to control the maximum allowable steering angle whilst avoiding vehicle roll 

over. It may mean using on-line engine control to maintain speed in cruise control or 

control of headway whilst still allowing the driver to dictate the movements of the car. 

The major objective is to allow the driver to drive up to the vehicle's limits without 

crossing them as this would create an unsafe environment for the driver and other 

road users. As a comprehensive system, the best means available may be utilised to 

avoid incident as opposed to the modular, local approaches that allow intervention by 

one system only. With current computing power now capable of real time decision-

making and computational speed continuing to increase rapidly, the technological 

support for such a system is becoming available. 

A number of manufacturers have working systems that begin to emulate this concept 

at least to some degree. At this time a complete working system of comprehensive 

control does not appear to exist in the public domain. It is certainly not yet available 

to the consumer. 

1.6 Need for comprehensive control to avoid vehicle roll over 

Although much has been done in this area to date, a primary need still exists in the 

automotive industry to continue to reduce the number of deaths and injuries through 

motor vehicle accidents. Many localised systems save lives either through direct 

application eg. ABS, or through reduction of driver fatigue which is a known cause of 

accidents eg. Cruise control. To prevent accidents of a catastrophic nature, such as 

vehicle roll over, requires an integrated comprehensive approach. Accidents will 

continue to occur, and as the number of vehicles using the public roads increases so 

must the standard of safety equipment with which a vehicle is fitted. A great many 

local systems are available but integration is required to prevent redundancy between 

the systems. The increase in efficient use of resources available will quickly bring 

down the price of such systems to the consumer; thus making them accessible to a 



Page 7 

broader cross-section of the community. The safer cars become and the greater the 

number of safe cars the lower the likelihood of accidents and the lower the cost of 

accidents to the community. 

1.7 Need for intelligent tools 

A complex problem such as predicting the parameters that contribute to vehicle roll 

over is ideally suited to the application of intelligent tools, by this is meant the use of 

artificial neural networks. These networks are specifically suited to the numerical 

estimation of complex non-linear relationships such as will be found in the study of 

vehicle dynamics. However, the use of intelligent tools such as artificial neural 

networks implies a direct need for training and training data. The backbone of the 

neural network is its ability to produce the same results as the particular system 

without specific knowledge of that system. These tools have been proven on many 

manufacturing systems already and the applications continue to expand. 

Similarly an intelligent system can be of use in other than critical driving conditions 

through the control of driving economy. Such a system would allow the driver to be 

aware of bad habits that are costing money in the form of excess fuel or excessively 

worn parts. It may also allow for control to be implemented maintaining a set value of 

efficiency. However, the training data must be of high quality specific to its purpose. 

The computer acronym GIGO is pertinent in this case, garbage in garbage out means 

that for a system to behave comprehensively it must be trained comprehensively. This 

requires the use of a database built up from extensive track trials of the highest quality 

standard. Accurate comprehensive data will yield accurate comprehensive results. 

1.8 What has been done to date 

The majority of work completed to date focuses on one or other aspect of sensor 

control. Many systems have been developed encompassing control of only one of 

many systems of the automobile. Overlap between the systems has been largely 

ignored and the result is great room for centralised use of technology. As with the 

majority of competitive industries 'the edge' in automobile manufacturing often lies 
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in the evolution of technology, for this reason much of the information relating to 

sensor control tools and technology remains in the private domain. 

Finally, a reliable estimation of parameters responsible primarily for vehicle roll over, 

as a cause of accidents will be identified and predicted in this thesis. 
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Chapter 2 Vehicle Dynamics Control and Applied Intelligence 

To estimate parameters responsible for roll over, an understanding of vehicle 

dynamics is imperative. While the use of neural networks reduces the need to 

completely understand the physical characteristics of a system when modelling it, it is 

still useful to have a conceptual understanding of the dynamics involved. This is to 

build the basis for decisions utilised in control systems. 

2.1 Conceptual Vehicular Physics 

Regardless of a vehicle's state of movement, a wide range of highly varied forces act 

on a vehicle in motion. One group of these forces occurs along the longitudinal axis; 

including propulsive force, aerodynamic drag and rolling resistance. Another group 

acts laterally, these include crosswinds and the centrifugal forces generated during 

cornering. These forces are transferred to the tyres and ultimately to the road surface 

by a number of transfer elements, these are 

• The chassis (eg wind force), 

• The steering (steering force), 

• The engine, 

• The transmission (propulsive force), and the 

• Brake system (braking force). 

A number of forces act upon the vehicle "from below", these include the lateral and 

longitudinal forces resulting from the gradient of the road and its transverse slope. [6] 

When the forces mentioned reach extreme magnitudes, during say, major shifts in the 

vehicle's state of motion, they can become dangerous (eg skidding) which may result 

in an accident occurring. It is thus important when considering the dynamic handling 

response of a vehicle to consider the following parameters: 

• Steering-wheel angle, 

• Lateral acceleration, 

• Linear acceleration/deceleration, 

• Yaw rate, 

• Float and roll angles 

Additional data that will allow more precise definition of specific handling patterns: 
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• Longitudinal and transversal velocity (lateral velocity), 

• Steering angles of front and rear wheels, 

• Slip angles at all wheels, 

• Torque applied at the steering wheel. [6] 

Fundamental to the understanding of vehicle dynamics that cause roll over is a 

detailed knowledge of forces acting upon the vehicle. The most complex of these 

interactions is the force through the tyres. A discussion of tyre dynamics follows 

including friction factor, slip and overall vehicle dynamics and some applications 

already developed that deal with these factors. 

The tire is the connecting element linking the vehicle and the road surface. The tire 

transfers propulsive, braking and lateral forces. This environment means the vehicle's 

load limits are defined by various physical factors.[6] 

2.1.1 Vertical Tyre Force 

The vertical tyre force is the downward force exerted at the contact patch between the 

tyre and the road. This force consists of the vehicle weight and its load distributed 

over the wheels. The road longitudinal gradient and lateral grade add extra 

components. Additional loads on the vehicle can increase or decrease the vertical tyre 

forces. In the case of traversing a curve, the effect would be to increase the load on 

the outer tyres and decrease the load on the inner tyres. The effect of additional load is 

to reshape the contact patch, which is not uniform as the tyre sidewalls take much of 

the load and prevent uniformity. 

2.1.2 Longitudinal Force 

When rolling along a road or other surface the wheel rotation rate is proportional to 

the wheel hub's linear velocity, if we consider for the time being that tyre rolling-

resistance is ignored. This relationship is affected by external influences acting on the 

wheel, such as a brake force decelerating the wheel. The resulting interrelationship 

produces wheel slip. 
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2.1.3 Tyre Slip 

Tyre slip corresponds to the difference between the theoretical and actual distances 

covered by the tyres. For example, if the circumference of a standard passenger car 

tyre were roughly 1.5 meters, then it would be logical to assume those ten rotations of 

the wheel translate into 15 meters of vehicle travel. In reality, the actual distance is 

shorter owing to the tyre slip. 

Tyre slip originates from the tyre's inherent inflexibility. A driven wheel rolling along 

the road surface is subject to deformation while simultaneously flexing with varying 

intensity according to weather and road surface conditions. This leads to energy 

consumption and heats the tyre. Because the tyre's primary constituent is rubber, only 

a portion of this deformation energy is recovered as the tyre leaves its contact zone or 

patch. 

Under braking and deceleration, as well as during acceleration — either from standing 

or rolling start — the level of force transfer depends upon the tyres' slip rates at the 

road surface. The relationship between slip and the tyre's coefficient of friction is 

basically the same whether accelerating or braking. Similarly the force transfer 

depends upon the tyres' slip rates at the road surface. The relationship between slip 

and the coefficient of friction is basically the same regardless of whether the vehicle is 

accelerating or decelerating. The vast majority of braking and acceleration processes 

take place at minimal slip rates within a stable range; here, increases in slip will be 

followed by a corresponding rise in available adhesion. 

2.1.4 Friction Factor 

Application of braking torque to the wheel generates a braking force, say FB, between 

the tyre and the road surface. Under steady-state operation that is no wheel 

acceleration, this braking force is proportional to the braking torque. The relationship 

between the tyres' vertical contact force and the braking force that can be transmitted 

to the road is defined by the coefficient of static friction p HF.[6] 

The coefficient of static friction, which is the maximum coefficient of adhesion, 

varies to reflect changes in such factors as vehicle speed, tyre condition and road- 
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surface. The static friction coefficient reflects the properties that materialise when tyre 

and road-surface materials meet, as well as all of the subsidiary influences that act on 

this combination. Actual figures are thus directly affected by road-surface condition. 

2.1.5 Aquaplaning 

A layer of rainwater on the road can cause the friction coefficient to dive towards zero 

as the vehicle is lifted from the tractive surface of the road. This phenomenon is 

known as "aquaplaning" and its distinctive feature is the loss of physical contact 

between tyre and road that occurs when a wedge of water forms to separate the two 

across the entire contact patch. 

The tendency to aquaplane is defined by: 

• The depth of the water on the road surface, 

• The vehicle's speed, 

• Tyre tread pattern and wear, 

• The load pressing the tyre against the road. [6] 

Wide tyres are particularly susceptible to aquaplaning. It is not possible to brake or 

steer an aquaplaning vehicle, as neither steering inputs nor braking force can be 

transferred to the road. 

2.1.6 Friction — tyre slip. 

The friction generated by a tyre is primarily determined by its longitudinal (rotational) 

slip. While vertical tyre force plays a subsidiary role, a roughly linear relationship 

exists between braking force and vertical tyre force during constant tyre slip. 

Yet another force defining the friction is the wheel's slip angle (lateral slip). Whereas 

with constant tyre slip, the transfer of braking and motive forces decrease in response 

to higher wheel slip angles, increases in the wheel slip angle with constant braking 

and motive force will result in higher slip rates. 
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Slip angle .o and effect of lateral force Vs 
(vertical view) 

Figure 2.1-1 Wheel Slip Angle [6] 

A freely rotating wheel reacts to application of lateral force with sideways movement 

at the hub. The ratio of lateral speed to longitudinal speed is termed lateral slip. The 

angle separating the resulting wheel-speed and the longitudinal speed is the slip angle 

a as shown in Figure 2.1-1. Under steady-state operation (without wheel acceleration) 

the axial force applied to the wheel through the axle as lateral force Fs in a state of 

equilibrium with the lateral forces exerted on the wheel through the road surface. The 

ratio of the lateral force transferred through the axle to the wheel's vertical tyre force 

FN is the coefficient of lateral force 1.4.[6] 

Figure 2.1-2 Ratio of Lateral Tyre Force to Vertical Tyre Force [6] 

The relationship between the slip angle a and the coefficient of lateral force !us  is non-

linear and is defined by the slip-angle curve. The coefficient of lateral force tt s  

contrasts with the coefficient of static friction [tHF by exhibiting substantial sensitivity 

to the vertical tyre force FN during acceleration and braking. This characteristic is of 
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special interest for the auto manufacturers' suspension designers in their attempts to 

improve the handling characteristics and prevent vehicle roll over by means of anti-

roll bars. Very high lateral forces F s  induce substantial shifts in the position of the 

contact patch relative to the wheel rim and in doing so delay the build up of lateral 

forces as shown in Figure 2.1-2. This phenomenon has a substantial effect on the 

transition response (handling during the switch from one condition to another) that 

characterise vehicles when reacting to inputs at the steering wheel. 

This affects the simplicity of estimation of velocities and accelerations dramatically. 

In the simple case of a vehicle travelling under high traction, estimates of velocities 

and accelerations can be made from the steering angle and wheel speed sensors. 

However, when the wheels begin to slide as previously mentioned the non-linearity of 

the relationship means that estimation of velocities and accelerations becomes 

increasingly complex. 

2.1.7 Force Relationships 

When lateral forces join the braking force acting upon a wheel rim, the road surface 

reacts by exerting two forces against the tyre, along both the braking and lateral axes. 

Providing the processes remain below a given physical threshold, all the forces acting 

upon the rotating wheel are effectively counterbalanced by opposite forces of equal 

magnitude from the road surface. Crossing this physical threshold upsets this state of 

equilibrium and results in a loss of vehicle stability. 

Figure 2.1-3 Total Tractive Resistances [6] 
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Total tractive resistance as shown in Figure 2.1-3 is the sum total of rolling, 

aerodynamic and climbing resistance. Overcoming this overall resistance entails 

applying sufficient tractive force to the driven wheels. The tractive force available at 

the driven wheels increases to reflect rises in such factors as available engine torque 

and the conversion ratio of the gearing between engine and wheels. It is inversely 

proportional to drive train losses. A proportion of the tractive force is needed to 

overcome total tractive resistance. Lower gearing in the form of numerically higher 

step-down conversion ratios is employed for graduated adaptation to the radical rise in 

tractive resistance encountered on uphill grades (multiple ratio transmission). The 

"surplus" by which tractive force exceeds tractive resistance accelerates the vehicle. If 

tractive resistance is higher than tractive force the vehicle will decelerate. 

Rolling resistance originates from the deformation processes between wheel and road 

surface. It is the product of the force to weight and the coefficient of rolling 

resistance. Rolling resistance, in turn, is inversely proportional to tyre radius and the 

tire's degree of deformation (affected by such factors as tyre pressure). Rolling 

resistance also increases in response to higher loads and road speeds. Yet another 

factor is paving material; the coefficient of rolling resistance on asphalt is only 

approximately 25% of that on dirt roads. 

During cornering, the rolling resistance is joined by cornering resistance, whose 

coefficient or magnitude is defined by such factors as vehicle speed, cornering radius, 

suspension geometry, tyre design, inflation pressures and the vehicle's cornering 

response (lateral acceleration at various slip angles). [6] 

2.1.8 Aerodynamic Resistance 

Aerodynamic resistance is ,determined based on a number of individual elements. 

These include barometric pressure, the vehicle's aerodynamic drag coefficient (as 

determined by its shape), the maximum vehicle cross-section and vehicle speed, 

taking headwind velocity into account. 

Clearly, if all force directions and dynamic behaviour are to be found from first 

principles and used for prediction and control, it is complex. 
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Intense crosswinds shift vehicles from their initial paths of travel in a process that is 

especially pronounced at higher vehicle speeds and with unfavourable vehicle 

dimensions. On vehicles with unfavourable configurations, sudden wind impact of the 

kind encountered when a vehicle emerges from a tree-lined passage into open 

countryside can induce substantial lateral displacement and yaw angle shifts. When 

these phenomena manifest themselves before the driver has had time to react they can 

lead to driver error. Gusts of wind acting on the vehicle at an angle add a lateral 

component to the aerodynamic drag. This force, distributed across the entire surface 

area of the vehicle, can be considered as a single crosswind force applied at a 

"pressure point D" shown in Figure 2.1-4. 

Figure 2.1-4 Vehicle in Crosswind 

The precise location of this pressure point depends upon the shape of the body and the 

air current's angle of incidence although it is usually found on the forward half of the 

vehicle. On vehicles featuring a conventional "3-box" body configuration this focal 

point is relatively consistent, and also lies closer to the centre than on a hatchback, 

where the pressure point can wander in response to changes in the air flow's angle of 

attack. On the other hand, the centre of gravity S varies as a function of vehicle load. 

Generally selecting a reference point 0 in the middle of the vehicle's forward section 

facilitates applicable portrayals of crosswind effects (regardless of suspension 

position relative to the bodywork). 
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When crosswind force is defined using a reference point other than the pressure point, 

the crosswind force at the pressure point must be included as an additional factor: this 

is the yaw moment. The wheels' lateral guiding force (cornering forces) acts as a 

counterforce to the crosswind force. Along with the slip angle and load factor, the 

lateral guiding force generated by a pneumatic tyre depends upon its size and 

dimensions, inflation pressure and the friction characteristics of the road surface. 

A pressure point location in the immediate vicinity of the vehicle's centre of gravity is 

desirable owing to its positive effects on directional stability under crosswind 

conditions. On vehicles with a natural tendency to oversteer a pressure point forward 

of the centre of gravity will minimise the tendency to wander from the original 

course. On understeering vehicles, the optimal pressure point location is immediately 

to the rear of the centre of gravity. [6] 

2.1.9 Oversteer and Understeer 

The wheel with its rubber tire must be rotating at an angle relative to its plane as a 

condition for lateral guiding forces (cornering forces) between wheel and road 

surface. This means that a slip angle must be present. Vehicles are described as 

having understeer when the slip angle of the front end increases more rapidly than the 

rear slip angle as lateral acceleration rises. The inverse condition (higher rear slip) is 

referred to as oversteer. Some vehicles display an intrinsic and invariable tendencies 

toward either oversteer or understeer, whatever the conditions. Others understeer at 

low rates of lateral acceleration before making a transition to oversteer as lateral-

acceleration rises. Here, again, an inverted response pattern is also possible (initial 

oversteer and subsequent understeer). 

2.1.10 Longitudinal Dynamics 

The vital importance of stopping distances in road safety means that the distance 

travelled during deceleration is more significant than that travelled during 

acceleration. Accelerative and decelerative maxima are obtained with the tractive or 

braking forces acting on the vehicle wheels to hold them just below their traction limit 

(point of maximum adhesion). Real-world adhesion is lower because all wheels 

cannot uniformly exploit maximum adhesion under every accelerative (decelerative) 
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process. Electronic traction, braking and stability systems (TCS, ABS and ESP) rely 

on closed-loop control to maintain force transfer in the maximum range. [6] 

2.1.11 Control—ESP 

ESP stands for Electronic Stability Program and was developed by Robert Bosch 

GmbH. It is a vehicle stability system that relies on the vehicle's braking system as a 

tool for "steering" the vehicle. It is also known as VDC or vehicle dynamic control 

system in Mercedes vehicles. The desired trajectory of the vehicle is determined from 

the driver's inputs, steering wheel angle, engine drive torque as derived from the 

accelerator pedal position, and the brake pressure. The trajectory actually taken by the 

vehicle under these conditions will vary depending on the road friction. If the road is 

slippery, with a coefficient of friction, IA less than the nominal lateral acceleration, the 

vehicle will not follow the nominal motion and the radius of the turn will become 

larger than that of the nominal motion as shown in Figure 2.1-5.[7] 

Figure 2.1-5 VDC Versus Yaw Rate Control [7] 

One of the basic state variables that describe the lateral motion of the vehicle is its 

yaw rate. It would seem reasonable to design a control system that makes the yaw rate 

of the vehicle equal to the yaw rate of the nominal motion (yaw rate control). If this 

control is used on the slippery road, the lateral acceleration and the yaw rate will not 

correspond to each other as they do during the nominal motion. In fact the slip angle 

of the vehicle increases rapidly and the vehicle 'spins out'. Hence, both the yaw rate 

and the slip angle of the vehicle must be limited to values that correspond to the 
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coefficient of friction of the road. Thus in VDC both the yaw rate and the vehicle slip 

angle are taken as the nominal state variables and this as the controlled variables.[7] 

Figure 2.1-6 Rotation of tyre force.[7] 

It is well known that both the longitudinal and lateral forces (FL, Fs) on a tyre depend 

on the tyre slip k, the slip angle a, and on the normal force on the tyre, FN. The lateral 

force a tyre generates for a given slip angle decreases with increasing magnitude of 

the tyre slip. This property is used for the control of the lateral force and the yaw 

moment on the vehicle and, therefore, the tyre slip is used as the basic control variable 

of the control algorithm. For instance, if the slip of the left front tyre is increase by a 

small amount AX from an initial value X0  and if the tyre slip angle is a0, then the yaw 

moment on the car is in a first approximation changed by the following amount: 

	

M1 = aF, 	 aF 
A/4a • cos 8„,  —  b• sin 5„)+ 	AA(a • sin g + b cos (5„,) Yll 

	

a2 	 a2 

Equation 2-1 [7] 

Here, changes in the tyre normal force as a result of a change in the tyre longitudinal 

or lateral force are neglected, as are changes in the aligning torque on the tyre. 

Similarly, the lateral and the longitudinal forces on the vehicle will be changed by the 

following amounts: 



aF 	aF AF = — s  AA, • sin 8, — 	AA • cos gw  a2 

aF 	aF AF = 	AA •cosgv, 	AA. • sin 8„ aA. 
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Equation 2-2 [7] 

Equation 2-3 [7] 

These relations which can be derived for each wheel of the vehicle are extremely non-

linear, since the derivatives of the forces are highly dependent on the operating point 

(ko,ao) of the tyre.[7] 

If the tyre slip is increased to the value X., then the lateral force on the tyre is reduced 

to the value Fs(.). At the same time a brake force FB(X 0) is generated. FR(0)  is now 

the resultant tyre force. At the limit of adhesion between the tyre and the road the 

absolute values of FR (X=0) and the FR(X0) are approximately equal. Clearly, 

increasing the tyre slip then means rotating the resultant tyre force and therefore 

changing the yaw moment, the lateral force, and the longitudinal force on the vehicle. 

The rotation can be done at each tyre so that we can freely choose at which tyre the 

slip should be changed, and by which amount. Unfortunately, the changes in the 

longitudinal forces may lead to an undesired increase in the lateral deviation of the 

vehicle from the nominal path. A compromise result can be solved by optimal design 

methods. Special attention must be given to the robustness of the design since the 

operating point (X0,a0) of the tyre is unknown (neither the tyre slip nor the slip angle 

is measured) and many related variables have estimated values only. [7] 

Because the "discriminatory" control concept relies on two individual intervention 

strategies, the system has two options for "steering" the vehicle: it can brake selected 

wheels, known as selective braking or accelerate the driven wheels.[6] Although 

advanced, these tools do not identify or predict parameters responsible for vehicle roll 

over. 

2.1.12 Control — ABS 

Anti-lock braking or ABS has been around for at least 70 years, the first patent being 

issued in 1928 to Karl Wessel for a brake force controller that was never built. Robert 
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Bosch in 1936 and Fritz Osthaus in 1940 performed fundamental work. Fritz Ostwald 

patented it in 1936, during his undergraduate study. Heinz Leiber at Daimler —Benz 

brought about the first working system in 1964.[8] 

The idea behind ABS is simple: the braking force coefficient and braking 

effectiveness are highest with the tyre at optimal brake slip. The controller modulates 

the brake pressure to keep the wheel in the optimal zone. The friction coefficient of a 

locked wheel is about 10% lower than optimum, depending on the surface. Even more 

important is the lateral, or sideways, force coefficient, since it decreases to only about 

10% of its full value when the wheel locks.[8] This decrease in the lateral force can 

allow a vehicle to slide sideways out of a curve instead of maintaining its trajectory. 

ABS systems do not necessarily exploit all available traction. In 2 channel systems 

only the wheel speed at one front wheel is sensed which can lead to lockup or under-

braking of the other front wheel. In 3 channel systems and some 4-channel systems 

the rear wheels are low-value-tied, and the modulation is based on the wheel with the 

lower adhesion. Only the very best ABS systems have four wheel sensors and can use 

all adhesion at each wheel. But even then, it may be preferable to low-value-tie the 

rear wheels for better stability, as in Mercedes', since the overriding goal is stable 

vehicle dynamics.[8] 

The goal of every ABS system is to provide minimum stopping distance and 

maximum directional control. Minimum stopping distance is achieved by maintaining 

the peak longitudinal force the tyre is capable of. Typically this value occurs at 5 to 

15% longitudinal slip between the tyre and road. Some older systems have feedback 

of one vehicle state variable: lateral acceleration. Later systems make use of 

additional information available from a yaw velocity sensor, steering wheel angle 

(and velocity) as well as other pertinent parameters.[9] Maximum directional control 

means maintaining the ability to make the vehicle turn proportional using the steering 

wheel as in normal driving situations. This is maintained by not allowing the wheels 

to lock. 
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Unfortunately ABS has been found to have a number of drawbacks under certain 

circumstances. For example below speed of 50 kph, ABS systems have been found to 

drop to as low as 82% of the deceleration of a standard braking system average 

deceleration with locked, sliding wheels.[10] Areas in which ABS continues to be 

improved include the following: economy, making the systems available to even the 

lowest cost vehicles; improvement of available traction usage under complex real 

road conditions to extend the range of performance; and to improve the interface of 

vehicle capability with driver ability to extend the range of real situation utilisation of 

available performance.[11] 

Further problems are incurred on 4 wheel drive systems sporting the ABS system. 

When braking on loose surfaces the wheel quickly stops rotating because it is 

effectively lubricated by the loose road surface. The ABS sensor immediately releases 

the wheel because it has stopped but before any significant braking can take place. 

Consequently the vehicle progresses along to the distress of the occupants without any 

significant slowing. The only current solution to this situation seems to be switching 

the ABS off completely.[12] Clearly this system would benefit from knowledge of the 

actual deceleration of the vehicle and the driver's requested deceleration from the 

brake pressure. From this extra information an intelligent decision could be made 

regarding the effectiveness of the ABS system. 

It has also been found that even drivers trained on ABS in advanced driving schools 

do not always remember to apply the brakes hard enough to activate the ABS when 

they detect an incipient loss of control.[9] 

Clearly, there are still many issues associated with the use of full time ABS. For the 

larger part, advantages of ABS tend to outweigh the drawbacks but in some areas 

such as those mentioned there is still a great deal of work to be done in creating 

systems that will perform at least as well as the current system, preferably better and 

never worse. At the heart of this intelligent decision-making is the real-time data upon 

which the decisions are based. There is a need for timely information about what the 

vehicle is doing and likely to do at every state point of a journey. Timely reliable 

estimation of the paraMeters responsible for roll over is the purpose of this thesis. 
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Automotive companies are looking for a solution that integrates these modern 

techniques as comprehensive tools for safer driving. These estimations provided in 

this thesis will form a solid basis for future work on intelligent automotive control 

systems that begin to address the problems outlined. 

2.2 Control and prediction using applied intelligence 

The first step to developing a control system is to be able to qualify and quantify the 

system in question. In the case of automotive stability control understanding and 

quantification of real time velocities and accelerations is paramount to all future work. 

In critical situations, built-in parameters allow a better vehicle behaviour estimation 

and the elimination of incorrect fault detection. In the case of complex systems, fuzzy 

logic and neural networks are often efficient tools to provide good results with 

reduced designing time.[13] 

Porcel et al.[13] aimed to show that a neuro-fuzzy approach can be utilised to 

maintain response to critical situations with increased accuracy compared with classic 

methods. The test car was a front wheel drive (FWD) vehicle. It was fitted with 

sensors to measure longitudinal and transverse velocities by an optical cross-

correlation sensor located at the rear of the vehicle. It also measured wheel velocities 

taken from the ABS system and gyro and acceleration sensors mounted near the 

centre of gravity of the car measured longitudinal and lateral accelerations and the 

yaw rate. The result of their investigation is outlined in the following sections. 

2.2.1 Longitudinal Velocity Estimation 

The critical driving conditions considered by Porcel et al. are as follows: 

• Foot off the accelerator while cornering, as may occur when a driver drives too 

fast at the beginning of a bend, and reacts by taking the foot fully off the pedal 

while still cornering. 

• Violent braking while cornering. In an emergency situation while cornering, the 

inner front wheel may lock, and the rear one may no longer adhere to the road. 

Both inner wheels may lose their contact with the road if the driver takes a bend 

on two wheels. 
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• Oversteering. This occurs when the vehicle becomes unstable during rear wheel 

lateral slide. The driver tries to compensate for the deviation of the vehicle from 

the normally expected trajectory by steering into the skid. 

• Understeering. Front wheel slide out generally occurs when taking a sharp bend at 

a high speed and lateral sliding when a driver drives too fast into a wide curve 

near the grip limit.[13] 

In the literature fuzzy logic was used to build two indicators to identify and detect the 

different ways a vehicle behaves these indicators show: 

• Loss of contact while cornering from lateral acceleration and yaw rate. 

Lateral acceleration can be high without any rear wheel locking. This occurs at 

high yaw rate, ie. a tight curve. A number of rules determine the indicator value, if 

non-zero this detects the possibility of a rear wheel losing contact with the road. 

• Oversteering, front wheel sliding out and lateral sliding. Detects critical 

deviations from the intended driving behaviour of the vehicle during lateral 

motion. Steering wheel angle, lateral acceleration, the derivative of yaw rate, and 

the derivative of transverse acceleration are considered to do this. [13] 

These indicators are discussed in more detail in chapter 6. The aggregation of the 

system means that the best combination of wheel speeds or the integral of the 

longitudinal acceleration can be used at any one time to determine the longitudinal 

velocity. 

2.2.2 Longitudinal Velocity Results 

The results for the longitudinal velocity show an improvement of the proposed fuzzy 

estimator over traditional methods of determining longitudinal velocities. Figure 2.2-1 

shows a very slight improvement in accuracy with the foot off the accelerator while 

cornering. 
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Foot off the accelerator 

Figure 2.2-1 Comparison of results for a test cycle, on a wet road, in "foot off the 

accelerator position", while cornering to the right.[13] 

The improvement is more pronounced in a small section of the 'violent braking while 

cornering' as depicted in Figure 2.2-2. Both comparisons are with the average of rear 

wheel velocities and the graphs show the difference in errors (up to 8 m/s in the 

violent braking case). This is based on the inside wheel locking up during braking and 

cornering which means one of the wheel velocities will be zero. Thus the average will 

be significantly out even if one of the wheel speeds is correct. 

Figure 2.2-2 Comparison of results for a violent braking cycle while 

cornering.[13] 
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Figure 2.2-3 Comparison of results with the fuzzy estimator using the wheel 

speed only for oversteering.[13] 

Considering Figure 2.2-3, we see the results of an oversteering case where the front 

wheel is sliding out and lateral sliding is induced. Once again the difference between 

the estimation based on average wheel speeds is out by up to 8 m/s. The estimator on 

the other hand is much more accurate giving a result to within 1.5 m/s. Clearly any 

system that is based purely on wheel speeds may become grossly inaccurate in the 

critical conditions when it is most needed to prevent an accident. The results 

presented thus far were used to demonstrate the effectiveness of a fuzzy logic system 

in this type of application. These results are used to estimate longitudinal velocity in 

Chapter 6 as a parameter considered responsible for vehicle roll over. The following 

section outlines the work done by Porcel et al. on transverse velocity estimations 

using neural networks. It is included to support the use of neural networks as a tool in 

the estimation of vehicle dynamics. 

2.2.3 Transverse Velocity Estimation 

There are no means to measure the transverse velocity in a direct way with the help of 

low cost sensors. Therefore it was necessary for Porcel et al.[13] to create an 

estimation system based on inputs from the ABS, the gyroscope sensor, the 

acceleration sensors and the steering wheel angle. With a fuzzy inference system the 
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longitudinal velocity was reconstructed. This system served to detect wheels' losses 

of contact, front wheel sliding out and the vehicle's lateral motion. This information 

resulted in the choice of different wheel speeds to be referred to as the longitudinal 

velocity. 

While the vehicle response for this investigation was known, the unknown friction 

coefficients between tyre and road surface and tyre characteristics made the case 

complex. The use of neural networks simplified the task immensely, as the unknown 

details no longer require modelling or approximation. By feeding the neural networks 

with sensor outputs, the estimated longitudinal velocity and the transverse velocity as 

measured by the cross-correlation sensor, the network was trained. Porcel et al. [13] 

decided to break the cases down into a number of instances typical of the vehicle's 

behaviour under critical conditions and use these to each to train a network. Thus a 

number of networks were developed and a fuzzy controller used to determine which 

of the networks was most appropriate given the vehicle's dynamic state. 

The three fields concerning transverse velocity were identified as: 

• Understeering, even high system inputs (transverse acceleration, steering angle) 

lead to a relatively small system output (transverse velocity) 

• Oversteering, rear wheel lateral slide or even total vehicle instability cause high 

transverse velocities. 

• Braking in a turn, a locked inner front wheel and a sliding inner rear wheel may 

cause vehicle instability. The resulting yaw rate is responsible for high transverse 

velocities. 

2.2.3.1 Neural Network Representation 

Porcel et al.[13] tested a number of different networks examining combinations of 

input variables and testing performance for precision and case representation. The 

combinations of input variables compared included longitudinal and transverse 

acceleration, the steering wheel angle, longitudinal velocity, yaw rate, the derivative 

of yaw rate and the output in the last time step. 
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The networks considered were feed-forward networks, radial basis networks and 

Elman networks. In this investigation the Elman nets were found to display 

characteristic saturation effects, when confronted with inputs that were higher than 

those appearing in the training data. The performance of the radial basis nets was 

similar to that of the feed-froward nets, but required more neurons. (Please refer to 

chapter 3 for a comprehensive discussion of neural network theory and practice.) 
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Figure 2.2-4 Neuron transfer functions: tansigmoid and purelinear.[13] 

Activation functions considered were logsigmoid, tansigmoid and radial basis 

neurons, with the final choice lying with tansigmoid in the input and hidden layer and 

one purely linear neuron in the output layer (see Figure 2.2-4). The networks were 

trained and tested using standard procedures (outlined in chapter 3). 

The results of the network training and testing were presented as follows for each of 

the three cases. 

2.2.3.2 Understeering conditions 

The results for the test involving understeering conditions are shown in Figure 2.2-5. 

The results are based on longitudinal acceleration, the derivative of transverse 

acceleration, yaw rate and its derivative; and longitudinal velocity. Clearly, these are 

only a few of many possible variables that could have been used. A blanket approach, 

using all variables that could possibly contribute to the transverse velocity would be 

the next step toward improving the results. 
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Figure 2.2-5 Transverse Velocity: real and estimated value for understeering.[13] 

2.2.3.3 Oversteering conditions 

Figure 2.2-6 Transverse Velocity: real and estimated value for oversteering.[13] 

We can see from Figure 2.2-6 that the network gives an overview of the general trend 

associated with the transverse velocity variation. There is a tendency to smooth out or 

generalise the actual results. This is a trademark of the neural network approach. It 

may be possible to improve the results by further training the network but it is likely 

that further training would simply lead to over fitting, whereby the errors and 

anomalies in the measurements are treated as part of the trend and the curve over 

complicated. The inputs used to train the network were the same as the previous 

section. 
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2.2.3.4 Braking in a turn 

Figure 2.2-7 Transverse Velocity: real and estimated value for "Braking in a 

turn".[13] 

The results for "braking in a turn" as shown in Figure 2.2-7 are much more 

encouraging. Once again some of the detail is missing but the overall trend is in 

agreement. Again, future work would aim to improve the results through the use of 

different neural networks or an increased number of inputs. 

2.3 Applied Intelligence to Automotives 

The following is a broad view of applied intelligence to automotives, while not 

directly related to the task at hand, it is included for academic interest, with specific 

details of this particular study to follow. 

2.3.1 Engine related 

Applied intelligence has found its way into the automotive industries particularly in 

those areas relating to the engine. This is combined in some instances with fuzzy logic 

technology to produce some interesting work. Applied intelligence in this area falls 

into two main areas, engine control and engine diagnostics. 

2.3.1.1 Engine diagnostics 

Lu, Chen and Hamilton outlined the development of a fuzzy diagnostic model for 

automotive fault diagnosis.[14] The model uses a fuzzy rule generation algorithm 
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developed by the team and is based on priority rules. The model has been 

implemented in a vacuum leak detection agent system and after testing on large sets 

of data was proven to be excellent. The system is being implemented into a Ford test 

system for end-of-line test. 

Virtual sensing is another promising technique in this field. A neural network based 

engine performance, fuel efficiency and emissions prediction system has been 

developed for Spark Ignition (SI) and Compression Ignition engines (CI).[15] 

Through limited training on an engine dynamometer the network is able to accurately 

predict real-time engine power output, fuel consumption and regulated exhaust 

emissions over highly transient engine operating conditions and using only readily 

measured engine parameters. The instantaneous prediction of exhaust emissions may 

form the basis of an intelligent diagnostic system although it appears this has yet to be 

attempted by this group. 

2.3.1.2 Engine Mapping 

The characteristics of neural networks are such that they are ideally suited to control 

situations particularly where the input may be noisy. This is particularly true of the 

work done in the field of engine control applications. Neural networks provide a 

simple and effective way to describe the linear input-output behaviour of a system 

through 3-d mappings. The limitations of the system have been examined and were 

found to be such that an advantage over conventional look-up tables varied from case 

to case.[16] The main contributing factors to the decision were the amount of memory 

available in the control module, allowable computation times, need for the on-line 

adaptation capability, and required transparency of the representation. The neural 

network model has much smaller memory requirements at 31 parameters than a full 

interpolating look-up table. Where adaptation was required the neural network model 

was also superior. 

2.3.1.3 Application to Idle Speed Regulation 

Neural network based, discrete adaptive sliding mode control has been developed for 

idle speed regulation in internal combustion engines.[17] The control goal in this 

situation was to lower the idle speed for better fuel economy while rejecting typical 
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load disturbances and reducing engine speed variations for drive comfort. This 

approach was simulated using a Ford V8 4.6L engine. Feed-forward neural networks 

were used to approximate the unknown system dynamics. In this case the Network 

provided a number of advantages over conventional approaches. These were: 

1. explicit knowledge of the system dynamics is not necessary for the controller 

design; 

2. the controller is adaptive to the system parameter uncertainties and external 

disturbances; 

3. the time delay in the system can be addressed by increasing the relative order 

of the system. 

They succeeded in showing that it is possible to use neural network based technology 

for the efficient control of idle speed and that it can be a simpler tool to use than 

conventional methods. 

2.3.1.4 Air-fuel ratio control for directly injected spark ignition engines 

Spark ignition engines that are directly fuel injected tend to run lean at low loads and 

stoichiometric for the other operating areas. Lenz and Schroder have shown that a 

normalised Radial Basis Function artificial neural network can be used as a mapping 

from the driver's input and operating conditions of the engine on injection commands 

to achieve a defined air-fuel ratio in transient operation. [18] This network is trainable 

and represents an intelligent feed-forward control structure. It therefore takes account 

of wear and alters the mapping accordingly. Hence the best performance is 

maintained at all times. 

In addition to what has been done at a practical level, artificial neural networks have 

also been used to model the behaviour of the spark ignition engine from the 

perspective of an input/output system. An example of this is given by Lichtenthaler et 

al.[19]. Hardware-in-the-Loop (HIL) simulation was used to support test and 

verification during the development phase. The neural networks were shown to have 

advantages with respect to robustness and measuring extent. They could also be used 

as stand alone models or as sub-models integrated in a global model based on a 

physical structure. 
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Various methods have been applied to the question of vehicle dynamics. Largely the 

need for modelling arises from Computer aided engineering or CAE. With an accurate 

estimate of the various stresses and loads that will be present in vehicle dynamics, the 

vehicle may be engineered to be as light and as strong as both is possible and 

necessary. 

This concept is by no means new and was under development in 1989420] Previous 

approaches have been complex and computationally intensive. They have also 

required a great deal of knowledge and experience to be of real use. Two techniques 

that have warranted research in this area of automotives are bond graph modelling and 

the use of Kalman filters. 

2.3.1.5 Vehicle control 

In the area of vehicle control neural networks and fuzzy logic have both played a part. 

A good example of the possibilities that also serves to demonstrate the strengths and 

weaknesses of each approach is the -fuzzy and neural truck backer upper control 

systems421] The comparative study was tested in a computer simulation environment 

not on real world data. A fuzzy logic rule base was set up from empirical know-how 

to reverse the truck model into a docking bay. The comparison was made with the 

Truck backer upper proposed by Nguyen and Widrow422] Some of the results are 

shown below: 

Figure 2.3-1 Sample truck trajectories of the neural controller for initial 

positions (x, .Y, 0): (a) (20, 20, 30), (b) (30, 10,220), and (c) (30, 40, -10)421] 



Page 34 

(tO 

Figure 2.3-2 Sample truck trajectories of the fuzzy controller for initial positions 

(x, y, 0): (a) (20, 20,30), (b) (30, 10,220), and (c) (30, 40, -10)421] 

Figure 2.3-1 traces the path of the truck as the neural network controls the backing 

path. In Figure 2.3-1 (a) and (b) the path is very close to the fuzzy logic result. 

However comparison with (c) in Figure 2.3-2 shows that the neural network result is 

far from optimum. In fact the simulated truck does a complete 360 degree turn whilst 

backing into the docking bay. 

The fuzzy approach here was found to have advantages over the neural network 

approach - based on a back-propagation algorithm. This is not surprising, as fuzzy 

rules are able to replicate common sense type rules. The real advantage of the neural 

network approach becomes more evident when the complexity of the system is 

outside of the scope of common sense and a simple rule base. In this respect the 

neural network would be more powerful in a more complex situation where the 

empirical know-how is not as easy to come by. Similarly, the neural network 

approach is ideally suited for applications where smooth continuous results are 

required, Figures 2.3-1 and 2.3-2 begin to show the smoother operation of the neural 

network result. 

The fuzzy rule based model was also found to be more robust as rules were removed 

than the neural network was when training data was reduced. This would suggest that 

the neural network algorithm was less than ideal. It is interesting to note however that 

once trained a neural network no longer requires its training data where as the fuzzy 

rule system will always require each rule. Hence the neural system is less likely to 

lose the network it depends on than the fuzzy rule system. The results between the 

two were extremely close up to 50% loss of information. 
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Figure 2.3-3 (a) Control surface of the fuzzy controller, Fuzzy set values 

determine the input and output combination. (b) Corresponding control surface 

of the neural controller for a constant value y = 20421] 

The fundamental difference between the two methods is detailed in Figure 2.3-3. The 

fuzzy rules are relatively discrete, meaning that there will be large jumps between 

consecutive points. The neural network control system, on the other hand, is perfectly 

smooth. This allows the network to interpolate and give very smooth variation of the 

output with the input variation. In very sensitive applications such as complex 

dynamics control and estimation, this quality is essential. 

2.4 Other Neural Network Applications 

While the field of neural networks is continuously growing it would seem that the 

actual volume of practical research is quite small compared to the number of 

simulations and models based and tested on entirely theoretical values. While it would 

appear that the theory is indeed well developed and the applications apparently viable, 

there is conspicuously small number of practical, real life working applications. The 

clear majority of work to date in the automotive area has focussed on modelling a 

particular performance rather than actual application to a real time process. This is 

generally done with computer simulation, and whilst proving the result to be possible, 

it falls short of actual practical application. 

Some of the areas where fuzzy logic and neural network tools are finding applications 

include: 
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1. quality prediction in industrial control [23, 24], 

?. manufacturing applications, such as design, process planning and scheduling [25, 

26], 

3. process control, fault diagnosis and condition monitoring [27, 28, 29, 30], 

4. control and monitoring of machining processes [31, 32, 33, 34], 

5. pattern recognition [35, 36, 37], and 

6. robotic control [38, 39] 

One area of research, that has proven to be ideally suited to artificial intelligence 

applications, is manufacturing. The complex non-linear nature of manufacturing and 

process control means that it is ideally suited to neural network modelling. A general 

indication of this field was included to demonstrate the success possible through use 

of neural networks. 

2.5 Concluding Remarks 

If we consider the state of the art control and safety systems on new a concept 

vehicles such as: Anti-lock braking (ABS) [8], Vehicle Dynamic Control (VDC) [7] 

and Dynamic Stability Control (DSC) from BMW [40], Traction Control (ASR) [41], 

All Wheel Drive (AWD), Tyre Pressure monitoring system [42], Dynamic Brake 

Control (DBC)[43] and Brake by wire [44], it is clear that these developments are 

focussed on localised control. DSC and VDC are moving toward a comprehensive 

system but there is no one vehicle that incorporates all of the design features available 

to date. Hence the need still exists for a comprehensive intelligent control system 

based on a complete, real time knowledge of the individual vehicle's dynamic 

behaviour. 

The state of dynamic performance prediction is well developed in a theoretical sense. 

Models have been developed that demonstrate the effectiveness of a particular system 

in simulation mode. There are very few systems that can produce dynamic 

performance prediction. A need exists for the estimation of salient data to form a basis 

for the comprehensive control outlined above. 
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Velocity as a parameter responsible for overturning is currently estimated using first 

principles. This does not take into account the non-linear forces associated with the 

deformation of tyre walls or the unusual friction conditions associated with skidding. 

For control purposes there is a need to estimate the parameters responsible for vehicle 

overturning under all road conditions. 

Reliable estimation of acceleration in 3 dimensions would lead to more accurate 

modelling for stress analysis and safer more efficient design of safety systems and 

other vehicle systems. Estimation of these values lays the basis for accurate, 

comprehensive and intelligent control systems that will eventually lead to greater 

safety and efficiency in the automotive industry. 

In conclusion, the state of the art for reliable quantitative estimation of parameters 

responsible for vehicle overturning is inadequate. This work will propose a possible 

solution to rectify this inadequacy through the use of established neural networks and 

modification for estimation of these performance parameters. The following chapters 

will outline the networks to be used, the experimental set up and results. 
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Chapter 3 Computational Intelligence Literature Review 

In considering the application of artificial neural networks to prediction of parameters 

responsible for vehicle roll over, it is important to have a good basic understanding of 

the background theory and some common terminology. This chapter is included to 

give a brief overview of Artificial Intelligence and artificial neural network theory as 

a basis for the work detailed in chapter 6. 

3.1 What is Artificial intelligence? 

Artificial intelligence and computational intelligence are terms used to cover an ever-

increasing field of research. Artificial Intelligence or Al has come to mean many 

different things. Martin Fischler and Oscar Firschien [45] describe three theories 

developed in philosophy. These theories are the "existence theories" 

1. Intelligence is a non-physical property of living organisms and cannot be 

recreated in a machine 

2. Intelligence is an emergent property of organic matter: silicon is inadequate, 

but when we learn how to build machines out of organic compounds there 

may be a chance of developing intelligent behaviour. 

3. Intelligence is a functional property of formal systems, and is completely 

independent of any physical embodiment. 

Engineering is primarily concerned with the third viewpoint. Intelligence can then be 

defined on a number of attributes including the ability to learn, recognise symbols, 

speak and understand speech. For the many different attributes, there exist computer-

based simulations that display their characteristics to some degree. Although there has 

yet to be developed a system that will encompass all of the ideals put forward here, a 

number of different disciplines have been developed. These include expert systems, 

natural languages, and simulation of human sensory capabilities (eg image 

recognition), robotics and artificial neural networks. As the main area of interest is 

predicting complex non-linear relations a suitable tool for the task at hand is the 

artificial neural network. This will be the main focus of this outline. 
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3.2 The Biological Neuron 

Figure 3.2-1 Biological Neuron [46] 

A neuron is the biological building block of the brain and the biological neural system 

as represented in Figure 3.2-1. It allows inputs from a large number of similar 

neurons. It will then send a single output to many other neurons across the network of 

axons (neuron connectors). Each axons has many branches known as axon collaterals 

that join each end at the input of another neuron in a connection known as a synapse 

shown in Figure 3.2-2. The parts of the neuron to which these synapses are joined are 

called dendrites. Many synapses are fixed but many are adaptive or plastic which 

means that they can increase or decrease in strength under appropriate conditions. As 

such these synapses have differing strengths or synaptic weights. They come in two 

forms which allow either of two effects on their associated neuron, excitatory 

(positive) and inhibitive (negative). Finally synapses are unidirectional, in that they 

allow signals to pass in only one direction. [47] 

Figure 3.2-2 Biological Synapse [46] 
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The physical assumptions that many artificial neural networks are based upon are 

given in Figure 3.3-1 

"1. The activity of the neuron is an "all-or-none" process. 

2. A certain fixed number of synapses must be excited within the period of latent addition in order to 

excite a neuron at any time, and this number is independent of previous activity and position on the 

neuron. 

3. The only significant delay within the nervous system is synaptic delay 

Figure 3.3-1 Artificial Neural Network Assumptions 

In the McCulloch-Pitts model the artificial neuron provides the weighted sum of its 

input potential's in a numeric value. The neuron then will fire or not dependent on 

whether the summed weighted input is greater than a threshold value. If it does fire it 

will transmit this summed weighted input value, if not it will transmit nothing. 

Schematically, this set-up may be represented as in Figure 3.3-2. 

I= 	y, x• Strnmation 
1 	I 

= fp) Transfer 

Figure 3.3-2 Basic Structure of an Artificial Neuron [64] 

3.4 Neurons as functions 

At the most basic level there are three functions that combine to give the neuron its 

processing capability. These functions are the input function, activation function and 

output function. All three functions may be combined to into one function known as 
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3.3 A Brief History of Neural Networks 

The first modelling of neurons dates back to the 1940s when McCulloch and Pitts 

published their classic paper "A logical Calculus of the Ideas Immanent in Nervous 

activity".[48] The original neurons were simple logic gates AND, OR and NOT. Their 

work forms much of the current basis for neural network development. In 1949, 

Donald Hebb introduced the Hebbian learning rule, a learning scheme that purported 

to store information in the connections. [49] 

Frank Rosenblatt invented the Perceptron in 1958 [50]. As will be described later, this 

model was capable of learning patterns by modifying connections to the threshold 

elements. In the early 1960's Bernard Widrow and Marcien Hoff introduced 

ADALINE (ADAptive LINEar combiner) [51]. This was a basic pattern recognition 

device from which the Widrow-Hoff learning rule developed. (In this rule, the 

summed square error is minimised during training.) In 1965 Nils Nilsson [52] 

summarised the developments of the time, formulating inherent limitations of learning 

machines with modifiable connections. At this time layered networks existed but no 

efficient learning techniques had as yet been developed. 

The period from 1965 to 1984 proved quiet and there was little research done to 

improve upon the work done to date. Learning of threshold elements was studied by 

Sum-Ichi Amari [53, 54]. The neural architecture for visual recognition known as 

neocognition was developed by Kunihilco Fukushima [55]. Tuevo Kohonen [56,57], 

pursued associative memory research during this period, while Adaptive Resonance 

was worked on by James A. Anderson [58]. A number of neural architectures were 

introduced by Stephen Grossberg [59,60]. Recurrent neural architectures for 

associative memories were introduced by John Hopfield [61,62] and rekindled much 

of the interest in neural networks. The publication of "Parallel distributed processing" 

by James McClelland and David Rumelhart [63] brought the field back into main 

stream focus in 1986. The theories and learning rules introduced began to show the 

true potential of the once dubious layered networks. 
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the transfer function although it is useful to consider them separately for the purposes 

of simplicity. 

3.4.1 Input function 

Fundamentally, the input function provides a summation of the multiplication of 

inputs with the corresponding weights. It generates the input for a neuron from the 

outputs from every other neuron connected synaptically to it. The function multiplies 

them by their corresponding weights and then sums the result to create the input for 

the activation function. 

This may be written as 

net =Ixiw Equation 3.4-1 

where i denotes the number of input neurons. 

3.4.2 Activation function 

The activation function is non-linear. The purpose of this function is to determine the 

output of the neuron. The activation function may be any function that is both 

monotonically increasing and differentiable. The output range of the activation 

function is usually limited to between 0 and 1 or —1 and +1. Early models used a 

simple threshold function or step function for this purpose as shown in Figure 3.4-1. 

The result being that a neuron would output a value of 1 if the inputs exceeded the 

threshold value or zero if it did not. 

x) := temp— 1 if x > 

temp— U otherwise 

yt's  ) 	0 .5 

— 2 0 2 

Figure 3.4-1 Graph of Threshold or Step function [65] 
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However, a more general, non-linear function known as the sigmoid function has been 

used more recently for this purpose. The function may be loosely defmed as a 

continuous, real-valued function whose derivative is always positive, and whose range 

is bounded. This function may be represented by Equation 3.4-2 and graphically as 

shown in Figure 3.4-2. 

S(x) = 1/(1+Exp(-cx)) 	 Equation 3.4-2[66] 

Output value 

0.8 

Transfer function 
11(1+Exp( -sum]) 

Input value 
0.5 
	

1 

Figure 3.4-2 Sigmoidal Activation Function [65] 

A major advantage of the sigmoidal function is that its derivative is relatively easy to 

calculate, important in the neural scheme of things. It is given by: 

S'(x) = S(x) *(1-S(x)) Equation 3.4-3[66] 

3.4.3 Output function 

The final component of the transfer function is generally chosen to be equal to the 

output of the activation function or, in other words, the output of the neuron will be 

the same as the activation. So, the sigmoid function represents the neuron transfer 

function with the horizontal axis representing the weighted summed input and the 

vertical axis representing the neuron output. 

3.5 Perceptron 

The Perceptron is a pattern classification system developed by Frank Rosenblatt in the 

late 1950s, early 1960s.[50] Rosenblatt became fascinated with the operation of the 

eye of a fly. Much of the processing done to tell the fly to escape is done in the eye. 

The single layer Perceptron was found to be useful in classifying a continuous-valued 

set of inputs into one of two classes. As such the Perceptron recognises abstract and 
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geometric patterns from optical input patterns disregarding noise in the input. The 

neuron computes the weighted sum of the input signals and compares that net 

weighted input to a threshold value, T. If the net input is greater than or equal to the 

threshold, the neuron outputs +1, if not, it outputs —1. This initial model was further 

developed by Minsky et al.[67] a generalised description follows. 

3.5.1 Simple two - layer Perceptron. 

Figure 3.5-1 shows the architecture of a simple two layer Perceptron. There is one 

layer of input nodes and one layer of output nodes. Each of these two layers is fully 

connected to the nodes in the other layer but to none of the nodes in its own layer. 

When a signal is sent from the input layer to the output layer, it has the corresponding 

weight applied to it and the receiving node in the output layer sums all the values it 

receives. If this sum exceeds a given threshold, that node in turn will produce an 

output signal, otherwise it remains dormant. 

Figure 3.5-1 Simple Perception layout [68] 

The output of a node may be expressed as: 
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S = 
J 	 1.1 

i=0 

If S j  > 0 then x . = 1 

If S j  0 then x . = 0 

Where 0 is a predetermined threshold value 

Equation 3.5-1 

The Perceptron may be trained to produce the desired output by adjusting the weights 

through use of the following training algorithm. [69] 

wu  = wu + C(t — xj) )cii  
new 	old 

Where C is a learning rate constant 
x. is the actual output 

t . is the desired output 

a i  is the input node output 

Equation 3.5-2 

The functional limitation of the Perceptron is that it can only recognise linearly 

separable patterns owing to having only one adaptive layer. (A linearly separable 

pattern is one that can be separated into two distinct classes by drawing a single line.) 

In demonstrating that this can be done it is something of an historical landmark in the 

history of neural networks.[67] 

3.6 Types of Networks 

A great many neural networks have been developed over the years, each is suited 

more or less to a particular type of problem. Figure 3.6-1 shows a taxonomy or family 

tree of some of the better known networks. Each of the networks can be training to 

solve a specific problem using compilations of training data. Artificial neural 

networks are often described as a black box; this is largely because the process is self-

organising. The desired output is provided but the way in which this outcome is 

achieved is left to the internal algorithms. In general, a neural network will map a real 

input of any given dimension to a real output of some other given dimension. It is 

worth doing a brief tour of some of the types and the purposes to which they are best 

suited. The major difference is between the feed-forward and recurrent model types. 

Beyond this, models are delineated by the training method as supervised or 

unsupervised. 
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Figure 3.6-1 A Taxonomy of Neural Network Models [70] 

3.6.1 Feed -forward Networks 

The Perceptron, as has been shown, is a prime example of a feed-forward network. 

Primarily these networks are distinguished by the passage of input signals in one 

direction only. The signal makes its way from the input layer through the weighting 

system to the output layer where it is compared to the required result and the weights 

modified. The process then repeats. In its general form the feed-forward network has 

one input layer to receive information from the knowledge base, any number of 

hidden layers (the processing power) and one output layer that passes information to 

the surrounding environment. Each layer in the network contains neurons that receive 

any number of inputs and send a single output to other neurons in the following layer. 

3.6.2 Recurrent Networks 

The recurrent network differs from the feed-forward net in that it has at least one 

feedback loop. The classic example of this type of network is the Hopfield model, 

first introduced by John Hopfield [61]. The recurrent network may consist of a single 

layer of neurons with each neuron feeding its output signal back to the inputs of all 

the other neurons. The feedback implied by this system creates a dynamic response, 

allowing the network to evolve as time elapses. If a network is stable, eventually, it 

will reach equilibrium; however, instability can be a troublesome aspect of this type 

of network. A conceptual comparison of the two network types is shown in Figure 

3.6-2. 



Page 47 

A. ) 
feed-forward network recurratt !Network 

Figure 3.6-2 Conceptual comparison of feed-forward and recurrent networks[711 

3.6.3 Some Important Characteristics of Neural Networks 

Neural networks are very different from other mapping techniques in a number of 

aspects. These differences are what make them so unique as a tool, a list of the 

important characteristics follow: 

• Neural networks consist of a numerous, very simple processing elements 

(neurons) that communicate through a rich set of interconnections with variable 

weights or strengths. 

• Information (memories) are stored or represented by the interconnections between 

the neurons. Information is processed by a spreading, constantly changing pattern 

of activity across many neurons. 

• Neural networks are trained rather than programmed, there is no imperative to 

completely understand a system to be able to replicate it. Some systems are 

capable of autonomous learning and some of learning by trial and error. 

• Neural networks do not consist of separate memory and controller, plus externally 

stored program to dictate the operation of the system as in a digital computer. The 

neural network is controlled instead by I. The transfer function of the neurons, 2. 

The detailed structure of the connections amongst the neurons, 3. The learning law 

the system follows. 

• Neural networks act as associative memories; they group similar items together 

within their structure. As a memory, a neural network can retrieve stored 

information from incomplete, noisy, or partially incorrect input cues. 

• Neural networks are able to generalise, that is learn the characteristics of a general 

categories based on a series of specific examples from that category. 
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• Neural networks are highly fault tolerate and are capable of continuing to function 

after a significant proportion of its neurons and interconnections have become 

defective. Its performance will degrade slowly and smoothly as neurons and 

interconnections fail. 

• Neural networks innately act as a processor for time-dependent spatial patterns or 

spatiotemproal patterns. 

• Neural networks can be self-organising. Certain networks can be made to 

generalise from data patterns used in training without being provided with specific 

instructions on precisely what to learn. 

The preceding list summarises the basic functions of neural networks and highlights 

some of the desirable features that are contributing to their growing application 

popularity. [24] 

3.7 Considerations for Improving and Evaluating Network Performance 

There are a number of considerations for improving and evaluating neural network 

performance. Among these is the type and preparation of data that is to be used as 

well as the choice of network architecture, which is covered in section 3.8. Testing of 

the network is used to evaluate its performance. 

3.7.1 Design of Network Training Data 

To maximise the usefulness of a particular network it is important to carefully 

consider the type of data with which it is to be trained, as well as how that data is to 

be prepared. Testing is also important to determine the effectiveness of the network. 

The performance of a network is dependent on the values used to train it. Most 

significant is the number of values used in the training set. The two goals a data set 

must satisfy are [72]: 

1) Every variable in the training data set must be adequately represented. Usually, 

the training data will consist of several possible subgroups, each having its own 

central tendency toward a particular pattern. All of these patterns must be 

represented sufficiently. 

2) Within each class, statistical variation must be adequately represented. It is the 

presence of random noise imposed onto pure patterns that makes most neural 
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network applications necessary. The training set must be designed to insure that 

an adequate variety of noise effects are included. 

3.7.2 Normalising Network Input 

Network performance can often be improved by removal of insignificant 

characteristics such as standard deviations and offsets which, can serve to obscure the 

real issue. Hence, scaling the network, otherwise known as normalising can serve to 

remove certain insignificant characteristics from the training set by placing all values 

within certain predetermined limits. This avoids the network creating a bias toward 

vector components that are of higher magnitude. Normalising also creates an equal 

footing for error minimisation, where greater magnitude for certain elements would 

dominate the correction process as it is based on the total error from all outputs. It is 

imperative to normalise the target output when the activation function used results in 

a bounded output. For example the sigmoid function outputs a value between 0.0 and 

1.0, for this particular function the target output must also be between these values for 

the network to train appropriately. 

Data is commonly normalised as follows [24]: 

xi  — min(x i  ) 
nonn(x i )= 	  

max(x ) — min(x ) 
Equation 3.7-1 

where norm(xi) is the normalised ith  value in a set of j values, 

xi is the original ith  value in a set of j values, 

min(xi  ) is the original minimum value in a set off values, and 

max(x) is the original maximum value in a set of j values. 

The data is thus scaled over 0.0 — 1.0 such that the original minimum value becomes 

equal to 0.0 and original maximum value becomes equal to 1.0, the values in between 

are uniformly scaled. 

3.7.3 Network Testing and Performance 

Initially, the network is trained on a set of values, so the first step is to test that it can 

accurately predict the values it has been trained on. Following this the network must 

be tested on its ability to interpolate or generalise, that is, to predict data from values 

that it has not yet specifically seen.[24] 
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3.8 Network Architectures for Decision Making 

It has been found that Back Propagation (BP) and Radial Basis Function (RBF) 

networks have been used for applications similar to the predictions of parameters to 

prevent vehicle roll over, as discussed in the previous chapter. In this work both BP 

and RBF will be used for prediction purposes with minor modification. This section 

details the algorithms for both modes with the relevant code shown in the relevant 

section of Appendix A — Source Code. 

3.8.1 Back Propagation Neural Network (BP) 

The architecture of the BP network is similar to that of the Perceptron. It consists of 

an input layer, one or more hidden layers and an output layer. There are i input nodes, 

j hidden nodes and k output nodes. All input nodes are connected to all hidden nodes 

through weighted connection, wii, and all hidden nodes are connected to all output 

nodes through weighted connection, wki as shown in Figure 3.8-1 

yI 

Y2 

Yk 

Input 	Hidden 	Output 
Layer 	Layer 	Layer 

Figure 3.8-1 Back Propagation Neural Network Architecture 

Input neurons pass forward input patterns to neurons in the hidden layer. In this feed-

forward structure there are no connections leading from a unit to units in previous 

layers, nor to other units in the same layer nor units one layer ahead. 

Every neuron in each layer hence communicates with only the neurons in the 

immediately following layer. All processing is done exclusively in the hidden and 

output layers. The functions performed in these layers are input function, activation 

function and an output function. 
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Input Function  

The input function sums the inputs and synaptic weights. It is a linear function given 

by: 

net . 	 Equation 3.8-1 

where net weighted summed input to neuron j, 

= input i to neuron j, 

= weight connecting input neuron i to hidden layer neuron j. 

Activation Function 

The most commonly used activation function for BP networks is the non-linear 

sigmoidal logistic function given by the following equation: 

1  
f (net )= 	 Equation 3.8-2 

1+ exp(—net) 

Output Function 

The purpose of the output function is to pass the forward the output of the activation 

function; hence it is a linear function equal to the output of the activation function. 

Processing stages  

Training BP networks occurs in two stages; initially the input pattern generates a 

forward flow of activation from the input to the output layer. Secondly, error in the 

network output generates a flow of information from the output layer backward to the 

input layer. [47] 

The back propagation procedure uses a gradient descent method, which adjusts the 

weight in its original and simplest form by an amount proportional to the partial 

derivative of the error function with respect to the given weight.[70] 

The associated error for a given input pattern is calculated after the forward 

propagation is complete. This is done by comparing the real number output of the BP 

network with a target value supplied with each input patten and using the error to 
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update the interconnection weights from the hidden layer to the output layer. An error 

value is calculated for all neurons in the hidden layer prior to the output layer and 

similarly for each of the subsequent layers. This process continues until all weights 

have been updated in this manner. 

Error value for output layer 

The first layer error value is simply calculated as follows: [69] 

8 k  = (t k  — a k ) f '(net .) 

Where, tk = target value for unit k 

ak = output value for unit k 

f (x) = derivative of the sigmoid function, and 

net = weighted sum of inputs to hidden layer neuron j 

Equation 3.8-3 

The expression (tk — ak) represents the difference between the target output and the 

network prediction while the derivative of the sigmoid function is used to scale the 

enor.[24] The use of the derivative of the sigmoid function means that the error is 

scaled to make a larger correction when the weighted sum of the inputs is small, close 

to zero, and a smaller correction when the weighted sum of the inputs is large. 

Error values for Hidden layers  

The calculation of error values for the hidden layers is slightly more complicated. For 

neuron j in the hidden layer the error value calculation considers the weighted sum of 

the 5 values of all neurons that receive output from neuron j. Hence the error value 

calculation for the hidden layer is written as [69]: 

[Ijk Wki ]f '(net j ) 	 Equation 3.8-4 

where, wk.;  = weight connection to neuron k from neuron j. 

The respective values of 8 are now used to adjust the interconnections of the output 

and hidden layer neurons. So each interconnection weight is adjusted by considering 

the 8 value of the neuron that receives input from that interconnection. Hence this 

weight adjustment can be written: [69] 
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Awj, = Oja i 	 Equation 3.8-5 

where wii  = weight of connection to neuron j from neuron i, and 

17= learning rate constant, 0< 17 < 1, 

ai  = output of hidden layer neuron ./ 

Clearly the change in connection weight is proportional to the error value, so it 

follows that a large error value from neuron j will result in a large adjustment to its 

incoming weights. Likewise, large output values, aj , will result in larger weight 

adjustments. The learning rate, 17, is selected to reflect the desired convergence speed 

of the neural network. Unfortunately very large values of 77 can lead to instability of 

the network which results in unsatisfactory learning. Conversely very small values of 

17 will incur excessively slow learning rates. In some cases the learning rate is varied 

to produce a more efficient training technique for the network, perhaps decreasing in 

rate as the network approaches convergence. [69] 

Convergence improvement  

A common method for improving convergence of the weight update is the 

introduction of a momentum term. It is sometimes known as the 'generalised delta 

rule': 

wu  (r +1) = (r) 	+ ot(wu  (t) — (t — 1)) 	
Equation 3.8-6 

where 0< a < 1. 

The addition of this term delays a portion of the weight update until the following 

iteration, thus oscillations in weights changes are dampened and convergence 

improved. 

Initialisation of weights  

Typically weights of a network to be trained are initialised to small random values. In 

fact, a well-known initialisation method for a feed-forward network with sigmoidal 

units is to select its weights with uniform probability from an interval [-a,a].[73] 

Commonly chosen values for a are 0.5 or 1.0. 

Weight initialisation has significant influence over network convergence and so is an 

important aspect. Training difficulties will be encountered if the network requires 
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unequal weights, and a uniform initialisation is used. In the extreme case, if each 

neuron output within the network is the same value due to equal valued weights, each 

weight change will be identical and the network weights will never differ. This is 

counter-productive, as most applications require uneven weights within the network. 

3.8.1.1 Training Algorithm Summary 

The training algorithm is an iterative gradient algorithm designed to minimise the 

mean square error between the actual output of the multi-layer feed-forward 

Perceptron and the desired output. It requires continuous differentiable non-linearity. 

For this purpose the sigmoid logistic function is generally used.[74] 

Step 1. Initial Weights and Offsets 

Set all weights and node offsets to small random values. 

Step 2. Present Input and Desired Outputs 

Present a continuous valued input vector xo ,X1, ....z/v./ and specify the desired 

outputs do, d1, dm.i. If the net is used as a classifier then all outputs are 

typically set to zero except for that corresponding to the class the input is 

from. That desired output is 1. The input could be new on each trial or samples 

from a training set could be presented cyclically until weights stabilise. 

Step 3. Calculate Actual Outputs 

Use the sigmoid non-linearity and Perceptron weight output equations to 

calculate outputs yo , yr, ••• ym-1. 

Step 4. Adapt Weights 

Use a recursive algorithm starting at the output nodes and working back to the 

first hidden layer. Adjust weights by 

w..(t +0= wu  ..(t) + .178 ./ 4 
	

Equation 3.8-7 

Where wu(t) is the weight from hidden node i or from an input node j at time t, x '; is 

either the output of node i or is an input, 17 is a gain term, and is an error term for 

node j. If node j is an output node, then 

(5,=y i (1—y i )(d i —y ) 	 Equation 3.8-8 

where dj  is the desired output of node] and yj  is the actual output. 
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If node j is an internal hidden node, then 

Si = (1 - 	 W k ik Equation 3.8-9 

where k is over all nodes in the layers above node j. Internal node thresholds are 

adapted in a similar manner by assuming they are connection weights on links from 

auxiliary constant-valued inputs. Convergence is sometimes faster as a momentum 

term is added and weight changes are smoothed by 

wij  (t +1) = wii (t)+ i7Sx + ot(wu  (t) — wu  (t —1)) 	
Equation 3.8-10 

where 0< a <1. 

Step 5. Repeat by going to Step 2. 

The detailed listing of code is included in Appendix A-1: Back Propagation Source 

Code. The application of the BP network to prediction of roll over parameters will be 

covered in chapter 6 of this thesis along with the application of Radial Basis 

Functions, the theoretical basis of which will now be discussed. 

3.8.2 Radial Basis Function Neural Network (RBF) 

Neural networks are based on localised basis functions and iterative function 

approximation are usually referred to as Radial Basis Functions (RBF).[75] Whilst 

their history dates back as far as Bashkirov et al. in 1964 [76], RBF networks were 

introduced by Broomhead and Lowe in 1988 [77]. Early contributions were also made 

by Moody and Darkin [78], Poggio and Gorosi [79]. With an application approach 

further developed by Renals [80]. 

The classic characteristic of the RBF network is that the response of the localised 

basis function falls off rapidly as the distance between the centre of the basis function 

and the input vector gets large.[75] The distance scale, the function centre and the 

exact shape of the radial function are parameters of the model. RBF networks have 

been shown to approximate continuous function mapping arbitrarily well [77], [78], 

[80] and with the best approximation property.[80] 

The RBF network is comprised of three layers, the input, hidden and output layers. 

The main adjustable parameters are the final layer weights, W ki connecting the k-th 
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output node to the j-th hidden layer node. In addition to these weights there are also 

weights connected to all input, hidden and output nodes. There are no connections 

between adjacent nodes and none between non-adjacent layers as shown in Figure 

3.8-2. 

Ul 

xl 

Xi 

Input Layer 	Hidden Layer 	 Output Layer 

Figure 3.8-2 Radial Basis Function Network Architecture 

Both input and output layers of the network consist of linear functions, as their only 

purpose is to pass the input pattern and output response to the external environment. 

The weighted summation used is generally of the form 

y = hi  w ik 	 Equation 3.8-11 

where hi = output of hidden layer neuron j, and 

wki =output layer weight. 

The number of input and output nodes is determined by the input pattern and the 

required number of outputs, the dimension of each vector giving the required number 

of nodes. As the function of the hidden nodes is somewhat non-linear, the number of 

hidden nodes is a more complex determination. Generally an optimum number of 

hidden nodes is found through a system of trial and error. 

Typically the Gaussian function is used for the RBF activation function as 

follows.[81] 



Page 57 

[(X- Li)
T  

h . = exp 
• 2C r 

Equation 3.8-12 

where hi  is the output of hidden layer neuron ], 

x is the input vector, 

ui  is the weight of hidden layer neuron ], 

T indicates vector transpose, 

sai specifies diameter of receptive field of hidden layer neuron ]. 

As may be seen in Figure 3.8-3, the Gaussian function monotonically decreases with 

distance from the central point. This is the classic characteristic of the RBF network. 

-4 
	

0 
	

4 
	

10 

Figure 3.8-3 Graphical representation of Gaussian function [82] 

3.8.2.1 Training Algorithm Summary 

The simplified training procedure is written as follows: 

1) Use a suitable clustering technique to set the input to hidden layer weights of the 

network to represent sufficiently the training patterns. Initialise the hidden-to-

output layer weights of the network at small random values.[24] 

2) Start the learning cycle by exposing the network to a certain input pattern paired 

with the desired output. 

3) Compute the network's output and compare it with the desired output so that the 

error can be calculated. 
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4) Adjust the weights of the network using the error back propagation algorithm so 

that a certain amount of the detected error is removed.[70] 

The detailed listing of the software source code is included in Appendix A-2: Radial 

Basis Function Source Code. Chapter 6 details the application of this network and 

selection of the optimum architecture. 

3.9 Concluding Remarks 

In this chapter covered a brief outline of the theoretical basis for neural networks as 

they will be applied later in this thesis. Some definitions of artificial intelligence were 

considered and the biological basis for artificial neural networks examined. This was 

followed by a brief history of the development of modem neural networks and the 

simple two-layer Perceptron with associated functions. The different types of 

networks were discussed as well as some important characteristics that make the 

neural network approach unique. Some considerations for improving network 

performance were outlined and the details of two main models discussed. These 

models were Back Propagation and Radial Basis Function, the source codes of which 

are included in Appendix A. Chapter 4 will outline the development of the 

experimental set up, with Chapter 5 focussing on the sensors. 
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Chapter 4 Development of experimental rig for training data 

4.1 Design of the Intelligent Race Car 

The intelligent car addresses some of the inadequacies highlighted in previous 

chapters. Briefly, the concept is a car that mimics intelligent behaviour, incorporating 

comprehensive control systems designed for maximum control and safety. The use of 

neural networks in this process allows not only for the simple prediction of otherwise 

complex relationships but also portability of the system from vehicle to vehicle once 

tested. The data gathered from the vehicle is used to train it. While there will be no 

need for extra programming for every simple change, a different training set and the 

results are used to customise the vehicle in question. It is anticipated that the 

technology will be applied to the problem of truck over turning in the future. This is a 

commercially viable option given the falling price of sensor technology. 

4.1.1 Design considerations 

In choosing a test vehicle for this project, the factors held to be of greatest importance 

were safety, ability to push the driving envelope and optimum sensor location. A 

lower centre of gravity was chosen as the preferred option to avoid physical 

overturning and a roll hoop bar included in the design for safety. The roll hoop bar as 

shown in Figure 4.1-1 was finally chosen to be round mild steel tube 25.4inm outside 

diameter and 2.4 mm wall thickness. 

I 

_ 
Figure 4.1-1 Roll Hoop Safety Bar. 
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While the car cannot physically overturn unless under extreme driving conditions, the 

parameters highlighted as responsible for overturning can be measured for subsequent 

neural network modelling. Also as this research is university based there has been a 

clear advantage in including an educational training component to the design.[83] For 

these reasons the vehicle was designed to specifications for entry into the Formula 

SAE, a student engineering design and racing competition held annually by the 

Society of Automotive Engineers in the US, UK, Europe and for the past two years in 

Australia. A brief outline of the race rules and design specifications is given below. 

4.1.2 Formula SAE Rules 

The task involved the students assuming that a manufacturing firm has engaged them 

to produce a prototype car for evaluation as a production item. The intended market is 

the non-professional weekend auto-cross racer. The car must, therefore, have high 

performance in terms of its acceleration, braking, and handling qualities. The car must 

be low in cost, easy to maintain, and reliable. The car's marketability is enhanced by 

other factors such as aesthetics, comfort and use of common parts. The manufacturing 

firm is planning to produce four cars per day for a limited production run and the 

prototype vehicle should actually cost below $30,000.[84] 

4.1.3 Design and Manufacture 

The entire vehicle was designed and manufactured 'in house' cooperatively by all 

team members and members of the team were involved in most aspects of the vehicle 

fabrication. Individual members were assigned to management of particular areas. 

This work focuses largely on the modifications to the engine and in the complete 

development of the vehicle wiring system. An overview of the entire process is 

included with the specific details. A separate chapter is included on the sensors as 

they are of particular interest. 

Being the single largest component of the vehicle, design of the frame incorporated 

the specification of, and allowances for, all the other components. As high 

performance was a design goal, the frame was manufactured to close tolerances. The 

frame is also the primary form of driver protection where safety guidelines were 

included as part of the rules [84] and the minimum frame thickness for safety was 



Page 61 

specified. The key components that were considered in the frame design are as 

follows: 

• Suspension wishbones, springs, pull rod pivots and their mountings 

• Driver interface — steering wheel, brake and accelerator pedals 

• Bodywork, Seat and associated Kevlar arrangement 

• Gear shifter mechanism 

• Differential and drive shafts 

• Engine and electrical systems 

• Fuel tank 

• Radiator 

• Sensors 

Following the initial design a Finite Element Analysis was completed [85] using the 

commercial package Strand7 [86]. As a result, and with consideration of material 

restrictions and availability, 25 mm OD mild steel tubing of wall thickness 2.6 mm 

and 1.6 mm were chosen for the construction of the frame. The design went through 

an iterative process to decrease weight whilst maintaining stiffness and strength. the 

end result was a frame model that was well below its strength limit and had an FEA 

torsional stiffness of 0.6 degrees per 1 kNm load between front and rear suspension 

points. 

As the FEA modelling program does not feature a CAD drawing facility the model 

was imported into drawing package CadKey [87] as a wire frame completed in three 

dimensions and printed. A Complete set of drawings is included in Appendix B - 

Frame Specifications. 

The frame was MIG welded, due to workshop constraints, in a jig that took the form 

of a steel table to reduce distortion. The front and rear roll hoops were bent into shape 

and members cut to length and tapered. Firstly, the front bulkhead was constructed 

followed by the engine bay and rear section, the frame was removed from the jig and 

final welding completed. 140 or so mounting points for the suspension, engine, seat 



Page 62 

and harness were designed, constructed and welded to the frame. Secondly the frame 

was painted using automotive acrylic paint. 

The next stage of construction was the suspension. The purpose of the suspension 

system is to maximise the amount of contact between the tyres and the road surface, 

in such a way as to provide the level of traction required in a situation. The 

suspension was designed and constructed with the following objectives in mind: 

• Conform to Formula SAE rules, specifying the minimum allowable travel of all 

four wheels and general suspension system requirements. 

• Minimise the forces experienced by the frame as all major frame loading is 

induced by the suspension. 

• Conform to the chosen optimal suspension geometry and an appropriate level of 

strength and serviceability. 

• Minimise the overall size (in particular the frontal area) and weight of the 

suspension system. 

• Facilitate easy geometric changes, part replacement and tuning. 

• Use as few parts as possible. 

• Share as many common parts between wheels as possible. 

• Provide stable mounting points for the required sensors. 

For maximum design modification flexibility, conventional four wheel double 

wishbone suspension was used. As different geometries clearly affect the vehicle's 

performance under different conditions, the likely track set up for Formula SAE was 

considered, and a focus on maximising cornering speed was adopted. To this end the 

outside wheel must remain as close to vertical as possible during cornering. Desirable 

roll characteristics and acceptable geometry in squat/ dive under longitudinal 

acceleration were found from the empirical experience of the local racing community 

and iterative CAD modelling. The lower wishbones were chosen to meet in the centre 

of the vehicle to minimise width of the frame (and frontal area) and still maintain the 

necessary length difference between upper and lower wishbones (Figure 4.1-2). 
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Figure 4.1-2 Front Suspension Layout and Dimensions 

The heights of front and rear roll centres (the points in the transverse plane above the 

wheel contact patches about which the sprung mass of the car will rotate under any 

disturbing force) were chosen to correspond to the expected mass distribution of the 

vehicle. The front roll centre was chosen at ground level and the rear centre was 

placed at 50mm above ground level. Finally, the effective swing arm lengths were 

decided upon at between 100% and 150% of the track width using 6.5/19.5 —13" and 

7.2/20.0 13" Avon racing slick tyres for the front and rear respectively as shown in 

Table 4.1-1. Drawings of the final suspension geometries and suspension spring 

specifications are included in Appendix C - Suspension Specification. 

Table 4.1-1 Wishbone design parameters. 

Front roll centre height 8 mm 

Rear roll centre height 49 mm 

Front effective swing arm length 1564 mm 

Rear effective swing arm length 1114 mm 

Front upper/lower wishbone length ratio 0.56 

Rear upper/lower wishbone length ratio 0.71 

The results of the FEA model were considered and based on this the construction 

material chosen to be: high strength chrome moly tubing of size 3/4" diameter and 1.47 

mm wall thickness for the top wish bone, 1" diameter and 2.1 mm wall thickness 

chrome moly tubing for the bottom. Teflon lined rod ends connected the wishbones to 

the frame and wheels to reduce weight. Further weight reduction was achieved 

through the use of a pull rod system. The steering box on the other hand is a worm 
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and sector steering box sourced through a drag racing company as it eliminated the 

need for universal joints and with a few modifications, allowed for simple adjustment 

of both steering wheel position and steering rate. 

The final element of the rolling chassis is the wheel assembly. The wheel assembly is 

defined as the series of components linking the suspension and wishbones to the road. 

The design criteria are as follows: 

• Simple and cheap to fabricate 

• Light, strong and durable 

• Allow for maximum braking capability 

• Free rim rotation 

• Mount to wishbones with adequate steering and suspension movement 

• Mount for steering linkages 

• Mount for wheel speed sensor 

• Attachment to the drive axle for the rear wheels 

• Give desired scrub radius and king pin angle 

• Allow for significant adjustment in parameters such as camber and caster for 

drivability 

• Parts commonality. 

Final wheel assembly specifications are given in Appendix D. 
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tea' 
Figure 4.1-3 Exploded view of final wheel assembly. 

13" rims were chosen to allow room for large reliable brakes with a trade off on added 

wheel mass compared to 10" rims. The rims were custom made to suit the required 

dimensions of 7" width, 144 mm backspace offset and 152 mm internal diameter. As 

previously mentioned the chosen tyres were 6.5/19.5 — 13" and 7.2/20.0-13" front and 

rear respectively to minimise sidewall deflections on the front tyres and aid 

acceleration by acting as energy absorbers on the rear. The brakes were chosen from 

Wilwood High performance Disc Brakes. 10.2" diameter 3 pin mounted aluminium 

rotors in conjunction with aluminium billet dynalite single callipers common across 

front and rear wheel assemblies. 

After extensive analysis considering an off-centre bearing design and a centred 

design, the off-centre design proved to be simpler and cheaper to manufacture and 

was chosen at the cost of slightly lower performance.[88] The design featured a 35 

mm stub axle and 35 mm ID and 72 mm OD single row tapered roller bearing owing 

to perceived difficulties in fabrication for marginal performance increases using the 

centred bearing design. 

To connect these elements to the suspension the uprights were designed with the 

following considerations: 
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• Bearing and bearing spacing 

• Position and strength of suspension mounts 

• King pin angle, caster and camber adjustments 

• Placement of the brake calliper and steering mount 

• Milling limitations 

• Weight reduction and appearance 

The final design was CNC machined to shape and the boltholes manually drilled and 

tapped. Drawings are included in Appendix D. 

Driver interface with the vehicle is an important aspect of a user-friendly design. 

Ergonomics and weight reduction were the primary concerns of the cockpit layout. 

The design highlighted a need to have full closeout between the driver and possible 

course hazards, including the road, front on and behind from the engine and other 

moving components. Visibility was important and a reclined seating position was 

chosen to minimise resistance from frontal area. The seat and nose were moulded in 

carbon fibre, foam, carbon fibre / Kevlar layers in a female mould custom made from 

plywood. The head of the seat is detachable for easy engine access. 

The gear shifter is a simple pivoted shaft to the sequential motorcycle gearbox. A 

hand clutch is mounted on the gear lever and its movement is cable driven. The brake 

and accelerator were mounted on aluminium plate to allow for individual driver 

adjustment. The accelerator was produced from aluminium plate and the brake system 

was supplied by Wilwood and includes twin composite master cylinders that control 

individual front and rear brake circuits proportioned by a balance bar. 

The drive train was designed specifically around the principles of low rotating mass 

and efficient power transmission. Standard CV joints were replaced in the design with 

the use of Kevlar composite disks with an associated weight saving of 6 kg. Power 

transmission efficiency is close to that of a solid rotating shaft with a torque rating of 

over 1000 Nm. This efficiency required alignment to within 1 degree although 

instantaneous deflections of up to 6 degrees may be withstood. 
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The drive shafts ware large diameter aluminium-alloy tubes that are both stiffer and 

lighter than the traditional solid steel. This design is dependent on a flanging 

arrangement to connect the shafts to the composite discs. FEA analysis was used to 

evaluate alternative designs for sections based on torque ratings and torsional 

deflections. 

A fully sealed Quaife Automatic Torque Biasing (ATB) differential was chosen to 

assist maximum traction during acceleration and cornering. A blank sprocket was 

machined to match the bolt pattern. The differential was mounted with an 

asymmetrical diagonal member supporting the top of the right-hand side differential 

mount that also provides triangulation of the drive train frame structure. Details of the 

differential and composite discs are included in Appendix E — Drive train 

Specifications. 

4.1.4 Engine and Electrical systems 

The engine and electrical system are difficult to separate and so are included together. 

Limitations imposed by the Formula SAE guidelines [84] meant that the available 

engine capacity was 610 cc or less. This significantly reduced the options on the type 

of engine to be used with a motorcycle the most beneficial option. A 2000 Kawasaki 

Ninja ZX6 was chosen from a range of engines for its large cam overlap, low rpm 

torque and its lightweight construction. The deep oil sump is ideally suited to high 

lateral accelerations. The engine is a double overhead cam, four stroke four cylinder 

liquid cooled model with a compression ratio of 11.8:1 and 6 forward gears, the 

capacity is 600 cc. 

In developing a working electrical system for use in the experimental test vehicle the 

following objectives were identified as essential: 

• Open architecture and expansion capability for addition sensory input for further 

extension of on-board electrical systems during automotive neural network 

development. 

• Simplicity using common parts where feasible and designing straight runs 

minimising the number of wires. 
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• Fault Diagnosis — creating fault finding access locations, common locations of like 

components and using fully colour-coded looms. 

• Minimal maintenance requirements — the system developed must be robust and 

require little maintenance. 

• Aesthetically neutral/appealing. 

The wiring loom was designed to fit neatly away from the major moving parts of the 

car most likely to cause damage. For this reason the ECU (Engine Control Unit) is 

located well away from the engine under the seat with the ignition module bolted to 

the floor. As the ECU casing was waterproof further protection was not deemed 

necessary. The wiring loom runs down the right side of the driver, away from the 

gear changer on the left, to the fuse box. 

Figure 4.1-4 Fuse box location. 

The fuse box is located in a central position to minimise the length of wiring to and 

from it from all locations on the vehicle and for maintenance purposes. The bulk of 

the remaining loom continues along this line at a junction with the wiring from the 

battery located near the starter motor and alternator on the left-hand side of the 

vehicle. The original starter motor, alternator and regulator wires have been retained 

from the original motorcycle engine loom. 

For reliability during testing it was imperative that the complete wiring loom be 

dependable in all weather conditions. The major concern in this case was rain and 

contact with water and mud under wet track conditions. The insulated cables within 

the wiring loom were further insulated by comprehensive wrapping in electrical tape 

in all areas exposed to the elements. The most vulnerable components of the wiring 
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system were the system of relays and fuses that allow the MoTeC system to control 

the higher currents of the engine control system. Hence the fuse box containing these 

sensitive components and exposed connections required special attention. The fuse 

box is carefully sealed to avoid difficulty in this area. 

The design of the wiring loom assigned a unique wire colour to each component for 

simplicity of fault diagnosis. Basic electrical conventions were observed as far as 

practical (black for earth, white or red for power.) Striped automotive wiring would 

be used for production runs of the loom to ensure colour individuality. Wire utilised 

in this design was chosen to withstand the harsh environment of the automobile. 

Wiring sizes were taken from the largest likely current rating of each individual 

component they served. For instance, the fan wiring could expect a continuous 

operational current of between 2 and 3 Amp with a stall or start up current in the 

vicinity of 7 Amp. In this case the wire chosen was rated at 10 Amp. This was 

deemed necessary for the absolute reliability required of the electrical system. 

The wiring was wrapped tightly and neatly by hand and covered where possible with 

conduit for reasons of aesthetics and extra durability. 

Figure 4.1-5 Conduit, triple insulated wiring loom under nose cone. 

Care was taken to ensure that the wiring resides as far from hot components as 

possible. Heat from the engine was enough of a problem to other components of the 

car that heat shielding on the exhaust was deemed an appropriate solution. To ensure 

easy removal of all components, wires were crimped and not soldered. Where 

possible large multiple connectors have been used to eliminate the possibility of 

incorrect connection upon re-installation. 
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For safety reasons power for the entire car may be instantly cut using any one of three 

kill-switches (shown in Figure 4.1-6). The brake over-run switch is located behind 

the brake pedal and will activate if the brake is depressed while there is simultaneous 

failure of both independent braking systems. The other two kill switches are located 

on the dashboard to the driver's right and externally next to the head support on the 

roll bar to the driver's right, in accordance with best practice international FIA safety 

standards. 

Cutting any one of these switches will deactivate the switch line to the main relay. 

All power to components on the vehicle is sourced from this relay or from the switch 

line after the kill switches. Both human operated kill switches are clearly labelled 

with the international electrical symbol of a red spark on a white-edged blue triangle. 

Circuits and wiring diagrams art included in Appendix F — Electrical Specifications. 

Figure 4.1-6 Kill switches 

The primary purpose of the kill switches is to ensure that in case of an emergency the 

engine will be deactivated. This brings us to the choice of engine and the development 

of its support systems. 

The choice of engine and the poor performance of carburetion under high lateral 

acceleration led to the development of a custom fuel injection system. It was 

envisaged that the vehicle would eventually feature installation of exhaust gas turbo 

charger. While this addition did not eventuate the design of the inlet and exhaust 

reflect this intention. 
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Formula SAE specified that the fuel system must have a volume not exceeding 7.5 

litres and that the maximum distance raced is 22km.[84] The fuel tank was designed 

to be just 5 litres and placed under the seat. Space limitations meant that the tank was 

required to be long and shallow, problems with surge were avoided through the use of 

foam and a small baffled chamber at the fuel pump pick-up. 

The exhaust was designed to fit the existing outlet ports on the engine. The effective 

lengths of the outlet pipes were modelled on an existing system and fabricated from 

stainless steel mandrel bends. The exhaust was fabricated from a stainless steel pipe, 

perforated and surrounded with fibreglass packing, to minimise backpressure. The tail 

pipe length was acoustically tuned to a minimum of noise output at 9000 rpm. The 

resulting 109 dB at 0.5 metres from the exhaust was within the limits imposed by the 

Formula SAE rules.[84] 

The cooling system consists of a radiator, electric water pump and two thermo-

electric fans. Initially, the radiator was envisioned as being placed in a side-pod on the 

vehicle as this would ensure more effective cooling. After much deliberation, the 

location was changed to the rear of the vehicle to minimise drag and the weight 

inherent with the extra hose lengths, also it was thought that the slow speeds of the 

Formula SAE event would minimise the benefit of the side-pod arrangement. The 

fans and water pump supply the extra fluid flow required to keep the engine cool. 

The chosen engine management system was the MoTeC M4-Pro Engine Control Unit 

(ECU). The system provides sequential injection, which is ideal for fuel efficiency 

and optimum fuel injection timing. It also provides 3D-mapping of engine parameters 

and the option of open or closed loop operation from an exhaust oxygen (Lambda) 

sensor for improved fuel economy or performance control. It includes engine oil 

pressure and cooling water temperature sensor inputs as well as the facility to run 

engine based traction control based on wheel speed measurements. The system stores 

up to 1281(13 of logged engine data which allows for a complete analysis of the engine 

after running. The system is shielded from radiated interference and includes filters to 

reject low impedance conducted interference. Essentially the ECU is a 32 bit micro-

controller. Sensors are read at up to 2400 Hz and the entire program regenerates at 
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200 Hz. The system is said to use up to 70% less power than other systems to fire 

injector hence drawing less power from the electrical system and generating less heat. 

In fitting with the major objectives of the electrical system and engine convenience, 

the original loom design with in line fuses and multiple bulky relay mountings were 

re-designed to incorporate a single fuse and relay box. 

The box itself is made of clear material for reasons of fast identification of loose 

connections or burnt out fuses and relays as well as aesthetics (shown previously in 

Figure 4.1-4). The wires are fed in groups through the back of the box that allows 

removal of the box without the loom and vice versa. Rubber grommets have been 

used along with a rubber gasket to seal the box cover in place. 

The circuit for the fuse box was taken almost directly from the MoTeC ECU wiring 

diagrams (Appendix F). Major alterations involved the removal of a relay that was 

redundant in this particular application and the unification of relay type used 

throughout the vehicle. The required diode activated relay was replaced with an in 

line diode on the circuit to allow fitting of a standard relay in its place. Extra fuses 

were included for each of the major components, allowing for very simple component 

fault diagnosis. 

One of the major objectives of the fuse box was to find a neat and effective way to 

mount all the required relays and fuses in one place where they could be easily 

accessible to check and change. The ideal situation was chosen to be a set of closely 

located relay and fuse sockets joined to plugs as appropriate by a printed circuit 

board. The printed circuit board was layered with solder tracks to increase the current 

rated capacity in excess of 12 Amp (Appendix F). 

Load ratings of fuses were selected according to the component they serve. In general 

fuses will withstand up to their rated current plus 200% for 2 minutes. The majority 

of components have around 7-8 Amp start up current with a continuous 2-3 Amp 

while running. 10 amp fuses are most common in this system (as shown previously in 
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Figure 4.1-4). Automotive fuses were specified for their compactness, physical 

durability (plastic cases) and ease of mounting. 

(i) 
	

(ii) 
	

(iii) 

Figure 4.1-7 (i) ADL located on dashboard, (ii) Corn ports are located on the 

dashboard for easy access during testing and data transfer with the remote PC 

and (iii) Rear connections from wiring loom to Corn ports. 

The dashboard is the driver control panel. All the information about the engine and 

other aspects of the running car is fed to the driver through the Advanced Dash 

Logger or ADL. Information about the ADL is contained Appendix G along with 

reference wiring and programming. 

The dash itself is constructed from a composite sandwich of carbon fibre and foam 

constructed using vacuum bagging techniques, the fibre was said up on sheets of 

window glass to ensure a good finish. Profile cutting, drilling and finishing all 

performed after the bonding process. The dashboard attaches to the frame through 

bolts and welded tabs. 

COM ports featured in the dash are used to facilitate fast and easy connection of the 

on-board computer systems to an external computing and storage PCs for data logging 

sessions. The COM ports connect to plugs behind the dash where the ECU and ADL 

are connected facilitating easy removal of individual units. The trackside computer is 

simply plugged into the front of the dashboard to download data or change on-board 

programmed settings. 

As vibration is significant on the test vehicle, stress relief for the wiring and solid 

mountings is a feature of this design. Ease of removal of the dash was a major 
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consideration and was achieved using two main connectors behind either side of the 

dash. 

Once the physical layout of the dashboard was determined, the circuit design was 

largely a matter of connecting the components with the main vehicle circuit. Shrink 

fit wire covering was used to prevent shorting, and the back of the dash is painted 

with liquid electrical tape to ensure water resistance. Physical layout of the dashboard 

switches and lights follows a logical progression. The most important switches are to 

the right, away from the gear changer. The neutral and oil warning lights are located 

close to the ignition switch. Specifications for components of the electrical system are 

included in Appendix F - Electrical system general specifications. 

4.2 Concluding Remarks 

This chapter addressed the design and construction of the test vehicle. Safety while 

testing parameters that contribute to vehicle roll over was an integral part of the 

design. An outline of design and fabrication was given for the frame, suspension, 

wheel assembly, driver interface and engine systems with the electrical system 

covered in more detail. Chapter 5 will examine the significance and placement of the 

sensors throughout the vehicle. As all the results obtained are dependent on the sensor 

outputs the following chapter is integral. 
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Chapter 5 Sensors and Sensor Fusion 

Sensor fusion usually refers to the combination of multiple sensor data into one 

representation or control action for improved measurement accuracy or motor 

behaviour.[89] In this case, the vehicle dynamic sensor outputs are intended for 

prediction of accelerations and velocities. As a preliminary step, the sensor output 

must be collected through the data acquisition system and later collated for the 

purpose intended by the various neural networks. The following chapter outlines the 

sensors themselves: their calibration and positioning followed by the various 

components of the data acquisition system. The use of the data in prediction and 

decision making is covered in chapter 6. 

5.1 Sensor Positioning and Specification 

A detailed analysis of sensor selection may be found in [90]. The most critical sensor 

from a positioning point of view is the acceleration sensor. Engaged to measure 

accelerations in 3 dimensions, yaw angles and rates, pitch angles and rates and roll 

angles and rates, the acceleration sensor must be located at the vehicle's centre of 

gravity. This is due to the way in which the sensor uses the signals it receives. To 

calculate actual pitch and roll angles, the angular rate signals must be integrated. 

Unfortunately, an offset error in angular rate will produce an error in angle. That 

angle error increases linearly with time. In addition, the random noise in the rate 

sensors will produce a random walk effect in the calculated angle. The random walk 

causes the calculated angle to drift at a rate proportional to the square root of time, 

even in the absence of rate-bias error.[91] Many of these difficulties can be avoided 

by initially mounting at the vehicle's centre of gravity and roll, and correct directional 

alignment. These considerations were incorporated in the design of the vehicle. 

The following quantities were identified as integral to the dynamic performance of the 

vehicle: 

Chassis Parameters: 

• Individual Wheel Speeds, cow in rev/s 

• Accelerations, A, ,Ay, Az, in m/s 2  

• Yaw Angle, tv in degrees. 
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• Pitch Angle, yin degrees. 

• Roll Angle, O r  in degrees. 

• Yaw Angular rate, 0 in degrees/s. 

• Steering Angle, 8 in degrees. 

• Suspension Spring Travel, Zs, in m. 

• Brake Hydraulic Pressure in front and rear circuits, FB in Pa. 

Engine parameters: 

• Engine rpm 

• Throttle position 

• Lambda value 

Calculated parameters: 

• Distance, D in m. 

• Gear, calculated from rpm and drive speed 

• Pitch and roll angular rates, from the first derivative of the angles. 

• Ground speed from the averaged front wheel speeds 

• Distance, the integral of ground speed. 

• Drive speed, averaged rear wheel speed. 

• Driven wheel slip from rear wheel speed and ground speed. 

• Individual wheel accelerations, the derivative of the wheel speeds 

• Individual suspension velocities from differentiated suspension positions. 

Mathematically, the dynamics of a vehicle may be expressed as a function of all of the 

above parameters. The selection of sensors to collect readings of the above parameters 

was limited by the following: 

• Minimal available mounting space 

• Ability to withstand harsh environmental conditions 

• Communication and signalling compatibility between elements of instrumentation 

• Sensor availability [90] 
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Table 5.1-1 Summary of input instrumentation sensors.[89] 
Measurand Sensor Type Supplier Quantity 

Wheel speed Honeywell 	Gear 	Tooth 	Gil 

Series Hall Effect Sensor 

MoTeC 4 

Three 	axis 	accelerations, 

roll, pitch and yaw angles 

Crossbow DMU AHRS400-200 

Sensor 

Davidson 

Industrial 

Measurement 

I 

Steering Angle MoTeC (Spectrol) 10 turn, gear 

driven rotary potentiometer 

MoTeC I 

Spring Travel Gefram Linear Potentiometer — 

100 mm 

MoTeC 4 

Brake Force Honeywell 	Eclipse 	Pressure 

Sensor — 2000 psi 

MoTeC 2 

The sensors summarised in Table 5.1-1 are fundamental to the accuracy of the data 

required for this study and thus will be covered in detail after the engine sensors. 

5.1 .1 Engine Sensors 

The throttle position sensor is located on the inlet butterfly valve and provides the 

ECU with a variable voltage that represents the position of the throttle. This 

information is then used to control air-fuel ratio, timing and fuel shut-off.[92] 

Calibration is of the fully open position and fully closed position through the software 

associated with the ECU. After comparison with the Manifold Air Pressure (MAP) 

sensor, the throttle sensor was found to give better response after the engine was 

tuned. 

The standard crank angle sensor on the ZX-6 engine was kept and used as an input to 

the ECU. The sensor is a Hall Effect sensor triggered by a wheel with twelve evenly 

spaced teeth. To fix a point in the rotation cycle, the twelfth tooth is in actuality 

missing. Thus the gap in the signal corresponds to pistons two and three being at top 

dead centre whilst one and four are at bottom dead centre. In a four-stroke cycle this 

is not sufficient information to determine the position of each piston in the cycle. 

However, the decision to run wasted spark meant that the spark plugs each fire at the 

top of the piston stroke regardless of whether it be the compression stroke or the 
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exhaust stroke. This type of ignition system is common on standard fuel injected 

engines. 

Sequential fuel injection is the most precise way to inject fuel into an internal 

combustion engine. Other methods of injection involve injecting some or all of the 

cylinders at the same time, this is undesirable as the fuel may not fully atomise due to 

the stationary air and evaporation into the inlet manifold can occur due to the heat of 

the inlet valve. Sequential injection means that each injector fires individually at the 

correct moment in the cycle. As the spark plugs were running wasted spark a 

reference point was needed to identify the current phase of each piston in the cycle. 

To achieve this an additional sensor was required on the camshaft as this rotates only 

once per four-stroke cycle. A common Hall Effect sensor and associated wiring was 

mounted to a stainless steel bracket inside the engine and triggered by a remote earth 

magnet fixed to an existing hole in the cam shaft timing sprocket. The wires were 

insulated using a Teflon insulator and exit the engine through a hole drilled in the 

rocker cover. 

The Hall Effect works as a proximity switch under the influence of a magnetic field. 

The use of the stronger remote earth magnet allowed the distance between the magnet 

and the sensor to be increased from 2 mm to 5 mm, for convenience of mounting. The 

device is rate up to 100 kHz repetition rate. [93] 

To be read the pulse from the sensor must be amplified by the ECU input. A simple 

MOSFET amplification circuit is used for the job. The circuit is built on printed track 

circuit board and mounted in a box on the outside of the engine. The sensor wiring is 

temperature resistant; Kevlar insulated wire designed for harsh conditions. The 

sensor is mounted into the cam sprocket cavity in an aluminium bracket held by the 

nearest cam cover bolt. Directions for the set up and calibration of this sensor are 

included in the ECU help menus. 

The Lambda sensor measures the oxygen content in the exhaust gases, which is 

directly related to the air/fuel ratio of the burned fuel in the combustion chamber. It is 

mounted on the outlet engine pipes as close as physically possible to the engine to 
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minimise the time delay between the lambda reading and the engine rpm reading. A 

Zirconia cell generates the voltage output of the Lambda sensor. In principle, a 

process gas with unknown oxygen concentration flows over a measuring probe that is 

sealed off from the process gas by the heated Zirconia cell. A reference gas on the 

opposite side of the zirconia cell with its known oxygen concentration contacts the 

cell from the inside surface. At high temperatures, a voltage is generated between the 

two surfaces of the cell. At constant cell temperatures this voltage depends only on 

the ratio of oxygen concentrations between the reference gas and the process gas.[94] 

As this voltage is temperature dependent, the sensor is temperature compensated 

based on the increase of resistance of the sensor cell with temperature. 

5.1.2 Wheel Speed Sensors 

The wheel speed sensors are digital output gear tooth Hall Effect sensors. The Hall 

Effect is an electrical phenomenon discovered in 1870 by Dr Edwin Hall. When a 

current flows through a conducting material a magnetic field is set up. It means that a 

voltage is generated transversely to the current flow direction in an electric conductor 

(the Hall voltage), if a magnetic field is applied perpendicularly to the conductor.[95] 

If a ferrous material then passes through this field it concentrates the magnetic flux 

away from the conductor causing change in voltage. By measuring the changing 

voltage the passage of conducting material through the magnetic field may be 

monitored. In this particular situation the movement of the ferrous material, ie the 

bolts holding the wheel inners to the wheel rims, gives a changing voltage indicative 

of the wheel rotation. 

The Hall Effect sensor is composed of an integrated circuit made up of discrete 

capacitors and a bias magnet sealed in a probe type, non-magnetic plastic package for 

physical protection and cost effective installation. Wiring consists of a power source 

or voltage, sensor ground and signal wire that provides the output or measurement 

reading value. The sensor uses a discrete capacitor to store a reference voltage that is 

directly proportional to the maximum magnetic field strength (ie. the absence of a 

wheel bolt). A digital output signal is triggered when the magnetic field sensed by the 

hall element changes by a predefined amount. A feedback circuit is integrated into the 

silicon circuit and used to reduce the effects of temperature and other error inducing 

variables. 
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Hall effect sensors generally operate using a metallic gear tooth wheel that has the 

function of concentrating the magnetic flux away from the sensor. Incorporating such 

a gear into all four wheel assemblies proved a difficult design task and as such an 

alternative solution was found. As previously mentioned the heads of the steel bolts, 

that hold the aluminium face plate of the wheels to the rims, act as the sensor target 

material with the aluminium face plate acting as the non-target material. Simple 

mounts were constructed to support the sensor and mounted to the brake calliper. 

Calibration of the sensors proceeded once they were wired to the ADL. One wheel 

rotation is equivalent to 18 Hall effect pulses; the wheel speed calibration was 

effected in the software by specifying this value and the measurements of the 

individual wheel circumferences. 

5.1.3 Acceleration Sensor 

Based on the difficulty of positioning a cluster of sensors at the vehicle's centre of 

gravity a single unit was chosen with the capability to read all the variables required 

from the one position. The DMU-AHRS is a sensor clustering measurement system, 

designed to measure nine parameters including stabilised pitch, roll and yaw angles 

and yaw angular rates, and acceleration about 3 axes. These values are measured by 

using a combination of micro-machined three axis accelerometers, three axis 

rotational rate sensors, and three axis magnetometers. The addition of the three axis 

magnetometers allows the unit to make a true measurement of magnetic heading. 

Output may be in analog or RS232 digital form. The unit uses a combination of 

different methods, the principles behind which are detailed below. 

Firstly an accelerometer works by measuring the relative displacement of a spring 

mass system under acceleration. In the case of this particular sensor, three micro-

machined silicon micro electrical mechanical system (MEMS) accelerometers use 

differential capacitance to sense acceleration. This type of accelerometer senses a 

change in electrical capacitance through the use of a distorting diaphragm sandwiched 

between two plates. The two plates form the capacitor unit and detect changes as they 

are separated due to the movement of the diaphragm under acceleration in one plane. 
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The sensor then conditions the signal to create a linear output, as capacitance 

differentials are not directly linear. 

Next, the three angular rate gyroscopic sensors are made up of a number of vibrating 

ceramic plates that use a silicon MEMS structure to measure the Coriolis force (F=2m 

coVsin(4)), where 0) is the angular velocity of the axis, V is the relative velocity and 4) 

is the angle between vectors o) and I)) induced by the dynamic movement of the test 

apparatus. This data may then be used to calculate the rotation rate around the given 

axis. The advantage of this approach is that the output angular rate is independent of 

the acceleration output. One significant problem that arises is that a change in 

direction around one axis of a driving transducer induces a vibration in the detection 

transducer on another axis. To over come this problem an oscillator circuit is used to 

control the vibration. 

Finally the three magnetometers within the unit are constructed as miniature fluxgate 

sensors and are used to provide the heading angles with respect to the earth's 

magnetic field. These results are used only for reference, with the angular rate 

integrals and gravity angles used to stabilise the results. 

The acceleration sensor needed to be mounted as close to the centre of gravity as 

possible to minimise measurement errors as the sensor measures acceleration 

proportional to the product of the angular rate squared and the distance to actual 

centre of gravity. The required location was found from the FEA conducted in the 

design phase and verified through the measurement of the vehicle's weight 

distribution at each wheel. Vertically the only available option was to mount the 

sensor on the floor behind the driver. The fuel tank was designed to accommodate this 

location. 

Installation involved taking particular care to avoid ferrous materials close to the 

sensor that could affect the accuracy of the magnetometer. The sensor is mounted on a 

layer of foam to minimise vibration and held in place with velcro strips to add further 

dampening and eliminate the need for bolts. Connection proceeded through the ADL 
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using the analog input channels and calibration was done within the software by 

setting the acceleration due to gravity of the sensor upright, on its side and on its back 

to give the three directions. 

5.1.4 Steering Angle and Spring Travel Potentiometers 

The principle of operation for both the steering angle and spring travel sensors is the 

same so they are included together. Both sensors are potentiometers, the suspension 

travel sensors are linear and the steering angle sensor is rotary. A potentiometer is an 

analog sensor; it operates on the principle that electrical resistance is proportional to 

resistance length (in a straight line or around a curve). They generally consist of a 

movable component that makes contact at a point along an internal resistance. Thus 

the current flowing through the circuit encounters more or less resistance based on the 

position of the sensor element and the voltage changes accordingly, this is the sensor 

output. 

./ These sensors consist of an anodised aluminium cylindrical case with an internal 

moveable control rod of stainless steel. The maximum possible extension is 100 mm. 

The sensors have M5 self-aligning rod ends at each end for mounting. The linearity 

accuracy is 0.05% with infinite resolution based on the analog output. 

Installation of the linear potentiometers required sufficient length to be left in both 

upward and downward directions of suspension travel to avoid damage of the sensors 

travelling over small bumps and ditches. Using a calibration technique whereby a 

known deflection is applied at each individual wheel and associated with the sensor 

output voltage in the software, the sensors were able to be mounted with no 

requirement of perfect alignment and orientation precision in the vertical plane. This 

simplified the mounting procedure enormously. Eight mounts were welded to the 

frame and wishbones of the vehicle and the sensors bolted into position with washers 

to allow the rose joints at each end to self-align during operation. The sensors were 

zeroed with the car standing on the ground with an average sized driver. 
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The steering angle sensor incorporates a large pulley that was mounted directly to the 

steering wheel shaft and the actual steering angle sensor mounted in the direct vicinity 

using an "L" shaped channel of aluminium -. The sensor could be calibrated to 

measure either the actual change in the steered wheel angle of the vehicle, or the angle 

of the driver's steering wheel. In this instance the latter was chosen. The calibration 

consisted of temporarily mounting a protractor to the steering wheel and taking a 

voltage reading. The steering wheel was then moved through a number of known 

angles and the voltages read. From these values a calibration curve was developed and 

entered into the software. 

5.1.5 Brake Force Pressure Transducers 

The brake pressure sensor works on the piezoelectric effect. This effect occurs when 

an external force strains a crystalline substance such as quartz, resulting in a 

measurable charge accumulation on the crystal surface as its ions are displaced. The 

electrical voltage that develops across the crystal due to mechanical displacement is 

also proportional to the input pressure that causes the deformation of the crystal and 

forms the basis of pressure transducer operation. The two pressure transducers were 

installed into the brake lines through the use of a simple T-junction arrangement close 

to the nose of the vehicle for ease of access and wired into the ADL loom. Calibration 

tables were included in the Dash manager software and calibration was thus simply a 

process of loading the appropriate file into the system. 

5.2 Data Acquisition Instrumentation 

Data acquisition instrumentation refers to the equipment that processes the sensor 

voltage outputs into meaningful information on the vehicle, the equipment that 

transmits this to and receives the information at the research computer off the track 

and the software that is then used to manipulate it. The following section outlines the 

equipment chosen including issues of installation. 

5.2.1 MoTeC Advanced Dash Logger (ADL) 

The Advanced Dash Logger (ADL) from MoTeC is a compact complete data 

acquisition system suited to on-board collection of sensor outputs and engine control 
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parameters from the ECU. It also serves as a display unit to give the driver feedback 

from the vehicle systems. 

Specifications: 

4 Mb data storage memory capacity allowing 16 minutes of testing 

10 analog inputs 

8 digital inputs 

RS232 serial input 

4 auxiliary outputs 

High speed 32 bit microprocessor 

Programmable high contrast Liquid Crystal Display 

Detachable wiring loom. 

CAN communication cable for direct PC connection 

Installation of the ADL was largely a process of optimising visibility for the driver 

making the CAN cable easily accessible on the dashboard and connecting the wiring 

loom appropriately. A separate 12-volt battery was included as the power source to 

isolate any interference from the heavy electric system associated with the engine. 

5.2.2 Real Time Clocks 

The installation of a real-time clock provides time and date channels to the ADL to 

allow time stamping of all measured data. This unit also provided an additional 

RS232 input communication port for the ADL. 

5.2.3 Telemetry 

The telemetry system consists of two modems, complete with computer connections 

and antennas. The transceiver modem is located on the vehicle and transmits data 

logged by the ADL to the transceiver model that is connected to the data storage and 

display computer located off the track. Both modems operate in the 900MHz-

frequency band and utilise a pseudo-random code that enables the transceiver modem 

to transmit data on various frequencies throughout the band. This minimises 

interference from other sources. 
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5.2.4 Software 

A number of software utilities were included in the purchase of the data acquisition 

system. These included: MoTeC Dash monitor for programming and modifying the 

dash display, Data interpreter software which includes an export option to allow use 

of data in other packages, such as Excel. The software for programming the ECU was 

also included in the purchase. These software tools allow for the calibration of sensors 

and the manipulation and display of data during and after collection. 

5.3 Data Accuracy and Sensitivity 

The final accuracy and reliability of the trained neural networks depends heavily on 

the accuracy of the input data. This accuracy is dependent on the sensor accuracy as 

well as the precision of the entire measuring system in transforming the analog and 

digital signals to true units. The transmission and storage of data also plays a part in 

this. For example, a low sampling rate of a highly variable data set can result in a loss 

of information, as the true variation is not represented in the sample. Clearly this 

aspect of data acquisition is open to optimisation. 

5.4 Testing and performance 

From a design point of view the test vehicle was itself thoroughly tested along with 

the telemetry system as part of the development process. It proved to be extremely 

reliable and robust. The final test was racing in the local Formula SAE where it 

performed well and held up flawlessly through the rigorous dynamic testing. The 

vehicle has done over 10001(ms without significant failure. 

5.5 Concluding Remarks 

This chapter discussed the sensors and sensor fusion considering sensor positioning. 

The key sensor was shown to be the acceleration and angle sensor that was mounted 

as close to the vehicle centre of gravity as possible. The broad list of parameters to be 

measured was identified and the various sensors described and specified, beginning 

with the engine sensors followed by the dynamic sensors. Installation and calibration 

of the sensors was also included. Finally, the data acquisition system was specified 
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including telemetry, real-time clocks and software for on-line parameter estimation. 

The results of research testing, data acquisition and network training are the topic of 

chapter 6, to follow. 
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Chapter 6 Prediction of Parameters to Avoid Roll Over. 

A comprehensive range of testing parameters for varied testing conditions has been 

examined. This chapter details the predictions for the roll over parameters. Two 

neural network architectures were considered Back-propagation and Radial Basis 

Function. A comparison of these predictive models was made for the cases of velocity 

and roll angle prediction as important parameters for the prevention of vehicle roll 

over. A rationale for the choice of variables will now be addressed followed by details 

of the selection of most appropriate network architecture. 

Two parameters were chosen for estimation toward the prevention of vehicle roll 

over. These were based primarily on a fundamental analysis of the forces acting on 

the vehicle. The analysis is as follows: 

Consider a vehicle of mass m, travelling a curve of radius R to the vehicle centre of 

gravity at a longitudinal velocity v. 

, 
, 

, 
, 

Figure 6-1 Vehicle mass, radius and velocity 

Centripetal Force is given by: 

mv 2  Fc  = 
R 

Equation 6-1 

For a vehicle with stiff suspension, the roll over moment about point A is given by: 

M= Equation 6-2 
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Figure 6-2 Vehicle Moment and Force Diagram 

The opposing moment about A due to weight is given by: 

W = mgl 

Hence the velocity limit for a stiffly sprung vehicle where: 

Equation 6-3 

 

my 
xh= mlg 

   

    

is given by v =  
IgIR 

 

Equation 6-4 

However, for a vehicle with suspension, the vehicle body-roll, as indicated by the 

vehicle roll angle Or  will vary the length of both h and 1. 

Clearly the two critical parameters are roll angle, Or  and vehicle longitudinal velocity, 

v. The prediction of these values is to be done based on the sensor outputs from the 

test vehicle. In order to train a neural network it is necessary to have measured the 

correct value in some way. In the case of O r, this is determined directly by a gyroscope 

system in the acceleration sensor (outlined in chapter 5). A true measure of the 

vehicle velocity is somewhat more complicated as wheel speeds can differ from the 

vehicle speed in cases of wheel lockup or when a wheel leaves the ground in tight 

cornering. To alleviate the impact this may have on the results, the method of Porcel 

et al.[13] was used to determine a close approximation. The use of this method is 

based on the results given by this research team and outlined in chapter 2. The 

estimation of these values was from non-wheel speed sensors only and shows the 

validity of such an approach should an expensive optical sensor be used for training 
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purposes. This application of the approach is outlined in the following section. The 

appropriate tool to predict these two parameters demands selection of neural network 

architecture. 

6.1 Selection of Appropriate Architecture 

The effect of changing architecture affects performance from network to network. In 

the case of a robust network such as the 2-layer Back Propagation network the 

dangers are mainly those of over or under-training and excessive time consumption. 

The following results were obtained through a numerical investigation over the range 

of 2-10 hidden first and second layer nodes for the BP network and 2-10 nodes and 

sigma between 0.1 and 0.5 for the RBF network as shown in Table 6.1-1. 

Table 6.1-1 Range of Numerical Investigation Covered. 

BP RBF 

Inputs 16 Inputs 16 

Output 1 Outputs 1 

No. Hidden nodes 1st  layer 2-10 No. Hidden nodes 1 st  layer 2-10 

Transfer function Sigmoid Sigma 0.1- 0.5 

No. Hidden nodes 2'd  layer 2-10 

These results for the numerical investigation are discussed in the order given below. 

6.1.1 Back Propagation — Train and Test 

Figure 6.1-1 shows the effect on RMS error of changing architecture in the training 

phase. By examining the second layer hidden node axis it may be seen that the greater 

the number of second layer nodes the lower the accuracy and the greater the RMS 

error. From the above graph it may be seen that the optimum arrangement for this data 

set is 8 first layer hidden-nodes and two second-layer hidden-nodes. The resultant 

error for this arrangement is 0.05813. 
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Figure 6.1-1 RMS Error with Changing Architecture for (i) Training and (ii) 

Testing (BP) 

The general shape of the RMS error for the testing data is much the same  as  that for 

the training data. The only real difference is that the RMS testing error is marginally 

lower in some instances for the testing case than for the training case. Once again the 

minimum error is found at 8 first-layer hidden-nodes and two second-layer hidden-

nodes. The value of this error is 0.05956. 

From these results the optimum architecture is at 8 first-layer hidden-nodes and two 

second-layer hidden-nodes for the Back Propagation model. This Back Propagation 

architecture will be used for predicting v and Or in this chapter. 

6.1.2 Radial Basis Function — Train and Test 

The initial RMS error on the RBF graph for variations of architecture are  of  much the 

same magnitude as those of the BP network. However, the drop in error  due  to the 

addition of extra hidden nodes is markedly reduced in comparison. The range for 

plotting these values was held below 10 nodes and sigma values of  0.5  due to 

instabilities in the network. 
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Train RMS Error with Changing RBF Architecture Test RMS with Changing RBF Architecture 
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Figure 6.1-2 RMS Error with Changing Architecture for Train and Test (RBF) 

Figure 6.1-2 shows that the lowest RMS error was found to be for 10 nodes and a 

value of sigma equal to 0.5. This RMS value was 0.1275 more than double the value 

obtained for the BP training network. 

The same trend persists with the testing data. The slope here appears more gradual but 

unlike the BP test results, the errors start fractionally larger than the training errors at 

just over 0.2 and decrease to the lowest value of 0.13429. 

The optimum architecture is therefore selected as 10 hidden nodes and sigma equal to 

0.5. This RBF architecture will be used for predictive purposes for velocity and roll 

angle. 

6.2 Effect of iterations on RMS Error 

The number of iterations completed has a large impact on the time taken to train a 

model but may also impact on accuracy to a degree as will be shown. The following 

graphs were taken from the error files of the optimum BP and optimum RBF 

architectures. These graphs give an indication of how a network converges  to  its final 

solution as well as an insight into the variation in RMS error magnitude  that  occurs 

even after the model has apparently converged. 
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RMS Error with Iterations Train 
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Figure 6.2-1 RMS Error with Iterations for BP and RMS (i) Train and (ii) Test 

Comparison of the RMS error with iterations Figure 6.2-1 for the (ii) testing and (i) 

training data shows a strong correlation between the two. There are small differences 

in the actual values but on the whole the trends are very similar. It appears from the 

graphs that the major reduction in RMS error has occurred by 100 iterations, however 

the results seem most settled by 500 iteration. To minimise the time constraints it may 
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possible to limit iterations at 100. It appears that the loss of accuracy would not be as 

significant when considering the RMS error variation is as much as 0.02 after 

convergence around 850 iterations. 

It may be seen from the graphs that the 'BP results start at around 0.18 and 'drop to 

0.05, the RBF results start at around 0.9 and drop eventually to around 0.14. These 

large initial errors may be an indicator of the model instability. It is useful to note that 

the error values are close to their minimum by iteration 100, although 200 iterations 

would probably be ideal, the results from 100 iterations are likely to be reliable. 

In order to best represent these velocity and roll angle values appropriate "testing 

course" selection is required. The following section highlights the course selection for 

the measurements to develop a knowledge base for neural network modelling. 

6.3 Choice of Course 

A number of different courses were tested in the research process. Data was gathered 

for each of the courses and much of it used for predicting a number of parameters 

such as lateral and longitudinal acceleration, yaw angle [85] and brake pressures [96]. 

The courses include straight-line acceleration, sweeping ovals, tight left and right-

hand circles and figure 8's. 

For the problem of overturning, the straight-line data could be used to estimate 

longitudinal velocity, however, very few vehicles are likely to overturn whilst 

travelling a perfectly straight line. In addition to this the variation of roll angle is 

minimal in this case and due mainly to engine vibration. So only one parameter could 

be estimated from this data set. 

The tight circles and ovals had the advantage over the straight-line data that they 

could be used to estimate longitudinal velocity and roll angle. Each set of data 

represents turning in one direction only, left-hand corners or right-hand comers, so the 

range of data is limited in this sense. 



Page 94 

The fmal set of data is the 'figure 8' test data. It has the same advantage of the 

circular tests being able to provide data for both longitudinal velocity and roll angle 

but with the added complexity of turns in both directions. This means that the network 

is trained and tested on a much more demanding data set than a single, continuous 

circular motion. This is important to highlight the relevance and utility of the results 

to automotive systems development. As such the figure 8 course was the final data set 

chosen for this analysis. 

6.4 Derivation of Estimated Velocity 

The ideal sensor to record longitudinal velocity is an optical cross-correlation sensor. 

As this was not available within the scope of this research, the velocity was estimated 

using a procedure that has been tested on a front wheel drive vehicle fitted with an 

optical cross-correlation sensor. The function used has been modified slightly to 

account for the test vehicle being rear wheel drive. 

Based on the findings of Porcel et al.[13] the longitudinal velocity used for training 

the neural networks was derived using two main indicators. The velocity was taken 

from a single or combination of wheel speeds based on indications of the vehicle 

behaviour. The two indicators considered critical were loss of contact while 

cornering, I, and oversteering, front wheel sliding out and lateral sliding, J. While 

these indicators were developed for a fuzzy classification procedure, the process 

simply swaps the measured sensor between wheels. The system used here is based on 

using the best wheel speed sensors in any probability of problems as these are 

expected to give at least as good results as the wheel speed in question. For example, 

if the wheel in question has not lost contact with the road the alternate arrangement is 

reasonable and in the instance that it has, the results will be more accurate. The 

indicators mentioned are depicted in the following functions. 

6.4.1 Loss of Contact While Cornering, I. 

The determination of loss of contact while cornering was based on lateral acceleration 

L and yaw rate, Y. The visual basic function used to determine this indicator in excel 

is as follows: 

Function I(L, Y) 
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IfL=0AndY=0ThenI=0 	'Normal cornering 

If L> 0 And Y =0 Then I = 1 	'Loss of contact on the right side 

If L <0 And Y =0 Then I = -1 	'Loss of contact on the left side 

IfY>OThenI=0 	 'Normal cornering 

IfY<OThenI=0 	 'Normal cornering 

End Function 

Under normal cornering a vehicle will experience lateral acceleration and will 

continue to turn. Loss of contact occurs when the inside wheel of the vehicle leaves 

the ground. The probability of this occurring is highest when the vehicle is 

experiencing a lateral acceleration but not continuing to turn. The function given 

allows this to be indicated from the data set. 

6.4.2 Oversteering, Front Wheel Sliding Out and Lateral Sliding, J. 

The function to determine the indicator J, was based on steering wheel angle, a, lateral 

acceleration, L, the derivative of yaw rate, dd, and the derivative of lateral 

acceleration Ld. The function is as follows: 

Function J(a, L, dd, Ld) 

If dd =0 And Ld =0 Then J = 0 

if dd <0 And Ld <0 Then J =0 

if dd >0 And Ld > 0 Then J =0 

If L > 0 And a > 0 Then J =0 

IfL<OAnda<OThenJ=0 

if dd <0 And Ld = 0 Then J = -1 

If dd <0 And Lid > 0 Then J = -1 

If L> 0 And a <0 Then J = -1 

Ifdd>0AndLc1=0ThenJ=1 

Ifdd>0Andbi<OThenJ=1 

IfL<OAnda>0ThenJ=1 

End Function 

'Normal cornering 

'Normal cornering 

'Normal cornering 

'Normal cornering 

'Normal cornering 

`Oversteering or sliding out to the right 

`Oversteering or sliding out to the right 

`Oversteering or sliding out to the right 

`Oversteering or sliding out to the left 

`Oversteering or sliding out to the left 

`Oversteering or sliding out to the left 

As shown in the function above, the probability of sliding out or oversteering can be 

indicated by three main parameters. These are the derivative of yaw rate, which is the 

rate at which a vehicle is turning, the derivative of lateral acceleration, which is the 
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rate at which the lateral acceleration on the vehicle is changing and steering wheel 

angle. 

6.4.3 Velocity Function, Vest 

The velocity function is then calculated based on the two indicators and the four 

wheel speeds denoted V12 with the first position: f indicating a front wheel, r 

indicating a rear wheel, and in the second position: r, and 1 indicating right and left 

respectively. I and J are the indicators as previously outlined. The values were 

calculated in an excel spreadsheet and referenced to allow individual calculation for 

each data point. A comparison of estimated velocity and average rear wheel speed is 

shown in Figure 6.4-1. 

Estimated Velocity vs Average Rear Wheel Speed 

0 	20 	40 	60 	80 	100 	120 	140 	160 	180 

Time (s) 

Figure 6.4-1 Comparison of Estimated Velocity and Average Rear Wheel Speed. 

Figure 6.4-1 shows a comparison of the estimated velocity with the average wheel 

speed. Vest appears to be marginally noisier than the rear-wheel average; this is to be 

expected as the data contains information from 2 extra sensors. The estimated velocity 

gives a more accurate approximation of the longitudinal velocity than a simple rear 

wheel average as it takes more information into account. Figure 6.4-1 clearly shows 

the over-estimation of velocity by the average rear wheel speeds. This may be due to 

one of the rear wheels slipping to some degree in early acceleration. 
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The velocity function, Vest is as follows: 

Function Vest(Vfl, Vfr, Vrl, Vrr, J, I) 

If J > 0 Then Vest = (Vfr + Vrl) /2 

If J <0 Then Vest = (Vfl + Vrr) /2 

If I> 0 Then Vest = Vrl 

If I <0 Then Vest = Vrr 

If I =0 Then Vest = (Vfl + Vfr) /2 

End Function 

'Sliding or oversteering to the left 

'Sliding or oversteering to the right 

'Loss of contact on the right side 

'Loss of contact on the left side 

'Normal driving 

This function allows the velocity to be taken from the most appropriate wheel speed 

or speeds depending on the state of the vehicle as shown by the indicator functions. 

The four wheel speeds were removed from the input data following the calculation of 

Vest, which was used as the output variable. 

The parameters chosen to train the networks were slightly different for the two cases, 

velocity v, and roll angle, O r. Primarily it was considered important to use inputs from 

sensors that were different from the sensors used to find the training and test 

comparison outputs. In the case of Or  this was simple as the acceleration sensor uses 

different processes to measure angles, acceleration and angular rates. In the case of 

velocity prediction, a function was used through the MoTeC software to determine the 

gear based on wheel speeds and engine RPM. Apart from this wheel speeds were only 

used in the output. The following input parameters are selected for prediction of 

velocity. The extent and ranges of these tested parameters are as follows: 

Table 6.4-1 Parameters for Velocity Prediction 

Parameter Min Max Unit 

Engine RPM 210 11124 rpm 

Throttle Position 0 100 

Rear Brake Hydraulic Pressure 0 4310 kPa 

Front Brake Hydraulic Pressure 0 5500 kPa 

Steering Wheel Angle -192.5 209.7 deg 

Suspension Position Front Left 30.6 mm 
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Suspension Position Front Right -21.6 25.9 mm 

Suspension Position Rear Left -34.1 8.7 mm 

Suspension Position Rear Right -15.5 17 mm 

Longitudinal Acceleration -2.88 1.76 G 

Lateral Acceleration -3.84 3.64 G 

Vertical Acceleration -1.48 4.68 G 

Roll Angle -0.5 9.4 deg 

Pitch Angle -2.8 130.3 deg 

Yaw Angle -71.8 537.6 deg 

Gear 0 4 

Longitudinal Velocity Estimate, Vest 0 80.75 km/h 

The number of data patterns used was 3461 for training both models. The test data 

was 5% of this data randomly selected and withheld from the training process. The 

neural network model parameters are given in Table 6.4-2. 

Table 6.4-2 Neural Network Model Parameters 

BP RBF 

Inputs 16 Inputs 16 

Output 1 Outputs 1 

Hidden nodes 1 st  layer 10 Hidden nodes 1 st  layer 10 

Transfer function Sigmoid Sigma 0.5 

Hidden nodes 2' layer 2 

This gives a consolidated table of architecture parameters for two models. The results 

of testing and training were collected and collated. 

6.5 Prediction of v using BP and RBF models 

This section highlights prediction of v using both the neural network models. The 

training state will be shown in the first instance followed by the testing capabilities of 

both networks. 

6.5.1 Training Results 

For the training phase of velocity prediction the velocity is estimated using the logic 

in section 6.4.3 and the neural networks trained. The results are as follows: 
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Velocity Prediction Train BP 

Data Pattern 

(1) 

Longitudinal Velocity Prediction Train RBF 

Data Patterns 
(ii) 

Figure 6.5-1 Training Results using (i) BP and (ii) RBF Networks for Velocity 

As shown in Figure 6.5-1 (i) training the BP network proceeded extremely well and 

there appears to be very little estimation of noise in the training output. This first 
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comparison shows that the network was able to predict the values used in the training 

process, an important first step. 

The RBF network results also show a close estimation of the data trends. Clearly there 

is some discrepancy around the data extremes such as when the velocity is zero early 

in the data set and at the end of the data set. This appears to be an anomaly of the RBF 

training network. The middle data trends are well represented although the trends do 

not appear to be as clean as the BP training set. 
Velocity Train Frequency Histogram BP 	 Velocity Train Frequency Histogram RBF 
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Figure 6.5-2 Error Frequency Histogram for (i) BP and (ii) RBF Velocity Train. 

In comparing the error frequency histograms (Figure 6.5-2) the minor differences 

between the two models become more apparent. BP has much better predictive 

capability compared to RBF. Using BP, the majority of errors were well under ± 5%. 

This is particularly encouraging since the model is not biased for either under 

prediction or over prediction. This is excellent prediction considering other numerical 

techniques such as finite element modelling can only boast accuracy to around 15%. 

By contrast the RBF network appears to have the majority of errors within ± 20% 

with some errors distributed out to ± 40 %, Figure 6.5-2 (ii). This may be attributed to 

the lack of convergence of local minima solution for the sigma values chosen. This 

also shows the inability of the network to process such highly non-linear dynamic 

data. 
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6.5.2 Testing Results 

In the testing phase, the training network is tested against a set of data tat was 

included in the training set. In this way the network may be tested for its ability to 

interpolate or generalise to new data, what it has learned from the training phase. The 

results obtained for the testing phase of velocity prediction are as follows: 

Velocity Prediction Test BP 
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Longitudinal Velocity Prediction Test RBF 
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Figure 6.5-3 Test Result using (i) BP and (ii) RBF Networks for Velocity 
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In Figure 6.5-3 (i) the BP network shows excellent predictive capabilities with respect 

to the testing data. Values in the main body of the data appear to be within 2-3 km/h 

of the testing data. Using BP, the majority of errors were under ± 5% Figure 6.5-4 (i). 

Again, this is excellent prediction. 
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Figure 6.5-4 Error Frequency Histogram for (i) BP and (ii) RBF Velocity Test 

The variation between the RBF estimation and the original data points is more 

pronounced Figure 6.5-3 (ii). The RBF network appears to have the majority of errors 

within ± 20% with some errors distributed out to ± 40 % Figure 6.5-4 (ii). For RBF 

there is a variation of up to 38 lun/h in the main body of the data. At the extremes the 

network estimation does not predict the zero velocity at all. In some applications this 

area may not be of concern but in an automotive application, it may be critical. In this 

case, the network is out by as much as 20 km/h at the extreme, a significant and 

possibly dangerous amount in this type of application. 

The Back Propagation network is found to be superior compared to RBF for 

predicting v. It is important to note that this estimation of v can be integrated into a 

"roll-over" warning system, after substantial knowledge base is developed. The next 

section will deal with prediction of O r . 

6.6 Prediction of Roll Angle Using BP and RBF Models 

The roll angle of the vehicle is measured using the angle sensor. Hence the network 

may be trained using these values directly. The input parameters used in training the 

network to predict 0, are as follows: 
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Table 6.6-1 Extent of Experimentation for Or 

Parameter Max MM Unit 

Engine RPM 10860 2484 rpm 

Throttle Position 100 0 % 

Steering Wheel Angle 210.5 -184 deg 

Brake Hydraulic Pressure Front 4690 0 kPa 

Brake Hydraulic Pressure Rear 3869 0 kPa 

Suspension Position Front Left 6000 -9.8 mm 

Suspension Position Front Right 16.7 -10.4 mm 

Suspension Position Rear Right 18.5 -11.6 mm 

Suspension Position Rear Left 13.5 -23.5 mm 

Wheel Speed Rear Right 79.3 3.7 km/h 

Wheel Speed Rear Left 91.4 4.6 km/h 

Wheel Speed Front Right 74.7 9.4 km/h 

Wheel Speed Front Left 74.8 13.4 km/h 

Lateral Acceleration 4.44 -2.25 G 

Roll Angle 8.6 -3 deg 

In all there are 14 inputs. These were chosen as the parameters to demonstrate the 

important aspects of vehicle behaviour. The complete scope of experimentation 

covered 6000 data patterns 5% of which were randomly selected and used as test data. 

The 2 layer back propagation model was trained with the specifications given in Table 

6.6-2. 

Table 6.6-2 Neural Network Model Parameters 

BP RBF 

Inputs 14 Inputs 14 

Output 1 Outputs 1 

Hidden nodes 1st  layer 10 Hidden nodes 1' layer 10 

Transfer function Siamoid Sigma 0.5 

Hidden nodes 2 nd  layer ? 

The iesults of training and testing the networks based on these parameters were 

collected and collated. This section highlights predictions of O r  using both the neural 
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network models. The training state will be shown in the first instance followed by the 

testing capabilities of both networks. 

6.6.1 Training Results 

The training results for prediction of 0, are as follow: 

Roll Angle Prediction Train BP 

Data Pattern 

(1) 

Roll Angle Prediction Train RBF 

Data Pattern 

(ii) 

Figure 6.6-1 Training Result using (i) BP and (ii) RBF Networks for Roll Angle 
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Figure 6.6-1 (i) shows the graph of training data with the BP network output in the 

training phase. The results are comparable for the prediction of velocity. The input 

data in this case appears to be much more noisy and with a much less regular trend 

than the velocity data. It appears that at one point the low roll angle is not well 

predicted. The uneven slant of the training data around zero may have contributed to 

this phenomenon with the normalising process minimising this effect. The difference 

in angle between the network result and the actual training data is a high as 5 degrees 

at some points. However, on the whole the variation in the main body of the data 

would appear to be more of the order of 0.5-1.0 degrees. 

Ron Angle Train Frequency Histogram BP 

(i) 	 (ii) 

Figure 6.6-2 Error Frequency Histogram for (i) BP and (ii) RBF Roll Angle 

Train 

The BP histogram Figure 6.6-2 (i) shows a tight distribution largely within ± 5 c)/0. 

This is very encouraging considering 0, is an important parameter to contribute 

towards vehicle roll over. 

The results for the RBF network Figure 6.6-1 (ii) are quite inferior in this instance. 

The trend comparison shows that the network does not predict 0, well in the training 

case. While the absolute magnitude of errors is perhaps not larger than for the BP 

network, they are much more regular. 

Comparison of the predictive capability as indicated by the histogram Figure 6.6-2 (ii) 

show that the RBF network results are basically unreliable. The errors appear to be 

well spread out past 40%. The model also appears to frequently over predict as shown 

by the high number of positive errors. 
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6.6.2 Testing Results 

The testing results for prediction of 0, are as follows: 

Roll Angle Prediction Test BP 
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Figure 6.6-3 Test Result Using (i) BP and (ii) RBF Networks for Roll Angle 
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The test results given in Figure 6.6-3 (i) echo those of the training data. There is a still 

an apparently instantaneous variation of 3-5 degrees in some places, but on  the  whole, 

the basic trend is very clear. Again, there appears to be an issue  with  the true 

minimum, as estimated by the BP network, being well above the actual testing data, 

possibly for the aforementioned reasons. In this situation 3 degrees is not significant 

for roll over avoidance, and best represents a practical scenario to control over 

turning. 

It would appear that the results of the training phase for the RBF network Figure 6.6-3 

(ii) are well below the standard set by the BP network. Once again, there is the 

underestimation of the absolute minimum, which gives a difference of around 3 

degrees in this instance. The overall trend appears to be only roughly estimated with 

the majority of low values over predicted. 

Roll Angle Test Frequency Histogram BP 

Roll Angle Test Frequency Hist ogram RBF 

(I) 

Figure 6.6-4 Error Frequency Histogram for (i) BP and (ii) RBF Roll Angle Test 

These general comments are reinforced by the error frequency histogram. The BP 

network histogram Figure 6.6-4 (i) is clearly within acceptable bounds of accuracy 

with the majority of errors lying within ± 5%. The RBF network Figure 6.6-4 (ii) has 

a solid distribution of errors up to and beyond 40%. The results also show a tendency 

to over predict. As a predictive tool this is not acceptably accurate. In comparison 

with the BP network the RBF network appears quite inferior in this instance. 

In the case of O r  prediction, the BP network has been found to be superior in both 

training and testing phases. In comparing the two main networks, Back Propagation 

and Radial Basis Function, there is a variation of degree of accuracy within each 

network. 
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6.7 Concluding Remarks 

Two neural networks were trained to predict values for roll angle and longitudinal 

velocity. The optimum architectures of those considered were found to be: 

1. 8 first-layer hidden-nodes, 2 second-layer hidden-nodes, Back Propagation 

network with sigmoid activation function. 

2. Radial Basis Function with 10 hidden nodes and sigma equal to 0.5 

Table 6.7-1 Accuracy Summary 

Accuracy Velocity Roll angle, Or  
BP ±5% ±5% 

RBF ±20% ±40% 

Of the two networks tested the back propagation network gave superior results based 

on the results of a comparison of the trends and error frequency histograms. The 

importance of this preliminary investigation is to show the capability of the neural 

network approach to predicting velocity and roll angle. This has been achieved. 
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Chapter 7 Final Conclusions and Future Work 

In the introduction the need for sensor control for automobiles was introduced along 

with the concept of the intelligent car for traffic control, navigation and prevention of 

vehicle roll over. Based on this, the need for reliable estimation of vehicle dynamic 

performance was identified and brief comment made on the current state of sensor 

control. The distinction between local and comprehensive control was drawn using 

the examples of cruise control ABS and ASS as local control strategies and the need 

for comprehensive control to avoid vehicle roll over highlighted. It is concluded for 

there is a need for intelligent tools for better control in automotive applications. 

Conceptual vehicular physics were discussed as the basis for understanding the 

physical system. The complex nature of vehicle dynamics was highlighted along with 

the difficulty associated with estimation of parameters responsible for vehicle roll 

over. An extensive literature survey highlighted the application of neural networks 

and fuzzy logics to this problem and the work of Porcel et al.[13] examined in some 

detail as a strong foundation for the results detailed in later chapters. A general 

summary was made of research in artificial intelligence as used in other automotive 

applications such as engine control. A comparison was made of a neural network 

solution and a fuzzy logic solution to the question of backing a truck into a docking 

bay. The fuzzy rule base was found to be superior in this simple case, with the real 

advantage of neural networks over the fuzzy rule base being found in more complex 

applications. A broad overview of neural network applications in a variety of 

industries was also included. 

The mathematical basis of the neural network technology has been discussed and the 

biological basis for artificial neural networks is examined. This was followed by a 

brief history of the development of modern neural networks and the simple two-layer 

Perceptron with associated functions. The different types of networks were discussed 

as well as some important characteristics that make the neural network approach 

unique compared to the conventional methods. Some considerations for improving 

network performance were outlined and the details of two main models discussed 

namely Back Propagation and Radial Basis Function. Although the models were 
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slightly modified to gain better momentum, the original code and algorithms were not 

changed. 

A detailed experimental set up covering the concept, design and manufacture of the 

test vehicle for collection of training data, the intelligent race-car is developed. The 

vehicle was designed with a lower centre of gravity as the preferred option to avoid 

physical overturning, while the parameters that contribute to overturning were 

measured using sensory technology. A brief overview of the development of the 

frame, suspension, wheel assembly, cockpit and drive train were also discussed. More 

details on the development of the engine and electrical systems were covered. Safety 

and reliability were key aspects of the design as well as educational training of final 

year students. 

The discussion of sensors and sensor fusion considered sensor positioning. The key 

sensor was shown to be the acceleration and angle sensor that was mounted as close 

to the vehicle centre of gravity as possible. The broad list of parameters to be 

measured was identified and the various sensors described and specified, beginning 

with the engine sensors and then the dynamic sensors. Installation and calibration of 

the sensors was also included. Consequently the data acquisition system was specified 

including telemetry, real-time clocks and software for on-line parameter estimation. 

Finally, from first principles, a rationale was given for the choice of longitudinal 

velocity and vehicle roll angle as major parameters contributing to vehicle roll over. 

The optimal architecture, with numerical investigation, for back propagation was 

found to be 8 first-layer hidden-nodes and 2 second-layer hidden-nodes. For Radial 

Basis Function model the optimal architecture was found to be for 10 nodes and 

sigma equal to 0.5. The prediction of velocity from rear wheel speeds was based on 

the published work in the literature. These values were then used to train both 

networks. The results showed Back Propagation was the superior network for the 

prediction of longitudinal velocity with an RMS error distribution within ± 5 % of the 

required value for both training and testing, compared with the Radial Basis Function 

network that was distributed to ± 20% for both training and testing. Prediction of roll 

angle was based on the value from the angle sensor. Again both networks were 
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trained. The results showed Back Propagation was the superior network for the 

prediction of roll angle with an RMS error distribution within ± 5 % of the required 

value for both testing and training, compared with the Radial Basis Function network 

that was distributed to ± 40% for both testing and training. The importance of this 

preliminary investigation was to show the capability of the neural network approach 

to predicting longitudinal velocity and roll angle as parameters responsible for vehicle 

roll over. This work establishes applications of neural networks for prediction of 

parameters responsible for overturning. 

Future work in this area will foster new avenues for control and investigation in 

intelligent traction control and intelligent brake pressure control. There is extensive 

work still to be done in development of vehicle hardware; actuators and control 

systems based on this technology. As a generic application, this work has established 

the use of neural networks as a predictive tool for estimating vehicle roll over 

parameters. It is both satisfying and reassuring to have a computational predictive 

basis for comprehensive safety systems. This work is clearly preliminary in nature, 

which leads to the identification and application of fast converging algorithms and 

other neural network models that are being continually developed in this research 

group. 

From an industry point of view this technology would be at its most powerful when 

integrated with manufacturer's already available ESP and ABS control systems. The 

development of safer driving conditions is advantageous to researcher, manufacturer 

and consumer alike. This work lays the foundation for a comprehensive control 

system for the prevention of vehicle roll over and consequently the prevention of 

possible injuries and fatalities. 
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Appendix A 
Neural Network Software Source Code 

A-1 Back Propagation Source Code 	  121 
A-2: Radial Basis Function Source Code 	  131 



OutputRange = 1..MaxNumOutputs; 
{index k always used for this range} 

{Input data types) 

InputLayerType 	= array[InputRange] 
of real; 

OutputOutType 
array[OutputRange] of real; 

InputPEType 

InputLayerType; 

OutputOutType; 

- record 
x: 

out: 

end; 

InPEPtr 	= 'InputPEType; 
{Structure too 

large for stack, put it on the heap) 

DataType 
of InPEPtr; 

= array[DataRange] 

TestDataType 
array[TestDataRange] of InPEPtr; 

InputDataType 
array[inputDataRange] of InPEPtr; 

{Hidden layer 1 data types) 

HiddenWeightType = 
array[HiddenRange, InputRange] of real; 

HiddenOutType 
array[HiddenRange] of real; 

HiddenPEType 

HiddenWeightType; 

= record 
W: 

z: HiddenOutType; 
end; 

{Hidden layer 2 data types} 

Hidden2WeightType = 
array[Hidden2Range, HiddenRange] of 
real; 

Hidden2OutType 
array[Hidden2Range] of real; 

Hidden2PEType 

Hidden2WeightType; 

Hidden2OutType; 

{Output data types) 

= record 
r: 

S: 

end; 

Output WeightType = 
array(OutputRange, Hidden2Range] of 
real; 

Output PEType 	= record 
u: 

OutputWeightType; 
y: OutputOutType; 
end; 
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A-1 Back Propagation Source Code 
program Back_Prop_2_Hidden; {2 hidden 
layers, multiple inputs/outputs} 
uses Dos, crt; 
const 

(************************************** 
********** *** ******************** *) 

{Neural Network Parameter 
Specification) 

MaxNumInputs = 40; 
MaxNumOutputs = 10; 

MaxTrainPatterns = 15000; 
MaxTestPatterns = 15000; 
MaxInputPatterns = 2500; 

MaxMaxIterations = 1000000; 

MaxNumHiddenNodes = 100; 
MaxNumHidden2Nodes = 100; 

(*.************************************ 
**********************************) 

{Delta Rule constants) 

zeta 	= 0.9; {Controls the 
learning rate, 0 < zeta < 1} 

decrate 	= 0.99; {Rate of 
decrease of zeta over iterations range, 
decrate < 1) 

{Miscellaneous constants) 

dataSeed 	= 1; {Seed for Random 
Number Generation for initialising 
network weights} 

calcSeed 	= 1; {Seed for Random 
Number Generation for random selection 
of training data patterns} 

type 

{Miscellaneous ranges) 

DataRange 
1..MaxTrainPatterns; {Specifies range 
of training data patterns) 

TestDataRange 	= 1..MaxTestPatterns; 
{Specifies range of test data patterns} 
InputDataRange 

1..MaxInputPatterns; {Specifies range 
of validation data patterns) 

IterationsRange = 
0..MaxMaxIterations; {Specifies range 
used for controlling maximum epochs) 

{Network layer ranges) 

InputRange 	= 0..MaxNumInputs; 
{index i always used for this range} 
HiddenRange = 1..MaxNumHiddenNodes; 

{index j always used for this range) 
Hidden2Range = 1..MaxNumHidden2Nodes; 

{index b always used for this range) 
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hl,m1,s1,hundl : Word; 
{Variables for calculating program 
start time} 
h2,m2,s2,hund2 : Word; 

{Variables for calculating program 
finish time} 

DeltaErrorType 
array[OutputRange) of Real; 

var 

{Network variables} 

NumInputs 
NumOutputs 

: Integer; 
: Integer; (++++++++++++++++++++++++++** 

Functions  +++++'++++++++++++*++++++++++) 

TrainPatterns : Integer; 
TestPatterns : Integer; 
InputPatterns : Integer; 
MaxIterations : Integer; 
NumHiddenNodes : Integer; 
NumHidden2Nodes: Integer; 
EpochSize : Integer; 

linear 	: Integer; 
sigmoidal : Integer; 

DataDirectory :string; 
ImportAnal 	:string; 
ParamIndex 	:string; 

dataIn 	:string; 
testDataIn 	:string; 
errorOut 	:string; 
trainingOut 	:string; 
testOut 	:string; 
weightsOut 	:string; 
time 	:string; 
inputDataFile :string; 
netOutput file :string; 
ParamSpecFile :string; 

inData 	: DataType; 
{Variable associated with training data 
patterns} 

testData 	: TestDataType; 
{Variable associated with test data 
patterns) 

inputData 	: InputPEType; 
{Variable associated with validation 
data patterns} 

inputDataVar 	: inputDataType; 
{Variable associated with validation 
data patterns} 
hiddenNodes 	: HiddenPEType; 

{Variable used to control hidden layer 
1 computation) 
hidden2Nodes 	: Hidden2PEType; 

{Variable used to control hidden layer 
2 computation} 

outputNodes 	: OutputPEType; 
{Variable used to control output layer 
computation}  

procedure OpenIn (var f: Text; 
filename: string); 

(Used to open specified files 
containing information to be read into 
the network) 

begin {OpenIn} 

Assign(f, filename); 
Reset (f) 

end; {OpenIn} 

procedure OpenOut (var f: Text; 
filename: string); 

{Used to open specified files to write 
network output to} 

begin {OpenOut} 

Assign(f, filename); 
Rewrite(f): 

end; {OpenOut} 

(+++++++++++++++++*++++++++ utility  
Functions  ++++++++++++++++++*+++++++) 

function RandomOne: real; 

{Returns a random number in the range 
1 to 1} 

begin {RandomOne} 

RandomOne := Random * 2 - 1; 

end; {RandomOne} 

function Random1To (top0fRange: 
Integer): DataRange; 

delta 
{Variable used 
error} 

rmsError 
{Variable used 
error}  

: DeltaErrorType; 
to determine network 

: real; 
to determine network 

{Returns a random integer in the range 
1 to top0fRange} 

begin {Random1To} 

iterations 	: IterationsRange; 
{Variable used to perform maximum 
iterations} 

: Integer; 
{Variable used in random selection of 
training patterns} 

fOut 	: Text; 
{Variable for opening output files} 
fIn 	: Text; 

{Variable for opening input files} 

Random1To := Round(Random * 
(top0fRange - 1)) + 1; 

end; {Random1To} 

function LeadingZero (w : Word) : 
String; 

{Enables computation time to be 
formatted correctly in output file} 

var 	s : String; 
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begin {LeadingZero) 

Str(w:0,$); 

if Length(s) = I then 

s:='0'+s; 

LeadingZero:=s; 

end; {LeadingZero} 

{********************** Initialization 
Functions **********************) 

procedure InitParamSpec; 

{Initialises the Parameter 
Specification for the NN M.Alarcn 24- 
11-00} 

begin {InitParamSpec} 

ParamSpecFile := .c:\psc.txt'; 
OpenIn (f In, ParamSpecFile); 
readln 	(f In, DataDirectory); 
readln 	(f In, NumInputs); 
readln 	(f In, NumOutputs); 
readln 	(fIn, TrainPatterns); 
readln 	(f In, TestPatterns); 
readln 	(f In, InputPatterns); 
readln 	(f In, MaxIterations); 
readln 	(f In, NumHiddenNodes); 
readln 	(f In, NumHidden2Nodes); 
readln 	(fIn, linear); 
readln 	(fIn, sigmoidal); 
readln 	(f In, ImportAnal); 
readln 	(f In, ParamIndex); 
Close (fin); 

EpochSize 	:= TrainPatterns; 
{Number of training data patterns 
considered in each epoch) 
end; {InitParamSpec} 

procedure InitFilenames; 
(Initialises tFilenames for the NN 
M.Alarctn 7-12-00) 

begin {InitFilenames} 
dataIn 	:= DataDirectory + 

ImportAnal + 'trn' + ParamIndex + 
'.txt'; (Input file containing training 
data set) 

testDataIn 	:= DataDirectory + 
ImportAnal + 'tst' + ParamIndex + 
'.txt'; {Input file containing test 
data set) 

errorOut 	:= DataDirectory + 
ImportAnal + 'err' + ParamIndex + 
'.out'; (Output file for training and 
test error) 

trainingOut 	:= DataDirectory + 
ImportAnal + 'trn' + ParamIndex + 
'.out'; (Output file for training 
results) 

testOut 	:= DataDirectory + 
ImportAnal +. 'tst' + ParamIndex + 
'.out'; (Output file for test results) 
weightsOut 	:= DataDirectory + 

ImportAnal + 'wts' + ParamIndex + 
'.out'; (Output file for weights 
matrix) 

time 	:= DataDirectory + 
ImportAnal + 'tin' + ParamIndex + 
'.out'; {Output file for computation 
time) 

inputDataFile := DataDirectory + 
'input.txt'; {Input file containing 
validation data set) 
netOutputfile := DataDirectory + 

'output.out'; {Output file for 
validation results} 

end; {InitFilenames) 

procedure InitDataStrs (var d: 
DataType; var t: TestDataType); 

{Initialises the training and test data 
structures on the heap} 

var m: DataRange; 
n: TestDataRange; 

begin {InitDataStrs) 

for m := 1 to TrainPatterns do 

New(d[m]); 

for n := 1 to TestPatterns do 

New(t[n]); 

end; (InitDataStrs) 

procedure DisposeDataStrs (var d: 
DataType; var t: TestDataType); 

{Disposes of the training and test data 
structures) 

var m: DataRange; 
n: TestDataRange; 

begin {DisposeDataStrs) 

for m := 1 to TrainPatterns do 

Dispose(d[m]); 

for n := 1 to TestPatterns do 

Dispose(t[n]); 

end; {DisposeDataStrs) 

procedure InitData (var d: DataType; 
var t: TestDataType); 

(Reads in training and testing data 
from specified files) 

var m: DataRange; 
n: TestDataRange; 

InputRange; 
k: OutputRange; 

begin {InitData} 

writeln; 
writeln('Reading in the training 

data'); 
writeln; 
OpenIn(fIn, dataIn); 
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for m := 1 to TrainPatterns do 

begin {m} 

for i := 1 to NumInputs do 

read(fIn, d[m]'.x[i]); 

for k := 1 to NumOutputs do 

read(fIn, d[m]'.out[k]); 

readln(fIn); 

end; {m} 

Close(fIn); 

for m := 1 to TrainPatterns do 

d[m]'.x[0] := 1; 

writeln('Reading in the test data'); 
writeln; 
writeln(MaxIterations,' iterations 

will now commence to generate network 
weights'); 

writeln; 
OpenIn(fIn, testDataIn); 

for n := 1 to TestPatterns do 

begin {n} 

for i := 1 to NumInputs do 

read(fIn, t[n]'.x[i]); 

for k := 1 to NumOutputs do 

read(fIn, t[n]'.out[k]); 

readln(fIn); 

end; {n} 

Close(fIn); 

for n := 1 to TestPatterns do 

t[n]'.x[0] := 1; 

end; {InitData} 

procedure InitHidden1Layer (var h: 
HiddenPEType); 

{Initializes the hidden layer 1 weights 
to random reals in the range -1 to 1) 

var 	InputRange; 
j: HiddenRange; 

begin {InitHidden1Layer) 

for j := 1 to NumHiddenNodes do 

for i := 0 to NumInputs do 

h.wjj, i] := RandomOne; 

end; {InitHiddenlLayerl 

procedure InitHidden2Layer (var f: 
Hidden2PEType); 

{Initializes the hidden layer 2 weights 
to random reals in the range -1 to 1} 

var j: HiddenRange; 
b: Hidden2Range; 

begin {InitHidden2Layer} 

for b := 1 to NumHidden2Nodes do 

for j := 1 to NumHiddenNodes do 

f.r[b, j] := RandomOne; 

end; {InitHidden2Layer} 

procedure InitOutputLayer (var o: 
OutputPEType); 

{Initializes the output weights to 
random reals in the range -1 to 1) 

var b: Hidden2Range; 
k: outputRange; 

begin {InitOutputLayer} 

for k := 1 to NumOutputs do 

for b := 1 to NumHidden2Nodes do 

o.u[k, b] := RandomOne; 

end; {InitOutputLayer} 

{*********************** Neural Net 
Procedures ***********************) 

procedure NetForwardDel (var inp: 
InputPEType; var h: HiddenPEType; var 
f: Hidden2PEType; 
var o: OutputPEType; var delta: 
DeltaErrorType); 

{Calculates network output for a given 
input and also the error, delta} 

var net, val, sum: real; 
InputRange; 

j: HiddenRange; 
b: Hidden2Range; 
k: OutputRange; 

begin {NetForwardDel) 

{Hidden layer 1 forward) 

for j := 1 to NumHiddenNodes do 

begin {j} 

net := 0; 

for i := 0 to NumInputs do 

net := net + h.w[j, i] * 
inp.x[i]; 

h.z[j] := 1 / (1 + exp(-net)); 

end; (j) 
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{Hidden layer 2 forward) 

for b := 1 to NumHidden2Nodes do 

begin {b) 

sum := 0; 

for j := 1 to NumHiddenNodes do 

sum := sum + f.r[b,j] * h.z[j]; 

f.s[b] := 1 / (1 + exp(-sum)); 

end; {b) 

{Output layer forward} 

for k := 1 to NumOutputs do 

begin {k} 

val := 0; 

for b := 1 to NumHidden2Nodes do 

val := val + o.u[k, b] * f.s[b]; 

o.y[k] := sigmoidal * (1 / (1 + 
exp(-val))) + linear * val; 

delta[k] := inp.out[k] - o.y[k]; 

end; {k) 

end; {NetForwardDell 

procedure NetForward (var inp: 
InputPEType; var h: HiddenPEType; var 
f: Hidden2PEType; 
var o: OutputPEType; var 
dl,d2:0utputOutType); 

var net, val, sum: real; 
InputRange; 

j: HiddenRange; 
b: Hidden2Range; 
k: OutputRange; 

begin {NetForward} 

{Hidden layer forward} 

for j := 1 to NumHiddenNodes do 

begin {j} 

net := 0; 

for i := 0 to NumInputs do 

net := net + h.wjj, i] * 
inp.x[i]; 

h.z[j] := 1 / (1 + exp(-net)); 

end; 	(j) 

{Hidden layer 2 forward) 

for b := 1 to NumHidden2Nodes do 

begin {p} 

sum := 0; 

for j := 1 to NumHiddenNodes do  

sum := sum + f.r[b,j] * h.z[j]; 

f.s[b] := 1 / (1 + exp(-sum)); 

end; {b} 

{Output layer forward} 

for k := 1 to NumOutputs do 

begin {k} 

val := 0; 

for b := 1 to NumBidden2Nodes do 

val := val + o.u[k, b] * f.s[b]; 

o.y[k] := sigmoidal * (1 / (1 + 
exp(-val))) + linear * val; 

dl[k] := inp.out[k]; 
d2[k] := o.y[k]; 

end; {k} 

end; {NetForward} 

procedure NetTrain (var inp: 
InputPEType; var h: HiddenPEType; var 
f: Hidden2PEType; 
var o: OutputPEType; newzeta : real); 

This procedure calculates an output 
for any given input, compares the 
predicted output 
with the given output, calculates the 
associated error, delta, and updates 
the network 
weights using the "delta rule") 

var 	InputRange; 
j: HiddenRange; 
k: OutputRange; 
b: Hidden2Range; 
net, val, deltaJ, sum, deltaB, 

deltaBl, vall: real; 

begin {NetTrain} 

{Hidden layer forward) 

for j := 1 to NumHiddenNodes do 

begin {j} 

net := 0; 

for i := 0 to NumInputs do 

net := net + h.w[j, i] * 
inp.x[i]; 

h.z[j] := 1 / (1 + exp(-net)); 

end; 	(j) 

{Hidden layer 2 forward} 

for b := 1 to NumHidden2Nodes do 

begin {b) 

sum := 0; 

for j := 1 to NumHiddenNodes do 
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sum := sum + f.r[b,j] * h.z[j]; 

f.s[b] := 1 / (1 + exp(-sum)); 

end; {b} 

{Output layer forward} 

for k := 1 to NumOutputs do 

begin {k} 

val := 0; 

for b := 1 to NumHidden2Nodes do 

val := val + o.u[k,b) * f.s[b]; 

o.y[k) := sigmoidal * (1 / (1 + 
exp(-val))) + linear * val; 

delta[k] := inp.out[k] - o.y[k]; 

end; {k} 

{Update output layer weights) 

for k := 1 to NumOutputs do 

for b := 1 to NumHidden2Nodes do 

o.u[k, b] := o.u[k, b] + newzeta 
* delta [k] * f.s[b]; 

{Update hidden layer 2 weights} 

for b := 1 to NumHidden2Nodes do 

begin {b) 

val := 0; 

for k := I to NumOutputs do 

val := val + delta[k) * o.u[k, b]; 

deltaB := f.s[b] * (1 - f.s[b]) * 
val ; 

for j := 1 to NumHiddenNodes do 

f.r[b, j] := f.r[b, j] + newzeta 
deltaB * h.z[j]; 

end; {b} 

{Update hidden layer 1 weights) 

for j := 1 to NumHiddenNodes do 

begin {j} 

sum := 0; 
vall := 0; 

for b := I to numHidden2nodes do 

begin {b} 

for k := 1 to NumOutputs do 

vall := vall + delta[k] 
o.u[k, 	; 

deltaBl := f.s[b] * (I - 
f.s[b]) * vall; 

sum := sum + deltaBl * 
f.r[b,j]; 

deltaJ := h.z[j] * (I - h.z[i]) 
* sum; 

for i := 0 to NumInputs do 

h.w[i, i) := h.w[j, i) + zeta 
* deltaJ * inp.x[i]; 

end; {b} 

end; 	{j} 

end; {NetTrain} 

(************************* Di splay  

Procedures *************************) 

procedure DisplayError (var nns: real; 
inD: DataType; tD: TestDataType; h: 
HiddenPEType; 
f: Hidden2PEType; o: OutputPEType; 
newzeta: real); 

{Calculates the Root Mean Square, RMS, 
error for all the training and test 
inputs) 
{Displayed on user screen for 
monitoring purposes and also written to 
the specified file) 

var trErr, testErr, val, testRms: 
real; 

del: DeltaErrorType; 
m: DataRange; 
n: TestDataRange; 
k: OutputRange; 

begin (DisplayError) 

{Training data set calculations} 

trErr := 0; 

for m := 1 to TrainPatterns do 

begin {m} 

NetForwardDel(inD[m] ^ , h, f, o, 
del); 

val := 0; 

for k := 1 to NumOutputs do 

val := val + del[k] * del[k]; 

trErr := trErr + val; 

end; {m} 

rms := Sqrt(trErr/TrainPatterns); 
{RMS error over all training patterns) 

{Test data set calculations) 

testErr := 0; 

for n := 1 to TestPatterns do 

begin {n} 

NetForwardDel(tD[n] A , h, f, o, 
del); 

val := 0; 
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for k := 1 to NumOutputs do 

val := val + del[k] 	del[k]; 

testErr := testErr + val; 

end; (n) 

testRms := 
Sqrt(testErr/TestPatterns); {RMS error 
over all test patterns} 

writeln(fOut, iterations : 3, 
ms : 5 : 5, ", testRms : 5 : 5); 

end; (DisplayError) 

procedure WriteOutTrainingData (var 
inD: DataType; var h: HiddenPEType; var 
f: Hidden2PEType; 
var o: OutputPEType); 

(Writes the predicted and actual 
outputs from training to the specified 
file) 

var curvel, curve2: OutputOutType; 
p: DataRange; 
k: OutputRange; 

begin (WriteOutTrainingData) 

OpenOut(fOut, trainingOut); 

for p := 1 to TrainPatterns do 

begin {0 

NetForward(inD[p]', h, f, o, 
curvel, curve2); 

for k :=1 to NumOutputs do 

write(fOut, curvel[k] : 7 : 5, 

for k :=1 to NumOutputs do 

write(fOut, curve2[k] : 7 : 5, ' 

writeln(fOut); 

end; 	(ID) 

Close(fOut); 

end; (WriteOutTrainingData) 

procedure WriteOutTestData (var tD: 
TestDataType; var h: HiddenPEType; var 
f: Hidden2PEType; 
var or OutputPEType); 

(Writes the predicted and actual 
outputs from testing to the specified 
file) 

var curvel, curve2: OutputOutType; 
q: TestDataRange; 
k: OutputRange; 

begin (WriteOutTestData) 

OpenOut(fOut, testOut); 

for q := 1 to TestPatterns do 

begin (q) 

NetForward(tD[q] A , h, f, o, curvel, 
curve2); 

for k := 1 to NumOutputs do 

write(fOut, curvel[k] : 7 : 5, ' 

for k := 1 to NumOutputs do 

write(fOut, curve2[k] : 7 : 5, ' 

writeln(fOut); 

end; (q) 

Close(fOut); 

end; (WriteOutTestData) 

procedure WriteOutWeights (var h: 
HiddenPEType; var f: Hidden2PEType; var 
o: OutputPEType); 

{Writes the weights matrix to the 
specified file} 

var 	InputRange; 
j: HiddenRange; 
b: Hidden2Range; 
k: OutputRange; 

begin (WriteOutWeights) 

OpenOut(fOut, weightsOut); 

for j := 1 to NumHiddenNodes do 

begin (j) 

for i := 0 to NumInputs do 

write(fOut, h.w[j, i] : 8 : 5, ' 

writeln(fOut); 

end; 	(j) 

for b := 1 to NumHidden2Nodes do 

begin (b) 

for j := 1 to NumHiddenNodes do 

write(fOut, f.r[b,j] : 8 : 5,"); 

writeln(fOut); 

end; (b) 

writeln(fOut); 

for j := 1 to NumHiddenNodes do 

begin (j) 

for k := 1 to NumOutputs do 
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Write(fOut, o.u[k,j] : 8 : 5, ' 

writeln(fOut); 

end; 	{j} 

Close(fOut); 

end; {WriteOutWeights} 

{Procedures from here to "main program" 
used for running option 2 of the 
program) 

procedure InitInputData (var d: 
inputDataType); 

{Reads validation data patterns from 
specified file) 

var m: inputDataRange; 
InputRange; 

k: OutputRange; 

begin {InitInputData) 

writeln('Reading in the input data'); 
OpenIn(fIn, inputDataFile); 

for m := 1 to InputPatterns do 

begin {m} 

for i := 1 to NumInputs do 

read(fIn, d[m]".x[i]); 

for k := 1 to NumOutputs do 

read(fIn,d[m]".out[k]); 

end; {m} 

for m := 1 to InputPatterns do 

d[m]".x[0] := 1; {} 

Close(fIn); 

end; {InitInputData} 

procedure ReadInWeights(var 
h:HiddenPEType; var f:Hidden2PEType; 
var o:OutputPEType); 

{Reads weights matrix from file 
produced using option 1 of the program} 

var i , j, b, k : integer; 

begin {ReadInWeights) 

OpenIn(fIn,weightsOut); 

for j := 1 to NumHiddenNodes do 

begin {j) 

for i := 0 to NumInputs do 

read(fIn, h.w[j, i]) ; 
readln(fIn); 

end; 	{j}  

for b := 1 to NumHidden2Nodes do 

begin {b) 

for j := 1 to NumHiddenNodes do 

read(fIn, f.r(b, j)); 
readln(fIn); 

end; {b} 

readln(fIn); 

for j := 1 to NumHiddenNodes do 

begin {j) 

for k := 1 to NumOutputs do 

read(fIn, o.u[k,j]); 
readln(fIn); 

end; 	{j} 

Close(fIn); 

end; {ReadInWeights) 

procedure WriteOutNetOutputData (var 
tD: inputDataType; var h: HiddenPEType; 
var f:Hidden2PEType; var o: 
OutputPEType); 

{Calculates the output for any given 
input using the weights developed 
during training) 

var curvel, curve2: OutputOutType; 
q: inputDataRange; 
k:OutputRange; 

begin {WriteOutTestData} 

OpenOut(fOut, netOutputFile); 

for q := 1 to InputPatterns do 

begin {q} 

NetForward(tD[q]", h, f, o, curvel, 
curve2); 

for k := 1 to NumOutputs do 

write(fOut, curvel[k] : 7 : 5, ' 

for k := 1 to NumOutputs do 

write(fOut, curve2[k] : 7 : 5, ' 

writeln(fOut); 

end; {q} 

Close(fOut); 

end; {WriteOutTestData} 

procedure InitInputDataStrs (var d: 
inputDataType); 

{Initialises the training and test data 
structures on the heap} 

var m: inputDataRange; 
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begin {InitDataStrs) 

for in := 1 to InputPatterns do 

New(d[m]); 

end; {InitDataStrs) 

{**************************** main  
Program ********************.******) 

var answer: integer; 
count: 	integer; 
stop: 	integer; 
ni: 	integer; 
buffer: 	integer; 
newzeta : real; 

begin {Main program) 

InitParamSpec; {Gets the Parameters 
for the NN) 

clrscr; 

writeln(' FeedForward BackPropagat ion 
Neural Network'); 

answer: =1; 

if (answer = 2) then 

begin (2) 

InitinputDataStrs (inputDataVar); 
ReadInWeights (HiddenNodes, 

Hidden2Nodes, OutputNodes); 
InitInputData (inputDataVar); 
WriteOutNetOutputData 

(inputDataVar, HiddenNodes, 
Hidden2Nodes, OutputNodes); 

end 	{2} 

else 

begin (1) 
ni:=NumInputs; 
stop:=ni*2; 
for count:=0 to stop do 
begin {count} 
if count=0 then 

begin 
ImportAnal:="; 
ParamIndex:="; 
InitFilenames; 
end; 

if (count>0) and (count<=ni) then 
begin 
ImportAnal:='pi'; 
str(count,ParamIndex); 
NumInputs:=ni-1; 
InitFilenames; 
end; 

if count>ni then 
begin 
ImportAnal:='ci'; 
buffer:=count-ni; 
str(buffer,ParamIndex); 
NumInputs:=ni-1; 
InitFilenames; 
end; 

GetTime (hl, ml, Si, hundl); 

{Initialize the training and test 
sets) 

InitDataStrs (inData, testData); 
InitData (inData, testData); 
OpenOut (fOut, errorOut); 

{Initialise all weights using 
random values} 

randSeed := dataSeed; 
InitHidden1Layer (hiddenNodes); 
InitHidden2Layer (hidden2Nodes); 
InitOutputLayer (outputNodes); 

{A 'for' loop is used to fix the 
total number of iterations) 

(Reset the random seed so that the 
calling sequence can be contolled) 

randSeed := calcSeed; 
newzeta := zeta; 

for iterations := 1 to 
MaxIterations do 

begin {iterations} 

for q := 1 to EpochSize do 

begin (q) 

inputData := 
InData[Random1To(TrainPatterns) ); 

NetTrain (inputData, 
hiddenNodes, hidden2Nodes, outputNodes, 
newzeta); 

end; {q} 

(Display RMS error for each 
iteration) 

DisplayError (rmsError, inData, 
testData, hiddenNodes, hidden2Nodes, 
outputNodes, newzeta); 

{Decrease delta rule constant 
over iterations range) 

newzeta := decrate * newzeta; 

if newzeta < 0.1 then 

newzeta := 0.1 

else 

newzeta := newzeta; 

end; (iterations) 

Close (fOut); 
WriteOutTrainingData (inData, 

hiddenNodes, hidden2Nodes, 
outputNodes); 

WriteOutTestData (testData, 
hiddenNodes, hidden2Nodes, 
outputNodes); 

WriteOutWeights (hiddenNodes, 
hidden2Nodes, outputNodes); 

DisposeDataStrs (inData, testData); 
GetTime (h2, m2, s2, hund2); 
OpenOut (fOut, time); 
writeln (fOut, 'Start time :- 

',LeadingZero(h1),':',LeadingZero(m1),' 
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LeadingZero(s1), 
1)); 

writeln (fOut, 
',LeadingZero(h2),' 
:',LeadingZero(s2), 
2)); 

Close(fOut); 

,LeadingZero(hund 

'Finish time :- 
,LeadingZero(m2),' 

':',LeadingZero(hund 

end; {count} 
end; {1} 
Assign(fIn,'c:\psc.txt '); 
Erase(fIn); 

end. {Main program} 
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A-2: Radial Basis Function Source Code 
program Radial_Basis_Function; 
(multiple inputs/outputs, Gaussian 
function) 
uses Dos, crt; 
const 

(************************************** 
**********************************) 

{Neural Network Parameter 
Specification) 

MaxNumInputs = 40; 
MaxNumOutputs = 10; 

MaxTrainPatterns = 15000; 
MaxTestPatterns = 15000; 
MaxInputPatterns = 2500; 

MaxMaxIterations = 1000000; 

MaxNumHiddenNodes = 100; 

(************************************** 
**********************************) 

{Delta Rule constants) 

zeta 	= 0.9; (Controls the 
learning rate, 0 < zeta < 1) 

decrate 	= 0.99; {Rate of 
decrease of zeta over iterations range, 
decrate < 1) 

{Miscellaneous constants) 

dataSeed 	= 1; {Seed for Random 
Number Generation for initialising 
network weights) 

calcSeed 	= 1; {Seed for Random 
Number Generation for random selection 
of training data patterns) 

type 

(Miscellaneous ranges) 

DataRange 
1..MaxTrainPatterns; (Specifies range 
of training data patterns) 

TestDataRange 	= 1..MaxTestPatterns; 
{Specifies range of test data patterns) 
InputDataRange = 

1..MaxInputPatterns; {Specifies range 
of validation data patterns) 

IterationsRange = 
0..MaxMaxIterations; (Specifies range 
used for controlling maximum epochs) 

(Network layer ranges) 

InputLayerType = array[InputRange] 
of real; 

OutputOutType 	= array[OutputRange] 
of real; 

InputPEType 	= record 
x: 

InputLayerType; 
out: 

OutputOutType; 
end; 

InPEPtr 	= 'InputPEType; 
{Structure too 

large for the stack, put it on the 
heap) 

DataType 	= array[DataRange) 
of InPEPtr; 

TestDataType 
array[TestDataRange] of InPEPtr; 

InputDataType 
array[inputDataRange] of InPEPtr; 

{Hidden data types) 

HiddenWeightType = array[HiddenRange, 
InputRange] of real; 

HiddenOutType 	= array[HiddenRange] 
of real; 

HiddenPEType 	= record 
W: 

HiddenWeightType; 
z: HiddenOutType; 
end; 

{Output data types) 

OutputWeightType = array[OutputRange, 
HiddenRange] of real; 

Output PEType 	= record 
U: 

OutputWeightType; 
y: OutputOutType; 
end; 

DeltaErrorType = array[OutputRange] 
of Real; 

var 

(Network variables) 
NumInputs 	: Integer; 
NumOutputs 	: Integer; 

InputRange = 
{index i always 
HiddenRange = 

{index j always 
OutputRange = 

(index k always  

1..MaxNumInputs; 
used for this range) 
0..MaxNumHiddenNodes; 
used for this range} 
1..MaxNumOutputs; 
used for this range) 

TrainPatterns : Integer; 
TestPatterns : Integer; 
InputPatterns : Integer; 
MaxIterations : Integer; 
NumHiddenNodes : Integer; 
EpochSize : Integer; 
sigma : real; 

(Input data types) DataDirectory :string; 
ImportAnal 	. :string; 
ParamIndex 	:string; 



Page 132 

dataIn 	:string; 
testDataIn 	:string; 
errorOut 	:string; 
trainingOut 	:string; 
testOut 	:string; 
weightsOut 	:string; 
time 	:string; 
inputDataFile :string; 
netOutputfile :string; 
ParamSpecFile :string; 

inData 	: DataType; 
(Variable associated with training data 
patterns} 

testData 	: TestDataType; 
(Variable associated with test data 
patterns} 

inputData 	: InputPEType; 
(Variable associated with validation 
data patterns) 

inputDataVar 	: inputDataType; 
(Variable associated with validation 
data patterns} 

hiddenNodes 	: HiddenPEType; 
(Variable used to control hidden layer 
computation) 

outputNodes 	: OutputPEType; 
(Variable used to control output layer 
computation) 

procedure OpenOut (var f: Text; 
filename: string); 

(Used to open specified files to write 
network output to) 

begin {OpenOut} 

Assign(f, filename); 
Rewrite (f); 

end; {OpenOut} 

(************************** utility  
Functions  **************************1 

function RandomOne: real; 

(Returns a random number in the range - 
1 to 1) 

begin {RandomOne} 

RandomOne := Random * 2 - 1; 

end; (RandomOne} 

function Random1To (top0fRange: 
Integer): DataRange; 

(Returns a random integer in the range 
1 to top0fRange} 

begin {Random1To} 

delta 
(Variable used 
error} 

nits Error 
(Variable used 
error} 

: DeltaErrorType; 
to determine network 

: real; 
to determine network 

iterations 	: IterationsRange; 
(Variable used to perform maximum 
iterations} 

: Integer; 
(Variable used in random selection of 
training patterns} 

fOut 	: Text; 
(Variable for opening output files) 
fIn 	: Text; 

(Variable for opening input files) 

hl,m1,s1,hundl : Word; 
(Variables for calculating program 
start time} 
h2,m2,s2,hund2 : Word; 

(Variables for calculating program 
finish time} 

(**************************** 
Functions  +++++++++++*****************) 

procedure OpenIn (var f: Text; 
filename: string); 

(Used to open specified files 
containing information to be read into 
the network) 

begin {OpenIn} 

Assign(f, filename); 
Reset (f) 

end; {OpenIn} 

Random1To := Round (Random * 
(topOtRange - 1)) + 1; 

end; (Random1To} 

function LeadingZero (w : Word) : 
String; 

(Enables computation time to be 
formatted correctly in output file} 

var 	s : String; 

begin (LeadingZero} 

Str(w:0,$); 

if Length(s) = 1 then 

s:='0'+s; 

LeadingZero:=s; 

end; {LeadingZero} 

f ********************** Initialization 
Functions **********************) 
procedure InitParamSpec; 

(Initialises the Parameter 
Specification for the NN M.Alarcn 24- 
11-00) 

begin (InitParamSpec} 

ParamSpecFile := c:\psc.txt 
 (f In, ParamSpecFile); 
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readln 	(f In, DataDirectory); 
readln 	(f In, NumInputs); 
readln 	(f In, NumOutputs); 
readln 	(f In, TrainPatterns); 
readln 	(fIn, TestPatterns); 
readln 	(f In, InputPatterns); 
readln 	(fIn, MaxIterations); 
readln 	(f In, NumHiddenNodes); 
readln 	(fIn, sigma); 
Close (f In) 

EpochSize 	:= TrainPatterns; 
{Number of training data patterns 
considered in each epoch) 
end; {InitParamSpec} 

procedure InitFilenames; 
{Initialises tFilenames for the NN 
M.Alarcn 7-12-00) 

begin {InitFilenames) 
dataIn 	:= DataDirectory + 

ImportAnal + 'trn' + ParamIndex + 
'.txt'; {Input file containing training 
data set} 

testDataIn 	:= DataDirectory + 
ImportAnal + 'tst' + ParamIndex + 
':txt'; {Input file containing test 
data set} 

errorOut 	:= DataDirectory + 
ImportAnal + 'err + ParamIndex + 
'.out'; {Output file for training and 
test error} 

trainingOut 	:= DataDirectory + 
ImportAnal + 'trn' + ParamIndex + 
'.out'; {Output file for training 
results} 

testOut 	:= DataDirectory + 
ImportAnal + 'tst' + ParamIndex + 
'.out'; {Output file for test results) 
weightsOut := DataDirectory + 

ImportAnal + 'wts' + ParamIndex + 
'.out'; {Output file for weights 
matrix) 

time 	:= DataDirectory + 
ImportAnal + 'tim' + ParamIndex + 
'.out'; {Output file for computation 
time) 

inputDataFile := DataDirectory + 
'input.txt'; {Input file containing 
validation data set} 

netOutputfile := DataDirectory + 
'output.out'; {Output file for 
validation results) 

end; {InitFilenames} 

procedure InitDataStrs (var d: 
DataType; var t: TestDataTypa); 

{Initialises the training and test data 
structures on the heap) 

var m: DataRange; 
n: TestDataRange; 

begin {InitDataStrs) 

for m := 1 to TrainPatterns do 

New(d[ml); 

for n := 1 to TestPatterns do 

New(t{n]); 

end; {InitDataStrs) 

procedure DisposeDataStrs (var d: 
DataType; var t: TestDataTypa); 

{Disposes of the training and test data 
structures) 

var m: DataRange; 
n: TestDataRange; 

begin {DisposeDataStrs} 

for m := 1 to TrainPatterns do 

Dispose(d[ml); 

for n := 1 to TestPatterns do 

Dispose(t[n]); 

end; {DisposeDataStrs} 

procedure InitData (var d: DataType; 
var t: TestDataType); 

{Reads in training and testing data 
from the specified files) 

var m: DataRange; 
n: TestDataRange; 

InputRange; 
k: OutputRange; 

begin {InitData} 

writeln; 
writeln('Reading in the training 

data'); 
writeln; 
OpenIn(fIn, dataIn); 

for m := 1 to TrainPatterns do 

begin {m} 

for i := 1 to NumInputs do 

read(fIn, d(m)".x[i]); 

for k := 1 to NumOutputs do 

read(fIn, d[m]'.out[k]); 

readln(fIn); 

end; {m) 

Close(fIn); 
writeln('Reading in the test data'); 
OpenIn(fIn, testDataIn); 

for n := 1 to TestPatterns do 

begin {n) 

for i := 1 to NumInputs do 

read(fIn, t[n]'.x(i)); 

for k := 1 to NumOutputs do 
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read(fIn, t[n]".out[k]); 

readln(fIn); 

end; {n} 

writeln; 
writeln(MaxIterations,' iterations 

will now commence to generate network 
weights'); 

writeln; 

Close(fIn); 

end; {InitData} 

procedure InitHiddenLayer (var inp: 
DataType; var h: HiddenPEType); 

(Set weights for each centre function, 
ie. input to hidden layer weights) 

var 	InputRange; 
j: HiddenRange; 

begin {InitHiddenLayer) 

for i := 1 to NumInputs do 

h.w[0, i] := 0.0; 

for j := 1 to NumHiddenNodes do 

for i := 1 to NumInputs do 

h.wjj, i] := inp[j]".x[i]; 

end; {InitHiddenLayer} 

procedure InitOutputLayer (var o: 
OutputPEType); 

{Initializes the output weights to 
random reals in the range -1 to 1) 

var j: HiddenRange; 
k: outputRange; 

begin {InitOutputLayer} 

for k := 1 to NumOutputs do 

for j := 0 to NumHiddenNodes do 

o.u[k, j] := RandomOne; 

end; 	{InitOutputLayer} 

{*********************** Neural Net 
Procedures ***********************) 

procedure NetForwardDel (var inp: 
InputPEType; var h: HiddenPEType; var 
o: OutputPEType; var delta: 
DeltaErrorType); 

{Calculates the output of the net for a 
given input and also the error, delta} 

var net, val: real; 
InputRange; 

J: HiddenRange; 

k: OutputRange; 

begin {NetForwardDel} 

{Hidden layer forward) 

for j := 1 to NumHiddenNodes do 

begin {j) 

net := 0; 

for i := 1 to NumInputs do 

net := net + sqr(inp.x[i] - h.wjj, 
i] ) ; 

h.z[j] := exp(-net/(2 * 
sqr(sigma))); 

end; 	{j} 

h.z[0] := 1; {Bias unit connected to 
output layer} 

{Output layer forward) 

for k := 1 to NumOutputs do 

begin {k} 

val := 0; 

for j := 0 to NumHiddenNodes do 

val := val + o.u[k, j] * h.z[j]; 

o.y[k] := val; 
delta[k] := inp.out[k] - o.y[k]; 

end; {k} 

end; {NetForwardDel) 

procedure NetForward (var inp: 
InputPEType; var h: HiddenPEType; var 
o: OutputPEType; var 
dl,d2:OutputOutType); 

var net, val: real; 
InputRange; 

j: HiddenRange; 
k: OutputRange; 

begin {NetForward} 

{Hidden layer forward} 

for j := 1 to NumHiddenNodes do 

begin {j} 

net := 0; 

for i := 1 to NumInputs do 

net := net + sqr(inp.x[i] - 
h.w[j, i]); 

h.z[j] := exp(-net/(2 * 
sqr(sigma))); 

end; 	{j} 

h.z[0] := 1; {Bias unit connected to 
output layer} 
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{Output layer forward} 

for k := 1 to NumOutputs do 

begin {k} 

val := 0; 

for j := 0 to NumHiddenNodes do 

val := val + o.u[k, j] * h.z[j]; 

o.y[k] := val; 
dl[k]:= inp.out[k]; 
d2[k]:= o.y[k]; 

end; {k} 

end; {NetForward} 

procedure NetTrain (var inp: 
InputPEType; var h: HiddenPEType; var 
o: OutputPEType; newzeta: real); 

This procedure calculates an output 
for any given input, compares the 
predicted output 
with the given output, calculates the 
associated error, delta, and updates 
the output layer 
weights using the "delta rule") 

var it InputRange; 
j: HiddenRange; 
k: OutputRange; 
net, val, deltaJ: real; 

begin {NetTrain) 

{Hidden layer forward} 

for j := 1 to NumHiddenNodes do 

begin {j} 

net := 0; 

for i := 1 to NumInputs do 

net := net + sqr(inp.x[i] - h.w[j, 
i] ) ; 

h.z[j] := exp(-net/(2 * 
sqr(sigma))); 

end; 	{j} 

h.z[0) := 1; {Bias unit connected to 
output layer) 

{Output layer forward) 

for k := 1 to NumOutputs do 

begin {k) 

val := 0; 

for j := 0 to NumHiddenNodes do 

val := val + o.u[k, j] * h.z[j]; 

o.y[k] := val; 
delta[k] := inp.out[k] - o.y[k];  

end; {k) 

(Update output layer weights) 

for k := 1 to NumOutputs do 

for j := 0 to NumHiddenNodes do 

o.u[k, j] := o.u[k, j] + newzeta 
* delta[k] * h.z[j); 

end; {NetTrain} 

(************************* Display  

Procedures *********************++++) 

procedure DisplayError (var rms: real; 
inD: DataType; tD: TestDataType; h: 
HiddenPEType; o: OutputPEType; newzeta: 
real); 

(Calculates the Root Mean Square, RMS, 
error for all the training and test 
inputs) 
{Displayed on user screen for 
monitoring purposes and also written to 
the specified file) 

var trErr, testErr, val, testRms: 
real; 

del: DeltaErrorType; 
m: DataRange; 
n: TestDataRange; 
k: OutputRange; 

begin {DisplayError) 

{Training data set calculations} 

trErr := 0; 

for m := 1 to TrainPatterns do 

begin (m) 

NetForwardDel(inD[m]", h, o, del); 
val := 0; 

for k := 1 to NumOutputs do 

val := val + del[k] * del[k] 

trErr := trErr + val; 

end; {m} 

ms := Sqrt(trErr/TrainPatterns); 
{RMS error over all training patterns) 

{Test data set calculations) 

testErr := 0; 

for n := 1 to TestPatterns do 

begin {n) 

NetForwardDel(tD[n]", h, o, del); 
val := 0; 

for k := 1 to NumOutputs do 

val := val + del[k] * del[k] 

testErr := testErr + val; 
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end; {n} 

testRms := 
Sqrt(testErr/TestPatterns); {RMS error 
over all test patterns) 

writeln(fOut, iterations : 
rms : 5 : 5, ", testRms : 5 : 5); 

end; {DisplayError} 

procedure WriteOutTrainingData (var 
inD: DataType; var h: HiddenPEType; var 
o: OutputPEType); 

{Writes the predicted and actual 
outputs from training to the specified 
file} 

var curvel, curve2: OutputOutType; 
p: DataRange; 
k: OutputRange; 

begin {WriteOutTrainingData} 

OpenOut(fOut, trainingOut); 

for p := 1 to TrainPatterns do 

begin {p) 

NetForward(inD[p] A , h, o, curvel, 
curve2); 

for k :=1 to NumOutputs do 

write(fOut, curvel[k] : 7 : 5, 
' ); 

for k :=1 to NumOutputs do 

write(fOut, curve2[k] : 7 : 5, ' 

writeln(fOut); 

end; {p} 

Close(fOut); 

end; {WriteOutTrainingData} 

procedure WriteOutTestData (var tD: 
TestDataType; var h: HiddenPEType; var 
o: OutputPEType); 

{Writes the predicted and actual 
outputs from testing to the specified 
file} 

var curvel, curve2: OutputOutType; 
q: TestDataRange; 
k: OutputRange; 

begin {WriteOutTestData} 

OpenOut(fOut, testOut); 

for q := 1 to TestPatterns do 

begin {q} 

NetForward(tD[q] ^ , h, o, curvel, 
curve2); 

for k := 1 to NumOutputs do 

write(fOut, curvel[k] : 7 : 5, ' 

for k := 1 to NumOutputs do 

write(fOut, curve2[k] : 7 : 5, ' 

writeln(fOut); 

end; {q} 

Close(fOut); 

end; {WriteOutTestData} 

procedure WriteOutWeights (var h: 
HiddenPEType; var o: OutputPEType); 

{Writes the weight matrix to the 
spe'cified file} 

var 	InputRange; 
j: HiddenRange; 
k: OutputRange; 

begin {WriteOutWeights} 

OpenOut(fOut, weightsOut); 

for j := 1 to NumHiddenNodes do 

begin {j) 

for i := 1 to NumInputs do 

write(fOut, h.w[j, i] : 8 : 5, 

writeln(fOut); 

end; 	{j} 

writeln(fOut); 

for j := 0 to NumHiddenNodes do 

begin {j} 

for k := 1 to NumOutputs do 

write(fOut, o.u[k,j] : 8 : 5, 

writeln(fOut); 

end; {i 

Close(fOut); 

end; {WriteOutWeights} 

{Procedures from here to .main program" 
used for running option 2 of the 
program) 

procedure InitInputData (var d: 
inputDataType); 

{Reads input data from nominated file} 

var m: inputDataRange; 
InputRange; 
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k: OutputRange; 

begin {InitInputData} 

writeln('Reading in the input data'); 
OpenIn(fIn, inputDataFile); 

for m := 1 to InputPatterns do 

begin {m} 

for i := 1 to NumInputs do 

read (f In, d [m] x [i] ) ; 

for k := 1 to NumOutputs do 

read(fIn,d[m]'.out[k]); 

end; {m} 

end; {InitInputData} 

procedure ReadInWeights (var 
h:HiddenPEType; var o:OutputPEType); 

{Reads the weights matrix from file 
produced using option 1 of the program) 

var i,j,k : integer; 

begin {ReadInWeights} 

OpenIn(fIn,weightsOut); 

for j := 1 to NumHiddenNodes do 

begin {j} 

for i := 1 to NumInputs do 

read(fIn, h.w[j, i]) ; 

readln(fIn); 

end; 	{j} 

readln(fIn); 

for j := 0 to NumHiddenNodes do 

begin 01 

for k := 1 to NumOutputs do 

read(fIn, o.u[k,j]); 

readln(fIn); 

end; 	{j} 

Close(fIn); 

end; {ReadInWeights) 

procedure WriteOutNetOutputData (var 
tD: inputDataType; var h: HiddenPEType; 
var o: OutputPEType); 

{Calculates the output for any given 
input using the weights developed 
during training) 

var curvel, curve2: OutputOutType; 
q: inputDataRange; 

k: OutputRange; 

begin {WriteOutTestData} 

OpenOut(fOut, netOutputFile); 

for q:=1 to InputPatterns do 

begin {q} 

NetForward(tD[q]", h, o, curvel, 
curve2); 

for k := 1 to NumOutputs do 

write(fOut, curvel[k] : 7 : 5, ' 

for k := 1 to NumOutputs do 

write(fOut, curve2[k] : 7 : 5, ' 

writeln(fOut); 

end; {q} 

Close(fOut); 

end; {WriteOutTestData} 

procedure InitInputDataStrs (var d: 
inputDataType); 

{Initialises the training and test data 
structures on the heap} 

var m: inputDataRange; 

begin {InitDataStrs) 

for m := 1 to InputPatterns do 
New(d[m]); 

end; {InitDataStrs1 

(**************************** main  
Program ***************************) 

var answer: integer; 
count: 	integer; 
stop: 	integer; 
ni: 	integer; 
buffer: 	integer; 
newzeta: real; 

begin {Main program) 

InitParamSpec; {Gets the Parameters 
for the NN) 

clrscr; 

writeln; 
writeln; 
writeln(' Radial Basis Function 

Neural Network'); 
answer: =1; 

if (answer = 2) then 

begin {2} 

InitinputDataStrs (inputDataVar); 
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ReadInWeights (HiddenNodes, 
OutputNodes); 

InitInputData (inputDataVar); 
WriteOutNetOutputData 

(inputDataVar, HiddenNodes, 
OutputNodes); 

end 	{2) 

else 

begin {1} 
ni:=NumInputs; 
stop:=ni*2; 
for count:=0 to stop do 
begin {count} 
if count=0 then 

begin 
ImportAnal:="; 
ParamIndex:="; 
InitFilenames; 
end; 

if (count>0) and (count<=ni) then 
begin 
ImportAnal:='pi'; 
str(count,ParamIndex); 
NumInputs:=ni-1; 
InitFilenames; 
end; 

if count>ni then 
begin 
ImportAnal:='ci'; 
buffer:=count-ni; 
str(buffer,ParamIndex); 
NumInputs:=ni-1; 
InitFilenames; 
end; 

GetTime (hl, ml, sl, hundl); 

{Initialize the training and test 
data sets} 

InitDataStrs (inData, testData); 
InitData (inData, testData); 
OpenOut (fOut, errorOut); 

{Initialise output layer weights 
using random values, set hidden layer 
weights) 

randSeed := dataSeed; 
InitHiddenLayer 

(inData,HiddenNodes); 
InitOutputLayer (OutputNodes); 

{A 'for' loop is used to fix the 
total number of iterations} 

{Reset the random seed so that the 
calling sequence can be contolled) 

randSeed := calcSeed; 
newzeta := zeta; 

for iterations := 1 to 
MaxIterations do 

begin {iterations) 

for q := 1 to EpochSize do 

begin {q} 

inputData := 
InData[Random1To(TrainPatterns)]; 

NetTrain(inputData, 
hiddenNodes, outputNodes, newzeta); 

end; {q} 

{Display RMS error for each 
iteration} 

DisplayError (rmsError, InData, 
testData, hiddenNodes, outputNodes, 
newzeta); 

{Decrease delta rule constant 
over the iterations range) 

newzeta := decrate * newzeta; 

if newzeta < 0.1 then 

newzeta := 0.1 

else 

newzeta := newzeta; 

end; {iterations} 

Close(fOut); 
WriteOutTrainingData (inData, 

hiddenNodes, outputNodes); 
WriteOutTestData (testData, 

hiddenNodes, outputNodes); 
WriteOutWeights (hiddenNodes, 

outputNodes); 
DisposeDataStrs (inData, 

testData); 
GetTime (h2, m2, s2, hund2); 
OpenOut (f Out, time); 
writeln(fOut, 'Start time :- 

',LeadingZero(h1),':',LeadingZero(m1),' 
,LeadingZero(s1),':',LeadingZero(hund 

1)); 
writeln(fOut, 'Finish time :- 

',LeadingZero(h2),':',LeadingZero(m2),' 
LeadingZero(s2),':',LeadingZero(hund 

2)); 
Close(fOut); 
end; {count} 

end; 	{1) 
Assign(fIn,'c:\psc.txt '); 
Erase(fIn); 

end. {Main program) 
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Appendix B 
Frame Specifications 
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B-1: Left view of frame (1 st  set of dimensions) 
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B-2: Left view of frame (2nd  set of dimensions) 
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B-3: Left view of frame (member angles) 
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B-4: Left view of frame (three dimensional member 
lengths) 
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B-5: Top view of frame (first set of dimensions) 
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B-6: Top view of frame (second set of dimensions) 

   

Di
me

ns
ion

s  o
re

  t
o  

ne
nb

er
  c

en
tr

e
lin

e 
 

   

   

 

 

    



LaC 
LU 
—J 

Crn 
OJ 

Page 146 

B-7: Top view of frame (member angles) 
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B-8: Top view of frame (member angles of mid- 

section) 



r*-1 

Page 148 

B-9: Front view of frame 
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Appendix C 
Suspension Specification 

C-1: Front suspension geometry 	 150 
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C-3: Suspension spring specifications 	 152 
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C-1: Front suspension geometry 
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C-2: Rear suspension geometry 
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C-3: Suspension spring specifications 

   

Coil spring with internal hydraulic floating piston 

A606 I - T6 aluminum body  

Spring pre-load adjustment 

Spring standard color black 

cs 
COMPRESS 
DAMPING 

ADJUSTMENT 

03MPREM 
LOCKOUT 

 

YE_S 

YES 
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REBOUND 
DAMPING 

ADJUSTMENT 

 

YES 

EYE TO EYE 
LENOHT 

TRAVEL 

155nuri-190miti 

26mm-37nuri 
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Appendix D 
Wheel Assembly Specifications 

D-1: Upright dimensions 	 154 
D-2: Oil seal dimensions 	 155 
D-3: Stub axle dimensions 	 156 
D-4: Wheel hub dimensions 	 157 
D-5: King pin and caster reference angles 	 158 
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D-1: Upright dimensions 
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D-2: Oil seal dimensions 

'7= 
LC) 

1/ / / / / /,, /, 	;----- / / / 	/ 
, / 1/1/ 	/ 

i 1 i 	/ 
' ( ) 11 ' 	I 	 1W5) I (";- --.,;.1 1 i 

i 	\ 	, ■ 	■ \ 	i 	' ■ \ \ , 
0 , ' \ 	 ' 11 / 	1  

	

/
1 	

I) 1;- • 

, \ \ \ A 	 /
/ 	

/ /1  /I / \ 
! ////// \ \ V \ \ \ 	 ----- ..., 

---------- -----1---  



Page 156 

D-3: Stub axle dimensions 
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D-4: Wheel hub dimensions 
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D-5: King pin and caster reference angles 
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SPECIFICATION 
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Design 
The Oualie Differential Is designed to power 
both wheeis and control loss of drive. The 
differential provides constant and infinitely 
variable drive, traction being transferred 
from the spinning wheel to the static wheel 
automatically without the use of the normal 
friction pads in other designs. The operation 
Is fully automatic and requires no manual 
control. 
The unique design offers full maximum 
traction, improves handling and steering, 
and puts the power where It is needed most. 
With all the pears being the helical type, the 
helix and pressure angle of the gear teeth 
can be varied to increase or decrease the 
torque capacity. 

  

      

  

Suitability 
The differential is ideally suited to four wheel 
drive applications, as. well as competition 
vehicles. Can also be used in all four wheel 
drive units, both front and rear Even when 
filled to front wheel drive vehicles, there Is no 
adverse resistance to the steering. 

 

 

Operation 
The Guaire Differential is gear operated 
and therefore requires no plates which 
may wear or break. The unit  is smooth in 
use and requires no special lubricants. 

Daalgnad mank.laalmrad In England. 

     

   

Fitting and maintenance 
Fitting the Oualfe DIffe,rentfal is the same as 
Installing the standard differential unit, Any 
maintenance can be carried cut by 
competent mechanic and no special tools 
are required. 
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E-3: Quaife ATB differential specifications 
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E-4: Quaife ATB differential dimensions 
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E-5: Composite disc dimensions 
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F-1: Electrical system general specifications 

Battery 
Type Gel cell 

Capacity 15 Ah 

Voltage 12.6 V 

Charging System 
Type Three Phase AC 

Alternator output voltage 45 V 

Stator coil resistance 0.2-0.6 Ohm 

Charging Voltage 14— 15 V 

Electric Starter System 
Starter motor 12 V 

Brush length 12mm 



—3750 ink ) 

Cr3 
P 

er y 

r 

Power to Ignition $yste.tt: 
Ignition Switch Return 
'Spare 
GND • 

Spare 
gnit i on Suit r:h Source 

11
r1

3.1
13

 X
OC

I  O
SI
lj

  

Fan 1 
Spare 
Fan 1 

, Spare 
:Fuel: Pump 
Spare 
Spar ? 
14a.ter Pump 

e,D 

t 	PeD 1,.•! r 

L X. 

3 

1011011 MUD, 



w
ei

B
ep

  B
up

p
n  

x
oq

  a
sn

A  

lsolionSwileSSomm IRS 

Spam Swish Remo 

3 4 

Nunter Sus 

A 

P11 20A 

F12 20A 

NET  

AUT3 Fans 

AL OESSEW 	Mod 05) To Mous 

FP/CL  Faml 

FS6P4 >  Sm. 	 Feel 
2Pme 
F462 
Sllem 
Fuel Pomp 

	< Whisat Rom Mos 

Wow Pump 
03 

14  164004  

— AUX 4 - Fuel Pump 

(7) 
RAW 

SAE FUSE BOX University of Tasmania 

1.0 

ro- 

044004  

_.+H(12 	 MAIN 
"I  

S 

Blem Relay 

IN4004 

AUX 1 - Fan 

SIV3 

AUXI • run 

DS 
17:40o4 

AUX 3 - Fan 

F6 2tA 

F7 20A 

MooMPWR Hemy Red To Saw 

pa Power 9 Iptem man 

Fl 
F-1 
20A 
F9 
I. 
20A 
FIG 
IL 	 
20A - > 

I < Wbim I From Mow 

AUX! >  Aux! (13 Brows) To Mow 

F4 20A 	 y201 FWPI 

F3 20A 
F5571 >  Spam 

SCREWS 

0 

C.  

AUX 4. Feel ap4 

2 

AIRIA >  Amealp4 06 Mom To Mow 

FP >  to Fuel Pump 

Some > 

Swells < 

Weer Pumr> 

SCREWI 

SCREW 

6 

Para lo !meson wetem 
WM. 39901 Remm 

motion Swirl Source 

Homy Red To Mow 
Am( (13 Boma) To Maw 

Wheel Dom Mow 
0*03 (33) To Wee 

*0040364 (36 Blue) To MORE 
SMOIOI nIXO MOIM 

SCREW 

S.,.^EW4 



Page 168 

F-4: ECU Wiring Diagram 
Engine Sensors 
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Note 3 
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27  
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G-1: Advanced dash logger - description 

MoTeC Advanced Dash Logger 

(ADL) 

The MoTeC Advanced Dash Logger (ADL) is a fully featured and self contained, 
programmable logger. The key difference between the MoTeC ADL and other 
products is its flexibility to be adapted to any application. 

Many vehicle, marine and industrial applications require separate products to perform the logging, 
controlling and displaying. However, the MoTeC ADL offers seamless integration of all three 
functions. 

All aspects of the ADL are fully configurable, including which sensor is connected to 
which input, what to log, how fast to log it, which channels to display, warning alarms 
and control outputs. 

The MoTeC ADL uses a high speed 32 bit microprocessor and incorporates a 79 pin 
autosport connector. The ADL is built to internationally recognised quality and 
manufacturing standards and is back by a full 2 year worldwide warranty. 

.1.1.1.1 Data Logging 

Data logging allows for readings taken from Analog, Digital, Serial, CAN or 
Calculated channels, to be stored in the ADL for later analysis on a computer. The 
ADL uses permanent non-volatile Flash memory. Data memory may be unloaded at 
very high speeds (approx. 19 seconds per Mbyte). Different logging options allow 
384k, 1MB or the full 8MB to be accessed. 

The ADL can store channels at up to 1000 times per second per channel, this can be 
individually set for each channel. Four logging modes may run concurrently (Normal, 
Fastest Lap and two Burst Modes) each with selectable start and stop logging 
parameters. Memory can operate in stack or circular buffer mode. 

. 1 . 1. 1.2 
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.1.1.1.3 Analog and Digital Channels  

In total the ADL can accommodate over 200 channels derived from any mixture of 
Analog, Digital, RS232 Serial and CAN bus data channels. 

The ADL directly supports up to 28 analog inputs, 12 digital/speed inputs, 8 auxiliary 
outputs and 2 high accuracy Wideband Lambda (Air/Fuel ratio) inputs. 

The analog channels sample at up to 1000 samples per second per channel, with a 
measurement range of 0 to 15 VDC. 

Digital inputs are used for state monitoring, counting and pulse width measurement. 
They accept switch, logic, open collector (Hall Effect), or magnetic signals. 

The auxiliary outputs can be configured to operate as simple off/on outputs, duty 
cycle control or frequency based outputs. 

.1.1.1.4 

Serial Communications  

The R5232 serial port is programmable up to 115k baud and can be used as either a 
telemetry data output port or serial data input port. 

As a telemetry port; devices such as Modems, GSM & Satellite Phones, Radio 
Modems etc. can be connected to facilitate remote communication. 

As a serial data input port; serial communication devices can be connected for 
displaying and logging purposes. These include Engine Management Systems 
(MoTeC and other), bar code devices, keypads, GPS Systems or other serial 
communications devices. 

.1.1.1.5 

Display 

The MoTeC ADL display is a high contrast, high temperature, custom designed 
reflective LCD. Its unique design makes it viewable in direct sunlight or artificial 
light. 

The display has 3 modes of operation, where each mode is fully programmable and 
independent of the other. Each mode may be selected by pressing a button or 
activated by a condition. 

The 70 segment bar graph display is programmable to display any channel, with an 
optional peak hold marker and setpoint marker. Each numerical display item can be 
programmed to display any channel value as required. The 13 digit alphanumeric 
display area has 20 lines available to scroll through and may be used to display any 
channel value or to display warning messages. 

Lap times may be displayed when connected to a MoTeC Lap Beacon (or a driver 
activated switch). Other performance information may be displayed, including 
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minimum corner and maximum straight speed, fuel used or fuel remaining, and many 
more. 

.1.1.1.6 Alarms  

Warning alarms may be defined for any analog, digital, serial or calculated channel. 
Alarm limits are fully programmable and may include up to 6 conditions to ensure 
that the alarms are only activated at the correct time. 

When an alarm condition has been detected, a message can be shown on the display 
and an auxiliary output activated. These outputs can be used for warning lights or the 
control of other devices. 

The alarms remain active until they are acknowledged, either by activating a switch or 
automatically after a definable period of time. 

.1.1.1.7 

Controller Area Network (CAN)  

The CAN bus is a high speed communication standard operating at speeds up to 
1Mbit. 

CAN allows many devices to be connected by a common bus, allowing all devices to 
share information as part of a larger system. 

CAN devices include: automatic transmission controllers, sensors, multi-channel 
input/output modules, engine management systems etc. 

.1.1.1.8 Host Software 

The ADL is supplied with software packages for managing the ADL, analysing the 
logged data and monitoring a telemetry link. 

Ease of use is one of the most attractive aspects of the MoTeC ADL software. There 
is no complex language to learn, just simple menu driven windows. 

A full online help system is easily accessible and is integrated throughout the 
software. 

.1.1.1.9 Dash Manager Software 

The Dash Manager Software is used to configure the ADL and download 
logged data. It is logically laid out, giving the user access to the power of the 
ADL without requiring high levels of computer knowledge or intense training. 

.1.1.1.10 Interpreter Software 
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The Interpreter software contains predefined configurations for easy data 
analysis. Screen display formats may be varied to suit all preferences, 
including user defined graphs, histograms and statistical summaries. By 
utilising these different display methods, users can view data in many formats 
to obtain accurate, meaningful analysis. 

Data can also be exported into ASCII CSV file format for analysis in other 
software packages. 

The Pro Logging option includes graph overlays, virtual instruments, 
mathematical functions, XY graphs (scatter plots), track maps (shows 
minimum and maximum speeds, gear change point and breaking points) and 
other advanced features. 

.1.1.1.11 Telemetry Monitor (Optional) 

The Telemetry Monitor software allows for realtime viewing of the telemetry 
data either via direct serial communications, modems or radio modems. Data 
can be viewed in various formats such as charts, bar graphs, dial gauges, 
numerics, lights, XY graphs and scroll charts. All objects are definable by the 
user. 

.1.1.1.12 Upgrades and Accessories  

The MoTeC ADL is completely field updateable by the user. The control software 
and logged data is stored in FLASH memory. No programming interface is required, 
simply send to the ADL the new program and the latest features are immediately 
available. 

.1.1.1.13 Upgrade Options 

The ADL has field upgradeable options using a password enabling system. 
Upgrade options include: 

Extended inputs & Outputs, Pro Logging (advanced data analysis), Medium 
Logging (1Mbyte), Large Logging (4Mbyte), Telemetry Support, Remote 
Logging and Wideband Lambda measurement. 

Three wiring options are available for the ADL: 

Separate I10 Terminal Module with plug-in screw terminals. Includes a 
Realtime Clock, additional RS232 port and wide ranging power supply. 

Standard (vehicle style) wiring loom for specific permanent installations. 

Custom wiring looms for complex installations. 

.1.1.1.14 Accessories 
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A wide range of sensors are available for use with the ADL including: linear 
position, accelerometers, pressure, resistive and thermocouple temperature 
sensors, hall and magnetic speed sensors and many others. 

The MoTeC Lap Beacon transmitter and receiver has been designed in 
conjunction with the ADL. It features high channel count (990), improved 
optics, low power consumption and multi beacon capability. 

And for peace of mind the MoTeC ADL offers a full 2 year worldwide 
warranty. 
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G-2: Advanced dash logger - specifications 

ADL Specifications 

.1.1.1.1 	General 

• Microprocessor: 32 Bit High Performance 
• Manufacturing Quality standard to IS09001 
• Field updateable Operating System 
• Non-volatile FLASH memory for data & operating system 
•• High RF1 Immunity 
• Rugged Aluminium Housing (IP-55, NEMA 4) 
• 79 pin Autosport connector 
• Operating Temperature: -10 to 70 DegC 
• Operating Voltage: 7 to 22 VDC 
• Operating Current: 0.3 A max. 
• Weight: 385 gms (0.85 lbs) 
• Size: 180mm x 91mm x 18mm (excluding connector) 
• Reverse Battery and Transient Protection 
• Warranty: 2 years Parts and Labour 

.1.1.1.2 Measurement Inputs  

• 28 Analog Inputs (10 Standard): 
• 20 Analog Voltage (6 Standard) 
• 8 Analog Temperature (4 Standard) 
• 12 bit resolution, 0 to 15 VDC range 
• Update rate (Max. 8 channels): up to 1000 times/sec 
• Other inputs: up to 500 times/sec 

• 4 Digital Inputs (2 Standard) 
• 4 Speed Inputs (2 Standard) 

Digital & Speed 
• Switch to OV, logic signal, open collector (Hall Effect), or Magnetic 
• State & Counting (1 MHz) 
• Period (1 micro sec) 
• Pulse width (1 micro sec) 

• 4 Switch Inputs (4 Standard 
• User definable sensor calibrations 

.1.1.1.3 Auxiliary Outputs  

• 8 Digital Outputs (4 standard) 
• Open Collector (drives to ground) with pullup (10k ohms) to battery 

positive 
• On/Off or Pulse Width Modulation with variable Frequency and Duty 

Cycle 

.1.1.1.4 Air Fuel Ratio Measurement (Optional)  

• 2 high accuracy Wideband Lambda (Air/Fuel ratio) inputs 
• Resolution: 0.01 Lambda 
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• Temperature compensated 
• Range: 0.75 to 1.2 Lambda 

.1.1.1.5 Data Logging 

• Memory: 384k, 1MB, 2MB, 4MB, 8MB 
• Non-volatile FLASH, field upgradeable 
• Logging of any Analog, Digital, Serial, CAN bus or Calculated channel 
• Maximum Logging throughput: 20k/sec 
• 2 Burst Logging buffers with pre triggering (Large logging option only) 
• Typical Unload Speed: 19 sec/MB, using parallel port of PC to CAN bus 

RS232 unload rates dependent on baud rate 

.1.1.1.6 Calculations 

• Timers (0.01s, 0.1s, & 1s resolution) 
• 2D and 3D Tables 
• User conditions 
• Math Functions: Differentiate, Integrate, Absolute, Min/Max 
• Lap Time and Number 
• Lap Gain/Loss 
• Speed and Distance 
• Gear Detection 
• Fuel Prediction 
• Tell-tales 
• Running Min/Max 

.1.1.1.7 	Display 

• Custom LCD, High Contrast, High Temperature, Reflective 
• Display any Analog, Digital, Serial, CAN bus channel or Calculated channel 
• 3 Display Modes 
• 70 Segment Bar graph 

• Definable Range 
• Programmable Setpoint and Peak Hold point 

• 4 Numeric Display Items 
• 13 Digit Alpha Numeric Display area, 1,2 or 3 channels per line (20 scrollable 

lines per display mode) 
• Alarm messages 
• Channel display 
• Descriptive text 

.1.1.1.8 Communication  

• Serial RS232 Corns. (1200 to 115k baud) 
• CAN data link (250Kbit to 1Mbit) 
• Telemetry Link output (RS232) 

.1.1.1.9 Host Software  
1. Dash Manager Software 
2. Interpreter Analysis Software 
3. Telemetry Software (Optional) 

Computer Requirements 
• IBM PC compatible running Windows 95/98 or NT4.0 
• Pentium (Min.) 90MHz, 16MB RAM 

.1.1.1.10 Upgrades 
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The MoTeC ADL in its base configuration includes: 
• 10 Analog Inputs 
• 8 Digital Inputs 
• 4 Digital Auxiliary Outputs 
• RS232 and CAN bus support 
• Software: Dash Manager and Interpreter 
• User's Manual 

Upgrades Available (field updateable by the user): 
• Extended Inputs & Outputs 

• 28 Analog Inputs (10 standard) 
• 12 Digital Inputs (8 standard) 
• 8 Digital Auxiliary Outputs (4 standard) 

• Pro Logging - Advanced Analysis Software 
• Graph Overlays 
• XY Plots 
• Maths functions 
• Virtual Instruments display 
• Track Mapping 

• Medium Logging 
• 384k to 1MB Memory 

• Large Logging (requires Medium Logging Upgrade) 
• 1MB to 8MB with Burst mode logging 

• Lambda Measurement 
• 2 Wideband Lambda inputs 

• Telemetry 
• Enables realtime viewing of data via a telemetry link 

• Remote Logging (requires Telemetry Upgrade) 
• Allows Remote Logging via a telemetry link or hand held computer 

.1.1.1.11 Accessories 

• PC Communications Cable (High Speed CAN) 
• Wiring Looms 
• Input/Output Terminal Module 
• Lambda (Air/Fuel ratio) Sensors and Kits 
• Telemetry Products 

• GSM mobile phones, radio modems etc 
• Sensors and transducers 

• a full range of sensors, amplifiers, transducers, lights and buttons are 
available 

• Lap Beacon: Transmitter and Receiver (990 channel) 



SIG Hall FR I 
BLACK 61 ANALOG TEMP INPUT 1 

34 GREY SIG 

10 
AUXILARY OUTPUT 2 

GREEN 
VIOLET 65 

SPEED  INPUT 3 

+ WHITE 62 

Hall FL 	SIG 
BLACK 61  

SPEED INPUT 

43 BLACK 

Pot. RL 

ANALOG TEMP INPUT 2 

35 VIOLET SIG 
43 BLAC 

AUXILARY OUTPUT 1 
BROWN 

Fre 

SL 
AUXILARY OUTPUT 3 

WHITE 62 

GREY 63 

DIGITAL INPUT 1 

NOTE 1: 
The AUX Outputs can sink 
a maximum of 0,5 Amps. 

NOTE 2: 
The ADL should be wired 
on its own power switch. 

ANALOG VOLT INPUT 4 

+ RED 	44  
Press. F 	SIG GREEN 48 

BLACK 43 

Violet 67 

8 

Telemetry Modem 

RED 
	 SWITCH 

ANALOG VOLT 	 INPUT 5 

+ RED 	44 

Press. 	SIG BLUE 49 

BLACK 43 

BLACK FUSE 
0)5 AMP 

r— RS 232 BATTERY 
POSITIVE 

ECU Grey 79 

ANALOG VOLT 	 INPUT 6 

+ RED 	44 
Steerin 	SIG VIOLET 50 

BLACK 43  

CAR CAPLE 

CAN TERM RESISTOR 

■"""-- 
AD 

MoTeC Title BASIC LOOM (REV B LOOM) 
Data 	06/1011999 Drawn ST Ap 

	
Products ADL 

Sheet No Drawing No 

1 of 4 ADL-L1 
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G-3: ADL wiring loom 

ADL WIRING 
DIAGRAM 

   

 

Digital 
Input 2 

White 62 
Brown 53 
Black 611 

  

   

 

+ WHITE 62 

SIG BROWN 52  
. BLACK 61 

   

Hall 
Free 11 ORANGE SL 

 

SWITCH INPUT 1 

57 	YELLOW 

  

ANALOG VOLT 	 INPUT 1 
	

61 
+ RED 	44 

Pot. 	SIG BROWN 45 
BLACK 43 

58 

ANALOG VOLT INPUT 2 
+ RED 	44 

SIG ORANGE 46 
BLACK 43 

59 

BLACK 

Mode Switch 
SWITCH INPUT 2 

GREEN 

Mann Acknowledg- 
SWITCH INPUT 3 

BLUE 
Free 

Pot. 

60 
SWITCH INPUT 4 

ORANGE 

ANALOG VOLT  INPUT 3 

• WHITF 62  
Pot. RR 	SIG YELLOW 47 

BLACK 43 

BLACK i==j  
EARTH TO DASH 
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G-4: Radio modem — specifications 

Specifications 
MODEL RH 9256 Series 3 

PHYSICAL 

Wchr 
Dintensiorts 

Coustnit;tion'' , 	. 

ift0rhnt L '4 tt•Othro 	35rnai II 
2.60 grarn 
Altxtirtedahlrithrtiltill 	m tnd cmtrwith irtiegrateti displAy 

GENERAL. • 

Operair% ‘tilipge 	 •4 It 1tiVDC ner..,,aLive ground 	• 

• •. 	. . 	• 	. . 	. • . 

Orm;ttirr:...t curtept 
Standby nit ide 	 iSO•mA • 
Trarbruit !nude (1 \•Valli 	Average,.4 rtOrnA 	.:.• 

C.4.)ermitye, tr.)htperatureraur;e 	-1(1 itt +60 deg C' • 	• 	 : 
Operating 1-furnidity range.. 	.1 p itt95'%•'0 	 50.tteg•C 
Parameter tirid [node f,ettipio .  •. 	• to built !,oily,..ate •,". 

. 	. . 	. • • 

TRANSMITTER 

Output Power 	 : • Ina to') Wall software ittectable  
Sputimb enfisiont, 	 .K.60 dB( • 	.: 	... 	. . 	. 	.. 	

. 

Ctutput Kota -Tim 	 'ffirt- rntt ,tr if, fully. PiOteditct iut. arr..' 10 .adfft full filM•O' kit 60 deg.  C 

RECEIVER 

Sets4ivity 
bidittetd pertom -oect 
rtquency 1ange2 

RSS( dhpily range 

DATA SYSTEM 

RS 232 harkkbakiog 
Priflocol nodes 

krtt:t 	tit spit, rt 

. 	 . 	 . . 	,. 	... .. 	.. 	. 	. 	 . .. . 	 . 
• • 	 • 	 • . 	 .. 	 .. .. . 	 . 	 . 	 . . 	.. . 	 , . 	 . 	 . 	 , 	 . .. 	. 

. 	 .. 	• 	 • . 	. 	..• . 	 . 	 . 

	

<- tOtkiBM fut .  16 ER •( 'Nit ir•s 11.)A 14 • . • 	.,• •• 
Better than 1 in 10^-6 E/1.:10or SiN 20 citt or 
91 S-92tt Mt•lz t„Aittralia)-9•02-918 Mt - lz (FCC) 921-9'29 Mt•z uNZ:: 
-110 to 4,0 (Mtn It 5 Liti 4itps• 	.. • . 

Hardware/ ? 	!tone software st-th4Lable 
Ali cot On 	var.ants PIES suppulLeti .itELluv, 
pohl.t pc):oL po:nt :ruttitip(int 	motir.,1; 

	

III) itt ii 5,000 Ivs, st iittr 	ettiFik;t1/ nIt 

R1:I 
mav 	 th;i0v  with,;t4 
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D9 Connector Wiring Details 

Ground 
2 pin DIM (male pins) 

NOTE: The modem may need configuration 
before it will connect. 

D9 connector 	 ) / 
3 pin DTM (male pins) 

7 
 

CD 
2 Data 
1 Gnd 

ADL 

Data 

CD 

67 TEL EM 

Note 1 

4 

2110 

Antenna 

Digital Modem 

+12 Volts 

TeC
Title  Digital Telemetry Connection  

M 0 	Date 0410311999 Drawn ST App Products AIX 	

Sheet No Drawing No 

1 of I 	TEL01 

Note 1 
The following pins can be used; 
Switched Inputs (normally sw4) 
Speed Inputs, Digital Inputs 

Male D9 Viewed from loom end 

Violet 

Data m,.Green  

GND .4-Black  

CD 

Motec Part No. 61071 

ADL Setup 

1. Set Ir putl pin's channel to 
"Carrier Detect" 

2. Select one of the templateS .  in the 
RS232 Communications Setup 
screen. 
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G-6: Wheel speed hall effect sensor — 
specifications 

Solid State Sensors 
Hall Effect Gear Tooth Sensors 
SENSOR SPECIFICATIONS 

An values were measured using 1 K puUup resistor. 

Electrical 	Supply Voltage 	 4.5 to 24 VDC 
Characteristics Supply Current 

Output Voaafp (output tow) 

Output Current (Outoul high) 

SA Ceiling time 
Rise El° to 00%1 

Fall (90 to 10%) 

Absolute 
	

Supply Voltage IV's)  
Maximum 
Ratings* 
	Voltage Egernatly Applied. 

TO Output (Output MO) 

Output Current 

Temperahrre Range 
..Slorage 

poi:rating 

Switching 	Operate Feint 
Characteristics** Release Point 

10 mA typ_. 20 rak max_ 

0.4 V max. 

10 pA max, leakage into sensor 

35 pesa. max. 

1,0 ileac max.. 

a 30 VDC contirexam 

.k30V 

40 rnA sinkinu 

401o150 1-40 to  302 ,n  

to150' C (-40 lu .302F) 

3.7±125" 0,20 13,13 nen} 

4.7a2&0 34.15±2,21 nub) 

Ltitireentiai 'trove/ 8.4±1:70" (7.45±3.34 owl 

Mato ccnnponents,,serur pertormnca can be exponent to deteriorate as 
eti4g Iirnite ate nporoachno . lkavievei ,. unsiois wilt not bo clarnayed untese the fireits ere 

.exceeded. 
** Sue Retorert:o 'Target table. 

Gil Series 

TARGET GUIDELINES 
The Target Guidelines table provides ba-
sic parameters when an application is not 
restricted lo a specift target 

Any target wheel that exceeds the tallow -
/hp minimum specifications can be 
sensed over the entire lemperWure range 
of if t150` ..0 With any sensing gap up 
to .050 in. (2.0 min). This data ts based on 
04 in. 1102 ram) diameter wheel, rotating 
10 to 3600 RPM. 

Reference Target Dimensions 

Tooth klreght: 	200 iii. 15.05 nem 

Tooth width: 	.100 /n: R54 n)rn 

booth Spacincr 	400 In. (l0;15 trim) min. 

tareelllrekneee: .250 131. (0.35 mini 

Sensor Output (with pulkup resistor add-
ed to output circuit) 

REFERENCE TARGET/CONDITIONS 
Characteristics will vary due to target size, 
geometry. locaton, and material. Sensor 
specifications were derived (isinga cold-
rolIed steel reference target.. See table. 
right. far reference target configuration 
and evaluation conditions 

Target 

Cearrietor', 	 4 in 001 :6 nen) 

Tooth Widtt: 	iSOiri. 6$ti rmrrnl 

Thickness: 
	

250 in. (5.35 mm) 

Test Conditions 

Air Gal:if' 	.040 to .0i10 in. 11.0230 2.03 mint 

V Supply: 4.51p 24 V 

RPM: 	10 min...360 max. 

uk. royrwi. kl1C.,r-10 SWITCH ,SbriGinVil'.id CbtlInli • 1:2111.(37-5945 USA. + l.a15.225.6 7 I eloma el 	 • a 	53 



+8V 

Digital Input 

OV 

+8V 	 

	

Sig 1. 	 

	

OV • 	 

ADL 
+8V 

Sig 

Black Red 
Operating Temp 
01:1;Jut States 

-40 to 
Air 

150 deg C 
: High Black/White 

Metai Low (8 sec hfoicl Typ) 

Black 

e
a
L
IM

 :1
-9

 

ECU 

IC MUX (Hall  Type) 

+8V 	 

Sig 	 

	

OV • 	 
Disk Thickness 6mm minimum 

BI
SU

I  
-
  J

O
SU

G
S

 P
a

n
e

 

M oTeC Title GT101 Hall Effect Sensor  
Date 	 Drawn ST App 	Products ADL. ECU. 1C 

mux Sheet No Drawing No 

1 of 1 	X02 

OV 

NOTE: Shielded Cable should 
used to connect sensor. 

Tooth Height 
5 mm min 

Tooth Width 
2.5 mm min 

t 
Tooth Spacing 

Gap 	10mm min 
2.0 mm max  

— 

+8V 

Speed or Digital Input 

OV 

itt-en Lew t tscacti GMAT ar. FA:9e vennion ot5ina.s311 must to lens 
0.5'4 t give I KPH0 20OKPH axtraci ) 

eg. It the edge spacing is 20mm Menthe ico -k5icn must be Ia thsn 0.1 rm. 

ADL Setup 

Speed setup. 
Seiect "HALL" SUrB5Of type 



FRAIN 
R.ETC.774.INEA13.'DISPLACEMENT TRANSDOCER 
WITH.:CYL1NDRICAL:CASE : 

PZ12-$ 

222, 22 Si 
A -1 11 r- 

10-1 

21,27,4 

PZ12-F 
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G-8: Suspension position linear potentiometer — 

specifications 

Main features 

• 25 to 150 mm_ stroke 
• Mechanical fixing using brackets. setfaligning 

ball-joints or flange 
• Independent linearity up to ± 0,05% 
• Infinite resolution 
• No variation of electrical signal outside theorical 

electrical stroke 
• Displacement speed up to 10 m/s 
• Working temperature: -30...+100'C 
• Electrical connection; 3-pole screened cable Om length) 
• Life duration: 25,1:10' meters or >100x10 operations 

irohichever is the smaller (within C,E1,1.) 
• Grade of protection IP60 

TECHNICAL DATA  

Useful electrical stroke (C.E Ai.) 251501i5'1001125/150 

leprindent fir...parity 
(wilt*: C.E. LI) 

see table 

D/sriacemenl speed 10 rnis 	• 

Displacement force 15 0.5N 

Vatmons 5,...20Y)Hz, Amax =0,75 mm 
amax.. i,,,  20 g 

Stiock 5O ,  11MS. 

Tolerance on resistance A: 20% 

Rer_sonmeritierl ClIfSOf 
current 

< 0.1 pA 

Maxitnent •curs,  
affront 1()rnA 

Ma rove apOliCatde voltage see table 

EICI,Iftal ifithe-11:01% -t()Of.AS) at 500V ... 'fixer, 2s 

Dielectric stre,ngtb < 100 An! 50V-, 50Hz 25. tom 

Dissipation a1 40'C 
(OW at 120q 

see tabre 

'Temp. °Jen. of Me resislanur -200 T. 20)0pmi'C 

Actual 'Temperature Coefficient 
of the of Ito et voltage 

, f .5pprni"C 

W,orkirig temperature -30.. •100'C. 

Storage temperature -50.,. ■ 120'C 

Case 	storm Aeo•diseo atardinium 
Nylon 50 CV 40 

Controi po mater/at Stainless sled 
AISI 303 

Eking Brackets, sell.  aligning 
ball-iohts or flange 

MECHANICAL DirAgNsioNs 

frrfportant: all the data ferxttald id dl crifutaftee IS 
	

!AfrtiMfr,:terflpfrriffiff 
	die;.; 	IV> sale for 

	
,:nsoratbrr as a ratforRetrifld*rvi ,,;e wit!' a max 

carreof dacas ma outset if; Si pA. 



MODEL 75 100 125 

Useful etectritcal stroke (C.E.11.) + 11-0 nen 25 50 75 100 125 

Theoretical electrical stroke (C.E.T.) ± 1 mm C. 	U. 

ReSiStafiCe (C.E.T.) kr1 1 	2 	3 	4 

Independent linearity 
(within C..E.U.) 

± 0.2 	0,1 	0.1 	0.1 0.05 

Dissipation at 40't (OW at 1204C) 0,5 	1 	1,5 	2 	2,5 

I 150 

  

6 

0.05 

3 

150 

Displacement transducer 	PZ12 

Mounting try brackets S 

Mountirvg by A 
5E1.41:tuning ball-joints 

Nlounting by flange F 

Model 

If requested, it is pcdsible io supply 
mode% with non-standard methanita3 
and/or electrical features. 

Example'. P212 - S - 25 
Displ:.--Kernent transducer model PZ12, mnenting. by brackets, 
useful': e lectrical stroke i . C.E.U..) 25rnm 

• 
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MECHANICAL I ELECTRICAL DATA  

Maximum applicable voltage V 20 40 60 

Mechanical stroke (C.f.i.) mm C.E.U. +5 

mod. P212 - S mm 74,5 99.5 124,5 1493 174.6 199,5 
Case length (A) 	 mod. P212 - A mm 102 127 152 177 202 227 

mod. P212 - mm 74,5 99.5 124,5 199,5 174$ 1995, 

Recommended distance between bockets (B) mm 42 67 92 117 142 167 

Minimum distance between hall-joints (C) mm 153 178 203 228 253 278 

mod, P212 - S 45 55 65 75 85 95 
Weight 	 mod. P212 - A 70 80 90 100 110 120 

mod. P212 - F 60 70 BO 90 100 110 

ELECTRICAL CONNECTIONS 
	 ORDER CODE 

STANDARD ACCESSORIES . 	 , 

Code 

2 reountirg brackets for PZ12 - S 
	

STA074 

GE.FRAN spa reserves the right 10 make any kind of design or functional modificalion at any moment without prior rioa `e 

GEFRAN spa 
via Sabina, 74 
26050 PROVAGLIO D'ISE0 (BS) - ITALIA 
ph., 0309888.1 - fax. 0309839063 
Internal: hit p:lAvom..gefrart.com  

 

GIEF 84875-10199 
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Mo Te 
Sheet No Drawing No 

1 of 1 	X24 C Title Linear Position Sensor  
Date 21/0011949 Drawn ST App AD Products AOL 

Deutsch IVITO4-3P 

31 5V 
2  Sig 

	 ov 
ADL 

18,28,44  
5" 
Sig m. 	 

17,27 43 OV  " 	

5V 

Note 1 

OV 

A DL Setup co measure distance) 

Channel Assignments 
Assign a distance channel Brake Pedal positim 

Sensor Calibration 
1. In Ca&bration, select change. 
2. Select Ratiornetric(5V). 
3. In calibration table enter the distance 

the pedal has moved and press "Read 
Value". You will end up with a table 
like the example. 

V mm 
1.23 0 
1.99 5 
2.34 10 
2.89 15 
3.04 20 

Note 1 
Analog Voltage ( Pins 1,2,3,4,5,19,20,21,22,23,24,25,26 
45,46,47,48,49,50) or Analog Temp Pins 34,35,36,37,38, 
39,41,42 ) input may be used. 



moTe C D 

Title MoTeC STEERING ANGLE SENSOR  
Date 12112/2090 Drawn St App 	Products ADL 	

Sheet No Drawing No 

1 of 1 	X21 

Steering Shaft 

3 Pin 
(mating 

+5V 

ADL 

Sensor 5V 
NOTE 1 
Analog Volt Input 

Sensor OV 

SIG 11. 

Li 

RED 	+5V 	 

Deutsch OV connector #68052) 

/VIOLET 	SIG 
3 

2 
Black 	OV  

ADL Setup 

   

    

Channel Assignments 
Assign a Steering Channel to the appropriate pin 

Sensor Calibration 
Measurement method = Ratiornetric 
Turn wheel to desired angle & enter angle in deg 
table. Then click on read value to read sertsor.., 
Right turn =, positive angles 
Left turn 	negative angles 
Straight = 0 degree 

 

NOTE 1 

  

ADL PINS 

   

  

+ 5V Analog Pins are 18, 28, 44 
OV Analog Pins are 17, 27, 33, 40, 43 
Analog Volt Input Pins are 1, 2, 3, 4, 5, 
19, 20, 21, 22, 23, 24, 25, 26, 45, 46, 47 
48, 49, 50 

0 
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AOl 11-27tiPt.501415.111144 
.t.r..G V4116)4144 

Eclipse with Hirschrnann 

tetossA4411 414.12005201 
Paskr:1 448D- wi 44 .44‘..•3:4 

4.00 V0s nominal 
(0.5 - 4,5 VP 

16 tnA into t.1 	14W 	inop 
feoist.f,  ina 

TECHNICAL SPECIFIC477ONS 

RANGE 

0-25. 25.50 ?SIG 
0-100.250. 520. 100a 2003, 	5,MO. 7200 PSO 

(0-10, 5, 20. 55, 50. X, 200, 350. 705 Oar 

PHYSICAL 

Proof Pressure 	 1.5 x tntati lanT 

Burst Pressure 	 5); 131:4 ray 

300 sans stAalass oteai. braze mnpoand Material in Contact 
With Media 

,1.62 frquag. 
Shack 	 531s2s 5 rriisixotiti 	 116" 

Vibration 	 MeeTs MILSM-810-C, Figura 514.2-5, 	 0 

C;JA'S AK, 20.7g las iTi171:1That 

ELECTRICAL 	Voltage output 	Current output 

Full Scale Output 

Zero Outind 

Excitation 

Reverse Polarity 
Protection 

0.52 	 4 mA nominal 

10(0 4) VOc  
5.0 Vdo ,t; 0.25 Vt 0% 20* thre.2.r deratirg 10 35 25) 

25°C (;•ii10 

Yes 

it o.cisit.oi.-. 

vottaae Currant 

A 2.4 ,51) 2.5 158 .4 

8 1.5135) 1.7 148) 

2.0151) 2.2 (5E,:) 

7314 11547 NM. 53 (!5103o 
tar:11114 (121844 

DIMENSIONS 
.xs.A = 
(X.C4 TO; 

Eclipse with Packard 

	 A 	14.7E 
(49i 

Insulation Resistance 100 M 20 50 VM. 	 Load resistance in current mop 

I. Vs  

\\"\C\..\. 
Operating 
' area 

Operating 
Temperature Range 

Heliometric Output 
-40° 	105C (-40" (a 222'F3 

Compensated 
Temperature Range 20 ?.2".C. (35` to 1554 [=) 

Stardyti Patkant kloiri.Pacet 
Electrical Connection 	f333101125 Pe,iatO ttI20e207 !rating utark,x-,tor. nc0 inataM. 

Optional Hif&Mfrann rAntwar, mata included. 

PERFORMANCE 

of r-so from na-4 fit laraiont Orro induaing 
Own 52 550012314. nystF:nnia old nonvalta01n4 Accuracy 

A 

4t1t1 

.1,4% of fall ocslo. Includes tho nItaz of zero 
0202 lutor. ealintation atm!. 10002100. 
nornineati:y. frOtris, 5113 111231110). 

Total Error 

RL  

— — 4.7$ 

— SO 
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G-11: Brake pressure transducer - specifications 

ECLIPSE° • OEM PRESSURE TRANSDUCER 

d Raqie 

PACKARD CONNECTOR PINS 

Vattage UM eat 

fi • I'Ycki06:I .., br:Vu: 

ti Dtntv •i'...,.macn 
tni.o.:nn 

C 1‘,07rlf.'.4t ;..... 

)IIRSCHNIANN CONNECTOR PINS 

V011age e"4 
FG 1 8-... 42.; 

11 14 2 '...:k:2•1' Dar4 ;.f-f.: 

t. ,:s; canna -, 

1' 11: 4 • bt..r0214; 4 4.4:04i.i44: 

1-800-333-D A T A 
	 35 
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Sheet No Drawing No 

1 of 1 	X22 o '1e C Title DATA INSTRUMENTS (ECLIPSE) 
Date 28/07/1999 Drawn ST App AD Products ADL, ECU 

100 PSI Sensor CalibrationTables for M-1-M4-8 

Map Pin 0 10 20 30 49 30 60 70 80 90 100 10 120 130 1.40 1511 160 170 180 190 200 210 220 230 240 250 

102 114 125 137 149 161 172 184 196 208 219 23.1 243 254 266 278 290 NI 311 325 337 148 360 372 384 395 

,. C) 40 50 120 160 200 210 280 320 360 400 440 480 520 560 600 640 680 720 79 .0 -  800 840 880 920 -960 into 

lax Voltl'in 10 1  149 196 241 1 90 336 383 430 477 524 -571 618 665 711 758 805  851 899 940 981 1(118 1054 1091 1127 1164 1200 

ECU Setup M8 

Sensor Calibration 100 PSI sensor 
Display ti !CPA 17 

Display In PSI 23 

Display In InHg 29 

ECU Setup M4 M4-8 
Sensor Calibration 100 PSI sensor 
MAP PIN  
AUX TEMP PIN -4* 
AUX VOLT PIN -3* 

* = DISPLAY IN KPA 

1111  
1/8-27 NPT 

ADL Setup 

Channel Assignments 
Assign lie pressure Channel to lie apptcpriate pin 
Sensor Calibration 
PIP.SS 'Select" and chopse correct calitrafion file for the sensor 
For example, Data Ins1 Eclipse 1C0 psi klAP.C1P 

, ADL 

NOTE 1 
+5V s 	 

Sig s 	 

OV as, 	 

Sensor 5V 

Analog Volt Input 

Sensor OV 

M8 ECU 
. 12A  +5V s 

S ig Mr-- 

ov m, 10A  

5V 

NOTE 2 

DV 

M4/ M4-8 ECU 

4 +5V  

Sig 	 s 

27 27  OV 

5V 

NOTE 2 

OV 

NOTE 1: 
+ 5V Analog Pins are 18, 28, 44 
DV Analog Pins are 17, 27, 33, 40, 43 
Analog Volt Input Pins are 1, 2, 3, 4, 5, 
19, 20, 21, 22, 23, 24, 25, 26, 45, 46, 47 
48, 49, 50 

NOTE 2: 
M8 input pins are 28A,27A,13B,7B,813,9B 

14B, 15B & 16B 
M4 and M4-8 input pins are 17,18 & 30 

260  

407 

290  

442 

300 

134 

110 

.1 .66 

170 

477 

330 

489 

340 

301 

3 5 0 

313 

360 

524 

:370 

336 

380 

548 

390  

:359 

400 

571 

410 

583 

420 430 

606 

440 

618 

430 

630 

40 

642 

470 

653 

480 

665 

490 

677 

500 

689 

289 771) 

119 
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• Roll, Pitch and Heading Angle in 
Dynamic Environments 

AH115400CA (DMU-HDX-AHRS) 

The Crossbow AHRS400CA is a high 
	

to determine stabilized roil, pitch, 
performance, solid-slate attitude and 

	
and heading angles in static and 

heading reference system intended 
	

dynamics conditions. The Kairnan 
for airborne applications such as 

	
Filter implementation results in a 

UAV control, Avionics, and Platform 
	continuous on line gyro bias 

Stabilization. This high reliability, 	calibration, and an adaptrve attitude 
strap-down inertial subsystem 

	and heading measurement that is 
provides a ttitude and heading 

	stabilized by the long term gravity 
measurement with static and 

	
and magnetic north references. 

dynamic accuracy comparable to 
	Output data is provided in both 

traditional spinning mass vertical 
	

analog and digilat (RS-232) lorinats. 
PP 	 and directional gyros. 	

Each Medial System comes with a 
This AHP,5400 series product builds 

	
User's Manual offering helpful hints 

1—r11-1 	series. It f eatures higher performance 
on the per forinance of the AHRS300 

	
on programming, installation, and 
product information. in addition, 
Crossbow's GYRO-VIEW software is sensors, inciuding silicon MEMS 
included to assist you in system accelerometers and gyroscopes with 
development and evaluation, and lower noise and improved bias 
a:kViSp.; to per lot rn data acquisition, stabilay. 

The AHRS400C A achieves its 
excellent perf ormance by employing 
proprietary Kalman Fitter algorithms 

Ac.cek-I*11474: 

• Enhanced Performance Kalman 
Filter Algorithm 

• High Stabty MEMS Sensors 

• High Range Gyro and Accel 
Options 

Applications 

• UAVRPV Control 

• Platform Stabilization 

• AvionKs 

AHRS Block Diagram 
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G-13: Attitude & heading reference sensor - 
specifications and installation 
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Crossbow 
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