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ABSTRACT 

This thesis covers the construction of genetic linkage maps of two Eucalyptus 

globulus parental trees (chapter 2), the detection of quantitative trait loci (QTL) 

carried out using these linkage maps (chapter 3) and a genetic analysis of rooting 

ability of micropropagated cuttings from two E. globulus families (chapter 4). 

Genetic linkage maps of two parent trees were constructed using 326 RAPD and 

21 microsatellite markers. At a LOD score threshold of 4.9 for grouping and 3.0 

for marker ordering, the male parent had 13 linkage groups consisting of 101 

framework markers and the female parent had 11 linkage groups with 97 

framework markers. Even though both parents originated from the same 

provenance it was found that polymorphic RAPD markers were readily 

detectable. Linkages between microsatellites previously reported for E. grandis/E. 

urophylla were conserved in the E. globulus cross. Segregation distortion of 

markers was found to be more prevalent than expected by chance. 

The linkage maps were used to detect QTLs based on 155 progeny grown in field 

trials. Twelve traits were included in the QTL analysis. These included: wood 

density (Pilodyn penetration), extent of early flowering (bud abundance), and 

growth (height at years one and two, stem diameter at years two, three, four and 

six, and relative incremental growth between years one and two, two and four, and 

four and six). Using interval mapping a total of eight QTL with LOD score peaks 

over 2.0 were detected, corresponding to seven map intervals. QTL detected 

included: two for cumulative growth; two for wood density; one for early 

flowering and three for relative incremental growth. Since the 155 progeny trees 

were grown at seven trial sites, an analysis of marker by site interaction was 

III 



carried out with more marker by site interactions being found than expected by 

chance. Markers with significant QTL effects were examined for interaction with 

site with both of the cumulative growth QTL found to have significant site 

interaction. QTL stability with age was also analysed for these QTL, and both 

growth QTL were found to have a detectable association with the first 

measurements of height and diameter. 

A study of the rooting ability of cuttings grown in tissue culture from two families 

of E. globulus was undertaken with the aim of detecting QTLs for this trait. The 

two families were found to have significantly different rooting abilities indicating 

that genetic variation for the trait was present. Estimates of variance components 

relating to genetic and environmental effects indicated that within both families 

the variance due to genetic effects was small compared to the environmental 

variance with clonal repeatabilities of 0.17 and 0.14 for the two families. These 

estimates were used in power calculations based on t-tests of single markers under 

some simple assumptions. However even under optimistic circumstances the 

power for QTL detection was found to be too low to warrant the time and expense 

of genotyping required for QTL analysis. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 Molecular marker systems and their application to linkage 
mapping of forest trees 

Developments in the marker systems used to construct genetic linkage maps in 

forest trees have generally followed their application in other plant and animal 

species. Marker systems tested and proven in animals, particularly model species 

such as Drosophila and mouse but also in humans, have been applied in many 

plant species including forest trees. 

Before the introduction of molecular markers, linkage maps were composed of 

visible phenotypic markers that had Mendelian inheritance patterns. In plants this 

restricted the construction of genomic maps to genetically well-studied species 

such as tomato (Lycopersicon esculentum) and maize (Zea mays) where even 

there the maps constructed were sparse in their coverage of the genome and were 

usually composite maps resulting from many crosses between different marker 

lines (O'Brien 1987). 

The introduction of techniques to detect allozymes, based on differential mobility 

during electrophoresis, enabled a new set of polymorphic loci to be utilised for 
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linkage mapping in plants (Tanlcsley and Orton 1983). The detection of allozymes 

(sometimes broadly referred to as isozymes) was exploited in forest trees and 

utilised for studies of genetic relatedness to examine mating systems (Fripp et al. 

1987) and extent of genetic diversity in populations (Moran 1992). Linkage 

relationships between the relatively small number of allozyme loci were studied in 

a number of tree species (Adams and Joly 1980; El-Kassaby et al. 1982; Cheliak 

and Pitel 1985) including Eucalyptus (Moran and Bell 1983) although there were 

insufficient markers for construction of extensive linkage maps. 

With the development of methods to detect restriction fragment length 

polyrnorphisms (RFLPs), the construction of dense linkage maps in humans (and 

thus other eukaryotes) using these DNA marker loci was hypothesised over two 

decades ago (Botstein et al. 1980). RFLP based maps have been constructed for 

many organisms of varying genome complexity (eg. bacteria, yeast, nematode, 

fish and mammals). This has included many species of crop plants (Helentjaris et 

al. 1986; Bonierbale etal. 1988; McCouch etal. 1988; Gebhardt etal. 1989; 

Graner etal. 1991; Vallejos et al. 1992) with maps soon being utilised for the 

detection of quantitative trait loci (QTL) (Patterson etal. 1988; Stuber et al. 1992) 

and qualitative loci (Sarfatti et al. 1989; Barone et al. 1990). 

Early reports on the detection and inheritance of RFLP markers in tree species 

suggested map construction using these markers would be possible (Devey et al. 

1991; Byrne et al. 1994). Several linkage maps were published for forest tree 

species based on RFLPs (with the inclusion of a limited number of isozyme loci) 

(Liu and Furnier 1993; Devey etal. 1994; Groover etal. 1994). 
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RFLPs are codominant markers, which facilitates the integration of mapping 

information from different individuals and they are often transferable between 

related species (Gebhardt et al. 1991). However the technique of RFLP detection 

is highly labour intensive, costly, requires large amounts of genomic DNA, and 

commonly radioactive labelling is used. Even the initial screening process 

requires the cloning of genomic or cDNA for use as probes, a proportion 

(sometimes large) of which will fail to detect polymorphisms. Thus the 

development of PCR based marker systems that are more amenable to high 

throughput methods became attractive for linkage map construction. 

The development of RAPD (random amplified polymorphic DNA) markers 

(Welsh and McClelland 1990; Williams etal. 1990) provided a simple method of 

marker generation, which has found wide application particularly in plant 

systems. Linkage maps utilising RAPD markers have been published for a number 

of forest tree species including white spruce (Picea glauca) (Tulsieram et al. 

1992), slash pine (Pinus elliotti) (Nelson etal. 1993), longleaf pine (Pinus 

palustris) (Nelson et al. 1994), Norway spruce (Picea abies) (Binelli and Bucci 

1994), maritime pine (Pinus pinaster) (Plomion et al. 1995a; Plomion etal. 

1995b), pinus hybrids (Kubisiak etal. 1995), sugi (Ctyptomeria japonica) (Mukai 

etal. 1995), radiata pine (Pinus radiata) (Wilcox et al. 2001b), oak (Quercus 

robur) (Barreneche et al. 1998) and a poplar hybrid (Bradshaw et al. 1994). In the 

genus Eucalyptus RAPD maps of E. grandis and E. urophylla were constructed 

using Fl progeny from the interspecific cross (Grattapaglia and Sederoff 1994; 

Verhaegen and Plomion 1996) and a map using RFLP, RAPD and isozyme 

markers was constructed for E. nitens (Byrne et al. 1995). 
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Although the generation of RAPD markers is a relatively quick and simple 

process, there are a number of problems that make them less than ideal. Foremost 

of these is their dominant inheritance pattern with usually only two alleles being 

detectable at a locus. This limits the usefulness of RAPDs with regard to cross 

type, within species transferability, map integration and determination of mode of 

action of QTL mapped using these markers. 

In forest tree species RAPD markers have been amenable for mapping studies by 

either using haploid megagametophyte tissue in the case of some conifer species 

(Tulsieram et al. 1992) or more generally by screening for markers segregating 

1:1 in a two-way pseudo testcross configuration using diploid tissue (Grattapaglia 

and Sederoff 1994). In the pseudo testcross configuration each RAPD marker 

locus is generally mapped in only one parent of the cross resulting in two parental 

maps. For the determination of QTL effects using these individual parental maps 

the segregating QTL 'alleles' from one parent are contrasted without regard to the 

QTL 'alleles' at the same locus inherited from the other parent. In other words 

only two genotypes are recognised and contrasted where potentially four 

genotypes are present. By contrast, fully informative codominant markers at a 

QTL locus will enable all four possible genotypes to be recognised and compared 

providing information on the mode of action (dominant, additive) of the QTL. 

A further problem with RAPD markers is their limited transferability between 

related species and also within species (Kesseli et al. 1992; Thormann and Osborn 

1992; Kesseli et al. 1994). Within species of Eucalyptus the transferability has 

been shown to vary depending on the population/species sampled. On average 

61% of RAPD markers were calculated to be transferable between ten E. 
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urophylla parents sampled from the same population compared with 15% for E. 

grandis parents sampled across widely distinct origins (Brondani etal. 1997). 

However, these estimates were calculated based on a single interspecific cross 

where one parent was known to be homozygous null. Based on this data for 

crosses between the E. urophylla parents (ie. within the species), the proportion of 

RAPD markers transferable to another cross (ie. segregating 1:1) would be 

expected, on average, to be only 33% and for E. grandis 20%. 

Despite the drawbacks of RAPD markers they have proven to be the most 

commonly utilised marker for the construction of linkage maps in forest tree 

species. More recently however, a marker system has been developed that has 

characteristics similar to RAPDs but with much more information obtainable per 

amplification. AFLPTM  (amplified fragment length polymorphisms) are generated 

from restriction endonuclease digests of genomic DNA by ligation of adapter 

sequences followed by selective PCR amplification (Vos etal. 1995). AFLPs 

suffer from the dominant characteristic of RAPDs and they are also more 

technically exacting in their generation, however, they are claimed to be more 

repeatable (Jones et al. 1997) and potentially may enable even quicker map 

construction than RAPDs (Powell etal. 1996; Costa etal. 2000). 

AFLPs have been used in map construction of a number of forest tree species 

including an Fl cross between E. tereticornis and E. globulus (Marques et al. 

1998), in Populus species (Wu etal. 2000; Cervera et al. 2001), willow (Salix), 

(Tsarouhas et al. 2002) and with some modifications the technique was applied to 

map larch (Larix) (Arcade et al. 2000), Pinus (Travis et al. 1998; Remington et al. 
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1999; Costa et al. 2000; Lerceteau etal. 2000) and Norway spruce (Picea abies) 

(Paglia et al. 1998). 

Of the major types of marker systems developed the one with the greatest 

potential for constructing consensus species maps and for enabling map 

integration and comparative mapping is microsatellite markers, also termed SSRs 

(simple sequence repeats) or STRs (short tandem repeats). Once developed for a 

species under study SSRs have a number of ideal attributes. They are commonly 

highly polymorphic in a population with many possible alleles and like RAPDs 

they are PCR based and require only small amounts of genomic DNA for 

generation but unlike RAPDs they are typically codominant and are potentially 

fully informative (Morgante and Olivieri 1993). Once available they can be used 

to generate linkage maps quickly and the integration of parental maps from a 

cross of heterozygous individuals from an outcrossing species is possible though 

not all loci may be fully informative. Allele differences are based on size 

differences in the PCR amplicon and differentiation of alleles requires separation 

on a gel system. If the differences in allele sizes are sufficiently large at a locus 

separations can be achieved using agarose gels (Brondani etal. 1998). However 

more commonly acrylamide gels are used and by co-loading PCR products 

amplified using different dye labelled primers a number of loci can be analysed 

per lane on slab gels or by capillary electrophoresis and detected using automated 

detection systems (Rafalski et al. 1996). This enables relatively high throughput 

of markers. 

Saturated linkage maps composed of micro satellite markers have been constructed 

in animal systems (Dib 1996; Dietrich 1996) and although microsatellites are 
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reported to occur less frequently in plant genomes (Lagercrantz et al. 1993) they 

have been utilised extensively in forest trees for paternity analysis and estimation 

of outcrossing rates (Chase etal. 1996; Streiff et al. 1999; Lian etal. 2001), 

mating system analysis (Vogl et al. 2002) and gene flow and population genetic 

studies (Dow and Ashley 1996; Gonzalez-Martinez et al. 2002). Although 

microsatellites have been isolated from many forest tree species, few linkage 

maps published until recently have incorporated more than a smattering of 

microsatellite loci. 

Recovery of large numbers of single locus polymorphic microsatellite loci from 

generally large and highly repetitive conifer genomes has proved difficult (Elsik 

and Williams 2001; Zhou et al. 2002) and the extent of transfer of microsatellite 

loci between conifer species has been low (Devey et al. 1999; Echt et al. 1999; 

Karhu et al. 2000; Mariette et al. 2001) although greater between closely related 

taxa (van de Ven and McNicol 1996; Fisher etal. 1998; Echt et al. 1999; 

Shepherd et al. 2002). However in Norway spruce (Picea abies), Paglia et al. 

(1998) mapped 61 microsatellites in a map of 413 loci and Devey etal. (1999) 

mapped nine microsatellite loci in comparative maps of two species of pine. 

Angiosperm forest tree species generally have smaller genomes than conifers and 

repetitive DNA is less likely to create problems in isolating single locus 

microsatellite loci. Conservation of microsatellite loci has been shown between 

oak (Quercus) species (Isagi and Suhandono 1997) and Barreneche et al. (1998) 

mapped 18 microsatellites in Quercus robur from a total of 301 markers placed on 

two parental maps. In Populus microsatellites have been utilised to align 

homoeologous linkage groups and merge linkage groups from maps constructed 
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from crosses between a Populus deltoides parent with P. nigra, and P. 

trichocarpa (Cervera et al. 2001). Also in Populus, Trembling Aspen (Populus 

tremuloides) derived microsatellites have been shown to transfer to other 

members of the Salicaceae (Rajora and Rahman 2001). In Eucalyptus, 70 

microsatellite loci were isolated and mapped in an E. grandis x E. urophylla cross 

(Brondani et al. 1998; Brondani etal. 2002). 

Transferability of microsatellite loci across Eucalyptus species and closely related 

genera has been demonstrated to be fairly high, but particularly so within 

subgenera (Byrne etal. 1996; Brondani etal. 1998; Jones etal. 2001; Steane etal. 

2001; Brondani etal. 2002; Thamarus et al. 2002). In Eucalyptus at least, the 

possibility of utilising SSRs for species-wide and potentially genus-wide linkage 

mapping is feasible. This would allow QTL locations determined in one species to 

be analysed both within the species and also between species as demonstrated by 

Marques et al. (2002). 

Another marker system that is being explored in a number of plant systems is 

based on single nucleotide polymorphisms (SNPs). SNPs have been discovered in 

the hundreds of thousands in human DNA sequences as part of the human genome 

sequencing efforts (Sachidanandam et al. 2001). Based on information from the 

sequencing of expressed sequence tags (ESTs), which are available for some 

species in public databases, SNP detection can be targeted to expressed 

sequences. 

Some of the advantages of SNPs over other marker systems include their 

abundance in the genome, being many times more frequent than microsatellites, 

and also their analysis using high throughput systems. If found in expressed 
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genes, SNPs can become so called 'perfect' markers, since they are inherited in 

complete linkage with the gene of interest. SNP discovery is, however, expensive 

and time consuming, since at present it relies on direct sequencing information 

from two or more alleles of the SNP host locus. However ESTs can also be 

converted into mappable genetic markers where fragment length polymorphisms 

created by indels (insertion/deletions) occur between alleles (especially frequent 

outside the coding region), enabling size differences to be resolved on acrylamide 

gels. 

A method of PCR amplifying regions 5' and 3' of ESTs has been used to detect 

indel and SNP polymorphism (without sequencing) in 45 ESTs from Pinus 

species in two pedigrees from P. taeda and one pedigree from P. radiata. 

Eighteen of these ESTs were mapped in a Pinus radiata cross (Cato et al. 2001). 

Mapping EST sequences in preference to anonymous markers has the advantage 

that mapped loci can be chosen on the basis of known or putative function. These 

loci can be chosen to provide candidate genes for placement on maps utilised for 

QTL detection. Co-segregation of candidate loci and QTL may result from 

polymorphism at the locus influencing variance for the measured quantitative 

trait. These loci could be mapped potentially using SNPs or indels in or close to 

transcribed sequence (Cato et al. 2001) or using products amplified based on 

ESTs as RFLP probes (Thamarus et al. 2002). 

In a recent report by Thamarus et al. (2002), 45 expressed genes were mapped in 

an interprovenance E. globulus cross using RFLP technology. Forty-one of the 

genes are known proteins and include enzymes involved in lignin and cell-wall 
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polysaccharide biosynthesis with the resulting map being used for QTL detection 

for wood and fibre traits (Thamarus et al. 2002). 

A similar approach to mapping candidate genes but using single strand 

conformation polymorphisms (SSCP) has been reported by Gion et al. (2000) for 

eight lignin biosynthesis genes in an E. grandis x E. urophylla cross and the same 

research group mapped five lignin biosynthesis genes in Maritime pine (Plomion 

et al. 1999). The candidate gene approach in forest trees has yielded QTL for 

lignin chemistry co-segregating with mapped lignin biosynthesis loci (Gion et al. 

2001). 

1.2 QTL detection 

Quantitative traits are generally considered to be traits that have a continuously 

variable numerical distribution (Falconer 1989). Quantitative trait loci (QTL) can 

be defined as chromosomal regions, harbouring one or more genes, that influence 

a quantitative trait (Gelderman 1975; Kearsey and Farquhar 1998; Patterson 

1998). However evidence for QTLs comes from statistical associations between 

phenotypic trait values and genotype classes (or marker loci). Thus it can be 

envisaged that there are statistical QTLs, some of which may be artefacts, and 

biological QTLs that have a genuine genetic basis. 

One of the main reasons for interest in QTLs is the potential to apply QTL 

information in the breeding of economically important animal and plant species. 

The most commonly envisaged application is to use genetic markers to select for 

superior QTL 'alleles' in the population — a process commonly termed marker-

assisted selection (MAS). However in initial QTL detection experiments the 
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whole genome is scanned for associations between one or more traits and the 

possibility of a Type I error (chance association only) increases, requiring more 

stringent significance thresholds (Type I error threshold). Unfortunately more 

stringent significance thresholds increase the probability of Type II errors (real 

associations not being declared significant). Clearly a balance must be reached 

and this depends on the experimental aims (Beavis 1998). 

The classical method of QTL detection is to use t-tests (or equivalently ANOVA) 

to detect statistical associations between marker loci and the quantitative trait of 

interest (Soller etal. 1976; Edwards etal. 1987; Groover etal. 1994). There are 

several advantages to this approach. One is that the method is relatively simple, 

and readily available statistical packages can be used to carry out the analysis. 

Another advantage is that the distribution of the test statistic is well known, 

enabling straightforward evaluation of power and precision (Soller 1991; Beavis 

1998). There are however valid concerns regarding the application of this method 

for QTL detection. Firstly, where QTL are located at some distance from the 

nearest marker loci, the QTL effect, as measured at the nearest marker locus, 

decreases according to the square of the recombination fraction (A) between the 

marker and the QTL (Soller 1991) and thus the power of QTL detection can be 

low and the size of the QTL effect underestimated. The second concern arises 

from the fact that Type I error rates are calculated based on the number of 

independent tests undertaken. However, with genetic linkage between markers the 

assumption of independence is clearly incorrect. 

There are however ways to address both of these problems. If the genetic map 

used for QTL detection is saturated with markers, the likelihood of QTL being 
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any great distance from a marker will be reduced. The general result will be that 

there will be little loss of QTL detection power due to distance between mapped 

marker and QTL locus, and estimates of QTL effect will not be greatly 

underestimated. The Type I error rate can be determined either based on the 

number of independently segregating locations in the genome or the data can be 

permuted to estimate empirically the correct experiment-wise Type I error 

threshold level (Churchill and Doerge 1994). All the same it is not always easy to 

saturate genetic maps. Also the t-test classical approach to QTL detection does not 

use all available information when it comes to determining the position of a QTL, 

the QTL is inferred as being closest to the marker with the greatest significance, 

but this does not take into account missing data. 

A more complex method of QTL analysis, termed interval mapping, uses flanking 

markers and maximum likelihood algorithms in detection and also estimation of 

QTL location (Lander and Botstein 1989). This method has probably been the 

most commonly utilised method for QTL detection cited in studies of forest tree 

species (eg. Bradshaw and Stettler 1995; Grattapaglia et a/. 1995; Verhaegen et 

a/. 1997). The software to carry out interval mapping analyses, 

MAPMAKER/QTL, has been freely available since about 1989 (Lander and 

Botstein 1989). MAPMAKER/QTL examines intervals for QTL and calculates 

log likelihood ratio scores (LOD scores) for the presence of a QTL as the interval 

is scanned in stepwise units. There is a claimed increase in QTL detection power, 

where QTLs are located some distance from a marker locus (Lander and Botstein 

1989). It has however been shown that this method has the same power as 

ANOVA where a QTL is perfectly linked to a marker locus and the power is 

similar up to about 20cM distant from the nearest marker (Darvasi etal. 1993). 
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For interval mapping, determining appropriate significance thresholds has perhaps 

proved more difficult than envisaged, however as for the classical t-test approach, 

experiment-wise significance thresholds can be determined empirically (Churchill 

and Doerge 1994). 

A number of other QTL analysis methods have been developed and applied in 

QTL detection studies. Regression analysis (least squares) using multiple linked 

markers (Haley et al. 1994) enables greater flexibility than interval mapping in 

modelling multiple QTL effects, interactions and other effects and has been 

applied in forestry studies (Knott et al. 1997). Developments based on interval 

mapping, but using markers linked to QTL as cofactors, known as multiple QTL 

models (as opposed to single QTL models) or composite interval mapping, have 

been reported (Jansen 1993; Zeng 1993). Some increase in power over the 

classical approach and interval mapping has been claimed using all these methods, 

however decision rules on inclusion of markers as cofactors have not been 

adequately determined (Jansen 1994; Beavis 1998). Thus interval mapping and 

ANOVA based methods have been the mainstays in applied QTL detection. 

1.3 Introduction to experimental work covered in this thesis 

Eucalyptus globulus is the most significant temperate hardwood plantation tree 

species utilised for pulp and paper production. It is grown as a plantation species 

in many countries outside of Australia including Argentina, Chile, South Africa, 

China, Spain and Portugal with plantations covering vast areas (Eldridge et al. 

1993). In many of these countries genetic improvement programs are underway to 
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select superior genotypes for breeding qualities required for productive plantation 

growth. 

The most commonly reported traits that are targeted for genetic study and 

selection are growth, wood density and pulping quality (Borralho 2001; Lopez et 

al. 2002; Miranda and Pereira 2002; Winuner et al. 2002). Since E. globulus has 

only recently been subjected to selective breeding, there is expected to be 

considerable potential for improvement in performance. However efforts at 

improvement are hampered by the long generation interval and any method of 

reducing lag time in selection is worthy of investigation. 

At the time of commencement of the PhD project reported in this thesis, it had 

been established that molecular marker linkage maps could be constructed in 

forest tree species (Bradshaw etal. 1994; Devey et al. 1994) including Eucalyptus 

(Grattapaglia and Sederoff 1994; Byrne etal. 1995). Linkage maps for Eucalyptus 

had been based on either a hybrid cross between E. grandis and E. urophylla 

(Grattapaglia and Sederoff 1994) or a three-generation pedigree of E. nitens where 

the four grandparents originated from disjunct populations (Byrne etal. 1995). In 

both of these instances the genetic distance between the parents/grandparents 

would be expected to ensure a high frequency of polymorphic markers 

segregating in the progeny. One of the aims of the present study was to determine 

the feasibility of producing linkage maps for Eucalyptus globulus based on an 

intraprovenance cross, where the genetic distance between the parents/ 

grandparents would be expected to be much closer than in maps published to date. 

It was intended that the E. globulus linkage maps could eventually form the basis 

of a reference map for the species. 
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However the main purpose of map construction was to utilise the resultant linkage 

maps directly to detect quantitative trait loci (QTL) segregating in the family that 

constituted the mapping population. There were no published reports of QTL 

detection in E. globulus and to date only one study examining QTL for vegetative 

propagation has been published for a hybrid cross with E. tereticornis (Marques et 

al. 1999; Marques etal. 2002). Other applications for the linkage maps had been 

envisaged for future related studies on E. globulus, such as comparative genomic 

studies and population and paternity studies using mapped markers (Steane et al. 

2001; Jones et al. 2002a). For these studies it was seen as essential to place 

microsatellite markers on the linkage map. 

Early studies in crop plant species had indicated the potential for discovering 

quantitative trait loci (QTL) for complex traits (Edwards et al. 1987; Patterson et 

al. 1988). Early work on forest tree species indicated that QTL could be detected 

in these species also (Bradshaw and Grattapaglia 1994; Bradshaw and Stettler 

1995; Grattapaglia et al. 1995), even though the pedigrees and crosses that were 

theoretically highly suitable for such studies (crosses between inbred lines 

divergent for the trait of interest with QTL segregation in the F2) were not 

available in forest tree species. The main attraction of detecting QTL in forest tree 

species such as E. globulus was basically the same as for crop species — the 

possibility of selecting for advantageous QTL with the assistance of markers. 

However in forest tree species the time required before traits can be evaluated is 

excessively long, as is the generation interval. The extra appeal of MAS for forest 

tree breeding is its potential to reduce the time lag for trait evaluation by carrying 

out marker-based evaluations at the seedling stage, long before rotation age 

(Williams and Neale 1992; Bradshaw and Grattapaglia 1994; O'Malley and 
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McKeand 1994; Wilcox et al. 2001a). Since in the present study linkage maps 

were based on a full sib family that was already planted out in a field trial, the aim 

was to utilise the constructed maps to detect and map QTL for traits of 

commercial importance. Measurements of commercially important traits that 

could be included in QTL analyses were growth (height and stem diameter), 

scores of bud abundance (early flowering), wood density and bark thickness. 

Another trait in E. globulus that was of potential interest to tree breeders was 

rooting ability — the production of adventitious roots from the stem base of 

cuttings. The interest in this trait is due to its importance in clonal forestry. In 

tropical eucalypt species such as E. grandis and E. urophylla, superior genotypes 

can be selected and propagated in most cases by vegetative cuttings for 

deployment in plantations. The emulation of this feat in temperate eucalypt 

species was partially thwarted by the highly variable and often poor rooting ability 

of cuttings from temperate species such as E. globulus. 

Theoretically, the selection of rooting ability in E. globulus breeding programs 

could increase the potential for clonal deployment — one possible route to 

improved plantation productivity. Marker-assisted selection had been mooted as a 

possible means to speed the selection process, but it could only be applied if 

QTLs were detected for this trait. In chapter four of this thesis, the possibility of 

detecting QTLs for this trait using in vitro cuttings is investigated. It should also 

be noted that a further reason for undertaking linkage mapping and QTL detection 

studies, apart from the potential direct application of marker assisted selection, is 

that basic biological/ genetic information is likely to be gleaned from such studies. 
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CHAPTER TWO 

THE CONSTRUCTION OF LINKAGE MAPS OF EUCALYPTUS 

GLOBULUS USING RAPD AND MICROSATELLITE MARKERS 

This chapter has been published as: 

Bundock PC, Hayden M and Vaillancourt RE (2000) Linkage maps of 

Eucalyptus globulus using RAPD and microsatellite markers. Silvae Genetica 49: 

223-232 

2.1 INTRODUCTION 

In temperate regions Eucalyptus globulus is the most significant hardwood tree 

species grown as a source of fibre for the manufacture of paper products, whilst in 

tropical regions E. grandis, E. urophylla and their hybrids are the most commonly 

planted Eucalyptus for pulpwood (Eldridge et al. 1993). Worldwide there has 

been considerable effort to select and breed genetically superior Eucalyptus trees 

and it has been recognised that molecular markers have potential application in 

both breeding and deployment (eg. Williams 1995; Kerr et al. 1996; Dale and 

Chaparro 1996; Grattapaglia 1997). Consequently linkage maps composed of 

DNA based markers have been constructed and published for several species of 

Eucalyptus. The crosses used for generating the segregating mapping populations 

were either interspecific F i s (Grattapaglia and Sederoff 1994; Verhaegen and 
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Plomion 1996; Marques et al. 1998) or an F2 cross using grandparents from 

widely disjunct populations (Byrne et al. 1995). This would virtually ensure that 

parent trees would be genetically distant from one another. Using genetically 

distant parent trees is likely to increase the efficiency of mapping. However since 

Eucalyptus globulus is generally grown as a pure species, intraspecific (and also 

intraprovenance) crosses are required in most breeding programs. An AFLP map 

of E. globulus has been published, however it was based on an interspecific F1 

cross with E. tereticornis (Marques et al. 1998). This chapter reports on the first 

maps published for Eucalyptus globulus based on a pure species cross and the first 

published Eucalyptus maps using an intraprovenance cross. 

Like the previously published maps for E. grandis and E. urophylla (Grattapaglia 

and Sederoff 1994; Verhaegen and Plomion 1996), the E. globulus maps in this 

study are based on RAPD markers. Although RAPD markers are extremely useful 

for map construction, especially using an F 1  cross, they have limited 

transferability because they are dominant markers with only two alleles. Co-

dominant markers such as microsatellite loci on the other hand, are expensive to 

isolate but have much broader transferability and are also potentially fully 

informative in crosses other than an F1. Including micro satellite markers as a 

significant component of Eucalyptus genomic maps should increase the 

informativeness, transferability and reliability of these maps — factors important to 

their future applicability. Byrne et al. (1996) reported that four microsatellite loci 

isolated from E. nitens were amplifiable and polymorphic in several other species 

in the genus, demonstrating the potential transferability of microsatellites between 

species of Eucalyptus. Brondani et al. (1998) list primer sequences used to 

amplify twenty microsatellite loci that originate from E. grandis and E. urophylla 
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and also show the location of these loci on RAPD maps from a cross between 

these two species. These primer sequences have been used in the present study to 

add E. grandis/E. urophylla microsatellite loci to the RAPD maps of E. globulus. 

In addition microsatellite loci originating from E. globulus, E. nitens and E. 

sieberi have been mapped in this cross. This has aided the identification of linkage 

group homology between the two E. globulus parental RAPD maps, and enabled 

the identification of homology between the E. globulus linkage groups reported in 

this paper and the E. grandis and E. urophylla linkage groups of Brondani et al. 

(1998). 
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2.2 MATERIALS AND METHODS 

2.2.1 Plant material and DNA extraction 

The mapping population consists of a single full-sib family of 165 progeny from 

an E. globulus subsp. globulus intraprovenance cross, carried out by CSlIZO 

Division of Forestry and North Forest Products (Australia) and planted at a 

number of field sites (Vaillancourt et al. 1995b). Both parents originate from King 

Island which is located in Bass Strait between continental Australia and Tasmania. 

The male parent (G164) is located at a distance of several kilometres from the 

mother tree of the female parent (KI2) and on this basis the two parents would not 

be expected to be closely related (Skabo et al. 1998). The female parent is an open 

pollinated progeny planted in a seed orchard. 

Two grams of frozen leaf material was ground to a smooth powder in liquid 

nitrogen using a mortar and pestle. The DNA was extracted using the CTAB 

extraction protocol of Doyle and Doyle (1990). The CTAB extraction buffer was 

modified by the addition of polyvinylpyrolidone (PVP-40, Sigma) at 2% (w/v). 

Two volumes of ice-cold ethanol (-65% final concentration), rather than 

isopropanol, was found to precipitate higher quality DNA for PCR. By routinely 

adding a phenol, phenol-chloroform extraction step, readily PCRable DNA was 

almost always obtained. DNA was quantified using a Hoefer DNA Fluorometer 

(TKO 100) and Hoechst 33258 dye. 
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2.2.2 Molecular marker assays 

Ten-mer RAPD primers were obtained from the University of British Columbia 

(UBC; Dr. J. B. Hobbs, c/o Biotechnology Laboratory, Wesbrook Building, 6174 

University Boulevard, Vancouver, B.C. V6T1Z3) and Operon Technologies Inc 

(OP; 1000 Atlantic Ave., Alameda CA 94501 USA). Four hundred UBC RAPD 

primers comprising sets 1, 2, 3 and 5 and OP kit B were screened to identify those 

that amplified strong, reliable and polymorphic RAPD bands. DNA from the two 

parents and six progeny were used for the screening of the RAPD primers. 

Amplification conditions are based on those of Williams etal. (1993). RAPD 

reactions (2011L) were composed of the following components: 50mM KC1, 

10mM Tris-HC1 pH 9.0 @ 25°C, 0.1% Triton X-100, 200[LM dNTPs, 3mIVI 

MgC12, 1501.1g/mL Bovine Serum Albumin (BSA), 0.2511M RAPD primer, 1.6 

units Taq DNA Polymerase and 2Ong genomic DNA and overlaid with 301.1L of 

mineral oil prior to amplification. An MJ Research Inc. PTC-100 programmable 

thermal controller was used for amplification using the following cycling profile: 

94° — 2min, [94° — 1min, 35° — lmin, 72° — 2min] x 40, 72° — 5min, 10° — hold. 

Reactions were electrophoresed in 1.5% agarose gels at 22 volt.hours/cm in 1 x 

TBE buffer. Fluorescence from ethidium bromide (incorporated into the gel at 

0.24mL) was used to photograph the RAPD bands using Polaroid 665 film. 

Polymorphic bands were scored manually from the Polaroid negative. RAPD 

markers inherited from one parent only and segregating in an apparent 1:1 pattern 

were classed as originating from either the male or the female parent, creating two 

separate data sets depending on the parent of origin. A third data set was created 
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for those RAPD markers that originated from both parents and had a 3:1 

segregation pattern. 

All of the microsatellite loci that were used in this study were originally isolated 

as dinucleotide repeats. There were three sources of microsatellite primer 

sequences: EMCRC (Eucalyptus Microsatellites from Co-operative Research 

Centre for Sustainable Production Forestry) loci originate from Eucalyptus 

globulus DNA enriched for microsatellite sequences (Steane etal. 2001); CSIRO 

primer sequences were obtained from Dr Gavin Moran at CSIRO Forestry and 

Forest Products and were isolated from E. nitens and from E. sieberi; and the 

EMBRA microsatellites were cloned from E. grandis and E. urophylla and 

originate from Dr Dario Grattapaglia's lab in Brazil. The primer sequences for the 

EMBRA loci are those of Brondani et al. (1998) and the coding of loci is the same 

as in that publication. 

The details for the primer sequence and amplification conditions for the EMCRC 

microsatellites are given in Steam et al. 2001 and for the CSIRO microsatellites 

in Byrne. et al. 1996 and the CSIRO forestry website. The reaction conditions 

used for the EMBRA micro satellites were essentially those of Brondani et al. 

(1998) with the following modifications: 0.1% Triton X-100, 0.1mg/mL BSA, no 

DMSO and annealing at 57°C. All amplifications were carried out on an MJ 

Research Inc. PTC-100 Thermal Cycler. All amplifiable loci were screened for 

their potential to be mapped on both parental maps with sizing of alleles carried 

out on polyacrylamide gels using an Applied Biosystems automated DNA 

sequencer. Reaction product fragment sizes were calculated using GENESCAN 

software based on an internal standard. Metaphor (FMC) agarose gels [3.5% (w/v) 
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in 1xTBE buffer] were used to separate microsatellite reaction products for 

scoring all microsatellite loci in the progeny. Depending on the size of the 

microsatellite and the size difference between alleles, the running of the gels 

varied from 20 volt.hours/cm at 4° to 16 volt.hours/cm at room temperature. 

Ethidium bromide (0.4i.tg/mL)  was incorporated into the gels which were scored 

from Polaroid (665) photographs of the fluorescing PCR products. 

A number of different enzymes were tested for their ability to be detected using 

frozen mature leaf tissue as a source and starch gel electrophoresis for separation 

with only one polymorphism reliably detectable. The methods used for detecting 

enzyme activity and starch gel electrophoresis were based on those of Moran and 

Bell (1983). 

2.2.3 Linkage analysis 

All loci segregating 1:1 from both parents were tested for evidence of linkage to 

each 3:1 segregating locus using a chi-squared goodness of fit test. Only those 

progeny that were found to be homozygous absent at the 3:1 locus were used in 

the test where a 1:1 segregation pattern would be expected for an unlinked (1:1) 

marker. Linkage is indicated where a significant departure from the 1:1 pattern 

arises, in this study where a < 1 x 10 -4 . 

The program MAPMAKER Version 3.0b (UNIX) was used to determine linkage 

groupings and ordering of markers within linkage groups for loci segregating in a 

1:1 pattern (Lander et al. 1987; Lincoln et al. 1992). Data for loci segregating 1:1 

was entered as F2 backcross data and markers were scored as either present (H), 

absent (A) or undetermined (-) for each offspring. Because MAPMAKER 
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recognises linkage in coupling phase only, each marker needed to be represented 

by an original and also an inverse (repulsion phase) form in the data set. This 

allowed linkages in repulsion to be recognised by MAPMAKER as defacto 

linkages in coupling to inverse markers. 

The LOD score threshold for declaring linkage using MAPMAKER was 

calculated based on the maximum number of independently segregating 

('unlinked') positions expected in the genome and the required type I error. This 

is based on the expected number of linkage groups, an estimate of the genome 

size and a prior definition of linkage in map units. The expected number of 

linkage groups is 11 since cytological observations suggest this to be the haploid 

number of chromosomes in Eucalyptus (Potts and Wiltshire 1997). An upper 

estimate for the size of the Eucalyptus genome from other mapping studies is 

approx. 1500cM. Linkage can be defined arbitrarily as two markers being less 

than 50cM (Kosambi) apart. The number of 'independently segregating positions' 

is thus the maximum number of positions that are 50cM or more apart in the 

genome (ie. 41). There are 820 unique pairwise linkage tests that can be made 

between these 41 positions. For a probability of Type I error of 0.01 for the 

genome as a whole, the appropriate LOD score threshold is - logio (820/0.01) = 

4.9. Thus a LOD score threshold of 4.9 for declaring linkage between markers 

was used with the "group" command of MAPMAKER with a consequent 

estimated probability of Type I error of 0.01 for each linkage map. Since the 

maximum recombination fraction at which linkage is declared will vary according 

to the number of progeny which have been scored in common for a marker pair, 

the recombination fraction parameter was left as non-restrictive (ie. r = 0.49) 

when using the "group" command of MAPMAKER. 
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For ordering of markers within each linkage group a subgroup of six or less 

markers were chosen that were well spaced from one another and had a minimum 

of missing data. The most likely marker orders for the subgroup were found using 

the "compare" command of MAPMAKER with a LOD 3.0 threshold for 

alternative marker orders. The "build" command of MAPMAKER was used to 

identify any remaining markers in a linkage group that could be added to the order 

established for the initial subgroup of markers at LOD 3.0. Framework marker 

orders were used as the basis for data checking using the error detection system in 

MAPMAKER and discernible errors corrected. Error correction did not affect 

marker ordering as tested using the "ripple" command of MAPMAKER on the 

corrected data sets. The "build" command was used after error correction to add 

any previously unplaced framework markers to the corrected data sets at LOD 3.0 

and to add accessory markers at LOD 2.0. Several markers which had missing 

data and that significantly inflated the length of a linkage group due to dubious 

double crossovers were excluded from the framework and placed as accessories. 

Accessory markers were located on the framework map alongside the nearest 

framework marker. Unplaced microsatellite loci in a linkage group were assigned 

to the most closely linked framework marker using the "near" command of 

MAPMAKER. 

2.2.4 Test for segregation distortion 

All loci classified as segregating 1:1 were tested for distortion from this expected 

ratio using a chi-squared goodness of fit test. Loci segregating from one parent 

with significant departure from a 1:1 pattern at a = 0.05 were compared with 

expected ratios for 2:1 and 3:1 segregation. To determine the frequency of 

Chapter Two 	 25 



segregation distortion in the genomes of the two parents, the number of regions 

(rather than markers) expected to have distorted segregation was estimated for 

each map (a region is defined as a group of linked markers or a lone mapped 

marker). Estimates are based on the number of 'independently segregating 

positions' which is the size of each linkage group in cM divided by 50 rounded 

upwards and summed for the entire map. The expected number of regions with 

distorted segregation is the number of these 'independently segregating positions' 

multiplied by the threshold value used for declaring distortion as significant (eg. 

0.05, 0.01). Since distortions from a 1:1 ratio can alter the probability of linkage 

between two markers, pairs of framework markers with strong distortion and with 

weak linkages were checked for any extreme alterations to their probability of 

linkage. Two point LOD scores for these marker pairs were also recalculated 

based on an adjusted 0 value for no linkage. 
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2.3 RESULTS 

2.3.1 Screening and scoring of molecular markers 

Sixty-five RAPD primers out of 400 were selected for use in genotyping, approx. 

one out of every six screened. The primers amplified 326 RAPD markers 

segregating in an apparent 1:1 pattern with 173 inherited from the male parent and 

153 inherited from the female parent, resulting in five markers segregating 1:1 per 

primer. Twenty loci were scored as being heterozygous in both parents and 

segregating in an apparent 3:1 pattern. 

The results of screening the microsatellite loci are summarised in Table 2.1. From 

the 35 amplifiable loci, 25 were heterozygous in one or both parents with the male 

parent heterozygous at 21 loci and the female parent at 16 loci. Of the 11 EMBRA 

loci scored in common with E. grandis and E. urophylla, the male E. globulus 

parent was heterozygous at 10 and the female parent heterozygous at 8 loci. This 

compares with the parent trees in Brondani et al. (1998) where the E. grandis 

parent is heterozygous at 10 and the E. urophylla parent at all 11 of the loci scored 

in common. Although seven CSIRO microsatellites were found to be potentially 

mappable, only the three fully informative loci (ie. segregating from both parents) 

were assayed for all progeny and used in the linkage analysis. All EMCRC and 

EMBRA microsatellites that were found to be segregating from one or both 

parents were used for genotyping and linkage analysis. 

All of the 21 microsatellite loci that were scored for segregation in the progeny 

originate from species of Eucalyptus in the subgenus Symphyomyrtus except for 

CSIRO-03 which is from E. sieberi belonging to the subgenus Monocalyptus. The 
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male parent was found to be heterozygous for 18 of these loci and the female 

parent heterozygous at 14 loci with 11 loci heterozygous in both parents. Thus 

across the two parental linkage maps the 21 microsatellite loci scored in the 

progeny provided a total of 32 markers to be tested for linkage with only one 

(EMBRA 10) remaining unlinked at LOD 4.9. 

Table 2.1. The source, amplifiability and informativeness of microsatellite 
loci used for mapping. 

Source No. tested No. 
amplifiable 

Heterozygosity in E. globulus parents 

Neither One Both 

EMBRAa 20 15 4 4 7 

EMCRCb  12 11 4 5 2 

CSIRCr 10 9 2 4 3 

total 42 35 10 13 12 

aEMBRA = Eucalyptus grandis/E. urophylla - Brondani et al. (1998) 

bEMCRC = E. globulus — Steane et al. (2001) 

cCSIRO = E. nitens/E. sieberi — Byrne etal. (1996) 

Of the three enzyme systems found to have scorable activity using frozen adult 

leaf material (MDH, AAT and GPI) only glucosephosphate isomerase 2 (GPI-2, 

E.C. 5.3.1.9) was polymorphic, being heterozygous in the male parent only. 

2.3.2 Linkage maps 

For the male parent (G164) a total of 192 loci segregating 1:1 were used in the 

initial linkage analysis. Thirteen linkage groups were defined over a range of 

LOD score values from 4.25 to 4.95 with 15 markers (7.6%) remaining unlinked. 

There were 101 framework markers ordered with 19 accessory markers added to 
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the framework map (Fig. 2.1). The 101 framework markers map to 90 positions 

covering a total distance of 1013cM (Kosambi mapping function). There are 77 

intervals between markers on the linkage groups with an average size of 13cM 

and a maximum size of 37cM. Linkage group frameworks varied in size from two 

positions covering 5.7cM (Group 11) to 13 positions covering 195cM (Group 8). 

Three groups (5, 11 and 13) consist of only two framework markers each. At LOD 

4.20 twelve linkage groups form as a consequence of Groups 4 and 5 coalescing 

and forming a new interval of 41.7cM whilst at LOD 4.0, Groups 1 and 2 form a 

single linkage group with a new interval of 69.0cM (dashed lines on Fig. 2.1). 

Thus at LOD 4.0, eleven linkage groups form, which is the observed haploid 

number of chromosomes in Eucalyptus. 

For the female parent (KI2) 167 loci segregating 1:1 were used in the analysis. 

These formed into 11 linkage groups from LOD score thresholds ranging from 

4.35 to 6.15 with 15 markers (approx. 9%) remaining unlinked at LOD 4.9. There 

were 97 framework markers at 75 positions on the linkage map of 11 groups with 

11 accessory markers (Fig. 2.2). The framework spans 64 intervals covering 

701cM with an average interval size of 11cM and a maximum interval size of 

37.1cM (Kosambi mapping function). Three groups (4, 9 and 11) are composed of 

two framework positions only. The largest group (Group 3) has 18 framework 

positions and covers 148cM with the smallest group (Group 11) being 6.9cM. 

Using a LOD of 4.3 with the group command of MAPMAKER, ten linkage 

groups form rather than 11, with Groups 4 and 5 coalescing to form a new interval 

of 38.4cM (dashed line Fig. 2.2). 
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Fig. 2.1. and 2.2 Linkage maps of Eucalyptus globulus using RAPD and 

microsatellite markers. 

Framework marker orders were determined using the program MAPMAKER at a 
LOD threshold of 3.0. Microsatellite loci are in bold text. Microsatellites that are 

not framework or accessory markers are bracketed and listed next to the nearest 

framework marker in the linkage group. RAPD loci amplified from UBC primers 
are listed by the UBC number followed by the ranked size of the amplified band 

from large to small. RAPD loci amplified with OP primers are listed using the OP 
designation followed by the ranked size of the amplified band. The isozyme 

locus, GPI-2 is underlined. The distance between framework markers is in 

Kosambi centimorgans on the left hand side of each linkage group. Markers that 
mapped to the same position are listed separated by a comma. Accessory 
markers that were ordered at LOD 2.0 are located in smaller text alongside the 
nearest framework marker with the two point distance in centimorgans from this 

marker. Loci which had distorted segregation at a = 0.05 are followed by a single 

asterisk, those with distortion at the a = 0.01 level are followed by a double 

asterisk. A dashed line between linkage groups indicates linkage at a reduced 
LOD score threshold. 

Next page Fig. 2.1 Map of the male (G164) parent 

Following page Fig. 2.2 Map of the female (KI2) parent 
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2.3.3 Linkage group homology 

The presence of microsatellite loci mapped in both parents indicates there is 

homology between eight linkage groups from the male parent with nine linkage 

groups from the female parent (Table 2.2). Groups one through to eight are 

proposed as homologous between parents, with group nine of the female parent 

homologous with one end of Group 8 of the male parent. Homology with four 

linkage groups of the E. grandis/E. urophylla maps of Brondani etal. (1998) is 

also suggested based on the sharing of EMBRA microsatellite loci (Table 2.2). In 

the four cases where more than one EMBRA microsatellite was found on an E. 

globulus linkage group, conservation of linkage of EMBRA loci was found 

between E. globulus and E. grandis/E. urophylla. Of the 20 RAPD loci 

segregating in a 3:1 pattern, 11 were found to link (a = 0.0001) to framework loci 

segregating 1:1 in both of the parental maps. This indicated homology between 

five pairs of linkage groups of the two parents (Fig. 2.3). Homology is also 

indicated for each of these pairs of linkage groups on the basis of sharing of 

microsatellite loci (Fig. 2.3). There is also strong evidence for linkage of a 3:1 

locus (226-3) to Group 10 of the male parent and an unlinked marker of the 

female parent. 
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Table 2.2. Homology of linkage groups between E. globulus parent trees 

and between E. globulus and E. urophylla/E. grandis based on the mapping 

of shared microsatellite loci. 

Microsatellite 
locus 

Male parent 
linkage group 

Female parent 
linkage group 

E. urophylla/ 
E. grandis group' 

EMCRClb 1 1 

EMBRA17 1 9 

EMBRA18 1 1 9 

EMBRA7 2 2 9 

EMBRA5 3 3 5 

EMBRA9 3 5 

EMBRA6 4 1 

EMBRAl2 4 1 

EMBRA16 4 4 1 

EMBRAll 5 5 1 

EMBRA3 6 6 8 

EMCRC7 7 7 

CSIR003 8 8 

CSIR013 8 8 

CSIR.010 8 9 

a  E. urophylla/E. grandis linkage group no. from Brondani et al. (1998) 
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Fig. 2.3. Linkage of 3:1 segregating RAPD markers to loci on both parental 

maps. Linkage group homology inferred from 3:1 loci is supported in each 

case by the mapping of one or more fully informative microsatellite loci. 

RAPD loci segregating 3:1 are located between each pair of homologous 

linkage groups and numbered in bold text along with framework 

microsatellite loci. Framework RAPD loci which were most strongly linked 

to each 3:1 locus are shown in plain text. Otherwise coding of RAPD and 

microsatellite loci is as per Fig. 1.1 and 1.2. 
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2.3.4 Evidence for linkage based on homology 

In several instances EMBRA microsatellite loci that are present on one group of 

the E. grandis and/or E. urophylla maps of Brondani etal. (1998) are present on 

two E. globulus linkage groups (Table 2.2). Linkage Group 9 of the E. urophylla 

map of Brondani etal. (1998) has microsatellite loci which occur on both linkage 

Group 1 (EMBRA 17 and 18) and linkage Group 2 (EMBRA 7) of the male E. 

globulus parent (Table 2.2 and Fig. 2.1). Similarly linkage Group 1 of both the E. 

grandis and E. urophylla maps has loci which occur on group 4 (EMBRA 6, 12 

and 16) and Group 5 (EMBRA 11) of the male E. globulus parent (Table 2.2 and 

Fig. 2.1). It has been noted that at reduced threshold LOD scores linkage was 

detected between these two pairs of groups in the male parent (see Linkage Maps 

above). The evidence thus suggests that Groups 1 and 2 belong to a single linkage 

group and that Groups 4 and 5 similarly belong in a single group and that the 

arrangement of the EMBRA loci on these groups has been conserved between 

species. 

Linkage Groups 1 and 2 of the female parent also share microsatellite loci 

(EMBRA 18 and 7) with Group 9 of E. urophylla and linkage Groups 4 and 5 

have microsatellite loci (EMBRA 16 and 11) that map to Group 1 of both the E. 

grandis and E. urophylla maps (Table 2.2, Fig. 2.2). At a reduced threshold LOD 

score linkage is detected between Groups 4 and 5 of the female parent (see 

Linkage Maps above) but not, however, between Groups 1 and 2. Again the 

evidence supports conservation in the arrangement of EMBRA loci on Groups 4 

and 5. Linkage between Groups 1 and 2 in the female parent can be inferred from 
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the linkage between the homologous groups in the male parent and from the 

arrangement of EMBRA microsatellites in both the male parent and E. urophylla. 

The three CSIRO microsatellites map to one group in the male parent (Group 8) 

but to two groups (Groups 8 and 9) in the female parent (Table 2.2, Fig. 2.1 and 

2.2). Since the linkages in Group 8 of the male parent are of high likelihood and 

assuming the distribution of microsatellites is the same between the two parents it 

is likely that Groups 8 and 9 of the female parent belong to one linkage group. If 

all the linkages inferred from homology in both the E. globulus parents are taken 

as correct then the male parent would have eleven linkage groups and the female 

parent eight. 

2.3.5 Segregation distortion 

There are six markers with segregation distortion at a = 0.05 segregating from the 

male parent. These map to five regions and include three framework markers (Fig. 

2.1, asterisked markers). With 28 'independently segregating positions' on the 

map of the male parent (see Materials and Methods), 1.4 regions are expected to 

have distorted segregation at a = 0.05. There is thus approx. three and a half times 

the number of regions expected to have distortion at a = 0.05. There were no 

markers with segregation distortion at a = 0.01 segregating from the male parent. 

(If it is assumed that segregation patterns for each marker are derived from 

random and independent events, then the expected number of markers with 

segregation distortion at a = 0.05 is 9.6 and based on this method of assessment 

there would be fewer markers observed to have distorted segregation than 

expected.) 
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In the overall data set of the female parent there are twenty-three markers with 

distorted segregation at a = 0.05. These map to seven regions and include 17 

framework markers (Fig. 2.2, asterisked markers). The female parental map of 

701cM has a total of 19 'independently segregating positions' with 0.95 regions 

expected to have segregation distortion at a = 0.05. There are thus seven times the 

expected number of regions with distorted segregation at a = 0.05. There are eight 

markers overall with distorted segregation at a threshold of a = 0.01. These map 

to four regions with three being framework markers on linkage Group 8 and one 

framework marker on each of Groups 3, 4 and 5 (Fig. 2.2, double asterisks). Since 

there are 0.19 regions expected to have distorted segregation at a = 0.01 there are 

approx. 21 times the expected number of regions with segregation distortion at a 

= 0.01. (Assuming that segregation of each marker results from random and 

independent events, then 8.35 markers would be expected to have segregation 

distortion at a = 0.05 and 1.67 markers at a = 0.01. Using this assumption there 

are 2.8 times the expected number of loci with distortion at a = 0.05 and 4.8 times 

the expected number of loci with distortion at a = 0.01.) 

For the regions with segregation distortion at a = 0.01 in the female parent the 

region on Group 3 and the region on Group 8 have markers which have been 

scored on the full array of progeny and there are linkages in repulsion with 

markers that also have distorted segregation. Thus it is extremely unlikely that the 

segregation distortion is due to 'unreliability of RAPD markers', at least for these 

two regions. Lone markers, both of which gave strong unambiguous banding, 

represent the other two regions with strong distortion in the female parent. It 
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would thus appear very likely that the observed distortions are not artifactual and 

the excess segregation distortion requires explanation. 

All marker loci with significant segregation distortion were found to have 

segregation ratios between 1:1 and 2:1, as distinct from the 3:1 ratio expected 

from an unlinked duplication of a locus. None of the linkages involving 

framework markers with segregation distortion were found to have probabilities 

(of linkage) which were unduly affected by the distortion. In the most severe case 

on Group 8 of the female parent (Fig. 2.2), RAPD loci 42-5 and 20-4 are 23.2cM 

apart. For two loci with the same degree of distortion, the probability of linkage at 

this level or closer is 7.8 x 10-I°, which although 70 times larger than two loci 

segregating in a perfect 1:1 ratio, still provides very strong evidence for linkage. 

The two point LOD score calculated using 0 = 0.5 for no linkage was 11.05 and 

an adjusted LOD score of 10.96 was obtained for 0 = 0.455. 

2.3.6 Estimates of genome size 

Some idea of the completeness of the two maps overall can be gained from the 

fact that 32 out of 33 microsatellite and allozyme markers were placed into 

linkage groups with only one marker (EMBRA 10) remaining unlinked at LOD 

4.9. For the male parent all 19 of the non-RAPD markers were placed into linkage 

groups and for the female parent one marker out of 14 remained unlinked at LOD 

4.9. A method of estimating the overall length of the genome as detailed in 

Vallejos et al. (1992) was used. The following formula was used for estimation: 

G = 2MX/K where G is the estimate of genome size, M is the no. of locus pairs, X 

is the largest estimated map distance value among the K observed no. of locus 

pairs that are linked with a LOD score of Z or greater (Z = 4.9). This method gave 
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an estimated genome length for the male parent of 1277cM with 79% of the 

genome covered by the framework map. The female parent was estimated to have 

a genome of size 1133cM with 62% of the genome estimated to be covered by the 

framework map. 
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2.4 DISCUSSION 

2.4.1 Utility of microsatellite loci 

Microsatellite loci are extremely useful for the identification of linkage group 

homology and for enabling the integration of linkage information (Dib etal. 1996; 

Dietrich etal. 1996). In this study linkage analysis of eleven fully informative 

microsatellite loci has enabled the identification of homology between eight (pairs 

of) linkage groups from the RAPD maps of the parents. In addition homology 

with four linkage groups of E. grandis/E. urophylla have been identified based on 

the mapping of eleven EMBRA microsatellite loci (Brondani et al. 1998). In all 

cases where it could be examined, linkages between EMBRA microsatellites that 

were found in E. grandis/E. urophylla were conserved in E. globulus. The close 

correspondence of microsatellite distributions may be a reflection of the fact that 

all three of these species belong to the subgenus Symphyomyrtus, although E. 

globulus belongs in a different section to E. grandis and E. urophylla. In total 21 

microsatellite loci from five different species of Eucalyptus have been placed on 

the two parental maps detailed here. 

A potential outcome of identifying linkage group homology between maps is that 

the arrangement of loci on one map can be used to infer linkage between groups 

on the second map. In this study such homology has been used to support several 

weak linkages found between linkage groups. The two lines of evidence lend 

support to one another to indicate that these linkages are likely to be correct. 

Importantly homology was based on a between species alignment of microsatellite 

loci. This illustrates the potential power of microsatellites to draw upon mapping 

information from both within and between species to aid in map construction. 

Chapter Two 	 41 



This information could be used in strategies to search for markers to fill in gaps in 

a linkage map, for example using bulked segregant analysis (Michelmore et al. 

1991). 

Using homology to infer linkage has had a considerable influence on map 

construction in this study, impacting on the number of linkage groups and the 

structure of the maps. If all the linkages inferred from homology in both the E. 

globulus parents are taken as correct then the male parent would have eleven 

linkage groups and the female parent eight. Cytological studies indicate that n = 

11 in Eucalyptus (Potts and Wiltshire 1997). So for the male parent, eleven 

linkage groups matches the number expected based on chromosome counts. 

However for the female parent there are three linkage groups less than expected 

from chromosome counts. It is likely that by scoring additional RAPD markers 

inherited from the female parent these three linkage groups would be defined, 

especially since some of the 15 unlinked markers (approx. 9%) probably belong to 

these three groups. 

2.4.2 Mapping in Eucalyptus using an intraprovenance cross 

The levels of heterozygosity and variation within a provenance in E. globulus 

are clearly sufficient to allow the construction of RAPD maps from an 

intraprovenance cross. Since this species is cultivated as a pure species, the 

construction of such maps from intraspecific and intraprovenance crosses will 

be required if QTL detection and marker assisted selection is to be carried out 

as part of E. globulus breeding programs. Since the two parents of the cross in 

this study originate from the same island provenance, it might have been 

expected that map construction would be hampered due to low genetic 
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divergence of the parents and a consequent paucity of RAPD loci segregating in 

a fully informative manner. However if there is low genetic divergence between 

the two parents in this study it has not proven to be a significant hindrance and 

has been overcome by using the easy to implement strategy of screening a large 

number of RAPD primers and selecting a subset which detect a maximum 

number of polymorphisms. Approximately one in every six primers screened 

was selected for genotyping, yielding 5 loci segregating 1:1 on average per 

selected primer. This compares with Grattapaglia and Sederoff (1994) where 

half of the screened primers were used for genotyping, yielding an average of 

3.7 markers per primer and Verhaegen and Plomion (1996) where almost three-

quarters of screened primers were used for genotyping, yielding 3.2 markers per 

primer. In both these cases an E. grandis x E. urophylla interspecific cross was 

used. 

2.4.3 Segregation distortion 

Commonly, the frequency of segregation distortion expected due to chance is 

calculated using the total number of markers that have been scored in the data set. 

However, since linked markers are not independent, a more meaningful method of 

calculating the degree of expected segregation distortion for linkage maps may be 

to calculate the expected number of 'regions' with segregation distortion. The 

number of linkage groups and their sizes determines the expected number of 

regions. In this study this has been shown to provide a different basis on which to 

judge the expected extent of segregation distortion. For example, in the male 

parent at a = 0.05, the number of regions observed to have segregation distortion 

was five, the number expected was 1.4 (28/20) with the ratio of observed to 
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expected being 3.5 (somewhat more than expected) whilst for calculations based 

on the number of markers, the ratio of observed (six markers) to expected (192/20 

= 9.6) is 0.625 (fewer than expected). The method of calculating the extent of 

segregation distortion can thus have a significant bearing on the assessment of 

whether excess distortion is occurring. 

In this study it has been found that the number of regions with significantly 

distorted marker ratios in the map of the female E. globulus parent in particular is 

much greater than would be expected by chance alone. This greater than expected 

frequency/degree of skewing of Mendelian segregation ratios is not uncommon in 

plants (Zamir and Tadmor 1986; Bradshaw and Stettler 1994), with Eucalyptus 

being no exception (Byrne et al. 1994; Vaillancourt et al. 1995a; Verhaegen and 

Plomion1996; Marques etal. 1998). 

A number of selection based genetic mechanisms have been suggested to explain 

these distorted marker ratios. These include incompatibility systems (Gebhardt et 

al. 1991), preferential chromosome loss (Vaillancourt and Slinkard 1992), 

expression of genetic load (Sorensen 1969; Bradshaw and Stettler 1994; 

Vaillancourt et al. 1995a), meiotic drive (Gillet and Gregorius 1992) and haploid 

expressed deleterious alleles. It is to be noted however that the four regions with 

strong distortion (a = 0.01) in the female parent in this study do not align with 

regions of distortion in the homologous linkage groups of the male map. This 

excludes incompatibility as an explanation since incompatibility systems in higher 

plants usually operate to exclude fertilisation by the male or in the case of rare 

haplo-homophasic systems would operate to cause distorted segregation in both 

sexes (Gillet and Gregorius 1992). If genetic load is considered as an explanation 
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for the observed segregation distortion then a deleterious recessive allele must be 

segregating from the parent with the distortion. The second parent could be either 

heterozygous or homozygous for the deleterious recessive. However the observed 

non-alignment of distorted regions excludes the possibilty that both parents are 

heterozygous for a deleterious recessive allele at the same locus since the genetic 

maps of both parents would be expected to have distorted segregation in the same 

region. To invoke genetic load as an explanation the male parent in particular 

would need to be homozygous for deleterious recessive alleles at several loci 

which is probably unlikely as it is a naturally established tree. Genetic load would 

therefore appear not to be a satisfying explanation for the segregation distortion. 

Chromosome loss is also an unlikely explanation for the distortion as it is usually 

only considered in cases where one parent is an interspecific or intersubspecific 

hybrid. It is to be noted however that hybridisation is common in the genus 

Eucalyptus (Potts and Wiltshire 1997), and it is not known if there are small 

chromosomal rearrangements between and within species. Meiotic drive and 

haploid expressed deleterious alleles remain as possible explanations for 

segregation distortion of any region since there is no evidence for selection 

operating at any particular stage of development. Other models based on post-

fertilisation selection, for example selection for co-adapted allelic combinations, 

might also explain the skewed segregation ratios. 
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2.5 CONCLUSION 

RAPD maps were readily constructed for two parents of an intraprovenance cross 

of E. globulus demonstrating the utility of RAPD markers for map construction in 

Eucalyptus from nonwide crosses. Microsatellite markers which originate from 

several Eucalyptus species have been mapped enabling the identification of 

homologous linkage groups between E. globulus and E. grandis/E. urophylla. The 

conservation of linkage of microsatellite loci and trasnsfer of loci between crosses 

in different species indicates the potential for the construction of a consensus map 

based on microsatellites. Segregation distortion in the genome was observed to a 

greater extent than expected by chance and a biological cause is suspected 

although several of the usual genetic mechanisms to account for the distortion 

appear to be unlikely. 
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CHAPTER THREE 

THE DETECTION OF QUANTITATIVE TRAIT LOCI (QTL) FOR 

TRAITS OF COMMERCIAL IMPORTANCE IN A 

EUCALYPTUS GLOBULUS CROSS 

3.1 INTRODUCTION 

In common with crop plants, most of the traits of economic importance to tree 

breeding are quantitative in nature (Namkoong etal. 1988). Most of these can be 

considered as continuously variable traits with the variance arising from some 

combination of environmental, genetic or interaction effects. Until recently, 

information has not been available on the number of genetic factors controlling 

such traits, their size of effect, epistatic interaction or their distribution in the 

genome. Genetic theory has handled this lack of information by considering 

quantitative traits to be controlled by many genes of small effect — the 

infinitesimal or polygenic model. However with the advent of molecular markers, 

genetic linkage maps have been constructed and utilised to detect loci contributing 

to the variance of quantitative traits, so-called quantitative trait loci or QTLs. In 

Eucalyptus alone there have been reports of QTL detection for vegetative 

propagation traits (Grattapaglia et al. 1995; Marques et al. 1999), wood specific 

gravity/ density (Grattapaglia etal. 1996; Verhaegen etal. 1997), growth 
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(Grattapaglia et al. 1996; Verhaegen et al. 1997) and form (Verhaegen et al. 

1997), seedling height and leaf area (Byrne et al. 1997a), frost tolerance (Byrne et 

al. 1997b) and foliar oil composition (Shepherd etal. 1999). 

QTL detection studies add to the fundamental understanding about the genetic 

control of quantitative traits both in general and in particular. However there is 

great interest in the detection of quantitative trait loci (QTL) in forest trees due to 

the potential of marker assisted selection (MAS). It is hoped that MAS could 

improve the accuracy of selection for traits with low heritabilities and reduce the 

time to evaluate performance by partial or complete replacement of phenotypic 

evaluation with marker genotyping. The selection of superior parent trees is 

usually considered the objective in tree breeding, but it has also been suggested 

that marker based selection could be applied to tree seedlings before deployment 

in plantations, as a cost effective method to increase gains (Kerr et al. 1996). 

Recently a benefit cost analysis of MAS for growth and wood density in Pinus 

radiata has indicated the potential profitability of MAS based on propagation by 

cuttings of marker selected genotypes (Wilcox et al. 2001a). 

No doubt a necessary step in the process of MAS is the detection of QTLs in 

relevant crosses of the species of interest. However, further information on most 

detected QTLs will be required before MAS can be successfully implemented. 

Reported QTL effects are often based on small population sizes and many require 

validation in other populations (Sewell and Neale 2000). An issue of major 

concern that requires investigation before QTL information can be utilised for 

MAS, is QTL stability; in different genetic backgrounds, with time and across 

environments (Bradshaw and Grattapaglia 1994). 
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Eucalyptus globulus is grown mainly for pulpwood production and the main traits 

identified for selection in breeding programs usually include wood density, pulp 

yield and volume (growth) (Greaves and Borralho 1996; Bon -alho 2001). 

However other traits have been studied in E. globulus with the possibility of 

inclusion in breeding programs, these include: frost tolerance (Volker et al. 1994), 

rooting ability (Borralho and Wilson 1994; Marques et al. 1999), early flowering 

(Chambers et al. 1997), survival/mortality (Chambers and Borralho 1997), 

susceptibility to fungal leaf disease (Dungey et al. 1997), wood chemistry 

(Rodrigues et al. 1999; Miranda and Pereira 2001), autumn gum moth defoliation 

(Jones et al. 2002), sawfly attack (Jordan et al. 2002), resistance to marsupial 

browsers (O'Reilly-Wapstra et aL 2002) and fibre morphology and pulp/paper 

properties (Miranda and Pereira 2002; Wimmer et al. 2002). In the present study 

measurements of growth, wood density, bark thickness and early flowering have 

been analysed for QTL detection. Of these growth rate has been the most 

thoroughly studied and most commonly incorporated into objectives for breeding 

programs (Borralho 2001). 

Stem diameter commonly suffices as a measure of growth in lieu of volume since 

it is easy to measure. A recent estimate of heritability of 0.20 for stem diameter in 

E. globulus at age 4 years was significant but relatively low (600 families across 5 

sites) (MacDonald et aL 1997) and close to an average heritability for diameter (h 2  

= 0.21) calculated for E. globulus based on open pollinated families (Lopez et al. 

2002). Even these relatively low estimates may be exaggerated however, as 

heritability estimates of growth based on open pollinated progeny can be inflated 

due to inbreeding depression (Potts et al. 1995; Hodge et al. 1996). Although 

average stem diameter of E. globulus has been shown to vary considerably 
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between sites, genetic correlations across sites are often high, indicating that 

family performance is relatively stable across sites and that genotype x 

environment interaction is small (MacDonald et aL 1997). Generally there is an 

increase in the estimated heritability of diameter with increasing age for both open 

pollinated (Lopez et al. 2002) and control pollinated populations (Volker 2002). 

However in general a very strong age-age genetic correlation is found for growth 

(Lopez et al. 2002). If QTL expression follows these patterns, QTLs for growth 

would not be expected to exhibit large QTL x environment effects and overall 

QTL effects would be expected to be larger at later ages compared with earlier 

ages. 

Wood density has been linked to pulp, paper and processing characteristics and it 

is recognised as an important trait for selection in breeding of eucalypts for 

pulpwood (Greaves et al. 1997). Basic density is one of the more straightforward 

wood properties to measure and is defined as the dry weight of wood per unit of 

green volume (Greaves etal. 1995). However the direct measurement of density 

can be prohibitively expensive for a breeding program where many trees may 

need to be measured. A cheap alternative to direct density measurement is the use 

of a Pilodyn, which is a hand held instrument that operates by driving a steel pin 

into a debarked tree stem with a known force. The further the pin penetrates, the 

less dense the wood. Two observations of the measurement of the distance of 

penetration (mm) have been shown to provide a reliable indication of the 

phenotypic value for a tree (Greaves et al. 1995). The relationship between 

Pilodyn penetration and basic density of wood appears to be linear and relatively 

constant across sites (MacDonald et al. 1997) and between ages (Greaves et al. 

1995). Genetic correlations between Pilodyn measurements and density in 

Chapter Three 	 50 



Eucalyptus have been very high with -0.93 reported for E. globulus (Dean et al. 

1990) and -0.84 for E. nitens (Greaves et al. 1995). Pilodyn penetration across 

sites has been shown to be highly genetically correlated, both within and between 

races (MacDonald et al. 1997; Muneri and Raymond 2000; Lopez etal. 2002). It 

has thus been concluded that genotype by environment interactions for Pilodyn 

penetration are small (Lopez et al. 2002). 

Early flowering (flowering precocity) is a trait that has come under consideration 

for inclusion in tree breeding programs because its selection could potentially 

reduce the generation interval, which is a limiting factor in tree breeding (Griffin 

1989). Chambers etal. (1997) found this trait to be under a high degree of genetic 

control in E. globulus ssp. globulus, with a heritability averaged across four sites 

of 0.59 (based on 600 families). The abundance of flower buds in three-year-old 

trees (bud abundance), was measured for the present study at roughly the same 

age as flowering precocity was measured in the study by Chambers etal. (1997). 

Bud abundance as measured in the present study, would be expected to share 

some of the genetic control of flowering precocity, since bud abundance is an 

extension of the binary trait. No studies of bud abundance have been reported for 

E. globulus, however the results for flowering precocity should be indicative. 

Significant environmental effects were found for flowering precocity with 1% to 

25% of trees flowering by age four years depending on site (Chambers et al. 

1997). Provenance (location) performance was consistent across trial site with no 

significant genotype by environment interaction (Chambers et al. 1997). 

Precocious flowering and growth appeared to be genetically, relatively 

independent at the assessment age of four years, however there was a slight 
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tendency for precocious flowering genotypes to have denser wood (Chambers et 

at 1997). 

Relative bark thickness is the proportion of the stem diameter that is due to the 

presence of bark. It has been hypothesised that relative bark thickness may 

influence traits of significance for plantation grown trees such as susceptibility to 

damage from pests such as sawflies (Perga affinus) and protection from 

environmental stress such as drought (Dutkowski and Potts 1999). Heritability 

estimates for relative bark thickness are moderate (h2  = 0.3) with high genetic 

correlation across sites (Lopez et al. 2002). The relative thickness of bark has 

been observed to be constant across ages and sites (Kelly 1997). 

The present chapter is a report of a QTL detection study of growth, wood density, 

relative bark thickness and early flowering, using a single full-sib family from an 

intraprovenance cross of E. globulus. The same family (G1025) has been used for 

the construction of parental linkage maps using RAPD and microsatellite markers 

(Chapter 2 of this thesis). The two-generation pedigree has been analysed using a 

pseudo-testcross model in which the effects contributed by each parent are 

analysed separately. A preliminary investigation of QTL stability with time and 

across environments has also been carried out, and both incremental and 

cumulative growth was analysed. 
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3.2 MATERIALS AND METHODS 

3.2.1 Population used for QTL analysis 

A single full sib family of E. globulus trees, family G1025, was included in the 

QTL analysis. Trait measurements were made on up to 155 trees belonging to this 

family. A linkage map based on 165 trees from family G1025 was constructed 

using RAPD and microsatellite markers (Chapter 2 of this thesis). The G1025 

family was derived from a control pollinated cross of two parents both originating 

from the King Island provenance of E. globulus (Chapter 2 of this thesis). The 

family was planted out as part of the CSIRO/NFP hybrid trial, which included 

progeny from an incomplete factorial crossing design of E. globulus parents 

belonging almost exclusively to the two provenances of King Island and Tararma 

(Vaillancourt etal. 1995; Hodge et al. 1996). The crossing design included 26 

male and 8 female parent trees. This resulted in progeny from a total of 177 

control pollinated outcrossed families being planted out at various field trial sites. 

Trait measurements from all of these families were included in the analysis of the 

trait data to maximise the accuracy of the estimation of environmental effects. The 

G1025 family was chosen for QTL analysis because it had good growth 

characteristics and was the largest family present in the trial. 
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3.2.2 Trial sites and trial design 

Trees of the G1025 family were grown at eight trial sites across southern 

Australia. Leaf samples were taken for DNA extraction from all surviving trees at 

each of these sites at years four or five. DNA extraction, marker genotyping and 

mapping of marker loci, were carried out as per chapter 2 of this thesis on 165 

trees from the G1025 family. Quantitative trait measurements were made at seven 

of the eight trial sites on 155 of the trees that were genotyped. Of the seven trial 

sites at which quantitative trait measurements were taken, one was in Western 

Australia at Manjimup (W. Aust.), two were in Victoria at Flynn and Mansfield 

and four were in Tasmania at Boyer, Franklin, West Ridgley (Ridgley) and 

Parkharn. There is considerable variation in the location of sites, their altitude and 

annual average rainfall (Table 3.1). Other important factors that are likely to vary 

between sites are soil type, soil fertility and temperature regimes. 

With the following exceptions there were 20 trees from the G1025 family planted 

per trial site with 5 trees per plot in four replicates (Table 3.1). The site at Boyer 

was planted in plots of ten trees with four replicates. However there was a high 

mortality rate in the first year at this site and only 50% of trees in family G1025 

survived (20 trees). At Parkham there was an additional ten G1025 trees planted 

as fillers either singly or in pairs, sometimes in the same replicate and incomplete 

block as a 5 tree plot, in which case they were included in that plot for the 

analysis. At the Ridgley site, there is an additional planting of 25 trees from the 

G1025 family in a plot (archive) alongside the trial. These were included in the 

analysis as if planted in the nearest replicate and incomplete block. At Manjimup 

(WA) there were 21 G1025 trees planted in plots of three in seven replicates. 
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Table 3.1. Location and design of NFP/CSIRO trial sites with plantings of the E. globulus family G1025. 

Boyer 
(TAS) 

Flynn (VIC) Franklin 
(TAS) 

Mansfield 
(VIC) 

Parkham 
(TAS) 

Ridgley 
(TAS) 

Manjimup 
(WA) 

Latitude 42° 46' 38° 18' 43° 04' 36° 55' 41° 26' _ 41° 09' 34° 12' 

Longitude 147° 07' 146°40' 146° 53' 146° 14' 146° 37' 145°46' 116°01' 

Altitude 40m 170m 370m 950m 205m 185m 240m 

Mean annual 

rainfall (mm) 

532 620 865 1000-1250 1025 1200 1069 

Replicates 4 4 4 4 4 4 7 

Incomplete 

blocks /Rep 

n.a. 11 9 11 13 15 11 

Plots/block 30/rep 18 13 8 14 20 11 

Trees/plot 10 5 5 5 5 5 3 

G1025 trees 20 18 17 8 28 43 21 
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3.2.3 Traits 

The following nine traits were measured on E. globulus trees representing 177 

families at the given age intervals: Height age 1 year (htl); height age 2 years 

(ht2); diameter of the tree stem at breast height (dbh) age 2 years (dbh2); dbh age 

3 years (dbh3); dbh age 4 years (dbh4); dbh age 6 years (dbh6); mean Pilodyn 

penetration (mm) age 6 years (pilo6), based on the mean of two measurements; 

bark thickness (in mm) age 6 years (b); bud abundance (early flowering) at age 3 

years measured on a scale from 1 to 6 (buds3) with 1 = no buds, 2 = 1-10 buds, 3 

= 11-100, 4= 101-1000, 5 = 1001-10,000 and 6 = 10,000 or more. Bark thickness 

(b) in mm, was transformed to a proportion of the stem diameter (relative bark 

thickness) according to the following equation: bark6 = (2 x b)/dbh6. 

In addition, three traits measuring relative incremental growth (rig) were derived 

from the measurements of height and stem diameter. Relative incremental growth 

is the change in relative performance of each tree between two ages of 

measurement. It was calculated for each tree by subtracting the plot residual (see 

section 3.2.4) of an earlier growth measurement from a later measurement. The 

following relative incremental growth traits were used in QTL analysis: rig for 

height between years 1 and 2, ht2-1; rig for stem diameter at years 2 and 4, dbh4- 

2; and stem diameter at years 4 and 6, dbh6-4. 

The number of trees in the G1025 family that were measured at each site for each 

of the nine measured traits is shown in Table 3.2. From Table 3.2 it can be seen 

that the minimum number of G1025 trees measured for a trait was 84 for dbh3. 

There was a maximum of 155 trees measured for any trait with a minimum of 

seven trees measured at any one site for a trait. 
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Table 3.2. The number of trees in the G1025 family measured for each trait at each site used for QTL detection. 

Site htl ht2 dbh2 dbh3 dbh4 dbh6 pilo6 bark6 buds3 Total 

Boyer 20 20 18 20 20 20 18 18 20 20 

Flynn 18 18 18 18 18 18 18 18 

Franklin 17 17 17 17 17 17 17 17 17 17 

Mansfield 8 8 8 7 7 8 

Parkham 28 28 28 28 18 28 28 28 28 28 

Ridgley 19 19 19 19 19 43 43 43 19 43 

West Aust. 21 21 21 21 21 21 21 21 

All sites 131 131 121 84 92 155 152 152 105 155 
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3.2.4 Removal of environmental effects and standardisation of 

trait values 

Family G1025 was grown as part Of a large trial with multiple sites at disparate 

locations (Table 3.1) and with expected differences in environmental conditions 

such as soil, rainfall, humidity, temperature and biological components. The 

environmental heterogeneity would be expected to significantly increase the 

variance of the main traits of interest in this study — growth (stem diameter), wood 

density (Pilodyn penetration) and flowering (bud abundance). Environmental 

heterogeneity would also be expected between replicates within each site. If this 

environmental contribution is not accounted for, the power to detect segregating 

QTLs for these traits may be greatly reduced. The estimation and removal of the 

environmental contributions to trait variances would on the other hand help to 

maximise the power for QTL detection. Thus an analysis was undertaken to 

remove environmental effects from the trait data to increase the power for QTL 

detection. 

A relatively large number of outcrossed E. globulus trees were planted and 

measured for each trait at each site (Table 3.3). These measurements were utilised 

in the analysis to provide as much information as possible for estimating between 

and within site environmental effects. Tree measurements from a total of 177 

families that resulted from controlled pollinated outcrosses (but excluded self-

pollinated and open pollinated families) were used in the analysis to remove 

environmental effects from the G1025 trait data. The number of individual tree 

measurements used in the analysis to remove environmental effects is given in 

Table 3.3 broken down by site. The number of families these represented 

(including G1025) is given in Table 3.4. 
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Table 3.3. The number of E. globulus control pollinated outcrossed trees at each site measured for each trait and the total number 

of trees included in the analysis for each trait.a 

Site htl ht2 dbh2 dbh3 dbh4 dbh6 pilo6 bark6 buds3 planted 

Boyer 565 558 555 551 552 540 82 82 551 800 

Flynn (Vic) 2140 2133 2133 2112 2066 1365 1365 2253 

Franklin 1394 1394 1394 1386 1375 1318 83 83 1380 1466 

Mansfield (Vic) 471 331 303 24 24 911 

Parkham 2670 2656 2656 2633 2615 2517 1661 1662 2631 2761 

Ridgley 3262 3259 3259 3231 3196 3147 2092 2092 3231 3616 

West. Aust. 1906 1898 1898 1830 1827 1827 1898 1998 

All sites 12408 12229 11895 7801 9850 11721 7135 7135 9691 13805 

In analysisb  12200 12012 11682 7572 9431 11401 6961 6961 9246 n.a. 

a  The analysis of each trait was undertaken to remove environmental effects from the data (see text this section). 
b Some trees measured for a trait were excluded from the analysis for various reasons (see text this section). 
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Table 3.4. The number of E. globulus families represented by measurements for each trait at each trial site 

Site htl ht2 dbh2 dbh3 dbh4 dbh6 pilo6 bark6 buds3 Total 

Boyer 20 20 20 20 20 20 13 13 20 20 

Flynn (Vic) 114 114 114 114 114 114 114 114 

Franklin 76 76 76 76 76 76 23 23 76 76 

Mansfield (Vic) 56 56 56 9 9 57 

Parkham 139 139 139 139 139 139 139 139 139 139 

Ridgley 173 173 173 173 173 173 173 173 173 173 

West. Aust 98 98 98 98 98 98 98 98 

All sites 177 177 177 177 177 177 177 177 177 177 
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Individual tree measurements were excluded from the analysis to remove 

environmental effects where there were obvious mistakes made in recording 

of observations, where trees were severely damaged and generally if trees 

were fillers in the trial layout. 

It can be seen from Table 3.3 that measurements for each trait were not 

always made at every site. Three traits were measured on virtually all trees 

at all sites: htl, ht2 and dbh6. Dbh2 was measured on all trees at six sites, 

dbh3 was measured on all trees at four sites and dbh4 was measured on all 

trees at five sites (Table 3.3). Pilodyn penetration and bark thickness were 

measured at all sites but generally only on a subset of individuals (except 

WA where all trees were measured). The subsets measured for Pilodyn 

penetration and bark thickness always included each plot of family G1025 

trees and at least the plots either side of each G1025plot. Early flowering 

(buds3) was assessed for all trees at five sites (Tables 3.3 and 3.4). 

To remove site effects, the unadjusted quantitative measurements were 

standardised separately for each site using the SAS procedure Proc Standard 

(SAS Institute 1989). This set the mean value for each trait at each site to 

zero and the standard deviation to one. For each trait the standardisation 

was carried out considering all available measurements (all trees in all 

families measured) at each site (Table 3.3). The standardisation removed 

between site differences in the trait data and gave equivalent variances to 

the data from each site. 
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The model for deriving the standardised site residuals can be defined as 

follows: 

Model for site residuals 

trait = site + standardised residual (p. = 0, a = 1) 

After removing the effect of site, the standardised residuals, hereafter 

termed site residuals, were used for QTL analysis and as the input for the 

estimation of the plot residuals. The estimation of the plot residuals was 

carried out on the full set of measurements from all families according to 

the following model (based on Hodge et al. 1996): 

Model for plot residuals 

trait = + site + replicate + incomplete block + female + male + family + 
plot + residual 

random effects: incomplete block, female, male, family, plot, residual 

fixed effects: site, replicate 

After the removal of the random effects of incomplete block, female, male, 

family and plot and the fixed effects of site and replicate, the residuals, 

hereafter termed the plot residuals, were used for QTL analysis. The 

estimation and removal of effects was carried out using the program 

ASREML, which uses an average information restricted maximum 

likelihood algorithm for variance component estimation (Gilmour et al. 

1995). ASREML generated frequency histograms of the residuals, enabling 

any major departures from a normal distribution to be identified. As part of 

the model checking procedures ASREML also produced a plot of residuals 
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versus fitted values that were scrutinised to check for any trends in the data 

sets. Output from ASREML included estimates of variance components for 

random effects with associated standard error. The probability of each 

variance component being a chance deviation from zero was tested using a 

z-test where z = component/SE. 

Preceding QTL analysis, each of the twelve traits analysed, from both 

datasets were checked for departure from normality by using the 'show 

trait' command of MAPMAKER/QTL (Patterson et al. 1988; Lincoln etal. 

1992). Output from this command includes the plotting of a frequency 

histogram and calculations for skewness and kurtosis of the frequency 

distribution. For G1025 trees, Pearson Correlation coefficients were 

calculated for each combination of the nine measured traits, along with 

probabilities for each coefficient using the SAS procedure PROC CORR. 

The correlations were carried out between traits for the site residuals and 

plot residuals separately and between respective traits from the two datasets. 

3.2.5 QTL detection 

Single marker analysis for association between a trait and a marker locus 

was performed using the PROC ANOVA procedure in SAS. The following 

model was used in the analysis: 

trait = marker genotype + residual 
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All markers and both site residuals and plot residuals for all nine measured 

traits were used in this analysis. In total there were 192 markers inherited 

from the male parent (G164) and 167 markers inherited from the female 

parent (KI2) that were tested for association using single marker analysis. 

These markers included all RAPD and microsatellite markers segregating in 

an approximate 1:1 ratio and included 30 unlinked markers (15 from each 

parent). In addition the trait of early flowering (buds3 — plot residuals) was 

tested for association with each marker using the non-parametric Wilcoxon 

Rank sum test (Wilcoxon 2-Sample Test - Normal Approximation) with the 

SAS procedure NPAR1WAY. 

Markers that formed the framework of both parental linkage maps (Chapter 

2 of this thesis) were used for QTL detection analysis by interval mapping, 

using the programs MAPMAKER/QTL Version 1.1 (Patterson et al. 1988; 

Lincoln et al. 1993) and QTL Cartographer Version 1.13g (Basten et al. 

1997). The two parental genomes were included as a single entity for QTL 

detection purposes and interval mapping consisted of scanning a total of 

1714cM over the two genomes of 24 linkage groups and 198 framework 

markers bracketing 141 intervals. QTL positions were identified in 

MAPMAKER/QTL using the 'show peaks' command with a LOD score 

threshold of 2.0 and a falloff of minus 1.0 (Verhaegen etal. 1997; Lerceteau 

etal. 2001). For the nine measured traits the QTL Cartographer programs 

Zmap and Eqtl were used to confirm QTL detection carried out in 

MAPMAKER/QTL, and to carry out permutations to establish experiment-

wise threshold significance levels using 1,000 (or 5,000) permutations of 

the data set (Churchill and Doerge 1994). 
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For QTL that had LOD scores greater than 2.0, QTL positions were fixed 

(defining the QTL position using the MAPMAKER/QTL 'sequence' 

command) and the linkage group harbouring the QTL was scanned to 

determine if there were any F.Taks discernible that might indicate the 

presence of two QTL rather than the single detected QTL. With the detected 

QTL fixed, the estimated proportion of the variance explained by the QTL 

is excluded in the scan. Scans of all intervals were also carried out with the 

QTL position fixed, since this increases the possibility of detecting further 

QTL. 

Where there were two or more QTL detected for a trait, both QTL were 

included in a model to determine if there was epistatic interaction. The two 

QTL positions were defined by the 'sequence' command, and the LOD 

scores for the combined model determined using the 'map' command. 

There is evidence for epistatic interaction if the combined LOD score is 

appreciably larger than the LOD scores added when the QTL were detected 

separately (Lincoln et al. 1993). 

3.2.6 Detection of QTL by site interaction 

Conventional QTL detection depends on the segregation of a marker allele 

with trait values above (or below) the average trait value. However across a 

number of environments, QTL with strong environmental interaction may 

not be detected using this method. The identification of marker genotype 

(QTL) by site (environment) interaction may give an indication of the 

presence of undetected site interactive QTL. Conversely, conventionally 

detected QTL can be tested for interaction with the environment. To detect 
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marker (genotype or class) by site interaction, an analysis of variance was 

carried out for each marker according to the following model: 

trait = marker genotype + (marker genotype x site) + residual 

This analysis was carried out using the SAS GLM (General Linear Models) 

procedure for each marker, for all nine measured traits, using plot residuals. 

Probabilities were calculated from F tests, to determine the significance of 

the fixed effects of marker genotype and the fixed effects of marker 

genotype x site. 

3.2.7 Temporal stability of QTL for growth 

Intervals that had been identified as harbouring cumulative growth QTL 

were subjected to analyses to determine QTL stability with age. The initial 

genome scans carried out for each growth trait included all trees measured 

at each age. LOD score peaks and associated variances were recorded for 

these QTL interval/trait combinations. However, to compare these QTL 

intervals across the same environments/sample populations, analyses were 

carried out using only those trees measured in common between ages under 

comparison. These analyses enabled QTL effects to be compared between 

ages, without the confounding effects of any QTL by environment 

interaction or additional sampling effects. 
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3.3 RESULTS 

3.3.1 Quantitative trait values for family G1025 

Trees in the family G1025 were measured for each of the traits at the sites 

listed in Table 3.2. The average trait values (unstandardised) at each site for 

the G1025 Family are presented in Fig. 3.1(a-i) for each trait. The sites are 

arranged in order from the lowest to the highest average for the trait, for all 

trees measured at a site (including family G1025). Generally the trend in 

performance of the G1025 family across sites agrees with the overall trend 

found when all families are considered. 
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(a)average height year 1 (htl) 

	

Mans. 	Franklin Flynn Vic. Parkham Boyer 	West 
	

West. 

	

Vic. 	 Ridgley 	Aust. 

(b)average height year 2 (ht2) 
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Mans. Vic. Franklin 	Boyer 	Parkham Flynn Vic. 	West 
	

West. 

	

Ridgley 	Aust. 

Fig. 3.1. (a-i). Trait means at each site for family G1025. Means are for 

unadjusted trait measurements of all nine measured traits. Error bars are one unit 

of standard deviation in length. For years one and two, the West. Aust. Site was 

measured approx. six months later than the measurements at the other sites 
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Fig. 3.1. cont. 
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To determine if the apparent differences in trait mean values between sites 

were significant, an analysis of variance was conducted for each trait for 

Family G1025 using unstandardised data. Site means were found to be 

highly significantly different from one another for all eight of the traits that 

were continuous variables (Table 3.5.). 

Table 3.5.. Significance of differences between site means for each 

trait. 

Trait p-value a  

htl 8.5 x 10-26  

ht2 1.3 x 10 -59  

dbh2 1.2 x 10 -34  
dbh3 4.7 x 10- 11  

dbh4 1 .2 x 10 -14  

dbh6 1.5 x 10 -15  

bark6 2.0 x 1 0-15  

pilo6 2.8 x 10-10  

a  From a one-way analysis of variance F 
test (ANOVA) (F = between site mean 
sq./error mean sq.) 

Chapter Three 	 73 



3.3.2 Analysis to remove environmental effects from trait 

values 

The plot residuals generated from standardised measurements of all 177 

families were found to approximate a normal distribution for all traits. No 

trend between residuals and fitted values was found for any of the traits. 

Variance estimates for the components identified in the model for plot 

residuals, are presented in Table 3.6 for the six growth traits and in Table 

3.7 for the three non-growth traits. For the growth traits the variance 

components 'incomplete block', 'family', 'plot' and the residual were 

significantly different from zero in all cases (P <0.001). The components 

'male' and 'female' were significant at the 0.05 level, except in two 

instances. Most of the variance was partitioned into the residual, the 

proportion of which increased with age of the trees from 67% for htl to 

80% for dbh4 and dbh6. 

For the non-growth traits four effects are significantly different from zero 

for all three traits (P <0.001), 'incomplete block', 'male', 'plot' and the 

residual. The family effect was small for the non-growth traits, but 

comparable in size to the male effect for the growth traits. Again the 

residual makes up most of the total variance with 63% for Pilodyn 

penetration to 81% for early flowering (buds3). 
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Table 3.6. Variance estimates for components of growth traits a . 

Trait Sourcea  Count Variance S.E. o2/ p-value" Sig. e  

htl 

ht2 

dbh2 

dbh3 

dbh4 

dbh6 

inc. block 
female 
male 
family 
plot (familyiblk) 
residual 

inc. block 
female 
male 
family 
plot (family*iblk) 
residual 

inc. block 
female 
male 
family 
plot (family*iblk) 
residual 

inc. block 
female 
male 
family 
plot (family*iblk) 
residual 

inc. block 
female 
male 
family 
plot (family*iblk) 
residual 

inc. block 
female 
male 
family 
plot (family*iblk) 
residual 

315 
8 

26 
177 

3041 
12200 

313 
8 

26 
177 

2999 
12012 

273 
8 

26 
177 

2864 
11682 

152 
8 

26 
176 

1772 
7572 

196 
8 

26 
177 

2149 
9431 

313 
8 

26 
177 

2987 
11401 

0.1156 
0.0324 
0.0108 
0.0270 
0.1271 
0.6300 

0.0953 
0.0083 
0.0094 
0.0249 
0.1228 
0.6104 

0.0917 
0.0384 
0.0045 
0.0279 
0.1027 
0.6322 

0.0846 
0.0349 
0.0101 
0.0400 
0.0815 
0.6996 

0.0526 
0.0416 
0.0138 
0.0245 
0.0639 
0.7715 

0.0279 
0.0600 
0.0165 
0.0151 
0.0738 
0.7544 

0.0130 
0.0187 
0.0052 
0.0059 
0.0084 
0.0093 

0.0110 
0.0058 
0.0047 
0.0057 
0.0081 
0.0090 

0.0108 
0.0218 
0.0035 
0.0060 
0.0077 
0.0094 

0.0131 
0.0204 
0.0060 
0.0086 
0.0096 
0.0129 

0.0082 
0.0236 
0.0062 
0.0059 
0.0085 
0.0127 

0.0050 
0.0332 
0.0064 
0.0044 
0.0081 
0.0115 

0.12 
0.03 
0.01 
0.03 
0.13 
0.67 

0.11 
0.01 
0.01 
0.03 
0.14 
0.70 

0.10 
0.04 
0.01 
0.03 
0.11 
0.70 

0.09 
0.04 
0.01 
0.04 
0.09 
0.74 

0.05 
0.04 
0.01 
0.03 
0.07 
0.80 

0.03 
0.06 
0.02 
0.02 
0.08 
0.80 

0 
0.042 
0.019 

0 
0 
0 

0 
0.076 
0.023 

0 
0 
0 

0 
0.039 
0.095 

0 
0 
0 

0 
0.044 
0.046 

0 
0 
0 

0 
0.039 
0.012 

0 
0 
0 

0 
0.035 
0.005 

0 
0 
0 

* * * 

*** 
*** 
*** 

* * * 
n.s. 

*** 
*** 
*** 

*** 
* 
n.s. 
*** 
*** 
*** 

*** 
* 
* 
*** 
*** 
*** 

*** 

*** 
*** 
*** 

*** 

** 
*** 
*** 
*** 

a These components are identified in the site residuals in the model for the plot 
residuals: 
trait = + site + rep + incomplete block + female -F male + family + plot + plot 
residual 
Random effects: incomplete block (iblk), female, male, family, plot, residual 
b  The variance of the component as a proportion of the total variance. 
The p-value is the prob. that the variance is a chance deviation from zero 

(ie. 110 : a2  = 0). 
d  p-values of zero are <0.001. 
e Significance levels are: * = 0.05, ** = 0.01 and *** = 0.001. 
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Table 3.7. Variance estimates for components of non-growth traits a . 

Trait Sourcea  Count Variance S.E. 02/ 027-b  p-valued  Sig. e  

bark6 inc. block 244 0.0485 0.0077 0.05 0 * * * 
female 8 0.0499 0.0276 0.05 0.035 
male 26 0.0734 0.0217 0.08 0 *** 
family 177 0.0065 0.0037 0.01 0.038 
plot (familyiblk) 2437 0.0454 0.0107 0.05 0 *** 
residual 6961 0.7265 0.0152 0.76 0 *** 

p1106 inc. block 244 0.0891 0.0113 0.10 0 *** 
female 8 0.1088 0.0591 0.12 0.033 * 
male 26 0.0708 0.0207 0.08 0 *** 
family 177 0.0061 0.0034 0.01 0.035 * 
plot (family*iblk) 2437 0.0639 0.0092 0.07 0 *** 
residual 6961 0.5884 0.0122 0.63 0 *** 

buds3 inc. block 229 0.0253 0.0054 0.03 0 * * * 
female 8 0.0065 0.0047 0.01 0.082 n.s. 
male 26 0.0742 0.0219 0.08 0 *** 
family 177 0.0149 0.0047 0.02 0 *** 
plot (family*iblk) 2406 0.0684 0.0093 0.07 0 *** 
residual 9246 0.7893 0.0134 0.81 0 *** 

a, b, c, d, e. See Table 3.6. 
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Summary statistics based on both site residuals and plot residuals for each 

of the twelve traits for family G1025 are presented in Table 3.8. Here the 

G1025 family trait means can be compared to the overall mean values, 

which for each data set are close to zero with a standard deviation close to 

1.0. From the site residuals, where parental and family effects have not been 

removed, the performance of family G1025 can be compared to the 

performance of trees in all families. For the growth traits, it can be seen that 

the mean value for family G1025 is above the overall mean of zero in each 

case and that this increases with age. For diameter at breast height at year 6 

(dbh6) the mean for family G1025 is 0.5 std. deviations above the overall 

mean with a standard deviation that is almost as large as the overall 

standard deviation of 1.0. Thus family G1025 has a growth performance 

that is considerably above average with a variance that is reasonably large. 

Bark thickness on the other hand is considerably lower than average by 

almost 0.5 standard deviations. Pilodyn penetration is above average by 

about one quarter of a standard deviation with variance within the family 

equivalent to that overall (a 2  = 1.0). Early flowering (buds3) is also above 

average by about 1/5 of a standard deviation with variance within the family 

larger than overall. 

It can be noted that once the parental, family, block and plot effects are 

removed (plot residuals) the mean values for family G1025, as would be 

expected, are much closer to the overall mean of zero with smaller standard 

deviations. 
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Table 3.8. Descriptive statistics of the twelve traits used in QTL 

analyses for family G1025. 

Traita No. Obs. Mean Std. Dev. Minimum Maximum 

site residuals 

ht1 131 0.11 0.90 -2.38 1.98 

ht2 131 0.16 0.89 -2.12 2.21 

dbh2 121 0.23 0.86 -2.12 2.04 

dbh3 84 0.36 0.87 -1.84 2.71 

dbh4 92 0.40 0.88 -2.60 2.44 

dbh6 155 0.50 0.94 -2.82 3.00 

bark6 152 -0.46 0.97 -2.57 5.35 

pilo6 152 0.24 1.00 -2.09 4.31 

buds3 105 0.20 1.14 -0.96 6.26 

ht2-1 131 0.04 0.63 -1.91 1.60 

dbh4-2 90 0.25 0.45 -0.79 1.42 

dbh6-4 

plot 

92 

residuals 

0.25 0.45 -0.79 1.42 

ht1 131 0.06 0.66 -1.49 1.26 
ht2 131 0.05 0.59 -1.56 1.29 
dbh2 121 0.04 0.62 -1.78 1.50 
dbh3 84 0.04 0.65 -1.70 1.66 
dbh4 92 0.07 0.70 -2.31 1.60 
dbh6 155 0.04 0.77 -2.62 1.83 
bark6 152 0.00 0.91 -1.92 5.55 
p1106 152 0.01 0.85 -1.89 4.07 
buds3 105 -0.04 1.03 -1.32 5.68 
ht2-1 131 0.00 0.54 -1.82 1.22 
dbh4-2 90 0.06 0.39 -0.88 1.00 
dbh6-4 92 0.02 0.31 -0.81 0.69 

a Traits are: ht 1 - height at year 1, ht2 - height at year 2, dbh2 - diameter at breast 
height year 2, dbh3 - dbh yr 3, dbh4 - dbh yr4, dbh6 - dbh yr 6, bark6 - relative 
bark thickness yr 6, pilo6 - Pilodyn penetration yr 6, buds3 - bud abundance year 3, 
ht2-1 - relative incremental growth for height between years 1 and 2, dbh4-2 - rig 
for diameter at breast height between years 2 and 4, dbh6-4 - rig for dbh between 
years 6 and 4. 
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The similarity between the site residuals and plot residuals is illustrated by 

the high correlation values presented in Table 3.9. The Pearson correlation 

coefficients and associated probabilities for correlations between the nine 

measured traits are presented in Table 3.10 (for the site residuals) and Table 

3.11 (plot residuals). 

Table 3.9. Correlation between standarised site residuals and plot 

residuals for each trait'. 

htl 	ht2 	dbh2 	dbh3 	dbh4 	dbh6 	bark6 	pilo6 buds3 

0.81 	0.76 	0.81 	0.86 	0.91 	0.93 	0.97 	0.92 	0.97 

'Pearson correlation coefficients calculated using SAS Proc CORR. Each 
correlation is significant at an individual 0.0001 level. Traits as per Table 3.8. 
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Table 3.10. Correlations between Site residual trait values used in QTL 

detection analysis "• 

buds3 pilo6 bark6 dbh6 dbh4 dbh3 dbh2 ht2 
hti 0.171 0.012 -0.097 0.599 0.703 0.763 0.837 0.755 

n.s. n.s. n.s. 0.0001 0.0001 0.0001 0.0001 0.0001 
105 128 128 131 92 84 121 131 

ht2 0.306 -0.019 -0.136 0.651 0.720 0.841 0.847 
0.0015 n.s. n.s. 0.0001 0.0001 0.0001 0.0001 

105 128 128 131 92 84 121 
dbh2 0.323 0.002 -0.080 0.775 0.865 0.935 

0.0008 n.s. n.s. 0.0001 0.0001 0.0001 
105 121 121 121 90 82 

dbh3 0.336 -0.049 -0.095 0.823 0.945 
0.0018 n.s. n.s. 0.0001 0.0001 

84 82 82 84 74 
dbh4 0.387 -0.039 -0.086 0.930 

0.0007 n.s. n.s. 0.0001 
74 90 90 92 

dbh6 0.401 -0.033 -0.091 
0.0001 n.s. n.s. 

105 152 152 
bark6 -0.044 0.033 

n.s. n.s. 
103 152 

p1106 -0.157 
n.s. 
103 

a  At the top of each cell is the Pearson correlation coefficient followed by the p-
value for Prob > IN under H o: rho = 0 and lastly the number of observations on 
which the calculations are based. 
b  Correlations in bold are significant at an overall level of 0.05 adjusting for 36 
tests (Bonferroni correction) (ie. an individual level of < 1.4 x 10 -3). 

Chapter Three 	 80 



Table 3.11. Correlations between plot residual trait values used in QTL 

detection analysis a '
b 

. 

buds3 p1106 bark6 dbh6 dbh4 dbh3 dbh2 ht2 

htl 0.139 0.044 -0.079 0.546 0.655 0.714 0.826 0.632 
n.s. n.s. n.s. 0.0001 0.0001 0.0001 0.0001 0.0001 
105 128 128 131 92 84 121 131 

ht2 0.258 0.017 -0.140 0.644 0.706 0.782 0.757 
0.0079 n.s. n.s. 0.0001 0.0001 0.0001 0.0001 

105 128 128 131 92 84 121 

dbh2 0.226 0.044 -0.082 0.744 0.841 0.915 
0.0207 n.s. n.s. 0.0001 0.0001 0.0001 

105 121 121 121 90 82 

dbh3 0.226 0.021 -0.137 0.820 0.941 
0.039 n.s. n.s. 0.0001 0.0001 

84 82 82 84 74 
dbh4 0.298 0.092 -0.080 0.921 

0.0099 n.s. n.s. 0.0001 
74 90 90 92 

dbh6 0.321 0.050 -0.121 
0.0009 n.s. n.s. 

105 152 152 

bark6 -0.056 0.045 
n.s. n.s. 
103 152 

p11o6 -0.138 
n.s. 
103 

a  At the top of each cell is the Pearson correlation coefficient followed by the p-
value for Prob > IRI under Ho : rho = 0 and lastly the number of observations on 
which the calculations are based. 
b  Correlations in bold are significant at an overall level of 0.05 adjusting for 36 
tests (Bonferroni correction) (ie. an individual level of < 1.4 x 10 -3). 

For the plot residuals, highly significant positive correlations were found 

between all six of the traits for growth (Table 3.11). No significant 

correlations were found involving the traits of bark thickness (bark6) and 

Pilodyn penetration (pilo6). The positive correlation found between early 

flowering (buds3) and growth was significant at an individual test level of 

0.05 for all but the first growth measurement (htl), although only the 
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correlation with growth at year six (dbh6) was significant at an overall 0.05 

level. 

For the site residuals, the significance of correlations is almost identical to 

those for the plot residuals (Tables 3.10 and 3.11). The site residuals for the 

growth traits are correlated with one another with highly significant p-

values, as is the case with the plot residuals. There are significant 

correlations between early flowering and three of the growth traits (dbh2, 

dbh4 and dbh6) at an overall 0.05 level with the site residuals whereas with 

the plot residuals the only significant correlation was with dbh6. All the 

significant correlations between traits using the site residuals have a larger 

value for the Pearson correlation coefficient than the corresponding 

correlations with the plot residuals (Tables 3.10 and 3.11). 

For family G1025 both the site residuals and the plot residuals were found 

to approximate a normal distribution when a frequency histogram and 

descriptive statistics were generated as part of the 'show trait' command of 

MAPMAKER/QTL. Frequency histograms using the plot residuals for 

family G1025 for each of the nine traits are presented in Fig. 3.2. 
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3.3.3 QTL detection 

Based on the MAPMAKER/QTL analysis, map intervals that harboured 

LOD score peaks above 2.0, with either site residuals or plot residuals, are 

listed in Table 3.12 (site residuals) and Table 3.13 (plot residuals). Seven 

putative (LOD > 2.0) QTL were detected using the site residuals (Table 

3.12), whereas eight QTL were detected using the plot residuals (Table 

3.13). For seven of these eight QTL, the LOD score was larger when the 

plot residuals were used in the analysis, compared with the site residuals. 

This is expected, since the removal of environmental noise should increase 

the proportion of variance explained by genuine QTL. 

Six intervals on six linkage groups contain putative QTL for growth traits. 

There are three QTLs for the non-growth traits, each on a separate linkage 

group (M4, M11, F6). If the results from the plot residuals only are 

considered, eight QTL have been detected in this study, five for growth 

(two for stem diameter and three for rig of stem diameter), two for Pilodyn 

penetration and one for bud abundance. These eight QTL correspond to 

seven genomic locations. 

Only two linkage groups have QTL for more than one trait. There are QTL 

on F3 for both height increment (ht2-1) and for dbh6 (Table 3.12). However 

since they are approx 44cM apart, they are likely to be unrelated. The QTL 

on Mll for relative incremental growth (dbh4-2) is however, in the same 

interval as a QTL for Pilodyn penetration (pilo6 on M11, Table 3.13). 

Chapter Three 	 89 



Table 3.12. List of putative QTLs for family G1025 based on analyses 

carried out with site residuals'. QTLs that have a LOD score peak > 2.0 

for analyses using either site residuals or plot residuals are listed 

parent/ 
linkage 
group 

trait flanking 
framework 
markers 

LOD score 
peak 

Variance 
explained 

(%) 

M2b  dbh3 246-4/266-6 1.53 8.1 

M4 buds3 42-1/131-2 2.50 10.5 

M7 dbh6-4 EMCRC7/806-2 1.53 9.6 

M10 dbh6-4 218-1/B07-1 2.44 12.8 

M11 dbh4-2 232-8/249-1 2.07 9.9 

M11 pilo6 232-8/249-1 1.78 5.3 

F3 ht2-1 273-3/215-5 2.30 8.2 

F3 dbh6 217-2/234-4 2.78 8.7 

F6 pilo6 212-4/238-6 2.59 8.0 

a for an explanation of site residuals and plot residuals see section 3.2.4. 
b QTLs in italics have LOD scores less than 2.0. 

Table 3.13. List of putative QTLs for family G1025 based on analyses 

carried out with plot residuals'. QTLs that have a LOD score peak > 2.0 
for analyses using either site residuals or plot residuals are listed 

parent/ 
linkage 
group 

trait flanking 
framework 
markers 

LOD score 
peak 

Variance 
explained 

(%) 

M2 dbh3 246-4/266-6 2.02 10.5 

M4 buds3 42-1/131-2 2.38 10.0 

M7 dbh6-4 EMCRC7/B06-2 2.17 13.7 

M10 dbh6-4 218-1/B07-1 3.02 15.7 

M11 dbh4-2 232-8/249-1 3.94 17.9 

M11 pilo6 232-8/249-1 2.29 6.7 

F3b  ht2-1 EMCRC4/273-3 1.03 3.5 

F3 dbh6 81-1/217-3 2.82 8.0 

F6 pilo6 212-4/238-6 4.39 13.3 

a' b  see Table 3. 
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Details of the eight putative QTL detected using the plot residuals are found 

in Table 3.14. There are two QTLs for stem diameter one each at age 3 

years (dbh3) and at age 6 yrs (dbh6), three QTLs for relative incremental 

growth of stem diameter, two for Pilodyn penetration at age 6 yrs (pilo6/1 

and pilo6/1) and one for bud abundance at age 3 yrs (buds3) (Table 3.14). 

Of these eight QTLs two are inherited from the female parent and six from 

the male parent. 

Based on permutations of the trait data, three QTLs have an experiment-

wise statistical significance at the generally accepted 0.05 level with two 

significant at the 0.01 level. Also there are three QTL that have experiment-

wise significance at the 0.1 level. 

A selection of LOD score plots from MAPMAKER/QTL scans is presented 

in Figures 3.3 to 3.8. These illustrate the occurrence of the LOD score peaks 

corresponding to estimated QTL effects for the traits and linkage groups 

indicated. By including the effect of a detected QTL in the genetic model 

used in the analysis and then scanning, it was possible to see if there was 

evidence for a second QTL elsewhere on a linkage group and also to 

increase the power to detect further QTL of smaller effect elsewhere in the 

genome. 
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Table 3.14. Details of QTL (LOD 	2.0) detected in the E. globulus full-sib family G1025. 
Trait/ 

QTL 

Parent/ 

linkage 

group 

Framework 

markers 

flanking QTL 

Dist. peak 

from L.H. 

marker (cM) 

LOD 

score 

peak' 

Variance 

explained 

(%) 

p value from 

single marker 

analysis b  

Sample 

size (n) 

Marker 

effect 

/-I SD 

Marker 

effect 

% 52  d 

exp.-wise 

significance 

level 

dbh3 M2 246-4/266-6 15 2.0 10.5 2.3 x 10 -3  84 +0.32 10.5 0.3e  

dbh6 F3 81-1/217-3 0 2.8 8.0 3.6 x 104  155 -0.28 8.0 0.1 e  

dbh4-2 M11 232-8/249-1 6 3.9 17.9 4.0 x 104  90 +0.42 17.8 0.005e  

dbh6-4 M7 B06-2/EMCRC7 25 2.2 13.7 1.8x 10 -3  62 0.39 14.9 0.25e  

dbh6-4 M10 218-1/B07-1 2 3.0 15.7 2.8 x 104  91 +0.38 14.2 0.05e  

pilo6/1 F6 212-4/238-6 4 4.4 13.8 9.2 x 10-6  151 -0.32 10.5 0.002 f  

pilo6/2 M11 232-8/249-1 6 2.3 6.7 8.9 x 104  152 +0.26 ' 6.8 0.1 e  

buds3 M4 42-1/131-2 10 2.4 10.0 8.6 x 104  104 +0.32 10.4 0.1 e  

a  LOD scores and variance estimates are from analyses with the plot residuals using MAPMAKER/QTL. QTL effects at other loci were not 
included in the models for these estimates. 

b  The p-value was obtained from ANOVA (t-test) for the marker nearest to the QTL. 
The estimated difference in units of standard deviation between a population selected for a single marker nearest the QTL and the unselected population. 
The percentage of the phenotypic variance attributable to marker genotype for a single marker nearest the QTL. Calculated as the square of half of the 
difference between marker genotype means as a percentage of the total variance. 

e ' f  Based on empirical estimates of experiment-wise significance from QTL analysis of either 1,000` or 5,000 f  permutations of the trait data (Churchill and 
Doerge 1994) using QTL Cartographer. 
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For stem diameter at year 3 (dbh3, plot residuals) a scan of M2 (linkage Group 2 

of the male parent - approx. 40cM) indicates a peak in LOD score occurs close to 

marker 266-6 (Fig. 3.3). A second peak appears to rise in the last interval of this 

group. However when the QTL position is fixed at marker 266-6 the scan is 

almost flat (not shown) indicating that the apparent peak in the last interval can 

be accounted for by QTL effects within the first two intervals. 

LOD score 

3.0 

2.0 

1 

246-4 	 266-6 18-6 	 30-3 

Fig. 3.3. QTL for growth at year 3 (dbh3). Scan of linkage Group 2 of the male 

parent (G164) using plot residuals. 

A scan of the linkage group on which the QTL for growth at year 6 (dbh6) is 

located (F3) is presented in Fig. 3.4. In the scan, which covers approximately 

150cM, there appears to be several LOD peaks that could be due to the presence 

of other QTLs. However from a scan in which the estimated effects of a QTL at 

marker 81-1 has been taken into account (Fig. 3.5), no other QTL peaks appear to 

be present and it can be concluded that a single QTL is likely to be responsible 

for the multiple peaks. 
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Fig. 3.4. QTL for growth at year 6 (dbh6). Scan of F3 (linkage group 3 of the female parent) using plot residuals. A LOD score peak occurs at 
marker K81_1. 
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Graphs of the scans from the output of MAPMAKER/QTL for the two QTLs for 

Pilodyn penetration are presented in Fig. 3.6 (a-b). For QTL F6 (pilo6/1, Table 

3.14) the scan of the linkage group covers 37cM and there is a single QTL peak 

to the right of marker 212-4. The scan of Mll (pilo6/2, Table 3.14) covers 

approximately 6cM and since it consists of only a single interval only one peak is 

resolvable. The flatness of the scan is likely due to the closeness of the bracketing 

markers and the lack of information from outside the interval. 

The intervals containing the two QTLs for Pilodyn penetration were included 

together in a single model to determine if there was any discernible epistatic 

interaction and to increase the power to detect additional QTLs. The combined 

LOD score was only slightly larger than the sum when the QTL were analysed 

separately (Table 3.15). The estimated variance was also about the same as the 

sum of the individual variances indicating there is no epistatic interaction 

apparent between these two QTLs (Table 3.15). 

Table 3.15. QTLs 1 and 2 for Pilodyn penetration (pilo6 - plot residuals) 

analysed separately and together. a  

QTL QTL position — marker/ distance 
(cM) 

LOD score Variance explained 
(%) 

1 212-4 +4.8 4.4 13.3 

2 232-8 +4.1 2.3 6.7 

1 + 2 7.1 20.4 

a LOD score, position and variance estimated using MAPMAKER/QTL 'map' command 
after defining the two QTL intervals. 
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(a) 

LOD score 

K212-4 K238-6 
	

K4-2 
	

K37-3 

(b)  
LOD score 

G232-8 
	

G249-1 

Fig. 3.6. Graphs of QTL scans for Pilodyn penetration. (a) QTL F6. Scan 
of linkage Group 6 of the female parent using plot residuals (pilo6). (b) 
OIL M11. Scan of linkage Group 11 of the male parent using plot 
residuals (p1106). 

Chapter Three 	 97 



Where effects of the QTLs with LOD score peaks greater than 2.0 were fixed in 

later scans, no new LOD score peaks greater than 2.0 were detected. However an 

additional peak of 1.9 was found when the effects of QTLs 1 & 2 for Pilodyn 

penetration were placed in a model together. This third potential QTL was on a 

separate linkage group to QTLs 1 and 2. When the effects of the three QTLs for 

Pilodyn penetration are considered together they are estimated to explain over 

25% of the variance for this trait (plot residuals) and have a combined LOD score 

of 9.02 (Table 3.16). 

Table 3.16. QTL 3 for Pilodyn penetration on linkage group 7 of the male 

(G164) parent. 

QTL QTL position — marker + 
distance (cM) 

LOD score Variance explained 
(04 

3a 

1+ 2 + 3 b  

234-6 + 9.0 

19-1 + 0.0 

1.89 

9.02 

4.4 

25.4 

a  Individual LOD score and effect are estimates for model with QTLs 1 + 2 fixed. 
b LOD score and variance estimated using MAPMAKER/QTL 'map' command after 
defining the three QTL intervals. 

Scans of the linkage group on which QTL 3 for Pilodyn penetration occurs are 

presented in Fig. 3.7 (a-b). Fig. 3.7(a) is from an initial scan of the genome, 

which resulted in the detection of QTLs 1 and 2. Fig. 3.7(b) is from a scan where 

QTLs 1 and 2 have been placed in a model together. It can be noted that the LOD 

peak is more pronounced in Fig. 3.7(b) where the variance due to the other two 

QTLs has been removed from the total variance. 
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Fig. 3.7. LOD Score peak on M7 for pilodyn penetration (pilo6). (a) Initial scan — 

no fixed QTL effects. (b) With the effects of QTLs 1 & 2 included in the model 

(fixed). [Note: baseline is increased to LOD 7.1 in figure (b) due to inclusion of 
the two QTLs in the model]. 
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The QTL for bud abundance gave a fairly sharp peak at marker 131-2 (Fig. 3.8) 

with no other peaks on the scan of the linkage group covering 66cM. Bud 

abundance was scored on a scale from 0-6 and was thus not a continuous 

variable. The frequency histogram pertaining to bud abundance using plot 

residuals (Fig. 3.2(i)) indicated considerable deviation from a normal distribution. 

Thus statistical tests that do not assume a normal distribution were carried out to 

detect any marker/trait associations. For all 359 markers tested the most extreme 

p-value using the Wilcoxon rank sum test (P = 1.1 x 10 4) was for marker 131-2 

on M4 (linkage group 4 of the male parent) using plot residuals (Table 3.17). This 

is the same marker identified from interval mapping as occurring at the QTL for 

bud abundance. In the ANOVA for association between individual markers and 

bud abundance, marker 131-2 also gave the smallest p-value (P = 8.6 x 10 4). The 

results of the Wilcoxon rank sum test for the trait of early flowering are presented 

in Table 3.17 for the two datasets. 

Table 3.17. Nonparametric test of the association of marker 131-2 with 

early flowering.' 

site residuals 	plot residuals 

p-value 	 6.7 x 10-5 	 1.1 x 104  

a The nonparametric Wilcoxon rank sum test (normal approx.) was carried out. 
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Fig. 3.8. QTL for early flowering (buds3). Scan of M4 using plot residuals. 
There is a LOD score peak of 2.4 at marker 131-2. 
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3.3.4 Markers (QTL) with site interaction 

From the nine traits by 359 markers tested (approximately 3,200 tests), a total of 

53 marker/trait combinations were found to have significant marker genotype by 

site interaction at the 0.01 level (Table 3.18). However none of these 53 

marker/trait combinations that had significant site interaction were significant at 

the 0.01 level for the effect of marker genotype, with only one having significant 

marker genotype effect at the 0.05 level. The number of significant associations 

for each trait is given in Table 3.18. 

Table 3.18. The number of significant interactions (P < 0.01) between 

marker genotype and site for each trait. 

Trait 

No. of significant" 

marker x site associations 

No. of 

independent" locations 

htl 0 0 

ht2 4 1 

dbh2 2 2 

dbh3 1 1 

dbh4 2 2 
dbh6 34 9 

pilo6 0 0 

bark6 6 4 

buds3 4 3 

All traits 53 23 

a  Based on ANOVA F tests with the plot residuals using the model: trait = mlcr class + 
(mkr class x site) + residual 

b  Independent in this case means unlinked. Markers significant at 0.01 that are in linkage 

are counted as one. 
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There were approximately 3,200 tests undertaken for marker genotype by site 

interaction. From this number of tests, assuming independence, 32 significant 

associations would be expected at the 0.01 level due to chance. Thus with 53 

significant associations there would appear to be an excess requiring an 

explanation other than chance. It should be noted however, that the assumption of 

independent tests is violated due to linkage between markers. However if those 

markers with significant interaction that are in linkage, are counted as 

representing one independently segregating location, there are 23 significant 

marker genotype by site interactions at the 0.01 level for the nine traits (Table 

3.18). 

To calculate the expected number of significant associations, the reasoning used 

in chapter 2 of this thesis, where segregation distortion of markers was 

considered, has been adopted. In chapter 2 the genome of the two parents was 

calculated to cover 50 independently segregating locations and there are in 

addition 30 unlinked markers. On this basis, there are 80 independently 

segregating locations included in the testing of marker genotype by site 

interaction with nine traits (720 independent tests). For significance at the 0.01 

level, seven significant associations are expected to be due to chance. Thus with 

23 independent significant associations, it would appear likely that factors other 

than chance are causing the marker genotype by site interaction. 

It is notable from Table 3.18 that there are no significant marker by site 

associations for the trait of Pilodyn penetration, whereas for example there are 

nine for growth at age 6 years (dbh6). 
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The nine markers with significant (p <0.01) marker x site associations for 

diameter at year six are listed in Table 3.19. Among this group of markers is 

marker 266-6, which was estimated to be located at the QTL on M2 for diameter 

at age three years (dbh3) (Table 3.14). Clearly there is a significant marker 

genotype by site interaction for this marker when considered across all seven sites 

at year six (P = 0.0037), however marker 266-6 did not have significant marker 

genotype by site interaction at year three when only the four Tasmanian sites 

were measured. It is also to be noted that marker 266-6 had significant marker 

genotype effects for stem diameter at year three (Table 3.14), but not at year six 

(Table 3.19). 

Table 3.19. Markers with significant (p < 0.01) marker genotype by site 

interaction for growth at year six (dbh6). 

linkage group/ 
marker 

no. progeny 
scored 

p-value for 
marker 

genotype 

p-value for mkr 
class x site 

M6 20-7 153 0.87 0.0011 
F8 CSIRO 03 153 0.12 0.0014 
M3 256-1 152 0.78 0.0035 
M2 266-6 155 0.33 0.0037 
M7 °  71 0.82 0.0041 
F4215-2 154 0.89 0.0044 
F7218-2 153 0.15 0.0076 
M12 a  85 0.72 0.0081 
M9493-1 150 0.82 0.0087 

a  These markers were dropped during the ordering process and do not appear on the 

linkage map. 
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3.3.5 Markers with significant QTL effects and marker 

genotype by site interaction 

Markers that were found to have a significant marker genotype (QTL) effect (the 

first effect specified in the model used to detect site interaction) were examined 

for significant marker genotype by site interaction. From the 3,200 tests carried 

out there were 51 marker trait associations that were found to be significant at the 

0.01 level. Among these 51 markers, a group of eight (mapping to five positions) 

were found to be significant at the 0.05 level for marker genotype by site 

interaction. All eight markers were from linkage group three of the female parent 

(F3). Six of these eight markers were framework markers that had associations 

with dbh6. The framework markers 81-1, 266-5 and 237-1, which map to the 

same position on F3, had the most significant marker genotype effect as well as 

the most significant marker by site interaction amongst this group of eight 

markers (Table 3.20). These three markers, represented by marker 81-1, were 

estimated to be co-segregating with QTL F3, the QTL for growth at year 6 (dbh6) 

(Table 3.14). 

Thus the significant marker genotype by site interaction for marker 81-1 indicates 

that the F3 QTL has a strongly site dependent effect on growth. This is illustrated 

by looking at the difference between marker genotype means for marker 81-1 

(QTL F3) at each of the seven sites where measurements for growth at year 6 

(dbh6) were made (Fig. 3.9). The QTL effect is strongest at the mainland sites 

(Mansfield, Flynn and West. Aust.), with two of the Tasmanian sites producing 

neutral QTL effect (Parkham and Boyer) and the other two (Franklin and West 

Ridgley) giving small effects in the same direction as the mainland sites (Fig. 

3.9). 
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Table 3.20. Markers with significant (P < 0.01) marker genotype (QTL) 

effects that also had significant (P < 0.05) marker genotype by site 

interaction. a  

Trait 
Parent/ Link. 
group Marker 

p-value 
mkr class 

p-value mkr 
class x site 

dbh6 F3 81-1 0.00019 0.012 

F3 266-5 0.00019 0.012 

F3 237-1 0.00024 0.013 

F3 234-4 0.00158 0.014 

F3 241-3 0.00158 0.014 

F3 EMCRC4 0.00739 0.013 

ht2 F3 N87 b  0.00950 0.040 

F3 N237 b  0.00953 0.047 

a  All p-values are based on an analysis using the plot residuals. Marker 81-1 is estimated 

to be 0 cM from the QTL for growth at year six (Table 3.14). 

b  These markers link to F3 but were dropped during the ordering process. 
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Parkham Boyer Franklin 	W. Ridgley 	W. Aust. 	Flynn 	Mansfield 
n, 

Fig 3.9. Difference in marker class means at each site for marker 81-1 

(QTL F3) for the trait of stem diameter at year 6 using plot residuals. 

1 A 
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3.3.6 Temporal stability of QTL for growth 

There were two cumulative growth QTL that had LOD scores greater than 2.0 

(M2 and F3, Table 3.14). Both of these QTL were examined (independently) for 

their stability with time. To avoid confounding QTL x site interaction with age 

differences, QTL analyses were carried out using trees measured in common 

between ages under comparison (see section 3.2.6). 

3.3.6.1 Temporal stability of QTL M2 for stem diameter at year 3 

To compare the size of effect of the QTL for diameter at year 3 (M2) with other 

years, analyses were carried out for the other growth traits using the 84 trees 

measured for dbh3 (Table 3.21, numbers not in parentheses). Based on these 84 

trees, for the trait of stem diameter at year 2, the M2 QTL had a LOD score (LOD 

1.9) close to the threshold value of 2.0 (Table 3.21). This level of significance 

was maintained across the four measurements of stem diameter from year two 

(dbh2), to the final measurement of diameter at year 6 (LOD range 1.8-2.0; Table 

3.21). For height at year 1, the M2 QTL was in fact more significant (LOD 2.4) 

than for diameter at later ages (Table 3.21). However for height measured a year 

later (ht2), there was a large drop in significance from LOD 2.4 to LOD 1.3. The 

effect of this QTL on incremental height between year 1 and 2 (ht2-1) was of 

opposite direction to the effect on the cumulative growth traits, that is the QTL 

represented a region that was weakly correlated with a lower mean height 

increment. This combined with the larger LOD for dbh2 than ht2 (Table 3.21) 

and the greater correlation between htl and dbh2 than between htl and ht2 (Table 

3.11 section 3.3.2), suggests that trees that were taller at year 1 invested more in 
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diameter growth than height growth in the following year, compared with shorter 

trees. 

Table 3.21. Stability with age for QTL M2 for growth (dbh3). 

Trait LOD scorea  Variance 
explained (%) 

Sample 
size 

htl 2.4 (1.1) 12.6 (3.8) 84 (131) 

ht2 1.3 ( 0.0) 6.7 (0.3) 84 (131) 

dbh2 1.9 (0.7) 9.9 (2.7) 82 (121) 

dbh3 2.0 (2.0) 10.5 (10.5) 84 	(84) 
dbh4 1.9 (0.6) 11.2 (2.9) 74 	(92) 

dbh6 1.8 (0.2) 9.2 (0.6) 84 (155) 
ht2-1 0.5 (1.0) 2.7 (3.5) 84 (131) 
dbh4-2 0.3 (0.0) 1.7 (0.0) 72 	(90) 
dbh6-4 0.0 (0.0) 0.0 (0.2) 74 	(92) 

a  Numbers not in parentheses are the LOD score, variance and sample 

size for the trait based on trees measured in common with dbh3. Numbers 

in parentheses are the LOD score, variance and sample size when all trees 

measured for the trait are included in the QTL analysis. 

It is possible that the effect of M2 on diameter may result solely from its 

association with height at year 1 and have maintained significance for diameter 

growth due to this initial effect. The M2 QTL effect can be seen to be site (or 

sample) dependent since including trees from mainland sites in analyses of 

cumulative growth traits resulted in reduced QTL significance in all cases (LOD 

scores in parentheses, Table 3.21). This effect was most apparent for dbh6 where 

the LOD score decreased from 1.8, when the 84 trees measured in common with 

dbh3 were included in an analysis, to 0.2 when all 155 trees were included. 
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Using the marker estimated to be closest to QTL M2 (266-6), the marker 

genotype differences, or QTL effect, across sites and with time is illustrated in 

Fig. 3.10 (a-c) for (a) height at year 1 (ht1), (b) diameter at year 3 (dbh3) and (c) 

diameter at year six (dbh6). For QTL M2 for the four Tasmanian sites, the QTL 

effect remained relatively stable with time. This was also reflected in the stable 

LOD scores for analyses of these 84 trees (Table 3.21). The QTL effect at the 

mainland sites in Western Australia and Flynn (Vic.) was of opposite orientation 

to the Tasmanian sites but remained relatively stable with age. The instability of 

the Mansfield site is likely due to the small sample size of eight trees. 
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(a) Effect by site of QTL M2 on ht1 
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Flynn 	Mansfield 

Fig. 3.10. Effect of site and age on QTL M2 for growth. The QTL effect is 

measured here as a difference between marker class means (in standard 

deviations). This has been calculated at each site for the marker (266-6) closest 

to QTL M2, at three ages of measurement of growth (a) height year 1 (ht1), (b) 

diameter at year 3 (dbh3) and (c) diameter at year 6 (dbh6). 
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3.3.6.2 Temporal stability of QTL F3 for stem diameter at year 6 

The F3 QTL for growth, which was estimated to be located near marker 81-1, 

was most significant in year six (dbh6) when 155 G1025 trees were measured for 

stem diameter (Table 3.22). However F3 was associated with growth, albeit 

below threshold QTL levels, from the first measurements of both height (htl) and 

diameter (dbh2) (Table 3.22). As was the case with the QTL on M2, the 

association of F3 with htl and dbh2 was stronger than the association with ht2. 

These observations support the suggestion made earlier, that taller trees at year 1 

invested preferentially in diameter growth rather than height growth in the second 

year compared with shorter trees. 

Table 3.22. Stability with age for QTL F3 for growth (dbh6). 

Trait 

	

LOD score 	Variance 

	

for growth 	explained 

	

traits' 	(cMa  

Equivalent 

LOD score 

for dbh6b  

Variance 

explained 

dbh6 (%)b  

Sample 

size',  b  

htl 1.6 6.0 2.5 8.3 131 
ht2 0.7 2.6 2.5 8.3 131 
dbh2 1.6 5.9 1.9 6.9 121 
dbh3 0.36 2.1 0.44 2.5 84 
dbh4 0.7 4.0 0.9 4.3 92 
dbh6 2.8 8.0 2.8 8.0 155 
ht2-1 0.3 1.1 2.5 8.3 131 
dbh4-2 0.0 0.1 0.9 4.3 90 
dbh6-4 0.5 2.6 0.9 4.3 92 

° LOD score, variance and sample size for the trait analysed at QTL F3. 

b  LOD score, variance and sample size for the trait of stem diameter at year six 

(dbh6) at QTL F3, using only the subset of trees measured for the growth trait 

indicated. 
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The low LOD scores observed for QTL F3 when the growth traits dbh3 and dbh4 

are analysed, are however close to the scores for dbh6 when measured in the 

same set of trees (Table 3.22). This indicates that the low LODs for these traits 

are mostly due to the sites/trees measured at years 3 and 4 rather than an age 

effect (Table 3.22). However for each trait, the LOD score is larger when the data 

from dbh6 are analysed for the same set of trees indicating that the influence of 

the growth QTL became stronger with time. 

The early association of QTL F3 with growth is illustrated by the QTL scans of 

the linkage group for the traits of htl and dbh2 compared with dbh6 (Fig. 3.11a-

c). As might be the case for QTL M2, the association of QTL F3 with growth at 

later ages may have resulted from an association in the first year that remained 

detectable. However in the case of the F3 QTL, its significance increased with 

age, suggesting possible expression of the QTL at later ages. 
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Fig. 3.11. (a) Expression of QTL F3 over time. Growth at year 1 (ht1). Scan of linkage Group 3 of the female parent using plot 
residuals. A LOD score peak for growth at year 6 (dbh6) occurs at marker K81_1. 
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Fig. 3.11. (b) Expression of QTL F3 over time. Growth at year 2 (dbh2). Scan of linkage Group 3 of female parent using plot 
residuals. A LOD score peak for growth at year 6 (dbh6) occurs at marker K81_1. 
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Fig. 3.11. (c) Expression of QTL F3 over time. QTL for growth at year 6 (dbh6). Scan of linkage Group 3 of the female parent using 
plot residuals. A LOD score peak occurs at marker K81_1. 
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Stability of the F3 QTL across sites and with age can be seen from the differences 

in the trait means between marker genotypes at each site, across three times of 

growth measurement (Fig. 3.12 a-c). The QTL effect across sites has not changed 

markedly with time, except for the Mansfield site where the sample size is small. 

By year six the mainland sites were contributing most to the observed QTL effect 

(Fig. 3.12 c). 

The interaction of the F3 QTL with site at year 6 is highlighted, when the 71 trees 

not measured at year three (for dbh3) and grown mostly at mainland sites, are 

utilised in a QTL analysis for stem diameter at year six (dbh6). The F3 QTL in 

this analysis (using dbh6) has a LOD score of 2.6 (data not shown) compared 

with the LOD of 0.4 in a corresponding analysis (also using dbh6) using the 84 

trees that were measured in year 3 (Table 3.22). The difference between LOD 

scores being due to site (or sampling) effects. 

In summary the M2 QTL had a stable positive QTL effect when measured across 

the Tasmanian sites, for the four years of diameter measurements. The effect of 

the M2 QTL on height at year one across the Tasmanian sites was even stronger. 

The effect of the F3 QTL was observable in the earliest growth measurements, 

but was greatest at year six. The effect of the F3 QTL probably increased steadily 

with age, however missing data makes it impossible to determine the extent of the 

QTL effect in the intervening years. Effects of both QTLs were found to be 

strongly site dependent, with the M2 QTL effect dependent on Tasmanian sites 

(Fig. 3.10) and the F3 QTL more dependent on mainland sites (Fig. 3.12). For 

both QTLs much of the QTL effect observed at later ages might have resulted 

from the association with growth evident at the first year of measurement, rather 

than a continuous expression of these QTL. 
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Fig. 3.12. Effect of site and age on QTL F3 for growth. The QTL effect is 

measured here as a difference between marker class means (in standard 

deviations). This has been calculated at each site for the marker (81-1) 

closest to QTL F3, at three ages of measurement of growth (a) height year 

1 (ht1), (b) diameter at year 3 (dbh3) and (c) diameter at year 6 (dbh6). 
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3.4 DISCUSSION 

3.4.1 Number and size of effect of detected QTLs 

In a review of twenty QTL detection studies in forest trees, Sewell and Neale 

(2000) found that the number of QTLs identified for all traits reported ranged 

from 0 to 7 per trait with a mean of 2.7. However the probability of QTL 

detection is likely to be dependent on the trait studied and be greater for traits 

with higher heritability. Also, comparison of results between studies is not 

straightforward, due to the different methods of QTL analysis and varying QTL 

detection power as a result of different population sizes. 

There have been a number of studies identifying QTLs for growth and wood 

density in forest trees, though none published for these traits in Eucalyptus 

globulus. In a Eucalyptus grandis x urophylla hybrid Fl family, Grattapaglia et 

al. (1996) found one putative QTL for growth (circumference at breast height) 

and four for wood density (measured by specific gravity) with LOD scores 

greater than 2.0. The QTL were inherited from the maternal parent and detected 

using a half-sib family of 300 progeny measured at age 6.5 years. In a second 

Eucalyptus hybrid study Verhaegen et al. (1997) found four putative QTLs (LOD 

> 2.0) for vigour (equivalent to growth) and five for Pilodyn penetration at age 2 

years (26 months) based on 142 progeny. It would thus appear that in comparison 

the detection of two putative QTLs for cumulative growth (from 6 measurements) 

and two for wood density in the present study is a low yield. This is not really 

surprising however, since the presence of detectable QTL effects, especially in 

populations that have not been constructed for the purpose, will be strongly 

dependent on chance (Beavis 1998). In addition phenotypic measurements in the 
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two cited studies were from single sites compared with the present study where 

trees were grown across seven sites. Depending on such factors as the number of 

trees at each site, the number of sites, the degree of difference between sites and 

the extent of QTL by site interaction, the probability of QTL detection could be 

increased or decreased in multiple site experiments relative to single site 

experiments. 

In the present study, with a relatively small number of trees at each site and a 

relatively large number of diverse sites, the likelihood would be for a reduced 

number of QTLs detected compared to a single site study, given there is some 

degree of QTL by site interaction. Also, the likelihood of QTL detection may 

have been reduced due to site effects, since even though these were estimated and 

removed in the present study, this can only be done imperfectly and some 

between site effects would remain in the residuals reducing QTL detection power. 

It is interesting to note that in the present study at age six years and the two cited 

studies, there has been a larger number of QTLs detected for the trait with the 

higher heritability — wood density, than for cumulative growth. 

Most other examples of QTL detection studies in forest trees for growth traits, 

have been carried out on single site plantings. Lerceteau et al. (2001) in a study of 

Pinus sylvestris, found three QTLs (LOD > 2.0) for height (each evident at four 

ages) and four for stem diameter (at two ages) based on 94 progeny from a full-

sib family. Emebiri etal. (1998) found numerous QTL for growth at four ages 

using 93 progeny, and for stem diameter alone at 2 years of age six QTLs were 

detected. In E. nitens in a study of seedling height at 55 days of age, three QTLs 

were detected (P <0.01) (Byrne et al. 1997a). 
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There are no reports in the literature of QTL studies for the traits of bark 

thickness and only a single study of flowering abundance in which flowering was 

induced by gibberellin leaf spray in the conifer sugi (Cryptomeria japonica) with 

three QTL detected for this trait (Yoshimaru et al. 1998). 

Thus the number of QTLs detected in the present study is at the lower bounds for 

comparable published studies in forest trees. It is suggested that one reason for 

the small number of QTLs detected may be the multiple sites inflating the 

unexplained variance due to between site effects and with only those QTL that 

are effective at a number of sites being detected. Chance also may play a part 

along with the likelihood that studies that fail to yield QTL go unreported. 

There is evidence from a number of studies in forest trees, that within a family a 

significant proportion of the phenotypic variance for traits of commercial 

importance can be controlled by a few QTLs (Groover et al. 1994; Bradshaw and 

Stettler 1995; Grattapaglia et al. 1995; Grattapaglia et al. 1996; Verhaegen et al. 

1997). This is the situation in which MAS would be most attractive, since by 

selecting for a few markers there would be a considerable genetic gain for the 

trait of interest. In the present study it was estimated that 20% of the phenotypic 

variance for wood density in a full-sib family was explained by the segregation of 

the two putative QTL, thus adding to the list of examples where a reasonable 

proportion of the phenotypic variance can be explained by the segregation of a 

small number of QTL. The other QTL detected here also explain a reasonable 

proportion of the phenotypic variance (8.0% - 10.5%). This would seem to 

indicate that there is significant and potentially useful genetic diversity for these 

traits within populations, since the QTL were detected in an intraprovenance 
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cross. However for some traits no QTL were detected and also, based on 

simulation studies reported by Beavis (1998), it has been claimed that the 

generally small sample size used for QTL detection studies in forest trees can 

lead to the over estimation of the size of QTL effects (Sewell et al. 2000; 

Lerceteau et al. 2001). Thus the reported large effects may be overestimated. 

Beavis (1998) has also suggested that sampling error will lead to QTLs being 

detected that have a broad range of effect sizes even when the real effects are of 

equal magnitude (van Buijtenen 2001). Clearly QTLs require validation in other 

populations, preferably of large size. 

3.4.2 Genomic distribution of QTLs 

Linkage group 11 of the male parent (M11) was the only genomic location that 

had a significant QTL effect (LOD>2.0) for more than one trait. Mll was 

significant for relative incremental growth (dbh4-2) and also for wood density 

(Pilodyn penetration). The influence of M11 on both incremental growth and 

wood density is significant because growth and wood density have been found to 

have slight negative genetic correlation in E. globulus (MacDonald et al. 1997). 

The direction of QTL effect is opposed for the two traits and a QTL acting in this 

manner supports the observed genetic correlation. It is tempting to hypothesise 

that the QTL effects are the result of the pleiotropic effects of a single gene. The 

association in this case would not be a chance association of closely linked loci 

within the male parent, but is likely to be found in other individuals with the 

direction of effects opposed as in the present case. 

Support for this hypothesis can be obtained by testing this genomic region in 

other populations to determine if QTL influencing both wood density and stem 
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diameter are segregating. Unfortunately the linkage group of two markers (5.7cM 

appart) does not correspond to a homologous group on the female genome and 

there is no linkage to microsatellite markers. Thus to test this hypothesis directly 

will probably require that closely linked microsatellite markers are found for the 

Mll region. However QTLs for growth and wood density have also been co-

localised in other QTL studies in Eucalyptus (Grattapaglia et al. 1996; Verhaegen 

et al. 1997). Grattapaglia etal. (1996) found two QTLs for stem circumference, 

both of which co-localised with QTL for wood density (specific gravity) with 

both QTL having opposing effects on the two traits. Verhaegen et al. (1997) 

found that four QTL for wood density (Pilodyn penetration) were co-localised 

with growth (vigour), three inherited from the E. grandis parent and one from the 

E. urophylla parent. In three of these cases the allele that increased growth also 

increased Pilodyn penetration (ie. growth and wood density were in opposition) 

as is the case observed for the QTL in this study. Taken together these results 

indicate that pleiotropy is likely to be a good explanation for these observations. 

Alternatively genes affecting growth and wood density may be clustered together 

in a number of regions in the Eucalyptus genome. 

In contrast the QTL for Pilodyn penetration on F6 was not associated with QTL 

for growth. Wood density and growth have been found to have only a partial 

negative genetic correlation (MacDonald et al. 1997) and thus some genetic 

influences on wood density would be expected to be independent of genetic 

effects on growth. The F6 QTL potentially represents a gene or genes that have 

an influence on wood density without influencing the growth rate. 
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3.4.3 QTL by environment interaction 

QTL by environment interaction has been investigated in a number of crop 

species. In tomato Patterson etal. (1991) found only four environmentally stable 

QTLs influencing fruit characteristics from a total of 29 that were significant 

across the three environments tested. Ten QTLs had partial environmental 

stability and were detected in two environments, with 15 QTLs being 

environmentally specific. Both stable and environment dependent QTLs have 

been found in maize (Stuber et a/. 1992) and rice (Zhuang et a/. 1997). However 

in tree species few studies have investigated QTL by environment interaction. 

Groover etal. (1994) found evidence for QTL by environment effects for two 

wood density QTLs in loblolly pine. Weng et a/. (2002) found two marker 

intervals that had QTL by environment interaction in a longleaf pine x slash pine 

backcross. One interval was significant for both incremental and cumulative stem 

diameter between 7 months and 16 months of age, the other was significant for 

incremental stem diameter only, where two sites were contrasted. 

In the present study a preliminary investigation of QTL stability across sites has 

been carried out. QTL F3 for stem diameter at year six (dbh6) was found to have 

significant QTL by site interaction at the 0.05 level (p = 0.012). Expression of 

QTL F3 appears to have been stronger at mainland sites than at Tasmanian sites 

with no correlation between size of QTL effect and average site performance for 

the trait (compare Fig. 3.1(f) and Fig. 3.10). The QTL interval for QTL M2 for 

stem diameter at year 3, was found to have significant QTL by site interaction at 

the 0.01 level, when tested at year six. The QTL effect for this interval was 

however not significant (at 0.05) when all sites were considered at year six, but 

there was a reasonable QTL effect (LOD 1.8) when only the sites measured at 
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year 3 are tested at year six. Both the observed interaction and the QTL effect 

require investigation in other populations before conclusions could be made on 

the relevance of these QTL across sites. 

Some regions of the genome that did not have significant QTL effects were found 

to have strong site interaction. Since there was more interaction than expected by 

chance (23 locations found versus seven expected), it is suggested that some of 

these regions represent QTL that are strongly interactive with the environment. 

Strong environmental interaction reduces the possibility of detection of these 

QTLs based on average marker genotype effect used in the other QTL detection 

analyses where interaction was ignored. In agreement with results suggesting that 

Pilodyn penetration has little genotype by environment interaction (MacDonald et 

a/. 1997) no marker by site associations were found for this trait. This is in 

contrast to most of the other traits, where 1-9 locations in the genome had marker 

by site interactions. Regions of the genome that were interactive with site were 

particularly common for stem diameter at year six (nine regions). 

The multiple site nature of this study has enabled an examination of marker 

genotype by site interaction, which may aid the identification of QTL that are 

likely to have relatively stable performance across sites. It has also enabled the 

identification of genomic regions that warrant further examination as harbouring 

QTLs that are strongly interactive with site. 

3.4.4 Temporal stability of QTL for growth 

A number of studies of forest trees have addressed the issue of QTL stability 

particularly with respect to time. Verhaegen etal. (1997) investigated stability of 
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growth and wood density QTLs over a three year period in a single full-sib family 

of hybrid Fls in an E. grandis x E. urophylla cross. Stability across time was 

mixed, no QTLs were significant for all three times of measurement but 68% 

were significant at two ages. In other forest tree genera the stability of QTLs for 

growth have been investigated in a Populus hybrid F2 (Bradshaw and Stettler 

1995) where no QTL were significant for the two measurement times. In Pinus 

radiata Emebiri et al. (1998) found QTLs for growth followed one of three trends 

with time: a linear increase (4 times), a linear decrease (12 times) and a 

curvilinear trend with QTL effect peaking at an intermediate age (15 times). In a 

study of Pinus sylvestris that included measurement of height at four age intervals 

(years 9, 10, 11 and 12) three QTL were detected with each one being significant 

(ie. > LOD 2.0) at each of the four ages of measurement and two significant for 

height increment as well (Lerceteau et al. 2001). In Pinus taeda, Kaya et al. 

(1999) found that height and diameter increment QTLs were not detected for 

consecutive growing seasons in two pedigrees grown on multiple sites. 

In the present study the two QTL identified for growth (M2 and F3), were found 

to be detectable from the first measurements of height growth at year one and 

diameter at year two. However only one of these QTL effects had a significant 

LOD score peak, and this effect was found to be site dependent. Nevertheless, for 

a subset of sites, the M2 QTL (for dbh3) was found to be significant for height at 

year one, and to have a stable effect on stem diameter over the four years of 

measurement. The stability with time of the other cumulative growth QTL, QTL 

F3 (for dbh6), was difficult to evaluate due to measurements being unavailable 

for some sites in some years combined with significant interaction with site. 

However it was possible to show that the effect of this QTL was evident at year 
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one for height and year two for diameter (LOD 1.6), with an increase in QTL 

effect at year six. 

The effect of both QTL M2 and QTL F3 on stem diameter through time may 

result solely from their initial association with height at year 1, although there is 

slight evidence (an increase in relative LOD score) for later expression of QTL 

F3. This is however exactly the type of QTL effect that would be most convenient 

for future evaluation, because if the QTL effects are detectable at year one, 

validation and further testing would be much quicker than for a QTL that is only 

detectable close to rotation age. 

3.4.5 Statistical significance and relevance of detected QTLs 

In the present study two QTLs for wood density (Pilodyn penetration) have been 

detected at age six years, two QTLs for cumulative growth (one each for diameter 

at age 3 years and diameter at age 6 years), three for relative incremental growth 

and one for bud abundance at three years have also been detected. This has been 

based on a threshold LOD score of 2.0. Only one of the five QTLs for the 

measured traits (QTL F6 for Pilodyn penetration) had an experiment-wise 

significance level below the standard 0.05 level. The experiment-wise 

significance level for three of the others was close, being significant at the 0.1 

level. However studies such as the present study, being based on a relatively 

small number of progeny (<500) and with traits of relatively low heritability are 

best regarded as exploratory — useful to identify candidate (but not necessarily 

statistically significant) QTLs for further study. This is because for relatively 

small population sizes, sampling error is prone to lead to inaccurate estimations 
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of the size of QTL effects (Beavis 1998) and power for QTL detection is low, 

especially when the whole genome is scanned for multiple traits. 

Beavis (1998) argues that for exploratory studies the usual type I error threshold 

of 0.05 is not entirely sensible since the aim is really to identify candidate QTL 

for further study, and a stringent type I error threshold will increase the frequency 

of type II errors, resulting in genuine QTLs being overlooked. Candidate QTLs, 

some of which will not be statistically significant, can be tested in subsequent 

studies for the appropriate trait associations, where it is likely that experiment-

wise significance thresholds (type I error thresholds) would be at least an order of 

magnitude larger than the initial study (assuming similar numbers of progeny). 

The appropriate level of type I error for exploratory studies cannot be calculated 

exactly and must be judged by the investigator. In the present study QTL loci 

below the 0.05 level of experiment-wise significance have been reported with the 

justification that it is an exploratory study. In fact for correct statistical treatment 

the threshold experiment-wise levels of significance (type I error) calculated here 

for each trait need to be reduced as a result of the testing of more than one trait, a 

fact that is rarely considered in QTL detection studies. 

For marker assisted selection of growth and wood density, only those QTLs that 

influence performance as measured at rotation age are likely to be worthy of 

selection. Thus QTL for cumulative growth at rotation age would be the most 

useful growth QTL for MAS purposes. Incremental growth QTLs are of interest 

from the perspective of gene expression patterns and interactions influencing 

growth but also may become significant as cumulative growth QTLs at later ages. 

The main intention in this study for examining incremental growth traits was to 
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determine how cumulative growth QTL behaved over incremental periods and to 

see if they were significant as incremental growth QTL. There was however no 

correspondence between the location of cumulative growth QTL and incremental 

growth QTL. To determine if the incremental growth QTLs detected here become 

significant as cumulative growth QTLs obviously requires a follow-up study. 

It would be expected that at least some of the QTL identified in this study result 

from actual genetic effects as opposed to chance associations. QTL F6 (pilo6/1) 

for Pilodyn penetration is obviously the QTL most likely to result from genetic 

effects since it has the most statistically significant effect (0.002 experiment-wise 

significance). However verification in further experiments is required to 

determine which QTLs are likely to be important. Although it is uncertain as to 

precisely how marker/QTL information would be implemented in marker-assisted 

selection in the breeding of E. globulus, it is likely that information on QTL 

stability at least across envirornnents and with different genetic backgrounds 

would be critical (Bradshaw and Grattapaglia 1994). 

This study has addressed, in a preliminary way, the issue of QTL stability across 

environments and also with time. For MAS it would also be likely that testing of 

the same QTL locations in other pedigrees would be carried out and also the use 

of larger population sizes will be required to accurately determine the size of the 

QTL effect. To enable the collection of the foregoing information markers that 

are likely to be polymorphic in many crosses will probably be required (eg. 

microsatellites). 
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3.5 CONCLUSION 

The present study indicates that putative QTL for traits of commercial 

importance, with low to moderate heritability, are detectable in a Eucalyptus 

globulus cross using populations of moderate size. Although few of these QTL 

have experiment-wise statistical significance at the generally accepted 0.05 level, 

the study can be considered exploratory. For wood density, two QTL explained 

20% of the variance for the trait, indicating that a small number of QTL might 

explain a reasonable proportion of the trait variance. One of these QTL was found 

to be independent of QTL for growth whereas the second QTL co-segregated 

with a QTL for relative incremental growth, with the presence of the marker 

nearest to this QTL being linked to faster growth but lower wood density. It was 

also observed that there was more marker genotype by site interaction than 

expected by chance for growth traits. This is likely to be due to the presence of 

QTL that are strongly site interactive. In addition, growth QTLs were observed to 

have temporal stability extending back to an early age. 
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CHAPTER FOUR 

AN ANALYSIS OF THE ROOTING ABILITY OF 

MICROPROPAGATED SHOOTS FROM TWO FAMILIES OF 

EUCALYPTUS GLOBULUS 

4.1 INTRODUCTION 

Transferring genetic gains to plantations through the deployment of clones of 

superior genotypes is a strategy that has been used successfully with tropical and 

subtropical Eucalyptus species such as E. grandis, E. urophylla and their hybrids 

(Zobel 1993). Propagation from stem cuttings taken from coppiced mother trees 

has generally been found to be a successful, convenient and economic method for 

clonal deployment of these eucalypts. 

However in some temperate species of Eucalyptus such as E. globulus cloning 

ability has been found to vary greatly between individuals, with the cloning ability 

of many genotypes too low to be economically viable for plantation deployment 

(Wilson 1992). A crucial factor determining clonability from cuttings is their 

capacity to produce roots. This capacity, known as rooting ability, has been found 

to be highly variable within many forest tree species with some of this variation 

being attributed to genetic differences (Foster 1990 and references therein). 
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Rooting ability of stem cuttings in E. globulus in particular has been found to be 

very variable with many clones proving to be poor rooters (Wilson 1992). Several 

strategies to overcome this variable and generally poor rooting ability have been 

tried. One strategy which has been employed by Stora Celbi in Portugal has been 

to screen selected plus trees for genotypes that have economically viable levels of 

rooting ability and use only these individuals for clonal deployment (MacRae and 

Cotterill 1997). However by deploying only these genotypes the number of genets 

that can be deployed clonally is reduced, potentially reducing genetic gains for 

other traits. 

A possible alternative strategy is to include selection for rooting ability as part of 

the breeding program. Selection and breeding for rooting ability has the potential 

to increase and extend clonability, enabling the clonal deployment of a much 

broader range of genotypes than does simple screening for rooting ability, 

potentially capturing more genetic gain in deployed populations. Prediction of 

gains from selecting for rooting ability can be made based on estimates of the 

heritability (h2) of this trait. Calculations of the heritability of rooting ability in E. 

globulus have been made for both stem cuttings in the field (Borralho and Wilson 

1994, England and Borralho 1995, Lemos et al. 1997) and in vitro propagated 

stem cuttings (Ruaud etal. 1999). In the studies with stem cuttings, estimates of 

heritability for rooting ability were moderate to high (0.36, 0.22, and 0.54) 

indicating the potential for improvement of this trait using selection. Heritability 

estimates for the in vitro cuttings (Ruaud et al. 1999) were however generally 

lower (0.16 and 0.27). 
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Micropropagation of E. globulus has been carried out in a number of laboratories 

with the hope of overcoming the problem of poor rooting ability. As a means of 

multiplying clones of E. globulus it is uncertain if micropropagation has any 

advantage over stem cuttings produced in the field (macropropagation). One of 

the apparent advantages is the potentially higher rates of multiplication that can be 

achieved with in vitro methods (MacRae and Cotterill 1997), however the time to 

produce plantable plants has been shown to be about the same for the two 

propagation systems (Wilson 1995). One possible advantage of micropropagation 

arises from the observation that micropropagated plantlets have a root structure 

that resembles seedlings more closely than do stem cuttings. This may be an 

important factor since Stora Celbi in Portugal have found that E. globulus stem 

cuttings have mediocre field growth performance compared with seedlings 

(Cotterill and Brindbergs 1997) and the root structure of cuttings has been found 

to differ significantly from seedlings (Sasse and Sands 1995). Clones from E. 

globulus stem cuttings have also been noted to have an earlier change of phase 

from juvenile to adult leaves than seedlings (MacRae and Cotterill 1997). To date 

trials aimed at comparing micropropagation with macropropagation are too young 

to provide a clear comparison (MacRae and Cotterill 1997, Watt et al. 1995, 

Barbour and Butcher 1995). Even if the apparent rapid multiplication rates and 

growth performance of micropropagated plants does not provide a significant 

advantage over macropropagation systems, the shorter lag time in assessing 

rooting ability from seed using micropropagation makes it an attractive 

experimental system. 

Given a high heritability for rooting ability in either a micropropagation or 

macropropagation system, a major problem in selecting for this trait is the high 
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cost and difficulty associated with its measurement. The effect of this is likely to 

be that only a relatively small subset of the breeding population could be assessed 

for rooting ability. However if a significant proportion of the variance for rooting 

ability could be predicted based on genotyping using molecular markers, then a 

much higher proportion of the breeding population could be assessed for this trait. 

Effective marker assisted selection would need to be based on a sound knowledge 

of the effect of selected QTLs and their stability across variable genetic 

backgrounds. Although building up this knowledge base would initially be 

expensive it could pay off in terms of the gains transferred to plantations. 

To date two studies have been published in which QTLs for vegetative 

propagation traits have been found in Eucalyptus (Grattapaglia et al. 1995, 

Marques et al. 1999). Grattapaglia et al. (1995) found four QTLs for rooting 

ability in an E. grandis x E. urophylla cross using macropropagated cuttings and a 

family size of 96. The four QTLs were estimated to collectively explain 33% of 

the phenotypic variation and 63% of the genetic variation for the rooting ability 

trait. There were two samplings of cuttings from each genotype (two blocks) 

enabling an estimation of clonal repeatability, which was calculated to be 0.52 

(Grattapaglia etal. 1995). In the study by Marques et al. (1999) where selective 

genotyping was compared with random genotyping, nine QTLs for adventitious 

rooting in macropropagated cuttings were hypothesised in a cross between E. 

tereticornis and E. globulus. Rooting was assessed over two consecutive years, 

which were treated as separate traits in the analysis. Five QTLs from the E. 

tereticornis parent explained an estimated total of 24% of the phenotypic variance 

in the 1995 assessment (%rooted/surviving) whilst QTLs at two of these locations 

were found in 1996 explaining 12% of phenotypic variance. Two QTLs from the 
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E. globulus parent explained an estimated 9% of the phenotypic variance in 1995 

with one new QTL found and one lost in 1996, the resultant two QTLs explaining 

12% of the phenotypic variance. 

In the present study micropropagated shoots from two families of E. globulus 

were tested for their ability to form roots in agar root inducing medium, originally 

with the aim of carrying out a QTL analysis for this trait. The shoot cuttings were 

tested for rooting ability at 5 sampling dates and this enabled estimation of the 

variances due to between genotype effects and within genotype effects and 

calculation of the clonal repeatability for this trait. These estimates were used to 

calculate the power of detecting quantitative trait loci for rooting ability in these 

two families. 
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4.2 MATERIALS AND METHODS 

4.2.1 Plant material and tissue culture 

The rooting ability of in vitro micropropagated shoots was tested in two full sib 

families of E. globulus ssp. globulus. The pedigrees of the two families are shown 

in Fig. 4.1 and are as follows: Family 1 is derived from a cross between two full-

sibs (pseudo F2 cross) from the G1025 family. The two grandparents are both 

from the King Island provenance and linkage maps of these individuals have been 

constructed using microsatellite and RAPD markers (chapter 2 of this thesis). 

Family 2, supplied by Gunn's Ltd (formerly North Forest Products), also has 

parents that originate from the King Island provenance of E. globulus. The male 

parent 7100250 is a Forest Resources clone which has been propagated from stem 

cuttings and planted in clonal stands at several trial sites in Tasmania. This parent 

had proven to be readily clonable with good rooting ability. The clonability of the 

other parents/grandparents is unknown. 

Family 1 	 Family 2  

KI2 (male) x G164 (female) 	 7100250 (male) x KI5 (female) 

G1025 —1 x G1025 —2 (cross of full-sibs) 	 G1009 (Family 2) 

G95127 (Family 1) 

Fig. 4.1. The pedigrees of the two E. globulus families used in the rooting ability 

study 
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Seeds were surface sterilized in a weak solution of sodium hypochlorite for 35 

mins and rinsed twice in sterile dH20 for 10mins each before being placed onto 

the surface of solid agar (0.6%) medium containing 1/2 strength MS salts and 

20g/L sucrose (pH 6.0) in tissue culture vials. After germination the vials were 

placed under fluorescent lighting in a temperature regulated culture room at 23°C 

and a 12 hr daylength at North Eucalypt Technologies tissue culture laboratory. 

The vials were numbered and randomly allocated into trays to grow to a sufficient 

size for shoot excision. Excised shoots were placed on a shoot inducing medium 

to proliferate. After a number of rounds of subcloning as many shoot cuttings as 

possible were excised from shoot clumps and placed on a root inducing medium 

to assess rooting ability. Rooting ability was scored as a binary trait with each 

cutting being assessed for the presence or absence of roots from the base of the 

cutting. The number of cuttings tested and the proportion that produced roots was 

recorded for each genotype for each date of sampling. 

The rooting ability trial was carried out at the tissue culture laboratory of North 

Eucalypt Technologies at Ridgley (Gunn's Ltd) in Tasmania. Cuttings were taken 

on the following five dates: 27/3/96 (Date 1), 8/5/96 (Date 2), 20/6/96 (Date 3), 

29/7/96 (Date 4) and 9/9/96 (Date 5). Not all genotypes were sampled at each date 

and the number of cuttings sampled varied from date to date and genotype to 

genotype. Only those genotypes that had seven or more cuttings tested overall 

were included for analysis. The first round of cuttings (27/3/96) were scored for 

the presence/absence of roots from the stem base after three weeks on root 

inducing medium. However by three weeks it was found that the proliferation of 

roots from leaf fragments and the development of large callus clumps at the base 
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of shoot cuttings made assessment of rooting ability difficult. Thus for all dates 

thereafter the interval on root inducing medium was two weeks. The media used 

for the proliferation of shoots and root induction are proprietary formulations of 

Gunn's Ltd and under agreement cannot be divulged. 

4.2.2 Statistical analysis — comparison of families 

To determine if the difference in the rooting abilities of the two families was 

statistically significant an analysis was undertaken in which genotypes from both 

families were included in a statistical model. A generalised linear model (GLM) 

to binomial responses was used for the analysis with a probit link function and 

weighted according to the number of cuttings on which each proportion was 

calculated (Goldstein 1995). Second order penalised quasi-likelihood estimates 

were obtained for the fixed effects of family, date and family by date interaction 

(and the random effects of genotype and error) according to the following model: 

Yijk = [1,  Fk Di + (F.D)ik + gj + eijk 

where yijk is the proportion of cuttings that rooted on the ith date for the jth 

genotype in the kth family and Fk is the fixed effect of the kth family, Di  is the 

fixed effect of the ith date, (F.D)ik is the fixed effect of the interaction between the 

kth family and the ith date, gi is the random effect of the jth genotype and eijk is 

the residual. Extra binomial variation was observed and fitted. The program 

MLwin was used to carry out the analysis and estimates of the difference in 

rooting ability between the two families at each date were tested for significance 

- using a chi-squared statistic (ldf). A joint 95% confidence interval for the 

estimated difference at each date was also calculated along with a joint chi 
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squared test over all five dates (5df). The significance of the effect of date and the 

date by family interaction was also tested. 

4.2.3 Statistical analysis — estimation of variance components 

and calculation of clonal repeatability 

A separate analysis was undertaken for each family. A binomial distribution was 

assumed for the proportional data and the following generalised linear model 

using a probit link function was used in the analysis (Ruaud et al. 1999): 

yij = lt + Di + gj + eij 

where yij is the observed proportion of shoots that rooted at the ith date for the jth 

genotype, IA is the overall mean, Di is the fixed effect of the ith date, gj is the 

random effect of the jth genotype and eij is the residual effect of the jth genotype 

on the ith date. Since the number of cuttings sampled varied across dates, the data 

was weighted using an iterative weighted Restricted Maximum Likelihood 

analysis where wij = niji[Rj (1-pij)], where wij is the weight, Ai is the predicted 

proportion and nij is the number of cuttings sampled on the ith date for the jth 

genotype (Ruaud et al. 1999). 

Estimates of the variance components were made using the program ASREML 

(Gilmour et al. 1995). In each of the ASREML analyses the relative size of the 

variances for the two random effects, the between genotypes variance (a 2b) and 

the within genotypes or residual variance (a2 ) were estimated (along with the 

standard error for a2b). The hypothesis that the between genotype variance was a 

chance deviation from a variance of zero was tested using the statistic a 2b /SE with 

corresponding probability obtained from the standard normal probability density 

Chapter Four 	 140 



function (z = 0 2b /SE). Model checking included plotting fitted values against 

residuals to determine any apparent trend. 

The clonal repeatability or repeatability is here defined as the ratio of the between 

genotypes variance to the sum of the between and within genotypes variances as 

calculated from the five measurements. That is r = 0.2b02b  a2w.. ) It is thus an 

estimate of the broad sense heritability of the mean phenotypic values for the 

genotypes. 

4.2.4 QTL detection power calculations 

Estimates of the power of a t-test to detect a QTL were undertaken using the 

following formula based on that in Soller (1991): 

N = [2 (Za12 z13)2 a2 1/82 

Where N is the number of genotyped progeny per marker class, Za/2 is the ordinate 

of the standard normal distribution and a is the per marker Type I error, Z 0  is the 

ordinate of the standard normal distribution and p is the Type H error, 8 is the 

expected difference between marker class means and a m  is the residual (within 

marker class) standard deviation. 

A rearrangement of the formula to solve for zp gives: 

Z0 = — SQRT[(N x 8 2)/(2cr2m)] - Za/2 

Values for 13 (the area to the left of the Z0 ordinate) were obtained from the 

standard normal probability density function and power of the test given by 1 — 
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The type I error was set at 0.05 overall covering the two parental genomes for a 

single trait analysis. 

For Family 1, the maps of the grandparents (chapter 1 of this thesis) could be used 

as the basis for map construction since it would be expected that 1/2 of the 

markers segregating 1:1 in the G1025 family would also segregate 1:1 in Family 1 

(1/4 would be expected to segregate 3:1 and 1/4 would be lost). The required type 

I error for testing each marker can thus be calculated using the G1025 mapping 

information. The calculations are based on the following: there are approximately 

50 independently segregating locations on the maps of the two grandparents (see 

chapter 1 of this thesis: male 28, female 19) plus a total of 30 unlinked markers, 

15 from each grandparent. There is thus approximately 80 independently 

segregating locations across the two genomes and therefore the type I error rate a, 

was set to a = 0.05/80 = 0.000625 and thus a/2 = 0.0003125 and Zan = -3.42. The 

same assumptions have been made for Family 2. For the number of individuals 

per marker class (N), half the number of genotypes was substituted. 

When determining the power of detecting a QTL of given effect occurring at a 

marker the between marker-class difference (8) is equivalent to twice the deviance 

(in the family overall) due to the QTL (2 x awl). If the marker under test is 

located near but not at the QTL, the recombination fraction (0) between the 

marker and the QTL and the deviance due to the segregation of the QTL (awl) 

have the following relationship to the expected difference between marker-classes 

(8) (Soller 1991): 

8 = 2aQTL(1-20) and thus 8 2  = 4a2Qm(1-20)2 . 
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The within marker class variance (a2m) is the remaining variance due to 

environmental influences and remaining genetic effects and is thus obtained from: 

cr2m  (472b cr2w) 
QTL. 

With 0 2b and a2, being estimated in the individual family analyses. 

Values used in power calculations for the recombination fraction (0) were based 

on the maps of the two grandparents of Family 1, which would form the basis of 

marker genotyping for this family. The chance of a QTL being perfectly linked to 

a marker (ie. 0 = 0) could be hypothesised to be the same as two markers being 

perfectly linked which occurred in 17% of the framework markers from the two 

grandparental maps. The average interval size from the two maps is 

approximately 12cM and the average distance from a marker within this interval 

would be 3cM or a recombination fraction 0, of 0.03. This 'average' distance of 

3cM from each marker would cover 46% of the framework maps of the two 

parents. The proportion of genetic variance explained by a QTL (cr 2QTL) was based 

on estimates from Grattapaglia etal. (1995) for the upper-limit proportion of the 

genetic variation that is explained by detected QTLs. From their study out of 20 

QTLs for three traits the largest QTL effect was equivalent to 29% of the genetic 

variance (&Q-rdcr 2b). The average of the largest QTL for the three traits was 18%. 

Based on this information a large QTL could be expected to explain 30% of the 

genetic variance rather than the optimal 100% and a reasonably large QTL could 

be expected to explain 20%. 

For example a QTL which explained 30% of the genetic variance linked to a 

marker 3cM away within the region of the genome which had been mapped, the 
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following calculations indicate the power of a t-test to detect this QTL in Family 

1. 

a2QTL = 0.3 x cr2b = 0.3 x 0.2 = 0.06. 

cr2
m = CT2w 0 2

b
2
o1  = 1.2 — 0.06 = 1.14 

8 = 2aQm(1-20), substituting 0 = 0.03 

8 = 1.88aQm and thus 62 = 3.53o2Qm= 0.21 

N = 77 (half the population size of Family 1) 

= - SQRT[(N x 82)/(2cr201 - Zan 
= - SQRT[(77 x 3.53 x 0.06)/(2 x 1.14)] + 3.42 

= 0.7455 

13 =0.77 

Power = 1 —13 = 0.23 or 23 % 

It would be expected that for some traits several large QTLs may be segregating 

in the population under study and in QTL detection experiments in plants it is 

common for several to be detected (Kearsey and Farquhar, 1998). Thus the 

probability of detecting one or more of several hypothetical QTLs has been 

calculated. This probability has been calculated as: 

Pr = 1 - (the product of the probabilities of not detecting each QTL 

individually). 
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4.2.5 Estimated size of phenotypic effect of hypothesised QTLs 

The size of the phenotypic effect has been calculated from the data collected over 

2QT  five measurements so that 62  p 	 a da2P:=  a2QTycr2b  * = CT2b + CT2w  and thus  

a211((Y 2b + a2w). The proportion of the variance attributable to the QTL was 

converted to a standard deviation and added to the probit function value 

corresponding to a proportion of 0.16 (ie. -0.997) which was the average rooting 

ability for Family 1 over the five dates tested. The proportion corresponding to the 

new probit function value was recovered and the difference between the 

proportion of 0.16 and the final proportion was determined. 

4.2.6 Change in variance and QTL detection power resulting 

from doubling the number of tests 

When there are multiple measurements of the phenotype of an individual 

(genotype), then the overall phenotypic variance for a group of individuals 

decreases as more measurements are made. The component of variance that 

reduces is that due to special environment, VEs  (within genotypes variance) 

(Falconer 1989). The phenotypic variance for multiple measurements can be 

calculated according to the following relationship (Falconer 1989): 

Vp(n) = VG + VEg ± 1/n VEs 

where Vpoo is the phenotypic variance after n measurements, VG is the genetic 

variance, VEg  is the between individual environmental variance arising from 

permanent or non-localised circumstances and VEs is the within-individual 

variance arising from temporary or localised circumstances. Here a 2b is equivalent 

to VG  + VEg  and VEs  is equivalent to 5a 2,„ since a2„ was derived from five 
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measurements. Doubling the number of measurements from 5 to 10 would be 

expected to approximately increase the ratio of between genotypes variance to 

within genotypes from a2b/a-2,„ to 2a2b/a2„ (ie. double the ratio). This ratio has 

been substituted into the power estimations for ten measurements. 
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4.3 RESULTS 

4.3.1 Rooting ability of families 

The scale of the experiment to assess rooting ability in genotypes from the two E. 

globulus families is presented in Table 4.1. Overall more than 5,200 

micropropagated cuttings were tested for their ability to produce roots. 

Table 4.1. Scale of the rooting ability assessment experiment. 

Family I Family 2 
No. genotypes 154 65 
No. of cuttings taken 3562 1705 
Mean no. cuttings/genotype 23 26 
Mean no. 
cuttings/genotype/date 

5.7 6.0 

From Table 4.1 it can be seen that although there were more genotypes tested for 

Family 1 than for Family 2 the mean number of cuttings tested per genotype and 

the mean number of cuttings tested per genotype per date was similar for the two 

families. The number of genotypes and cuttings sampled at each date for each 

family is presented in Table 4.2 and Table 4.3 for Family 1 and Family 2 

respectively. 
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Table 4.2. The number of genotypes and the number of cuttings tested for 
a genotype at each date for Family 1. 

Min. Max. Mean Mod;  

1 8 3.4 3 3 

2 20 7.8 10 8 

2 13 5.4 4 5 

1 14 6.3 5 6 

1 10 5.2 5 5 

8 49 23.1 22 22 

1 

2 

3 

4 

5 

Overall 

No. 	Number of cuttings tested for a genotype 

Date 	Genotypes 1 

146 

153 

130 

138 

59 

154 

I 

Table 4.3. The number of genotypes and the number of cuttings tested for 
a genotype at each date for Family 2. 

Min. Max. Mean Mod;  

1 8 3.4 3 3 

3 19 7.6 10 8 

1 11 6.9 10 7 

2 12 6.5 5 6 

5 8 5.3 5 5 

13 38 26.2 23 26 

1 

2 

3 

4 

5 

Overall 

No. 	Number of cuttings tested for a genotype 

Date 	Genotypes I 

62 

64 

64 

62 

30 

65 

From Tables 4.2 and 4.3 it can be seen that the maximum, mean, mode and 

median number of cuttings tested per genotype varies between dates but is similar 

at any given date between families. 
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The mean rooting ability for both families at each date is presented in Fig. 4.2. 

Rooting ability here is scored as the average of the proportion of cuttings that 

produced roots for all genotypes in the family. 

Fig. 4.2. Rooting ability of the two E. globulus families at each date. 

From Fig. 4.2 it can be seen that the mean proportion of cuttings that rooted for a 

genotype was higher for Family 2 than for Family 1 at each of the five dates of 

sampling. The rooting ability of both families declined from the initial sampling 

of cuttings (date 1) till the third sampling after which it tended to level out. 

The estimated average rooting ability for genotypes in both families at each date 

are presented in Table 4.4. These estimates result from the analysis that included 

data from both families in a GLM. Alongside each pair of estimates is a p-value 

resulting from a test of the hypothesis that there is no difference between the 
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means of the two families. The p-value is derived from a separate chi-squared test 

(1d.f.) of the estimated differences between the two families at each date (ie. 

Ho: 	- 

Table 4.4. A comparison of the estimated rooting ability of the two E. 

globulus families. 

mean proportion of cuttings 

Date 

producing roots 

Family 1 	Family 2 

p-value° 

Ho: fir = 142 

1 0.27 0.62 5.1 x 1040  

2 0.17 0.50 8.0 x 10-2°  

3 0.10 0.32 1.0 x 104°  

4 0.16 0.31 1.4 x 10-5  

5 0.10 0.31 4.9 x 10-5  

a Obtained from a chi-squared test of the estimated difference between families, ldf. 

The p-values from the test at each date that the family means are equal (Table 4.4) 

are all highly significant indicating that it is extremely unlikely that the two 

families have equal rooting ability. The estimates for the mean proportion of 

cuttings that rooted at each date were very close to the observed values (Fig. 4.2) 

supporting the appropriateness of the model used in the analysis. A joint chi-

squared test of the estimated differences at all of the five dates gave a very highly 

significant p-value of 3.4 x 10 -25  indicating that overall it is extremely unlikely 

that the difference in rooting ability between the two families is due to chance. 

This is very strong evidence that the two families have different rooting abilities 

with Family 2 having higher rooting ability than Family 1. 
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The significance of the effect of date on rooting ability for both families for each 

pair of dates is shown in Table 4.5. 

Table 4.5. Significance of the effect of date on rooting ability for the two 

families. 

Date 1 

Family I 

2 	3 4 1 2 

Family 2 

3 4 

2 

3 

4 

5 

* * 

* * 

** 

** 

* * 

n.s. 

n.s. 

** 

** 

** n.s. 

** 

** 

** 

n.s. 

n.s. n.s. 

* = significant at 0.05 level for a separate chi-squared test 
** = significant at 0.05 overall correcting for 20 tests (0.0025 level each test) 

The results in Table 4.5 indicate that the rooting ability for Family 1 at date 1 is 

significantly different to the four subsequent dates at an overall 0.05 level 

(0.0025). The only other significant difference in rooting ability between dates for 

Family 1 was between dates 2 and 3. For Family 2 there was a significant 

difference in rooting ability between dates 1 and 3 and subsequent dates. There 

was also a significant difference in rooting ability between dates 2 and 3 and 

subsequent dates. All other pairs of date comparisons were not significant at the 

more stringent level. The trend observed in Fig.3 1 with a decline in rooting 

ability over time until the third date is supported in both families by the 

significantly different rooting abilities between initial dates and later dates. 
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The interaction between date and family was tested for significance for each of 

the ten possible comparisons. Generally the relative difference in rooting ability 

between families did not change significantly with the date, however when date 2 

is compared with date 4 a significant interaction between date and family was 

found at an overall 0.05 level (allowing for 10 tests ie. 0.005). This agrees with 

Fig. 4.2 where it can be seen that the difference in rooting ability between families 

is largest at date 2 and smallest at date 4 and thus the finding of a significant 

interaction when comparing these dates is not surprising. 

The analyses of the two families considered individually provided estimates for 

the between-genotype variance (4) relative to the within-genotype (residual) 

variance (a2w) that are presented in Table 4.6 along with the associated standard 

error (SE) for the estimate of between-genotype variance. 

Table 4.6. Estimates for the between genotype variance (02  b) relative to the 

within genotype variance (a 2 ) for the rooting ability of two E. globulus 
families. 

Family 	 011, 	SE for eb p value for 02  b a 	 clonal 

repeatability" 

1 1 0.201 0.036 1.28 x 104  0.17 
2 1 0.165 0.042 4.08 x 10-5  0.14 

a  The hypothesis under test is: Ho: a2b  = 0. 

b  Clonal repeatability defined as a2b02b cr20. 

Because a probit link function was used in the analyses the within-genotype 

variance (or residual variance - a2,) is set to 1.0 with the between-genotype 

variance (a2b) scaled accordingly. The p-values from a statistical test of the 

hypothesis that the variance due to genotype effect is due to chance (Ho: a2b = 0) 
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was very highly significant for both families indicating that this effect was 

extremely unlikely to be due to chance alone. The size of the between genotype 

variance relative to the within-genotype variance is however small for both 

families. 

From the analysis of each family it was found that the estimated mean proportion 

of cuttings that rooted for a genotype at each date was very close to the observed 

values (data not shown). A plot of fitted values against residuals did not reveal a 

trend in the data from either family. Frequency histograms of the residuals 

generated from the analysis of both families approximated a normal distribution. 

This indicated the model was appropriate for the experimental data. 

The proportion of cuttings that rooted at each date for three selected genotypes 

from each family, are plotted in Figures 4.3 and 4.4 for Family 1 and Family 2 

respectively. Genotypes that had a large number of cuttings sampled at each date 

were selected. 

0.8 
E 0.6 
o. Es 0.4 
o_ 

0.2 

1 
	

2 
	

3 
	

4 
	

5 

Date 

Fig. 4.3. Rooting ability of three selected genotypes from Family 1. 
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Date 

Fig. 4.4. Rooting ability of three selected genotypes from Family 2. 

The plots in Figs. 4.3 and 4.4 illustrate the fluctuation in the proportion of cuttings 

that rooted for each of the genotypes over the five dates. Across all genotypes this 

fluctuation represents the within genotypes variance which was large relative to 

the between genotypes variance resulting in the low repeatabilities reported in 

Table 4.6. 

4.3.2 Power of t-test to detect QTLs 

The optimal power for detecting a given QTL would occur when the genotype 

variance (c:r2b) is due solely to the segregation of this QTL in the population under 

study (ie. cr 2b = &QM) and the QTL is perfectly linked to a marker used for 

genotyping (ie. 0= 0). Thus with regard to the formula for determining the power 

of a t-test, the between marker class difference (5) would be equivalent to twice 

the deviance (in the family as a whole) due to genetic differences ie. 8 = 2am 

and thus 82  = 4c:r2  QTL. The within marker class variance WO would be equivalent 
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in this case to the residual variance (a 2 ) which would be due to environmental 

effects. Carrying out these substitutions into the rearranged power estimation 

formula we have: 

= —SQRT [2Na2b /a2w] — Zan 

and substituting the values and estimates obtained for Family 1: 

= - SQRT(2 x 77 x 0.201) — Zaa 

= -5.56 + 3.42 

= -2.14 

p =0.016 

Power = 1 — p = 0.98 or 98 % 

Substituting the values and estimates obtained for Family 2 gives: 

Zp = — SQRT(32 x 2 x .165) + 3.42 

= 0.17 

p = 0.57 

Power = 1 —13 = 0.43 or 43 % 

For Family 1 the probability of detecting a QTL of this magnitude under 

optimised conditions is high (98%) whereas for Family 2 the probability is less 

than 50%. It would appear that the relatively low clonal repeatability (or small 

ratio of genotypic variance to environmental variance) and the small number of 

individuals phenotyped make the data collected for Family 2 unsuitable for QTL 

detection purposes. The results of calculating the power for QTL detection for a 

single QTL with varying size of effect and varying recombination between marker 

and QTL is presented in Table 4.7 using data from Family 1 only. 
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Table 4.7. QTL detection power of hypothesised QTLs for Family 1 using 

single marker analysis (West): influence of size of QTL effect (a2m/02b) and 

recombination fraction (A) between marker and QTL. 

0 	 ,...2 	/ 	2 
u QTL/ a b 

a2vnia2p Power 

0 1 0.17 0.98 

0 0.30 0.05 0.29 

0 0.20 0.03 0.13 

0.03 1 0.17 0.97 

0.03 0.30 0.05 0.23 

0.03 0.20 0.03 0.11 

From Table 4.7 it can be seen that for a rooting ability QTL of large effect 

(0.3a2b) an average distance (see Materials and Methods for definition) from a 

marker (3cM) there would be an expected chance of detection of 23%. 

As already indicated it is extremely likely that more than one segregating QTL 

would be responsible for the observed genotypic variance. The power to detect 

one or more of several QTLs of given size effect is presented in Table 4.8. 
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Table 4.8. Power for detecting one or more of several 

hypothesised major QTLs using data for Family 1. 

A 02Qui02b Power 

0 0.30 + 0.20 + 0.20 0.46 

0.03 0.30 + 0.20 + 0.20 0.39 

0 0.20 + 0.20 +0.20 + 0.20 0.43 

0.03 0.20 + 0.20 +0.20 + 0.20 0.37 

o = recombination fraction between marker and QTL 
(Y2orificr2b = size of QTL effect relative to total genotype effect 

From Table 4.8 it can be seen that even where there is no recombination and there 

are three unlinked QTLs one responsible for 30% the other two responsible for 

20% of the genotype variance the probability of detection would be 46%, [1 — 

(0.71 x 0.87 x 0.87) = 0.46]. Even though these are relatively large QTL effects 

and there are three of them there is less than 50% probability of detection. The 

probability of all three QTLs being perfectly linked to markers is highly unlikely 

and if the average recombination distance is considered (3cM) the power 

decreases to 39%. For four QTLs each explaining 20% of genotype variance the 

calculated power of detecting one or more was lower than for the three QTLs. 

The expected size of the phenotypic effect for hypothesized QTLs for Family 1 is 

presented in Table 4.9. 
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Table 4.9. Expected effect on average rooting ability of selection' for 
hypothesised QTLs in Family 1. 

02QT1102b 	02QTI/02P 
	crQn, 	p C7Q7z, 	average 	d proportion 

rooting 

ability 

1.0 0.17 0.41 -0.587 0.28 0.12 

0.3 0.05 0.22 -0.772 0.22 0.06 

0.2 0.03 0.18 -0.813 0.21 0.05 

a  Selection based on a marker located at the QTL 

From Table 4.9 it can be seen that the expected effect on rooting ability of the 

QTL that explains 100% of the genotype variance is relatively small at 0.12. This 

does however virtually double the probability from the mean of 0.16 without 

selection to 0.28 with selection. For QTLs with a more realistic size of effect the 

increase is more modest eg. an increase from 0.16 to 0.22 for a QTL explaining 

30% of the genetic variance. It can be noted from the change in rooting ability that 

the effect of small QTLs is large relative to the proportion of variance explained. 

The effect on the power for QTL detection of doubling either the number of dates 

of testing or the number of progeny is presented in Table 4.10 for Family 1 and 

Table 4.11 for Family 2. 
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Table 4.10. Effect on QTL detection power of doubling the number of 

testings of rooting ability from 5 to 10 and doubling the number of progeny 

from 154 to 308 for Family 1. 

02QTri02b 5 tests 10 tests 5 tests, 308 

progeny 

1.0 0.98 1.00 1.00 

0.3 0.29 0.65 0.73 

0.2 0.13 0.36 0.44 

Here recombination fraction between marker and QTL is zero (ie.0 = 0). 

Table 4.11. Effect on QTL detection power of doubling the number of 

testings of rooting ability from 5 to 10 and doubling the number of progeny 

from 65 to 130 for Family 2. 

Power 

02Q77/02b 	 5 tests 	 10 tests 	5 tests, 130 progeny 

1.0 0.43 0.88 0.89 

0.30 0.04 0.12 0.15 

0.20 0.02 0.06 0.07 

Here recombination fraction between marker and QTL is zero (ie.0 = 0). 

From Tables 4.10 and 4.11 it can be seen that the increase in QTL detection 

power from doubling the number of samplings is quite considerable for QTL of 

reasonable size. An even greater increase in power results from doubling the 

number of progeny tested. 
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4.4 DISCUSSION 

4.4.1 Between family genetic variation for rooting ability 

In the present study it has been observed that there is a considerable difference in 

the rooting abilities of two families of Eucalyptus globulus and that this difference 

is statistically highly significant. The most likely explanation for this observation 

is that genetic differences between the two families are responsible for the 

differences in rooting ability. This supports findings from previous studies on 

rooting ability in E. globulus (Willyams et al. 1992, Borralho and Wilson 1994, 

England and Borralho 1995, Lemos etal. 1997, Ruaud etal. 1999) which have 

concluded that there is genetic variation for this trait at the between family level. 

The existence of genetic variation for rooting ability is of interest in this study as 

it was originally designed as a QTL detection experiment and the presence of 

genetic variation predicates the existence of QTLs. However genetic variation for 

rooting ability between unrelated families cannot be directly exploited for QTL 

detection purposes. This is because the identification of QTL/marker associations 

depends on the existence of linkage disequilibrium that may not be present and 

cannot be relied upon in a pool of individuals from unrelated families. For QTL 

detection purposes genetic variation for the trait of interest is required within the 

family or families under study rather than between families. However the 

observed existence of genetic variation for rooting ability between families 

suggests that there is potential to generate or discover large within family genetic 

variation for this trait (given an appropriate cross). 
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4.4.2 Within family genetic variation for rooting ability 

It is preferable in QTL detection studies if the genetic variation within a family is 

large because this is likely to increase the probability of QTL detection. It is not 

always possible however to estimate the genetic contribution to phenotypic 

variance. Due to the repeated measurement (five dates of testing) of each 

genotype in this study it has been possible to estimate the between genotypes 

contribution (a2b) to phenotypic variance relative to the within genotypes variance 

(a2
). The between genotypes variance (a 2b) may include a component of 

environmental variance termed VEg  by Falconer (1989) that arises from permanent 

or non-localised circumstances. Thus a2b as a measure of genetic variance may be 

an overestimate. Lynch and Walsh (1998) make the point that the within 

individuals component of variance (ie. within genotypes or special environmental 

variance - a2w) can be inflated due to the inclusion of measurement error. There 

may have been measurement error in the assessment of rooting ability since it was 

assessed by visual inspection of the stems of cuttings after two weeks to 

determine if roots were present. From a finite number of samplings it could be 

argued that there is an uncertain amount of measurement error present in every 

estimate of rooting ability (but as more cuttings are sampled the estimate is likely 

to increase in accuracy). Neither of these two possibilities for overestimation is 

resolvable from the present data but are noted here to indicate that there is 

uncertainty in the variance estimates. Even so from the data the best estimate for 

genetic variance is 62b and the best estimate for environmental variance is a 2w. 

Ideally, for QTL detection purposes, a 2b will be large relative to a 2„. When 

measuring the vegetative propagation characteristics of an E. grandis x E. 

urophylla cross, Grattapaglia et al. (1995) calculated the repeatability for three 
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traits, fresh weight of shoot clumps, number of stump sprout cuttings and 

percentage rooting of cuttings as 0.59, 0.42, and 0.52 respectively (with n = 118, 

97, 96). The genotypic variance for these three traits thus constituted a large 

proportion of the phenotypic variance and genotyping of individuals led to the 

discovery of QTLs for all three traits. Since the clonal repeatability was quite 

large any QTL that explained a reasonable proportion of the genetic variance also 

explained a considerable proportion of the phenotypic variance. In the present 

study however the estimated clonal repeatability (CT2b4Cr2b Cr2w)) was relatively 

small for both families with 0.17 for Family 1 and 0.14 for Family 2. With low 

clonal repeatabilities such as these the proportion of phenotypic variance 

explained by a QTL is likely to be relatively small making the probability of QTL 

detection (power) low. 

Small clonal repeatabilities would be expected where the genotypic variation for 

rooting ability is small or where the environmental variation influencing each 

measurement of phenotype is large or a combination of the two. In this study it 

would appear that the generally large fluctuations in the phenotypic measurements 

as illustrated indicate that the environmental variation is large. Measurement error 

has been mentioned previously as contributing to this. No data has been obtained 

to determine what other factors might contribute to this variation and this is open 

to speculation. It is interesting to note that if there were no variation in the 

cuttings from a genotype and no variation in the propagation environment then it 

would be expected that for any number of cuttings from a genotype rooting ability 

would be either 0% or 100%. 
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4.4.3 QTL detection power 

The estimates of the variance components (between and within genotypes) for 

rooting ability in this study were used in calculations of the power of detection for 

hypothesised QTLs that explain specified proportions of the genetic effect. Even 

where it was assumed that the linkage between a marker and a QTL was perfect 

the combination of low genetic variance relative to environmental variance and 

relatively small number of individuals in the study made the power for QTL 

detection very low. This was especially true for Family 2 which had the smaller 

ratio of genetic to environmental variance combined with a much smaller number 

of phenotyped individuals. The power to detect one or more of several QTLs was 

also computed since this is considerably greater than the probability of detection

of a QTL considered on its own. Even so in all cases where the QTL was of 

reasonable size the power for detection was less than 50%. The lack of power for 

detecting QTLs for rooting ability led to the decision not to carry out marker 

genotyping of either of the two families. 

The calculations of QTL detection power are of course only applicable to the 

environmental conditions under which this experiment was conducted and power 

would increase if the variance attributable to environmental effects was smaller 

(assuming the genetic variance remained the same). It should be noted that the 

conditions that were used for the trial had been optimised for producing rooted 

cuttings from E. nitens and not E. globulus. Possibly under different conditions of 

media formulation there would be less environmental noise and greater variation 

in rooting ability between 'good' and 'poor' rooting genotypes within each 

family. 
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According to the equation in Soller (1991), the power to detect a given QTL (as it 

relates to this study) depends upon the following: (1) the relative size of the QTL 

effect to the residual effect (caused by environmental noise and the segregation of 

other QTLs), (2) the number of progeny (that have been phenotyped and 

genotyped) in the family in which the QTL is segregating, and (3) the distance of 

the QTL from a scored marker locus. There are possibilities for improving all 

three of these influences in the current experiment. Continuing the assessment for 

rooting ability over more samplings will theoretically increase the ratio of 

between genotype variance to within genotype variance. Practically this would 

mean that the phenotypic values used for QTL detection would have a larger 

genetic component. With these values the proportion of the phenotypic variance 

explained by a given QTL would be larger increasing power for detection. The 

expected increase in QTL detection power from doubling the number of testings 

has been explored for both families and is not inconsiderable. However the cost of 

doubling the amount of phenotyping would be large. Certainly it would only 

improve power sufficiently to be considered as an option for Family 1. If cost was 

not a problem and the aim was solely to detect QTL for rooting ability this would 

be a satisfactory option. 

The second method of improving power would be to increase the number of 

progeny assessed. Unfortunately all seed that was available for these two crosses 

was used in the rooting ability assessment. For Family 2 the actual number of 

seeds available was unfortunately much lower than estimated. The family was still 

included in the trial however since one of the parents was known to have high 

rooting ability. Larger numbers in both families would have been helpful for 

increasing QTL detection power and doubling the number of progeny was found 
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to be slightly more effective in increasing power than doubling the number of 

tests of rooting ability. Potentially however the cost of doubling the number of 

progeny would be more since as well as doubling the amount of phenotyping the 

genotyping costs would also potentially double. In any case both these methods of 

increasing the experimental power would have involved considerable time and 

cost and any QTL detected is still likely to be of small effect. 

One approach to reducing the environmental variance that would be justified if the 

in vitro system was to be used on a commercial scale would be to examine factors 

that might influence within genotype variation. Factors such as the position of the 

sourced cutting on the shoot clump, the age of the shoot, the length of the cutting, 

the number of intemodes and the presence/absence of an apex might be examined 

for effect on rooting ability. In field grown cuttings of E. globulus factors such as 

these have been found to influence rooting ability (Wilson 1993). 

The third factor that could be altered to increase the power for QTL detection 

would be to increase the density of the linkage map to improve the chances of 

having a marker close by any QTL that might be discovered. This is not really an 

issue in this study since even with zero recombination between marker and QTL 

the power for QTL detection appears to be low. The cost and time required to 

increase map density would only be warranted if the power for QTL detection was 

already high. The issue of map coverage as it impinges on power for QTL 

detection is treated below. 
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4.4.4 Factors that would reduce QTL detection power 

In this study the influence of distance between a marker and QTL and the size of 

the QTL effect have been taken into account when carrying out calculations for 

QTL detection power. However three factors that could reduce the power for QTL 

detection have not been taken into account - these are map coverage, segregation 

distortion and an inflated estimate of genetic variance. The power to detect a 

given QTL in the genome is entirely dependent on the coverage of that genome 

with markers. Even without statistical considerations of the power of marker 

contrasts, a genomic map covering less than 100% of the genome will have 

reduced QTL detection power relative to a map with complete coverage. This 

reduction in power is not likely to be a direct function of the proportion of the 

genome that is covered but may depend on the way in which the genome is 

covered (or not covered) with markers ie. the number of linkage groups covered 

the size of the genome and the distance between markers. The framework maps of 

the grandparents of Family 1 were estimated to cover 79% and 62% for the male 

and female parents respectively (Chapter 1 of this thesis) an average coverage of 

70%. These estimates did not include the information from unlinked markers of 

which there were 15 for each parent. There are also 11 regions on the two maps 

with close to or more than 30cM intervals. It is possible that there are QTLs for 

numerous traits in regions of the two parental genomes either not covered by 

markers or at least sparsely covered. Since these marker maps would form the 

basis for mapping in Family 1, there is some probability of otherwise detectable 

QTLs for rooting ability being outside the detection boundary of the maps. 

The second factor that was not taken into account when calculating the power for 

QTL detection is segregation distortion. The power calculations were carried out 
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assuming that the population would fall into two equal halves for marker 

genotyping purposes. However it is fairly unlikely that the two marker genotypes 

would consist of 77 individuals each and the probability of this given a 0.5 

probability of either genotype is approximately 0.064 and it is thus more likely 

(0.936) that some distortion from the exact 1:1 ratio will be found. It is also to be 

noted, that there were more regions of segregation distortion in the genomes of the 

grandparents than would be expected by chance, lowering the probability of a 

QTL occurring at a marker segregating perfectly 1:1. Certainly the power to 

detect a given QTL would decrease with increasing segregation distortion at the 

QTL/ marker. The question remains however as to what extent detection power 

will decrease as a QTL/marker varies from the 1:1 segregation ratio? 

If it is assumed that the number in the smaller marker class is substituted into the 

power equation, then using Family 1 as an example: 

for a QTL explaining 30% of genetic variance that is 3cM away from a marker 

segregating 72:82, the power (based on 72 individuals) would be 20% rather than 

23% for a 1:1(77:77) segregating locus. Since map coverage and marker 

segregation are ignored in the calculations of power for QTL detection presented 

in the results section, these calculations are likely to overestimate QTL detection 

power. 

A third factor that may have overestimated QTL detection power calculations is a 

potentially inflated genetic variance estimate. The estimate of genetic variance 

used in the QTL detection power calculations was the between genotypes 

variance. The genetic variance is potentially overestimated since the between 

genotypes variance may include environmental effects specific to some genotypes 
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(VEg). An example of this would be a cryptic bacterial infection that effects growth 

and is present in the in vitro cultures of some genotypes but not others. There is 

however no evidence for the existence of any effects and the estimate may in fact 

include very little environmental variance. 

4.4.5 Size of QTL effects and usefulness for breeding 

An important consideration for QTL detection with regard to breeding is the size 

of the QTL effect and its impact on the trait if marker assisted selection was 

implemented. It would appear that the impact on rooting ability of QTLs of 

realistic size from Family 1 under similar conditions would be relatively small. 

The increase expected on the mean rooting ability of Family 1 for QTLs of 

reasonable size is modest indeed with a QTL explaining 30% of genetic variance 

increasing the rooting ability from 0.16 to 0.22 an increase of 0.06. It would thus 

be likely that any QTLs detected would have insufficient impact on rooting ability 

to warrant their inclusion in a marker assisted breeding program. This would be 

especially true for a family such as Family 1 where in any case the rooting ability 

is low. The position of any QTLs could be checked in other families however to 

determine if there is segregation that influences the trait in other crosses. It would 

still also be useful to detect QTL for rooting ability in poor rooting families if 

their performance with regard to other traits was of merit. 

4.4.6 Further investigations 

As already mentioned an examination of the potential contributions to 

environmental variance could identify sources of environmental variation. If these 

sources of environmental variation could be easily reduced or removed then this 
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would increase the genetic contribution to rooting ability increasing both the 

power for QTL detection and the importance of any QTLs detected. Preferably a 

reduction in a source of environmental variation would improve the average 

rooting ability as well as improving the predictability of rooting ability. 

A useful approach to QTL detection for rooting ability would be to examine a 

larger number of families in smaller numbers to identify which families had the 

largest genetic variation for rooting ability. QTL detection experiments could then 

be undertaken with larger progeny numbers for the families with the highest 

genetic variation for the trait. Any QTL detected could be tested within the 

smaller families already studied to determine if their is segregation occurring 

within these families. Genotyping in the small families would only involve the 

testing of a few markers. 
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4.5 CONCLUSION 

It can be concluded that although there is considerable difference in rooting ability 

between the two families under study, the estimated ratio of genetic variance to 

environmental variance within each family was too small to give a reasonable 

power for detecting any segregating QTLs of realistic size. Even if a QTL of large 

genetic effect were to be detected, the influence of this QTL on rooting ability 

under similar conditions would be expected to be relatively small (an increase on 

average of 0.05 to 0.06 for QTLs explaining 20% and 30% of genetic variance for 

Family 1). Since their was an apparently large environmental variance found in 

this experiment further investigations into the source of the variation could be 

useful for in vitro rooting ability studies. 
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CHAPTER FIVE 

GENERAL DISCUSSION 

The aims of the PhD project reported in this thesis were: 

(i) to produce a linkage map of Eucalyptus globulus suitable for the detection and 

mapping of quantitative trait loci (QTL), with the linkage map to form a basis for 

further mapping and marker studies in this species 

(ii) to utilise the linkage map to detect and map QTLs for traits of commercial 

importance measured in the mapping population and carry out a preliminary study 

of environmental and temporal QTL stability 

(iii) to investigate the trait of in vitro rooting ability in large families of 

Eucalyptus globulus to determine its suitability for QTL detection. 

In chapter 2 of this thesis, the construction of linkage maps for two Eucalyptus 

globulus trees is presented. The trees are parents of an intraprovenance cross and 

the resultant linkage maps were the first reported for this cross type in Eucalyptus. 

They are also the first linkage maps constructed for a pure species cross in 

Eucalyptus globulus. 

The linkage maps give good coverage of the genome, estimated to be 79% for the 

male framework map and 62% for the female framework map with markers 

ordered at a high stringency LOD score of 3.0. The inclusion of microsatellite 
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markers on the maps has enabled both homologous linkage groups (between 

parents) and homoeologous (between Eucalyptus species) linkage groups to be 

identified. It is also a useful start to converting the maps into microsatellite maps 

for future studies. This is important to enable map integration and transfer of QTL 

information both within and between species. The transfer of QTL information 

between Eucalyptus maps from different species has now been demonstrated by 

Marques et al. (2002) for QTL for vegetative propagation, based on microsatellite 

loci. 

The linkage maps constructed for this study have also provided useful information 

for the use of microsatellite markers, in particular the previously unmapped 

EMCRC markers, for population and gene flow studies in Eucalyptus globulus 

(and potentially other Eucalyptus species), since they enable the selection of a 

subset of markers for study that are not in linkage and can thus be depended upon 

to provide independent information (Steane et al. 2001; Jones et al. 2002). 

Based on independently segregating regions (rather than number of markers), 

segregation distortion was observed at a frequency greater than expected by 

chance, suggesting a biological cause. 

In chapter 3, the linkage maps have been successfully utilised for the detection of 

quantitative trait loci (QTL) for traits of commercial importance. This is the first 

report of QTL detection for these traits in Eucalyptus globulus. QTL with LOD 

scores greater than 2.0 were detected for growth traits — two for cumulative 

growth and three for relative incremental growth, wood density (two QTL) and 

early flowering (one QTL). 
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Even though this is an exploratory study using a population of moderate size, one 

of the QTL for wood density was found to be highly significant at an empirically 

determined experiment-wise threshold. It is probable that this represents a QTL of 

reasonable effect, with an estimated 14% of the variance for the trait attributable 

to its segregation. This adds to the list of traits that have been found to have 

putative QTL that explain a reasonable proportion of the variance for the trait. 

A study of QTL stability was undertaken. QTL stability is an important issue, 

since marker-assisted selection is likely to depend on the availability of 

information on the stability of detected QTLs. Two putative QTL for cumulative 

growth were examined for their stability across environments, their stability with 

time and their co-segregation with QTL for relative incremental growth. The 

results indicated that the two QTL for cumulative growth were both strongly 

interactive with the environment. In addition, evidence was found for the presence 

of QTL that were detectable solely on the basis of their interaction with the 

environment. These are important findings since most QTL detection studies in 

forest trees have been carried out on single sites, and it is unknown to what extent 

the detected QTL effects are environment dependent. 

The temporal stability of QTL is also an important issue, since QTL for early 

growth may have no detectable effect on volume at rotation age, which is the key 

growth trait used for selection by breeders. The results from other studies of 

temporal QTL stability have been mixed, some studies indicating poor correlation 

between QTLs detected at different ages (Bradshaw and Stettler 1995; Plomion et 

al. 1996; Kaya et al. 1999), some intermediate (Verhaegen et al. 1997), some with 

good correspondence (Lerceteau et al. 2001) and some being a mixture (Emebiri 
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etal. 1998). The results from this study indicate that both of the cumulative 

growth QTLs were active by the first measurements of growth at year one, with 

QTL effects stable or having increased by year six. This should enable the future 

validation and further study of these QTL early in growth. 

It is likely that due to the early expression of the cumulative growth QTL, there 

was found to be no co-segregation with QTL for relative incremental growth. 

There was however co-segregation between an incremental growth QTL and a 

QTL for wood density. The QTL effects were in opposite directions for the two 

traits, that is, an increase in relative growth performance occurs with a decrease in 

wood density. It has been discussed that this is similar to results found in other 

Eucalyptus species by Verhaegen et al. (1997) and Grattapaglia et al. (1996), and 

the possibility was mooted for the existence of QTLs with pleiotropic effects, 

influencing growth and wood density but in opposing directions. It was also noted 

that the second QTL for wood density was independent of any QTL for growth 

and this QTL may represent part of the genetic variation for wood density that is 

genetically independent of growth. 

In chapter 4 an analysis of the trait of rooting ability of micropropagated cuttings 

was reported. The two E. globulus families studied were found to have 

significantly different rooting abilities, a finding that bodes well for the possibility 

Of finding or constructing a family in which there is segregation of QTLs for this 

trait. Large family sizes were utilised with the aim of undertaking marker 

genotyping and QTL detection, if sufficient genetic variance for the trait was 

found in one or both families. The level of genetic variance was however, small 

compared to the large environmental variance found for both families. The 
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population size for the family with the greatest genetic variance was small and 

estimations of the power to detect segregating QTL of reasonable size indicated 

that marker genotyping for QTL detection was not worthwhile in either family. 

The aims outlined at the beginning of this discussion have been fulfilled by the 

experimental work and a number of significant findings highlighted. There is 

certainly scope for further experimental work relating to the studies described 

here, especially in the areas of QTL validation, exploration of site interaction and 

temporal stability of QTLs. The fact that the population used for mapping and 

QTL detection was part of a half diallel crossing design, allows for the possibility 

of studying QTL stability across genetic backgrounds, another critical issue 

concerning QTL stability in forest trees. In addition a reference linkage map has 

been established for mapping in E. globulus and the trait of rooting ability 

explored for its potential for QTL detection. 
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