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Abstract 

Managing natural marine resources for sustainable exploitation of the oceans and 
the flora and fauna they contain is a challenging task. Decisions by policy makers 
are based on advice from the scientific community. Through surveying and 
monitoring programs, scientists study the marine environment to gain insight into 
its structure and function. Employing acoustic techniques, sonar systems are often 
the best tools available to effectively observe aquatic environments. Important 
applications include fisheries and seafloor mapping. Fish stock assessments are 
typically conducted using single beam echosounders, while bathymetric surveys are 
conducted with multibeam sonar. 

Multibeam sonar instruments that are capable of collecting samples for the 
complete water column are an emerging technology. Since they collect acoustic 
data over much greater sampling volumes than single beam instruments, significant 
improvements in fisheries studies are expected. The combined collection of seafloor 
and water-column data will lead to survey cost savings and to an integrated, 
ecosystem-based approach to monitoring the ocean environment. While standard 
data analysis procedures are established for single beam fisheries and standard 
multibeam bathymetric applications, this is not the case for full water-column 
multibeam sonar data. 

In this thesis, a data mining approach for handling such data is proposed. The 
developed method consists of a preprocessing algorithm based on an inversion 
technique, followed by a pattern analysis algorithm using kernel clustering methods. 
The preprocessing algorithm applies a deconvolution as a model inversion method 
to reduce the data set in size and to convert the acoustic measurements into a 
generic vector representation. Each vector has a spatial and a temporal component 
as well as a number of additional features typically relating to the acoustic 
backscatter energy. These spatio-temporal vectors are then subjected to pattern 
analysis algorithms. Two clustering algorithms are selected: a density based spatial 
clustering algorithm, and a clustering algorithm based on kernel methods. A new 
method is developed to allow the kernel clustering algorithm to make use of the 
spatial and non-spatial components of the data in a combined fashion. This results 
in a powerful, flexible and versatile clustering procedure. The outcome is a 
segmentation of the data into coherent structures, for example fish schools and the 
seabed. Classification is achieved through the differentiation between data clusters 
indicative of different fish species or seabed habitats. The effectiveness of the data 
mining methods is demonstrated in a number of case studies. 

It is hoped that the developed approach will facilitate routine use of water-column 
multibeam sonar data for fisheries applications in particular, and for ecosystem 
studies and marine resource management in general. 
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1 INTRODUCTION 

1.1 MOTIVATION 

In the 1990s, the first results of conducting fisheries research studies using 
multibeam sonar were published (Misund and Aglen, 1992; Soria et al., 1996; 
Gerlotto et al., 1999; Noettestad and Axelsen, 1999). By the turn of the century, it 
was clear that this new approach offered new possibilities and would lead to 
significant advances in fisheries research. While standard data processing and 
analysis methods were established for data collected using single beam sonar, no 
such methods were available for multibeam sonar data. In 2002, the research project 
that has led to this thesis was started, with the aim of developing a data processing 
and analysis methodology for multibeam sonar data. Such methods must be capable 
of handling the large data volumes that multibeam sonars collect, and be applicable 
to data from a wide range of instruments. The methods should derive useful 
information from the data, in a fashion that facilitates the combination of multibeam 
data with other data sets, for an integrated, ecosystem-based approach to the study 
of aquatic environments. 

In this introductory chapter, the context of the project is presented, followed by a 
description of the problem addressed, and the research objectives. The final section 
of the chapter gives a synoptic overview of the remainder of the thesis. 
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1.2 CONTEXT 

Exploration and exploitation of the oceans and the natural resources they contain 
has been important for a long time, and affects many aspects of our society. 
Studying the dynamics of the water masses and the life they harbour contributes to 
our understanding of the global ecosystem and related issues, including climate 
change. Many important industries are based on ocean exploitation. These include 
the oil and gas industries and commercial fisheries. Increased human activity is 
putting pressure on the ocean environment. Sustainability is, therefore, a key aspect 
of contemporary marine resource management. 

The latest edition of the United Nations Environment Programme (UNEP) 
publication Global Environment Outlook (UNEP, 2007) articulates a number of 
important messages with respect to aquatic ecosystems, including the following. 

• Continued overexploitation of fish stocks affects human well-being. 
Implementation of policy responses to this issue enhances human health, 
socio-economic growth and aquatic environmental sustainability. 

• The world's oceans are the primary regulator of global climate, and an 
important sink for greenhouse gases. 

• Aquatic ecosystems continue to be heavily degraded, putting many 
ecosystem services at risk, including the sustainability of food supplies and 
biodiversity. 

• A continuing challenge for the management of water resources and aquatic 
ecosystems is to balance environmental and developmental needs. 

The main reasons for the decline in fish stocks (Figure 1.1) are a combination of 
unsustainable fishing, habitat degradation and global climate change. Declining fish 
stocks do not only cause loss of biodiversity, but they have serious implications for 
human well being too, with fish providing more than 2.6 billion people with at least 
20 per cent of their average per capita animal protein intake (UNEP, 2007). 

According to the United Nations Food and Agriculture Organization (FAO), a 
global shortage of fish supply is expected; fish prices are forecast to increase (FAO, 
2006). While pollution, shipping, military activities and climate change threaten 
marine biodiversity and ecosystems, fishing currently presents the greatest threat 
(Gjerde, 2006). 
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Figure 1.1 Exploitation status of marine fish stocks. (Image from UNEP GEO-4, 
2007; source: Sea Around Us Project (SAUP) 2006.) 

The ecosystem-based approach to natural resource management  is  a major principle 
underlying modern management practices (De la Mare, 2005; Garcia and Cochrane, 
2005; Frid et al., 2006). It was adopted by the Parties of the 1992 Convention on 
Biological Diversity (CBD) as a strategy for the integrated management of land, 
water and living resources, that promotes conservation and sustainable use in an 
equitable way (Gjerde, 2006). A key element of ecosystem-based management is 
the establishment of Marine Protected Areas (MPAs). The CBD defines a marine 
protected area as "any defined area within or adjacent to the marine environment, 
together with its overlaying waters and associated flora, fauna  and  historical and 
cultural features, which has been reserved by legislation or other effective means, 
including custom, with the effect that its marine and/or coastal biodiversity enjoys a 
higher level of protection than its surroundings." 

Marine science and technology are developing at a fast pace; they provide the 
necessary input and support for natural resource management and policy decisions. 
There is an urgent need to apply new scientific insights to the management of the 
global aquatic environments. In fact, much of the current understanding of the open 
ocean and deep seabed stems from explorations carried out in the last five to ten 
years, according to a United Nations report (Gjerde, 2006). International research 
projects and global cooperative efforts, such as the Census of Marine Life (CoML) 
(O'Dor, 2004; Yarincik and O'Dor, 2005) are helping to assess and explain the 
changes in past and present diversity, distribution and abundance of marine species, 
and to protect future ocean life. Transnational organisations and conventions such 
as the International Council for the Exploration of the Sea (ICES) and the 
Commission for the Conservation of Antarctic Marine Living Resources 
(CCAMLR) coordinate international marine research focused on specific regions 
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such as the North Atlantic, the Baltic Sea and the North Sea in the case of ICES, 
and the Southern Ocean and the Antarctic in the case of CCAMLR. 

A wide range of sensing and measuring devices and instruments is deployed in the 
oceans, collecting very large amounts of scientific data. Measurements are made at 
varying spatial and temporal scales. These measurements lead to an understanding 
of the systems directly, or they can be used as input to mathematical models. 
Quantities of interest include ocean temperatures, currents, salinity and acidity 
levels, seabed depth and habitats. Observations of marine life are conducted by 
tracking tagged individuals or estimating abundance and spatial distributions of 
stocks. Instruments can be mounted on buoys, ships, or underwater vehicles. A 
graphic impression is given in Figure 1.2. 

Scientists from various disciplines are in need of tools, algorithms and systems to 
process and analyse these often disparate data sets, and to discover systematic 
patterns that can explain a system as complex as the global oceans. The work 
reported in this thesis represents a significant contribution to this field of research. 

Figure 1.2 Depiction of  a  deployment of a multitude of sensors to observe the 
aquatic environment. Copyright: Monterey Ocean Observing System (MUSE 
Project). 

4 



1 Introduction 

1.3 PROBLEM DESCRIPTION 

Acoustics is a common method used to study the underwater environment. 
Electromagnetic waves such as visible light are attenuated rapidly in water, whereas 
acoustic waves can propagate over long distances and penetrate to large depths. 
Acoustics is based on the examination of the characteristics of reflected sound 
(Urick, 1983). With respect to fisheries, acoustics is a more cost-effective and less 
intrusive method to conduct stock assessments than catching fish. Fisheries 
acoustics is the research area that studies the use of underwater sound to study fish, 
their behaviour, spatial distribution, and abundance (Simmonds and MacLennan, 
2005). 

Acoustic instruments for observing the aquatic environment are generally referred 
to as sonars. Echosounders, which are sonars with a single beam looking downward, 
are the standard acoustic devices used in routine fisheries surveys. Multibeam sonar 
systems have multiple beams pointing in different directions. Their use in fisheries 
research is relatively new. The use of multibeam sonar is well established for 
hydrographic applications, to measure the bathymetry or seabed depth. Sonar 
instruments designed for that purpose were typically not capable of collecting sound 
echoes from the water column, which is the body of water between the seabed and 
the transducer. However, most modern multibeam sonar systems designed for 
bathymetric applications can also collect data from the water column. 

Multibeam sonars collect large amounts of data. Since the data are collected 
underwater using acoustic devices, the term hydroacoustic data is commonly used. 
Furthermore, the acoustic measurements are spatially and temporally referenced, 
hence the term spatio-temporal hydroacoustic data. Not only the data volumes but 
also the different instruments used to collect the data pose challenges in terms of 
data processing and analysis (Buelens et al., 2006). A recent ICES report refers to 
this problem as the data bottleneck (ICES, 2007b). A need exists to reduce this 
bottleneck: effective, fast, automated algorithms are needed to process and analyse 
the data into an intelligible, informative and manageable representation. This is the 
problem that is addressed in this research. 

1.4 RESEARCH OBJECTIVES 

The central objective of this thesis is the development of a data mining process for 
the hydroacoustic data obtained by the new generation of multibeam sonar 
instruments capable of collecting data from the water column. In particular, the use 
of such data for fisheries applications is a primary point of focus. 
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A data mining process is a data handling and manipulation procedure leading to 
new insights in the data and what they represent (Cios et al., 1998). In fisheries 
research, these insights will contribute to improved biomass estimates and stock 
assessments, to a better insight in schooling behaviour, and generally a better 
understanding of ecosystems in which fish populations are an essential component. 

The data mining procedure is required to be able to handle the large amounts of data 
from various sonar instruments in a generic fashion. It must lead to an informative 
representation of the data in such a way that relevant higher level structures and 
concepts become available through the application of versatile and sophisticated 
algorithms. 

1.5 THESIS SYNOPSIS 

For this thesis, the two most important fields of research are underwater acoustics 
and data mining. General overviews of these subjects are given in chapter 2. 

The data mining process that is presented in this thesis consists of two main phases: 
a data preprocessing phase and a pattern analysis phase, which are developed in 
chapters 3 and 4 respectively. 

Chapter 5 contains case studies in which data are processed using the proposed data 
mining approach. Examples of modeled data, and real multibeam sonar and single 
beam echosounder data are given. 

Final conclusions are drawn in chapter 6. 
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2 BACKGROUND 

Many great advances in applied research occur when researchers from traditionally 
separate fields work together and combine their knowledge. One such area of 
research is fisheries acoustics. It has been a multidisciplinary field of research for 
decades. Contributors come from various disciplines including: 

• physics (acoustics), 

• engineering (instrumentation such as transducers), 

• statistics, mathematics and computer science (data analysis), and 

• biology, ecology and oceanography (users of the systems and the data). 

Section 2.1 describes the field of underwater acoustics and the role multibeam sonar 
has started to play in recent years, particularly in fisheries research. Section 2.2 
provides a general background on data mining and its role in the analysis of large 
data sets in general and spatio-temporal hydroacoustic data sets in particular. 

2.1 UNDERWATER ACOUSTICS 

2.1.1 Underwater acoustic measurements 

Underwater acoustics enables the detection and location of fish, and the 
measurement of the bottom depth. Techniques to determine characteristics of fish 
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such as size, age, or species exist and are a topic of ongoing research. Similarly, the 
determination of bottom characteristics is possible using acoustic techniques. 
General overviews of fisheries acoustics are given in Simmonds and MacLennan 
(2005) and Misund (1997). Determination of the bathymetry (seafloor depth) is 
commonly achieved using multibeam sonar (de Moustier, 1988; Hughes Clarke et 
al., 2000). A good overview of the state of the art in acoustic seabed 
characterization is presented in a recent ICES cooperative research report (ICES, 
2007a). A general text on underwater acoustics is Urick (1983), and on acoustics 
Crocker (1998). This section is based on the references quoted, unless indicated 
otherwise. 

Acoustics is the theory of sound propagating through a medium subject to scattering, 
reflection and absorption. Sound waves can propagate through water because of its 
elasticity which allows periodic compression and expansion. A sinusoidal sound 
wave is characterized by its frequency f, which is the number of cycles per second 
with which the pressure p varies relative to the ambient pressure level. 

The sound speed c describes the speed with which wave fronts, or pressure peaks, 
move through the medium. The wavelength X is the distance between two 
consecutive peaks. The following relation holds: 

c = f 	 (2.1) 

The sound speed is dependent on the medium. For water, c is typically in the range 
1450-1550 m/s, depending on water temperature, ambient pressure and salinity. The 
wavelength poses a limit on the spatial resolution of targets when observed using 
acoustic instruments. 

Sonar instruments transmit pulses comprised of a few cycles of a sine wave that 
lasts for a finite time: the pulse duration. Such a pulse is also referred to as a ping. 
Sonars commonly transmit pulses at frequencies centred in a narrow band around a 
centre frequency fo. This centre frequency is the frequency that is quoted when 
discussing sonar instruments. For most purposes the signals such systems generate 
are treated as single frequency signals. Wide band systems transmitting signals at a 
range of frequencies, or chirp systems which vary the frequency during 
transmission are not discussed in this thesis. 

The pulse duration and the wavelength of the signal determine the resolution of a 
sonar in the along-beam direction. The across-beam resolution is dependent on the 
angular beam width and the range. 

A sound wave causes the water particles to vibrate. The amplitude of this particle 
movement is called the particle displacement, and the rate of change is the particle 
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velocity v. In a plane wave, the pressure and particle velocity both vary as a sine 
wave and are in phase. The pressure, p, is related to the velocity, v, by the formula: 

p= pcv 	 (2.2) 

where p is the water density. When a small source generates a wave, the wave 
fronts travel away from the source in all directions, in a spherical manner, and the 
wave is not planar. The relation between pressure and particle velocity is more 
complex in that case, and depends on the wavelength and the distance from the 
source. The far field of a source is determined by the distance at which the relation 
between pressure and particle velocity can be approximated by relation (2.2), a 
planar wave; the approximation does not apply in the so-called near field, or Fresnel 
zone. 

A travelling wave carries energy. The flux J is the energy of the wave passing 
through a unit area perpendicular to the wave front. The intensity I is the energy 
flux per unit time. The intensity is the product of the pressure and the particle 
velocity: 

I=pv=p2 Ipc. 	 (2.3) 

Usually, the average intensity over one or more cycles of the wave is required, in 
which case the mean squared sound pressure is substituted for p. In particular, it is 
customary to work with root-mean-square (RMS) pressure amplitudes: 

PR2 MS = f(P(t) P0 ) 2  dt . 
I cycle 

(2.4) 

In this thesis RMS pressure is assumed when using the term pressure or pressure 
amplitude. 

The quantity: 

Z = pc 	 (2.5) 

is the acoustic impedance, which is almost constant over the sound path in typical 
underwater environments. 

Sonar instruments measure the pressure, and convert the mechanical energy into 
electrical energy, effectively reporting the pressure as a voltage. Under the 
assumption that the impedance is constant, the squared voltage is proportional to the 
intensity, as is seen from eq. (2.3). 
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Sonars transmit pulses by means of a transducer, which converts an electric signal 
in an acoustic signal, thus generating a sound wave. Wave fronts travel outwards 
from the transducer, spreading spherically. In the far field, the intensity I varies with 
the inverse square of the range r: 

I = Io  1 r 2 
	

(2.6) 
where the range r is the distance to the transducer, and jo  is the reference intensity, 
which is the intensity normalized to unit range. 

Absorption is the loss of energy of a wave travelling through water. The lost energy 
is converted to heat. This is due to the particle movements, with higher frequencies 
incurring higher particle velocities. This is why low frequency waves penetrate 
deeper into the water, as they lose energy less quickly. The pressure, and hence the 
intensity of a wave decreases exponentially as: 

= 10 10- 1 1 ° 
	

(2.7) 

with a the absorption coefficient. 

When a wave is transmitted by a transducer, it travels away from it to encounter a 
target such as a fish. A proportion of the energy of the incident wave is 
backscattered by the target. This backscattered wave travels in the opposite 
direction to that of the transmitted pulse, and is received some time later by the 
transducer. In this thesis it is assumed that the same transducer is used for 
transmission of a pulse and reception of its echo, or at least that the transducers are 
close enough to be considered the same in practical applications. 

The backscattering cross section o-b, is a measure of the proportion of incident 
energy that is backscattered by a target: 

at. .r Ib i li2 
	

(2.8) 

with lb  and I, the backscattered and incident intensities respectively. The inverse 
square law for energy spreading means that o -b, is a constant for a given target. The 
target strength TS is the logarithm of the ratio of the backscattering cross section 
and a reference area of 1 square meter (Clay and Medwin, 1977): 

TS = 10 log io  abs 	 (2.9) 

The logarithmic measure TS is usually used to describe target strengths of aquatic 
organisms and is expressed in decibels. 
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For a target at a range r backscattering some of the incident energy, the time that 
elapses between the transmitted sound wave leaving the transducer and the 
backscattered signal arriving at the transducer is equal to the time needed for the 
sound wave to travel a distance of 2r. Hence, when an echo is received at the 
transducer at a time t after transmission, the range to the target responsible for that 
echo is: 

r=ct12. 	 (2.10) 

A pulse of duration r, transmitted between times t i  and t2, has a length in the range 
direction of: 

ct2  / 2 — ct, / 2 = cy12 	 (2.11) 

Since two targets can be resolved only when each of them results in a separate echo 
pulse, it is clear that targets that are closer than a distance of cr 1 2 cannot be 
observed individually. 

In a situation when there are many targets close together, as is typically the case 
with fish schools, the targets form a combined return pulse, which does not allow 
for determination of individual targets of fish but which has an intensity that is still 
proportional to the combined target strengths of the individual scatterers (Foote, 
1983). The volume backscattering coefficient s, is defined as: 

1 
sv  

v iEv 
(2.12) 

where V is the sampling volume and the sum is taken over all targets in V. The 
sampling volume is that volume for which targets within it are observable by the 
sonar. The logarithmic equivalent is commonly used, the volume backscattering 
strength Sv: 

Sv  =10 log io 	 (2.13) 

The importance of this theory is that it allows for the counting of the number of fish. 
When fish are not close together, the number of return pulses can simply be counted. 
In the other situation, considering eq. (2.12), and assuming that the distribution of 
the target strengths of the fish is known with expected value (cr bs ), eq. (2.12) can be 
written as: 

n(ubs)  

= V 
(2.14) 
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with n the number of targets in the volume V. 

In situations where the transmitted sound pulse cannot penetrate to the deeper layers 
of dense fish schools, the shallower scatterers are said to cause a shadowing effect. 
This effect can lead to underestimation of fish numbers. 

The value of s is directly calculated from the voltage output from a calibrated sonar 
(section 2.1.3). Based on knowledge of, or assumptions about, the target strength of 
the observed fish, eq. (2.14) can be used to determine their number, n. The 
underlying theory is that of echo integration, which is not elaborated on in this 
context. A good discussion, together with references to the original literature on the 
subject, can be found in section 5.4 of Simmonds and MacLennan (2005). 

Until now the targets have been assumed to be point targets, or fish. Similar theory 
applies of course to scattering from the seafloor. However, a number of important 
differences exist. Unlike relatively small scatterers, the seabed is fixed in that it is 
not displaced by the incident wave. The way in which the incident energy is 
backscattered is different: the seabed can absorb much of the incident energy, or let 
the energy penetrate to certain depths from which it is backscattered slightly later 
than from the seabed surface. The references provided at the beginning of this 
section provide a good background on the subject. In the present context only two 
facts are relevant: 

• the return pulse from the seabed can be used to determine the depth, or 
bathymetry, 

• the characteristics of the return pulse can be used to derive properties of the 
seabed surface, such as its roughness or hardness. 

2.1.2 Sonar instruments 

It is instructive to differentiate between sonars that transmit and receive on a single 
channel using a mostly narrow beam, and sonars that transmit and receive on many 
channels simultaneously. The former are known as single beam sonars, the latter as 
multibeam sonars. General references on this subject include Mitson (1983) and 
Medwin and Clay (1998). 

Sonars generate electrical signals, which are converted to acoustic signals in the 
water by a transducer. The transducer contains a number of piezo-electric elements 
to convert electric signals to acoustic signals and vice versa. The same or possibly 
another transducer is used to convert the return signal, or echo, back to an electric 
signal. The electrical signal is digitized through sampling, and the samples are 
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either stored directly or transmitted on a computer network, where they can be 
picked up by data logging software. 

Single beam sonars and echosounders have circular or elliptical transducers (Figure 
2.1). The size of the transducer determines the beam width of the acoustic beam, 
given the frequency. Beams are typically 5-15 degrees wide. All the elements in the 
transducer are activated simultaneously by the same electric signal, and the received 
signals are summed to constitute a single output signal. There are a number of 
variations that offer more possibilities; two common ones used in fisheries research 
are: 

• Split beam echosounders allow for separate reception on each quadrant of 
a circular transducer. Using the phase differences between halves (pairs of 
quadrants), the direction of arrival of the received signal can be 
determined, through which it is possible to locate targets in the beam in 
three dimensions: range, as usual, and additionally two angular 
coordinates off the vertical. 

• Dual beam echosounders allow for separate transmission and reception on 
a circular subset of the circular transducer. The greater the diameter of the 
circle of activated elements, the narrower the beam. By using a wide and a 
narrow beam, the differences between the two signals can be used to 
determine how far off the central axis a target is located. 

Figure 2.1 A 120 kHz transducer of a Simrad EK60 split beam echosounder. 
Copyright: Simrad AS, Norway. 

Signals received by single beam echosoimders are sampled and stored to disk. The 
data consist of a series of received voltage signals, where each received signal is the 
echo from a transmitted pulse. Usually the signal is corrected for absorption and 
spreading losses through the variation of the gain in the sonar's amplifier with time; 
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this is known as applying a time-varying-gain or TVG. TVG corrected signals are 
shown visually by means of an echogram: a visual display, with range on the 
vertical axis and the transmit times on the horizontal axis (Figure 2.2). Each sample 
is coloured by its backscatter amplitude, where warmer colours indicate higher 
amplitudes (what the actual values are is not relevant in the present context). 

depth (m) 

-3 

- 

-38 

-54 

-58 

-8 

-6 

7 

 

  

transmit time (s) 

Figure 2.2 Example of a single beam echogram from a Simrad EK500 

echosounder (Sv  values in dB). 

Multibeam sonars have transducers that consist of elements that are activated 
individually. The elements of such transducers are typically arranged in a linear flat 
or curved array. Since the beam width is very wide in the direction perpendicular to 
the direction of the array, it is customary to have one array for transmission, and 
another array perpendicular to the first for reception (Figure 2.3). This is known as a 
Mills-Cross array. Through this technique it is possible to attain narrow beams in 
both directions. The narrow beams are coplanar. 

Figure 2.3 Transducer arrays of a Reson Seabat  8160.  Copyright: Reson A/S, 

Denmark. 
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When transmitting, each element can be activated individually. This makes it 
possible to steer the beam electronically by changing the phase of the transmit pulse 
slightly from element to element. When this is done based on the input from a 
motion sensor, the beam can be stabilized for vessel motion such as pitch and roll. 
On reception, signals are received on the individual elements. The phases of these 
signals are used to form individual beams, pointing in different angular directions. 

Until the early-to-mid 1990s, digital recording technology was not capable of 
outputting the complete signals for all elements. At the time, the signals were 
processed on dedicated Digital Signal Processing boards, which implemented 
algorithms to detect the bottom. The primary capability of such multibeam sonars 
was to get accurate bottom detections in each beam. The detections were output and 
stored to disk. Advances in technology have made it possible for complete 
multibeam sonar signals to be output, often together with the on-board determined 
bottom depths. The complete signal includes the backscatter returns from the water 
column. 

The process of resolving the beams from the phase differences is known as 
beamforming, and is usually conducted prior to storing the data to disk, as is a TVG 
compensation. The backscatter amplitudes of the samples can be plotted in an 
echogram (Figure 2.4). All the data samples in such an echogram are collected from 
a single ping (one transmit-receive cycle). The corresponding single beam data are 
one vertical line of samples in Figure 2.2. In other words, a multibeam sonar 
collects a complete image as in Figure 2.4 for each vertical line of single beam data 
as in Figure 2.2. 

depth 
(m) 

distance (m) 

Figure 2.4 Example of a multibeam echogram from a Reson Seabat 7000 series 
model (Sv  in dB, not calibrated). 
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Typical multibeam systems collect data for 100-300 beams simultaneously. As a 
result, multibeam data sets are typically two orders of magnitude larger than single 
beam data files for the same number of pings. 

Another class of sonars have cylindrical or spherical transducers (Figure 2.5). Their 
primary purpose is finding fish at long ranges from the vessel. As opposed to the 
two designs discussed above, this type of sonar has beams pointing typically in a 
circular fashion away from the transducer, forming  a  conical shape. To differentiate 
these models from the multibeam sonar described above, they are referred to as 
omnidirectional sonars. 

Figure 2.5 Spherical transducer head of the Furuno FSV-30 series. Copyright: 
Furuno Electric Co. Ltd., Japan. 

2.1.3 Multibeam sonar for water-column measurements 

Multibeam sonar is the best and most widespread instrument to determine 
bathymetry, and at the same time bathymetry is the most common use of multibeam 
sonar (de Moustier, 1988; de Moustier and Matsumoto, 1993; Chakraborty and 
Schenke, 1995; Hammerstad, 1995; Mitchell, 1996; Pratson and Edwards, 1996; 
Brissette, 1997). Bathymetric multibeam sonar is an active field of research, for 
example the processing of bottom detections (Brouns et al., 2003; Calder, 2003; 
Canepa et al., 2003) or the inclusion of the backscatter amplitudes for the bottom 
detections, which provides insightful information  of  bottom types, characteristics 
and seabed habitats (Clarke et al., 1996; Keeton  and  Searle, 1996; Chakraborty et 

aL, 2001; Preston et aL, 2001; Fonseca et al., 2002; Chakraborty et al., 2003; 
Gallaudet and de Moustier, 2003; Hellequin et  al.,  2003; Mayer, 2006; ICES, 
2007a). 
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The capability for multibeam sonars to output the complete signal, including the 
backscatter echo returns from the water column, rather than just that from the 
seabed, is recognized as having great potential for fisheries research. The main 
advantages over using echosounders were identified as increased sampling volume 
without loss of resolution, and extra spatial information. The first studies using 
multibeam water-column data concentrated on fish behaviour, such as vessel 
avoidance (Misund and Aglen, 1992; Soria et al., 1996), schooling behaviour 
(Gerlotto et al., 1999), predator-prey interactions (Noettestad and Axelsen, 1999) 
and fish migration (Hafsteinsson and Misund, 1995). Behavioural studies have 
continued since, providing new insights that would not have been possible to 
achieve without multibeam sonar (Axelsen et al., 2001; Johnson et al., 2001; 
Benoit-Bird and Au, 2003; Gerlotto and Paramo, 2003; Gerlotto et al., 2004; 
Brehmer etal., 2006; Gerlotto et al., 2006). 

Behavioural studies are qualitative, in that the actual levels of the backscattered 
signals are not used to derive information about the observed organisms. In fisheries, 
an important aspect of surveys is estimating the number of fish, possibly specified 
to species or age group. When sonar is used for this purpose, it is said to be used in 
a quantitative manner. In order for quantitative work to be possible, a sonar has to 
be calibrated. Calibrating is the process of establishing values for parameters that 
are used in the calculation of target strength (TS) or volume backscattering strength 
(Sr) from the voltage signal from the sonar. One of the parameters in question is the 
on-axis sensitivity, which must be such that a target with a known target strength, 
placed in the centre of the acoustic beam, is observed by the sonar system to have 
that target strength. In a multibeam system, this has to be the case for each beam. 
The other parameter relates to the beam pattern of the acoustic beam, and is known 
as the equivalent beam angle, which is a measure of the beam width (Simmonds and 
MacLennan, 2005). 

Calibrating single beam echosounders is common practice. The procedure to 
conduct a calibration is described in Foote et al. (1987). The calibration of 
multibeam sonar is more involved but not essentially different. A protocol for 
calibrating multibeam sonar is described in Foote et al. (2005). It is partially based 
on results from earlier preliminary multibeam calibration experiments (Chu et al., 
2001b; a; Cochrane et al., 2003; Melvin et al., 2003). There are outstanding issues 
related to the varying angular aspects of insonification of fish by multibeam sonar. 

Since water-column data from multibeam sonar has three spatial dimensions, 
appropriate visualization tools are needed to present the data samples (Mayer et al., 
2002; Arsenault et al., 2004; Wilson et al., 2005). This aspect is elaborated on in 
section 4.2. 
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While water-column multibeam data have been used for more than a decade, there 
are a number of challenges that remain with respect to data processing and analysis 
(Buelens etal., 2006): 

• The data volumes are very large. Since one ping of multibeam data contains 
two orders of magnitude more samples than its single beam equivalent, 
storing and handling multibeam data are an issue. 

• Standardization is needed. Calibration is a good step towards ensuring that 
data are independent of the conditions under which they were collected. 
However, differences in instrumentation make it difficult to compare data 
collected with different instruments, including other multibeam sonar 
models, or even single beam and omnidirectional sonars. 

• Visualization is important. The spatial complexity of multibeam data means 
that it is difficult to represent graphically, especially when data covering 
large areas or long time spans must be visualized simultaneously. 

• Automation is essential. Since the data volumes are large and visual 
inspection is less straightforward than with single beam data, automated 
algorithms are needed to detect noise or errors in the data. 

• Segmentation or object detection algorithms capable of identifying subsets 
of the data as coherent structures automatically is essential to aid in data 
analysis. 

• Classification algorithms based on previously segmented data would be very 
useful to reduce processing and analysis time. 

These are computational challenges, with solutions to be found in the field of 
computer science. The next section discusses computational aspects of data analysis. 

2.2 DATA MINING AND PATTERN ANALYSIS 

2.2.1 The data mining process 

Within the broad theme of computer science, covering areas as diverse as 
programming languages and operating systems, some fields of research concern the 
analysis of data by computers in an automated fashion. The informatization of 
society has instigated renewed interest in this field since the early 1990s, with the 
dawn of the interne and the increasing ease with which data can be collected, 
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stored and accessed. Large data sets are being created and collected continuously, 
from sales and bank transaction records to seismic sensor recordings, from 
surveillance camera video footage to meteorological satellite imagery. Analysis of 
such data sets is often not trivial. Many data sets are very large, preventing human 
expert investigation. Classical statistical analysis can be of use, but is often limited 
because of strong assumptions that are needed, such as normality of distributions, or 
linearity of problems or models. These assumptions are not needed in many of the 
computational methods arising from computer science research (Breiman, 2001; 
Cox etal., 2001). 
Data mining is the process of analysing data sets with the purpose of discovering 
previously unknown relationships or patterns. A number of introductory and review 
papers on the subject are available in the literature (Fayyad et al., 1996; Cios et al., 
1998; Jain et al., 2000; Smyth, 2000; Grossman, 2001; Ramalcrishrian and Grama, 
2001; Smyth, 2001; Ramalcrishnan, 2003; Yao, 2003). The data mining process can 
be presented as a stepwise process (Figure 2.6) (Van Hulle, 2004). When the data 
that are the subject of the data mining processes arise from scientific experiments, 
measurements or models, the term scientific data mining is used (Fayyad et al., 
1996; Grossman, 2001). 

raw 	 pre- 	detected 	knowledge, 
data 	processed 	patterns 	information 

data 

data 	pattern 
	

interpretation 
preprocessing 	analysis 

Figure 2.6 Schematic overview of the data mining process. 

Prior to searching for patterns or regularities, input data sets are typically 
preprocessed with the purpose of representing the data of interest in a generic 
manner. Preprocessing is sometimes referred to as feature extraction, because an 
important aspect of data preprocessing is precisely the conversion of data into a 
representation by means of properties or features that best describe the data at hand. 

Pattern analysis is the core component of the data mining process. Its aim is to find 
relationships in data sets. Many general pattern analysis algorithms have been 
published. The most common and important ones are found in standard reference 
books (Duda etal., 2000; Hastie etal., 2001; Bishop, 2006). 
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Patterns arise when elementary data units are related in such a way that the 
relationship conveys information. Some examples are: 

• Pixels constituting an image: individual pixels convey very little, but when 
combined as an image, they convey information about the subject in the 
image. The pattern is what is shown in the image. 

• Sounds combined together to form words: the order and transitions of 
spoken sounds gives them the meaning of words and sentences. The 
sequential order of sounds constitutes patterns conveying information. 

• Credit card transaction data recorded by banks: individual transactions may 
look legitimate, but when considered together with other transactions may 
indicate fraudulent card use. The patterns in transaction records can indicate 
legitimacy of card usage. 

Before an algorithm is capable of identifying patterns in data, it must be tuned to do 
so. This tuning is commonly referred to as learning or training. In order to train an 
algorithm to perform a certain task, data are needed. In supervised learning, a data 
set is available and the patterns within it are known. In unsupervised learning, the 
patterns are unknown and must be discovered by the algorithm. In the examples 
above, data sets and their corresponding patterns are: images and what they show, 
sounds and what they mean, sets of transactions and whether they are legitimate or 
not. Pattern analysis algorithms aim to detect such patterns in new data that were 
not used in training the algorithm. This is an important aspect of such algorithms. 
they must generalize well to unseen data (Hastie etal., 2001). 

The final phase of the data mining process consists of the interpretation of the 
detected patterns, which leads to new insights or information. This usually involves 
the graphical presentation of the raw or preprocessed data with an indication of the 
patterns. Where the data are spatial, as is the case in this research, it is customary to 
display the data in a spatial coordinate frame in two or three dimensions. 
Information visualization concerns the graphical representation of information, 
which is an important aspect of the final stage of the data mining process (Ware, 
2004). 

2.2.2 Spatio-temporal hydroacoustic data 

The data sample values in spatio-temporal hydroacoustic data sets are backscatter 
energy amplitudes. In a typical deployment the sonar is mounted on a vessel 
carrying a positioning system such as a GPS, a compass, and a motion sensor 
collecting vessel attitude information such as pitch, roll and heave. Using the 
position, bearing and attitude information each data sample can be located in a 
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stored and accessed. Large data sets are being created and collected continuously, 
from sales and bank transaction records to seismic sensor recordings, from 
surveillance camera video footage to meteorological satellite imagery. Analysis of 
such data sets is often not trivial. Many data sets are very large, preventing human 
expert investigation. Classical statistical analysis can be of use, but is often limited 
because of strong assumptions that are needed, such as normality of distributions, or 
linearity of problems or models. These assumptions are not needed in many of the 
computational methods arising from computer science research (Breiman, 2001; 
Cox etal., 2001). 
Data mining is the process  of  analysing data sets with the purpose of discovering 
previously unknown relationships or patterns. A number of introductory and review 
papers on the subject are available in the literature (Fayyad et al., 1996; Cios et al., 
1998; Jain et al., 2000; Smyth, 2000; Grossman, 2001; Ramalcrishnan and Grama, 
2001; Smyth, 2001; Ramakrishnan, 2003; Yao, 2003). The data mining process can 
be presented as a stepwise process (Figure 2.6) (Van Hulle, 2004). When the data 
that are the subject of the data mining processes arise from scientific experiments, 
measurements or models,  the  term scientific data mining is used (Fayyad et al., 
1996; Grossman, 2001). 
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Figure 2.6 Schematic overview of the data mining process. 

Prior to searching for patterns or regularities, input data sets are typically 
preprocessed with the purpose of representing the data of interest in a generic 
manner. Preprocessing is sometimes referred to as feature extraction, because an 
important aspect of data preprocessing is precisely the conversion of data into a 
representation by means of properties or features that best describe  the  data at hand. 

Pattern analysis is the core component of the data mining process.  Its  aim is to find 
relationships in data sets. Many general pattern analysis algorithms have been 
published. The most common and important ones are found in standard reference 
books (Duda et al., 2000; Hastie et al., 2001; Bishop, 2006). 
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georeferenced space, by means of its longitude, latitude and depth below the water 
surface. In addition, the time at which each sample is collected is available. 

There are large differences between the size of data files collected by single beam 
instruments and multibeam instruments. Some indicative values are listed in Table 
2.1. In practice data rates and file sizes can vary because of a number of factors, 
including the disk space needed for one sample (6 to 14 bits is common), the 
number of samples per beam (depends on the range and sampling rate), the ping 
rate (depends on range and vessel speed), and the size of the meta data and non-
acoustic data such as position (these are small compared to acoustic data, and are 
not included in Table 2.1). Processing multibeam files containing data from a multi-
day survey remains a challenge even with high-end computer hardware. 

  

Single beam 	 Multibeam  
1 	 120 

1000 	 1000 
10 pings/sec 	 2 pings/sec 

1 KB 	 120 KB 
600 KB/min 	 14.4 MB/min 

864 MB 	 20.7 GB 

 

Number of beams 
Samples / beam 
Ping rate 
Ping size on disk 
Data rate / minute 
File size 24 hours of data 

  

    

Table 2.1. Some indicative values of data rates and file sizes, assuming one byte 
per sample is needed. 

Sonar manufacturers have not put substantial efforts in data compression, despite 
the fact that studies have indicated that suitable compression schemes exist, capable 
of compressing the data in a lossless manner to 70% of its original size (Wu et al., 
1997; Pitman, 2002). Data thresholding and resampling seem to be the methods of 
choice to reduce the number of data samples. While thresholding is aimed at 
removing samples containing no information from scatterers, resampling is aimed at 
reducing the resolution and retaining some information from all samples. More 
advanced methods are conceivable, such as identifying noise and side lobing 
artefacts and removing the relevant samples selectively. Identifying redundancies in 
the data, such as those caused by repeated sampling of the same volume, and 
selective removal of the relevant samples is another alternative. More research is 
needed for these advanced methods to become common practice; the methods 
developed in chapter 3 of this thesis deliver a contribution in this area. 

To make use of multibeam data for fisheries applications, fish schools must be 
detected in the data. The relevant references in section 2.1.3 provide little detail 
about how data from fish schools was extracted from the data sets. Ad-hoc methods 
are used, again based on a combination of resampling either to a coarser resolution, 
as by Gerlotto et al. (2004), or onto a regular grid, as by Benoit-Bird and Au (2003). 
Schools detection algorithms have been developed in software, but are not widely 
documented. All these approaches are to some degree ad-hoc, require manual 
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intervention, are not suitable for large data sets, or are often not general enough to 
be applicable to data collected by different instruments. The methods developed in 
chapter 4 of this thesis offer an alternative approach. 

Another important aspect that has not received much attention is that of 
standardization of multibeam water-column data, for easy sharing, storing and using 
of the data sets. There are a number of initiatives that are relevant in this context. 

The ICES Working Group for Fisheries Acoustics Science and Technology 
(WGFAST) have edited and adopted a standard data format for fisheries acoustics 
raw and edited data: HydroACoustic data format (HAC) (ICES, 2005). HAC is 
designed for single beam echosounder data, including dual and split beam, but does 
not currently cover multibeam data. It is unclear at this stage whether the format 
will be extended in the future. 

For data sets to be exchangeable and distributable, good metadata is vital. Metadata 
is the description of the actual measurement data, such as names, units, scales, and 
descriptions. If data is to be shared at a global scale, global initiatives are needed. 
One such example is the Marine Metadata Interoperability project (MMI), 
established to promote the exchange, integration and use of marine data through 
enhanced data publishing, discovery, documentation and accessibility (MMI, 2007). 

Hundreds of institutes and organizations world wide are making their marine and 
oceanographic data available through data centres or repositories. It is essential that 
data can be shared across data centres, which is facilitated by using the same data 
formats and metadata definitions. The Intergovernmental Oceanographic 
Commission (IOC) of UNESCO has been running its International Oceanographic 
Data and Information Exchange (IODE) facility since 1962 to enhance marine 
research, exploitation and development by facilitating the exchange of 
oceanographic data and information between participating member states and by 
meeting the needs of users for data and information products (IODE, 2007). 

ICES has a working group on marine data management. The activities of this group 
include the establishment of guidelines with respect to data and metadata storage 
and access (ICES, 2006). It can be expected that formulated advice will be in line 
with the corresponding IODE guidelines. 

An important facet of any water-column multibeam data processing scheme is that 
it results in data structures which lend themselves to straightforward archiving in 
data centres, in such a way that the data can be obtained and analysed easily by 
interested parties in the future. Ecosystem-based resource management considers all 
available data sources in combination, with attention being paid to correlations and 
interactions (Garcia and Cochrane, 2005). 
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3.1 OBJECTIVES 

Modern computer hardware is capable of storing the large amounts of data collected 
by multibeam sonars on hard disks. However, hard disk access is still relatively 
slow, and data processing can be computationally intensive, particularly for some 
advanced and complex algorithms. It is therefore desirable to reduce the data 
volume while retaining as much information as possible. A second and equally 
important aspect is normalization across instruments and instrument settings. From 
the point of view of postprocessing analysis algorithms it is desirable to have the 
acoustic measurements in a unified form and format, from which any instrument-
specific details are removed. 

In this chapter, a data preprocessing algorithm based on acoustic model inversion is 
proposed. An acoustic and sonar model is presented in section 3.2; an approach to 
inverting the model is proposed in section 3.3. Section 3.4 discusses the resulting 
data representation. The outcomes of this data preprocessing algorithm are 
summarized in section 3.5. 
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3.2 ACOUSTIC MODELING 

3.2.1 Concept 

Given an underwater environment including aggregations of fish and the seabed, 
what would this look like when observed with a multibeam sonar instrument? In 
this section a forward model is developed that answers this question. The ultimate 
question is the reverse: given the data recorded by a multibeam sonar instrument, 
what did the underwater environment consist of in terms of scatterers such as fish 
schools and the seabed? In order to answer the latter question, the forward model 
must be inverted. This is discussed in the next section. 

Besides the primary goal of establishing an analytical description of the process that 
must be inverted, a secondary benefit of a forward model is that it enables the 
creation of arbitrarily simple or complex data sets. This will prove very useful when 
evaluating inverse models, due to the difficulty of obtaining real-world ground 
truthed data sets. 

The forward model incorporates two components: an acoustic model, in this case an 
acoustic ray tracing model, and a model of a multibeam sonar. The input to the 
model consists of a description of a three-dimensional underwater scene in which 
the multibeam sonar will be deployed. The output consists of a sequence of 
complex-valued sonar data sets, commonly referred to as pings. A schematic 
overview is shown in Figure 3.1. 

Model of aquatic environment 

Model 
Acoustic ray tracing model 

Multibeam sonar model 

Acoustic multibeam data 

Figure 3.1 Overview of the forward model, its two components and its input and 
output. 
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3.2.2 Model input 

The input to the acoustic model is a model of the aquatic environment consisting of 
a description of a three-dimensional underwater scene, containing a seafloor surface 
and volumetric objects representing aggregations of fish. It is assumed that the 
multibeam sonar is mounted on a vessel surveying the area of the three-dimensional 
scene. A trajectory for that imaginary vessel can be defined. In its simplest form, it 
is assumed that the acoustical characteristics of the seabed (hardness and roughness) 
are constant for the whole surface. Furthermore, it is assumed that the distribution 
of the number of fish in the fish schools is Poisson. The Poisson distribution is 
given by: 

( n ) =
Vie' 

n! 
(3.1) 

where v is the Poisson parameter, which in this case is equal to the average distance 
between individuals in the aggregation. The quantity P„ (n) gives the probability of 
n individuals occurring in a unit volume within the school. 

The acoustical properties of the seabed and the density of fish within a school is 
parameterized, as well as the target strength of the fish in the school. Both the 
seabed and the fish schools are modeled by individual point scatterers (Middleton, 
1967; Olishevskii, 1967; Bell, 1997; Tillett et al., 2000). In the case of the seabed, 
the scatterers are placed close enough to each other for the model to treat it as a 
solid surface. The density of such points on the seabed surface depends on the 
frequency of the sonar, and is such that the mean distance between two points is less 
than a quarter of the wavelength of the sonar system. Fish schools are modeled as 
point targets in an enclosing volume shell. The target strength of the point scatterers 
is the average target strength of the fish species being modeled. 

The point model is defined as 

= fp,} with 0 i N, 

and N the number of point targets p . 	the three-dimensional environment. A 
representation of the set n is given in Figure 3.2. 
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Figure 3.2 The black dots represent the pi  in SI . The dotted line is the vessel 
cruise track; the white dots represent the locations where a multibeam ping will 
occur. 

3.2.3 Acoustic ray tracing 

Different standard acoustic computational models are described in the literature, 
including Urick (1983) and Crocker (1998). For the purpose of modeling multibeam 
sonar, acoustic ray tracing offers a computationally feasible and straightforward yet 
sufficiently sophisticated approach (Ziomek, 1989; Bell, 1997; Bell and Linnett, 
1997; Etter, 2001). The ray tracing model computes the acoustic pressure at each 
element of the transducer face. Each pressure value is obtained by combining the 
responses of the scatterers in the point model. The following equation describes the 
ray tracing model: 

p 1 (t) = Egi,kPOAkWt(tk+ 
tk,j)1°-2ar(k)/10 r(0-4 + go, j, 	 (3.2) 

k=1 

with: 

p (t) 	 the pressure received at time t in ping i by transducer element 

gi,k =  1 if point k is in the transmit beam for ping i, gi,k =  0 

otherwise, 

PO 
	 the reference pressure level (transmit pressure as measured at 

lm from the transducer), 

Ak 
	 the proportion of the incident amplitude that is backscattered 

by point k: 
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Ak  = abs (k) r(k) 

10 -2ar(k)/10 r(0 -4 

11(i, ,t) 

with r(k) the distance from the array centre to point k, and 
Crbs (k) the backscattering cross section of point k, 

absorption and spreading loss, with r(k) as above and a the 
absorption coefficient, 

an additive noise term, which in the model can be set to 
Gaussian, or zero, 

W, (tk  + 	) 	the eikonal at time t, evaluated at time tk  + 	, where tk  is 
the acoustic travel time from the centre of the transmit array 
to point target k, and tc., is the travel time from point target k 

to element j of the receive array. W is a function of the 
transmitted pulse shape and pulse length: 

(s) = tc(t — s) 	where K(.) is the transmit pulse. For example, with KO a 
block pulse, K(t) = el" for 0 < t < T, and 0 otherwise; T is the 
pulse length and co is the angular frequency, co = 2af, with f 
the operating frequency of the multibeam sonar. 

Calculation of tk  and tk  + tk ,., requires knowledge of the sound speed c (provided 
as a parameter), and of the geometry of the multibeam transducer. Knowledge of 
the transducer arrays is assumed. Only first order scattering is considered as this is 
known to be the dominant effect (Foote, 1983). 

3.2.4 Modeling multibeam sonar 

A parameterized model of a generic, typical multibeam sonar is developed. The 
receiving transducer array is assumed to be a flat linear array. Its length and the 
number of individual transducer elements are parameterized, as well as its operating 
frequency. Known and published recommendations for transducer element sizes are 
adhered to: the element spacing I must be chosen such that I212, for a 
wavelength 2 in order to avoid spatial aliasing (Knight etal., 1981). 

This sonar model allows for the simulation of any type of multibeam sonar where 
the beams are in the same plane, and are oriented so that they form a fan shape. 
Commercial instruments in this category include the Simrad Mesotech SM2000, the 
SM20, the Kongsberg EM series, the Reson Seabat series (6K, 7K and 8K models), 
and the Simrad ME70. 
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The acoustic ray tracing model, eq. (3.2), allows for calculation of the pressure 
levels at each of the transducer array elements, as a function of time. The multibeam 
transducer model will 'measure' these pressures p,,,(t) as voltages V,,, (t) for ping 

i, element j, at time t. A sampling rate can be chosen, and the voltages are digitally 
sampled accordingly. A time varied gain (TVG) is applied to the voltages to 
compensate for the absorption and spreading losses. TVG-compensated samples are 
written to disk by the model, and are referred to as the raw data. Discrete complex 
raw data samples are denoted by c id,„ where i and j are as before, and s is the 
sample index for increasing ranges, 0... S-1 for S samples. With fs  the sampling 
frequency of the system, c j ,j , = P1,J (s /j). 

The raw data is subsequently beamformed. The beam former implemented in the 
model is the standard Fourier-based beam former (Rudnick, 1969). A beamformed 
complex data sample in ping i, beam], range index s is obtained as: 

d1 5 	w(j , s, k ,1)e 	 (3.3) 

where the summation over k is over the transducer elements and over / is over the 
range indices of the samples, and: 

0k,j = dk  sin(a)/2 
	

(3.4) 

where 2 is the wavelength of the acoustic signal, dk is the distance from the centre of 
the array to the centre of transducer element k and c t is the angle of the central axis 

of beam]. 

The function w(j, s, k, 1) is a windowing function. Different choices are possible, all 
with specific advantages and trade-offs, see for example (Curtis, 1998; Chu et al., 
2001b). Windowing functions not being the focus in this context, a simple 
windowing function is chosen: 

w(j, s, k, I) = 1 	if / = s, for all k and j, 
w(j, s, k, 1) = 0 	otherwise. 

With this choice for w, equation (3.3) reduces to: 

d 1 	 (3.5) Ci,k,s 

with 0k, j  as in (3.4). The d,j,s  in (3.3) and (3.5) are the beamformed complex data 

samples s in ping i, beam ]. It is customary to work with the amplitude or intensity 
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(squared amplitude), which is often the only information that is written to disk by 
real-world multibeam systems, aid, = 

3.2.5 Model output 

Some formalism is introduced. The set of points 	is the input to the model, 
resulting in the beamformed data samples d,,j , s . Defining A = clus  ) and denoting 
the analytical model with M,  the modeling process is written as: 

(3.6) 

The data generated by the model is referred to as synthetic data. Acoustic data are 
commonly represented graphically as an echogram: a colour-coded image of the 
signal amplitudes. An example of an echogram of beamformed synthetic data is 
given in Figure 3.3. This example is from the data file that is discussed in detail as a 
case study in section 5.1. .1 

-1 
-18 
-2 

-47 
-5 
-58 
-64 
-7 

Figure 3.3 Echogram representing one ping of synthetic data, showing two 
aggregations of fish above a flat seabed (Sv  in dB). 

3.2.6 Model validation 

The process of investigating whether the synthetic data generated by the model is 
representative of real multibeam sonar data is model validation.  Two  approaches to 
model validation are pursued: a statistical data analysis, and the simulation of a real-
world data collection scenario. 
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Statistical validation 

The simplest form of model validation is determining whether the synthetically 
generated acoustic data resemble true acoustic data. When represented as 
echograms, the human eye perceives the synthetic data as plausible, but an objective 
statistical measurement of similarity to real data must be made in order to 
substantiate such a claim. A criterion for similarity can be stated as (Bell and 
Linnett, 1997): 

Definition 3.1 (Statistical similarity). Two acoustic data sets are defined to be 
statistically similar if their constituting amplitude values are likely to be drawn 
from the same probability distribution. 

Theoretically, it is expected that the Probability Density Function (PDF) of full 
water-column multibeam amplitude data values follows the K-distribution (Di 
Bisceglie et al., 1999; Chitroub et al., 2002; Abraham and Lyons, 2004). The K-
distribution is well established as a model for the amplitude statistics of scattered 
waves (Jakeman and Tough, 1987; Hongler, 1988; Jakeman and Tough, 1988; 
Lyons and Abraham, 1999), and is given by: 

4 	v )
1/2 	v  1/2 	 v  1/2 

PK (x) = F(v) ,u 	p 
— x K — x 

where ro is the gamma function, Ky., is a modified Bessel function of the second 
kind, of order v-1, and v and ft are the parameters of the distribution. The parameter 
p is the mean, and v is the order parameter. The order parameter can be interpreted 
as the amount of coherent clutter in the data (Abraham and Lyons, 2002); coherent 
clutter arises when there are non-random aggregations of scatterers causing 
coherence in the echo return signal. 

Given a data set, the parameters are estimated using the standard Maximum 
Likelihood (ML) method (Pesavento et al., 1998). Whether the amplitudes of a 
given data set are K-distributed is assessed using the Pearson x2-test, with the null 
hypothesis Ho: 'The distribution of the amplitude values follows a K-distribution'. 
First, a selection of multibeam pings from data sets collected by real instruments is 
tested, including data from a Simrad Mesotech SM2000 sonar (Figure 3.4 (a)). 
Structural noise must be avoided, since that can distort the amplitude sample 
distribution. Structural noise can be caused for example by interference with other 
acoustic instrumentation on board the vessel. The null hypothesis can not be 
rejected at the 5%-significance level on the basis of the data considered (p= 0.0346 
<0.05). Second, a selection of pings from the synthetic data set shown in Fig 3.3 
and discussed in section 5.1 is tested (Figure 3.4 (b)) This again does not lead to a 
rejection of the null hypothesis at the 5%-significance level (p= 0.0165 <0.05). 

(3.7) 
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In Figure 3.4, histograms of real and synthetic data are shown, with the K-
distribution PDF (3) overlaid, using the ML-estimates of the parameters and v and p. 
This statistical assessment shows that the synthetic data obtained through the model 
are similar to real data, according to definition 3.1. The target strength and spatial 
distribution of the scatterers do affect the parameters of the distribution, but do not 
affect the nature of it: amplitude values are K-distributed under sometimes very 
different scattering regimes. 
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(a)  

(b) 
Figure 3.4 Histograms (bars) and ML estimates of the K-distribution PDF (lines) 
for (a) real data and (b) synthetic data. The synthetic data had more scatterers in 
the water column than the real data, explaining the more gradual drop-off in (b). 
The artefact in the bin at the value of 1.0 in (a) is due to the limited dynamic 
range of the instrument used (SM2000), causing saturation of the echo signal. 

Simulation of a real-world data collection scenario 

The statistical validation as described in the previous section is a general measure of 
similarity, only showing that the synthetically generated acoustic images exhibit the 
same statistical properties as real multibeam acoustic images. However, it does not 
prove validity of the model. Validity is less straightforward to define, and the 
following definition is used: 
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Definition 3.2 (Validity). The multibeam data collection model is valid if the 
resulting synthetic data resemble real data resulting from monitoring a real 
environment with a real multibeam sonar. The input to the model must be an 
accurate description of the real underwater scene. 

This latter condition prevents thorough testing for validity, because, typically, an 
exact description of the underwater environment is not available. Further issues are 
that the actual multibeam sonar instrument used is likely to have peculiarities 
causing it to differ from the modeled system, that random noise in the real system 
affects the outcome, and that some simplifications and assumptions have been made 
in the model. 

The only real-world multibeam data sets that are collected under controlled 
circumstances in a known environment are taken in test tanks, most commonly 
during calibration experiments. Such a data set was obtained (courtesy of Dr K. 
Foote and Dr D. Chu at Woods Hole Oceanographic Institution, USA). This data set 
contains full water-column data collected in a dock, in a controlled calibration 
experiment, with a Kongsberg Mesotech SM2000 multibeam system. A calibration 
sphere was moved through the beams in steps of 0.2 degrees, and kept at a constant 
range of 11 meters. A description of this scenario is assembled, and used as input to 
the simulation model. The resulting synthetically generated data set is studied in 
comparison with the real data set. A calibration is performed on both the real and 
the synthetic data sets (Cochrane et aL, 2003; Foote et al., 2005), and the resulting 
calibrated sets are subsequently compared. At each angular position of the sphere, 
all the samples at a range of 11 meters are selected and stacked up to form a single 
image, representing a sweep of the calibration sphere through the beams. This is 
done both with the real data as well as with the synthetic data, and the resulting 
images are shown in Figure 3.5. 

Unfortunately in Figure 3.5 (a), the ping rate and the movement of the sphere were 
not synchronised, resulting in an unequal number of pings per sphere position, 
explaining the slightly curved nature of the sphere trajectory as observed in Figure 
3.5 (a). 

It is found that the synthetic data resembles the real data to a satisfactory level. 
Furthermore, an analysis as described in the previous section shows statistical 
similarity as defined in definition 3.1. This section is concluded by accepting the 
model as valid per definition 3.2. 
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Figure 3.5 Images from (a) a real sphere, and (b) a modeled sphere. The sphere 
was moved from beam 50 to 86. The vertical axis indicates ping numbers. In (b), 
the sphere is moved 0.2 degrees from ping to ping. The structural noise observed 
in (a), to the right of the echo of the sphere was caused by the presence of 
concrete pylons in the dock. 
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3.3 MODEL INVERSION 

3.3.1 Concept 

Equation (3.6) describes a forward model. Given a description of an underwater 
scene, a , and the analytic model M, it is possible to calculate the data set A, which 
is the expected outcome of deploying a multibeam sonar measuring Q. The real 
problem to be solved is the inverse. Given a data set obtained by deploying a 
multibeam sonar, what is an accurate description of the observed underwater scene? 
Inverting (3.6) formally gives: 

= 	 (3.8) 

Unfortunately, the model M is not analytically invertible because of the 
noninvertibility of the beamforming (eq. (3.3)), and the presence of random noise in 
the model (eq. (3.2)). 

The situation where the inverse of a known model has to be determined is an 
inverse problem. There are various approaches to model inversion. The one that is 
followed here is to approximate M by an invertible function, F. If F is invertible, it 
is possible to calculate: 

F -1 (A) = a 	 (3.9) 

with a an estimate of f. 	needs to be a close approximation of for F to be 
useful. It is essential to choose a model F which is invertible, and which 
approximates M closely. 

3.3.2 Model approximation 

A multibeam sonar is in fact a synthesis imaging instrument. Synthesis imaging is 
the generation (or synthesis) of an image based on signals received on multiple 
sensors, typically ordered in a sensor array. Various physical observation and 
measurement processes are forms of synthesis imaging, for example in astronomy 
(Starck et al., 2002) and medical ultrasound imaging (Molthen et al., 1995). 
Synthesis imaging systems are commonly modeled and described as convolutions 
(Rafaely, 2004), with the inverse being a deconvolution (Konstantopoulos et al., 
1990; Lingvall et cd., 2003; Lingvall, 2004). This approach has been applied to the 
study of fish target strength in the past (Clay, 1983), and is followed here. 
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The function F is chosen to be a convolution C, an approximation of the model M. 
The inverse problem (3.9) is now stated as: 

O = C -1 (A) 	 (3.10) 

with C 1  representing a deconvolution. Assuming that a proper choice for C can be 
determined, (3.10) allows for the calculation of S:-.1‘ , an estimate of the underwater 
environment measured by the multibeam sonar. However, deconvolution, as in 
(3.10), is an ill-posed problem. This can be understood intuitively by considering a 
convolution as a smoothing operation, filtering out high-frequency features. Two 
descriptions of an underwater scene that differ in the high-frequency features only, 
will result in the same convolved data set, hence the inverse problem has no unique 
solution and is ill-posed. In multibeam sonar, as in other synthesis imaging systems, 
this is in fact the case due to the limited resolution of the system. 

A number of solutions to solve this ill-posed problem have been established in the 
literature (Starck et al., 2002), and the problem is a topic of ongoing research 
(Lingvall et al., 2003). Different approaches essentially enforce different forms of 
regularization of the problem. A standard yet powerful technique that has become 
commonly accepted in recent years is the so-called Lucy-Richardson algorithm, 
sometimes referred to as Richardson-Lucy, which is an expectation-maximization 
algorithm (Richardson, 1972; Lucy, 1974). This algorithm is known to be stable and 
does not generate artefacts unlike some other algorithms, such as the Wiener filter 
(Starck et al., 2002). The Lucy-Richardson algorithm is used here to calculate C '. 
For simplicity the deconvolution is calculated on a ping-by-ping basis. A possible 
extension which is not pursued further here is to include across-ping deconvolutions. 

Denote the observed data in a ping, obtained from the model or as the result of a 
multibeam deployment, by A. The assumption that the ping data A, are obtained 
from a convolution of the latent variable which has to be estimated, O „ with a 
point spread function (PSF)P is written as: 

A, (x, y) = 	(x, y)) = fP(x, — x, y, — y)O, (x, , y 1  )dx,dy, 	 (3.11) 

with (x,y) the echogram coordinates given by (beam number, range cell). Using 
the conventional * notation for a convolution, this can be rewritten as: 

(3.12) 

The idea of the Lucy-Richardson algorithm is to calculate the most likely el, given 
the data A,. This leads to an equation which can be solved iteratively: 
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(x, y)  P (x, y) C-2, (x, y) 
(P * K1 7)(x, Y) 

(3.13) 

where P*  (x, y) = P(—x,— y) . It has been shown that this iteration converges to the 
maximum likelihood solution (Dempster et al., 1977). 

For this algorithm to be applicable, the PSF must be known and must not contain 
any free parameters. In the application at hand, the PSF must be chosen so that 
C(0 ) is close to M(0 ). This can be achieved through the construction of a special 
input set for the model, one that consists of one point only. Let this data set be 0 1 , 
see Figure 3.6 (a). The model that is used here is discussed in more detail as a case 
study in section 5.1. 

Using the forward model, A l  is calculated as M(0 1 ) (Figure 3.6 (b)). AI is a data 
set consisting of a single ping, which contains the acoustic image of a single 
scatterer as observed through the modeled multibeam system. The PSF of the 
convolution C is now defined in terms of A 1 , by choosing the local neighbourhood 
of the response in the output image A 1 . All sample values that are significantly 
different from zero must be included in the PSF. It follows by construction of C that 
C(0') will be a very good approximation of M(C2 1). C(C1 1) is shown in Figure 3.6 
(c). Because of the additive nature of the model equation (3.2), this statement can be 
generalized to conclude that C(0 ) will be a good approximation of M(0 ), for any 
input set 0. Finally, the PSF is used in the deconvolution algorithm to obtain a l  
as the most likely estimate of 0 I  (Figure 3.6 (d)). 

It must be emphasized that the acoustic image in Figure 3.6 (b) is the modeled raw 
multibeam data, and that the image presented in Figure 3.6 (d) is the preprocessed 
data obtained through the inversion method. 
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(a) 
	

(b) 

(c) 	 (d) 

Figure 3.6 Normalized amplitudes (black = 0.0, white =1.0) for (a) an input point 
set consisting of a single scatterer; (b) the forward model applied to (a), from 
which the PSF is derived; (c) the forward convolution applied to (a) using the 
derived PSF; (d) deconvolution applied to (b) obtained via the Lucy-Richardson 
algorithm. 

3.3.3 Deconvolution for real-world data 

In the case of real data, rather than modeled data, the model M  is not available. 
Information about real world sonar systems is not generally released into the public 
domain by instrument manufacturers, and hence it is not possible to model such 
systems accurately. Furthermore, the actual physical conditions of the underwater 
environment affecting transmission and scattering, such as the sound speed, water 
temperature, salinity, etc. are not always exactly known. 

As explained in the previous section, finding C -1  is equivalent to finding an 
appropriate PSF. In the modeled data, the PSF is defined in terms of the output data 
of the model, without explicit knowledge of the model itself. For this to be possible 
with real data, an appropriate data set is needed. Such a data set must include the 
response of a single scatterer, and it must also be known where the scatterer was 
located in the acoustic beam at the time of the ping. 

Placing a single scatterer, such as a calibration sphere, in the acoustic beam in a 
known location is part of the sonar calibration procedure (Cochrane et al., 2003; 
Foote et al., 2005). This means that in practice, anyone undertaking serious fisheries 
work with a multibeam instrument will have the required data set available to 
construct the PSF needed for the deconvolution C. 
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In general, the response of a multibeam system is sensitive to the actual location of 
the point target. Calibration of a multibeam system is essentially a procedure to 
capture such variability, and includes the calculation of appropriate parameters to 
correct for this effect. It is anticipated that the variability in response is minimized 
in a correctly calibrated system, which means that the PSF derived from fully 
calibrated data will be well defined, although some angular averaging may be 
required. 

However, in many real world situations, calibration information may not be 
available. This does not necessarily mean that the proposed inversion technique can 
not be applied to the collected data. Rather than basing the deconvolution on a 
known PSF, the PSF itself can be estimated during the convolution process. 
Applying a deconvolution without a known PSF is known as blind deconvolution 
(Tsumuraya et al., 1994). This is an iterative procedure making use of a 
deconvolution algorithm and an additional maximum likelihood estimator for the 
PSF. Equation (3.12) is written in logarithmic terms as: 

log(A 1 ) = log(P) + log(a, ) . 	 (3.14) 

This expression is used in the blind deconvolution algorithm to estimate the PSF. A 
variant of the Lucy-Richardson algorithm is used, where in each iteration both the 
estimates of a i  and the PSF are updated: 

e27,1 (x,  y) 	A i 	y) 	pi* (x, y) e27 (X, Y) 
(fl * C17)(x, y) 

log(Pn+ I  ) = log() — log(A i ) 

(3.15) 

(3.16) 

where Pn is the estimate of the PSF in iteration n. A good initial estimate P °  of the 
PDF is helpful and should be provided where possible. 

This technique enables the application of the inversion method to any multibeam 
data set. 

3.3.4 Deconvolved multibeam sonar data 

Applying the inverse model to either real or synthetic data results in a new data set, 
. Since a is obtained as the result of a deconvolution applied to a set of acoustic 

images, a itself is a set of acoustic images, as in Figure 3.6 (d). 

It is the set of images of the points constituting the point model that is an estimate 
of the underwater environment as observed by the multibeam system. In order to 
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obtain the points themselves, simple thresholding (above the noise level) and 
retaining of local maxima is applied, yielding a set of points: 

0 = {s i}, i = 1... n. 	 (3.17) 

The points {s,} are the minimal set of scatterers needed to result in the data that 
were observed by the multibeam sonar. It is important to note that a scatterer s, is 
not necessarily a true point scatterer in the water. Rather, it is a conceptual 
measurement indicating the presence of a general object in the water, which could 
be an extended or solid object, such as a dense fish school or the seabed. 

Example 

The model used to obtain the acoustic image in Figure 3.6 (b) is adopted. Hence the 
PSF shown in Figure 3.6 (c) applies and can be used in the deconvolution. A model 
input data set is created, and a subset consisting of 1085 points representing a fish 
school and a flat seabed is selected. All these points are in the acoustic beam of the 
single ping under consideration. 

The output of the model is represented in Figure 3.7. Polar coordinates are used, 
with angle (or equivalently beam number) on the abscissa and range from the 
transducer on the ordinate axis. This representation has the advantage that all 
samples are equally large in the echogram (in terms of pixels in the image). 

A deconvolution is applied, using the PSF applicable to the multibeam sonar model 
used (that from Figure 3.6 (c)). The result is shown in Figure 3.8. In this image, 
peaks appear as higher amplitude pixels, and are indicative of scatterers. The actual 
scatterers are obtained by thresholding and selecting the local maxima: see Figure 
3.9. 
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range 

angle 
Figure 3.7 Acoustic image obtained by running the forward model on a point set 
consisting of 1085 points, representing an aggregation of fish above the seabed. 
The coordinate system of this image is polar: angle on the abscissa and range on 
the ordinate axis. The samples are normalized amplitudes (white = 0.0, black = 
1.0). 

range 

angle 
Figure 3.8 Deconvolved acoustic image obtained from applying the Lucy-
Richardson algorithm to the acoustic image in Figure 3.7. 
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range 

- - _ - 
- - _ z 

angle 
Figure 3.9 Scatterers obtained from thresholding the acoustic image from Figure 
3.8 and retaining local maxima. 

There are 116 scatterers. They provide an approximation of the underwater 
environment that was observed. It is irrelevant to compare this number with the 
number of input data points, as the input data points are independent of the model 
and are generally closer together than the resolution of the modeled system. That is 
in particular the case for modeling contiguous seabeds and dense fish aggregations. 

The achievement of the inversion method is the conversion of the raw data in Figure 
3.7 to the deconvolved data in Figure 3.9. The raw data in this case consists of 128 
beams x 800 range cells, which equals 102,400 data samples. This data set is 
reduced to a representation by 116 scatterers only, a massive reduction of data size. 

In fact, the ping-based data discussed so far in this example are one of a sequence of 
35 pings. Considering all pings together and placing the input points as well as the 
resulting scatterers in a three-dimensional environment, a three-dimensional picture 
emerges (Figure 3.10). 

This example demonstrates that the representation by means of scatterers (Figure 
3.10 (b)) is a close approximation of the true scattering regime (Figure 3.10 (a)). 
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(a) 

(b) 

Figure 3.10 (a) An input point set, and (b) the corresponding representation by 
scatterers. 
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3.4 SCATTER NODES 

3.4.1 Definition 

Scatterers as presented in eq. (3.17) can be written in terms of their components as: 

s = (x, t, b) 	 (3.18) 

with x the spatial three-dimensional coordinates, t the time stamp, and b the 
backscatter energy for scatterer s. The components x and t are derived in a 
straightforward fashion from the geometry and timing information in the original 
raw multibeam data set. The backscatter value b is the value from the sample at 
location x and time t from the original data set; it is the backscatter amplitude from 
an assumed point scatterer which is located on-axis for that particular beam. 

In order to retain information from the raw data set for use by subsequent 
postprocessing algorithms, additional features are extracted from the raw data set 
and are associated with the scatterers; the concept of scatter nodes is introduced. 

Definition 3.3 (Scatter nodes) Scatter nodes are feature-rich spatio-temporal 
hydroacoustic data points. 

Applying the deconvolution algorithm to multibeam sonar data results in scatterers. 
Such scatterers enriched with additional features are scatter nodes. 

Quantities of interest are added to the scatter nodes as properties or features, to 
render the nodes as informative as required. These features are combined into a 
single feature vector v of the scatter node s: 

s = (x, t, v). 	 (3.19) 

By means of scatter node features, information extracted from the raw multibeam 
data can be passed on to subsequent processing algorithms. Which features should 
be carried through may depend on the analysis that one wishes to perform. A 
number of features that can be extracted from the raw measurements are presented 
below. 
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3.4.2 Feature extraction 

Backscatter energy 

A key aspect in calibrated sonar for fisheries is the relation between backscatter 
energy and fish biomass. The proportion of transmitted energy that is received at the 
transducer is indicative of the fish density in the acoustic beam. This is well 
established for single beam sonar (MacLennan, 1990; Simmonds and MacLennan, 
2005): 

N abs = s y V , 	 (3.20) 

with N the number of fish in a volume V, o-bs, backscattering cross section of an 
individual fish, and sy  the mean volume backscatter. The value of s„ is obtained 
from the raw data measurements through a process known as echo integration 
(Foote, 1987; MacLennan, 1990; Foote, 1991; Foote and Steffanson, 1993). Given 
estimates for (Tbs. and V, and the measured s„, relation (3.20) allows for the 
calculation of an (estimated) N. 

At the time of writing, echo integration standards are not established yet for 
multibeam sonar. Promising results on calibration of multibeam systems are 
available (Chu et al., 2001b; Melvin et al., 2003; Foote et al., 2005). Calculation of 
volumes to be used in (3.20) is discussed in Tang et al. (2006). The first 
experimental multibeam echo integration routines are made available in the 
Echoview software (Myriax, 2008). Research on these topics is ongoing and no 
text-book method is available yet. 

Typically, raw data measurements are used and needed in the calculation of s y. 
Stepping away from the raw data, and continuing further analysis based on scatter 
nodes must not compromise the options for echo integration or use of backscatter 
energy. Therefore the necessary information is extracted as features of the scatter 
nodes. Within a ping of raw multibeam sonar data for which scatter nodes are 
determined, let A, be the set of raw samples which are nearest to scatter node i. A 
feature of the scatter nodes representing the integrated backscatter energy is then 
defined as: 

16; = 	Widi 
	 (3.21) 

jEA;  

with di  the raw data samples, properly calibrated, and wi  sample weights. The 
algorithms currently implemented in Echoview (Myriax, 2008) use the sample 
volumes as the weights wi. 
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This way, the energy of each raw sample contributes to a scatter node exactly once: 
hence the total energy content of the ping is maintained: 

E w J.d . = Efl, . 
 J 

samples j 	nodes i 

(3.22) 

Such a scatter node feature will allow the scatter nodes to be used for biomass 
estimation. It is anticipated that future research outcomes on this subject will appear 
in the scientific literature. Such results will be transferable to the scatter node 
concept, through their encoding as scatter node features. 

At this stage the concern is to capture as much information as possible into features 
of scatter nodes. From the set A i  of raw samples that contribute energy to a node i, 
other characteristics can be calculated that may be of use in further processing. 
Statistical moments measure the distribution of the raw backscatter sample values 
of the samples around scatter nodes. The (weighted) mean is given in eq. (3.21). 
Higher moments include standard deviation, skewness and kurtosis, which can all 
be incorporated as features into the feature vector v of the scatter nodes. 

Temporal information 

In situations where diurnal or seasonal effects are expected to be important, one 
may consider deriving additional temporal information from the time stamp t of the 
scatter nodes, such as: 

• time of day (day/night) for diurnal effects, 

• time of year (month or season) for seasonal effects. 

Echogram textures 

In single beam fisheries acoustics, texture measures have been used to classify fish 
schools, and to differentiate between plankton and fish. For example Kieser et al. 
(2006) make use of a class of texture measures known as Gray Level Co-occurrence 
Matrices (GLCMs). These texture measures capture variability in texture between 
regions on the echogram, and may be indicative of certain species or classes of 
species or scatterers. 

Such texture measures can be calculated directly off the echogram in two 
dimensions (a ping based approach). Care must be taken in using such measures, as 
they are really image processing tools and consider the echogram as an image. 
Consequently, the texture measure values do depend on the resolution of the system. 
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Hence they are not instrument independent, and in a way violate the fundamental 
idea of scatter nodes being a normalized data representation across instruments and 
across instrument settings. However, if one uses a single instrument and collects all 
data with the same instrument settings (beamforming options, pulse lengths and 
rates, etc.), texture measures can prove very useful. 

Return echo pulse shape 

Properties of the shape of the echo return pulse are commonly used in seabed 
classification and habitat mapping. The idea is that different types of seabed reflect 
the impacting acoustic pulse differently. Analysing the return pulse could therefore 
allow for identification of the seabed type, see for example Kloser et al. (2001) and 
Preston et a/. (2001), and references therein. There is much debate about which 
features of the return pulse are indicative of the seabed type. Opinions range from 
one or two features, to many (more than hundred). In the latter case an analysis of 
the relative merit of each feature is typically conducted. Any features in which one 
may be interested, in the seabed characterization context, can be transferred directly 
to scatter nodes. In the context of this thesis no contributions to this ongoing 
discussion on seabed return echo features are made, and no specific features are 
described. However, it is important to note that such features can be attributed to 
scatter nodes. This will enable the use of the algorithms discussed in the next 
chapter to be applied to seabed classification problems, where relatively little 
attention is paid to classification algorithms as such. 

Non-acoustic information 

Information that is available but not directly derived from the backscatter 
measurements can be attributed to the scatter nodes so that it can be taken into 
account in the subsequent analysis. An example of such information is the distance 
to the seabed. Many multibeam sonars provide a bathymetry output, which is a 
measurement of depth for each sonar beam. Using the bathymetry output, the height 
above the seabed can be estimated for each node. This information can be useful in 
differentiating between seabed nodes and mid-water nodes, or between nodes 
indicative of pelagic and benthic fish species. 

Features obtained from other data sets 

Any information that is available about the conditions of the data and the 
environment it was collected in can be of value. Examples include the temperature 
of the water at the location, time and depth of the scatter node. Equivalently water 
salinity can be used as a feature, or chemical composition of the water. If water 
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currents are known to affect certain fish species it may be helpful to include 
measurements from instruments like acoustic Doppler current profilers (ADCPs) 
into the feature vector of the nodes. In the context of this thesis no use has been 
made of such additional data sources. It is expected that doing so would be valuable 
in certain circumstances when there is an obvious or expected correlation between 
the subject of the multibeam data analysis and auxiliary data one may have access 
to. Examples of relevant auxiliary data include depth profiles of temperature and 
acidity levels. 

Other features 

There is no limit to which features, and how many, can be attached to scatter nodes. 
It is anticipated that further research will lead to features being found or established 
that have great potential to support further processing. 

3.4.3 Bathymetric soundings as scatter nodes 

Scatter nodes are somewhat reminiscent of soundings as they are known in 
bathymetric surveying and mapping (de Moustier, 1988; 1993). Bathymetric 
soundings are derived from the raw multibeam data and are estimates of the seabed 
depth at the map locations of the soundings. There is at most one sounding per 
beam. Various processing algorithms exist to create bathymetric charts of the 
seabed (Calder and Mayer, 2003; Canepa et al., 2003). The only property that is 
used is the location of each point. From the measured range from the transducer and 
the location of the surveying vessel, a geo-referenced coordinate is calculated for 
each sounding. 

This method has been extended to not only map the bathymetry of the seabed but 
also the seabed type (Reut et al., 1985; de Moustier and Matsumoto, 1993). In order 
to do so a number of other features of soundings are used, primarily their 
backscatter values (the point backscatter energy at the location of the sounding). 
Other studies investigate the use of the echo return pulse for classification purposes 
(Preston eta!, 2001). 

This line of research does not consider midwater measurements. Everything is 
based on a good ping-based seabed detection, leading to soundings, from which 
some features are calculated. This approach can be brought into the full water-
column picture by considering bathymetric soundings as scatter nodes. While 
definition 3.3 is introduced primarily to cover feature-rich scatterers obtained by 
applying a deconvolution to the raw full water-column sonar measurements, scatter 
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nodes can also be obtained by other means, such as standard multibeam seabed 
detection algorithms. 

There is value in analysing the seabed habitat together with the mid-water 
ecosystem to provide a better understanding. The inclusion of soundings as scatter 
nodes allows for that. When some scatter nodes are obtained through the application 
of the inversion method and others through routine bathymetric processing, it is 
useful to include this knowledge into the nodes as a categorical feature (0 = 
deconvolution result, 1 = bathymetric sounding). 

3.4.4 Scatter nodes from single beam sonar data 

Deconvolution can be applied to single beam sonar data echograms, and scatter 
nodes can be derived. The deconvolution can be applied either in one dimension, on 
a per ping basis, or in two dimensions across pings. The latter will lead to better 
results as it takes correlations between pings into account. 

An alternative way of deriving scatter nodes from single beam sonar data is to 
regard scatter nodes as lower resolution data samples. Down sampling single beam 
sonar data is achieved through the averaging of backscatter values of samples over a 
particular range, and over a particular number of pings or distance or time interval. 
The samples obtained by down sampling the original data can be considered scatter 
nodes, and features can be assigned to them similarly to how this is done with 
scatter nodes derived from multibeam sonar data. An example of this type of scatter 
node is presented as a case study in section 5.4. 

In both cases, deconvolving or down sampling, the scatter nodes are a 
representation of a larger number of underlying original data samples. An important 
difference is that the nodes obtained through down sampling are regularly spaced, 
while the nodes obtained through the deconvolution are located where relevant echo 
signals were present. Hence, the spatial information carried by the nodes obtained 
through down sampling is less useful than it is in the other case. Nevertheless, 
defining nodes through down sampling of data does provide an efficient mechanism 
of transforming single beam sonar data into a scatter node representation, for use by 
subsequent pattern analysis algorithms. 
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3 Data preprocessing 

3.5 OUTCOMES 

The deconvolution method that is derived as a model inversion technique is used as 
a data preprocessing algorithm for multibeam sonar data. Additional features are 
extracted from the raw data, leading to scatter nodes: feature-rich spatio-temporal 
hydroacoustic data points. 

Preprocessing is the first step in the scientific data mining process, and results in an 
alternative representation of the data (Figure 3.11). 

The ultimate result of the model inversion technique is the transformation of any 
given multibeam data set into its corresponding set of scatter nodes. Scatter nodes 
are a fundamental concept that will be used throughout the remainder of this thesis. 
Their derivation is summarized in Algorithm 3.1. 

- deconvolution 
- feature extraction 

detected 
patterns 

knowledge, 
information 

raw 
hydro- 

acoustic 

pre- 
processed 

data 
data 

data 	 pattern 
	interpretation 

preprocessing 	analysis 

Figure 3.11 Data preprocessing is achieved through deconvolution and feature 
extraction, leading to preprocessed data in the form of scatter nodes. 
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Algorithm 3.1: Derivation of scatter nodes from multibeam sonar data 

1. Obtain a data set containing the return echo from a single scatterer, 
preferably a calibration sphere. The settings on the instrument must be those 
that will be used during further data collection. 

2. In the beamformed amplitude data containing the acoustic image from the 
calibration sphere, identify a region of samples around the sphere's location 
such that all samples that are significantly different from zero are within that 
region. The amplitudes of the samples in this region define the PSF. 

3. Collect any kind of data with the instrument, using exactly the same settings 
as those used to find the PSF. 

4. Apply the Lucy-Richardson deconvolution algorithm to that data set, using 
the PSF determined in step 2. If no calibration information is available, blind 
deconvolution can be applied instead. 

5. Apply a suitable threshold (above the noise level), and define the scatter 
nodes as the local maxima in the deconvolved echogram. 

6. Extend the scatter nodes with features obtained from the raw data set. 

Two important aspects of the scatter node representation are now discussed: its 
compactness, and its usability compared to raw multibeam measurements. 

3.5.1 Data compactness 

The size of a raw multibeam data set A is affected by the particular details of the 
multibeam instrument, such as how many beams there are, what the sampling rate is, 
and how data are stored on disk. In addition, operational settings will affect the 
overall size: ping rate, pulse length, selected range, etc. Clearly these aspects will be 
reflected in the number of scatter nodes that will be obtained when applying the 
inversion method. Therefore it is most instructive to assess the ratio of the number 
of samples in the raw data to the number of scatter nodes. This ratio is affected by 
two components. Firstly, the particular details of the instruments and settings: given 
a single scatterer, how many samples end up being non-zero? This can be assessed 
from the PSF. In common multibeam systems such as those by Simrad, Kongsberg 
and Reson, signal transmit frequencies range from 200-450 kHz with pulse lengths 
of 0.05-0.20 ms and sampling rates in the order of 40-90 kHz. This results in echo 
return pulses of typically 8 samples long. The beam widths of the main lobes of the 
beam patterns typically result in widths of echo return pulses of approximately 5 
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beams, ignoring lower level side lobe effects. This alone would result in a non-zero 
PSF for 5 times 8 samples: a ratio of 1 scatter node to 40 samples. The second 
factor affecting this ratio is the underwater environment being observed. The whole 
sampling volume is represented through samples, but only the zones containing 
scatterers will result in scatter nodes, with no scatter nodes representing empty 
water. Experimentally evaluating the ratio of scatterers to samples in areas with fish 
present leads to typical values of 1/100. Note that this ratio includes the first effect 
mentioned. Typically a small number of scatter nodes are determined in each beam 
containing several hundreds of raw samples. Examples are given in chapter 5. 

In summary, for a real-world data file collected during a survey, the amount of data 
will be reduced by a factor of hundreds when applying the inversion method. To 
what extent such a difference is reflected in file sizes depends on the data storage 
format of both the raw multibeam data and the scatter node data. 

3.5.2 Usability 

The other advantage of transforming multibeam data into scatter nodes is that 
scatter nodes are a more convenient data representation for visualization and further 
analysis by post processing algorithms. No off-the-shelf software packages other 
than Echoview (Myriax, 2008) are known to support multiple water-column 
multibeam sonar data formats, while many analytical and visualization software 
packages support data that are of the form of expression (3.19): essentially a set of 
multidimensional points. 

Furthermore, the scatter node representation enables straightforward comparison of 
data sets collected using different instrument settings, or even by different 
instruments. In this sense, the inversion method acts as a means of normalizing the 
raw sonar data. Scatter nodes approximate the true scattering regime in an 
instrument-independent manner, since the deconvolution removes instrument-
specific effects. 

While data from various instruments obtained with various settings can all be 
transformed in a scatter node representation, those differences will carry through to 
the scatter node features. For example shorter pulse lengths will result in a higher 
range resolution, as will higher frequencies, and instruments with a higher dynamic 
range or regimes with higher signal to noise ratios will result in more accurate 
backscatter values of the original samples and hence of the scatter nodes. If such 
instrument related information is expected to be useful in future analyses, it can be 
attributed as additional features to the scatter nodes. 
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4.1 OBJECTIVES 

The next phase in the data mining process is concerned with the processing and 
analysis of scatter node data. Suitable pattern analysis algorithms must be applied to 
data sets containing scatter nodes in order to derive useful information. The aim is 
to identify groups of scatter nodes that belong together, and that are likely to be 
indicative of the same larger-scale object or concept. From a fisheries perspective, 
larger scale objects of interest that are observed by multibeam sonar are 
aggregations of fish, or fish schools. The seabed too is a larger scale object, used for 
bathymetry and habitat mapping. 

Section 4.2 presents some possibilities for analysing and inspecting scatter nodes 
visually. New computational pattern analysis algorithms for scatter node data are 
developed in sections 4.3 and 4.4. Implications and properties of patterns detected 
using these novel methods are discussed in section 4.5. The outcomes of this 
chapter are summarized in section 4.6. 

4.2 EXPLORATORY DATA ANALYSIS 

4.2.1 Concept 

Given a data set containing scatter nodes, a straightforward approach is to study a 
graphical representation of the scatter nodes, and determine visually whether any 
useful information can be observed. The field that is concerned with constructing 
such graphic representations of scientific data is known as scientific visualization 
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(Hansen and Johnson, 2004). The aim of scientific visualization is to aid in the 
understanding of the data. Creating and exploring data visualizations interactively is 
called exploratory data analysis. 

In fisheries acoustics, it is customary to have visual representations of the 
echosounder or sonar recordings. Historically, the first analogue electronic 
echosounder recordings were plotted using an electronic plotter. Subsequent data 
analysis was based on such plots, by manual expert investigation. In modern 
echosounder and sonar systems, a visual display remains the most important 
primary tool for initial data analysis and assessment. Obvious anomalies in the 
system or its setup become apparent immediately. Scrutinizing a visual 
representation of the data is an essential part of quality control. 

The visualization of multibeam water-column data is an important aspect of its 
usability (Mayer et al., 2002; Wilson et al., 2005). Typical displays of multibeam 
water-column data are either simply two-dimensional images or three-dimensional 
representations of original samples. Because of the compactness of the scatter node 
representation, there are much fewer scatter nodes than there are raw samples. This 
allows for a 3-dimensional graphical representation of much larger data sets, 
spanning longer time frames, and covering larger spatial areas. An appropriate 
visualization system should represent as many of the components of the scatter node 
components as possible, desirable or feasible. 

4.2.2 Visualizing scatter nodes 

Scatter nodes have different components, all of which can be represented or made 
accessible through appropriate visualization techniques. In this section some general 
aspects of visualization systems are discussed (Foley et al., 1995; Hansen and 
Johnson, 2004). 

Coordinate space 

The fact that scatter nodes have a spatial component, usually coordinates in a 
georeferenced space (longitude, latitude, and depth below the water surface), 
suggests that the visualization be based around a georeferenced coordinate system 
in which the vector data of the scatter nodes will be displayed. Since this space is 
three-dimensional, a visualization on a computer display needs to provide an 
interface to manipulate the point of view and the zoom level interactively. 

Apart from the spatial coordinates, the time coordinate is important. The 
combination of a three dimensional coordinate space with time as an additional 
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dimension is sometimes called four-dimensional visualization (Wilson et al., 2005). 
Time can be introduced as a dimension through the concept of a time line for the 
three dimensional spatial coordinate system. A precise moment or limited time 
period for which the corresponding data are displayed can be selected. Progressing 
the visualization through time leads to a sequence, series, or animation. 

Symbols or glyphs 

Simply considering the spatial and temporal components of scatter nodes, they are 
points in a three or four dimensional space. The symbol with which they are 
represented graphically is sometimes referred to as a glyph in the literature 
(Schroeder et al., 2006). Symbols in common use are points, spheres, crosses, etc. 

Additional information can be encoded through symbols. Categorical features are 
most suitable for this purpose. For a categorical feature with possible values in a 
limited set 1c 1 	a corresponding set of m symbols Is 1 ,...,s„,1 can be chosen so 
that points with feature value c, are plotted with symbol s. 

Colour 

The colour with which the symbols are plotted can be used to encode additional 
information. An appropriate colour scale is used to map the numerical value of a 
feature to a particular colour. 

Size 

The size at which the symbols are plotted can fulfil the same role as colour. 
Encoding a feature through the size of the symbols works best for features that are 
of the same order of magnitude for all points, otherwise the small values will not 
stand out in the display. A solution in such cases is to use a logarithmic scale for 
that particular feature, and have the size of the symbols proportional to the 
logarithm of the feature rather than to the feature itself. 

Transparency 

Symbols can be drawn at varying levels of transparency, from 0% (opaque) to 
100% (completely transparent and hence invisible). The transparency level can be 
used to encode feature values. Typical features that are encoded through 
transparency are related to accuracy, reliability or uncertainty: points with low 

55 



Scientific data mining for spatio-temporal hydroacoustic data sets 

accuracy or reliability, or high uncertainty, are plotted in a more transparent way 
than accurate or reliable points. 

Another use of transparency is in visualizing time. When plotting points that occur 
at a certain point in time, points of the recent past can be added to the same visual 
display, with a transparency level increasing with increasing time gap between that 
data and the present moment. The result is a fading away of data points as new data 
is added through progressing time. 

4.2.3 Echoview 

An advanced software tool for acoustic data is the Echoview package, which has 
extensive visualization capabilities (Wilson et al., 2005; SonarData, 2007; Myriax, 
2008). This is the only known off-the-shelf software currently available that can 
handle multiple water-column multibeam sonar data formats, from a range of 
instruments and manufacturers. This is very useful for visualizing raw multibeam 
data sets in conjunction with the scatter nodes derived from it. At the time of 
writing, the support for spatio-temporal vector data in Echoview is limited. After 
they are derived externally, scatter nodes can be imported into Echoview as objects. 
As a result, it is not possible to interactively change the scatter node features 
encoded by size or colour after they have been imported into Echoview. 
Nevertheless, the combined display of scatter nodes with the underlying raw data is 
invaluable. 

The typical visualization of raw multibeam sonar data is a two-dimensional 
echogram (Figure 4.1): it represents the data constituting one ping (one 
transmission/reception cycle). 
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Figure 4.1 Standard two-dimensional echogram of  ran  multibeam data (S %  in dB). 
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Echoview includes a four-dimensional data viewer (Wilson et  al.,  2005). A set of 
consecutive two-dimensional echograms can be shown as a sequence of images in a 
three-dimensional space with time as a fourth dimension. Time is controlled 
through a time slider (Figure 4.2). It is necessary to impose a data threshold, 
otherwise the many samples in empty water block the samples of interest from view. 

Figure 4.2 Three-dimensional view with additional time dimension. Past data is 
fading away. 

Scatter nodes, as introduced in this research, can be visualized together with the raw 
data. They can be shown in the two-dimensional or in the three-dimensional view 
(Figure 4.3 and Figure 4.4 respectively). 

Figure 4.3 Close-up of part of the echogram in Figure 4.1, with derived scatter 
nodes plotted as triangles. 
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Figure 4.4 Three-dimensional view, showing derived scatter nodes in red, 
together with part of the underlying raw data. 

These  visualizations place the scatter nodes at their correct position in space. In two 
dimensions they are represented by triangles, in three dimensions by tetrahedra. A 
tetrahedron is a volumetric object formed by four points, interconnected by lines of 
equal length. In Echoview it is not convenient to vary the size or colour of these 
symbols by a particular property or feature of the nodes. 

The combined visualization of the raw multibeam data and the scatter nodes derived 
from it gives immediate visual feedback about the data preprocessing algorithm. 
The visualizations can be scrutinized to investigate whether enough scatter nodes 
are constructed, whether no parts of the data are lost, and whether noise is not 
distorting the results. In general, one wants a good coverage of the raw above-
threshold backscatter samples by scatter nodes. An inspection of the three-
dimensional visualization may reveal how many aggregations of fish are present, 
and what their spatial extent is. Such information can be of use in tuning subsequent 
pattern analysis algorithms. 

The data set that was used to create the images in this section is discussed in detail 
in section 5.1. 
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4.2.4 Eonfusion 

A beta version of the software package Eonfusion (by Myriax Pty Ltd) is used to 
visualize scatter nodes. Eonfusion is a data analysis package for environmental data 
and includes a four-dimensional visualization engine. The user of  the  software can 
interact with the data and the graphical environment, making  the  visualization 
dynamic and interactive. At the time of writing the software supports generic 
spatio-temporal vector data such as scatter nodes, but it has no support for raw 
multibeam data. It is expected that support for such data types will become 
available in the future. 

Figure 4.5 shows an example, created with Eonfusion, in which the size and colour 
with which scatter nodes are plotted is varied with their backscatter energy levels. 
The same nodes as those of Figure 4.4 are shown, but now large red points are 
scatter nodes with high backscatter energy sample values, while smaller yellow 
nodes have lower energy levels. 

Figure 4.5 The size and colour of scatter nodes is varied with their backscatter 
energy levels. Large red points indicate high levels; small yellow ones indicate low 
levels. 

4.2.5 Other packages 

Scatter nodes are essentially points in space and time with an additional set of 
features. Scatter nodes can be seen as point data, as vector data, or as records in a 
spatial database. The terminology used to describe this kind of data varies between 
software packages. Relevant software packages supporting this kind of data include 

• analytical packages such as Matlab (0 The Mathworlcs Inc.), S-Plus (0 
Insightful Corp.), and R (open source), 
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• spatial visualization software such as Fledermaus (0 IVS 3D), and 

• spatial information analysis software such as Voxler (C,  Golden Software). 

This is not an exhaustive list of all software available that supports scatter node data, 
but it demonstrates that the scatter node representation of multibeam sonar data is 
sufficiently general and generic to be supported by many existing packages. 
Furthermore, most of the packages mentioned here include data export routines to 
export data into other file formats for use by different software tools. 

4.3 SPATIAL CLUSTERING 

4.3.1 Concept 

The aim of clustering algorithms is finding groups or clusters of similar scatter 
nodes automatically. Scatter nodes as defined in definition 3.3 are similar if all or 
some of their components are similar. Considering the spatial components x, scatter 
nodes are expected to be indicative of the same object if they are close to each other, 
in a geometrical sense. Similarity in this case is measured as spatial proximity. In 
terms of the temporal component t, scatter nodes are similar if they were collected 
not long apart in time. Similarity with respect to the feature vectors v is less 
straightforward, as similarity is measured in a feature space, in which a variety of 
metrics could be applied. 

It is clear that all three components, space, time and other features must be 
considered simultaneously in order to assess similarity of scatter nodes. This is not 
trivial, and will be discussed in section 4.4, where appropriate methods are 
developed. 

Prior to that, it is worth investigating whether there are standard text-book 
clustering algorithms that can be used to cluster scatter node data. The benefits of 
such investigation are twofold. Firstly, the existence of applicable algorithms 
delivers evidence of the value of the scatter node representation. If standard 
algorithms can be applied, then the preprocessing routine enables the use of such 
algorithms for multibeam sonar data. Secondly, a working text-book algorithm 
provides a base line approach to clustering scatter nodes. It can be used in 
benchmarking tests with new algorithms It is customary to compare results of new 
algorithms with results of established ones, to assess their usefulness and value. 
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Algorithms to jointly consider spatial, temporal and feature components of data 
points are not found in the reference literature on clustering and pattern analysis 
(Duda et al., 2000; Hastie et al., 2001; Bishop, 2006). Therefore, the scatter nodes 
are reduced to their spatial components in the remainder of this section. From 
studying the scatter node data sets visually (section 4.2), it is expected that the 
spatial components alone can be sufficient to yield reasonably good clustering 
results for some purposes, for example for the detection of fish schools. 

Ignoring the temporal and feature components of scatter nodes, scatter nodes are 
represented as column vectors x i  for i = 1, n, and n the number of scatter nodes 
in the data set 0. 

Assuming k clusters are to be found, a clustering algorithm is a function f which 
maps each data point to an integer value 1, 	k indicating the cluster number: 

(4.1) 

Different clustering methods allow different function classes for f, and differ in the 
wayfis established. 

In the next section an overview of clustering methods is given, with an assessment 
of whether they can be of value in clustering the spatial components of the scatter 
nodes. 

4.3.2 Overview of clustering methods 

Several standard clustering methods are considered. A number of general texts 
discuss various methods (Duda et al., 2000; Hastie et al., 2001; Bishop, 2006). 
Good review papers on clustering include Wei et al. (2003) and Xu and Wunsch 
(2005). References to specific publications are given below, where appropriate. The 
list of algorithms presented below is not an exhaustive listing of all methods. Rather, 
it is a summary of the most common algorithms or families of algorithms that are 
considered within the scope of this thesis. The methods discussed are simple, ad-
hoc algorithms that have proven valuable in at least some application domains. 

Each of the standard texts referenced above presents clustering algorithms in a 
different taxonomy. Given the multitude of algorithms and the diverse ways they 
operate, no taxonomy is perfect. Roughly following Xu and Wunsch (2005), the 
following families of clustering algorithms are distinguished. 
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• Criterion or optimization methods find an optimal cluster assignment for 
the data points under consideration, based on some well defined decision or 
optimization criterion. 

Examples: k-means, Gaussian mixtures, CLARANS. 

• Hierarchical or agglomerative methods group data points together in 
clusters, starting from having n clusters each containing a single data point. 
These are bottom-up methods. 

Examples: DBSCAN, CURE, Chameleon. 

• Partitioning or divisive algorithms partition the data into clusters, starting 
from a single cluster containing all the data points. These are top-down 
methods. 

Examples: BIRCH 

• Advanced clustering methods are more involved and less ad-hoc, and do 
not typically fit one of the first three groups mentioned. Algorithms in this 
family have roots in fuzzy logic, neural networks, kernel methods and other 
areas related to machine learning. 

The example algorithms listed for each of the first three families are considered 
here. Advanced clustering algorithms are discussed further in section 4.4. 

K-means 

The most widely used clustering algorithm is the k-means algorithm, originally 
proposed in Lloyd (1982) and discussed in many text books on pattern analysis 
(Duda et al., 2000; Hastie et al., 2001; Bishop, 2006). It is a simple and popular 
method, often used as a benchmark for comparison with other algorithms. Because 
of its significance, and the fact that extensions to this algorithm are considered in 
section 4.4.6, a detailed description is given. 

Let {xi, ..., x„} be the data set to be clustered. In the current context the xi  are the 
spatial components of the scatter nodes, but the algorithm applies to any kind of 
feature vectors for which a (Euclidian) metric is defined. 

The goal is to partition this data set into k clusters. The k clusters are assumed to be 
represented by their cluster centres, p i , 	, pk. The k-means algorithm is an 
iterative procedure to find these cluster centres. The algorithm can be derived and 
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defined in different ways; here, the general line of thought of Bishop (2006) is 
followed. 

For each xi in the data set, binary indicator variables rd  E {0, 1} are defined, 
describing which of the k clusters the data point i belongs to: rd  is 1 if data point x i  
belongs to cluster j, and 0 otherwise. An objective function, sometimes called a 
distortion measure or loss function is defined as: 

n k 

= 	II 	- ,u;  II 2 	 (4.2) 
j=1 

with i • lithe Euclidian distance metric. The objective function J represents the sum 
of squares of the distances between each data point and the centre of the cluster it 
belongs to. The goal is to find values for all rd  and m so as to minimize J. This is 
achieved through an iterative procedure consisting of two steps or phases, 
corresponding to successive optimizations with respect to rd  and m. The algorithm 
is initialized by selecting initial values for the m. This is commonly done by 
selecting k data points at random. 

Then, in the first phase J is minimized with respect to rd, keeping the pi fixed. The 
terms involving different i in eq. (4.2) are independent, so J can be minimized for 
each i separately by choosing ry  to be equal to 1 for whichever value off gives the 
minimum value of x i  — pi  112.  This is assigning the data points xi to their nearest 

cluster centre: 

. r y= 1 	if j = arg min„, il xi  — P.11 2  , 	 (4.3) 

ry  = 0 	otherwise. 

In the second phase, J is minimized with respect to the pi keeping the ry  fixed. The 
function J is quadratic in pi and can be minimized by setting its derivative with 
respect to m equal to zero: 

2 Eri (xi — 141 ) = 0 
i.1 

(4.4) 

which can be solved for pi, giving: 

(4.5) 
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The denominator is equal to the number of data points in cluster j. This expression 
for 1uj has a simple interpretation: it is the mean of all the data points assigned to 
cluster j. 

These two phases of re-assigning the data points to clusters and re-calculating the 
cluster centres are repeated until there is no further change in the assignments. Since 
each phase reduces the value of f, convergence is assured. However, the algorithm 
may converge to a local rather than a global minimum of J. 
As a consequence of utilizing the criterion of eq. (4.2), cluster shapes are hyper-
spherical. This is a known limitation, and is one preventing the application of the k-
means algorithm to scatter node data sets. Fish schools can take on various non-
spherical shapes, and obviously the seabed is non-spherical. To illustrate this, a 
simple data set is created using the model developed in section 3.2, and scatter 
nodes are derived (Figure 4.6). 

Figure 4.6 4.6 Two views of the same set of scatter nodes that is to be clustered. An 
ellipsoidal aggregation of fish and a flat seabed are distinguished. 

Clearly, from a visual inspection of this data set, two clusters are present: an 
ellipsoidal fish school and the seabed. K-means is run with k = 2. The result is 
presented in Figure 4.7. 

K-means is unable to correctly identify the two clusters, which are obviously 
distinguished by visual inspection. The reason is that k-means cannot detect cluster 
shapes that are not spherical. In this case the flat rectangular cluster representing the 
seabed is causing k-means to fail. 
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Figure 4.7 The data set from Figure 4.6, clustered into 2 clusters using k-means. 
Red and blue indicate cluster membership. K-means fails to identify the obvious 
clusters. 

Gaussian mixtures 

The underlying assumption of Gaussian mixture models is that the probability 
density from which the data set Ix], x,,} was obtained is a linear superposition 
of k Gaussian distributions: 

P(x)= E7,-;N(p1 ,E1 ) 
i=1 

(4.6) 

with mixing coefficients xi  , N(.,.) the normal distribution with mean pi  and 
variance/covariance vector I.. 

The goal is to find values for xi, p j  and Ei  using the maximum likelihood criterion, 
which aims at selecting those values of the free parameters that maximize the joint 
likelihoods of the data, given the parameters: 

(4.7) 

The procedure through which this is commonly achieved  is  Expectation 
Maximization. It is an iterative procedure consisting of two steps, an expectation 
step and a maximization step. Details are found in the text books referenced above. 
After convergence, a point xi is assigned to that cluster m for which the probability 
is maximal: 

m = arg max P(x,I j ,pi ,E j ). 	 (4.8) 
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In fact, this algorithm is a generalization of the k-means algorithm. The difference 
is that with Gaussian mixtures, cluster shapes can be hyper-ellipsoidal rather than 
hyper-spherical. From the example given in Figure 4.7 it is clear that this is still too 
limiting in the case of clustering scatter nodes, as clusters can only be convex 
ellipsoids, and the rectangular cluster representing the seabed cannot be expected to 
be identified correctly. Furthermore, while the example school in the data set is 
ellipsoidal, real fish schools can have varying shapes, depending on the fish species 
and their schooling behaviour (Lawson et al., 2001; Gerlotto and Paramo, 2003; 
Gerlotto et al., 2004). 

CLARANS 

The algorithm Clustering Large Applications based on RANdomized Search 
(CLARANS) was proposed by Ng and Han (2002), and is a generalization of 
CLARA, a random sampling approach (Xu and Wunsch, 2005). The CLARANS 
algorithm defines optimization criteria, such as eq. (4.2) for k-means or eq. (4.7) for 
Gaussian mixtures. Rather than implementing an iterative process, it proceeds by 
randomly selecting subsets of data points that are considered for cluster re-
assignment. The advantage over k-means and Gaussian mixtures is that it is less 
sensitive to initialisation, and hence less likely to converge to a local extremum of 
the criterion function. A disadvantage is its computational complexity and running 
time. 

As the resulting cluster shapes are not different from those found by k-means or 
Gaussian mixtures, CLARANS is not considered further in the current context. 

DBSCAN 

Density Based Spatial Clustering of Applications with Noise (DBSCAN) was first 
proposed in Ester et al. (1996) and extended in Sander et al. (1998). The intuitive 
idea is to assign dense aggregations of points to the same cluster. Zones of low 
density separate different clusters. Clusters are grown from an initial data point and 
new clusters are created as needed, based on a density criterion. DBSCAN can 
handle noise or outliers: points that are not in sufficiently high-density regions are 
regarded as noise. 

This approach meets the needs for clustering scatter nodes very well. DBSCAN is 
specifically aimed at spatial clustering, it deals with noise very well, and it matches 
the intuitive concept of clusters in scatter node data. DBSCAN is described and 
studied in more detail in section 4.3.3. As a preliminary test, DBSCAN is run on the 
data set from Figure 4.6. The resulting DBSCAN-based clusters are shown in 
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Figure 4.8. DBSCAN is able to correctly identify the two clusters that are expected 
from visual inspection. 

Figure 4.8 The data set from Figure 4.6 clustered using DBSCAN. The two 
clusters that are expected intuitively are determined correctly. 

CURE 

Clustering Using REpresentatives (CURE) was proposed in Guha et al. (2001). 
Where k-means, Gaussian mixtures and CLARANS are all based  on  a mean cluster 
centre, CURE uses multiple points to represent a cluster. This introduces some 
flexibility in terms of cluster shapes, and does not limit them to be hyper-spherical 
or ellipsoidal in shape. 

CURE is reported to have difficulty in finding clusters of hugely different sizes (Xu 
and Wunsch, 2005). Since in the application at hand, the clustering  of  scatter nodes, 
it is expected that clusters will vary greatly in size, CURE is not considered further. 

Chameleon 

Chameleon is a clustering algorithm based on graph theory (Karypis et al., 1999). It 
uses a k-nearest-neighbour graph, where each data point is a node. Nodes are 
connected to their k nearest neighbours for some value of k and some distance 
metric. The algorithm then proceeds by finding connected clusters in this graph. 
Conceptually this is not very different from the DBSCAN approach. However, an 
important difference is the fact that Chameleon connects points that are near to each 
other using a ranking system, while DBSCAN uses absolute distances. Chameleon 
could give rise to clusters consisting of points that are sparsely distributed relative 
to points in other clusters. This is not desirable in the case of scatter nodes, where 
the spatial features of scatter nodes are considered explicitly, and absolute 
proximity in geometric terms is relevant. 
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BIRCH 

In Zhang et al. (1996), an algorithm called Balanced Iterative Reducing and 
Clustering using Hierarchies (BIRCH) is proposed. BIRCH is a tree-based method, 
where each node can be seen as a cluster summary at that level. Clustering proceeds 
by splitting nodes according to some criterion, so introducing smaller clusters. The 
advantage of BIRCH is that it is relatively efficient and can handle very large data 
sets. However, it has problems also: it is unclear how to establish optimal splitting 
criteria, and, again, it uses cluster centres as representatives, leading to hyper-
spherical clusters. The latter prevents the use of BIRCH in the clustering of scatter 
nodes. 

In summary 

The requirements that are important for a clustering algorithm for scatter nodes are 
given in Table 4.1, with an assessment of each requirement against the considered 
algorithms. 

Arbitrary 
cluster 
shape 

Different 
cluster 
sizes 

Handles 
noise or 
outliers 

Uses spatial 
aspect of 
data 

Acceptable 
complexity 

K-means 
Gauss. mixt. 

- 
- 

+ 
+ 

+ 
+ 

+ 
+ 

CLARANS - + - + 
DBSCAN + + + + + 
CURE + + + 
Chameleon + + + - + 
BIRCH - + + 

Table 4.1 Overview of clustering algorithms and their characteristics 
(+ : requirement met, -: requirement not met). 

In conclusion it is decided to use DBSCAN as the base line algorithm for clustering 
scatter nodes as it scores well against all requirements. DBSCAN allows for 
arbitrary cluster shapes of potentially hugely different sizes, and can handle noise in 
the data. The concept of clusters being regions of high density fits well with the 
intuitive idea of clusters in scatter node data. Furthermore, the algorithm is designed 
for spatial data specifically, and does take into account the fact that the features are 
coordinates in a geometric space. 
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4.3.3 Spatial clustering with DBSCAN 

DBSCAN basics 

The original version of DBSCAN (Ester et al., 1996) has been generalised 
(GDBSCAN), extending the notion of neighbourhoods and metrics (Sander et al., 
1998). An optimization procedure that allows for sequential applications of 
DBSCAN with different parameters was proposed in Ankerst et al. (1999) under the 
name OPTICS (Ordering Points To Identify Clustering Structure). In the context of 
this thesis, only the spatial components of scatter nodes are considered. Furthermore, 
spatial densities of nodes in clusters are not found to vary greatly and hence no 
extensive iterative searching is done. For these reasons no further attention is paid 
to GDBSCAN and OPTICS, and the discussion concentrates on the fundamental 
DBSCAN algorithm as it was originally proposed (Ester et al., 1996). 

In investigating DBSCAN for scatter nodes, a serious shortcoming of the algorithm 
was identified. The clustering resulting from DBSCAN is not unique. The outcome 
depends on the order in which the data points are presented to the algorithm. A 
permutation of the input data set can result in a different clustering being obtained. 
This weakness is recognized to some extent by the original authors (Ester et al., 
1996), but no solution is provided. Furthermore, this aspect of the algorithm is often 
ignored in the literature when considering DBSCAN (Xu and Wunsch, 2005). The 
DBSCAN-based extensions GDBSCAN and OPTICS make a brief mention of this 
problem but do not investigate its consequences (Sander et al., 1998; Ankerst et al., 
1999). 

In the following paragraphs it is shown that arbitrary clustering can occur for points 
near cluster boundaries. Since these points are crucial in determining subsequent 
decision boundaries in classification problems, the DBSCAN indeterminism is 
unacceptable. Because the randomness is most manifest in boundary regions 
between clusters, DBSCAN is known to perform poorly in such cases (Yip et al., 
2006). An improved version of DBSCAN, resulting in a truly unique clustering, is 
proposed in this thesis; it will be referred to as Unique-DBSCAN or UDBSCAN, as 
it results in a unique solution to the clustering problem. 

The DBSCAN algorithm is now presented, followed by the extensions and 
modifications leading to UDBSCAN. Since the context of this section is self-
contained, definitions and lemmas are numbered with the prefix `D-' (from 
DBSCAN). This prevents confusion with the general discussion of the thesis. 

DBSCAN according to Ester et al. (1996) 

The presentation of the DBSCAN algorithm given here follows Ester et al. (1996) 
roughly, although the mathematical notation utilized here is more formalized. 
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Let S be some N-dimensional space with a distance metric 11.,  .11. Let X be a finite 
subset of S containing the points to be clustered, X = {x/, ..., x,,} . 

Definition D-1. The c-neighbourhood of a point x in X is 
A / c (x) = fy E X I IIX,y11 6/. 

The fundamental idea of DBSCAN is to create clusters of points in X such that 
locally dense distributions of points give rise to clusters. Intuitively, points in 
clusters are expected to have a minimum number of other points in their local 
neighbourhood. Points on the boundaries of clusters, towards low-density areas, 
will generally have fewer points in their neighbourhoods while still belonging to the 
cluster. This idea is formalized as follows. Let m be the minimum number of points 
expected in a c-neighbourhood of a point inside a cluster. 

Definition D-2. A point x in X is a core point with respect to E and m, if and 
only if IN, (x)1 _. m . 

IN, (x)1 denotes the cardinality of the set N6  (x). 

Definition D-3. A point x is directly density-reachable from a point y with 
respect to c and m, if 
1) X E AT e (y) and 
2) y is a core point. 

Note that if x is directly density-reachable from y, the reverse is not necessarily true. 
It is only true if x is also a core point. 

Lemma D-1. If x is a core point and x is directly density-reachable from y, then y is 
directly density-reachable from x. 
Proof 

Since x is directly density-reachable from y, x e N e (y) , and 11x, Y11 e.  The 
distance metric 11.11  is symmetric by definition, hence yE AT „(x) . Since x is also 
a core point, y is directly density reachable from x. 

The concept of density-reachable is now defined. 

Definition D-4. A point x is density-reachable from a point y with respect to c 
and m, if and only if there is a chain of points xi, x2, ..., xk, with xi  = y and xk = 
x, such that xi+i  is directly density reachable from x i, Vi E {1,2,—, k —1} . 

This relation is again not symmetrical in general, and lemma D- 1 can be generalized. 
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Lemma D-2. If x is a core point and x is density-reachable from y, then y is density-
reachable from x. 
Proof 

By induction from the proof of lemma D-1. 

The notion of border points can now be formalized. This is not done explicitly in 
the original publications (Ester et al., 1996; Sander etal., 1998). 

Definition D-5. A point x in X is a border point, if and only if x is density 
reachable from a pointy, and x is not a core point. 

Two border points may not be density reachable from each other, while they are 
both density reachable from a common core point. Such a relationship is now 
defined. 

Definition D-6. A point xi is density-connected to a point x2 with respect to 
and m, if and only if there is a point y such that both x, and x2 are density 
reachable from y. 

Lemma D-3. The relation 'density-connected' is symmetrical. 
Proof 

Follows immediately from definition 6. 

The density-based notion of a cluster can now be defined. 

Definition D-7. A cluster C of points in a set X, with respect to E and m, is a 
non-empty subset of X satisfying the following conditions: 
(maximality) If xe C and y is density reachable from x with respect to E and m, 
then ye C, 
(connectivity) V x, yE C, xis density-connected toy with respect to E and m. 

A clustering of X is simply the set of all possible clusters. 

Definition D-8. The clustering, with respect to E and m, of D, is the set 	= 
{ C I  C is a cluster of X with respect to E and m}, and if C is a cluster of X with 
respect to E and m, then CE (DE,rn• 

There may be points that do not belong to any cluster. Such points are said to be 
noise. 

Definition D-9. Let (130g,m  = 	Ck} be the clustering of the set X with 
respect to E and m. The noise of the set X with respect to E and m is the set 
Are,„,=IxEXIVi,x00. 
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In order to find the clusters of a set X, an algorithmic process must be outlined. The 
following two lemmas are helpful in doing so. 

Lemma D-4. Let XE X be a core point. Then the set C ={ yE X I y is density-
reachable from x} is a cluster as per definition D-7. 
Proof 

Since x is a core point, x is density-reachable from itself, or XE C, hence C is 
not empty. Maximality: Let ye C and r density-reachable from y. y is density-
reachable from x by definition of C. Therefore r is density-reachable from x, 
and r E C. Connectivity: Let y, r E C. Both are density-reachable from x by 
definition of C. Then y is density-connected to r by definition D-6. 

Lemma D-5. Let C be a cluster of X and let x be a core point, XE C. Then C equals 
the set A = {yeX Iy is density-reachable from x}. 
Proof 

The set A is a cluster because of Lemma D-4. Assume that there is a point y e C, 
yeA. Since ye C, y is density-connected with x. Since x is a core point, y is 
density-reachable from x, and hence y E A. Therefore Cc A. Similarly, assuming 
a pointy C, ye A leads to AcC. In conclusion A= C. 

This concludes the formal basis for the DBSCAN algorithm as in Ester et al. (1996), 
where it is not stated that it is possible for clusters to overlap. The authors of Sander 
et al. (1998) do recognize the fact that cluster overlap is possible. 

Lemma D-6. Let C, C (Dig,. and C2 El:1)8 ,m  be two clusters of points in X, and C, # C2. 
Then for all XE C1 n C2, IN e (x)I< m (i.e. x is not a core point). 
Proof 

Assume x a core point. Since x is in both C1 and C2, lemma D-5 states that CI = 
C2, which is a contradiction. 

While stating this lemma, Sander et al. (1998) do not attribute any further 
significance to it. This lemma is in fact the basis for the indeterminism arising in 
DBSCAN. For completeness the following lemma is formulated. 

Lemma D-7. A core point p can only belong to a single cluster C, with respect to c 
and m. 
Proof 

Follows immediately from lemma D-6. 

It is important to note that, based on lemmas D-6 and D-7, it is clear that when a 
clustering OE,,„ of points in X is achieved, not every point in X will belong to a 
single cluster. 
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Indeterminism in DBSCAN 

Lemmas D-4 and D-5 allow for an algorithmic formulation of a clustering 
procedure. In essence, the lemmas say that one can use any core point as a seed, and 
grow a cluster by adding every point that is density-connected to a point already in 
the cluster. When the cluster-growing process is complete for the first cluster, the 
process is repeated, each time starting with a core point that is not in a cluster yet. 
The clustering finishes when all core points are in a cluster. Pseudo-code for this 
algorithm is given in Ester etal. (1996). 

Lemma D-6 clearly indicates that, in principle, there may be points that belong to 
more than one cluster. DBSCAN simply proceeds by assigning such points to 
clusters on a first-come-first-serve basis: once a point is included in a cluster it 
cannot be included in a second cluster. As such, the actual clusters resulting from 
the algorithm are disjoint sets, while the clusters according to the underpinning 
formalism outlined above are not necessarily disjoint. This is the essence of the 
indeterminism in DBSCAN. Altering the order in which data points are presented to 
the algorithm can affect the cluster to which they will be assigned. This is clearly 
undesirable. The DBSCAN clustering algorithm will assign some points arbitrarily 
to one cluster or another. Lemma D-6 states that this is the case only for points that 
are not core points. 

The following example illustrates the importance of such non-core points. Once 
clusters are identified, they can be used for subsequent classification of new points. 
The classification boundary will be chosen to be the cluster boundaries as resulting 
from the clustering. The key achievement of such clustering scenarios is not only 
the clustering of the given points, but rather the determination of decision 
boundaries between classes. The data to be clustered are represented in Figure 4.9. 
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Figure 4.9 An example data set to be clustered. 

This is a simple example just to illustrate the indeterminism in DBSCAN. The 
points were clustered twice, with identical parameters, but the order of points was 
changed between runs. The results are presented in Figure 4.10 (a)-(d). Cluster 
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assignments are represented by the symbols 0 and Observe that in Figure 4.10 
(a)-(b) there is one point belonging to the 0-cluster that was captured by growing 
the •-cluster (marked by the red ellipse). Starting with growing the 0-cluster, as in 
Figure 4.10 (c), leads to this point being captured by the 0-cluster. However, now 
another point is incorrectly captured by the 0-cluster (marked by the red ellipse). 
Given that the only difference between the two runs is the order in which points 
were processed, this is an unacceptable indeterminism in the algorithm, and clearly 
leads to arbitrary distortions in the decision boundaries between classes (Figure 4.10 
(b) and (d)). 
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Figure 4.10 (a) and (b) are the clusters and classification zones resulting from 
running DBSCAN a first time. (c) and (d) are equivalent, obtained by running 
DBSCAN a second time, with the only difference that the list of input data points 
was permutated after the first run of DBSCAN. It can be seen that the two runs 
of DBSCAN do not result in equal clusterings. Different arbitrary distortions can 
be seen (marked by red ellipses). 

It is tempting to ignore the fact that some points are arbitrarily assigned to one 
cluster or another (Ester et al., 1996; Sander et al., 1998) by contending that it will 
generally be only a small number of points that suffer from this inconsistency, and 
that the majority of points will be clustered identically, independent of the order in 
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which the points are presented to the algorithm. This is true, but it is argued here 
that it is precisely those critical points that are the important ones in subsequent 
analysis. 

Unique-DBSCAN 

It is shown above that points belonging to multiple clusters result in the 
indeterministic behaviour of DBSCAN. A definition of such points is now 
introduced formally. 

Definition D-10. A critical point x is a point for which there are clusters 
e (13,,,„, and Ci E D ,m , such that Ci  c), and xe C,n C. 

The critical points are points in the boundary zones between clusters, and play a 
crucial role in establishing cluster boundaries to be used as decision boundaries in 
subsequent classification algorithms. Critical points cannot be core points according 
to lemma D-7. It can be seen from definition D-10 that critical points are points that 
are border points for more than one cluster. The following definition will allow the 
formulation of an extended algorithm leading to unique clustering. 

Definition D-11. The cluster membership function for points x and clusters Ci  is 
p i(x) = p(x, 	= 1 	 if x is a core point of Ci , 
p i(x) = p(x, Ci) = (6. m)-1  1,;(E - Ilx, yj  I) 	if x is a border point of C, , with y1 the 

core points of Ci  in the e— 
neighbourhood of x, 

p i(x)= p(x, C = 0 	 otherwise. 

The membership functions p, take on values in the range [0, 1]. These functions 
immediately provide a fuzzy clustering. This is not further explored in the present 
context, as DBSCAN is a crisp clustering algorithm. The concept of membership 
functions will be used for resolving conflicts that arise with regard to critical points 
in DBSCAN. The original DBSCAN algorithm can now be formulated in terms of 
membership functions as algorithm 4.1. 

Algorithm 4.1: Ordinary DBSCA1V. 

1. Construct a clustering Ow  (see Definition D-8). 

2. Calculate membership functions (see Definition D-11). 

3. Assign points to clusters as follows: 
(a) if p i(x) 0 and pf(x) = 0 for j i, then ca(x)= Ci , 
(b) if p,(x) = 0 for all i, then ca(x)= 
(c) otherwise, ca(x)= rand( {C1 I  ,u(x) t 0}). 
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The function ca(.) is the cluster assignment function which assigns points to clusters. 
The function rand(.) takes a set as its argument and selects one element from the set 
at random. The cluster N,,,„ is the noise set as in definition D-9. Step 3(c) in 
Algorithm 4.1 covers cluster assignment for critical points. Assigning such points to 
clusters at random is clearly undesirable. The developed formalism, in particular the 
introduction of the concept of membership functions, suggests an alternative 
algorithm, Algorithm 4.2, which will be called Unique-DBSCAN, or UDBSCAN in 
short. 

Algorithm 4.2: Unique-DBSCAN (UDBSCAN). 

1. Construct a clustering (1),,m  (see Definition D-8). 

2. Calculate membership functions (see Definition D-11). 

3. Assign points to clusters as follows: 
(a) ca(x)= C,, with i = arg maxi  pi(x) if i is unique, 
(b) ca(x)= NE ,m  otherwise. 

UDBSCAN assigns all points to clusters based on the membership functions. This 
is in fact the classical approach of turning a fuzzy clustering into a crisp clustering: 
points are assigned to that cluster for which the membership function is maximal. 
The difference between Algorithms 4.1 and 4.2 is in the handling of critical points, 
points which have non-zero memberships for more than one cluster. While 
Algorithm 4.1 assigns them randomly to a cluster, Algorithm 4.2 assigns them 
maximizing the membership function. The ultimate achievement of the newly 
proposed UDBSCAN algorithm can now be proven. 

Lemma D-9. UDBSCAN provides a unique clustering. 
Proof 

Core points and border points that are not critical points belong to precisely one 
cluster (lemma D-7 and definition D-10). Hence there is a unique membership 
function that is non-zero for such points (definition D-11) and step 3(a) in 
Algorithm 4.2 becomes trivial. 
For critical points: assume the critical point x is assigned to two different non-
noise clusters C, and CI, C, Ci  in two different runs of the UDBSCAN 
algorithm. Since x is assigned to C„ pi(x) > p(x) for all Ck Ci, in particular 
p i(x) > pi(x). Equivalently, since x was assigned to C3  in the second run, the 
following must hold also: ,u3(x) > pi(x) for all C1 in particular pi(x) > p i(x). 
This is a contradiction. In the case where x was assigned to a non-noise cluster 
Ci  in one run, and the noise set in another run, m(x) > pk(x) for all Ck Ci. On 
the other hand, it being assigned to the noise set means that there were two 
different non-noise clusters Ci  and some C3  for which p,.(x) = pi(x). This is a 
contradiction and concludes the proof. 
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The same data set used in the example in Figure 4.9 and Figure 4.10 is now 
subjected to the UDBSCAN algorithm. The unique classification resulting from this 
experiment is represented in Figure 4.11. While the main achievement is the 
uniqueness of the clustering, it can be seen that the UDBSCAN-clustering matches 
our intuitive understanding more closely than some of the various clusterings that 
can arise from the ordinary DBSCAN algorithm. 
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Figure 4.11 (a) and (b) The example data as clustered by UDBSCAN. The 
UDBSCAN clustering is unique. 

The precise extent of the difference in results between DBSCAN and UDBSCAN 
depends on the data at hand. The number of border points for a cluster depends on 
the ratio of the length of its border to its area, and on the density. The number of 
border points that are critical points depends on the spatial proximity of other 
clusters. In areas where clusters are close together, separating them is a difficult 
problem, and is not one which DBSCAN is known to handle well (Yip et al., 2006). 
The data points in such zones are crucial in determining boundaries between 
clusters, hence a consistent non-random cluster assignment is essential. UDBSCAN 
accommodates this need. 

Benefits of (U)DBSCAN 

DBSCAN was selected from a range of standard algorithms as one that is 
considered promising with respect to clustering scatter nodes based on their spatial 
components. It scored best against a range of requirements that were put forward 
(see Table 4.1). Modifications are made, leading to UDBSCAN. A preliminary, 
simple example has been given already (Figure 4.8). Further examples are given in 
chapter 5, where a number of case studies are presented. 
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It is in any case convenient to have access to a standard algorithm, which can be 
applied easily, and which can be expected to give reasonable first results in terms of 
clustering scatter nodes. UDBSCAN will fulfil this role, and be utilized for 

• obtaining a first clustering quickly and easily, 

• providing a reference against which other algorithms can be compared. 

If, in a given situation, the UDBSCAN clustering is satisfactory (see section 4.5.5), 
there is of course no need pursue the application of alternative clustering algorithms. 
However, it is expected that using more information from the scatter nodes than 
only their spatial components —which cannot be done with UDBSCAN— will lead to 
improved results. 

Limitations of (U)DBSCAN 

In the example data set of Figure 4.6, DBSCAN is able to find the expected clusters, 
as shown in Figure 4.8. In fact, UDBSCAN was used to find these clusters. This 
data set is rather clean and does not pose any problems. 

A still simple yet slightly more complex data set is presented in Figure 4.12. It is the 
same data set as Figure 4.6, but now with a second, smaller aggregation of nodes 
added not far above to the seabed (indicated by a red ellipse). Some random noise is 
also introduced. 

Figure 4.12 The same data set as in Figure 4.6, but now with an additional fish 
school (indicated by the red ellipse) and some random noise added. 

Running UDBSCAN with the same settings as those used to obtain the clusters in 
Figure 4.8 results in the clusters shown in Figure 4.13. Again, only two clusters are 
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found, indicated by blue and red. The newly added aggregation is not detected as a 
separate cluster, rather, it is determined to belong to the same cluster as the seabed 
(both in blue). The large aggregation is correctly identified (in red). 

The parameters are subsequently adjusted in order to find finer detail in the data set. 
More clusters are indeed found, with an example with 7 clusters shown in Figure 
4.14. However, the new aggregation is still in the same cluster as the seabed (both 
in blue), with additional smaller, spurious clusters found within the seabed cluster 
(indicated by colours other than blue). The large aggregation is still isolated as a 
cluster (in red). 

Also worth observing is the removal of noise, which was successful. The noise 
(data points not belonging to any cluster) in Figure 4.12 is no longer present in 
Figure 4.13 and Figure 4.14. UDBSCAN has identified those points correctly as 
noise; they are not plotted in these figures. 

UDBSCAN has difficulty detecting the smaller aggregation near the seabed as a 
cluster because that aggregation is not separated enough from the nodes 
representing the seabed. This is indicative of a more general limitation of DBSCAN 
and UDBSCAN: the zones of high density must be well separated, otherwise they 
cannot be identified as separate clusters. The presence of noise in those zones can 
also disrupt the expected working of UDB SCAN, as the noise samples can act as a 
bridge between two high density zones. 

Figure 4.13 The results of UDBSCAN when applied to the data set of Figure 4.12. 
with the same settings as those used in obtaining the results presented in Figure 
4.8. UDBSCAN is unable to identify the newly added cluster. 
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a 

Figure 4.14 Changing the settings of the UDBSCAN algorithm for it to become 
more sensitive results in more clusters being found. In this case 7 clusters are 
identified, but rather than detecting the smaller school near the seabed, spurious, 
meaningless clusters are introduced. 

In the examples presented here, only the spatial coordinates of scatter nodes are 
used. However, scatter nodes include, besides spatial properties, also a temporal and 
a general feature vector as components. So far these non-spatial components have 
been ignored when clustering scatter nodes. Bringing these into play is not a trivial 
matter, but it can be expected that there is value in doing so. For example, the 
scatter nodes in the small aggregation near the seabed may have backscatter energy 
levels that are a lot less than those of the scatter nodes indicative of the seabed. The 
next section will develop a method that uses such differences in non-spatial 
components to improve the clustering. 

4.4 KERNEL METHODS FOR CLUSTERING 

4.4.1 Concept 

Scatter nodes have three distinct components: a spatial, a temporal and a feature 
component. In applying processing algorithms, there is benefit in utilising this 
knowledge for fine-tuning the clustering algorithms. No obvious way to do this 
could be seen in relation to any of the clustering techniques discussed in section 
4.3.2 and listed in Table 4.1. These methods are all relatively simple. They provide 
different sensible and well understood approaches to clustering data points. 
However, they are rather restricted in terms of clusters they are able to determine, or 
are lacking theoretical foundations upon which could be built to extend them to 
handle spatio-temporal feature vectors. K-means, CLARANS and BIRCH are linear 

80 



4 Pattern analysis 

methods, in the sense that boundaries between clusters are hyper-planes. This is 
relaxed slightly with Gaussian mixtures, in which clusters are hyper-ellipsoidal in 
shape with boundaries that can be quadratic. Chameleon and DBSCAN are non-
linear in that any shape of cluster could arise. However, they are ad-hoc methods, 
based on rather intuitive concepts. Chameleon is based on proximity rankings rather 
than proximity metrics, which renders it less useful for spatial clustering. DBSCAN 
on the other hand is specifically a spatial clustering algorithm, which in turn is a 
limiting factor as no obvious possible extensions to include non-spatial components 
of data points are available. In this section, a number of alternative methods are 
considered. 

Neural networks 

The most commonly used neural network based clustering algorithm is the Self-
Organising Map (SOM) (Kohonen, 2001). The objective of SOM is to represent 
high-dimensional input data with prototype vectors that can be visualised in a 
usually two-dimensional lattice structure. Each unit in the lattice is a neuron, and 
adjacent neurons are connected to each other, providing a topological representation 
of how the lattice fits itself in the input space. Input data points are connected to all 
neurons via adaptable weights. During the training phase these weights are adjusted 
to project input points to adjacent neurons. 

The benefit of this approach to clustering scatter nodes is that the neurons in the 
lattice provide an approximation to the density in a non-parametric and non-linear 
fashion. However, the SOM algorithm has a number of problems (Xu and Wunsch, 
2005). The number of neurons (lattice size) must be chosen in advance, which is 
difficult. Another problem is how SOM copes with areas of varying densities: low 
density areas may end up over-represented, while high-density areas may end up 
under-represented. Finally, the training algorithm makes use of a metric in input 
space. It is not clear how this could be generalized to include temporal and feature 
components of spatial scatter nodes. 

Association rules 

Association rules (Agrawal et al., 1995) attempt to find regions of higher 
probability in the input space by determining a number of prototype vectors which 
have a relatively high probability of occurring. This problem is severely plagued by 
the so-called curse of dimensionality (Bellman, 1961): for typical dimensions in 
feature spaces (five and higher), the number of data points that would be needed to 
find these prototypes reliably is generally unrealistically high. 
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In order to obtain a tractable problem, both the goals of the analysis and the types of 
data to which it is applied are greatly simplified. The goal is simplified by seeking 
a subset of the data points that have a higher joint probability of occurring, rather 
than seeking a single representative. In terms of data types, association rules are 
commonly applied to categorical data, which is much easier than continuous data 
(Hastie etal., 2001). 

In scatter nodes, the spatial and temporal components are continuous, as are all but 
some of the features proposed in section 3.4.2. Continuous variables can be 
categorized by defining a limited set of intervals and quantizing the continuous data 
into this limited set of categories. Doing this with scatter node data is not expected 
to provide satisfactory results as either too much detail is lost in the quantization, or 
too many levels are defined, preventing the association rules algorithm converging. 

Kernel methods 

Kernel methods arise from the theory of statistical learning (Vapnik, 1995; Shawe-
Taylor and Cristianini, 2004). Kernel methods are a mathematically sound way of 
applying known linear methods in a non-linear fashion, through an implicit 
mapping of data points in a high-dimensional space. These methods are known to 
have good convergence properties and their working is well understood, since there 
is an underpinning mathematical formalism based on probability, linear algebra and 
functional analysis (Scholkopf and Smola, 2001). 

As with the other methods, it is not immediately clear how kernel methods can be 
applied to spatio-temporal vector data. However, their well defined properties 
enable the development of a mathematical framework for using kernel methods for 
spatio-temporal vectors, as is presented below. 

In summary 

Since kernel methods compare favourably with the other methods considered (Table 
4.2), kernel methods are investigated further. One drawback is that kernel methods 
are computationally intensive and of higher computational complexity than the 
other methods. 

Kernel methods originate from the theory of statistical learning, introduced in 
section 4.4.2, and are presented in section 4.4.3. In section 4.4.4 the necessary 
mathematical foundations are developed to extend kernel methods to handle spatio-
temporal feature vectors, which are discussed further in section 4.4.5. Section 4.4.6 
introduces kernel based clustering methods, which are applied to scatter nodes in 
section 4.4.7. 

82 



Mathematically Capability Understandable Convergence Runtime 
and statistically to handle 	behaviour 	to global 	simplicity 
founded 	non-linear 	 optimum 

problems 
well 

- + 

+ 

+ 

+ 	_ 	+ 

-  

Neural 
networks 
(SOM) 
Associatio 
n rules 
Kernel 
methods 

4 Pattern analysis 

Table 4.2 Overview of advanced approaches to clustering, and their 
characteristics (+ : property applies, -: property does not apply) 

4.4.2 Statistical learning theory 

Statistical learning theory describes the framework in which learning algorithms are 
formulated. The theory of Vapnik and Chervonenkis (VC) describes such a 
framework for learning methods, with the main objective of controlling the 
generalisation capabilities of learning algorithms (Vapnik, 1995). Generalisation is 
an important aspect of learning algorithms: an algorithm generalizes well if it 
performs the task of classifying unseen data well. VC theory forms the basis of 
support vector machines (Scholkopf et al., 1999; Cristianini and Shawe-Taylor 
2000) and kernel methods (Muller et al., 2001; Shawe-Taylor and Cristianini, 2004). 
A brief overview of VC theory is given. 

Typically, in a pattern analysis or machine learning problem, the available data set 
is split in two parts: a training set and a test set. The training set is used to train the 
algorithm, the test set is used to evaluate the trained algorithm. Intuitively, a good 
algorithm must perform its task well on both sets. Algorithms which perform well 
on the training set but not on the test set are said to be over-fitting. Forcing such 
algorithms to perform well on the test set also comes at the cost of a reduced 
performance on the training set. A balance needs to be found between over-fitting 
and over-generalizing. VC theory provides a mathematical framework to describe 
these intuitive ideas in a formal manner. 

A loss function L is defined, which describes the performance of a learning 
algorithmfon a data set D: 

(4.9) 
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L is the error rate of algorithm f on D and takes on values in 91, the real numbers. 
The error on the training set is known as training error, or empirical risk: 

Remp(f) = L(f ,Dir) • 	 (4.10) 

with D, the training data set. Minimizing empirical risk only does not guarantee a 
small error on the test set D„ . This error is given by: 

R(f) = L(f ,D„) . 	 (4.11) 

In VC theory it is imperative to restrict the class of functions from which f is chosen 
to one which has suitable capacity for the amount of test data that is available. 
Capacity is a concept of complexity. Within VC theory, the so-called Vapnik-
Chervonenkis dimension is used for this purpose (Vapnik, 1995). The VC 
dimension of a function f is equal to the number of points that can be shattered by f 
A function f can shatter m points if it can be tuned so as to assign any m points of 
D„ to one class or cluster, and all the other points to another one. 

Given the training set, the empirical risk and VC dimension can be calculated for 
any f The great achievement of VC theory is that it can provide bounds on the test 
error, based only on the empirical risk and VC dimension: 

R(f) 4Re„,,,VCdim(f)), 	 (4.12) 

with VCdim(f) the VC dimension off 

The minimization of this bound on the test error leads to the principle that is known 
as structural risk minimization. In this sense, structural risk is the maximum 
expected test error. 

The support vector machine arises naturally from VC theory: when f is restricted to 
the class of linear functions, the resulting structural risk minimization algorithm is 
the support vector machine (Vapnik, 1995; Scholkopf et al., 1999). In this context, 
the concept of mapping the input space to a higher-dimensional feature space was 
introduced and has formed an integral part of support vector machines since their 
inception. This concept has been generalized, leading to the more general class of 
learning algorithms known as kernel methods, discussed in the next section. 

Support vector machines in particular, and kernel methods in general, are 
commonly described without explicit reference to the underpinning statistical 
learning theory of Vapnik and Chervonenkis. However, this underlying theory 
provides a powerful framework and sound mathematical foundation on which these 
methods are based. 
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4.4.3 Kernel methods 

In this section an overview of kernel methods is given. It is based on a number of 
review papers (Muller et al., 2001; Campbell, 2002), an introductory book chapter 
(Scholkopf and Smola, 2001), and a recent text book on kernel methods (Shawe-
Taylor and Cristianini, 2004). 

Kernel methods are a generalization of the support vector machine. They are non-
linear versions of known linear methods, where the non-linearity is introduced by 
means of a mapping of the input space to a high and possibly infinite dimensional 
feature space. 

Data points xi in the space X are embedded in what is generally called a feature 
space, F, by means of a mapping yo: 

yo:Xi-->F:xeXi-->q)(x)EF. 	 (4.13) 

To avoid confusion it is worth stating explicitly that the components of the data 
points xi  are commonly thought of as features also. However, for clarity the term 
feature space is in this context reserved for the space F into which the points x i  are 
mapped. 

The purpose of this mapping is that it is hoped that in the space F, different classes 
or clusters of points can be separated linearly, while that may not be possible in the 
original space X Since the space F can be of higher dimension than X, it is expected 
that this will be possible in general. This concept is illustrated in Figure 4.15. 

The algorithms that seek linear relationships in the feature space F are such that the 
actual coordinates of the vectors ?(xi) are not needed: rather, algorithms are 
formulated in terms of inner products only. 

Prior to introducing kernels, some concepts from functional analysis are needed for 
defining and describing spaces for which inner products exist. 

Definition 4.1 (Inner product space). A vector space F is an inner product 
space if there exists a real-valued symmetric bilinear map (.,.) that satisfies 

f) 	for all f F 

Bilinear means that (.,.) is linear in each of its arguments. The map is known as the 

inner product. Furthermore, the inner product is strict if (f, f) = 0 if and only if 
f = 0 . 
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Figure 4.15 Illustration of the concept of mapping into feature space. The 
separation boundary between the groups of points represented by 'o' and those 
represented by 'x' is non-linear in X while it is linear in F. Image based on Fig. 
2.1 of (Shawe-Taylor and Cristianini, 2004). 

The norm induced by the inner product of a strict inner product space is defined as: 

= (f f ) 112  

The metric df associated with this norm is given by: 

df (fi,4) = 114 - j.  

Using symmetry and bilinearity of the inner product, this can be written as: 

df (To fi ) 2 = Off - fir = - 	- f 

= (j11 )- 	fi ) 
-(f f ) 	) 

=( ) - 2(fi , fi  ) + (fp  fi ). 

(4.14) 

(4.15) 

(4.16) 

A vector space with a metric is referred to as a metric space. For the further 
development of kernel methods it is convenient to require the space F to have some 
additional properties, leading to the concept of Hilbert space. 

Definition 4.2 (Hilbert space). A Hilbert space F is an inner product space with 
the additional properties that it is complete and separable. 
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Completeness refers to the property that every Cauchy sequence Ihn  In> , of elements 
of F converges to an element h E F, where a Cauchy sequence is one satisfying the 
property that supilh„ —hm I 	0 as n --> 00 . Separability refers to the property that 

M>17 

for any s> 0 there is a countable set of elements h1 ,h2 ,... E F such that for all 
h E F , minllh'  — hO < e. Intuitively these properties describe that the limit of a 

converging sequence exists in the space F, and that the space F contains a countable 
dense subset (Moore, 1985). 

Provided with the Hilbert space F and an inner product (.,.) defined over F, kernel 
methods are now described. Kernel methods are algorithms that are linear in F and 
can be written in terms of pair wise inner products of the embedded data points only, 
(9(xj ),9(x,)) . This latter expression can be seen as a function on the original space 

X, defined in terms of the mapping yo and the inner product. This special kind of 
function is a kernel, K: 

K: X 1-> 91: 	= (9(x,),9(x)). 	 (4.17) 

Through this mechanism, kernels enable the calculation of distances in the feature 
space F. Using the expansion of the metric df given in expression (4.16): 

df (9(x1 ), cc('xj)) 2  =  

= 	 ) + 	 (4.18) 

Using this formula, distances between mapped points can be obtained from the 
original data points directly, by means of the kernel function K. 

Analytical expressions for kernels are stated in terms of xi and xj  only, without 
considering the embedding function go. This bypassing of the function co, and of the 
feature space F, has become known as the kernel trick. When algorithms applied to 
the points in F can be written in terms of distances only, they can make use of the 
kernel trick. 

The fact that kernels must arise as inner products of mappings into a Hilbert space 
poses some restrictions on the class of functions that can fulfil the role of a kernel. 
Valid kernel functions that are in common use include: 

• the Gaussian kernel, sometimes called Radial Basis Function kernel or RBF-
kernel: 

e-(x,-xj)212°.2 tc(x„.x  

with a-2  the width of the kernel (the variance parameter), 
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• the polynomial kernel of degree d with parameter a: 
ic(x„xj )= (x, • x j  + a)d  , 

• the sigmoidal kernel with parameter b: 
x(xi ,x j ) = tanh(xi  x j  + b), 

• the linear kernel: 
tc(x,,xj ) = (xi  • xj ), 
which is the kernel obtained by choosing the identity function for the map 0.. 

Expression (4.17) defines a kernel function K. As stated before, kernel methods are 
algorithms that do not need access to the embedded data points yo(x) explicitly, but 
only to the pair-wise inner products. Because of the linear nature of the algorithms, 
it is often possible and convenient to express them in algebraic terms. For that 
purpose the so-called kernel matrix K is introduced. The matrix Kcontains all pairs 
K(x„xj ) as its elements: 

= /c(x,,xj ) 	 (4.19) 

with Kij  the matrix element in row i, column j. The matrix Kis sometimes referred 

to as the Gram matrix. 

An important property of a kernel matrix is that it is positive semi-definite: it is 
symmetric and has positive eigenvalues. The reverse also holds: any semi-definite 
matrix defines a kernel over the input space X. This is a direct result of the fact that 
kernels are defined in terms of inner products; a formal proof can be found in the 
literature (Cristianini and Shawe-Taylor 2000). 
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4.4.4 The Hahn-Banach theorem 

From expressions (4.17) and (4.18) it is clear that kernels are closely related to the 
norm on the space F, as they are defined in terms of an inner product, which 
induces the norm (4.14) and associated metric (4.15). 

It is exactly this general concept of a metric that is exploited in this thesis, to extend 
kernel methods to spatio-temporal spaces in the next section (4.4.5). Some results 
from the theory of functional analysis are used, in particular a very important 
theorem, known as the Hahn-Banach theorem. The theorem is named after Hans 
Hahn and Stefan Banach who independently proved it in the 1920s (Hahn, 1927; 
Banach, 1929). Narici and Beckenstein (1997) provide a comprehensive historical 
and mathematical overview of this important theorem. 

Hilbert spaces are introduced in the previous section. This concept is relaxed, 
leading to Banach spaces. 

Definition 4.3 (Banach space). A Banach space is a complete normed vector 
space. 

In general, in Banach spaces, the norm does not arise from an inner product, as is 
the case with Hilbert spaces. A Hilbert space is a Banach space but the converse is 
not necessarily true. Banach spaces are introduced here as they are the spaces for 
which the Hahn-Banach (HB) theorem holds. 

The HB-theorem is an important theorem in applied functional analysis, more 
specifically in constructing linear functionals with certain properties. This is usually 
done in two steps. First, a linear functional is constructed on a subspace of the 
Banach space where it is easy to verify the desired properties. Second, one appeals 
to a general theorem which says that any such functional can be extended to the 
whole space while retaining the desired properties. The basic tool of the second step 
is the HB-theorem. 

First, linear functionals are introduced. A functional is a real-valued mapping 
defined on a Banach space. If the mapping is linear, it is called a linear functional. 

In particular, inner products give rise to linear functionals in the following manner. 
If H is an inner product space and h is any element in H, then: 

P h (X) = (X , h) 	 (4.20) 

is a linear functional on H. 
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The norm of a functional is defined through the norm on the Banach space B: 

f B 1—>  93,1If 	suplf (b)I. 	 (4.21) 

In other words, the norm of a functional f is its supremum on the unit sphere in B. 

The HB theorem is now formulated: 

Theorem 4.1 (Hahn-Banach). For a Banach space B, consider a continuous 
linear functional f defined on a proper linear subspace M of B . Then f can be 
extended as a continuous linear functional fo such that lig on B is equal to 
lifo li on M and fib) = fo (b) for b e M 

A proper linear subspace M of a Banach space B is a Banach space itself, which is 
not empty, contains fewer elements than B, and contains all linear combinations of 
its elements. 

Various proofs of the HB-theorem are found in the literature (Reed and Simon, 
1980; Narici and Beckenstein, 1997; Giles, 2000), as well as in the original 
publications (Hahn, 1927; Banach, 1929). 

The HB-theorem states that any linear functional on a subspace of a Banach space 
can be extended to the whole space. Since each Hilbert space is a Banach space and 
inner products are linear functionals, the HB-theorem applies to inner products 
defined on Hilbert spaces. Inner products give rise to kernels (section 4.4.3). 

4.4.5 Kernels for spatio-temporal feature vectors 

In this section, the HB-theorem is used to build kernels for spatio-temporal feature 
vectors. This will allow for the application of kernel methods to scatter nodes. The 
development of this enabling formalism is an important contribution of the research 
presented in this thesis. 

For clarity in the current context the notation from expression (3.19), defining 
scatter nodes, is changed to: 

x = (xs, xi, xv) 	 (4.22) 

where now x are the scatter nodes with spatial, temporal and feature components xs, 
x, and xv  respectively. Let S. T and V be the coordinate spaces of these components: 

90 



4 Pattern analysis 

xs  e S, xi  e T, xv  E V. 	 (4.23) 

Let the joint coordinate space be X, so that x E X The space X consists of the 
subspaces S, T, and V, formally: 

X = S 0 T 0 V. 	 (4.24) 

Kernel methods can be applied to each of the spaces S, T and V separately. There 
are advantages to analysing each of the spaces S, T and V separately and then 
combining the findings to form a unified approach over the space X. These 
advantages and the flexibility they offer are discussed in section 4.4.6. Here, the 
underpinning mathematical theory needed to do this is developed. 

First, kernels are defined on each of the subspaces separately. An implicit mapping 
to a higher dimensional feature space corresponds with each kernel. Denote the 
kernels with ic„ Kt, and K. They are defined in terms of inner products on the Hilbert 
spaces they induce, denoted by H„ 11,, and Hv: 

Ks(xsi , xs2) = <q).s (x51), q) .s. (x52)> 

Kt(Xti , X12) = <c 0 t (X,1), Ol t (X12)>  
Kv(Xvi, Xv2) = <1, (x1), cOv (Xv2)> 

with: 

cos  : Xs E S —> q)5  (x5) E I-I5  
co, : x, E T— yo, (xl) E H, 
coy  : xv  e V —+ q), (xy) E Hy . 

(4.25) 

(4.26) 

This approach offers the flexibility and freedom to define different kernels on each 
of the spaces S, T and V separately. 

Next, the Halm-Banach theorem is used to extend each of these sub-space kernels to 
the whole space X The extended kernels can be combined to form a single kernel 
function that will be used by subsequent kernel algorithms. 

Using the Hahn-Banach theorem, the kernels Ks , Kt, and icy  are extended to the whole 
space X. This is valid since kernels are linear functionals on the Hilbert spaces Hs, 
HI, and H. These Hilbert spaces constitute the larger Hilbert space Hx, formed by 
the subspaces Hs, 111 , and Hy: 

Hx  = 115  0 H, 0 Hy . 	 (4.27) 

The subspace kernels are extended in the following manner, for xi , x2 E X: 
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K's(Xi, X2) = KAS(XI), AX2)) 

K ' ((X 1, X2) = K 401), t(X 2)) 
	

(4.28) 
K '1,(X 1 , X2) = Kv(V(X 1)9 *2)) 

with s(.), 4.) and v(.) canonical projections from X on the subspaces S, T and V 
respectively. 

The three kernels es, tc't , and K ',, can now be combined to form a single kernel 
defined over the space X There are a number of ways to achieve valid combinations. 

Given two kernels K1 and K2, the following functions are kernels also: 

K(XI, X2) = KO I, X2) -1-  K2(X11 X2), 

K(X1,X2)= KAXI, X2) K2( XI, X2)5 
	 (4.29) 

K(X 1, X2) = a Ki(xi, x2), 

with a any positive real number. For a proof see Shawe-Taylor and Cristianini 
(2004). 

The significance of extending sub-space kernels and combining them together lies 
in the fact that the resulting single kernel can be used by any kernel algorithm, to 
cluster scatter nodes in the joint spatial, temporal and feature spaces. This provides 
a powerful framework to handle disparate spaces in a unified fashion. The benefits 
offered by this approach will become clear in the next section, where kernel-based 
clustering algorithms are discussed in detail. 

4.4.6 Clustering with kernels 

An attractive aspect of kernel methods is that they offer a mathematically sound 
approach to developing non-linear variants of well established linear algorithms. 
Doing this has become known as kemelizing a method. 

Since kernels arise as inner products in a feature space, the kernel function can be 
seen as a measure of similarity. Two input data points that are similar are mapped 
close together in the feature space, resulting in relatively high inner product values. 
The kernel matrix (4.19) is sometimes called the similarity matrix. This is an 
intuitive representation of the data, which has deep theoretical foundations and 
which is both simple and convenient. 

Many kernel methods are formulated as algorithms that take such a similarity 
matrix as input. The kernel matrix acts as an interface between the data and the 
kernel-based pattern analysis methods. 
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In spatial clustering, spatial proximity based on Euclidian distances is used to define 
similarity between data points. Data points are similar simply when they are close to 
each other. The clustering process aims to group similar data points. This is the 
essential idea of clustering algorithms in general. Data points are characterized by a 
number of features. Clustering algorithms break the data points up in groups so that 
within each group or cluster, data points are similar, and they are dissimilar between 
groups. Kernel clustering methods use the kernel matrix as the reference for 
similarity. 

Kernel k-means 

The first reported kernel clustering method was named support vector clustering 
(Ben-Hur et al., 2000), after its famous classification variant the support vector 
machine (Vapnik, 1995; Schollcopf et al., 1999; Cristianini and Shawe-Taylor 2000). 
Support vector clustering is based on finding a number of data points in feature 
space which define the boundaries between clusters. These key points are called 
support vectors, similar to the role they have in support vector machines. This is 
different from standard clustering methods, where there is typically some reference 
point for each cluster, with cluster membership defined as the distance to the 
reference points. The support vector clustering procedure is rather cumbersome to 
implement and has not emerged as the best approach to clustering using kernels. 

An alternative to support vector clustering is the kernelization of the famous k-
means algorithm. This was first mentioned as a possibility by Scholkopf et al. 
(1998) and further developed by Girolami (2002). Kernel k-means has become the 
standard base-line kernel based clustering method, similar to the role fulfilled by the 
usual k-means algorithm in linear clustering. 

Let Ix„...,x„ I be the data set to be clustered, x. X . The x i  consist of spatial, 
temporal and feature components, as in expression (4.22). For each of these 
components, suitable kernel functions are chosen. These kernel functions are 
combined to form the kernel function K. The n x n kernel matrix is constructed: 

Kij  = tc(x„xj ), for i,j = 1, 	n. 	 (4.30) 

Implicitly, the kernel K defines a mapping from X into the Hilbert space F. 

Similar to the objective function (4.2) for regular k-means, an objective function is 
now formulated based on the metric in the feature space F: 

i=1 j=1 
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with, as before, k the number of clusters, ru  the indicator variables, ry  = 1 if data 
point i belongs to cluster], and 0 otherwise. The norm used in eq. (4.31) is the norm 
arising from the inner product, as in expression (4.14). The cluster centres pc; are 

points in the feature space F: 

n 
=—Lry go(xi) 

ni i=1  
(4.32) 

with ni  =Zry  the number of elements assigned to cluster j. 

Essentially, the regular k-means algorithm is applied in the space F, using the data 
points Ico(x,),...,v(xn )} , cluster centres and objective function Jv  . tile:115,5k 
However, since the mapping q) is known only implicitly, that cannot be done by 
simply proceeding as in section 4.3.2. The problem is therefore reformulated in 
terms of the kernel matrix. This is applying the kernel-trick to the k-means 
algorithm. 

The calculation of the norm in eq. (4.31) can be rewritten in terms of the kernel 
function: 

11c0(xi)— 
= (co(xi )— pcf, co(xi)— fir) 

= (co(x,), co(xi )) — *(xi  ),g; )+ (11'; ,,t17) 

=(V(xi),c0(xi))±i rs,40(xi),c0(xs))± 	rsfry(co(xs),(P(x,)) 

	

s=1 	 nj s=1 t=1 

= K(xi , xi ) - -Ersi ic(xi ,x,)+EErsAf ic-(xs ,x,). 
s= , 	nj s=1 1=1 

Using this expression, the objective function is rewritten as: 

= EErij  tc(xi ,x;)--ErsiK(xi ,xs )-1- EErs,r,JK(x„x,) . 

	

i=1 f=1 n. 	, 

	

, 	 n, s=1 t=1 

(4.33) 

(4.34) 

The kernel k-means algorithm proceeds by updating clusters until there is no 
improvement in .ico , which is now written in terms of the indicator variables and 

kernel function only. 
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The regular k-means iterations consist of two phases, a reassignment of points to 
clusters, and an update of the cluster centres. The kernel k-means algorithm lacks 
the step in which the cluster centres are updated. This is caused by the implicit 
mapping into feature space via the kernel function. 

Kernel k-means is an important improvement over regular k-means, as in kernel k-
means cluster shapes are not restricted to being hyper-spherical. They are hyper-
spherical in the feature space F, but they could be of any shape in the input space X 
since the mapping q) can be any non-linear mapping, and F can be of arbitrary large 
dimension. A comparative study of clustering algorithms including k-means shows 
that the kernelized versions of the algorithms perform better than their standard 
counterparts (Kim et al., 2005). 

Kernel k-means is as popular a kernel method as regular k-means is a standard 
linear clustering method. However, kernel k-means does suffer from the same 
problem as regular k-means in that it is not guaranteed to converge to a global 
optimum of the respective objective function. Convergence is guaranteed, but the 
optimum that the algorithms converge to could be local. 

The next section discusses solutions to this problem and suggests ways to relax the 
initial problem so that a global optimum can be found. 

Spectral clustering 

Spectral clustering methods are a recent, new approach to clustering. A first review 
paper discussing these new developments gives an overview of some common 
methods (Verma and Meila, 2003). One such method concentrates on providing a 
so-called spectral relaxation for the regular k-means clustering algorithm (Zha et al., 
2001), without referring to the kernel k-means algorithm. It is only recently that the 
relation between kernel k-means and spectral methods has been discovered (Dhillon 
et al., 2004; 2005). An assessment of this unified view is presented in von Luxburg 
(2006). 

Spectral clustering methods are clustering algorithms that are based on the spectrum 
of some matrix. The spectrum of a matrix is the set of its eigenvalues. The matrix 
that is typically used by spectral clustering methods is a matrix that is derived from 
the data. Since one such matrix is the kernel matrix, it is not surprising that there is 
a connection between spectral methods and kernel clustering methods such as 
means. 

The The spectral clustering method that has emerged as the reference algorithm was first 
published by Ng et al. (2002). It has since become known in the literature as the 
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Ng-Jordan-Weiss (NJW) algorithm, after the authors of the paper. There are 
fundamental similarities between the NJW algorithm and kernel k-means clustering 
(Dhillon etal., 2004). 

Spectral methods do not make use of cluster means, as the k-means algorithms do, 
nor do they make use of any other kind of cluster representatives. Rather, clusters 
arise as subsets of the data set to be clustered, {x, x„ }. Let Ch Ck be k clusters, 
then: 

C, c {x, 	x„} 
u i  C = 
ci  n ci  = {},ey  . 

(4.35) 

While spectral methods use the general concept of similarity between data points, in 
the current context the kernel matrix is used for this purpose, in accordance with 
discussions of the relation between kernel methods and spectral methods in the 
literature (Cristianini etal., 2001; Dhillon etal., 2004; 2005; von Luxburg, 2006). 

Since no cluster means are available, objective functions like those that form the 
basis of the k-means and kernel k-means algorithms cannot be used. An alternative 
criterion is used: the cut cost. The concept of cut cost is derived from graph theory. 
If each data point x i  is considered a node in a graph, and the value of the kernel 
function ic(x„xf  ) is the weight of the edge in the graph linking nodes xi  and xj, then 

the cut cost of a clustering is the sum of the weights of the edges that need to be cut 
to form the clusters. 

The motivation is that ic(x,,xi ) will be low for dissimilar data points and high for 

similar data points. Hence, minimizing the cut cost will lead to clusters containing 
similar points, and different clusters containing dissimilar points. 

Let y1  be the cluster membership label of point 1: 

y, = m <=> X, E Cm  

for m c {1,...,k} . The cut cost can then be written as: 

CK = 
yi #Y, 

(4.36) 

(4.37) 

It is customary to normalize the kernel matrix. This can be done in a number of 
ways. Following the NJW algorithm, define a diagonal matrix D, with the elements 
on the diagonal equal to the sum of the elements on the rows of the kernel matrix: 
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Du = EK(xi ,x; ). 	 (4.38) 

Then define the matrix L as: 

L= D-112KD-112 	 (4.39) 

The matrix L is sometimes called the Laplacian, a term originating from the graph-
theoretical approach. The cut cost for this normalized version of the kernel matrix 
is: 

CL= ELij  . 	 (4.40) 
yi  *yi  

It is shown (Ng et al., 2002) that the following procedure finds a clustering that 
minimizes the cut cost CL for a given matrix L. 

• Let 2, 22 	An  be the n eigenvalues of L, with v,,...,v„ the 
corresponding eigenvectors. Retain the k eigenvectors 	vk  
corresponding to the k largest eigenvalues, and form the nx k matrix V by 
stacking the k eigenvectors in columns. 

• Form the matrix W by normalizing the rows of V to have unit length, 

= VIJ i( Ev y2 
 \I/2 

• Consider each row of the n x k matrix W as a point w i  in a k-dimensional 
space. Cluster these points into k clusters using the regular k-means 
algorithm. 

• Finally, assign the original data point to cluster m if and only if wi  is 
assigned to cluster m. 

The connection between this approach and kernel k-means is discussed in the 
literature (Dhillon et al., 2004; 2005). It is shown that both the NJW and kernel k-
means algorithms can be written as a so-called trace maximization problem. The 
trace of a matrix expression which includes a matrix with indicator variables must 
be maximized to find the optimal clusters according to the respective criteria. 

The important difference between the NJW and kernel k-means algorithm is in the 
sorting of the eigenvalues and retaining the k largest ones. If the sorting is not 
performed, and a random set of k eigenvalues is selected to proceed with, the NJW 
algorithm reduces to kernel k-means. Since in the NJW algorithm the actual 
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clustering is performed in a lower dimensional space (of dimension k), NJW is 
referred to as a spectral relaxation of kernel k-means. Furthermore, it is more stable, 
as the random selection of eigenvalues corresponds to the random initializations of 
the cluster centres normally performed in the kernel k-means algorithm. 

4.4.7 Clustering scatter nodes using kernel methods 

In this section the theory developed in the previous sections is recapitulated with the 
application of clustering scatter nodes in mind. 

Given a data set of scatter nodes x i  with spatial, temporal and feature components 
(xs, xr, xv), , the following procedure describes a stepwise method for determining 
patterns, or clusters, in the data set. 

• Decide on appropriate kernels to use for each of the three components 
separately. For example, a Gaussian kernel can be used for the spatial 
components, while the linear kernel may be sufficient for the feature 
components. Let the chosen kernels be K„ Kt and Kv  respectively. 

• Combine the three kernels on the subspaces to one kernel on the combined 
space. Practically, this can be achieved easily by first calculating three 
kernel matrices: 

K „js = Ks ((xs )„(xs )j ) 

Ku' = ic,((x,)„,(xi )j ) 

KU  =  

and summing them, to give 

K = —31  (Ku' + K + c)= K(x,,x 

The factor 1/3 is a normalization factor. 

• This combined kernel matrix K is used in the NJW algorithm. 

(4.41) 

(4.42) 

• The result of the algorithm is a clustering, represented by a labelling y of the 
scatter nodes xi : 

yi = j <=> E 
	 (4.43) 
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for j = 1, 	k. These labels define k clusters c, where each cluster is a 
subset of scatter nodes. 

The resulting clusters are expected to be groups of scatter nodes that are similar. 
Similarity is a combined similarity in spatial, temporal and feature components of 
the nodes. Clusters of similar nodes are indicative of the same object, such as a fish 
school. Examples are given in chapter 5, where a number of case studies are 
presented. 

From expression (4.42) it can be seen that it is straightforward to exclude any of the 
components if desired. For example, if only features relating to backscatter values 
are of interest, one can simply set the spatial and temporal kernel matrices to zero, 
excluding them from the clustering process. This idea is generalised by introducing 
weights w„ WI  and w, as follows: 

1 Ky.. = 	(ws K; 	+vvvic )= ic(xi ,xj ). 
ws 

(4.44) 

Gaussian kernels are widely used. In the case studies presented in chapter 5, two 
versions of spatio-temporal Gaussian kernels are used, the additive Gaussian kernel: 

(Ewc) 1E 
wc,_(4c)_x(f))2/20- 	 (4.45) 

and the multiplicative Gaussian kernel: 

where the sum and product are over all components c of the nodes, spatial, temporal 
and feature components. Components have weights w c  and parameters cc  . 

The use of such kernels allows for combining the spatial, temporal and other 
features of scatter nodes into a single kernel matrix for use in kernel clustering 
algorithms such as NJVV. 
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4.5 UNDERSTANDING SCATTER NODE PATTERNS 

4.5.1 Segmentation 

Applying the clustering methods presented in sections 4.3 and 4.4 to scatter node 
data sets results in a labelling 1 of the nodes, i = 1, 	n: 

1(xi)= m 	 (4.47) 

with m {1,...,k} for k clusters. 

This yields a segmentation of the data into segments or groups of nodes belonging 
together. 

Through expert knowledge it may be possible to assign each segment a known label. 
For example, one label may correspond to fish of species A while another label may 
correspond to species B, and yet another to the seabed. When labels can be named, 
segments are generally referred to as classes, and the pattern analysis methods are 
said to yield a classification. 

4.5.2 Classification 

Classification, that is directly assigning scatter nodes to named classes, can only be 
achieved after a clustering method has been applied and names are assigned to 
segments or clusters through expert intervention. In fact, if expert knowledge is not 
available or is insufficient to assign true class names, one can proceed by using the 
labels as nominal class names, which is the approach adopted in this section. 

Classification in this sense applies to unseen data: scatter nodes that were not used 
during the clustering process. Having clustered a set of scatter nodes, the clustering 
or segmentation can be used to classify new data. 

Classification with UDBSCAN 

Given a set of scatter nodes and their segmentation obtained through the application 
of the UDBSCAN algorithm, and a new scatter node y, the classification of y 
consists of an assignment of y to one of the established clusters. 
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One proceeds by assigning this new node to a cluster according to the cluster 
assignment rules of the UDBSCAN algorithm, namely steps (2) and (3) of 
Algorithm 4.2: 

• if y is a core point of a cluster it is assigned to that cluster, 

• if y is a border point of a single cluster it is assigned to that cluster, 

• if y is a border point of multiple clusters (a critical point), the membership 
function is used to determine to which cluster y gets assigned, 

• in all other cases y is assigned to the noise cluster. 

Since unseen scatter nodes typically arise from new or repeat surveys, there will 
only be value in comparing spatial components of past and new scatter nodes for 
objects or structures that were approximately stationary between surveys. Hence the 
use of the method described here is less useful for fisheries applications. It can be 
valuable though for seabed habitat mapping applications. 

Since kernel methods make use of more than just the spatial components of the 
scatter nodes it is recommended that kernel methods be used for the classification of 
unseen data. 

Classification with Ng-Jordan-Weiss 

The kernel clustering method of choice is Ng-Jordan-Weiss (NJW). Given a set of 
scatter nodes that have been segmented using the NJVV algorithm, it is now 
described how new scatter nodes can be classified based on the NJW segmentation. 

Since the NJVV algorithm is based on the concept of a cost criterion, the cut cost, 
defined in eq. (4.40), assigning an unseen scatter node y to a cluster is 
straightforward. One assigns node y to that cluster so that the increase in cut cost is 
minimal. 

This procedure is particularly powerful when segmentation is mostly or exclusively 
based on the non-spatial and non-temporal features. In that case, features typically 
relating to backscatter energy levels of the scatter nodes are used to identify 
coherent clusters. Similarity is based on similarities in backscatter features, in 
which case it is useful to classify unseen data nodes accordingly. 
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43.3 Visualizing patterns 

The patterns that result from the clustering algorithms presented in sections 4.3 and 
4.4 are clusters, segments, or groups, of scatter nodes. The primary means of 
conveying this information is visual: by graphically representing the detected 
segments. 

In addition to the techniques discussed in section 4.2.2, scatter node clusters can be 
analysed visually or graphically using the following methods. 

Isosurfaces are two-dimensional surfaces in a three-dimensional space. They are 
defined as surfaces at which a particular quantity is constant. In the case of scatter 
nodes, all the nodes representing a fish school can be used to derive a bounding 
school volume by means of an isosurface based on the backscatter energy levels of 
the nodes. 

Alternatively, a volumetric object can be determined by triangulating the nodes 
representing the fish school. Triangulating point sets is common practice in 
computer graphics (Foley et al., 1995), and is known as Delaunay-triangulation 
after the author who originally proposed this in the 1930s (Delaunay, 1934). The 
volume is built up from a series of tetrahedra, where each tetrahedron connects four 
nodes together and consists of three triangular facets. Additional conditions can be 
imposed on a shape obtained through this mechanism, imposing some 
regularization conditions with respect to the smoothness of the volume being 
generated. Alpha-shapes provide such a method (Edelsbrunner and Mucke, 1994). 
When the cluster of nodes representing the seabed is considered, a two-dimensional 
surface can be derived in the same way. Approaches to triangulating classical 
bathymetric multibeam soundings are available in the literature (Canepa et al., 
1999; Brouns et al., 2003; Canepa et al., 2003). Gridding is another option, where a 
regular grid is defined and values for the grid nodes are derived from values of the 
irregularly spaced scatter nodes or soundings (Calder and Mayer, 2001; Calder, 
2003; Paton et al., 2003). 

Projecting scatter nodes, or two or three-dimensional objects derived from them, 
onto a two-dimensional plane can be useful in creating two-dimensional 
visualizations. In particular, projecting onto a horizontal plane is effective to show 
an areal view of the data. 
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4.5.4 Measuring patterns 

Apart from the information that is conveyed visually by graphical representations of 
the data, calculating quantitative numerical metrics of the detected segments or 
derived objects is useful. Two types of metrics can be distinguished: geometrical or 
morphological metrics, and energy-based measures. The former relate to the spatial 
aspects of the clusters of nodes, the latter to the energy content or energy related 
features of the nodes. Many metrics can be calculated in the Echoview software 
(Myriax, 2008). The most prominent and relevant ones are listed in Table 4.3. Some 
are only relevant to volumetric objects such as fish schools, others only to two-
dimensional surfaces such as the seabed. 

Volume (school) Surface (seabed) 
Energetic 
Mean backscatter level + + 
Variance of levels + + 
Min. and max. level + + 
Sum of levels + - 
Geometric 
Number of nodes + + 
Volume + - 
Area - + 
Size (length, width) + + 
Size (height) + 
Min. and max. depth + + 
Georeferenced position + + 

Table 4.3 Metrics that can be calculated from scatter node segments or objects 
derived thereof. Some metrics are only relevant to volumetric objects, others only 
to two-dimensional surfaces. Where a metric is relevant this is indicated using a + 
symbol, where not a — sign is used. 

When features from other data sources are available, they can be used to derive 
additional metrics. For example, if water temperatures are available for each node it 
is clear that statistical measures of the temperatures of all nodes in a particular 
cluster may convey valuable information. 

These metrics provide essential information to scientists. It is important to note that 
the metrics are obtained from the scatter nodes only, without making use of the 
original multibeam measurements. 
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4.5.5 Assessing pattern quality 

Two clustering methods were discussed in previous sections, UDBSCAN in section 
4.3, and kernel clustering methods in section 4.4. Both algorithms allow for some 
adjustment by setting parameters. In UDBSCAN, the parameters E, the size of the 
neighbourhood, and m, the minimum number of points in the E- neighbourhood, 
must be set prior to running the algorithm. With kernel methods, the kernel 
functions to be used must be chosen, as well as any free parameters in the functions. 

In this section some approaches are given to assist in selecting the best set of 
parameters or function classes, and to determine the effectiveness of various 
selections chosen. 

Finding a suitable clustering is a pattern analysis problem. A trained clustering 
algorithm is often referred to as a model, and the process of validation and 
evaluation is known as model validation and model evaluation. 

Expert assessment 

When using multibeam sonar data and the derived scatter nodes, it is often the case 
that the expert human eye perceives coherent sets of nodes as clusters very clearly. 
Such clusters can be indicative of aggregations of fish, or of the seabed. 
Acousticians or marine biologists familiar with the instruments and their use will 
have firm opinions on which patterns should be found. Presenting the outcomes of 
automated algorithms for inspection to experts is a common and sensible approach, 
though it can be argued that such a validation is not objective. 

Visual inspection can reveal some obvious errors in the clustering results, even to 
the less experienced scientist. Examples include Figure 4.7, Figure 4.13, and Figure 
4.14. In these examples, coherent structures are standing out as obvious regions of 
aggregated scatter nodes, yet the clustering algorithm applied is not capable of 
identifying those high density regions as clusters. 

Analytical measures 

Analytical measures of clustering quality attempt to quantify the quality of the 
clustering according to some criterion. In some algorithms such criteria arise 
naturally. For example, the objective functions used in the k-means algorithms are 
direct measures of quality. Expressions (4.2) and (4.31) measure the proximity of 
each point to its cluster centre in an Euclidean and kernel-induced feature space 
respectively. These criteria will yield lower values with increasing values of k, the 
number of clusters, as the sum of the distances to the cluster centres will decrease 
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with the number of centres available. Therefore, using the objective functions as a 
criterion is only valid for a given value of k, not to establish the optimal value for k. 

Other clustering methods, such as the spectral methods, can make use of criteria 
that do not require a cluster centre or template. The cut costs defined in expression 
(4.40) is an example. In this case, the cut cost can be expected to increase with 
increasing values of k and so again it cannot be used to establish an optimal value 
for k. 

A probabilistic approach is possible where the model or trained clustering algorithm 
corresponds to an estimated probability density function. This is appropriate for the 
Gaussian mixtures model. This approach can be followed for regular k-means 
clustering as well. The cluster centres that are estimated can be regarded as the 
means of unit-variance Gaussians. In that case the likelihood can be used as a 
measure of quality: 

1115-31-1k) • 

	 (4.48) 

The likelihood is the posterior probability of the data: it is the probability of 
obtaining the data given the model. To avoid over-fitting, it is customary to include 
a term involving the complexity of the model (Hastie et al., 2001). Since this 
approach cannot be applied in a straightforward manner to the main clustering 
algorithms considered in this thesis, UDBSCAN and NJW, this route is not 
explored any further. 

Cross validation and predictive accuracy 

Cross validation is the most versatile approach, and is generally the preferred 
method for assessing pattern quality. The general idea of cross validation is to set 
some of the data apart, run the clustering algorithm on the remaining data samples, 
and assess how well the data that were set apart are clustered by the trained 
algorithm. Cross validation measures the predictive accuracy of the trained 
clustering algorithm. In assessing the predictive capabilities of the trained algorithm, 
one can use the objective functions for k-means, and the cut cost for spectral 
methods. The difference with the approach outlined in the previous section is that 
now these criteria are calculated on data items that were not used during the 
clustering process. In fact, these criteria are used twice: 

• first, to cluster part of the data. The criteria are used to make sure that the 
algorithm performs well on this data set. 
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• second, to assess the clustering of unseen data. The criteria are used to asses 
how well the clustering generalizes to unseen data. This prevents over-
fitting. 

Various scenarios are possible in conducting cross validation (Hastie et aL, 2001). 
A popular approach known as the jack-knife or leave-one-out approach repeats the 
clustering of n scatter nodes n times, each time leaving one scatter node out so that 
every node is left out precisely once. Each time the cost criterion is calculated and 
the n obtained values are averaged. The resulting single value can be used to 
compare results for different values of k, the number of clusters. 

A variation on this procedure is bootstrapping.  In bootstrapping, a subset of m 
randomly selected nodes is left out each time during a series of runs of the 
clustering algorithm. The cost criteria are calculated each time on the m data nodes 
that were left out. It is generally unclear what the best choice of m is for a given 
data set size n, or how many times the clustering should be repeated. For these 
reasons the jack-knife approach is recommended. 

4.6 OUTCOMES 

The pattern analysis phase and the interpretation of its results complete the 
scientific data mining process (Figure 4.16). 

- exploratory analysis 
- deconvolution 	- spatial clustering 

- feature extraction 	- kernel clustering 

- graphical representations 
- analytical representations 

clusters scatter node 

raw 
hydro- 

acoustic 

pre- 
processed 

data 

detected 
patterns 

knowledge, 
information 

data 

data 	 pattern 
preprocessing 	analysis 

interpretation 

Figure 4.16 Pattern analysis and the interpretation  of  detected patterns concludes 
the data mining process. 
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Three approaches to analysing scatter nodes are proposed, with the aim of 
identifying coherent clusters. The first two, exploratory data analysis and spatial 
clustering, apply existing techniques and methods to scatter node data sets. A new, 
modified version of the spatial clustering algorithm DBSCAN is proposed, 
UDBSCAN, to guarantee uniqueness of the resulting segmentation. 

The third approach, using kernel clustering methods, has been made possible by the 
development of a mathematical framework to establish kernels for spatio-temporal 
data. The Hahn-Banach theorem is used to extend kernels to the combined space of 
spatial, temporal and feature components of the scatter nodes. The formalism 
developed in this thesis allows for the application of kernel methods in such a 
manner that all components of scatter nodes are considered simultaneously. The 
Ng-Jordan-Weiss (NJW) clustering algorithm is identified as a suitable kernel 
clustering algorithm. 

The pattern analysis methods of choice, UDBSCAN and NJW, result in a 
segmentation of the scatter nodes into coherent segments or clusters. Scatter nodes 
that are assigned to the same cluster have similar spatial properties in the case of 
DBSCAN, and similar combined spatial, temporal and other features in the case of 
NJW. 

Clusters of scatter nodes are useful entities in interpreting hydroacoustic data. Since 
they contain similar scatter nodes, the constituting nodes are likely to be indicative 
of a larger scale structure, object or class. Clusters can be represented visually, 
either directly based on the scatter nodes, or otherwise by means of derived spatial 
objects. The features of the nodes are useful in calculating metrics of the clusters. 

Case studies demonstrating the developed data mining process are presented in the 
next chapter. 
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In this chapter a number of data sets are analysed using the methodology developed 
for deriving scatter nodes from the raw data set, and using clustering methods to 
identify patterns. A range of data sets collected by different sonar instruments is 
studied. The examples presented in this chapter illustrate the methods and serve as a 
guide to applying these methods in practice. 

5.1 MODELED DATA 

5.1.1 Description of the data set 

A data set obtained from the model presented in chapter 3 was used a number of 
times in this research. This data set is described in detail below. 

The point set used as input to the model, in order to produce this data set, consists 
of a flat seabed and two ellipsoidal fish schools, and contains 31,688 points. This 
point set is presented graphically in Figure 3.10 (a). The seabed depth is 100 m. The 
centre of the larger fish school is at a depth of 50 m. Its longer horizontal axis is 120 
m and its shorter horizontal axis is 60 m. The height of the school is 60 m. The 
smaller school has horizontal axes of 40 and 50 m respectively, and is 16 m high. 

The survey transect line is straight and 165 m in length. Along this transect, data for 
35 pings are collected at equally spaced intervals. The sound speed is assumed fixed 
at 1500 m/s. 
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The modeled transducer array is linear and consists of 80 equally spaced elements, 
with a total array length of 0.3 m. The operating frequency is 200 kHz, with a pulse 
duration of 0.2 ms. The modeled instrument is set to collect data at ranges of up to 
150 m, with 800 samples per element. The data are beamformed into 128 beams 
covering a 120 degree sector. 

Since the absorption coefficient is assumed to be known exactly and has been 
corrected for, its numeric value is irrelevant and is set to unity for ease of 
computation. The reference pressure level is set to unity also as the ratio of the 
received pressure to the transmitted pressure is the quantity of interest. The 
backscattering cross section of all points in the point set is chosen equal, with a 
value of 0.01 m2 . 

The model is run, creating the corresponding synthetic data set. By design, the data 
set contains beamformed data for 35 pings, each consisting of 128 beams of 800 
samples. One ping of data is presented graphically in Figure 3.3. Ignoring phase and 
storing amplitudes only results in a total of 358,400 backscatter sample values. 

5.1.2 Analysis 

Scatter nodes are obtained by the application of a deconvolution to the raw sample 
data. In this case, with a known model, a PSF can be established for use in the 
Lucy-Richardson deconvolution algorithm (section 3.3.2). In order to establish the 
PSF of the modeled system, a point set consisting of a single scatterer is used as 
input, and the corresponding output is calculated and used to establish the PSF. The 
obtained PSF is presented graphically in Figure 3.6 (c). This PSF is used in the 
deconvolution, which results in the scatter nodes presented in Figure 3.9 and Figure 
3.10 (b). 

The total number of scatter nodes is 5,026, while the input model consisted of 
31,688 point scatterers. Indeed, observe the sparser density of scatter nodes 
compared to the initial point set in Figure 3.10 (a). This is due to the resolution of 
the system, and is captured in the method by the deconvolution, and the low-pass 
filtering effect it has. 

The proportion of scatter nodes to raw data samples is 1:71. In other words, the size 
of the set of scatter nodes is only 1.4% of the size of the set of raw samples in this 
data set, if only a single feature is stored as is done in this example. The point 
amplitudes are the only features used. 
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Exploratory data analysis of the raw data in conjunction with the derived scatter 
nodes is instructive. Screenshots of such explorations are given in sections 4.2.3 and 
4.2.4. 

The full data set as described here was subjected to UDBSCAN with two choices of 
parameter settings (Figure 4.13 and Figure 4.14). UDBSCAN is not successful in 
separating the smaller school from the seabed. However, UDBSCAN is useful in 
the detection of noise scatter nodes. Nodes that are not spatially dense in a cluster of 
nodes are assigned to the noise cluster. This cluster is retained, and the remaining 
nodes are further analysed using kernel methods. The black points in Figure 5.1 are 
the nodes of the noise cluster. 

Figure 5.1 Scatter nodes clustered using the NJW kernel clustering method. The 
black nodes are the ones that were identified as noise by the UDBSCAN 
algorithm. Three clusters are identified: the seabed (green), the large fish school 
(blue) and the small one (red). 

The NJW kernel clustering algorithm is applied to the set of scatter nodes that are 
not assigned to the noise cluster by UDBSCAN. In addition to the spatial 
components of the nodes, one feature is used: the bacicscatter amplitude of the 
nodes; all components are weighted equally. The additive Gaussian spatio-temporal 
kernel is used, eq. (4.45), with parameters as given in Table 5.1. The NJW 
clustering algorithm is run to detect three clusters (Figure 5.1): a large school (blue), 
a small school (red), and the seabed (green). 

Components weight 
X (longitude) 0.8 1.0 
Y (latitude) 0.8 1.0 
Z (depth) 0.05 1.0 
Backscatter amplitude 0.5 1.0 

Table 5.1 Parameters used in the calculation of the kernel matrix for  the  modeled 

data set. 
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5.1.3 Results 

The clusters that are found are indeed representative of the three objects that are 
present in the data: the seabed and two fish schools. This is shown in Figure 5.1. 
Where UDBSCAN is not able to differentiate between the smaller school and the 
seabed, the kernel clustering method is. This example illustrates the power of the 
kernel clustering method over the spatial clustering algorithm UDBSCAN. 

5.2 SALMON BANKS 

5.2.1 Description of the data set 

A data set was collected off San Juan Island, Washington, using a Simrad 
Kongsberg Mesotech SM20 sonar (data set courtesy of John Horne, School of 
Fisheries, University of Washington, Seattle, WA, USA). The survey consisted of 
ten transects covering about 50% of a 3 square nautical mile area known as Salmon 
Banks. The data set and a first analysis of it is discussed in Buelens et al. (2007). 
The SM20 operates at a frequency of 200 kHz, and covers a 120 degree swath with 
128 beams. 

For the purpose of the present example a section of data from the third transect is 
selected. Coincidentally, in this transect, a fish school is observed near the typical 
angular bottom side lobing effects present in the backscatter data. This example will 
show how the kernel clustering algorithm is capable of differentiating between the 
echoes from this aggregation of fish and the artefacts. 

The raw multibeam data are scrutinized in Echoview. The school of interest in this 
example is seen on two-dimensional echograms of multibeam ping data (Figure 5.2). 
The school is at a depth of approximately 100 meters. The bottom sidelobing 
artefacts happen to occur in the vicinity of this school. 
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Figure 5.2 One ping from the Salmon Banks data set (S v  in dB).  A  school is 
present at a depth of about 100 meters, very close to the angular bottom 
sidelobing artefacts. 

5.2.2 Analysis 

The selected section of data consists of 150 pings, each having 798 backscatter data 
samples in each of the 128 beams. These 15,321,600 data samples are transformed 
into a set of 22,341 scatter nodes using the blind deconvolution technique as no 
calibration data are available. Seven features are associated with each scatter node 
(Table 5.2). The total number of features for all nodes together is only just over 1% 
of the total number of raw backscatter samples, a massive reduction. Scatter nodes 
are visualized in two dimensions in Figure 5.3 and in three dimensions in Figure 5.4. 
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Figure 5.3 Close-up of the relevant part of the same ping, now with scatter nodes 
added (plotted as small pink triangles). The colour scheme for the data is set to 
gray scale so the scatter nodes are more clearly visible. 

Figure 5.4 The scatter nodes represented in three dimensions. 

From visual inspection it is clear that there are some distinct structures in this data 
set: the seabed, the sidelobing artefacts, the fish school, and noise. The aim is now 
to cluster the scatter nodes into groups, each representing one of these objects or 
structures in the data. 
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First the UDBSCAN algorithm is run. The parameter E is set manually. As 
recommended in Ester et al. (1996), the value for m is set to 8. Large values of E 

lead to few clusters being found while small values lead to more clusters. This 
example appears to be difficult for the UDBSCAN algorithm, as no good value for E 

could be determined. Shrinking E so that more clusters are being detected does not 
result in the school being identified as a cluster. For example, with a value of E = 
10.0, UDBSCAN identifies 14 clusters (Figure 5.5). However, none of the clusters 
bear any significance, other than the cluster identifying the noise band at short range, 
in purple in Figure 5.5. This short range noise is most likely caused by transducer 
ringdown or air bubbles under the vessel. Lowering the value of E further will 
ultimately result in the school being identified, however, too many spurious clusters 
exist by then. For example for E = 4.0, UDBSCAN identifies 46 clusters, which is 
no longer informative. 

Figure 5.5 The scatter nodes clustered into 14 clusters using UDBSCAN. The 
denser aggregation of nodes indicative of a fish school, is not isolated as a cluster. 

Next, the kernel clustering algorithm NJW is run. Since it requires the calculation 
and handling of an n x n matrix, with n the number of scatter nodes, running the 
algorithm can become slow for large n, in particular if no specific attention is paid 
to efficient implementations. In this case n = 22,341. Running NJW on 10% of that 
is very fast (in the order of tens of seconds), so the following approach is taken: first, 
a randomly selected subset of 10% of the N scatter nodes is subjected to the NJW 
algorithm; then, the remaining 90% of nodes are labelled using the nearest-
neighbour criterion. In this first run of the algorithm the aim is to separate the 
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scatter nodes in the water column from the ones indicative of the seabed. The latter 
group is much larger, as can be seen in Figure 5.4. 

The multiplicative Gaussian kernel is used, eq. (4.46). The temporal component is 
not used. A set of parameter values is established experimentally. The values that 
are used are presented in Table 5.2. Weights are either 1 or 0, indicating whether 
that component is used (1) or not (0). The parameter 0- is the parameter of the 
Gaussian kernel. The non-spatial components were normalized prior to running the 
clustering algorithm. The results of the first run are presented in Figure 5.6. A 
number of different clusters cover the seabed scatter nodes, while the nodes in the 
water column representing the aggregation of fish as well as the angular noise 
pattern are isolated as a single cluster, drawn in green in Figure 5.6. 

Components o-  run 1 weight run 1 o-  run 2 weight run 2 
Longitude (X) 0 50.0 1 
Latitude (Y) - 0 50.0 1 
Depth (Z) 10.0 1 15.0 1 
Point backscatter - 0 2.0 1 
Mean backscatter 0.5 1 2.0 1 
Median - 0 2.0 1 
Standard deviation 0 1.0 1 
Skewness 0 1.0 1 
Kurtosis 0.8 1 1.0 1 
Number of samples 0.8 1 2.0 1 

Table 5.2 Parameters used in applying the NJW algorithm to the scatter nodes 
from the Salmon Banks data set. 

Next, the scatter nodes of this cluster are considered separately, and subjected again 
to the NJW algorithm. The parameters used in this second run are listed in Table 5.2. 
The result is shown in Figure 5.7. Two clusters are detected, one is clearly 
indicative of the aggregation of fish while the other represents the angular noise 
pattern caused by sidelobing effects from the seabed. 
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Figure 5.6 The water-column scatter nodes are isolated in the green cluster. This 
is the result of the first run of the NJW algorithm. 

Figure 5.7 The water-column nodes identified in the first run are now clustered in 
a second run of NJW. The nodes indicative of the aggregation of fish are 
separated from the nodes resulting from the angular seabed sidelobing noise 
pattern. 
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It is interesting to note how UDBSCAN and NJW detect the short range noise band 
differently. UDBSCAN isolates it perfectly from the other scatter nodes, because it 
is spatially well separated (the purple cluster in Figure 5.5). NJW on the other hand 
does not identify it perfectly (the yellow cluster in Figure 5.6). This is because non-
spatial components come into play as well, and there are indeed non-spatial 
similarities between scatter nodes in the short range noise band and other nodes. 
This observation suggests that there is value in utilizing the UDBSCAN results for 
what they are useful: identifying spatially isolated clusters of samples. Under such a 
regime, the short range noise nodes would be removed from the set of scatter nodes 
prior to running the kernel algorithm NJW. 

5.2.3 Results 

The fish school represented by the cluster plotted in orange in Figure 5.7 is studied 
in further detail. Marine biologists familiar with the particular area where the data 
were collected have identified the school as Pacific Herring (Clupea pallisii). The 
scatter nodes of the school are used to render a volume, as described in section 4.5.3. 
This school volume is shown graphically together with the original multibeam data 
in Figure 5.8. 

Figure 5.8 In pink,  the  school of Pacific Herring as detected by the NJW 
clustering algorithm, shown together with one ping of raw multibeam data and 
all scatter nodes from the whole data set (in gray). 

For comparison, the same data was used for schools detection in the Echoview 
software. The schools detection algorithm in Echoview is based on thresholding of 
raw multibeam samples (Myriax, 2008). The school determined in this way is 
plotted in yellow in Figure 5.9, together with the earlier determined school volume 
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in pink. It is seen from this figure that the Echoview school in this case is more 
fractal in nature, which is caused by the fact that it is built up from volume elements 
corresponding to individual multibeam samples, while the scatter node cluster is 
smoother. 

Figure 5.9 The pink school as in the previous figure, together with the 
corresponding school as determined by the Echoview sample thresholding based 
detection algorithm. 

An analytical comparison is given in Table 5.3. It is difficult to tune settings for 
both algorithms so that comparable school objects are detected. The school object 
detected by sample thresholding is slightly bigger, which is reflected in the length 
and depth measures. The fact that the scatter node based school is a lot smoother is 
observed in the complexity of the describing volume, in particular the number of 
vertices and triangles making up the volume shell. The energetic properties, 
however, are very similar for both school objects. Since the sample thresholding 
based school contains more raw samples, it must be concluded that these additional 
samples are of low bacicscatter values and in reality may not be an integral part of 
the school. 

Scatter node cluster school Sample thres holding school 
Number of vertices 156 2741 
Number of triangles 2460 6120 
Length (North-South) 13.8m 14.4m 
Length (East-West) 40.5 m 54.4 m 
Depth minimum 93.8 m 92.0 m 
Depth maximum 101.5m 104.1  m 
Centre depth 99.0 m 97.3  m 
Sample mean -39.7 dB -40.2 dB 
Sample minimum -52.7 dB -52.7 dB 
Sample maximum -23.0 dB -23.2 dB 
Number of raw samples 700 2271 

Table 5.3 Comparison of analytical measures of schools detected by clustering 
scatter nodes versus by sample thresholding 
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Finally, the scatter nodes representing the school being considered are used to 
obtain a mean sample value directly, without using the raw multibeam data. This is 
possible because the mean of all samples contributing to each node were used to 
construct a feature of the node. 

Calculating the mean of the relevant feature and expressing the obtained value 
logarithmically gives a value of -39.5 dB. This is very close to -39.7 dB, the value 
obtained using all the raw sample data (Table 5.3). 

This case study demonstrates that the nodes, their features, and the volumetric 
objects derived from them may be sufficient for fisheries applications. Once the 
nodes and their features are derived, there is no immediate need to reconsider the 
raw multibeam data again, other than for comparative analyses. 

5.3 LAKE OPEONGO 

5.3.1 Description of the data set 

During a joint project conducted by Myriax Pty Ltd, Kongsberg Mesotech and the 
Ontario Ministry of Natural Resources and Scientific Assessment Technology 
Laboratory in 1999, a Kongsberg Mesotech 5M2000 multibeam sonar was 
deployed on a vessel on Lake Opeongo, Canada. The sonar operational frequency 
was 200 kHz, collecting 128 beams of data over a 120 degree swath. 

The data file that is used in this case study contains recordings of a school of 
Coregonus artedii (Lake herring or Cisco). It is the same data file that is shown in 
plate 3.5 of Simmonds and MacLennan (2005). One ping of data in which the 
school of fish is clearly visible is shown in Figure 5.10. 

5.3.2 Analysis 

As no calibration data are available, blind deconvolution is used to derive scatter 
nodes. The original data consist of 91 pings of 128 beams of 245 samples each, a 
total of 2,853,760 samples. The point backscatter sample values and the mean of the 
samples nearest to each node were attributed to the scatter nodes as features. With 
two features per node and only 5,146 nodes in total, the original data set is reduced 
in volume to under 0.4% of its original size. The scatter nodes derived from the 
ping of data shown in Figure 5.10 are shown in Figure 5.11. In Figure 5.12 all nodes 
for the whole data set are shown. 
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Figure 5.10 One ping of data from the Lake Opeongo data set (S N  in dB). The 
school of Coregonus artedii (Lake herring) is clearly visible above the 20m depth 
line, with the seabed beneath the line. 

Figure 5.11 The scatter nodes derived from the ping of data shown in Figure 5.10. 

Figure 5.12 A three-dimensional view of the ping shown in Figure 5.10 together 
with the scatter nodes derived for the whole data set. 

It is seen from Figure 5.11 and Figure 5.12 that there are many scatter nodes in 
dense regions close to the seabed which arise from noise rather than from true 
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seabed echoes. Therefore UDBSCAN is unlikely to be successful in this case since 
it only considers spatial aspects of the scatter nodes. The kernel clustering algorithm 
NJW is applied, using a multiplicative Gaussian kernel, eq. (4.46), with the settings 
listed in Table 5.4. 

Components 	 a 	 weight 
X (longitude) 
	

10.0 	 1.0 
Y (latitude) 
	

10.0 	 1.0 
Z (depth) 
	

4.0 	 1.0 
Point backscatter amplitude 	 1.0 	 1.0 
Mean backscatter amplitude 	 2.0 	 1.0 

Table 5.4 Parameters used in the calculation of the kernel matrix for the Lake 
Opeongo data set. 

Intuitively one would expect four clusters to be found: the fish school, the seabed, 
the seabed noise, and the nodes at the top, close to  the  transducer. The latter are due 
to the presence of another instrument that was mounted in the acoustic beam of the 
sonar. Experimental runs  of  the NJW algorithm were found to optimally detect the 
school at a value of k = 7. Lower values of k resulted in the school being assigned to 
the same cluster as parts  of  the seabed and the seabed noise, while higher values 
caused the school to be partioned in several clusters. Of the seven clusters, four 
were in fact due to the bottom noise and were afterwards manually merged to a 
single clusters resulting in a total of four clusters. These clusters are shown 
graphically in Figure 5.13. 

Figure 5.13 The scatter nodes from the Lake Opeongo data set, segmented into 4 
clusters. The colors indicate cluster membership; the size of the spheres is 
representative of the mean backscatter energy level of the original samples 
contributing to each node. 

In Figure 5.13, colour indicates cluster membership: green is the seabed, orange the 
seabed noise, blue the noise due to the other instrument, and purple is the fish 
school. The size of the nodes is representative of the mean backscatter energy levels 
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of the original samples contributing to that node, with bigger nodes representing 
higher backscatter energy levels. 

5.3.3 Results 

The nodes indicative of the fish school are now triangulated to form a volumetric 
object. Properties of this object can be calculated: the school is 32.4m long, 17.0m 
wide and 4.9m high. The depth of its centre is 13.1m. The nodes indicative of the 
seabed are triangulated to form a surface. The seabed surface area is 8,414m 2 , 
ranging in depth from 22.0m to 24.9m. A graphical representation of the volumetric 
school object and of the surface is presented in Figure 5.14. 

Figure 5.14 The scatter nodes of the school are constructed to build a volumetric 
object (in purple) and the seabed nodes are used to build a surface (in green). All 
nodes are drawn in gray. 

5.4 SOUTHERN OCEAN 

5.4.1 Description of the data set 

The preprocessing and clustering methods that have been developed in this research 
are designed primarily for analysing multibeam sonar data. However, they are 
applicable to single beam echosounder data too, as is demonstrated in this case 
study. For standardization purposes it is valuable to have a unified approach that 
can be applied to both multibeam and single beam sonar data sets. Furthermore, it 
will facilitate the combined usage of both kinds of data, for joint analyses. 
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The data set was collected in 2004 by the Australian Antarctic Division (AAD) in 
the vicinity of Heard Island and the McDonald Islands, a subantarctic island group 
in the Southern Ocean, about 4,000 km south west of Australia (data set courtesy of 
Toby Jarvis, AAD, Kingston, Tasmania, Australia). A Simrad EK60 single beam 
echosounder was used with three transducers, to collect data at three acoustic 
frequencies: 38kHz, 120kHz and 200kHz. Data were collected for 55 minutes along 
a transect approximately 10 nautical miles long. 

The AAD have established their own data processing standard (Jarvis, 2006). Data 
cleaning components of this data processing routine include the removal of the 
bottom echo, noise spikes and background noise. The cleaned data are then down-
sampled to a lower resolution, and classified using the acoustic responses at 
multiple frequencies (Korneliussen and Ona, 2003). Four classes are distinguished: 
resonant scatterers, fluid-like scatterers and (more specifically) large and small 
fluid-like scatterers. 

The method of deriving scatter nodes and clustering them is applied to this data set, 
and the results compared with those obtained by the AAD. 

The segmentation of the water column into different classes has attracted some 
attention in the past. Recently, Anderson et al. (2007) used a simplified version of 
Gaussian mixtures to classify multifrequency echosounder data. They did not 
include spatial information or correlations between the responses at different 
frequencies. Kieser et al. (2006) classified single frequency single beam 
echosounder data using texture features of the echograms. The clustering algorithm 
used is k-means. An earlier attempt investigated the use of artificial neural networks 
(Haralabous and Georgakarakos, 1996). Along the lines of the AAD method is the 
method based on differences between backscatter levels at different frequencies as 
discussed in Kang et al. (2006). A systematic comparison of these various methods 
would be interesting and useful but is beyond the scope of the present research. 

5.4.2 Analysis 

The method, introduced in this thesis, to derive scatter nodes through the 
application of a deconvolution can be altered to correspond more closely to the 
customary method of reducing data in single beam echosounder applications. 
Rather than deconvolving the data, raw data samples are aggregated to form a lower 
resolution data set. Each of the lower resolution samples can be seen as a scatter 
node (section 3.4.4). In the AAD scheme, this down-sampling is conducted because 
it reduces the variance of sample-to-sample backscatter comparisons (Jarvis, 2006). 
The lower resolution data bins are 2 meters high and contain samples from 25 pings. 
Following this approach, a scatter node is defined for each lower resolution sample. 
Approximately 250 raw data samples are reduced to a single scatter node. 
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The major difference with scatter nodes obtained from a deconvolution is that the 
scatter nodes obtained through down-sampling are positioned regularly in space and 
time also in locations where no significant backscatter energy is present. Scatter 
nodes resulting from a deconvolution are distributed irregularly, and only at 
locations where some bacicscatter energy above the noise level was received. 

Since the AAD classification scheme is based on differences between the acoustic 
backscatter energy levels at three frequencies, these levels are defined as features 
for the scatter nodes. The levels for the lower resolution samples, and hence for the 
scatter nodes, are obtained through averaging the contributing raw samples. In that 
way, each scatter node gets three features. In Figure 5.15, full resolution raw data 
samples are shown together with the corresponding lower resolution representation; 
the bacicscatter intensities in this image are those of the responses at 120 kHz. 

Figure 5.15 Full resolution EK60 data (Sv  in dB), 1201(Hz (left) and the same data 
down-sampled to a lower resolution, with samples corresponding to scatter nodes 
(right). 

In the AAD approach, the lower resolution samples are classified to one of four 
classes based on the differences between the backscatter levels at each of the three 
frequencies (Korneliussen and Ona, 2003; Jarvis, 2006). These samples are now 
considered as scatter nodes. 

Since the scatter nodes arise as the result of a down-sampling operation on the raw 
samples, density based spatial clustering is pointless, as scatter nodes are equally 
dense in the entire space covered by the data set. While there is value in taking 
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spatial proximity into account, that alone is clearly not sufficient to cluster the 
scatter nodes. 

The scatter nodes are subjected to the NJW kernel clustering algorithm, making use 
of the three backscatter energy levels of each node (38 kHz, 120kHz and 200kHz). 
These levels are each first normalized to the range [0, 1]. Since the data are 
basically two-dimensional in space, only two spatial coordinates are used: the 
distance along the cruise track, and the depth in the water. Additive Gaussian 
kernels are used, eq. (4.45), with parameters as presented in Table 5.5. From the 
parameters it can be seen that the backscatter levels are the features primarily used, 
with smaller contributions from the spatial components of the nodes. 

Components  
Distance cruise track 
Depth 
Backscatter at 38 kHz 
Backscatter at 120 kHz 
Backscatter at 200 kHz  

Table 5.5 Parameters 

o- 	 weight 

	

0.01 	 0.1 

	

0.001 	 0.3 

	

0.8 	 1.0 

	

0.8 	 1.0 

	

0.8 	 1.0 
used in applying the NJW algorithm to the scatter nodes 

from the AAD data set. 

The AAD scheme aims at identifying four classes of scatterers: resonant scatterers 
and fluid-like scatterers; at depths shallower than 100 meters the fluid-like 
scatterers are divided into two classes: small and large. 

The result of the clustering procedure is an assignment of scatter nodes to one of 
four clusters. This is an unsupervised method, in that it is not capable of identifying 
the relevant classes, but merely of differentiating between them. Expert knowledge 
is needed to label the identified clusters as resonant scatterers, or fluid-like 
scatterers, large or small. In this case the AAD processing of this data set is used to 
achieve this expert class assignment, or classification. 

5.4.3 Results 

The scatter nodes are clustered into four clusters using the NJW kernel clustering 
algorithm. The initial results are shown in Figure 5.16. The colour codes for the 
classes are as follows: 

• green: fluid like scatterers, 
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• orange: small fluid like scatterers, 

• red: large fluid like scatterers, 

• blue: resonant scatterers. 

Figure 5.16 The initial result of the kernel clustering method. The  small  and large 
fluid-like scatterers, in orange and red respectively, are grouped  with  the overall 
class of fluid-like scatterers in green at depths below 100 m, resulting in the 
classes of Figure 5.17 (e). Resonant scatterers are in blue. 

In the AAD classification, samples at depths greater than 100 meters are classified 
as either resonant (blue) or fluid-like (green). In the kernel-based classification this 
100 meter line is not used. Therefore, samples classified into either of these two 
classes are set to the general class of fluid-like scatterers (green). 

In Figure 5.17, the lower resolution samples corresponding to the scatter nodes are 
shown for each of the three frequencies, together with the classes as identified by 
the AAD scheme and by the kernel clustering method. 

Some observations are made: 

• From Figure 5.16, it can be seen that the kernel clustering method assigns 
hardly any samples at depths shallower than 100 meters  to  the green cluster 
of fluid-like scatterers. This is remarkable, as the 100 meter line is not taken 
into account in any way in the clustering process. This finding provides 
objective support for the explicit use of this line in the AAD processing 
scheme. 

• The only resonant scatterers identified by the AAD method are the thin layer 
at shallow depths of less than 25 meters. The kernel method does find 
resonant scatterers (in blue) at greater depths, including  at  depths lower than 
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(c ) 

(e) 
Figure 5.17 (a) 38 kHz backscatter, (b) 120 kHz backscatter, (c) 200 kHz 
backscatter, (d) classes according to AAD scheme, (e) classes according to the 
kernel method. The colour scale of (a)-(c) is the same as that of Fig. 5.15, the 
colour codes of the classes in (d) and (e) is as in Fig.  5.16. 
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100 meters, whereas the AAD method does not. While it is possible that the 
scatterers deeper in the water column are of a different nature than those 
closer to the surface, it seems to be an anomaly that the stronger scatterers 
deeper in the water column are not identified by the AAD method. 

• The layer of resonant scatterers at shallow depths is thinner in the AAD 
approach. The kernel method appears to be including all above-threshold 
samples present in the 38 kHz data. If this is judged as an error in the kernel 
clustering, an approach would be to alter threshold levels prior to creating 
scatter node features. Using kernel methods, it is possible to include scatter 
node backscatter values that are obtained from different threshold levels. 

• In the depth range 0 to 100 meters, the AAD method labels most scatterers 
that are fluid-like as small, while a substantial number are labelled as large 
by the kernel method. From studying the backscatter levels at the different 
frequencies (Figure 5.17 (a) — (c)) it can be seen that the scatterers identified 
as large by the kernel method have stronger backscatter levels at 120 kHz 
and 200 kHz. The AAD method identifies only a few scatterers as large 
fluid-like, and it does so in a way that is not easily explained by visual 
inspection of the echograms. This can be interpreted as the kernel method 
identifying one cluster too many. If the orange and red clusters were merged 
into one, Figure 5.17 (e) would become very similar to Figure 5.17 (d). 

The kernel based classification is plausibly similar to the AAD approach, with some 
differences that are in need of expert assessment. The kernel method offers a 
number of benefits over the AAD approach, including the incorporation of spatial 
aspects of the data, and the possibility to include more features than just the 
backscatter returns at the three acoustic frequencies. Features that can be included 
can be of a totally different nature, for example echogram texture measures could 
prove valuable to take into account (Kieser et al., 2006). Explicit formulations of 
hard decisions in the AAD scheme, such as the 100 meter boundary, can be 
incorporated into the kernel method, as demonstrated above. 

The kernel clustering method is an unsupervised method to detect clusters in 
unclustered data. Supervised methods, on the other hand, use examples with a 
known classification to learn from (section 4.5.2). In the context of the AAD 
processing scheme it would be feasible to establish a supervised scheme, where a 
classifier learns from correctly classified data. Rather than unsupervised kernel 
methods, supervised ones could be used. In particular, the support vector machine 
would be a good candidate as the most common supervised kernel classification 
algorithm (Scholkopf et al., 1999; Cristianini and Shawe-Taylor 2000). 

In summary, one would proceed as follows: 

129 



Scientific data mining for spatio-temporal hydroacoustic data sets 

• cluster data using an unsupervised method, as in the case study presented 
here, 

• apply this unsupervised method to a range of representative data sets, 

• use expert knowledge to assign class labels to the clusters obtained, 

• use these data sets and the assigned class labels as the training and test sets 
for training a supervised classification method such as the support vector 
machine, 

• use this trained supervised classifier to classify future unseen data. 

This is a useful approach for organisations doing repeat surveys and utilizing 
standard data processing routines. 
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6.1 SPATIO-TEMPORAL HYDROACOUSTIC DATA MINING 

The widespread use of multibeam sonar for fisheries applications is hampered by a 
number of factors, an important one of which is the data processing and analysis 
required. Multibeam sonar data sets are very large and deriving useful information 
from them is a challenging task. 

In this thesis, the problem of handling multibeam water-column data is placed in a 
scientific data mining context, and a solution is formulated. Algorithms are 
developed to derive useful information from the raw spatio-temporal hydroacoustic 
multibeam sonar measurements. A schematic overview of the complete scientific 
data mining process is given in Figure 6.1. 

The first phase in analysing multibeam data is a preprocessing step, to transform the 
multibeam sonar acoustic backscatter samples to a compact and generic data 
representation. The elementary units of this generic representation are points in 
space and time, each having one or more additional features or properties mostly 
relating to their backscatter energy levels. The spatio-temporal vectors, enriched 
with additional features, are called scatter nodes in this thesis. Scatter nodes are 
obtained from raw multibeam sonar data by the application of a deconvolution, 
which acts as a model inversion technique. They can be regarded as the minimum 
configuration of scatterers needed to produce the multibeam sonar data that are 
recorded. The additional features are extracted from the sonar data files or from 
other sources of information that may be available. Not only is this representation 
more concise in terms of data volumes, but it is a normalization at the same time: 
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data collected under different instrument data collection and sampling regimes, and 
even data from different instruments, are represented in a standard manner. 

- exploratory analysis 
- deconvolution 	- spatial clustering 	- graphical representations 

- feature extraction 	- kernel clustering 	- analytical representations 

   

scatter nodes 

 

clusters 

   

raw 
hydro- 

acoustic 

pre- 
processed 

data 

detected 
patterns 

knowledge, 
information 

data 

data 	pattern 
	

interpretation 
preprocessing 	analysis 

Figure 6.1 The complete scientific data mining process for spatio-temporal 

hydroacoustic data from multibeam sonar instruments. 

Scatter nodes are a sufficiently general representation to capture other aggregated or 
derived data representations, such as bathymetric soundings, or down-sampled 
single beam echosounder data. This mechanism allows for the representation of data 
from various instruments in a unified form. It is also useful for the storage and 
archiving of backscatter measurements from sonar instruments. 

The second phase of the data mining process consists of applying pattern analysis 
algorithms to scatter node data. Pattern analysis algorithms are used to identify 
groups or clusters of scatter nodes that belong together because they are 
representatives of the same higher level object or structure. Such coherent clusters 
arise for example when fish schools are present in the data, or the sea floor. Scatter 
nodes indicative of the same structure are expected to have attributes that are more 
similar than attributes of nodes from different structures. Pattern analysis algorithms 
aimed at finding these groups or clusters are clustering algorithms. They result in a 
segmentation of the data set into coherent segments or clusters. Exploratory data 
analysis is useful to obtain an initial insight into the data and to identify apparent 
structures. 

In this thesis two classes of clustering algorithms are considered. Firstly, spatial 
clustering algorithms, only taking the spatial attributes of the scatter nodes into 
account, are considered. These algorithms are simple yet they can provide good 
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results. A density based spatial clustering algorithm, DBSCAN, is identified as 
particularly suitable to clustering scatter nodes. A modified version of this 
algorithm is proposed: Unique-DBSCAN or UDBSCAN. UDBSCAN results in a 
clustering that is unique for a given data set, whereas the clustering resulting from 
the standard DBSCAN algorithm can be different for different permutations of the 
scatter nodes. 

Secondly, more sophisticated algorithms are considered, with the aim of including 
all attributes of scatter nodes, not only the spatial ones. Kernel methods are 
identified as relevant. They have strong foundations in functional analysis and 
algebra, and offer a convenient way to make known established linear statistical 
methods non-linear. A long standing theorem from functional analysis, the Hahn-
Banach theorem, is used in this research to develop the necessary mathematical 
foundations to extend kernel methods to include the spatial, temporal and other 
feature components of scatter nodes simultaneously. Using these extended kernels, 
kernel clustering methods are applied to scatter nodes. The kernel k-means 
clustering algorithm is considered, in particular the variant known as the Ng-Jordan-
Weiss (NJW) algorithm, a well established spectral relaxation of the standard kernel 
k-means algorithm. 

The result of applying these pattern analysis algorithms to scatter node data is a 
segmentation of the nodes. Each segment or cluster is indicative of some 
underwater object such as a fish school or the seabed. These clusters can be 
analysed further. For example, they can be used to create volumetric objects 
representative of fish schools. Backscatter energy measures of fish schools are 
obtained through the backscatter energy related features of the constituting scatter 
nodes. Scatter node clusters and derived objects allow for convenient graphical 
representations of the data for information visualization purposes in presenting 
analysis results. 

The segmentation routines are extendible to perform classification. In classification, 
unseen data are labelled to belong to a particular group or class. After a data set of 
scatter nodes has been clustered using any of the aforementioned methods, and 
clusters are labelled using expert knowledge, the algorithms can be used directly to 
assign unseen scatter nodes to one of the determined classes. 

A number of case studies are presented. Data from different instruments are 
analysed using the proposed methods. These examples illustrate the usefulness of 
the methods and are a guide to bringing them into practice. 

The proposed methods will facilitate present and future studies employing 
multibeam sonar technology, and are anticipated to be general enough to prove 
useful in supporting future developments such as the use of multibeam sonar for 
fish stock assessments. 
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6.2 AN EXTENSIBLE FRAMEWORK 

The proposed data mining process can serve as a framework for the mining of 
spatio-temporal data in general. It is a framework in the sense that both the data and 
the algorithms can be generalized, extended or altered. Several options are 
discussed. 

Instruments 

In this thesis the primary focus is on multibeam sonar instruments that are capable 
of collecting data samples from the complete water column. In section 3.4.4 the 
possibility of deriving scatter nodes from single beam echosounder data is 
introduced, with an example given in section 5.4. This can be investigated in further 
detail. Of particular interest is the possibility of using the deconvolution technique, 
rather than the resampling technique that is currently used in single beam sonar data 
analysis. 

The multibeam systems discussed in this thesis are limited to instruments with 
coplanar beam configurations. The method of deriving scatter nodes can be 
extended to cover instruments with other transducers and beam configurations, such 
as omnidirectional or scanning sonars (section 2.1.2), which have been used 
successfully in fisheries studies (Brehmer et al., 2006). Models of this kind include 
the Furuno FSV30(R) and the Simrad SP and SH series models. 

Furthermore, it is anticipated that new instruments specifically designed for 
fisheries work will become available, and that the technique of transforming the raw 
data into scatter nodes by means of a deconvolution will prove useful there as well. 
A new generation of multibeam systems for fisheries research is presented in 
Andersen et al. (2006). 

Data types 

The data type of interest in this thesis is spatio-temporal hydroacoustic data: 
acoustic measurements acquired by underwater sonar. Pattern analysis methods are 
applied to these data sets. As far as the pattern analysis methods are concerned, the 
fact that the data they are applied to are hydroacoustic is not important. Any kind of 
quantitative spatio-temporal measurement can be analysed in exactly the same 
manner. Many oceanographic data sets are of this kind: a measured or modeled 
quantity such as salinity, temperature, acidity or current velocity is available at a 
number of points in space and time. If the aim is to cluster these spatio-temporal 
data points into similar groups, the pattern analysis methods presented in this thesis 
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can be used; in particular the kernel method which allows for the combination of 
spatial and non-spatial components of the points in the analysis. 

Algorithms 

Various algorithms are used in the data mining process presented in this thesis. At 
each of the yellow nodes in the overview in Figure 6.1, one or more algorithms are 
or can be used. 

One possible extension of the preprocessing phase is to apply the proposed 
deconvolution algorithm across pings. In the present research, only within-ping 
deconvolution is considered. Across-ping deconvolution is a complex matter due to 
the generally irregular movements of the transducer arrays from ping to ping. 
Expected benefits include further data reduction and higher precision, as ping to 
ping correlations are then taken into account. 

Alternative pattern analysis algorithms other than UDBSCAN and kernel methods 
are possible, using the same preprocessed multibeam data in the form of scatter 
nodes as inputs. One possibility is to establish spatial gridding methods for scatter 
nodes in a similar manner as they are used for bathymetric multibeam soundings 
(Calder and Mayer, 2003). 

Data fusion 

The ecosystem-based approach to managing marine resources consists of 
combining many sources of information to achieve a holistic insight into the 
complete ecosystem (De la Mare, 2005; Garcia and Cochrane, 2005; Frid et al., 
2006). How to incorporate water-column multibeam sonar data in such analyses is 
an outstanding challenge because of the instrument and manufacturer dependent 
custom storage techniques for raw multibeam sonar data. Since clusters of 
segmented scatter nodes are simply sets of generic spatio-temporal vectors, a format 
well suited for import in many software packages, it is anticipated that they will 
facilitate the use of multibeam sonar data in the ecosystem-based approach to 
marine resource management. 
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6.3 SUMMARY 

A scientific data mining approach for the processing and analysis of water-colunm 
multibeam sonar data is developed utilizing concepts and algorithms from the 
research areas of underwater acoustics and pattern analysis. The following is a 
summary of the contributions delivered by the research presented in this thesis: 

• the development of a multibeam sonar model, employing an existing 
acoustic ray-tracing model and known multibeam sonar instrument designs, 

• the application of a deconvolution as a model inversion technique in order 
to obtain the minimal set of scatterers that would lead to the observed data, 

• the extension of this minimal set of scatterers with additional features and 
defining these feature-rich spatio-temporal vectors as scatter nodes; scatter 
nodes are a concise, generic representation of spatio-temporal hydro-
acoustic data sets, 

• the identification of the algorithm Density Based Spatial Clustering for 
Applications with Noise (DBSCAN) as an appropriate spatial clustering 
algorithm for scatter nodes, 

• the modification of DBSCAN to overcome an issue with uniqueness of its 
results; the modified version is named Unique-DBSCAN (UDBSCAN), 

• the development of a mathematical foundation to enable the application of 
kernel methods to spatio-temporal data; the Hahn-Banach theorem plays a 
fundamental role in this theory, which provides a method to use spatial, 
temporal and other features simultaneously, 

• the application of kernel clustering methods to scatter nodes using this 
mathematical foundation; in particular the kernel k-means method and its 
variant known as the Ng-Jordan-Weiss (1\1.1W) algorithm are used to 
segment scatter nodes into clusters indicative of coherent structures in the 
data, 

• demonstration of the effectiveness of the data mining process by means of a 
number of case studies. 

These developments are capable of facilitating the routine use of water-column 
multibeam sonar data for fisheries applications. 
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APPENDIX: ABSTRACTS OF PUBLICATIONS 

Buelens, B., Williams, R., Sale, A., and Pauly, T. (2003). "Midwater acoustic 
modeling for multibeam sonar simulation," 146 th  ASA Meeting, Austin, Texas, 
The Journal of the Acoustical Society of America 114, p. 2308. 

Simulation and modeling software has been developed to generate synthetic 
midwater multibeam data. Essentially, the simulator can be considered as a virtual 
test tank. In order to develop multibeam data analysis methods for fisheries research, 
it is essential to have a variety of test data sets available, which are ground truthed, 
georeferenced and corrected for vessel motion. Since equipment and ship time are 
expensive and data quality not always guaranteed, the simulator provides an 
effective alternative. The seabed and any objects in the water column such as fish 
and fish schools can be defined in a 3-dimensional space. A specification for a 
generic linear array multibeam sonar and its position in space and time can be 
chosen. The acoustic model implements the technique of acoustic ray-tracing to 
obtain the pressure at the transducer face, which is converted to individual samples 
by modeling the working of a digital multibeam system. Beamforming is performed 
on the fly, and both raw and beamformed complex data sets are generated. 
Statistical validation of the generated data has been conducted successfully. 

Buelens, B., Williams, R., Sale, A., and Pauly, T. (2004). "A framework for 
scientific data mining in hydroacoustic data sets," 2nd International 
Conference on Artificial Intelligence in Science and Technology (AISAT) 
(Hobart, Tasmania, Australia), pp. 104-108. 

A data mining framework for handling large volumes of scientific hydroacoustic 
backscatter data is proposed. The method is applicable to data collected by the new 
generation of multibeam echosounders, capable of logging acoustic backscatter data 
for the full water column. Such instruments are increasingly used for fisheries 
applications. The data mining technique is based on an inverse modeling of the 
underlying physics and electronics of a generic multibeam sonar system. A set of 
tagged soundings is obtained, which serves as a base for further advanced analysis 
techniques. It is anticipated that the proposed framework will serve as a tool for 
scientific fisheries research. 
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Buelens, B., Williams, R., Sale, A., and Pauly, T. (2005). "Model inversion for 
midwater multibeam backscatter data analysis," IEEE Oceans '05 Europe 
(Brest, France), pp. 431-435. 

A model of the multibeam echosounding process was developed. This model has 
now been used as the basis for the application of a model inversion technique, with 
the aim of analysing midwater multibeam echosounder data, for fisheries 
applications. Research on midwater multibeam echosounding for fisheries is in its 
infancy. Some results have been published, announcing promising progress at the 
level of multibeam transducer design, beamforming algorithms and calibration 
procedures, but no standard postprocessing technique has emerged yet. In this paper, 
the postprocessing of midwater multibeam backscatter data is placed in a scientific 
data mining framework. Data mining aims at automatically extracting useful 
information and knowledge from large volumes of data which do not reveal this 
knowledge in a trivial manner. Multibeam acoustic data has an additional dimension 
compared to single beam data, and multibeam echosounding results in large data 
logging rates, typically several gigabytes per hour, making it suitable for applying 
data mining algorithms in order to analyse the data in postprocessing. A data mining 
technique to handle multibeam data sets is presented. The technique is based on 
inverse modeling. A model of the multibeam echosounding process was developed, 
including a physical underwater acoustics model, as well as a model of a generic 
multibeam transducer and its digital signal processor. This model has now been 
approximated by an invertible function, leading to an inverse model. Applying the 
inverse model to midwater multibeam backscatter data results in a set of soundings. 
A multibeam midwater sounding is the equivalent of a standard multibeam 
sounding as obtained from hydrographic multibeam instruments. In the midwater 
multibeam echosounding context, a sounding can represent anything in the water 
column, not just the seabed. These soundings can be visualized directly, allowing 
for exploratory data analysis in a 3d or 4d interactive environment. Furthermore, 
various features can be tagged to each sounding, such as the backscatter energy 
value and some statistical parameters of the multibeam ping from which the 
sounding was obtained. The term data node is used to describe the sounding and its 
associated feature vector. The set of data nodes serves as the basis for further 
advanced spatio-temporal data mining techniques. Soundings can be clustered into 
coherent groups, each cluster representing an object in the water column, such as a 
fish school. Cluster features are obtained from the feature tags of their contained 
data nodes, giving rise to feature vectors for each cluster. Clusters can be classified 
into classes of different types, using each cluster's feature vector. When a cluster is 
thought of as a fish school, it can be classified according to fish species or age 
group, for example. 
The concept of a set of data nodes is a versatile concept that can be extended further, 
enabling the application of more advanced clustering and classification algorithms. 
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Appendix: abstracts of publications 

Buelens, B., Williams, R., Sale, A., and Pauly, T. (2005). "A scientific data 
mining approach to midwater multibeam echosounding for fisheries 
applications," 1st International Conference on Underwater Acoustic 
Measurements: Technologies & Results (UAM) (Heraklion, Crete, Greece). 

Midwater acoustic backscatter measurements collected by multibeam sonar offer 
new opportunities and challenges for fisheries applications. A scientific data mining 
technique to handle midwater multibeam backscatter data is presented. Most of the 
earlier research on multibeam echosounding for fisheries has focused on the core 
basic technologies of multibeam transducers, the associated signal processing, and 
calibration. Some work has been done with postprocessed data, but no systematic 
methodology for postprocessing of midwater multibeam backscatter data has 
emerged. In this paper, the problem is placed in a data mining framework. A model 
inversion technique is utilized, by applying the inverse of an approximation to the 
multibeam echosounding model. The proposed approach leads to a data product 
consisting of a collection of midwater soundings. A multibeam midwater sounding 
is the equivalent of the standard multibeam soundings as obtained from 
hydrographic multibeam instruments. These soundings can be visualized directly, 
allowing for exploratory data analysis in a 3d or 4d interactive environment. A 
sounding is a measurement in space and time, and has associated attributes or 
features, such as the backscatter value. Other features can be tagged to the 
soundings, forming generalised data nodes. Advanced spatio-temporal data mining 
techniques can now be applied to this set of nodes. Some further clustering 
techniques are presented, clustering the soundings into groups representing coherent 
objects in the water column, or, more specifically, fish schools. Global properties of 
clusters can be derived from the individual feature tags of the soundings, thus 
allowing for classification of schools into classes of similar types. The latest 
developments of this research are presented. 

Buelens, B., Williams, R., Sale, A., and Pauly, T. (2006). "Computational 
challenges in processing and analysis of full water-column multibeam sonar 
data," 8th European Conference on Underwater Acoustics, edited by S. M. 
Jesus, and 0. C. Rodriguez (Carvoeiro, Portugal), pp. 799-804. 

Several multibeam sonar systems are now capable of collecting and recording data 
samples covering the full water column, not just the seabed. Such systems, while 
still facing hardware challenges such as limited dynamic range and bandwidth, 
collect vast quantities of data, generally an order of magnitude more than 
conventional hydrographic multibeam or scientific single beam sonar systems. In 
this paper, the challenges faced by data processing systems for analysis of full 
water-column multibeam sonar data are explored. Full water-column multibeam 
data sets are valuable to scientists from traditionally diverse fields, providing 
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simultaneous information about bathymetry, seabed type and habitats, and biomass 
in the water column. Aspects of the data processing pipeline that are considered in 
this paper include raw data storage, data preprocessing, visualization and 
exploratory data analysis, statistical data analysis and postprocessing, and 
presentation and interpretation of results. A general framework is outlined, and 
specific aspects applicable to the kind of data and problems at hand are emphasized. 
Proposed solutions to some of the challenges are reviewed and placed within an 
overall framework of multibeam sonar water-column data analysis. It will become 
clear that successful contributions to the field have been made, but that a general 
analysis method has yet to emerge. 

Buelens, B., Pauly, T., Williams, R., and Sale, A. (in press). "Kernel methods 
for detection and classification of fish schools in single beam and multibeam 
acoustic data," in ICES Journal of Marine Science, Special Issue on the 
Ecosystem Approach with Fisheries Acoustics and Complementary Technologies. 

A kernel method for clustering acoustic data from single-beam echosounder and 
multibeam sonar is presented. The algorithm is used to detect fish schools and to 
classify acoustic data into clusters of similar acoustic properties. In a preprocessing 
routine, data from single-beam echosounder and multibeam sonar are transformed 
into an abstracted representation by multidimensional nodes, which are data points 
with spatial, temporal, and acoustic features as components. Kernel methods 
combine these components together to determine clusters based on joint spatial, 
temporal and acoustic similarities. The resulting clusters yield a classification of the 
data in groups of similar nodes. Including the spatial components results in clusters 
for each school and effectively detects fish schools, while ignoring the spatial 
components yields a classification according to acoustic similarities, corresponding 
to classes of different species or age groups. The method is described and two case 
studies are presented. 
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