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Introductory quote 

"Upon November 12 and 13, 1902, occurred the greatest fall of matter in the history 

of Australia. Upon the 14th of November, it rained mud in Tasmania. It was of 

course attributed to the Australian whirlwinds, but according to the Monthly Weather 

Review, 32-365, there was a haze all the way to the Philippines, also as far as Hong 

Kong. It may be that this phenomenon had no special relationship with the even 

more tremendous fall of matter that occurred in Europe, February 1903. I think 

myself that in 1903, we passed through the remains of a powdered world - left over 

from an inter-planetary dispute, brooding in space like a red resentment ever since." 

Charles Fort, The book of the damned, 1919. 
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Abstract 

lion (Fe) was measured in present-day and ancient East Antarctic snow to investigate 

the atmospheric flux of Fe into the Southern Ocean, the solubility of this atmospheric 

iron, and the level of new phytoplankton production it could support in Southern 

Ocean waters, given that iron is an essential micronutrient for algal growth. To 

investigate the present-day atmospheric Fe deposition, acid-soluble total-dissolvable 

Fe (TD-Fe) was measured in present-day East Antarctic snow from inland sites in 

Princess Elizabeth Land and marine sites in Prydz Bay, the Dumont d'Urville Sea 

and the Ross Sea. 

To investigate temporal variations in atmospheric Fe deposition, TD-Fe 

concentrations were measured in glacial ice-core (i.e., ancient snow) samples of 

Holocene, Wisconsin-Holocene transition and Last Glacial Maximum (LGM) age 

from Law Dome on the coast of Wilkes Land, East Antarctica. Average TD-Fe 

concentrations in modern snow from Prydz Bay, Princess Elizabeth Land and the 

Ross Sea were similar, with a range of 612-749 pg Fe g -1 . Average TD-Fe 

concentrations in modern snow from the Dumont d'Urville Sea were an order of 

- magnitude less (62 pg Fe g 1 ), and comparable to TD-Fe concentrations in Holocene 

sections of the Law Dome ice-cores. There are significant variations in the Law 

Dome ice-core TD-Fe concentrations, on time scales ranging from seasonal to 

glacial-interglacial. Summer TD-Fe concentrations exceed winter by —4x. Average 
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Holocene ice TD-Fe concentration (99 pg Fe g -1 ) was much lower than that for the 

Holocene-Wisconsin transition (1100 pg Fe g -1 ) and LGM (6700 pg Fe g-1 ). Soluble 

Fe in modem East Antarctic snow was estimated from measurements of TDFe and 

total-filterable (0.2 iim) Fe. Soluble Fe in the samples ranged from 10-90% of TDFe, 

averaging —40%. Past and present-day atmospheric Fe fluxes were estimated from 

average snow and ice TDFe concentrations and estimated snow accumulation rates. 

Present-day and late Holocene flux estimates are in the range of 0.02 -0.10 mg Fe II1-2  

yf l , with an average of 0.07 mg Fe III-2  yr-1 . The estimated LGM atmospheric Fe 

flux onto Law Dome ranges from 0.86 -2.15 mg Fe In-2  yr-I , using minimum and 

maximum estimates of the LGM snow-accumulation rate. This is 12-30 times the 

average present-day atmospheric Fe flux and 16-41 times the average atmospheric Fe 

flux estimated from the late Holocene ice-core samples. 

Assuming (1) similar atmospheric Fe fluxes exist over the Southern Ocean (south of 

50°S), (2) limitation of algal production in this region by Fe deficiency (i.e., nutrient-

and light-replete conditions), (3) 40% of the Fe is bioavailable, and (4) an algal C:Fe 

molar assimilation ratio of 33,000-500,000, then the maximum potential algal new 

production supported by atmospheric Fe deposition in the present-day is estimated at 

0.017-0.25 mol C n12  yf l . Assuming a Redfield algal C:N assimilation ratio and an 

upwelling flux of 12 g nitrate M-2  yf l , this estimated new production rate could 

consume 0.3-4% of the nitrate upwelled into surface waters of the present-day 

Southern Ocean. Similar calculations using estimated LGM atmospheric Fe flux 

yield potential new production of 0.2-7.9 mol C In-2  yr-I , which could consume up to 



136 % of the nitrate upwelled in the present-day Southern Ocean. Estimates of the 

potential increase in surface-water dissolved Fe concentration due to atmospheric Fe 

released from melting annual sea ice suggest that —5 riM increases are possible in 

thin (-4 m deep) meltwater lenses, increases which are probably sufficient to 

alleviate algal Fe deficiency and allow bloom development. However, the potential 

total annual new production supported by atmospheric Fe released from melting sea 

ice is estimated as 45 Tg C, which is —1% of the estimated total annual Southern 

Ocean primary production of 4414 Tg. 

In summary, the results presented in this thesis are consistent with the suggestion that 

the present-day atmospheric Fe flux into the Southern Ocean is insufficient to 

support the use of the upwelled nitrate by phytoplankton, and also that the majority 

of algal new production in this region is supported by Fe supplied from other 

sources, such as upwelling and shelf sediments. However, these data indicate that 

atmospheric Fe inputs may support short-lived high-production events at the edge of 

retreating seasonal sea ice. These results are also consistent with the hypothesis that 

the atmospheric Fe flux into the Southern Ocean was significantly greater during the 

LGM, potentially supporting much greater phytoplankton new production at that 

time. 
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Chapter 1 

Introduction 

1.1 Overview of the thesis 

The carbon balance in the surface waters of the Southern Ocean is thought to be a 

dominant factor in the oceanic control of atmospheric carbon dioxide (CO2) levels 

(Sarmiento and Orr, 1991). This region is characterised by the upwelling of deep 

water, which transports large amounts of plant nutrients to the surface (Gordon et al., 

1977). Paradoxically phytoplankton in much of the present-day Southern Ocean do 

not appear to be nutrient limited (Martin et al., 1990b; de Baar et al., 1990; Dugdale 

and Wilkerson, 1992), but are unable to exhaust surface water nutrient stocks during 

the summer growing season (Smith, 1991; Francois et al., 1997). The polar nutrient 

hypothesis (Knox and McElroy, 1984; Sanniento and Toggweiler, 1984; 

Siegenthaler and Wenk, 1984) postulates that if phytoplankton in the Southern Ocean 

could consume all of the presently unused nutrients the resulting export of carbon to 

the deep ocean could affect a large biological drawdown in atmospheric CO2. This 

so called 'biological carbon pump', it was suggested, may have been responsible for 

the large variations in atmospheric CO2 that have occurred in phase with late 
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Quaternary glacial cycles, as evident from air bubbles trapped in polar ice-cores 

(Berner et al., 1980; Neftel et al., 1982; Lorius et al., 1985; Barnola et al., 1987; 

Jouzel et al., 1993). Over the past decade a large body of evidence has been gathered 

to suggest that the availability of iron (Fe) in surface waters of the Southern Ocean 

may be the dominant factor controlling primary production in light replete conditions 

(Martin et al., 1990b; de Baar, 1990, van Leeuwe, 1997). In his 'iron hypothesis', 

Martin (1990) suggested that at present primary production in this region may be 

limited by the availability of dissolved Fe, much of which is derived from the 

atmospheric deposition of dust. But during glacial periods higher atmospheric fluxes 

of dust may have alleviated this Fe deficiency, switching on the biological carbon 

pump, exhausting surface water nutrients and subsequently lowering atmospheric 

CO2 levels. 

At present there is little quantitative data for either the Holocene or Last Glacial 

Maximum (LGM) atmospheric Fe flux to the Southern Ocean and its variability 

during these periods. Qualitative evidence for the present and paleo-atmospheric Fe 

flux to the Southern Ocean has been inferred from a small number of Antarctic ice-

core dust and aluminum measurements, deep-sea sediments, and a limited number of 

atmospheric measurements (Zoller et al., 1973; Menhaut et al., 1979; Cunningham 

and Zoller, 1981; Tuncel et al., 1989; Wagenbach et al., 1988; Wolff et al., 1998; 

Dick, 1987; Dick and Peel, 1985; Dick, 1991; Kumar et al., 1995; Anderson et al., 

1998). The relationship between these data and the atmospheric input of Fe to the 

Southern Ocean is unclear, as the major Antarctic ice-core records are from high- 



altitude inland sites, which may not be representative of maritime fluxes, while the 

deep-sea records (e.g.; Kumar et al., 1995; Anderson et al., 1998) are difficult to 

interpret due to the transport of particles by ocean currents and biological processes. 

In addition, very little is known concerning the solubility of Fe in atmospheric dust, 

and hence how much will be available to phytoplankton. A further complication 

arises due to the presence of seasonal sea ice in both the interglacial and glacial 

Southern Ocean. Seasonally large areas of the Southern Ocean are covered with sea 

ice; on average, seasonal sea ice covers up to 15 x 10 6  km2  at its maximum extent 

(Parkinson, 1992). During the months while the sea ice is present Fe will be 

deposited on the sea ice rather than in the ocean. Martin (1990b) suggested that the 

rapid melting of sea ice might provide a large episodic source of Fe to Antarctic 

waters. 

A knowledge of the atmospheric Fe flux to the Southern Ocean during the present, 

Holocene, and LGM is necessary to evaluate these hypotheses. This thesis presents 

estimates of the atmospheric Fe flux to the Southern Ocean as determined from Fe 

measurements in present-day snow and ancient snow in ice-cores from East 

Antarctica. Specifically, the following hypotheses are examined: 

(1) The present-day atmospheric Fe flux to the Southern Ocean is insufficient to 

allow the complete use of upwelling nitrate by phytoplankton in light replete 

conditions; 

3 
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(2) Seasonal Antarctic sea ice may release enough Fe during melting to support a 

large fraction of Southern Ocean new production; and 

(3) The atmospheric Fe flux to the Southern Ocean during the LGM was high enough 

to sustain an increase in new phytoplanIcton production relative to the present. 

To test these hypotheses, measurements of total-dissolvable and total-filterable Fe in 

present-day and ancient East Antarctic snow were made. From these data the 

atmospheric Fe flux to the present-day and LGM Southern Ocean, the release of Fe 

from seasonal sea ice and the potential new phytoplankton production ensuing from 

these Fe fluxes are estimated. 

1.2 The iron hypothesis and new phytoplankton production in the 

Southern Ocean 

Ocean surface waters containing high nitrate concentrations but low chlorophylla 

cover more than 20% of the world's oceans. These High Nitrate Low Chloropyll 

(HNLC) regions support relatively low primary production despite an abundance of 

the major plant nutrients nitrate and phosphate (Chisholm and Morel, 1991). Recent 

field studies in FINLC regions of the equatorial Pacific, the north-east Pacific and the 

Southern Ocean suggest that the additions of 0.5-10 nM dissolved Fe to these waters 

cause marked increases in algal growth and biomass (Martin and Fitzwater, 1988; 
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Martin et al., 1990b; de Baar et al., 1990; Helbling et al., 1991; Greene et al., 1991; 

Kolber et al., 1994; Price et al., 1994; Coale et al., 1998; Lindley and Barber, 1998). 

From these observations it has been argued that the availability of dissolved Fe exerts 

a primary control on phytoplankton growth and biomass, the marine food web, and 

the drawdown of atmospheric CO2 in HNLC regions (Martin et al., 1990a, 1991, 

1994; de Baal-  et al., 1995; Coale et al., 1998). This includes much of the Southern 

Ocean. Reliable concentration data for Fe in the HNLC waters of the Southern 

Ocean are few (e.g. Martin et al., 1990b, 1991; de Baar et al., 1995; Johnson et al., 

1997; Sedwick et al., 1997; Sedwick and Ditullio, 1997; de Baar et al., 1999) but 

show that surface water dissolved Fe concentrations are typically <1 nM and are 

often < 0.2 tiM. While the present-day atmospheric deposition of Fe to the Southern 

Ocean is thought to be extremely low (Donaghay et al., 1991), the flux is thought to 

have been significantly greater during the LGM (Kumar et al., 1995). In concert 

with the apparent increase in atmospheric dust during the LGM, atmospheric CO2 

concentrations as determined from ice-cores decreased from approximately 300 ppm 

to 200 ppm (Barnola et al., 1987). Martin (1990) proposed that while biological 

production in the present day Southern Ocean appears to be Fe limited, this 

deficiency may have been alleviated by atmospheric deposition during the LGM, 

causing a significant drawdown of atmospheric CO 2 . Recent studies of deep-sea 

sediments (Kumar et al., 1993, 1995) suggest an increased atmospheric deposition of 

Fe to SubantarcticAvaters (between about 40°S and 55°S) of the Southern Ocean 

during Pleistocene glaciations, and a corresponding increase in phytoplanIcton export 

production. This inferred increase in primary production in phase with atmospheric 
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Fe deposition supports the Fe hypothesis as proposed by Martin (1990). In addition, 

several large scale in situ oceanic Fe fertilization experiments have been completed, 

showing unequivocally that the addition of Fe to I-INLC waters can increase 

biological productivity and drive a significant local drawdown in atmospheric CO2 

(Coale et al., 1996, 1998; Martin et al., 1994; T. Trull, pers. comm., 1999; Boyd et 

al., 1999). 

1.3. The atmosphere as a source of Fe to Southern Ocean waters 

1.3.1 Atmospheric transport of mineral aerosol to Antarctica 

The deposition and dissolution of Fe-bearing mineral aerosols (atmospheric mineral 

dust) may be the primary source of Fe in surface waters in many areas of the global 

ocean (Moore et al., 1984). Various aspects of mineral aerosol transport have been 

extensively studied over the past 20 years (see for instance: Pewe, 1981; Gillette, 

1981; Prospero, 1981a, 1981b; Leinen and Sarnthein, 1982; Morales, 1985; Buat-

Menard, 1986; Chester, 1986; Pye, 1987; Tsoar and Pye, 1987; Chester and Murphy, 

1990; Schutz et al., 1990; Duce et al., 1991; Goudie and Middleton, 1992; Rea, 1994; 

Duce, 1995; Tegen and Fung 1995). Mineral aerosols are formed by wind erosion of 

fine mineral particles from soils and rocks (Gillette, 1991; Duce, 1986). The primary 

sources of these aerosols (Figure 1.1) are the arid and semi-arid regions (Chester, 

1985; Prospero, 1981 a, 1981b). The Antarctic continent is nearly completely 



!MIIMENINOrr  
Adapted from Pewe (1981) 	, 

 

Figure 1.1 Major sources and atmospheric transport of mineral aerosols 

covered with snow and ice, with no significant dust sources. Dust found in Antarctic 

snow is thought to mainly originate from South America. Mineralogical studies 

(Gaudichet et al., 1986, 1988) and isotopic fingerprinting of dust found in the East 

Antarctic Vostok and Dome C ice-cores (Grousset et al., 1992; Basile et al., 1997) 

have demonstrated the Patagonian loess of Southern Argentina to be  a 

source of dust to East Antarctica. Lambert et al. (1990) found that atmospheric 

transport to Antarctica showed a seasonal variation with a minimum  in  winter and a 

maximum in summer. Atmospheric measurements of dust-derived elements at the 

South Pole (Cunningham and Zoller, 1981) and Neumayer station (Wagenbach et al., 

1988) also show a seasonal variation with lower concentrations during winter months 

than during the austral summer. This atmospheric transport is thought to occur 
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mainly in the upper troposphere as mineral aerosols are removed from the lower 

troposphere by wet deposition, especially at the polar front (Shaw, 1979; Heimann et 

al., 1990; Lambert et al., 1990). But this transport pathway is impeded during winter 

by the formation of the polar vortex over the Antarctic continent. The vortex breaks 

up from late spring to summer allowing upper tropospheric transport to resume hence 

the seasonal cycle in atmospheric dust concentrations observed in Antarctica. 

1.3.2 Chemical characteristics of mineral aerosols 

Mineral Aerosols over the remote ocean have been found to be composed largely of 

clay minerals (in particular, illite, chlorite, kaolinite and montmorillonite), quartz and 

feldspars (Chester, 1985). The clay composition of the aerosol is thought to vary 

with latitude as evident in oceanic sediments (Griffin et al., 1968). In particular, 

Southern Ocean sediments appear to be largely composed of illite and chlorite 

(Griffin et al., 1968). While illite appears to be a ubiquitous component of 

continental weathering, chlorite is characteristic of high latitude glacial weathering 

processes (Chester, 1985). 

The solubility of the Fe deposited in the ocean is thought to be the main parameter 

determining its biological availability to phytoplankton (Wells et al., 1983; Rich and 

Morel, 1990; Morel et al., 1991). Generally, a solubility of 10% has been used to 

calculate the fraction of mineral dust Fe available to phytoplankton (e.g., de Baar et 

al., 1995), but this may be a very conservative estimate. Moore et al. (1984) 
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investigated the solubility of metals in mineral dust relative to aluminium (Al), 

assuming Al to be relatively insoluble. This study concluded that 10-12% of total Fe 

in the dust was soluble relative to Al. Maring (1987) investigated the seawater 

solubility of Al present in mineral aerosols collected from Enewetak Atoll, and found 

that —5% of the mineral aerosol Al was soluble in seawater. Losno et al., (1993) 

found the solubility of Al in precipitation from continental and marine sites to vary 

between 0.2 to 91%. These results suggest that Moore et al.'s Fe solubility is 

probably a lower limit. Zhuang et al. (1990) used mineral aerosol particles collected 

over the North Pacific to investigate the dissolution of Fe-bearing aerosol in 

seawater. In their study, dissolved Fe was defined as that which passes through a 0.4 

urn pore-size Nuclepore filter. They found that up to 40-50% of the total Fe would 

dissolve in seawater with dissolved Fe concentrations less than a few nmol kg -1 . 

1.4 Estimates of the atmospheric flux of Fe to the present-day and LGM 

Southern Ocean 

1.4.1 The present-day atmospheric Fe flux 

Duce et al. (1991) estimated the present-day annual atmospheric flux of mineral dust 

to the world ocean at a resolution of 100  latitude x 100  longitude area. This estimate 

was based on calculations of wet and dry deposition using measurements of mineral 

dust in air and rain. Little data exists for the Southern Ocean and calculations were 
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largely based on atmospheric measurements from Georg-von-Neumayer station, 

Antarctica. From these calculations a dust flux (total mass) of 10 mg m-2 yr-i was  

estimated for the Southern Ocean. Assuming that Fe comprises 3.5% of the mineral 

dust, Donaghay et al. (1991) calculated the atmospheric Fe flux (Figure 1.2) to the 

global ocean from the mineral dust fluxes of Duce et al. (1991). Annual Fe fluxes to 

the Southern Ocean were estimated to be of the order of 0.1 'mg 111-2  yf l . These 

fluxes were rounded to an order of magnitude and are lower than a direct calculation 

from the Duce et al. (1991) data set. 

1.4.2 The atmospheric Fe flux during the LGM 

The termination of the last glaciation (Stage 2 of the SPECMAP planktonic 5 180 

record; Winograd et al., 1997) and the penultimate deglaciation (Stage 6) were both 

preceded by high mineral aerosol concentrations over Antarctica and lower 

atmospheric CO2 concentrations relative to the Holocene (Craggin et al., 1977; Royer 

et al., 1983; de Angelis et al., 1984, 1987; Petit et al., 1981, 1990; Sowers et al., 

1991; Mayewski et al., 1996; Jun et al., 1998; Jouzel et al., 1993). As for the 

present-day, Patagonian loess has been identified as a source of mineral dust to 

inland East Antarctica during the LGM (Gaudichet et al., 1986, 1988; Grousset et al., 

1992; Basile et al., 1997). The higher concentrations of mineral aerosol over 

Antarctica during the LGM have been attributed to an increased aridity in the 

Southern hemisphere and more extensive dust sources (Petit et al., 1981; de Angelis 
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Figure 1.2 Atmospheric Fe flux to the global ocean 

al., 1987, 1992), increased winds (Petit etal., 1981; Ram and Gayley, 1988) and a 

decrease in the hydrological cycle (Yung, et al., 1996; Anderson and Ditlevsen, 

1998). During the LGM dust concentrations, (as inferred from Al concentrations) in the 

Vostok and Dome C ice-core records were 27-37 times that of the Holocene (Delmas, 

1992). But LGM ice accumulation rates at these sites are thought to have been 

approximately 50% that of the Holocene (Lorius, 1989), and so higher LGM dust 

concentrations relative to the Holocene may in part be due to a higher ratio of dry to wet 

deposition (de Angelis et al., 1987). While the dust data from these ice-cores has been 

used to infer possible dust and hence Fe fluxes over the Southern Ocean (Martin, 1990) 

during the LGM, these ice cores were drilled from high altitude sites over a thousand 

kilometres from the coast, and it is not clear if the dust fluxes to these sites are 

representative of that over the ocean during the present or 
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LGM. 

1.4.3 Seasonal Antarctic sea ice as an episodic source of Fe to the Southern Ocean 

Sea ice forms seasonally over a large portion of the Southern Ocean, profoundly 

affecting both the overlying atmosphere and the underlying oceans. On average, 

Antarctic sea ice grows from a minimum of approximately 4 x 10 6  km2  in February, 

to a maximum of approximately 18-19 x 10 6  lun2  in September or October 

(Parkinson, 1992). The seasonal cycle is characterised by approximately 7 months of 

growth (March-September) and 5 months of decay (October-February) (Worby et al., 

1998). Snow cover forms a major component of the sea ice system, affecting the 

physical and radiative properties of the ice (Ledley, 1991). Snow is also 

incorporated into the sea ice as a result of snow loading, wave-induced flooding or 

deformation processes, forcing the ice/snow interface below sea level and flooding 

the base snow cover (Massom et al., 1998 and references therein). Importantly, the 

seasonal sea ice forms a relatively permanent surface for some 6-7 months of the 

year on which atmospheric dust accumulates in snow. This may be an important 

source of Fe to the surface ocean when the ice melts (Martin,1990; de Baar et al., 

1995; Sedwick and DiTullio, 1997). The ice itself, some of which forms in coastal 

polynyas (Worby et al., 1998 and references therein), may also contain Fe that was 

present in upwelled coastal waters (Sedwick et al., 1999). 



1.5 Studies of trace-metals in Antarctic snow and ice 

Atmospheric heavy-metal pollution has been the main focus of trace-metal studies of 

Antarctic snow and ice (Murozumi et al., 1969; Boutron, 1978, 1979b, 1980; 

Boutron and Lorius, 1975, 1979; Boutron and Patterson, 1983, 1986, 1987; Boutron 

et al., 1977, 1993, 1994; Dick, 1987, 1985; Ng and Patterson, 1981; Rosman et al., 

1994; Suttie and Wolff, 1992; Wolff, 1990; Wolff and Suttie, 1994). It now appears 

that much of the earlier trace-metal analyses suffered from contamination artefacts 

(Wolff and Peel, 1985). For instance, the lead, zinc and cadmium data published in 

Boutron (1978, 1979a, 1979b, 1980, 1981, 1982) and Boutron et al. (1977) are now 

known to be unreliable. Unfortunately, the majority of Fe analyses of Antarctic 

snow and ice were made by Boutron and Hanape before the contamination problems 

were resolved (Boutron, 1978, 1979a, 1979b, 1980, 1981, Boutron and Lorius, 1975, 

1979; Boutron et al., 1972; Hanape et al., 1968). Measurements of Fe in Antarctic 

snow and ice for which contamination problems have been addressed are few, e.g 

Westerlund (1991), Shimamura (1995) and Barbante (1997), and are limited to a 

small number of samples. 

13 
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Chapter 2 

Experimental Methods 

2.1 Introduction 

The Fe, Mn and Al data presented in this thesis were measured in snow and glacial ice 

(ancient snow) samples collected during a number of Antarctic expeditions. These 

metals are present in the snow and ice at the low ng g"' to pg g . ' concentration level, 

and so the analyses required special "clean" sampling procedures and highly-sensitive 

analytical techniques. The problems associated with collecting uncontaminated snow 

samples are discussed in several papers (Murozumi et al., 1969; Patterson and Settle, 

1976; Ng and Patterson, 1981; Boutron and Batifol, 1985; Wolff and Peel, 1985). 

Many of the recent snow samples were collected from seasonal sea ice in the vicinity 

of large ships. Except for Mart (1983), there are few reports of ship-contaminated 

snow. Given the known low concentrations of trace-metals reported in continental 

snow, the ships were considered as potential contamination sources. Continental 

samples were collected during inland traverse expeditions. Tractor trains and all-

terrain vehicles were potentially the main source of contamination in this case. The 
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dispersion of contamination from point sources such as these are discussed by Suttie 

and Wolff (1993). The procedures that were used in an effort to avoid such 

contamination are outlined here. 

The exterior layers of ice-core samples are known to be highly contaminated with 

trace-metals as a result of the drilling procedure and subsequent handling (Boutron 

and Patterson, 1986; Boutron et al., 1988; Candelone et al., 1994). In this study such 

samples were decontaminated by mechanically removing the outer layers of ice 

(Candelone et al., 1994). The ice layers were then analysed along with sub-samples 

from the centre of the ice core to determine the extent of contamination into the core, 

and hence infer the reliability of the concentration measured in the innermost sub-

sample (Boutron and Patterson, 1986). 

Few analytical techniques exist which have the sensitivity to quantify trace-metals in 

Antarctic snow. Methods that have been used include laser excited atomic 

fluorescence spectrometry (LEAFS; Bolshov et al., 1991), isotope-dilution mass 

spectrometry (IDMS), thermal-ionisation mass spectrometry (TIMS; Ng and 

Patterson, 1981; Rosman et al., 1994), graphite furnace atomic absorption 

spectroscopy (GFAAS; Boutron et al., 1991; Wolff and Peel, 1994) and Atomic 

fluorescence spectroscopy (AFS; Vandal et al., 1993). Except for LEAFS, these 

techniques have required preconcentration, such as simple evaporation (Gorlach and 

Boutron, 1990) and adsorption on to tungsten wires (Wolff et al., 1981). More 

recently, high resolution inductively coupled plasma mass spectrometry (HR-ICPMS; 
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Shimamura et al., 1995; Barbante et al., 1997; Townsend and Edwards, 1998) and 

flow injection analysis (FIA; Edwards et al., 1998), which do not require 

preconcentration, have been employed. The Fe data presented in this thesis were 

determined by either FIA with spectrophotometric detection or ICPMS, and Mn and 

Al were determined by HR-ICPMS. Sampling procedures, general laboratory 

procedures and analytical methods are described in the following sections. 

2.2 Reagents and equipment 

2.2.1 Work areas  

In an effort to reduce contamination by airborne dust, all preparation of standards and 

reagents, sample processing and analyses, and cleaning were performed inside 

laminar-flow clean air benches (Class 3.5) housed inside a conventional chemistry 

laboratory. Ice-cores and snow samples were decontaminated and sub-sampled in a 

laminar-flow clean air bench (Class 3.5) housed inside a cold room (-18 °C). These 

techniques were similar to those discussed by Patterson and Settle (1976), Boutron 

and Batifol (1985), and Candelone et al. (1994). 

2.2.2 Water and reagents 

Ultra-pure (>18 MQ—cm resisitivity ) deionised water (DIW) was prepared by 

passing prefiltered tap water (10 p.m and 5 um filters and activated-charcoal 
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cartridges) through a commercial water purification system (Analytical Reverse 

Osmosis and Polishing System, Modulab Pty Ltd). Water in this system is initially 

purified by reverse osmosis and then recirculated through four cartridges: an activated 

charcoal cartridge, two nuclear-grade ion-exchange cartridges, and an organic 

scavenger cartridge. Out-flowing water was passed through a 0.1 p.m PIPE, filter and 

stored in acid-cleaned low density polyethylene (LDPE) carboys. The Fe, Mn and Al 

concentrations of the DIW after storage were estimated from blank solution 

measurements by FIA and HR-ICPMS to be < 15 pg  g-1, <3  pg g 1  and< 36 pg g-i ,  

respectively. 

Acids with 4 different levels of purity were used in sample and reagent preparation 

and in cleaning. Samples, standards and blanks were acidified with a commercial 

ultrapure double quartz-distilled hydrochloric acid (Seastar chemicals). This had a 

supplier-assay of Fe, Mn and Al concentration of < 80 pg 	< 3 pg  g-i and <20 pg 

g 1 , respectively. However Fe analysis of the ultrapure acid, after opening and storage 

in a secondary container, gave an estimated Fe concentration of 4 ng (Sedwick et 

al., 1997). Singly and doubly quartz distilled hydrochloric acids (Q-HC1 and 2Q-HC1, 

respectively) and acetic acids were used in the cleaning procedures and in the 

preparation of less critical reagents. These were prepared from analytical-reagent 

grade (or better) acids (Ajax, BDH, Reidel de Haen and Mallinkrodt) by sub-boiling 

distillation in a custom-built quartz still. Analytical-reagent grade (AR) acids were 

used for some of the cleaning steps. Ammonia hydroxide solution (NH 4OH) was 

purified from NR4OH solution (AR) by isothermal distillation (also known as 
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isopiestic distillation) as described by Resing and Measures (1994). The Fe 

concentration of the purified NH4OH solution was not determined, but is thought to 

be comparable to that of the DIW. 

2.2.3 Equipment and cleaning procedures 

Methods for the preparation and cleaning of equipment for ultra-trace-metal sampling 

and analyses were based on those discussed in Patterson and Settle (1976), Boutron 

and Patterson (1983), and Moody and Lindstrom (1977). Equipment used for the 

critical handling or storage of samples and reagents was either LDPE, fluorinated 

ethylene propylene (FEP) or polytetrafluroethylene(PTFE). Other equipment was 

made of either polypropylene (PP), high density polyethylene (HDPE) polycarbonate 

(PC), polymethyl methacrylate (acrylic) or polysulphone (PSF). Sample storage 

bottles (LDPE) were cleaned by soaking for 2 days in —6 M HC1 (AR) and then 

suspended for 2 days over the fumes of gently boiling —6 M HC1 (AR) following 

Tschopel et al. (1980). After cleaning, the bottles were stored for more than 3 

months filled with —0.1 M 2Q-HC1, and then rinsed liberally with DIW (4x) 

immediately before use. Other plasticware was cleaned by successive 2-day soakings 

in —6 M HC1 (AR), —1 M Q-HC1, and —0.1 M 2Q-HC1, with DIW rinsing between 

each soaking step. Pipette tips (PP) were cleaned by the latter method, but were 

rinsed with DIW, 2Q-HC1, then Seastar 2Q-HC1 immediately before use. Tips used 

for pipetting ultrapure HC1 were rinsed with DIW after use and reused over periods of 

several days. 



19 

2.2.4 Procedural blanks 

Procedural blanks consisted of DIW acidified to 0.1 M with Seastar 2Q-HC1. Blanks 

were prepared daily during analytical work. Long-term blanks (to check for 

"leaching") were also prepared in 1L LDPE wide-mouth bottles, which were cleaned 

alongside those used for snow sampling. These were analysed regularly for Fe over a 

3 year period. After 3 years the Fe concentrations of the blanks were below the FIA 

detection limit (15 pg g- '). Estimated contributions to the blanks for Fe, Mn and Al 

are given in Table 2.1. Manganese and Al were determined by Hit-ICPMS. 

Table 2.1 Contributions to procedural blank 

Stage of procedure Method of determination Blank contribution (pg g -I ) 

Fe Mn Al 

Bottle blank Filled with 0.1% ultra pure <15 <2 <19 
HC1 and left for 2.5 years 

Ceramic chisel Immersed chisel blade in < 15 n.a. n.a 
DIW for 30 min 

Ice-core 
decontamination 

Decontaminated artificial 
ice-core made from DIW 

— 15 <2 <19 

Pipette blank Pipetted acid 100 times. <15 n.a n.a 

Acidification with Calculated for 0.1 M HC1 4* 0.003** 0.02** 
HC1 

.. Total <15 <2 <19 

n. a. = not analysed 

* Assuming Fe concentration = 4 ng g"' (70 LIM) in Seastar 2Q-HC1 

** Supplier-assay value in Seastar 2Q-HC1 



2.3 Sample locations and sampling procedures 

To test the 4 hypotheses presented in Chapter 1, present-day snow samples were 

collected from seasonal sea ice and continental sites in East Antarctica (Figure 2.1). 

Holocene, Holocene-Wisconsin transition and LGM age glacial ice samples were 

selected from ice-core sections drilled at Law Dome on the coast of Wilkes Land, 

East Antarctica. Samples from Prydz Bay, Princess Elizabeth Land, the Dumont 
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d'Urville Sea and the Ross Sea were analysed to investigate Fe concentrations in 

marine and continental Antarctic snow over a large spatial area and ice samples from 

three Law Dome ice-cores were used to investigate the temporal variability in Fe 

concentrations in snow deposited during the Holocene, Holocene-Wisconsin 

transition and LGM. 

2.3.1 Prydz Bay samples 

Prydz Bay, the third largest embayment in Antarctica (Nunes Vaz and Lennon, 1996), 

is situated between approximately 700  E and 80° E longitude and covers an area of 

approximately 80,000 km2 . Oceanic circulation patterns in Prydz Bay are dominated 

by strong cyclonic circulation with current velocities (average velocity —0.1 m s -1) 

which increase near the perimeter, especially at the edge of the Amery Ice Shelf at the 

southern end of the bay (Rathburn et al., 1995). Prydz Bay is typically covered by sea 

ice for 9 months of the year and is characterised by a high biological productivity 

(Ishii et al., 1998). Snow samples were collected from pack ice in Prydz Bay in 

September 1994 from the ice-breaker Aurora Australis. These sampling sites are 

shown in Figure 2.2 and the site locations are given in Table 2.2. Snow samples from 

these sites were collected during sea-ice investigations conducted by the Antarctic 

CRC sea-ice sub-program. Additional information concerning sea-ice conditions and 

properties of these sites have been reported in Worby and Massom, (1995). These 

sample sites were large ridged floes with thin snow over (5-10 cm) (Massom et al., 

1998). 
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Table 2.2 Prydz Bay sample locations 

Site Lat Long Date sampled 

N 64.57° S 74.98°E 21/9/94 

0 64.90° S 75.00° E 21/9/94 

U 66.12° S 75.32°E 23/9/94 

V 66.30° S 75.72°E 23/9/94 

2.3.2 Princess Elizabeth Land samples 

The Princess Elizabeth Land snow samples were collected in 1994 from sites on the 

eastern periphery of the Lambert Glacier Basin (Figure 2.2) during the ANARE 

Lambert Glacier Basin traverse 94/95. Site locations are shown in Table 2.3. Net 

snow accumulation rates for these sites were calculated from snow accumulation 

stake measurements and are described in Higham et al. (1997). 

2.3 3 Dumont d'Urville Sea samples 

Snow samples were collected from sea ice in the Dumont d'Urville Sea (Figure 2.3 

and Table 2.4) from the Aurora Australis in September 1995. As well as sampling 

pristine snow samples, a transect of surface snow both upwind and downwind of the 

ship was collected at site A, in an effort to quantify contamination emanating from the 

ship. Also, Site H2 was sampled on a repeat visit to the same floe as H1 (several days 
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Table 2.3. Princess Elizabeth Land sample locations 

Site ID Lat Long Elevation 
(m, ASL) 

Date 
Sampled 

Net snow 
accumulation 

rate (kg m -2  yr-1) 
LGB 70 70.57° S 76.90°E 1650 18/11/94 163 

LGB 59 73.43° S 76.52°E 2520 04/12/94 65 

LGB 53 74.90° S 74.52°E 2430 12/12/94 78 

LGB 46 75.85°S 71.50°E 2413 22/12/94 50 

ASL = above sea level 

after the first visit) to see if contamination could be detected. This floe had drifted 

approximately 60 km in the intervening period. 

Table 2.4 Dumont d'Urville Sea sample locations 

Site Lat Long Date sampled 

A 64.60° S 140.33° E 02/08/95 

B 64.88° S 141.07° E 02/08/95 

S 64.97° S 141.45°E 03/08/95 

K 64.93° S 141.25°E 04/08/95 

H1 65.06° S 141.58° E 03/08/95 

H2 65.00°S 140.21°E 09/08/95 
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2.3.4 Ross Sea samples 

Snow samples were collected from sea ice in the Ross Sea (Figure 2.4 and Table 2.5) 

in November-December 1994, during a voyage of the US ice-breaker Nathanial B. 

Palmer. Like Prydz Bay, the Ross Sea is a large embayment with an ice shelf at its 

southern edge (Ross Ice Shelf). The western edge of the Ross Sea is bordered by the 

trans-Antarctic mountains and several dry valleys, which are perhaps the only 

significant source of mineral aerosol on the Antarctic continent (Shaw, 1979). The 

Ross Sea is characterised by a large gyre system (Ross Sea gyre) and is covered by 

sea ice for approximately 6 months of the year (Jacobs and Comiso, 1989). 

Table 2.5 Ross Sea sample locations 

Site Latitude Longitude Date sampled 

1 69.52° S 170.6°W 10/11/94 

2 75.00° S 170.67°W 28/11/94 

3 76.45°S 175.52°W 02/12/94 

26 
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2.3.5 Law Dome ice-core samples 

Samples were taken from sections of ice-cores recovered from Law Dome, in Wilkes 

Land, East Antarctica (Figure 2.5). Law Dome is an independent ice cap 

approximately 200 km in diameter located on the periphery of the main Antarctic ice 

sheet. The Law Dome summit has an elevation of 1389 m above sea level and a 

maximum ice thickness of 1200 m (Hamley et al., 1986). Law Dome projects into a 

zone of easterly maritime atmospheric circulation. This produces a high snow 

accumulation rate on the eastern flank of the Dome, which then decreases across the 

Dome from east to west (Morgan et al., 1997). 

Samples were taken from three ice-cores, DSS located 4.6 km SSW of the Dome 

summit, DE08 located on the eastern flank and BHC1 located near the coast to the 

northwest. The DSS and DE08 cores are accurately dated using 5 180 stratigraphy 

(Morgan and McCray, 1985; Morgan et al., 1997; Etheridge and Wookey, 1988) and 

by ice-flow modeling, BHC1 has been dated by comparing the 8 180 record with that 

of the Vostok ice core. Further details for these ice-cores are as follows: 

(1) Core DSS, drilled 4.6 km SSW of the summit of Law Dome (66°46'11"S, 

112°48'25"E, Figure 2.5) between 1988 and 1993. This site has an average snow 

accumulation rate of 640 kg rn-2  yf l (Morgan et al., 1997). The core was drilled in 

two stages: a thermally drilled section (0-82 m, 200 mm diameter) and then a section 

drilled electromechanically in a fluid-filled bore hole (82-1200 m, 100 mm diameter). 
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The core reached a depth of 1200 m and covers a time span that extends back through 

the LGM. The ice from the LGM section is brittle and fractured and thus unsuitable 

for trace-metal analyses. 

(2) Core DE08 thermally drilled (diameter 200 mm) 16 km east of the Law Dome 

summit (66°43'19"S, 113°11'58"E, Figure 2.5). The site has an extremely high 

surface snow accumulation rate of 1160 kg In-2  yf l  (Etheridge et al., 1988). The core 

was drilled to a depth of 234 m in 1987 and spans the past 180 years. Samples from 

the core have been used extensively for measurements of CO2 in trapped bubbles 

(Etheridge et al., 1988). 

(3) Core BHC1, thermally drilled (diameter 110 mm) 110 km north west of the Law 

Dome summit (66°07'50"S, 110°56'17"E, Figure 2.5). This site has a low average 

surface snow accumulation rate of 60 kg m-2  yr-1  and is relatively close to the coast 

in comparison with the other sites. The core was drilled to a depth of 300 m in 1982 

and was drilled along with several other cores in order to study the ice-flow 

mechanics of the region. Measurements of 6 180 along the core show a distinct 

Holocene-LGM transition, where average 6 180 values decrease by 7.0 %o (Morgan 

and McCray, 1985). Ice-flow models suggest that ice in the LGM section of this core 

was originally deposited near the DSS site (Budd and Rowden-Rich, 1985); oxygen 

isotopes from the DSS core also show a 7.0 %o decrease in 6 180 values with depth at 

the Holocene-LGM transition (Morgan et al., 1997). 
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2.3.6 Snow and fim sampling 

Snow and firn were sampled from seasonal sea ice and Antarctic continental sites 

using trace-metal clean techniques. Precautions taken to minimise contamination 

included approaching sample sites from downwind and the use of full clean-room 

apparel during sampling. Snow and firn were collected in both 1L LDPE wide-mouth 

bottles and acrylic tubes (id = 50 mm, length =18 mm, with PP endcaps). In designing 

the sampling methods, there was some initial concern that the samples may have 

required decontamination and that the bottles would not be able to penetrate hard, icy 

layers, in which case the acrylic tubes would have been well suited. On the other 

hand, if the snow was light and fluffy, the bottles would have been more practical. In 

the end both containers were used. Collection of samples from sea ice was 

complicated by the presence of ships (RSV Aurora Australis and RV Nathanial B. 

Palmer), which are potentially large sources of airborne trace-metal contamination 

(Mart, 1983). To access uncontaminated snow during the ship-based studies, the 

vessels were turned into the wind several kilometres before stopping at an ice-floe. 

Floes sampled from the Nathanial B. Palmer were accessed by inflatable boat. In 

both cases, once on a floe, equipment was moved further upwind before sampling. 

Floes sampled from the Aurora Australis were in areas with little open water. In this 

case, the sampling equipment was hauled several hundred metres upwind of the ship 

in a fiberglass sled before donning clean-room apparel and taking samples. Snow pits 

were progressively sampled in an upwind direction. 
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The snow pits were sampled as follows: 

(1) A pit (typically 1 m wide by 0.2 m deep) was dug down to the sea ice with 

an acid-cleaned PP shovel or polycarbonate scoop and the upwind wall of the 

pit was scraped with an acid-cleaned PP scraper to ensure a clean surface; 

(2) Wide-mouth bottles (1 L, LDPE) were removed from their bags and 

inserted into the upwind face of the snow pit. Lids were 

placed upwind with the inside surface in the snow. The bottles were placed so 

as to sample the full depth of the snow drift (Figure 2.6); and 

(3) Next, the acrylic tubes were removed from their bagging and inserted 

vertically next to the bottles (Figure 2.6). The tubes and bottles were then 

excavated, capped, re-bagged and immediately put in the ship's freezer at -15° 

C for transportation back to Hobart. 



Tube Samples 

Bottle 
Samples 

Figure 2.6 Snow sample collection from sea ice 

For the continental sites, snow samples were collected during dedicated side trips 

from the route of the overland traverse. This involved driving all-terrain vehicles 

upwind approximately 5 kilometres, then walking several hundred metres further and 

donning clean-room attire. The sample collection protocol for these sites was the 

same as for the marine sites. Samples were stored in a large insulated box strapped to 

the outside of the traverse tractor train. The temperature inside the box was 

measured throughout the traverse and remained below 0° C. At the end of the 

traverse the samples were stored in a freezer at Mawson Base for several weeks 

before being shipped frozen to Hobart aboard the Aurora Australis. 
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2.3.7 Ice-core storage 

After drilling, the DSS and BHC1 ice-core sections were heat sealed in LDPE bags 

and transported to Hobart where they were kept in cold storage at approximately —20° 

C. The DE08 core sections (also sealed in LDPE bags) were transported to 

Melbourne where they were kept at —30° C. While the DSS and BHC1 ice-cores 

sections stored at the Hobart repository appear to be in relatively clean condition, the 

DE08 sections (stored in Melbourne) surfaces were visibly contaminated with dust. 

2.3.8 Sub-sampling and decontamination of ice-core sections 

During drilling, handling, and storage, the exteriors of ice-core sections become highly 

contaminated by trace-metals (Boutron and Batifol, 1985; Boutron and Patterson, 

1986; Boutron et al., 1988). To obtain uncontaminated samples, it is necessary to 

mechanically remove the external layers of the core, and to determine the extent to 

which external contamination has penetrated into the core. In this study, we used the 

lathe technique described by Candelone et al. (1994), where 4-5 layers of each core 

section, in addition to the visibly-contaminated outermost layer are successively 

removed using chisels under trace-metal conditions. Iron and Al were measured in 

meltwater sub-samples from these layers. Where the inner layers contain a relatively 

low and constant concentration of analyte, they are assumed to be uncontaminated 

(see chapter 4). The decontamination procedure was performed at the Laboratoire de 
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Glaciologie et Geophysique de l'Environnement (LGGE), Grenoble, France, in 

collaboration with Claude Boutron and Sungmin Hong, and, using a slightly modified 

procedure, at the Antarctic CRC in Hobart. Briefly, the procedure was as follows: 

(1) Using a chisel, the first millimetre or so of the core exterior was scraped 

off outside the laminar-flow hood. This outer layer typically contains most of 

the contamination; 

(2) The core sample was then fitted into a custom-built rotating clamp inside 

the laminar-flow bench, and the outer layer removed by shaving (using a fresh 

chisel) a straight line along the sample and then rotating the cleaned strip 

upwards (to prevent the surface from being re-contaminated). While the ice 

was being shaved off, the chips and shavings were collected in an LDPE scoop 

placed below the core; 

(3). After the second layer was removed, the ice chips were transferred from 

the scoop into a clean 1L LDPE wide-mouth bottle, and a clean chisel and 

scoop were used to remove the next layer from the core section. 
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Figure 2.7 Ice-core sub-sample decontamination 

(4). After 4 layers were removed and collected in this manner, the inner core 

was gripped near one end with a pair of plastic tongs and the other end 

removed with a chisel. The severed ice and clamp end were then set aside. 

Next, a clean 1L LDPE wide-mouth bottle was placed over the sample and the 

tongs were slid along the core. The ice was broken next to the tongs so that a 

piece of the core section fell into the bottle. This process was repeated until 

most of the decontaminated core section had been transferred into the bottle, 

except for the remaining clamped end section held in the clamp. 
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.. 	 . 

Figure 2.8 Ceramic chisel used for decontamination 

The clamps used at LGGE were constructed of LDPE and are described in detail in 

Candelone et al. (1994). The clamps are essentially free rotating jigs on movable 

supports. The chisels used at LGGE have been described in Boutron and Patterson 

(1986) and are constructed of stainless steel (316L). Stainless steel consists primarily 

of Fe, however, contamination from the chisel blades was apparently eliminated by 

soaking them in nitric acid (HNO 3). This passivates the metal surface, making it 

relatively inert, and also removes contamination acquired during use. The passivity of 

the chisel blades appears to prevent a significant transfer of Fe from the blades to the 

ice. The chisels were soaked in 0.1% HNO 3  for 1 week before use, but at the time of 

the decontamination they had been repeatedly soaked over approximately 10 years. 

An ice-core clamp was constructed at the Antarctic CRC in Hobart similar to that 

used at LGGE. The base and supports of this lathe were constructed from acrylic 
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and the jigs from PTFE (Figure 2.7). Chisel blades were made from a zh -conia oxide 

ceramic (Rojan Advanced Ceramics) and the blade holders (Figure 2.8) and ice-core 

tongs from LDPE. 

2.4 Sample meltwater processing 

2.4.1 Acidification of samples 

After melting, the ice and snow meltwater samples were acidified to 0.1% with 

concentrated hydrochloric acid (2Q, Seastar). The acidification of samples for the 

ultra-trace-metal analysis of Antarctic snow and ice meltwater samples has been 

described in the literature (Patterson and Settle, 1976; Dick, 1987). Acid is added to 

the meltwater to: 

(1) dissolve particles in the meltwater; 

(2) prevent adsorption of trace-metals by the sample container; and 

(3) maintain metals in solution. 

Most of the Fe, Mn and Al in Antarctic snow and glacial ice is thought to be present 

as a component of clay minerals (see Chapter 1, section 1.3.2), which are only 

partially soluble in water at near neutral pH. Samples were acidified in an effort to 

determine total-dissolvable metals in the samples. It should be noted that "total-

dissolvable" is an operationally-defined measurement, where dissolvable refers to 
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dissolution in 0.1 M HC1. Ice-core sub-samples taken during the decontamination 

procedure were transferred into clean IL LDPE bottles, capped, and allowed to melt. 

Aliquots of these meltwaters were immediately transferred (after mixing) into tared 60 

mL LDPE bottles, weighed, and acidified to 0.1 M with Seastar 2Q-HC1; the 60 InL 

meltwater aliquots from samples processed at LGGE were immediately refrozen 

(unacidified) and later transported to the Antarctic CRC, where they were re-melted 

and acidified. Snow samples were transported frozen (-15° C) from the field to 

Hobart. Snow samples collected in wide-mouth bottles were allowed to melt in the 

bottles, weighed and then acidified to 0.1 M with Seastar 2Q-HC1. Snow samples 

collected in acrylic tubes were transferred into clean LDPE wide-mouth bottles under 

clean-air conditions, melted, weighed and acidified as described above. 

2.4.2 Extent of dissolution 

All of the acidified meltwaters were stored at room temperature for at least 3 months 

before measurement of the operationally-defined total-dissolvable Fe (TD-Fe) 

concentrations. This includes both Fe -  and Fe2÷  species and also perhaps colloidal Fe 

species (Measures et al., 1995). This storage or "dissolution" time was chosen after 

using FIA to monitor the TD-Fe concentration in a number of snow samples (Figure 

2.9) at various times after acidification. The measured TD-Fe concentrations of the 

samples all increased for up to 3 months following acidification, after which relatively 

constant concentrations were measured. The initial rapid increase in TD-Fe 

concentration is probably due to the dissolution of most of the aluminiosilcate 
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species also reached steady state concentrations in solution after > 3 months 

acidification. 

2.4.3 Sample filtration 

To evaluate the solubility of Fe in these samples, the meltwater from selected samples 

were filtered under clean-air conditions (Class 3.5) immediately after melting through 

acid-cleaned 0.2 pm PTFE membranes (Gelman, Acrodisc CR), with peristaltic 

pumping, into acid-cleaned LDPE bottles (60 mL) and acidified as in section 2.4.1. 

The filter line consisted of 20 cm of FEP tubing (0.3 mm id) attached to peristaltic 

pump tubing (PVC) followed by a filter and 15 cm of FEP tubing. Between samples 

the filter line was stored as a closed loop filled with 10% Q-HC1 (typically for 1 

week). Before use, the filters were preconditioned by pumping DIW through the line 

for approximately 2 hr. At the end of the preconditioning, a DIW blank was collected 

in an acid-cleaned LDPE bottle (60 inL) and acidified as in section 2.4.1. All blanks 

from the filtering procedure were found to be less than the Fe detection limit (i.e., 15 

pg g- '). Iron determined in the filtered samples is operationally-defined as "total-

filterable" Fe (TF-Fe) in the following sections and Chapters, and presumably 

provides a measure of the fraction of total Fe in the snow which is readily soluble at 

the natural pH of the meltwaters. 
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2.5 Determination of Fe by FIA 

2.5.1 Analytical method and modifications 

Total-dissolvable Fe was determined by FIA with spectrophotometric detection 

following a modification of the procedure described by Measures et al. (1995). This 

procedure has been used successfully in the analysis of dissolved and TD-Fe in 

Southern Ocean seawater (Sedwick et al., 1997; Sedwick and DiTullio, 1997). The 

chemistry of the method is described by Hirayama and Unohara (1988) and is based 

on the catalytic action of Fe(III) on the oxidation of N,N-dimethyl-p- 

phenylenediarnine (DPD) with hydrogen peroxide (H202). Two reddish semiquinone 

derivatives are formed from the oxidation of DPD and are detected 

spectrophotometrically by absorbance at a wavelength of 514 nm. In the catalytic 

cycle, Fe(III) reacts with DPD (forming the semiquinone derivatives) and is reduced 

to Fe(II). Iron (II) then reacts with H202 to form Fe(III). Hence both dissolved 

Fe(III) and Fe(II) are detected (and perhaps also colloidal and inorganic complexed 

Fe). The system described by Measures et al. (1995) included an in-line 

preconcentration system comprised of a poly vinyl chloride (PVC) column packed 

with 8-hydroxyquinoline immobilised on vinyl polymer gel (Landing et al., 1986). 

However, survey analyses of snow meltwaters suggested adequate sensitivity of this 

method without preconcentration. Hence the preconcentration components of the 

system were removed and replaced by a sample loop (approximately 100 p.L). The 

acidified seawater carrier used in the Measures et al. (1995) system was replaced with 
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DINV acidified to 0.1 M with 2Q-HC1. This eliminated an aberrant peak and dip in 

absorbance signal caused by the difference between the refractive index of the carrier 

and sample. This effect was, however, apparent in the analysis of relatively saline 

snow samples collected from sea ice. This salinity effect was investigated by raising 

the salinity of a low-salinity snow sample with pelagic Southern Ocean seawater (TD-

Fe below the detection limit). The dilution-corrected results of this experiment are 

shown in Figure 2.12. It was found that a significant salinity error was introduced for 

salinities greater than 3 %o. To counter this problem, meltwaters with a salinity 

greater than 3 %o were determined by the method of standard additions. Finally, the 

Measures et al. (1995) system was modified by placing an immobilised 8- 

hydroxyquinoline "clean-up" column in the DPD reagent line (the least pure reagent) 

in order to remove Fe from this reagent. The spectral absorbance of the serniquinone 

end products (at 514 nm) were measured in-line by a UV/VIS spectrophotometer 

(Shimadzu, liquid chromatography series, model: SPD-10 AV). Peak detection and 

quantification were obtained by using a PC-74 A/D board (Boston Technologies) and 

the flow injection analysis software package FCS (A-Chem Technologies, Grahame 

Cross) running on an IBM-compatible 286 PC. The temperature of the reaction coil 

was maintained at 20° C by a water bath fitted with a thermoregulator. A 12 channel 

peristaltic pump (Alitea, model: XV) was used to drive the flow system. 
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Figure 2.10 Effect of sample salinity on FIA peak area for TD-Fe method 

The FIA manifold (Figure 2.11) was constructed of FEP tubing, inside diameter (id) 

0.3 mm and PEEK tees, unions and fittings with Kel-F ferrules (Upchurch). The 

reaction and mixing coils were constructed from FEP tubing (0.3 ram id) by a 

modification of the knitting method of Selavka et al. (1987). The DPD clean-up 

column was packed with 8-hydroxyquinoline immobilised on vinyl polymer gel, as 

described by Resing et al. (1992). A sample loop (42 cm, FEP, approximately 100 

L) was substituted for the sample preconcentration column, and no sample buffer 

used. 
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Figure 2.11 Fe FIA manifold 

The manifold valve was a 6 port, PTFE rotary valve (Rheodyne, type 50) which was 

modified by replacing the stainless steel backing plate with a PTFE backing plate 

attached with nylon screws. The FIA reagents and samples were housed in a laminar-

flow bench (Class 3.5) and the reagent and sample lines fed outside to the FIA 

manifold and associated instrumentation, which was set up on the laboratory bench. 
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2.5.2 Reagents and standards 

Brij-35 surfactant (15%) was prepared by dissolving solid Brij-35 (Aldrich) in DIW. 

Ultrapure H202 (5%) was prepared by dilution of 30% ultrapure H202 solution 

(Ultrex, J.T. Baker) with DIW. DPD solution was prepared daily by dissolving 

approximately 0.5 g of N,N-dimethyl-p-phenylenediamine dihydrochloride (Fluka) in 

60 inL of DIW and 50 i..tL of 2Q-HC1. The reaction buffer was prepared as follows: 

250 mL of isothermally-distilled NH4OH solution was added to 115 mL of doubly-

distilled acetic acid and diluted to approximately 1 L with DIW. After cooling, the 

solution was adjusted to pH = 6.3 ± 0.1 with doubly-distilled acetic acid and NH4OH 

solution to which was added 3 inL of 15% Brij-35 followed by 1001.1L of 10% 

triethylene tetramine (Fluka). The carrier was DIW acidified to 0.1 M with 2Q-HC1. 

Standards were prepared in DIW acidified to 0.1 M with Seastar 2Q-HC1 by serial 

dilution from 1 mg g -1  Fe (III) nitrate atomic absorption standards (Spectrosol, Ajax 

chemicals). Low standards (< 100 pg g - ') were stored for a maximum time of 1 

month. 

2.5.3 Analysis procedure 

The standard operating conditions are shown in Table 2.6. Before and after use, the 

system was cleaned by pumping 1 M Q-HC1 through the reagent and sample lines for 

approximately 1 hr followed by DIW for 20 minutes. This also regenerated the DPD 

clean-up column. If a sample concentration several hundred pg g"' higher in Fe than 
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the others was encountered during an analysis, then a shortened cleaning procedure 

was repeated for the sample line. Duplicate sample measurements repeated if the 

relative standard deviation on the average absorbance area exceeded 10%. Mid-range 

standards were run after every 6 samples, and the system recalibrated if they were not 

within ± 10% of their initial absorbance. A blank was measured after every batch of 

10 samples. Calibrations were highly linear, over several orders of magnitude (Figure 

2.12). 

Table 2.6 FIA operating conditions 

40 	80 	120 	160 
	

200 
TD-Fe (pg g-1) 

Figure 2.12 Example FIA calibration curve 
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2.5.4 Detection limit and uncertainty of FIA method 

The detection (DL), here defined as the lowest concentration level that is statistically 

different from a blank at a specified level of confidence (Currie, 1988), was 

calculated from equation 3 and 4 of Skoog (1984). 

Sm  = Sbl + 3 X Sbl 

DL = (Sm  - Sbi)/m 

where 	Sm  = the minimum analytical signal 

Sbi = the blank signal 

Sbi = the mean blank signal 

sbi = the standard deviation of the blank signal 

k = one sided critical value of the standard normal variate 

m = the slope of the calibration curve 

As there was no observable blank for the FIA Fe method, Sm and DL were 

determined from the peak area of 12 replications of a 40 pg g standard. In this case 

Sbi = 20, sbi = 2.6, m = 2 and k= 3 for a confidence level of 95% and 11 degrees of 

freedom. The minimum analytical signal was estimated to be an absorbance area of 

7.7 (arbitrary units) and DL = 15 pg g-1 . The analytical uncertainty (indeterminate 

error) for the Fe determinations was estimated from the standard deviation of 

duplicate analyses and the standard deviation of the slope and intercept of the 
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calibration curve linear equation from the propagation of errors (Skoog 1984). The 

analytical uncertainty for the FIA method was estimated to be 30% on the mean at 20 

pg 	10% at 50 pg g4  and 5% for concentrations 300 pg g 1 . 

2.6 Determination of ultra-trace-metals by HR-ICP-MS 

2.6.1 HR-ICPMS method 

Total-dissolvable Al, TD-Mn and TD-Fe were determined by HR-ICPMS in 

collaboration with Dr A. Townsend of the Central Science Laboratory, University of 

Tasmania (Townsend and Edwards, 1998). Total-dissolvable Fe was determined by 

this method in addition to FIA, so that the reliability of both methods could be 

assessed. The analysis of trace-metals in polar snow and ice by HR-ICPMS has been 

described by Shimamura et al. (1995), Barbante et al. (1997), and Townsend and 

Edwards (1998). The HR-ICPMS technique is extremely sensitive, with detection 

limits at the femtogram per gram (fg g') level, for many elements. In addition, the 

instrument has a mass resolution of up to 7500 (m/Am, 10% valley definition), and is 

readily able to resolve Fe and Mn from isobaric interferences. Determinations were 

made using a Finnigan-MAT Element HR-ICPMS housed in a positive-pressure 

HEPA-filtered room. The instrument is equipped with a double focussing sector-field 

mass spectrometer of reversed Nier-Johnson geometry with resolution settings of 300, 

3000 and 7500 (m/Am, 10% valley definition). Table 2.7 gives typical operating 

parameters used in the analyses. The isotopes determined are shown in Table 2.8, 
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along with the resolution used and potential interferences. The nebuliser gas-flow rate 

was optimised daily using Al 27, Fe56  or Pb208 . Samples were introduced into the 

instrument using a rnicroconcentric nebuliser (MCN-100, CETAC Technologies) and 

cooled with a Scott-type spray chamber maintained at 5° C. The nebuliser was run in 

free-aspiration mode to avoid using potentially-contaminating PVC peristaltic pump 

tubing. To avoid artefacts due to differential aspiration between samples, the 

introduced sample volume and sample inlet line depth was kept constant. The MCN-

100 nebuliser system is highly efficient and required only small sample volumes, 

typically 30-50 p.L mid', with little loss of signal sensitivity relative to standard 

nebulisers. One drawback of using this type of nebuliser was that samples with 

salinities > 3 %o blocked the nebuliser with salt. Thus only samples with salinities less 

than 3 %a were analysed using this method. The sampling cone, torch and spray 

chamber were cleaned by soaking in 10 M HNO 3  (AR) for several days and then 

rinsed with DIW. These components remained installed for the duration of the study. 

Prior to analysis, the instrument was purged three times for 8 hr with alternating 

solutions of 2.5 M 2Q-HC1 and 2Q-HNO 3 . Solutions were aspirated for 1 hr followed 

by DIW for 5 min. At the end of the third 8 hr, 0.1 M 2Q-HCL was aspirated for 2 hr 

to precondition the system, after which samples were run. The sample introduction 

system was cleaned after each sample or standard by aspirating 2.5 M 2Q-HC1 and 

2Q-I-INO 3  for 3 min each. DIW was aspirated before and after each acid. A total 

rinsing time of 10-15 min was typical between each sample. A similar rinsing protocol 

has been reported by Shimamura et al. (1985). We found this sequential acid rinse 
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Table 2.7 Typical instrument setting for HR-ICP-MS 

RF power: 	 1250W 

Gas flow: 	 Plasma gas (Ar): 12-13 L mind  
Auxiliary (Ar): 0.8 - 1 L min -1  
Sample (Ar): 0.8- 1.2 L min -1  

Torch: 	 Fassel-type 

Nebuliser: 	 Microconcentric nebuliser (MCN-100, CETAC 
Technologies) 

Spray chamber: 	Scott (double-pass type) cooled to 3.5-5°C 

Cones: 	 Ni sampler (1.1 mm orifice id) and skimmer (0.8 mm 
orifice id) 

Sample uptake: 	Free aspiration, pumping for waste only 

Instrument 
	Performed using a 1 ng mL4  multi-element solution 

tuning: 

Ion transmission: 	100 000 counts s- ' per ng g- ' indium (average peak 
intensity) 

Scan type: 	Magnetic jump with electric scan over small mass range 

Number of 
	

100-200 (depending on element, resolution and 
sample scans: 	concentration) 

Ion sampling 	Adjusted to obtain maximum signal intensity 
depth 

Ion lens setting: 	Adjusted to obtain maximum signal intensity 



Table 2.8 Isotopes determined and potential interferences 

Isotope Natural 
Abundance 

(oh) 

Resolution 
(m/Am, 10% valley) 

Potential isobaric 
interferences 

27A1 100 300 Fe2+ , CNN and CN 

5 5 Mn 100 3000 ArN and ArNH 

"Fe 91.72 3000 Ar0 and CaO 

combination to be most effective at lowering the background signals for the most 

problematic elements (e.g., Al and Fe) analysed in this study. 

2.6.2 Standards, blanks and precision 

Multi-element standards were prepared by gravimetric serial dilution from 10 lig 

Perkin-Elmer mixed element ICP standards (product number N930-0233 with 29 

elements including Al, Mn and Fe). Blanks were prepared by acidifying DIW to 0.1 

M with Seastar 2Q-HC1. Linear correlation coefficients for the calibration curves 

were in excess of 0.99 for all elements discussed here. Fresh blanks were prepared 

daily, while standards were prepared weekly. Standard solutions and blanks were 

analysed at regular intervals throughout each analysis to check for contamination 
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and/or instrumental drift. Typically, ten measurements were performed on blank 

solutions during the course of each analysis (typically 20 samples). The analytical 

precision for Mn was estimated from five consecutive measurements of a 50 pg g -1  

standard solution, while the analytical precision for Al and Fe were estimated using 

500 pg g -1  solutions. These concentrations were selected as they were believed to be 

close to the average concentrations occurring in the samples. Measurement 

reproducibility was routinely found to be with in 5-10% Relative Standard Deviation 

(RSD) on the mean for each element considered. 

2.6.4 Instrument background signal 

Relatively large background signals were initially observed for all the elements 

considered. Further tests indicated that some of this background was due to 

contamination from the gas lines. By placing a 0.5 pin in-line gas filter (Nupro) after 

the gas regulator and rinsing the gas line with DIW, this contamination was reduced 

by a factor of 3 for Al and Fe, (the most problematic elements). The background 

signal was further reduced by aspirating HC1 and HNO3, as previously described. A 

recalcitrant small background signal remained for Al and Fe. Sub-micron particles 

small enough to pass through the gas filter are suspected to have been the source of 

this residual background contamination. 
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2.6.5 Detection limit and blanks for HR-ICPMS method 

Detection limits for the three elements were estimated from DIW blanks (9 

replications) using equations 1 and 2 (section 2.5.4). The detection limits for Mn, Al 

and Fe were estimated to be 2, 19 and 30 pg g -1  respectively, with blanks of 3, 36 and 

15 pg g-1  respectively. The analytical uncertainty for the method was estimated from 

the standard deviation of duplicate analyses and the standard deviation of the slope 

and intercept of the calibration curve linear equation by propagation of errors (Skoog, 

1984). These estimated analytical uncertainties were: 

Mn, 50% on the mean at 10 pg g-1 , 30% at 30 pg g-1  and 5% for 

concentrations ?_ 100 pg g -1 ; 

Al, 50% at 50 pg g-1 , 18% at 100 pg g -1  and 10% for concentrations 

300 pg g-1 ;and 

Fe, 50% at 60 pg g-1 , 20% at 100 pg g-1  and 10% for concentrations 

300 pg 
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2.6.6 Spectral interferences 

The determination of Mn and Fe at ultra-trace concentrations is often difficult with 

conventional quadrupole ICP-MS instruments, because of overlap from isobaric 

molecular ions, e.g., ArNH and Ar0 interfere with the determination of Mn and Fe 

respectively (Moens et al., 1994). However, the HR-ICPMS instrument was able to 

easily resolve the elemental signals from nearby polyatomic interferences. Manganese 

and Fe were measured in the medium resolution mode (m/Am=3000). It should be 

noted that a trade off for this increased resolution is a reduction in signal intensity 

(Moens et al., 1995), typically 10-15%, depending on instrument settings. As a result, 

longer signal acquisition times were used for the analysis of these elements. 

Aluminium was analysed in low-resolution mode (m/Am=300). Interferences from 

Fe2+, c i2N i4H i , c 13N 14 and  cll.15 1- 
N with Al27  were found to be negligible from surveys 

performed in medium resolution mode (the contribution from CNH and CN was 

found to be <0.4% of the Al blank signal). 

2.6.7 Comparison of ICPMS results with FIA measurements 

As standard reference materials for polar snow and ice are unavailable (Barbante et 

al., 1997), it was useful to compare the Fe determinations from HR-ICPMS and FIA. 

Total-dissolvable Fe concentrations ([Fe]) determined by the two techniques were 

found to be in good agreement ([Fe]HR-ICPMS = 1.039 x [Fe]Fly, + 25 pg 	R2  = 0.987 

for n= 24). Figure 2.7 shows a comparison between the concentrations measured by 
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the two techniques. While it is difficult to assess the accuracy of the results without a 

reference standard for polar snow, the Fe determinations from both methods were in 

close agreement, suggesting that the data are reliable. The FIR-ICPMS Fe data are 

systematically higher (slope 1.039 and intercept of 25 pg Fe g') , with an offset of 

approximately 30 pg Fe g -1  for an FIA Fe concentration of 100 pg Fe 	The 

difference is probably due to the variability in the FIR-ICPMS background and/or 

possibly particulate Fe that is determined by the ICPMS. Only the FIA Fe 

determinations are considered in the remainder of the thesis, rather than I-IR-ICP-MS, 

'data, which required some background corrections. 



2000 

1500 - 
.---- 
7 
0) 
a 
0- 

cn 
2 ct. 1000 o 

ix 

7D-u_ 

_ 

I 	I 	III 	III 	II 

500 	1000 

[Fe]FiA (Pg 4.1 ) 

1i 	1 	1 

1500 

500 - 

0 

0 2000 

Figure 2.13 [FelmR-IcPms vs [FeiniA 

57 



58 

Chapter 3 

Results 

3.1 Introduction 

In this chapter, trace metal data for samples from the five locations described in 

Chapter 2 are presented. Raw data can be found in appendix A. The results for TD-

Fe and, for selected samples, TF-Fe, TD-Al. and TD-Mn are shown here. In addition, 

data concerning the reliability of the measurements are presented. These data 

include an evaluation of ship-derived contamination at an ice floe location, and the 

penetration of surface contamination into the ice-core samples. 

3.2 Prydz Bay and Princess Elizabeth Land 

During September, November and December 1994, snow samples were collected 

from East Antarctic locations in Prydz Bay and Princess Elizabeth Land. In total 8 

sites were sampled, 4 on seasonal sea ice in Prydz Bay and 4 on the eastern periphery 

of the Lambert Glacier Basin in Princess Elizabeth Land (see Chapter 2). One aim of 

this fieldwork was to examine the latitudinal variability of atmospheric Fe deposition 

along a thin longitudinal band. The longitude of sampling locations varied between 
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71.500  E and 76.91° E, and the distances between sampling sites ranged from 

centimetres to several hundred kilometres. 

3.2.1 Prydz Bay data 

Total-dissolvable Fe concentrations for Prydz Bay snow samples are presented in 

Table 3.1. Iron concentrations at these sites varied from 69 to 1776 pg g -1 , with an 

arithmetic mean of 612 pg g -11 . Sample concentrations within individual snow pits 

varied by up to two orders of magnitude. This variability was present both 

horizontally and vertically (Figures 3.1 to 3.4), and no clear trends were observed. 

Several measurements were also made of TD-Al and TD-Mn (Table 3.2) in low-

salinity samples. Aluminium concentrations covered a similar range to Fe, but with 

an arithmetic mean (AM) roughly twice as large (TD-Al AM = 1238 pg g -1 ). Total-

dissolvable Mn concentrations were, on average, more than an order of magnitude 

lower than both TD-Fe and TD-Al concentrations, but varied over one order of 

magnitude in range. 

3.2.2 Princess Elizabeth Land data 

Total-dissolved Fe, TD-Al and TD-Mn concentrations are presented in Tables 3.3 to 

3.7. The arithmetic means for TD-Fe, TD-Al and TD-Mn concentrations were 858, 

1514 and 25 pg g-1 , respectively. The trace metal concentrations within individual 

pits varied over an order of magnitude (Figures 3.5 to 3.8), and were comparable to 
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Table 3.1 Prydz Bay snow, TD-Fe concentrations 

Site N 0 U V All sites 

64.57° S, 74.98° E 64.900  S, 75.00° E 66.12 OS, 75.32° E 66.300  S, 75.72° E 

TD-Fe [pg gd ] 

AM 634 (533) 824 (409) 429 (264) 643 (514) 612 (441) 

Range 69-1539 260-1426 151-1077 268-1767 69-1767 

N 10 8 12 9 39 

AM 	= Arithmetic mean, standard deviation in brackets 

N 	= number of samples 
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Table 3.2 Prydz Bay snow, TD-Al and TD-Mn concentrations 

All sites TD-Al [pg g-i l  TD-Mn 
ipg g-1 1  

AM 1238 (1610) 42(69) 

Range 170-4397 7-166 

N 6 5 

Standard deviation in brackets 

AM = Arithmetic mean 

= number of samples 

the ranges found in Prydz Bay, samples but with slightly less variability within 

individual pits. There is no obvious trend in the mean concentrations with either 

latitude or elevation of the sampling locations. 
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Table 3.3 Site LGB 70, total-dissolvable trace-metal concentrations 

Element TD-Fe ipg g-i i  
TD-Al Frog g-i i  

TD-Mn ipg g-ii  
70.57°S, 76.90°E, 1650 m 

AM 643 (488) 948(337) 21 (3) 

Range 174-1550 174-1550 18-24 

N 6 4 • 4 

Table 3.4 Site LGB 59, total-dissolvable trace-metal concentrations 

Element TD-Fe [fog g-t]  
TD-Al Epg g-i i  

TD-Mn ipg g-i i  
73.43° S. 76.52° E, 2520 m 

AM 1461 (1003) •2024 (1210) 41 (32) 

Range 346-2947 1169-2880 11-86 

N 6 2 4 

Table 3.5 Site LGB 53, total-dissolvable trace-metal concentrations 

Element TD-Fe ipg g-i i  
TD-Al ipg g-1 1  

TD-Mn ipg g-ti  
74.900  S, 74.52° E, 2430 m 

AM 

Range 

N 

928 (908) 

314-2479 

8 

1007 (433) 

622-1513 

4 

18 (7) 

14-28 

4 
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Table 3.6 Site LGB 46, total-dissolvable trace-metal concentrations 

Element TD-Fe ipg g-1 1  TD-Al 
ipg g-ii  TD-Mn 

ipg g-11  
75.85° S. 71.50 E, 2413 m 

AM 

Range 

N 

537 (211) 

266-845 

9 

2281 (2319) 

698-1854 

4 

18 (7) 

11-27 

4 

Table 3.7 Combined Princess Elizabeth Land, total dissolvable 

trace-metal concentrations 

Element TD-Fe 
ipg  e l  TD-Al 

Epg  g-ii 
TD-Mn 

-I 
[Pg g l 

AM 858 (751) 1514 (1844) 25 (18) 

Range 174-2947 555-5676 11-86 

N 29 14 16 
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Table 3.8 Prydz Bay and Princess Elizabeth Land, total-dissolvable 

Trace-metal concentrations 

Element TD-Fe [pg g-1 1  
TD-Al [pg g-ii  

TD-Mn [pg g-i i  

AM 717 (601) 1275(1236) 22 (18) 

Range 69-2947 170-5676 11-166 

N 68 19 20 

3.2.3 Combined Prydz Bay and Princess Elizabeth Land data set 

Statistics for the combined Prydz Bay and Princess Elizabeth Land trace-metal data 

sets are shown in Table 3.8. 

3.3 Dumont d'Urville Sea 

During August 1995, snow samples were collected from sea ice in the Dumont 

d'Urville Sea off the coast of Terre Adelie, East Antarctica (see Figure 2.3, Chapter 

2). These sample locations were several thousand kilometres East of those sampled 

in Prydz Bay during 1994. In addition to sampling snow from the "clean" area 

upwind of the ship, samples from downwind were collected at site A, to investigate 
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the possibility of contamination being introduced by the ship (e.g., in soot from the 

ship's stacks). 

3.3.1 Ship-derived contamination investigation 

An upwind/downwind transect of snow was sampled at site A as depicted in Figure 

3.9. TD-Fe concentrations in snow from the transect TD-Fe data are shown in Table 

3.9. Upwind, TD-Fe concentrations were extremely low (18 to 125 pg g -1 ). In 

contrast, downwind concentrations were up to two orders of magnitude higher than 

the upwind samples. The high TD-Fe concentrations downwind of the ship and low 

concentrations upwind, suggest that snow is significantly contaminated by material 

carried in the air from the ship. Therefore, it is assumed that snow downwind of the 

ship is contaminated, whereas pristine concentrations are assumed for samples 

collected upwind of the ship. 

3.3.2 Dumont d'Urville Sea data 

With the exceptions of site H2 samples and downwind samples from station A, 

relatively low TD-Fe concentrations (arithmetic mean of 73 pg g-1 ) were found in the 

snow samples from the Dumont d'Urville Sea. 
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Figure 3.9 Dumont d'Urville Sea, site A snow pit locations 

Table 3.9 Dumont d'Urville, site A transect, surface snow TD-Fe concentrations 

Pit no. A-1 A-2 A-3 A-4 A-5 A-6 

AM 57 30 45 80 2187 2558 

Range 50-64 30 18-125 66-94 266-4108 116-5000 

N 2 2 10 2 2 2 
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The samples from site H2 were collected during a second visit to this ice floe (no 

samples were collected during the first visit), and the pit location was near what 

appeared to be a frozen ship track. Given the potential for ship-derived 

contamination suggested by the site A data, these samples are assumed to be 

contaminated, and are not used in the calculation of the regional mean 

concentrations. As for the Prydz Bay and Princess Elizabeth Land locations, there 

appears to be little correlation of TD-Fe concentrations with depth within the pits 

(Figures 3.10 to 3.14). 



Table 3.10 Dumont d'Urville Sea snow TD-Fe concentrations 

Site A 
64.600  S, 140.33 0  E 

B 
64.88° S, 141.07°E 

K 
64.93° S, 141.25°E 

S 
65.06° S, 141.58°E 

H2 
65.00° S, 141.21°E 

All sites 

TD-Fe [pg g-  ] 

AM 45 (34)** 81 (80) 84 (8) 89 (35) *226 (146) 73 (41) 

Range 18-125 25-172 78-90 27-142 28-396 18-172 

N 10 3 2 9 6 24 

* not used to calculate mean. 
** excluding samples AS and A6 
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3.4 Ross Sea data 

A small number of snow samples were collected from sea ice in the Ross Sea in 

November and December 1994. The results from this area are shown in Table 3.11. 

The TD-Fe concentrations ranged from 709 to 1054 pg g -1 , and had an arithmetic 

mean of 894 pg g -1 , which is comparable to the mean TD-Fe concentrations for the 

Prydz Bay and Princess Elizabeth Land samples. However, the range of 

concentrations from each site are smaller than for samples from Prydz Bay and 

Princess Elizabeth Land. 

Table 3.11 Ross Sea snow TD-Fe concentrations 

Site 1 
69.52° S, 
170.6°W 

2 
75.000  S, 
170.67° W 

3 
76.45° S. 
175.52°W 

All sites 

TD-Fe [pg g -1 ] 

AM 749 (57) 1035 (127) 987 (94) 894 (136) 

Range 709-790 855-1035 921-1054 709-1054 

N 2 2 2 6 
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3.5 Law Dome ice-core samples 

Sub-samples of three ice-cores from Law Dome (See Chapter 2) were used to 

investigate the temporal variability in TD-Fe concentration in snow over the period 

from the recent past back to the LGM. The estimated ice core sample ages before 

present (BP, 1997) are shown in Figure 3.14. Each sample was decontaminated, and 

cross-core trace-metal profiles were constructed to assess the reliability of the inner 

sample concentrations, as discussed in Chapter 2. 

3.5.1 Evaluation of the decontamination procedure 

The TD-Fe concentrations measured in sub-samples from the decontamination of six 

ice-core sections (DE08 55B, DSS 28A1-3, DSS 1165, BHC1 129A, BHC I 132A 

and BHC1 137B) are shown in Figures 3.15 to 3.20. Relatively low and constant 

TD-Fe concentrations were measured in meltwaters from the three innermost layers 

of each ice-core section, which suggests that the decontamination procedures were 

successful in each case. The concentrations assigned to the inner-most layer of DSS 

28A 1-3, DSS 1165, DE08 55B, DE08 77A, BHC1 129A and BHC1 137B are an 

average of a number of sub-samples from larger sections which were decontaminated 

(see Appendix, Table A.6). 



Age (yr, BP) 
0 

it- DE08 

	

50 - 	
 

DSS 
	 DE08 

100 -1- DE08 DSS 

	

.41 	 DE08 

150 \44 	 DE08 

200 — 

250 — 

	

• 	 DSS 
5000 
	 DSS 

10000-  

15000 4- BHC1 

20000—'4  BHC I 

25000 — 

	

30000 • 
	

BHC1 

Present 
(1997) 

Wisconsin-Holocene 
transition 

LGM 

74 

Figure 3.14 Estimated ages of Law Dome ice-core samples used in this study 

(BHC1 ages were estimated by comparison of the BHC1 5 180 record with that of the 

Antarctic Vostok ice-core, and are uncertain to several 1000 years). The TD-Fe 

variability in these sub-samples was significant for the DSS 28 A 1-3 and DE08 55B 

sections (the youngest sections), with standard deviations of approximately 50% on 
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the mean. This variability is believed to be due to the seasonality of the atmospheric 

Fe deposition to the sites. The sub-sample TD-Fe standard deviations from the DSS 

1165, DE08 77A, BHC1 129A and BHC1 137B sections were less than 35% on the 

mean. With the exception of DE08 77A these sub-samples are believed to integrate 

more than 1 yr deposition. High TD-Fe concentrations were measured in the exterior 

layers of core section DSS 1165 (Figure 3.16). At the time this core section was 

drilled, the DSS bore hole was filled with a kerosene-based fluid to prevent it from 

closing, whereas the other core samples were obtained from dry bore holes. This 

may explain the high external contamination of this section in comparison to the 

other samples. The external TD-Fe concentrations of core section BHC1 132A 

(Figure 3.19) is also significantly higher than for the other samples (with the 

exception of DSS 1165). This is thought to be a product of both the higher 

uncontaminated TD-Fe levels in this core section (from the LGM) and the 

cumulative contamination of the core during storage and handling, given that BHC1 

was drilled earlier than the other cores. However, the TD-Fe concentration measured 

in the centre of this core section is thought to be reliable, and is corroborated by 

particle measurements in sections of the DSS core of similar age (Jun et al., 1998). 

In addition to TD-Fe, TD-Al was determined in core section 55B (Figure 3.18). As 
77 

with the TD-Fe core-profile for this sample, a clear concentration plateau was founu 

for TD-Al, suggesting that this core was successfully decontaminated for Fe and Al. 

Effective decontamination for Fe is assumed for the other core sections for which 

data are presented, based on the decontamination profiles for Al, which was 

measured independently at LGGE (S. Hong, personal communication). 
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3.5.2 Ice-core data 

Holocene Ice-core TD-Fe concentrations (Figure 3.21) were generally low (27-139 

pg g-1 ), with the exception of DE08 sections 55A and 55B, which ranged from 100- 

340 pg g1  (Appendix, Table A.6). In contrast Wisconsin-Holocene transition and 

Wisconsin age TD-Fe concentrations were up to two orders of magnitude higher with 

the highest concentration (6700 pg g -1 ) determined for a sample dating from the 

LGM (Appendix, Table A.6). 

Present (1997) 

Wisconsin-
Holocene 
transition 

LGM 

50 100 150 200 250 300 	10000 
	

20000 
	

30000 

Age (yr, BP) 

Figure 3.21 Law Dome Holocene and Wisconsin age ice-core TD-Fe concentrations 

(Error bars show analytical uncertainty) 
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3.6 Fe and Mn enrichment factors 

Mineral dust formed by crustal weathering is thought to be the principle source of Fe 

in the marine atmosphere. To determine whether this is the main source, crustal 

enrichment factors (EF) are calculated (Chester, 1986). Using Al as the crustal 

reference element these are calculated by equation 3 (Chester, 1985 and references 

therein). 

(Element/Apsnow 
EFcnist  = 	 

(Element/A1) (3 ) 

Assuming Fe/Alerust  and Mn/Alerust  = 0.841 and 0.017 respectively 

(Taylor and McClennan; 1985) 

Enrichment factors for snow and ice-core TD-Fe and TD-Mn were calculated, and 

the data summarised in Table 3.12. Excluding a potentially contaminated sample 

(Dumont d'Urville Sea sample, A 5/2) average EF's of 1 were calculated for both Fe 

and Mn suggesting a crustal source for these elements. Enrichment factors of 14 for 

Fe and 7 for Mn were calculated for sample A 5/2, which appear to be contaminated 

(section 3.3.1). Aluminium was not determined for samples from the Dumont 

d'Urville site H2 and therefore suspected contamination of this site cannot be 

confirmed. 



Table 3.12 Enrichment factors for Fe and Mn 

Elemental Fe Mn 

AM EF 1.0 (0.7) 1.4 (1.0) 

Range 0.2-3 0.3-2.3 

N 30 21 

3.7 Soluble Iron fraction present in snow 

Soluble Fe was calculated as the ratio of TF-Fe to TD-Fe, and is given as a 

percentage of TD-Fe in Table 3.13. Soluble Fe ranged from 10 to 90% with an 

arithmetic mean of 41% and a geometric mean of 30%. 

Table 3.13 Soluble Fe fraction present in snow samples 

Soluble Fe fraction (% TD-Fe) 

AM 41 (25) 

GM 30 

Range 10-90 

N 23 

81 

GM = geometric mean 
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Chapter 4 

Discussion 

The following chapter discusses the trace-metal data shown previously, from which 

the present and LGM atmospheric input of Fe onto the Southern Ocean are estimated. 

The solubility of this atmospheric Fe input, its possible impact on algal production, 

and the role of sea ice in modulating the delivery of this Fe into the surface ocean are 

also discussed. 

4.1 The Fe content of modern and ancient East Antarctic snow 

4.1.1 Enrichment factors and source of Fe and Mn 

Enrichment factors were calculated for TD-Fe and TD-Mn relative to TD-Al (see 

Chapter 3 section 3.6). Average enrichment factors of 1 for both Fe and Mn (i.e. not 

enriched relative to the mean crustal abundances) suggest that the source of these 

elements is terrigenous dust, as assumed. In comparison, the snow sample A-5/2, 

which was collected from surface snow down wind of the Aurora Australis, was 

found to be highly enriched in both Fe and Mn relative to Al with EF's of 14 and 7 
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respectively. This sample appears to have been contaminated by material, which 

contains more Fe and Mn relative to Al, (soot, rust etc) blowing from the ship. 

4.1.2 Variations in present-day snow TD-Fe concentrations 

Standard deviations on mean TD-Fe concentrations for the individual sampling sites 

(as) ranged from 39 to 97% of the average TD-Fe concentration, much higher than 

the estimated 5% uncertainty of the FIA analysis (a a) used to determine the Fe 

concentrations. There are several possible interpretations of the high values for a, 

including: 

(1) Random contamination at the sampling sites and during the 

analysis; 

(2) The estimated value of aa  is too low; and 

(3) The high as  represents the actual variability of TD-Fe concentration 

in the snow samples. 

Random contamination during sampling is a possibility, considering the low levels of 

Fe encountered in this study. As described in Chapter 2, the major source of 

contamination at the sampling sites was expected to come from ships during the sea 

ice sampling, and from the tractor trains, generators etc during the continental 

sampling. Of these, the marine expeditions probably posed a greater potential for 
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contamination, due to the proximity of the ships to the sampling sites. The 

contaminated sample collected from downwind of the ship at site A in the Dumont 

d'Urville Sea suggest that the downwind sampling protocol was effective in avoiding 

gross ship-derived contamination. The unusually high TD-Fe concentration found in 

snow at the Dumont d'Urville Sea site H2 also suggests gross contamination from 

the ship, which is assumed to have been avoided in pristine upwind sites. 

It is also possible that random contamination may have occurred during the sample 

preparation and analysis, but no significant contamination was ever found in either 

day-to-day analytical blanks, or long-term storage blanks used to identify Fe leaching 

from the sample bottle containers. There is then no evidence of significant 

contamination of samples during collection, processing and analysis (except where 

indicated). 

It is conceivable that our estimate of aa  may be too low, as the precision of the 

technique was determined from Fe standards and not from the repeat analysis of 

actual samples over time. As discussed in Chapter 2, Fe was leached from the dust 

particles in the samples over a period of 3 months before analysis. If the percentage 

of leachable Fe in the dust particles were not constant after 3 months, then this may 

account for some of the variability; however fairly reproducible TD-Fe vs time 

curves obtained in the leaching study (section 2.4.2) strongly argue against this being 

responsible for the very large (order of magnitude) variations in Fe at a single site. 

Also the excellent agreement between the FIA and ICPMS analyses carried out at 
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different times argues against analytical or processing artefacts as the source of the 

observed variability. Thus, the most likely explanation is that the large range in TD-

Fe concentrations represents natural small-scale spatial variability of mineral aerosol 

content in the snow. The sites sampled were extremely complex in terms of snow 

cover. The marine sites were composed of many small sea ice floes frozen together. 

• The fresh snow on the floes was highly mobile, and built up around ice ridges or on 

existing small snow dunes. These features were composed of snow of various age, 

wetness and crystal structure. The snow samples were preferentially taken from 

these features due to the shallow snow depth in other areas of the floes, and it is 

possible that the snowdrifts represent a mixture of snow from several months of 

deposition with quite different dust contents. Sastrugi and other complex features 

were observed at the continental sites. Figure 4.1 shows two adjacent TD-Fe profiles 

for a snow-pit at site S in the Dumont d'Urville Sea. While the TD-Fe 

concentrations vary little with depth in profile 1, there is a significant amount of 

variability in profile 2, approximately 15 cm away from profile 1 as shown in Figure 

4.1. The difference in the two profiles could be explained if, for example, the snow 

dune was formed by four separate snowfall events, each with a different Fe 

concentration (Figure 4.2). Unfortunately, this hypothesis cannot be tested due to a 

lack of detailed stratigraphy from the snow pits. However it seems likely that much 

of the variability in the Fe concentrations is due to variability between different snow 

layers at the sites, or mixing of different batches of snow due to sea ice movement, 

wind etc. 
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In comparison to the variability within individual pits, the variability between 

average site concentrations was considerably less, with standard deviations ranging 

from 12-40% on the TD-Fe regional mean. The Prydz Bay and Princess Elizabeth 

Land range over distances of approximately 1200 km, from the marine sites in Prydz 

Bay to the high Antarctic plateau site LGB 46. With the exception of the Princess 

Elizabeth Land site LGB 59, site average TD-Fe concentrations were comparable. In 

addition, similar TD-Fe concentrations were found for snow from the Ross Sea, and 

similar TD-Fe snow concentrations for Antarctic snow have been reported by 

Westerlund and Ohman (1991) and Shimamura et al. (1995). With the exception of 

LOB 59, there appears to be very little variability between the sampling sites 

suggesting that it is reasonable to combine site averages in order to calculate regional 

averages for these areas. 

4.1.3 Seasonal variations in the TD-Fe concentration of late-Holocene ice-core 

samples 

Because of high snow accumulation rates at the DS S and DE08 drilling sites, the 

annual layer thickness in the upper sections of these cores are relatively large. As a 

consequence, the recent Holocene samples studied do not integrate an entire year's 

deposition (Table 4.1). The chronologies for these ice-core sections have been 

constructed by counting annual layers as defined by oxygen isotope ( 180) 

stratigraphy (Etheridge et al., 1988; Morgan et al., 1997), and display a well defined 

summer peak and winter trough in 5 180 at these sites. The seasonality of the sub- 
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samples were estimated by dividing the annual 5' 80 signal into equal summer, 

autumn, winter and spring components. Four samples from the DSS 28A section 

provide a record of atmospheric Fe deposition over almost an entire year (Figure 

4.3): from late summer to autumn 1939 (DSS 28A-1), winter 1939 (DS S 28A-2), 

early spring 1939 (DSS 28A-3) and late-summer to winter 1939/40 (DSS 28A-4). 

Analysis of these samples reveal summer TD-Fe concentrations to be higher than 

winter by a factor of around 4. The seasonal variability of TD-Fe concentrations in 

the sections could be due to either seasonal variations in the snow accumulation rate 

at the site, or to the atmospheric transport of Fe to the site (ie, dust concentration in 

atmosphere). Changes in the snow accumulation rate may affect the TD-Fe 

concentration of snow by changing the ratio of dry deposition to wet deposition. 

While dry deposition is generally thought to be less efficient than wet deposition 

(Davidson, 1989), Fe deposited by this pathway could become concentrated at the 

surface of the snow pack increasing the determined Fe concentration. Davidson 

(1989) estimated the percentage of dry deposition of crustal elements to Greenland to 

be 10% for high accumulation sites and 35% for low accumulation sites. If the 

relationship between wet and dry deposition in Greenland is valid in Antarctica, then 

a reduction in snow accumulation during the isotopic spring/summer could account ' 

for some of seasonal variability. But there does not appear to be an effect of a 

seasonal bias in snow accumulation at the DSS site: on the basis of peroxide 

concentrations (which also displays seasonal cycle at the sites) and oxygen isotope 

measurements spanning the past 684 years, van Ommen and Morgan (1997) 

conclude that it is reasonable to assume that there was no systematic seasonal bias in 
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the accumulation of snow at the DSS site. More recently, snow accumulation at the 

DSS site has been measured by an automatic weather station (I. Allison, personal 

communication, 1999). Preliminary snow-accumulation data from the weather 

station is shown in Table 4.2. While data for several years accumulation are needed 

to confidently describe seasonal variations, the preliminary data in Table 4.2 suggests 

that there is no significant bias between winter and summer accumulation rates. This 

suggests that the variability of the Fe concentrations in these ice-core sub-samples is 

due to changes in atmospheric dust concentrations over the site. Although data are 

lacking from late-spring (1939) to summer (1940), these preliminary results suggest a 

seasonal cycle with a maximum atmospheric Fe flux in summer, decreasing to a low 

in winter. A similar seasonal cycle has been found for atmospheric measurements of 

crustal elements Mn at Neumayer station (Wagenbach, 1988) on the coast of 

Drotming Maud Land, and scandium at the South Pole (Tuncel, 1989). This 

seasonality is also suggested by dust concentrations in snow and ice at several 

Antarctic sites (Marshall, 1962; Hamilton, 1969; Taylor, 1964; Bull, 1971). This 

implies that there may be a seasonal bias to the snow samples that were collected 

during winter, perhaps explaining the very low TD-Fe concentrations in the Dumont 

d'Urville samples, collected in July. 
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Table 4.1 Modern ice-core samples, isotopic season and TD-Fe concentrations 

Core ID Depth 
(m) 

Date 
BP 

(1997) 

Annual layer 
thickness 

(m, ice equivalent) 

Time span 

DSS 28A-1 46.64-46.82 56 0.54 spring summer 

DSS 28A-2 46.82-46.98 56 ,c ,c winter 

DSS 28A-3 46.98-47.08 56 c, 	c, autumn 

DSS 28A-4 47.17-47.54 57 ,c 	c, spring summer 

DE08 55A 96.01-96.29 69 1.24 spring summer 

DE08 55B 
part (a) 

96.41-96.55 70 1.39 spring 

DE08 55B 
part(b) 

96.55-96.69 70 ,, 	,, winter spring 

DSS 41B 72.95-73.20 88 0.64 winter 

DE08 77A 
part (a) 

136.02-136.16 102 1.19 winter autumn 

DE08 77A 
part (b) 

136.16-136.30 102 1.16 autumn 

DE08 85-A 150.90-151.42 115 1.17 winter 

DE08 108A 192.80-193.08 155 0.97 summer 

Annual layer thickness data from Tas van Ommen, personal communication, 1999) 
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Figure 4.3 (a) DSS 28A sub-sample depth with respect to a generalized 

seasonal 5 180 signal for the DSS core. (b) Sub-sample Fe concentrations as a 

function of depth in core 
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Table 4.2 Net snow accumulation at the DSS site, Law Dome, during 1998 

(I. Allison, personal communication, 1999) 

Month Snow accumulation 
(m) 

Jan 0.20 

Feb 0.20 

Mar 0.05 

Apr 0.12 

May 0.35 

Jun 0.10 

Jul 0.13 

Aug 0.33 

Sep -0.24 

Oct 0.19 

Nov 0.29 
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1. Prydz Bay; 2. Princess Elizabeth Land; 3. Law Dome; 

4. Dumont d'Urville Sea; 5. Ross Sea; 6. Mizuho ice-core drill site; 

7. Neumayer Station; 8. Westerlund and Ohman (1991) sample sites; 9., 

10. and 11. Dick (1991) sample sites; 12. Byrd ice-core drill site; 13. 

South Pole; 14. Vostok ice-core drill site; 15. Taylor Dome ice-core 

C) 

	

	drill site; 16. Dome C ice-core drill site; 17. Maggi and Petit (1998) 

firn-core drill site. 

Figure 4.4 Locations of mineral-dust and trace-metal studies 
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4.1.4 Regional variability of present day and late Holocene TD-Fe concentrations 

Regional average TD-Fe concentrations for the Dumont d'Urville Sea, Ross Sea, 

Prydz Bay, Princess Elizabeth Land and Law Dome (late-Holocene samples) 

locations are shown in Table 4.3 along with TD-Fe concentrations reported in the 

literature for Antarctic snow (see Figure 4.4 for locations). With the exception of the 

Dumont d'Urville Sea and the Law Dome Holocene ice-core sections, TD-Fe 

concentrations appear to be remarkably uniform over most of Antarctica. The 

Dumont d'Urville Sea and Holocene Law Dome average TD-Fe concentrations were 

found to be an order of magnitude lower than those of the Ross Sea, Prydz Bay and 

Princess Elizabeth Land. Several hypotheses may be offered to explain the lower 

TD-Fe levels found in the Dumont d'Urville Sea and the modern Law Dome ice-core 

sections. The Dumont d'Urville Sea samples were collected in July, and thus may be 

seasonally biased due to a minimum in atmospheric dust concentrations during the 

austral winter (see section 4.1.3). If these samples represent a seasonal minimum for 

the region and the snow concentrations vary seasonally by a factor of 4, as suggested 

by the late-Holocene Law Dome ice-core samples, then the estimated seasonal 

maximum snow TD-Fe concentration would be approximately 300 pg Fe g -1 . This 

estimated maximum Fe concentration is still approximately 50% of the average TD-

Fe concentrations found at the other regions. While a seasonal bias cannot be ruled 

out for the Dumont d'Urville Sea samples, the similarity between the average TD-Fe 

concentration for this region and the modern Law Dome ice-core (which integrate an 

entire year) sections suggest there may be some real regional variability in snow 
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TD-Fe concentrations. Dick (1991) found extremely low levels of Al, a mineral dust 

tracer, in air from Gipps Ice Rise on the Antarctic Peninsula. The concentrations 

(44-644 pg Al ni 3) were up two orders of magnitude lower than those found at the 

South Pole, Neumayer station on the coast of Enderby Land, and two Antarctic 

Peninsular sites, Beethoven Peninsula and Crescent scarp (Cunningham and Zoller, 

1981; Dick, 1985; Wagenbach et al., 1988) (see Figure 4.4). Samples from the 

Beethoven Peninsula and Crescent scarp were later found to contain contributions 

from local sources of exposed rock. However, the South Pole and Neumayer sites 

are much further from exposed rock than the Antarctic Peninsular sites, and local 

contributions are not expected. Dick (1991) postulated that if the transport of 

mineral dust to the Antarctic occurs in the upper troposphere, as is thought (Shaw, 

1979; Heimann et al., 1990; Lambert et al., 1990), then the higher concentrations 

found at the South Pole may be due to the high altitude. Atmospheric radon studies 

(Lambert et al., 1990) suggest that mineral aerosols in the lower troposphere are 

removed by precipitation in the vicinity of the Polar Front and Antarctic 

Convergence Zone. While Neumayer site is at sea level, the higher concentrations 

there may be explained by air descending from the polar plateau. Dick argued that 

the air masses over the Peninsula sites were in contrast affected by low pressure 

systems from over the Southern Pacific Ocean, and that mineral aerosols may have 

been removed from this air by earlier precipitation. Prydz Bay and in particular the 

Ross Sea are regions likely to be affected by outflowing air from the inland Antarctic 

continent (Parish and Bromwich, 1991; Bromwich et al., 1993a, 1993b and 

references therein, 1996; Bromwich and Liu, 1996). 



Table 4.3 Average Fe content of Antarctic snow 

Location Arithmetic average 
TD-Fe 
(Pg g-1) 

Reference 

Dumont d'Urville Sea 73 This work 

Law Dome 62 This work 

Ross Sea 749 This work 

Prydz Bay 612 This work 

Princess Elizabeth Land 646 This work 

Weddell Sea 550 Westerlund and Olunan 
(1991) 

Enderby Land 630 Shimamura et al. (1995) 

South Pole 714* Boutron (1982) 

* Possibly contaminated 

It is possible that the Fe in snow at the Prydz Bay and Ross Sea sites was derived 

from air masses descending from the polar plateau, hence the relative uniformity in 

TD-Fe concentrations. In contrast, the meteorological conditions during the 

sampling period in the Dumont d'Urville Sea were dominated by northerly air 

masses, and are thus unlikely to be affected by air draining off the continent. 

Similarly, Law Dome projects into a predominantly easterly maritime airflow 

(Morgan et al., 1997), which would also be expected to be depleted in mineral dust 

relative to the air descending from the Antarctic interior. Thus the Fe content of 

96 
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Antarctic snow is likely highly dependent on regional atmospheric circulation 

patterns. 

4.1.5 Iron concentrations in Wisconsin-Holocene transition and LGM ice-core 

samples 

As discussed in Chapters 2 and 3, samples from the Law Dome BHC1 ice-core 

dating from around the LGM were decontaminated and analysed for Fe. In an ideal 

situation, these samples would have come from the DSS ice-core, which was drilled 

near the dome summit. Unfortunately, the LGM ice from the DSS core was fractured 

soon after being removed from the drill, and is unsuitable for decontamination. 

Instead, Wisconsin-Holocene transition and LGM ice sub-samples were selected 

from the BHC I core (Section 2.3.5). However as discussed in section 2.3.5 the 

BHC1 LGM ice composition should be directly comparable to that in the DSS core. 

Total-dissolvable Fe concentrations from the BHC1 sections are shown in Table 4.4. 

Significantly higher Fe concentrations were found for the Wisconsin-Holocene 

transition and LGM age ice relative to the DSS and DE08 Holocene samples were 

found (Figure 3.21). In particular, the ice dated from approximately 18,000 yrs BP 

(LGM) was more than two orders of magnitude higher in TD-Fe concentration than 

the average for the Holocene DSS and DE08 samples (62 pg g -1 ). A similar 

decrease in the number of insoluble particles (presumably dust) from LGM to 

Holocene age samples has been reported for the Law Dome DSS core (Jun et al., 

1998). 
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Table 4.4 Holocene-Wisconsin transition and LGM ice-core sample 
TD-Fe concentrations 

Core ID No. of 
samples 

Date 
BP 

(1997) 

Estimated 
time span 

(yr) 

TD Fe (pg g -1) 

BHC1 129 5 —15000 10 *2900(1000) 

BHC1 132A 1 —18000 — 10 6700 

BHC1 137B 5 —30000 >10 *1100 (300) 

* average, standard deviation in brackets 

4.2 Estimated atmospheric Fe fluxes to the present-day and glacial 

Southern Ocean 

4.2.1 Holocene atmospheric iron flux estimated from the Law Dome ice-core record 

The total-dissolvable Fe concentrations measured in sixteen decontaminated core 

sections are presented in Table 4.5, together with estimates of the age of each core 

section, the time interval spanned by the sample, and the estimated atmospheric TD-

Fe flux (estimated as the TD-Fe concentration multiplied by the accumulation rate). 

These Fe fluxes are slightly different to those published in Edwards et al (1998), in 

which average accumulation rates for DS S and DE08 were used in the calculations. 

More recently, reliable annual layer-thickness data have become available (T. van 

Ommen, personal communication, 1999) for these sections (Table 4.1), excluding 

DS S 940 and DSS 1165, for which the average annual accumulation rate of 640 kg 
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-2 	-I m yr Is used. From the DSS 28A data, and an annual accumulation rate of 496 kg 

111-2  yr-1 , we calculate an average atmospheric Fe flux of 0.040 0.022 mg I11-2  yr-1  for 

the calendar year 1939 (average of seasonal fluxes). This estimated average flux 

falls within the range of 0.020-0.070 mg III-2  yr-l calculated for the other Holocene 

ice-core sections, excluding sections DE08 55A, DE08 55B-1 and DE08 55B-2 

(calendar year 1929-30), where significantly higher atmospheric Fe fluxes of 0.126- 

0.430 mg 111-2  yr-l are calculated. The data for DE08 55A, DE08 55B-1 and DE08 

55B-2 are thought to be reliable (e.g., see decontamination profile for DE08 55B-1, 

Figure 3.15), and thus it is suggested that these ice-core sections record anomalously 

high dust transport to this site during 1929. Maggi and Petit (1998) report increased 

dust concentrations dating from 1932 to 1942 (AD) in a firn core from Hercules 

Neve (Figure 4.4). These authors attribute the increased dust concentrations to a 

drought in South America during that period. Mosley-Thompson and Thompson 

(1982) also report a considerable increase in dust deposition to the Ross Ice Shelf 

over the calendar years 1920-1940, and suggest a possible local source and/or an 

increase in the atmospheric transport to the region. The average value of the 

estimated atmospheric Fe fluxes for the Holocene is 0.092 ± 0.1 mg 111-2  yr-1  (n = 15), 

and 0.046 ± 0.02 mg Fe III-2  yr-1  (n = 12) if the possibly "anomalous" data from 1929- 

30 (AD) are excluded. We tentatively use the latter value as an estimate of the 

Holocene atmospheric Fe flux onto the Law Dome area and surrounding Southern 

Ocean waters. This flux is within the range (0.025-0.1 mg Fe n12  yr) of Fe fluxes 

estimated from reported Antarctic Holocene dust and trace-metal data (Table 4.6). 
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Table 4.5 Ice-core section data and estimated atmospheric Fe flux 

Core ID Core depth 
(m) 

Date 
BP 

1997 

Time span TD-Fe 
(pg g-1)  

TD-Fe flux 
(mg m-2 yr-) 

DSS 28A-1 46.64-46.82 56 spring 
summer 

139 0.069 

DSS 28A-2 46.82-46.98 56 winter 36 0.018 

DSS 28A-3 46.98-47.08 56 autumn 64 0.032 

DSS 28A-4 47.17-47.54 57 Spring 
summer 

86 0.043 

DE08 55A 96.01-96.29 69 spring 
summer 

250 0.282# 

DE08 55B 
part (a) 

96.41-96.55 70 spring 340 0.430 # 

DE08 55B 
part(b) 

96.55-96.69 70 winter 
spring 

100 0.126# 

DSS 41B 72.95-73.20 88 winter 34 0.020 

DE08 77A 
part (a) 

136.02-136.16 102 winter 
autumn 

64 0.070 

DE08 77A 
part (b) 

136.16-136.30 102 autumn 62 0.066 

DE08 85-A 150.90-151.42 115 winter 29 0.031 

DE08 108A 192.80-193.08 155 summer 77 0.069 

DSS 940 895.74-895.99 § 2729 — 2 years 36 0.023 

DSS 1165-1 1106.76-1106.94 § 8518 — 16 years 110 0.070 

DSS 1165-2 1106.94-1107.04 §8530 — 10 years 70 0.045 

Fe fluxes were calculated using an accumulation rate of 640 kg m-  yr
- 

for DSS 940 and 

DSS 1165. (§) - age estimated from an ice flow model (V. Morgan, personal 

communication, 1998). (#) - data not included in Holocene average. 
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4.2.2 Atmospheric Fe fluxes from present-day snow samples 

Atmospheric TD-Fe fluxes for the snow sampling sites were calculated from average 

TD-Fe concentrations (for each site) and estimated net snow accumulation rates 

(Table 4.7). Net accumulation rates for the Princess Elizabeth Land sites were 

estimated from snow accumulation stake measurements (Higham et al., 1997). These 

stakes were placed at the sites during 1993 and the snow depth of the stakes 

measured in 1994. The net annual snow accumulation rates for the marine sites have 

not been measured. Instead, the long term average (11 yr) net annual accumulation 

rates of Cullather et al. (1998) are used. These estimates were derived from the 

atmospheric moisture budget (precipitation minus evaporation/sublimation) of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) analyses. The 

highest estimated atmospheric Fe flux was estimated for Prydz Bay, followed by the 

Ross Sea. The atmospheric Fe flux to the Dumont d'Urville Sea was low, and 

comparable to the southern most sites in Princess Elizabeth Land. Total-dissolvable 

Fe fluxes for sites from Prydz Bay to the southernmost Princess Elizabeth Land site 

are shown in Figure 4.5. The estimated Fe fluxes appeared to be relatively constant 

from the Prydz Bay sites (average flux = 0.09 mg Fe 111-2  yr-1 ) to the Princess 

Elizabeth Land site LGB 59, but then decreased by approximately a factor of 3 from 

LGB 59 to LGB 46. 
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Table 4.6 Antarctic ice dust fluxes estimated from ice-cores 

Site Dust conc. 
(ng  g-1) 

Dust conc. 
reference 

Method Ice accum. Rate 
(m H20 equiv. yr-1) 

Ice accum. 
rate 

reference 

Dust flux 
(mg m-2 yr-i )  

Fe flux 
(mg m-2y1.-2 )  

Byrd 19 Cragin etal., 1977 Al 0.16 Lorius, 1989 0.003 0.1 
(80°S, 120°W) 

Dome C 34 Petit et al., 1981 AI 0.034 Lorius, 1989 0.001 0.035 
(75°S, 120°W) 

26 Royer et al., 1983 Dust vol. 0.0009 0.03 

Vostok 30 de Angelis et al., 
1984. 

Al 0.023 Lorius, 1989 0.0007 0.025 

South Pole 
(90°S) 

20 Estimated from 
average Fe 

concentration, 
Boutron, 1982 

Fe 0.080 0.06 

Notes: 

Al concentration measured, dust concentration calculated from Al assuming 8% of the dust mass is Al. Dust volume measured by 

laser light scattering and the dust concentration calculated assuming a dust density of 2g cm -3 . Fe flux calculated by assuming 3.5% of 

dust mass is Fe. 



Table 4.7 Estimated present-day atmospheric Fe fluxes 

Site location Net annual accum. 
rate 

(kg m -2  yr-1) 

Average 
TD-Fe 
(pg g-1 )  

Estimated Fe 
flux 

(mg m -2 yr-i)  
Prydz Bay *150 612 0.09 

Princess Elizabeth 
Land: 

LGB 70 163 643 0.10 

LGB 59 65 1461 0.09 

LGB 53 78 928 0.07 

LGB 46 50 537 0.03 

Dumont d'Urville *400 73 0.03 
Sea 

Ross Sea *100 749 0.07 

* Estimated net annual snow accumulation from Cullather et al., 1998. 

With the exception of LGB 59 which was found to have a relatively low 

accumulation rate (65 kg 111-2  yr-I ), but high average TD-Fe concentration (1461 pg 

- g 1 ), the accumulation rate appeared to be the dominant factor determining the 

atmospheric Fe flux to the sites (i.e. average TD Fe concentrations were comparable 

for these sites). While the estimated fluxes are sensitive to the accuracy of the net 

snow accumulation rates, the estimated Fe flux to the most inland site (LGB 46) is 

comparable to the estimated Fe fluxes for the inland Vostok and Dome C ice-core 

sites of 0.025 and 0.035 mg Fe IT1-2  yr-1 , respectively. 
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Figure 4.5 Estimated atmospheric Fe fluxes for Prydz Bay and Princess 

Elizabeth land vs latitude 

Holocene atmospheric Fe fluxes estimated from the literature and from the ice-core 

and snow data shown in this thesis are depicted in Figure 4.6. It should be noted that 

the Prydz Bay, Dumont d'Urville Sea and Ross Sea snow accumulation rates were 

derived from a computer model, with large uncertainties, and are probably uncertain 

to an order of magnitude, so the Prydz Bay, Dumont d'Urville Sea and Ross Sea flux 

estimates are probably uncertain to an order of magnitude. 
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Figure 4.6 Estimated atmospheric Fe fluxes to Antarctica 
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With the exception of the Law Dome and Dumont d'Urville locations, the estimated 

inland fluxes are much lower than that of the coastal and marine sites, presumably 

due to lower accumulation rates. This raises the questions as to whether inland ice-

cores, such as Dome C and Vostok, are representative of atmospheric dust fluxes and 

hence Fe fluxes to the Southern Ocean. More data is required from both marine and 

continental locations to determine the relationship between the atmospheric Fe fluxes 

to these areas. Using both the estimated snow and Holocene ice-core TD-Fe data 

(not including fluxes estimated from the literature), an average Holocene 

atmospheric flux for East Antarctica and the adjacent Southern Ocean is estimated to 

be 0.06 mg Fe 11f2  yf l . This estimated flux maybe considered a lower limit given 

that: 

(1) The fluxes to the Antarctic continent may be lower than those over the 

ocean; 

(2) the Dumont d'Urville sea sites may be seasonally biased and; 

(3) the Law Dome ice core data excluded several high values which were 

thought to be anomalous. 

However, if the Dumont d'Urville Sea and continental Princess Elizabeth Land data 

are excluded (leaving the Prydz Bay, Ross Sea and Law Dome data ) the average flux 

is little different, estimated is to be 0.07 mg Fe nf 2  yr-1 . This flux agrees well with 

the Fe flux of 0.1 mg in-2 yr-1 for the Southern Ocean estimated by Donaghay et al. 
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(1991), which was derived from the dust flux calculations of Duce et al. (1991) (See 

Chapter 1.0). 

4.2.3 Atmospheric Fe flux to Law Dome during the LGM 

While the TD-Fe concentration for Law Dome LGM ice was found to be 

approximately 100 times that of the Holocene, a significantly lower LGM snow 

accumulation rate of between 128 and 320 kg Ir1-2  yr-1  has been estimated from 5 180 

stratigraphy and ice-flow models (T. van Omrnen, personal communication, 1999), 

assuming that the BHC1 LGM section originated near the DSS site. Using these 

estimated snow accumulation rates, a LGM atmospheric Fe flux of between 0.860 

and 2.15 mg In-2  yr-1 , is estimated, which is roughly 16-41 times the estimated 

average Holocene flux for the Law Dome site, or 12-30 times the estimated present-

day average calculated from the combined snow and late-Holocene ice data. This 

increase in the atmospheric Fe flux during the LGM can be compared with dust flux 

estimates derived from measurements of Al in ice-cores from Vostok and Dome C 

(Delmas, 1992), which imply LGM dust fluxes 14-18 times greater than Holocene 

value. This work thus suggests an LGM Fe flux comparable to or greater than these 

previous estimates. 
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4.3 Estimates of planktonic new production supported by atmospheric 

Fe deposition to the present day and glacial Southern Ocean 

4.3.1 Solubility of Fe in East Antarctic snow and ice 

Only the readily water-soluble fraction of Fe deposited to the ocean appears to be 

bioavailable to phytoplankton (Wells et al., 1983; Rich and Morel, 1990; Morel et al., 

1991). The soluble fraction of Fe in mineral aerosols has been assumed to be 

approximately 10% (Duce et al., 1991; Donaghay et al., 1991), but with the 

exception of the data shown in this thesis, there have been no solubility 

measurements of Fe in Antarctic snow or precipitation onto the Southern Ocean. 
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Figure 4.7 Frequency histogram of Fe solubility 
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Selected samples were filtered through a 0.2 gm pore-size PTFE membrane filter 

immediately after melting in order to estimate the percentage "Fe solubility", from 

the rati,o of total-filterable Fe to total-dissolvable Fe (Section 2.4.2). This 

operationally-defined soluble Fe fraction ranged from 10 to 90%, almost the entire 

spectrum, with half of the solubility's between 10 and 30%. A frequency histogram 

of the Fe solubility is shown in Figure 4.7. The frequency distribution is positively 

skewed (skew = 0.35) and in this case the geometric mean (30%, section 3.7) 

provides a better indication of the central tendency of the data set than the arithmetic 

mean (40%). While a larger data set is required to adequately describe the solubility 

distribution of Fe in Antarctic snow, this initial data set suggests that the Fe solubility 

is typically between 10-30%. The mean solubility determined in this study falls 

within the range of recent estimates (6-50%, Zhu et al., 1997; Zhang et al., 1990) for 

atmospheric waters over the remote ocean. The large range of solubility's found in 

this study have also been found for Fe in Greenland ice core samples (Laj et al., 

1997). Using a combination of particle induced X ray emission and scanning 

electron microscope/ X ray dispersive analysis, Laj et al., (1997) estimated the 

solubility of Fe to range between 10 and 60% with an arithmetic mean of 40 ± 20%. 

The Fe solubility data determined by Laj et al. also appears to be positively skewed 

and the arithmetic average probably over estimates the mean solubility (which 

appears to lie between 20 and 30%). 
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4.3.2 Estimates of new production in the present-day Southern Ocean supported by 

atmospheric Fe deposition 

The basic requirements for primary production in the sea are light and nutrients. Iron 

is essential for algal growth and may be considered as a nutrient (Raven, 1988, 

1990). When light of the correct wavelengths and intensity is available, the ensuing 

production from the introduction of nutrients into the photic zone is considered new 

production (Dugdale and Wilkerson, 1992 and references therein). In contrast to new 

production (NP), regenerated production is based upon nutrients recycled in the 

photic zone. An estimate of the potential NP in the Southern Ocean (expressed as 

carbon) ensuing from the soluble component of the atmospheric Fe flux can be 

calculated using algal carbon (C) to Fe molar assimilation ratios (Table 4.8). The 

C:Fe assimilation ratios reported in the literature range from 33,000: 1 to 500,000:1, 

and appear to vary with both species and environment (Sunda et al., 1995). 

Assuming (1) similar atmospheric Fe fluxes exist over the Southern Ocean (south of 

50°S) as those estimated here, (2) limitation of algal production in this region by Fe 

deficiency (i.e., nutrient and light replete conditions), and (3) 30% of the Fe is 

bioavailable, an estimate of potential NP can be made from the reported C:Fe ratios 

and the estimated present-day atmospheric Fe flux (0.07 mg Fe nI2  yr-I ) using 

equations 4 and 5. 
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Table 4.8 Literature plankton cellular C:Fe ratios 

C:Fe Species/habitat Reference 

33,000:1 T. weissflogii Martin et al. (1989) 

*93,200:1 E. huxleyi, T. oceanica, P. calceolata, 
T. pseudonana, T. weissflogii, P. 
minimum. Same species in both 
coastal and oceanic conditions 

Sunda et al. (1995) 

100,000:1 T. weissflogii Anderson and Morel (1982) 

500,000:1 T. pseudonana and T. Oceanica Sunda et al. (1991) 

* average of 74 values 

Fe flux (g m12  yr-1 )  Soluble Fe deposited — 	 x Solubility factor 
Molecular weight 

(4) 

7 x 10 -5  (g 111-2  yr-1 ) 
	  x 0.3 	= 3.8 x 10 -7  mol Fe I11-2  yr-1  

55.85 (g mol l ) 

Assuming algal C:Fe = 500,000:1, then 

Maximum NP = 3.8 x le (mol Fe 111-2  yr-I ) x 500,000 (5) 

= 0.19 mol C 111-2  yr-I  

For the maximum reported C:Fe assimilation ratio, the potential NP ensuing from the 

soluble fraction of the estimated atmospheric Fe flux is estimated to be 0.19 mol C 

rr1-2  yr-I . While this estimate does not take into account that the phytoplankton 
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growing season is approximately 6 months long (Comiso et al., 1993), it is still less 

than 2% of the average Southern Ocean primary production (PP) of approximately 10 

mol C m 2  yr-1  estimated by Arrigo et al. (1998). Arrigo et al. (1998) used a bio-

optical algorithm to estimate Southern Ocean primary production from algal pigment 

fields determined using the Nimbus-7 coastal zone color scanner (CZCS). The 

algorithm was validated by comparison with the 14C based productivity dataset of 

Behrenfeld and Falkowslci (1997). Primary productivity predicted by the algorithm 

ranged from 2 -120 mol C m 2  yr-1 . The low end of this range is comparable with the 

minimum rate determined by Rubin et al. (1998) for the Pacific Sector of the 

Southern Ocean (2 mol C 1112  yr1). Even for this minimum rate the estimated 

atmospheric Fe flux could only support 9% of the productivity. Phytoplankton 

assimilation ratios of C and N in Antarctic waters have been found to be Redfieldian 

(Redfield, 1958) i.e., C:N =6.6 (Rubin et al., 1998, Hoppema et al., 1999). Given the 

potential NP of 0.19 mol C m 2  yr-1  supported by the atmospheric Fe flux, 

phytoplankton could consume 0.03 mol N In-2 
 
yr-1  of nitrate (0.19 mol C m -2  yr-1  / 

6.6). This is approximately 4% of the estimated upwelling flux of nitrate (0.8 mol N 

I11-2  yr-1 ) in the Southern Ocean (Francois et al., 1997). In addition to nitrate, 

dissolved Fe will also be brought to the ocean surface by upwelling. Martin et 

al.(1990) estimated the Fe flux to the Southern Ocean from upwelling to be 

approximately 91 .tmol Fe M-2  yr-1  assuming an Fe concentration of 0.1 imol Fe M-3  

- and an average upwelling velocity of 91 m yr 1  for the Southern Ocean. But this 

upwelling velocity appears to be much higher than recent estimates (20-45 m yr-1 ) 

(Francois et al., 1997; Grotov et al., 1998; Hoppema et al., 1999). Recalculating the 
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upwelling Fe flux using an upwelling velocity of 30 m yr -1  (Francois et al., 1997) and 

the upwelling seawater Fe concentration (0.1 p.mol Fe M-3) of Martin et al. (1990) 

gives an average upwelling Fe flux to the Southern Ocean of 3 limo' Fe In-2  yr-1 . 

Assuming that 100% of this Fe is soluble, then following the same reasoning as 

equations 3 and 4 the potential NP from this flux is estimated to be 1.5 mol C In-2  yr-

1 (C:Fe of 500,000:1) which could consume approximately 27% of the estimated 

nitrate flux. The total potential NP ensuing from both the atmospheric flux and 

upwelling flux of Fe is estimated at 1.7 mol C m 2  yr-1  approximately 30% of the 

nitrate flux. In comparison, if the PP of 10 mol C m -2  yr-1  estimated by Arrigo et al. 

(1998) were NP, > 100% of the estimated nitrate flux would be consumed suggesting 

that a large percentage of PP is recycled production. Similar calculations for a range 

of C:Fe ratios are shown in Table 4.9. If this estimate is multiplied over the surface 

area of the Southern Ocean south of 50°S (3.81 x 10 13  m2 , Smith, 1991) the 

maximum total new production comes to 777 Tg C yr. This estimate is 

approximately 18 % of the annual primary production rate of 4414 Tg C yr for the 

Southern Ocean (south of 50°S) estimated by Arrigo et al. (1998). These estimates 

are consistent with hypothesis 1 and suggest that the present-day atmospheric Fe flux 

into the Southern Ocean is far insufficient to support the full use of the upwelled 

nitrate by phytoplankton, and also that the majority of algal NP in this region is 

supported by Fe supplied from other sources, such as upwelling, and that much of the 

PP is recycled production. 
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Table 4.9 Potential new production in the present-day Southern Ocean supported by Fe 

C:Fe Atmospheric Fe 
NP 

(mot C m-2  yr-1 ) 

Upwelling Fe NP 
(mol C m -2  yr-1) 

Total Fe NP 
(mol C M -2  yr-1 ) 

Southern Ocean, 
NP 

(Tg C yr-1) 

Percentage of 
potential NP 

(%) 
33,000:1 0.013 0.10 0.11 50 2 

*93,200:1 0.036 0.28 0.32 142 5 

100,000:1 0.038 0.30 0.34 155 6 

500,000:1 0.19 1.50 1.7 777 30 

* = average C:Fe ratio 

Note - this ignores sediment inputs, which may be important, e.g.; polar front region in South Atlantic (de Baar et al., 1995) 



4.3.3 Release of Fe from Antarctic seasonal sea ice 

Surface-water Fe concentrations in the ice-free pelagic Southern Ocean surrounding 

Antarctica have been found to be of the order of 0.1-0.2 nmol (Martin et al., 1990; 

Sedwick and Ditullio, 1992), away from sources such as shelf sediments (eg; deBaar 

et al., 1995). Hence, sea ice formed from these waters is not expected to contain 

significant amounts of Fe. However, during the seasonal growth of the 

sea ice, atmospheric Fe will be deposited in snow on the ice instead of into the ocean 

surface waters. Thus the growth and melting of the ice will temporally refocus the 

atmospheric input of Fe into the ocean releasing it over a relatively short period of 

time when the ice melts. Martin (1990) calculated the amount of Fe released by 

Antarctic sea ice during its meltback to be 3.9 Gg Fe, but this calculation assumed 

the entire volume of sea ice to have an Fe concentration of 30 nM. While some of 

the snow that falls on the sea ice becomes incorporated into the sea ice (Massom et 

al., 1998; Worby et al., 1998), it is unlikely that the entire sea ice Fe content would 

be this high if the Fe is only derived from atmospheric deposition. However an 

exception may be where the ice originates in coastal polynyas where the upwelled 

seawater may be quite rich in TD-Fe (Sedwick et al., in press). The amount of 

atmospheric Fe released from the sea ice can be calculated from the maximum 

surface area of the seasonal sea ice zone (SSIZ), its growth time, and the estimated 

atmospheric flux of Fe to the SSIZ of the ocean. 
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This ignores Fe trapped in the sea ice itself, and so is probably a very conservative 

estimate. For a maximum SSIZ surface area of 15 x 10 12  m2  (Parkinson, 1992) and 

atmospheric Fe flux of 0.07 mg Fe In-2  yf l , the amount of Fe released from the ice 

melting comes to approximately 1.1 Gg Fe, 27 % of that calculated by Martin (1990). 

However, this estimate ignores the fact that the sea-ice growth period is 

approximately 6 months (Parkinson, 1992) and assumes that all atmospheric Fe flux 

is retained on the ice. In reality the Antarctic seasonal sea ice zone contains a 

significant amount of open water, even at maximum sea ice extent. At maximum, 

the potential NP per unit area supported by the atmospheric Fe content of the ice will 

be same as that calculated in the previous section (4.2.5). Assuming the maximum 

phytoplankton C:Fe ratio of 500,000:1, the potential maximum NP = 0.19 mol C 

yr 1 , or 34 Tg C for the entire Antarctic SSIZ. This is an insignificant amount of 

production in comparison to the estimated total annual Southern Ocean primary 

production of 4414 Tg (Arrigo et al., 1998). Estimated increases in the surface 

seawater dissolved Fe concentration from the sea ice melting are shown in Table 

4.10, for various mixing depths. If the Fe released from the melting sea ice is 

concentrated in a thin lense of melt-water, 10 cm deep, the Fe concentration will 

Table 4.10 Increase in seawater Fe concentration from melting sea ice 

Mixing depth 
of added Fe 

(m) 

Increase in Seawater 
dissolved Fe 

concentration (nM) 
0.1 

1.0 

30.0 

4 

0.4 

0.01 
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increase by approximately 4 nM. Additions of 4 nM Fe to seawater have been shown 

to alleviate phytoplankton Fe limitation in both bottle-incubation and open ocean Fe-

fertilization experiments (de Baar et al., 1990; Martin et al., 1991; Chavez et al., 

1991; Coale et al., 1996) and the half-saturation constant for community Fe uptake 

has been estimated at — 0.1 nM in the equatorial Pacific (Coale et al., 1996). 

Phytoplankton blooms in the Southern Ocean have been observed following the 

receding sea ice during its seasonal melting (Smith and Nelson, 1985; Collis° et al., 

1993; Moore et al., 1999). If the meltwater from the sea ice forms a shallow lens, 

then these calculations suggest that the Fe released from melting sea ice may 

alleviate algal Fe deficiency, enough to allow bloom development. But if the 

meltwater is mixed to depths greater than about 1 m, the increase in the Fe 

concentration will be small and possibly insignificant. Sedwick and Ditullio (1997) 

report surface-water dissolved Fe concentrations of 2.4 nM associated with receding 

sea ice in the Ross Sea. Their site was revisited 17 days later when it was ice-free. 

On the second visit, dissolved Fe concentrations had been reduced to 0.16-0.17 nM. 

While the sea ice was present, the mixed layer was approximately 25 m thick. 

Assuming that the sea ice was the source of the Fe, then to increase the mixed layer 

Fe by 2.3 nM, the sea ice would have to have contained 3.2 mg Fe 1112 . This is 

approximately 46 times the estimated annual atmospheric Fe flux for the Ross Sea. 

This implies that if the melting sea ice was responsible for the high initial Fe 

concentrations, it probably contained Fe from a source other than atmospheric dust. 

Several possibilities exist. The sea ice may have formed in Fe rich coastal seawater 

(e.g.: the south Ross Sea Polyna) and then circulated in the Ross Sea Gyre. In 
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addition, the snow might have contained dust from local sources (e.g., Mc Murdo 

Sound or the Victoria Land dry valleys). While the release of Fe from melting sea 

ice appears to be insignificant in terms of annual primary productivity in the 

Southern Ocean, relatively high Fe concentrations in the snow may be important to 

plankton communities living in the sea ice and to short-lived blooms of pelagic algae 

at the receding ice edge where high rates of production may be supported over 

periods of several days. Thus the data presented in this thesis do not support the 

second hypothesis, when considered on an annual basis, although the hypothesis is 

supported on a short-term (several-day) timescale. 

4.3.4 Estimates of potential new production in Southern Ocean waters supported by 

atmospheric Fe deposition during the LGM 

At present, the polar nutrient hypothesis and its variations (Sanniento and 

Toggweiler, 1984; Knox and Mc Elroy, 1984; Siegenthaler and Wenk, 1984) appear 

best able to explain decreases in atmospheric CO2 during Quaternary glaciations. 

These hypotheses contend that some factor present in the glacial ocean allowed 

phytoplankton to utilise presently unused nutrients, exporting large amounts of C to 

the deep ocean. In particular, the high nutrient, well ventilated, Southern Ocean has 

the greatest potential to affect atmospheric CO2 levels (Sarimento and Orr, 1991). 

Martin (1990) hypothesised that Fe was the factor missing from the present-day 

Southern Ocean, but was present in larger amounts in the glacial ocean causing a 

major biological drawdown of atmospheric CO2. Estimates of NP for the Southern 
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Ocean (Table 4.11) during the LGM were estimated from equations 4 and 5 

assuming (1) a solubility of 30%, for atmospheric Fe(2) the Holocene estimate of 

upwelling N and Fe given in section 4.3.2, (3) an LGM atmospheric Fe flux of 0.816- 

2.15 mg Ir1-2  yf l  (see section 4.2.3), and (4) that this atmospheric Fe flux applies over 

the entire Southern Ocean (south of 50°S). The potential NP supported by the LGM 

atmospheric Fe fluxes estimated from the Law Dome data range between 0.16 and 

5.92 mol C I11-2  yr-I . If the Fe input from upwelling is assumed to be the same as that 

estimated for the present-day (section 4.3.2), then the total NP could consume 

between 4-130% of the present-day Southern Ocean upwelling nitrate, as estimated 

by Francois et al. (1997). If this total NP is extrapolated over the Southern Ocean 

South of 50° S, the total NP comes to between 119-3392 Tg C yf l , approximately 

69-2615 Tg C yf l  greater than our estimate for the present day Southern Ocean. 

These estimates suggest that a large increase in NP of the glacial Southern Ocean 

could have resulted from an increase in the atmospheric Fe flux, consistent with 

hypothesis 3, based on our estimate of the Fe flux from the Law Dome cores. In 

addition, these estimates suggest that the atmospheric deposition of Fe was the 

dominant source of Fe, in glacial Southern Ocean waters assuming no increase in the 

velocity of upwelling over the region during the LGM. 



Table 4.11 Potential new production in the glacial Southern Ocean supported by atmospheric and upwelled Fe inputs 

LGM Atmospheric 
Fe flux 

(mg m-2  yr4 ) 

C: Fe Atmospheric Fe 
NP 

(mol C m-2  yr-1 ) 

Upwelling Fe 
NP 

(mol C m-2  yr-1) 

Total Fe 
NP 

(mol C m-2  yr4) 

Southern 
Ocean, NP 
(Tg C yr-1 ) 

Percentage of 
potential NP 

(supported by N) 
(0/0) 

0.86 33,000 0.16 0.10 0.26 119 4 

2.15 33,000 0.39 0.10 0.49 224 9 

0.86 93,000 0.44 0.28 0.72 329 12 

2.15 93,000 1.10 0.28 1.38 631 24 

0.86 100,000 0.47 0.30 0.77 352 13 

2.15 100,000 1.18 0.30 1.48 677 26 

0.86 500,000 2.37 1.50 3.87 1769 68 

2.15 500,000 5.92 1.50 7.42 3392 131 
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Chapter 5 

Conclusions 

The concentration and apparent solubility of Fe in present-day and ancient East 

Antarctic snow has been determined to investigate whether the atmosphere is a 

significant source of soluble Fe to the surface waters of the Southern Ocean, or has 

been so during the past glacial period. This investigation focused on three testable 

hypotheses regarding the possible limitation of new phytoplankton production by 

iron deficiency in the present-day and LGM Southern Ocean, namely: 

(1) The present-day atmospheric Fe flux to the Southern Ocean is insufficient to 

allow the complete use of upwelled nitrate by phytoplankton, assuming light-replete 

conditions. 

(2) Antarctic sea ice may release a significant amount of Fe into the ocean during its 

melting; and 

(3) The atmospheric Fe flux to the Southern Ocean during the LGM was high enough 

to sustain a large increase in new phytoplankton production relative to the present. 
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In this chapter, these hypotheses are tested using the data presented and discussed in 

chapters 3 and 4. 

5.1 Hypothesis 1 - The present-day atmospheric Fe flux to the Southern Ocean 

is insufficient to allow the complete use of upwelled nitrate by phytoplankton, 

assuming light-replete conditions 

The present-day atmospheric flux of TD-Fe onto East Antarctica and the surrounding 

oceanic region is estimated to be 0.07 mg Fe 121-2  yr-1 , with an average of 30% of this 

Fe being readily soluble in meltwater. The maximum potential phytoplankton NP 

supported by the atmospheric deposition of Fe is estimated as 0.013-0.19 mol C In-2  

yr-1  (Chapter 4), while the maximum potential phytoplankton NP supported by 

upwelling Fe was estimated as 0.1-1.5 mol C m 2  yr-1  and the total NP supported by 

both Fe sources 0.11-1.7 mol C m 2  yr-1 . In comparison Arrigo et al. (1998) 

estimated the average Southern Ocean PP to be 10 mol C ra-2  yr-1 . These results 

indicate that for the present day, the atmosphere is a minor source of Fe to the 

Southern Ocean compared to that supplied from other sources such as upwelling and 

resuspended sediments. If the estimated potential NP supported by atmospheric and 

upwelling Fe fluxes are combined over the surface area of the entire Southern Ocean 

south of 500 S, the total potential NP for this region is estimated to be 69-777 Tg C 

-1 	• 	• yr , which is up to 18% of the total primary production estimated for the Southern 

Ocean (Arrigo et al., 1998). This amount of NP could consume, at most, 30% of the 

surface water nitrate, assuming an upwelling rate for nitrate of 12g N m 2  yr-1 
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(Francois et al., 1998) and a Redfield C:N assimilation ratio for Southern Ocean 

phytoplankton. Thus, on the basis of these estimates, the data presented in this thesis 

clearly support the hypothesis that the atmospheric Fe flux into the present-day 

Southern Ocean is insufficient to allow phytoplankton to utilise all available surface 

water nitrate. 

5.2 Hypothesis 2 - Antarctic sea ice may release a significant amount of Fe into the 

ocean during its melting 

A maximum estimate of the Fe released from sea ice during the seasonal meltback 

would be the same as the estimated average atmospheric flux; i.e., 0.07 mg Fe In-2  

yr 1 , and the resulting maximum phytoplankton NP is estimated to be 0.013-0.19 mol 

C m 2  yf l . Assuming the atmosphere to be the main source of Fe to the sea ice, other 

than the seawater itself, the data presented here indicate that Antarctic sea ice is not a 

significant source of Fe to Southern Ocean surface waters, on an annual basis. 

However, if wind mixing is minimal and the meltwater remains in a shallow surface 

layer (i.e., —1 m) for a considerable amount of time (-1 day or more), the released Fe 

could conceivably increase the concentration of the surface water to approximately 4 

nM, sufficient to allow phytoplankton to bloom. Such events may be an important 

component of the Southern Ocean biological pump because they may account for a 

disproportionately large export flux for a given rate of primary production (Buessler, 

1998). Thus the data presented in this thesis do not support the second hypothesis, 

when considered on an annual basis, although the hypothesis is supported on a short 
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term (several-day) timescale. This conclusion only considers the atmosphere-derived 

Fe associated with sea ice, however, it should be noted that a significant amount of 

sea ice may be formed from Fe-rich seawater in coastal polynas, where vertical 

mixing supplies Fe-rich bottom waters into surface waters (Sedwick et al., 1999 (in 

press)). Therefore, further studies of the Fe input from sea ice should focus on the Fe 

content of the sea ice itself: as well as Fe contained in snow cover, and also the 

potential for polynas to introduce Fe into pelagic surface waters via production and 

advection of sea ice away from coastal regions. 

5.3 Hypothesis 3 - The atmospheric Fe flux to the Southern Ocean during the 

LGM was high enough to sustain a large increase in new phytoplankton 

production relative to the present 

In this study the atmospheric flux of Fe to the coastal Law Dome region was found to 

have been higher than during the late Holocene by a factor of 16-41 (using a 

minimum and maximum estimate of the LGM snow accumulation rate). The 

potential maximum NP production resulting from the LGM atmospheric flux is 

estimated to 0.2-5.9 mol C m 2  ye'. If the NP supported by upwelling Fe is assumed 

to be the same as for the present-day Southern Ocean, then the total NP is estimated 

to be 0.3-7.4 mol C m 2  yf l , which could consume 4-131% of the present-day surface 

water nitrate. If this potential increase in NP (total) is integrated over the entire 

Southern Ocean south of 50°S, the potential annual NP amounts to 119-3392 Tg C, 

an approximate 69-2615 Tg C increase in new production compared to the present- 
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day Southern Ocean estimate based on both atmospheric and upwelling Fe inputs. 

Thus the data in this thesis clearly support the hypothesis that the atmospheric flux to 

the Southern Ocean was significantly higher during the LGM, from which it can be 

inferred that a significantly higher level of algal new production was supported 

compared with that estimated for the present-day. 
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Appendix 

A.1 Snow data 

Trace-metal concentration data for snow samples collected from Antarctic sea ice 

and continental sites are presented in the following tables. Trace-metal 

concentrations are shown in picograms per gram (pg g -1 ). Samples are named as: 

site ID —pit number — sample number. 

Abbreviations used in the tables are: 

n.a. 	= not analysed 

b.d.l. = below detection limit 

Table A.1 Prydz Bay total-dissolvable metals 

Sample ID Sample 
depth from 

surface (cm) 

Salinity 
(AO 

TD-Fe (pg  g1) 
TD-Mn (p g g..1) 

TD-Al (p g 0 

Site: N Lat 64.57° S Long: 74.98° E Date: 21/9/94 

N-1/1 15-20 1 610 ± 30 n.a. n.a. 

N-1/2 8-13 2 1330 ± 60 n.a. n.a. 

N-1/3 2-7 2 980 ± 30 n.a. n.a. 

N-2/1 5-10 0 1530± 120 170 ± 10 4400 ±340 
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Sample ID Sample 
depth from 
surface (cm) 

Salinity 
(AO 

TD-Fe 
(pg g-1)  TD-Mn 

(I) g g.1) 
TD-Al 
(pg g-1)  

N-2/2 6-11 0 200 ± 20 b.d.l. 170 ± 30 

N-2/3 7-12 0 690 ± 30 n.a. n.a. 

N-2/4 0-18 2 90 ± 10 n.a. n.a. 

N-2/5 0-18 3 770 ± 10 n.a. n.a. 

N-3/1 0-18 1 70 ± 10 n.a. n.a. 

N-3/2 0-18 1 70 ± 10 n.a. n.a. 

Site: 0 Lat: 64.90 0  S Long: 75.00° E Date: 21/9/94 

0-1/1 2-7 0 750 ± 30 n.a. n.a. 

0-1/2 4-9 0 1080 ± 30 n.a. n.a. 

0-1/3 5-10 1 1260 ± 30 n.a. n.a. 

0-1/4 0-18 1 810 ± 10 n.a. n.a. 

0-1/5 0-18 1 270 ± 10 n.a. n.a. 

0-2/1 4-9 0 630 ± 30 10 ± 5 1310± 110 

0-2/2 2-7 0 1430 ± 100 n.a. n.a. 

0-2/3 2-7 0 390 ± 20 b.d.1 190 ± 30 

Site: U Lat: 66.12° S Long: 75.32° E Date: 23/9/94 

U-1/1 2-7 0 1080 ± 30 n.a. n.a. 

U-1/2 0-13 0 240 ± 15 n.a. n.a. 

U-1/3 0-13 1 150 ± 10 n.a. n.a. 

U-2/1 0-5 0 390 ± 20 n.a. n.a. 

U-2/3 0-18 0 640 ± 5 n.a. n.a. 

U-2/4 0-18 1 460 ± 20 n.a. n.a. 

U-3/1 4-9 2 680 ± 20 n.a. n.a. 

U-3/2 0-18 1 270 ± 10 n.a. n.a. 
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Sample ID Sample 
depth from 

surface (cm) 

Salinity 
(c) 

TD-Fe 
(pg g-1)  TD-Mn 

(p g e) TD-Al 
(pg g-i)  

U-3/3 0-18 1 320 ± 10 n.a. n.a. 

U-4/1 4-9 1 180 ±20 n.a. n.a. 

U-4/2 0-18 2 280 ± 10 n.a. n.a. 

U-4/3 0-18 1 460 ± 10 n.a. n.a. 

Site: V Lat: 66.30 °S Long: 75.72 °E Date: 23/9/94 

V-1/1 5-10 0 1770 ± 50 n.a. n.a. 

V-1/2 9-14 0 390 ± 20 n.a. n.a. 

V-1/3 6-11 0 870 ± 80 n.a. n.a. 

V-2/1 6-11 0 510 ± 20 n.a. n.a. 

V-2/2 4-9 1 400 ± 10 20 ± 10 930 ± 90 

V-2/3 4-9 1 270 ± 20 b.d.1 430 ± 40 

V-2/4 0-18 1 230 ± 10 n.a. n.a. 

V-2/5 0-18 1 1090 ± 10 n.a. n.a. 

V-2/6 0-18 1 260 ± 10 n.a. n.a. 



Table A.2 Princess Elizabeth Land total-dissolvable metals 

Sample ID Sample 
depth from 

surface (cm) 

TD-Fe 
(p g e) TD-Mn 

(p g e) TD-Al 
(p g g-1)  

Site: LGB70 Lat: 70.57 °S Long: 76.91 °E Elevation: 1650 m (ASL) 
Date: 18/11/94 

LGB 70-1/1 2-7 480 ± 20 20 ± 10 920 ± 120 

LGB 70-1/2 10-15 1550 ± 70 n.a. n.a. 

LGB 70-2/1 2-7 740 ± 30 20± 10 1290± 160 

LGB 70-2/2 10-15 610 ± 20 20 ± 10 1230 ± 160 

LGB 7042/3 0-18 170 ± 10 n.a. n.a. 

LGB 70-3/1 10-15 310 ± 20 20 ± 5 560 ± 80 

Site: LGB59 Lat: 73.43° S Long: 76.860  E Elevation: 2520 m (ASL) 
Date: 4/12/94 

LOB 59-1/1 2-7 2310 ± 80 90 ± 10 n.a. 

LOB 59-1/2 10-15 1550 ± 70 40 ± 10 	• n.a. 

LOB 59-2/1 2-7 350 ± 20 n.a. n.a. 

LGB 59-2/2 10-15 870 ± 10 n.a. n.a. 

LGB 59-3/1 2-7 750 ± 20 30 ±10 2880 ± 340 

LGB 59-3/2 10-15 2950 ± 80 10 + 5 1170 ± 150 

Site: LGB53 Lat: 74.90 °S Long: 74.52 °E Elevation: 2430 m (ASL) 
Date: 12/12/94 

LGB 53-1/1 2-7 320 ± 10 15 ± 5 1220 ± 155 

LGB 53-1/2 10-15 710 ± 10 n.a. n.a. 

LGB 53-1/3 0-18 620 ± 15 n.a. n.a. 

LOB 53-1/4 0-18 430 ± 10 n.a. n.a. 

LGB 53-2/1 2-7 1860 ± 20 30 ± 10 1510 ± 190 

LGB 53-2/2 , 10-15 2790 ± 40 n.a. n.a. 

LGB 53-3/1 2-7 310 ± 10 15 ± 5 670 ± 100 

LGB 53-3/2 10-15 375 ± 10 20 ± 5 620 ± 100 

Site: LGB46 Lat: 75.85 °  S Long: 71.50° E Elevation: 2413 m (A.S.L.) 
Date: 22/12/94 
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Table A.3 Dumont d'Urville Sea total-dissolvable metals 

Sample lD Sample 
depth from 
surface(cm) 

Salinity 
(%) 

TD-Fe 
(pg g4) 

TD-Mn 
(p g g1) 

TD-Al 
(pg g-t)  

Site: A Lat: 64.600  S Long: 140.33° E Date: 02/08/95 

A-1/1 0-5 0 50 ± 5 ma. n.a. 

A-1/2 0-5 0 64 + 5 b.d.l. b.d.l. 

A-2/1 0-5 1 30 ± 5 b.d.l. b.d.l. 

A-2/2 0-5 1 30 ± 5 b.d.l. b.d.l. 

A-3/1 0-5 0 40 + 5 n.a. n.a. 

A-3/2 8-13 1 20 ± 5 n.a. n.a. 

A-3/3 16-21 1 20 ± 5 n.a. n.a. 

A-3/4 24-29 2 20 ± 5 n.a. n.a. 

A-3/5 32-37 4.5 125 ± 5 n.a. n.a. 

A-4/1 0-5 1 95 ± 5 n.a. n.a. 

A-4/2 0-5 1.5 70 ± 5 n.a. n.a. 

A-5/1 0-5 0 270 ± 5 b.d.1 b.d.1 

A-5/2 0-5 0 4110 ±200 40 ± 5 350 ±40 

A-6/1 0-5 0 120 ±5 n.a. n.a. 

A-6/2 0-5 0 5000 ± 200 n.a. n.a. 

Site: B Lat: 64.88 °S Long 141.07 °E Date: 02/08/95 

B-1/1 16-21 5 50 ± 5 ma. n.a. 

B-1/2 0-5 0 170 ± 5 n.a. n.a. 

B-1/3 8-13 0 25 ± 5 n.a. n.a. 

B-2/1 Snow slush from 

lead 

10 120 ± 5 n.a. n.a. 
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Sample ID Sample 
depth from 
surface(cm) 

Salinity 
(A) 

TD-Fe 
(p g e) TD-Mn 

(p g e) TD-Al (p g 0 

Site: S Lat: 6.4.97° S Long 141.45° E Date: 03/08/95 

S-1/1 0-5 0 140 ± 10 n.a. n.a. 

S-112 0-5 0 70 ± 5 b.d.l. 55 ± 30 

S-1/3 11-17 4 30 + 5 n.a. n.a. 

S-1/4 11-17 3 80 ± 5 n.a. n.a. 

S-1/5 21-26 11 120 ± 5 b.d.l. 40 ± 30 

S-1/6 21-26 11 80 ± 5 n.a. n.a. 

S-1/7 29-38 3 80 ± 5 n.a. ma. 

S-1/8 29-38 3 80 ± 5 n.a. n.a. 

Site: K Lat: 64.93° S Long: 141.25° E Date: 04/08/95 

K-1/3 3-8 1 90 ± 5 n.a. n.a. 

K-1/4 3-8 1 80 ± 5 n.a. n.a. 

Site: H-2 Lat: 65.00° S Long: 140.21° E Date 09/08/95 

H2-1/1 2-7 0 260 ± 5 n.a. n.a. 

H2-1/2 2-7 0 400 + 5 n.a. n.a. 

H2-1/3 9-14 3 90 ± 5 n.a. n.a. 

H2-1/4 9-14 5 25 ± 5 . n.a. n.a. 

H2-1/5 16-21 3 350 ± 10 n.a. n.a. 

H2-1/6 16-21 6 230 ± 5 n.a. n.a. 
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Table A.4 Ross Sea total-dissolvable metals 

Sample ID Sample 
depth bellow 
surface(cm) 

Salinity 
(°A0) 

TD-Fe 
(p g je) TD-Mn 

(p g gr 1) TD-Al (pg g-i)  

Site: 1 Lat: 69.52° S Long: 170.6° W Date: 10/11/94 

1-2/1 

1-2/2 

0-18 cm 

0-18 cm 

16 

14 

710 ± 15 

790 ± 15 

n.a. 

n.a. 

n.a. 

n.a. 

Site: 2 Lat: 75.00° S Long: 170.67° W Date: 28/11/94 

2-1/1 

2-1/2 

0-17 cm 

0-17 cm 

0 

0 

1170±30 

720 ± 20 

30±5 

25 ± 5 

1035 ± 85 

855 ± 70 

Site: 3 Lat: 76.45° S Long: 175.52° W Date: 02/12/94 

3-1/1 

3-1/2 

0-5 cm 

.0-5 cm 

13 

11 

920 ± 20 

1050 ± 50 

n.a. 

n.a. 

n.a. 

n.a. 
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A2 Ice-core trace metal data 

Table A.6 Ice-core total-dissolved metals 

Core ID Depth below ice 
cap (m) 

Age 
r.e.BP 

(1997) 

Time span TD-Fe 
(pg g1) 

TD-Mn 
(p g g1.) 

TD-Al 
(p g g-i)  

DSS core sections 

DSS 28A-1 46.64 - 46.82 56 summer 
autumn 

140 + 10 n.a. n.a. 

DSS 28A-2 46.82 -46.98 56 winter 35 + 10 n.a. n.a. 

DSS 28A-3 46.98 -47.08 56 spring 60 ± 10 n.a. n.a. 

DSS 28A-4 47.17- 47.54 57 summer 
autumn 

80 + 10 b.d.1 90 ± 20 

DSS 41-B 72.95 —73.20 88 winter 30 + 5 b.d.1 50 ± 15 

DSS 940 895.74 -895.99 2729 — 2 years 30 ± 5 b.d.1 20 ± 10 

DSS 1165-1 1106.76-1106.94 8518 — 16 years 110 ± 5 n.a n.a 

DSS 1165-2 1106.94-1107.04 8530 — 10 years 70 ± 5 n.a n.a 

DE08 core sections 

DE08 55A 96.01- 96.29 69 summer 
autumn 

250 ± 5 20 ± 10 295 ± 335 

DE08 55b(a) 96.41 - 96.55 70 autumn 340 ±5 20 ±10 320± 35 

DE08 55b(b) 96.55 — 96.69 70 winter 100 + 5 b.d.1 70 ± 20 

DE08 77A(a) 136.02— 136.16 102 winter 55 + 5 b.d.1 b.d.1 

DE08 77A(b) 136.16— 136.30 102 spring 60 ± 5 b.d.1 b.d.1 

DE08 85-A 150.90 — 151.42 115 winter 30 + 5 n.a n.a 

DE08 108-A 192.80 — 193.08 155 summer 75 + 5 b.d.1 50 ± 15 

BHC1 core sections 

BHC1 129-1 256.28-256.39 — 15000 10 3020 ± 110 n.a n.a 

BHC1 129-2 256.39-256.48 — 15000 10 2015 ± 90 n.a n.a 
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Core ID Depth below ice 
cap (m) 

Age 
=BP 

(1997) 

Time span TD-Fe 
(p g g1) 

TD-Mn 
(p g g.1) 

TD-Al 
(pg g-1)  

BHC1 129-3 256.48-256.59 — 15000 10 1710 ± 90 n.a ma 

BHC1 129-4 256.59-256.77 — 15000 10 3905 ± 130 n.a n.a 

BHC1 129-5 256.77-256.87 — 15000 10 3740 ± 130 n.a n.a 

BHC1 132A 262.14-262.28 —18000 — 10 years 6700 ±200 n.a n.a 

BHC1 137B-1 271.76-271.84 —30000 >10 years 1200 ± 80 n.a n.a 

BHC1 137B-2 271.84-271.91 —30000 >10 years 1230 ± 80 n.a n.a 

BHC1 137B-3 271.91-271.99 —30000 >10 years 750 ±70 n.a n.a 

BHC1 137B-4 271.99-272.065 —30000 >10 years 1410 + 80 n.a n.a 

BHC1 137B-5 272.065-272.145 —30000 >10 years 1045 ±75 n.a n.a 



Table A.7 Ice-core decontamination profiles 

Sample layer Approx. 
layer depth 

(cm) 

TD-Fe 
(p g g4) 

TD-Al 
(p g gt) 

DSS 28A-L1 4.0 —3.0 4155 ± 590 n.a 

DSS 28A-L2 3.0-2.5 1210 ± 50 n.a 

DSS 28A-L3 2.5 —2.0 140 ± 10 n.a 

DSS 28A-L4 2.0-1.5 110 ± 10 n.a 

DSS 28A inner sub- 
sample 

1.5-0.0 80 ± 15 n.a 

DE08 -55b-L1 4.0-3.5 5270 ± 140 5470 ± 350 

DE08 55b-L2 3.5-2.5 215± 10 240 ±40 

DE08 55b-L3 2.5-2.0 440 ± 5 210 ± 30 

DE08 55b inner sub 
sample average 

2.0-0.0 215 ± 10 195 ± 30 

DSS 1165-L1 2.75-2.5 73620± 2010 n.a. 

DSS 1165-L2 2.5-2.0 755 ± 15 n.a. 

DSS 1165-L3 2.0-1.5 640 ± 15 n.a. 

DSS 1165-L4 1.5-1.0 190 ± 10 n.a. 

DSS 1165 inner sub 
sample average 

1.0-0.0 90 ± 5 n.a. 

BHC1 132A- Li 4.0 —3.0 19400 ± 1000 n.a 

BHC1 132A-L2 3.0-2.5 9700 ±250 n.a 

BHC1 132A- L3 2.5 —2.0 6900 ± 200 n.a 

BHC1 132A-L4 2.0-1.5 6900 ±200 n.a 

BHC1 132A inner 
sample 

1.5-0.0 6700 ±200 n.a 

BHC1 137B-L1 4.0 —3.0 8810 ± 800 n.a 

BHC1 137B-L2 3.0-2.5 1530 ± 80 n.a. 

BHC1 137B-L3 2.5 —2.0 1045 ± 75 n.a. 
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Sample layer Approx. 
layer depth 

(cm) 

TD-Fe 
(pg 1.4.1) 

TD-Al 
(pg fe) 

BHC1 137B-L4 

BHC1 137B inner 
sub-sample average 

2.0-1.5 

1.5-0.0 

1270 ± 80 

1125 ± 170 

n.a. 

n.a. 
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A.3 Enrichment factors 

Abbreviations 

EF = enrichment factor relative to the earths crust 

Table A.8 Elemental enrichment factors 

Sample ID Fe EF Mn EF 

Prydz Bay snow samples 
N-2/1 

N-2/2 

0.4 

1.4 

2.3 

na 

0-2/1 0.6 0.5 

0-2/3 2.5 2.3 

V-2/2 0.5 1.0 

V-2/3 0.7 1.7 

Princess Elizabeth Land snow samples 
LGB 70-1/1 0.6 1.2 

LGB 70-2/1 0.7 1.1 

LGB 70-2/2 0.6 1.2 

LGB 70-3/1 0.7 1.9 

LOB 59-3/1 0.4 0.5 

LGB 59-3/2 3.0 0.5 

LGB 53-1/1 0.4 0.7 

LOB 53-2/1 1.4 1.1 

LGB 53-3/1 0.6 1.3 

LGB 53-3/2 0.7 1.6 

LGB 46-1/2 0.2 0.5 
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Sample ID Fe EF Mn EF 

LGB 46-2/1 0.6 1.0 

LGB 46-3/2 0.1 0.3 

Dumont d'Urville Sea snow samples 

A-5/2 14 7 

S-1/5 4.0 na 

S-1/2 1.4 na 

Ross Sea 
2-1/1 1.3 1.6 

2-1/2 1.0 1.7 

Law Dome ice-core samples 
DSS 108-A 1.7 

DE08 55A 1.1 3.3 

DE08 55b(a) 1.3 3.6 

DE08 55b(b) 1.7 

DSS 1254 1.3 1.0 

DSS 28A-4 1.1 

DSS 41-B 0.8 

DSS 940 2.0 
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