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ABSTRACT 

In the south-east of Tasmania, Jurassic dolerite forms a partial cover over 

much of the area. The sedimentary and volcanic rocks in this region are mainly 

Permian or younger. The topography is largely dominated by the local structure of the 

dolerite. 

Utilizing the magnetotelluric and magnetovariational methods, an 

investigation was made of the electrical structure along two cross-sections to lower 

crust / upper mantle depths. In conjunction with this study the potential field and 

transient electromagnetic methods were used. Two-dimensional gravity and magnetic 

modellings delineated the geometry and possible structural origin of several rock 

sequences associated with a basin structure. The use of the transient electromagnetic 

method placed constraints on the thicknesses and resistivities of the surface layer. 

As part of the magnetotelluric analysis package, a new rotation angle and 

dimensionality calculation method is introduced and tested with different geometrical 

structures. The results when compared to other conventional and the Mohr circle 

methods show this new method works well and is simpler and faster. 

Two types of anomalies, inland and coastal effect, are revealed from 

magnetovariational observation. Correction for the ocean were applied to induction 

vectors at periods of 10 and 60 minutes. The inland anomaly is characterized by 

corrected in-phase induction vectors at stations to the east of the Huon River, pointing 

north-west. Those to the west of the river point in a north-east direction, indicating 

the presence of a gradient anomaly zone which lies along the Huon River. Meanwhile 

the gradual swing in direction from southeast for observed vector to east and almost 

perpendicular to the coast-line for corrected vector at the eastern-most station of cross-

section II illustrates the remaining effect of the coast. This can be explained by high 
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conductivity contrasts between the resistive block in the eastern part of Tasmania and 

the conducting ocean floor. 

The results from the one and two-dimensional modelling of magnetotelluric, 

gravity and magnetic data indicate that the base of the Permo-Triassic cover with its 

stockwork of massive dolerite intrusions, is probably never less than 500 metres 

below the surface at the northern cross-section and dips south reaching a depth of 

about 800 metres on the southern cross-section. The Ordovician limestone, which 

may be a possible source of hydrocarbon deposits, has a bulk apparent resistivity 

value of 40 Ohm-m inferred from transient electromagnetic modelling. This rock has a 

thickness of about 300 metres and its distribution is restricted to the western part of the 

study area which is consistent with the results of the two-dimensional gravity and 

magnetic modelling. The dipping discontinuity needed in the models to match the 

magnetotelluric data, results in a trough-like structure with depth from the surface to 

the bottom of about 6 kilometres. This structure is reflected by a broad and large 

gravity anomaly together with slightly negative magnetic anomaly and is believed to be 

associated with a trough of Cambrian volcanics. This trough has a northwest - 

southeast direction and becomes wider and has more conductive flanks to the south. 

The magnetotelluric results also indicate the presence of a low resistivity layer 

at middle-lower crustal depths. There is broad but not exact correlation with the 

position of the Cambrian trough above. In combination with other geophysical 

evidence gained from the magnetovariational method, i.e. the short corrected induction 

vectors at all stations at periods of 60 minutes, the layer is inferred to exist beneath the 

entire study area. The likely cause of the low resistivity associated with this layer is 

believed to be the presence of free carbon along grain boundaries or fractured rocks 

which provide a continuous conducting path. Another possible cause is the presence 

of anomalously high temperatures in the deeper crust expected from previous 

geothermal measurements. 



Errata 
"Electrical Structure of the Crust in Southeast Tasmania" 

by: Sjafra Dwipa 
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Site Written Corrected Comment 

Pg. iii line 17 ... induction vector The direction of horizontal field that corre-
lates with maximum vertical field first called 
induction vector and then Parkinson vector. 
In some resent publications, it called induc-
tion arrow. 

Pg. 1 line 19 ... have made magnetotelluric ... ... have made magnetotellurics ... 
Pg. 2 line 16 ... magnetovariational ... Definition: see page 50, first paragraph 
Pg. 2 line 17 ... transient electromagnetic Definition: see page 27, second paragraph 
Pg. 9 line 1 ... cancealed Y-shaped ... ... concealed Y-shaped ... 
Pg. 13 line 17 ... lineaments are clearly exposes ... ... lineaments are clearly exposed ... 
Pg. 13 line 20 This lineament continue ... This lineament continues ... 
Pg. 21 line 24 ... ar this part of Figure 11.3 ... ... at this part of Figure 11.5 ... 
Pg. 24 line 2 ... parallel to magnetotelluric sites ... ... parallel to magnetotelluric cross-section II 
Figs. 11.5 and 

11.6 
Magnetics (nT) Magnetics field (nT) Broken lines are observed data 

Solid lines are calculated data 
Pg. 31 line 9 ... up to 32 channels. ... on up to 32 channels. 32 Channels = 164 milliseconds delay time 
Pg. 31 line 14 ... about 33 milliseconds. 33 milliseconds = recorded at 21 channels 
Pg. 33 line 3 pa, Pot. 
Pg. 48 line 15 ... 	susceptibility value of 0.0 cgs ... ... susceptibility value of 0.005 cgs 
Pg. 55 lines 3 

and 4 
Detailed explanation of eqn. (IV.3 and 
IV.4) can be seen in Parkinson (1983, pp 
332-333) as mentioned in the thesis. 

Pg. 55 line 16 MR = ( RI ( A ) z  + RI ( B )1  ) 1/2- MR = [ ( RIA ) L  + ( RIB ) 2  ] V-z 
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Fig. IV.12 ... (redrawn from Dosso et al. 1985) 
Pg. 69 line 15 ... raverse for the TE mode ... ... traverse for the TE mode ... 
Pg. 72 line 1 ... period of 60 seconds. ... period of 60 minutes. 
Pg. 85 line 6 ... to determine the large value. ... to determine the larger value. 
Pg. 85 line 15 ... cartesian coordinate system ... ... Cartesian coordinate system ... 
Pg. 183 line 13 ... on northern cross-section ... ... on cross-section I ... 
Pg. 183 line 14 ... on southern cross-section .. ... on cross-section II ... 
Pg. 104 line 8 ... described in section V.3.2. ... described in section V.3.2.4. 
Pg. 136 line 4 ... tentatively be achived ... ... tentatively be achieved ... 
Pg. 136 line 9 This is suitable ... ... This is a reasonable first approximation ... 
Pg. 138 line 25 ... at the surface layer ... ... of the surface layer ... 
Pg. 185 line 25 _ 	.., to to explain ... ... to explain ... 
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Chapter I. 
INTRODUCTION. 

I.1. General.  

The magnetotelluric (MT) method is a frequency-domain electromagnetic 

sounding technique used to establish the electrical conductivity of the earth's sub-

surface. This technique utilizes naturally occurring electromagnetic waves as the 

energy source. The waves are generated by complex interactions between solar plasma 

ejected by the sun and the earth's magnetosphere. These waves penetrate several 

hundred kilometres into the earth and induce secondary fields in the earth. The 

horizontal components of the resultant electric and magnetic fields are measured at the 

surface of the earth. They are related to each other-by a surface impedance that is a 

function of the conductivity structure of the earth's substrata. The experimental values 

are matched to model curves to obtain an interpretation. 

Interpretations of magnetotelluric data are complicated by noise. However, 

processing techniques can be used to minimize the scattering effect associated with the 

data. Initially, records are obtained as a function of time and they must be processed 

to obtain the apparent resistivity as a function of frequency. A Fourier transform must 

be used to convert the data from the time domain to the frequency domain. 

This passive geophysical method has been used as an exploration tool since 

the early 1950s. Theoretical efforts coupled with improvements in instrumentation, 

have made magnetotelluric an effective technique for geological structure investigation. 

It has gained acceptance as a viable geophysical prospecting tool since 
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Tikhonov (1950) realized the potential of using natural electromagnetic fields for 

sounding of the earth's crust. One of the milestones in electromagnetic work was the 

classic paper of Cagniard (1953) on the theory and interpretation of magnetic and 

telluric field relationships. 

Cagniard only considered a one-dimensional (1-D) earth consisting of 

horizontal, isotropic, planar layers of arbitrary thickness and resistivity. Swift (1967), 

Vozoff (1972) and other researchers extended the MT method to two-dimensional (2- 

D) geometries. These geometries allow conductivity inhomogeneities to exist in the 

horizontal direction as well as the vertical direction. Recent studies by Ting and 

Hohmann (1981), Spichalc (1985), Zhdanov and Spichalc (1989 and Cerv and Pek 

(1990) have further extended the theory to three-dimensional (3-D) conductivity 

distributions. As of present, however, the interpretation of 3-D geometry field data is 

in its infancy. In this study one- and two-dimensional earth geometries are presented 

and discussed in Chapter V. 

From late 1989 to early 1991, a total of 9 temporary magnetotelluric and 14 

magnetovariational stations were established in south-east Tasmania and data were 

obtained. In conjunction with this study, the transient electromagnetic method was 

carried out in order to place constraints on the thicknesses and resistivities of the 

surface layers. In addition, two-dimensional modelling of gravity and magnetic data 

was also done along the magnetotelluric cross-sections in order to delineate the 

geometry and subsurface geological structure in this study area. Figures 1.1 and 1.2 

show the location and distribution of the observation stations. The names, 

abbreviations and their geographic coordinates are given in Table 1.1. 
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Table 1.1 

List of stations and geographic coordinates 

No I Station Code : Latitude ' Longitude Method 

1 Leslie Vale LSV 	i 42°56'40" 147°14'20" 	MT,MV,TEM 

2 Grove GRV 42°58'00" , 147°06'20" 	MT,MV,TEM 

3 Judbury JDB 	, 42°59'40" 146°55'10" 	MT,MV,TEM 

Lonnavale LNV 43°01'30" 146°49'30" 	MT,MV,TEM 

5 Oyster Cove OTC 43°07'10" 147°00'00" 	MT 

6 Woodstock WST 43°04'30" 147°04'30" 	MT,MV,TEM 

7 Franklin FRS , 43°04'00" 146°19'20" 	MT,MV,TEM 

8 Peppers Road PPR , 	, 43°07'30" 146°49'40" 	MT,MV,TEM 

9 Tahune THN 43°06'00" 146°43'30" 	MT,MV,TEM 

10 Snug SNG 	. 43°04'09" 147°12'21" 	MV 

11 Woodbridge WDB 43°09'40" , 147°1 3 ' 1 0" 	MV 

12 Gardners Ba GDB 43°11'22" 147°06'40" MV 

13 

14 

Glendevie 

Raminea 

GLD 

RMN ,. 

43°15'00" 

43°17'40" , 

146°59'10" 

146°53'40" 

MV 

MV 

15 Hastings Caves HTG 43°24'10" 146°50'34" 	, MV 
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1.2. Aim Of The Study. 

The primary aim of the study was to develop an understanding of the crustal 

structure of the southeast of Tasmania. In particular, the nature of the pre-Permian 

geology is very poorly known being obscured by Permo-Triassic and Jurassic dolerite 

cover. Only two drill holes in southeasten Tasmania, at Glenorchy and woodbridge, 

have reached the -pre-Permian basement. Such knowledge may have economic 

implications for both mineral and hydrocarbon deposits. 

In order to properly fulfil this aim a number of secondary aims emerged: 

1. To establish a regional electrical survey in southeast Tasmania by the 

transient electromagnetic and magnetotelluric methods. 

2. To develop the technique of rotation of coordinates in magnetotelluric 

analysis. 

3. To examine magnetic variations to detect correlations between some fixed 

directions of the horizontal magnetic and vertical magnetic fields by the 

magnetovariational method. Such correlations are indicative of resistivity 

contrasts. Correlations of this type have been reported, for example, by 

Pitcher (1972), Hermanto (1985) and Ingham (1988). 

4. To interpret the gravity and magnetic data in terms of major upper crustal 

structures. 

In brief,, the problem is to obtain information on the crustal structure of 

southeast Tasmania: the approach is to use a variety of geophysical techniques and 

suitable existing geophysical data and where necessary to develop new methods. 

A quick glance at the geological structure map (see Figure 1.2), will reveal the 

area is structurally complex. For this reason, the choice of sites was intended to 

provide traverses of the region across the structure, initially thought to be a sedimentary 
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basin. Magnetotelluric interpretations have been found to be the simplest in 

sedimentary areas. 

Most of the stations were established along the supposed boundary of the 

basin (see Figure. 1.2). This is important since reliable determinations of the resistivity 

structure of this region have not previously been obtained. 

1.3. Regional Geological Setting. 

The region is of high relief which diminishes in height towards the east coast. 

The higher elevation of the surrounding ranges is due to the erosionally resistant nature 

of the thick dolerite bodies occurring in this area. These dolerites are tholeiites of 

mid-Jurassic age (McDougall, 1961; 1962). The regional geology of southeast 

Tasmania, which illustrates these features, is shown in Figure 1.3. 

Figure 1.3 also indicates that the Jurassic dolerite forms a partial cover over 

the upper part of the region. The dolerite has intruded all members of the Parmeener 

Supergroup (Permian and Trassic in age) . Dolerite sheets vary in thickness from 200 

m at Cygnet to about 400 m on Mt. Wellington (Leaman, 1972; 1975). Sheets drilled 

at Woodbridge were about 300 m thick (Farmer and Clarke, 1985). 

The middle and lower areas, on the other hand, are mainly blanketed by 

Permo-Triassic rocks. The Permian sections consist of monotonous mudstone and 

siltstone sequence with occasional sandstone units, ranging in thickness from about 

450 m at Cygnet to 600 m at Hobart. The Triassic section includes Cygnet coal 

measures, quartz sandstone, quartz and lithic-feldspathic sandstone , and volcanic lithic 

arenite. These outcrop on the north side of the Wellington Range and exceed 450 m in 

thickness. All other sections are either faulted, limited or prematurely terminated by 

dolerite (Leaman, 1987). 
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Figure 1.3. Geological map of the study area. Simplified from "Geological Map 
of Tasmania (Mines Department - Tasmania). 
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The main feature of this region is a cancealed Y-shaped trough-like structure 

with its major arm extending to the northwest comprising in bulk, Palaeozoic material. 

The thickness of the trough fill, interpreted from the magnetic and gravity survey in this 

area, is about 5 to 6 km (Leaman, 1990 ; Leaman and Richardson, 1990). The trough 

overlaps the margin of Late Precambrian deposition. The Precambrian rocks are also 

believed to act as the basement for the whole region. 

1.4. Previous magnetotelluric and magnetovariational studies. 

1.4.1. Magnetotelluric.  

The only previous magnetotelluric work in south-east Tasmania was done by 

Lewis in 1965. This work, the first in Tasmania, was carried out in the Hobart area and 

studied the conductivity of the crust. 

Lewis successfully measured magnetic and electric fields at the Hobart airport 

and TAU Seismic Vault, University of Tasmania. However, no detailed interpretation 

was made due to some of the data being affected by geological and artificial noise. 

1.4.2. Magnetovariational Observations. 

The first magnetovariational observation in south-east Tasmania was done by 

Parkinson (1962). This observation was conducted in the Hobart area to study the 

influence of oceans on the geomagnetic field at a coastal station. The result showed 

that the direction of the induction vector (see Figure 1.4), which was determined from 

bay and similar types of geomagnetic fluctuations at a period of 40 minutes, points to 

the Southern Ocean. Parkinson concluded that the concentration of induced current 

along coastlines controls the recording of magnetovariational measurement at a coastal 

observatory. 
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The more intensive magnetovariational studies in Tasmania are in the north-

east region. They were started by Lilley (1976), see Figure 1.4, as a part of his study 

on geomagnetic variations in south-east Australia. Interesting results from Lilley's 

study initiated magnetovariational study by other researchers, including Buyung (1980) 

and Hermanto (1985). Buyung concluded that the reversal in direction of induction 

vectors on the eastern and western sides of the Tamar River could be due to a zone of 

high conductivity below the Tamar River. These results led to Hermanto carrying out a 

more detailed induction study in the north-east of Tasmania. This work illustrated the 

strong coastal effect on the magnetovariational measurements and identified the 

conductive anomaly in the Tamar fracture zone. The extension of this zone in south-

east Tasmania is probably located to the east of Hobart (Leaman, 1987). 
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Figure 1.4. Induction Vectors around Tasmania. Hobart vector is for 40 minutes 
period, and Smithton, Devonport and Bridport vectors are for 5 - 20 
mintues period. 

• Lilley (1973 - 1974) 
0 Parkinson (1962). 



Chapter II. 
POTENTIAL FIELD METHODS. 

11.1. Introduction.  

Potential field methods (gravity and magnetic) have been extensively used in 

Tasmania for structural assessment (e.g. Leaman, 1992a). Gravity and magnetic 

surveys are often related and combined in this way since the two fields may assess 

different facets of the rocks and thus resolve ambiguities inherent in a single approach. 

Because of their cost effectiveness and their ability to reveal shallow structures and 

constrain the geometry of dolerite bodies, gravity and magnetic methods have long 

been used in southeast Tasmania. Using the available data, two-dimensional modelling 

was carried out during this study in order to delineate the geometry and sub-surface 

geological structure along the transient electromagnetic and magnetotelluric cross-

sections and thus assist interpretation of transient electromagnetic and magnetotelluric 

data. 

11.2. Original Data. 
H.2.1. Gravity.  

Several gravity surveys have been conducted in the vicinity of the study area, 

namely, Leaman and Naqvi (1967), and Leaman (1972). However, they were limited 

by restricted coverage. The gravity data used for interpretation by means of two-

dimensional modelling was in the form of a residual Bouguer anomaly gravity map 

(Figure 11.1) of southeast Tasmania compiled by Leaman and Richardson (1989). The 

gravity data is presently held in the combined TASGRAV and MTREAD data bases of 
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the Tasmania Mines Department. This data is fully terrain corrected to 20 kilometres 

and was reduced using a density of 2.67 g/cc. 

11.2.2. Magnetics.  

The magnetic interpretation was based on a southern Tasmania residual 

magnetic intensity map (Figure 11.2). This aeromagnetic data was surveyed and 

compiled by Austirex in 1987 using a Caesium vapour magnetometer with an accuracy 

of 0.01 nT at 20 meters sample spacing. The survey was flown at 1 kilometre above 

sea level with limited drape flying (150 metres clearance) across the few peaks above 

this level (Hartz Mountains and Mt. Wellington). The area was covered by two flight 

line directions. East-west lines were flown at 2.5 kilometres spacing with north-south 

tie lines at 10 kilometres separation. The survey was carried out originally for Conga 

Oil, and permission given by the company made the use of this data possible. 

11.3. Overview of Gravity and Magnetics Maps. 
11.3.1. Gravity.  

Figure 11.1 is a residual gravity anomaly map of southern Tasmania. The two 

model cross-sections are shown on this map. As can be seen from Figure 11.1 some 

major lineaments are clearly exposes i.e. the continuation of the Meydina horst and 

Derwent basin. The most conspicuous feature is the lineament which coincides with 

the boundary of the Precambrian formations in the south-western of the study area. 

This lineament continue very clearly to the southeast. 

Figure 11.1 also indicates anomalies due to localised structures filled with 

Tertiary sediment in the Hobart-South Arm region marked by negative Bouguer 

gravity anomalies of about -10 mgals amplitude. This is due to the fact that the 

Tertiary sediment rocks have a lower density (1.82 - 2.15 g/cc) than the rest of the 

region. The relatively positive gravity field with amplitude of about +8 mgals is 
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common in the centre of this area. These anomalies, which reflect the denser Pre-

Permian rocks and Jurassic dolerite, are scattered throughout the entire Huon and 

Channel region. This positive anomaly also coincides with the approximate centre and 

axis of the Huon mobile zone ('HMZ) (sde figure 11.4). 

Superimposed on the residual Bouguer anomaly map are the locations at 

which transient electromagnetic and magnetotelluric recording stations were placed. 

11.3.2. Magnetics.  

A number of localized ground magnetic and aeromagnetic surveys have been 

run in this study area, but much of the work is described in unpublished reports. 

Leaman (1973, 1981) provides a list of references for these surveys. 

The magnetic field (Figure 11.2) bears little apparent direct relationship to the 

gravity field (Figure II.1). As can be seen from the magnetic profile map of Figure 

11.3, there are two main magnetic features associated with this study area. The first is 

a local magnetic high called the Cygnet anomaly in the middle of the study area. The 

second is a regional magnetic high along the southwest edge of the area. 

The local magnetic high found in the Cygnet area is related to Cretaceous 

syenites and their effect on intruded dolerite. Previous work by Leaman and Naqvi 

(1967), and Leaman (1977) has shown that many anomalous spikes occur in this 

region and are associated with magnetite at intrusion margins and junctions. 

Southwest of the Cygnet magnetic anomaly there is a regional magnetic high 

trending northwest-southeast, which is coincident with the gravity data (see Figure 

11.1). It is believed that both the magnetic and gravity fields are responding to a deep 

narrow trough or rift fill containing significantly magnetic and dense Palaeozoic 

materials. 



Poten tial Field Methods  va 



Potential Field Methods 16 

• :-.. 	• 	,,st,= ; 	yr . 	k :•'''''' 	--_,=.-.'=---..;.. 	--4.-"At 	-,,,- ..,.... \I I, ttr. 	• .„. 4,,
- 

- 	• 	;iv . 	k 	-,.r. 	• 	 .\i l 
). 	 ' 	N 	■i 

.i•A'. 
' 	----- 

.. 	2 ... 
:., -B- .1‘ 	 ,_ 	,-11111i' 	 • 

	

..„. 	
. .ttu.4-3"-1.#;.14i#,_ _ 	. 	, 	--1,-----, --• -1\----417V-1: •"_';211i1r.1=§6•-_-:-...;c1r.. n  ; 

\ 
:St.) 	'' AT'O-  

4 	• • 	t 

• •i'. 
t-l-11 -• .. 

5Z‘7 ., 	..*...."-7: ..;,_ 	:.....v„. 
i) - 	,-. 	-■___--- .. 	k-V17,7,-_'_': - 	- -417. 	-..:,.:::. \.... 	..... 	- ,t. 	-,-.-••• e•Y. r":•-..7-_-. 	■ 	.,),„ 	- e....._ 	. 	."----. 	= 	,:.;1:-. : 	--• 	... 

/?‘ 	2 	At 	,... 	'''''. 	-- .1;:';'':'''... :^4■---"' •=•\  kai^k;,' 	 . 	.7i;:n. :, 	.":" 	,...?__ 	... 	..,--- i., --- 	.-.. 	.0.• ;-w- ,,..ri:" 	... 	...... 	.. 	_........... 	•, 	.,...... 	.......... 	- 	- . 	,....,---. 	•,. ;2,01 	-I 	 I 	.`i -vi.t 

_ 

-......., 	% 

‘...':"N-  • 	''..- •• (CC 	i,.._,,...7 (.1,V . 	8  v 

1 	CO 
; : N . 	. 

. •t•-•;&---':: 	 . • 
•iZ‘ --,L-:---.  . ‘, 	4, 	clit 	. ., 	, ,..- - •..i...fij . 	. -.2-,..:: 7S-2...te.. 	-;-, 	-,,,, .,:,:.,-;;: 	- 4  

	

\ . ' s  - - • • • 1 i 141 ,tan - 	41 

	

. 	`".7.':  . 7:;),:=17-.77:,..". 	----..7.X.W 	, 	„,..: 

,,:i.,1';' 	,  II, 	L v„...*----2_, ,/,..;:,..:- 

■ ,.,, r 	 , 	 rr. ., , 

...• 	.- 	1 - 	 kv,r • • . 	,........„.....--_, ,11/. 

:,, i.. • 

..----.--.:.( 
, 	1 	..., • 	, • 

	' I  ''''' it 41_1.1"- -M, 	' 	. 	., .. 	.. 	L. • , - .,/,,,,,,,, ..n;1: ,•• ■•■1■•••••T, 	• • 	1 	• T 	‘.,„ 	t, 	\.\„. 	.1 	,1;,7 ..........-  
, .. •Iri, .. • 	,„1-1.11„.-m 	e, 	- 	% 	v‘. ir., ore ..• 	\ , 

4 E1 	•■ 	- uk 	

• 	4 	r..) \ VJI .. . ) i  fil 

	

.....„..„. 	• 	IT , 	• 	
.3.." 	..'- '''''.-s".-:*- 	' 	-• 	: 	. 	.,111! , 

n IA 	•--`=- 	8 	ii/A !l 	• 	 z..-.. ". 	\‘'.1:-- " 1 .1,•".  IP ,71,...,:- 	?.." , iiedr.s-, 	,,. )..) 	------"F)1 ,vp, 	,.....,....- 	,..,, 	,....t •-•:.;11; G44 _ ....„....4,-12''' s •tl' ..-n,„010,--- \ 	.2,...._:::-____ , -Oil ,,,,\ .■-"y",.....,,,‘, 	- .1 	-;- 	- 	- lis 	..',—,...--- 	• 	. ::‘ I 	.. L. 	;367,'-'----7-"...''\ 11 '''---'-'",  • 111-'\ v.--------------:711.1". " .\- ".."‘Ir•-t"."'" 

/1 

.\:,,.......0  ..,1  
, 	- 	. •• 

	

‘`ff 	n 	 5200000 

	

..... ■,1$ 	
";'-',..a.T- 	- : •240;k3- 	/ 	 IN 	 ,. P• 	T 	(-011-4/1  • 

	

" 	‘‘) 	, 	.24' ..2k4.*  • ' 	''.''T I 
	

-- ...... 

	

...:,. 	 ---Zi  
l'''. 	'''..":1 1.,,-, 	.% 	 -• 	■;',,tr• 	 • 	- . ....if 	 .. '''A 	• .' 	' 	..)... 	.....%. ' . ' ' ' ' 	' 	-1' 	DI '  Q ut... 	.17'r 	- 	-. 	'''''' • ' t 	• Ilkig 

......... 

.. • 	-% r-:-'---Z".-  

	

-=}:‘,.-- . - ■ 	I  , 	r 

	

..-ii. 	" 	 7 	:• 0 	• 	---:7: — 
!',.■ 	...T rIll 	, 	„.., P 	'' 	- 	- 

.- , .-- _,.i'fj• .1."(L 	) 	' 	. •''''...... -- 	1 rt,,‘ 	'.. tot!.  

„et 	 •14.41 1 - 

•••• 

: i 

fr-T4-11.0i--'• ....,...nn. 	 k 	 ,,-_ 	r.» • 	\-) 	. 

" 	' 	..7".• 	V ... 

i 	• 	. 

-- 

. Ri 
.1 	`.:°1 	T''1"..' 'N.  ' / 7.61••• 	' 	\,) 11Di  \ ')•. k. 	„.......------- 	.• 	••-.'i . 	

' 

	

\ 	4 

- 	- 	0 
),) 	(., 	 .i 	.---,i 

11 

--7.•'  

.-.."; 
i 

-......--,. 	 -....k.›.---,-,2..- .... .-a'''' 	' - 
- '. ... 	• 	*...'...."'..t.- 	ri--;;:,----,,t-1 ;*,'".°.?- 	- 	.."-ti'!".7N 	!'. i 	

1 ■ Ag-, ) 	 • 	.. • 	/ 	(1P* L-....• 
'''. - 	 1•■• 	• 	 • 	\ 	. 	 0 ■ 	" 	4. 	1.,-1T.'c/,  - 	.. 1. 	--, 	.-trr-\ 	 -4/ 

fr.':  'r'k- \''.11‘, 	---'■, \ 	e 	gi 	,,..:- 	,-..i.,,,,,4,„--. 1 	p 	.--., 	, 	•/ 	; j• 	, \ 	--/ • -s 	A.,;,--.-_,...-, 	,,, 	 t.,141 	..... ,......, 	
,.... 	• 	• ,..... 	• . 	...., e 	,...._ ,.., 	. ••••••••._ 5170000] .. 	_., 	. 	if,  

SCUTXVIR T RRRRR IP 

1111110/111L ZEIT/MT 	SURTCT 

Figure 11.2. Compilation of residual magnetic intensity map: aeromagnedc survey 
at 1000 metres above sea level. Data courtesy of Conga Oil Pty. Ltd. 



Potential Field Methods 	 17 

mg 1-\--,;.--i-' \j t  

\iv.,  

,,,  
k 	- 

\ ,) 

ing 

) 

\Sh."------,  
/ \--:\,..-L__2------- 

rOP' \ 
limmollr..  CYGN, 1 

IOW 

- 
— 	 1 

---- 5200000mN 

- 

' 	■ 

-/g:-. AS IN§N11111111111. .....,,.....rv.,-.1----  
c\ \ /-•,_Q_______I________...._--------------  

%.- 

/ 
:--- = c> c L.. 	■......... 

10 	20 
	

40 
	

50km 
500 n 
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(after Leaman, 1990). 
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' Figure 11.4. Structural and tectonic interpretation based on gravity and magnetic data 
showing major tectonic element (after Leaman and Richardson, 1990). 
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A summary of major tectonic elements deduced from the residual Bouguer 

anomaly and aeromagnetic data of Tasmania is given by Leaman and Richardson 

(1989) and shown in Figure 11.4. The most striking geological feature shown here are 

the western Tasmania mobile zone (WTMZ) in western Tasmania, the Tamar mobile 

zone (rmz) in eastern Tasmania and the Huon mobile zone (HMZ) in southeast 

Tasmania. 

11.4. Rock Physical Properties. 

Rock physical properties, density and susceptibility, of the study area are well 

constrained. The table below (Table 11.1) lists the value, or range of values used for the 

density contrast and susceptibility of each unit during the modelling process. The rock 

physical properties data indicated in this table, adapted from Leaman (1987), show 

which rock unit has significant effects upon the gravity and magnetic anomalies. The 

gravity anomalies are principally influenced by five rock types: Tertiary sediment, 

Triassic sediment rocks, Jurassic dolerite and, to lesser extent, Permian sediment rocks 

and Cambrian volcanics. The magnetic anomalies, on the other hand, correlate with the 

presence of the Jurassic dolerite. 
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Table 11.1. 

Density contrasts and susceptibility used for rock type within the study area 

Rock unit Density contrast with 

respect to 2.67 (g/cc) 

Susceptibility 

(cgs) 

Tertiary 

-sediment - 0.60 0.0 

Jurassic dolerit 0.23 - 0.25 0.004 - 0.005 

Triassics -0.23 - -0.25 0.0 

Permian -0.12 - -0.15 0.0 

Ordovician 

-sandstone 0.0 - 0.1 0.0 

Cambrian 

-volcanic 0.07 - 0.1 0.001 

Precambrian 

-dolomite 0.0 - 0.1 0.0 

- other 0 - 0.007 0.0 

11.5. Two-Dimensional Modelling. 

Two-dimensional forward modelling of gravity and magnetic data was carried 

out for two east-west sections crossing the study area, almost parallel to the 

magnetotellurics cross-sections, using program MODEL2D Version 2.4 written by 

M. Roach. The program uses algorithms for the response of an arbitrarily shaped, 

two-dimensional polygon as developed by Talwani and Ewing (1960) and Talwani 

(1965). All modelling was conducted using gravity data continued to a constant 

altitude of 1000 metres (consistent with the magnetic data). This was necessary 

because of the large variation in terrain clearance in the raw magnetic data caused by 

the rugged topography. The important features of the major magnetic anomalies are 
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preserved in the continued dataset and must be matched gravimetrically against the 

same reference levels. 

Appendices 11.1 and 11.2 list the Fourier transform filtered gravity data of 

cross-sections I and II. Upward continuation of gravity data is a straightforward 

operation, as the surfaces are held in field-free space (Telford et al., 1976) and this 

approach has also been tested and used by Leaman (1986a, 1986b). 

Areas in which the major part is covered predominantly by igneous Jurassic 

dolerite, such as southeast Tasmania, usually have complex magnetic variations. 

Basement features are often masked by higher frequency magnetic effects that 

originate near the surface. Upward continuation at high level observation reduces these 

effects, as well as reducing topographic effects (Leaman D.E., pers. comm.). 

The topography profile along cross-sections I and II was obtained from 

Tasmania 1:100.000 topographic map sheet index: Tyenna, Derwent, Huon and 

D'Entrecasteaux, published by the Lands Department. The surface geological units 

which were modelled along these cross-sections were based on the Tasmania 

Geological Survey maps 1:250.000 (Leaman, 1972, Farmer, 1985). 

11.6. Interpretation.  
11.6.1. Cross-section I. 

Figure 11.5 is a two-dimensional model combining gravity and magnetic fields 

almost parallel to magnetotelluric sites (LNV, JDB, GRV, and LSV). The magnetic 

profile carries a significant non-dolerite component to the magnetic field. This is 

reflected in the long wavelength feature superimposed along 10 to 20 kilometres and 

the solution reflects the style of the probable source. The observed gravity field at this 

part of Figure 11.3 drastically increases and forms a dome shape after reaching the 

maximum values of +16 mGal at 16 kilometres (see Appendix 11.1). This pattern of 

the gravity field suggests that this section has different rock properties compared to 

surrounding rock. A body 28 kilometres long and 5 kilometres thick and narrowing at 
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depth is placed to provide a broad positive signature. In this trough-like structure, a 

magnetic susceptibility of 0.001 cgs and density contrast of 0.1 g/cc has been used. 

These are the characteristics of Cambrian volcanic rocks (Leaman, 1987). The depth 

of this body from the surface is about 900 metres. Attempts to change this depth 

result in higher rms error for both gravity and magnetic calculations. Some spikes on 

the observed magnetic field were also found in this section. The two small spikes are 

believed to be associated with -the Jurassic dolerite bodies that crop out to the west of 

Lonnavale. 

One of the conspicuous features in this cross-section is a narrow magnetic 

high near 30 kilometres (see Figure 11.4). This anomaly has the highest value of +175 

nT at 29.5 kilometres and two minimum values of -120 nT at 25.5 kilometres and -185 

nT at 33 kilometres respectively (see Appendix 11.1). The major contribution to this 

magnetic anomaly is the strongly magnetic Jurassic dolerite, which blankets much of 

the study area. The Jurassic dolerite is modelled as intruding the Permian and 

Ordovician rocks. The vertical extent of the dolerite is proportional to its width. The 

extent of the dolerite shown here has a susceptibility of 0.004 cgs, but in some places, 

the dolerite may contain granophyre (Dr. D. Leaman, personal communication, 1992) 

which has susceptibility of 0.01 cgs. Consequently the thickness of the dolerite 

decreases and intrudes the formation below with pipe-like shape. 

The gradient of the observed gravity profile varies smoothly along the eastern 

part of this traverse. The general eastward decreasing gravity trend may be attributed 

to the thickening of the Permo-Triassic rocks, with secondary effect due to the 

underlying Precambrian sequences. The thickness of Triassic and Permian rocks at 

this section is about 400 and 800 metres respectively and takes into account the 

topography of this area. The thickness of the Permian rock decreases at the most 

eastern end of the traverse to about 500 metres as suggested by Leaman (1990). 
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H.6.2. Cross-section II. 

Figure 11.6 shows the observed and calculated gravity and magnetic cross-

section II almost parallel to magnetotelluric sites (THN, PPR, FRS, WST). As can be 

seen here the observed gravity profile is slightly different compared to cross-section I. 

The gravity profile begins with the negative anomaly of -7 mGal (see Appendix 11.2) at 

the western edge of the cross-section and drastically increases at 8 kilometres to form a 

relatively large positive anomaly at 30 kilometres with maximum value of 9.5 mGal 

increasing toward the east of the traverse. The characteristic mentioned which is 

accompanied by a waving pattern of the gravity profile demonstrates that the denser 

basement extends irregularly east. The broad and large gravity anomaly together with 

slightly negative magnetic anomaly at the middle of the cross-section may be due to a 

large Cambrian volcanic body which has a thickness of about 5 kilometres and a base 

of from 20 - 33 kilometres. 

The phenomena shown by magnetic anomalies in cross-section I are also 

displayed here. Unlike the spikes found in cross-section I, the spikes created by 

dolerite bodies in cross-section H are larger. At the eastern part of the cross-section, 

the amplitude of the observed magnetic field is about 400 nT. The susceptibility value 

used here is 0.005 cgs. Attempts to use susceptibilities less than this imply a greater 

depth extent with consequent effects on the calculated gravity profile and results in 

larger rms error. It is suggested that some of this dolerite is more magnetic than in 

other sections. A reduction in the magnetic value before the large magnetic anomalies 

at 8 and 48 kilometres indicates that it may be associated with a deep fault. 
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111.7. Summary. 

Some important information can be drawn from the two-dimensional potential 

field modelling results: the entire region of these cross-sections is blanketed by 

Permo-Triassic rocks intruded by Jurassic dolerite; a major unconformity exists at the 

base of the Permo-Triassic (Parmeener Super group) cover; a drop in the magnetic 

value before the large anomaly is an indication of a deep fault; a trough like structure 

with Cambrian Volcanic fill is found at the western part of cross-section I and at the 

middle part of cross-section H, suggesting that this structure has a northwest - 

southeast direction and is wider to the south. 



Chapter III. 
TRANSIENT ELECTROMAGNETIC METHOD. 

111.1. Introduction.  

Inductive electromagnetic geophysical exploration methods employing a time-

varying artificial primary field as a power source, have been used for many years for 

probing the earth's shallow crust. An alternating or a step function current, when 

driven into a coil or through a wire grounded at both ends, will produce an oscillating 

magnetic field. Any conducting material within the region of the magnetic field will 

have generated within it induced currents, which will tend to flow in paths normal to 

the direction of the applied magnetic field. These induced, or eddy currents, will in 

turn generate a secondary magnetic field which will oppose the primary exciting field 

inside the conductor (see Figure I11.1). 

Any electromagnetic system operates in the frequency domain involving 

continuous transmission at a fixed frequency. Time domain electromagnetic systems, 

in which pulses are transmitted and the transient decay of any resultant secondary field 

is recorded during the interval between the pulses, have been developed in the last few 

decades. The name commonly applied to such systems is Transient Electromagnetic 

or TEM for short. The application of the TEM systems in geophysical exploration on 

the ground has been reported by many authors. 

Recently, there has been considerable activity in the theoretical investigation 

of TEM systems for mapping the conductivity of the sea-floor (Cheesman et al., 1987; 
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Cheesman, 1989 and Cheesman et al., 1990). The applications of such tools are 

numerous and include assessing off-shore placer mineral deposits, mapping 

quarternary geology and, in deep water, studying the physical properties of mid-ocean 

ridge hydrothermal regimes and associated massive sulphide deposits. 

IH.2. Basic Theory. 

Comprehensive review articles by Ward (1967), Keller (1971) and Buselli et 

al. (1985) outline many advances in the instrumentation and theory of the transient 

electromagnetic method, and the application of this method is discussed by Palacky 

(1983). When a step function current is applied to a coil or along a wire, a transient 

electromagnetic field is generated. The response of conducting ground to such a 

pulse, resulting from abruptly switching off the primary field, is to generate a 

secondary field which reduces the rate of decay of the total field. The resultant 

decaying transient field is sampled at discrete time intervals after the cessation of the 

current in the primary loop, that is, when the primary field is turned off (see Figure 

111.2). The transient measurements are averaged over many cycles to enhance the 

signal to noise and finally the average voltage level in each time window is recorded, 

which allows the transient decay to be recorded and analysed. Variations in the 

amplitude and decay rate of the transient field allow interpretations of the conductivity 

as a function of depth to be made. 
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PRIMARY MAGNETIC FIELD 

SECONDARY MAGNETIC FIELD - - - - - 

Figure 111.1. Induction of Eddy currents in a subsurface conductor 
(from Geox Sirotem). 

PRIMARY FIELD 	PRIMARY FIELD 	I 
ON 	 OFF 

VOLTAGE 

!DELAY' 	TIME ( m.secs. ) 

• 	 
Figure 111.2. Transient electromagnetic measurement 

(from Geox Sirotem). 
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111.3. Data Acquisition. 

The instrument used for this study was a SIROTEM MK1 transient 

electromagnetic system. SIROTEM was developed as a portable transient 

electromagnetic system for use in areas of highly conductive overburden, such as 

occur widely in Australia (Buselli and O'Neill, 1977), from earlier instruments 

invented in the USSR and North America. For a concise history of the development of 

transient electromagnetic instruments, see Spies (1980). 

The transient electromagnetic systems record data in the time domain, and 

SIROTEM can record up to 32 channels of data for delay time from 0.4 msec. to 

approximately 160 msec. after the cessation of the transmitter current. SIROTEM 

produces, at each survey station, a hard copy of the transient voltages in 

nanoVolts/Ampere and can also produce apparent resistivity of the equivalent half-

space at each delay time. 

There are a number of different loop configurations possible for transient 

electromagnetic measurements, some being better than others for specific geological 

situations. The coincident loop configuration was chosen as it has the highest signal 

levels of any configuration because the receiver is in the place of strongest 

transmission, and therefore best when transmission field is attenuated such as is 

caused by conductive overburden (BuseIli et al. 1985) :  With coincident loops, if 

present, the superparamagnetic response causes the ground to appear to be more 

conductive and at late times the apparent resistivity values are lower than expected. In 

Tasmania problems with a superparamagnetic ground response are minimal. 

The name coincident loop implies that the source of the primary signal is 

from a loop which is in the same geometrical position as the loop which receives the 

secondary signal. This can be achieved by a square loop of, in this study, 100 m side 

length, comprising two insulated single copper wires with one conductor acting as the 
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transmitting loop and the other as receiving loop. The transmitter loop was displaced 

4 m from the receiver loop to avoid any possible superparamagnetic response of the 

ground. Comprehensive discussion of these superparamagnetic responses may be 

found in BuseIli (1982) and Lee (1984). 

Eight stations were established in south-east Tasmania for the transient 

electromagnetic sounding measurements (see Figure 1.2 and Table 1.1) in order to 

place constraints on the thicknesses and resistivities of the surface layers, and to 

examine the magnetotelluric data for signs of static shifts (see Appendix VII.2). 

Initially, the transient voltage of each station was recorded up to 32 channels. 

However, in all eight transient electromagnetic soundings, the last delay-time readings 

were corrupted by noise. The instrument includes electronic circuitry used to filter out 

noise (power lines, VLF radio transmissions, sferics) but high noise levels will vitiate 

interpretation. To this end, selection was made prior to modelling. The noisy data 

were not used. The data taken into the model were selected up to about 33 

milliseconds. 

Time domain measurements enable data to be presented as an apparent 

resistivity versus time pseudosection which is similar to the method of presentation of 

induced polarization data. Alternatively, as adopted in this study, data can be 

presented as a single set of transient events. The name commonly applied to such a 

technique is Transient Electromagnetic Sounding or TS. From the single set of 

transient events resistivity-thickness can be inferred. 

111.4. Data Analysis. 

During this study data analysis was mainly carried out using Olivetti M260 

IBM compatible PC. In order to convert the transient voltage into the apparent 

resistivity and calculate the resistivity layer model, an inversion computer programme 

written in FORTRAN ["PANCAKE"] was used. In the PANCAKE program, voltage 
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calculation and apparent resistivity transforms include the effect of ramp-function 

current waveform. Details of the appropriate calculations for uniform half-space, 

layered half-spaces, and apparent resistivities used here are given in Raiche (1984), 

Lee and Lewis (1974) and Spies and Raiche (1980). A brief definition of the most 

commonly used parameters such as voltage response and apparent resistivity are given 

below. 

The voltage response was discussed by Lee and Lewis (1974). The method 

is based on calculations for a circular loop, and discussed in Spies and Raiche (1980) 

and Raiche (1984). Accordingly, the voltage response (V), at time t, of a 

homogeneous half-space (conductivity = a, magnetic permeability = p,) for coincident 

Tx - Rx loops of area A, excited by a step current I is as follows: 

24,FA 
V — 	Iy(x) 

Here, y is a function of the dimensionless parameter- x = aith / 4rtt. It is known that 

the voltage induced in a square loop differs from that produced in a circular loop by 

less than 1% for x = < 6 (Spies and Raiche, 1980). 

Making use of the well-known step function response of Lee and Lewis 

(1974), equation (III.2), to determine y and from which x can be determined, the 

apparent conductivity aa  can then be expressed (Spies and Raiche, 1980) as: 

aa  = ztictx  
1-1A (III.2) 

In practice, as an aid to preselection and interpretation, it is convenient to 

define an apparent resistivity; that is the resistivity of an equivalent half-space which 

would give the same Z (t), mutual impedance, as that observed, Z 0  (t). No simple 

expression exists for the apparent resistivity and it will generally change with time. 
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It is found by a scheme in which the value of at is varied to calculate the following 

equations and to make S (t) / S o  (see equation IV.13 and IV.14) approach 1 via an 

iterative procedure. The apparent resistivity pa is defined as pa  = 11th, where al is 

the final value of conductivity found at the end of the procedure (Raiche and Spies 

(1981) and Raiche (1984). For the coincident loops, the mutual impedance for half-

space may be written: 

aj.to 'Co F ( t )  2 
J1(4)d4 Z(t)= 	t   a 

where 

F(t) = g( 4,1i) - g(4ff) 

g(y) = yexp(-y2  ) - frcerfc(y)( 0.5 +y2 ) 

= (t-t0  )41,0  ala2 

a = to it 

J1  ( 4 ) is the Bessel function of the first kind of order one. 

4 is the Hankel transform variable. 

erfc is the complementary error function. 

a is the radius of loop. 

From this we have 

So = 
2 	Zo ( t ) 
iir ago (III.4) 

00 F(t) 2 S(t) =I 	a  Ji(4)c14 
(III.5) 
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Apparent resistivities are thus calculated from the mutual impedance data via the 

iterative procedure which takes a first-order approximation value for the apparent 

resistivity and successively improves it until the error between the true value So  and 

the estimated S, as given by equation (III.4) and (III.5) above is sufficiently small. 

The first guess estimate comes from a series inversion of (III.3) and equation 4 of 

Spies and Raiche (1980). 

The equations outlined in the previous section can be used to generate model 

curves of apparent resistivity for varying model layer parameters and loop 

configurations. Such model curves can be used to interpret field data in forward 

modelling. However, this is a tedious process for any but the simplest models and 

PANCAKE modifies a first guess to match the field data in some sense, usually to 

minimize the sum of squares of errors. This is the process of inversion or solving the 

inverse problem. For the inversions in PANCAKE a linearized least-squares 

inversion routine, similar to that described in Jupp and Vozoff (1975) was used to 

optimize the model parameters of layer resistivities and thicknesses to match the 

measured data. 

The inversion of field data to best fit layered models was used for 

interpretation. Basically a starting layered model specifies the number of layers above 

basement. The starting resistivity values and thicknesses are input into the program as 

an initial model together with a set of TEM observations (i.e. voltage versus time). 

The program adjusts the model parameters to obtain a least squares fit to the 

observation. 

When fitting layered models to data, there is always the question of how 

many layers to use. In this study, a 2 layer inversion model was made as the initial 

assumption of the geoelectric structures. In choosing the number of layers to be 

modelled, the standard errors (mean and root mean square), and the parameter called 

the average predicted residual error (APRE) were calculated following the method of 
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Raiche et al. (1985). APRE is one of the most useful statistics in finding the most 

parsimonious model consistent with the data. For a detailed calculation see Raiche et 

al. (1985). For APRE values less than 15 per-cent the model is considered to be in 

keeping with the data. 

111.5. Field Results. 

The theory put forward in the previous sections has been used to calculate the 

apparent resistivity as a function of time in a 100 m per side of coincident loop for a 

number of different layered models. These results were plotted against time ranging 

from 0.4 to 33 milliseconds which is the typical range used in this study. 

As shown in Figure 1.2, in this study the presentation of the data can be 

divided into two cross-sections. Cross-section I includes stations: LSV, GRV, JDB, 

LNV while cross-section II is composed of stations: WST, FRS, PPR and THN. 

(see Table 1.1 for abbreviations). 

The transient electromagnetic results may be merged with the magnetotelluric 

results using the method of Sternberg et al. (1988) to examine the magnetotelluric data 

for signs of static shifts. This is done in Appendix VH.2. It is appears that static shift 

corrections are not important here. 

111.5.1. Cross-section I. 

The plot of each sounding model may be identified from Figures 111.3 to 

111.6. The average predicted residual (APRE) values are generally low. At stations 

LSV, JOB and LNV the APRE values are 9.3, 9.8 and 8.5 per cent respectively but 

for station GRV the APRE value is 10.4 per cent. The standard errors, mean and root 

mean square errors (RMS), are also very low. The highest standard error calculated at 

this cross-section, RMS 9.8 per cent, is also found at station GRV. For other 
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stations the standard errors either mean or RMS are generally less than 9 per cent. In 

order to get the best fit for stations LSV, GRV and JOB models were done putting 

resistivity decreasing with depth. The values of the standard errors and the APRE 

above indicate that a two-layer model is a good representation of the data. Attempts to 

fit three-layer and four-layer models to data set produced considerably worse 

statistics. 

111.5.2 Cross-section II. 

As can be seen from Figure 1.2, this cross-section is almost parallel with 

cross-section I. The plot of each sounding model is shown from Figures 111.7 to 

WO. A similar situation to that at cross-section I is found at this cross-section 

survey, as the APRE values are low in most cases. In fact they are lower than cross-

section I as the highest APRE value is 12 per cent which is calculated at station THN. 

At stations WST, FRK, and PPR the APRE values are 11, 6.8 and 7.2 per cent 

respectively. The standard errors from most stations are quite low but THN station 

has a standard error slightly higher than at cross-section I. The highest mean error 

calculated is 10.2 per cent at station WST while the highest RMS value of 7.7 per cent 

is calculated at T'HN. For other stations the standard error values are less than 8 per 

cent. However the mean error is as low as 1.79 per cent and RMS error of 2.73 per 

cent is found at station FRS. In this cross-section, to get the best fit for stations WST 

and FRS, models were done inserting resistivity increasing with depth, while PPR 

and T'HN stations data was modelled with resistivity decreasing with depth. By 

judging the values of the APRE and standard errors described above, that fall within 

criterion set in section IV.4, we have confirmation that a two-layer model is the 

appropriate representation of the data. 
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111.6. Discussion.  

This study has placed constraints on the thicknesses and apparent resistivities 

of the surface layers, which provide valuable aid in interpretation of magnetotelluric 

data as discussed in Chapter V. 

No rock resistivity laboratory measurements were conducted for the 

interpretation of the SIROTEM results. Instead the results of resistivity measurements 

by Leaman 1971, 1973 were used. A list of the resistivities and rock units is shown 

in Table MA. 
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Table III.!. 

Laboratory resistivity measurements (after Leaman, 1971,1973) 

Rock unit Resistivity (Ohm-m) 

Dry Wet 

Quaternary 

- alluvials 10 - 150 1 - 20 

Tertiary 

- sediment 10 - 30 <1 - 10 

Jurassic 

- dolerite >5000 30 - 1000 

Triassic 

- sandstone,siltstone,mudstone 50 - 500 15 - 100 

Permian 

-mudstone,sandstone,limestone 100 - 5000 5 - 100 

Ordovician 

- limestone 500 - 1500 30 - 500 

Cambrian 

- volcanics 50 - 300 10 - 100 

Precambrian 100 - 5000 

111.6.1. Cross-section I. 

The results of the crosss-section I transient electromagnetic survey clearly 

show at shorter periods a large response which is probably attributable to the resistive 

first layer which is recorded over the length of the cross-section. At longer periods 

the apparent resistivity curve decays considerably implying a conductive lower layer. 

The apparent resistivity of the survey area was determined using the method described 

in Section 111.4. At LSV station, calculation of apparent resistivity indicates that the 
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surficial layer has a resistivity of about 243 Ohm-m which is in good agreement with 

the laboratory apparent resistivity measurement (see Table 111.1) reported by Leaman 

(1971). The two-dimensional modelling result of magnetic and gravity fields (see 

Chapter II)) indicated that this layer may be Permian rock. The depth of penetration 

calculated indicates that this resistive layer is quite thick (see Figure 111.4). This 

deduction is again supported by a two-dimensional model calculated from gravity and 

magnetic data. Underlaying this rock unit is a more conductive layer with the apparent 

resistivity value of 74 Ohm-m which is believed to be Cambrian volcanic rock. At 

GRV station (Figure 111.5), the response is similar to the result obtained at LSV 

station. However the surface apparent resistivity would appear to be somewhat lower 

than that at LSV,but still in the range of the resistivity value of Permian rock listed in 

Table 111.1. The underlying rock at GRV station which has a resistivity value of 68 

Ohm-m is also believed to be Cambrian volcanic rock. The JDB station is situated 

about 15 kilometres to the west of GRV. The lowest resistivity value for Permian 

rocks along cross-section I was found at JDB station being 180 Ohm-m (Figure 

111.6). The resistivity value and the thickness of this rock unit are in accordance with 

the listed data of Table 111.1 and the result of a two-dimensional model of gravity and 

magnetic fields. Unlike stations LS V and GRV, at JDB the Permian rocks are 

underlain by a more conductive layer. The value contrast in resistivity suggests that 

these layers constitute different rock units. There is no information which can be 

drawn from the transient electromagnetic survey regarding the contact between these 

two rock units because of an absence of transient electromagnetic recording between 

GRV and JDB stations. On the other hand, the potential field method successfully 

reveals this contact which is at about 8 kilometres to the east of JDB along cross-

section I and at 600 metres depth (see Figure 11.5). The density contrast and magnetic 

susceptibility characteristics coupled with resistivity value of this rock suggest it 

belongs to the Ordovician rock unit. At the western-most station, LNV, the highest 

resistivity value for Permian rock, 260 Ohm-m, with 325 metres thickness was 
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found. As at JDB station it it would appear that LNV station indicates Permian rock 

underlain by Ordovician rock unit. 

111.6.2. Cross-section II. 

A plot of each sounding model along cross-section II displays a slightly 

different characteristic from the sounding models along cross-section I. At two 

stations, WST and FRS, larger transient responses than cross-section I, at early 

sample times were recorded. At later sample time the signal decreased sharply. It 

may be inferred from the results that there is a surficial layer of moderate conductivity 

in this area. Transient electromagnetic data recorded at late sample times highlight 

anomalies from more resistive bedrock beneath a surficial conducting layer. At WST 

station, calculation of apparent resistivity indicates that the surficial layer has a 

resistivity of about 48 Ohm-m which is in the range of resistivity values of wet 

Permian to Triassic rocks. The density contrast and magnetic susceptibility values 

contribute important information to this discrepancy where the rock does not crop out. 

It is known from cross-section II of two-dimensional modelling of gravity and 

magnetic field results that this rock has a magnetic susceptibility value of 0.0 cgs and 

density contrast of -0.23 g/cc, thus confirming that the top layer at WST station is 

Triassic rock. Underlaying this rock unit is a more resistive layer which is believed to 

be Permian rock. Results from FRS station sounding in general were identical to 

those at WST and did not contribute any additional information of significance. In 

contrast to two previous stations, at PPR the Triassic rock underlies the more resistive 

layer. It is believed that this layer is Jurassic dolerite which has a thickness of about 

200 metres. At THN station, the sounding model was similar to the soundings in 

cross-section I. Here the Permian rock has a thickness of 450 metres. The more 

conductive bedrock, 28 Ohm-m, encountered here may be the same layer found at 

station LNV in cross-section I which suggests that the distribution of this Ordovician 

rock is restricted to the western part of the study area. 



Chapter IV. 
MAGNETOVARIATIONAL METHOD. 

IV.!. Introduction. 

The magnetovariational profiling method provides information about the 

conductivity structure of the earth by distinguishing the magnetic fields produced by 

the current concentrations induced in high conductivity regions. In a uniform or 

horizontally stratified earth the external and internal horizontal magnetic fields tend to 

add and the external and internal vertical magnetic fields nearly cancel. When there is 

a lateral variation in conductivity the concentration of current in the high conductivity 

region modifies the horizontal field and produces a significant vertical magnetic field. 

The assumption of the magnetovariational technique is that the horizontal field due to 

the current concentration is insignificant and that the vertical magnetic field in the 

absence of the current concentration is zero. Then the measured horizontal magnetic 

field can be regarded as "normal" and the measured vertical field can be regarded as 

"anomalous". The relationship between anomalous and normal fields then defines a 

transfer function that is characteristic of the lateral variation in conductivity. 

Determining the transfer functions over a range of frequencies, with a corresponding 

range of skin depths, allows the depth of conductivity variations to be assessed. 
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IV.2. The Basic Method. 

The magnetovariational profiling method is a way of determining the 

electrical conductivity distribution of the subsurface from measurements of natural 

transient magnetic fields on the surface. The principal difference between this method 

and the magnetotelluric method is that the magnetotelluric method determines 

conductivity as a function of depth while the magnetovariational method observes 

lateral conductivity inhomogeneities. Like the magnetotelluric method, this method 

utilises the naturally varying magnetic field which originates outside the earth. The 

geomagnetic variations found to be most suitable as a source field are those which are 

associated with substorms and similar types of disturbance. 

The basic features of a magnetic storm are shown in Figure IV. 1. Magnetic 

storms typically occur about once or twice a month. However much more frequent 

intervals of disturbance occur without all the manifestations of a storm and in which 

the strongest disturbance is confined to latitudes near the auroral zone. These are 

known as sub-storms. A sudden increase in solar wind pressure causes the merging 

of field lines in the earth's magneto-tail. The subsequent pattern of current flow, 

together with the field aligned currents produced by merging, causes the resultant 

substorm (Figure. IV.2) (Roederer, 1977)). 

Electric fields which are generated by such variations cause eddy currents to 

flow in the conducting part of the earth. These variations which penetrate into the 

earth, depending on the conductivity of the medium and the period of the variations, 

are used as a tool in probing the lateral conductivity contrast. 
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Figure IV. 1. A sub storm magnetogram, covering 31 hours, showing the principal 

features of the storm (after Parkinson, 1983). 
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Figure N.2. The open magnetosphere model showing the merging of field lines 

in the magneto-tail. This is one explanation for the initiation of substorm 

(after Roederer, 1977). 
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IV.3. Instrumentation and Procedure. 

A successful magnetovariational survey is critically dependent on good 

instrumentation with the ability to record changes in the earth's magnetic field 

accurately. To this end, two three-component EDA FM100B fluxgate magnetometers 

were utilised for acquisition of 14 stations (see Figure 1.1) of magnetovariational data 

in southeast Tasmania. These instruments are the same as those used for recording 

magnetotelluric data (see Chapter V.4). Most of the magnetovariational data were 

then collected together with the magnetotelluric data except for stations SNG,WDB, 

GDB, OLD, RMN and HTG. At these stations the data were collected with 30 

second reading interval only. 

Since the purpose of this magnetovariational observation is to study local 

subsurface conductivity distribution, the spacing of stations should be dense, with 

stations close together at approximately 10 km. The location of the stations was 

selected with care. They were distanced from man-made sources of magnetic 

variation fields to avoid data being contaminated and creating artificial anomalies. 

IV.4. Data Reduction. 

Since disturbances in the earth's magnetic field occur rarely, much of the 

collected data is unsuitable for analysis. Therefore the data must be scanned to find 

events which are large enough and in sufficient quantity to be analysed. This is done 

with the aid of program MTY3. This program reads the field cassette tapes and it 

displays the raw data on the computer screen. This analysis is only concerned with 

events that consist of three components, i.e. X (northward component), Y (eastward 

component), and Z (upward component) of the magnetic field and not the additional 

data containing two telluric field components. The process of linear interpolation was 

employed to remove unusable data and misreadings. This process links the points 
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adjacent to the data which is to be eliminated. Data from between 50 and 75 events 

were chosen for further analysis. These events contain slightly less than 512, 256, 

128, and 64 consecutive readings. For a 30 second reading rate, for example, these 

numbers correspond to interval periods of approximately 240, 120, 60, 30 minutes 

respectively. 

The next step of analysis involves the transformation of the time domain data 

into the frequency domain. The program PCMT23 (modified from programs 

EMM'TEE3, TASIGMA1 and TASIGMA2 ) uses the fast Fourier transform algorithm 

which converts the time domain data selected from the above analysis (PCMT1) into 

the frequency domain. It also calculates every Fourier coefficient at various periods 

up to the 12th harmonic of data length. The final output of this program is the 

transfer functions which are used to determine the orientation and length of the 

induction vector. The computaion of A and B transfer functions will be discussed 

below. 

IV.5. Transfer Function and Induction Vector Analysis. 

The direction of horizontal field that correlates with maximum vertical field 

was first examined by Parkinson (1959,1962). This analysis was extended by the 

transfer function method of Schmucker (1970) in which the magnetic components are 

related by complex coefficients A and B. Additional work was done by Everett and 

Hyndman (1967) who proposed an induction ellipse which gives a measure of the 

two-dimensionality of the conductivity structure. A detailed review and unifying 

framework for the induction arrow presentation of magnetovariational results is given 

by Gregory and Lanzerotti (1980) and an important note about the phase required for 

quadrature induction arrow presentation is given by Lilley and Arora (1982). 
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Parkinson (1959) observed that geomagnetic variation with a period less than 

one hour tended to be confined to some preferred plane inclined at an angle 0 with the 

horizontal. The projection of the normal to this plane in the horizontal direction may 

be plotted as a vector and is referred to as the Parkinson vector. The Parkinson 

vector, more recently described as the induction vector, is a fundamental and well 

established concept in the magnetovariational method (Parkinson, 1959, 1962, 1964, 

Everett and Hyndman, 1967, Schmucker, 1970). 

The induction vector is a 2-D vector (A,B) where A and B are transfer 

functions describing the behaviour of the vertical component as a function of 

horizontal components. In this study the transfer functions at each station for various 

periods were calculated with the aid of program PCMT23 and based on the least-

square method of Everett and Hyndman (1967). 

A and B are defined by 

Z=AX+BY 	 (IV.1) 

where: 

X is the Fourier coefficient of the magnetic north component 

Y is the Fourier coefficient of the magnetic east component 

Z is the best estimate of the corresponding Fourier coefficient of the 

vertical 	component 

A and B are therefore frequency dependant complex numbers. 

Moreover Parkinson (1983, pp. 332-333) calculates the A and B transfer functions 

using the following equation: 

8- 12  = ( Z - AX - BY ) ( Z*  - A*X*  - B *Y*  ) 
	

(IV.2) 

where 

8. is the difference between the .LHS and RHS of equation (IV. 1) 

* denotes the complex conjugate. 
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After differentiating and minimizing 	I •Sj 1 2  with respect to the in-phase and 

quadrature components of A and B this gives 

I ( X*Z x Y*Y )1 - I ( Y*Z x X*Y ) I  A = I ( X*X x YY* ) I - I ( XY* x X*Y ) I (IV.3) 

B I ( X*X x Y*Z ) I - I ( XY* x X*Z ) I  —  I ( X*X x YY* )1 - I ( XY* x X*Y ) I (IV.4) 

Parkinson (1983) mentioned that if there is a lateral change in the 

conductivity structure then the magnetic fields tend to follow the sloping interface near 

the lateral change, because there is a tendency for a time varying magnetic field to 

avoid a conductor. A point near the lateral change would experience a field with a 

vertical component correlated with horizontal component parallel to the gradient of 

conductivity. A map of induction vectors often indicates quite clearly the direction of 

gradient conductivity. 

A and B can be used to determine separate real (in-phase) and quadrature 

(out-of-phase) induction vectors. 

The real vector has azimuth and magnitude given by: 

(IV.5) 

(IV.6) 

(IV.7) 

(IV.8) 

AR = arctan R1 (B) / R1 (A) 

MR = ( R1 (A) 2  + R1 (B)2) 1/2  

The quadrature vector has azimuth and magnitude 

AQ = arctan Im (B) / Im (A) 

mQ=  irn  (A)2 + lin  (B)2)1a 
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where the azimuth of the real and quadrature vectors, indicates the horizontal 

correlating positively with upward vertical change measured clockwise from magnetic 

north. The magnitude of the vectors indicates the ratio of vertical to horizontal 

components. 

IV.6. Field Results. 

The azimuth and magnitude of the induction vectors were calculated from 

equations IV.5, IV.6, IV.7 and IV.8 at periods of 4, 8,10,12, 16, 20, 32, 64 and 128 

minutes. The vectors were plotted in Figures IV.3 to IV. 11 with respect to true 

north. In-phase and quadrature vectors are denoted by solid and broken lines 

respectively. Since the magnetic declination or variation of the area is about 13.5° to 

the east of north for the Epoch 1970.0 (Journal ASEG, vol. 10, no.1, p. 139, 1979), 

all of the azimuth values have had 13.5 0  added to the east. 
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Some of the obvious characteristics of the in-phase and quadrature induction 

vectors can be summarised by inspecting Figures IV.3 to IV. 11. Generally, the 

trends of the in-phase and quadrature vectors at period less than 20 minutes are very 

scattered especially the quadrature vectors. The scattering in orientation at short 

period is probably influenced by either a local anomaly or ocean effect. For periods 

longer than 20 minutes, however, the direction of the quadrature vectors remains 

scattered. Meanwhile the in-phase vectors pointing to south-southeast and south- - 

southwest direction, become uniform to the southeast direction at periods longer than 

64 minutes. The length of the vectors, especially the in-phase vectors, tends to 

increase with increasing period and appears to be at maximum at period 128 minutes. 

The lengths of the vectors coupled with the almost uniformity of the vectors' 

orientation at periods longer than 64 minutes indicates the strong effect of the ocean. 

IV.7. Discussion.  

As Tasmania is surrounded by deep ocean and Bass Strait (see Figure 

N.12), the influence of these oceans will be considerable in any induction problem. 

The effect of the induced currents in the ocean on the magnetic field recorded at 

stations located near the coastline has been the subject of several experimental 

(Parkinson, 1962; Parkinson and Jones, 1979; Everett and Hyndman, 1967; 

Honkura, 1978) and theoretical (Ashour, 1965; Rikitake, 1961 and Roden, 1964) 

studies. The coastal effect for Tasmanian inland stations has been modelled at the 

University of Victoria, Canada, by Dosso et al. (1985). As can be seen in Figure 

N.13, Dosso's analogue model study, the behaviour of the in-phase and quadrature 

vectors in the southern region, demonstrates the effect of the ocean on the in-phase 

vector for all periods and quadrature vector for longer periods. However, the 

removal of these effects from the field measurements may be part of the interpretation 

of a conductivity anomaly. 
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Figure IV.12. Geographical location of Tasmania showing bathymetric contours 

around the island. 
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Figure IV.13. In-phase and quadrature vectors for 10 and 60 minutes periods 

derived from the analogue model study (after Parkinson, 1988). 
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The field results presented in section IV.6 take no account of the effect of the 

oceans surrounding Tasmania. To produce a more meaningful result and make use of 

the analogue model results (Figure IV.13), the correction for 10 and 60 minutes 

induction vectors was made by using the method described in Parkinson et al. (1988). 

Parkinson et al. (1988) mention that for a two-dimensional body with the 

correct orientation of axes, equation (IV. 1) becomes 

Z = BY 	 (rv.9) 

The vertical component due to the induction in the oceans alone (Z1) and the vertical 

component due to the conductor as well as the oceans (Z2) are defined as 

Z1 =B1 (Yo + Yi) 	 IV.10) 

and 

Z2 = B2 (Yo + Yi + Y2) 	 (IV.11) 

where : 

B1 is the length of the vector derived from the analogue model along the 

raverse for the TE mode and perpendicular to the traverse for the TM 

mode. 

B2 is the length of the vector derived from the survey area along the traverse 

for the TE mode and perpendicular to the traverse for the TM mode. 

Yo is the primary horizontal field taken from the two-dimensional model. 

Y1 is the induced horizontal field due to the oceans. 

Y2 is the induced horizontal field due to the conductor under the survey area. 
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The required transfer function, for interpretation, is the ratio of (Z2 - Z1) to 

(Y0 + Y2). Combining equations (TV.10) and (IV.11): 

Z2 - Z1 = (B2 - Bi) (Y0 + Y2) + (B2 - Bi) Y 	(IV.12) 

Since the Y I obtained from the analogue model is small, the last term in equation 

(IV.12) can be neglected and the equation (IV.12) can be re-written to give 

Z2- Z1 = [B2 - B1 / (p + 1)] (Y0 + Y2) 	 (IV.13) 

where 

P = Y2/Y0 

The required transfer function is enclosed in square brackets. 

Figure IV.14 is the corrected in-phase vectors at 10 minutes along which the 

two-dimensional modelling magnetotelluric data was made. As can be seen from 

Figures IV.3 to IV.11 the quadrature vectors in the study area are small and erratic, 

therefore the correction only applies to the in-phase vectors. Plot of the in-phase 

vectors in Figure IV. 14 exhibits how the oceans influence the vertical component in 

the magnetovariational method. It is apparent from this figure that the corrected 

vectors have a different direction from that of observed vectors. For example, the 

corrected vector at SNG is shorter than the observed vector and pointing east, almost 

perpendicular to the coast line. This sign could be considered as due to an excess 

coast effect. This effect is probably either due to the conductivity contrast between 

the rocks beneath the continents and ocean (Parkinson and Jones, 1979). On the 

other hand, at others stations the corrected vectors point in northeast and northwest 

directions. The most interesting feature is the corrected vectors at GRV and WST to 

the east of the Huon river, which point in different directions from those in the west, 

i.e. LNV and PPR. The convergence of these directions at this period suggests that 

the better conductor lies along the Houn river at shallow depth. 
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Figure IV. 15 shows the corrected in-phase vectors at period of 60 seconds. 

Generally, the orientation of the corrected vectors at almost all of the stations at this 

period is distributed uniformly to the southwest direction. The length of the corrected 

vectors is much less than that of the observed vectors at all stations. The very short 

corrected vectors obtained at this period suggest that the deep conductor, described in 

Chapter VII, is more or less uniform over the whole area. 

To obtain more specific information about particular stations it is now 

necessary to examine the magnetotelluric results. 
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Chapter V. 
MAGNETOTELLURIC METHOD. 

V.1. Introduction.  

The magnetotelluric method is now being used widely for determining the 

electrical substructure of the earth. In practice, this is done by recording two 

horizontal, orthogonal components of the earth's magnetic field and two mutually 

perpendicular components of the earth's electric field (tellurics). Magnetotelluric 

sounding theory is frequently expressed in terms of concepts drawn from wave 

propagation theory and transmission line analogies. Before discussion about the 

specification of the model (section V.3), the source and transmission of the 

electromagnetic field utilized must be reviewed. 

V.2. Origin and Propagation of Electromagnetic Field. 

The magnetotelluric method is a passive geophysical technique that utilizes 

the naturally occurring fluctuations of the earth's geomagnetic field as its signal 

sources. The frequencies of electromagnetic fields typically used are between 10 -5  

and 102  Hz. Fields recorded above 1 Hz are generally produced by worldwide 

thunderstorm activity or cultural noise; fields below 1 Hz are generally produced by 

current flow in the ionized layers surrounding the earth (Keller and Frischknecht, 

1966; Parkinson, 1983). Whatever the source, it is assumed that the incident 

electromagnetic fields are in the form of vertically propagating plane waves, with 

orthogonal electric (E) and magnetic (H) components. Horizontal variation in these 

fields, due to limited spatial dimensions of the source, must be small over a lateral 
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distance comparable to skin depth (discussed below) in the earth, at the frequency 

concerned (Word et al., 1971). Figure V.1 and V.2 show the propagation of 

electromagnetic waves through a homogeneous and layered earth respectively with 

significant attenuation occurring within the conductive layers. 

Upon striking the earth's surface, most of the incident energy of the 

electromagnetic fields is reflected. The small portion of energy transmitted travels 

-vertically downward. As the wave propagates into the earth, the amplitude of E and 

H fields is reduced. The depth at which the fields have fallen to 1/e (37%) of their 

values at the surface is called the skin depth (8). The skin depth for a plane wave in 

an homogeneous medium is given by: 

8 = ( 203.11p ) 1/
2 
	

(V.1 ) 

where 8 is in metres, co is the angular frequency of an electromagnetic wave in 

radians/sec., p is the resistivity in Ohm-m of the medium through which the wave is 

diffusing, and t is the magnetic permeability of the medium in Henrys/m (Him) 

(Cagniard, 1953). The magnetic permeability is generally taken to be that of free 

space: 1.to = 47c x 10-7  Him. Equation (V.1) relates the frequency of the propagating 

field to its depth of penetration. Therefore, the skin depth is often used as a criterion 

for the depth of investigation. 

If the electromagnetic fields encounter any conductivity contrast, the 

following boundary conditions are imposed (Swift, 1967; Rankin, 1962): 

1. The electric field tangential to the interface is continuous. 

2. The magnetic field tangential to the interface is continuous. 

3. The difference in the current density across (normal to) the interface is 

equal to the time rate of change of the surface charge density on the 

interface. The surface charge density is usually considered to be constant 

and the normal current density to be continuous. 

4. The magnetic flux normal to the interface is continuous. 
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Figure V.1. 
Propagation of an electromagnetic wave (rectangular vectors E and H) 

through a homogeneous earth. (After Waeselynck, 1974) 

Figure V.2. 
Propagation of an electromagnetic wave through a layered earth. 

(After Waeselynck, 1974). 
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For the last condition, it is generally assumed that the magnetic permeability within 

the earth is homogeneous. Therefore, the boundary condition is equivalent to the 

magnetic field across the interface being continuous. 

V.3. The Earth's Dimensionality. 

Dimensionality of the earth must be determined for proper interpretation of 

magnetotelluric data. Three-dimensional earth geometries interpreted using 1- or 2-D' 

techniques will lead, in many cases, to erroneous results. The same is true for 2-D 

geometries interpreted using 1-D theory. In the following pages a summary of 1- and 

2-D magnetotelluric theory is presented. The identification of the electric and 

magnetic fields as vector quantities is assumed, and no symbols are used to mark 

them as such. Furthermore, a coordinate system at the earth's surface with the x axis 

being positive north; y, positive east; and z, positive down, is assumed. 

V.3.1. The one-dimensional earth. 

For a 1-D earth or one where we consider the conductivity to vary only with 

depth, with the electric field propagating perpendicular to the magnetic field, we 

define a quantity called the impedance as: 

= 
E

x Z• xy H 
(V.2) 

where Zx  is the impedance in Ohms, Ex  is the Fourier transform of the electric field 

along the x axis in volts/meter (V/m), and H y  is the magnetic field along the y axis in 

amperes/m (A/m). The impedance can be thought of as a complex scalar transfer 

function. For particular frequency, it linearly relates an electric field component to its 

orthogonal magnetic component, i.e.: 

E= Z H x 	xy y (V.3) 



im Z xy  
0 = arctan xy 	re Z xy (V.6) 
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or 

E = Z y 	yxH x (V.4) 

Furthermore, because of the symmetry, the impedance for a layered earth does not 

depend on the orientation of the measuring axes at the earth's surface. So in this case 

Zxy  = - Zyx . 

The apparent resistivity of the earth is related to the characteristic impedance 

through the relation: 

pxy  = .2 T I Zxy 1 2 	
(V.5) 

where pxy  is in Ohm-meters, T is the period of the electromagnetic wave in seconds, 

and Zxy  the impedance in (millivolts/km)/nanoteslas. The quantity is real, being 

dependent on the ratios of the amplitudes of the E and H fields. Since the impedance 

in a 1-D case is invariant for all orientations of the measuring axes, so is the apparent 

resistivity. 

The impedance phase is derived from the characteristic impedance through 

the relation: 

where 0 is in degrees and im Zxy and re Zxy  represent the imaginary and real parts 

of the complex impedance. The phase represents the lag of the magnetic field with 

respect to the electric field. In homogeneous earth, the phase lag is -45° for all 

frequencies. In layered earth, the phase varies with the conductivity of the earth's 

layers encountered. The phase decreases toward 0° if the impedance increases with 

period. Phases out of the range of 900  to -90 0  are not possible in a 1-D earth 

(Hermance, 1973). 
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V.3.2. The two-dimensional earth. 

So far the discussion has been limited to the electromagnetic response of a 

horizontally layered earth in which each horizontal layer is homogeneous and 

isotropic. However, this model is not sufficient to describe many real earth 

situations. In many cases, the earth has lateral changes in conductivity or the layers 

may be anisotropic in the horizontal plane. The anisotropy may be due to the banded 

nature of the rocks or to geological structures. Lateral changes in conductivity may be 

due to faults, continent-ocean contacts, grabens filled with conducting sediment, etc. 

V.3.2.1. The impedance tensor. 

If the earth's structure is 2-D, defined as one where the conductivity varies in 

two directions, one of which is vertical, the coupling of the electric and magnetic 

fields is more complicated than for a layered earth. For example, near a lateral 

conductivity contrast, the electric fields may be strongly distorted (Hermance, 1973). 

In this case, the electric field is generally locally polarized at some angle other than 900  

to the regional magnetic field. Therefore, each component of the electric field is 

coupled to both components of the magnetic field (Hermance, 1973). This can be 

represented by the following equations: 

Ex  = Zxx  Hx  Zxy Hy 

E =Z H +Z H y 	yx x 	yy y 

(V.7)  

(V.8) 

These equations can be written in matrix notation as 

    

Ex 
Ey 

 

Z Z 
XX Xy 	x 

Z Z 
Yx YY 	Y (V.9) 

   

   



EH=Z x x 	xx 

EH=Z x y 	xx 

EH=Z y x 	yx 

EH=Z 
Y Y 	Yx 
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or 

1E1 = IZI IHI 	 (V.10) 

where 

   

 

I z = 

(V.11) 

   

The dyadic Z is termed the impedance tensor. The elements of Z represent coupling 

coefficients. They are complex, because the electric and magnetic fields are not in 

temporal phase. Their values are dependent on frequency, and on both the geometry 

and electrical properties of the conductive inhomogeneity. The elements of the 

impedance tensor are found by solving equation (V.7) and (V.8). 

If the pair Hx  and Hy are used, four equations can be developed from 

equation (V.7) and (V.8): 

(V.12) 

(V.13)  

(V.14)  

HH+Z 	HH x 	x 	xy 	y 	x 

HH+Z 	HH x 	y 	xy 	y 	y 

HH+Z 	HH x 	x 	yy 	y 	x 

HH+Z 	HH 
x 	Y 	YY 	Y 	Y 	(V.15) 

The bar represents the band average of the auto-power ( i.e., H x  H x  ) and the 

crosspower (i.e., Ex  H ) spectra of the fields beneath. The auto-power and 

crosspowers spectra are the Fourier transforms of the auto-correlations and cross 

correlations of the fields in the time domain. 
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Band averaging takes advantage of the fact that the impedance values vary 

slowly with frequency. The equations (V.12) - (V.15), therefore can be computed at 

far fewer frequencies than there are Fourier transform values (frequency values) of 

the field components (Vozoff, 1972). The auto-power and crosspowers may be taken 

as averages over some finite bandwidth. This is usually accomplished by passing 

averaging windows of constant Q through the resultant auto-power and crosspower 

spectra (Gambleet al., 1979). Q is a term used to describe the sharpness of a filter. 

It represents the ratio of the midpoint frequency to the bandpass. 

It is interesting to note the behaviour of the impedance elements in relation to 

the earth's geometry as the tensor is rotated. For a one-dimensional earth, these are 

invariants. In other words for all 0 

Zxy  - Zyx  = 0 

Z = Z = 0 xx 	yy 

(V.16)  

(V.17)  

For a two-dimensional earth the impedance values vary with the angle of rotation. 

For all 0 

Zxy - Z = constant yx 

Z + Z = 0 xx 	yy 

(V.18)  

(V.19)  

For a three-dimensional earth, the impedance elements also vary with the angle of 

rotation. For all 0 

Zxy - Zyx  = constant 

ZXX + Z Y  = constant Y 

(V.20)  

(V.21)  

Therefore, the behaviour of the elements of the impedance tensor as they are rotated 

can test the dimensionality of the earth over which the data were collected. 



coh (X ,Y) — 

I (c x*) 	Y*)1 
1/2 

Y* ) 1 
(V.22) 

Magnetotelluric Method 	 82 

V.3.2.2. Coherency.  

To test the degree of independence of the pair of the measured fields H x , Hy , 

Ex , E. the ordinary coherency of the fields is calculated (Reddy and Rankin, 1974; 

Reddy et al., 1976). The ordinary coherency of two functions X and Y is defined in 

terms of their spectra as 

where ( ) indicates a sum either over events or frequency bands, and the variables 
with the superscript * are complex conjugates. For example, the coherency of H x  

and H is 

coh ( Hx  , Hy ) = 

    

     

 

1/2 
( Hx  H*x  ) ( Hy  H*y  ) 1 

 

(V.23) 

 

  

If the coherency is equal to 1, the functions are linearly dependent, and if equal to 

zero they are completely independent (uncorrelated). 

V.3.2.3. Reliability.  

After the estimates of the elements of the impedance tensor have been 

achieved, their reliability is tested. The coherency between the predicted and 

observed electric fields is calculated. This is referred to as the E predictability. The 

predicted value of the coherency between E x  and E,xpredicted  is calculated (Swift, 

1967) as 
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coh (E ere('  ) 	
x  I Zxx  coh (HxEx) + HY1  Zxy  coh (HyEx ) 

x 

2 	2 
[ Zxx I I Fix I + 1 zxY 

211 
HY1 +21 HRe(Z Z )] x y 1 xx x y cohH xH y 

2 

 

 

(V.24)  

Similarly, the coherency between E y  and EyPredicted can be estimated from: 

I  
coh (E

'EPred.  — 	
Hx  I Zyx  coh (HE) + H Z cob (H E ) 1 Y 	YY 	Y Y  

1 Y Y 
2 	2 	2 

[ ZYx  I I Hx 	
Zyy  I I Hy  I +2114)(11 Hy I Re (ZyxZyy  coh HxHy) 

(V.25)  

The higher the coherency of the E predictabilities, the lower the noise content in the 

observed E and H fields. With less noise, the impedance tensor elements are less 

distorted (Boehl et al., 1977). Generally, impedances with a predictability of 0.9 or 

above are highly acceptable for interpretation. In this study, E predictabilities as low 

as 0.8 were used. 

V.3.2.4. Principal direction. 

Once the elements of Z have been calculated, they are rotated into the 

principal directions. In the principal directions, the measuring axes are parallel and 

perpendicular to the strike of a 2-D conductivity inhomogeneity. For a strictly 2-D 

geometry, with the measuring axes in the principal directions, Maxwell's equations 

separate into two modes. One mode, E parallel to strike, depends only on H 

perpendicular to strike, and the other mode, E perpendicular to strike depends only on 

H parallel to strike (Hermance, 1973). 

Equations (V.7) and (V.8) become 
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E' = 	H' x 	xy y 

E' =Z' H' y 	yx x 

(V.26)  

(V.27)  

where the prime indicates an orientation of the measuring axes in the principal 

directions. In this orientation, Zxx  and Zyy  are 0. Generally, however, the 

measuring axes are not in the principal directions. In this case, the principal 

directions are found by mathematically rotating the impedance tensor. The rotation is 

accomplished by the following equation: 

where 
= f3 Zi3

T 

[ cos 0 sine 
=  -sine  cos 0 

(V.28)  

(V.29)  

DT is the transpose of 0, and 0 is the angle of rotation. For a truly two-dimensional 

earth, the tensor is rotated until the off-diagonal elements are both zero. 

Generally, however, the earth is imperfectly two-dimensional. With rotation 

of the impedance tensor, the magnitude of Zxx2  + Zyy2  only passes through a non- 

zero minimum. In this case the principal directions are usually defined as either the 

minimum of 

 

,2 	,2 
Z +z 

XX 	YY (V.30)  
or the maximum of 

 

,2 	,2 
Z +z xy 	yx (V.31)  
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The rotation angle , 0, thus 

   

4 6 = arctan 0 

(Z -Z )(Z +Z ) +(Z -Z ) (Z +Z ) xx yy 	xy yx 	xx yy 	xy yx  
2 	 2 

Zxx  -z yy  _ Zxy  + Zyx  
(V.32) 

  

where * is a complex conjugate, Zxx, Zxy, Zyx and Zyy are unrotated tensor 

impedances (Madden and Swift 1969, Jupp and Vozoff 1989). 

If one wishes to determine which is the major axis, one must calculate 
1Z' 12  + 1Z'yx 	and 0 + 45° to determine the large value. 1 2  for 6 xy 	 0 	0 

The above outline of theory represents general published treatments. In this 

study we develop a new method of the rotation of coordinates in magnetotelluric 

analysis (Parkinson et al., 1992) and describe it in some detail in the following 

section. 

V.3.2.5. A New Rotation Angle and Dimensionality  

Calculation Method. 

This section discusses an alternative treatment that has some interesting 

features. The magnetic and electric field vectors are expressed in terms of some 

cartesian coordinate systems (see Figure V.3), usually magnetic north (X) and east 

(Y). Let OX,OY be the axes relative to which measured values are obtained (it is 

assumed that the electric field coordinates have already been rotated into coincidence 

with those of the magnetic field) and OX',OY' the axes parallel and perpendicular to 

the strike of the structure. 0 is the angle, clockwise, through which OX must be 

rotated to coincide with OX'. Then the field coordinates relative to OX,OY can be 

expressed by 
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Fx  = F'x  cos 9 - F'y  sin 0 

F = F y  cos 0 y 	x' sin 0 + F'  

(V.33) 

(V.34) 

where primes indicate coordinates relative to OX',OY'. 

Y' 

Figure V.3. X - Y and X' - Y' coordinate system. 

Substitution of similar expressions for the coordinates of E and H into (V.33 and 

V.34) leads to 

E'x  = H'x  [Zxx  cos29 + (Zxy+Zyx) sin 0 cos 0 + Zyy Siri20] 

+ H'y  [Zxy  cos29 - (Zxx-Z) sin 0 cos 0 - Zyx  sin20] 	(V.35 

E'y = H'x  [Zyx  cos28 - (Z,-Z,) sin 0 cos 0 - Zxy sin 20] 

+ H'y  [Zyy  cos28 - (Zxy+Zyx) sin 0 cos 9 + Zxx  sin20] (V.36) 

the elements of the rotated tensor being the expressions in square brackets. The 

required rotation angle is the one that makes both Z' xx  and Tyy vanish. Consider 

first Z'xx. It will be zero if 

Z'xx  cos20 + (Zxy+Zyx) sin 0 cos 0 + Z Y  sin29 = 0 	(V.37) Y 
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Dividing by cos2O leads to a quadratic equation in tan 0 with solutions 

tan ex  — s + 
Sf S2 -4 Z Z xx yy 

2Z YY 	 (V.38) 

 

tan ex — s -iS
2 -4Z Z xx yy 

2Z YY 	 (V.39) 

 

where S = Zxy  + Z. A similar treatment of Z ' 	to 

tan 0 — Y 

S 	S2 	- 4 	) Zxx ZYY  
2Z, 	 (V.40) 

tane — Y 

S+\/S
2

-4Zxx ZyY) 
2Z, (V.41) 

Synthetic data was used to calculate these theta and found that for a truly two 

dimensional structure tan 0 becomes real. An examination of these formulae indicates 

which root should be used. Consider (V.38) in the case where Zxx  = 0, Zyy # 0. 

Clearly ex =0 is the required solution. This is obtained when the square root is taken 

with the same sign as S. Similarly if Zxx  # 0, Zyy = 0, (V.40) gives ey  = 0 if the 

square root is in the same quadrant as S. All variables in these equations are complex 

but the physical angle through which the observed coordinates should be rotated is 

given by the real part of the tan 0. Average of Ox  in equation (V.38) and O y  in 

equation (V.40) determines rotation angle (9) and should rotate the observed 

coordinates into the direction of maximum current flow. Calculation of rotation angle 

(0) using real and imaginary part separately should be avoided as the term under the 

square root is not a linear equation. 
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Parkinson et al. (1992) state that the other roots are not invalid. There is an 

interesting relation between (V.38) and (V.41). Take the same sign in each and 

multiply the solutions together (writing R for the square root) 

showing that 

(R-S)(R+S)  tan O
x tan 0— ( 4 Z Z ) — -1 

y 
 

xx yy 

Ox -Oy  = ir/2 

(V.42) 

(V.43) 

It can be shown that the angles have opposite signs, so I e x  I and I O y  I are 

complementary angles. The sign of S depends on which principal direction 

corresponds to a higher current flow. 

If the structure is completely two-dimensional, then Ox  = n/2 + Oy . This is 

obvious from the vanishing of Zxx  + Zyy, but this is unusual. The difference 

between ex in equation (V.38) and e y  in equation (V.40) indicates a measure of how 

closely the structure approximates to two dimensions. The rotation angle (0) should 

be plotted only for the difference between O x  in equation (V.38) and Oy in equation 

(V.40) within ± 20 0  (Parkinson, personal communication). If the difference is 

greater than ± 20 0  rotation angle (0) does not mean anything as it may not represent 

two-dimensionality of the structure. In other words, the closer the difference to zero 

degrees the better the approximation to two-dimensionality. 

The relation between this difference and the skew is critically dependent on 

the amount of asymmetry, i.e. the ratio of Z' 	Z'yx . If this is close to one (an 

approximation to one-dimensionality) very large differences are found for quite small 

skew. A ratio of 2 in the impedances gives a difference of 10° for a skew of 0.06 

whereas for a ratio of 5 the same difference occurs for a skew of 0.1. 

The above treatment can be applied to either the real or imaginary parts of the 

vectors. However, if the imaginary part of the impedance elements is large, it should 
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be applied with caution, because the real part of E could be strongly affected by the 

quadrature part of H. 

V.3.2.6. The skew and ellipticity. 

The commonly used parameter for determining the dimensionality of the 

earth is the impedance skew. The skew is a measure of how well the diagonal 

elements of the impedance tensor are minimized. It therefore indicates how well the 

observed data meet the criterion necessary to assume a 2-D environment. Swift 

(1967) defines the skew as 

Z +z 
SKEW — xx yy  Z - Z xy yx (V.44) 

While there is no set acceptable upper value for SKEW, it is generally agreed that the 

skew must equal zero for the earth to be truly 1- or 2-D. In this study, data with 

skew values of 0.5 or less are considered to suggest a 1- or 2-D earth. 

Another parameter identifying the earth geometry is the ellipticity. The 

ellipticity (t ) is defined as (Word et al., 1971) 

 Z ,) 
„ 

Zx y Z yx ) 
(V.45) 

where the prime indicates values of the impedance tensor once it has been rotated to 

the principal directions. In general, the ellipticity is real for a 2-D earth and complex 

for a 3-D earth (Word et al., 1971). The condition of both the ellipticity at the 

principal direction and the skew being zero is a necessary and sufficient condition for 

identification of a 2-D earth (Word et al., 1971). 

In three-dimensional basin structures there is no simple correlation between 

the degree of distortion in earth response function due to three-dimensional structure 
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and the magnitude of skew or ellipticity (Hermance, 1982). Skew was thus used 

only in a qualitative manner for this study. 

V.3.2.7. Th e resistivity. 

Once the impedance tensor has been rotated into the principal directions, a 

pair of apparent resistivities can be calculated. They are 

px' y  = .2 T1Z4 12  

p' x  = .2 T 1 ZyI  12  y x 

(V.46)  

(V.47)  

where T is the period in seconds, Z' the impedance in (millivolts/km)/nanotesla, and 

p is in ohm-m. If the strike of the resistivity inhomogeneity is along the x axis, then 

the resistivity p xy  applies to the transverse electric mode, and p yx  to the transverse 

magnetic mode. The associated phases (8) are 

IM ( Zxy ) 
exy = arctan Re  ( Zxy  ) 

Im ( Z ) Yx  eyx  = arctan 
Re ( Z ) Yx 

(V.48)  

(V.49)  

In this study the apparent resistivities are, in the normal way, plotted on log-

log scale against period, and may be compared with the resistivities obtained from a 

calculated model. The plotted rotated apparent resistivities may yield the same value 

as the resistivities based on the model under consideration at all periods. The 

calculation of a one-dimensional model here was based on the algorithm of 

Schmucker (1970). While a two-dimensional model was calculated using a program 

based on Jones and Pascoe (1971) and Pascoe and Jones (1972). 
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V.3.2.8. The tipper. 

When the impedance elements have been rotated into the principal directions, 

the strike and dip with respect to Zxy or Zyx  still must be determined. To resolve this 

ambiguity, a parameter called the tipper is used. The tipper defines the geoelectric 

axis in the vicinity of magnetotelluric sounding. It makes use of the correlation 

between the vertical and horizontal components of the magnetic field. In defining the 

tipper, a linear relation between the magnetic components is assumed 

Hz = AHx +BH 	
(V.50) 

where A and B are complex coupling coefficients. The coefficients are found in a 

similar fashion to the elements of the impedance tensor. By multiplying equation 

(111.37) by the complex conjugate of H x  and Hy, two equations are formed: 

H H*  = A H H*  + B H H*  Hz  x 	x x 	y x 

H H*  = A H H*  + B H H*  Hz  y 	x y 	y y 

(V.51)  

(V.52)  

These equations can be solved for the coefficients A and B. The resultant equations 

are 

A — Hx  H*  Hz  H*  - H H*  H Hy*  x 	x 	y  x z  
H H;  H*  - H H*  H H*  

	

y y x x 	y x xy 

	

B — Hx y  H*  H H* 	- H H* 	y H H*  

	

zx 	x x  z  
H H*  HH*  - H H*  H H*  

	

yx x y 	x x yy 

(V.53)  

(V.54)  
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The pair of coefficients can be thought of as operating on the horizontal magnetic field 

and tipping part of it into the vertical (Vozoff, 1972). The magnitude of the tipper is 

defined as 

ITI = IA2 + B211/2 
	

(V.55) 

The magnitude of T gives the relative strength of Hz. The phase of the tipper ( T4) ) is 

defmed as 

2 	 2 ( A
2 
 +A ) arctan ( A. /A ) + ( B 2 

 +B ) arctan ( B. /B ) re 	1m 	im  re 	re 	im 	im re  T4) – 2 
I T I (V.56) 

where im and re represent the imaginary and real parts of the variable they subscript, 

and I T I is the magnitude of the tipper (Jupp and Vozoff, 1976). Both the tipper 

phase and magnitude are invariant with rotation. 

For a 2-D structure and noise-free data, A and B will have the same phase. 

The ratio of B to A will be a real number and define an angle from the x-axis to the 

tipped horizontal component of the magnetic field (Vozoff, 1972). This angle is 

given by 

= arctan —B 
A (V.57) 

The angle essentially defines the dip direction. By definition of the dip, the strike is 

found by adding or subtracting 900  to 4). 4) is useful because the phase difference 

between Hz  and H4) can give the bearing to certain structures such as dikes. The 

difference between 4)and  the principal axes also gives a qualitative measure of three-

dimensionality. 

Tipper skew is the angular difference between the horizontal bearing whose 

component magnetic field is most coherent with Im(H z) and the horizontal component 

most coherent with Re(H z). Therefore, tipper skew may be biased by coherent noise 
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such as lightning (Rokitiyansky, 1982). Tipper skew is zero for two-dimensional 

structures and is given by Jupp and Vozoff (1976) as: 

y = 2T-2  [ Re (A) Im (B) - Im (A) Re (B) 	(V.58) 

The reliability of the value of H z  used in tipper skew calculations may be 

estimated from the coherence between measured and calculated H z, 

A*03(1-1 3c.* 	+ B KI-1)(11 *),) 
Coh [ Hmeas. calc. 

1/2  z 	' z 	 1/2  

KI-I H * ) [AA*(H H * ) + BB * (HyHy* )] \z x/ 	 x x 

(V.59) 

The tipper azimuth is a marginally less stable indicator of strike direction than 

the principal axes (Jones and Vozoff, 1978). 

V.3.2.9. Induction arrow. 

The Schmucker induction arrows V r  and Vi (Schmucker, 1970) are related to 

the inductive transfer functions (tipper coefficient) A and B by: 

V= 

V. = 

[ Re2  ( A ( 	) 

r 	2 
Im ( A ( 

) + Re
2  ( B() 

2 
+ 	( B ( co 

1/2  
-Re(B(w)) arctan 

(VI.60) 

(VI.61) 

1 1/2 

Re ( A ( 	, 

-Im(B(co)) )
arctan  Im ( A (co)) 

The induction arrow definitions preferred in this study (see Chapter IV) 

follow Parkinson's convention (Parkinson, 1962) which gives results known as 

Parkinson's arrows. These induction arrows have a more obvious physical meaning 
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than either tipper or the Schmucker induction arrows and are easier to calculate. They 

represent the real and imaginary parts of the ratio of H z  to the total magnetic field 

component in the plane normal to strike. 

V.4. Equipment and Survey Procedures. 

V.4.1. Introduction.  

Two three-components EDA FM-100B fluxgate magnetometers (called 

EDA.I and EDA.II) were utilized for the acquisition of the magnetotelluric data at 9 

stations in the southeast of Tasmania (See Figure 1.2). The magnetotelluric recording 

system, developed by the Geology Department, is a revision of a previous system 

which suffered from excessive digitally generated system noise and was hampered by 

the lack of high frequency data (Bindoff, 1983). The unit is designed to sample both 

magnetotelluric and magnetovariational data and is fully microprocessor controlled 

with real time clock sampling initiation. Seven channels are digitally sampled to 12 

bit precision using sampling periods from 60 to 0.2 seconds. The processor 

automatically switches sample periods and anti-aliasing filters to acquire samples at 

the specified sample period. A record consists of 1024 samples of each channel and 

is permanently stored on magnetic cassette tapes. 

Seven channels are used in slow recording mode to sample the three 

magnetic components (called Hx,Hy,Hz) two temperatures (internal, external) and 

two electric components (Ex,Ey) which are necessary for three-dimensional 

recording. Provision is also made for sampling five channels only if desired. In this 

fast memory mode internal and external temperatures are not acquired. The main 

difference in the display of the two modes of recording lies in the capability of the 

analog to digital converter (ADC) in the recording unit. The ADC converts data of up 

to seven channels in the slow mode and only five channels in fast mode. Figure V.4 

is a block diagram of the instrument. 
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V.4.2. Field equipment used. 

The field equipment was designed for reliability and ease of operation. Low 

power and light weight were of particular importance. This was achieved to the 

extent that simultaneous magnetotelluric recordings by each instrument were made at 

two sites per month with only one operator. 

Data were collected on cassette tapes by a digital Memodyne tape unit then 

transferred to a floppy disk via a personal computer with the aid of the "READ 1" 

program. The data were then displayed and read and the presence of excessive noise 

could be determined. This was used to decide if continued site occupation was 

needed. The recorded data were later stored in binary format on double-density, 

double-sided floppy disk for further processing. 

Each site required the deployment of the following equipment : 

* A set of fluxgate magnetometers consisting of three magnetic components 

and 30 meters interconnecting cable. 

* Three electrodes (two remote plus one central), together with a set of two 

electric field wires, each 200 meters long. 

* A recording system consisting of all the signal processing, control 

circuitry and a Memodyne digital cassette together with a power supply. 

The power supply consisted of one 100 amp-hour battery and 37 watt solar 

cell array. The average recording system power consumption was 4.8 watts. The 

recording system with batteries occupied a space 75 cm by 40 cm by 25 cm (See 

Figure V.5). 
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V.4.2.1. Equipment design philosophy. 

The design of the recording system can be conveniently considered in 

relation to the electronic circuit designs and the recording playback software. 

Features to be taken account of for the design of the complete recording system 

include: 

* A requirement for low power consumption in order to obviate the need 

for 	a generator power source with the inherent noise and transportation 

problems. 

* Interface facilities to enable data to be transferred to a personal computer. 

* An accurate interval timer to ensure a stable data sampling rate. 

* Light weight and small physical size. 

* A simple and flexible operation, particularly in the field. 

V.4.2.2. Logistics.  

The deployment of equipment in field situations required planning, 

particularly when making simultaneous site recordings. In practice both of the 

magnetometers were operated at 0.2, 0.5, 3, 6 and 30 seconds reading intervals. 

Consequently, each station had to be occupied for at least 15 days. For example, 

using a 120 minutes cassette, a recording at 30 seconds takes approximately 10 days 

to complete. To maintain the continuity of recording, it is necessary to keep the 

battery fully charged by the aid of a solar panel (See Figure V.5). In Tasmania, to get 

the maximum sunlight the solar panel is set facing north at a vertical angle of 45 

degrees. During winter the battery is changed at least every five days. For shorter 

reading intervals (0.2, 0.5 and 3 seconds) stations were erected in the afternoon, 

operated at night and dismantled in the morning. 

The two electric lines were laid north-south, east-west (magnetic) from the 

recording system with the two extreme ends electrically connected to the soil. 
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Magnetic and electric field sensors were aligned parallel and perpendicular to magnetic 

north to within ± 10 . 

V.4.3. Survey procedure. 

To use the magnetotelluric technique for geophysical prospecting, the ratio of 

the horizontal electric field in the ground to orthogonal horizontal magnetic field, must 

be measured accurately over a number of frequencies. By selecting an appropriate 

frequency range, shallow as well as deep structure can be investigated. 

When recording the natural electromagnetic field strength, the signal level 

may vary considerably from day to day, or even from hour to hour. Therefore, the 

recording system requires a large dynamic range to cope with these changes, and it 

must be sensitive enough to obtain satisfactory data. 

V.4.3.1. The electric field sensors. 

The horizontal electric field components were measured with 150 metre long 

dipoles arranged in an L-shaped array, with one arm in the north - south direction 

whenever possible at each site and electrically connected to the soil at the extreme 

ends. The connection points to the ground are implanted non-polarisable Pb-PbC12 

type electrodes. 

Non-polarising electrodes were selected because they are more stable over 

long periods, less sensitive to temperature effects and have low noise characteristics 

compared with metallic stakes or sheets in the anticipated frequency range (Petiau and 

Dupis,1980). The electrodes were buried 50 - 60 centimetres below the surface and it 

was often necessary to wet the ground with salt water around the electrodes to ensure 

good contact with the soil. If the soil is dry, the circuit resistance through the 

electrode is increased. 
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The wires were loosely strung on the ground with rocks or soil placed on 

them at irregular intervals and pegged at each end. This reduces the risk of wind 

generated signals (due to wire movement) to a minimum. 

The placement of electrodes is important because the surface conductivities 

may not be uniform on a scale of the same order as the electrode spacing. The sites 

were tested by four distant electrodes, a short and long line in each of the two 

directions. The short line should be about half the length of the long line. A site is 

satisfactory .if the signal from the short line is a duplicate at half amplitude of the 

signal from the long line. If a site is satisfactory only the long lines need be used for 

magnetotelluric recording. The location of the electrodes must then be surveyed, 

since the line length must be known to calculate the electric field. An electric field 

component can be calculated from the relations: 

Ex  = AVx/length 	 (V.62) 

Equation (V.62) assumes that the surface is laterally homogeneous in the 

neighbourhood of the particular site. In inhomogeneous terrains it is more desirable 

to use an X-shaped electrode configuration to minimise the distortions caused by 

shallow surface inhomogeneities to the measured electric field (Swift, 1967; Vozoff, 

1972). 

V.4.3.2. The magnetic field sensor. 

The magnetic field varies with time of day, latitude and during storm cycles, 

and it ranges from a few nanoteslas during quiet times to hundreds of nanoteslas. To 

measure the magnetic field over this large range, and still maintain the required 

sensitivity, two three-component EDA FM-100B fluxgate magnetometers with the 

components oriented magnetic north, east and vertically down were used (see Figure 

V.6). The EDA fluxgate magnetometers which have a resolution of approximately 1 

nanotesla and a frequency response with 3 db from 0 Hz to 0.5 Hz were used. 
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The magnetometer is sited at approximately 20 meters from the central point 

and at 45 degrees to the compass points so as to be minimally affected by the electric 

cables. The device is covered with a grounded aluminium shield when in operation to 

protect it from stray electric field, rain etc. 

The sensing head is located as far away from the recording station and roads 

as possible. It is attached to a seventy-five centimetre length of aluminium pipe 

driven into the ground leaving about twenty-five centimetres exposed. To avoid 

vibration, it is imperative that the aluminium pipe is supported solidly. Once the head 

is securely fastened to the pipe, it should be carefully levelled using the adjustment 

screws and level bubbles provided, since tilting the head by one degree can cause a 

1000 nanoteslas change in H x  or Hy  reading. 

In use the magnetometer head is covered by a inverted rubbish bin to reduce 

long period drifts from temperature effects. Both the sensor head and magnetometer 

itself are temperature dependent. Temperature corrections ( see Appendix V.1) were 

then applied to the data before any computation was carried out. In addition, the 

detector temperature and the internal temperature of the recording equipment are 

recorded on cassette tape along with the 3 magnetic and 2 telluric signals. 

The inherent advantages of the fluxgate equipment are its simplicity, 

reliability, small size and modest power consumption. 
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Figure  V. 6.  The  magnetic  sensor  head.  
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V.4.4. Summary.  

In operation the fluxgate magnetometers and electric preamplifier circuit 

worked well. However, the EDA.I magnetometer showed a tendency to long period 

DC drifts which may have been due to amplifier drifts. This was soon cured by 

installing a new set of preamplifiers. 

The field equipment used enabled the mounting of a magnetotelluric survey 

with the minimum of logistic support. 

V.5. Data Analysis. 

The raw data obtained from measurements of the magnetic micropulsations 

and telluric voltages are very irregular. The purpose of analysing the data is to 

transform them into magnetotelluric parameters as discussed in section V.3. which 

can then be interpreted. During this study, data analysis was mainly carried out using 

FORTRAN programs : MTY3 and MTYZ45. 

Some corrections must be made for any magnetotelluric events chosen from 

the data, i.e. output of the READ1 program, as discussed in section V.4.2. For 

example, the errors in data points recorded caused by dropouts in the cassette tape 

have to be removed. This is done by program MTY3. This step of data analysis 

allows for the elimination of noise from original data. The program applies linear 

interpolation on bad data points and the noise is subsequently replaced with 

interpolated data points. This process needs to be carried out since the Fourier 

transform of a spike has a broad spectrum and thus would severely distort the 

frequency spectrum. The instrumental gain, analog to digital converter factor as well 

as temperature correction, as discussed in section V.4.3.2, are also applied. The 

output unit of the chosen events here is in nT for the orthogonal horizontal (H z , Hy) 

and vertical (Hz) components of the magnetic field and mV for the orthogonal 

horizontal (Ex , Ey) components of the electric field. In addition, files of set up data, 

selected events used in the calculation of the magnetotelluric parameters, and tabulated 
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results were stored in binary format on double-density, double-sided floppy disk 

files. These files were used as the input of program MTYZ45 in the next step of the 

analysis and from this point on we will concentrate on applications of program 

MTYZ45. 

Once acceptable and correctly formatted data was obtained the E x  and Ey  

components of electric fields were rotated to .coincide with H x  and Hy  axes of the 

magnetometer (see Figure V.3) using MTYZ45 program. The rotation is carried out 

using the method described in section V.3.2. This puts all the data sets in a common 

reference frame. At this step the electric fields data is also converted from mV to 

m V/km. 

Since data are obtained as a function of time, after removing the data that are 

affected by excessive noise levels, each of the five components must be converted 

into the frequency domain. This conversion is required because most of the 

theoretical solutions for interpretation have been developed in the frequency domain. 

A Fast Fourier Transform (FFT) technique was used on all of the data presented in 

this thesis. As such, after rotation, the data was transformed to the frequency domain 

using a standard FFT algorithm routine (R1-1-1B) available at the Geology Department 

library. No filter corrections were applied to the data since matched filters were used 

in all channels and ratiometric relations among the field components are the only 

concern. 

The calculation of the appropriate transfer function of the magnetotelluric 

impedance tensor (section V.3.2.1) was done using a least squares estimation based 

on the band-averaged values of the product of the spectral matrix. The spectral matrix 

contains the auto- and cross-powers of the measured fields. From the spectral matrix 

and estimated impedance tensor, the standard magnetotelluric parameters were 

calculated as discussed in section V.3. 
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Each of the magnetotelluric stations used in this study is analysed with the 

purpose of identifying the geometry of the earth's subsurface (i.e., 1-D, 2-D, or 3-D) 

and the noise content of the data. Excessive noise will distort the impedance 

estimates, resulting in resistivities which have little dependence on the earth's 

electrical properties. Therefore, each station is analysed in order to identify data 

which could produce interpretational errors. 

The data quality of each station was determined by a wide range of criteria. 

The different criteria are briefly discussed below. In this discussion, the station 

numbers correspond to the locations identified on Figure 1.2. 

The next step in the data analysis was to estimate the dimensionality of the 

earth at each station. Two magnetotellutic parameters were utilized as criteria to 

accomplish this: the skew and rotation angle. In addition, a third criterion of 

comparing the geoelectric strike directions between adjacent stations was used. 

The skew criterion was applied as suggested in section V.3. Data at periods 

where the skew values were less than or equal to 0.5 were considered to be relatively 

2-D. Data at periods where the skew was greater than 0.5 were considered to be 3-D. 

This criterion was applied to trends in the data. Since low skew (actually zero skew) 

is a necessary, but not a sufficient, condition for two-dimensionality, other tests were 

applied to the data. Some workers, however, have felt they obtain useful parameters 

even when the skew exceeds 1.0 (Kurtz and Garland, 1976; Jiracek et al,. 1979). 

Stability in the impedance rotation angle was also used as an indicator of a 2- 

D earth. The geoelectric strike for a 2-D earth is constant with depth; thus the angle 

of rotation to the principal directions should be constant at all periods. However, if 

the geoelectric strike varies with depth, then so should the rotation angle as a function 
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of period. Therefore, a widely varying rotation angle was taken to indicate a 3-D 

earth. 

The geoelectric strike directions were determined from the field data and 

shown in Figure VI. 1. This was done by assigning the values of p xy  to either the TE 

or TM mode. If pxy  was assigned to the TE mode, its corresponding impedance 

rotation angle defined the strike direction. If p xy  was assigned. to the TM mode, its 

correspoding impedance rotation defined the dip direction and ± 90 0  was added to 

obtain the geoelectric strike direction. However, noise contamination can cause 

rotation angles to vary rapidly over a small frequency range. Therefore, only data that 

were of constant strike (± 100) over at least one decade of the sounding spectrum 

were considered representative of the geoelectric strike. 

The next step in the data analysis was to determine the reliability of the 

impedance. This was accomplished by using the Ex, E. and Hz  predictabilities (see 

sections V.3.2.3). In this study, E and H predictabilities of less than 0.8 identified 

noisy data. Data with these coherencies were not used for computer modelling. 



Chapter VI 
MAGNETOTELLURIC SOUNDING RESULTS 

IN SOUTHEAST TASMANIA. 

VI.1. Introduction. 

Two magnetotelluric cross-sections were established in southeast Tasmania 

during the period of this study. Both of these cross-sections stretch across the gravity 

maxima which is known as the Huon Mobile Zone (HMZ) (Leaman and Richardson, 

1990). From the two dimensional gravity and magnetic modelling results, discussed 

in Chapter II, it is now believed that this gravity anomaly represents a trough-like 

structure filled with Cambrian volcanic rocks extending in a NW - SE direction. The 

locations of the stations comprising the cross-sections are shown in Figure 1.2 and 

their geographic coordinates are listed in Table 1.1. 

The analysis of all data was made using the tensor techniques discussed in 

Chapter V. All data presented in this chapter were based on data which has coherency 

between the E and E predicted of greater than 0.8 and coherency between H x  and Hy  

of less than 0.8. Data which fell outside these coherency criteria were regarded as 

noisy data and were not used for computer modelling. 

Figure VI.1 shows the principal axis directions as described in Chapter V for 

stations along cross-sections I and II respectively. These azimuths are plotted for the 

average over-all period band analysed. It can be seen that the axes are oriented north-

west to south-east which is approximately parallel to the strike of the main geological 
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feature (HMZ) in this region. This consistency is remarkable when one considers the 

geological complexity of the region. The rotation angle defined here is almost the 

same as the result of the new method discussed in the previous chapter. It is 

justifiable to assume, then, that JDB which is situated approximately on the middle of 

the HMZ with data in three decades of period and rotation angle (0) of 40 0  is 

representative of the region. This rotation angle (40° west of magnetic north) was 

then used to rotate the observed coordinate axis at all sites to their principal axes 

direction. 

Error bars which are plotted on apparent resistivity, coherency, skew and 

phase, represent quartiles from a series of data where the minimum data calculated is 

four. If data at a particular period are less than four then the lower and upper limit of 

the error is determined from the lowest and highest value of those data. 

VI.2. The Cross-section I Response. 

The total length of this cross-section from Leslie Vale in the east to 

Lonnavale in the west is approximately 40 kilometres and its orientation is 70° east of 

north which is almost perpendicular to the main geological feature in the study area. 

Local surface features are reasonably flat and topographic effects are assumed to have 

no major effect on apparent resistivities. 

Recording periods in the field do not always produce data indicating 

geomagnetic disturbances because of the irregularity of their occurrence. For 

example, at JDB such data was obtained from periods of 10 to 10,000 seconds but at 

LNV only at periods of 10 to 1000 seconds were data affected by significant 

geomagnetic disturbances. In the following section the magnetotellwic parameters 

versus period plot obtained for LSV, GRV, JDB and LNV are discussed in some 

detail. 
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i) Leslie Vale (LSV). 

This location was chosen to determine the apparent resistivity curves over the 

sedimentary basin of southeastern Tasmania at the eastern edge of the approximate 

margin of the lower Palaeozoic basin. The data was recorded on sedimentary rocks of 

Permian age. This rock crops out at 200 metres east of the recording site, and 

consists of a sequence of pebbly mudstone, pebbly sandstone and limestone. These 

rocks may be classified as the lower Parmeener super-group rock unit reported by 

Leaman (1973) and Farmer (1985). The thickness of this rock unit under LSV station 

is inferred from two-dimensional gravity and magnetic modelling and is believed to be 

about 600 metres, but the transient electromagnetic modelling result gives a slightly 

shallower depth of 450 metres with an apparent resistivity value of 243 Ohm-m. 

The apparent resistivity curve (Figure VI.2) indicates that the subsurface 

resistivity properties are reasonably anisotropic as period increases. The resistivity 

curve for TE and TM modes tends to merge at periods less than 100 seconds. The 

merging of both the TE and TM tensor resistivity curve is probably due to an isotropic 

overburden layer. The sharp increase of the TE mode resistivity curve towards longer 

periods suggests that the resistivity gradually increases with depth. 

Skew which is normally used to determine dimensionality of a site is given in 

Figure VI.2. The skew which is very small especially at shorter periods, may result 

from one- or two-dimensional structures at shallow depth. The skew factor increases 

as the periods increase, but does not exceed the value of 0.3, reflecting the lateral 

inhomogeneity contrast at middle depth where the subsurface structure is no longer 

isotropic. The relatively small skew as shown here, suggests that this station is 

approximately two-dimensional. As also can be seen from Figure VI.2 the Ex  - Ex  

predicted and Ey  - Ey  predicted coherencies of 0.9 are observed at almost all periods. 

These coherencies indicate that the presence of noise in the data is about 10%. 



NI A C; EE 1-  CD 1-  EE L_ L_ LJ FR I (2 DATA  
xy observed data (TE mode) 

I yx observed data (TM mode) 
Date: 12-29-1992 
Time: 	53: 37 

10.0k 
•  • 

100.0  1.0k 
Period (sec) 

1.0 1111•11111 	 111 	 II Ill". 

0.8- 

0 6 

_Y 
m 0.4- 

0.2- 

IIIIIIIIIIIIIIIIII  
0.0 

1.0  10.0  100.0  1.0k 
Period (sec) 

10.0k 1 .0 1 0.0 

1 	1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 11111 	I 	1 1 1 Mt 

R
e
s
is

t
i
v

it
y  

10.0k. 

1.0k7 

100.07 

cia  

10.07 

1.0 

Figure VI.2. App. resistivity, coherency, skew and phase from Leslie Vale UP4 

1 	I 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 11111 	1 	1 1 1 1111 



Magnetotelluric Sounding Results 	 112 

ii) Grove (GRV). 

This station is located approximately 12 kilometres to the west of station 

LSV. The recording apparatus was situated on similar rock units as at LSV which is 

believed to be the lower Parmeener super-group. The thickness of this rock unit is 

inferred from two-dimensional gravity and magnetic modelling and is less than that at 

LSV station being about 475 metres. The same thickness is also inferred from the 

transient electromagnetic modelling result with an apparent resistivity value of 228 

Ohm-m. 

A plot of apparent resistivity versus period at GRV station (Figure VI.3) 

indicates that the degree of anisotropy at periods less than 80 seconds is very small. It 

can be seen here that both the TE and TM modes resistivity curves are very close and 

almost parallel to each other. The anisotropy ratio (Pmajor 'Pminor) is between 1 - 2 

at short periods and increases to 4 for periods longer than about 100 seconds. As 

observed at station LSV, the TE modes here also exhibit an increase in apparent 

resistivity at greater depth. 

Skew plot for this station can be seen in Figure V1.3. The skew factor, in 

general, tends to be small at approximately 0.2 at all periods. According to Swift's 

(1967) criteria and the anisotropy ratio, this indicates that the geological structures 

beneath this station can be described as 'weakly' two-dimensional. 

Both of the TE and TM modes have quite high predicted coherency 

(see Figure VI.3). The lowest predicted coherency value is 0.9 observed at period 40 

seconds. As the period increases, however, this value increases to 0.95 indicating the 

data is less affected by noise. 
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ill) Judbury (JDB). 

Station JDB is situated approximately 16 kilometres to the west of 

GRV. When this project was designed, a 10 kilometres spacing between stations at 

every cross-section was initially proposed in order to map the resistivity structure in 

southeast Tasmania. In reality, however, it is difficult to find locations that can 

satisfy the survey procedure criteria discussed in the previous chapter, resulting in 

irregularity of the stations. 

The JDB station is located on Parrneener sub-group rock units. Unlike 

the two stations previously discussed (LSV and GRV) where this rock unit is 

underlain by Cambrian volcanic rocks, it is believed that the low Parmeener super-

group sits on a sequence of marine quartz-sandstone, siltstone and limestone of 

probably Ordovician age at JDB station. The transient electromagnetic modelling 

result indicates that the apparent resistivity value for this layer is 44 Ohm-m. 

Apparent resistivity curves for the TE and TM modes, can be seen in Figure 

VI.4. It shows that both the TE and TM curves tend to separate at period 80 seconds 

which indicates a strong anisotropy beneath this station. This degree of anisotropy 

suggests that the station may be close to a vertical discontinuity in structure. The TE 

mode curve appears smoother compared to the same apparent resistivity mode at other 

stations, but this is probably due to the greater amount of data analysed and the 

correspondingly greater number of accepted estimates. The apparent resistivity for TE 

mode appears period independent at period less than 100 seconds. With increasing 

period, the apparent resistivity decreases from 200 Ohm-m at period 10 seconds to a 

minimum peak of about 100 Ohm-m at period 40 seconds and increases to about 1000 

Ohm-m at longer periods thus suggesting the existence of a conductive layer at depth 

beneath this station. This is also supported by the short corrected induction vector 

obtained by the magnetovariational method at this station (see Figure IV. 15). 
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For two-dimensional structures skew should be small. This is particularly 

true for JDB. Skew values of the magnetotelluric impedance tensor here were less 

than 0.3 for all periods, and less than 0.2 for the majority of periods as shown in 

Figure VI.4. For this reason, it can be concluded that the subsurface resistivity 

structure beneath this station cannot be three-dimensional in character. The quality of 

the data at this station is good. The predicted coherencies of about 0.95 are observed 

at most periods which indicates the data are almost free of noise. 

iv) Lonnavale (LNV). 

The Lonnavale station is situated at the western edge of the approximate 

boundary of the lower Palaeozoic basin. At all stations including LNV along cross-

section I, the data were recorded on the Permian rock unit. Underlying this rock is 

believed to be Ordovician rock which has apparent resistivity value slightly less than 

that found at LNV being 39 Ohm-m which is inferred from two-dimensional gravity 

and magnetic and transient electromagnetic modelling results. 

The apparent resistivity curves as shown in Figure VI.5, display increasing 

anisotropy with increasing periods. The TE mode curve, however, has very small 

variation at periods longer than 100 seconds implying an almost uniform resistivity 

layer at depth below this station. 

Figure VI.5 shows plot of skew from this station. In general the skew factor 

is extremely low being about 0.1 for the length of the recording period. Based on this 

skew and apparent resistivity results, it is clear that the structure under this station is 

most likely two-dimensional. 
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VI.3. The Cross-section II Response. 

Cross-section II is almost parallel to cross-section I. The total length of the 

cross-section from Oyster Cove in the east to Tahune in the west is approximately 50 

kilometres and its orientation is 60° east of north, almost perpendicular to the 

geological grain in the study area. This section reports the results obtained from 

stations OTC,' WST, PPR, FRS, and THN. 

i) Oyster Cove (OTC). 

This station is the eastern-most location of the southern cross-section and is 

situated about 6 kilometres to the south of gravity and magnetics cross-section II. It 

lies on the lower glacio-marine sequence of pebbly mudstone, pebbly sandstone and 

minor limestone of Permian age. The thickness and the apparent resistivity of the 

rock unit beneath this station is unknown. It should be mentioned here that there is no 

transient electromagnetic measurement taken at OTC. The order of magnitude of the 

apparent resistivity, however, suggests a relatively resistive structure which is 

intuitively compatible with the situation of site LSV of cross-section I. 

The apparent resistivity curves which are shown in Figure VI.6 indicate that 

the degree of anisotropy at period 50 seconds is very small. It can be seen here that 

both the TE and TM modes resistivity curves are very close and almost parallel to each 

other. The curves then start to split at period greater than 50 seconds which implies 

that the structure may become more anisotropic at great depth. The anisotropy may be 

associated with the contact between the Cambrian volcanic and crystalline rock of 

Precambrian age as inferred from two-dimensional gravity and magnetic modelling 

and a drillhole at nearby Woodbridge. 
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The coherencies and skew for all estimates on apparent resistivities are also 

shown in Figure VI.6. Both coherencies suggest very good data. The skew value 

becomes larger as period increases, reaching values greater than 0.8 and is the largest 

encountered. This feature therefore represents general structure which is far from 

two-dimensional. As the location of this station is close to the coast, the large skew 

may be associated with the resulting lateral inhomogeneity. 

ii) Woodstock (WST). 

This station is located approximately 15 kilometres west of OTC. The data 

was collected on sedimentary rocks of Triassic age. This rock outcrops in the Sandfly 

Rivulet bank 300 metres to the north of the recording site. It consists of sequences of 

sandstone, siltstone, mudstone with some carbonaceous materials. These rocks are 

part of the upper Parmeener super-group (Leaman, 1973; Farmer, 1985). The 

thickness of this rock unit under this station is assumed from two-dimensional gravity 

and magnetic modelling and it is believed to be about 350 metres. This thickness 

agrees with the transient electromagnetic modelling result which also gives the 

apparent resistivity value of 48 Ohm-m. 

Apparent resistivity curves for both TE and TM modes, can be seen in Figure 

VI.7. For the whole period, both apparent resistivity values are slightly smaller•

compared to the apparent resistivity on station OTC, therefore suggesting that this 

station sits on a more conductive body. The resistivity curves for TE and TM modes 

which tend to separate at almost all periods, indicate a strong anisotropy. 

A plot of the dimensionality factor (see Figure VI.7) indicates that the 

subsurface conductivity structure under this station is probably two-dimensional at 

middle depth since the average skew value is about 0.5. The predicted coherencies 

plot shown in Figure VI.6 demonstrates that the quality of the data is reduced at 
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periods below 30 seconds to the value of 0.85. Beyond these periods, however, the 

presence of noise in the data is limited to about or less than 10%. 

iii) Franklin (FRS). 

Station FRS is located approximately 8 kilometres west of WST. This 

station which sits on the same rock unit as WST, lies approximately above thelniddle 

of the Palaeozoic basin. The thickness of the Triassic rock unit under this station is 

about 400 metres and has apparent resistivity of 51 Ohm-m. Depth to pre-Permian 

rocks must be about 800 metres. 

Of particular significance is the fact that the apparent resistivity plots for this 

station (Figure VI.8) are dramatically different from those recorded at stations WST 

and PPR. Such difference usually indicates major structural boundaries in the vicinity 

(Vozoff, 1972), and consequently, these stations must be subject to different 

structural constraints. Several characteristics of the curves will be important in the 

interpretation. For example, the TE mode apparent resistivity is almost an order of 

magnitude larger than those at WST and PPR. For this station, a distinct decrease of 

the TE mode curve is observed at period less than 30 seconds and followed by a slight 

increase in apparent resistivity from 40 seconds, indicating a conductive zone within 

the crust. 

Figure VI.8 also contains information about data quality and structure 

dimensionality. As can be seen from Figure VI.8 noise content in the data is 

moderately small, i.e. 10%. The skew factor is about 0.1 up to periods of 90 seconds 

and tends to increase at longer periods. In general the skew value is less than 0.3, 

therefore it can be concluded that the conductivity distribution beneath this station is 

probably two-dimensional. 
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iv) Peppers Road (PPR). 

This station sits on dolerite of Jurassic age. The thickness of this igneous 

rock is inferred from two-dimensional gravity and magnetic modelling and is believed 

to be about 200 metres. The transient electromagnetic modelling result, gives the 

apparent resistivity value for this rock as 311 Ohm-m and it is believed that the 

Jurassic rock overlies Triassic rock which has apparent resistivity value of 30 Ohm-

m. 

In Figure VI.9 both the TE and TM mode apparent resistivities data display 

increasing anisotropy with increasing period. The values of apparent resistivity, in 

both TE and TM modes are particularly small compared to the apparent resistivity 

figures for the FRS station, and lie between 20 and 200 Ohm-m. It is thus indicated 

that there is a more conductive part of the basin under the PPR. The ratio of the TE 

and TM modes apparent resistivities at 30 seconds period is almost 10 compared to 

the ratio of apparent resistivities at the same period at FRS which is about 2, 

indicating lateral variations at a shallow depth beneath these stations. 

Figure VI.9 also displays variation of the dimensionality of the structure 

underneath this station. The skew tends to decrease until about 20 seconds where it 

reaches the minimum value of about 0.3 and it begins to gradually increase to nearly 

0.6 at period 200 seconds before reducing to 0.4 at longer periods. It indicates that 

the distribution of conductivity beneath this station may be a two-dimensional 

structure at least up to middle depth. As can be seen from Figure VI.9, the data 

possesses a high predicted coherence (self-consistency between telluric and magnetic 

components) i.e. greater than 0.9 
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v) Tahune (THN). 

This station is the western-most location of cross-section II and is situated 

approximately 12 kilometres west of PPR. The data was recorded on the lower 

Parmeener super-group rock unit, the same rock unit as at station LSV, having the 

apparent resistivity value of 159 Ohm-m. Underlying this rock is believed to be 

•:71 , 
	 Ordovician rock which has apparent resistivity value of 28 Ohm-m. 

The apparent resistivity curves as shown in Figure VI. 10 illustrate increasing 

anisotropy with increasing periods. The smooth rise of the TE mode resistivity curve 

toward longer periods, for example, suggests that the resistivity gradually increases 

with depth. In addition, the separation of the TE and TM modes suggests that the 

station may be close to a vertical discontinuity in structure. 

Skew values of magnetotelluric impedance tensor were about 0.5 for a period 

of 40 seconds, and dramatically increase at longer periods, almost reaching the value 

of 1.0 as shown in Figure VI.10. The dramatic increase in skew factor toward longer 

periods indicates the three-dimensional structure beneath this station. This three-

dimensional effect may be associated with a buried fault at 800 metres depth and the 

edge of the granite body which is found at 8 kilometres depth beneath this station as 

inferred from two-dimensional gravity and magnetic cross-section H. 

The predicted coherencies (see Figure VI. 10) of just above 0.9 are observed 

at periods longer than 40 seconds. These coherencies also suggest that the presence 

of noise in the data is about 10%. 
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VI.4. Comparison of rotation angle calculation. 

This section reports the results of the new rotation angle and dimensionality 

calculation method which is discussed in Chapter V.3.2.5. The calculation of rotation 

angle (8) analysis was carried out using the PTH2.FOR program based on equations 

(V.38) to (V.41). The purpose of this analysis was to examine and compare the 

theoretical approach described in Chapter V.3.2.5 to the conventional method and 

apply it to the real geological situation. 

Although this method was applied to all nine magnetotelluric stations to 

calculate the rotation angle and examine the dimensionality of the subsurface structure, 

only three representative stations will be presented here. These are a two-

dimensional-like structure (JDB), a weakly two-dimensional structure (GRV) and a 

possibly three-dimensional structure (THN). 

Figure VI.11 shows the result from JDB station. The rotation angle (0), 

which is assigned in the analysis as average theta, is plotted on the left hand side of 

Figure VI. 11. The average theta was determined from the average of ex and Oy  of 

equations (V.38 and V.40). The average theta that is shown here is based only on 

delta theta values within ± 20 degrees which are plotted on the fight-hand side of 

Figure VI. 11. Delta theta was derived from the difference of Ox  and Oy  of equations 

(V.38) and (V.40). As can be seen from Figure VI. 11 both average and delta theta 

plots are good and very few of these data are scattered. It also shows the advantage 

of analysing a large population of data. Plot of rotation angle (0) or average theta 

indicates slightly scattered data at periods less than 100 seconds with average theta 

about 50 degrees and at periods greater than 100 seconds most of the average theta 

lies at about 45 degrees. This angle represents an anticlockwise rotation. The rotation 

angle defined for this station agrees very well with the approximate strike of the Huon 

Mobile Zone. Delta theta which can be used as a measure of how closely the structure 
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approximates to two-dimensions, is plotted on the right-hand side of Figure VI.11. 

At period less than 100 seconds delta theta is confined to a range of 10 degrees and at 

longer periods most of delta theta lies very close to zero. Based on the small variation 

of average theta and almost zero of delta theta it can be concluded that this station is 

two-dimensional. This result is in good agreement with the result given by skew (see 

Figure VI.4) 

The rotation angle (0) analysis result from a weakly two-dimensional 

structure station (GRV) can be seen in Figure VI. 12. Rotation angle (0) or average 

theta, on the left hand side of Figure VI.12, determined for this station is 

approximately 45 degrees at periods less than 50 seconds and swings to 40 degrees 

for the rest of the recording periods. This angle represents anticlockwise rotation and 

is very similar to the rotation angle found at JDB. This average theta was again 

plotted based on delta theta values within ± 20 degrees. Unlike the plot of delta theta 

at JDB, delta theta here, on the right hand side of Figure VI.12, is very scattered at 

longer periods. The scattering of the delta theta cannot be attributed to the noise 

content in the data since the coherency of the data is greater than 0.9. It is most likely 

that the scattered data reflect irregularities in the structure. Because this phenomenon 

is also exhibited by the skew (see Figure VI.3) where it tends to increase at longer 

periods, the structure under this station therefore can be approximated to have two-

dimensional structure at middle depth then changing to possible three-dimensional 

structure at great depth. 

Plot of rotation angle (0) analysis results at a possibly three-dimensional 

structure station (THN) may be found in Figure VI. 13. It shows the average theta plot 

is remarkably scattered at periods less than 200 seconds where the data lie between 

+30 and -65 degrees. This angle represents both anticlockwise and clockwise 

rotations. For periods greater than 200 seconds, however, most of the data is 

confined to an angle of about -65 degrees. The delta theta plot is also very scattered at 
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period less than 200 seconds and gathering at about 30 degrees, which is outside the 

two-dimensional criteria set in Chapter V.3.2.5. It was expected, as this station is 

possibly three-dimensional at least at a shallow depth. Delta theta which has a 

tendency to decrease toward zero at longer periods, indicates a two-dimensional 

structure at great depth beneath this station. This result is almost the same as the 

result given by the plot of skew factor for this station (see Figure VI.9). 

VI.4.1. Discussion. 

The application of the new calculation of rotation angle and dimensionality 

method into three different geometrical structures in the previous section shows that 

this method works well and gives results very close to the conventional methods. 

The most interesting feature of the results is the characteristic of the rotation 

angle at JDB and GRV. Figures VI.11 and VI. 12 show a slight change of about 5 

degrees in rotation angle (0) or average theta from short to longer period. 

Interpretation of the change of this rotation angle azimuth indicates different 

structures. At shallow depth the electromagnetic energy may sense the structure 

associated with the HMZ. As the penetration of electromagnetic energy becomes 

deeper it may detect a purely two-dimensional-like structure, probably associated with 

a conductive body at depth. 

This new method of determining rotation angle has also been tested at 

Conara Junction, northeast Tasmania (Hermanto 1993), on what has long been 

known as a two-dimensional conductivity structure (Bindoff, 1983; Sayers, 1984; 

Richardson, 1985). Hermanto found very small delta theta values indicating a good 

estimate consistent with two-dimensionality. This characteristic of delta theta is very 

similar to the result found at Judbury (JDB) in southeast Tasmania. 
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The Conara Junction station is located approximately in the middle of the 

Tamar Mobile Zone (TMZ). For the stations outside of TMZ and situated on the 

three-dimensional-like structure beneath, Hermanto (personal communication) finds a 

very scattered plot of rotation angle and he also finds plot of delta theta no longer 

confined to ± 20 degrees. This result again shows similarity to the plot of rotation 

angle and delta theta for THN in southeast Tasmania (see Figure VI. 13). 

This new method of calculating rotaion angle and dimensionality method was 

compared with another method. By using Lilley's (1992) Mohr circle method we 

have calculated the rotation angle at JDB station (Parkinson et al., 1992). The result 

obtained was very close to the rotation angle (0) obtained by the proposed method, 

i.e. it differed by about 8 0  in a northwest direction. However, the Mohr circle 

method requires more steps during data analysis and hence is more time consuming. 

VI.5. Summary.  

The following is a summary of the magnetotelluric results presented and 

discussed in Chapter VI, by cross-section. 

At cross-section I, the characteristics shown by the apparent resistivity 

curves may indicate an almost isotropic structure at shallow depth beneath stations 

LSV,GRV,JDB and LNV. The degree of anisotropy tends to increase at greater depth 

at all stations. The resistivity values exhibit a slightly low value at stations JDB and 

GRV. The resistivity curves at all stations indicate the existence of a conductive layer 

at greater depth. The skew and delta theta are small. At JDB station which is situated 

at the centre of the HMZ, plot of delta theta almost confines to zero degrees for the 

whole recording period. In general, all stations at cross-section I (LSV,GRV,JDB 

and LNV) have fairly strong two-dimensional indications. 
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At cross-section II, the tensor apparent resistivity curves from stations OTC, 

WST, FRS, PPR and THN show large to moderate anisotropy. The largest degree of 

anisotropy encountered at this cross-section is at station PPR where the ratio of 

Pmaximum Pminimum at long periods is about two decades. The resistivity values 

determined at almost all stations of cross-section H are smaller than resistivity values 

at cross-section I, except at FRS station. The resistivity values tend to decrease 

toward the stations west and east of FRS. Unlike the skew and delta theta values at 

cross-section I, here they are very large at OTC and THN. The large skew and delta 

theta findings at OTC may be associated with the coastline and a buried fault beneath 

this station. At THN, the large skew and delta theta may be related to granite 

intrusion found under this station. It can be concluded that only WST,FRS and PPR 

stations have a good two-dimensional indication at cross-section II, whereas stations 

OTC and THN are contaminated by local three-dimensional structures. 

The new method of calculating rotation angle and dimensionality has been 

described and applied to three stations in the southeast Tasmania survey, and is 

proposed as a valid and useful method. 



Chapter VII. 
INTERPRETATION OF MAGNETOTELLURIC 

RESULTS IN SOUTHEAST TASMANIA. 

VII.1. Introduction.  

Geophysical interpretation of magnetotelluric data is designed to give an 

estimation of the resistivity distribution within the earth. In this study area this can 

tentatively be achived by the one-dimensional modelling process, but for a more 

accurate expression of resistivity distribution, two-dimensional modelling is required. 

VII.2. One-dimensional Modelling. 

Surface impedance values can be used to obtain information about the 

conductivity structure beneath the area of investigation. The simplest model is one 

where the conductivity varies only as a function of depth. This is suitable for 

determining the conductivity of the lower crust and upper mantle. 

There are two diagonal apparent resistivity curves calculated in the tensor 

analysis. They are namely the p xy  and pyx  resistivities. The problem now becomes 

to decide which of the two curves best represents the electrical conductivity structure 

under the region. Since the anisotropy becomes larger at longer periods, the structure 

causing the separation most likely lies at some depth in the crust. If it is assumed to 

be approximately two-dimensional (i.e. resistivity varies with depth and in a NE-SW 

direction), two cases may be considered: one with currents flowing in the direction 

parallel to the strike of the structure (TE mode), and one with currents flowing 
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perpendicular (TM mode). Studies with two-dimensional models (Patrick and 

Bostick, 1969) have shown that for the station on or off a buried conductor, the 

higher apparent resistivity curve is more representative. Since the TE mode (pxy) in 

this study gives the higher resistivity, it is therefore used throughout the modelling. 

The use of TE mode is more relevant because this resistivity is less affected by the 

lateral inhomogeneity contrast (Swift, 1967) and therefore should represent the gross 

, structural feature of the region. Orange (1981) also showed that the TE mode 

apparent resistivity values are relatively unaffected by inhomogeneity at near surface 

in the vicinity of magnetotelluric stations (± 200 metres). Orange (1981) therefore 

suggests that an interpretation based on the TE mode would produce more reliable 

models. 

The one-dimensional modelling program used for this study was RES1DD 

written in BASIC based on the Schmucker algorithm (1970). This program is 

controlled by interactive command and can calculate up to a maximum of 15 layers. 

To achieve an acceptable layer model from the program, several constraints were 

applied i.e based on local geology, shallow resistivity determined by the transient 

electromagnetic method and results from shallow drilling. 

VII.2.1. Cross-section I. 

The major structural units for cross-section I may be seen in a plot of 

calculated apparent resistivity versus depth. However, before calculating each data 

set., appropriate resistivity estimates as a function of depth must be obtained to ensure 

the starting models are appropriate. 

The magnetotelluric data contain no information on apparent resistivity at 

near-surface layers. To constrain the resistivity and thickness parameters to shallow 
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depth, data obtained from surface geology and other geophysical methods must be 

used. 

Taking into account the cross-section I models of electrical resistivity 

proposed in Chapter III for LSV, GRV, JDB and LNV stations (see Figures 111.3 to 

111.6) on the basis of transient electromagnetic results, several models were tested and 

the resulting apparent resistivity calculated. At least two important facts emerge, 

namely the approximate depth of first layer and the resistivities of the first and second 

layers, which become obvious from transient electromagnetic results, and are used 

throughout the modelling. However, the thickness of the layers was varied during 

modelling to find the result best fitting the observed and calculated data. In addition, 

the two-dimensional modelling of gravity and magnetic results also plays an important 

role and is used to estimate the thickness of the basin. 

To assess the electrical structure of southeast Tasmania, one-dimensional 

modelling was performed. Both the layer resistivities and thicknesses of the basin 

were variables along with a fixed number of layers preset at 6. The result is given in 

Figures VII.1 to VII.4 for stations LSV, GRV, JDB and LNV respectively. In 

general, the best fit calculated to the observed data at every station is quite good. For 

the first surface layer the variation of the resistivity ranges from 180 to 260 Ohm-m. 

These resistivity values represent Permian rocks which have a thickness of about 500 

metres beneath LSV and GRV stations, becoming shallower at JDB and LNV stations 

to 350 metres. These thicknesses are based on the transient electromagnetic results. 

An attempt to model with the same resistivity values having a thickness based on the 

interpretation of the two-dimensional gravity and magnetic model of cross-section I, 

(650 metres at LSV, GRV and 600 metres at JDB, LNV), produces a very similar 

result. It indicates that the effect of a small change in thickness at the surface layer is 

insignificant. 
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The resistivity values to be used for the second layer were again based on the 

transient electromagnetic results. From now on the thickness information is based 

merely on the two-dimensional gravity and magnetic modelling results. Two different 

resistivity layers are inserted. They are namely, a layer with a resistivity value of 68 

to 74 Ohm-m which is represented by Cambrian volcanic rocks beneath GRV and 

LSV, and a layer which has a resistivity value of 39 to 44 Ohm-m for Ordovician 

rocks at LNV and JDB. The thickness of the 68 to 74 Ohm-m layer varies from.300 

metres at GRV to 700 metres at LSV, while the thickness of the 39 to 44 Ohm-m 

layer is very uniform at LNV and JDB being 300 metres. 

A resistive layer is required to fit magnetotellutic data at stations LSV, GRV, 

JDB and LNV. This third layer has resistivity of 1(X) Ohm-m with thickness of 2000 

metres at both LSV and GRV stations. Based on the result of the two-dimensional 

gravity and magnetic model the 100 Ohm-m resistivity value seems likely to represent 

the resistivity value of Jubilee-region-style Precambrian rocks (largely dolomites). 

Toward the western stations the resistivity and the thickness of this third layer 

increases gradually and it probably represents a different rock type. This layer 

possesses resistivity of 150 Ohm-m and thickness of 5000 metres either at JDB or 

LNV. It is believed that this 150 Ohm-m layer represents Cambrian volcanic rocks. 

Another more resistive layer of 1000 to 1500 Ohm-m needs to be inserted 

underneath the third layer. This represents Precambrian rocks which underlie the 

sedimentary cover in this region. The thickness of this fourth layer is grading toward 

the western stations i.e. to the centre of the island. The depth from the surface to the 

bottom of this layer varies from about 21 kilometres at LSV to 28 kilometres at LNV. 

This depth agrees with the depth of the Moho in Tasmania (see Figure VII.5) obtained 

from gravity modelling (Johnson, 1972; Leaman et al., 1980; Leaman and 

Richardson, 1989). 
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To fit magnetotelluric observed data at all stations, a very conductive layer is 

required as the fifth layer. There is no evidence on the surface of the presence of an 

intra-crustal conducting zone in this region. However inspection of the TE mode 

apparent resistivity curves shows its existence. A good fit calculated to the observed 

data is obtained by inserting a layer with a uniform resistivity of 10 Ohm-m. The 

average thickness of this layer at all stations is about 2 kilometres. Beneath all 

magnetotelluric stations, this layer is underlain by a 2000 Ohm-m layer which 

probably represents the upper mantle layer. The one-dimensional model cross-section 

I may be found in Figures VII.6 and VII.6a for the deep structure and sedimentary 

basin respectively.. 

To consider the ambiguity of the presence of a 10 Ohm-m layer, a one-

dimensional model was constructed without the conductive layer at depth. The 

results, which display an unrealistic fit, are shown in Appendix VII.1. The 

conclusion which can be drawn from this is that the presence of the 10 Ohm-m layer 

is essential to fit magnetotelluric data and Figures VII.1 to VII.4 are the preferred 

models to represent the gross one-dimensional electrical structure of this region. 
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VII.2.2. Cross-section II. 

The one-dimensional model of cross-section II is shown in Figures VTI.7 to 

VII. 11 for OTC, WST, FRS, PPR and THN stations respectively. As in cross-

section I, the construction of one-dimensional models from the magnetotelluric data in 

this cross-section was aided by the transient electromagnetic and the two-dimensional 

gravity and magnetic results. The shallowest layer has resistivities in the range of 48 

to 51 Ohm-m, except at PPR and THN to the west, where the 51 Ohm-m layer is 

replaced by layers of 311 and 159 Ohm-m respectively. Based on two-dimensional 

gravity and magnetic modelling and deep drilling, the 48 to 51 Ohm-m layer at OTC, 

WST and FRS can be correlated with Triassic mudstone, sandstone and minor 

limestone, while the 311 and 159 Ohm-m layers represent dolerite rock at PPR and 

Permian mudstone, sandstone and limestone at THN. 

Underlying the shallowest layer is an almost uniform layer beneath OTC, 

WST and PPR with resistivity about 233 to 239 Ohm-m which represents Permian 

rocks. At PPR and THN the second layer has a resistivity of 28 and 30 Ohm-m 

respectively and may be correlated with Triassic rock at PPR and Ordovician rock at 

THN. 

The resistivity layer that represents Cambrian volcanic rocks in the trough-

like structure varies from 200 Ohm-m at WST and 500 Ohm-m at FRS to 50 Ohm-m 

at PPR. The thickness of this layer is about 5 kilometres at FRS and decreases to 4 

kilometres at WST and PPR i.e. east and west stations from FRS. The dramatic 

change in the thickness and resistivity of this layer may indicate a zone of faultings. 

The 75 Ohm-m layer inserted at OTC represents Jubilee-region-style Precambrian 

rocks. 
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Except for THN, a resistive layer is needed to fit magnetotelluric data at 

stations OTC, WST, FRS and PPR which underlie the sedimentary cover in this 

cross-section. This layer has resistivity ranging from 500 to 1000 Ohm-m and its 

thickness from the suface is similar to the fourth layer of cross-section I which also 

agrees with the depth of the Moho in this region. Underneath this layer very close to 

the Moho, a layer with very low resistivity is also required to fit magnetotelluric data 

at almost all stations. This ,layer is not resolved at OTC. However at FRS the 

presence of this conductive layer is very obvious. The one-dimensional model cross-

section in this magnetotelluric traverse can be seen in Figures V11.12 and VII.12a for 

the deep structure and sedimentary basin respectively.. 

Based on the one-dimensional model result of cross-section II, the degree of 

confidence of the model result is very low as the best fit of the observed and 

calculated data is poor. This may be partly due to the fact that a three dimensional 

earth was modelled with a one-dimensional modelling program. Nevertheless, the 

presence of a lower crustal conducting zone seems to continue and be consistent at 

almost all magnetotelluric stations in this cross-section. This is in agreement with the 

results obtained by the magnetovariational method, i.e. the short corrected induction 

vectors at periods of 60 minutes at all stations (see Figure IV. 15). 
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VII.3. Two-dimensional Modelling. 

Two-dimensional modelling of magnetotelluric data is more complex than 

one-dimensional modelling since the apparent resistivity varies with rotation of 

measurement axes. The aim of two-dimensional modelling is to determine whether 

the structures obtained from one-dimensional modelling are true representations of the 

geoelectric distribution in the region. 

The response of a two-dimensional model with a conductive layer at the base 

of the crust will now be examined to see what it can reveal about the conducting 

structure. The computation of two-dimensional modelling in this experiment was 

carried out using the JP2DEH1 program. This program is based on the algorithm by 

Jones and Pascoe (1971) and boundary value routines of Pascoe and Jones (1972) 

including modifications suggested by Williamson et al. (1974) and Jones and 

Thomson (1974). For a given period, the program can be used to calculate the 

resistivity across the structure, for both the E- and H-polarisations. 

The configuration of the model is composed of a 41 x 41 element grid, and 

its response is computed at 14 periods. Up to 1000 iterations are required for each 

before convergence is obtained for the E-polarisation. Convergence is assumed to 

have occurred when the maximum change of the fields at any grid point between 

successive alterations is less than 10 -6. In addition, all vertical grid lengths are taken 

to be small relative to the skin depth to ensure the program uses the maximum number 

of iterations and gives the most accurate result (Pascoe and Jones, 1972). 

VII.3.1. Crosss-section I. 

The starting two-dimensional model of cross-section I may be found in 

Figure VIII.13. This initial model was constructed based on the one-dimensional 
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results. It must be explained that in regard to the plotting data no air layer is included 

in this configuration and other two-dimensional configurations. Calculated data 

curves from the initial model (Figure VII. 13) for every station are compared to the 

observed data curve and plotted in Figures VII. 13a for LSV and GRV and VII. 13b 

for JDB and LNV stations respectively. By inspection of these figures it is apparent 

that the fit obtained between observed data and model curve is not good. The 

calculate.d TE modes apparent resistivity curves for example, have too high an 

apparent resistivity over the whole period range. There are certain factors that could 

be responsible for this phenomena. The first possibility is that the thickness of the 

deep conductive layer which is 2.5 kilometres seems too thin in this model. The 

second is that the resistivity value of the layer which underlies this intra-crustal 

conducting zone may be too high. However, the calculated TM mode apparent 

resistivity fits quite well with the observed data at JDB and LNV stations. 
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From the starting model just presented an attempt was made to construct a 

more realistic model of the electrical structure in the vicinity of the study area. The 

subsequent models are still based on the one-dimensional result but differ slightly 

from the model presented in Figure VII. 13 in that now allowance has been made for a 

varying resistivity and thickness within the lower crust and upper mantle. The intra-

crustal conducting zone was first modified by varying the 'resistivity and thickness 

which only improved the match of the model and observed data at periods of 100 to 

200 seconds. This result seems to suggest that to get a better fit for periods longer 

than 200 seconds the resistive basement layer has to be modified. An attempt was 

made to run several models by reducing the resistivity values of the resistive layers 

and also vary their thickness so that their results show a better fit. As a separate run 

the resistivity and thickness of both the intra-crustal conducting zone and the resistive 

layers were also modified. The result is shown in Figure VII.14. 

For the sake of completeness, the lateral extent of lower crustal layer is to be 

determined. To consider in quantitative manner a two-dimensional model having the 

basin characteristics shown in Figure VII. 13 but with a deep conducting layer only 

beneath the deeper part of the basin (see Figure VII.15) further modelling was 

attempted. The results are shown in Figures VII. 15a and VII. 15b. These results 

indicate that the minimum in the observed apparent resistivity curves could not be due 

to the structure of the sedimentary basin alone. In fact, the basin appears to have an 

insignificant effect on the longer period data for this model. It therefore confirms that 

the extent of the deep conductive layer to the east of this model is essential to fit the 

data at GRV and LSV. 

Figure VII. 14 is the model configuration that produces the best fit to the 

observed data at all stations in this cross-section. Results at LSV, GRV, JDB and 

LNV from this model can be seen in Figures VII. 14a and VII. 14b. This model has a 

very uniform top layer with resistivity of 200 Ohm-m. This resistivity value seems 
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likely to represent the gross resistivity value of the Permo-Triassic cover which has a 

thickness of about 600 metres. At either side of the 150 Ohm-m layer, the thick body 

also dips inward which is consistent with the two-dimensional gravity and magnetic 

modelling along this magnetotelluric cross-section (see Figure H.5). The intra-crustal 

layer still has resistivity value of 10 Ohm-m and is thicker than in the previous model. 

The thickness of the 10 Ohm-m layer is about 7 kilometres and uniform at all stations. 

This model is the most preferred model compared to 35 other models prepared to 

represent the two-dimensional structure for this region. 

VII.3.2. Cross-section II. 

Skew values for the magnetotelluric data at most stations of cross-section II 

are rather high. Kurtz and Garland (1976) have interpreted magnetotelluric data from 

eastern Canada having high skew of about 1.0 in many cases. In southeast Tasmania, 

however, only the stations that have skew less than 0.5 i.e. WST, FRS, and PPR are 

modelled. Other stations, OTC and THN, have larger skew especially OTC (> 0.8) 

and are assumed to depart from two-dimensionality. 

Figure VII. 16 shows a starting two-dimensional configuration for cross-

section II. This initial model was created based on the one-dimensional result. 

However, the resistivity and thickness for the intra-crustal layer were set as in the 

two-dimensional result of cross-section I i.e. 10 Ohm-m and 7 kilometres at all 

stations. Calculated data from this model for WST, FRS, and PPR stations each for 

the TE and TM modes, are plotted with the observed data superimposed and can be 

seen in Figure VII. 16a. 
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It is noticeable from these figures that almost all of the calculated data from 

magnetotelluric stations do not match their observed data, except for FRS station. At 

this station the calculated TE and TM modes apparent resistivities data fit quite well to 

the observed data. For the stations to the east of FRS i.e. WST and to the west i.e 

PPR, both the calculated TE and TM modes apparent resistivity are too high over the 

whole period range. It should be mentioned here that this model was tried by placing 

a 1000 Ohm-m layer to represent the layer that underlies the deep conductive layer and 

has a uniform bulk resistivity i.e 250 Ohm-m for the basin to be consistent with cross-

section I. 

Because the above model does not give results that fit the observed data 

another model which was still based on the one-dimensional result but has different 

resistivity value for the basin and upper mantle beneath each stations, was then tried. 

To fit magnetotelluric data at WST and PPR the layer which represents the basin 

needs to be more conductive than that at FRS. At WST, for example, the 300 Ohm-m 

is replaced by a 60 Ohm-m layer with thickness of 3.3 kilometres. To the west of 

FRS, i.e. PPR the 300 Ohm-m layer is substituted by a 50 Ohm-m layer with 

thickness of 3.3 kilometres. The two-dimensional model configuration and plot of 

observed and calculated data from this exercise may be found in Figures VII. 17 and 

17a. In general the best fit model to the observed data at each station is quite good. 

This model is therefore considered as the best model to represent the electrical 

structure of cross-section II. 
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VII.3.3. Comment and summary of two-dimensional  

modelling. 

It should be made clear that no ocean is included in the two-dimensional 

models presented in the previous sections. However, to see how much effect the 

ocean has on calculated data, modelling with ocean was carried out and gave 

unrealistic results especially for the long period data where the calculated resistivity 

curves have extremely large value compared to the observed data. It is not surprising 

as the structure may not be perfectly two-dimensional in this region. In addition, if 

the Tasman sea east of the study area has to be modelled, then the Southern ocean in 

the west, together with the sea in the south also have to be included, which is 

impossible with a two-dimensional program. The present distribution density of the 

stations does not allow use of three-dimensional modelling. 

The conclusions from this modelling process are essentially the ones which 

have been assumed all along. These are that for all stations in cross-section I and 

WST, FRS and PPR in cross-section H, the TE mode apparent resistivity curves are 

representative of an equivalent plane-layered earth at almost all period ranges. 

Furthermore, any masking effects or perturbations to the TE mode due to the surficial 

basin structure are relatively insignificant in affecting the resolvability of the 

characteristics of the intra-crustal layer. The same cannot be said of the TM mode 

apparent resistivity, however, primarily because of the effect on the TM mode of the 

lateral inhomogeneity contrast caused by faults and granite intrusion. Lastly, the 

lower crustal layer is a well-resolved feature of the model. 

Figures VII.14 and VII.17 from cross-sections I and II are the most 

preferred models to represent the two-dimensional structure for the study area. 
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VII.4. Discussion.  

Discussion on the resistivity structure beneath cross-section I and cross-

section II is divided into two parts: (1) the general sedimentary structure (upper 

diagram in Figures VII. 14 and VII. 17) and (2) the deep structure within the crust and 

upper mantle (middle diagram in Figures VII.14 and VII.17). 

VII.4.1. Sedimentary basin. 

The gross structure of the sedimentary sequence in the southeast Tasmania 

basin can be outlined by using calculated resistivities derived from the magnetotelluric 

models. 

The first horizon in resistivity seen by the sounding at cross-section I (Figure 

VII.14) is the upper Parmeener super-group and at cross-section II (Figure VH.17) is 

the lower Panneener super-group rock unit. The base of this Permo-Triassic cover 

with its stockwork of massive dolerite intrusions, is probably never less than 500 

metres at cross-section I and dips toward cross-section II to about 800 metres. The 

Ordovician limestone, which is assumed to be a possible source of hydrocarbon 

deposits in this region (Leaman, 1987), underlies the Permo-Triassic rock at the 

western part of the study area. This rock has a thickness of about 300 metres 

becoming narrower toward cross-section II. 

Figure VII.18 shows two-dimensional magnetotelluric model results 

superimposed on two-dimensional gravity and magnetic model results at cross-section 

I (note that the scale depth of magnetotelluric model is modified to be consistent with 

gravity and magnetic results). This figure also shows some interesting relationship 

between these two models. The sloping discontinuities needed in the models to match 

the magnetotelluric data curves, resulting in a trough-like structure, this is consistent 
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with the shape of the two-dimensional gravity and magnetic modelling. The taper 

contact at both sides of the body suggest complicated boundaries between differing 

geological units. The complexity of the contacts between differing resistivity zones is 

also suggested by two-dimensional gravity and magnetic results. The depth from the 

surface to the bottom of this trough is about 6 kilometres as shown by these two 

models. To the east is a large of 100 Ohm-m body seems to be associated with the 

Precambrian Jubilee dolomitic sequences. 

A correlation between the two-dimensional magnetotelluric modelling results 

and two-dimensional gravity and magnetic model results at cross-section II, may be 

find in Figure VII. 19. At this cross-section the best fit of magnetotelluric data may be 

obtained by inserting three different resistivity values beneath WST, FRS and PPR. 

There is no evidence from the two-dimensional gravity and magnetic modelling result 

along this magnetotelluric traverse concerning these resistivity boundaries. However, 

it is not impossible that the faulting between WST and FRS, FRS and PPR extends 

right up at least to the bottom of the Permo-Triassic rocks as can be seen from 

magnetotelluric model result in Figure VII. 19. The high conductivity materials occur 

on the wide flanks of this cross-section. Such flanks are absent at cross-section I so 

perhaps a particular facies deposited only on the shallower flanks is responsible for 

the conductivity or perhaps the cross-section I has some mixture of 50 and 250 Ohm-

m materials. 
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Figure VII.19. Plot of 2D MT and gravity and magnetic model 
along MT cross-section II. 
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VII.4.2. Deeper structure. 

The most significant feature of the models is that there is a lower part of the 

crust which is very conductive with a resistivity of 10 Ohm-m compared to the high 

value of 500 Ohm-m on top and 1000 Ohm-m under it. 

There are a number of factors that could possibly account for the low 

resistivity of the intra-crustal conducting layer. The presence of free water, free 

carbon, some hydrated minerals such as serpentine, metallic oxides and sulphides has 

been known for some time to cause low electrical resistivities of crustal rocks. 

However, since the last decade following much intensive discussion, it appears that 

the favoured factor contributing to low electrical resistivity of crustal rocks is the 

presence of aqueous fluids with a high ionic content (Connerney et al., 1980; 

Shanldand and Ander, 1983; Lee et al., 1983). 

Rockmelts at lower crustal depths would of course lower the resistivity 

considerably, as Schwarz et al. (1984) discussed with reference to their studies in the 

Andes in Northern Chile. However, in a tectonically non-active region such as 

southeast Tasmania, the possibility of partial melts occurring at such depths seems to 

be unlikely. 

Similarly the idea that the low resistivity anomaly could be associated with 

metallic oxides or sulphides can be rejected since very large quantity would be 

required for this to be a realistic option. In addition the gravity and magnetic anomaly 

along cross-sections I and II does not support this idea. 

The likely cause of the highly conductive zone in the lower crust in this 

region is, therefore, the presence of free carbon. Although there is no surface 

evidence for the presence of carbon in the study area, it is not impossible for carbon to 



Interpretation of Magnetotelluric results 	 181 

be deposited deep in the crust beneath this region. Carbon in the form of black shales 

does crop out in western Tasmania (Dr. A. J. Crawford, personal communication, 

1992). Duba and Shankland (1982), for example, suggested graphite or amorphous 

carbon as an explanation of mantle conductivity and have shown their effect in 

laboratory measurements. Amounts of graphite of the order of 100 ppm is required to 

account for the conductivity anomaly. Measurements by Mathev et al. (1984) indicate 

that these concentrations occur in the mantle and that carbon tends to occur along grain 

boundaries, which could provide a continuous conducting path. Mathev and Delaney 

(1981) and Mathev et al. (1984) suggested mechanisms whereby carbon could be 

tranported from the mantle to the crust via fracture zones. 

The possible cause of the lowering of the bulk resistivity of the crust could 

be the effect of the presence of anomalously high temperature, presumably in the 

deeper parts of the crust, where temperature may be high enough that electrical 

conduction in 

the solid rocks decreases resistivity to 10 Ohm-m. Adam (1978) and Shankland and 

Ander (1983) found a good correlation between depth and low electrical resistivity in 

the crust and high heat flow. Terrestrial heat flux in Tasmania is comparatively high. 

Wronsld (1977) reported a thermal flux of 86.7 mW m -2  (2.07 HFU) and a thermal 

gradient of 40.4° C km-1  measured at Glenorchy, 17 kilometres northeast of the study 

area. If a constant thermal gradient is assumed then at depth of 25 kilometres a 

temperature of about 1000° C is obtained in the middle of the conductive layer. This 

temperature is sufficiently high to lower the resistivity at such depth and is in accord 

with the laboratory measurement results of Brace (1971) as reported by Jiracek et al. 

(1983) (see Figure VII.20). 
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Chapter VIII. 
CONCLUSIONS. 

A variety of geophysical techniques including magnetotelluric, 

magnetovariational, potential field (gravity and magnetic) and transient electromagnetic 

techniques were used to investigate the subsurface electrical conductivity structure in 

southeast Tasmania. Measurements were taken at 14 magnetovariational and 9 

magnetotelluric stations along two cross-sections. Results from these investigations 

have defined a trough-like structure and a lower-crustal conductive layer in this region. 

Two-dimensional potential field modelling results indicate that the study area 

is blanketed by Permo-Triassic rocks intruded by Jurassic dolerite. The Permo-

Triassic cover has a major unconformity at its base. This modelling process also 

delineated a northwest - southeast direction trough-like structure beneath the Permo-

Triassic cover with the depth from the surface to the bottom of about 6 kilometres 

which is believed to be filled with Cambrian volcanics. Magnetotelluric results on 

northern cross-section indicate a trough with resistivity of 150 Ohm-m. In the 

southern cross-section this same trough has resistivity varying from 50 to 250 Ohm-m 

being more conductive on the flanks. Why this difference? Perhaps the northern 

cross-section has some mixture of 50 and 250 Ohm-m materials. The corrected 

induction vectors at WST and PPR indicate a central higher conductor, which is 

inconsistent with the magnetotelluric results. The reason for this discrepancy is not 

known. To the east is a large body of Precambrian Jubilee dolomitic sequences. This 

becomes narrower to the southern station and consistent with 100 Ohm-m body at 

both cross-sections. 



Conclusions 	 184 

The plot of induction vectors gained from magnetovariational data shows 

very strong ocean effects. Making use of Parkinson's et al. 1988 method and 

analogue model, correction of in-phase induction vectors at periods of 10 and 60 

minutes was carried out to reduce ocean effect at shallow and deeper depths. At 10 

minute periods inland and coastal anomalies were revealed. The inland anomaly has 

corrected in-phase induction vectors pointing in different directions. To the west of 

the Huon River they follow a northeasterly direction whereas to the east of the river 

?ley point northwest. This indicates a gradient anomaly zone along the Huon River. 

The significance of coastal effect is seen in the gradual swing in direction from 

southeast for observed vector, to east and almost perpendicular to the coast-line for 

corrected vector at the eastern-most station of southern cross-section. The probable 

explanation for this is high conductivity contrasts between the conducting ocean floor 

and the resistive block of eastern Tasmania. 

The new simple method for derivation of rotation angle and dimensionality 

has been described and applied to different geometrical structures showing that this 

method works well and gives results very close to the conventional methods. This 

new method also gives almost the same rotation angle (0) as Lilley's Mohr circle 

method when applied to the same station, but the Mohr circle method requires 

significant computer time. Based on the above facts, this new approach is a valid and 

useful method and it is also simpler and faster than other methods. 

The magnetotellmic sounding results at cross-section I show the degree of 

anisotropy, indicated by the difference between the TE and TM mode resistivities, 

tends to increase at greater depth at all stations. The apparent resistivity value at all 

stations shows the existence of a low resistivity layer at greater depth. The skew and 

delta theta are small indicating a two-dimensional structure along this cross-section. 

At cross-section II the apparent resistivity curves exhibit large to moderate 
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anisotrophy. Two stations (OTC and THN) had very large skew and delta theta 

values which could be due to local three-dimensional structures. 

To assess the electrical structure of the study area one-dimensional modelling 

was performed with the aid of gravity and magnetic and transient electromagnetic 

modelling results. This showed a trough-like structure underlain by a resistive layer. 

The thickness of this layer grades towards the western stations, i.e. to the centre of the 

island. The depth from the surface to the bottom varies from 21 kilometres to about 

28 kilometres. This depth agrees with the depth of the Moho in Tasmania obtained 

from gravity modelling (Leaman et al., 1980). The one-dimensional modelling results 

also showed a lower-crustal conducting layer with uniform resistivity of 10 Ohm-m 

and an average thickness at all stations of about 2 kilometres. 

A more realistic configuration for the electrical structure in this region is given 

by the two-dimensional modelling. The models were constructed based on the one-

dimensional modelling results, however, in order to match the TE and TM apparent 

resistivity curves the conducting layer has to be thicker than is suggested by the one-

dimensional results. The final model of cross-sections I and II shows that the 

calculated data fits better to the observed 'FE mode than the observed TM mode. A 

suggestion that the TM mode data may be affected by the fact that the deep conducting 

layer extends beneath the entire study area can be dismissed since confining the 

conductive layer under the trough-like structure only, gave no better fit with either the 

TE or TM modes. The final models, with the conductive layer beneath the entire study 

area, are thus considered as the preferred model to represent the electrical structure in 

this region. Based on these models the conductive layer now suggests a thickness of 

7 kilometres with a resistivity of 10 Ohm-m, and uniform under the cross-sections. 

Some hypotheses may be drawn to to explain the origin of the lower-crustal 

conducting layer in a tectonically in-active region such as southeast Tasmania. The 
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likely explanation is the presence of free carbon along grain boundaries or fractured 

rocks which provide a continuous conducting path. The mechanisms whereby carbon 

could be transported from the mantle to the crust via fracture zones have been 

suggested (Mathev et al. 1984). The possible cause is the effect of the presence of 

anomalously high temperature, presumably in the deeper part of the crust. The 

thermal flux of 86.7 mW m -2  (2.07 HFU) and thermal gradient of 40.4° C km -1  

measured 17 kilometres northeast of the study area support this hypothesis. 

Further resolution of the sub-surface resistivity structure in southeast 

Tasmania will need a three-dimensional modelling study to first determine accurately 

the effect of coastline and the ocean on the observed magnetotelluric parameters. 

However the present station distribution gives a quite limited coverage. Hence an 

increase in station distribution and the use of three-dimensional modelling techniques 

will lead to an even better understanding of electromagnetic induction in complicated 

structures such as those of southeast Tasmania. 

The presence of the lower-crustal conductive in this area is of considerable 

interest as no comparable structure has been suggested by work in northern Tasmania 

(Hermanto, 1993). Clearly further work to define the extent of this feature and its 

relationship, if any, to other structure is critical to understanding the origin of the 

conductivity. For example, it may possibly correlated with the trough of Cambrian 

volcanics higher in the crust. Does this perhaps imply that it reflects changes in the 

crust in the Cambrian? Clearly a study of the other mayor Cambrian trough e.g. the 

Mount Read belt in western Tasmania is required to answer such questions. If such 

correlations with other Cambrian troughs do not exist then other possible relationships 

need to be considered e.g. the Cretaceous igneous activity at Cygnet. 
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GRAVITY AND MAGNETIC DATA. 



APPENDIX 11.1 
GRAVITY AND MAGNETIC DATA: CROSS-SECTION I. 

Gravity Data Cross-Section I: Southeast Tasmania. 

Distance 
(m) 

BA. Obs. 
(mGal) 

Topograpny 
height (m) 

Adjusted BA 
(mGal) 

0 -3.0 320 -1.5 
1000 -2.0 460 -1.0 
2000 -1.0 680 -0.5 
3000 0.0 I 	840 0.3 
4000 2.0 I 	1000 2.0 
5000 4.0 920 4.0 
6000 6.0 680 6.0 
7000 8.0 480 7.6 
8000 9.0 300 8.8 
9000 10.5 260 1 	9.9 
10000 11.0 160 10.9 
11000 13.0 130 12.1 
12000 14.0 240 112 
13000 15.0 100 13.9 
14000 16.0 260 14.7 
15000 16.0 220 	I 14.9 
16000 16.0 120 14.6 
17000 15.0 60 14.0 
18000 14.0 100 13.3 
19000 13.0 180 12.4 
20000 11.0 	I 260 11.3 
21000 10.0 340 10.5 
22000 10.2 260 10.4 
23000 10.5 260 10.5 
24000 11.0 260 10.8 
25000 11.5 260 10.9 
26000 11.0 100 10.7 
27000 11.0 	I 200 10.6 
28000 10.5 	I 380 	I 10.3 
29000 10.2 260 	I 10.0 
30000 10.0 	I 300 9.7 

Distance 
(in) 

BA. Obs. 
(niGal) 

Topograpny 
height (m) 

Adjusted BA 
(mGal) 

31000 9.5 420 9.3 
32000 9.0 320 8.8 
33000 8.5 110 8.2 
34000 8.0 120 7.6 
35000 7.0 140 6.9 
36000 6.0 140 6.0 
37000 5.0 120 5.2 
38000 4.0 140 4.3 
39000 3.0 140 3.5 
40000 1 	2.0 160 2.8 
41000 1.5 300 2.2 
42000 1.0 400 1.7 
43000 1.0 360 1.8 
44000 1.5 360 2.1 
45000 2.0 300 2.9 
46000 4.0 180 4.1 
47000 6.0 200 5.3 
48000 6.5 280 5.9 
49000 6.5 280 6.0 
50000 6.0 280 5.7 
51000 5.0 140 5.4 
52000 5.5 140 5.4 
53000 6.0 100 5.6 
54000 	I 6.0 60 5.5 
55000 	I 6.0 20 5.1 
56000 4.0 10 4.2 
57000 3.0 0 3.4 
58000 2_0 0 2.9 
59000 2.0 0 2.7 
60000 4.0 0 3.0 

Magnetic Data Cross-Section 1: Southeast Tasmania. 

Distance 
(nil 

MA Obser. 
(nT) 

0 -112.0 
500 -112.0 
1000 -115.0 
1500 -85.0 
2000 -72.0 
2500 -72.0 
3000 -60.0 
3500 -40.0 
4000 -25.0 
4500 0.0 
5000 -10.0 
5500 -30.0 
6000 I 	-50.0 
6500 -60.0 
7000 -15.0 
7500 0.0 
8000 30.0 
8500 25.0 
4700 0.0 
9000 -10.0 
9500 -40.0 
10000 -65.0 
10500 -70.0 
11000 -45.0 
11500 0.0 
12000 40.0 
12500 65.0 
13000 80.0 
13500 83.0 
14000 85.0 
14500 83.0 

Distance 
(m) 

MA Obser. 
(nT) 

15000 72.0 
15500 65.0 
16000 58.0 
16500 62.0 
17000 68.0 
17500 70.0 
18000 65.0 
18500 30.0 
18900 0.0 
19500 -35.0 
20000 -60.0 
20500 -75.0 
21000 -80.0 
21500 -60.0 
22000 -50.0 
22600 -60.0 
23000 -55.0 
23500 -50.0 
24000 -77.0 
24500 -80.0 
25000 -100.0 
25500 -120.0 
26000 -80.0 
26500 0.0 
27000 50.0 
27500 90.0 
28000 160.0 
28500 180.0 
29000 190.0 
29500 175.0 
30000 160.0 

Distance 
(m) 

MA Obser. 
(nT1 

30500 155.0 
31000 100.0 
31400 0.0 
32000 -65.0 
32500 -150.0 
33000 -185.0 
33500 -175.0 
34000 -165.0 
34500 -165.0 
35000 -155.0 
35500 -140.0 
36000 -130.0 
36500 -120.0 
37000 -90.0 
37500 -80.0 
38000 -80.0 
38500 -100.0 
39000 -110.0 
39500 -110.0 
40000 -110.0 
40500 -110.0 
41000 -100.0 
41500 -80.0 
42000 -55.0 
42500 -45.0 
43000 -25.0 
43500 -30.0 
44000 -60.0 
44500 -100.0 
45000 -100.0 
45500 -110.0 

Distance 
(m) 

MA Obser. 
(nT) 

46000 -90.0 
46500 -40.0 
47000 -15.0 
47500 -15.0 
48000 -35.0 
48500 -60.0 
49000 -70.0 
49500 -70.0 
50000 -55.0 
50500 -20.0 
51000 -5.0 
51500 -8.0 
52000 -45.0 
52500 -65.0 
53000 -72.0 
53500 -75.0 
54000 -80.0 
54500 -87.0 
55000 -95.0 
55500 -97.0 
56000 -95.0 
56500 -95.0 
57000 -100.0 
57500 -105.0 
58000 -105.0 
58500 -95.0 
59000 -90.0 
59500 -75.0 
60000 -40.0 



APPENDIX II.! 
GRAVITY AND MAGNETIC DATA: CROSS-SECTION II 

Gravity Data Cross-section : Southeast Tasmania 

Distance 
(m) 

BA Obs. 
(mGall 

Topography 
height (m) 

Adjusted BA 
(mGal) 

0 -7.0 1040 -7.0 
1000 -6.7 930 -6.6 
2000 -6.5 660 -5.9 
3000 -6.2 400 1 	-5.5 
4000 1 	-6.0 240 -5.1 
5000 -5.8 240 -4.9 
6000 -5.6 80 -4.5 
7000 -5.4 240 -4.3 
8000 -5.0 440 -3.9 
9000 -3.0 600 -2.5 
10000 0.0 420 -0.1 
11000 2.0 220 1.6 
12000 3.0 260 2.8 
13000 4.5 120 3.8 
14000 1 	5.0 120 4.5 
15000 	1 5.5 180 5.1 
16000 	1 5.8 240 5.5 
17000 6.0 220 5.9 
18000 	1 6.5 220 	I 6.3 
19000 7.0 	I 270 6.9 
20000 8.0 420 7.5 
21000 8.0 280 7.7 
22000 8.0 220 7.8 
23000 8.0 240 8.1 
24000 9.0 280 8.7 
25000 10.0 280 9.3 
26000 10.0 320 9.5 
27000 10.0 280 9.5 
28000 10.0 200 	1 9.5 
29000 10.0 240 9.5 
30000 10.0 180 	I 9.5 

Distance 
(m) 

BA Otis. 
(mGan 

Topography 
height (m) 

Adjusted BA 
(mG41) 

31000 10.0 10 9.2 
32000 9.5 10 8.9 
33000 9.0 60 8.4 
34000 8.0 160 7.9 
35000 7.5 260 7.4 
36000 7.0 60 6.9 
37000 6.2 140 6.4 
38000 6.0 260 6.0 
39000 5.5 440 5.6 
40000 5.0 740 5.1 
41000 5.0 560 5.1 
42000 5.0 590 5.1 
43000 5.0 610 5.1 
44000 5.0 580 5.1 
45000 1 	5.5 620 5.5 
46000 6.0 500 5.8 
47000 6.5 440 6.2 
48000 7.0 320 6.2 
49000 6.5 360 5.9 
50000 5.5 180 5.0 
51000 4.0 0 4.1 
52000 3.0 0 33 
53000 2.0 0 2.7 
54000 2.0 0 2.5 
55000 2.0 0 14 
56000 2_0 0 2.4 
57000 3.0 160 2.8 
58000 4.0 100 3.1 
59000 4.0 0 2.8 
60000 	1 3.0 0 2.3 

Magnetic Data Cross-Section B: Southeast Tasmania 

Distance 
(m) 

MA Obser. 
(nT) 

0 -40.0 
500 -50.0 
750 -75.0 
1000 -80.0 
1500 -120.0 
2000 -115.0 
2500 -145.0 
3000 -142.0 
3500 -140.0 
4000 -143.0 
4500 -135.0 
5000 -137.0 
5500 -140.0 
6000 -145.0 
6500 -150.0 
7000 -140.0 
7500 -20.0 
7750 0.0 
8000 20.0 
8500 70.0 
9000 40.0 
9500 10.0 
9600 0.0 
10000 -90.0 
10500 -80.0 
11000 -70.0 
11500 -60.0 
12000 -55.0 
12500 -55.0 
13000 -60.0 
13500 -75.0 
14000 -105.0 

Distance 
(in) 

MA Obser. 
(nT) 

14500 -95.0 
15000 -20.0 
15500 20.0 
16000 40.0 
16500 60.0 
17000 80.0 
17500 130.0 
18000 140.0 
18500 170.0 
19000 175.0 
19500 150.0 
20000 100.0 
20500 30.0 
20650 0.0 
21000 -40.0 
21500 -30.0 
22000 -40.0 
22500 -40.0 
23000 -40.0 
23500 -30.0 
24000 -25.0 
24500 5.0 
25000 -15.0 
25500 -15.0 
26000 -10.0 
26500 10.0 
27000 10.0 
27500 10.0 
28000 -7.0 
28500 0.0 
29000 10.0 
29500 10.0 

Distance 
(m) 

MA Obser. 
(nT) 

30000 1 	0.0 
30500 -5.0 
31000 -5.0 
31500 0.0 
32000 -10.0 
32500 -5.0 
33000 0.0 
33500 -10.0 
34000 0.0 
34500 -25.0 
35000 -40.0 
35500 -55.0 
36000 -70.0 
36500 -60.0 
37000 -60.0 
38000 -50.0 
38500 -10.0 
38750 0.0 
39000 20.0 
39500 100.0 
40000 220.0 
40500 270.0 
41000 250.0 
41500 150.0 
42000 25.0 
42500 0.0 
43000 120.0 
43500 200.0 
44000 230.0 
44500 180.0 
45000 180.0 
45500 80.0 

Distance 
(nil 

MA Obser. 
(nT) 

46000 40.0 
46500 -50.0 
47000 -100.0 
47500 -150.0 
48000 -105.0 
48500 -10.0 
48700 0.0 
49000 100.0 
49500 190.0 
50000 150.0 
50500 20.0 
50700 0.0 
51000 -100.0 
51500 -160.0 
52000 -155.0 
52500 -140.0 
53000 -130.0 
53500 -120.0 
54000 -115.0 
54500 -112.0 
55000 -112.0 
56000 -117.0 
56500 -100.0 
57000 -97.0 
57500 -85.0 
58000 -85.0 
58500 -72.0 
59000 -70.0 
59500 -85.0 
60000 -105.0 
60500 -117.0 
61000 -115.0 



APPENDIX V. 

TEMPERATURE CORRECTION. 

Apply temperature correction as shown below if detector head and control 

box temperatures are recorded on channel 4 and 5, otherwise use appropriate channel 

(CH) numbers. 

MT 

Unit 

Componen 

t 

Channel Coefficient Datum Temp. 

( °C x 10 ) 

I X 4 -.06 200 

5 -.13 200 

Y 4 -.07 200 

5 .101 200 

Z 4 .156 200 

5 .041 200 

II X 4 -.009 200 

5 .073 200 

Y 4 .007 200 

5 0.0 200 

Z 4 .007 200 

- 5 -.10 200 



APPENDIX VII.1. 

1D TE MODEL RESULTS WITHOUT THE LOWER CRUSTAL 

CONDUCTIVE LAYER. 
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Figure AVII.1. ID model results from Leslie Vale) 

(red)-observed; (green)-calculated 
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Figure AVII.3. 1D model results from Judbury (JOB) 
(red) -observed; (green)-calculated 
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(red)—observed; (green)—calculated 



APPENDIX VII.2 

STATIC SHIFT 

The presence of charges on local surficial or near-surface, lateral 

inhomogeneities can distort magnetotelluric data thereby limiting interpretational 

accuracy. This phenomenon, generally referred to as near-surface distortions or static 

shift, have been studied in theoretical modelling studies, for example, by 

Wannamaker et al. (1984 ) and Park, (1985). It has been well demonstrated in a 

number of case histories and reported by Kurtz at al. (1986), Jones (1988), 

Sternberg et al. (1988) and others. 

Jiracek (1990) stated that any resistivity contrast due to small-scale 

heterogeneities in the vicinity of the electric field measurements can give rise to a 

particular class of perturbation. The two measured electric fields (Ex, Ey) are 

perturbed from their regional values and a static (frequency independent) shift of the 

apparent resistivity sounding curve takes place. Sternberg eat al. (1988) identified the 

parallel shifts that occur in the dual logarithmic coordinates of apparent resistivity and 

frequency from two magnetotelluric results taken at very close distance, are identical 

but shifted along vertical axes. To remove the unwanted distortion from 

magnetotelluric data, some techniques have proposed and discussed by Jiracek 

(1988), Berdichevsky et al. (1989) and Bahr and Groom (1990). The independent 

inductive geophysical measurements, such as transient electromagnetic sounding have 

been used to measure the amount of static shift (Sternberg et al. 1988; Pellerin and 

Hohmann, 1990). 



Static Shift 

In this study, the theory described by Sternberg et al. (1988) was 

applied using the transient electromagnetic sounding measurements carried out with 

SIROTEM. Sternberg et al. (1988) showed that by dividing the transient time scale 

(in ms) by 200 allow direct comparation between transient electromagnetic and 

magnetotelluric. Appendixes VII.1 to VII.8 show apparent resistivity curves from 

magnetotelluric and one-dimensional interpretation along cross-section I and II. As 

can be seen from that Appendixes, insufficient of late delay time of transient 

electromagnetic data (see Chapter 111) and lack of short period data in magnetotelluric, 

results in non overlapping of both data sets. However, both curves seem to match 

with the one-dimensional modelling results. The consistency between transient 

electromagnetic and magnetotelluric data suggests that there are no near-surface 

inhomogeneities present in the vicinity of those stations and therefore no static shift 

correction to the magnetotelluric data is required. Jones (1988) also stated that in two-

dimensional surficial inhomogeneity the static shift problem can be avoided by 

considering the E-polarization results alone. In addition, the match of those two data 

sets found here may be due to the location for each magnetotelluric station and the 

placement of electrodes have been very carefully chosen by applying the method 

described in Chapter V.4.3.1. 
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