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PART I 

Major contributions to pollen studies to the end of the nineteenth century.  

The structure and function of pollen have long been subjects of 

curiosity and speculation. Even before the concept of sexuality in plants 

was generally accepted (see Wodehouse, 1935), natural scientists such as 

Nehemiah Grew and Marcello Malpighi had recorded observations on pollen 

morphology and hinted at some possible functions of pollen. Wodehouse 

(1935) quotes from Grew's "Anatomy of Plants", published in 1682, and from 

Malpighi's Opera omnia (1687), pointing out the comparatively high degree 

of accuracy in their descriptions of pollen, but at the same time 

revealing their uncertainty at its "higher purpose". A few sentences from 

these works serve to illustrate attitudes to botanical investigation at 

that time. Describing pollen grains, Grew says: 

"The Particles of these powders, though like those of Meal or 

Dust, they appear not easily to have any regular shape; yet upon strict 

observation, especially with the assistance of an indifferent Glass, it 

doth appear, that they are a Congeries, usually of so many perfect Globes 

or Globulets; sometimes of other Figure, but always regular. That which 

obscures their Figure is their being so small: In Dogs-Mercury, Borage, 

and very many other Plants, they are extremely so. In Mallows, and some 

others, more fairly visible. 

"The Colour of these small particles contained in the Theca is 

also different. But as that is usually white or yellow, so are these: 

sometimes Blewish; but never Red. And sometimes not of the same Colour 

with that of the Theca. Which further shows how scrupulous Nature is in 

differentiating the Tincture of the several parts." 

Although not as detailed, Malpighi's descriptions were 

essentially similar to those of Grew. However, he tended to interpret 
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the function of pollen in terms of human physiology: 

"The pollen dust is likewise a mere secretion.. .prior to the 

.maturation of the ovum.. .and may be compared perhaps to the menstrual 

discharge of women." 

Few advances in the study of pollen were made during the next 

century and a half. Further work was forced to wait upon improvements in 

microscopy made towards the turn of the eighteenth century. 

Early botanists devoted much attention to the morphology of the 

pollen wall, possibly because it was easy to observe. Turpin in his Essai  

d'une iconographie vegetale (1820) stated that the pollen wall consisted of 

two layers, which he denoted "exhymenie" and "endhymenie". Purkinje, a 

Bohemian physiologist, discussed the possible taxonomic significance of 

pollen wall structure in De formis granorum pollinis relate ad familias  

naturales adnota (1830). This was the second part of his major work on 

pollen. He too recognised the composite nature of pollen walls, and 

described some in detail, including observations on the spines and pores of 

the external coat, and the apparent protrusion of the inner coat at points 

of weakness. The French botanist Brongniart included in his investigations 

the structure and development of pollen grains, and although many of his 

hypotheses proved to be quite erroneous, the plausibility of his ideas is 

emphasized by the fact that the Paris Academy of Sciences awarded him a 

prize in experimental physiology. The paper which earned this acclaim, 

Memoire sur la generation et le developpement d'embryon dans les vegetaux  

phanerogamiques, was published in 1827. Brongniart described the pollen 

wall as consisting of two layers, but mistakenly believed segments of the 

reticulate thickening on the surface of certain pollen grains to be 

individual cells. He also believed that the function of all pores and 

furrows in the wall was to permit the passage of "spermatic granules" into 
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and ultimately out of the pollen grain. 

Brongniart's work, firmly backed by the Paris Academy, influenced 

. subsequent investigation to such an extent that few pollen researchers of 

the time were able to approach problems of pollen structure with originality 

and absence of prejudice. Von Kohl, a German botanist generally highly 

regarded for his individuality, was unable to free himself sufficiently 

from the current influence to make any real innovations in the study of 

pollen surface structure, as was revealed by his major pollen work, liber den  

Bau und die Formen der Pollenkorner (1834). A contemporary, Fritzsche, was 

more successful in this respect. He produced four important works in five 

years: Beitrdge zur Kenntnis des Pollen (1832), his doctoral dissertation 

De plantarum polline (1833), Uber den Pollen der Pflanzen und das Pollenin  

(1834), and Uber den Pollen, which was read before the Academy of Science in 

St. Petersburg in 1836. This last work exposed von Mobl's misconceptions of 

pollen structure, and its publication may well have been the factor which 

, discouraged von Kohl from further work in pollen morphology. Fritzsche was 

a chemist by training, and much of his work on the pollen wall dealt with 

the chemical nature and reactivity of the intine and exine - terms which 

Fritzsche himself introduced. 

Pollen studies increased in popularity during the middle and later 

years of the nineteenth century. Nggeli contributed much to the understanding 

of pollen development through his work on pollen of five different genera. 

In Zur Entwickelungsgeschichte des Pollens bei den Phaneroganen (1842) he 

described the growth of the intine around each microspore, and the appearance 

of the exine with its modifications for the outgrowth of pollen tubes. Schacht 

(1860), Strasburger (1889), and Mangin (1889) made further important . 

observations on wall development (see Wodehouse, 1935). Fischer (1889) 

investigated the structure and chemistry of the exine, and included his 
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findings in his doctoral thesis BeitrNge zur vergleichenden Morphologie  

der Pollenkorner. He stated that the exine "cuticle" showed similar 

reactivity to that of proteins, but differed from most of these in its 

insolubility in alkali, differitig also from cutin and suberin in this 

respect. The exine itself he found to be insoluble in concentrated nitric 

acid, hydrochloric, or sulphuric acid, and resistant to "gastric digestion". 

He reported that exine did react with sodium hypochlorite solution and with 

chromic acid, but to markedly different degrees in different species. These 

observations showed an awareness of the exceptional properties of exine 

material. Fischer also commented on the higher refractive index of the 

inner layer of exine, and the stronger affinity of the outer layer for 

aniline dyes. His studies of the pollen of more than two thousand species 

led him to conclude that the evolutionary trend had been towards a 

strengthening of the exine, particularly by means of raised appendages. 

The patterns appeared to be most complex in the Dicotyledons. 

Although pollen wall morphology continued as a major field of 

research in the early twentieth century, botanists at this time were 

beginning to appreciate the importance of studying developmental processes, 

and found pollen to be well suited to investigations of this kind. The 

contributions of Sachs, who introduced several important concepts in his 

developmental study of pollen, will be discussed in Part II. 
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Introduction to Part II. 

It would seem appropriate to introduce Part II with a generalised 

description of Angiosperm pollen grain development, so that thc following 

reviews of cytological, physiological and biochemical phenomena can be 

related to the developmental sequence. Most pollen work has been carried 

out with Angiosperms, and the wide variation in gametophyte forms among the 

Gymnosperms precludes a generalised account of their development. The 

relatively small amount of relevant work on Gymnosperm microspores will 

therefore be referred to in passing. 

The mierosporangia or pollen sacs of Angiosperms are grouped 

together in anthers, usually four at a time. Octosporangiate'anthers are 

known, and bisporangiate types occur as a result of precocious lysis of 

the intersporangial septum. The microspores develop from sporogenous cells 

which divide initially by mitosis for several generations, the final 

division giving rise to the pollen mother cells. Each pollen mother cell 

develops a thick callose wall, the "special" mother cell wall, and the 

nucleus divides by meiosis to form four haploid nuclei. Cytokinesis may 

occur in one of two ways, by simultaneous or successive cleavage. 

Simultaneous cleavage produces a tetrad of microspores as soon as the four 

nuclei are formed, while successive cleavage first produces diads and 

forms the tetrads by subsequent deposition of another wall. Each cell of 

the tetrad begins to develop an exine within the "special" callose wall. 

The callose is eventually degraded, and the microspores are released into 

the anther loculus. After liberation, the exine usually undergoes further 

development. A cellulosic intine is secreted beneath it some time before 

anther dehiscence. The major nuclear and cytoplasmic changes which 

usually occur during pollen maturation are represented diagramatically 

below:- 



After release from the callose mother cell wall, the microspore has a 

central nucleus, and the cytoplasm is not very dense. The nucleus enlarges 

as it approaches S-phase, and during it. The timing of S-phase, however, 

may not be correlated with the same cytological events in all species. 

Small vacuoles usually develop at one pole in the cytoplasm. 

The small vacuoles coalesce to form one large vacuole, which displaces 

the nucleus from its original position. 
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The vacuole enlarges, taking up most of the cell. 

The vacuole divides, and the nucleus moves back to central position in the 

bridge of cytoplasm. 

The mitotic spindle is formed asymmetrically, in the bridge of cytoplasm. 

Pollen grain mitosis occurs. 
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The vegetative (top) and generative nuclei are formed. A wall is secreted, 

enclosing the generative nucleus in a little cytoplasm within the vegetative 

cell. Initially both nuclei are similar in appearance. 

The vegetative nucleus becomes diffuse (euchromatic), whereas the generative 

nucleus elongates and becomes dense (heterochromatic). The generative cell 

is now independent of the vegetative cell wall. The generative cell wall 

Is lost, prior to this, permitting shape change and migration of cell. 

The mature pollen grain in most species is binucleate at anthesis. In some 

species the generative nucleus has already divided into two sperm nuclei 

before dehiscence. A few species shed uninucleate pollen, i.e. anthesis 

occurs before pollen grain mitosis. 
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The pollen grains are shed at anthesis, and if pollination is 

successful and incompatibility factors do not interfere, pollen tube 

growth will follow. Under appropriate conditions fertilisation occurs, 

Fometimes within hours of pollination, sometimes not for months. It is 

probable that the tube produces enzymes which enable it to penetrate the 

tissues of the stigma and style. While the tube grows towards the ovary, 

the generative nucleus divides to form two sperm nuclei, if it has not 

already done so before anthesis. One sperm nucleus fertilises the egg, 

and the other combines with the "fusion nucleus" to initiate the endosperm. 

PART II 

Studies since 1900. 

A. 	The Pollen Wall  

"It is the aim of investigations of pollen wall growth to elucidate the 

devices through which the intricate detail of different components is molded 

in faithful conformity with genetical instruction. There is no doubt that 

any evidence gained must contribute, in equal measure, to our understanding 

of plant growth and morphogenesis in general, since so many manifestations 

of differentiation and development in plants do concern the cell wall." 

Heslop-Harrison (1968) 

Interest in pollen wall development grew during the middle years 

of the nineteenth century. Sachs recorded his studies of pollen in his 

"Textbook of Botany", the third edition of which appeared in English in 

1875, and included the observation that microspores bore sculptured exines 

even before their release from the callose mother cell wall. This fact 

received scant attention until the publication of Fitting's work (1900) 
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on the development of spores in Looetu and Saaginata. Dispute arose 

over the matter of control of exine formation, since Fitting had observed 

that exines developed normally on many aborted spores. This was widely 

regarded as evidence for control over exine secretion by the anther 

tapetum - for how could non-functional cells produce their own walls? On 

the other hand, if the tapetum was responsible for deposition of exine on 

the naked surfaces of microspores, how should one interpret Sachs' 

observation of exine inside the callose mother cell wall, in physical 

isolation from the tapetum? The roles of the tapetum and the pollen 

protoplast were obviously far from clear. 

Among the early workers who studied this problem were Tischler 

(1908, 1915) who found well-developed exines on aborted microspores of 

Mihab.itiZ, and Kosmath (1927) and Ubisch (1927) who independently showed 

that in some Angiosperms the tapetum produced microscopic bodies of a 

chemical nature similar to that of the exine. These are commonly known as 

"Ubisch bodies", although they were first described by Rosanoff in 1865. 

At the time, their presence was almost universally accepted as proof of 

Fitting's contention that the tapetum controlled exine synthesis. However, 

Beer (1911) had already suggested that early exine patterning may be 

initiated by the pollen protoplast, but that subsequent wall development 

came under the influence of the anther tapetum. This was also proposed 

by Drahowzal (1936). Sachs' important observations were apparently either 

ignored or forgotten. 

The chemistry of the exine attracted attention from early workers 

concerned with wall development. The first detailed analyses for a wide 

range of species were made by Zetzsche (1932), who proposed a general 

formula for a material which he named "sporopollenin", the main component 

of all exines. Sporopollenin appeared to be a highly unsaturated polymer 
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characterised by resistance to acetolysis and to non-oxidative chemical 

attack (cf. observations of Fischer, 1889). The nature of the polymer 

remained an open question for some years, until Swiss chemists (Karrer 

et a., 1935, 1949, 1950) resurrected the work of Bertrand and Poirault 

(1892) who had observed the accumulation of carotenoids in both anthers 

and pollen. Karrer was concerned to discover whether carotenoids were 

implicated in the synthesis of sporopollenin, since their unsaturated 

nature suggested that they may be a suitable precursor. However, nothing 

definite emerged from these investigations. Studies into the chemical and 

physical properties of sporopollenins, largely sponsored by the oil 

industry, intensified towards the end of the sixties. At an international 

symposium in 1970 Brooks and Shaw presented convincing evidence that 

sporopollenins largely consist of polymers formed from carotenoids and 

carotenoid esters. While a few workers still believe there to be a 

refractory component other than sporopollenin, the work of Brooks and Shaw 

is generally accepted as the best analytical study to date. 

Work on pollen wall structure continued sporadically throughout 

the forties and early fifties, but it was the development of electron 

microscopy which provided the techniques needed to observe the mechanisms 

of wall secretion. Following the development of the carbon replica 

technique for studying pollen surfaces (AUhlethaler, 1955) a stream of 

papers appeared describing the topography of hundreds of types of pollen. 

In this context the contributions of Afzelius, Erdtmann, Malethaler, 

Frey-Wyssling, Sitte, Faegri, Fernandez-Moran and Dahl are important, but 

the significance of their work was largely taxonomic and contributed little 

to the understanding of exine development pen 4e. At this time, published 

works were purely descriptive, and electron microscopy did little more 

than substantiate the findings of light microscopy. With improvements in 

techniques there was a growth of interest in the potential use of pollen 
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as a material for studying several fundamental morphogenetic processes. 

Ehrlich (1958) voiced this interest in the introduction to a paper on 

pollen walls of Saintpautia: 

"The ontogeny of the pollen grain, especially the development of 

its characteristic wall, poses a number of basic problems in the cytology 

of growth. Among these are the relationship between pollen wall formation 

and ploidy or genetic control, and the degree to which the protoplasm is 

involved in pollen wall development." In the first truly ontogenic study, 

Rowley (1959) revived the old controversy regarding the role of the anther 

tapetum in exine secretion. As the most convincing evidence for tapetal 

control had come from studies of aborted pollen, he paid special attention 

to sterile grains of TAade6cantia and was able to confirm at the electron 

microscope level that their exines were in fact perfectly formed. He 

suggested however that the presence of a well developed exine on aborted 

pollen may be due to the late death of the protoplast, rather than direct 

tapetal activity. 

Rowley's investigation was concerned with sequential changes in 

the pollen wall, and made no mention of changes in the cytoplasm of either 

the tapetum or the pollen protoplast. To elucidate the fine-structural 

mechanism of exine secretion it is clearly necessary to study the 

cytoplasm responsible, and the first productive moves in this direction 

were made by Heslop-Harrison. In his paper "Origin of Exine" (1962) he 

stated that microspores of SiZene and Cannabiz did not actually bear an 

exine at the tetrad stage, but that exinous material, formed in mitochondria, 

accumulated on the microspore surfaces. In contrast to Rowley, he regarded 

the exine on aborted pollen as evidence for tapetal control of exine 

deposition. At the First Internation Symposium on Pollen Physiology and 

Fertilisation at Nijmegen he presented the keynote paper (Heslop-Harrison, 
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1964) in which he reported the observation of protoplasmic continuities 

between sporopollenin "plaques" (Ubisch bodies) at the tapetal surface, 

and the exine. This phenomenon he regarded as part of a series of 

constantly changing interconnections between sporophyte and gametophyte, 

and it appeared to strengthen his argument for tapetal control of exine 

deposition. In another paper (1963)Heslop-Harrison suggested a possible 

role for the endoplasmic reticulum of the pollen protoplast in determining 

the wall pattern. He proposed that parts of the ER close to the plasmalemma  

might become oriented in a particular way to assist the formation of the 

"primexine", a term he coined for the initial patterned wall which he had 

observed within the callose mother cell wall. He believed the primexine 

to be cellulosic in nature (although no convincing evidence was presented 

to support this contention) and therefore did not regard it as a "proper" 

exine. He suggested that the primexine became progressively impregnated 

with sporopollenin, eventually forming the acetolysis-resistant wall which 

appeared after the dissolution of the callose. In this way, the pattern 

of the exine was supposedly determined by that of the primexine. As 

Heslop-Harrison had stated only the previous year that a true, patterned 

exine was apparently not present at the tetrad stage, the concept of a 

"primexine" may well have developed as a face-saving device in the light 

of new data - although it became widely accepted at the time. 

In the same year, Rowley (1963), who had investigated the 

development of Ubisch bodies in Poa, proposed that the tapetum was the 

source of monomer precursors for sporopollenin and that polymerisation 

could occur on any suitable surface. So far, Ubisch bodies had only been 

detected in plants with the "secretory" type of tapetum, and Rowley 

suggested that, among sporophyte tissues, only the degenerating cells of 

a "secretory" tapetum provided a suitable surface. The newly formed 

microspores provided another such surface. The precise nature of the 
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surface was not known, nor was the precursor. All that was known was that 

sporopollenin accumulated at specific sites at specific stages of 

development. The fact which led Rowley to believe the tapetum to be the 

sole source of precursors was the current belief that "true" :-.:_etolysis-

resistant sporopollenin was synthesized in the anther only after  release 

of the microspores from the tetrads. Both exine and Ubisch bodies were 

known to develop after this. 

The physical structure of exines was clarified to some extent 

about this time. By the sixties it had been confirmed that most exines 

consisted primarily of two layers, an outer ornamented ektexine and an 

inner endexine (using Faegri's terminology) or a sexine and nexine 

respectively (using that of Erdtman). Improvements in ultramicrotomy led 

to the detection of both lamellate and amorphous components in exines, 

the sexine being characteristically amorphous, while the nexine invariably 

displayed both structures. Gullvh (1966) discussed the significance of 

the two components in relation to taxonomy and function, and Skvarla and 

Larson (1966) reported the association of membranes with developing exines 

and Ubisch in Zea, an important step forward in the understanding of 

lamellate structures. It was postulated that Ubisch bodies might be formed 

around pieces of membrane-bound cytoplasm deriving from ruptured microspores. 

This was followed shortly by the recognition that lamellate exine was 

produced by deposition (polymerisation?) of sporopollenin on membranes in 

spores of Anthmi.um and the liverwort Scapania (Rowley and Southworth, 

1967). Lepouse and Romain (Oenotheka, 1967), Godwin et a., (Ipomoea, 

1967), and Angold (Endymion, 1967) were able to confirm this. Rowley and 

Erdtman (1967) observed the progressive accumulation of sporopollenin on 

membranes in the space between the plasmlemma and the sexine, giving rise 

to the lamellate component of the nexine on microspores of Poputais and. 

SaUx. Dickinson and Heslop-Harrison (1968) asserted (contrary to Godwin 
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et a., 1967), that "all stratified exine originated on or near lamellae 
which are Produced near the plasmalemma." They emphasized the role of the 

plasmalemma, from which they believed the lamellae aro-se, in determining 

exine patterning (cf. Heslop-Harrison, 1963)- In another study of Ubisch 

body development Echlin and Godwin (1968a) described "pro-Ubisch-bodies" 

originating in close association with the ER of tapetal cells in HetZeboAu4. 

They appeared to be membrane-bound structures with lipoid content. Once 

- lysis of the inner walls of tapetal cells had begun, these bodies passed 

through the plasmalemmae and developed acetolysis-resistant properties 

only after liberation into the thecal fluid. Echlin and Godwin suggested 

that Ubisch bodies might develop from fragments of degenerating tapetal 

cytoplasm which still retained some synthetic capacity. They noted the 

presence of "white lines", apparently membrane profiles, in both Ubisch 

bodies and in mature lamellate nexine. The fact that sporopollenin always 

developed extra-cellularly, in situations between the plasmamembranes of 

microspores and the cells of the tapetum, they regarded as evidence for 

the tapetal origin of precursors - a conclusion which cannot have been 

very carefully considered. 

It should be noted that most publications of the time referred 

to "the" exine, as though all exines were identical, and it is clear that 

many workers expected to discover a universal system governing the detailed 

structure, and bode and phasing of synthesis of all exines. Nowhere was 

this attitude more prevalent than at Cambridge, where Echlin (1968), having 

summarised the developments of the past few years, asserted confidently: 

"The results of other investigators.. .together with.our own work indicate 

that there appears to be a common sequence of developmental events during 

pollen maturation", and also: "it would be wise to seek a general 

ontogenetic scheme that brings Ubisch body and exine development into a 

basically similar pattern, and we believe that...the Hettebotuz system may 
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prove to be a general one" (Echlin and Godwin, 1968a). Nevertheless Mepham 

and Lane (1968) questioned certain assumptions implicit in current reports. 

Their own work with TAaducantia bnacteata suggested that the exine was not 

in fact deposited through direct activity of the tapetum in this plant, but 

that, it was "wholly a secretion of the pollen protoplast", an acetolysis- 

resistant exine being formed in quantity prior to loss of the special 

mother cell walls.. They found no evidence that sporopollenin was formed 

in tapetal mitochondria, as had been suggested by Heslop-Harrison (1962), 

and in fact found no evidence at all of sporopollenin in the tapetum of 

TAade4cantia, a plant with an "amoeboid" tapetum. Their work was the first 

ultrastructural study of such a system. They proposed that the breakdown 

of cell walls in the "amoeboid" tapetum was not a degenerative process, 

preferring to regard it as a process of constructive reorganisation. In a 

later paper (1969a) they described evidence for continuing synthetic 

activity in the tapetal periplasmodium until shortly before anthesis 	.g. 

mitochondrial phosphorylation, and a late phase of starch production) and 

also reported the formation of apparently fully developed exines with 

apertural regions, inside callose mother cell walls (cf. Rowley, 1959). 

While these findings were readily accepted, they initially attracted 

criticism from members of the Cambridge school, who disputed the validity 

of some observations. Godwin (1968b) was not prepared to accept the 

presence of "true" exine inside the special mother cell walls, despite an 

amount of published evidence, and despite the fact that he had alluded to 

its presence himself in an earlier paper (1968a). 

The problem of participation of the microspore nucleus in the 

control of exine development was also a matter of contention at this time. 

Echlin and Godwin (1968b) took the view that available evidence favoured 

genetic control by the haploid nucleus of the microspore, and Heslop-Harrison 

(1968a) stated that, while the matter was unsolved and the balance of 
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evidence favoured sporophytic control, there was no evidence to completely 

exclude participation of the microspore nucleus. The most persuasive 

evidence against microspore nuclear control has come from studies of 

genetically deficient microspores. Savage (1956) working win Putmonaltia 

observed proper development of exine on "miniature" microspores. These 

arise at telophase 11 when simultaneous cleavage provides a mass of 

cytoplasm around each nucleus, whether the nucleus is complete or consists 

only of one or more chromosomal laggards. In Savage's plants, which were 

polyploids, laggards frequently led to the formation of such "micronuclei", 

which then became centres for the development of "miniature" spores. It 

is difficult to conceive that in all "miniature" pollen grains the very 

limited genome would always carry the genes necessary to direct exine 

development. If it is accepted that exine does in fact develop inside the 

callose mother cell walls, then one must conclude that the cytoplasm of the 

pollen mother cell is already "programmed" to produce exine at the right 

time. This hypothesis was restated following observations with Linum by 

Rogers and Harris (1969), and again by Mepham (1970) who had used triploid 

clones of TAadeScantia and observed perfect exines on genetically unbalanced 

and deficient microspores, using scanning electron microscopy to support 

transmission work. In this paper Mepham states that there is plenty of 

evidence to show that microspore protoplasts can and do synthesize exine, 

and that it is not necessary to invoke tapetal synthesis to explain any 

phenomena observed to date. He summarises the conditions probably required 

for sporopollenin production: a surface for polymerisation, enzymes to 

carry this out (possibly attached to the surface), a supply of precursors, 

and suitable environmental conditions such as pH and ionic concentration. 

He believes that precursors may well arise in both tapetum and sporogenous 

• tissue (cf. Echlin, 1968, who recalled the common origin of tapetal and 

sporogenous cells, suggesting that both may have the potential for 
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sporopollenin precursor production). The enzymes necessary to effect 

polymerisation may also arise in both tissues. If these are present, but 

environmental conditions are not conducive to polymerisation, no exine 

or Ubisch bodies can develop. A sudden change, such as a pH or ionic 

change, could induce deposition of sporopollenin on suitable surfaces. 

Mepham suggests that the enzymes may be of two types: those that are 

membrane-bound, which initiate polymerisation, and soluble enzymes which 

continue polymerisation once it has begun. He explains that the outward 

growth of sexines, and the increase in girth of Ubisch bodies after 

liberation into the thecal cavity, may be attributed to activity of this 

second type of enzyme. The increase in thickness of nexines by lamellar 

apposition of sporopollenin may be due to the development of successive 

layers of membranes from the plasmalemma which carries the initiator 

enzyme. Mepham points out that two-enzyme systems of this type are not 

uncommon, and are involved in the synthesis of several polysaccharides 

such as glycogen and some starches (although there is no certain evidence 

that any particular enzyme in these cases is membrane-bound). His ideas 

provide one possible explanation of the observation, so frequently made, 

of membranes associated with newly formed sporopollenin. 

The appearance of sporopollenin at sites other than exines and 

Ubisch bodies was first described by Banerjee (1967), who found that a 

fenestrated membranous structure developed over the inner surface of the 

tapetal cells in certain grasses. This structure, which was acetolysis-

resistant, bore projections reaching into the thecal cavity among the 

pollen grains, which often appeared entangled in the network. Heslop-Harrison 

(1969) then located a sporopollenin "membrane" around the outside of the 

tapetum in some Compositae with an "amoeboid" tapetum. The entire tapetal 

periplasmodium and microspores were therefore contained in a sporopollenin 

"sac". Similar extratapetal structures have subsequently been demonstrated 
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in other species (e.g. Dickinson, 1970a) and they appear to be a widespread 

phenomenon among plants with namoeboid" tapeta. Where a fenestrated structure 

develops inside the thecal cavity; as described by Banerjee, it is likely 

that polymerisation occurs over the surfaces of the exposed plasmalemmae 

of the tapetal cells, once their inner walls have been lost. The sporopollenin 

projections may perhaps develop around finger-like projections from the 

tapetal protoplasts. 

Some of the most productive recent work has been that of Waterkeyn 

, and Bienfait (1970) and Dickinson (1970b), aimed at uncovering the precise 

mechanism of exine patterning. Interpreting data obtained from Laium, 

Dickinson suggests that the pattern is established by outgrowths of the 

plasmalemma into a fibrous layer between the callose wall and the microspore 

protoplast. In fact, it appears from his micrographs that the fibrous layer 

may be an area of callose dissolution. Waterkeyn and Bienfait, using 

phase-contrast and fluorescence microscopy, observed a pattern on the inside 

of the callose wall, which appeared to act as a hollow template for exine 

deposition in Iponmea ptapu/Lea. It seems likely that both papers are 

describing the same phenomenon: the formation of a hollow template by 

dissolution of patches of the callose wall, into which the microspore 

plasmalemma protrudes. The shape of the plasmalemma may then determine the 

eventual shape of the exine. 

Whether or not contributions are ever made to the exine by 

adherence of iibisch body material (perhaps in.a plastic state) is still . a 

matter for debate. It is clear that in some species most, if not all of the 

exine develops inside the tetrad wall, whereas in SoAghum,for example, it 

appears that very little exine is present until after dissolution of the 

tetrads (Christensen et at., 1972). Certainly in some species the main 

exine development occurs after the tetrad stage, but whether tapetal 
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material in the form of polymerised sporopollenin is actually involved in 

this growth, is not yet clear. The consensus is that Ubisch bodies do not 

contribute in this way, but Risuefio et a4. (1969) and Banerjee and Barghoorn 

(1970) have presented contrary views. The latter paper suggests that new 

spinules may be added to the ektexine by Ubisch bodies. It is quite 

possible that this method of exine growth does occur at times in certain 

species. 

In summary, it would appear that the "primed" pollen mother cell 

cytoplasm, bequeathed to the microspores within the tetrad, is the 

controlling factor in exine synthesis. The tapetum may be implicated in 

the transportation of sporopollenin precursors, but it is likely that the 

microspore itself can synthesize these from basic materials supplied via 

the tapetum. Evidence from "miniature" grains suggests that the microspore 

genome plays no major part in exine formation. 

B. 	The Pollen Protoplast 

Pollen has become increasingly popular as a material for 

studying the mechanisms involved in many fundamental cellular processes. 

It is readily obtainable, and can be stored in the viable state for 

relatively long periods, but its main advantage is that it provides a 

simple haploid system, the developmental fate of which is well known. The 

development and differentiation of pollen can be easily studied, because 

an anther contains a population of pollen grains developing in relative' 

synchrony, particularly in the early stages. Being small and easy to 

handle in quantity, pollen has many of the advantages which have made 

bacteria so popular in biochemical and cytological research, with the 

added advantage of being eucaryotic. Its major disadvantage is that, being 

a gametophyte, it is only part of a life-cycle, and there is at present no 
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knowledge of the proportion of its genome that is expressed during its life. 

A basis for understanding the problem of genetic control of cellular 

• growth and differentiation was provided by the Watson and Crick model for 

the structure of DNA (1953), a proposal which has been substantiated with 

only very minor modifications. Nevertheless, it is only a basis and many 

far-reaching problems remain to be investigated. These include the influence 

of the internal cellular environment on gene function; the influences 

exerted on a cell by its external environment, including that constituted 

by neighbouring cells; the detailed mechanism of protein synthesis, which 

is still poorly understood; the interrelationships between biochemical 

pathways and their feedback mechanisms; and the exact structure and function 

of sub-cellular organelles. To be acceptable, any model of gene action 

must embrace all observed phenomena, biochemical, biophysical, and 

cytological, and this means that apparent anomalies such as extranuclear 

DNA must be included. The complexity of the problem has increased rather 

than decreased since the historic paper of Watson and Crick. 

Contributions made by pollen workers to the understanding of 

fundamental processes will be discussed in Parts IIB and C. 

.(i) Synthesis of nucleic acids and nucleoproteins  

Nucleic acid metabolism in pollen has attracted much attention 

during the past three decades. The most extensive early work was carried 

out by von Euler zt a. (1945, 1948) who determined the DNA and RNA 

contents of pollen of Betaa pubucem and other plants, and by 

Sosa-Bourdouil (1949, 1952, 1954) who undertook comparative biochemical 

studies of the pollen of several higher plants. Biochemical estimation 

methods are limited in that they can only give an "average" picture of the 

nucleic acid content of many nuclei, and workers at the time tried to 
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adapt newly developed microphotometric methods to use instead of, or in 

conjunction with biochemical analysis. For example, Caspersson (1936) 

developed a photometric technique. which made use of the high absorption of 

niAcleic acids in the UV region. Pollister and Ris (1947) employed a 

technique in which nucleic acids were reacted with selected compounds to 

produce insoluble coloured derivatives with absorption peaks in the 

visible part of the spectrum. The principal advantage of these techniques 

is that they permit the examination of individual nuclei, and comparisons 

can be made between them. Errors arise due to heterogeneous distributions 

of chromophore, but these can be reduced and standardised by making 

absorption measurements on each nucleus at two wavelengths, and processing 

results mathematically. However, much of the early work is now known to be 

unreliable, involving errors of 30% or more, and all work is strictly 

comparative. Bryan'(1951) chose microspectrophotometry to investigate DNA 

and nucleoprotein synthesis in p011en.of Puandeacantia patudoza,- from the 

tetrad stage to the mature gametophyte. In comparing his data with results 

obtained by Ogur et at. (1951) for Litium tongi6otium, using biochemical 

extraction and UV-absorption methods, he claimed good agreement on relative 

estimates of changes in levels of DNA per nucleus, at most stages of 

development, but his technique was essentially unreliable for quantitative 

evaluations. The results of Bryan, and Ogur et at., contrary to those of 

Swift (1950) indicated that the vegetative and generative nuclei came to 

contain the diploid amount of DNA, although their chromosome complement was 

apparently only haploid. The increase in total DNA just before anthesis, 

reported by all three parties, was attributed by Swift to the expected 

replication of DNA prior to generative cell mitosis. Bryan did not agree 

with this interpretation, as he regarded the generative nucleus as already 

diploid with respect to DNA. Although the morphology of the differentiating 

generative nucleus maae it impossible to measure DNA levels with any degree 
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of accuracy, Bryan concluded that the observed increase in DNA before _ 

anthesis was entirely associated with the vegetative nucleus. On the other 

hand, Ogur et at. assumed that the increase was shared by both nuclei. 

Bryan found that the rate of nucleoprotein synthesis was much faster than 

that of DNA. He reported a phase of rapid protein synthesis in the 

vegetative nucleus just after pollen grain mitosis, but did not suggest a 

reason for this activity, and in fact questioned the plausibility of 

unequal nucleoprotein levels in nuclei having equal DNA content. The 

inherent inadequacies of the photometric technique at the time, and the 

possibility that unknown contamination from tapetal nuclei may have 

affected the quantitative estimates, leave the results open to doubt. 

Bryan was well aware of this, and stressed that the data obtained could 

not be regarded as definitive. Perhaps the most important point arising 

from this is that one should not expect all pollen to behave in the same 

way.- In some species DNA replication may occur simultaneously in both 

nuclei; in others it may be staggered. 

Taylor and McMaster (1954) used autoradiogrphy and 

microspectrophotometry to determine phosphorus incorporation into DNA, and 

from this obtained reputedly quantitative data on changes in the DNA 

content of pollen during anther development in Utatm tongigoilum. Their 

purpose was to test the hypothesis that DNA incorporates phosphorus only 

when the amount of DNA per cell is increasing. Their technique permitted 

the simultaneous estimation of 32P incorporated and the amount of DNA per 

nucleus of microspores at equivalent stages of development. Autoradiographs 

showed that incorporation of 32P into DNA occurred during three separate 

interphases: before pollen mother cell meiosis, microspore mitosis, and 

generative cell mitosis, in three "S" phases in fact. Feulgen photometry 

indicated within its limits of accuracy that the amount of DNA in each 

nucleus was constant at all stages of development, except for the "S" 
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phase periods, when it doubled, and during nuclear division, when the 

expected halving occurred. Moses and Taylor (1955) also used 32P-

autoradiography and Feulgen microspectrophotometry to investigate DNA 

synthesis during microsporogenesis in ThadUatmUil patudout. Their "class 

values" for DNA support the work of Swift (1950), but conflict to some 

extent with Bryan's values. The autoradiographic data did not permit them 

to decide conclusively whether 32P incorporation preceded or accompanied 

DNA synthesis. One important point raised by Moses and Taylor was the 

possibility of variation from species to species, and even from organism 

to organism, in the precise time of DNA synthesis. They found that 

synthesis in Thade4cantict patudoza was not necessarily fixed to a clearly 

defined period, observing that it occurred in early prophase Of meiosis, 

in late interphase preceding microspore mitosis, and in mid-interphase 

.preceding generative cell mitosis. It has been known for some time that 

the length of the various stages of nuclear division tends to vary under 

different environmental and experimental conditions, and it would therefore 

seem rather futile to attempt to assign a fixed time in the cycle to DNA 

synthesis, as some workers have done (Moses and Taylor refer to Pasteels 

and Lison, 1950, and Thoday, 1954, in this respect). 

During the fifties, the general consensus among biologists 

working on DNA turnover was that synthesis only occurred in cells 

preparing to divide. Later studies, however, gave evidence of DNA 

synthesis in non-dividing cells. Working with tube (vegetative) nuclei 

of germinating pine pollen, Stanley and Young (1962) used autoradiography 

to investigate the incorporation of labelled nucleosides (thymidine - 3H) 

into DNA. From their data it would seem that DNA turnover was in fact 

taking place in the vegetative nucleus, although the authors themselves 

admitted uncertainty as to whether end-group fixation or short nucleotide 

synthesis may have occurred rather than actual incorporation. They 
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questioned the general phenomenon of DNA synthesis in a non-dividing cell, 

suggesting two possible reasons for such a synthesis: 

i) the vegetative nucleus, being derived from the same parent cell as 

the generative nucleus, may retain totipotency and therefore not only 

replicate DNA but also divide under certain conditions. 

ii) the large amounts of enzymes produced by the rapidly growing pollen 

would require a considerable amount of mRNA, and possibly extra DNA 

template would be needed to cope with the increased demands. 

These findings lead to speculation as to whether or not Stanley and Young 

were observing the synthesis of "metabolic" DNA. This term was coined by 

Pelc, and describes a DNA fraction which can be manufactured or lost without 

affecting the basic genetic complement cf the cell. Pelc (1972) suggests 

that this DNA fraction comprises reproductions of the cistrons that are 

active in a cell at particular stages of development, and that these 

copies carry out the "metabolic" functions of the genes', e.g. RNA 

transcription. They deteriorate while in use, and are replaced by further 

synthesis. Pelc puts forward the hypothesis that, at least in eucaryotes, 

the production of extra copies of appropriate cistrons is the first step 

to follow activation of a gene. In this way, the "hereditary" DNA is 

protected from the repeated risk of damage occurring while in the single-

stranded state. Roels (1966) has reviewed photometric investigations up 

to the early sixties which suggested the presence of "metabolic" DNA, but 

the information obtained from these has been superseded by more recent 

autoradiographic data, particularly that of Pelc and La Cour (1959) with. 

differentiating root cells of Vicia 6aba, Sampson and Davies (1966) also 

with Vi.Cia, Owen (1963) and Owen and McPherson (1963) with osteocytes, 

Pelc and Viola-Magni (1969) using adrenal medulla cells of rats, and 

Lima-de-Faria et at. (1968) with insect agonia., Synthesis of "metabolic" 

DNA appears to be comthon during cellular differentiaticn, and losses have 
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been observed during periods of high metabolic activity. Stanley and 

Young may well have observed the incorporation of precursors into 

"metabolic" DNA in the vegetative nucleus in Pinu4. In a later paper 

(Young and Stanley, 1963) they indicate an awareness of certain similarities 

with events described in other organisms, referring to the work of Pelc 

(1959) with seminal vesicle cells of mouse. 

Steffensen (1966) studied RNA synthesis in Litimntongigonvm 

pollen and observed that major syntheses occurred just before pollen grain 

mitosis in G2 and after this division. Column chromatography indicated 

that most of the RNA synthesized at these times was of the ribosomal type. 

Steffensen was not able to detect the presence of nucleoli and rRNA in 

germinating pollen of Laium, although active ribosomes have been seen in 

tubes of other species (see p. 71 ). Mascarenhas (1966a) demonstrated the 

incorporation of labelled nucleosides into unspecified RNA by both the 

vegetative and generative nuclei in germinating pollen of Tnadescantiff 

patudma, substantiating the evidence of Young and Stanley (1963). Treatment 

with actinomycin-D failed to inhibit germination and initial elongation 

of pollen tubes, implying that the requisite RNA for these processes 

must have been synthesized before anthesis, and must therefore be of the 

"long v lived messenger" type of RNA. Actinomycin-D inhibited subsequent 

RNA synthesis, preventing further tube elongation and generative cell 

mitosis. Moss (1967) and Moss and Heslop-Harrison (1967) undertook 

cytochemical studies of DNA, RNA and protein levels in the developing 

anther and spore tissue of Zea mayZ, using spectrophotometric techniques. 

They intended to investigate the possibility that the anther tapetum 

supplied nucleic acids to the developing microspores. Their data for 

microspore DNA content and timing of .synthesis substantiated the evidence 

of Taylor and McMaster (1954), but did not support the hypothesis that 

tapetal nuclei provide discrete DNA, RNA and protein for the sporogenous 
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tissue or the microspores. However, it was considered possible that the 

tapetal cells supplied soluble DNA and RNA precursors to the sporogenous 

tissue during early anther development, from degeneration of apetal 

protoplasts. It is now recognised that microspores have the capacity to 

synthesize their own precursors, and the role of the tapetum is believed 

to be little more than that of a transport tissue for basic materials. 

Improved techniques have enabled workers in the last few years 

to obtain more reliable data on nucleic acid synthesis in pollen. 

Mascarenhas and Bell (1969, 1970) have provided further evidence that 

extensive rRNA synthesis ceases well before anthesis in TAadeScantia 

pollen, and Mascarenhas (1971a, b) has also produced evidence for absence 

of transfer-RNA synthesis after the obset of germination. The function of 

small molecular weight RNA synthesized in pollen tubes is still under 

investigation (Mascarenhas and Goralnick, preliminary report 1971). 

Mascarenhas and LaFountain (1972) have developed a method of separating 

vegetative and generative nuclei, and have used 32P-autoradiography to 

demonstrate qualitative and quantitative differences in the RNA's 

synthesized by the two nuclei. Although the separation method has not 

yet been widely applied, results to date indicate it to be a promising 

new approach. Linskens, van der Donk and Schrauwen (1971) studied RNA 

synthesis during pollen germination in Petunia, using 14 C-orotic acid, 

and found that germination and early tube growth were under the control 

of reactivated long-lived RNA carried by the pollen grain, cf. evidence 

of Mascarenhas (1966a) and Young and Stanley (1963). A minor synthesis 

of RNA occurred during germination, but its precise type and function were 

not known. Sauter (1971a) has stressed the importance of understanding 

the limitations of techniques currently employed in the analysis of 

nucleic acids, in the light of somewhat contradictory data. Nevertheless, 

he feels that there is general agreement on several aspects of phasing of 
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nucleic acid and nucleoprotein synthesis during pollen development. In 

discussing the meiotic period he refers to increasing evidence of a "late" 

replication of DNA occurring during prophase 1, which appears to be 

involved in the subsequent pairing of homologous chromosomes and in 

chiasma formation. This late-replicating DNA may be "satellite" 

(highly repetitive) DNA, a nucleic acid species studied intensively 

since its detection during the early sixties in CsC1 density gradient 

analyses. Specific physical properties suggest that it consists of 

large numbers of short repeated polynucleotide sequences, and it appears 

to be localised in homologous chromosomes in regions of "constitutive 

heterochromatin". Blocks of repetitive sequences are found on either side 

of centromeres and reputedly at the telomeres, at the nucleolar 

organising region, and occasionally in other areas of chromosomes. 

Observations suggest that "satellite" DNA represents parts of chromosomes 

which are not transcribed into RNA for protein synthesis, but which have 

structural and protective functions, including those referred to by Sauter 

(see Yunis and Yasmineh, 1971). Sauter's own cytochemical work with 

vegetative and generative nuclei in Paeonia pollen (reviewed, 1971b) 

tentatively supports the theory that histones, the basic proteins 

associated with nucleic acids in eucaryotes, may have some regulatory 

role in the activation and deactivation of genes. He found that chromatin 

in the active vegetative nucleus was relatively poor in histories, whereas 

the heterochromatic generative nucleus contained greater amounts of histones. 

However, this is almost certainly overstating the case; the rOle of histones 

is probably only a gross one. It is true that active chromatin is less 

rich in basic proteins than heterochromatin, but it is widely agreed that 

histones could not provide the necessary specificity to operate any kind 

of fine control. 
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(ii) Amino acids and proteins  

Aqueous and saline extractions of pollen show considerable 

complexity. Among the compounds present are free amino acids, polypeptides, 

and proteins that are either free or linked to carbohydrates or pigments. 

Most of the early work on pollen proteins and amino acids was carried out 

by people not directly involved in botanical research: apiarists have 

attempted to analyse the amino acid composition of various types of pollen, 

in the search for satisfactory substitutes for use in bee nutrition, and 

allergists have been concerned with the isolation of pollen allergens for 

diagnosis and treatment of pollen sensitivity reactions. In the past 

decade there has been a growth of interest in the immunological aspects 

of pistil-pollen incompatibility, and this field is still under intensive 

investigation. 

The development of suitable chromatographic techniques has 

facilitated the qualitative analysis of amino acids in pollen. It has 

been found that all the essential amino acids are present, either in the 

free state or bound in protein (Stanley, 1971). Levels of free amino 

acids fluctuate during pollen development, and it has been shown that 

long-term storage of mature pollen causes a marked decrease in unbound 

• amino acid content in many species. Total crude protein percentages vary 

considerably among the pollen types studied (111-30% of dry weight) but 

• the ratios of essential amino acids bound in the protein are similar. 

Efforts to establish free amino acid content of pollen as a taxonomic 

indicator have been singularly unsuccessful, as have attempts to relate 

this content to growth potential (Stanley, 1971). 

Investigations have shown that most of the labile proteins in 

pollen are associated with the wall (Knox and Heslop-Harrison, 1970), and 

it is these that are believed to be. implicated in allergenicity and 
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incompatibility reactions. Knox, Heslop-Harrison and Reed (1970) used 

immunofluorescence techniques to localise antigens in the pollen walls of 

Gtadiotta gandavemi4 and Amtviv4a tAitiida. Earlier cytochemical tests 

had indicated that antigenic substances may be incorporated into the walls, 

and Knox et at. were able to substantiate this with their own results. 

The intine in particular was found to be the site of heavy labelling in 

the fluorescence micrographs,: indicating the presence of considerable 

amounts of antigen. However, proteins which were at thesame time 

inevitably extracted from the pollen protoplast during the leaching 

process, did not appear to be significantly allergenic. 

Studies on the mechanisms of pistil-pollen incompatibility are 

being carried out by many workers, building on the important investigations 

of Lewis's group in London during the fifties and sixties. The techniques 

of electrophoresis and immunofluorescence (see Hagman, 1964) have been 

applied to the incompatibility problem with considerable success. The 

recent work of Knox et at. (1972) with two species of poplar has provided 

experimental support for the hypothesis that "self-recognition factors", 

protein in nature, are involved in certain types of incompatibility 

mechanisms. These proteins, like those involved in allergenicity, appear 

to be localised in the intine. They are released in the presence of 

moisture and diffuse through the exine and germination apertures. Their 

precise role in the failure of pollen to bring about fertilisation, has yet 

to be determined. A general discussion of incompatibility will be included 

in the section on pollen morphogenesis. 

The study of pollen enzymes has been of considerable importance 

to the field of enzymology in general. As early as 1894, Green reported 

enzyme activity in pollen preparations. He tested pollen of thirteen 

species, and found that the extracts liquefied starch paste. Pollen of 
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five other species was found to release invertase into a sucrose solution. 

Elser and GanzmUller (1930) investigated the occurrence of saccharase, 

catalase and amylase in three species, and Sosa-Bourdouil (1939) also 

published a review of saccharase and amylase activity in pollen of 

several species. Von Euler et at. (1945, 1948), and von Euler and 

von Euler (1948) studied cozymase and catalase in various pollen types, 

and the activity of succinic and lactic acid dehydrogenases in Satix 

pollen. Important work on pollen respiration was carried out during the 

early forties by Okonuki (1942, 1943) who determined the content and 

activity of certain respiratory enzymes in nine species. Phosphatase 

activity in pollen was studied by Haeckel (1951) who found it comparable 

to that in seeds of the same plants. Nakamura and Becker (1951) obtained 

purified phosphatases from AmbkoZ..& pollen and investigated the kinetics 

of these enzymes, and Palumbo (1953) made an extensive study of levels of 

acid and alkaline phosphatases, succinic dehydrogenase and adenosine 

triphosphatase in developing pollen of Tnade6cantia patudoza and Litium 

tvngigmum. 

In the early sixties Tsinger and Petrovskaya-Baranova (1961) 

identified the intine as the location of many wall-bound enzymes. Since 

then many papers have been published on the identification of these enzymes 

and their role in germination, early pollen tube nutrition and penetration 

of the stigma. Knox and Heslop-Harrison (1969) used cytochemical techniques 

and electron microscopy to localise and identify various hydrolytic enzymes 

in the pollen walls of ten species of higher plants, detecting acid and 

alkaline phosphatases, ribonuclease, esterase and amylase. They believe 

the enzymes to be products of the microspore, incorporated during intine 

development, and discount the possibility that the tapetum is the source 

of these enzymes. In their more detailed investigations (1970) they 

studied pollen of fifty Angiosperms, one Gymnosperm, and the spores of a 
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species of Equaaum and two ferns. Enzyme activity (acid phosphatase, 

ribbnuclease, esterase, amylase and protease) was detected in the walls 

in all cases except the ferns. Their statement on the relationship 

between enzyme localisation and wall ontogeny is of interest: 

"Developmental study showed that the enzymes are incorporated 

in the intine during the early period of wall growth following the 

release of the spores from the meiotic tetrads. During this period, 

stratified ribosomal endoplasmic reticulum lies adjacent to the inner 

spore wall over the areas of incorporation. In C04m04 bipinnatud, a 

composite, the material is incorporated as ribbons or leaflets, which 

interleave with cellulose lamellae. 	In other species the wall protein 

may takethe form of granules, tubules, or vesicles, embedded in the intine 

cellulose. At maturity the intine is separated from the spore cytoplasm 

by an intact plasmalemma, so the wall enzymes are to be regarded as being 

extracellular." 

Other work on pollen enzymes by Knox and Heslop-Harrison has included a 

study of acid phosphatase in the intine of CkOCU4 veimus (1971a), and an 

investigation of the relationship between cytoplasmic RNA levels and 

lysosome enzymes (particularly acid phosphatase and ribonuclease) during 

meiotic prophase in C04,710,6 (Knox, Dickinson and Heslop-Harrison, 1970). 

. Brewbaker (1971) has produced a review of work on pollen enzyme 

identification. He states that most plant tissue enzymes have been 

detected in pollen or pollen tubes, with the exception, under normal • 

circumstances, of catechol oxidases, enzymes associated with plastids and 

plant pigments (although some pollens are in fact pigmented), maltase, 

lipase, betagluconuridase, arylsulphatase, para-diphenyloxidase, 

"zymase", and several of the group of pyrophosphorylases. Gel 

electrophoresis has shown that pollen has characteristic isoenzymes in 

each category of activity, differing from those in the seed or sporophyte 
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• tissues. Stanley and Search (1971) studied short-term elution products 

of germinating pollen and reported on the proteins identified, which 

included the enzymes cellulase and pectinase. Dickinson and Davies 

• (1971a) investigated the role of nucleoside diphosphate kinase in rapid 

growth of plant tissues, using pollen of Laium tong-Woman. The reaction 

catalysed by this enzyme converts ATP produced by mitochondria to CTP, 

•UTP or GTP, which are essential in many metabolic processes; the enzyme 

is therefore important in high-energy transfer reactions. Dickinson and 

Davies found that the greater part of the enzyme fraction was soluble, 

only about 4% being associated with mitochondria. They suggest that a 

high level of the soluble enzyme may be characteristic of rapidly growing 

plant tissues. Larson and Lonergan (1972) have described a successful 

pollen enzyme extraction method which uses only distilled water. They 

extracted glucosyltransf erase from pollen of Zea mays, intending to 

purify the enzyme and use it to study control mechanisms involved in the 

biosynthesis of anthocyanin pigments. The fact that the pollen itself 

lacks such pigments stimulates speculation about the rOle of this enzyme 

in pollen metabolism - presumably it transfers glucosyl moieties to more 

than one acceptor, and it would therefore be involved in the metabolism 

of several types of compounds other than anthocyanins. 

It is possible that the pollen grain at anthesis is already 

"programmed" with m-, r-, and tRNA and ribosomes needed for appropriate 

enzyme synthesis during germination. Another possibility is that the 

pollen grain contains certain enzymes in inactive form at anthesis, and 

they become activated upon germination. However, it seems likely that 

enzyme protein synthesis may in fact occur de nova in the pollen tube 

(4epham, personal communication), although it has yet to be demonstrated. 

Further consideration will be given to the activity of tube enzymes in 

the section on pollen morphogenesis. 
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(iii) Carbohydrates  

Among the major components of pollen, carbohydrates tend to be 

the most variable within and betWeen species. At anthesis, corn pollen, 

for example, may contain more than twice the amount of carbohydrate (36- 

40% of dry weight) than the pollen of other Angiosperms at the same stage, 

while most Gymnosperms appear to be relatively deficient. The carbohydrates 

occur as free soluble sugars in the cytoplasm and as insoluble 

polysaccharides such as the structural pectins, celluloses and callose. 

Some types of pollen also contain starch. It has been shown that pollen 

is able to metabolise many types of sugars which are not present in the 

cytoplasm. Pimws pondekoza pollen, for example, has the capacity to 

produce enzymes to metabolise a wide variety of sugars from the external 

environment, an important aspect of tube growth. 

The more common sugars detected in the pollen of various species 

include sucrose, raffinose, stachyose, rhaunose, glucose, fructose, 

arabinose, xylose and galactose. The rarer sugars lactose, turanose and 

nigerose have also been found, possibly the result of fragmentation of 

polysaccharides. There is some variation in the tyPe of sugar that 

predominates: in many Gymnosperm pollens, sucrose represents over 93% of 

the free sugar content, whereas in Angiosperms sucrose varies from 20-50% 

of the total soluble sugars (Stanley, 1971). Free sugar content also 

varies with methods of handling and storage time, as might be expected. 

Bee-collected pollen, which is kept moist by bee secretions and nectar, 

contains large amounts of reducing sugars; mechanically collected pollen, 

which is drier, contains more non-reducing sugars and is relatively 

deficient in reducing types. Soluble sugar content generally diminishes 

with increasing storage time, possibly due to respiration. 
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In vi.ao investigations have been made of the stimulation and 

inhibition of pollen germination by different sugar solutions. Studies 

such as those of Hrabetova and Tup9 (1964) have provided comparative data 

for many species, and show that the sugar substrate giving best growth 

response is often the endogenous sugar present in greatest quantity, i.e. 

specific growth effects are closely linked to the internal metabolism of 

the germinating pollen. In this respect it is important that the osmotic 

balance is right - plasmolysis of the pollen grain must obviously be 

avoided if germination is to occur. 

Starch content varies considerably, not only among different 

pollen types but at different stages of development. Mature Typha 

tati6otia pollen has about 13% of its dry weight in the form of starch. 

Zea maga pollen, depending on the variety and handling methods, contains 

12-30% starch, whereas pollen of Pincus zabiniana contains only 2.2% 

starch when shed (Stanley, 1971). During germination, some pollens 

absorb exogenous sugars and convert them to starch for storage as a 

reserve material. This process has been demonstrated for several species. 

The probable utilisation of endogenous starch material in the production 

of the intine has been reported by Mepham and Lane (1970) for Ticadezcantia. 

Cellulose, the polysaccharide present in many plant cell walls, 

is the main component of pollen intines. It has a characteristic 

microfibrillar structure and in at least some types of pollen the layers 

of cellulose alternate with layers of protein (Knox and Heslop-Harrison, 

1971b). The pollen tube wall, which is contiguous with the intine, is 

also partially cellulosic. 

Pectins, polymers of galacturonic acid-methyl esters, are 

associated with cellulose in the intine and tube wall. Pectins and 

hemicelluloses (lower D.P. polysaccharides, derived from glucose and other 
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sugars such as arabinose, xylose, mannose or galactose) are the main 

materials deposited at the growing tip (Stanley, 1971). Van der Woude 

et at. (1971) have presented evidence which suggests that pectin precursors 

and other polysaccharides are transported in dictyosome-derived vesicles 

to the tube apex, where they are added to the wall by fusion of the 

vesicle membrane with the plasmalemma. This method of wall material 

transport, which has been described by a number of investigators for 

different species, is discussed in more detail in Part IIC. Pectin 

synthesis in pollen tube membranes has been studied by Stanley and 

Loewus (1964). They reported that synthesis of basic units of pectin 

was boron-dependent, the boron possibly acting as an enzyme co-factor in 

the process. 

Callose, a beta-I, 3-glucan with no microfibrillar structure, 

is an important and relatively widespread plant carbohydrate. It is 

associated with pollen at different developmental stages: it covers the 

naked pollen mother cells after wall loss, forms the initial walls of the 

tetrads, and the transient wall of the generative cell, where its 

reappearance is an early sign of germination in Tkaducant,i.a (Mepham, 

personal communication). Callose is also one of the components of the 

pollen tube wall, and a callose "plug" forms at the upper end of the tube, 

separating the cytoplasm of the tube from the pollen grain. Small breaks 

which may occur in the tube wall during germination are also sealed off 

with callose. Its ability to be formed and destroyed rapidly makes it an 

extremely useful material. 

It is only in recent years that some insight has been gained 

into the chemical nature and physiological functions of callose. In 1957, 

when Currier published his extensive study of "callose substance" in 

different plant cells, little was known about the material. In his review 
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of previous studies, Currier cited the early work of Mangin (1889), who 

- was apparently the first to record the presence of callose in pollen grains, 

tube walls, and in tube plugs. Using fluorescence microscopy, Currier 

confirmed and extended previous visible staining localisation of callose 

in various cell types, including pollen. His observations enabled him 

to make tentative statements about the nature and functions of callose. 

He suggested that several kinds of callose may exist, and regarded the 

substance as "a characteristic material in the same generic sense that is 

applied to starch and cellulose", developing in a variety of circumstances. 

He stressed that callose was not necessarily an "abnormal" material, in 

the sense of a response to plant tissue injury. In many locations it 

appears to be a normal cell wall constituent, especially in the pollen tube. 

He also suggested that callose may be an intermediary substance in the 

synthesis and break-down of cell wall materials. 

Heslop-Harrison (1966a) regards the callose tetrads walls as an 

important factor in the expression of genetic individuality in the 

microspores: 

it may be surmised that up to the meiotic divisions themselves 

there is a requirement for a substantial sharing of materials between 

meiocytes, but that thereafter the need is for isolation of the products 

of meiosis, from each other, and from the enveloping parental tissue - , an 

isolation established by the total investment of the spores in the callose 

wall of the tetrad." ThL implies that callose is virtually impermeable, 

a property which has frequently been ascribed to this polysaccharide. 

However, in a paper published a little later McKenzie and Heslop-Harrison 

(1967) suggest that the permeability properties of callose may not be the 

main factor in preventing exchange between the microspores and their 

environment. The importance of the callose may be its role as a 
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temporary physical barrier to growth of the microspore, thus controlling 

movement of materials at a vulnerable stage of development. They felt it 

was unlikely that an apparently unstructured polysaccharide material should 

have such marked impermeability. Walker (1957) and Mepham (1970) have also 

demonstrated that callose may not be as impenetrable as is generally 

believed. 

Other studies of the occurrence of callose in pollen include 

those of Waterkeyn (1962) with special mother cell walls in HetteboAws 

and TitadUcantia; the work of arska-Brylass (1967a, 1967b, 1968, 1970), 

and of Waterkeyn and Bienfait (1970, 1971). Grska-Brylass investigated 

the temporary wall around the generative cell in five types of Angiosperm 

pollen (1967a, b), detecting the presence of callose in all cases by 

visible staining methods and fluorescence microscopy. She regards the 

presence of this wall as an essential factor in the individual 

differentiation of the generative and vegetative cells. This investigation 

was extended to include four Gymnosperm species (1968), and it was found 

that thin layers of callose separated the prothallial cells, the generative 

cell, and later the stalk and body cells, providing further support for 

the suggestiol that callose walls play an important role in differentiation 

within the male gametophyte. In a later paper (1970) GOrska-Brylass 

summarises her previous work and discusses in detail the significance of 

the transitory callose wall. Like Currier, she regards the formation of 

callose walls in pollen as a "perfectly normal development", and rejects 

the pathological derivation theory in this particular instance. Waterkeyn 

and Bienfait have investigated the importance of the callose mother cell 

wall to early exine patterning. They suggest that the characteristic 

pattern on the inside of each tetrad quadrant may function as a "negative 

template" for exine deposition. Although the callose pattern is not the 

exact inverse of that subsequently formed by the exine, it may well be 

regarded as "a kind of mould for the primexine matrix", as the authors suggest. 
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(iv) Lipids  

Not a great deal has been reported on pollen lipids. Early 

investigations showed that lipid content varies widely among species, 

standard ether extractions producing values from 1 - 20% of dry weight, 

(Lunden, 1956). Fatty acids are usually found in the form of esters 

linked to sugars, phosphates and other groups. Stanley (1971) reports 

that Standifer (1966) found a high fatty acid content in numerous pollen 

types, the most common being linoleic, linolenic and palmitic acids. 

Ching and Ching (1962) detected large quantities of linolenic acid in 

conifer pollen. Hoeberichts and Linskens (1968) have published a study 

of lipids in ungerminated pollen of Petunia. Shaw (1971) suggests that 

certain types of fatty acids may be involved in sporopollenin synthesis. 

Analyses of the non-saponifiable fraction of various pollen lipids have 

indicated the presence of hydrocarbons, higher alcohols, and sterols, 

some of which have been isolated and identified. 

There has been some dispute about the origin of lipid materials 

which are found in the exine. Some workers. regard these lipids as 

exclusive products of the tapteum. Others, such as Mepham and Lane 

(1968, 1969a), have provided evidence for the exudation of lipids by the 

pollen protoplast,.and claim that these can be distinguished from the 

lipid material originating in the tapetal periplasmodium. 

•(v) Vitamins  

The vitamin content of pollen has been assayed for many species. 

Since 1918, when Dutcher published his study of the curative effect of 

corn pollen, honey and nectar on avian polyneuritis, many qualitative and 

quantitative analyses have been made and useful comparative data is 

available. Most pollens appear to be consistently rich in water-soluble 
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B-group vitamins but low in the fat-soluble vitamins. A table based on 

information from Lundell (1956) and Stanley (1971) is presented (p. 41) 

for comparison of vitamin content in a range of species. 

The vitamin level required for germination and pollen tube 

growth is present in the pollen grain at maturity, or in the pistil 

tissues penetrated by the tube. The vitamins frequently appear to 

function as enzyme co-factors (Stanley, 1971). The occurrence of inositols 

in pollen has a particular significance. Myoinositol is often found as 

a free compound, also occurring as phosphoinositol. In addition to its 

function as an enzyme co-factor, inositol is incorporated into pectin in 

the growing pollen tube wall (Stanley and Loewus, 1964, and Kroh and 

Loewus, 1968). 



TABLE 1. VITAMIN CONTENT OF POLLEN  

Vitamin Assays in pg/g of pollen 	 ' 

Pinus Alnus Zea Dactylif era Various Various Various Various Various 
Montana incana Ma s .almae s ecies s ecies s ecies s.ecies s.e ies 

thiamine - - - 4.91-5.63 6.31-10.8 - - 6.0 1.4-7.9 

riboflavin 5.6 12.1 5.7 6.38-6.59 16.3-19.2 - 16.7 - 

nicotinic acid 79.8 82.3 40.7 79.3-87.5 132-210 - - 100 - 

pyridoxine 3.1 6.8 5.9 - - - 9 

pantothenic acid 7.8 5 14.2 - 16-27.6 - 22-51 27 - 

biotin 0.62 0.69 0.52 - - - - 0.25 - 

folic acid - - - - 3.4-6.8 - - - 

inositol range: 3 - 30 mg/g pollen . - - - 
. 	_ _ 

ascorbic acid - - - 530-640 152-176 360-590 - - - 

vitamin A - - - 0 0 - - - - 

vitamin D - - - Rdedt - - - _ 

amin E vitamin - - 0 - - - - 

vitamin K - 
, 

- - - 
n fat 

0 - - - - 

1) Data from Nielsen, Grommer and Lunden (1955). 

2) Data from Vivino and Palmer. Main sources: dandelion, plum, apple, clover, goldenrod, aster. (1944). 

3) Data from Weygand and Hoffman (1950). 8 species. 

4) Data from Pearson (1942). Various species. 

5) Data from Kitzes, Schnette and Elvehjem (1943). Mixed pollen. 

6) Data from Sagromsky (1947). various species. 
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(vi) Growth regulation substances  

Two groups of growth regulation compounds have been detected in 

germinating pollen: acknowledged plant growth substances such as IAA, 

auxin inhibitors, gibberellins and kinins, and the animal hormonal 

substances, the steroids. It has been known for some time that pollen of 

some species synthesizes or induces a substance which inhibits the 

formation of the peduncle abscission layer in pollinated flowers. One of 

the first sources of auxin was orchid pollen (Laibach, 1932), and Michalski 

(1967), using chomatographic separation, has found IAA, auxin inhibitors 

and gibberellins in Gymnosperm (pine) pollen. The exact role of these 

substances in germination and development is not well understood. Some 

have been extracted from stylar tissues as well as pollen tubes, but the 

complex nature of pollen -style interactions makes meaningful observation 

exceptionally difficult. Experiments designed to demonstrate hormonal 

stimulation and inhibition of tube growth in artificial media do not 

necessarily give a valid picture of growth regulation in vivo. Advances 

in the understanding of plant hormone function in general will hopefully 

help to define the role of these substances in pollen germination. 

Botanists have long been interested in the effects of steroids 

on growth of plant tissues. Oestrogenic substances were first detected 

in Satix pollen by Skarzynski (1933) and in Phoenix dactytiiexa pollen 

by Hassan & Aboul Wafa (1947) and Ridi & Aboul Wafa (1947). Since then, 

several steroids have been isolated from pollen of various species. 

Bennett et a. (1966) investigated the sterol fraction of Phoenix pollen, 

using thin layer chromatography to separate oestrone, confirming the 

Identity of the compound by infra-red spectrometry. Cholesterol, the 

precursor of steroid hormones in animals, was also isolated. The 

occurrence of both cholesterol and oestrone in pollen suggests that, in 



43. 

plants as well as animals, these substances may be biosynthetically 

related. Bennett et at. stressed however that the species distribution 

and physiological activity of steroidal substances in plants remained 

open to intensive investigation. Standifer et at. (1968) undertook a 

. mass-spectrographic survey of sterol fractions from pollen of fifteen 

species, and identified the three main compound § as cholesterol, 

24-methylene cholesterol, and beta-situsterol. There was no evidence of 

a taxonomic relationship between the pollen sterols and plant families. 

Stimulation of pollen tube growth by certain steroids has been demonstrated 

by several workers. Stanley (1971) reports that cholesterol at fairly 

low concentrations stimulates germination of pear pollen. Matsubara 

(1971) tested several steroid hormones and phytosterols for in vit/to 

growth response in germinating pollen of Chilyzanthemum teucanthernum, 

obtaining a positive response with some compounds from each group. As 

with the auxins, kinins and gibberellins, the function of steroids in 

pollen metabolism is poorly understood. 

(vii) Inorganic requirements  

Modern techniques such as autoradiography and x-ray microprobe 

analysis have greatly facilitated estimation and localisation of inorganic 

substances in pollen. Early reports were based largely on information 

obtained from pollen ashed in concentrated acid, and comparative data may 

often be misleading. For example, the possibility of volatilisation 

during the ashing is an important consideration for elements such as boron 

and chlorine. One of the earliest mineral analyses of pollen was made by 

von Planta (1886) for Pinuz zytveztJui.o. Anderson and Kulp (1922) analysed 

Zest may4 pollen, adding magnesium and chlorine to the list of minerals 

already found in various species, which included iron, calcium, potassium 

and phosphorus. Lunden (1956) has briefly summarised the data available 
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up to the mid-fifties. It should be noted thdt the wide range of values 

obtained for a particular element may be due not only to intrinsic 

differences in inorganic requirements among the species analysed, but 

also to widely varying mineral levels in different environments. As well 

as those mentioned above, the elements silicon, copper, manganese, 

sulphur, aluminium, nickel, titanium and zinc have been found in pollen in 

different chemical forms. 

The specific mineral requirements of pollen are quite marked. 

Some elements, such as potassium, are maintained at levels similar to 

those found in leaves and roots, while others such as sulphur and 

phosphorus occur in levels five to ten times higher, on a percentage of 

dry weight basis, than in other tissues of the plant (Stanley, 1971). 

Boron is of great significance in the germination of many types of pollen, 

(Schmucker, 1932; Visser, 1955; Vasil, 1964; Fahnrich, 1964; Stanley and 

Loewus, 1964; Stanley, 1971). Numerous hypotheses have been put forward 

for the functions of boron in pollen growth and development. The element 

is believed to play an important role in the absorption and mobilisation 

of sugars during germination; Vasil (1964) refers to the work of Gauch 

and Duggar (1953), Linskens (1955), O'Kelley (1957) and TupY.  (1960) in 

this respect. Stanley and Loewus (1964) report that boron is important 

in the synthesis of pectins for the pollen tube wall. Schmucker (1932, 

1933, 1935) and Gauch and Duggar (1954) have presented evidence for a 

relationship between boron deficiency and bursting of pollen grains and 

tubes due to excessively rapid water intake. Boron may certainly be • 

involved in these phenomena, and may function in ways not yet suspected. 

The extent of its influence is not clear. Vasil's final statement in his 

paper on boron and pollen tube growth (1964) is still valid: "Although 

more than a dozen different and often conflicting roles have been 

postulated thus far to explain the role of boron in plant growth and 
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metabolism, it is still far from clear and the explanation of its 

stimulatory effect on pollen germination and pollen tube growth thus must 

await further intensive work. In fact, boron presents a stubborn challenge 

to the plant physiologists to clarify and explain its exact mechanism of 

action and function in the living plant." 

The function of the calcium cation in pollen germination has been 

investigated both as an individual factor and in conjunction with boron and 

other substances. In a comprehensive paper on cellular chemotropism Rosen 

(1962) reviews earlier work, including the observations of Sachs (1882), 

Brink (1924), Beck and Joly (1941a, b), Iwanami (1953), Miki (1954), and 

his own studies (1959, 1961) - all of which provided evidence for the 

presence of a chemotropic agent in the tissues of the gynoecium in many 

plants. Mascarenhas and Machlis developed a highly successful bioassay 

method for detecting chemotropic responses in pollen tubes (1962a), and 

were able to show that tubes of AntinAhinum majuo exhibited positive 

tropism towards a calcium source (1962b). Several different inorganic 

and organic calcium compounds were tested by them, and were found to be 

successful in inducing the response. A fairly high level of calcium was 

detected in the gynoecium tissues of Antihithinum, which also stimulated 

chemotropic activity, whereas the petals and stamens, found to be low in 

calcium, did not induce a response. Mascarenhas and Machlis suggested 

that the reported ability of various other substances to induce chemotropism 

(egg albumin, diastase, compressed yeast, sodium malate) could perhaps be 

explained by the undetected presence of sufficiently high levels of 

calcium in these preparations. However, the universality of calcium in 

pollen tube chemotropism was questioned by Rosen (1964), who confirmed the 

calcium response in Anthinwn but failed to obtain a similar response 

with Laium pollen. He was therefore less inclined to accept the 

suggestion that calcium may be the chemotropic agent for pollen tubes in 
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all flowering plants, but considered the possibility that other substances 

may block a potentially positive response under certain conditions. 

Brewbaker and Kwack (1964) found. that calcium reduces or blocks the effect 

of a number of pollen tube growth inhibitors. They also showed that 

calcium is almost exclusively bound in tube wall pectins. 

Further work by Mascarenhas and Machlis (1964) has supported 

their identification of calcium as a widely-distributed chemotropic agent 

involved in pollen tube growth. They state: "Calcium, which has been 

found to have a tropic effect in addition to a growth effect, appears to 

possess all the properties of the tropic substances for pollen tubes that 

have been reported in the literature." They were able to show that boron 

enhanced the chemotropic effect of calcium, but did not attempt to explain 

the phenomenon. Mascarenhas (1966b) studied the distribution of ionic 

calcium in the gynoecium of AnVithant.on. The low overall level of calcium 

and apparent lack of a concentration gradient in the stigma led him to 

suggest that some other chemotropic factor may be active in this region. 

The greatest concentration of ionic calcium was found in the placental 

cells and the cells lining the inner ovary wall. The concentration in 

the cells of the ovule, micropyle and embryo sac was found to be 

relatively low. Mascarenhas suggested that, in view of the reduced 

calcium level in these regions, some other chemotropic agent(s) may also 

be involved in the final stages of pollen tube growth. Glenk et at. 

(1971) were unable.to  demonstrate calcium-induced, chemotropism in 

OenOtheita pollen tubes, and agreed with Rosen that calcium was unlikely 

to be the universal factor in pollen chemotropism in higher plants. 

De Bruyn (1966) studied in vitito germination of Sam& 

sphacetata pollen, observing the effects of different concentrations of 

calcium, magnesium, ipotassiuM and sodium at low, "optimal", and high 
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levels of boron. The monovalent cations potassium and sodium did not . 

significantly affect germination or pollen tube growth at any level of 

boron. At high concentrations they displayed an inhibitory effect in 

some cases. Calcium at all concentrations was unable to stimulate 

germination and tube growth in the absence of boron, but tube growth was 

markedly increased by medium calcium concentrations at "optimal" boron 

levels. The inhibitory effect of high boron concentrations was 

counteracted by calcium. Lower levels of magnesium stimulated germination 

and tube growth at "optimal" levels of boron, and counteracted the 

inhibitory effect of high boron concentrations. A high magnesium level 

was strongly inhibitory. Sen and Saini (1969) investigated the elongation 

of Litium negate pollen tubes under the influence of growth regulation . 

substances and the cations of calcium, potassium and magnesium. The 

results of experiments with optimum concentrations of cations, and with 

White's nutrient solution*, are given below: 

TABLE 2. 	Tube-lengths of pollen grown in inorganic cation solutions. 

Solution 
average obtained from no. of 

Tube-length x 20p experiments given in brackets 

dist. water 

5 ppm Ca 

85 ppm K 

22.4 4-  1.5 

39.9 + 2.2 

37.8 It 1.2 

(60) 

(30) 

(20) 

5 ppm Mg 40.0 1.-  1.0 (20) 

White's Soln 77.2 ± 2.8 (20) 

. *Composition: M004 360 mg/litre sucrose 20 g/1 

Ca (NO3)2 200 mg/1 gylcine 3 mg/1 

Na2 SO4 200 mg/1 nicotinic acid 0.5 mg/1 

KNO3 80 mg/1 pyridoxine 0.1 mg/1 

KC1 65 mg/1 thiamine 0.1 mg/1 

NaH2 PO4.H20 16.5 mg/1 ZnSO4 1.5 mg/1 

Fe2 	(SO4)3 2.5 mg/1 H3B03 1.5 mg/1 

MnSO4 360 mg/1 KI 0.75 mg/1 
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Rather more informative is the data obtained from experiments which 

tested the combined action of four growth regulation substances and the 

cations: 

TABLE 3. Tube-lengths of pollen germinated in solutions containing 
different inorganic cations and growth regulators (x 20p) 

water 	38.5 1." 1.6 (30) 	42.0 ± 1.0 (30) 38.8 ± 1.5 (20) 48.0 ± 1.0 (30) 

5 ppm Ca 	40.0 ± 0.9 (20) 	48.8 ± 0.8 (20) 42.0 ± 0.8 (20) 40.0 ± 1.0 (20) 

85 ppm K 	43.9 ± 1.6 (15) 	50.0 ± 1.8 (15) 39.1 ± 1.3(15) 37.5 ± 1.2 (15) 

5 ppm Mg 	43.4 ± 1.3 (15) 	48.0 ± 1.8 (15) 39.3 ± 1.2 (15) 39.3 ± 1.4 (15) 

White's Soln 88.0 ± 2.3 (10) 102.5 ± 3.1 (10) 95.0 ± 2.8 (10) 57.2 ± 1.9 (10) 

Comparing tube-lengths in Tables 2 and 3, it will be seen that growth was 

stimulated in all IAA combinations except with calcium, where growth was 

negligible. All GA3 combinations markedly stimulated growth. TIBA-K and 

TIBA-Mg growth stimulation was not significant, and TIBA-Ca stimulation was 

only small. Growth was substantial in water-TIBA and White's Solution-TIBA. 

ABA, in combination with the cations and White's Solution, appeared to have 

an inhibitory effect on tube elongation. This particular set of experiments 

gives only the barest information about the physiological effects of 

interaction between growth regulators and inorganic substances. Extensive 

testing of different combinations would be required before any definite 

relationships could be determined. 

(viii) Pigments  

Carotenoids and flavonoids are the main classes of pigments 

found in pollen. There is a wide range of colour gradation, from almost 

white through blue and grey to dark brown, but most pollens (about 80%, 

according to Mobius, 1923) are within the yellow range. The principal 
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carotenoids are alpha- and beta-carotene, lycopene, xanthophyll, and 

zeaxanthin, and small amounts of crocetin have been found (Lunden, 1956, 

and Stanley, 1971). Lunden refers to the early analytical works of Vivino 

and Palmer (1944), von Euler et at.(1945), Karrer (1950), and Tappi 

(1949-50), who identified and estimated carotenoids in the pollen of 

various species. Carotenes are mostly found in the lipid fractions of 

the exine and cytoplasm, and also occur in surface oils in some species. 

The main flavonoids of Angiosperm pollens appear to be quercetin, kaempferol, 

and isorhamnetin. Naringenin is prominent among Gymnosperms, with 

considerably smaller amounts of kaempferol and quercetin (Stanley, 1971). 

Isorhamnetin has apparently not yet been found in Gymnosperm pollen. 

• Flavonoid glucosides can be isolated from some species after the carotenes 

have been removed, and flavones, which are water-soluble, can be removed 

without difficulty. 

The function of pollen pigments has been a matter for much 

dispute. It has,been suggested that some pigments may protect the gametophyte 

from genetic damage by their UV-screening action, but it is doubtful whether 

even anemophilous pollen would be in serious danger of UV radiation damage. 

It has also been suggested that different pigmentation in anemophilous and 

entomophilous pollen ensures the appropriate mode of distribution, but 

the validity of this hypothesis is also open to doubt. Certain pigments 

are believed to be important in fertilisation. Tsinger and Poddubnaya-Arnoldi 

(1954) found that carotenoids in orchid pollen tubes played some rale in 

compatibility reactions. Samorodova-Bianki (1956) studied the relationship 

between carotenoid levels and fertility in the anthers of various plants, 

and observed that the normal accumulation of carotenes during microsporo-

genesis did not occur in sterile plants. The possible function of carotenoids 

as enzyme co-factors is suggested by in vitu studies in which carotenes 

stimulated pollen tube growth. Minaeva-and Gorbaleva (1967) reported that 
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flavonoids also stimulated tube growth. Pollen pigments clearly have a 

number of possible functions, but their precise roles have yet to be 

clarified. 

C. 	Pollen Mor ho enesis - A developmental study  

Three major nuclear events occur during pollen development: 

the meiotic division giving rise to microspores; pollen grain mitosis, 

producing the generative and vegetative nuclei; and generative cell mitosis, 

which produces the sperm nuclei. For convenience, each of these will be 

discussed separately, with the accompanying and subsequent cytoplasmic 

changes. 

The meiotic period  

The transition from diploid sporophyte to male haploid gametophyte 

is achieved through the process of meiosis in the anther. The characteristic 

pattern of development of the gametophyte differs markedly from that of the 

sporophyte, and it would seem that the typically sporophytic parts of the 

haploid genomc are in some way repressed during gametophyte development. 

The question is, therefore, what occurs during and immediately after meiosis 

that encourages the expression of the gametophytic part of the genome? 

During the past fifty years or so, many workers have studied the cycle of 

nuclear and cytoplasmic events which constitute meiosis in pollen mother 

cells. Light microscopy provided basic information on the behaviour of 

chromosomes and cytoplasmic organelles during meiotic divisions 

(Guilliermond, 1920, 1924; Py, 1932; Wagner, 1927; Frankel, 1937), but 

modern concepts of the meiotic process in different plants are largely 

based on more detailed information obtained from electron microscopy. The 

actual nuclear events are usually very similar, and some cytoplasmic 

similarities have emerged, but the universality of these is still disputable. 
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It should therefore be stressed that, contrary to the expectations 

(implicit or explicit) of numerous cytologists, a generalised picture of 

nuclear-cytoplasmic relations during meiosis in Angiosperms has not 

developed. At the present stage of knowledge the cytology 	meiosis 

can only validly be discussed on the basis of observations in individual 

species. 

Heslop-Harrison and co-workers have studied in detail the 

nuclear and cytoplasmic changes occurring during meiosis in several 

plants (Heslop-Harrison, 1966a, b; MacKenzie, Heslop-Harrison and 

Dickinson, 1967; MacKenzie and Heslop-Harrison, 1967, Dickinson and 

Heslop-Harrison, 1970a, b; Knox, Dickinson and Heslop-Harrison, 1970) 

Much of this work, and also that of Linskens (1966), Moens (1968), 

Walters (1968), Das (1965), Mather (1965), Hotta et a. (1963, 1966), 

And Maruyama (1968) is reviewed by Heslop-Harrison (1971a). In the 

introduction he states that "there must be some rather - far-reaching 

cytoplasmic reorganisation during the meiotic period, to prevent the 

carrying over of extranuclear diplophase information and to permit the 

institution of a new environment favourable to the expression of gametophyte 

functions." He supports this statement with data from a number of species. 

The most striking changes involve ribosomes, nucleoli, mitochondria and 

plastids. Intercellular cytoplasmic connections also undergo marked 

changes. In ULagn henkyi substantial quantities of what are described 

as free ribosomes and ribosomal ER are present at the beginning of 

Prophase 1 (leptotene). 'Extraction techniques and cytophotometry both 

show that the zygoten*achytene interval is characterised by a sharp fall 

in ribosome numbers, although electron micrographs indicate that 

elimination is not complete. Heslop-Harrison regards the observed rise 

in lytic enzymes at this time as further evidence for destruction of 

ribosomes and breakdown of cytoplasmic RNA. Ribosome levels rise again 
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during Metaphase 11- Telophase 11, just before the microspore tetrads 

are complete. Studies with TAitVimi enectum (MacKenzie, Heslop-Harrison, 

and Dickinson, 1967), CO4M04 bipinnatuz (Knox, Dickinson and Heslop-Harrison, 

1970) and Paeonia tenui liotia (Sauter and Marquart, 1967) tend to confirm 

the evidence obtained from Laium hen4yi, and are in agreement with the 

earlier observations of Py (1932), who noted a loss in affinity of the 

prophase cytoplasm for basic dyes, and Painter (1943), who linked this 

with a fall in RNA levels. 

Changes in ribosome numbers appear to be closely correlated with 

the meiotic nucleolar cycle. Nucleoli are small dense bodies associated 

with the nucleus, containing DNA, RNA, and protein, and appear to be 

involved in ribosome synthesis. They arise at specific chromosomal sites 

- the so-called nucleolar organiser regions - which appear as constrictions 

in mitotic chromosomes. In a karyotype these are found on specific 

chromosomes. -  At telophase, when nucleoli reform, each organiser may give 

rise to a small individual nucleolus, or they may all come together to 

form one large nucleolus. The latter case is probably due to preferential 

aggregation of "satellite" DNA (see p. 28), which is found on either side 

of each nucleolar organiser. The maximum number of nucleoli present in a 

cell at Prophase 1 is genetically determined, and varies from species to 

species, but as nucleoli may fuse the maximum number may seldom be seen. 

In cells with more than one, reduction in number may occur at the time of 

synapsis of homologous chromosomes. Lin (1955), while studying chromosomal 

control of nuclear composition, observed a volume increase in nucleoli 

after synapsis. Latter (Lathylua odmattvs, 1926), Frankel (FiLitatania, 

1937), and Moens (Litium tongigoam, 1968) reported a "flattening" of 

nucleoli towards one pole. By diplotene, howeyer, normal spherical shape 

appeared to be restored. Loss of stainability for RNA and protein is 

noticeable in several species at the end of Prophase 1, and the pollen 
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mother cell nucleolus disappears by the time of formation of the Metaphase 

1 plate. Frankel (1937) reported that the "parental" nucleolus does in 

fact persist throughout meiosis in FAitittartia. 	The autoradiographic 

studies of Das (Zea ma34, 1965) have supported the general impression 

that RNA synthesis in nucleoli ceases after leptotene. In contrast, 

synthesis of chromosomal RNA increases during early Prophase 1, reaching 

its highest level in diplotene, but decreases again towards the end of 

the prophase. There are many reports of the appearance of nucleolus-like 

bodies in Telophase 1 and during the second division of meiosis. They 

have been described by numerous workers, including Latter (Lathy/us, 

1926), Frankel (FAitittaA,Ut, 1937), Hgkansson and Levan (Pibium zativam, 

1944, Lindemann (Bettevaia Amana and Agapanthia umbettatt4, 1956), 

and Dickinson and Heslop-Harrison (LLtium, 1970a). In spite of their 

structural and cytochemical similarity to the "parental" nucleoli, the 

small "nucleoloids" described by the latter pair are apparently not 

formed at the established nucleolar-organiser regions of chromosomes - 

although bodies of this kind were observed in association with chromosomes 

during Anaphase 1 in Litium. Similar bodies were seen in the Anaphase 11 

- Telophase 11 interval. Biochemical extraction data for LiLLum henityi 

- suggests that a chromosome-associated synthesis of "ribosomal type" RNA 

• occurs near the end of Prophase 1. Comparing thisAnformation with 

observed phenomena, Heslop-Harrison (1971) postulates that this synthesis 

may be concerned with the formation of the nucleoloids. LitLum gives 

evidence of a synthesis of ribosomal type RNA before the appearance of 

the Anaphase 11 - Telophase 11 nucleoloids, and data from the diplotene 

stage in Zea may4 (Das, 1965). also seems to support the postulate. 

There is some possibility that each nucleoloid is simply a 

mass of compacted ribosomes, or parts of ribosomes, released at the 

appropriate time to re-establish the ribosome level for post-meiotic 
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protein synthesis. This would appear to be the case at least in Latium 

henmi. Evidence for a wider application of this process is found in 

meiosis in the oocyte of certain amphibia (Gall, 1969), and it is possible 

that the mechanism described is one form of cytoplasmic "pre-programming" 

- if it is assumed the "message" is present in the ribosomes. 

Heslop-Harrison (1971a) suggests that the "late" replication of DNA 

-reported by Gall in &lie amenicanu4 and Xenopuz taev,i4, and by Hotta et 

at. in Prophase 1 in LaZum tongi4eo4um and TAittium meet= (1966) may 

in part be concerned with the subsequent production of ribosomal RNA for 

ribosome restoration, - although there is increasing evidence that 

late-replicating DNA is of the "satellite" type, which is apparently not 

involved in RNA transcription. 

In line with the decline in ribosome numbers, Heslop-Harrison 

(1971a) reports marked changes in the membranes of the endoplasmic 

reticulum, between zygotene and Telophase 11 in Li.e.ium. The normally 

plate-like profiles of sectioned ER are replaced by concentric groups of 

paired membranes, apparently part of spherical and not tubular or 

cylindrical structures, but the precise metamorphosis involved in this 

transition is not described. The membranes of these spheres lack ribosomes, 

but often enclose organelles such as plastids and mitochondria. This is 

referred to as the "period of compartmentation". The membranes gradually 

return to the more usual form as ribosomes are restored. At the diad 

stage, the cytoplasm in Litium shows both plate-like and "compartmented" 

ER, but at tetrad dissolution only plate-like ER is seen. It remains to 

be seen whether this cycle of membrane changes is universal or only 

species-specific. 

Several workers in recent years have studied the changes 

occurring in cytoplasmic ,organelles during microsporogenesis. In 

particular, mitochondria, plastids and the Golgi apparatus have been 



55. 

investigated in some detail. The problem of multiplication of mitochondria 

and plastids should perhaps be considered first. There is still uncertainty 

about the genetic continuity of these organelles and the precise mode of 

reproduction. Bell and MUhlethaler (1964) produced evidence of loss of 

mitochondria in developing egg cells of the fern Ptehidium aquiZinum, 

followed by the formation of new ones from evaginations of the nuclear 

envelope. A similar method of de novo formation of plastids was later 

suggested by Bell et a. (1966), and again for mitochondria (Bell, 1972). 

(Note: The process of "nuclear blebbing" will be discussed in more detail 

in relation to intine formation, p. 62). Dickinson and Heslop-Harrison, 

however, (1970b) have published electron micrographs which suggest that 

plastids enter a division phase in the premeiotic period in Laium and 

pass through a process of "de-differentiation and re-differentiation", 

regaining internal structure and starch from the tetrad stage on. 

Genetic continuity is implied in this sequence of events. In fact, 

Heslop-Harrison (1971a) states that, for Laium hennvi, "There clearly 

are no phases of elimination and subsequent restoration from the nuclear 

envelope as envisaged for the fern egg." As with so many ontogenetic 

processes it is highly likely that both hypotheses are equally valid, and 

apply to different plant types, or even to a given plant under different 

conditions. Investigation of these organelles during meiosis in a much 

wider range of specieswould be required to test the frequency and 

distribution of the two methods observed. 

Mitochondria undergo a series of marked morphological changes 

during microsporogenesis. Maruyama (1968), building on the earlier work 

of Bal and De (1961), has used standard electron microscopy to demonstrate 

this cycle of Tnadescantia patudosa. Before meiosis, mitochondria in the 

pollen mother cells appear to be elongated, (round in cross-section), up 

to 1.511 in length and about 0.4p in width. A few cristae can be 
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distinguished, but are not well developed. There may be a small number 

of vesicles or tubules. By pachytene the mitochondria are spherical - 

about 0.4p in diameter - and appear to be without cristae, although some 

retain the tubular structures. As meiosis proceeds even the tubules 

decrease in number, and by the formation of the tetrads no more than three 

are found per mitochondrion. Similar changes have been described in 

Gastenia ventucosa by Willemse (1972), who was also able to show by 

statistical analysis that no increase in the number of mitochondria (or 

other organelles) occurs during meiosis in this plant. (Willemse had 

previously demonstrated the stability of meiotic organelle populations 

in Pinta sytvestAZs, 1971a, b). It should be mentioned that fixation 

methods can greatly influence the amount of detail seen in structurally 

complex organelles such as mitochondria. Although many workers other than 

Maruyama and Willemse have reported little internal structure in 

mitochondria during meiosis and early microspore development, others 

believe that improved fixation may reveal the presence of greater 

structural detail throughout the process. 

Maruyama (1968) and Dickinson and Heslop-Harrison (1970b) have 

clarified some aspects of the behaviour of plastids during meiosis. At 

leptotene in Madescantia paiudosa, plastids in the pollen mother cells 

appear ovoid, measuring about 1.8p in length and 0.8p in width. Starch 

granules are gradually lost, and thylakoids and tubular structures regress. 

In Litium tongigmum, constricted plastids, suggesting incipient 

division, are becoming less common by leptotene. During zygotene, most of 

the internal structure of the plastids is greatly reduced; ribosomes are 

lost from the strama, and only "osmiophilic globuli" remain to assist 

their identification as plastids at this stage. Dickinson and Heslop-Harrison 

state: "Conceivably the globuli represent storage centres for the membrane 

lipids mobilised during the elimination of the lamellae." From pachytene 
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to Metaphase 1 the plastids remain in the proplastid state, only the 

globuli being visible. In this interval they are spheroidal or slightly 

elongated. 

Changes occurring in the Golgi apparatus are of particular 

importance to the fine -structural study of pollen wall formation. Golgi 

bodies have long been implicated in secretory activities, and it is to be 

expected that these organelles would show a high level of activity during 

the period of callose and pollen wall formation. Maruyama (Thade6cantia 

patudoza, 1965) and more recently Skvarla and Kelly (Canna gene/Lab:4, 

1971) and Willemse (Pinws 4ytve4tA,Z4, 1971a, b, c; Gaztetia ye)'rtumsa, 

1972) have studied the behaviour of Golgi bodies, and have shown that the 

species observed exhibit numerous similarities in Golgi development 

during microsprogenesis. In the premeiotic period in Canna, each Golgi 

apparatus Consists of several dictyosomes whose cisternae are interlinked 

by networks of tubules. These are often associated with smooth tubular 

ER. According to Skvarla and Kelly, secretory activity (i.e. vesicle 

production)- by dictyosomes is not obvious until well after meiosis. 

They report a decrease in the number of "static" cisternae as 

microsporogenesis progresses, associated with a rise in vesiculation of 

the dictyosomes. Willemse also reports a paucity of vesicles in 

dictyosomes of GaZtetia pollen mother cells, observing an increase during 

zygotene-pachytene, possibly associated with the secretion of the callose 

special mother cell wall. He suggests that the consistent location of 

the Golgi bodies near the region of the dividing nucleus may indicate a 

role for these organelles in reconstructing the nuclear membrane. 

Heslop-Harrison (1964, 1966a, b, 1971a) has observed major 

changes in cytoplasmic interconnections during meiosis in CannabZo zativa, 

Sitene penduta, and other species. In the premeiotic period pollen mother 
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cells are linked by plasmodesmata which become "massive cytoplasmic 

channels" in early Prophase I, forming a type of syncitium (cf. 

protoplasmic connections between. animal spermatocytes). He regards this 

as an important factor in maintaining synchrony in early meiosis. After 

the interconnections are severed in Meiosis 11, synchrony decreases, and 

the isolation and individuality of each daughter cell is reinforced by 

the formation of the callose tetrad walls. As mentioned earlier 

Heslop-Harrison suggests that interchange of materials via the larger 

channels may be useful prior to diad formation, but that the subsequent 

isolation of the haploid nuclei from one another is of prime importance 

in the development of genetically individual gametophytes. 

Changes within the uninucleate microspore  

The substantial cytoplasmic changes associated with meiosis 

are probably necessary for the ultimate expression of the gametophytic 

part of the genome. After the tetrad stage the young microspore 

undergoes another series of complex changes that convert it to a 

functional male gametophyte. The transition from microspore to 

gametophyte is strongly influenced by surrounding tissues: initially 

the anther tapetum, and later the gynoecium in which the pollen tube 

grows. Ribosome numbers rise during the final stages of meiosis, and the 

appropriate ribosome population for subsequent metabolic activity is 

restored by the time of tetrad formation. The microspore therefore 

begins its independent existence with the quantity of ribosomes for 

protein synthesis required in the growth period. 

Both mitochondria and plastids show increasing internal 

structure during the uninucleate stage in Beta, and starch grains are 

found in the plastid 6 (Hoefert, 1969). Maruyama (1968) also reports the 
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frequent occurrence of large starch grains in well developed plastids of 

young Taaducantia patudoza microspores. The plastids lose starch by 

the vacuolate stage, and show signs of incipient division. A little later, 

"proplastids" are seen, some of which contain starch. These reach full 

development, often with a single large starch grain, just before pollen 

grain mitosis. Mitochondria in T. paudoza microspores appear relatively 

undifferentiated before the vacuolate stage, and are recognisable only by 

analogy with bodies of a similar size in the tetrads. About midway through 

the vacuolate period, their internal structure reappears, and prior to 

pollen grain mitosis the mitochondria are large and well developed. 

Information from T. baacteata is essentially similar: plastids containing 

polysaccharide granules are present in the pre-mitotic cytoplasm, and 

mitochondria undergo morphological changes which suggest incipient 

division (Mepham and Lane, 1970a). Dickinson and Heslop-Harrison (1970b) 

have observed that the "membrane-particle associations" of Meiosis 11 within 

Litium plastids regress after the tetrad stage, and redevelopment of 

internal structure follows rapidly. Ribosomes and starch granules 

reappear within them, and constrictions suggesting division can be seen. 

At the time of intine initiation the starch content of plastids is reduced; 

this may indicate mobilisation of carbohydrate reserves for cellulose 

synthesis, as pointed out by Mepham and Lane. 

In the interval from the tetrads to pollen grain mitosis Golgi 

bodies show a high level of activity. The possible involvement of these 

organelles in early exine formation was mentioned by Heslop-Harrison 

(1968a). Vasil and Aldrich (1970) suggested that Golgi bodies may be 

active in exine deposition in Podocanpa, and Willemse (1972) has 

presented evidence which strongly supports this. Electron micrographs 

of Gastenia microspores imply that Golgi vesicles may transport material 

to the site between the plasmalemma and the callose tetrad wall. Willemse 
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suggests that the vesicles secrete a polysaccharide which forms a template 

for the exine. Some of this material appears to be included in the 

substance of the developing bacula, tectum and foot-layer, but the major 

wall component is formed at the plasmalemma from precursors probably 

originating within the microspore cytoplasm. Lipid globules are in 

abundance at this stage in Ga6teiti.a. Heslop-Harrison's concept of a 

"primexine" is recalled in Willemse's interpretation of the electron 

micrographs of Ga6tetia: "The suggestion can be made that the pollen 

wall consists of two kinds of material: less electron dense material 

and electron dense material, which may be the sporopollenin. The other 

possibility is that the sporopollenin is preceded by a less electron 

dense precursor". Another interpretation is that pieces of homogeneous 

material, which are present in different thicknesses in a section, will 

appear to have differential electron density. 

The exine reaches its mature form while the microspore is 

still expanding. Several workers have investigated the problems of exine 

permeability and expansion, and have succeeded in abolishing the earlier 

idea of the exine as an impenetrable, inflexible barrier. Banerjee et at. 

(1965) studied exine plasticity during the maturation of Spaganium 

anductadium microspores. They concluded that the material is in fact 

capable of stretching and shrinking to accommodate for changes in 

protoplast volume, and accepted the possibility that each species has a 

characteristic exine size, to which the exine will revert if stretched 

during microspore maturation. Rowley et at. (1959, 1970, 1971a, b) 

observed structures that would presumably facilitate transfer of 

materials into the expanding pollen grain: cytoplasmic strands from the 

tapetum to the exine, and channels through the exine which appeared to be 

formed from plasma membrane evaginations. They were also able to show 

that the tracer lanthanum nitrate passed directly through the exine - 
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not only along the channels - and accumulated at the surface of the cytoplasm 

and in lamellae of the nexine. This presented a rather different concept of 

the permeability properties of exine, for, as pollen workers have long been 

aware: "the resistance of the exine to degradation and its relatively high 

mass offers a mental block to any thinking about transfer of materials through 

the material of the exine." (Rowley and Flynn, 1970). Mepham and Lane (1969a) 

also reported that tapetal membranes penetrate the exine in aadescantia 

bucteata. In a paper published a little later (1970b) they suggested a 

special function fur the sculptured exine of microspores in plants with an 

amoeboid" tapetum. They noted the presence of wall projections in plant cells 

specifically involved in absorption and translocatian.of nutrients, such as 

"transfer cells" in leaf veins (Gunning a at., 1968), and juncture cells . 

between sporophyte and gametophyte in Paythichum (Maier, 1967) and 

Sphaekocanpao (Kelley, 1969) -,and suggest that the early appearance of exine 

projections associated with the tapetal periplasmodium may provide an efficient 

method of transport from sporophyte to microspore. For plants with a 

"secretory" tapetum (apparently lacking the close association between tapetal 

membranes and microspores) the significance of the exine projections to 

nutrient transport is open to question. Mepham and Lane, however, remark that 

improved research techniques may well reveal some form of association between 

the secretory tapetum and developing spores. 

The intine begins to form before pollen grain mitosis, during 

the period of volume increase and vacuolation. Heslop-Harrison (1968a) 

suggests that precursors may be transported by vesiculating dictyosomes 

lying close to the plasmalemma, but presents no direct evidence for this. 

The intine is initially laid down in the apertural region where exine is 

thin or absent, and extends over the plasmalemma surface. It appears to 

consist of microfibrillar cellulose in a pectic-hemicellulosic matrix, 
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with the inclusion of protein material (Knox tnd Heslop-Harrison, 1970a, 

1971a). The cytoplasm of young microspores of several species studied 

shows various membranous and tubular structures which appear to be 

associated with intine production. Hoefert (1969), working with 

microspores of Beta vutgaA-bs, reports a "contorted membrane structure" 

which she calls the "reticulum complex". This persists from the tetrads 

to the binucleate stage. Hoefert indicates that it may be involved in 

protein synthesis or tr ansport of materials between the nucleus and the 
plasmalemma. A similar structure is described by Mepham and Lane (1970a) 

and is believed to be associated with intine secretion. Numerous 

cytoplasmic microtubules are visible prior to and during the vacuolate 

period in Beta, when in fact intine synthesis is taking place, but Hoefert 

does not suggest any connection. Heslop-Harrison (1971) has described 

similar microtubules adjacent to the plasmalemma during intine formation, 

but they were infrequent and he felt that their function was not clear. 

Rowley (1967), Angold (1967), and Mepham and Lane (1970a) have also 

reported the presence of microtubule systems in microspores of Poputia 

tkemata, Endymion non-zniptta, and DtadeiScantia bnacteata respectively. 

They would therefore appear to be a fairly common phenomenon of this 

developmental stage. The function of general cytoplasmic microtubules 

(as opposed to cilia, flagella, and spindle tubules) is unknown, but they 

are frequently seen at times of wall synthesis and are known to penetrate 

the intine. 

The association of nuclear evaginations with intine production 

has been discussed by Barth and von Randen (for Paeonia, 1967) and 

Gullvgg (for Lycopodium 1970). "Blebbing" of nuclear material has already 

been mentioned with respect to the formation of mitochondria and plastids 

(p. 55). During spore production in Lycopodium the nuclear envelope 

evaginates to produce vesicles which appear to empty their contents onto 
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the site of the developing intine. Cullvgg interprets this as 

transportation of the required genetic information for intine synthesis. 

Barth and von Randen report a similar transfer of extruded nuclear 

material to the site of intine production, noting that the vesicles are 

carried via the ER, which appears to be continuous with the outer nuclear 

membrane. Nuclear "blebbing" may possibly have the basic function of 

packaging copies of parts of the genome which are needed to direct 

various cytoplasmic activities. 

A possible function of the vacuolation occurring during 

microspore maturation should be mentioned briefly. The vacuoles, which 

appear to be derived from the ER, are often seen to contain plastids and 

mitochondria in various stages of disintegration, and it is possible that 

the cytoplasm may be removing "old" organelles through a process of lysis 

within the vacuoles. After pollen grain mitosis the vacuoles rapidly 

regress, perhaps indicating stabilisation of the cytoplasm of the two 

new cells (Mepham and Lane, 1970a). The derivation and possible lysosomal 

function of vacuoles and vesicles in different cell types has been 

referred to by several workers, including Pickett-Heaps (1967), Matile 

and Moor (1968), Robards and Kidwai (1969), Mesquita (1969), and Mahlberg. 

(1972a, b). 

Pollengrain mitosis and the binucleate stage  

The final stage of microspore maturation is inaugurated when 

the nucleus divides mitotically to produce the vegetative and generative 

nuclei. N3rmally the mitotic spindle forms asymmetrically, probably 

influenced by earlier vacuole formation within the microspore cytoplasm 

(La Cour, 1949). The resulting cells are therefore unequal in size and 

shape. Formation of a symmetric spindle results in two equivalent cells, 
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and the pollen grain is sterile. The generative nucleus soon stains 

differently and its chromatin becomes highly condensed (heterochromatic). 

In contrast, the vegetative nucleus normally becomes euchromatic, and 

occasionally assumes bizarre shapes. 

Larson (1963) studied "cytoplasmic dimorphism" in mature pollen 

of different species, and was able to demonstrate the presence of paired 

membranes separating the cytoplasm of the vegetative and generative cells 

in mature pollen. The existence of such membranes had been disputed not 

long before this by Venema and Koopmans (1962) but Larson's work confirmed 

earlier reports by Safijovska (1955) and Bopp-Hassenkamp (1960) that 

mature pollen was in fact bicellular. No evidence was found of an 

actual dividing wall in these studies, although such a wall has 

subsequently been observed in the immature pollen of several species. 

The presence of a transitory wall around the young generative cell had 

been suspected for many years before- evidence was presented by a number 

of workers using improved electron microscopic methods, including 

Maruyama et at. (1965), GOrska-Brylass. (1967a, b), Heslop-Harrison 

(1968b), Angold (1968), Mepham and Lane (1970a), and Hoefert (1971) 

Maruyama and co-worker's observed the fusion of electron-lucent vesicles 

to form a division between the vegetative and generative nuclei in 

Ptaducantia patudoza pollen. This "wall", which appeared dome-shaped in 

cross-section, was in contact with the intine and gave cytochemical 

reactions which suggested the presence of cellulose and pectins. The 

wall later became very thin (less than 300 7) and lost contact with the 

intine, permitting the vegetative cytoplasm to surround the generative 

cell completely. It was found to persist in this reduced form at pollen 

grain maturity. Maruyama et at. suggest that the formation of a true 

wall between the vegetative and generative nuclei may be an important 

factor in maintaining differential development of the two nuclei and 
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their accompanying cytoplasms. GOrska-Brylass supports this view, 

although she differs in her interpretation of the chemical nature of the 

wall. Using two species of Chtauphytum and one each of Hyacinthta, 

Madescantia and.Impatiero, she has demonstrated the presence of a 

callose layer by two methods reputedly specific for this polysaccharide. 

The callose persists for only a short period - about twelve hours from 

the completion of pollen grain mitosis. The wall is between 1.5p and 

2.5p in thickness, in most cases smooth and continuous but occasionally 

appearing scale-like. As the generative cell moves away from the pollen 

wall towards the centre of the grain, it becomes spherical and is 

completely enveloped in the callose wall. In essentials these observations 

for Tnadescantia are confirmed by Mepham and Lane (1970a). Mepham 

(personal communication) has also observed plasmodesmatal connections 

through the wall between the two cells. After the disintegration of the 

callose, the generative cell slowly assumes its characteristic elongated 

• shape. The presence of a transitory callose wall around this cell seems 

to be a widespread feature, and there is general agreement among 

palynologists that its main function is probably to achieve early 

separation of the vegetative and generative nuclei, permitting the 

development of individual potential. If the wall does not form, the two 

• cells may fail to differentiate, and sterility results. 

The marked developmental differences between the cells have been 

investigated in detail in recent years, and attempts have been made to 

relate the dissimilarities to differing roles in the ultimate development 

of the gametophyte. The cells begin with apparently similar organelle 

complements, but proliferation of organelles has been shown to occur 

only in the vegetative cell. Larson (1963) observed that differentiation 

of the cytoplasms began soon after pollen grain mitosis. Plastids were 

found in both cells in most species studied, but those in the generative 
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cell were relatively small and immature and lacked starch, whereas the 

vegetative cell contained amyloplasts. Golgi bodies in the generative 

cell were few and inactive, and the ER was reduced. -  At anthesis, mature 

pollen of all species studied has shown negligible Golgi activity. Many 

Golgi bodies are present, but they remain dormant until water is taken up 

at the onset of germination.. Larson found that differences in general 

'cytoplasmic density were inconsistent, the vegetative cell being less 

dense than the generative in some species and denser in others. 

Maruyama (1968) discusses in detail the overall phasing of 

changes in plastids and mitochondria during the binucleate stage in - 

Thadebcantia patudosa, but does not always distinguish clearly between 

the organelles of the vegetative and generative cells - a fact which 

leads to occasional confusion. Mepham and Lane (1970a) report a 

proliferation of organelles in the post-mitotic vegetauive cell of 

Tibadescantia imacteata. Plastids accumulate plysaccharide, a mass of 

"rough" ER develops, • dictyosomes increase in number (although no active 

vesiculation occurs), and the cell becomes packed with mitochondria. At 

pollen grain maturity the generative cell appears quiescent. Its 

organelle complement is essentially normal, but no increase in numbers 

occurs, and storage materials are not found. Hoefert's description of 

the binucleate pollen grain in seta vutgalt,eis (1969) is brief and sketchy, 

but in this plant also it is evident that the vegetative and generative 

cytoplasms become quite different. Willemse (1972) has found that the 

overall number of organelles per pollen grain increases after mitosis in 

Gazte&ia vehimcoza, also in NAta sytvestxis -(1971a, b, c). Mitochondria 

develop more cristae, but Golgi bodies do not appear very active and only 

limited vesiculation can be seen. Reserve material in the form of 

electron-transparent granules (presumably polysaccharide) accumulates in 

plastids until after mitosis, when the granules begin to disappear - 
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contrary to other reports, e.g. Hoefert (1969). Willemse's observations 

are of limited value, as he does not distinguish between the vegetative 

and generative cells in presenting either the morphological or quantitative 

data. 

Oryol (1969) studied polarity and nuclear/cytoplasmic 

differentiation in Zea malo pollen, concentrating mainly on possible 

physical factors influencing movement of the vegetative and generative 

nuclei, and of the generative cell as an entity. A predictable pattern 

of movement was established, aligned with the polarity axis, and Oryol 

suggested that the presence of a gradient of some kind in the cytoplasm 

of the young microspore might predetermine the course of movement after 

mitosis. 

It was believed for many years that vegetative nuclei were 

degenerate, showing little activity. Improved techniques have enabled 

workers to demonstrate that this is not so. The studies of Young and 

Stanley (1963) and Mascarenhas (1966a) on nucleic acid synthesis in 

vegetative and generative nuclei, mentioned above (p. 26), have shown that 

the vegetative as well as the generative nucleus actively incorporates 

labelled nucleosides. Larson (1965) modified his earlier views (1963) 

after producing electron micrographs which indicated that the vegetative 

nucleus was functional and not degenerate. Mascarenhas observed that 

treatment with actinomycin-D failed to prevent pollen tube germination 

and early growth, but that subsequent elongation and pollen tube mitosis 

were inhibited. This he regarded as evidence that the m-RNA and r-RNA 

required for initial tube growth are synthesized by the binucleate grain 

before anthesis. In a laterpaper supporting this hypothesis (Mascarenhas 

and Bell; 1970) he refers to the cytological work of Woodard (1958) which 

suggests that the vegetative cell in primarily responsible for the 
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observed synthesis of RNA. The significant level of organelle activity 

within the vegetative cytoplasm lends further support to the idea of a 

highly functional cell, at least - in the binucleate period, and apparently 

also during germination and early tube growth. By comparison, the 

generative cell appears quiescent. The organelles are fewer in number 

and considerably less active, and ER is reduced. Towards pollen grain 

maturity the generative nucleus becomes highly condensed and appears to 

enter an extended prophase. Mitosis may occur before anthesis in some 

species, i.e. the mature grain is trinucleate, or, as in the majority of 

species, it may be delayed until after germination when the generative 

nucleus has entered the pollen tube. The number of nucleopores on the 

vegetative nuclear envelope increases markedly during the binucleate 

stage in aade6cantia bhacteata (4epham and Lane, 1969b). This appears 

to be another sign of increased cellular activity, as the pores are 

believed to form only when ribosomes are being extruded into the cytoplasm 

to direct protein synthesis. Towards anthesis, when cellular activity 

diminishes, pore numbers decrease. Few pores are seen on the generative 

nuclear envelope. LaFountain and LaFountain (1973) have supported the 

observations of Mepham and Lane with their own work on freeze-etched 

pollen of Maducantia patudout. They report that vegetative nuclear 

envelopes have about twice as many pores as those of generative nuclei, 

both in density and total pore number. This figure shows a good 

correlation with estimates of the amount of RNA synthesized by the two 

nuclei between pollen grain mitosis and anthesis, giving further support 

to the hypothesis of RNA extrusion via nucleopores. 

Pollen Tube Development  

Pollen germination and tube growth in vivo and in vitho have 

been the subject of many investigations, some as early as the nineteenth 
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century. Much has been published on the topic, and a complete review of 

• surveys and results would go well beyond the limitations of this study. 

The discussion will therefore concentrate mainly on the large body of 

work carried out since 1960. 

Uptake of water and activation or synthesis of enzymes appear 

to be the initiating mechanisms in pollen germination. The grain swells 

rapidly, and the tube tip grows through an aperture or break in the exine 

as a structure contiguous with the intine. Lytic enzymes in the intine 

are implicated in the dissolution of exine in apertural regions, prior to 

germination of the tube (Gherardini and Healey, 1969). As discussed' 

above (p. 33) the cytoplasm of the pollen grain appears to be "pre-programmed" 

for production or derepression of enzymes required for germination and 

initial tube growth. The enzymes metabolise substrates both within the 

grain and possibly in the tissues of the gynoecium, providing precursors 

and energy sources for tube biosynthesis. Growth is limited to the tip, 

where elongation occurs by the deposition of pectic and hemicellulosic 

materials immediately behind the tip. The true cellulose component is 

probably incorporated after the initial wall is formed (Stanley, 1971). 

A layer of callose is generally deposited as a lining to the wall 

(excluding the tip) and callose plugs often appear at the grain end of 

the tube as a stopper device for the tube cytoplasm. Callose plugs may 

also be present in the wall, possibly as a response to wall injury. 

Numerous investigators have shown that germinating pollen 

readily utilises endogenous and exogenous carbohydrates in the formation-

of structural polysaccharides, carbohydrate reserves and other materials. 

• (Kessler, Feingold and Hassid, 1960; Stanley and Poostchi, 1962; 

• Hrabgtovg and Tup"Y, 1963; Young et at., 1966; de Bruyn, 1966b; Kroh et at., 

1971). There is some evidence that the materials required by the growing 
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tip are initially supplied -  in vesicles which accumulate internally 

stored compounds and move through the cytoplasm (probably under the 

influence of cyclosis) to coalesce at the tip region, eventually fusing 

with the wall (Rosen, 1964; Rosen et at., 1964; Dashek and Rosen, 1966; 

Crang and Miles, 1969; Jensen and Fisher, 1970; Stanley, 1971). 

Polysaccharides and RNA appear to be the main contents of the vesicles. 

Rosen (1971a) has subsequently reconsidered modes of material 

accumulation, in the light of recent studies of fine structure in zitu. 

It appears that tube wall growth after a successful pollination may begin  

in the way implied from in vitAD studies, but may switch to a mechanism 

which permits direct incorporation of materials from stylar tissues. This 

will be discussed further below. The cyclitol compound myo-inositol is 

apparently an important precursor in pectin synthesis for wall formation 

(Stanley and Loewus, 1964; Young et at., 1966; Kroh et at., 1970; Roggen 

and Stanley, 1971), and the well-documented boron requirement of germinating 

pollen (see above, p. 44) is thought by many to be at least partially 

explained by the action of boron as an enzyme co-factor in myo-inositol 

incorporation. 

There has been some confusion over the synthesis of ribonucleic 

acids in pollen tubes. The concept of cytoplasmic "pre-programming" by 

means of dormant messengers is gradually gaining wider acceptance, and 

the apparent reduction in m- and t-RNA synthesis can possibly be explained 

in these terms. Mascarenhas (1971a, b), Linskens (1971) and Tui4 et at. 

(1965) have presented evidence which suggests that dormant-mRNA and tRNA 

are formed in the mature microspore cytoplasm, and are subsequently 

activated when germination begins. From this, it would appear that early 

tube growth is not dependent on new m- and tRNA, but a limited synthesis 

may be required for further elongation. Steffensen (1966, 1971) reported 

the apparent absence of de nOvO rRNA synthesis in LUZ,U11 Zongigotum pollen 
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tubes, although functional ribosomes have beea observed by Mascarenhas 

and Bell (1969), Crang and Miles (1969) and Rosen et at. (1964). Ribosomes 

may also be bequeathed in an inactive state by the pollen grain, becoming 

functional after germination. As most of the above studies were made 

with pollen germinated on culture media and with pollen extracts, they 

can give only limited information on the possible extent of in vivo 

activities. With this in mind, it should be noted that pollen germinating 

in vLaCt rarely elongates to the same extent as in the pistil tissues. 

Increased activity of many enzymes during germination has been 

noted by several workers (see summary by Brewbaker, 1971)— The enzymes 

showing a significant increase include cell wall hydrolysing enzymes, 

amylases, 0-fructofuranosidase, phosphorylases and transaminases. The 

wall softening enzymes cellulase and pectinase have been found in mature 

ungerminated pollen (Konar and Stanley, 1969) and are now believed to be 

part of the "pre-programming" mechanism activated during germination in 

many plants. It has been suggested that these enzymes assist in 

maintaining the plasticity of the tube tip by controlling the ratios of 

pectins, hemicelluloses and cellulose deposited there (Roggen and Stanley, 

1969). An electron microscope study of germinating Lychni.s atba pollen 

(Crang and Miles, 1969) revealed two features of importance to the 

understanding of enzyme behaviour. Highly organised crystalline bodies 

were seen in mature pollen grains and tubes, with lattice periods of 

'about 80 I. Some of the bodies were sites of positive tests for acid 

phosphatase, and the investigators suggested that the crystals may 

represent the inactive or "storage" state of certain enzymes which lose 

their crystalline structure upon activation. Acid phosphatase activity 

was also demonstrated in cytoplasmic vesicles in pollen tubes, suggesting 

the presence of lysosomes involved in the metabolism of exogenous and 

endogenous substrates. The problem of synthesis vs. activation of enzymes 
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at the onset of germination has interested several workers, but reports 

are conflicting. Some enzymes, such as the cellulases and pectinases 

mentioned above, are probably present in sufficient quantities in the 

microspore, but remain dormant prior to germination. Others may be 

present in limited quantities in the "pre-programmed" cytoplasm and 

further synthesis from long-term mRNA may be required during pollen tube 

growth. However, Brewbaker (1971) states: "The fact that many inhibitors 

of protein synthesis...fail to inhibit pollen germination implies that 

germination can proceed without net enzyme synthesis, at least in the 

binucleate pollen types which have been studied". Dickinson and Davies 

(1971b) reported no general synthesis or activation of enzymes involved 

in the production of carbon skeletons and energy for wall polysaccharide 

formation. Their data, obtained for Lai.= tongiOmum, implied that the 

required active levels of these enzymes were present prior to germination - 

but one could perhaps question the validity of this data, considering the 

rapid synthesis of much greater quantities of polysaccharide after 

germination. The possible role of certain enzymes and other proteins in 

incompatibility reactions will be discussed below. 

Pollen tube fine structure has received much attention_, mainly 

because of certain differences between tubes growing Ln VitAD and those 

observed from excision of stylar tissues. Ultrastructural dissimilarities 

undoubtedly reflect differences in the metabolic mechanisms of pollen 

germinating in vivo and in V.i.tA0, and comparative studies should reveal 

important information on the environmental requirements for successful 

germination. In a recent paper Rosen (1971a) has summarised the 

difficulties involved: "A problem which has bedevilled students of pollen 

growth has been that of achieving, in vit&o,.growth which equals that 

which must be accomplished in. the pistil if fertilisation is to occur... 

A fruitful approach to the development of improved pollen tube growth 



73. 

media would be to go directly to the pistil and to extract from it, and 

identify,- those soluble components which promote pollen tube growth on a 

minimal medium.. .We must also, however, be attentive to the physical 

environment. Growth requirements, physical as well as chemical, may 

change significantly during growth. 'Indeed, the general failure to 

achieve growth in culture which approaches growth in the pistil may come 

from a failure to recognise changing growth and osmotic requirements at 

different stages of tube development". In vitko studies by Rosen and 

co-workers (1964), Rosen and Gawlik (1966), and Dashek and Rosen (1966) 

with pollen of Litium ZongigoAum showed distinct cytoplasmic differences 

between the non-growing region of the tube and the growing tip. Mitochondria, 

amyloplasts, ER, Golgi bodies, lipid globules and vesicles of various sizes 

were found in abundance in the area behind the tip, whereas the tip region 

was characterised by a marked increase in the number of vesicles and an 

almost complete absence of organelles, lipid and starch. Cytochemical 

tests revealed a similar lack of "total" protein in the tip region, but 

an abundance of RNA and protein in the vesicles. Other ultrastructural 

•studies of tube cytoplasm and walls have presented basically similar 

pictures of pollen germinating in vith.0 (e.g. Larson and Lewis, 1962, 

'Larson 1965, Crang and Miles, 1969) with only minor variations which may 

• be species-specific. Three recent papers on the fine structure of tubes 

growing in vivo are those of Kroh (1967), Jensen and Fisher (1970) and 

Rosen (1971a, mentioned above). Kroh found that the state of cytoplasmic 

organelles in Petunia pollen was much the same whether germination 

occurred in culture media or in the pistil. The one striking difference 

was in the structure of the tube wall. The outer layer of the wall in 

vivo appeared irregular in outline and somewhat diffuse in structure, 

possibly an advantageous feature for tubes growing in a less homogeneous 

environment where penetration of materials could be relatively difficult. 

In contrast, walls of experimentally germinated tubes were more regular 
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and compact in structure, possibly reflecting the ease of penetration of 

culture media solutions. Jensen and Fisher :ceported that cytoplasmic 

activities in Gozzypium himutum tubes growing in the stigma and style 

were similar to those described by other workers for in vivo and in VitiL0 

germination, and stated that features of the wall were in agreement with 

the descriptions of Kroh for Petunia. Rosen's theory of a change-over in 

nutritional modes (see above, p. 70) is based on observations of tube 

wall structure in. 4itU. He describes "irregular embayments" in the tip 

wall which appear to facilitate the entry of exogenous materials. He 

suggests that this ultrastructural feature may be connected with compatible 

pollination only, as the embayments apparently did not develop when 

pollination was incompatible, and the pollen tube ceased to grow after its 

internal substrates were exhausted. The embayments did not develop in. 

vitito (cf. evidence of Kroh, Jensen and Fisher). Crang (1966) and Crang 

and Miles (1969) also implied that later tube growth may be at least 

partially achieved by "apposition". 

Many workers other than Rosen have been concerned to define the 

appropriate conditions for successful germination and fertilisation. 

Rosen himself has been involved in a detailed examination of secretory 

cells of LUZ= tongigokum in an attempt to determine their role in 

pollen germination (Rosen and Thomas, 1970; Dashek, Thomas and Rosen, 

1971). Exudates on the stigma surface and in the stylar canal of various 

species appear to be involved in pollen tube nutrition, chemotropic 

activity, and incompatibility reactions (Welk et a., 1965; Rosen and • 
Gawlik, 1966; Kroh et a., 1970; Kroh et a., 1971; Ascher and Drewlow, 
1971; Rosen, 1971b). Rosen and co-workers have suggested that the 

"secretion zone" of stylar canal cells in Litium, and the embayments of 

the pollen tube tip, may be linked in an efficient transfer mechanism 

which is initiated by penetration of the pollen tube and discharge of 
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hydrolytic enzymes from the pollen into the stylar canal. Protein, pectin, 

cellulose, hemicellulose and lipid were detected in the cytoplasm and 

bordering wall of the "secretion, zone", but the composition of the exudate 

itself was not determined. Jensen and Fisher (1969) studiee, the relationship 

between the pollen tube and the pistil tissues of Go4dypium, a plant which 

does not have a stylar canal. Instead, the tube grows through a 

"transmitting tissue" of thick-walled cells, but does not penetrate the 

cytoplasm 	these cells. Although there was no direct evidence of 

absorption of materials by the tube, the possibility was considered. 

Jensen and Fisher, however, preferred to regard the transmitting tissue 

as "a passive route for the growth of the tube", rather than a source of 

nutrients, wall.precursors and other "active agents" controlling tube 

growth. Crang (1966) reported cytoplasmic disintegration of stylar cells 

in Lychnbs aeba as a direct response to tube penetration. Enzymes 

diffusing from the tube were believed to be responsible for the degradation. 

In this study Crang did not discuss the possible role of disintegration 

products in pollen tube growth. Martin and Brewbaker (1971) analysed the 

stigmatic exudate of species of Petunia, Stnetitzia, Zea and /pomoea, and 

suggested possible roles for the various components. Lipids occurred as 

free fatty acids and esters, and appeared tofunction primarily in the 

prevention of desiccation. There was some possibility that they also 

affected the permeability of pollen tube membranes. (Roggen (1972) has 

suggested that heavier waxes on the stigmas of some species may be part 

of the incompatibility mechanism). Phenolics were also detected in the 

exudate, and it was proposed that they might act as inhibitors or 

stimulators of IAA-oxidase activity, thereby affecting the growth rates. 

Martin and Brewbaker reported that sugars and traces of free amino acids 

had been found in stigmatic exudates (Konar and Linskens, 1966), but that 

levels of enzymes and other proteins were very low in the species tested 
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(Martin, 1968; Konar and Linskens, 1966). The exact role of the exudates 

has yet to be determined. 

Stanley and Linskens (1967) investigated oxygen tension as a 

possible controlling factor in pollen tube rupture. An oxygen gradient 

is known to exist in the style, approaching zero in the ovary, and Stanley 

and Linskens found that decreasing partial pressure of oxygen in vi,a0 

induced bursting of tubes in five species. The exact mechanism of rupture 

is not known, but it is possible that cytoplasmic streaming within the 

tube ceases as p02 approaches zero, creating wall stresses in the tip and 

eventually causing tube rupture and liberation of the sperm nuclei. Lytic 

enzymes such as cellulase, which are known to be less sensitive to low 

p02 than those involved in wall synthesis, may also be implicated. Not 

all pollen tubes burst at low partial pressure of oxygen, however, and 

other factors are undoubtedly involved. Nygaard (1969) studied growth 

conditions and the effects of pH and temperature changes on in Vi.tAD 

germination of Pinto mugo pollen, relating the growth rates to those known 

to occur in vivo.. A pH optimum of 4.5-6.5 was recorded for successful 

germination. Initial tube growth was shown to be dependent on temperature: 

no germination was observed in cultures sLarted at -10 ° C, less than 5% in 

cultures started at 10 ° C, and normal germination occurred at an initial 

temperature of 15 ° -18 ° C. Satisfactory growth rates were obtained when 

temperatures were maintained between 20 °-37 ° C. 

Arditti and Knauft (1969) prefaced their paper on post-pollination 

behaviour in orchid flowers with a list of important changes induced by the 

pollination process. These included: stimulation of ovule development, 

initiation of peroxidase activity in the ovule walls, starch accumulation 

at various sites, translocation of mitrogenous compounds, water, phosphates 

and carbohydrates from various floral parts to the column, development of 
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chlorophyll in the depleted floral parts, ethylene production, and 

numerous structural changes. An investigation into the effects of these 

changes on growth of the pollen tube itself, could provide much information 

on optimum conditions for germination. Pollen tube chemotropism and 

growth stimulation by various substances have been discussed in Part II 

(iii), (vi) and (vii) above. 

The generative nucleus of binucleate pollen must undergo mitosis 

during tube growth, if fertilisation is to occur. The vegetative and 

generative nuclei move into the tube, probably to some extent influenced 

by cytoplasmic streaming. Following compatible pollination, mitosis 

occurs, giving rise to two haploid sperm nuclei. Limited tube growth and 

generative nuclear division may occur in some species even if the 

pollination is incompatible, but in such cases fertilisation does not occur. 

In many species the generative nucleus fails to divide following an 

incompatible pollination. (Townsend, 1971). The vegetative nucleus appears 

to lose structure after formation of the sperm nuclei; it is possible 

that its final function is to influence mitosis in some way. 

Incompatible pollination  

.Both interspecific (the inability to succeed in hybridisation) 

and intraspecific incompatibility (failure to set seed after fertilisation) 

have been investigated in some detail. Although the finer genetic and 

immunological Mechanisms are not yet fully understood, several contributing 

factors have been revealed. As would be expected, different combinations 

of these factors influence incompatibility reactions in different plants, 

and it is extremely unlikely that a universal pattern of events will emerge. 

The possibility that proteins diffusing from pollen may be an essential 

factor in compatibility and incompatibility, had been suggested as early 
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as the nineteen twenties (East, 1929). Testing this hypothesis formed a 

major part of the work of Lewis et aZ., and many others, in the fifties 

and sixties, but biochemical details were poorly understood prior to the 

adaptation of analytical techniques such as gel electrophor:sis and 

serology. Valuable work on the analysis, localisation -and properties of 

enzymes and other proteins potentially involved in incompatibility has 

been carried out in recent years by Stanley and Linskens (1964, 1965), 

Kendall and Taylor (1971), Stanley and Search (1971), Knox and co-workers 

(1969, 1970a, b, 1971a, b, c, d, 1972), Brewbaker (1971),. and Pandey (1972). 

Pandey's investigations into temperature-induced inactivation of certain 

enzymes has provided support for the work of Hecht (1964), Bali and Hecht 

(1965), Ascher and Peloquin (1966, 1970), Leffel (1963) and Kendall and 

Taylor (1969). These workers obtained evidence that compatible 

pollinations can occur if certain proteins involved in incompatibility 

reactions are heat-denatured. 

Incompatibility factors appear to be located in the pollen wall 

(Kwack, 1965; Knox and co-workers, 1969, 1970a, b, 1971a, b, c, d, 1972) 

in the stigmatic and/or stylar exudates (Pandey, 1963, Rosen, 1971b; 

Ascher and Drewlow, 1971), and possibly in the tryphine coating of pollen 

(Heslop-Harrison, 1968b; Dickinson and Lewis, 1973). Apart from specific 

enzymes and other proteins.  which may be either activated or repressed to 

achieve incompatible reactions, certain ions may be involved (Kendall, 

1968; Kwack, 1965), and the stigmatic cuticle and epicuticular wax in 

some plants, e.g. Bnazziect and Raphanud, has also been implicated (most 

recently Ockenden, 1972; Roggen, 1972; .  Dickinson and Lewis, 1973). The 

genetic basis of incompatibility mechanisms has been the subject .  of 

controversy for many years. Since the 'S-gene' hypothesis was put forward 

by East and Manglesdorf (1925), many attempts have been made to fit 

experimental observations into this system, which proposes that 
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compatibility is controlled by a single multiallelic gene (see review of 

Townsend, 1971). The original hypothesis has been extended and modified 

in the light of new data, but no'single genetic model has achieved general 

acceptance. It is likely that several or many models will be required to 

describe incompatibility mechanisms, even for the species studied to date. 

Abnormal pollen development  

Pollen abortion can result from disturbances in normal mechanisms 

at several developmental stages. Differentiation may be arrested as early 

as the pollen mother cell stage, before meiosis has even begun. In other 

cases the meiotic division itself may be abnormal in some way, and will 

give rise to various types of defective microspores. If development 

proceeds as far as pollen grain mitosis, the disturbance may occur at 

this division, and the mature grain will be non-functional. Prolonged 

cohesion of microspores within a tetrad .(Rick, 1948), failure to form 

exine (Frankel, 1940), tapetal malfunction (Childers, 1952; Childers and 

Mclennan, 1960; Pandey, 1961; Singh and Hadley, 1961; Chowdhury and Das, 

1968; Knox and Heslop-Harrison, 1966), and unsatisfactory anther 

development (e.g. absence of epicuticular wax; prevention of dehiscence 

by abnormal wall formation) are all known to affect pollen viability to a 

greater or lesser extent. The abortion rate in any plant may be genetically 

determined, as in the case of male sterile mutants, but is also influenced 

by environmental factors such as photoperiod, temperature, availability of 

nutrients, adequate water supply, and attack by plant parasites and 

micro-organisms. 

Cytological studies of abnormal meiosis, such as those by 

Faberge (1937), Rick (1944), Dodds and Simmonds (1946), Childers (1952), 

Bernardo (1957), and Bosemark (1957) have shown that disruption of normal 

nuclear and cytoplasmic events will result in different types of sterile 
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microspores, including the non-functional polyploids and multinucleates 

described by Giles (1939), and "miniature" grains resulting from 

chromosomal lagging. Disturbance of polarity in pollen grain mitosis will 

generally affect formation of the asymmetric spindle, which is essential 

for "proper" differentiation of the vegetative and generative nuclei. A 

symmetric spindle will give rise to two non-functional "vegetative" cells 

of equal size, forming a defective pollen grain which degenerates soon 

after mitosis. A mutant gene may be responsible for abnormalities of 

either meiosis or mitosis in the anther, but in cases where genetically 

based sterility can be ruled out the cause will undoubtedly be a 

particular environmental factor, or a combination of several factors. 

Early studies of external influences on pollen fertility were 

carried out mainly for agricultural purposes. Kostoff (1930, 1933) and 

Kostoff and Kendall (1929, 1930, 1931) found that intergeneric grafting, 

arachnid parasites and viral disease affected pollen fertility levels in 

various plants. Howlett (19.36) studied the effects of carbohydrate and 

nitrogen deficiency on microsporogenesis in tomato plants, and produced 

a wide range of results. Mild carbohydrate deficiency induced the 

formation of grains which appeared morphologically sound but failed to 

germinate either in vivo or in vitn.o. A more severe deficiency caused 

abnormal development ranging from failure of meiosis to occur in the 

pollen mother cells to degeneration of mature grains. Chromosomal 

lagging and other irregularities of division were common. A moderate 

degree of nitrogen deficiency did not appear to affect pollen development 

to any extent. Only a very marked deficiency resulted in a significant 

level of abortion. As under conditions of carbohydrate deficiency, 

degeneration occurred over the full range of pollen grain development. 

Giles (1939) investigated the effect of dehydration on microsporogenesis 

in TAade6cantia, and found that water lack interfered with meiotic spindle 

and cell plate formation. This disturbance resulted in the production of 
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diploid, tetraploid, and even octoploid micrcspores, and bi- and quadri-

nucleate cells. It was suggested that the effect of dehydration may be 

to increase the viscosity of the Pollen mother cell cytoplasm, preventing 

normal spindle development and activity. The occurrence of natural 

polyploidy was discussed in relation to the results of this study. The 

length of the post-inductive photoperiod was shown by Nielsen (1942) to 

be an important factor in pollen abortion and failure of flowers to mature. 

Exposure of Biloxi soybeans to long photoperiods, following photoinductive 

treatments of two to twenty cycles, caused abortion at various developmental 

stages. Plants exposed to a low number of inductive cycles appeared to be 

affected at a much earlier stage of pollen development than plants which had 

received longer inductive treatment. The long post-inductive photoperiods 

produced a high level of abortion even in plants having ten inductive cycles. 

Heslop-Harrison and co-workers have contributed much to the 

understanding of factors involved in pollen sterility, particularly the 

effect of photoperiod (Heslop-Harrison, 1959; Heslop-Harrison and Y. 

Heslop-Harrison, 1958; Knox and Heslop-Harrison, 1966). They have shown 

that photoperiodic effects on hormonal and metabolic activities can 

strongly influence tapetal function, a major factor in pollen viability. 

A study of cold-induced rice crop failure by Satake et at. (1969a, b; 

1970) revealed that low temperatures affect the meiotic stage of pollen 

development, inducing a high level of abortion. Other affects include 

cessation of anther development, partial or no dehiscence of mature 

anthers, little or no pollination, and failure of mature pollen to 

germinate on the stigma. The delicate balance of factors in the 

environment can be seen to exert a strong influence on the succass or 

failure of pollen development. 
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