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ABSTRACT 

Understanding the feeding behaviour of larval fish is critical for determining optimal 

management protocols in aquaculture and understanding larval prey selectivity patterns of 

wild fish populations. This study examined the feeding performance of cultured greenback 

flounder larvae Rhombosolea tapirina, using the live feed organisms Brachionus plicatilis 

(rotifers), and Artemia sp., to determine the primary sensory modality involved in feeding, 

the relationship between mouth dimensions and prey size selected, and the effect of 

previous exposure to a prey species on subsequent prey selection. The proportion of 

larvae that fed on rotifers in the light (light intensity of 5-6 Ilmol.n12 .s1 ), increased 

significantly from 66% to 96% from day 12 to day 27 post-hatching, respectively. In 

comparison, the proportion of larvae that fed on rotifers in total darkness (0 gmol.M 2 .s -1 ) 

never exceeded 5% during the same period. This indicated that greenback flounder larvae 

were primarily dependent upon vision (a light dependent behaviour) to feed, with a lesser 

reliance upon non-visually mediated detection of prey. Internal horizontal dimensions of 

the mouth of greenback flounder larvae determined from serial histological sections, 

increased in a linear fashion with both increasing body size and age of larvae. Examination 

of the ratio of Artemia prey size (total length, carapace width, and carapace width with 

appendages) to larval mouth width, suggested that prey carapace width, not prey width 

with appendages, or prey length, limited the size of prey ingested, indicating that larvae 

must visually orient to ingest the prey head-on. When greenback flounder larvae were 

offered one of three discrete size fractions of Anemia prey, both prey size and larval age 

significantly effected larval feeding response. On days 12 - 17 post-hatching, larvae 

ingested Artemia prey of a single size range (100 - 200 gm screened size), which was 

considerably smaller than they were capable of ingesting. From 19 - 20 days of age and 

thereafter, there was a marked change in feeding performance, with larvae able to ingest all 

three Artemia prey size ranges offered (100 - 200 gm, 300-390 pm and 450 - 560 pm 

screened size, respectively), probably reflecting an ontogenetic increase in larval sensory 

capability, swimming speed and prey handling ability. Prior feeding experience of 

greenback flounder larvae to either rotifers only (Rotifer Treatment) or a mixed diet of 

Artemia and rotifers (Artemia and Rotifer Treatment), significantly effected subsequent 



prey selection when larvae were offered a mixed diet of Artemia and rotifers, but did not 

effect the temporal onset of selection of the novel prey species (Artemia) by Rotifer 

Treatment larvae. Therefore the differences in prey selection by larvae with or without 

prior exposure to Artemia prey, was not due to the inability of larvae to handle and ingest 

a novel prey species, but reflects positive selection for familiar prey species. The latter 

indicates a learned component in the feeding behaviour of fish larvae. This has 

implications for the timing of the introduction of new live prey species during intensive 

culture of marine fish larvae. 
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	 INTRODUCTION 

Larvae of most marine fishes are predatory planktivores, at least during the early life 

history stages (Hunter, 1981; Blaxter, 1986). The search, capture and ingestion of prey by 

planktivorous fish larvae involves a complex interaction of both environmental parameters 

external to the larval predator, and the physiological, morphological and behavioural 

characteristics of the individual (Bell, 1990). The ability of larvae to search for, perceive 

and then capture prey, is largely constrained by the genotypic and ontogenetic 

characteristics of the larva (e.g. sensory capabilities, locomotory ability, mouth dimensions 

and body size). The latter change rapidly during development, such that the ability of the 

fish to capture prey, and the size of prey able to be ingested, increases rapidly with 

increasing body size (Confer and Blades, 1975; Breck and Gitter, 1983; Blaxter, 1986; 

Noakes and Godin, 1988; Ghan and Sprules, 1993; Cook, 1996; Higgs and Fuiman, 1996). 

Within the constraints of the ingestible prey size range imposed by larval mouth 

dimensions, prey selectivity is strongly influenced by prior exposure to prey, and 

behaviours learned by the larvae (Ware, 1971; Vinyard, 1980; Checkley, 1982; Colgan et 

al., 1986; Meyer, 1986). In addition, extrinsic environmental factors, including the spatial 

distribution and size spectrum of available prey in the environment, and the physical 

characteristics of the water column (light intensity, water turbidity and temperature), 

directly effect larval searching strategies (Bell, 1990). Intrinsic physiological needs of the 

larva (level of hunger, satiation, starvation), further modify searching behaviour (Blaxter 

and Ehrlich, 1974; Yin and Blaxter, 1987). 

The ability of fish larvae to detect prey is central to the feeding process. Various sense 

organs have been implicated in prey perception by larval fish, including the eyes (vision), 

the mechanosensory lateral line and superficial neuromasts (mechanoreception), and organs 

of gustation and olfaction (chemoreception) (Dabrowski, 1982; Janssen, 1990; Batty and 

Hoyt, 1995; Higgs and Fuiman, 1996). However, the sense organs are initially, poorly 

developed (Blaxter and Jones, 1967; Hairston et al., 1982; Appelbaum and Schemmel, 

1983; Kawamura and Ishida, 1985; Blaxter, 1986; Harvey et al., 1992; Walton et al., 

1994; Pankhurst and Butler, 1996), and this has implications for sensory functional 

capabilities. In larval fish which are primarily dependent upon vision in order to locate 

prey, visual resolution is initially severely constrained by fish eye/lens size and the stage of 

development of the retina, thereby imposing constraints upon prey detection by small fish 

(Hairston et al., 1982; Breck and Gitter, 1983; Li et al., 1985; Kotrschal, 1990; Pankhurst, 
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1993; Pankhurst, 1994). Visual acuity (the minimum angle that a stimulus can subtend at 

the eye and still be resolved) of larval fish is initially poor, with the optimization of 

photopic resolving power and visual sensitivity, being restricted by limited space within the 

retina (Kotrschal et a/., 1990). However, photopic visual acuity increases with increasing 

fish size (Blaxter and Jones, 1967; Johns and Easter, 1977; Li et al., 1985; Pankhurst et 

al., 1993; Pankhurst, 1994), as a function of increasing eye lens diameter and focal length 

of lens (Tamura and Wisby, 1963), with the consequence that search volumes and the 

distance at which larvae can detect a prey item (reactive distance), increases with 

increasing eye/fish size (Confer etal., 1978; Breck and Gitter, 1983). Therefore, the 

enhanced visual resolution of the eyes of larger fish is likely to result in increased prey 

encounter rates, as fish grow. For larval species which shift from a pelagic to a demersal 

habitat later in ontogeny, the improved capacity of both the photopic and scotopic visual 

systems which occurs during ontogeny (Kotrschal et al., 1990), may in part compensate 

for the corresponding decrease in light intensity associated with such a habitat shift (Wahl 

etal., 1993). 

Some species of larval fish have the capacity to detect prey using non-visual senses 

(mechanoreception and chemoreception), either in isolation (Holanov and Tash, 1978; 

Janssen, 1990; Batty and Hoyt, 1995), or in combination with vision (Batty and Hoyt, 

1995; Higgs and Fuiman, 1996). The mechanosensory lateral line of fish larvae initially 

consists of a regular array of superficial neuromasts, some of which become enclosed 

within canals (canal neuromasts), usually later in larval life (Webb, 1989). Neuromasts 

respond to low frequency vibrations such as those produced by small scale water 

displacements (Webb, 1989). They play an important role in predator detection by fish 

larvae (Fuiman and Magurran, 1994), and have been implicated in the detection of live 

prey by fish larvae (Dabrowski, 1982; Hoekstra and Janssen, 1985; Blaxter and Fuiman, 

1989, 1990; Janssen, 1990), presumably detecting water movements arising from prey 

locomotion. Functional responses of the mechanosensory lateral line, like the visual 

system, are likely to change during ontogeny, because of growth related changes in the 

neuromast array and lateral line canal formation. Blaxter and Fuiman (1989), determined 

that the superficial neuromasts of larval fish lie within a boundary layer of still water 

adjacent to the fishes body. They suggested that the neuromasts within this boundary layer 

act as distance receptors for low frequency water disturbances, until the ontogenetic 
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increase in larval swimming speed is sufficient to thin the boundary layer, at which stage 

the noise level from the fishes swimming movements would likely preclude this function. 

This is supported by the fact that lateral line canal formation occurs late in larval 

development, coinciding with the time when swimming speed of fish larvae increases 

significantly (Blaxter, 1986; Blaxter and Fuiman, 1989, 1990). As the lateral line system 

provides protection for the canal neuromasts, it is possible that the canal neuromasts act as 

distance receptors for predator/prey localisation in late larval stages, when boundary layer 

shear precludes the use of free neuromasts in this role during swimming (Blaxter and 

Fuiman, 1989). Jones and Janssen (1992), provided further support for the latter, because 

the ability of mottled sculpin (Cottus bairdi) to feed in the dark, in response to prey 

vibrations in the water column, decreased during the period when the superficial 

neuromasts were becoming enclosed within canals. 

There is also strong evidence to support a prey perception role utilising chemical senses by 

larval fish (Dempsey, 1978; Appelbaum and Schemmel, 1983; Blaxter, 1986; Tanaka et al., 

1991). The detection of water-borne stimuli is achieved using the senses of olfaction 

(olfactory organs) and gustation (tastebuds). The use of chemoreception alone in the 

detection of prey has been demonstrated in juvenile sole Solea solea (Batty and Hoyt, 

1995). Reliance upon chemoreception for prey detection has also been proposed for larval 

threadfin shad Dorosoma petense (Holanov and Tash, 1978), and larval and juvenile 

herring Clupea harengus (Dempsey, 1978; Batty et al., 1986), which are thought to rely 

on olfaction in order to detect and remain within prey patches, while filter feeding prey 

from the water column. 

The reactive distance of fish larvae to prey when non-visual senses are employed is 

considerably shorter compared to the reactive distance involving visual detection of prey, 

with the result that the search volume for non-visual feeding is relatively small (Higgs and 

Fuiman, 1986). This consequent decrease in search volume will possibly reduce the prey 

encounter rate, resulting in lower feeding responses of larvae reliant upon non-visual cues. 

However, it is unlikely that any one sensory cue will be used independent of other senses, 

and it has been suggested that poor development of one or more senses is compensated for 

by higher performance of another sense (Schellart, 1992). For example, the extent to 

which the lateral line is utilised in prey detection by fishes varies, with some species of fish 
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routinely relying on lateral line detection of prey, whilst others utilise lateral line cues only 

when necessary. However it is likely that the synergystic use of both lateral line and visual 

cues occurs whenever possible (Montgomery, 1989), as demonstrated for Atlantic 

menhaden larvae, Brevoortia tyrannus, in which optimal response to a probe stimulus was 

dependent upon combined use of both vision and mechanoreception (Higgs and Fuiman, 

1996). Similarly, a dual reliance on vision and chemoreception in order to detect prey has 

been demonstrated for plaice Pleuronectes platessa (Batty and Hoyt, 1995). 

The detection of prey is the first step in the feeding behavioural repertoire. The prey must 

then be captured and ingested. The ability of fish larvae to complete this prey capture 

sequence will change during the early developmental period as locomotor capacity and 

mouth dimensions change. Larval swimming behaviour is initially constrained by body 

morphology, most fish larvae having only a primordial finfold at the time of hatching, with 

median, lateral and caudal fins developing later. The hydrodynamic environment in which 

larvae exist is determined by their size and the speed at which they can move through the 

water, and by the physical properties of viscosity and density of the water (Webb and 

Weihs, 1986). These factors are used to determine the ratio of inertial and frictional forces 

imposed upon the swimming larva and are expressed as a non-dimensional Reynolds 

number, which changes in proportion with larval length. At low Reynolds numbers, body 

movements are counteracted by viscous forces which extend a large distance from the 

body. The most effective swimming mode at this stage is a serpentine or "anguilliform" 

motion involving an increasing amplitude of body wave travelling the entire length of the 

body, from anterior to posterior. At this stage, searching behaviour is usually conducted in 

a swim, stop and search sequence. As larvae grow, and the median and caudal fins 

develop, the Reynolds number approaches 200 (at this stage inertial forces become more 

important), and it is more efficient for larvae to switch to a sub-carangiform swimming 

mode, where the head is held relatively still and the amplitude of the body wave increases 

towards the tail (Batty, 1984; Blaxter, 1986; Webb and Weihs, 1986). At this time, it 

becomes energetically advantageous to swim using a continuous tail beat and glide motion, 

which may have implications for increased prey encounter and capture rates as a result of 

concomittant increased swimming speed (Drost, 1987). 
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For planktivorous larval fish that swallow their prey intact, some aspect of mouth 

dimension must limit the maximum size of prey that can be swallowed (Hunter, 1981), and 

this has led to the concept of "gape limitation" (Wong and Ward, 1972; Schmitt and 

Holbrook, 1984; Ghan and Sprules, 1993; Wahl et al., 1993). It has been confirmed that 

during the first few weeks of larval life, when gape limitation imposes the most severe 

constraints upon the prey size range available to be ingested, larval fish actively select the 

smallest available zooplankton prey (Schmitt and Holbrook, 1984). However, prey size 

ingested is usually much smaller than maximum gape size indicates (Lemly and Dimmick, 

1982; Ponton and Milller, 1990; Schael etal., 1991; Shaw and Jenkins, 1992). For 

example, wild juvenile greenback flounder Rhombosolea tapirina, have been reported to 

consistently ingest prey only half the size of their mouth width (Jenkins, 1987; Shaw and 

Jenkins, 1992). Similarly, larval bluegill Lepomis macrochirus, and largemouth bass 

Micropteris salmoides (Lemly and Dimmick, 1982), the 15-spined stickleback Spinachia 

spinachia (Kislalioglu and Gibson, 1976), gilthead seabream Sparus aurata (Fernandez-

Diaz, 1994), and larval whitefish Coregonus sp. (Ponton and Muller, 1990), have all been 

shown to ingest prey sizes considerably smaller than their mouth dimensions. 

Mouth gape increases with increasing body size of fish (Wong and Ward, 1972; Lemly and 

Dimmick, 1982; Dabrowski and Bardega, 1984; Schael et al., 1991; Ghan and Sprules, 

1993), and while the minimum prey size selected generally remains fairly constant during 

larval growth (Hansen and Wahl, 1981; Michaletz, etal., 1987), the optimal prey size 

tends to be a c ionstant function of mouth dimension (Werner, 1974). As a result, the prey 

size range available to be ingested increases during ontogeny and this has important 

energetic implications for the larvae (Hunter, 1981). There are many reports that confirm 

an increasing selectivity for larger prey with increasing size of fish larvae (Hartman, 1958 - 

rainbow trout Salmo gairdneri; Werner, 1974 - bluegill sunfish, and green sunfish Lepomis 

cyanellus; Lemly and Dimmick, 1982 - largemouth bass and bluegill sunfish; Hambright, 

1991 - largemouth bass; Schael etal., 1991 - yellow perch Perca flavescens, freshwater 

drum Aplodinotus grunniens, and black crappie Pomoxis nigromaculatus; Ghan and 

Sprules, 1993 - burbot Low Iota). The correlation between mouth dimensions and fish 

length is species specific and mouth dimensions per se do not necessarily provide an 

accurate estimate of optimum prey size selected by larval fish in the wild (Schael, et al., 

1991; Bremigan and Stein, 1994). This is probably because factors besides prey size, such 
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as prey visibility (Kislalioglu and Gibson, 1976; Zaret, 1980; Magnhagen, 1985), prey 

motility (Kislalioglu and Gibson, 1976; O'Brien et al., 1976) and escape behaviour (Moore 

and Moore, 1976; Eggers, 1977; Meng and Orsi, 1991), and the density and spatial 

distribution of prey within the water column (Moore and Moore, 1976), all influence prey 

selection by larval fish. 

As prey density within the environment increases, the larvae of some fish species have been 

shown to become more selective, opting for larger prey items (Werner and Hall, 1974; 

Rajasilta and Vuorinen, 1983; Magnhagen, 1985; Wetterer, 1989); however, prey size 

selection by other species has been shown to be independent of prey density (Mills et al., 

1986). Prey density has a strong influence upon the feeding behaviour of those fish larvae 

which are able to switch from particulate feeding, which requires larvae to be able to 

perceive individual prey, to filter feeding, which is non-selective in that perception of 

individual prey is not required (Batty et al., 1986 - herring; Gibson and Ezzi, 1985 - 

herring; Holanov and Tash, 1978 - threadfin shad; James and Findlay, 1989 - Cape 

anchovy Engraulis capensis; Janssen, 1978 - alewife Alosa pseudoharengus; Janssen, 1980 

- ciscoes Coregonus artedii; Drenner and McComas, 1980 - Mississippi silverside Menidia 

audens). For example, filter feeding in the light by ciscoes, herring and juvenile Cape 

anchovy is triggered by the presence of relatively high prey densities (Janssen, 1980; 

Gibson and Ezzi, 1985; James and Findlay, 1989), with the switch to particulate feeding 

occurring at lower prey densities. Similarly, in the dark, relatively dense patches of prey 

are required in order for filter feeding of herring larvae to be effective, and filter feeding 

generally ceases altogether at low prey densities in the dark (Batty et al., 1986). 

Within the constraints of larval size, developmental stage and prey availability, the ability 

of planktivorous fish larvae to search for and capture prey, is also effected by the physical 

properties of the environment. Visually mediated feeding is a light dependent behaviour 

which requires relatively high light intensity in early larval stages (Sbikin, 1974; Blaxter, 

1968, 1986; Dayong et al., 1994). The threshold light intensity for visually mediated 

feeding (light intensity below which feeding ceases) decreases with increasing age of larvae 

(Blaxter, 1968; Sbikin, 1974; Butler, 1995), reflecting an increase in sensitivity of the 

visual system. Optimal photopic visual resolution of fishes is achieved only in extremely 

clear waters which have low levels of dissolved and particulate substances (Lythgoe, 
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1980). It has been suggested that elevated levels of particulate substances (turbidity) alters 

the relative visibility of the prey (Werner and Hall, 1974), both by attenuation of light and 

because particulate scatter decreases visual contrast between the prey and background 

(Lythgoe, 1988), with the result that reactive distances of fishes are foreshortened 

(Vinyard and O'Brien, 1976; Confer et cll., 1978). This would ultimately decrease prey 

encounter rates and feeding success of fish larvae (Moore and Moore, 1976; Gardner, 

1981; Mills etal., 1986). However, Miner and Stein (1993), found that the feeding ability 

of larval bluegill sunfish was enhanced at low to mid turbidity levels. These investigators 

proposed that within the very short perceptive field of fish larvae, particulate light scatter 

may increase visual contrast of zooplankton prey which would be viewed against a bright, 

diffuse background. 

Larval fish live in a dynamic environment in which feeding success, growth and survival 

hinges upon the ability to respond to change. Not surprisingly then, prior experience and 

learning plays an important role in prey selection by fish larvae (Beukema, 1968; Werner et 

al., 1981; Bell, 1990), such that fish positively select for and are more effective at 

capturing prey which are familiar (Vinyard, 1980; Checkley, 1982). In contrast, feeding 

success on novel prey species is initially poor but increases rapidly after just a few episodes 

of exposure (Werner et al., 1981; Colgan et al., 1986; Meyer, 1986; Wahl et al., 1995). 

An understanding of the intrinsic and extrinsic factors which are involved in the search and 

capture of prey by planktivorous marine fish larvae is fundamental to the understanding of 

population dynamics in wild fish populations, but also for the provision of appropriate 

conditions for optimal feeding success in intensive culture situations. The development of 

new finfish species for intensive aquaculture is reliant upon the production of sufficient 

juveniles for ongrowing in land or seabased holding facilities. Early life history stages 

often represent one of the major bottlenecks in production, and optimization of larval 

feeding, growth and survival is central to overcoming this problem. The intensive culture 

of marine finfish larvae is still reliant upon the provision of live prey feeds for the early 

larval developmental phases, despite considerable work targetting the development of 

micro-encapsulated feeds for first feeding fish larvae (Person-Le Ruyet, 1990; Mane and 

Duray, 1991; Tandler and Kolkovski, 1991; Walford etal., 1991). Without an 

understanding of the underlying processes and constraints involved in live prey perception 
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by planktivorous larval fish (i.e. sensory functions), it is not possible to accurately interpret 

larval feeding behaviour responses, to determine the optimal physical parameters for prey 

perception, or to develop microencapsulated diets which are likely to be acceptable prey 

targets for planktivorous fish larvae. To achieve optimal feeding responses in cultured 

larvae, an understanding of the species specific constraints imposed on prey size selection 

by the ontogenetic stage of larval development and body size, is paramount. Finally, 

because feeding regimes in intensive culture of marine finfish larvae involves the sequential 

provision of different prey of increasing size, often with quite different prey characteristics, 

then we must consider how prior experience of a prey species will influence larval prey 

selectivity patterns. The latter is essential if the culturist is to promote the successful 

transition to new live prey species. The present study aimed to lay the foundations for 

future provision of appropriate culture conditions, and feeding protocols, to optimise 

feeding of greenback flounder (Rhonthosolea tapirina). The specific aims of this study 

were to: 

• Determine the primary sensory modality involved in the feeding behaviour of greenback 

flounder larvae of increasing age, 

• Assess prey size selection of greenback flounder larvae with increasing larval age and to 

correlate measurements of larval mouth width to prey size selected, and 

• Assess the effect that previous exposure to a prey species had on subsequent prey 

selection in larvae of increasing age. 

Greenback flounder were chosen as an experimental animal, both because this species is 

currently being examined as a candidate species for intensive aquaculture, and because it 

provides a model species for the examination of feeding behaviour of fish larvae in general. 

Greenback flounder, Rhonthosolea tapirina, belong to the flatfish family, Pleuronectidae. 

They are found in temperate estuaries and coastal waters to depths of 55 m around 

Tasmania (Crawford, 1986), on the south coast of Australia, from southern New South 

Wales to southern Western Australia (Jenkins, 1987; Kuiter, 1993), and in New Zealand 

on the eastern coast of the South Island to depths of 100 m (Ayling and Cox, 1982). 

Adults of this species range from 25 cm to a maximum of 50 cm in total length, although 

they rarely attain the upper size limit (Kuiter, 1993). 

8 



	 INTRODUCTION 

There is very little literature available on greenback flounder, most of which has 

concentrated on descriptive biology. The growth and reproduction (Kurth, 1957) and 

local distribution and diet of Tasmanian populations have been assessed (Last, 1983). 

Mature but unfertilized ova were described by Kurth (1957), and late larval stages were 

described by Roper (1979). Crawford (1986), provided a detailed description of the 

developmental stages of both eggs and larvae of this species. More recently Jenkins 

(1987), examined composition of the diet and prey selection of greenback flounder larvae 

in Port Phillip Bay in southern Australia. A description of the development of the various 

sensory organs of greenback flounder larvae from day 1 post-hatching through to the early 

juvenile stage, was recently completed by Pankhurst and Butler (1996). Hart (1994), 

studied the effect of various external culture parameters, including salinity, temperature 

and photoperiod, on egg incubation and larval rearing and survival, in order to identify 

appropriate hatchery rearing conditions, for this species. 

Experimental Design/Replication 

All of the feeding behaviour experiments were conducted in a similar fashion in which 

larvae from a stock culture tank (and therefore a single cohort) were used to stock 

replicate test chambers on any one day. As a consequence, the experiments presented in 

this study represent a "simple pseudoreplicated" design as defined by Hurlbert (1984), in 

that larvae used for all replicate treatments were taken from a single experimental unit. 

This latter was a constraint imposed by the availability of culture tanks and the time 

required for one person to maintain the larvae and simultaneously conduct multiple feeding 

experiments. The feeding ability of larvae was assessed in terms of the percentage of fish 

feeding (criterion: presence or absence of food in the gut) after 1 h exposure to live feed 

organisms (either rotifers, Artemia sp., or a combination of both). 

Mouth Gape Determination 

An accurate measure of mouth size was required in this study for correlation with prey size 

selected by greenback flounder larvae. However, the definition of "mouth gape" varies 

between literature sources and the method by which the measurements have been obtained 
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(Table 1). Assessing gape using a gape micrometer device (developed by Arts and Evans, 

1987) reflects the smallest internal mouth dimension of the fish larva, and this method is 

commonly used (Schael, et al., 1991; Ghan and Sprules, 1993; Bremigan and Stein, 1994). 

It involves inserting a series of cones into the mouth of a fish larva until resistance is felt. 

The geometric function of the cone is then used to convert cone diameter to mouth gape. 

Similar principles using graduated tapered cones or drills have been employed by Wong 

and Ward, (1972), and Kislalioglu and Gibson, (1976). Shirota, (1970, 1978) developed 

an equation (D = /2(AB), where D = gape height, and AB = length of upper jaw), to 

estimate gape height based on measurements of the upper jaw length of the fish larva with 

the assumption that a 90 0  angle of jaw articulation represented the maximum gape height 

during feeding. Ponton and Muller (1990), estimated gape height of whitefish larvae using 

a microscope fitted with an ocular micrometer and measured the upper jaw length with 

jaws spread to inflection angles of 45° and 90°. These measurements were then 

substituted into the equation from Shirota (1970), in order to obtain an estimate of larval 

gape height. Dabrowski and Bardega (1984), also obtained gape height calculated from 

Shirota (1970), but used lower jaw length in their assessment. They assumed 

measurements taken with the jaws at an angle of 45° represented mean prey size, and 

measurements at 90° represented maximum prey size ingestible. Vernier calipers 

(Northcote, 1954), have also been used to measure larval mouth width or height, although 

usually this technique has been employed on larger larvae or juveniles, in which body 

length was 10 mm. Only gape height has been measured directly using an ocular 

micrometer fitted to a dissecting microscope (Hartman, 1958; Wankowski, 1979), but it is 

difficult to obtain accurate readings when manually spreading the jaws. 

Whilst these various techniques have proved to be valuable tools for the measurement of 

jaw gape in larger larvae and juveniles, they do pose difficulties for the precise 

measurement of jaw gape in small larvae, in which mechanical devices may over-estimate 

jaw gape by stretching the jaws past the "normal" point of opening. In particular, when 

using an ocular micrometer or vernier calipers, it is not possible to effectively measure the 

gape of larvae less than 10 mm in total length (Arts and Evans, 1987). Due to constraints 

imposed by the small size of the early life history stages of greenback flounder (2 mm total 

length at hatching), we chose to use the horizontal internal dimension of the posterior 

buccal chamber (internal horizontal mouth width), as determined from serial histological 
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transverse sections, to estimate the upper size limit of prey that could be ingested (refer 

Pankhurst, 1994). The width of the buccal cavity is defined by rigid skeletal elements of 

the upper jaw and therefore represents the smallest dimension within the mouth cavity, 

through which the prey must pass. It has been suggested by other investigators that mouth 

width represents the best estimate of the upper limit of ingestible prey size by 

planktivorous larval fishes (Werner, 1979; Hunter, 1981). 
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Table 1 - Techniques used to measure mouthgape. 

Author Technique Fish size 

(mm) 

Species 

Arts & Evans, 1987 Gape micrometer *2  7 - 31 Yellow perch, Perca flavescens 

Lake whitefish, Coregonus clupeaformis 

Lake herring, Coregonus artedii 

Bence & Murdoch, 1986 Ocular micrometer - jaw 

height 

10 - 50 Mosquito fish, Gambusia spp. 

Bremigan & Stein, 1994 Gape micrometer *2  10 - 50 Bluegill, Lepomis macrochirus 

Gizzard shad, Dorosoma cepedianum 

Cook, 1996 Vernier calipers. 15 - 42 Cottid, Clinocottus analis 

Dabrowski & Bardega, 

1984 

Ocular micrometer - 

LJL* 1  

8 - 17 

9 - 18 

8 - 28 

Silver carp, Hypophthalmichthys 

molitrix 

Grass carp, Ctenopharyngodon idella 

Bighead carp, Aristichthys nobilis 

Fernandez-Diaz et al., 

1994 

N/A 3.5 - 7 Gilthead seabream, Spartts aurata 

Ghan & Sprules, 1993 Gape Micrometer 3.2 - 15 Burbot, Lota Iota 

Hambright, et al., 1993 Gape micrometer 3.2 - 113 Largemouth bass, Micropterus 

salmoides 

Hart & Hamrin, 1988 Calipers (0.01mm) - 

spread jaws, measured 

height 

66.4 - 182.1 Pike, Esox lucius 

Hartman, 1958 Ocular micrometer N/A Rainbow trout, Salmo gairdneri 

Jenkins, 1987 Ocular micrometer 2 - 8 Greenback flounder, Rho mbosolea 

tapirina 

Long-snouted flounder, Ammotretis 

rostratus 

Kislalioglu & Gibson, 

19761' 

drills inserted into 

mouth 

72 - 124 15-spined stickleback, Spinachia 

spinachia 

Lemly & Dimmick, 

1982 

N/A up to 15 Bluegill, Lepomis macrochirus 

Largemouth bass, Micropterus 

salmoides 

Michaletz, et al, 1987 Mouthgape - vertical 

opening, no method 

given 

8 - 40 Walleye, Stizostedion vitreum 

Whitebass, Morone chrysops 

Yellow perch, Perca flavescens 

Gizzard shad, Dorosoma cepedianum 
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Author Technique Fish size 

(mm) 

Species 

Murdoch, 1990 Ocular micrometer- 

maxillary length * 1  

3.2 - 17.15 Hold, Macruronus novaezelandiae 

Northcote, 1954 Vernier caliper - 

Distance between lateral 

surfaces of mouth 

35 - 80 Cottus asper, 

Cottus rhotheus 

Ponton & Muller, 1990 Vernier caliper - 

Measured UJL * 1  

10 - 16 Whitefish, Coregonus sp. 

Schael et al., 1991 Gape micrometer *2  4.3 - 23.5 Freshwater drum, Aplodinotus 

grunniens 

Black crappie, Pomoxis nigromaculatus 

Yellow perch, Perca flavescens 

Schmitt, 1986 Ocular micrometer - 

gape width at angle of 

60° 

5 - 17 Hypoatherina tropicalis 

Schmitt & Holbrook, 

1984 

Mouth width & height. 

Method not stated 

50 - 278 Black surfperch, Embiotoca jacksoni 

Striped surfperch, Embiotoca lateralis 

Shaw & Jenkins, 1992 Ocular micrometer 5 - 15 Greenback flounder, Rho mbosolea 

tapirina 

Shirota, 1970 Ocular micrometer - 

UJL* 1  

2.6 - 25.1 Various species 

Wankowski, 1979 Ocular micrometer 20 - 280 Atlantic salmon, Salmo salar 

Werner, 1974 Ocular micrometer 33 - 124 Bluegill, Lepomis macrochirus 

Green sunfish, Lepomis cyanellus 

Wong & Ward, 1972 Brass cones - 0.2mm 

increments (mouth 

width) 

10 - 50 Yellow perch, Perca flavescens 

* 1  UJL (upper jaw length) or LJL (lower jaw length) measurement substituted into 

equation to calculate mouth height, from Shirota (1970). 

*2  Gape micrometer as developed by Arts and Evans (1987). 

13 



CHAPTE IFP 

MATERI '4 LS 
	

METHODS 



	 METHODS 

2.1 Egg Production  
2.1.1 Rez Production and Incubation (1995)  

In July, 1995, fertilised eggs were provided by the Department of Primary Industries and 

Fisheries (DPIF) Marine Research Laboratories, Taroonah. Eggs were transported to the 

Department of Aquaculture the day after fertilisation, and were stocked immediately into 

each of 4 x 160 L black hemispherical larval culture tanks, at a density of approximately 

50.L-1 , for incubation. The eggs were incubated at 12°C ± 1°C (temperature controlled 

environment) without aeration, and a flow-through recirculating seawater system 

exchanged 25% of the tank volume per day. A 63 pm drum outlet screen retained eggs in 

the larval rearing tank. Dead eggs were siphoned from the bottom of the tank daily. 

2.1.2 Ezz Production and Incubation (1996)  

Sexually mature female broodstock were caught during June and August (1996), from 

Waubs Bay, Bicheno, by SCUBA divers using handnets. Sexually mature male broodstock 

(F1 cultured fish) were obtained from the DPIF Marine Research Laboratories, Taroonah. 

Broodstock were transported to the Department of Aquaculture Aquatic Centre, 

Launceston, where males and females were held separately (n = 10 - 15 per tank) in 1000 

L recirculating seawater systems, at ambient winter temperature (10°C), and natural 

photoperiod. Each system had a reservoir (280 L) from which seawater was pumped into 

two, 1000 L culture tanks, before passing through a trickle filter, consisting of a sheet of 

dacron over seven boxes of bioballs. The tank surfaces were scoured and 50% of the tank 

volume was exchanged, three times per week. Broodstock were fed twice per day on 3 

mm barramundi pellets (Gibsons). 

Upon capture, wild-caught females were treated with an intraperitoneal injection of the 

Lutenising hormone-releasing hormone des-Gly , [D-Ala 6 1- ethylamide (LHRHa), at a 

dosage of 100 pg.Kg -1  body weight. A second treatment was administered to 

unresponsive fish approximately one week later. Forty eight hours after injection, and 

daily thereafter, females were anaesthetised in a 0.02% solution of 2-phenoxyethanol, and 

were checked for the presence of fully hydrated, ovulated eggs using an ovarian biopsy. 
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Eggs from ovulated females were then stripped, by the application of gentle pressure to the 

abdominal area, and eggs from two or three females were collected in one container. 

Male broodstock did not receive hormone treatment. Milt was readily expressed from 

spermeated males by the application of gentle pressure to the abdomen, and was collected 

in 5 ml syringes, taking care to avoid contamination with faeces, urine, or water. Eggs 

were fertilised by adding approximately 1 ml of milt per 100 ml of eggs and gently stirring 

for 10 seconds, after which time seawater was added and the eggs were transferred to a 

graduated cylinder, and left for 30 minutes to allow unfertilised eggs and debris to sink. 

Fertilised eggs remained buoyant and were decanted into a 20 L bucket which was 

transferred immediately into the marine fish hatchery (12 ± 1°C, 13 h light : 11 h dark). 

The eggs were left in a 20 L bucket for 1 h, at which time floating eggs were skimmed 

from the surface and transferred to a larval rearing tank at a stocking density of 

approximately 	The eggs were incubated without aeration and a flow-through 

system exchanged 25% of the tank volume per day. A 250 pm drum outlet screen, 

retained eggs in the larval rearing tank. Dead eggs were siphoned from the bottom of the 

tank daily. 

2.2 Larval Rearing - General 
2.2.1 Larval Maintenance 

In 1995, larvae (cohort 1 - see table 1) were reared at a density of approximately 50.L -1 , in 

a recirculating seawater system which consisted of 4 x 160 L, black, hemispherical, 

fibreglass larval culture tanks, and a 200 L seawater reservoir. Seawater (12 ± 1°C) was 

pumped by an Onga FP10 submersible pump to the larval culture tanks, from the reservoir. 

Effluent water drained out of the larval culture tanks via 20 cm diameter drum-screens, 

before passing back to the reservoir via a trickle biofilter. The latter consisted of a layer of 

dacron over a substrate of bioballs (biofilter medium), with a submerged shell grit filter 

(pH buffering medium) beneath. Larval culture tank outlets were fitted with 63 gm mesh 

screens, from the time of hatching, to prevent loss of larvae. These were replaced with 

250 gm outlet screens on day 6 post-hatching, when the larval locomotor capacity had 
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increased. The larvae were maintained in a photoperiod of 16 h light : 8 h dark. 

Overhead fluorescent strip lights (Thorn EMI 18 Watt) provided a light intensity of 4 

gmol.m-2  .s4  (Li-Cor LI-250 light meter) at the water surface, during the photophase. 

Water exchange was maintained at 50% per day. Approximately 60% - 80% of the 

reservoir volume was exchanged with clean, 2 gm filtered seawater, twice weekly. Larval 

culture tank surfaces were cleaned with a scouring pad and siphoned daily, to remove dead 

larvae and debris. 

In 1996, larvae (Cohorts 2 - 5) were reared in a recirculating seawater system consisting of 

4 x 200 L reln tanks and a 300 L seawater reservoir (Figure 1). Seawater passed through 

each of a 25, 5 and 1 gm filter, before being stored in 2 x 225 L tanks, for equilibration to 

room temperature. This was used to exchange 80% of the recirculation reservoir volume 

per week. Seawater was pumped by an Eheim 240v submersible pump, from the reservoir 

to the larval culture tanks. Effluent water passed through a drum screen fitted to the tank 

outlet, before passing back to the reservoir, via spray booms situated above a trickle 

biofilter. The biofilter consisted of a layer of dacron matting over two, three-tier stacks of 

mesh-bottomed tote boxes. Two boxes in each filter stack contained scoria (biofilter 

medium) and the other contained shell grit. On the day of hatching (day 0), light aeration 

was introduced into the larval culture tanks and the water exchange rate was increased 

from 25% (incubation exchange rate), to 50% per day. A 250 gm drum screen placed 

over the tank outlet to retain larvae, was replaced with a 500 gm screen, on day 12 post-

hatching. Water temperature was maintained at 12°C ± 1°C by a heating/cooling air 

conditioning unit in the hatchery. A photoperiod of 13 h light : 11 h dark, was provided by 

overhead fluorescent strip lights (Thom EMI 18 Watt) providing a light intensity of 5 

s -1  (Li-Cor LI-250 light meter), at the water surface, during the photophase. 

Seawater temperature and salinity were recorded daily, ammonia, pH and dissolved oxygen 

weekly, and adjustments were made to maintain acceptable levels of 12°C ± 1°C, 35 ppt 

salinity, 0 mg.L -I  NH3 , pH - 8 ± 0.2, and dissolved oxygen >6 mg.L -1 , respectively. 

Live feed (Artemia and rotifers) was introduced into the tanks when the larval eyes became 

pigmented (and were presumed to be functional) and the mouth opened (usually day four 

post-hatching). Maintenance feeding regimes were dependent upon subsequent 
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experimental protocols, and are described for each cohort of larvae in section 2.4.1, 2.4.2 

and 2.4.3. 

Once feeding commenced, effluent water from the culture tanks was passed over a 63 pm 

screen placed above the trickle filter, to prevent any prey from entering the recirculation 

system reservoir, and thus being re-introduced into the culture tanks. This was crucial, as 

Anemia had to be excluded from some of the rearing tanks used for those experiments 

assessing the effect of prior experience of a prey species upon subsequent prey selection by 

greenback flounder larvae (see section 2.4.3). In addition, the metabolic requirements of 

both Artemia and rotifers causes a rapid decrease in their enrichment levels over time, and 

therefore the removal of old food before the addition of freshly enriched prey, maximized 

the nutritive value of prey available to the larvae. Details of the cohorts of flounder larvae 

used for all experiments are provided in Table 2. 
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Figure 1 - Diagram of the recirculating seawater system used 
for culturing larval greenback flounder (cohorts 2 - 5), in 1996. 
The system comprised 4 x 200 L culture tanks, a reservoir with 
trickle biofilter and 2 x 225 L seawater storage tanks. Arrows 
indicate the direction of water flow from the reservoir into the 
culture tanks and effluent flow from the drum screens within 
the culture tanks, back to the reservoir via boom sprays 
suspended over a trickle filter. 
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Table 2 - Egg production details of larval greenback flounder, used in this study. 

Larval 

Cohort 

Egg 

Production 

Hormone 

treatment 

(females) 

Date Fertilised Date Hatched 

1 * I  DPI - Taroonah 

Fl males and 

females 

LHRHa - 

intramuscular 

injection 

12-7-95 15-7-95 

2 *2  Wild-caught 

females. 

Fl males 

LHRHa - 

intramuscular 

injection 

27-6-96 1-7-96 

3 * 3  Wild-caught 

females. 

Fl males 

LHRHa - 

intramuscular 

injection 

2-7-96 6-7-96 

4 *4  Wild-caught 

females. 

Fl males 

LHRHa - 

intramuscular 

injection 

1-9-96 5-9-96 

5 * 5  Wild-caught 

females. 

Fl males 

LHRHa - 

intramuscular 

injection 

2-9-96 6-9-96 

* 1  Larvae used for histological determination of internal horizontal mouth dimension. 

*2  and *3  Larvae used to examine prey size selection. 

*4  Larvae used to examine the effect of prior exposure to a prey species, on subsequent 

prey selection. 

*5  Larvae used to determine the primary sensory modality involved in feeding behaviour. 
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2.2.2 Live Feed Production 

Large strain rotifers (Brachionus plicatilis), Artemia nauplii and metanauplii (INVE - 

Artemia Systems, Belgium), or a combination of both, were fed to greenback flounder 

larvae. Rotifers were obtained from 1000 L semi-continuous production culture tanks 

maintained in the Department of Aquaculture's Aquatic Centre. These were cultured on a 

combination diet of micro-algae (Isochrysis galbana, Pavlova lutheri and Tetraselmis 

suecica), and bakers yeast (0.45 g yeast per 1x10 6  rotifers, administered twice daily). 

Rotifers were siphoned from the production tanks as required, collected on a submerged 

63 gm screen, rinsed in fresh water and enriched at densities of 200 - 300.m1 -1  with 

Nutripakm1  (0.3 g.L -1  in seawater), for 6 h , at 22°C. Rotifers were then rinsed thoroughly 

with seawater, before being added to the larval rearing tanks at a density of 5.m1 1 , twice 

daily. 

Artemia cysts were disinfected in a 20 L plastic cone with 200 ppm 0C1" , for 20 minutes, 

with vigorous aeration at a density of 1 - 2 g.L -1 . They were then drained onto a 100 gm 

screen and rinsed thoroughly before being resuspended in seawater in a hatching cone, and 

vigorously aerated at 26 - 28°C, for 22 - 24 h. Artemia nauplii were then harvested by 

turning the aeration off and allowing the buoyant cysts to float to the surface. The cysts 

and hatched Artemia nauplii were then separated by placing a black cover over the 

hatching cone and a light source at the base, so that the photopositive Anemia nauplii 

moved to the base of the cone, where they were drained onto a screen, leaving the buoyant 

cysts behind. Artemia nauplii were then rinsed and either fed out immediately after 

hatching, or metanauplii were enriched over a 24 h period with NutripakTm, at a density of 

150 - 200.ml-1  and temperature of 25°C. Enrichment was achieved with two additions of 

NutripakTm (each of 0.3 g.1. 1  seawater, at time 0, and 12 h after commencement of 

enrichment). During the enrichment period, strong aeration was provided to maintain 

dissolved oxygen levels above 4 ppm. Enriched Artemia were harvested onto a 100 pm 

screen and were rinsed thoroughly in seawater to remove any residual enrichment media 

and metabolites, before being fed to the larval culture tanks at a density of 5.m1 -1 . All 

Artemia were harvested in the morning and those to be kept for the afternoon feed were 

placed back into clean enrichment media until required. 
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On-grown Artemia were not used for routine larval culture but were used for some 

experimental protocols. These were obtained from 300 L semi-continuous culture bins, 

maintained at the Department of Aquaculture. 

2.3 Histology  
2.3.1 Fixation and Embeddinz 

Five greenback flounder larvae were sampled randomly from larval cohort 1, (1995) on 

days 3, 4, 5, 6, 8, 9, 12, 13, 17, 20, 24, 26, 30, 34 and 38 post-hatching. Larvae were then 

terminally anaesthetised in 0.02%, 2-phenoxyethanol, pipetted into 2 ml vials with as little 

seawater as possible, and fixed overnight at 4°C in a solution of 2% glutaraldehyde in 

0.1M phosphate buffer, to which 2 g sucrose was added per 100 ml buffer (method - 

appendix 1). Larvae were then washed three times in sucrose-0.1M phosphate buffer (10 

minutes for each wash), and stored in 70% ethanol at 4°C, prior to morphometric 

measurement and embedding. Standard length (SL - distance from the rostral tip of the 

head to the caudal tip of the notochord), of whole fixed larvae was measured using a Zeiss 

Stemi 2000 dissecting microscope, fitted with an ocular micrometer. Stage of 

development was assessed according to Crawford (1986). Larvae were then dehydrated in 

an ethanol series and embedded in JB-4 (Polysciences kit) methyl-methacrylate resin 

(method: appendix 2). Embedded larvae were serially sectioned (2 gm) in the transverse 

plane, using a Microm (model HM 340) microtome. Sections were stained with a JB4- 

Polychrome stain (method - appendix 3), prior to mounting for histological examination. 

An additional ten flounder larvae were sampled on each of the days listed above. Larvae 

were anaesthetised and SL was measured to allow comparison of lengths of fresh and fixed 

larvae. 

Cohort 1 were reared on rotifers and Artemia nauplii. Rotifers were introduced twice daily 

from the time of first feeding, at a density of 5.m1 -1 . Artemia nauplii were added (2.m1 -1 ) 

along with rotifers, from day 24 post-hatching. 
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2.3.2 Mouth Gape Determination 

Internal horizontal mouth width was measured from transverse histological sections of 

whole fish larvae (2.3.1), as the distance between Meckel's cartilage on either side of the 

upper jaw. 

2.4 Feeding Behaviour Experiments 
2.4.1 Determination of the primary sensory modality involved in the 

feeding behaviour of greenback flounder larvae. 

Greenback flounder larvae from cohort 5, 1996 (see table 2) were reared in a 200 L larval 

culture tank (refer 2.2.1). Rotifers were introduced twice daily (5.m1 -1 ) from the time of 

first feeding (day 4 post-hatching), and Artemia nauplii were added once daily in addition 

to the rotifers, from day 12 post-hatching, at a density of 1 - 2.m1 -1 . Feeding behaviour 

trials were conducted under two test light regimes: 0 ilmol.rn-2 .s -1 - absolute darkness; and 

5 - 61.1mol.rn -2 .s4  - light intensity at which larvae fed actively in the culture tank. 

Experiments were conducted in the constant temperature environment of the larval culture 

room (temperature range: 12°C ± 1°C), on days 12, 15, 18, 21, 24 and 27 post-hatching. 

The night before each experiment, 30 larvae were transferred from the 200 L larval culture 

tank, into each of 11, 2.5 L, black test chambers, where larvae were maintained in static 

seawater culture, for the duration of the experiment (Figure 2). Care was taken in the 

transfer of larvae to minimize both shock to the larvae, and the introduction of live feed 

into the test chambers. The chambers were then covered with black-out cloth secured with 

elastic, and an additional black-out cloth was placed over the top of all the chambers, 

which were then left undisturbed overnight. There were 5 replicate chambers for each of 

two "light intensity" treatments, plus an additional chamber, the "gut evacuation control 

chamber". 

The next morning, larvae from the "gut evacuation" control chamber were sampled by 

quickly decanting the larvae into a light coloured tub in which larvae were easy to see. 
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Twenty larvae were immediately pipetted onto a glass histological slide and a squash 

preparation was made by lowering a glass coverslip onto the larvae. This procedure 

immediately killed the larvae. Larvae were examined under a dissecting microscope to 

determine whether the previous days food had been digested. When this was established, 

rotifers were washed through a 200 pm screen and collected on a 100 p.m screen (= 100 - 

200 p.m prey size fraction). Rotifers were then added sequentially to each of the remaining 

ten chambers, at ten minute intervals, at a density of 2.m1 1 . This resulted in a time delay of 

90 minutes between food being added to the first and last test chamber. The order of 

addition of rotifers was randomly allocated between the treatments so that hunger of larvae 

did not confound the results. The covers on the 5 - 6 pmol.m -2 .s -1  (light treatment) 

chambers were removed as feed was added. The 0 pmol.m -2 .s -1  (dark treatment) chambers 

were left covered and rotifers were added by quickly sliding the cover back from the edge 

of each chamber, and pouring the food in. This was done under the cover of an additional 

black-out cloth so that the larvae were never exposed to light. The larvae were then left 

undisturbed for 1 h, before the larvae from each chamber were quickly decanted into a 

light coloured tub. Twenty larvae were immediately pipetted onto a glass slide, and a 

coverslip was lowered on top (squash preparation), allowing examination under a 

dissecting microscope, for the presence or absence of rotifers in the gut. The sampling 

procedure lasted approximately 30 seconds, and precluded visual feeding responses by the 

larvae during the sampling period. Prior to the feeding trials, rotifers were enriched with 

micro-algae to enhance visualisation of rotifers in the gut of the larvae. Presence/absence 

criteria were used to assess feeding behaviour because individual rotifers could not be 

distinguished. 
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TREATMENT 
(Light intensity) 

0 pmol.m -2 . s e c- 1 

5-6 pmol.rn -2 . s e c- 1 

CULTURE TANK 
(Artemia and rotifers 
1-5.m1 -1 ) 

0 0 0 0 0 
0 0 0 0 0 

Gut evacuation 
control chamber 

Figure 2 - Diagrammatic representation of the experimental design used to assess the 
primary sensory modality involved in the feeding behaviour of greenback flounder larvae. 
Larvae were cultured in a 200 L tank, on a mixed live feed diet of Artemia and rotifers. 
On the day prior to each experiment, 30 larvae were transferred into each of 10 test 
chambers and a "gut evacuation" control chamber, where they were left undisturbed 
overnight, in total darkness. On the day of the experiment, 20 larvae from the "gut 
evacuation" control chamber were sampled to confirm clearance of food from the gut, 
prior to commencement of the experiment. Rotifers (100-200 p.m screened size fraction) 
were then added to the remaining 10 chambers, at a density of 1 - 2.m1 -1 , and larvae were 
left to feed for 1 h, at which time they were examined under a dissecting microscope for 
presence or absence of food in the gut. 
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2.4.1.1 Statistical Analyses 

A two-way analysis of variance (ANOVA) followed by a Tukey-Kramer multiple 

comparison of means test, were used to analyse the effect of increasing age on feeding 

response of larvae. Residual values (replicate means subtracted from treatment means) of 

arcsin4 transformed data were normally distributed (Shapiro-Wilk test, Prob<W = 0.139) 

for data from the light treatments, but data from the dark treatments were not normally 

distributed (Shapiro-Wilk test, Prob<W = 0.000). Cochran's test for homogeneity of 

variance was used to test that variances were equal. On days 21 and 24 post-hatching, 

Artemia were accidentally introduced into the dark treatment chambers. Whilst the 

difference in feeding response will be discussed, for the purpose of analysis, only data for 

rotifer consumption was used. 

2.4.2 Determination of prey size selected with increasing age in greenback 

flounder larvae.  

2.4.2.1 Cohort 2 

Greenback flounder larvae from cohort 2, 1996 (see table 2) were reared in a 200 L larval 

culture tank (refer 2.2.1). Rotifers were introduced twice daily (5.m1 -1 ), and Artemia 

nauplii once daily (1 -2.m11 ), from the time of first feeding (day 4 post-hatching). Feeding 

behaviour trials were conducted in the constant temperature environment of the larval 

culture room (temperature: 12°C ± 1°C; light intensity at the test chamber water surface: 5 

- 6 pmol.s 1 .m-2), using three screened size fractions of Artemia (100 - 200 p.m, 300 - 390 

lam and 450 - 560 p.m), on days 11, 14, 17, 20, 23, 26 and 29 post-hatching. The night 

before each experiment, 30 larvae were transferred from the 200 L larval culture tank, into 

each of 16, 2.5 L black test chambers, where larvae were maintained in static seawater 

culture for the duration of the experiment. There were five replicate chambers for each of 

the three Artemia size fractions (treatments), and one additional chamber (the gut 

evacuation control chamber), was used to confirm larval gut clearance overnight (Figure 

3). Care was taken when transferring larvae to minimize both shock to the larvae, and the 

introduction of live feed along with the larvae. The chambers were then covered with 

black-out cloth, and larvae were left undisturbed overnight. In the morning, larvae from 

the gut evacuation control chamber were quickly decanted into a light coloured tub, in 
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which the larvae were easy to see. Twenty larvae were then pipetted onto a glass histology 

slide and a coverslip was lowered onto them. Larvae were examined using a dissecting 

microscope, to confirm that the previous days food had been fully digested. When this was 

established, Anemia nauplii and on-grown Anemia (refer 2.2.2) were washed through 200, 

390 and 560 inn screens, and collected on 100, 300 and 450 mm screens, respectively, to 

generate three discrete screened size fractions of prey (100 - 200 p.m, 300 - 390 gm and 

450 - 560 	respectively). The cloth covers were then removed as Anemia of the 

appropriate size fraction were sequentially introduced into the 15 remaining chambers, at 

ten minute intervals, at a density of 2.m1 -1 . This created an unavoidable delay of 2.5 h 

between addition of food to the first and last test chamber. The order of addition of 

Artemia between the various treatment test chambers was randomly allocated, so that 

hunger of larvae in any one treatment did not confound the results. The larvae were then 

left undisturbed, to feed for 1 h, at which time larvae from each chamber were quickly 

decanted into a light coloured tub. Twenty larvae were immediately pipetted onto a glass 

histology slide, and a coverslip was lowered on top (= a squash preparation), allowing 

immediate examination for the presence or absence of Artemia in the gastro-intestinal 

tract. Absolute numbers of Artemia ingested by individual larvae were not determined 

because in older larvae, Artemia were partially digested within the 1 h feeding period, thus 

precluding counts of individual prey items in the gut, across all ages examined. As a 

consequence, all feeding responses reported used a presence/absence criteria. 

Fifty Artemia from each of the three screened size fractions were sampled and measured 

using a dissecting microscope fitted with an ocular micrometer. Total length (without 

spines), carapace width, and width with appendages, were recorded to establish absolute 

dimensions of the prey in each screened size fraction. 

2.4.2.2 Cohort 3 

Greenback flounder larvae from cohort 3, 1996 (see table 2) were used to repeat the prey 

size selection experiment described in 2.4.2.1. Larvae were reared in a 200 L larval culture 

tank using the same feeding protocols as described above, for larvae of cohort 2. Feeding 

behaviour trials were conducted in the constant temperature environment of the larval 

culture room (temperature: 12°C ± 1°C; light intensity at the test chamber water surface 5 
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- 6 gmol.m-2 .s-1 ), on days 10, 13, 16, 19, 22 and 25 post-hatching. The experimental 

protocol was not altered from that used for cohort 2 (see Figure 3). 

2.4.2.3 Statistical Analyses  

Larval feeding responses were analysed using a two-way ANOVA to test for the 

interaction of prey size ingested and larval age, followed by a Tukey-Kramer means 

comparison test to analyse the change in feeding response with increasing larval age, for 

each prey size range. Alpha levels of P<0.05 were considered significant. Residual values 

(replicate means subtracted from treatment means) of arcsinq transformed data were 

normally distributed (Shapiro-Wilk test, p>0.05). Cochran's test for homogeneity of 

variance was used to test that variances were equal. Data collected prior to days 19 and 

20 post-hatching, when larvae started ingesting all three prey size ranges were not included 

for analysis. 
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CULTURE TANK 
(Artemia and rotifers 
1 - 5.m1 1 ) 

TREATMENT 
Artemia screened 

size fractions 

100-200pm 00000 
300-390pm 00000 
450-560pm 00g00 

(Artemia - 2.m1 1 ) 

Gut evacuation 
control chamber 
(No food) 

Figure 3 - Diagrammatic representation of the experimental design used to assess prey size 
selection by greenback flounder larvae. Larvae were reared in a 200 L tank on a mixed 
live feed diet of Artemia and rotifers. On the day prior to each experiment, 30 larvae were 
transferred into each of 15 test chambers, and a "gut evacuation" control chamber, where 
they were left undisturbed overnight, in total darkness. On the day of the experiment, 20 
larvae from the gut evacuation control chamber were sampled to confirm clearance of food 
from the gut, prior to commencement of the experiment. Anemia (100-200 p.m, 300 - 390 
lam and 450 - 560 i..tm screened size fractions) were then added sequentially to the 
remaining 10 chambers, at a density of 1 - 2.m1 -1 , and larvae were left to feed for 1 h, at 
which time they were examined under a dissecting microscope for presence or absence of 
food in the gut. 
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2.4.3 Determination of the effect that previous exposure to a prey species 

has on subsequent prey selection.  

Greenback flounder larvae from cohort 4, 1996 (see table 2) were reared in 2 x 200 L 

larval culture tanks, to form two treatments; Treatment 1, in which larvae were exposed 

only to rotifers (5.m1 -1 ) from the onset of feeding, and Treatment 2, in which larvae were 

exposed to both rotifers (5.m11 ) and Artemia (1 - 2.m1 -1 ) live feed, from the time of first 

feeding. Prey selection by larvae from treatment 1 (prior exposure to rotifers only) and 

treatment 2 (prior exposure to rotifers and Artemia), was then examined in feeding trials in 

which larvae were offered a mixed diet of both rotifers and Anemia. In this fashion, 

Artemia were a novel prey for larvae in treatment 1. Feeding behaviour trials were 

conducted in 2.5 L black test chambers, in the constant temperature environment of the 

larval culture room (temperature: 12°C ± 1°C; light intensity at the test chamber water 

surface: 5 -6 gmol.m-2 .s -1 ), on days 11, 14, 17, 20, 23,26 and 29 post-hatching. There 

were five replicates per treatment, plus an additional chamber, the "gut evacuation" control 

chamber. The night before each experiment, thirty larvae from the appropriate 200 L 

larval culture tank were stocked into each of the ten test chambers, where larvae were 

maintained in static culture, for the duration of the experiment (Figure 4). The test 

chambers were covered with black-out cloth, secured with elastic, and were left 

undisturbed overnight. Care was taken during transfer of the larvae to minimise both 

shock to the larvae and introduction of live feed along with the larvae. The next morning, 

20 larvae from the "gut evacuation" control chamber were examined using a dissecting 

microscope, to confirm that the previous days food had been fully digested. Rotifers and 

Artemia, of the same screened size fraction (100 - 200 [tm), each at a density of 2.m1 -1 , 

were then added sequentially into the test chambers, at ten minute intervals. This resulted 

in a time delay of 90 minutes between addition of food to the first and last test chamber. 

The order of addition of live feed between the treatments was randomly allocated between 

chambers, so that larval hunger in any one treatment did not confound the results. The 

larvae were then left undisturbed for 1 h before the larvae from each chamber were quickly 

decanted into a light coloured tub. Twenty larvae were then immediately pipetted onto a 

glass slide, and a coverslip was lowered onto the larvae (squash preparation), allowing 

examination for the presence of either rotifers, Artemia, or both rotifers and Artemia, in 

the gastro-intestinal tract. Absolute numbers of rotifers and Artemia ingested were not 
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determined, because Artemia were partially digested within the 1 h test period in older 

larvae, and individual rotifers were not resolvable under the light microscope. Therefore, 

all feeding responses were recorded using a presence or absence criterion. As for feeding 

experiment 2.4, rotifers were enriched with micro-algae prior to feeding out to enhance 

visualisation of this prey species within the gut of the larvae. 

Fifty each of Artemia and rotifers from the 100 - 200 gm screened size fraction, were 

sampled and measured using a dissecting microscope fitted with an ocular micrometer. 

Total length (without spines for Artenda, with and without eggs for rotifers), carapace 

width of Artemia, lorica width of rotifers, and Anemia width with appendages were 

recorded to establish absolute dimensions of each prey species (see results - Table 6). 

2.4.3.1 Statistical Analysis  

Larvae were offered two prey species for this experiment which resulted in three possible 

feeding responses (selection of Artemia only, rotifers only, or both Artemia and rotifers). 

As a consequence, the assumption of independence required to run a 2-way ANOVA, was 

not satisfied. Therefore, data were analysed using a multiple analysis of variance 

(MANOVA), in conjunction with a canonical distribution analysis to test for the treatment 

affect on the three possible larval feeding responses, with increasing larval age. 
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CULTURE TANKS 

ED 
CD 
CD 
CDs 
CD 

Test Chambers 

(Rotifers & Artemia - 2.m1 1 ) 

100 - 200pm 

CD 
Gut evacuation 
control chamber 

CD 
CD 
CD 
CD 
CDs 

Figure 4 - Diagrammatic representation of the experimental design used to assess the effect 
of previous exposure to a prey species on the subsequent prey selection by greenback 
flounder larvae. Larvae were cultured in 2 x 200 L tanks on either rotifers, or a mixed diet 
of Artemia and rotifers. The evening prior to each experiment, 30 larvae were transferred 
into each of 10 test chambers and a "gut evacuation" control chamber, where they were 
left undisturbed, overnight, in total darkness. Prior to the experiment starting, 20 larvae 
from the "gut evacuation" chamber were sampled to confirm overnight clearance of food 
from the gut. A mixed prey of Anemia and rotifers (100 - 200 p.m screened size fraction) 
were then added to the remaining 10 chambers, at a density of 1 - 2.m1-1 , and larvae were 
left to feed for 1 h, at which time they were examined under a dissecting microscope for 
the presence or absence of food in the gut. 
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2.6 Larval Growth and Stage of Development 

Ten greenback flounder larvae from the larval culture tanks of cohorts 1 - 5, were 

randomly sampled for morphometric measurements (usually on the day of feeding 

experiments - refer to Table 3). The larvae were then anaesthetised in 2-phenoxyethanol 

and examined using a Zeiss Stemi 2000 dissecting microscope, fitted with an ocular 

micrometer. Standard length (SL: distance from the rostral tip of the head to the caudal tip 

of the notochord) was measured and stage of development of each larva was assessed, 

according to the developmental staging system devised by Crawford (1986), for this 

species. 

Table 3 - Ages at which SL was measured and developmental stages were assessed for 

larval cohorts 1 - 5. 

Larval Cohort Age at which larval length and developmental stage were 

assessed. 

1 3, 4, 5, 6, 8, 9, 12, 13, 17, 21, 24, 26, 30, 34, 38 

2 4, 8, 11, 14, 17, 20, 23, 26, 29 

3 8, 10, 13, 16, 19, 22, 25 

4 7, 11, 14, 17, 20, 23, 26, 29 

5 6, 9, 12, 15, 18, 21, 24, 27 

32 



WP, 
r \ , 3 CHAPTE 

RESULTS 



	 RESULTS 

3.1 Determination of the primary sensory modality involved in 

the feeding behaviour of greenback flounder larvae.  

The ability of greenback flounder larvae to feed in the light differed markedly from the 

feeding ability of larvae maintained in the dark, with a consistently higher proportion of 

larvae feeding in the light on all days tested (Figure 5). There was a significant difference 

in the proportion of fish feeding in the light on day 12 post-hatching (66%), compared with 

the proportion of larvae feeding in the light on day 27 post-hatching (96%) (two-way 

ANOVA, df = 5, n = 30, Prob.>F = 0.0002), with a trend of increasing feeding 

performance from days 15 - 24 post-hatching. The proportion of larvae that fed in the 

dark on rotifers was consistently low, ranging from 2% on day 15, to a maximum of 5% on 

day 18 post-hatching and did not change significantly during ontogeny (two-way ANOVA, 

df = 5, n = 30, Prob.>F = 0.883) (not withstanding non-normal distribution of data). On 

days 21 and 24 post-hatching, 26% and 34% of larvae respectively, had fed on Anemia 

nauplii, when these prey items were inadvertently transferred into the test chambers, along 

with the larvae. The proportion of larvae feeding on Artemia in the dark on days 21 and 

24 post-hatching, cannot however be compared with the proportion of larvae feeding on 

rotifers on these days, because larvae potentially had 16 h over night to feed on Artemia, 

compared with 1 h to feed on rotifers during the rotifer feeding trial. 

Mean SL (± SE) of larvae from cohort 5 increased from 2.78 mm ± 0.03 on day 6 post-

hatching to 5.4 mm ± 0.05 on day 27 post-hatching (Figure 6), as described by the 

regression equation, y = 1.62 + 0.13*x (r 2  = 0.95). This represented a daily growth 

increment of 0.13 mm/day from 6-27  days of age. 
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Light treatment 
Dark treatment 
Dark treatment (unintentional exposure 
to Artemia) 

A 
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Figure 5 - Percentage of greenback flounder larvae feeding on rotifers at two light 
intensities; 0 pmol.m -2 .s-i  (dark treatment - diagonal hatched bars), and 5-6 p.mol.m -2 .s1  
(light treatment - no fill bars), with increasing age of larvae. Dark cross-hatched bars (days 
21 and 24 of age) indicate feeding incidence in the dark on Artemia nauplii, which were 
inadvertently transferred into the test chambers along with the larvae. Values are means (± 
SE) of five replicates (n = 100). Means sharing a common superscript are not significantly 
different. 
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Figure 6 - Change in mean SL (± SE, n = 10) of greenback flounder 
larvae from cohort 5, with increasing age. Vertical bars denote SE 
and horizontal bars denote greenback flounder larvae developmental 
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3.2 Assessment of prey size selection by greenback flounder 

larvae with increasing age.  
3.2.1 Larval Feeding Responses 

3.2.1.1 Cohort 2 

On days 11, 14 and 17 post-hatching, a relatively low proportion of larvae consumed only 

the smallest screened Artemia prey size (100 - 200 p.m). However, from day 20 onwards, 

larvae displayed a sudden increased ability to ingest all three Artemia size fractions 

presented (Figure 7). From 20 days of age, the interaction of prey size fraction and larval 

age, had a significant effect on the feeding response of larvae (two-way ANOVA, df = 6, n 

= 60, Prob>F = 0.035). Prey size, irrespective of larval age, significantly effected larval 

feeding success from 20 days of age (one-way ANOVA, df = 2, n = 60, Prob>F = 0.000), 

with the poorest feeding response observed for the largest prey size range, on all days. 

Within each screened prey size fraction, there was a significant effect of larval age on the 

feeding response of larvae (one-way ANOVA, df = 3, n = 60, Prob>F = 0.000). The 

proportion of larvae that consumed the two smaller prey size ranges (100 - 200 tm and 

300 - 390 p.m), increased significantly on day 26 post-hatching (Figure 8a and b). 

However, although the proportion of larvae able to ingest the largest prey size range (450 - 

560 gm) increased with increasing larval age, the increase was not significant (Figure 8c). 
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Figure 7 - Percentage of greenback flounder larvae feeding on 
each of three discrete size fractions of Artemia (100-200 pm, 
300-390 pm, and 450-560 pm screen size), with increasing age 
of larvae. Values are means (± SE) of five replicates (n = 100). 
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3.2.1.2 Cohort 3 

The feeding response of greenback flounder larvae from cohort 3, when offered Anemia 

of three discrete size fractions, was similar to that observed for cohort 2. On days 13 and 

16 post-hatching, relatively low proportions of larvae consumed only the smallest screened 

prey size range (100 - 200 .Lm) (Figure 9). However, from day 19 onwards, larvae 

displayed a sudden increased ability to ingest all three prey size ranges. From 19 days of 

age, the interaction of prey size fraction and larval age, had a significant effect on the 

feeding response of larvae (two-way ANOVA; df = 4, n = 45, Prob>F = 0.001). Prey size, 

irrespective of larval age, significantly influenced larval feeding success from day 19 

onwards (one-way ANOVA, df = 2, n = 45, p = 0.000). The highest feeding response was 

observed for the smallest prey size range (100 - 200 larn), and the lowest feeding response 

was observed for the largest prey size range (450 - 560 p.m) on all days. Within each 

screened prey size fraction, larval age had a significant effect on the feeding response of 

larvae (one-way ANOVA, df = 2, n = 45, Prob>F = 0.000). The latter reflects a general 

trend of increasing consumption of increasing prey size with increasing age of larvae. On 

day 19, less than 50% of larvae fed within each prey size range. There was a significant 

increase in the proportion of larvae able to ingest the 100 - 200 i.Lm Anemia prey size 

fraction on day 22 post-hatching, and a significant increase in the proportion of larvae able 

to ingest the 300 - 3901.tm prey size fraction on both days 22 and 25 post-hatching (Figure 

10a, b). The proportion of larvae able to ingest the largest prey size range increased 

significantly only in 25 day old larvae (Figure 10c). By day 25, the feeding response for 

the two smallest prey size fractions approached 100%, whereas the feeding response for 

the largest prey size was 50%. 
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Figure 9 - Percentage of greenback flounder larvae feeding on 
each of three discrete size fractions of Artemia (100-200 pm, 
300-390 pm, and 450-560 pm screen size) with increasing age 
of larvae. Values are means (± SE) of five replicates (n = 100). 
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3.2.2 Estimation of Larval Gape 

Mean, internal horizontal mouth width (± SE) of larvae from cohort 1, determined from 

serial transverse histological sections (Figures lla-d), increased from 236.25 gm ± 4.47 in 

5 day old larvae, to 627.5 gm ± 31.9, in 38 day old larvae (Figure 12 and Table 4). The 

SL (mean ± SE) of live, anaesthetised larvae from cohort 1, increased from 2.43 mm ± 

0.03 on day 3, to 6.94 mm ± 0.16, on day 38 post-hatching (Figure 13). No adjustment 

for fixation shrinkage was made to histologically derived morphometric measurements, 

because there was a close correlation between the mean SL of live and fixed larvae, from 

cohort 1 (Figure 14). Linear regressions and 95% confidence limits of the change in mean 

horizontal mouth width, with both increasing age and SL of larvae, are provided in Figure 

15. The ratio of larval mouth width : SL of larvae, ranged from 0.087 in Sand 38 day old 

larvae, to a maximum of 0.1 in 30 day old larvae (Table 4). 

Table 4 - Mean horizontal mouth width (± SE, n=5) obtained from transverse histological 

sections of whole greenback flounder larvae (cohort 1), mean standard length (SL), and 

the ratio of larval mouth width : SL, with increasing age and developmental stage of 

larvae. 

Age (days) Mean SL 

(mm) 

Developmental 

stage 

Mouth width 

(p.m) ± SE 

Ratio of mouth 

width : SL 

5 2.72 2 236.25 ± 4.47 0.087 

8 2.8 2 267.5 ± 9.59 0.096 

12 2.85 2 273.75 ± 5.97 0.096 

17 3.28 3/4 317.51 ± 12.09 0.097 

24 5.04 3/4 455 ± 37.52 0.09 

30 5.1 3/4 512.5 ± 28.94 0.1 

38 7.23 3/4 627.5 ± 31.9 0.087 
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Figure 1 la - Photomicrograph of a transverse histological section of a 5  day  old (2.72 mm 

SL) stage 2 greenback flounder larva, indicating position of horizontal  mouth  width 

measurement (black bar = 180 gm) was taken as the distance between Meckel's Cartilage 

on either side of the upper jaw. D - Dorsal, B - buccal cavity, L - lens of  right  eye, Lj - 

lower jaw, MC - Meckel's Cartilage, R - retina of right eye, V - ventral. 
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Figure 11 b - Photomicrograph of a transverse histological section of a 12 day old (2.85 

mm SL) stage 2 greenback flounder larva, indicating position of horizontal mouth width 

measurement (black bar = 138 gm) was taken as the distance between Meckel's Cartilage 

on either side of the upper jaw. D - Dorsal, B - buccal cavity, L - lens of  right  eye, Lj - 

lower jaw, MC - Meckel's Cartilage, R - retina of right eye, V - ventral. 
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Figure 11c - Photomicrograph of a transverse histological section of a 24 day old (5.04 

mm SL) stage 3/4 greenback flounder larva, indicating position of horizontal mouth width 

measurement (black bar = 270 gm) was taken as the distance between Meckel's Cartilage 

on either side of the upper jaw. D - Dorsal, B - buccal cavity, Lj - lower jaw, MC - 

Meckel's Cartilage, R - retina of right eye, V - ventral. 
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Figure lid - Photomicrograph of a transverse histological section of a 30 day old (5.1 mm 

SL) stage 3/4 greenback flounder larva, indicating position of horizontal mouth width 

measurement (black bar = 395 pm) was taken as the distance between Meckel's Cartilage 

on either side of the upper jaw. D - Dorsal, B - buccal cavity, L - lens of right eye, Lj - 

lower jaw, MC - Meckel's Cartilage, R - retina of right eye, V - ventral. 
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Figure 12 - Change in mean horizontal mouth width (± SE, n = 5), 
obtained from transverse histological sections of whole 
greenback flounder larvae, with increasing age of larvae from 
cohort 1. Vertical bars denote SE. 
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Figure 13- Change in mean SL (± SE, n = 10) of greenback flounder 
larvae with increasing age, from cohort 1. Vertical bars denote 
SE and horizontal bars denote greenback flounder larvae 
developmental stage: 1 - yolk sac, 2 - yolk resorbed, notochord 
straight, 3/4 - notochord flexion and migration of left eye (Crawford, 
1986). 
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Figure 14 - Change in mean SL (± SE) of greenback flounder 
larvae from cohort 1, with increasing age of larvae. The solid 
line denotes SL of live, anaesthetised larvae (n = 10), and the 
broken line denotes SL of fixed larvae which were used for 
histological measurement of horizontal mouth width. 
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Figure 15 - Regressions of mean horizontal mouth width of 
larvae (n = 5) derived from serial transverse histological 
sections of greenback flounder larvae, with increasing standard 
length of larvae (a), and age of larvae (b), for cohort 1. Dotted 
lines denote 95% confidence limits for the regression lines. 
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3.2.3 Growth Profiles 

SL (mean ± SE) of larvae from cohort 2 increased from 2.63 mm ± 0.03 on day 4, to 5.58 

mm ± 0.07 on day 29 post-hatching (Figure 16a). Standard length (mean ± SE) of cohort 

3 increased from 2.96 mm ± 0.03 on day 8, to 5.24 mm ± 0.11 on day 25 post-hatching 

(Figure 16b). Regression curve fits of change in SL with increasing age of live, 

anaesthetised larvae from cohorts 2 and 3 (larvae used for behavioural experiments to 

assess prey size selection by greenback flounder larvae), and cohort 1 (larvae for mouth 

width determination) are described by the equations; y = 1.75 + 0.14*x (r2  = 0.97), 

y = 1.61 + 0.15*x (r2  = 0.96), and y = 1.72 + 0.13*x (r2  = 0.93), respectively, representing 

growth increments of 0.14 mm, 0.13, and 0.13 mm/day, respectively (Figure 17). 
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Figure 17 - Regression of SL (mm) against age of greenback 
flounder larvae for larval cohorts 1 (Cl - y = 1.72 + 0.13x, r2  = 0.93), 
2 (C2 - y= 1.75 + 0.14x, r2  = 0.97), and 3 (y = 1.61 + 0.15x, r2  = 0.96). 
Symbols are mean values: n = 15 for cohort 1, combining data 
for fresh and fixed larval lengths and n = 10 for cohorts 2 and 3. 
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3.2.4 Artemia Morphometrics 

Morphology and absolute dimensions of Anemia used to examine prey size selection in 

greenback flounder larvae, changed considerably between the small and largest Anemia 

size fractions (Table 5 and Figure 18). Total length of Artemia increased from a mean of 

470 pm (± 30) to 22501im (± 270), in the 100 - 200 and 450 - 560 p.m screened size 

fractions, respectively. Artemia carapace width (without appendages), increased from a 

mean of 186 lam (± 20) to 360 1.tm (± 40), from the smallest size to the largest screened 

size fraction, whereas total width (with appendages) increased from 580 Lm (± 50) to 

1730 pm (± 200) from the smallest to the largest screened size fractions. Carapace width 

of Artemia provided the closest correlation with screen mesh sizes 

Table 5 - Screened size fractions of live Artemia prey used to examine prey size selection 

in greenback flounder larvae, and corresponding mean (± SE, n = 50) dimensions (pm) of 

Artemia (total length without spines, carapace width and carapace width with appendages). 

Screen mesh size 

(Pm) 

Mean total length 

(gm) 

Mean carapace 

width (gm) 

Mean width with 

appendages (gm) 

100 - 200 470 ± 30 186 ± 20 580 ± 50 

300 - 390 1430 ± 140 340 ± 30 1280 ± 220 

450 - 560 2250 ±270 360 ±40 1730 ± 200 

3.2.5 Ratio of Artemia Size : Larval Gape 

The upper ninety-five percentile confidence limits from the regression describing the 

change in histologically determined mouth width with increasing SL of larvae from cohort 

1 (Figure 15a), were used to determine the upper limit of horizontal mouth width for 

larvae of cohorts 2 and 3 (used for behavioural experiments which determined prey size 

selection with increasing age) (refer Appendix 4). The latter were used to determine the 

ratio of Anemia carapace width, TL, and width with appendages: larval mouth width for 

all ages of greenback flounder in cohorts 2 and 3 tested for prey size selection (Table 6). 

The ratio of Artemia carapace width : larval mouth width (CW:MW) was <1 for all ages of 

greenback flounder larvae, and all screened size fractions of Artemia which had been 
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consumed by larvae of cohorts 2 and 3 (Table 6). The ratio of Artemia carapace width 

with appendages : larval mouth width (CWA:MW) was consistently greater than unity for 

all ages of greenback flounder larvae and all screened size fractions of Anemia which had 

been consumed by larvae of cohorts 2 and 3 (Table 6). The ratio of Artemia total length : 

larval mouth width (TL:MW) was consistently >1 for Arternia size fractions 300 - 390 gm 

and 450 - 560 gm, for all ages of larvae in cohorts 2 and 3 which had consumed Artemia 

of these size fractions (Table 6). In those instances where larvae had ingested the 100 - 

200 gm size fraction of Artemia, the ratio of Artemia TL:MW was >1 for cohort 2 larvae 

from 11 - 20 days of age and <1 in cohort 2 larvae from 23 - 29 days of age (Table 6a). In 

those instances where larvae had ingested the 100 - 200 gm size fraction of Artemia, t-the 

ratio of Artemia TL:MW was >1 for cohort 3 larvae from 10- 19 days of age and <1 for 

cohort 3 larvae from 22 - 25 days of age (Table 6b). 
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Figure 18 - Camera lucida diagrams of a representative Artemia from each of the three 

screened size fractions used to examine prey size selection of greenback flounder larvae: a) 

Artemia nauplii - 100 - 200 1m size fraction; b & c) ongrown Artemia instars - 300 - 390 

p.m and 450 - 560 i.tm, size fractions respectively. CW - carapace width, TL - total length, 

WA - width with appendages. Scale bar top right = 0.5 mm. 
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Table 6 - The ratio of Artemia prey size (TL - total length, CW - carapace width, CWA - 

carapace width with appendages) to larval mouth width, with increasing age of greenback 

flounder larvae from a) cohort 2 and b) cohort 3. Ratios not in bold text denote size 

fractions of Artemia which were ingested by larvae. Ratios in bold text denote size 

fractions of Artemia not ingested by greenback flounder larvae. 

Table 6a - cohort 2 

Age - 

days 

Artemia size fractions 

100 - 200 gm 300 - 390 gm 450 - 560 gm 

TL/MW CW/MW CWA/MW TL/MW CW/MW CWA/MW TL/MW CW/MW CWA/MW 

11 1.57 0.6 1.93 4.77 1.13 4.27 7.5 1.2 5.77 

14 1.35 0.55 1.67 4.11 0.98 3.68 6.47 1.03 4.97 

17 1.26 0.5 1.55 3.83 0.91 3.43 6.03 0.97 4.64 

20 1.06 0.45 1.31 3.22 0.81 2.88 5.07 0.86 3.9 

23 0.97 0.42 1.19 2.94 0.75 2.63 4.62 0.79 3.55 

26 0.89 0.38 1.10 2.7 0.69 2.42 4.25 0.73 3.27 

29 0.87 0.36 1.08 2.66 0.64 2.38 4.18 0.68 3.22 

Table 6b - Cohort 3. 

Age - 

days 
Artemia size fractions 

100 - 200 gm 300 - 390 gm 450 - 560 gm 
TL/MW CW/MW CWA/MW TL/MW CW/MW CWA/MW TL/MW CW/MW CWA/MW 

10 1.48 0.58 1.82 4.5 1.07 4.03 7.08 1.13 5.44 

13 1.38 0.55 1.71 4.21 1.0 3.76 6.62 1.06 5.09 

16 1.28 0.51 1.58 3.90 0.93 3.49 6.13 0.98 4.71 

19 1.12 0.44 1.39 3.42 0.81 3.06 5.38 0.86 4.14 

22 0.95 0.38 1.17 2.89 0.69 2.59 4.55 0.73 3.50 

25 0.91 0.36 1.13 2.78 0.66 2.49 4.37 0.70 3.36 
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3.3 Determination of the effect that previous exposure to a 

prey species has on subsequent prey selection.  

Greenback flounder larvae selected either rotifers only, Artemia only, or a mixture of 

rotifers and Artemia. Feeding responses of larvae which had previous experience with 

both rotifers and Artemia (A&R treatment) were markedly different from feeding 

responses of larvae which had previously experienced only rotifers (R treatment), and to 

which Artemia were a novel prey species (Figure 19). Prior feeding experience had a 

significant effect on subsequent larval prey selection (MANOVA: Pillai's trace statistic, df 

= 39, F = 5.9279, Prob. = 0.000). Results from a canonical discriminate analysis (CDA) 

confirmed a difference in prey selection of A&R treatment larvae, compared to prey 

selection by R treatment larvae (Figure 20). Canonical variate 1 explained 69% of the 

variation in larval feeding response, whereas canonical variate 2 explained 26.9% of the 

variation in larval feeding response. The variation between the proportion of larvae that 

fed in the A&R treatment and the R treatment along canonical variate 1, was largely due to 

the proportion of larvae that ingested Artemia. The variation in feeding response between 

the A&R treatment and the R treatment along canonical variate 2, was largely due to the 

proportion of larvae that ingested only rotifers. In addition, the variation between the two 

treatments along both canonical variate 1 and 2, was due to a lesser degree, to the 

proportion of larvae that ingested both Artemia and rotifers (CDA axes variation was 

attributed to the same factors in all CDA plots). 

A high proportion of R treatment larvae (between 50% - 80%) consistently fed on rotifers 

only (Figure 19a). CDA confirmed the strong selection for rotifers by R treatment larvae 

(refer figure 20 - CDA reduced plot). No R treatment larvae fed on Artemia prior to 14 

days-of-age, at which time 7% of larvae ingested both Anemia and rotifers. Fewer than 

50% of R treatment larvae selected both Artemia and rotifers on any one day thereafter. 

On day 29 post-hatching there was little difference in the proportion of R treatment larvae 

selecting rotifers only, and those selecting both prey species. On only two occasions, days 

20 and 26 post-hatching, did a small percentage of R treatment larvae select only Artemia 

(5 and 1%, respectively). 
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Figure 19 - Percentage of greenback flounder larvae feeding on 
rotifers only (no bar fill), rotifers and Artemia (cross-hatched bars), 
and Artemia only (black bars), in a) larvae which had previous 
exposure to only rotifer prey - R treatment, and b) larvae which 
had previous exposure to both rotifers and Artemia - A&R 
treatment, prior to feeding trials. 
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Figure 20 - Canonical distribution analysis reduced plot showing the effect of prior 

experience to Artemia and rotifers (A&R treatment) and only rotifers (R treatment), on 

subsequent prey selection with increasing age of greenback flounder larvae. Biplot ray A 

was most strongly associated with canonical variate 1 which explained 69% of the 

variation in larval feeding response between the two treatments. Biplot ray R was most 

strongly associated with canonical vaiiate 2 which explained 26.5% of the variation in 

larval feeding response between the two treatments. Biplot ray A&R was associated with 

both canonical variates 1 and 2. Circles indicate 95% confidence ellipses for A&R and R 

treatment larvae. (Biplot rays: A - Artemia, R - rotifers, A&R - Artemia and rotifers). 
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Figure 21 - Canonical distribution analysis reduced plot of the feeding response of larvae 

that had prior experience of rotifers, but to which Artemia were a novel prey. Biplot ray A 

was most strongly associated with canonical variate 1 which explained 69% of the 

variation in larval feeding response. Biplot ray R was most strongly associated with 

canonical variate 2 which explained 26.5% of the variation in larval feeding response. 

Biplot ray A&R was associated with both canonical variates 1 and 2. Circles indicate 95% 

confidence ellipses and numbers indicate larval age. (Biplot rays: A = Anemia, R = 

rotifers, A&R = Artemia and rotifers). 
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Eleven day old A&R treatment larvae, like R treatment larvae, selected only rotifers. From 

11 - 17 days post-hatching, a high proportion of A&R treatment larvae (60 - 80%) selected 

rotifers only (Figure 19b). The proportion of A&R treatment larvae selecting only rotifers 

decreased thereafter, never exceeding 31% of larvae. On day 14 post-hatching, a small 

number of A&R treatment larvae (1%) selected only Artemia. The proportion of larvae 

selecting only Artemia increased thereafter to 18% in 26 day-old-larvae, but then 

decreased to 7% in 29 day old larvae. CDA which examined the effect of prior exposure 

to Anemia and rotifers on subsequent prey selection by larvae, confirmed an increasing 

preference by A&R treatment larvae for Anemia only, with increasing age of larvae (refer 

figure 22 - reduced CDA plot). 

No larvae from the A&R, or R treatments, ingested Artemia prior to 14 days of age. 

Larvae started to ingest both rotifers and Artemia at the same age; however, a small 

number of A&R treatment larvae also started to select Anemia only. With the exception 

of 17 day old larvae in the R treatment group, a higher proportion of A&R treatment 

larvae selected both Artemia and rotifers, when compared to the feeding response of R 

treatment larvae. 

3.3.1 Growth Profile 

Standard length (mean ± SE) of larvae from cohort 4 increased from 2.81 mm ± 0.06 in 7 

day old R and A&R treatment larvae to a maximum of 5.53 mm ± 0.12 and 5.69 mm ± 

0.10 in 29 day old R and A&R treatment larvae, respectively (Figure 23). Regression 

curve fits of change in SL with increasing age of larvae are described by the equations; y = 

1.97 + 0.13x (r2  = 0.99), and y = 1.87 + 0.13x (r2  = 0.99), respectively, representing an 

average daily growth increment of 0.13 mm/day for R treatment and A&R treatment 

larvae, respectively (Figure 24). 

3.3.2. Prey Morohometrics  

Mean lorica width of rotifers and mean carapace width of Artemia in the 100 - 2001.tm 

screened size fraction, were similar (184 p.m ± 2 and 186 p.m ± 20, respectively); however, 

mean total length of rotifers was smaller (278 lam ± 3) than mean total length of Artemia 

(470 im ± 30), even when eggs attached to rotifers were taken into account (380 p.m ± 4) 

(Table 7). 
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Table 7 - Means (± SE, n = 50) of Anemia and rotifer total length, carapace width of 

Artemia, lorica width of rotifers, and carapace width plus appendages of Artemia, in 100 - 

200 p.m screened size fractions of Anemia and rotifers. 

Screen mesh size 

(l.un) 

Total length (gm) Carapace width 

(Artemia) and 

lorica width 

(rotifers) (gm) 

Width with 

appendages (gm) 

100 - 200, rotifers 278 ± 3 (380 ± 4 

with eggs attached) 

184 ± 2 n/a 

100 - 200, Anemia 470 ± 0.03 186 ± 20 580 ± 50 
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Figure 22 - Canonical distribution analysis reduced plot showing the feeding response of 

larvae that had prior experience to both Artemia and rotifers (A&R treatment). Biplot ray 

A was most strongly associated with canonical variate 1, which explained 69% of the 

variation in larval feeding response. Biplot ray R was most strongly associated with 

canonical variate 2 which explained 26.5% of the variation in larval feeding response. 

Biplot ray A&R was associated with both canonical variates 1 and 2. Circles indicate 95% 

confidence ellipses and numbers indicate larval age. (Biplot rays: A = Anemia, R = 

rotifers, A&R = Artemia and rotifers). 
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Figure 23 - Change in mean SL (± SE, n = 10) of greenback 
flounder larvae with increasing age in a) larvae which have 
had prior exposure to only rotifers (R treatment), and, b) larvae 
which had prior exposure to both rotifers and Artemia 
(A&R treatment). Horizontal bars denote developmental stage 
of greenback flounder larvae, as described by Crawford (1986). 
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Figure 24 - Regression of SL (mm) against age of greenback flounder 
larvae for larval cohort 4; A&R treatment larvae - y = 1.87 + 0.13x, 
(r2  = 0.99), and R treatment larvae - y = 1.97 + 0.13x, (r2  = 0.99). 
Symbols are mean values, n = 10. 
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	 DISCUSSION 

4.1 Determination of the primary sensory modality involved in 

the feeding behaviour of greenback flounder larvae.  

The proportion of greenback flounder larvae feeding in the light on day 12 post-hatching 

was significantly lower than the proportion of larvae feeding in the light at the completion 

of the feeding trial (27 days post-hatching). The general ontogenetic trend of increasing 

ability of greenback flounder larvae to capture prey (in the light), confirms earlier reports 

which indicate that feeding ability of larvae is initially poor, but increases with age of fish 

(Hunter, 1981; Mills et al., 1984; Browman and O'Brien, 1992; Wahl et a/., 1993). For all 

life history stages of greenback flounder examined, a consistently high percentage (between 

66 - 96% from days 12 - 27 post-hatching) fed in the light, whereas a relatively low 

proportion (2 - 5% from days 12 - 27, post-hatching) fed in the dark. There was no 

significant change in the proportion of greenback flounder larvae feeding in the dark on 

rotifers during ontogeny, and this, in conjunction with the high percentage of larvae 

feeding in the light, indicated that greenback flounder larvae are primarily dependent upon 

vision (a light dependent behaviour), to feed during the early life history stages. 

Light intensity plays a critical role in visually mediated feeding of planktivorous fish larvae. 

The threshold light intensity for visually mediated planktivory of fish larvae, is initially 

relatively high (Blaxter, 1968; Sbikin, 1974; Dayong, et al., 1994), being a function of the 

requirement for relatively bright light to bring about isomerisation of the photopigments 

within the very small cone photoreceptors found in the retinae of larval fish. Most marine 

fish larvae examined to date, have only single cone photoreceptors in the retina at the time 

of first feeding (Blaxter and Jones, 1967; Blaxter, 1968; Blaxter and Staines, 1970; Neave, 

1984; Blaxter, 1986; Pankhurst, et al., 1993; Pankhurst and Eagar, 1996), and this is also 

the situation in greenback flounder larvae (Pankhurst and Butler, 1996). Formation of 

both double cone and rod photoreceptors within the eyes of larval fish, occurs later in 

ontogeny (Blaxter, 1968; Neave, 1984b; PanIchurst et al., 1993; Higgs and Fuiman, 1996; 

Pankhurst and Butler, 1996; Pankhurst and Eagar, 1996) and this, along with cone 

enlargement, provides increasing visual sensitivity (i.e. the ability to visually discriminate at 

light of low intensity) as the eyes grow (Kotrschal et al., 1990). The diverse range of units 

used to report threshold light intensity for visual feeding of larval fish precludes meaningful 
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interspecific comparisons, but these investigations do show that the threshold light 

intensity for visually mediated feeding behaviour decreases during ontogeny. For example; 

the light intensity threshold at which visual feeding of plaice larvae ceased (criterion of 

<10% of fish feeding), was highly variable from year to year, but in general, was between 

10 and 1 metre candles (m.c.) at first feeding, and by metamorphosis had dropped to 0.01 

m.c. (Blaxter, 1968). Similarly, visual feeding of "verkhovka" (Leucaspius delineatus) 

ceased at 0.01 lux in larvae less than 10 mm in length, and at 0.001 lux in larvae 11 - 25 

mm in length (Sbilcin, 1974), also indicating an increase in visual sensitivity with increasing 

age, for this species. The light intensity threshold for feeding in striped trumpeter larvae 

(Latris lineata) (criterion of presence/absence of food in gut), decreased with increasing 

age, with the proportion of larvae feeding at a light intensity of 1 lux increasing from less 

than 10% between 15 - 19 days of age, to over 50% on day 28 post-hatching (Butler, 

1995). This ontogenetic decrease in the threshold light intensity for visual feeding by fish 

larvae, probably reflects a change in cone photoreceptor function, because rods do not 

provide the acute visual resolution necessary for planktivory (Blaxter, 1969; Pankhurst and 

Butler, 1996). Increasing visual sensitivity also points to an expanding photic environment 

available to larval fish for visual prey searching in the wild, and it is not surprising that the 

end of the larval phase in some fish coincides with a significant shift in habitat, often to 

environments of lower light intensity (Dabrowki and Jewson, 1984; Kotrschal et al., 1990). 

Until quite recently, it was generally accepted that all marine fish larvae were obligate 

visual planktivores (Blaxter, 1969, 1986). However, recent studies have shown that some 

larvae have the capacity to feed in the dark, either by non-visually mediated sensory means 

(Blaxter, 1969; Sbikin, 1974; Dabrowski, 1982; Townsend and Risebrow, 1982; Batty and 

Hoyt, 1995), or they invoke non-selective filter feeding behaviour (Holanov and Tash, 

1978; Janssen, 1980; Batty et al., 1986). In the latter, reliance upon chemical detection of 

prey patches has been suggested (Holanov and Tash, 1978; Janssen, 1980; Batty et al., 

1986), presumably invoking search strategies involving detection of chemical concentration 

gradients emanating from prey organisms. 

The senses implicated in non-visual feeding are chemoreception; involving the organs of 

gustation (taste) and olfaction (smell), and mechanoreception, in which the 

mechanosensory lateral line and superficial neuromasts are used in the detection of prey 
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(Blaxter, 1968; Dabrowslci, 1982; Janssen, 1990; Higgs and Fuiman, 1996). In greenback 

flounder, these sense organs are poorly developed at first feeding (Pankhurst and Butler, 

1996), but increase in complexity and presumably provide for greater non-visual sensory 

input as larvae grow. The present study suggests that greenback flounder larvae do have a 

non-visual feeding capability, but at a far lower level than their visual feeding capability. 

Non-visually mediated feeding has also been reported for other flatfish species. For 

example, sole larvae fed in the dark very effectively from early life history stages, whereas 

plaice larvae, like greenback flounder larvae, fed in the dark but at significantly reduced 

levels compared to the feeding response in the light (Blaxter, 1968; Batty and Hoyt, 1995). 

Non-visual feeding responses have also been reported in fishes besides Family 

Pleuronectidae. Pankhurst (1994), found during feeding trials that sparid larvae Pagrus 

auratus, which are pre-dominantly visual feeders, exhibited a low feeding incidence (10%) 

in the dark on just one occasion. This author proposed that the low level of feeding in the 

dark in this instance, may have been a result of involuntary prey ingestion in association 

with osmoregulatory drinking (Tytler and Blaxter, 1988). Northern anchovy (Engraulis 

mordax) larvae fed at low levels in the dark (10%), but only at high food densities ranging 

between 20 - 40 rotifers.m1-1  (Bagarinao and Hunter, 1983), whereas milkfish (Chanos 

chanos) larvae were unable to feed in the dark but juveniles displayed non-visual feeding 

responses, albeit at a lower feeding incidence than in the light (Kawamura and Hara, 1980). 

Various studies have used ablation techniques in order to isolate the role of specific sense 

organs in the feeding behaviour of young fish. Batty and Hoyt (1995), examined the 

relative importance of visual, chemical and mechanosensmy organs in the feeding 

behaviour of juvenile sole (20.8 mm mean TL) and plaice (19.4 mm mean TL). Feeding 

behaviour in the light and dark was recorded using an infra-red video imaging system. The 

role of mechanoreception in feeding was assessed using both intact fish, and those in which 

the neuromasts had been ablated with streptomycin sulphate. The role of chemoreception 

was determined by feeding dead prey to streptomycin sulphate treated fish in the dark, and 

vision was assessed by comparing feeding responses of fish in the light and dark. Both 

juvenile sole and plaice were able to feed on live prey in the dark, however plaice fed at 

significantly lower levels than they did in the light, indicating a strong reliance upon vision 

in the latter. Plaice feeding on live prey in the light were not effected by neuromast 

ablation, confirming a strong reliance on vision. Feeding ability of plaice in the dark on 
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live prey was markedly less than in the light, but was unaffected by neuromast ablation, 

indicating a reliance upon chemoreception for prey detection under these conditions. In 

comparison, the feeding response of juvenile sole in the dark was not significantly different 

from the feeding response in the light, suggesting that sole are mostly reliant upon non-

visual senses for feeding. When streptomycin sulphate treated sole and plaice juveniles 

were offered dead prey in the dark, both were able to feed, although plaice did so at 

markedly reduced levels than when the same fish were offered dead prey in the light. 

Although plaice have a strong dependence upon vision for feeding, the latter indicates that 

sole especially, and to a lesser degree plaice, are able to detect prey using chemoreception 

in the dark (Batty and Hoyt (1995). In a similar study, the functional role of several 

sensory modes in Atlantic menhaden larvae (4 - 22 mm TL) was tested (Higgs and Fuiman, 

1996). Larvae in which neuromasts were either intact, or ablated, were subjected to a 

manually advanced probe (dissecting pin attached to a glass pipette), under conditions of 

both light and dark. The response criteria used was whether larvae responded to the probe 

before, or after it touched, and in the former, the reactive distance to the probe was 

measured. Fully intact larvae displayed an ontogenetic increase in both reactive distance 

and response to the probe. However, in the absence of neuromasts, there was no 

ontogenetic change in either of these criteria, indicating the importance of neuromast 

proliferation in determining response and reactive distance to stimuli. In the absence of 

vision only (i.e. in the dark), there was a significant decrease in response to the probe, 

indicating the importance of vision in detection of the probe. Other investigators have also 

used ablation techniques to demonstrate mechanosensory mediated feeding in mottled 

sculpin juveniles which were unable to locate artificial stimuli, either in the water column 

or buried, after their superficial neuromasts had been ablated (Janssen, 1990). In another 

study, Hoekstra and Janssen (1986), found that juvenile mottled sculpin in which vision 

had been ablated, were still able to respond to moving prey, but ignored dead prey. 

In those larval and juvenile fish species which swap from particulate to filter feeding modes 

in the dark (Holanov and Tash, 1978; Janssen, 1980; Batty et al., 1986), chemical 

detection of prey has been implicated. Holanov and Tash (1978), suggested a reliance on 

chemoreception, not vision, by threadfin shad (TL: 7 - 14.1 cm), which were observed to 

filter feed in both light and dark conditions. A reliance on vision was discounted as a delay 

in feeding response of several minutes occurred at the start of experiments in both light and 
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dark conditions, and some fish were attracted to, and made filter feeding movements in 

patches of water previously inhabited by prey in light conditions. Similarly, gizzard shad 

(Dorosoma cepedianum) and Mississippi silversides were observed to filter feed in both 

light and dark conditions; however, the sensory basis of the dark feeding response was not 

determined (Drenner and McComas, 1980). Batty et al., (1986), used an infra red video 

system to record the filter feeding behaviour of juvenile herring (TL: 145 - 165 mm), in the 

dark. Filter feeding occun-ed in both light and dark conditions. In the dark, filter feeding 

occurred at food densities of 70 to 80 prey m1 -1 , but was not considered to be an effective 

mode of feeding unless prey were present in fairly dense patches (>200 prey m1 -1). In 

addition, the swimming mode changed from fish schooling in a relatively straight path in 

the light, to fish swimming individually in tight circles in the dark. The circling behaviour 

was thought to enable the exploitation of prey in the dark, with the fish relying on 

mechanoreception in order to detect and stay within food patches. Batty etal., (1990), 

also found that juvenile heifing filter fed in the dark, and continued to do so in the light at 

prey densities above 100 L-1 . At lower prey densites, fish changed from filter feeding to 

visual particulate feeding, presumably because this was more effective at low prey 

densities. In the latter, the threshold light intensity for visual particulate feeding was 0.001 

lux. 

The present study determined that greenback flounder larvae were pre-dominantly visual 

feeders, however, in a field study of the same species, Jenkins (1987), reported that over 

90% of larvae (SL: 2 - 3.5 mm) had prey in their gastrointestinal tract throughout the day 

and night. In the latter study, larvae were sampled (n = 30) from the water column at a 

fixed station, six times between 1400 and 1000 hours, on one occasion on a moonless 

night, which presumably precluded visually mediated feeding behaviour. Larvae in the 

present study had a feeding duration of only 1 h, which may have under-estimated the 

feeding capacity of larvae in the dark, when compared to the feeding response observed by 

Jenkins (1987), for larvae that fed for approximately 10 - 12 h in the dark. It is also 

possible that prey type influenced night time feeding ability, as a considerable proportion of 

the night time diet consisted of bivalve veligers with poor escape ability, and non-motile 

invertebrate eggs (Jenkins, 1987). However, the mean number of prey ingested per larva 

in the field, did not vary significantly over the 24 h period examined. Gut clearance time of 

bivalve veligers, which formed a major component of the diet, was not assessed; however, 
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gut clearance time assessed on wild larvae captured and fed zooplankton ad-libitum, 

averaged 4 hours (Jenkins, 1987). It was unlikely therefore, that night time feeding levels 

in the field study were a result of long retention time of food in the gut. In addition, 

ingestion rates of non-motile invertebrate eggs increased during this time, implying a 

reliance upon chemosensory detection of prey. The prey density in the field study (Jenkins, 

1987) was 30,000 - 90,000.m -3  (= 0.03 - 0.09.m1 -1 ), and in the present study was 

considerably higher being 2 x 10 6.m-3  (= 2.m1 -1 ). These two studies then appear to provide 

contradictory results. Larvae in the present study displayed a low feeding incidence at 

relatively high rotifer densities in the dark, whereas results from Jenkins' field study 

(1987), showed a high feeding incidence at relatively low prey densities during the night 

time. Clearly, this poses further questions and focusses future directions of study for this 

species. The involvement of individual sensory modalities in the feeding behaviour of 

greenback flounder larvae needs to be assessed further. In particular, attention needs to be 

directed at the relative contribution of those sense organs implicated in non-visual feeding 

responses, and also whether feeding strategies involve input from solitary sensory organs 

or combined input from a suite of sense organs. In addition, it is critical that the light 

intensity for threshold feeding behaviour is determined to define the duration of photopic 

feeding ability within the natural diurnal cycle of wild fish, but also to determine the 

optimal light intensity range for visual feeding of greenback flounder larvae in intensive 

culture. The latter is of particular importance for new species development because the 

few studies available to date indicate that photopic sensitivity, and therefore optimal light 

intensity range for feeding, changes in a species specific fashion during ontogeny. 
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4.2 Determination of prey size selection with increasing age in 

greenback flounder larvae.  

Most marine larvae hatch at a relatively small size (2-5 mm TL, Blaxter, 1969, 1986). 

Prey size selection by planktivorous fish larvae is initially constrained by morphological and 

behavioural parameters (for example; mouth dimensions, locomotory capacity, sensory 

function), arising from size and developmental stage at hatching (Blaxter, 1969; Wong and 

Ward, 1972; Hunter, 1981; Hairston etal., 1982; Blaxter and Fuiman, 1989; Bremigan and 

Stein, 1994; Higgs and Fuiman, 1996). As a result, in the early life history stages, fish 

larvae are able to ingest only a fraction of the prey spectrum available in the environment 

(Galbraith, 1967; Frank, 1988). Larval "gape" is likely to be one of the primary 

determinants of prey size selection by fish larvae, because planktivorous larvae ingest prey 

whole (Hunter, 1981; Dabrowslci and Bardega, 1984; Ghan and Sprules, 1993; Bremigan 

and Stein, 1994). As a consequence, some critical mouth or "gape" dimension must 

ultimately determine the upper size limit of prey that can be ingested. 

In the present study, it has been assumed that the internal horizontal dimension of the 

mouth, rather than the dorso-ventral mouth dimension, or an estimate of gape determined 

from some external morphological feature of the jaws or measure of jaw articulation, 

represented the absolute upper size limit of prey ingested, because it is the smallest 

dimension within the mouth cavity through which the prey must pass. This is not a novel 

concept. Werner (1979), Hunter (1981) and Pankhurst (1994), suggested that mouth 

width was a more accurate measure of larval swallowing capacity than mouth "gape". 

Furthermore, Hunter (1981), reported a close correlation between mouth width and the 

ability of larvae to capture prey. Internal horizontal mouth width of greenback flounder 

larvae determined histologically (cohort 1, figure 15), increased in a linear fashion with 

both age and standard length of larvae. Ninety five percent confidence limits of the 

regression of the change in internal horizontal mouth width with increasing SL of 

greenback flounder larvae (cohort 1, figure 15), were then used to extrapolate mouth 

dimensions of larvae with similar growth/age profiles, in subsequent prey size selection 

experiments (cohorts 2 and 3, appendix 4). This allowed examination of the ratio of 

morphological dimension of the prey ingested by larvae : horizontal mouth width (Table 6). 
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The latter suggested that prey carapace width rather than either prey width with 

appendages, or prey total length, was the morphological dimension of prey which 

determined larval prey size selection in greenback flounder, because in all cases in which 

larvae were able to ingest prey, this ratio was <1. This also suggests that the larvae must 

have been able to visually orientate towards the prey so that the prey were head on when 

ingested. Alternatively, it cannot be discounted that the prey were physically deformed 

during ingestion, although visual examination of the alignment of Artemia prey within the 

gut of greenback flounder larvae indicated that this prey species at least, was swallowed 

head on (pers. obsv.). In addition, other studies which examined both prey width and 

length in an effort to determine the prey dimension which imposed an upper limit on prey 

size ingested by fish larvae, also concluded that prey width not length, limited the prey size 

ingested (Govoni et al., 1986; Swift, 1992; Ghan and Sprules, 1993). Ghan and Sprules 

(1993), established that the width of prey ingested by juvenile burbot, never exceeded 

maximum gape dimensions, whereas prey length frequently did, concluding that if the 

larvae orientated to take the prey head on, prey length was not a limiting factor. In contrast 

to the findings of the present study, Arthur (1976), found that maximum prey width with 

appendages was the critical dimension determining ingestible prey size by larvae of the 

Pacific sardine (Sardinops sagax), northern anchovy and jack mackeral. 

Other investigators have examined the relationship of prey width : mouth gape in 

greenback flounder. Shaw and Jenkins (1992), and Jenkins (1987), examined gut contents 

of wild-caught greenback flounder and reported that both greenback flounder juveniles 

(Shaw and Jenkins, 1992) and larvae (Jenkins, 1987), ingested prey widths that were half 

the maximum mouth gape dimension or smaller. In the present study, the ratio of Artemia 

carapace width (CW) : larval mouth width (MW) for the smallest prey size fraction 

ingested, supports the latter field based study (ratio CW : MW = 0.36 - 0.6, refer table 6). 

However, the ratio of CW : MW for the two larger size fractions of Artemia ingested by 

greenback flounder larvae in the present study ranged between 0.66 and 0.86, indicating 

that larvae were capable of ingesting prey >0.5 of mouth dimension. This may simply 

reflect the different methods of "gape" determination employed in the field based studies 

compared with this laboratory based study. Shaw and Jenkins (1992), preserved whole 

juvenile flounder in 95% ethanol, and measured articulation of the jaw, using a dissecting 

microscope fitted with an ocular micrometer. In the earlier field investigation, (Jenkins, 
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1987), greenback flounder larvae were anaesthetised in benzocaine, fixed in 80% ethanol, 

the jaws were then manually opened, and the dorso-ventral mouth dimension (gape) was 

measured using a dissecting microscope fitted with an ocular micrometer. This method of 

gape measurement is prone to over estimation of mouth size in very small larvae, due to 

the fragile nature of the structures within the jaw which makes it difficult to estimate the 

point of natural jaw articulation (Arts and Evans, 1987). 

For similar reasons, it is difficult to make meaningful comparisons between the results 

presented here and others which have determined"gape" using external morphological 

measures of the larvae, or those which measured the degree of jaw articulation of larvae. 

Hart (1994), substituted a measurement of lower jaw length into an equation from Shirota 

(1970), which was based upon an upper jaw dimension, to obtain an estimate of mouth 

gape (dorso-ventral height) for greenback flounder larvae. Even accounting for the 

difference in rearing temperatures (this study: 12°C; Hart: 15.5 - 16°C) by standardising 

fish ages to degree days, there was a marked difference in the mouth size measurements 

reported in the present study and data reported by Hart (1994), for the same species. The 

estimates of gape height from Hart (1994), were more than double the size of internal 

mouth width measurements determined in this study (Figure 25). 

If larval mouth width was the only determinant of prey size selection by greenback 

flounder larvae, and if carapace width as we suggest, was the critical prey dimension 

defining the upper limit for prey size selection, then 14 - 17 day-old and 13 - 16 day-old 

larvae (cohorts 2 and 3, respectively), should have been physically capable of ingesting the 

300 - 390 p.m prey size fraction, and 17 and 16 day-old larvae (cohorts 2 and 3, 

respectively), should have been capable of ingesting the 450 - 560 pm prey size fraction 

(i.e. ratio of CW : MW 	table 6). However, prior to 19 - 20 days of age, greenback 

flounder larvae selected only the smallest size fraction of Artemia, even though the ratio of 

prey size (carapace width) ingested : larval horizontal mouth width, indicated that larvae 

were physically capable of ingesting larger prey. This indicates that other factors besides 

mouth size were influencing prey size selection. At 19 - 20 days of age onwards, there was 

a significant shift in the feeding behaviour of greenback flounder larvae, with larvae 

ingesting all three size fractions of Artemia offered. In addition, prey size significantly 

effected larval feeding success, such that with a single exception (on day 20, cohort 2), the 

75 



2500 7 

2000 7 

1500 - 

- 

500- 

- 

0 0 

M
ou

th
 g

ap
e  

si
ze

  (p
m

)  

DISCUSSION 

lolupwifilloupolgitlIvilivilluivilimilmi 

0 50 100 150 200 250 300 350 400 450 

Age (degree days) 

Figure 25 - Regression fits of change in a) mouth gape (pm), 
y = -54.35 + 4.42x, r2  = 0.93 (from Hart, 1994), and b) internal 
horizontal mouth width determined from serial transverse sections 
of whole larvae, y = 177.12 + 1.02x, r2  = 0.99 (present study), 
with increasing age (degree days) of greenback flounder larvae. 
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proportion of larvae feeding on each of the three size fractions of Artemia, on any given 

day, decreased in a stepwise fashion with increasing size of prey. 

It appears then, that prey size selection by greenback flounder larvae was not solely 

determined by the ability of the larvae to physically ingest the prey. One possibility is that 

prey handling time varies both with larval age and prey size. Handling times of prey by 

largemouth bass larvae have been shown to increase rapidly with increasing prey size 

(Hoyle and Keast, 1987). The larger size fractions of Artemia used in this study 

represented a more difficult prey item for small larvae to capture, because the prey had 

more thoracic appendages, resulting in increased prey swimming speed. In addition, the 

prey length to width ratio increased considerably with increasing prey size, presumably 

requiring greater locomotory and orientation skills by the larvae in order to capture and 

ingest the prey. Despite the stepwise decrease in consumption with increasing prey size on 

any one day, the feeding incidence within any prey size fraction did increase with 

increasing larval age, indicating that the ability of larvae to handle larger prey sizes 

increased during ontogeny. Handling times of prey of increasing size have been shown to 

decrease with increasing larval age, for several species. For example, the handling 

efficiency of large prey (fathead minnows, Pimephales promelas) by juvenile yellow perch, 

was observed to improve as larval body length and gape size increased (Paskowski and 

Tonn, 1994). Similarly, whilst prey (zooplankton) handling times increased with increasing 

prey size, there was an ontogenetic decrease in handling times, for bay anchovy (Anchoa 

mitchilli), sea bream (Archosargus rhomboidalis) and lined sole (Achirus lineatus) (Houde 

and Schekter, 1980). 

The ability of greenback flounder larvae to ingest all three size fractions of Artemia at 19 

and 20 days of age, in cohorts 2 and 3, respectively, coincided with a shift in 

developmental profile from developmental stage 2, to developmental stage 3/4 (Figure 16). 

The transition from developmental stage 2 to stage 3/4 in greenback flounder larvae 

denotes the onset of notochord flexion and caudal fin development, which in Atlantic 

herring is characterised by a significant shift in swimming behaviour (Batty, 1984). Yolk 

sac and finfold larvae display bouts of very energetic swimming involving whole body 

`serpentine'- like body undulations, interspersed with periods of rest (Hunter, 1981; 

Blaxter, 1986; Webb and Weihs, 1986). This swimming mode is energetically most 
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efficient for very small fish larvae because water viscosity is the dominant factor 

determining swimming mode at this time (a function of low Reynold's numbers) (Webb 

and Weihs, 1986). A suite of morphological changes, including yolk sac resorption, loss of 

the larval finfold, development of the caudal and median fins and increasing body size, 

coincides with an ontogenetic shift to a subcarangiform tail beat and glide swimming mode 

in fish larvae, which is more efficient as Reynold's numbers increase (Batty, 1984; Webb 

and Weihs, 1986). It is possible then that the sudden shift in feeding performance of 

greenback flounder larvae, which coincides with the onset of caudal fin development, 

reflects an increased capture or handling capacity in association with an ontogenetic shift in 

swimmimg mode. 

Another possibility is that sensory functional capabilities shift significantly during this 

period (refer section 4.1, this study). Greenback flounder are primarily visual feeders 

during this early developmental period (this study). Stage 2 greenback flounder larvae 

have a single cone retina, which is characteristic of many first feeding fish larvae (Blaxter 

and Jones, 1967; Blaxter, 1968, 1986; Blaxter and Staines, 1970; Neave, 1984). During 

developmental stage 3/4 in greenback flounder, further photoreceptor types, double cones 

and rods, develop within the retina (Pankhurst and Butler, 1996). Cone photoreceptors 

provide the acute photopic vision required for planktivory and initially, visual acuity of fish 

larvae is poor, a constraint of small photoreceptor and small eye and lens size (Tamura and 

Wisby, 1963; Blaxter and Jones, 1967; Kotrschal etal., 1990). However, an increase in 

eye and lens diameter associated with growth results in increasing photopic acuity because 

of increasing angular density of cones (Pankhurst and Butler, 1996). As a result, the 

greatest gains in photopic visual resolution of small fishes is likely to arise from an increase 

in eye/lens size (Kotrschal et al., 1990). However, as in other fishes (Sadler, 1973; Breck 

and Gitter, 1983; Flamarique and Hawryshyn, 1996), eye and lens diameter of greenback 

flounder increases in a linear fashion with increasing fish age (Panldiurst and Butler, 1996) 

and would not, therefore provide a marked increase in visual resolution at 19 - 20 days of 

age, which might explain the significant shift in feeding behaviour thereafter. Moreover, 

the onset of developmental stage 3/4 denotes the onset of a period of dynamic change with 

respect to the visual field of flatfish larvae. Left eye migration occurs during 

developmental stage 3/4 and this has implications for the integration of visual input within 

the optic tectum. Visual feeding capacity as evidenced by feeding performance, does not 
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however, appear to be compromised during this period. This may reflect the increasing 

level of development of the optic tectum and integration capacity at this time. It is possible 

then that increasing visual functional and integration capabilities, in conjunction with a 

change in swimming behaviour, contribute to the sudden ability of greenback flounder 

larvae at 19 - 20 days of age, to ingest all three size fractions of Artemia prey. 
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4.3 The effect of previous exposure to a prey species on 

subsequent prey selection.  

Previous exposure to a prey species significantly effected subsequent patterns of prey 

selection by greenback flounder larvae. Canonical cistribution analysis determined that the 

differences in feeding responses observed in those larvae which had previously experienced 

both Artemia and rotifers (A&R treatment larvae), compared with those larvae which had 

previously experienced only rotifers (R treatment larvae), were largely attributed to 

differences in selection of either Artemia only, or rotifers only. For example, a high 

proportion of R treatment larvae continued to select only rotifers (51 - 75% of larvae in R 

treatment larvae from days 11 to 29 post-hatching) throughout the ontogenetic period 

examined. In contrast, A&R treatment larvae showed a trend of decreasing preference for 

rotifers during the same period. In addition, a higher proportion of A&R treatment larvae 

selected Artemia only, when compared with R treatment larvae. Growth rates of R and 

A&R treatment greenback flounder larvae were similar (0.12 and 0.13 mm/day, 

respectively). Because horizontal mouth dimensions of greenback flounder larvae 

increased in a linear fashion with age (Figure 15, section 3.2.2), then it is unlikely that there 

were significant differences in mouth dimensions of same age fish in the R and A&R 

treatment groups, which may otherwise have effected the prey selection patterns reported 

here. In addition, because both R and A&R treatment larvae were from a single cohort of 

eggs, and growth profiles were very similar, then the same visual constraints imposed by 

ontogenetic stage of development of the retina and small eye/lens size, applied to larvae in 

both treatments. Further to this, the differences in prey selection by R and A&R treatment 

greenback flounder larvae occurred despite the fact that larvae from both previous prey 

exposure treatments started to ingest Artemia (either in combination with rotifers, or 

alone), for the first time, at 14 days of age. This indicated that the temporal onset of 

Artemia selection/ingestion was not effected by prior prey exposure regimes, and that the 

differences in prey selection were not simply due to the inability of larvae in the R 

treatment group to handle and ingest the novel prey species. However, it is likely that 

capture and ingestion of Anemia (the novel prey) by R treatment larvae, involved 

increased handling times compared with experienced A&R treatment larvae, and this may 

in part explain the low proportion of R treatment larvae which selected only Artemia (5% 
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and 1% on days 20 and 26, post-hatching), or Artemia and rotifers (which never exceeded 

50% during the period in question). 

Several other studies have reported that prior exposure to a prey species influenced 

subsequent prey selection, and that prey handling times were implicated in feeding success 

when fish were offered a novel prey. Wahl, et al. (1995), found that although juvenile 

walleyes (Stizostedion vitreum - 100 mm mean TL) reared on pellets readily accepted live 

prey (golden shiners), of which the fish had had no previous exposure, they captured fewer 

prey than did experienced juveniles. After five days of exposure (each of 30 minutes) to 

the novel prey, the foraging success of inexperienced fish did not differ from that of 

experienced fish. The initial difference in feeding success was attributed to significantly 

poorer prey handling times for naive fish, which had to learn how to attack and capture live 

prey. Meyer (1986), also found that handling times and subsequent capture success of 

Artemia prey by Central American cichlid fry (Cichlasoma managuense, size range - 8.5 - 

9.5 mm TL), with varying histories of prior experience of Daphnia, increased with 

experience. In the present study, although differential handling times for "novel" and 

"familiar" prey may explain reduced feeding rates on the novel prey, it does not explain 

why R treatment larvae selected only Artemia on just two of the days that larvae were 

tested (5% and 1% feeding incidence on days 20 and 26 post-hatching, respectively), 

whereas a proportion of A&R treatment larvae selected Artemia only, on every day tested, 

from 14 days of age. Other factors besides handling time of prey, must therefore be 

involved. 

Prior experience of a prey impacts strongly upon feeding success and selection of prey by 

fish larvae and juveniles (Beukema, 1968; Hunter, 1972; Werner etal., 1981; Bell, 1990). 

A learned response is implicit in the improved foraging success of largemouth bass (Colgan 

et a/.,1986), and juvenile bluegill sunfish (Werner, etal., 1981), after repeated periods of 

exposure to a novel prey. For example, largemouth bass (Colgan et a/.,1986), and juvenile 

bluegill sunfish (Werner, et al., 1981), were reared on artificial and live prey diets, and 

required between 4 - 8 prior exposure episodes with a novel live prey species, before 

maximum foraging efficiency on the new prey was observed. Similarly, Godin (1978), 

demonstrated that the latency time between visual fixation and attack by juvenile pink 

salmon (Oncorhynchus gorbuscha) feeding on a novel prey (Artemia), decreased 3.4 
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times, after 5 episodes of prior exposure indicating a learned component in recognition of 

novel prey types. It has been suggested that fish may learn to associate either negatively or 

positively, with certain morphologically distinct prey types (Vinyard, 1980). Therefore, 

prey characteristics such as size, visibility and motility, which have been reported to effect 

prey capture by fish larvae (Kislalioglu and Gibson, 1976; Vinyard, 1980; Zaret, 1980; 

Hunter, 1981; Checkley, 1982; Wright and O'Brien, 1982), are likely to form the basis of 

prey recognition. If learned prey preference is the basis of the differences in prey selection 

patterns observed in R and A&R treatment greenback flounder larvae, then prey 

characteristics which form the basis of prey recognition must be considered. 

It is unlikely that prey size alone formed the basis of prey recognition and subsequent 

selection by greenback flounder larvae in the present study, because both prey types were 

screened to the same size fraction. Whilst mean total length of Artemia (470 gm) and 

mean total length of rotifers (278 gm without eggs and 380 gm with eggs) did not 

correspond closely, the respective prey width dimensions of Artemia and rotifers (carapace 

width and lorica width, respectively) were in close agreement (186 and 184 gm, 

respectively). If we accept that the critical prey dimension which determines prey size 

selection in greenback flounder is prey width without appendages, (refer section 3.2.5), 

then Artemia and rotifers of this screened size fraction represent very similar visual targets 

in terms of dimension alone. However, there are considerable differences in both 

morphology, visibility and patterns of motility of Artemia nauplii and rotifers. Rotifers are 

transparent zooplankton, in this case with a diffuse green colouration, resulting from 

enrichment with micro-algae prior to feeding to larvae. (In this study, micro-algae 

enrichment was undertaken in all feeding trials involving rotifers, to enhance subsequent 

detection of these prey within the gastro-intestinal tract of larvae, at completion of the 

feeding trials). Artemia nauplii on the other hand, are not transparent, and the exoskeleton 

has high spectral sensitivity in the yellow-orange waveband of 560 - 620 nm (Blaxter, 

1975). In comparison with rotifers then, Artemia nauplii represent a high contrast visual 

target, either when viewed by larvae against the black wall of the test chamber, or when 

viewed by larvae from below, silhouetted against the bright background of downwelling 

room light. In addition, differences in locomotion are marked. Rotifers move in a 

relatively slow continuous spiralling motion, whereas Artemia nauplii have a rapid 

staggered motion, arising from coordinated beating of both the right and left antennae. It 
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can only be surmised that the differences in relative prey morphology, locomotion and 

visibility of Artemia nauplii and rotifers, are sufficient to provide the basis for recognition 

and then positive selection of familiar prey species versus novel prey species, which appear 

to be underlying the selection patterns observed here. 

This study has established that prior experience to prey effected subsequent patterns of 

selection, such that greenback flounder larvae reared on rotifers only, continued to select 

for this familiar prey when offered a novel prey species in addition to the familiar prey. 

This has implications for the intensive culture of marine fish larvae which, because of 

mouth size constraints at first feeding, usually involves a sequential transfer of larvae to 

different prey species of increasing size, during ontogeny. This study indicates that prior 

exposure to a new prey species for an appropriate period of time is probably required if 

larvae are to effectively shift preference from one prey species to another. There are 

energetic/growth gains in larvae selecting larger prey items as body/mouth size increases 

(Polo et al., 1992; Bremigan and Stein, 1994; Paszkowski and Tonn, 1994) and further 

research is required to examine the time scale of exposure required to shift positive 

selection from a familiar to a novel prey species. 
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4.4 Summary 

Examination of the primary sensory modality involved in feeding behaviour, indicated that 

greenback flounder larvae are primarily dependent upon vision in order to feed, at least in 

the early life history stages. In addition, the general ontogenetic trend of increasing ability 

of larvae feeding in the light, supports earlier reports that indicated that feeding ability of 

larvae was initially poor, but increased with age. Greenback flounder larvae were able to 

feed in the dark, although at a considerably lower level than in the light, supporting recent 

studies which have shown that some fish larvae have the ability to feed using non-visual 

senses. Although the feeding response of larvae in the dark treatment may have been due 

to the early onset of non-visually mediated feeding behaviour, there was no change in 

feeding response in the dark during ontogeny, and it was therefore, not possible to entirely 

discount that this feeding response may have been due to involuntary prey ingestion as a 

result of osmoregulatory drinking. The involvement of individual sensory modalities in the 

feeding behaviour of greenback flounder larvae needs to be assessed further. In particular, 

attention needs to be directed at the relative contribution of those sense organs implicated 

in non-visual feeding responses, and also whether feeding strategies involve input from 

individual sense organs, or combined input from a suite of sensory organs. In addition, it is 

critical that the light intensity for threshold feeding behaviour is determined in order to 

provide optimum light conditions for intensive culture of this species, and define the light 

intensity range for photopic visual feeding of greenback flounder larvae in the wild. 

Prey size significantly effected the feeding response of larval greenback flounder. In 

addition, prey width, rather than either prey width with appendages, or prey total length, 

was the morphological dimension of prey which determined larval prey size ingested, 

indicating that larvae must have been able to visually orientate towards the prey so that the 

prey were head on, when ingested. A decrease during ontogeny in the proportion of 

greenback flounder larvae feeding with increasing size fraction of prey, indicated that the 

ability of larvae to physically ingest prey, was not the sole criterion that determined prey 

selection. A sudden marked increase in the ability of larvae to ingest all prey sizes offered, 

coincided with the onset of caudal fin development which may have reflected an increased 

prey capture or handling capacity by larvae, in association with a shift in swimmimg mode. 
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In addition, sensory functional capabilities increase with increasing body size in fish larvae, 

and it is possible that increasing integration of visual input, in conjunction with a change in 

swimming behaviour, contributed to the sudden ability of stage 3/4 greenback flounder 

larvae, to ingest all three size fractions of Anemia prey. 

The selection of prey by greenback flounder larvae during ontogeny was found to be 

strongly influenced by prior exposure to prey species. The temporal onset of Artemia 

selection was not effected by prior prey exposure regimes and the differences in prey 

selection that were observed between larvae without prior exposure to Anemia (R 

treatment), and larvae with prior exposure to Artemia (A&R treatment), were not simply 

due to the inability of larvae to handle and ingest a novel prey species. The differences in 

prey characteristics between rotifer and Artemia prey may have been sufficient to allow 

recognition of, and positive selection for a familiar prey species, suggesting a learned 

component to feeding behaviour of fish larvae. Positive selection for familiar prey has 

implications for the intensive culture of marine fish larvae which introduces new and 

sequentially larger prey species during ontogeny. There is a need to determine the 

appropriate exposure time required to produce positive selection for new prey species, if 

effective transition to the new species is to be achieved. 
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APPENDICES 

Appendix 1  
Glutaraldehvde fixative and phosphate buffer 

Phosphate Buffer Recipe: 

Stock 1:  0.1 M solution of NaH 2PO4 .2H20 

Stock 2:  0.1 M solution of Na2HPO4  

15.601 g.1: 1  

14.196 g.L1  

   

Working Solution: 

Mix the two solutions at an approximate ratio of 1:5, stock 1: stock 2 to obtain a final pH 

of 7.4. Add 2 g of sucrose per 100 ml of buffer. 

Glutaraldehyde Fixative: 

Glutaraldehyde (25%) 
	

5m1 

0.1 M phosphate buffer + sucrose, pH 7.4 
	

20 ml 
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Appendix 2 

Protocol for JB4 Methvl-methacrylate resin histolorv 

Solutions: 

Solution A 

Solution B 

Catalyst - Benzoyl peroxide 

Method: 

1. Fish were infiltrated for 24 h in Solution A (100m1) + catalyst (benzoyl peroxide - 0.9 

g). One ml of this solution was added to each vial with one solution change after 3 h. The 

vials were placed on a rotary infiltrator to ensure even infiltration. 

2. One part of Solution B was then added to 30 parts of Solution A + catalyst to make 

the final embedding resin. 

3. Gelatin capsules (0.5 ml) were filled with the resin and one larva was placed into each 

capsule. The lid was then pressed on firmly to minimise the amount of oxygen present in 

the capsule. This was necessary because oxygen inhibits polymerisation of methyl-

methacrylate resins. 

4. Capsules were left overnight at room temperature to polymerise. Unpolymerised resin 

was then removed with 90% ethanol and the gelatin capsule was peeled off. 

5. Blocks were stored in a dessicator, at room temperature, to prevent moisture uptake. 

Serial, transverse sections (2 wri) were cut from the rostral tip of the fishes jaw to the back 

of the eye using a Microm 340TM  microtome, fitted with glass knives. Each section was 

lifted off the glass knife using a fine pair of forceps and placed onto a drop of distilled 

water, on a clean histological slide. The slides were dried on a slide warming tray at 37°C 

before being stained with a polychrome stain (Appendix 3), air dried and mounted in 

Shur/mount. 
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Appendix 3 
Polychrome stainink method  (Mackay and Mead, 1970. Modified by Griffin and 

Fahrenbach). 

Polychrome I Stock:  

Methylene blue 	 0.65g 

Azure II 	 0.1g 

Glycerol 	 50 ml 

Methanol 	 50m! 

Distilled water 	 400 ml 

Stir to dissolve, filter and use within 6 months. 

Polychrome H Stock:  

Stock solution:  

0.2% aqueous basic fuchsin. Heat, stirring to dissolve, filter and use within 6 months. 

Working solution:  

1 part stock : 4 parts distilled water. 

Stain 10 - 12 seconds in polychrome I, rinse in distilled water. 

Stain 25 - 30 seconds in polychrome H, rinse in distilled water. 

Air thy and mount. 
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Appendix 4 

Mouth width measurements for greenback flounder larval cohorts 2 and 3, used to 
determine the ratio of prey size ingested : larval mouth width. Measurements were 
extrapolated from the upper 95% confidence limit of the regression of change in larval 
mouth width with standard length of larvae from cohort 1. 

Cohort 2 Cohort 3 

Age 
(days) 

Mouth width 
(gm) 

Age 
(days) 

Mouth width 
(I-tm) 

11 300 10 318 
14 348 13 340 
17 373 16 367 
20 444 19 418 
23 487 22 494 
26 529 25 515 
29 538 
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