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Abstract 

This study provides baseline information on the annual reproductive activity of wild 

black bream, the effect of capture and confinement on plasma steroid levels, suitable 

induced ovulation protocols and the effect of salinity on reproductive development, 

induced ovulation and egg fertility and development. 

The annual change in reproductive condition and plasma levels of sex steroids in black 

bream, was investigated by measuring changes in gonadosomatic index (GSI), 

hepatosomatic index (HSI), gonad stage and plasma concentrations of sex steroids. Black 

bream have an annual reproductive cycle with a 3 month spawning season in spring / early 

summer with daily cycles of gonadal maturation and plasma steroid levels. Elevated levels 

of plasma estradio1-1713 (E2), testosterone (T) and 11-ketotestosterone (11KT) were 

associated with gonadal recrudescence, and elevated plasma 17,2013-dihydroxy-4-pregnen-

3-one (17,201313) levels were associated with final oocyte maturation and spermiation in 

female and male fish respectively. 

The stress-induced changes in concentrations of plasma sex steroids in black bream 

were investigated by blood sampling at capture and in fish confined for 15, 30 minutes, 1, 

3, 6, 12 or 24 hours. Confinement resulted in significantly elevated plasma cortisol levels, 

reduced plasma levels of E2 and T within 1 h in females, and suppressed plasma levels of T 

and 11KT after 30 min and 6 h respectively in males. Plasma levels of 17,2013P increased 

decreased or remained unchanged. This study indicates that stress exerts a rapid inhibitory 

effect on gonadal steroidogenesis in black bream. 

The effect of hormone therapy to induce ovulation was assessed by injecting mature 

female black bream with saline, human chorionic gonadotropin (hCG) or luteinizing 

hormone releasing hormone analogue (LHRHa) at capture, or 24 hrs post capture. 

Treatment with LHRHa or hCG resulted in fish ovulating throughout the experiment, with 

LHRHa treatment at capture resulting in the best ovulatory response. Injection with hCG 

or LERHa at capture resulted in the short term elevation of plasma E2 and T, whereas, 

injection of LHRHa 24 hrs post-capture did not elevate plasma E2 or T levels over controls. 

Plasma levels of cortisol and 17,2013P were unaffected by hormone treatment. These 
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results show that capture and handling stress reduces the responsiveness of fish to 

exogenous hormone treatment and that best results are obtained if hormonal treatment is 

administered at the time of capture. 

The effects of salinity (5, 20 or 35%) on seasonal reproductive development, plasma 

steroid levels, the efficacy of LHRHa to stimulate ovulation, sperm motility, and egg 

fertility and development to hatching were investigated. Gonadal maturation and seasonal 

plasma steroid levels were essentially unaffected by salinity in both sexes. Hormone 

therapy resulted in the typical endocrine and ovulatory response in all three salinities, 

however, egg production was reduced in fish held at 5 %o. Both fertilisation and sperm 

motility were significantly reduced at 5%o. Egg development was best over a salinity range 

of 20-35%o. 
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General introduction. 
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1. 	General introduction 

1.1 Aquaculture; a rapidly growing industry 

Australia has the third largest fishing zone in the world, but due to its nutrient-

poor waters, productivity is not high with fisheries production being ranked at 53 in 

the world for 1996 (FAO 1996). Similarly, Australian aquaculture is also small by 

world standards, however, its share of the total value of Australian fisheries 

production has steadily increased in recent years to around 25% in 1996 (Brown et al., 

1997). Australia's total landed weight of fisheries products is not expected to expand 

much beyond its present level and with improving technology and increase in fishing 

pressure, some fisheries are becoming over-exploited (Williams and Stewart 1993). 

Public demand for fish products continues to increase and natural resources will not 

be able to meet this demand. Therefore, it is clear that expansion of the aquaculture 

sector is essential if local fish production is to satisfy increasing consumer demand. 

In 1995-96 the volume of Australian aquaculture production was dominated by 

Atlantic salmon (Salmo salar; 7647 t), followed by rainbow trout (Oncorhynchus 

mykiss; 2498 t), southern bluefin tuna (Thunnus maccoyii; 2013 t), and barramundi 

(Lates calcanfer; 529 t) (Brown et al., 1997). In order to keep up with increasing 

local demand and also to establish and compete with international export markets, 

there is a need to develop additional finfish species which can be cultured within 

Australia. Diversification of the Australian finfish portfolio is considered necessary to 

protect industry against potentially crippling disease outbreaks in existing species, 

reduce imports of fish products into Australia, and expand the regions in Australia in 

which marine fin fish farming can be undertaken (Williams and Stewart 1993). 

Before a species can be commercially cultured it must first have market 

acceptability and be biologically manageable. Market profiles are easily determined, 

but the biological suitability of a species can only be determined through 

understanding its reproductive biology, nutritional and growth requirements and 

susceptibility to health problems in the culture environment (Panlchurst 1998a). 

Gaining this knowledge is one of the key components of research and development in 

establishing sustainable aquaculture. Australia is yet to develop a significant marine 

fish farming industry of non-salmonid species (Brown et al., 1997), with new species 
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development being slow and problematic (Pankhurst 1998a). One of the major 

constraints in the development of a marine fish farming industry has been the absence 

of suitable technology for Australian species (Brown et al., 1997). However, the 

transfer of technology and techniques developed for marine fish species in other 

countries has initiated the development of various marine farm operations and 

research facilities across Australia (Pankhurst 1998a). This is particularly so for 

members of the sparid family, which form significant aquaculture fisheries throughout 

the world, and the methods used are directly transferable between species (Foscarini 

1988; Battaglene 1995; Cowden 1995). Snapper Pagrus auratus, has been intensively 

farmed in Japan for over 30 years (reviewed by Foscarini 1988), however, in Australia 

the first recorded induced spawning and larval rearing of snapper occurred in 1992 

(Battaglene and Talbot 1992). Since then, research into snapper has developed at an 

accelerated rate due to the thorough understanding of its biology (Pankhurst and 

Carragher 1992; Carragher and Pankhurst 1993; Scott and Pankhurst 1993; Scott et 

al., 1993), and commercial hatcheries and grow out farms have already been 

established in Western Australia, South Australia and New South Wales (Cleary 

1998). The major bottleneck for the development of the snapper farming industry has 

been a unreliable supply of high quality eggs for hatchery production of juveniles 

(Battaglene 1995; Cleary 1998) However, with the recent improvements in controlled 

spawning, larval rearing, and the domestication of broodstock, the future for snapper 

farming in Australia looks promising (Battaglene 1995; Cleary 1998; Fielder et al., 

1999). 

Another constraint in the development and expansion of marine finfish farming is 

the lack of suitable sites, with the majority of appropriate sites having already been 

occupied and the remainder of Australias unpolluted coastline being relatively 

exposed (Williams and Stewart 1993; Brown et al., 1997). The alternative is to 

develop shore based coastal sites or inland sites using saline groundwater. Australia 

has huge resources of inland saline water, including natural saline lakes, shallow 

aquifers and deep aquifers (Nulsen 1999) . There are numerous natural saline lakes 

across Australia, but these tend to be ephemeral and often have high ecological 

importance. As a consequence, the use of these resources for aquaculture appears to 

be limited with the exception of the stocking of saline lakes that do not dry up 
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seasonally with euryhaline species for establishing put and take fisheries (Jenkins 

1999). 

Saline ground water is generally considered more in terms of its treat potential for 

agriculture than as a potential aquaculture resource. The replacement of deep rooted 

perennial vegetation with shallow rooted agricultural crops combined with the 

irrigation of these crops is responsible for rising saline water tables and increasing 

salination and waterlogging of agricultural land (Blackwell 1999; Nulsen 1999). 

Saline ground waters do not need to be highly saline to cause problems for agriculture, 

with salinities as low as 3%0 quickly accumulating to toxic levels in the plant root 

zone (Nulsen 1999). Current practice to reduce the height of rising water tables 

involves the pumping of water into evaporation basins. To date these ponds are not 

exploited but there is considerable interest in using the resource for inland mariculture 

of a variety of fish species (Allan and Fielder 1999; Gooley et al., 1999; Hutchinson 

1999; Jenkins 1999; Paust 1999). The use of this resource for the production of 

aquaculture products would help to offset saline water management costs and reduce 

capital costs in developing an aquaculture venture, as the engineering infrastructure is 

often already in place (Pankhurst 1999). 

Deep saline aquifers generally have very favourable characteristics for 

aquaculture as they typically contain very low bacterial and viral counts and 

temperature is stable throughout the year. However, deep extraction does not 

contribute to ground water management and could even exacerbate the salinisation of 

ground water: Conflict between the requirements of ground water management 

programs and the desire to have good quality water for aquaculture does not preclude 

use of the resource. The availability of high quality water is one of the key 

requirements of the hatchery production of marine finfish and saline water from deep 

aquifers is the most desirable for this purpose. In this case, special water management 

will be needed, such as the reinjection of saline water into deep bores after use in 

order to meet the requirements for both land management and aquaculture (Ogbum 

1999; Trendall et al., 1999). 

Examples exist elsewhere in the world where fish mariculture has developed in 

arid areas using ground water as a resource. For example, tilapia (Oreochromis spp) 

are intensively farmed using brackish water from an aquifer in an Israeli desert 
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(Pruginin et al., 1988), and red drum have been shown to survive and grow well in 

saline (5-15%.0) ground waters in Texas (Forsberg et al., 1996). Therefore, the 

development of inland saline aquaculture in Australia will be assisted by using the 

knowledge and technology developed in other countries. Forsberg et al. (1996) 	. 

suggested that the salinity and specific-ion concentrations were the best guidelines for 

measuring the potential of saline ground water for red drum culture. Therefore, 

characterisation of the composition of saline waters in Australia is a priority for 

research. 

1.2 Black bream 

The black bream Acanthopagrus butcheri, is an euryhaline sparid endemic to the 

estuarine waters of southern Australia and forms important recreational and 

commercial fisheries (Stewart and Grieve 1993). It is thought to spend its entire life 

cycle in the estuarine environment, and there is little evidence of movement of fish 

between estuaries. In consequence, there are distinct genetic differences between 

black bream populations that are geographically isolated (Chaplin et al., 1998). 

Therefore care must be taken when generalising about black bream populations. This 

is particularly so in respect of the timing of reproductive events, as the environmental 

conditions between estuaries that black bream inhabit are extremely variable (Sarre 

and Potter 1999). 

Black bream is reported to reach a maximum size of 60 cm and 4 kg (Stewart and 

Greive 1993) and is long lived, reaching a maximum reported age of 29 years 

(Morison et al., 1998). It is a deep bodied fish with colouration ranging from a dark 

bronze or olive green to bright silver. The species favours snaggy and rocky areas of 

habitat where sufficient cover is provided, and is an opportunistic feeder on 

crustaceans, molluscs, polychaetes, small fish, and may consume large amounts of 

algae (Sarre et al., 2000). As a truly euryhaline species, black bream has the ability to 

withstand a wide range of environmental conditions. 

Black bream stocks across Australia are in danger of being over-exploited, which 

has resulted in the initiation of several studies on stock assessment, reproduction, 

fingerling production and their use in stock enhancement (Morison et al., 1998; 

Jenkins et al., 1999; Lenanton et al., 1999; Sarre and Potter 1999; Sarre et al., 2000). 
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In addition, the ability of black bream to withstand a wide range of environmental 

conditions has promoted considerable interest in its aquaculture potential for stocking 

into brackish and saline waters of inland Australia (Ingram et al., 1996; Jenkins 1999; 

Maguire and Sarre 1999). Under experimental conditions, growth and survival of 

juvenile black bream is not affected over a salinity range of 12-48 %o (Jenkins et al., 

1999). Juvenile black bream have now been stocked in numerous water ways across 

Australia (Jenkins 1999; Jenkins et al., 1999), however, it is currently not known 

whether these fish will become reproductively active in these saline waters. To date, 

no information is available on the reproductive physiology of black bream or the 

effect of salinity and common aquacultural practices on the reproductive activity of 

black bream. It is clear that black bream can undergo sexual maturation over salinity 

ranges of 3-45%0 (Sarre and Potter 1999) but there is little information on either the 

specifics of reproductive management or larval survival. This information is essential 

for the successful development of restocking programs, the establishment of new 

black bream fisheries and the development of commercial black bream aquaculture in 

Australia. 

1.3 Endocrine control of reproduction 

Except for the capture of juvenile fish for on-growing to market size, the 

successful development of marine fish farming is dependent on the availabilityof 

viable gametes. This can be achieved by several routes including the collection of 

naturally spawned eggs from the wild, the stripping of gametes from mature wild 

caught fish, acclamation of wild fish as broodstock and finally the ongrowing of 

hatchery reared fish to sexual maturity (Pankhurst 1998b). The effective management 

of reproduction in aquaculture relies on a thorough understanding of the pattern of 

gamete development, spawning duration and frequency and the associated endocrine 

changes. With this knowledge, potential bottlenecks can be identified and husbandry 

procedures optimised. 

Reproductive processes in fish start when the germinal tissue in the developing 

gonad differentiates into spermatogonia and oogonia in the testis and ovary 

respectively (reviewed in Nagahama 1983). In females oogonia develop into 

previtellogenic oocytes and at the time of sexual maturation these oocytes begin to 
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sequester yolk proteins synthesised in the liver. This process is known as 

vitellogenesis and is responsible for the majority of gonad growth (Monunsen and 

Walsh 1983; Tyler 1991; Specker and Sullivan 1994; Tyler and Sumpter 1996). Final 

oocyte maturation (FOM) begins with the migration of the oocyte nucleus (germinal 

vesicle) to the animal pole, the coalescence of yolk and lipids and in most marine 

species a large increase in oocyte size due to hydration (Wallace and Selman 1981; 

Nagahama 1983). Oocytes that have completed FOM are released from the ovary by 

rupture on the ovarian follicle and at this stage the fish is ready for the behavioural act 

of spawning (Pankhurst 1998b). 

There are three recognised modes of ovarian growth - synchrony, group 

synchrony or multiple group synchrony (reviewed by Wallace and Selman 1981; 

Wallace et al., 1987; Pankhurst 1998b). Fish that display a synchronous mode of 

reproduction posses a single clutch of maturing oocytes in the ovary. Such an 

example is the pacific salmon (Onhorhynchus spp) that spawn only once before dying. 

Group synchronous species, such as rainbow trout, spawn more than once in their life 

time but typically only once per season. The ovaries in these types of fish contain a 

batch of previtellogenic oocytes and a maturing clutch of oocytes for spawning in the 

current season. Multiple group synchrony describes ovarian development where there 

are multiple clutches of oocytes produced within a spawning season, and is the most 

common among the teleosts. In extreme cases, such as in snapper, FOM, ovulation 

and spawning occur on a daily basis over an extended spawning season of several 

months (Scott et al., 1993). This pattern is sometimes termed asynchronous (Wallace 

and Selman 1981; Wallace et al., 1987). 

In males, spermatogonia mitotically divide to produce primary spermatocytes 

before meiotic division to form secondary spermatocytes and subsequently spermatids 

(reviewed by Grier 1981; Nagahama 1983; Pankhurst 1998b). This process is termed 

spermatogenesis. Once complete the process of spermiogenesis begins and spermatids 

divide again to produce spermatozoa. Spermatozoa are then released into the sperm 

ducts via the process of spermiation and there is an increase in water content of the 

seminal fluid to produce milt (Pankhurst 1994). The mode of gamete development in 

males essentially mirrors the patterns described for females. 
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The initiation of reproductive development in fish is controlled by exogenous 

(environmental) and endogenous (endocrine) factors. Environmental cues, such as 

photoperiod and temperature, regulate endocrine activity by exerting their effect on 

the hypothalamic-pituitary-gonad axis (reviewed by Peter 1983; Peter and Yu 1997; 

Pankhurst 1998b). In response to environmental cues the hypothalamus produces 

gonadotropin releasing hormone (GnRH) and dopamine (DA). GnRH and DA act in a 

stimulatory and inhibitory fashion respectively on the release of gonadotropins (GtHs) 

from the pituitary. Once released into circulation GtHs act by binding to specific 

membrane-bound receptors in the ovary and testis, which subsequently initiates 

steroid biosynthesis. Two forms of GtHs have been identified GtH-I and GtH-II 

(Suzuki et al., 1988; Swanson 1991; Van Der Kraak et al., 1992). Both GtHs have 

similar actions in stimulating gonadal DNA synthesis and steroid biosynthesis, but 

have temporally separated actions. Plasma levels of GtH-I tend to be highest during 

gonad growth and 0tH-II is associated with final maturation (reviewed by Swanson 

1991; Peter and Yu 1997). 

Within the ovary, oocytes are surrounded by the ovarian follicle comprised of two 

cell layers, thecal (outer), and granulosa (inner). The outer thecal layers contribute to 

steroid production by synthesising steroid precursors such as 17a-

hydroxyprogesterone (17P) and testosterone (T) (Kagawa et al., 1982; Kagawa et al., 

1983). During vitellogenesis the inner granulosa cells then aromatise T to 1713- 

estradiol (E2) which is subsequently released into the blood stream and stimulates the 

liver to synthesise yolk proteins (reviewed by Specker and Sullivan 1994). At the 

completion of vitellogenesis, there is a shift in the steroidogenic activity of the 

granulosa cells. This marks the beginning of FOM where E2 is no longer produced 

and 17P is converted to the maturation inducing steroid 17,2013-dihydroxy-4-pregnen-

3-one (17,2013P), or in some species 17,2013,21-trihydroxy-4-pregnen-3-one 

(17,20021P) (reviewed in Nagahama et al., 1983; Thomas 1994; Nagahama 1995; 

Pankhurst 1998b) Ovulation follows FOM but is generally steroid-independent, with 

F-series prostaglandins initiating the rupture and expulsion of the mature oocyte 

(Goetz 1983; Pankhurst 1998b). 

The leydig cells are the major sites of gonadal steroids in males, however, 

spermatozoa and the epithelial cells around the vas deferens are also steroidogenic 
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(reviewed by Fostier et al., 1983; Fostier et al., 1987). Males differ from females in 

that aromatase activity is low or absent, and that T and its derivative 11- 

ketotestosterone (11KT) are the dominant steroids during testicular development. 

These two steroids control the initiation and maintenance of spermatogenesis, the 

development of secondary sexual characteristics, and may also modulate various 

aspects of reproductive behaviour. 17,20P is produced later in the reproductive cycle 

of males and is believed to regulate sperrniation and milt hydration. (reviewed Fostier 

et al., 1987; Pankhurst 1994; Pankhurst 1998b) 

1.4 Stress and Reproduction 

It is now well established that stress has the capacity to inhibit reproductive 

processes at every level of endocrine control so far examined (reviewed by Pankhurst 

and Van Der Kraak 1997). Stress results in two types of endocrine response, the 

adrenergic response which results in the rapid (within seconds) release of adrenaline 

and noradrenaline, and the hypothalamo-pituitary-interrenal (HPI) response (reviewed 

by Mazeaud and Mazeaud 1981; Barton and Iwama 1991; Sumpter 1997). Adrenaline 

and noradrenaline promote changes that increase oxygen uptake and blood glucose 

levels, providing an immediate energy source to deal with the stressor. Activation of 

the HPI axis stimulates the hypothalamic neurones to secrete corticotropin releasing 

factor which acts on the pituitary to release adrenocorticotrophic hormone (ACTH). 

ACTH subsequently stimulates the interrenal tissue to synthesise cortisol, which acts 

in releasing further energy reserves by the stimulation of gluconeogenesis. The effect 

of stress and / or cortisol are also know to elicit several secondary responses affecting 

metabolic (plasma glucose, liver and muscle glycogen and adenylate levels and lactic 

acid dissociation to lactate" and in, hematological (haematocrit, leucorit, erythrocyte 

and leucocyte numbers), hydromineral (plasma chloride, sodium, potassium, protein 

and osmolarity) and structural (interrennal cell size and condition factor) condition 

factors (reviewed by Barton and Iwama 1981; Barton 1997) In the natural 

environment the effect of stress responses are thought to be short lived, however, in 

the aquacultural environment, the stressor may be prolonged (Barton and Iwama 

1981). Long term exposure to stress generates tertiary responses that can compromise 

immunocompetence, growth rates and reproductive capacity. Stress and / or cortisol is 
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known to affect plasma and pituitary gonadotropin levels, steroidogenesis, plasma 

vitellogenin levels, gamete development and quality, and subsequent egg and larval 

survival and development (reviewed by Pankhurst and Van Der Kraak 1997). These 

effects can have severe consequences for the management of captive or farmed fish 

and therefore stress reduction must be a priority of fish husbandry. 

1.5 Artificial maturation 

Although the failure to undergo vitellogenesis, FOM and / or spawning can occur 

in captive fish, there are several endocrine tools that can be used to address these 

problems (reviewed by Donaldson and Devlin 1996; Peter and Yu 1997; PanIchurst 

1998b). These typically involve administration of exogenous hormones to artificially 

stimulate or prime the reproductive endocrine system. Synthetic analogues of GnRH 

(GnRHa) are used to stimulate the production of native GTHs. In some cases GnRHa 

is co-administered with a DA antagonist to block the inhibitory effects of DA. 

Synthetic GTHs are not available and piscine GTHs are difficult and expensive to 

acquire. This has resulted in mammalian GTHs being used, with the most common of 

these being human chorionic gonadotropin (hCG). Treatment of fish with hCG or 

GnRHa is usually achieved either by injection or the use of a slow release pellet. The 

best choice of hormone, method, dose and timing of treatment varies within individual 

species. Therefore the investigation of these factors is a key component in the 

development of new species for aquaculture. 

1.6 Scope and aims of this study 

This study aimed to provide information on the reproductive biology and 

endocrinology of black bream, investigated ways of obtaining good quality gametes, 

and assessed the effects of salinity on reproductive activity. The approach taken was to 

assess: a) the seasonal reproductive activity of black bream, b) the effect of capture 

and confinement on plasma steroid levels, c) the effect of hormone therapy and timing 

of treatment to induce ovulation, and d) the effect of salinity on plasma steroid levels, 

hormone induced ovulation, and egg fertility and development. The objective of this 

was to provide baseline information on the reproductive biology and endocrinology of 

black bream, to optimise hormone therapy protocols used to induce ovulation, to 
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increase the understanding of how salinity may affect reproductive success in black 

bream and to contribute to the growing understanding of the reproductive physiology 

of non-salmonid fishes. 

Chapters 2-5 are presented in the form that they been submitted for publication (See 

below). This has resulted in some planned overlap of introduction and methods 

sections. The chapters are either in press or published as described below. 

Chapter 2; Haddy, J.A., Pankhurst, N.W., 1998. Annual change in reproductive 

condition and plasma concentrations of sex steroids in black bream, 

Acanthopagrus butcheri (Munro) (Sparidae). Mar. Freshwat. Res. 49, 

389-397. 

Chapter 3; Haddy, J.A., Pankhurst, N.W., 1999. Stress-induced changes in 

concentrations of plasma sex steroids in black bream. J. Fish Biol. 55, 

1304-1316. 

Chapter 4; Haddy, J.A., Pankhurst, N.W., 2000. The efficacy of exogenous 

hormones in stimulating changes in plasma steroids and ovulation in wild 

black bream Acanthopagrus butcheri is improved by treatment at capture. 

Aquaculture, in press. 

Chapter 5; Haddy, J.A., Pankhurst, N.W., 2000. The effects of salinity on 

reproductive development, plasma steroid levels, fertilisation and egg 

survival in black bream Acanthopagrus butcheri. Aquaculture, in press. 

Ethical clearance for the work conducted throughout this study was provided under 

the permit A0005451 University of Tasmania, Tasmanian Animal Experimentation 

Ethics Committee. 
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CHAPTER 2 

Annual change in reproductive condition 
and plasma levels of sex steroids in black 
bream, Acanthopagrus butcheri (Munro) 

(Sparidae) 
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2. 	Annual change in reproductive condition and plasma levels of sex steroids 

in black bream, Acanthopagrus butcheri (Munro) (Sparidae) 

2.1 Summary 

Changes in gonadosomatic index (GSI), hepatosomatic index (HSI), gonad stage 

and plasma concentrations of sex steroids were studied over one year in black bream 

(Acanthopagrus butcheri). Black bream have an annual reproductive cycle with a 3 

month spawning season in spring / early summer. GSI and HSI values were highest in 

October and May respectively. Plasma concentrations of estradiol (E2), testosterone 

(T) and 17,2013-dihydroxy-4-pregnen-3-one (17,2013P) were highest in females in 

October. Plasma concentrations of E2 and T were highest in ovulated fish. 

Concentrations of 17,20I3P were higher in fish undergoing final oocyte maturation 

(FOM) than in fish with regressed gonads. In males, plasma concentrations of T and 

11-ketotestosterone (11KT) increased in September and remained elevated until 

January, but concentrations of 17,20PP did not change with season. However, 17,2013P 

concentrations in spermiated fish were higher than in non-spermiated fish. Daily 

changes in gonad condition indicated that females undergo daily cycles of ovarian 

maturation with ovulation occurring after midday. Plasma T and 17,2013P 

concentrations of females were elevated at midday in association with FOM, but E2 

showed no diel change. In males, partially spermiated fish were dominant in the early 

morning and fully spermiated fish at midday. Plasma T, 11KT and 17,200P 

concentrations were low at midnight and reached maximal levels at 6 am. 
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2.2 Introduction 

Black bream (family Sparidae) are endemic to the estuaries of southern Australia, 

with approximately 200-500 t being harvested commercially per annum (Stewart and 

Grieve 1993). Sparids form the basis of many major fisheries and aquaculture projects 

around the world (Foscarini 1988). Consequently, there is an increasing interest in 

their reproductive physiology and biology. Both seasonal and-short term cycles of 

plasma concentrations of sex steroids and/or seasonal gonad development have been 

reported for many sparids, including snapper Pagrus auratus (reviewed in Carragher 

and Pankhurst 1993), yellowfin bream Acanthopagrus australis (Pollock 1982; Pollock 

1985), yellowfin porgy Acanthopagrus latus (Abu-Halcima 1984) and the black porgy 

Acanthopagrus schlegeli (Chang and Yueh 1990). However, there is little information 

on the reproductive biology of euryhaline sparids and no information on the 

reproductive physiology of black bream. 

Sparids typically show an annual reproductive cycle with asynchronous gonad 

development and a daily spawning pattern occurring over a period of 2-5 months. 

Anecdotal reports indicate that black bream in Tasmania spawn between spring and 

early summer in the upper to middle reaches of estuaries. The objective of this study 

was to describe reproductive development and gonadal cycling in black bream, and 

correlate reproductive development with changes in endocrine characteristics. 

Seasonal and daily changes in reproductive condition were assessed against changes in 

plasma concentrations of testosterone (T) and 17,200-dihydroxy-4-pregnen-3-one 

(17,2013P) in both sexes and estradiol (E2) and 11-ketotestosterone (1 1KT) in female 

and male fish respectively. These hormones were chosen because of their roles in 

regulation of vitellogenesis, ovarian recrudescence (E2 and T) and final oocyte 

maturation (17,200P) in females, and spermatogenesis (T and 11KT) and spermiation 

(17,2013P) in males (reviewed in Pankhurst 1998). Because capture stress can elevate 

plasma cortisol concentrations, and in many species this is associated with depression 

of plasma concentrations of reproductive steroids (reviewed in Panlchurst and Van Der 

Kraak 1997), plasma cortisol concentrations were measured to assess the possible 

impact of sampling stress on blood hormone concentrations. 

Since photoperiod and temperature influence reproductive activity in temperate 

teleosts (Bye 1987), and additional triggers of spawning in black bream might include 
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salinity and the level of dissolved oxygen (D0)(Sherwood and Backhouse 1982), we 

monitored temperature, salinity and dissolved oxygen of the spawning areas at the time 

when fish were caught. In addition to allowing a comparison of the pattern of 

reproduction in an estuarine sparid with that of stenohaline sparids, this study provides 

the baseline for the investigation of reproduction in black bream and the possible 

controlling effects that salinity may exert on this process. 

2.3 Materials and Methods 

Sampling 

Black bream were captured from April 1996 to May 1997 by rod and line from the 

Meredith (148 °7'S, 42°4'E) and Swan Rivers (148 °4'S, 42°4'E) at Swansea, Tasmania. 

Data from fish from both estuaries have been combined for presentation. Where 

differences between estuaries occurred, this is noted in the text. Diurnal sampling was 

conducted from 18 to 22 October 1996 from the Meredith River. Fish were caught 

throughout the 24-h period and allocated to 4 sampling blocks of 6 h each according to 

the time of capture. The times indicated in the text and figures are the mid points of 

each sampling block. All other fish were caught between 0530 and 2300 hours. Blood 

was sampled by caudal puncture using heparinized syringes within 5 min of hooking. 

Fish were then killed by spinal transection, fin-clipped for identification and placed on 

ice. Blood was stored on ice, plasma obtained by centrifugation, then frozen and stored 

at -18°C until required for assay. Fork length, body, liver and gonad weights, sex and 

macroscopic gonad condition were recorded from each fish. Criteria for macroscopic 

staging of gonads are given in Table 1 and were verified by histological examination 

according to the histological characteristics outlined in Scott and Pankhurst (1992). 

Gonadosomatic (GSI) and hepatosomatic (HSI) indices were calculated as gonad/gonad 

free body weight) x 100 and (liver/liver free body weight ) x 100 respectively. Fish 

were provisionally aged by counting presumptive annual rings in otoliths and scales 

under a dissecting microscope. Temperature, salinity and DO were measured at 1-m 

intervals with a submersible multi probe sensor (Perstorp Water Analyser), at locations 

when and where fish were caught, throughout the study period. 
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Table 2.1. Criteria for macroscopic classification of bream gonads 
(modified from Scott and Pankhurst 1992) 

5 	spent 

Macroscopic appearance 
female 
Ovary small clear threads 
Ovary small clear and orange 

Ovary orange with opaque 
oocytes visible through 
epithelium 
Ovary orange with hydrated 
oocytes visible through 
epithelium 
Eggs in the oviduct which 
can be extruded with gentle 
pressure 
Ovary flaccid and bloody 

male 
Testis white threads 

Testis firm and ivory white 

Testis firm and ivory white 
with viscous milt in sperm 
duct 
Testis firm and ivory white 
with free flowing milt in 
sperm duct 
Testis grey to bloody and 
flaccid 

Histological characteristics 

Previtellogenic oocytes 
Cortical alveoli stage oocytes 
appear 
Oocytes in exogenous 
vitellogenesis 

Final oocyte maturation and 
hydration 

Hydrated oocytes in the 
oviduct and post-ovulatory 
follicles present 
Atretic vitellogenic oocytes but 
predominantly previtellogenic 
oocytes present 

Spermatogonia and a few 
previtellogenic oocytes* 
Secondary spermatocytes, 
spermatozoa 
Spermatozoa predominate 

Spermatozoa predominate 

Residual spermatozoa, reduced 
spermatocytes and increased 
connective tissue 

Stage 	Classification 

1 	immature 
2 	regressed 

3 	vitellogenic 

4 
	

hydrated 

5 	ovulated 

6 	spent 

1 	immature 

2 	spermatogenic 

3 	partially 
spermiated 

4 	fully spermiated 

* Oocytes located in dorsal section of gonad in all male stages. 

Steroid measurement 

Plasma steroid concentrations were measured by radioimmunoassay (RIA), using 

the reagents and protocols given in Pankhurst and Carragher (1992) for E2, T, 17,20P 

and cortisol, and Pankhurst and Kime (1991) for 11KT. Extraction efficiency was 

determined by recovery of [ 31-1]-labelled steroid extracted with plasma, and assay 

values were corrected accordingly. Assay detection limits in plasma were 0.15 ng m1: 1 ; 

for 11KT, E2, T and 17,20P and 0.3 ng mI: 1  for cortisol. Interassay variability 
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(%CV) measured using aliquots of a pooled standard was as follows: 11KT = 17.4% 

(n=8); E2= 9.9% (n=8); T= 7.8% (n=8); 17,2013P = 23.0% (n=8) and cortisol = 12.1% 

(n=8). 

Statistics 

Kruskal-Wallis, One way ANOVA and Tukey's multiple comparison of means 

tests were performed using the SPSS statistical package. Analysis of steroid data was 

performed on raw or log transformed data to satisfy homogeneity of variance. 

Percentage data were arcsin transformed. In some instances variances were still 

heterogeneous after transformation; however, the data were also assessed by Kruskal-

Wallis one way ANOVA, and in all cases the outcomes were unchanged. We chose to 

present ANOVA results because of the utility of means comparison tests. Sample 

values < 3 were not included in the statistical analyses. 

2.4. Results 

Seasonal changes in GSI, HSI and gonad stage 

The GSI of female fish was low (below 2%) throughout autumn and winter, 

increased rapidly in September and remained high until January (Fig. 2.1a). The HSI 

was high during the winter and early spring, before gradually decreasing to low levels 

in March, then increased to highest levels in May (Fig. 2.1c). In males, the mean GSI 

was also low in autumn and winter, began to rise in August, and peaked at the end of 

October (Fig. 2.1b). The seasonal increase in male GSI was not as rapid as in females. 

Male HSI gradually decreased throughout winter, spring and summer, reaching its 

lowest level in January, then increased to the highest level in May (Fig. 2.1d). 

From March to July, all female fish had regressed ovaries (stage 2) (Fig. 2.2). 

Vitellogenic fish (stage 3) first appeared in August, one month before the main increase 

in GSI, and remained present until January. Fish with hydrated oocytes (stage 4) were 

associated with the first GSI peak and also remained present until January. Very few 

ovulated (stage 5) fish were caught; however, they were present from the end of 

October to the end of December. Low numbers of spent fish were caught towards the 

end of February when fish at stages 3-5 were no longer present. 
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Fig. 2.1. Annual changes in gonadosomatic index (GSI) and hepatosomatic index 

(HSI) in wild black bream. All values are mean + s.e. Values that are significantly 

different have different superscripts (P<0.05); values without superscripts were not 

included in the analysis due to low n values. (n values given in parenthesis). 
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Fig. 2.2. Annual variation in proportions of female black bream with particular 

macroscopic gonad stages as described in Table 2.1. 
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The initial increase in GSI and the appearance of vitellogenic fish did not coincide 

between the two estuaries, with the presence of vitellogenic fish and subsequent 

increase in GSI being delayed by 1 month in the Swan River. With the exception of 1 

captured fish during flood conditions, all fish with hydrated oocytes were captured in 

the upper reaches of both estuaries, however, their presence in the two estuaries did not 

overlap (9 Sept to 10 Nov for the Meredith compared with 28 Nov to 12 Jan for the 

Swan River). It is possible that spawning activity may have occurred earlier in the 

Swan but was not detected because of low numbers of fish captured in September. 

All male fish had regressed testes (stage 2) from March to July (Fig. 2.3). Partially 

spermiated (stage 3) males first appeared in August and were associated with the initial 

increase in GSI. The proportion of partially spermiated fish gradually dropped as the 

GSI increased, until none were present at the beginning of November. At the end of 

November, partially spermiated fish reappeared and remained present until March. 

Fully spermiated (stage 4) fish first appeared in September and were present throughout 

the period of high GSI and began declining in January before disappearing by March. 

No spent (stage 5) males were caught. 

Seasonal changes in plasma hormone concentrations 

Plasma concentrations of E2 in females were low (<0.6 ng mL -I ) during autumn 

and winter, began to rise in September, before peaking in late October at 4.2 ng mL -I  

then returning to low concentrations in January (Fig. 2.4). Plasma concentrations of T 

were lower than E2 throughout, but followed a similar pattern with a peak in late 

October at 2.9 ng mL-I . Concentrations of 17,203P were low (<0.7 ng mL 1 ) 

throughout the season, but concentrations in late October were significantly higher than 

concentrations in March. 

Plasma concentrations of T were low (<0.3 ng mL -1 ) in males during autumn and 

winter (Fig. 2.5). Concentrations rapidly increased in September and remained elevated 

(..-=, 1.2 ng mL-1 ) throughout the spawning season with the exception of a distinct but 

non-significant drop in plasma T concentrations in early October. Plasma 

concentrations of 17,2013P were not significantly elevated at any time; however, they 

followed a similar pattern to T, with highest values of 1.2 ng mL -I  in November. 
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Fig. 2.3. Annual variation in proportions of male black bream with particular 

macroscopic gonad stages as described in Table 2.1. 
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Fig. 2.4. Annual changes in plasma levels of estradiol (E2), testosterone (T) and 

17,203-dihydroxy-4-pregnen-3-one (17,20f3P) in female black bream. Other details as 

for Fig. 2.1. 
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Fig. 2.5. Annual changes in plasma levels of testosterone (T), 17,2013-dihydroxy-4- 

pregnen-3-one (17,200P) and 11-ketotestosterone (11KT) in male black bream. Other 

details as for Fig. 2.1. 
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Plasma concentrations of 11KT were highest in late October (1.2 ng mL -I ) and also 

followed a similar pattern to T. 

The majority of fish were bled within 5 minutes of hooking (92 and 95% for 

females and males respectively). The mean plasma cortisol concentrations of these fish 

were 2.8 ng mL-I  (n=140) for females and 1.9 ng mL -1  (n=140) for males. 

Changes in plasma hormone concentrations with gonad stage 

Plasma concentrations of E2 and T in females were lowest in fish with ovaries that 

were regressed or spent (Fig. 2.6). Concentrations of E2 increased sequentially until 

peaking in ovulated fish; however concentrations were not significantly different from 

stage 4 fish. Plasma T concentrations followed a similar pattern, but there was not a 

significant difference between stage 3, 4 or 5 fish. Plasma concentrations of 17,203P 

were significantly elevated in fish with hydrated oocytes over fish with regressed 

ovaries. 

Males with regressed testes had the lowest concentrations of all the sex steroids. 

Plasma concentrations of T and 11KT were similar in partially and fully spermiated 

fish, and were significantly higher than in fish with regressed testes. Plasma 

concentrations of 17,200P in fully spermiated fish were significantly elevated over 

concentrations in fish with regressed testes. 

Diel rhythm of gonad condition and plasma hormone concentrations 

Proportions of females with vitellogenic ovaries were highest at midnight (2100- 

0259h) and progressively decreased throughout the day (Fig. 2.7). Proportions of fish 

with hydrated oocytes in the ovaries were highest at midday (0900-1459h) and lowest 

at midnight. Ovulated fish were present only in the later half of the early evening 

(1500-2059h). Male fish were all fully spermiated at midday. Proportions of partially 

spermiated fish increased from the early evening to the early morning (0300-0859h), 

before disappearing at midday. 

Plasma concentrations of E2 in females were not significantly different at any time of 

the day in sexually mature fish (Fig. 2.8). Plasma concentrations of T and 17,2013P 

were significantly elevated at midday relative to concentrations at midnight. 
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only) in black bream with particular macroscopic gonad stages as described in Table 1. 

Other details as for Fig 2.1. 
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macroscopic gonad stages as described in Table 2.1. (n values at each sample time in 
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Plasma concentrations of T in males were highest in the early morning and at lowest 

concentrations at midnight. Plasma concentrations of 11KT were not significantly 

different at any time, although values from the small number of fish captured between 

0300 and 0900h suggest that an early morning peak may occur. Plasma concentrations 

of 17,20013  were significantly elevated in fish captured between 0900 and 1500h and at 

lowest concentrations in fish captured between 2100 and 0300h. 

Estuary descriptions and water quality ranges during spawning 

The Meredith River estuary has a catchment area of 86 lcm 2 , is small (500 m long) 

and shallow (maximum depth 4 m), and the mouth is seasonally closed. The upper 

reaches had a maximum temperature and salinity of 29.1 °C and 35 g Kg -I  respectively. 

In contrast, the Swan river estuary has a catchment area of 448 km 2  is relatively long 

(10 Km) and deep (maximum depth 10 m), and is permanently open. The upper reaches 

had a maximum temperature and salinity of 27.5 °C and 29 g Kg-I  respectively. Female 

fish which were ovulated or had hydrated oocytes were captured over a sub-surface (> 

1m) salinity range of 13.9-35.0 g Kg -I , temperature range of 15.5-26.2°C and DO range 

of 4.2-13.6 mg L-I . At the same sample times, surface values of salinity, temperature 

and DO ranged from 0-19.2 g Kg -I , 12.4-25.1 °C and 6.1-8.4 mg L -I  respectively. 

2.5 Discussion 

This study confirms anecdotal reports that black bream spawn in spring and early 

summer in Tasmania. Seasonal changes in female GSI values, and proportions of 

gonad stages indicate that gametogenesis occurs rapidly, with the period from the 

initiation of vitellogenesis to the onset of spawning occupying less than 1 month. This 

pattern is also found in members of other families of temperate water fishes such as 

snapper (Sparidae, Scott and Pankhurst 1992), sweep (Kyphosidae, Dedual and 

Pankhurst 1992) and blue cod (Pinguipedidae, Pankhurst and Conroy 1987). The 

pattern and duration of reproductive development in black bream was consistent with 

other Acanthopagrus species (Abu-Hakima 1984; Pollock 1985; Chang and Yueh 

1990) and highlights that reproductive development in sparids is essentially the same 

between euryhaline and stenohaline species. 
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Spawning began earlier in the Meredith than in the Swan River and was associated 

with the higher salinities and temperatures in the Meredith River. Studies of other 

sparids have shown that the timing of the onset of spawning is temperature sensitive 

(Kojima 1981; Scott and Panlchurst 1992). The role of salinity in regulating the time of 

reproduction has yet to be critically examined. Evidence for the acute influence of 

temperature and/or salinity on reproductive activity in black bream was observed in 

early October, when due to rainfall, a flood of cold (9 °C) fresh water entered the 

estuaries. During this period, fish were caught only in the lower reaches of both 

estuaries, and there was a fall in gonadal sex steroid concentrations in both male and 

female fish. 

The combination of the water quality data from the two estuaries has shown that 

black bream are reproductively active over a very wide range of environmental 

conditions. Sexually mature fish were caught over a temperature range of 15.5 to 

26.2°C, DO concentrations of 4.2 to 13.6 mg L -1  and a salinity range of 13.9 to 35 g 

Kg-1 . Previous reports have suggested that black bream spawn over a salinity range of 

11-18 g Kg-1  (Sherwood and Backhouse 1982) but clearly reproductively mature fish 

are present over a much wider range. 

Seasonal changes in HSI occurred in both sexes with liver weights being highest 

early in spawning, suggesting that liver energy reserves may be used for ovarian 

recrudescence. Similar relationships have also been reported in other teleosts (eg 

Wingfield and Grimm 1977; Htun-Han 1978). In contrast, the HSI of snapper has been 

shown to increase in concert with the GSI and was thought to reflect the increased 

metabolic activity of the liver during the synthesis of vitellogenin (Scott and Pankhurst 

1992). This suggests that patterns of seasonal change in HSI vary even among quite 

closely related species. The difference may relate to local variation in seasonal 

availability of food. 

Protandrous sex inversion is known to occur in other species of Acanthopagrus 

(Pollock 1985; Chang and Yueh 1990); however, it is currently not known whether sex 

inversion occurs in black bream. In the present study, 98 % of male fish had ovarian 

tissue (previtellogenic oocytes only) present in the dorsal section of the testis. In 

contrast only 13 % of females had a residual testis present on the ventral section of the 

gonad. The sex ratio showed no marked differences with age (data not shown); 
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however, the majority (97%) of fish caught were on the basis of unvalidaded growth 

rings in otoliths or scales all estimated to be over three years old. In the black porgy, 

fish are males for the first two years of life and begin to sexually invert during their 

third year (Chang et al., 1994). Therefore, it is also possible that protandrous sex 

inversion occurs in black bream at a young age, but was not detected in the present 

study. 

Stress generally inhibits reproduction in fish (reviewed in Pankhurst and Van Der 

Kraak 1997), and short episodes of stress have been shown to significantly reduce 

plasma concentrations of gonadal steroids in snapper (Carragher and Pankhurst 1991). 

Mean plasma cortisol concentrations in black bream were similar to values from 

snapper captured and sampled underwater (Pankhurst and Sharples 1992), and suggest 

that capture and sampling occurred before there was a significant elevation of plasma 

cortisol. Accordingly we consider the concentrations of sex steroids reported in this 

study are unlikely to have been influenced by capture stress. 

Plasma concentrations of E2 and T in females were found to increase in concert 

with gonadal recrudescence, with the highest concentrations being recorded in ovulated 

fish. It appears that E2 has a universal role in stimulating vitellogenin (Vtg) synthesis 

in the liver of female teleosts (reviewed in Specker and Sullivan 1994) with direct 

evidence for E2 stimulation of Vtg production in Acanthopagrus species (Chang et al., 

1996). Peaks in T presumably relate to its role as a precursor for E2 (Kagawa et al., 

1982). The apparently paradoxical high E2 and T concentrations found in ovulated fish 

probably relate to the fact that around ovulation, the next batch of vitellogenic oocytes 

is well advanced in development. Peak seasonal plasma concentrations of 17,2013P 

(considered to be the maturation-inducing steroid (MIS) in most teleosts; Scott and 

Canario 1987) coincided with those of E2 and T, and were significantly elevated in fish 

undergoing FOM. However, overall changes in plasma concentrations of 17,20I3P 

were low (<0.7 ng mL - 5, similar to many marine species (Pankhurst and Carragher 

1991). In some species, low plasma concentrations of 17,2013P result from rapid 

conjugation to the glucuronated or sulphated form (Scott et al., 1990). This does not 

appear to be the case in sparids where measured plasma concentrations of conjugates 

are low (Carragher and Pankhurst 1993). An alternative explanation for low plasma 

concentrations of 17,203P in black bream is the presence of a different MIS. For 
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example, 17,20[3,21-trihydroxy-4-pregnen-3-one (17,201321P) is the major MIS in the 

spotted sea trout (Cynoscion nebulosus) and Atlantic sea trout (Micropogonias 

undulatus) (reviewed in Thomas 1994). 17,2013P is highly effective at inducing FOM 

in snapper oocytes, in vitro (Ventling and Pankhurst 1995). 17,201321P concentrations 

were not determined in the present study and the biopotency of 17,203P relative to 

other C21 steroids in inducing FOM in black bream remains to be tested. 

Plasma T and 11KT concentrations in males were consistent with the view that T 

and 11KT are involved in initiating and maintaining spermatogenesis (reviewed in 

Fostier et al., 1987). Elevated concentrations of T and 11KT during the spawning 

season have also been reported for the closely related black porgy (Chang et al., 1995a) 

and sobaity (Kime et al., 1991). Although plasma concentrations of 17,2013P were not 

significantly different at any stage of the season, plasma concentrations higher than 1 

ng mL-1  were associated with the appearance of fully spermiated fish and occurred 1 

month after the increases in T and 11KT. Furthermore, plasma concentrations of 

17,203P were significantly elevated in fully spermiated fish over non spermiated fish, 

suggesting that 17,20PP is associated with spermiation in black bream. Experimental 

evidence for the role of 17,20PP in spermiation in sparids is provided by a study on 

snapper, where milt volumes in fish treated with 17,20P were significantly elevated 

over controls (Pankhurst 1994). 

Diel changes in gonad stage in the present study indicate that black bream have a 

diurnal rhythm of oocyte maturation, with spawning occurring in the early evening. 

Daily spawning is common in the family Sparidae (Scott et al., 1993) and is usually 

accompanied by diel changes in plasma steroid concentrations (Kadmon et al., 1984; 

Matsuyama et al., 1988; Zohar et al., 1988; Hobby and Pankhurst 1997). Hobby and 

Pankhurst (1997) reported that in snapper, ovarian E2 concentrations were high in the 

late afternoon/evening, but the same pattern was not expressed by plasma E2. It was 

suggested that in species with short ovulatory periodicity, plasma concentrations of 

steroids may not adequately reflect the reproductive status of the fish during short-term 

cyclic ovarian changes. A similar effect could explain the failure to detect a diel 

variation in plasma E2 in black bream in the present study. In contrast to E2, T 

concentrations in black bream did show diel change with lower values at midnight than 

midday. This is consistent with the findings of Hobby and Pankhurst (1997) for 
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snapper. Plasma concentrations of 17,2013P were highest in black bream at midday 

when the majority of fish were in the final stages of maturation. Kadmon et al. (1984) 

reported similar results in the gilthead sea bream, where 17,2013P concentrations 

peaked 6 his before spawning (2 his before ovulation) and reached their lowest 

concentrations 6 hours after spawning. Studies on snapper have also indicated that 

17,203P concentrations are low in the evening, and high in the early morning (times 

vary from 0400 to 0900h) when FOM is occurring (Kagawa et al., 1991; Hobby and 

Pankhurst 1997). 

Male black bream also appear to have a diurnal rhythm of gonadal cycling with the 

highest proportions of fully spermiated fish present at midday, presumably in 

preparation for spawning later that afternoon or evening. A similar rhythm exists in 

male blue cod where fully spermiated fish dominate in the late afternoon (close to the 

assumed time of spawning) and proportions of partially sperrniated fish are highest in 

the early morning (Pankhurst and Kime 1991). High early-morning plasma 

concentrations of T and 11KT in black bream suggest that fish may be undergoing 

daily spermatogenesis. Diel variations of T and 11KT have also been demonstrated in 

male snapper with concentrations being highest between 0800 and 1200h (Carragher 

and Pankhurst 1993). Short-term fluctuations of plasma concentrations of T and 11KT 

have also been found in male blue cod, but were not related to acute changes in 

spermatogenic activity or the degree of spermiation (Pankhurst and Kime 1991). In 

contrast to T and 11KT, plasma concentrations of 17,2013P in male black bream 

remained high until midday, which is consistent with its role in spermiation (Fostier et 

al., 1987; Pankhurst 1994). Owing to the relatively small numbers of males sampled, 

the results need to be viewed with caution. However, it appears that gonadal cycling in 

males of daily spawning species, may be as dynamic as that of females. 
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CHAPTER 3 

Stress-induced changes in concentrations of 
plasma sex steroids in black bream, 

Acanthopagrus butcheri. 
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3. 	Stress-induced changes in concentrations of plasma sex steroids in black 

bream, Acanthopagrus butcheri. 

3.1 Summary 

Black bream, Acanthopagrus butcheri were captured by rod and line and blood 

sampled at capture before confinement in a 4001 tank. Fish were then removed from the 

tank and blood sampled from 15 min to 24 h after capture. Cortisol levels at capture, 

which were similar in both sexes, did not change with time of day, gonadal stage or 

season and were 1.9±0.2 and 2.8±0.4 ng m1 -1  for male and female fish respectively. 

Confinement resulted in significantly elevated cortisol levels at all time periods; 

however, levels after 24 h of confinement were significantly lower than peak cortisol 

levels (15 min for males and 1 h for females). Confinement stress resulted in reduced 

levels of estradiol (E2) and testosterone (T) within 1 h in sexually mature females. In 

mature males, suppression of T and 11-ketotestosterone (11KT) occurred after 30 min 

and 6 h of confinement respectively. The relationship between confinement stress and 

levels of 17,203-dihydroxy-4-pregnen-3-one (17,2013P) was more complex, with levels 

in males being elevated after 15 min and 24 h and suppressed after 6 h of confinement. 

In contrast, 17,203P levels in females were elevated after 1 hour of confinement. In 

regressed females, plasma E2 and T concentrations were low at capture and were not 

affected by confinement stress whereas plasma 17,200P was elevated within 1 h. This 

study indicates that stress exerts a rapid inhibitory effect on gonadal steroidogenesis. 
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3.2 Introduction 

The aquaculture production of any species is dependent on a regular supply of high 

quality eggs. For new species this is usually attained by the capture and hormonal 

induction of ovulation of wild-caught broodstock. However, the quality and quantity 

of eggs obtained from this approach is quite variable. This is particularly evident in 

stenohaline sparids, such as snapper Pagrus auratus (Bloch and Schneider), where the 

stress generated by capture and handling of wild fish results in depression of plasma 

levels of gonadal steroids, and an unreliable ovulatory response to exogenous 

hormones (Carragher and Pankhurst 1991; Cleary 1998). Black bream Acanthopagrus 

butcheri (Munro) is a euryhaline sparid which shows considerable potential for grow-

out in inland Australia using saline groundwater (Haddy and Pankhurst 1998). 

However it is currently unknown whether black bream show the same susceptibility to 

capture stress as snapper. 

It is now well established that stress has the capacity to inhibit reproductive 

processes in most fish (reviewed in Pankhurst and Van Der Kraak, 1997). There is a 

consistent association between stress, elevated plasma cortisol concentrations and 

decreased levels of plasma androgens and estrogens in a variety of teleost families 

including salmonids (Pickering et al., 1987; Sumpter et al., 1987; Pankhurst and 

Dedual 1994), triglids (Clearwater and Pankhurst 1997), catostomids (Jardine et al., 

1996) latrids (Morehead 1998) and sparids (Carragher and Pankhurst 1991; Cleary 

1998). In contrast to plasma androgens and estrogens, plasma 17,203-dihydroxy-4- 

pregnen-3-one (17,20PP) concentrations decrease, increase, or remain unchanged after 

stress (Carragher and Pankhurst 1991; Van Der Kraak et al., 1992; Pankhurst and 

Dedual 1994; Cleary 1998). Changes in plasma sex steroid concentrations have been 

recorded as early as 1 h after imposition of stress in several fish species (Safford and 

Thomas 1987; Sumpter et al., 1987; Carragher and Pankhurst 1991; Jardine et al., 

1996; Cleary 1998), but, few studies have investigated the effects of shorter periods of 

stress. Information on the timecourse of stress-induced changes in plasma steroid 

concentrations is essential in interpreting results where delayed sampling may have 

occurred, and for providing additional information into the mechanisms of stress-

induced changes of plasma sex steroids. In the present study, we examined the stress 

response and its effect on reproductive steroids in wild black bream by measuring 
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plasma steroid concentrations at capture and after various confinement times from 15 

min to 24 h after the imposition of stress. 

3.3 Materials And Methods 

Sampling 

Black bream were captured by rod and line from the Meredith (148 °7'S, 42°4'E) 

and Swan Rivers (148 °4'S, 42°4'E) at Swansea, on the east coast of Tasmania, from 

September 1997 to December 1997. Additional fish from a companion seasonal study 

(Haddy and Pankhurst 1998; September 1996 - May 1997) were included to extend 

baseline information on normal basal plasma cortisol values. All fish were blood 

sampled by caudal puncture using heparinized syringes at capture, with 95% (n=106) 

of fish being sampled within 5 min (mean of 2.8±0.2 min). Fish were then confined in 

a 4001 tank for 15 or 30 min (males only; insufficient females were caught for 

examination of these time periods), or 1, 3, 6, 12 or 24 h (both sexes) prior to a second 

blood sampling before being killed for gonadal examination. Fish were confined in 

batches and removed from their confinement tanks and processed at intervals according 

to the time of capture. Blood was stored on ice, plasma obtained by centrifugation, then 

frozen and stored at -18°C until assay. Sex and macroscopic gonad condition (Haddy 

and Pankhurst 1998) were recorded for each fish. Female fish were classified as 

sexually mature if the ovary contained vitellogenic oocytes. Male fish were classified 

as sexually mature on the basis of the presence of milt in the sperm duct. 

Steroid Measurement 

Plasma steroid concentrations were measured by radioimmunoassay, using the 

reagents and protocols given in Pankhurst and Carragher (1992) for E2, T, 17,201W and 

cortisol, and Pankhurst and Kime (1991) for 11KT. Extraction'efficiency was 

determined by recovery of [3H]-labelled steroid extracted with plasma, and assay 

values were corrected accordingly. Assay detection limits in plasma were 0.15 ng m1 -1 ; 

for 11KT, E2, T and 17,203P and 0.3 ng m1 -1  for cortisol. Values that were below the 

detection limit were treated as being equal to the detection limit. Interassay variability 

(%CV) measured using aliquots of a pooled standard was as follows: 11KT = 16.6% 
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(n=2); E2 = 7.0% (n=2); T = 10.6% (n=4); 17,2013P = 14.8% (n=4) and cortisol = 

18.3% (n=12). 

Statistics 

Paired t-tests, One way ANOVA and Tukey's multiple comparison of means tests 

were performed using the SPSS statistical package. Where necessary, data were log 

transformed to satisfy homogeneity of variance requirements. 

3.4 Results 

Plasma cortisol concentrations at capture showed no significant difference within 

the 5 minute sampling window, time of day (Fig. 3.1), season, gonadal stage (Fig. 3.2), 

or sex. Mean plasma cortisol levels at capture were 1.9±0.2 and 2.8±0.4 ng m1 -1  for 

male (n=140) and female (n=140) fish respectively. 

Sexually Regressed Females 

Plasma cortisol concentrations after 1 h were markedly higher than first bleeds but 

were not significantly different (P=0.066, two tailed t-test), however, concentrations 

after 6 h were significantly elevated (Fig. 3.3). Plasma 17,2013P concentrations were 

significantly elevated after 1 h of confinement, but not different from concentrations at 

capture after 6 h. Plasma T and E2 concentrations were low at capture and were not 

affected by capture and confinement. 

Sexually Mature Females 

Cortisol concentrations were not different among first bleeds, but were elevated 

after 1 h of confinement and remained significantly different from levels at capture for 

all confinement times (Fig. 3.4). Cortisol concentrations in second bleeds were higher 

after 1 h of confinement than at 6 or 24 h. Plasma 17,2013P concentrations were not 

different among first bleeds (range 0.93 to 1.58 ng m1 -1 ) but were significantly elevated 

after 1 h of confinement. Mean plasma E2 and T concentrations from first bleeds were 

significantly different and ranged from 3.23 to 8.75 ng mf l and 
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2.62 to 8.58 ng m1-I  respectively (Fig. 3.5). Levels of both steroids were significantly 

suppressed within 1 h and remained significantly lower than first bleeds for all 

subsequent confinement times. The significant differences between 1st bleeds for 

plasma T and E2 concentrations were associated with differences in plasma T and E2 

levels between sampling trips (data not shown). 

Males 

Plasma cortisol concentrations were not different between first bleeds at any time, 

and were elevated after 15 min of confinement and remained elevated over first bleeds 

for all subsequent confinement times (Fig. 3.6). Plasma cortisol concentrations were 

highest after 15 min of confinement and declined to significantly lower concentrations 

within 1 h and reached lowest post-confinement concentrations after 24 h. Mean 

plasma 17,203P concentrations at capture were significantly different and ranged from 

0.35 to 2.23 ng m1-1 . Plasma 17,20PP concentrations were significantly elevated after 

15 min and 24 h, and significantly depressed after 6 h of confinement. Mean plasma T 

concentrations at capture were significantly different and ranged from 0.68 to 2.34 ng 

m1-I  . Plasma T concentrations were significantly suppressed within 30 min and 

remained significantly lower than levels at capture for all confinement times except 1 h 

(Fig. 3.7). Mean plasma 11KT concentrations at capture were significantly different 

and ranged from 0.35 to 2.03 ng m1-1 . Plasma 11KT concentrations were significantly 

suppressed for all confinement times after 6 h. At 0.5, 1 and 3 h, differences in plasma 

11KT levels approached significance (P= 0.069, 0.122 and 0.168 respectively, two 

tailed t-tests) and at 1 and 3 h, second bleed 11KT levels were at or less than the 

detection limit. The significant differences between 1st bleeds for plasma T, 11KT and 

17,20PP concentrations were associated with significant differences in plasma T and E2 

levels between sampling trips (data not shown). 
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3.5 Discussion 

A common problem in comparing stress responses in fish is the determination of 

basal cortisol levels, as factors such as the method of capture, the stage of sexual 

maturity, season, time of day and sex can all influence plasma cortisol levels (Barton 

and Iwama 1991; Pankhurst and Sharpies 1992; Foo and Lam 1993a Sumpter 1997). 

However, in black bream these factors did not appear to influence plasma cortisol 

concentrations. At capture, plasma cortisol ranged from undetectable (<0.3 ng m1 -1 ) to 

27.5 ng m1-1 , with only 6% of all fish (n=338) having cortisol concentrations higher 

than 10 ng m1 -1 . Mean cortisol concentrations were similar to basal values from 

snapper captured and sampled underwater (Pankhurst and Sharples 1992). This 

indicates that cortisol concentrations for black bream in the present study have been 

minimally influenced by sampling activity. In contrast to cortisol concentrations, 

initial sex steroid concentrations were variable and were associated with differences 

between sampling trips. Haddy and Pankhurst (1998) showed that plasma sex steroids 

are influenced by season, time of day and gonadal stage in both sexes, which in the 

present study, may have contributed to the variation observed between 1st bleeds. 

In the present study, cortisol concentrations peaked at the earliest sample time (15 

min and 1 h for male and female fish respectively), and dropped significantly over 

time, with the lowest concentrations being recorded after 24 h of confinement. This 

could indicate that interrenal exhaustion (Sumpter 1997) or down regulation of the 

hypothalamic-pituitary-interrenal axis had occurred (Bradford et al., 1992) as a result 

of sustained stress. Alternatively, a limited degree of recovery from stress could have 

occurred suggesting that tank confinement was less stressful than the initial capture and 

handling. Recovery to resting levels of cortisol in wild caught snapper takes at least 

24-48 hours (Pankhurst and Sharples 1992; Cleary 1998). This is consistent with the 

persistence of elevated cortisol levels for at least 24 h in black bream in the present 

study. 

In female black bream, capture and confinement resulted in a significant decrease 

in plasma concentrations of T and E2 within 1 h and this was sustained for up to 24 h. 

It is possible that, as in males, a more rapid change in plasma concentrations of T and 

E2 occurred, but was not detected due to the sampling regime. The rapid depression 

(within 1 h) of plasma T and E2 has also been recorded in snapper (Carragher and 

58 



Pankhurst 1991; Cleary 1998) and white sucker (Jardine et al., 1996). Once 

steroidogenesis has been inhibited by stress, circulating steroids are likely to be rapidly 

cleared from the plasma (Pankhurst et al., 1986; Baroiller et al., 1987). 

The mechanism by which stress affects steroid production is unknown. There is 

equivocal evidence as to whether the effects of stress on reproduction are mediated by 

cortisol. Cortisol implantation results in a reduction of plasma T and E2 concentrations 

in tilapia Oreochromis mossambicus (Peters) (Foo and Lam 1993b) and brown trout 

Salmo trutta L. (Carragher et al., 1989). Carragher and Sumpter (1990) reported that 

cortisol has a direct suppressive effect on the secretion of T and E2 by trout follicles. 

However, repetition of the work showed that the direct inhibition of ovarian 

steroidogenesis by cortisol was not the principal mechanism at work (Pankhurst et al., 

1995a; Panlchurst 1998a). Furthermore, exogenous cortisol has no effect on in vitro 

steroidogenesis of ovarian follicles from goldfish Carassius auratus L., common carp 

Cyprinus carpio L. or snapper (Pankhurst et al., 1995b). 

Capture and confinement of male black bream caused a significant decrease in 

plasma concentrations of T within 30 min. In contrast, concentrations of 11KT were 

not significantly reduced until 6 h of confinement, however, 11KT concentrations were 

showing trends of suppression within 30 min. Several other studies have reported 

rapid (within 1 h) stress-induced decreases in circulating androgens in males (Pickering 

et al., 1987; Safford and Thomas 1987; Sumpter et al., 1987; Jardine et al., 1996; 

Cleary 1998). As in females, cortisol implantation causes the depression of plasma T 

concentrations in male tilapia (Foo and Lam 1993a) and brown trout (Carragher et al., 

1989). Carragher et al. (1989) further showed that cortisol implantation reduces the 

concentrations of gonadotropin (GtH) in the plasma of maturing male rainbow trout 

and brown trout. However, stress-induced changes in GtH are not always inhibitory. 

Sumpter et al. (1987) showed that a 1 hour handling and confinement stress, which 

resulted in the suppression of plasma T in male brown trout, significantly elevated 

plasma gonadotropin concentrations. 

The relationship between plasma 17,20PP concentrations and stress is more 

complex. 17,20PP is associated with final oocyte maturation and spermiation in 

female and male black bream respectively. Carragher and Pankhurst (1991) reported 

that there was a positive correlation between cortisol and 17,20PP concentrations in 
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snapper with levels of both steroids being elevated after five days of confinement. In 

contrast, Cleary (1998) found that in the same species plasma 17,2013P concentrations 

levels either decreased, increased or showed no change over 48 h of confinement and 

were low or non-detectable after longer confinement periods. 

Interestingly, sexually regressed female black bream also produced significant 

amounts of 17,203P after 1 h. This suggests that 17,20P may be of interrenal rather 

than gonadal origin. Sangalang and Freeman (1988) have shown that the interrenal 

tissue of Atlantic salmon Salmo salar (L.) is capable of synthesising 17,20P in vitro. 

Furthermore, Barry et al. (1997) found that cortisol production by interrenal tissue from 

rainbow trout could be stimulated by providing 17,203P as a substrate. A similar 

mechanism in black bream could explain the initial stimulation and subsequent drop of 

17,200P concentrations, with 17,2013P being of interrenal and/or gonadal origin and 

cortisol synthesis occurring from plasma and interrenal 17,2013P once other 

endogenous precursors become limiting. 

In both male and female black bream in the present study, plasma concentrations 

of androgens and estrogens showed no signs of recovery within 24 hours. This finding 

is consistent with other studies on wild fish, in which there was no documented 

recovery of plasma T and E2 during the experimental period (Carragher and Pankhurst 

1991; Pankhurst and Dedual 1994; Jardine et al., 1996; Clearwater and Pankhurst 

1997). Falling plasma concentrations of E2 precede the onset of ovarian atresia in most 

fish studied (Matsuyama et al., 1988; Clearwater and Pankhurst 1997; Cleary 1998). 

Janz and Van Der Kraak (1997) found that E2 is involved in maintaining follicular 

integrity via its role in suppressing apoptosis. Atretic oocytes are probably not 

steroidogenic with the result that once atresia has begun the recovery of plasma T and 

E2 will not occur until the next batch of oocytes is recruited (Clearwater and Pankhurst 

1997). Depressed T and E2 levels caused by cortisol implantation, accompany the 

retardation of oocyte growth in tilapia (Foo and Lam 1993b) and reduced plasma 

vitellogenin concentrations and ovary weight in brown trout (Carragher et al., 1989; 

Pottinger et al., 1991). Campbell et al. (1994) showed that in chronically stressed 

maturing female rainbow trout, reduced egg size, and subsequent egg quality, was 

associated with depressed plasma vitellogenin levels. However, plasma E2 was not 

affected by stress, suggesting that the mechanisms that disrupt vitellogenesis are more 
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complex than simply reduction of vitellogenin production caused by stress-induced 

reductions in plasma E2 levels (Campbell et al., 1994). 

In male teleosts, T and 11KT are involved in initiating and maintaining 

spermatogenesis, and 17,2013P stimulates spermiation (reviewed in Pankhurst 1998b). 

Very few studies have investigated the effects of stress on sex steroid levels and 

testicular development. Depressed T levels, caused by cortisol implantation, 

accompanied reduction in testes weight in brown trout (Carragher et al., 1989). 

Campbell et al. (1992) showed that repeated episodes of acute stress over 9 months 

reduced sperm counts in male rainbow trout, but, this difference did not affect fertility. 

In snapper, 1 week of confinement resulted in an increase in the proportions of primary 

spermatocytes and spermatozoa and decreased the proportions of secondary 

spermatocytes and spermatids (Cleary 1998). Cleary (1998) suggested that the rate of 

development of secondary spermatocytes and spermatids into spermatozoa was 

increased due to stress-induced increases in 17,2013P. 

The results from the present study have implications for the collection and 

husbandry of broodstock. Hormonal induction of ovulation in wild caught fish is a 

common practice in aquaculture (Lam 1982; Zohar 1986). However, fish are usually 

caught from the wild and transported to laboratory prior to being treated with 

exogenous hormones. This would allow the rapid depression of plasma steroids to 

already be in effect prior to treatment. It is currently not known whether delayed 

injection of exogenous hormones will alter the endocrine response, and quantity or 

quality of the gametes produced. We are now investigating this possibility. This study 

has shown that black bream are extremely stress sensitive and if naturally spawning 

captive populations are to be maintained every attempt must be made to minimise 

stress. Furthermore in stress sensitive species a "hands off" approach during the 

spawning season may be essential to achieve normal reproductive development. 
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CHAPTER 4 

The efficacy of exogenous hormones in 
stimulating changes in plasma steroids and 

ovulation in wild black bream 
Acanthopagrus butch en is improved by 

treatment at capture. 
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4. 	The efficacy of exogenous hormones in stimulating changes in plasma 

steroids and ovulation in wild black bream Acanthopagrus butcheri is 

improved by treatment at capture. 

4.1 Summary 

Sexually mature female black bream were captured by rod and line and injected 

with saline, human chorionic gonadotropin (hCG) or luteinizing hormone releasing 

hormone analogue (LHRHa) at capture, or 24 hrs post capture (saline and LHRHa 

treatments only). All fish were bled and checked for ovulation for 5 days post 

injection. Plasma levels of estradiol (E2), testosterone (T), 17,203-dihydroxy-4- 

pregnen-3-one (17,200P) and cortisol were determined by radioimmunoassay. Saline 

injected fish ovulated only on day 1, whereas treatment with LHRHa or hCG resulted 

in fish ovulating throughout the experiment. Treatment with LHRHa at capture 

resulted in a better ovulatory response than treatment with hCG at capture or LHRHa / 

24hrs post capture. Plasma E2 levels in saline injected fish were high at capture and 

had significantly dropped 1 day after capture. Injection with hCG or LHRHa at 

capture resulted in plasma E2 levels remaining significantly elevated for 2 days post 

injection. Injection of LHRHa 24 hrs post-capture failed to significantly elevate 

plasma E2 levels over controls. Plasma T levels essentially mimicked E2 profiles. 

Plasma levels of 17,2011P were not significantly different between any treatments, but 

showed a tendency to increase after capture. Plasma cortisol levels showed no 

treatment effects and were initially low at capture before becoming elevated between 

1-2 days post-capture. These results show that capture and handling stress reduces the 

responsiveness of fish to exogenous hormone treatment and that best results are 

obtained if hormonal treatment is administered at the time of capture. 
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4.2 Introduction 

One of the difficulties in developing new species for aquaculture is obtaining 

reliable quantities of viable eggs. In the initial development stages of a new species 

with aquaculture potential; eggs are usually obtained by the capture and hormonal 

induction of ovulation of wild-caught females. This approach commonly involves the 

capture and transportation of fish to holding facilities, with fish being treated with 

exogenous hormones some time after capture. Although the effects of exogenous 

hormones on ovulatory and endocrine events have been examined in detail in many 

species (see reviews by Lam 1982; Donaldson and Devlin 1996; Peter and Yu 1997) 

few studies have investigated the effects of a delayed treatment on subsequent 

endocrine and ovulatory responses. This is likely to be a particular problem in species 

that are severely stress sensitive, where plasma levels of E2 and T are rapidly 

depressed within 1 hour of capture (Carragher and Pankhurst 1991; Jardine et al., 

1996; Cleary 1998; Haddy and Pankhurst 1999). However, it is currently unknown 

whether stress-induced disruption of the hypothalamic-pituitary-gonad axis affects the 

subsequent ability of fish to respond to exogenous hormone treatment. 

Induced ovulation protocols most commonly utilise human chorionic 

gonadotropin (hCG) or luteinizing hormone releasing hormone analogues (LHRHa). 

LHRHa stimulates the release of endogenous gonadotropin (GtH), whereas, hCG 

mimics endogenous GtH (reviewed in Donaldson and Devlin 1996). In some species, 

hCG has a low biopotency and high doses or multiple injections are required, and this 

has led to a more widespread use of LHRHa (Donaldson and Devlin 1996). 

The Australian sparid Acanthopagrus butcheri (black bream) is currently under 

investigation as an aquaculture candidate for inland saline water culture. Initial stages 

of culture are likely to be dependent on hormonal manipulation of sexually mature 

fish captured from the wild. Given that this species shows acute and profound 

sensitivity to stress (Haddy and Panlchurst 1999), this study investigated whether delay 

after capture changed the efficacy of treatment with LHRHa at inducing changes in 

plasma levels of gonadal steroids, and the occurrence or frequency of ovulation. The 

ovulatory response of fish to treatment and handling was assessed in terms of the 

number of ovulations, and the quantity and quality of the eggs produced. In the 

absence of a specific GtH assay for black bream, the endocrine response of fish to 

68 



treatment and handling was assessed by measuring plasma levels of cortisol, E2, T and 

17,2013P. The possibility that fish were differentially responsive to hCG or LHRHa 

was assessed in a second experiment once the appropriate treatment window was 

determined. 

4.3 Materials and methods 

Fish capture, sampling and maintenance 

Sexually mature female black bream were captured by rod and line from the 

Meredith (148°7'S, 42°4'E) and Swan Rivers (148 °4'S, 42°4'E) at Swansea, 

Tasmania. Fish were blood sampled by caudal puncture using heparinized syringes, 

fin clipped for individual identification and the time of hooking and blood sampling 

recorded. Blood was stored on ice, plasma obtained by centrifugation, then frozen and 

stored at -18°C until required for assay. Fish were placed in 400L plastic tanks with 

oxygenation until transportation to the laboratory (3-20 hrs experiment 1; 3-7 hrs 

experiment 2), where they were placed in 1000L temperature controlled (18-20 °C) 

tanks supplied with recirculating sea water. 

Experiment 1: Effect of delayed injection time 

Fish were caught from October to November 1997 between 17:35 and 20:50h or 

5:45 and 13:34h. Sixteen fish (mean weight = 564 ± 50 g) were blood sampled at 

capture without anaesthesia, placed into the holding tanks and transported to the 

laboratory. Twenty four hours after capture, fish were anaesthetised in 0.05% 2- 

phenoxyethanol, blood sampled and biopsied for macroscopic gonad condition 

(Haddy and Pankhurst 1998). Fish that contained mature vitellogeneic oocytes in the 

biopsy were then weighed, injected intraperitoneally with 50 gg kg -1  body weight of 

50 gg m1-1  des-Gly l°  (D-A1a6)-luteinizing hormone releasing hormone ethylamide 

(LHRHa) (Sigma) (n=9) or 1 ml kg -1  of teleost saline (n=7) and checked for ovulation. 

Treatments were allocated on an alternating basis. LHRHa and saline treated fish 

were combined into tanks with 3-4 male fish. Ovulated females were manually 

stripped and the eggs fertilised in seawater of 35 %o salinity, using fresh sperm pooled 

from 3-4 males. Males were stripped by wiping dry the genital duct region and milt 
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expressed using slight abdominal pressure. The first portion of stripped milt was not 

collected to ensure milt was not contaminated with urine. Milt was collected while 

being expressed into dry 5m1 syringes and placed on ice until use. Fertilised eggs 

were viewed under a dissecting microscope and the fertility (division to 2-8 cell stage) 

of the first 100 eggs encountered recorded. Thereafter, fish were bled and checked for 

ovulation daily for 5 days. Another 14 fish (mean weight = 428 ± 20 g) were treated 

as described above except fish were anaesthetised, blood sampled, biopsied, and 

treated with LHRHa (n=7) or saline (n=7) at the time of capture. Owing both to 

limited laboratory holding space, and the dependence on capture of mature wild fish 

the experiment was performed 6 separate groups of fish. Three groups of fish 

captured between 16/10/97 to 4/11/97 were allocated to treatment 24 hours after 

capture with the remaining groups of fish captured between 5/11/97 to 26/11/97 

allocated to treatment at capture. As all fish were of a similar reproductive state it is 

assumed that they were equally responsive to treatment. 

Experiment 2: Effect of LHRHa, HCG and teleost saline 

Fish were caught from October to December 1998 between 5:45 and 12:03h and 

transported to the laboratory. Fish (mean weight = 615 ± 39 g) were handled as before 

and injected at capture with 50 gg kg-1  body weight LHRHa (n=7), 1000 U kg -I  body 

weight of 1000 U m1 -I  hCG (n=8) or 1 ml kg -1  of teleost saline (n=7). Treatments were 

allocated in a cyclic fashion at the time of capture. LHRHa, hCG and saline treated 

fish were combined into tanks with 3-4 male fish. 

Steroid measurement 

Plasma steroid concentrations were measured by radioimmunoassay, using the 

reagents and protocols given in Pankhurst and Carragher (1992). Extraction 

efficiency was determined by recovery of [ 3H]-labelled steroid extracted with plasma, 

and assay values were corrected accordingly. Assay detection limits in plasma were 

0.15 ng m1-1 ; for E2, T and 17,20f3P and 0.3 ng m1 -I  for cortisol. Values that were 

below the detection limit were treated as being equal to the detection limit. Interassay 
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variability (%CV) measured using aliquots of a pooled standard was as follows: E2 = 

5.5% (n=7); T = 3.8% (n=7); 17,203P = 10.8% (n=7) and cortisol = 9.8% (n=9). 

Statistics 

Repeated measures ANOVA, one way ANOVA and Tukey's multiple 

comparison of means tests were performed using the SPSS statistical package. Data 

were log transformed to satisfy homogeneity of variance requirements. In some 

instances, variances were still heterogeneous, however, the data were also assessed by 

repeated measures ANOVA for days 0-2, and in most cases the outcomes were 

unchanged. Where necessary, the degrees of freedom for within-subject factors and 

their interaction, were adjusted (Huynh-Feldt epsilon) to account for violations of the 

sphericity assumption. Although data were in violation of independence, we chose to 

present one way ANOVA results because of the utility of means comparison tests, the 

ability of the tests to handle a decrease in sample numbers over time and the common 

use of these tests elsewhere. 

4.4 Results 

Experiment]. 

The proportions of fish ovulating and the number of repeat ovulations were 

highest in fish injected with LHRHa at capture (Tables 4.1 and 4.2), with one fish 

serially ovulating for 4 days. Injection of LHRHa on the day following capture 

resulted in a smaller number of ovulations, with only 2 fish ovulating twice. Saline 

injected fish ovulated on day 1 only. Spontaneous ovulations from saline treated fish 

produced both infertile eggs (saline injection at capture) or eggs with high fertility 

(saline injection 24 hrs post-capture). Fertility from induced ovulations was 

substantially higher in fish treated at capture than at 24 hrs post-capture. 

Mean plasma cortisol levels ranged from 4.3 - 25.7 ng m1 -1  at capture, were 

significantly elevated on day 1 and remained elevated thereafter for all treatments 

except in fish injected with saline at capture, where plasma cortisol levels were not 

significantly elevated until day 2 (Fig. 4.1). There were no differences in cortisol 
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Table 4.1. Summary of the percentage of fish ovulating for the duration of 

experiments 1 and 2. 

Treatments 0 1 
Time (days) 

2 	3 4 5 
Experiment 1 
At capture: 
Saline 0 57 0 0 0 0 
LHRHa 0 28 57 66 25 33 
24hrs post capture: 
Saline 0 43 0 0 0 0 
LHRHa 0 22 11 0 33 16 

Experiment 2 
Saline 0 57 0 0 0 0 
LHRHa 0 86 86 100 100 0 
HCG 0 62 37 75 71 33 

Table 4.2. Summary of the proportions of fish ovulating, and quality of eggs collected 

in experiments 1 and 2. 

Treatments 
proportion 
of ovulating 

fish (%) 

proportion of 
fish serially 

ovulating (%) 

mean number 
of ovulations 

per fish*  

mean 
fertilisation 

Experiment 1 
At capture: 
Saline 57 0 1 0 	(1) 
LHRHa 85 57 2.4 60±16.5 (3) 
24hrs post capture: 
Saline 43 0 1 98 	(1) 
LHRHa 44 22 1.5 20 	(1) 

Experiment 2 
saline 57 0 1 43.0±22.4 (3) 
LHRHa 100 100 3.14 46.9±7.4 (16) 
HCG 87.5 75 2.86 41.1±7.7 (9) 

* calculated from ovulating fish only 	** Fish numbers in parentheses 
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* NOTE: 

The data presented in graph A were analysed by a single One Way ANOVA, where all values 
(both LHRHa and saline treatments) were compared across time. Differences between means 
were subsequently determined by Tukeys multiple comparisons of means test. The data 
presented in graph B were analysed in the same manner in a separate analysis. 
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Fig. 4.1. Plasma cortisol concentrations (mean + se) in black bream injected 

(indicated by arrow) with either saline or 50 m kg 1  LHRHa at capture (A) or 

24hrs post capture (B). Separate one way ANOVAs were conducted for graphs 

A and B respectively. Values that are significantly different (P<0.05) have 

different letters; values indicated by - were not included in the analysis due to 

low n values (given in parenthesis). 
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levels between fish treated with saline or LBRHa. Plasma E2 levels were above 2 ng 

m11  at capture in all treatments (Fig. 4.2). In fish injected with saline either at 

capture, or 24 hrs post-capture, plasma E2 levels were significantly suppressed by day 

1 and remained low thereafter. Plasma E2 levels in fish injected with LHRHa at 

capture were significantly elevated over controls on days 1 and 2 post-injection. 

Treatment of fish with LHRHa 24 hrs post-capture resulted in a variable response with 

no significant increase in plasma E2 levels over saline treated fish, but plasma E2 

levels after treatment were of similar magnitude to values found at capture. Mean 

plasma T levels ranged from 0.8 to 1.9 ng m11  at capture and followed the same 

pattern as E2 in saline injected fish (Fig. 4.3). Plasma T levels in fish injected with 

LHRHa at capture were significantly elevated over controls on day 1 but there was no 

significant effect of LHRHa in fish treated 24 hrs after capture. However, as for E2 

levels, the response was highly variable with mean plasma T levels in LERHa-

injected fish approaching pre-treatment values. Plasma 17,201W levels were not 

different among fish injected at capture at any time (Fig. 4.4). Treatment with LHRHa 

24 hours after capture resulted in 17,2013P levels that were elevated over those at 

capture on days 1, 3 and 4 , but values were not different from same day controls. 

Experiment 2 

All fish injected with LHRHa ovulated more than once, with 2 fish serially 

ovulating for 4 days (Tables 4.1 and 4.2). In fish injected with hCG, 6 out of 8 fish 

serially ovulated, with 2 fish ovulating for 4 days. Saline injected fish ovulated on day 

1 only. Ovulations from all groups produced similar proportions of fertile eggs 

(ranging from 41-47%). 

Mean plasma cortisol levels ranged from 4.7 - 28.6 ng m11  at capture, were 

significantly elevated on day 1 and remained elevated thereafter (Fig. 4.5). Hormone 

treatment had no effect on plasma cortisol levels. Mean plasma E2 levels for all 

treatments were above 2 ng m1 1  at capture (Fig. 4.6). Plasma E2 levels were 

significantly suppressed by day 1 in fish injected with saline, and remained low 

thereafter. Plasma E2 levels in fish injected with LHRHa or hCG were significantly 

elevated over levels in controls on days 1 and 2, but there were no differences 
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between the two hormone treatments at any time. Mean plasma T levels at capture 

ranged from 1.3 to 2.2 ng m1 -1  and followed a similar pattern to E2 in saline injected 

fish, with a fall from pre-injection values to 'near detection' levels (Fig. 4.7). Plasma 

T levels in fish injected with LHRHa and hCG were significantly elevated over 

plasma T levels in saline injected fish on days 1 and 2, and day 1 respectively. Plasma 

T levels were not different between LHRHa or hCG-injected fish at any time. Plasma 

17,2013P levels were not different among treatments at any time, however, there was a 

general tendency for 17,20(3P levels to increase over the course of the experiment 

(Fig. 4.8). 

4.5 Discussion 

Results from the present study show that broodstock collection and daily handling 

stress in black bream causes the sustained elevation of plasma cortisol in all fish, and 

suppression of plasma T and E2 in saline-injected fish within 1. day of treatment. 

Studies on stress sensitive species caught from the wild, including black bream, have 

shown that stress-induced suppression of reproductive steroids occurs within 1 hour of 

capture (Carragher and Pankhurst 1991; Jardine et al., 1996; Cleary 1998; Haddy and 

Pankhurst 1999) Furthermore, in wild fish subjected to daily handling, plasma T and 

E2 levels remain suppressed and show no signs of recovery during the experimental 

period (Carragher and Pankhurst 1991; Clearwater and Pankhurst 1997; Morehead 

1998). Low plasma E2 concentrations are associated with the onset of ovarian atresia, 

and once atretic, follicles are unlikely to be steroidogenic (Clearwater and Pankhurst 

1997; Janz and Van Der Kraak 1997). The failure of plasma E2 and T levels to 

recover in saline-injected fish in the present study is consistent with the previously 

demonstrated effects of stress on reproductive endocrine function in fish. 

Black bream are serial spawners with a daily spawning pattern (Haddy and 

Pankhurst 1998). In the present study, 43-57% of saline treated fish ovulated on the 

day following capture but failed to continue to ovulate. Cleary (1998) showed similar 

effects in snapper Pagrus auratus. Carragher and Pankhurst (1991) found that 

untreated New Zealand snapper serially ovulated for up to 4 days after capture but as 

in the present study there was a major fall within 2 days of capture. Shut down of the 

daily spawning pattern after capture is most likely to be due to stress-induced 
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suppression of reproductive steroids discussed above, with initial ovulations on day 1 

reflecting the outcomes of maturational events already in progress at the time of 

capture. It is currently unknown why saline treated fish in experiment 1 showed a 

higher proportion of ovulation than LHRHa treated fish on day 1, as fish were 

allocated to treatments in an alternating fashion at capture. 

Injection of LHRHa at capture resulted in more ovulations and greater 

fertilisation than in fish treated with LERHa on the day following capture. This 

difference was associated with the impaired endocrine response in fish injected with 

LHRHa on the day following capture. Cleary (1998) showed that in snapper, a 24 

hour delay in hormone treatment with hCG or LHRHa did not markedly affect the 

numbers of ovulating fish, but did reduce the volume and quality of eggs produced. 

De Montalembert et al. (1978) found that the ratio of ovulated oocyte weight to initial 

ovary weight in northern pike Esox lucius declined from 96% to 40% in fish treated 

with exogenous hormones at capture or 3 days after capture respectively. However, 

egg fertility was not affected by delayed treatment in northern pike. 

In the present study, the fertility of stripped eggs was highly variable and ranged 

from 0 to 98%. In many repeat spawning species, including sparids, post-ovulatory 

egg viability decreases with time, with peak fertility (above 50%) extending for only 6 

hours after ovulation (Scott et al., 1993; Hobby and Pankhurst 1997). In the present 

study, fish were checked at 24 hour intervals in an attempt to minimise handling 

stress, with the result that it is not known exactly when fish ovulated. Undetected 

variation in the time between ovulation and stripping may account for the variability 

in fertility seen here. 

HCG and LHRHa both successfully induced repeat ovulations in black bream. In 

some teleosts, mammalian GtHs have a lower biopotency than piscine GtHs (Lam 

1982; Pankhurst 1997) and treatment with hCG may be ineffective, or large and repeat 

doses may be required to induce ovulation (Lam 1982; Berlinsky et al., 1997). HCG 

has been successfully used to induce ovulation in several sparids including snapper 

(Pankhurst and Carragher 1992; Battaglene and Talbot 1995; Cleary 1998), gilthead 

seabream Sparus aurata (Zohar and Gordin 1979), yellowfin porgy Acanthopagrus 

latus (Leu and Chou 1996) and black bream (present study). In the gilthead seabream, 

hCG doses as low as 100 U kg -1  have been successfully used to induce serial 
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ovulations (Zohar and Gordin 1979). In contrast, injection of 500 U kg -1  of hCG in 

the yellow fin porgy failed to induce natural spawning whereas injection with 1000 U 

kg-1  hCG resulted in partial spawning. Results from the present study indicate that in 

black bream hCG has biopotency at 1000 U kg-1  in vivo and that receptor recognition 

is at least good enough to stimulate ovarian steroidogenesis and subsequent ovulation. 

However, more work is required to establish the minimum effective dose. LHRHa 

was effective in black bream in the present study at 50 gg kg -1 . In the gilthead 

seabream injection of LHRHa at doses as low as 7.5 gg kg -1  have been successfully 

used to induce ovulation (Zohar 1986). In yellowfin bream Acanthopagrus australis, 

injection of 15-201Ag kg-1  of LHRHa is the minimum effective dose to reliably induce 

spawning (Cowden 1995). As with hCG, the minimum effective dose of LHRHa in 

black bream has yet to be established. 

LHRH analogues are becoming the hormone of choice for reproductive 

manipulation in fish culture (Donaldson and Devlin 1996; Pankhurst 1998). In some 

species LHRHa treatment is ineffective without the addition of a dopamine (DA) 

antagonist (Trudeau and Peter 1995; Peter and Yu 1997). DA inhibition of GtH 

secretion appears to be weak or non-existent in the gilthead seabream with co-

treatment of LHRHa and a DA antagonist offering no significant advantages over 

LBRHa treatment alone (Zohar et al., 1987a). This is consistent with the present 

study where injection of LHRHa alone successfully induced multiple ovulations. In 

the closely related yellowfin bream, injection of Ovaprim (a mixture of LHRHa and 

the DA antagonist domperidone, Syndel) was less effective than LHRHa alone 

(Cowden 1995). Co-treatment with LHRHa and a DA antagonist remains to be 

explored in black bream, but results from the present study provide indirect evidence 

that DA does not play a pivotal role in GtH release in this species. 

Administration of LFERHa in sparids results in a rapid surge of plasma GtH, with GtH 

levels peaking within 30 minutes to 1.5 hours post injection then gradually decreasing 

thereafter (Zohar et al., 1987b; Zohar et al., 1990; Tanaka et al., 1993). In the gilthead 

seabream, plasma GtH levels remain significantly elevated following injection with 

LHRHa for 48 hours. Although plasma GtH levels were not measured in the present 

study, plasma E2 and T profiles suggest that LHRHa-induced increases in GtH are of a 

similar duration in black bream, with E2 and T remaining elevated for 2 days post 
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injection. In contrast, plasma T levels in response to hCG returned to control values 1 

day sooner than LHRHa treated fish. This is most likely due to a quicker clearance of 

injected hCG than LHRHa which resulted in a prolonged secretion of endogenous 

GtH. The use of slow release LHRHa implants sustain elevated gonadotropin levels 

over longer periods than acute administration (Breton et al., 1990) and in sequential 

spawners result in inducing several successive ovulations (Mylonas et al., 1995; 

Cowden 1995). However, the use of LHRHa implants in black bream remains to be 

investigated. 

The short term conservation of plasma T and E2 levels following hCG or LHRHa 

treatment of black bream indicates maintenance of the steroidogenic activity of 

vitellogenic follicles (Haddy and Pankhurst 1998). Morehead et al. (1998) showed 

that multiple ovulations in striped trumpeter Latris lineata treated with LHRHa were 

dependent on recruitment of previtellogenic oocytes into vitellogenesis, and were 

associated with elevated plasma T and E2 levels. This suggests that multiple 

ovulations in black bream may also have been supported by serial recruitment of 

follicles from various stages of vitellogenesis. 

Plasma 17,20PP levels in black bream in the present study were unaffected by 

hormonal treatment, and typically showed a tendency to increase over time due to 

capture and handling. Capture and confinement of black bream results in a rapid 

increase in plasma 17,2013P levels, with stress-induced increases in 17,2013P levels 

thought to be of interrenal origin (Haddy and Pankhurst 1999). In the gilthead 

seabream, 17,201321-trihydroxy-4-pregnen-3-one is the most likely candidate as the 

maturation inducing hormone (MTh) (Canario et al., 1995), whereas in snapper 

17,20PP appears to be the MTH (Adachi et al., 1988; Kagawa et al., 1991; Ventling 

and Pankhurst 1995). 17,20PP has not yet been conclusively identified as the MIH of 

black bream, but has been associated with final oocyte maturation and shows seasonal 

peaks during the spawning season (Haddy and Pankhurst 1998). The results of the 

present study emphasise that 17,203P levels in black bream appear to be an 

ambiguous marker of impending ovulation in stressed fish. 

In summary, fish capture caused the shut down of reproductive activity but 

injection of LBRHa or hCG at capture resulted in the maintenance of plasma T and E2 

levels, and was accompanied by the induction of multiple ovulations. Delayed 
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injection of LHRHa resulted in a poorer ovulatory and a dampened endocrine 

response. LIARHa and hCG treatments resulted in a similar steroidogenic response, 

however LHRHa produced a more consistent ovulatory response. These results 

confirm that in stress sensitive species such as black bream, wild fish should be 

treated with LHRHa or hCG as soon as possible after capture for optimal responses. 
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CHAPTER 5 

The effects of salinity on reproductive 
development, plasma steroid levels, 

fertilisation and egg survival in black bream 
Acanthopagrus butcheri. 
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5. 	The effects of salinity on reproductive development, plasma steroid levels, 

fertilisation and egg survival in black bream Acanthopagrus butcheri. 

5.1 Summary 

The effects of salinity of holding water of 5, 20 or 35%0 on seasonal reproductive 

development, plasma steroid levels, the efficacy of luteinizing hormone releasing 

hormone ethylamide (LHRHa) to stimulate ovulation, sperm motility, and egg fertility 

and development to hatching were investigated. Fish were captured from the wild from 

December to February, placed into salinity regimes in May and held until the normal 

times of spawning the following November. Blood samples were taken in August, 

September and November. Female fish were injected with saline or LHRHa (501.tg kg -1 ) 

in November and bled and checked for ovulation for 5 days. Gonadal maturation was 

unaffected by salinity in both sexes. In females, seasonal plasma steroid levels were 

unaffected by salinity, whereas in males, plasma levels of 17,200-dihydroxy-4- 

pregnen-3-one (17,2013P) and 11-ketotestosterone were higher in fish held at 35%o than 

in fish held at 5%0 in September, and in fish held at 5 and 20%0 in November 

respectively. Plasma estradiol (E 2) and testosterone (T) levels in saline-injected fish, 

either remained low or were significantly suppressed. LHRHa treatment resulted in the 

short term elevation of plasma E2 and T levels at all salinities, whereas plasma 17,2013P 

levels were elevated over controls on days 1 and 2 post-injection in fish held in 20%0, 

but remained unchanged in fish held in 35 or 5%o. All but 1 fish ovulated in response to 

LHRHa, however, the number of ovulations and egg volumes were lowest in fish held 

at 5%0. Both fertilisation and sperm motility were significantly reduced at 5%o. 

Naturally fertilised eggs (35%o; 2-cell stage) were incubated to hatching at salinities of 

0, 5, 10, 15, 20, 25, 30 or 35%o. Eggs hatched in all salinities except 0%0, but with 

lowered survival at 5 and 10%0. Larvae showed high levels of deformity at salinities 

below 15%o. 
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5.2 Introduction 

Black bream, Acanthopagrus butcheri is an important recreational and commercial 

species endemic to southern Australia, and is currently being investigated as an 

aquaculture candidate for inland saline water culture. As black bream is an euryhaline 

species that spawns in the mid to upper reaches of estuaries at the interface between 

freshwater and the underlying salt wedge, it has been suggested that salinity may play a 

role in regulating reproductive activity (Sherwood and Backhouse 1982; Haddy and 

Pankhurst 1998). Current information indicates that the spawning of black bream 

occurs over a salinity range of 11-35 %o (Sherwood and Backhouse 1982; Haddy and 

Pankhurst 1998). Environmental factors such as salinity are known to directly effect 

fertilisation, survival and normal development of fish eggs in other species (reviewed 

in Holliday 1969; Alderdice 1988), however, to date there is no information on the 

effects of salinity on the early life stages of black bream. 

Additional interest in black bream has been created by the problem of salination of 

agricultural land. Approximately 20% of Australia's inland aquifers are classified as 

being either brackish or saline with salinities ranging from 1.5-20.5%0 (Ingram et al., 

1996). Rising saline groundwater is causing major loss of agricultural land, and 

current practice to reduce the height of the water table involves the pumping of saline 

groundwater into evaporation basins (Clayton 1998; Blackwell 1999). These saline 

ponds are currently not exploited and may be suitable for inland mariculture of a 

variety of species, including black bream (Ingram et al., 1996; Fielder et al., 1999). 

Techniques for the hormonal induction of ovulation have recently been developed for 

black bream (Haddy and Pankhurst under review), however, information on the 

maturation of black bream in captivity and the effectiveness of hormonal treatment at 

differing salinities are yet to be investigated. Such information is critical to the 

selection of inland sites for the artificial propagation of black bream, and in 

determining suitable inland lakes for the development of new fisheries where natural 

recruitment can occur. 

The aims of this study were to investigate the effect of holding water salinity on, 

reproductive development of wild-caught broodstock and subsequent fertilisation, egg 

development, and hatching. The effects of salinity on reproductive activity in adults 

were assessed by macroscopic gonadal condition, seasonal changes in plasma levels of 
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cortisol, estradiol (E2), testosterone (T), 17,20P-dihydroxy-4-pregmen-3-one (17,200P) 

and 11-ketotestosterone (11KT), and the efficacy of LHRHa treatment at inducing 

changes in plasma levels of gonadal steroids, and subsequent ovulation and egg 

production. The effects of salinity on gamete quality were assessed in terms of 

fertilisation, sperm activity, and survival and development of eggs to hatching. 

5.3 Materials and methods 

Fish capture and maintenance 

Black bream were captured by rod and line from the Meredith (148 °7'S, 42°4'E) 

and Swan Rivers (148 °4'S, 42°4'E) at Swansea, Tasmania at the end of the spawning 

season from December 97 to February 98. Fish were transported to the laboratory and 

placed in 1000L temperature (20 °C) controlled tanks supplied with recirculating sea 

water, under natural photoperiod. Fish were sexed by the presence of milt, and males . 

and "presumed females" kept in separate tanks. At the beginning of May (when the 

GSI is low and the gonads are regressed in wild fish, Haddy and Pankhurst 1998), fish 

were allocated to experimental tanks with recirculating sea water (37%0) and the 

salinity adjusted to 35 %o, 20 %o (over 2 weeks) or 5 %o (over 4 weeks) by weekly water 

exchanges with fresh water. Salinities were held constant thereafter, and were checked 

weekly with a refractometer. Water exchanges and tank cleaning were conducted as 

required. Fish were fed to satiation on an in house marine fish pellet, and disturbances 

kept to a minimum. Temperatures were dropped from 20 to 16 °C at the end of April 

and thereafter dropped by 1 °C every 15 days until August (minimum of 11 °C) when 

temperatures were raised by 1 °C every 15 days to simulate the natural temperature 

cycle in eastern Tasmania (Haddy and Pankhurst 1998). 

Seasonal sampling 

On the 1st August, fish were removed from tanks, placed into a 400 L holding tank 

and the time of first disturbance recorded for each tank. Fish were anaesthetised in 

0.05% 2-phenoxyethanol, blood sampled by caudal puncture using heparinized 

syringes and 22G needles, dart tagged for individual identification and males checked 

for spermiation. The presumed sexes were then equally distributed into 2 tanks at each 

salinity. Fish were blood sampled again on the 4th September and 15th November. 
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Blood was stored on ice, plasma obtained by centrifugation, then frozen and stored at - 

18°C until required for assay. 

Induced ovulation experiment 

On the 15th of November, female fish were blood sampled as described above, 

biopsied for macroscopic gonad condition (Haddy and Pankhurst 1998), weighed, and 

injected intraperitoneally with either 50 lig kg -1  body weight of 50 pg m1 -1  des-Gly l°  

(D-A1a6)-luteinizing hormone releasing hormone ethylamide (LHRHa; pG1u-His-Trp-

Ser-Try-D-Ala-Leu-Arg-Pro-NHEt) or 1 ml kg-1  of teleost saline. Owing to logistical 

constraints there was only a single tank available for each treatment. This means that 

the possibility of tank effects cannot be discounted, however, this is viewed as unlikely 

due to the identical nature of the tank systems and conditions. Fish were bled daily and 

checked for ovulation twice daily for a period of 5 days. Eggs released into the tanks 

were collected in egg collectors and the volumes recorded. Ovulated females were 

manually stripped of eggs, egg volumes recorded and the eggs from fish at each salinity 

(volumes over 10 mls) fertilised at 35, 20 and 5 %o salinity using fresh sperm pooled 

from 3-4 males held at 35 %o salinity. Fertilised eggs were viewed under a dissecting 

microscope and the viability (division to 2-8 cell stage) of the first 300 eggs 

encountered recorded. Males were stripped by wiping dry the genital duct region and 

milt expressed using slight abdominal pressure. The first portion of stripped milt was 

not collected to ensure milt was not contaminated with urine. Milt was collected while 

being expressed into dry 5m1 syringes and placed on ice until use. Sperm motility was 

assessed by mixing a drop of freshly stripped milt with a drop of water at 5, 20 or 35%0 

in a cavity slide. A coverslip was quickly placed over the cavity and sperm motility 

observed under a microscope. Motility was assessed within 10 seconds of activation 

and ratings assigned as: High; very active all sperm visibly progressing rapidly across 

the field of view; Medium; less energetic movement, most with forward motion; Low; 

slow movement, some spermatozoa progressing slowly or swimming in a spiral 

motion; or Not activated; no swimming activity. Sperm was collected from 3 males 

held at 35 %o salinity, and sperm motility ranked at 1 minute intervals over 5 minutes. 

The salinity at which sperm motility was first initiated was also determined for the 3 

males by testing sperm motility at 1%0 intervals between 5 and 10%0. 

94 



Egg incubations 

Fertilised eggs were collected from a group of naturally spawning bream held at 35 

%o salinity. Between 5-11 eggs were pipetted into each well of a 24 well plastic tissue 

culture plate (Corning) using a modified pipette tip. Egg were viewed under a 

dissecting microscope, and the numbers of fertile eggs (division to 2-8 cell stage) in 

each well recorded. Eggs were then incubated in 1 ml water of salinity 0 (distilled 

water), 5, 10, 15, 20, 25, 30 or 35 %o (6 replicates per salinity) at 20 °C without light. 

The numbers of developing eggs, and hatched larvae were recorded on days 1 and 2 

respectively, and the proportions of abnormal larvae noted. Incubations were run from 

four separate spawnings. As we did not have unhandled naturally spawning fish held at 

20 or 5 %o we could not conduct egg incubation experiments at these salinities. 

Steroid measurement 

Plasma steroid concentrations were measured by radioimmunoassay, using the 

reagents and protocols given in Pankhurst and Carragher (1992) for E2, T, 17,203P and 

cortisol, and Pankhurst and Kime (1991) for 11KT. Extraction efficiency was 

determined by recovery of [3H]-labelled steroid extracted with plasma, and assay 

values were corrected accordingly. Assay detection limits in plasma were 0.15 ng m1 -1 ; 

for E2, T and 17,203P and 0.3 ng m1 -1  for cortisol. Values that were below the 

detection limit were treated as being equal to the detection limit. Interassay variability 

(%CV) measured using aliquots of a pooled standard was as follows: E2 = 9.8% (n=5); 

T = 6.8% (n=6); 17,2013P = 7.1% (n=6), 11KT = 9.9 % (n=3), and cortisol = 20.7% 

(n=6). 

Statistics 

Kruskal-Wallis, One way ANOVA and Tukey's multiple comparison of means 

tests were performed using the SPSS statistical package. Percentage data were arcsin 

transformed, and steroid data log transformed to satisfy homogeneity of variance 

requirements. As some data were in violation of the assumption of independence, and 

in some instances homogeneity of variances, the significance level for one way 
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ANOVAs was set at 0.01 and the data also assessed by Kruskal-Wallis one way 

ANOVA. The statistical outcomes were the same regardless of whether parametric or 

non-parametric tests were applied. We chose to present one way ANOVA results 

because of the utility of means comparison tests (P<0.05), the ability of the tests to 

handle a decrease in sample numbers over time and the common use of these tests 

elsewhere. 

5.4 Results 

The effect of salinity on seasonal gonadal development and plasma steroid levels 

Salinity did not effect the proportions of spermiated males with, a high percentage 

of males already spermiating by August and all males sperrniating by November (Table 

5.1). Similarly, ovarian recrudescence was not affected by salinity with only 1 fish 

failing to undergo vitellogenesis. 

Table 5.1. Percentage of mature male (spermiated) and female (vitellogenic) fish 

maintained in water of 5, 20 or 35 %o salinity. 

Treatment Aug Sep Nov 
Males 
5 % 83 83 100 
20 % 75 100 100 
35 %o 90 90 100 
Females 
5%o nm* nm 87.5 
20% nm nm 100 
35 %o nm nm 100 

* nm= not measured 

Concentrations of plasma cortisol were lowest in August and high in September and 

November, however, in fish held at 35%o, cortisol levels in November were not 

significantly elevated over cortisol levels in August (Fig. 5.1). Mean plasma E2 levels 

were high in August and November but low in September, however, plasma E2 levels 

in fish held at 5 and 35 %o in November were not significantly elevated over plasma E2 

levels in September. Plasma T levels remained unchanged except in fish held at 20%0 

where plasma T levels in November were significantly higher than plasma T levels in 
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Fig. 5.1. The effect of salinity on plasma steroid levels (mean + se) in maturing captive 

female black bream. Values that are significantly different have different 

superscripts (P<0.05). 
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September. Plasma 17,20PP levels remained unchanged throughout. 

Concentrations of plasma cortisol in males were low in August and high in 

September and November, however in fish held at 5%o, cortisol levels in November 

were not significantly elevated over cortisol levels in August (Fig. 5.2). Plasma T 

levels were not significantly different from August to November in fish held at 5 or 

20%o, however in fish held at 35%o, plasma T levels in November were significantly 

elevated over plasma T levels in September. Plasma 11KT levels were low in August 

and September and peaked in November, however, in fish held at 20%0 this increase 

was not significant. Plasma 11KT levels in November were higher in fish held at 35%0 

than in fish held at 5 or 20%o. Plasma 17,20PP levels were not effected by salinity in 

August or November, but were higher in September in fish held at 35%0 than in fish 

held at 5%0. 

The effect of salinity on induced ovulation, plasma steroid levels, fertilisation and 

sperm motility 

Ovulations first occurred 2 days post injection in all three salinities (Table 5.2). 

No saline injected fish ovulated. One fish, held at 5 %o, failed to ovulate in response to 

LHRHa injection. All fish injected with LHRHa and held in 35 and 20%0 serially 

ovulated with a mean of 3.2 and 3.5 ovulations per fish respectively, whereas LHRHa 

treatment of fish in 5%0 resulted in 3 out of 5 fish serially ovulating with a mean of 2 

ovulations per fish. In fish injected with LHRHa, total egg production was low in fish 

held at 5%0 and high in fish held in 20 or 35 %o (statistical comparison not made due to 

egg production being a mixture of spontaneously released eggs and manually stripped 

eggs). Egg fertility in fish held at 35 %0 was significantly reduced when eggs were 

fertilised at 5%0 (Table 5.3). A similar trend was also evident in eggs from fish held at 

5%0 (statistical comparison not made due to small sample size). In eggs from fish held 

at 20%o, fertility was higher at 20 than 5%0 but there was no difference between 35 and 

20%0 or 35 and 5%o. Initial sperm motility was high when sperm was activated by 

water of 20 or 35%o, with sperm activity decreasing within 1 to 2 minutes 

(Table 5.4). Sperm were not activated at a salinity of 5%0, with sperm motility being 

initiated at 6, 7 and 10%0 for the three males tested (data not shown). 
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99 



Table 5.2. Summary of the proportions of fish ovulating and quantity of eggs 

produced from fish maintained in water of 5, 20 or 35 %o salinity and 

injected with LHRHa. 
...I. 

DAYS (PI) 
Treatments* 0 1 2 3 4 5 Totals 

ovulating fish (%) 
5 %o LHRHa 0 0 60 80 20 40 80 
20 %o LHRHa 0 0 80 100 100 75 100 
35%0 LHRHa 0 0 80 100 100 40 100 

total egg volumes (ml kg") 
5 %o LHRHa 0 0 23.2 72.1 35.0 5.9 136.2 
20 %o LHRHa 0 0 36.9 373.4 237.8 44.9 693.1 
35 %o LHRHa 0 0 113.2 283.3 274.9 88.3 759.7 

* no saline treated fish ovulated. 

Table 5.3. The effect of salinity on egg fertilisation from fish maintained in water of 

5, 20 or 35 %o salinity. 

Holding 	 Fertilising salinity 
salinity 	 35 %o 	20 %o 	5%o 
5 %o (n=2) 14.5±8.2 14.8±12.8 0±0 
20 %o (n=9) 38.9±10.7 ab 41.3±10.8 b 7.4±5.2 a 
35 %o (n=13) 65.8±4.9 b 57.9±7.8 b 19.7±5.8 a 

Table 5.4. Summary of sperm activity at 5, 20 and 35 %o. 

Salinity 0 
Time (mins) 

1 	2 	3 4 	5 
5 %o NNNNNN 
20% H HMMM-LL 
35 %o HH-MML L 	L 
H=high, M=medium, L=low and N=not activated 
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Plasma cortisol concentrations were high (ranging from 29.1-96.8 ng m1 -1 ) at the time 

of injection and showed no change over time in all treatments (data not shown). At all 

three salinities, treatment with LHRHa significantly increased plasma estradiol levels 

over controls on days 1-3 post injection (Fig. 5.3). In fish held at 20%0 and injected 

with saline, plasma E2 levels were significantly suppressed by day 1 and remained low 

thereafter, however, in saline-injected fish held at 5 or 35%o, plasma E2 levels were low 

at the time of injection and remained unchanged. Plasma T levels in LHRI-la injected 

fish peaked on day 1 at all salinities and were significantly elevated over controls on 

days 1 and 2, days 1-3, and day 1 in fish held at 5, 20 and 35%0 respectively (Fig. 5.4). 

In saline injected fish, plasma T levels followed a similar pattern to E2 except in fish 

held at 20%0 where plasma T levels were not significantly suppressed until days 4 and 

5. Plasma 17,2013P levels were variable and not affected by LHRHa treatment in fish 

held at 35 or 5%0, however, in fish held at 20%o, plasma 17,2013P levels were elevated 

over controls on days 1 and 2 (Fig. 5.5). 

The effect of salinity of egg development and hatching 

The incubation salinity significantly affected both egg survival (day 1) and 

survival to hatch (day 2) (Fig. 5.6). Egg survival on day 1 was high in eggs incubated 

in water of 10-35%o, whereas eggs incubated in 5%0 had a significantly lower survival, 

than at salinities above 10%0 No eggs survived when incubated in distilled water. 

Eggs hatched on day 2 in salinities from 5-35%0. Survival to hatch was high in eggs 

incubated from 15-35%o, whereas, survival to hatch at lower salinities (10 and 5%0) was 

lower. Abnormalities of larvae at hatching were observed at all salinities where eggs 

hatched, and were characterised by curvature of the spine and tail flexure. All larvae 

that hatched at 5%0 were abnormal (Fig. 5.7). Normal larvae first appeared at 10%0 

with the proportions of normal larvae being highest at salinities from 20-35%o. Eggs 

incubated in 15%0 resulted in highly variable proportions of normal larvae with larval 

deformities ranging from 5 to 93%. 
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* NOTE: 

The data presented at 35 ppt were analysed by a single One Way ANOVA, where all values 
(both LHRIla and saline treatments) were compared across time. Differences between means 
were subsequently determined by Tukeys multiple comparisons of means test. The data 
presented at 20 and 5 ppt were analysed in the same manner in separate analysis. 
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5.5 Discussion 

Capture stress is known to rapidly inhibit reproductive activity and initiate ovarian 

atresia in many sparids including black bream (Carragher and Panlchurst 1991; Cleary 

1998; Haddy and Pankhurst under review). The success of using wild caught fish as 

prospective broodstock is, therefore, dependent on the recovery from the stress of 

capture and captivity before the next cycle of gametogenesis (reviewed in Pankhurst 

1998). Cleary (1998) reported that wild snapper Pagrus auratus held for 5 years 

showed little evidence of acclamation to captivity. In contrast, results from the present 

study show that wild black bream will acclimatise to captivity, and undergo gonadal 

development within their first year of capture. Cortisol profiles in the present study 

indicate that captive black bream are still highly sensitive to stress, with handling 

resulting in the elevation of plasma cortisol and temporary suppression of gonadal 

steroids in both sexes. However when fish were maintained with minimal disturbance, 

(no handling from September to mid November) plasma sex steroid levels either 

recovered or began to increase. This highlights that stress management is a key factor 

in the success of broodstock maintenance in stress sensitive species such as black 

bream. 

There is relatively little information on the effects of salinity on ovarian 

recrudescence and reproductive physiology in fish. Vitellogenin synthesis can be 

induced by estradiol administration in both freshwater and saltwater adapted eels 

Anguilla anguilla (Petersen and Korsgaard 1989). Tamaru et al. (1994) showed that 

female striped mullet Mugil cephalus initiated vitellogenesis at salinities ranging from 

0-35%0, but females maturing in freshwater exhibited a slower rate of oocyte growth, 

with a significantly lower number of females completing vitellogenesis. In contrast, 

Zanuy and Carrillo (1984) reported that changes in oocyte diameter and the time of 

gonadal recrudescence were similar in sea bass Dicentrarchus labrax reared at 3.5 or 

37.8%0. In the present study, salinity did not apparently affect the plasma steroid levels 

or ovarian development in female black bream. Therefore the initiation and 

maintenance of vitellogenesis in black bream appears to more dependent on the 

classical cues of photoperiod and temperature rather than salinity. 

Results from the present study demonstrate that black bream are responsive to 

LFIRHa treatment at salinities ranging from 5-35%0. LHRHa treatment in black bream 
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caused the short term elevation of plasma E2 and T and resulted in ovulations at all 

three salinities. In repeat spawning species, hormonal treatment aids the induction of 

multiple ovulations by the maintenance of development of successive clutches of 

vitellogenic oocytes (Morehead et al., 1998; Haddy and Pankhurst under review). 

Therefore, our results are consistent with the established roles of plasma E2 and T in 

ovarian recrudescence (Pankhurst 1998), and demonstrate that reproductive endocrine 

processes remain intact in black bream over a wide range of salinity. In contrast to 

LHRHa treated fish, saline-injected fish did not ovulate, and E2 and T levels either 

remained low or became significantly suppressed. The effects of daily handling on 

plasma cortisol levels and plasma E2 and T levels in saline injected fish are consistent 

with the effects of stress on reproduction in this and other species (Carragher and 

Pankhurst 1991; Clearwater and Pankhurst 1997; Cleary 1998; Haddy and Pankhurst 

1999). 

Although 17,2013P levels in black bream show seasonal peaks during the spawning 

season and have been associated with final oocyte maturation (Haddy and Pankhurst 

1998), 17,200P has not yet been conclusively identified as the maturational inducing 

steroid. In the present study, plasma levels of 17,2013P were unaffected by LHRHa 

treatment in fish held in 5 and 35%o, whereas 17,203P levels in fish held in 20%0 were 

significantly elevated over controls on days 1 and 2. The physiological relevance of 

this finding is currently unclear, as the differences in 17,20P levels were not 

associated with a marked difference in the proportions of fish ovulating or the volume 

of eggs produced. In stressed fish, 17,200P levels are highly variable and are linked to 

the stress response, with stress-induced increases in 17,20P levels thought to be of 

interrenal origin (Haddy and Pankhurst 1999). Therefore, in common with our 

previous work on induced ovulation in black bream (Haddy and Pankhurst under 

review), 17,200P levels in black bream appear to be an ambiguous marker of 

impending ovulation in hormone-treated fish. 

Although there was no marked differences in the endocrine response to treatment 

with LHRHa treatment at differing salinity in female black bream, the proportions of 

ovulating fish, the numbers of serial ovulations and the volume of eggs produced were 

all lower in fish held at 5%0 than in fish held at higher salinities. Zanuy and Carrillo 

(1984) showed that although sea bass matured in low salinities, spawning did not take 
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place unless the fish were transferred to sea water. Striped mullet can be induced to 

spawn over a salinity range of 0-35%0, however, no fertilised eggs were obtained in 

freshwater (Lee et al., 1992). Results from the present study show that the induction of 

final oocyte maturation and ovulation can be achieved over a wide salinity range in 

black bream, however, the efficacy of LHRHa treatment is reduced at low salinities 

(5%0). The cause of this effect is unknown. 

In male black bream, T and 11KT are associated with spermatogenesis, whereas 

17,203P increases with spermiation (Haddy and Pankhurst 1998). In the present study, 

plasma T levels were unaffected by salinity whereas, plasma levels of 17,20PP and 

11KT varied with salinity in September and November respectively. However, these 

differences had little apparent influence on the state of maturity of fish held at different 

salinities. This suggests that, male black bream have the capacity to synthesise 

sufficient steroids for testicular development and milt production over a salinity range 

of 5-35%0. 

The percentage of fertilised black bream eggs was significantly reduced at 5%o, 

suggesting that the viability of either the egg and/or the sperm is impaired at low 

salinity. Several studies have demonstrated a reduction in percentage of fertilised eggs 

at low salinities in euryhaline and stenohaline fish (Holliday 1969; Lee et al., 1992; 

Hart and Purser 1995). Results from the present study clearly demonstrate that sperm 

activity is impaired at low salinities, with sperm motility being lost between 6-10%o. 

Similar findings have also been reported for other teleosts including other 

Acanthopagrus species (Harris 1986; Lee et al., 1992; Thorogood and Blackshaw 

1992; Palmer et al., 1994; Litvak and Trippel 1998). Palmer et al. (1994) showed that 

in pikey bream Acanthopagrus berda, sperm motility was most intense at salinities of 

25-35%0 and the duration of activity longest at salinities above 15%0. Results from the 

present study indicate that intense sperm motility is short lived, and drops within 5 

minutes. This is consistent with studies on black porgy Acanthopagrus schlegeli, 

where sperm activated with artificial sea water exhausted their energy supply within 5 

minutes (Gwo 1995). 

In the present study naturally spawned eggs were removed from the spawning 

salinity of 35%o, and placed into the incubation salinity at the 2-8 cell stage. At this 

stage of development, the osmoregulatory capacity of the fertilised egg is one of 
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resistive maintenance, achieved through a tight plasma membrane and limited 

transmembrane water and ion fluxes (Alderdice 1988). Lee and Menu (1981) 

demonstrated that in striped mullet, naturally spawned fertilised eggs transferred at the 

gastrula stage were more tolerant to salinity change than were those transferred at the 2 

blastomere stage. In the present study no eggs incubated at 0%0 survived and only 54% 

of eggs survived to day 1 (neurula stage) when incubated at 5%o, and egg survival was 

highly variable. By day 2 the percentage of hatched larvae was high (>80%) and 

unaffected by salinity from 15-35%0. Similarly, fertilised eggs of Australian bass 

Mac quaria novemaculeata, cease developing within 2-3 hours post transfer to fresh 

water and at 5 and 10%0 only a small percentage of larvae hatch, but hatching success 

increases to above 75% when eggs are incubated at salinities of 15-35%o (Van Der Wal 

1985). It has been suggested that failure to successfully hatch at low salinities results 

from poorly developed tail musculature and/or larvae finding it difficult to free 

themselves from the chorion (Holliday 1969; Young and Duerias 1993). Results in the 

present study support this suggestion, as the hatching success of larvae dropped at low 

salinities, and in some cases larvae died in a partly emerged state. 

In summary, this study has shown that black bream adapt well to captivity, but 

remain highly sensitive to stress and must be maintained with minimal disturbances. 

Under these conditions reproductive development proceeds normally and is unchanged 

over a salinity range of 5-35%0. However, the ovulatory response to LHRHa is impaired 

at low salinity, with fish ovulating less frequently and producing smaller volumes of 

eggs in response to treatment. Fertilisation of eggs was significantly reduced at low 

salinity, most likely due to a reduction in sperm activity at 5%o. Finally, fertilised black 

bream eggs developed over a wide range of salinities with viable larvae being produced 

over a salinity range of 10-35%o, however the proportion of viable larvae was highest at 

salinities above 20%0. These result suggest that some natural recruitment could occur 

in saline lakes with salinities above 10%o, and highlight that black bream is a potential 

candidate for the establishment of an inland mariculture industry. 
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6. 	General discussion 

6.1 Background 

At the onset of this study (1996), considerable interest was being generated by the 

aquaculture potential of black bream for stocking inland saline waters (reviewed in 

chapter 1, this volume). However very little information was available on the 

reproductive biology of black bream, or the effect of salinity and common 

aquacultural practices on their reproductive activity. This study addressed this by 

investigating various aspects of the reproductive endocrinology of black bream. 

6.2 Reproduction in wild black bream 

Black bream have an annual reproductive cycle with a 3 month spawning season 

in spring / early summer with spawning occurring in the mid to upper reaches of the 

estuary. The period from the onset of vitellogenesis to the initiation of spawning 

activity was short (< 1 month), and occurred when both photoperiod and water 

temperature were increasing. Gonad staging data and oocyte distributions indicated 

that gonadal development followed a multiple group synchronous model. Spawning 

occurred in the evening and was associated with daily cycles of gonadal maturation. 

This pattern is consistent with the reproductive development of many temperate 

marine fish, including other sparids (Pankhurst and Conroy 1987; Chang and Yueh 

1990; Dedual and Pankhurst 1992; Scott and Pankhurst 1992). 

Gonadal development in black bream was associated with both seasonal and daily 

variations in plasma steroid levels. Elevated levels of plasma estradio1-170 (E2; 

females only), testosterone (T) and 11-ketotestosterone (11KT; males only) were 

associated with the initiation and maintenance of vitellogenesis and spermatogenesis. 

Elevated plasma 17,200-dihydroxy-4-pregnen-3-one (17,20PP) levels were associated 

with final oocyte maturation (FOM) and spermiation in female and male fish 

respectively. These findings are consistent with the established roles of sex steroids in 

reproductive function in teleosts (reviewed by Pankhurst and Carragher 1991; 

Pankhurst 1998a) 

116 



6.3 Stress 

The extent to which stress impacts on physiological function in teleosts varies 

with both the severity and duration of the stressor, and between species (reviewed by 

Barton and Iwama 1991). The effects of stress can have huge implications to the 

success of an aquaculture program, and it is now universally accepted that stress 

exerts an inhibitory effect on reproductive processes in fish (reviewed by Pankhurst 

and Van Der Kraak 1997). Reproductive shut down is a common problem when 

attempting to collect eggs from wild fish, and in acclimatising fish to captivity for use 

as potential broodstock (Cleary 1998; Pankhurst and Van Der Kraak 1997). The 

suppressive effects of stress are typically reflected in depressed plasma levels of 

circulating androgens and estrogens, and in females, the onset of ovarian atresia 

(Carragher and Pankhurst 1991, Clearwater and Pankhurst 1997, Cleary 1998; 

Morehead 1998). However, the mechanisms by which stress inhibits reproductive 

function in fish is currently unclear. 

Black bream were shown to be highly stress sensitive, with capture and 

confinement resulting in the rapid increase in plasma cortisol levels, and depression of 

circulating levels of plasma E2, T and 11KT. The speed in which plasma steroids 

were depressed suggests that stress directly affects gonadal steroidogenesis via 

impairment of the activity of one or more of the enzymes in the steroid cleavage 

pathway. Cleary (1998) showed that in snapper Pagrus auratus, 17a-hydroxylase 

and/or 17,20-lyase activity (measured indirectly by in vitro conversion of 17a-

hydroxyprogesterone to T by ovarian follicles) is impaired by capture and confinement 

stress. In addition, recent in vivo studies on rainbow trout Oncorhynchus mykiss, 

suggest that the inhibitory effects of stress are mediated by cortisol and that the effect 

does not involve the inhibition of GtH secretion (Pankhurst and Van Der Kraak 2000). 

However, the failure of cortisol to exert a direct effect on ovarian steroidogenesis in 

vitro, suggests that cortisol acts in concert with another hitherto factor that is not 

present (or consistently present) in the in vitro system (Pankhurst et al., 1995; 

Pankhurst 1998b; Pankhurst and Van Der Kraak 2000). 

In contrast to the affects of stress on plasma levels of E2, T and 11KT, plasma 

levels of 17,2013P increased during short confinement times. The possibility that these 

increases were of extragonadal origin was further supported by the fact that sexually 

117 



regressed females also showed significant peaks in plasma levels of 17,2013P after 1 

hour of confinement. Studies on salmonids suggest that the interennal tissue may be 

responsible for stress induced changes in 17,20P levels (Sangalang and Freeman 

1988; Barry et al., 1997). This possibility remains to be explored in black bream. 

Further understanding of stress and how it affects reproduction is essential in 

designing management protocols that minimise reproductive impairment due to 

husbandry practices. The rapid onset of the inhibitory effects of stress on plasma 

steroid levels highlights that at least part of the effect is generated by something other 

than a classical steroid effect on gene activation. The implications for broodstock 

management are that normal maintenance should be timed to avoid chronic stress, and 

that the duration of husbandry procedures be kept short and to a minimum when 

keeping stress sensitive species. The collection of wild fish is always going to be 

stressful irrespective of good stress management practices. Therefore, industry 

reliance on wild fish as a source of gametes is unlikely to be a viable option for the 

longer term sustainable development of aquaculture. 

6.4 The use of exogenous hormones 

Failure of fish to undergo FOM, either after capture or in captivity, has initiated 

the development of techniques to artificially induce FOM and ovulation (reviewed by 

Lam 1982; Zohar 1988; Donaldson and Devlin 1996; Peter and Yu 1997; Pankhurst 

1998). The most common endocrine tool used to induce FOM is treatment with 

exogenous hormones such as gonadotropin preparations (GtH) and gonadotropin 

releasing hormones (GnRH). The use of exogenous hormones provides a degree of 

control over reproductive events which allows more efficient use of hatchery and 

grow out facilities. Human chorionic gonadotropin (hCG) and luteinizing hormone 

releasing hormone analogue (LHRHa), both induced serial ovulations in black bream 

which were associated with short term elevations or conservation of plasma E2 and T 

levels. This suggests that multiple ovulations in black bream are supported by serial 

recruitment of follicles from various stages of vitellogenesis. Although 17,2013P is the 

most likely MIS in black bream, stress induced increases due to daily handling 

highlight that 17,2013P levels are an ambiguous marker of impending ovulation in 

stressed fish. 
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In some freshwater species, GtH release is regulated by a gonadotropin release 

inhibiting factor, such as dopamine (DA), and treatment with GnRH analogues is 

unsuccessful unless a DA antagonist is included in the treatment (reviewed by 

Trudeau and Peter 1995; Peter and Yu 1997). The fact that LHRHa treatment 

successfully induced elevations in plasma levels of E2 and T, which was subsequently 

followed by multiple ovulations, suggest that DA inhibition of GtH release is less 

important in black bream. Induced ovulation procedures for black bream appear not 

to require the use of DA antagonists. A similar lack of DA inhibition of GtH release 

has been demonstrated in several marine fish, which suggests that in general marine 

fish do not require DA antagonists in addition to GnRHa to induce secretion of GtH 

(Copeland and Thomas 1989; Zohar 1989; Zohar et al., 1995). 

Administration of exogenous hormones by injection results in a transitory rise and 

fall in plasma sex steroid levels, which in black bream, was subsequently followed by 

a drop in the ovulatory response 4-5 days post injection. Once the supply of ' 

exogenous hormones is cleared from the circulation, the inhibitory effects of stress 

appear to come back into effect. The use of sustained release delivery methods for 

GnRHa, maintain elevated GtH levels over longer periods than acute administration 

protocols (Breton et al., 1990). The implication here is that in serial spawning 

species, the ovulatory response could be maintained for longer periods without 

increased handling. The use of sustained release implants of GnRHa in black bream 

remains to be investigated. 

Poor ovulatory responses of wild fish to hormone treatments is a common 

problem in aquaculture (Foscarni 1988; Battaglene and Talbot 1992; Carrillo et al., 

1995; Zohar et al., 1995). The use of wild fish as prospective broodstock usually 

involves the capture and transportation of fish prior to being treated with exogenous 

hormones. This allows the inhibitory action of stress on endocrine function to already 

be in effect before treatment. Pre-treatment stress reduces ovulation volumes in 

response to exogenous hormones in snapper and Northern Pike Esox lucius (De 

Montalembert et al., 1978; Cleary 1998). Similarly, delayed treatment with LHRHa in 

black bream results in a poorer ovulatory and dampened endocrine response. 

Therefore, in stress sensitive species, wild fish should be treated with exogenous 

hormones as soon as possible after capture for optimal responses. The mechanisms by 
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which stress reduces the efficacy of LHRHa treatment is currently unknown. 

Differential abilities of stressed and unstressed fish to respond to hormone treatments, 

and the speed in which stress can exert an inhibitory effect on reproductive processes, 

highlights that broodstock capture methods must also be rapid. Capture methods such 

as long lining, fish traps and netting can cause considerable damage to fish and / or 

result in fish already being stressed at the time of landing (Panichurst and Sharpies 

1992; Battaglene 1995). Rapid capture techniques such as rod and line or handlines 

appear to be the most suitable methods for broodstock capture. 

Induced ovulation protocols can be stressful to broodstock, and do not guarantee 

spontaneous spawning. Under these conditions broodstock must be manually stripped 

of ovulated eggs, which results in additional handling stress. Post ovulatory egg 

viability decreases with time in all species studied (Hobby and Pankhurst 1998), and if 

the appropriate time of stripping is unknown, fish must be checked for ovulation on a 

regular basis. The variable and generally poor egg fertility achieved in the induced 

ovulation experiments in the present study is most likely due to inappropriate 

stripping times. The route to achieve high quality fertilised eggs from black bream, 

appears to be through the establishment of natural spawning in captive fish. This has 

been achieved in a number of fish species through the domestication of broodstock, 

and manipulation of environmental parameters such as photoperiod, temperature and 

tank size (Foscarni 1988; Carrillio et al., 1995; Thomas et al., 1995; Zohar et al., 

1995). 

6.5 Black bream in captivity 

Failure to initiate and complete vitellogenesis in captive fish is a common 

bottleneck in egg production, and is most likely due to culture-induced stress and / or 

inappropriate environmental cues (Pankhurst 1998a). Cleary (1998) found that wild 

snapper failed to complete vitellogenesis despite, 5 years of captivity in which to 

acclimatise. In contrast, black bream are highly adaptable to captivity, and when 

maintained with minimal disturbances vitellogenesis proceeds normally. The fact that 

black bream adapted to captivity and naturally spawned within 1 year, makes this 

species an ideal brood fish, and highlights that stress management is a key component 

of fish husbandry in stress sensitive species. Jenkins et al. (1999) also supports this 
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method, and showed that when black bream are provided with good quality water and 

minimal disturbances, natural spawning can be achieved within the first or second 

season of captivity. 

The natural spawning observed in the present study occurred after a brief 

disturbance when a few fish were netted from the tank. It is assumed that this response 

was due to the mature fish failing to undergo FOM due to inappropriate holding 

conditions, and the subsequent handling disturbance resulting in stress induced 

increases in 17,20(3P levels, which initiated FOM, ovulation and behavioural 

spawning. In-tank (1000L) spawning then occurred in the evenings for a period of 7 

days. After 7 days of non-spawning activity the fish were again disturbed, which 

induced a subsequent week of behavioural spawning. The fact that spawning activity 

in the present study was short, suggests that the environmental conditions in the tanks 

were not adequate for maintenance of natural spawning. The development of culture 

conditions which allow successful spawning to occur is one of the most demanding 

aspects of broodstock management. In pelagic spawners, spawning behaviour seems 

to require a critical water volume or depth. This appears to be the case in sparids 

where spawning involves chasing and a rush to the surface where gamete release 

occurs (Smith 1986; Jenkins et al., 1999; personal observation). Holding volumes are 

critical for natural spawning of snapper, gilthead sea bream, Sparus auratus and sea 

bass Dicentrarchus labrax (Carrillo et al., 1995; Zohar et al., 1995; Cleary 1998). 

Minimum tank volumes which, enable natural spawning will vary between species 

because of differences in courtship and spawning behaviour. Jenkins et al. (1999) 

indicated that black bream broodstock should be held in a tank with a capacity of 

10000 L or greater, and when held in these tanks with minimal disturbances fish 

spawn naturally over a 3-4 month period without hormonal intervention. 

6.6 Reproduction and salinity in black bream 

Completion of vitellogenesis depends on the normal functioning of the 

vitellogenic machinery, including the synthesis of GnRH, GtH, GnRH and GtH 

receptors, ovarian steroidogenesis, hepatic synthesis of vitellogenin and the 

sequestration of vitellogenin into developing oocytes (reviewed by Mornmsen and 

Walsh 1988; Tyler 1991; Specker and Sullivan 1994). In the present study, the 
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endocrine processes involved in vitellogenesis and the hormonal induction of FOM 

and ovulation of black bream remained intact over a salinity range of 5-35%0. In the 

wild, black bream have been found in spawning condition in salinities ranging from as 

low as 3.5-8%0 in the Moore River estuary to as high as 41-45%0 in the Wellstead 

estuary (Sarre and Potter 1999). Therefore, the reproductive processes appear to be 

very robust in the face of considerable variation in salinity. This very wide range in 

salinity in which reproductive activity proceeds normally is advantageous in attempts 

to establish self-supporting populations of black bream in the inland saline waters of 

Australia. 

While it is evident that reproductive activity of adult black bream is maintained 

over a wide range of salinities, the effects of salinity on larval survival is less clear. 

Salinity is known to affect sperm activity, fertilisation, egg development and hatching 

success in a variety of species (Holliday 1969; Van Der Wal 1985; Harris 1986; Lee et 

al., 1992; Thorogood and Blackshaw 1992; Palmer et al., 1994). In black bream, 

fertilisation is impaired at low salinity due to sperm motility being lost over a salinity 

range of 6-10 %o. Egg development and hatching is also impaired at low salinity in 

black bream, with the percentage of normal larvae and hatching success decreasing at 

salinities at or below 15%0. The implication of these findings is that recruitment is 

likely to be poor at salinities below 15 %o in inland saline waters. For the hatchery 

rearing of black bream water salinities above 20 % may be suitable, however, it 

would be desirable to use water with a salinity greater than 30 %o as this would allow 

the separation of good quality eggs from poor quality eggs (that usually sink) and 

wastes from the bottom of the tank. The upper salinity limit for black bream egg 

development and hatching remains to be determined, and further work is required to 

determine the salinity tolerances of black bream larvae. The effects of an impaired 

reproductive capacity of adult fish, and low or no larval survival during periods of low 

salinity, could explain the fact that in some estuaries black bream populations display 

an episodic pattern of recruitment (Morison et al., 1998). 

6.7 Future outlook for black bream 

The first commercial production of black bream occurred in western Australia in 

1997 (Jenkins et al., 1999). Development of hatchery techniques for black bream 
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culture has been extremely rapid due to the pre-existing technology for closely related 

species (Foscarni 1988; Battaglene 1995), and the fact that black bream readily adapt 

to captivity with natural spawning being achieved within 1-2 years after capture. The 

main concern with the viability of commercial culture is growth rate. In the present 

study 3 year old fish had mean fork lengths of 23.7 and 20.5 cm and mean total 

weights of 308 and 195 g for the Meredith and Swan river estuaries respectively 

(unpublished data). The growth rate in wild fish is dependent on factors such as 

temperature and feed availability, and less-than-optimum conditions are likely to be 

experienced for at least part of the year in the natural environment. However, research 

into the growth of black bream in saline dams is indicating that growth rates can 

exceed those found in wild populations when fish are provided with additional feed 

(Gavin Sarre pers corn 2000). The development of low cost diets which replace fish 

meals with plant proteins while maintaining good growth should be a research 

priority, especially as black bream are known to consume large amounts of algae in 

the wild (Sarre et al., 2000). Grow-out trials are currently being conducted in aquaria 

and saline farm dams in Western Australia. Preliminary data indicate that growth is 

unaffected at salinities between 12-48 %o (Jenkins et al., 1999). The remarkable 

euryhaline nature of black bream and ease of production make it an ideal species for 

inland saline aquaculture. 

6.8 Overall Summary 

1. Reproductive development and activity in wild black bream was characterised by 

seasonal and daily changes in gonadal condition and plasma sex steroid levels. 

• Black bream demonstrated multiple group synchronous gonad development, 

with spawning occurring in the evening on a daily basis in spring / early 

summer. 

• Elevated plasma levels of E2 and T were associated with vitellogenesis. 

• Elevated plasma levels of T and 11KT were associated with spermatogenesis. 
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• Elevated plasma levels of 17,2013P levels were associated with FOM and 

spermiation in male and female fish respectively. 

• Fish that were undergoing FOM or were ovulated were caught over a sub 

surface (> 1m) salinity range of 13.9-35.0 %,9, a temperature range of 15.5- 

26.2°C, and DO range of 4.2-13.6 mg L -1 . 

2. Capture and confinement of wild fish significantly reduces concentrations of 

plasma sex steroids. 

• Capture and confinement elevated plasma cortisol levels. 

• Capture and confinement reduced plasma levels of E2 and T within 1 h in 

females, and suppressed plasma levels of T and 11KT after 30 min and 6 h 

respectively in males. 

• Plasma levels of 17,2013P increased, decreased or remained unchanged in 

response to capture and confinement. 

3. Exogenous hormone treatment successfully induced serial ovulation which was 

accompanied by changes in plasma sex steroid levels, however, treatment delay 

reduced the responsiveness of fish to exogenous hormones. 

• Treatment with LHRHa or hCG resulted in multiple ovulations. 

• Capture and handling stress reduced the responsiveness of fish to exogenous 

hormone treatment and better results were obtained if hormonal treatment is 

administered at the time of capture. 

• Injection with hCG or LHRHa at capture resulted in the short term elevation of 

plasma E2 and T, whereas, injection of LHRHa 24 hrs post-capture did not 

elevate plasma E2 or T levels over controls. 
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• Plasma levels of cortisol and 17,2013P were unaffected by hormone treatment. 

4. Black bream have the capacity to successfully reproduce over a wide range of 

salinity, however, egg production, sperm motility and egg development, and hatching 

success were reduced at low salinity. 

• Gonadal maturation and seasonal plasma steroid levels were essentially 

unaffected by salinity (5-35 %o) in both sexes. 

• Hormone therapy resulted in the typical endocrine and ovulatory response in 5, 

20 and 35 %o salinity, however, egg production was reduced in fish held at 5 %o. 

• Both fertilisation and sperm motility were significantly reduced at 5%0. 

• Egg development and hatching success were best at salinities above 20 %o. 
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